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ABSTRACT 

As the beneficial aspects of computers become more apparent to the elderly population 

and the baby boom generation moves into later adulthood there is opportunity to increase 

performance for older computer users.  Performance decrements that occur naturally to the motor 

skills of older adults have shown to have a negative effect on interactions with indirect-

manipulation devices, such as computer mice (Murata & Iwase, 2005).  Although, a mouse will 

always have the traits of an indirect-manipulation interaction, the inclusion of additional sensory 

feedback likely increases the saliency of the task to the real world resulting in increases in 

performance (Biocca et al., 2002).  There is strong evidence for a bimodal advantage that is 

present in people of all ages; additionally there is also very strong evidence that older adults are a 

group that uses extra sensory information to increase their everyday interactions with the 

environment (Cienkowski & Carney, 2002; Thompson & Malloy, 2004).    

This study examined the effects of having multimodal feedback (i.e., visual cues, 

auditory cues, and tactile cues) present during a target acquisition mouse task for young, middle-

aged, and older experienced computer users.   This research examined the performance and 

subjective attitudes when performing a mouse based pointing task when different combinations 

of the modalities were present. 

The inclusion of audio or tactile cues during the task had the largest positive effect on 

performance, resulting in significantly quicker task completion for all of the computer users.  

The presence of audio or tactile cues increased performance for all of the age groups; however 

the performance of the older adults tended to be positively influenced more than the other age 
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groups due the inclusion of these modalities.   Additionally, the presence of visual cues did not 

have as strong of an effect on overall performance in comparison to the other modalities.   

Although the presence of audio and tactile feedback both increased performance there 

was evidence of a speed accuracy trade-off.  Both the audio and tactile conditions resulted in a 

significantly higher number of misses in comparison to having no additional cues or visual cues 

present.  So, while the presence of audio and tactile feedback improved the speed at which the 

task could be completed this occurred due to a sacrifice in accuracy.  Additionally, this study 

shows strong evidence that audio and tactile cues are undesirable to computer users.   

The findings of this research are important to consider prior to adding extra sensory 

modalities to any type of user interface.  The idea that additional feedback is always better may 

not always hold true if the feedback is found to be distracting, annoying, or negatively affects 

accuracy, as was found in this study with audio and tactile cues.    
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CHAPTER ONE: INTRODUCTION 

Our society is experiencing a shift in its growing dependence upon computer 

technologies, while at the same time the older demographic is becoming an ever increasing 

sector of the population.   Our increasingly “graying nation” can be attributed to two primary 

factors, improvements in health care over recent years and the normal aging of the large baby 

boomer population.  Over the next 5 to 10 years the baby boomers will be moving into older 

adulthood, with the early generation of baby-boomers turning 65 by 2011.   By 2020 

approximately 1 in 6 American will be over the age of 65 (Meyer, 2001). 

Researchers have already begun examining some of the implications this large influx of 

older adults will have on mobility (Bladock, Mathias, McLean, & Berndt, 2006; Oxley et al., 

2005), health care (Prohaski et al., 2006; Ryan, Anas, & Friedman, 2006), and product design 

practices (Demirbilek, & Demirkna, 2004; Koncelik, 2003), however very little of the literature 

has concentrated on older adults interaction with computers.  With our continued reliance upon 

computer based technologies it is not unreasonable to assume that computers will continue to 

permeate different aspects of our everyday lives.  People of all ages and experience levels will 

have to interact with these systems, including an older population that may exhibit lower levels 

of computer experience as well as relevant physiological and psychological declines that 

accompany aging.  

Little consideration has been given to the natural changes in performance that people 

experience due to age when developing current human-computer interactions.   There are, 

however, some accessibility features that can offset the weaknesses of older populations, such as 

the accessibility options available in Microsoft Windows.  The built in accessibility features in 
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Windows aid users with hearing, visual or motor control issues, however because the features are 

software based solutions they are functionally limited.   These accessibility options are not 

seamlessly integrated into the interaction of the computer system and are often used as tools for 

users to interpret the interaction with the computer, much in the same way a magnifying glass 

would be used to read small print.  A solution that is directly implemented into the computer 

system, which does not alter the performance of regular computer users, but also increases the 

performance of users with compromised abilities, is preferable.   Rather than a software based 

solution, which may be difficult to implement across the many possible computer applications, a 

change in our computer hardware should be examined, specifically the devices we use to 

communicate with a PC. 

Today’s computer setups primarily use two feedback modalities for relaying information 

to users, those being visual or auditory in nature.   Auditory feedback is most often provided by 

three sources: the software, the keyboard and the mouse.  Auditory feedback from software often 

alerts a user to an event, such as the tone one hears if an error has occurred.  The keyboard and 

mouse auditory cues are used to show that a person has successfully made an input to the device, 

separate from what is occurring within the software.  Most commonly this feedback would be the 

clicks one hears when pressing a mouse button or key.  A user knows that he or she has 

successfully sent a signal to the computer because they can hear the hardware activate.  Visual 

feedback communicates changes made to the state of the software by displaying those changes 

via the monitor.     

A modality that has not been used frequently in computer interfaces is tactile feedback.  

At the most basic level tactile feedback is our sense of touch.  This sensory channel is 
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underutilized in current computer systems.   Mice have been developed and marketed to provide 

this extra dimension; however they were often marketed for entertainment purposes.  A far 

greater application for this additional feedback would be to help aid in the degradations that may 

occur with the onset of old age.  Tactile feedback is a solution that will also avoid negative 

repercussions on other populations because it is reasonable to assume that the addition of tactile 

feedback may increase performance of younger computer users as well.   

The current study will examine the performance changes when using a more robust 

computer interface, through providing tactile feedback via the mouse.  The addition of this 

modality is believed to create more intuitive and absorbing interfaces for the general population 

and also provides the additional feedback capable of increasing computer usability for older 

audiences.  The intended outcome of this study is to aid in the creation of interfaces that truly 

add to the experience of using computers for older adults as well as everyone else who uses 

computers on a regular basis. 
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CHAPTER TWO: LITERATURE REVIEW 

Computers and Older Populations 

A number of technological innovations have allowed computers to become an ever 

growing presence in our homes and lives; this is most evident due to the number of computers 

that have become integrated into our daily lives.   It is difficult for the average person to avoid 

interacting with a computer interface at some point in their day to day lives; whether it is for 

communication, shopping, banking or an integral tool in their occupations.  In the past 10 years 

the home PC has become a fixture in most American homes and workplaces.  This incorporation 

stands to grow even larger as computers develop into convergence devices and ultimately 

become firmly rooted in our homes.    

Aside from making the general populations lives easier, there are many aspects to 

computers that can improve the lives of older adults.  Computers are capable of such a positive 

influence on older adults’ lives because they can reduce the distance between family and friends, 

especially in cases in which travel is difficult.   Older adults who communicate with family and 

friends by using e-mail, chat, and internet phone have already been shown to lead happier lives 

(White et al., 1999; White et al., 2002; WirthlinWorldwide, 2003).    These results may seem 

trivial; however older adults experience the largest number of mobility problems, so these 

additional communication capabilities can have beneficial effects on mental health.   

Communication via computer is not the only positive influence on elderly lives.  It has also been 

shown that computer literate elderly report higher levels of life satisfaction (Karavidas, Lim, & 

Katsikas, 2005; Groves & Slack, 1994).   Health care has also been shown to be a catalyst for 
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older adults to go online.  Currently, connected elderly computer users utilize the internet to look 

up medical information more so then any other computer task (Fox, 2004). Health care 

information and consultations via computers (i.e. telemedicine) are likely to become common in 

future years due to the lower costs involved, thus the number of senior internet users is likely to 

increase in the coming years (Cohen, 2001).     

Even with all of the inherent benefits of computers, older adults are the least computer-

experienced portion of the population.  Less than a fourth of Americans over the age of 65 

actively use a personal computer (Fox, 2004).  Compared to other age groups these numbers are 

incredibly low.  Specific reasons why the elderly do not actively use computers are unknown, 

however it can be hypothesized that many different factors, such as technophobia, and cognitive, 

perceptual, and physiological changes may be playing a role.  Older adults are however slowly 

amassing in the computer world, with the growing number of aging computer literate baby-

boomers and the elderly becoming more proficient with computers.  With the beneficial 

properties of computers and the ever growing elderly population the following years will 

produce the largest population of elderly computer users in history.  Due to this “graying nation” 

the design of computer interactions must consider both the large number of previous users 

joining the ranks of the elderly as well as inexperienced older adults migrating to computers. 

Developers have done minimal work to enhance computer interactions for older users.  

Web design is just one of the few areas in which the design implications for older computer users 

have even been considered (Chisnell, Lee, & Redish, 2004).   Little focus has been placed on the 

hardware interactions, such as mice and keyboards, necessary for adequate communication with 

a computer.  Due to normal decreases in motor control, vision, and auditory functioning 
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associated with aging the control of mice, keyboards, and even touch screens may become 

difficult for elderly users to master.   

Due to heterogeneity of aging there is a large amount of variance between older 

individuals even of the same age.  There are however physical declines that are more likely to 

appear among the elderly.  For example, some common visual impairments that the elderly 

population are susceptible to include decreases in static and visual acuity, lower thresholds for 

contrast sensitivity, longer times necessary when adapting to dark environments, declines in 

color sensitivity, and difficulties with glare.  Variability in contrast sensitivity, visual acuity, 

useful field of view and color perception have been shown to affect icon selection speed when 

using a touch-screen (Jacko et al., 1999).  Older computer users have been shown to have higher 

difficulty reading text off of a computer monitor and this is believed to have affected overall 

performance when using a word processor (Charness, Schumann, & Boritz, 1992).   Older adults 

have also been observed to commit more errors and experience much higher levels of difficulty 

when asked to select small icons with a mouse (Charness, Bossman, & Elliot, 1995).  Difficulty 

reading text and selecting targets may be associated with difficulty detecting contrast differences 

dependent upon background color.  Individuals with visual decrements as well as ones with 

healthy visual systems perform best when text and icons are displayed on a black background 

(Jacko et al., 1999). These findings may also be associated with older adults’ general 

performance decrements in visual search tasks and target acquisition tasks (Kline & Schnieber, 

1985).  These declines in visual performance will negatively affect computer use since it largely 

involves performing the most basic and common tasks such as browsing the World Wide Web, 

writing and reading e-mails, or interacting with tool bars like those seen in Excel or Word.   
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User performance cannot be attributed solely to one factor.  Computer interactions also 

require cognitive and motor abilities to work in unison along with the visual system.   Cognitive 

abilities associated with general information processing, attention, working memory, problem 

solving, and long-term and short-term memory have all shown to have some declines with aging 

(Park, 1992; Salthouse, 1985).  These cognitive declines are likely a factor in the performance 

decrements observed in older populations when using the internet and other computer 

applications.  Attention and psychomotor speed were strong predictors for older computer users’ 

performance when entering data into spreadsheets (Czaja, & Sharit, 1998).  It has also been 

postulated that declines in cognitive abilities, such as working memory, processing speed and 

text comprehension, may contribute to the difficulty older adults have when attempting to gain 

computer skills (Morrell & Echt, 1996).   These cognitive declines may also make using the 

Internet difficult for some populations, especially when searching the Internet, which could 

conceivably require the use of the different memory systems, attention, learning, and problem 

solving (Czaja & Lee, 2003).  Accommodations can be made to limit the difficulties older adults 

may experience due to cognitive decrements through the use of navigation and search aids as 

well as including extra information to create more salient memory cues.   

Although cognitive abilities are important when interacting with a PC, motor skills are a 

primary attribute required for most human-computer interactions.  Whether it is a keyboard, 

mouse, or touch-screen all of these peripherals require motor coordination to successfully 

communicate with a system.  Multiple motor skill changes have been observed in older 

populations including general slowing, declines in ability to perform fluid continuous 

movements, coordination difficulties, and lower flexibility (Rogers & Fisk, 2000).   
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These changes in motor skills appear to most often affect indirect-manipulation devices 

which represent most interaction devices employed on home and office computers. The 

antithesis of indirect-manipulation devices are direct-manipulation devices examples of which 

would be touch-screens or light pens where a user interacts directly with what is displayed on a 

visual screen. Indirect-manipulations however, are categorized by devices, such as mice or 

touch-pads which are used as intermediaries to interact with the system.   Direct-manipulation 

has been shown to elicit superior performance in elderly populations when compared to indirect-

manipulation devices (Murata & Iwase, 2005). When comparing performance between a touch-

screen (direct-manipulation) and a mouse (indirect-manipulation) it has been shown that when 

older adults use a touch-screen for a pointing task, they perform similarly to younger computer 

users.   While performance with a touch-screen was similar between age groups, when a mouse 

was employed to do the same task large differences between the old and young emerged.  Older 

participants took a significantly longer amount of time to acquire an icon with a mouse (Murata 

& Iwase, 2005). 

Since there is evidence that older adults’ pointing performance declines when using 

indirect-manipulation devices, researchers have begun examining the possible mitigating effects 

of direct-manipulation devices for older users.   In one case, task performance with a light-pen 

has been found to be comparable for young and old age groups during a menu navigation task 

that was heavily based upon target acquisition (Charness, Holley, Feddon, & Jastrzembski, 

2004).   These earlier findings have been corroborated by other researchers who observed higher 

performance levels for both young and old adults while using a touch-screen to navigate a drop 

down list box.   Rogers, Fisk, McLaughlin, and Pak (2005) compared touch-screens and a rotary 
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encoder, an indirect manipulation device, for drop-down boxes, however high performance for 

the touch-screen was only observed when scrolling was not required.  Although others have 

found that direct-manipulation devices can reduce some of the performance degradations caused 

through natural aging (Rau & Hsu, 2005; Charness, Bosman, & Eliot, 1995), it can be argued 

that direct manipulation interfaces are very limited in actual application or require interface 

designs that are incompatible with current computer setups. 

Even though direct input devices, such as touch-screens or light-pens, have produced 

higher performance in elderly samples they are not feasible for many everyday computer tasks.   

Most studies examining direct-manipulation devices concentrated on performance during 

pointing tasks (i.e. target acquisition), which although these are common in everyday computing, 

they only make up a small portion of computer interactions.  Furthermore, direct-manipulation 

devices are not the perfect solution because target size will affect performance in similar ways 

despite whether a touch-screen or a mouse is used.   Older participants or those with 

degradations in motor skills need a reasonably large sized object (50 x 50 pixels or greater) or 

error rates will dramatically increase regardless of the type of input device being used (Murata & 

Iwase, 2005; Casali, 1992; Jacko et al., 1999).   The most common human-computer interactions 

seen today and in the foreseeable future rely on indirect-manipulation devices, thus research 

focused on older adults should follow these real world trends.   

Currently, mice are the most prevalent input devices for pointer manipulation.  Smith, 

Sharit, and Czaja (1999) set out to collect information on the effects of a multitude of age deficits 

on some of the most often used mouse tasks.  The study examined the performance of three 

separate age groups (young, middle, and old) on four separate mouse tasks including pointing, 
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clicking, double-clicking, and dragging, as well as how age related changes in motor-control, 

processing speed, and visuo-spatial skills affected mouse use skills. 

The study employed a variety of physiological and cognitive tests that measured 

abstraction, spatial ability, processing speed, visuo-motor ability, perceptual speed, and motor 

coordination.  To measure performance for each task the experimenters collected movement 

time, movement distance, movement speed, sub-movements, and slip errors.  Movement time 

was defined as the period of time it took to reach the cursor target from the home position, while 

movement distance was the total distance the mouse traveled to reach the target.  Movement 

distance would include the actual distance traveled, for example if a user did not take the shortest 

direct route to the target, that movement distance would be larger.   Movement speed measured 

how fast the participant could reach the target.  Finally slip errors were simply the number of 

times that the cursor left the target before successfully completing the task.   

The results of the study indicated that the clicking and double-clicking tasks produced 

significantly worse performance for the older groups than the other age groups tested.  The lower 

performance was related to longer movement times, more frequent errors and a higher number of 

movements to the cursor while the mouse button was being pressed.  Of all the tasks tested, the 

double-clicking task was most difficult for older adults to complete efficiently.    Older adults 

also performed less well with the dragging and pointing tasks, often committing more slip errors.  

Overall the older group had higher movement distances and more slip errors when using a 

mouse.  Motor control ability was the sole predictor for mouse performance, with motor control 

being less precise in the older participants resulting in more errant mouse behaviors.   
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Even though motor control was highly predictive of mouse control performance for older 

adults when precise actions were a requirement, these findings have also been related to the 

sensitivity of the input device.  Mouse gain affects how far the cursor will move corresponding 

to how far the mouse has been physically moved.  Mouse gain therefore may play a pivotal role 

in the precise motor control required for mouse tasks.  The use of a mouse however is not just 

related to motor control; it is a complex system that also involves the visual system.   The motor 

control and visual system must work in conjunction to successfully transfer the movements made 

with the mouse to the visualizations displayed on the computer.  Due to this complex relationship 

the visual demand of a mouse task is associated with the size of the objects being manipulated in 

the computer environment.   In young computer users it has been found that target size and gain 

work collectively in determining performance.  It has been shown that higher gains will cause 

lower performance if the target size is smaller, in effect the increase in gain and a decrease in 

target size will create situations in which fine motor control are necessary and performance 

decrements will be observed (Bohan, Thompson, Scarlett, & Chaparro, 2003).   

Sandfeld and Jensen (2005) examined the mouse gain and target size relationships effect 

in older adults.  Participants assigned to groups according to age (young and old) were instructed 

to perform a pointing and clicking task with three levels of mouse gain and target size.  The 

levels of mouse gain were 1:2, 1:4 and 1:8.  These ratios denote how far the mouse movement 

will move the cursor, so for example 1:4 would move the cursor four times the distance on-

screen in relation to the physical movement of the mouse.   The target sizes used for this study 

were small (8 x 8 pixels), medium (16 x 16 pixels), and large (32 x 32 pixels).  Unsurprisingly it 

was shown that the higher mouse gains with smaller targets amounted to the largest decrement of 
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performance for both age groups, however the older group performed significantly worse.  The 

higher mouse gains with smaller targets lead to a situation in which precise movements are 

necessary and these types of movements are the ones that have previously been shown to be 

difficult for older adults (Smith et al., 1999). It was found that a mouse gain of 1:4 had the best 

performance for both age groups as long as smaller targets were avoided, if smaller targets are to 

be used then a lower mouse gain should be used instead.   

The degraded ability of motor control affecting the mouse use performance is consistent 

with other research that has examined motor control in older adults.  Older adults have been 

shown to have difficulty decelerating their movements, which could lead to some performance 

decrements (Siedler and Stelmach, 1995).  An additional factor resulting in decreases in mouse 

performance could be associated with older adults’ difficulty in performing discrete pointing 

tasks. A discrete pointing task requires a person to move a pointer, whether it be a finger, pen, or 

cursor, and stop within a target.  Teeken et al., (1996) instrumented this type of task using a 

touch-pen and found that adults over the age of 60 performed 30% (425 ms) to 50% (> 500 ms) 

slower than adults in their twenties.    

Multimodal Feedback and the Older Adult 

It has been suggested (Akamatsu, MacKenzie, & Hasbroucq, 1995; Smith, Sharit & 

Czaja, 1999) that additional feedback, such as tactile feedback, may increase the performance of 

older adults when using a mouse.  Currently human-computer interactions via the mouse offer 

limited perceptual feedback, for example if one were to compare interacting with a real world 

object to interacting with a computer terminal it becomes evident that they are drastically 

different due to the limited amount of feedback available.  Gobel et al. (1995) describes these 
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discrepancies through comparing the disparity between moving a real object versus moving the 

mouse pointer.   When handling a real object the different sensory components are processing the 

characteristics that are inherent in the manipulated object (See Figure 1).  For example, 

proprioception allows a person to know where his arm and hand are in relation to the object, as 

the person touches the object there is tactile feedback, such as pressure; concurrently constant 

visual feedback on the object is available.  All of these senses are working in unison to 

manipulate a single object.   The operation of a mouse deviates significantly from a real-world 

interaction because there are less salient sensory cues available.  For example, the proprioception 

cues are providing feedback of where the mouse itself is located in relation to the body, while the 

visual system is providing feedback about the location of the on-screen mouse pointer.   This 

produces a situation in which the inputs (i.e., the mouse) and outputs (i.e., the monitor) of the 

interaction are spatially separated (See Figure 2).  Although the spatial separation of this 

interaction will likely be a characteristic of most visual display terminals in the foreseeable 

future, the addition of tactile feedback can provide a stronger link between what is occurring on-

screen and the point of input.    Additional sensory cues can create interactions that leverage the 

natural abilities that people have when interacting with objects in the real world.   
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Figure 1. Direct manipulation of an object 
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Figure 2. Indirect manipulation in a computer task 

 

People perceive multiple streams of information and integrate them to create a perception 

of the world that is accurate and dynamic; however many typical computer interactions only 

provide visual and limited auditory cues.   There is strong evidence that additional sensory 

information, whether it be tactile, motion, or auditory, can enhance the interaction with a system 

through providing more salient stimuli (Biocca et al., 2002).   These enhancements are likely to 

occur because individuals do not interpret the environment as separate pieces of sensory 

information in isolation; rather our sensori-motor system takes the different sensory inputs, such 

as vision, hearing, and touch, and creates one cohesive picture of the world around us (Driver & 
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Spence, 2000).   People will create a picture of the environment that combines all of the separate 

sensory modalities in a way in which things make sense as evidenced by the “ventriloquist 

effect”.  This effect can be observed when people naturally associate a ventriloquist’s voice to 

the location of the mouth movements of a dummy, thusly causing one to sense the dummy is 

speaking (Alais & Burr, 2004).  The McGurk Effect further emphasizes this cross-modal 

integration by showing that the vocal phoneme a person perceives is dependent upon the lip-

movements that are viewed (McGurk & MacDonald, 1976).  These well documented effects are 

important because they show that sensory information creates a unified perception of the 

environment through communication between the senses or higher level processing.  The 

addition of extra sensory modalities to a computer interaction will change the overall 

environment by providing a larger number of sensations needed to create a unified perception of 

the environment.   

The underlying principles and benefits concerning multiple modes of sensory information 

have resulted in countless studies and theories.  Two contrasting theories of how an individual 

processes multiple modalities are feed-forward and feedback.  The feed-forward mode of thought 

portends that each sensory system works autonomously, however higher-level processing creates 

an accurate fully integrated sensation.  A very important aspect of this view is that senses do not 

communicate with each other, essentially the auditory system concentrates on capturing sound, 

while vision concentrates on visual processing with no communication directly between the two.  

All of the sensory systems do not receive feedback from the product of the high-level multi-

modality processing.   Alternatively the feedback view believes that the different sensory 

systems do talk to each other at various levels, possibly even prior to any high-level modality 
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processing takes place (Driver & Spence, 2000). This is believed to allow one sensory system to 

affect how another sensory system perceives the environment.   For example, the visual system 

may communicate with the auditory system in determining the location of a sound (i.e., 

Ventriloquist effect).  Currently there are no empirical findings to determine which of these two 

views are most accurate, with many researchers finding evidence for both frames of thought 

(Vroomen & de Gelder, 2004).   Although there are no concrete answers to how multi-modal 

processing is achieved, it is believed that the systems do process multiple sensory inputs together 

in some fashion.   

The combination of multiple modes of stimuli has been observed to affect overall user 

performance and perceptions.  Over the years researchers have paired stimuli with multiple 

combinations comprised of visual, auditory, or tactile cues, while measuring performance on a 

number of different types of tasks.  Most multimodal research examines three types of stimuli: 

unimodal or a single sensory input; bimodal or two separate sensory inputs; and trimodal or a 

combination of three sensory inputs.  Individuals have been observed to have a “bimodal 

advantage” when reacting to stimuli that are a combination of two forms of feedback, most 

commonly visual and auditory.   Miller (1982) conducted a popular study that showed strong 

evidence for a “bimodal advantage”.  Participants were instructed to respond when they were 

presented with an auditory tone, a simple light, or a combination of the two.  Performance for 

this group was best for the bimodal stimuli, which resulted in significantly shorter reaction times 

(326 msec) when compared to the auditory tone only (409 msec) or the light only (412 msec). 

Reaction times to bimodal stimuli have been shown to be significantly faster when compared to 

unimodal feedback (Miller, 1982).   The performance increments inherent in multimodal 
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feedback have been observed consistently; however the majority of the research has focused 

upon young adults, with little attention being given to the potential benefits that may be possible 

for older adults (Diederich & Colonius, 2004; Patching & Quinlan, 2002; Patching & Quinlan, 

2004).   

Although there have been some studies that have examined multi-modal sensory effects 

for older adults, most have examined this topic in an applied manner in which it is difficult to 

pinpoint the actual effects on performance that are normally quantified by reaction time.  For 

example, complex news casts, such as what may be seen on CNN or MSNBC, provide multiple 

streams of information at once through audio, video, and streaming text.  Older adults have more 

difficulty with this type of information presentation; however it is difficult to determine if this is 

due to possible deficits in working memory or due to difficulty integrating multimodal 

information (Stine, E., Wingfield, A, & Myers, D., 1990).   It is likely that older adults process 

the environment differently, possibly through utilizing strategies that limit possible sensory 

and/or cognitive deficits related to aging.  It has been observed that older adults already use 

strategies when conversing by supplementing others’ vocals with a strong focus on a speakers lip 

movements, thus reducing the effects on possible hearing loss (Cienkowski & Carney, 2002; 

Thompson & Malloy, 2004).   Although these previous examples do not show evidence that can 

be directly associated with multimodal performance benefits; they do show promise that older 

adults use extra sensory information when interacting with the world. 

Laurenti et al. (2006) attempted to bring forth some concrete findings on the effects of 

multimodal integration for older age groups.  Older adults were prompted to provide a response 

to a simple reaction time task in which multiple combinations of stimuli were shown.  The 
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modality conditions tested included a visual only, an auditory only, and a multimodal condition 

in which the visual and auditory stimuli were combined.  The multimodal stimuli 

(visual+auditory) provided quicker response times for all participants regardless of their age.  

Even more interesting is that the older adults were observed to have a higher performance gain 

for the multimodal stimuli over the performance gain observed in the younger adults.   These 

findings show what other researchers had previously believed that older adults may have an 

overall larger reliance on extra sensory information, so much so that it has the potential of 

increasing their performance much more than it does younger adults.  The multimodal stimuli 

actually allowed older adults to perform at similar levels as the younger adults when they 

responded to a single modality stimuli.  Essentially older adults made up for their performance 

decrements and performed similar to younger adults when they were given multimodal stimuli 

instead of unimodal stimuli.   

The performance benefits that were observed with multimodal feedback in older adults 

are interesting, especially when considering that response speed generally slows as one ages 

(Mathews et al., 2000).  Older adults have been observed to have approximately 25% slower 

reaction times during simple tasks, regardless of the sensory system involved when compared to 

younger adults (Welford, 1977).  This generalized slowing effect as one ages has been observed 

during auditory, visual, and simple motor tasks (Mathews et al., 2000).  Currently researchers 

have had difficulty decoding each aspect of the generalized slowing phenomenon; however most 

feel that this slowing is not a product of a single aspect of human processing, conversely it is felt 

that there is a general slowing of multiple systems that work in conjunction when interacting 

with the world around us (Hicks & Birren, 1970; Birren & Fisher, 1995).  The slowing observed 
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in older adults is most often attributed to an overall slowing of the central nervous system.   

Although the central nervous system is a complex system and is attributed to many different 

aspects in controlling behavior, it is believed that the ability to process all different dimensions 

of information is a primary origin of generalized slowing (Birren & Fisher, 1995).  Due to 

generalized slowing, it should be kept in mind that it would be unrealistic to fully negate all of 

the decrements that occur due to aging; however it is very promising when older adults are 

performing at similar levels as young adults with the addition of extra modalities.  Since older 

adults have already been observed to use strategies that include the processing of extra sensory 

information it is beneficial to explore the benefits of multimodal feedback at a deeper level. 

There is limited research available to further examine the benefits inherent in multimodal 

feedback for older adults; however research examining how the aged brain processes sensory 

information may provide some rationale for why these performance increments are so prevalent.  

Results of brain imaging studies have shown that older adults have different brain activity when 

compared to younger adults while performing similar tasks, even if performance has occurred at 

a comparable level (Grady, 2000; Hedden & Gabrieli, 2004).  Brain activity during tasks that 

require psychomotor responses has also been shown to be higher for older adults.  Repetitive 

finger and wrist movements that would be comparable to the movements necessary while using a 

mouse have been found to have higher levels of brain activity in older adults compared to 

younger adults (Hutchinson et al., 2002).    It has also been observed that older adults have 

increased brain activity when creating complex limb movements (Heuninckx et al., 2005).   

These studies and previous research have consistently shown that older brains tend to have a 

more widespread pattern of brain activation.   
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One of the brain areas in which older adults experience more widespread activity is a 

region that has been linked to the processing of somatosensory information.  Somatosensory 

systems are most often associated with the senses required for different aspects of touch, 

including but not limited to vibration, temperature, and pain.  A study that required participants 

to do simple limb movements whenever an auditory tone (i.e. metronome) was heard, showed 

that older adults’ brain activity reflected extra auditory processing when compared to younger 

participants (Hutchinson et al., 2002).  The extra brain activity that is most often involved in all 

of the previous studies centers upon the integration of additional sensory information.   For the 

psycho-motor tasks that older adults were given, additional brain areas associated with the 

processing of sensory information became active; however this was not always the case for 

younger adults.   Brain imaging studies provide strong evidence that older adults process more of 

the sensory information that is available to them.  The brain is a very complex system and many 

more years of research are necessary to completely understand how people of all ages decipher 

our environment; however the findings thus far are very compelling to the idea that older adults 

are processing the world differently than the rest of the population.  These findings show 

evidence that as one ages one may naturally develop strategies that process more of the sensory 

information that is available.  Due to older adults naturally processing more of the extrasensory 

information, all systems should leverage this and provide extra sensory cues in places in which 

none existed previously.   

The predominance for older adults to rely heavily on sensory information may be due to a 

number of reasons; however it can be hypothesized that it is most likely due to the global 

additive effects from decrements in each sensory system individually.  Because older adults have 
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a higher reliance on extra sensory information it is likely beneficial to create systems that allow 

older adults to leverage their higher reliance on sensory information.  This could be done through 

the addition of extra auditory, visual, or tactile cues.  Tactile feedback is an area that has not 

been explored extensively in the past.  The addition of tactile feedback while using a mouse may 

improve performance in older adults most likely due to the “bimodal advantage”; however older 

adults also process the environment differently than their younger counterparts.  The 

performance gains observed are likely to be higher for the older adults during multimodal 

conditions when compared to younger adults.  The extra tactile information will provide the 

extra sensory information that seniors are likely to process more closely.     

Multimodal Feedback and Computer Input Performance 

The addition of extra sensory information, specifically tactile feedback, to computer 

interfaces has been examined to a limited extent over the past two decades.  This extra feedback 

is most important when using a graphical user interface (GUI) which requires visual perception 

as the primary conveyor of information.  Tactile feedback has been shown to have very high 

signal to response times for the sensory system, thus its addition to a visual dominated system 

may act as a very useful aid (Nelson et al., 1990).   It should be noted that research examining 

tactile feedback often includes force-feedback as well as vibro-tactile feedback.  Vibro-tactile 

feedback is often administered through the use of a small motor built into a device that provides 

vibrations directly through the point of skin contact.  Force-feedback, however, simulates forces 

acting against or with a device; for example a force-feedback mouse may simulate the pulling of 

a rubber-band by consistently increasing the force pulling forward on the mouse as one pulls 

back on the device. Due to the differences in perception and system implementation only vibro-
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tactile feedback is examined in this study; however research exploring computer interactions that 

are enhanced with force-feedback have shown promising results on user performance 

(Repperger, Phillips, & Chelette, 1995; Keyson, 1997; Dennerlein & Yang, 2001; Kyung, Kwon, 

& Yang, 2006).   

A primary concern with the addition of any extra sensory information is that it may 

become a distraction to the user.  Research in the aviation field has shown that tactile feedback is 

a viable means of communicating extra information, without being a distraction to pilots.   

Detection of system failures in a flight simulator was shown to be higher when tactile feedback 

alerted the pilots to these errors (Sklar & Sarter, 1999).  These system failures were messaged via 

one of three ways: visual only, tactile only, and visual and tactile simultaneously.  It was found 

that when participants performed the signal detection task with tactile feedback, regardless of 

whether visual feedback was present, they had significantly higher detection rates over visual 

feedback alone.   Although these findings are not directly comparable to the interaction 

associated with a computer mouse, it provides evidence that tactile feedback may not interfere 

with a task and that a bimodal advantage will hold true in a real world application. 

One of the earliest studies directly examining the use of tactile feedback in mice 

examined the benefits of this extra modality when using a mouse to do a tracking task, 

positioning task, and a target selection task with adults between the ages of 25 and 35 (Gobel et 

al., 1995).   The positioning and the target selection tasks were both target acquisition tasks, 

however during the positioning task the mouse pointer was positioned onto a single line, while 

during the target selection task the pointer was positioned into a predefined area on the screen.   

The tracking task had participants targeting a continuously moving line with the mouse pointer.  
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This type of tracking is not often seen in computer interfaces, since most actual targets, such as 

icons, are static. 

The positioning and target selection task were completed significantly faster with the 

addition of tactile feedback.  On average participants completed these tasks 9% to 19% faster 

when the mouse was enhanced with tactile feedback.   This reduction in total task time could be 

attributed to two factors.  First the recorded time for final positioning of the mouse pointer on the 

target areas was faster when tactile feedback was enabled.  Second participants were observed to 

take less time prior to initially moving the mouse pointer towards the target in the tactile 

condition.   It is possible that the participants were depending more upon the tactile feedback to 

aid in accurate targeting, thus lowering the amount of time necessary for mental preparation of 

movement thus resulting in shorter initial movement times.  The addition of tactile feedback to 

the tracking task had little effect on performance; however tracking is not a common behavior 

during most every day computer interactions.  Considering positioning and target acquisition 

behavior is necessary for activating icons, most future research examining mouse interactions 

and tactile feedback should focus on tasks based upon target acquisition interactions. 

The focus of tactile enhanced mice most often examines how it compares to other 

modalities during a target acquisition task.   Akamatsu et al. (1995) had PC users complete a 

target selection task with a mouse that provided multiple methods of sensory feedback.  The 

feedback was always given when the mouse pointer entered the target area.  The five 

experimental conditions included no feedback, auditory feedback, tactile feedback, visual 

feedback and finally a combination of all three feedback modes.  Highlighting the target when 

the mouse pointer touched the target area provided the visual feedback.  The researchers 
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collected timing data which was separated into two phases: total task time and final positioning 

time.   Final positioning time was quantified as the amount of time necessary for a participant to 

press the left mouse button once the cursor entered the target area.  The sensory feedback was 

observed to have the largest effect on final positioning time, most likely because the feedback 

was not delivered until the cursor entered the target area.   Overall the final positioning time was 

lowest when the user interface had tactile feedback integration.  The combination condition also 

affected performance in a very positive manner; however it is likely the tactile feedback may 

have increased the observed performance to levels similar to the singular tactile condition.  It has 

been consistently shown that the addition of different multimodal stimuli will not result in a 

multiplicative effect on performance; most often it will peak at a specific level and the inclusion 

of additional sensory feedback will amount to limited gains in performance (Cockburn & 

Brewster, 2005).   

The auditory and visual feedback conditions resulted in higher task times than the tactile 

condition, while the no feedback condition resulted in the worst overall performance.   Although 

auditory feedback did increase performance over the no feedback condition, it resulted in longer 

task times because participants would often wait until the tone was finished playing before 

completing the task, thus elevating the total final positioning time.  Auditory feedback is also not 

a good choice for feedback in general because in an office environment it can produce a lot of 

noise pollution, it can also lead to erroneous feedback due to too many peripheral auditory 

feedback notifications occurring simultaneously.    

Researchers have also compared different types of haptic, which is a common term used 

to describe something that pertains to the sense of touch, mouse implementations, specifically 
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force feedback and tactile feedback.  Akamatsu and Mackenzie (1996) compared four separate 

conditions that included: no feedback, tactile, force feedback, and a combination of tactile plus 

force.   Force feedback was implemented by increasing the drag of the mouse when a cursor 

enters the target area, in effect making it more difficult to move when in the target area.  To 

discover if the size of the target has a main effect on the performance when using an enhanced 

mouse, the target sizes were varied between small, medium, and large.  The primary measures 

used for this study were final positioning time and task performance as measured through an 

index of performance calculated by using Fitt’s law.   

As previously found, the real performance differences occurred when the mouse cursor 

entered the target area.  It was found that tactile and force feedback tend to lower the amount of 

time it takes to stop the mouse when reaching the target area.  The performance differences 

between the two forms of sensory feedback ends there however because tactile feedback was 

shown to yield significantly lower amounts of time to actually activate the mouse button than 

force feedback.   These effects are further strengthened based upon the size of the targets.   The 

tactile and tactile/force feedback conditions showed significantly improved performance with 

small targets compared to the other conditions tested.  Performance for the tactile feedback 

condition, according to the results equated from the Fitts law index of performance, was 8.5% 

more efficient than when no feedback was present.  The tactile+force condition resulted in 

performance that was 5.1% better than the no feedback condition.  These findings show further 

evidence that combining multiple sensory feedbacks don’t automatically increase performance, 

however the inclusion of tactile feedback appears to consistently increase performance. 
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 Most of the previous research examining tactile feedback has focused primarily on target 

acquisition types of tasks.  Although, target acquisition is a skill that is very prominent in a 

computing environment, real world mouse interactions are a mixture of multiple complex 

behaviors.  In order to provide information on how additional feedback may affect a typical 

mouse task researchers assessed if different modes of feedback would be beneficial when added 

to a simple drag and drop task.  A drag and drop task requires a user to hold down the left mouse 

button while moving the mouse to a target.  A common example of this type of interaction would 

be dragging a file into the recycle bin.    Vitenset, Jacko, & Emery (2003) directed participants to 

complete a drag and drop mouse task under a unimodal, bimodal, or trimodal condition.   The 

unimodal condition was comprised of a single feedback mode consisting of either visual, tactile, 

or auditory feedback.  The bimodal condition combined two separate sensory modes together 

resulting in three separate feedback conditions: haptic+visual, auditory+visual, and 

auditory+tactile.  Finally, the researchers combined all three sensory modes (auditory, visual, and 

haptic) into a singular feedback condition which is referred to as the trimodal condition.   

Each type of feedback was delivered when the mouse pointer broke the plane of the 

target.  In the case of the auditory feedback there was an audible beep when reaching the target.  

The tactile feedback was very similar to the auditory feedback, however the mouse vibrated 

quickly (.30 of a second) when over the target.  Lastly the visual feedback consisted of simply 

highlighting the target blue when an object was placed over it. 

The researchers examined subjective workload (NASA-TLX), trial completion time 

(TCT), and target highlight time (THT).  Analysis of the study showed that the most beneficial 

modality to human performance was the tactile+visual feedback.  This condition not only 
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showed high levels of user performance (TCT and THT) but also significantly lowered 

subjective workload levels when compared to the other modality conditions tested.   This 

bimodal feedback condition increased performance yet it did not increase the perceived 

workload, which is invaluable information when deciding upon the various levels and types of 

feedback to include in a task.    Another observation made was that the addition of auditory 

feedback may not be beneficial to task performance, especially when basing performance on task 

time.  The participants were once again observed to wait for the auditory feedback to complete 

playing before finishing any actions.  The article did not report the length of the musical tone 

used for feedback, however length of auditory cues should be taken into consideration when 

developing auditory feedback.   

Although most studies do not examine user perceptions of bimodal feedback, it is 

important to consider this as well as performance.  Many of the performance increments are on a 

very small scale (i.e., milliseconds), so a user’s subjective feelings on the feedback condition 

should be given weight.  Participants have reported liking visual feedback the most; however 

tactile feedback was chosen as the second most liked method of feedback (Akamatsu et al., 

1995).  It should be noted however that the tactile feedback in this study was slightly different 

than other studies concerning tactile sensation.  The researchers had a pin pop-up under the left 

mouse button when the user entered the target.  This implementation may be more jarring 

compared to the more often used vibration method of tactile feedback.  Most vibro-tactile mice, 

such as the Logitech IFeel, have a small motor inside the body of the mouse that supplies 

distributed vibrations to the hand.  It is a possibility that participants would have changed their 
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preference if the standard method of vibro-tactile feedback had been in place.   Regardless of the 

modality of feedback, participants prefer additional feedback when performing mouse tasks.   

Multimodal Feedback, Computer Input Devices and the Older Adult 

It has been established that tactile feedback enhanced mice increase performance in 

general populations; however little work has been done to establish how this additional feedback 

would affect the performance of older adults.  The limited amount of research that has examined 

the benefits of a multimodal mouse for older populations have not used controlled target 

acquisition tasks, such as Fitts’ Law.  Also many studies have not controlled for previous 

computer experience, this is especially important because of the various levels of computer 

literacy older adults have attained.   Computer experience is a factor that has often not been 

controlled in previous mouse studies.  A person’s mental model of a mouse interaction is highly 

dependent upon his or her level of computer experience, such as someone with a lot of 

experience will have certain expectations of the mouse interaction, while novices will have no 

preconceived notions.   This is important because experienced computer users have fully 

developed mental models giving them the capabilities to complete a task much more efficiently 

than novice computer users (Van der Veer & Melguizo, 2002).  This study predictably 

demonstrated higher performance in all conditions for older adults with computer experience 

when compared to older novice users.   

Jacko et al. (2004) did account for older participant computer experience when 

examining the performance effects on a drag and drop task with multiple feedback conditions.  

The older participants were subjected to seven separate feedback conditions that were 

categorized as unimodal feedback, bimodal feedback, and multimodal feedback.  The unimodal 
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conditions consisted of singular sensory cue comprised of visual feedback, tactile feedback, or 

auditory feedback.  The bimodal conditions were couplings of the unimodal feedback, while the 

multimodal condition was a combination of all three modes of feedback.  The sensory feedback 

was administered when the mouse cursor was placed over the target.   

The visual feedback was the least beneficial to performance for all of the older computer 

users, regardless of their experience level.  This finding is consistent with other studies which 

have also examined similar feedback with younger computer users.   The computer task is 

already very visually intense, so the addition of extra visual information can be lost or may be 

overwhelming to older adults.   The tactile feedback condition resulted in mixed findings.  The 

tactile feedback produced the best performance when it was combined with any other sensory 

feedback condition; however auditory feedback provided the best performance in the unimodal 

condition. Both the inclusion of auditory and/or tactile feedback provided best observed 

performance across all conditions tested regardless of the experience level.  It should be noted 

that experience level was a main determinant of overall performance across all conditions as 

well.  Although auditory was shown to increase performance the most, tactile feedback was the 

second most likely to increase performance.   

The experimenters postulated that the tactile feedback may have not significantly affected 

older participants because the mouse did not produce a powerful enough cue.   The researchers 

did not report the strength of the vibro-tactile feedback; however it is unlikely that the force 

would have been missed unless it had been lower than 30 Hz.  It has been recommended that 

research examining tactile feedback with older computer users should consider using stronger 

tactile feedback signals, especially since older adults may be less sensitive to tactile sensory cues 
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(Hilz et al., 1998).  These recommendations are generally accurate since it has been shown that 

in general older adults lose some sensitivity to vibration detection; however there is very little 

change in detection in older adults if the vibration is administered to the finger-tips.  Stuart et al.  

(2003) found evidence that young adults (17 to 27 years of age) and older adults (55 to 90 years 

of age) do not significantly differ in detection of 30 Hz and 200 Hz vibrations when administered 

through their finger-tips.  There was, however, a significant age effect for vibration detection 

when felt through the forearm, shoulder, or cheek.  Due to a stable sensitivity for vibration in the 

finger-tips over one’s lifetime, vibro-tactile feedback above 30 Hz should be adequately 

perceived by both young and old if felt through a mouse. 

 Older adults have also been observed highlighting text in a word processor, navigating 

hierarchical menu structures, or moving cells in a spreadsheet with a tactile enhanced mouse 

(Viau et al., 2005).  The addition of tactile feedback was shown to have little positive effect on 

performance for all of the participants that were tested regardless of age.  The addition of tactile 

feedback while navigating between spreadsheet cells actually decreased overall performance for 

the older participants below the levels recorded with no feedback at all.  Although, these results 

may appear discouraging, problems with the research methodology may call into question what 

was actually tested.  The researchers used commercial off the shelf software which provides 

ecological validity, however they tested the current implementation of tactile feedback in 

commercial products as it is today.  For example, they tested Logitech’s tactile feedback 

implementation in Microsoft Office.  The actual current implementation has never been believed 

to improve performance.   Since the setup results in a computer environment that is constantly 

outputting tactile feedback it is likely that this overwhelming amount of feedback could have 
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been distracting.  The researchers also did not control for previous computer experience or prior 

experience with spreadsheet or word processor software.  Finally the sampling for older adults 

centered more on middle aged adults (M = 47 years of age) than truly older adults which should 

be at least over 60 years old.  Due to the questionable methodology employed in the study these 

findings have to be looked at as not definitive evidence of the effects of extra sensory 

information in mouse use.  As the authors themselves realize future studies examining tactile 

feedback must be at a formal level, then once we know the basic effects of tactile feedback when 

using a pointing device, applications based on these findings can be created.    

Measuring User Performance: Fitt’s Law & Steering Law 

A thorough review of the literature on tactile feedback and mouse use yields two 

interesting findings.  First it can be reasonably assumed that adding tactile feedback is likely to 

increase the performance of computer users.  Second, and more importantly, is the lack of 

comparable methodologies that have been used when measuring user performance with these 

devices.  Although typically most studies employ a reaction time and errors measurement 

paradigm when quantifying human performance, this often does not factor in the subtle 

differences in the interfaces that may affect task difficulty, such as target size, movement 

trajectories, and distance necessary to move the pointer into the target space.   To achieve a 

better understanding and universality of results many HCI researchers have begun to employ the 

classic Fitts’ Law as well as the newer Steering Law to measure user performance in pointer 

tasks.   

Fitts’ Law is a method for predicting the movement time necessary for acquiring targets 

with rapid and aimed motor movements.  Essentially this law allows one to predict the amount of 
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time necessary for a user to point to a target dependent upon its size.  Intuitively it can be 

assumed that it takes longer for a user to point at a smaller target than a larger one; however 

Fitts’ Law quantifies this seemingly simple relationship.   Fitts (1954) discovered that task 

performance on a pointing task was a logarithmic function and thus an index of difficulty could 

be ascertained if the target distance and size were known.   An important characteristic of this 

law is that it considers the physical properties of a motor dependent task.  The original 

mathematical representation of Fitts’ Law is as stated below:  

MT = a + b log2 (2D/W) 
Where:                       MT = average movement time 
             a and b = empirically defined constants 
                                   D = distance to reach target 
                                   W = width of target 
 

Fitts Law is based upon Shannon’s Theorem 17, a theorem of communication systems.  

This law is synonymous with comparing the motor movements necessary for a pointing task to 

the transfer of information.   Measuring task difficulty is a common use for this law with an 

index of difficulty (ID) that is computed in a unit called bits.  So essentially a movement task is 

assigned an ID, which is represented in bits, and if this number is divided by the amount of the 

measured movement time of the task an index of performance (IP) can be equated.   

Fitts’ Law was created well before computer pointing devices were developed, thus 

pioneer researchers in the field of HCI were unsure if the performance model could be accurately 

used in the computer space.   MacKenzie (1992) performed a thorough review of the HCI 

literature that measured input performance using Fitts’ Law and found that although it appeared 

that differences in experimental designs caused situations in which the ID and IP could not be 

directly compared between experiments, the performance relationships found between devices 
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tested within a study were similar to other studies.  For example, the IP for the mouse and 

joystick in Card et al.’s (1978) study was 10.4 and 4.5 respectively, while in Epps’ (1986) study 

the mouse IP was 2.6 and the joystick IP was 1.2.   These numbers may be discouraging however 

when they are quantified as ratios (10.4/4.5 = 2.3; 2.6/1.2 = 2.2) the differences in the individual 

numbers dissipate. 

Certain measures can be made when using Fitts’ law for HCI applications to allow higher 

levels of compatibility between other research employing this law.  First, the initial proposed 

mathematical Fitts’ Law equation was found to result in situations in which a tasks ID could 

result in a negative number if a task becomes too easy (MacKenzie, 1992).   To avoid this pitfall 

and get a better fit with other researchers’ measured data most HCI research uses the Shannon 

formulation for determining ID as stated below: 

ID = log2(A/W + 1) 
Where:                         ID = Index of Difficulty in bits 
                                     A = target distance 
                                     W = target size or width  
 
An example of an ID calculated using the Shannon formulation for a large target (41 

pixels) that is close to the starting point (72 pixels away) would be 1.5 bits (ID = log2(72/41 + 

1)).  Considering that this task is relatively easy due to the large target and short distance away 

the calculated bits are low; as the target becomes smaller and the distance increases the bits 

would naturally become higher in number.  A second recommendation that should be considered 

to stay comparable with other HCI studies is to keep the ID within a range of 1 to 7.   This allows 

a set difficulty range that has generally been found to be accurate of current GUI interactions and 

also gives experimenters the ability to compare results with more ease.   Third, the number of 

conditions should be enough to adequately allow for a wide range of ID.  MacKenzie (1992) 
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recommends that a reasonable number of conditions when conducting HCI work with Fitts’ Law 

to be nine to twenty separate conditions.   

Finally, average observed errors should not deviate from 4% to keep the underlying 

principles of Fitts’ Law intact, particularly when calculating a prediction model.   Although 

participants are instructed to complete a Fitts’ task as fast and accurately as possible it is 

assumed that 96% of the responses will fall within the target area.  If an error percentage other 

than 4% is observed the width should be calculated with the observed accuracy and an effective 

width of the target can be quantified (MacKenzie, 1992).   This calculation can be made in the 

post hoc analysis, specifically before any regression analysis is conducted to create a prediction 

model.  Currently many HCI researchers do not adjust the effective width; although to meet ISO 

standards (ISO 9241-9) for measuring non-keyboard input device performance requires effective 

width to be calculated.   Although making these adjustments are recommended, most do not 

make this calculation due to the difficulty in making the calculation as well as the fact that there 

are multiple methods of making this calculation that can significantly affect the Fitts model.  The 

most recent research recommends that if the width variable must be adjusted than a Combined-

Coordinate (CC) system should be used due to ease in calculating and better fit with Fitts’ 

regression models (Kong & Ren, 2006).  

Fitts’ law is primarily a target acquisition task, which is highly relevant when using a 

pointing device; however it does not encompass all of the possible pointer behaviors that may 

occur while using a GUI.   Behaviors that require users to move the pointer over a defined area, 

such as navigating nested menus or drawing, are a very common computer interaction that Fitts’ 

Law is not able to measure.  Fitts’ law is based upon targets, while these other behaviors rely 
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much more on movement trajectories.   General mouse use is a combination of multiple 

behaviors, and thusly when determining the performance of a pointing device multiple measures 

should be used to create an accurate representation of the benefits of a device.   

A model of measuring pointer movement that has been proposed is the Steering Law.  

The Steering Law is based upon the action of navigating a mouse pointer through tunnels of 

various shapes and sizes (Accot & Zhai, 1997; 1999).  When factoring in the tunnels length and 

width the movement time can be predicted very similarly to Fitts Law.  Another similarity 

between the two models is that they both can quantify an Index of Performance and an Index of 

Difficulty (Accot & Zhai, 1997; 1999).  The application of this law is limited however because 

the shape and angles of the tunnels are not given consideration when equating the ID.  Different 

tunnel shapes, such as a circle, zig-zag, or straight tunnel are likely to be serious factors when 

defining task complexity and this law does not include this crucial piece.  For example, if a 

straight tunnel and a circular tunnel have the same width and are of the same length from start to 

finish both result in the same ID with no regard to how the shape may play in performance.   

Although the work on Steering Law in HCI is seriously flawed in its current state, the primary 

premise of measuring user performance in pointer navigation tasks is an important one that is not 

considered in experiments that apply a Fitts law task.   Measuring total movement time and 

errors while users navigate tunnels that require pointer steering has been conducted (Campbell et 

al. 1999) and has been shown to accurately reveal performance differences due to device and 

participant characteristics.   The behavior of steering is an important trait that is necessary in 

computer interactions and it should be explored further in future studies before it is employed as 
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a method of testing mouse proficiency.  Due to the Steering Law being in an early stage of 

development it will not be used in favor of the much more widely accepted Fitts Law. 

Conclusions 

There is great opportunity to improve current human-computer interactions for older as 

well as younger users through the use of mice with additional tactile feedback.  As the beneficial 

aspects of computers become more apparent to the elderly population and the baby boom 

generation moves into later adulthood there is opportunity to increase performance for older 

computer users.  The current implementation of computer input has already been shown to result 

in lower levels of performance for older adults.  Performance decrements that occur naturally to 

the motor skills of older adults have shown to have a negative effect on interactions with 

indirect-manipulation devices (Murata & Iwase, 2005).  Although, a mouse will always have the 

traits of an indirect-manipulation interaction, the inclusion of additional feedback is very likely 

to increase the saliency of the task to the real world resulting in increases in performance.  The 

addition of the absent tactile feedback to a mouse interaction will create a more robust computer 

interaction and provide an increased internal representation of the computer world (Biocca et al., 

2002).     

Previous research efforts exploring the benefits of tactile feedback have either been 

lacking in quality due to methodological issues or have been very limited in number.  The 

purpose of this study is to provide an accurate measure of the effects of tactile feedback on 

mouse use in older adults.  Some of the previous studies in this limited area did not examine this 

relationship in a concise valid way.  This study plans to rectify this body of research through the 

application of a Fitts law task and improved sampling methodology.  A mouse task using Fitts 
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law has previously been shown to provide valid performance findings for a mouse pointing task.  

Parallels have been drawn between Fitts law and standard computer use due to the necessity to 

click on icons and buttons in computer interfaces, thus it is likely the best method to begin 

exploring tactile mouse use.  

Research conducted on cross-modal integrations, and the processing of extra sensory 

information by older adults has provided evidence that a tactile mouse is likely to increase 

performance.  Jacko et al. (2004) found that during a drag and drop mouse task older computer 

users had better performance when tactile feedback was introduced and Gobel et al. (1995) have 

shown that the addition of tactile feedback improved performance during a pointing task.  It is 

likely that the inclusion of tactile feedback for older adults will significantly improve 

performance when compared to solely using visual feedback.   The addition of tactile feedback 

may also decrease the amount of time that an older adult needs to click a target.  Akamatsu et al. 

(1995) have found with younger adults that the time necessary to click a target once it has been 

highlighted is significantly less when tactile feedback is present.    Similarly, previous research 

(Akamatsu & Mackenzie, 1996) has found that tactile feedback will make the task time 

significantly shorter when pointing to smaller targets for young adults.   If these findings are 

examined in conjunction with previous research covering the well documented bimodal 

advantage it can be hypothesized that some of the previous findings with younger computer users 

may also hold true for older adults.   

There is strong evidence for a bimodal advantage that is present in people of all ages; in 

addition there is also very strong evidence that older adults are a group that uses extra sensory 

information to increase their everyday interactions with the environment (Cienkowski & Carney, 
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2002; Thompson & Malloy, 2004).   With a simple reaction time task it was shown that the gains 

in performance due to the addition of extra sensory information were vastly higher for older than 

for younger ones completing the same tasks (Laurenti et al., 2006).  This provides some evidence 

of the importance of multimodal feedback to older adults.  When using a tactile-enabled mouse 

for a pointing task it can be reasonably hypothesized that the older adults will use this tactile 

feedback more effectively than their younger counterparts and will likely have larger 

performance gains.  The addition of tactile feedback may also reduce some of the effects inherent 

in the generalized slowing phenomenon that one experiences as one becomes older. 

Purpose 

The purpose of this research is to provide strong evidence that the addition of auditory, 

tactile, and visual feedback will increase mouse pointing performance for older adults.  There has 

been previous evidence outside the HCI realm that suggests that the performance benefits of 

additional sensory feedback will have a greater effect on older adult performance compared to 

younger adults.  Previous research within the field of HCI has shown that the addition of sensory 

feedback when completing mouse tasks allowed older adults to perform more quickly; however 

these studies did not employ a standardized pointing task and also did not account for previous 

computer experience.    This research will provide strong evidence for the benefits of providing 

multimodal feedback to computer interactions for older populations. 
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CHAPTER THREE: METHOD 

Participants 

According to G*Power 3.0, a power analysis software tool, a sample size of 84 

participants was required to achieve a power of .80 and a medium (.25) effect size.  Participants 

were categorized into three age groups: young (18 to 30 years old), middle-aged (35 to 55 years 

old) and old (60+ years old).  Each age group was recruited in order to maintain a 50/50 gender 

mix.   

 A total of 91 participants were recruited for this study; the extra 7 participants were run 

through the sessions as a possible replacement in case a participant achieved outside of the 

normal performance for their age group.  These 91 total participants were split among separate 

groups based upon age and gender, which resulted in the following 6 groups: 15 young males, 15 

young females, 18 middle-aged males, 14 middle-aged females, 15 older males, and 14 older 

females. The participants did not have any health limitations which would make using a mouse 

difficult and also used a computer mouse for at least 5 hours per week.  Additionally, all of the 

participants were right handed and primarily used a mouse when interfacing with a PC.  Please 

refer to table 1 and 2 for a full breakdown of the samples ages and computer experience.  

Participants also met certain sensory requirements that were required to accurately complete the 

study.  These sensory requirements included: at least 20/40 vision, acceptable hearing, and the 

ability to perceive tactile sensations in their right hand. 

Participants were recruited in a variety of ways.  Some participants for this study were 

recruited from the University of Central Florida via the Department of Psychology participant 

recruitment system.  Ads for recruitment were also placed on online classified sites, such as 
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Craigslist, and in the Orlando Sentinel newspaper.  Recruitment was also done via flyers that 

were placed in locations surrounding the Orlando area that were likely to have a diverse age 

population, such as but not limited to senior community centers.  Participants were compensated 

for their time with a choice of extra credit that could be used towards a psychology course or 

$20. 

The participant sample initially only included the first 14 participants from each of the 6 

groups and disregarded the extra participants.   The initial sample of 84 participants was screened 

to ensure no outlying participants needed to be replaced.  Since accuracy was a critical 

assumption of this target acquisition task, an initial scan of the data looked for participants that 

may not have balanced there speed and accuracy accordingly, which would have resulted in a 

higher than normal percentage of error.  Box plots were used in order to determine which 

subjects may have been an outlier within each condition.   If a participant’s error percentage was 

1.5 interquartile range (IQR) above the upper quartile (i.e., top 75% of scores) they were labeled 

as an outlier for that condition. Appendix A reports all participants from the initial sample of 84 

participants that was found to be an outlier for each of the conditions.  The criterion for 

participant removal was if 50% (i.e., 4 out of 8) of the conditions resulted in an outlying error 

percentage. 

Two participants were removed from the analysis for having over 50% of their trials 

result in a higher than normal error rate.  A middle-aged female was removed because she had a 

very high error rate on 7 of the 8 test conditions.  Due to having no replacement participant 

available the middle aged female group was comprised of 13 participants.  Additionally, a single 

middle-aged male was also removed for scoring poorly in 50% of the feedback conditions; 
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however he was replaced with one of the extra middle aged male participants.   After the middle-

aged male was replaced the data was re-checked to ensure the replacement participant was not in 

and of himself also an outlier.  This additional analysis showed that the replacement was indeed 

a proper participant for this study.   

After correcting the data to ensure that all participants were reasonably accurate when 

completing the task an additional analysis was conducted to find potential outliers when 

examining TMT.  Since accuracy was deemed to be the better determinant of proper task 

completion, the data set was only screened for participants that were extreme outliers.  An 

extreme outlier was defined as anyone that had a mean TMT that was 3 IQR above the upper 

quartile.    An older male participant had to be replaced due to having extremely high TMT on all 

of the feedback conditions.   This particular participant was on average 3 times slower than the 

mean of the group, which provided a strong rationale for him to be replaced with an extra older 

male participant.  An additional participant from the older male group was also an extreme 

outlier for TMT on 6 of the 8 feedback conditions, which made it necessary to remove him from 

the sample.  Unfortunately a suitable replacement was not available so the older male group had 

a total of 13 participants.   After removing the outliers a final sample of 82 participants was used 

for further analyses.  The sample was almost split evenly between the 3 age groups with a total 

of 28 young adults, 27 middle-aged, and 27 older adults.   

Table 1. Summary of Participant Ages 
Age Groups  Minimum Age  Maximum Age  Average Age 

Young Adults  18  28  20.5 
Middle-Aged  35  52  43.3 
Older Adults  60  84  68.4 
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Table 2. Participant Computer Experience & Behavior 
    Level of Computer Experience 
 Hours per 

week on PC
 Years 

using PC 
Beginner  Intermediate  Advanced 

Young 
Adults 

M = 26.9; 
SD = 18.8 

 M = 9.9; 
SD = 3.2 

4%  79%  18% 

Middle-
Aged 

M = 28; SD 
= 15.3 

 M = 16; 
SD = 5.9 

4%  63%  33% 

Older 
Adults 

M = 17; SD 
= 14.9 

 M = 
16.9; SD 

= 7.4 

19%  67%  15% 

 

Apparatus 

Fitts Task 

The Fitts Task was run on a Windows based PC with an Intel 2.4 GHz Core 2 Duo 

processor and a 19” flat-screen monitor.  A Logitech iFeel 2-button optical mouse was connected 

to the computer and was the sole mouse used throughout the study.  The iFeel mouse is able to 

provide tactile feedback through the implementation of a small actuator built within the mouse, 

which can provide a tactile frequency response from .01 to 500 Hz.  The tactile feedback 

functionality could be turned on or off within the software reverting itself back into a standard 

desktop mouse.    

The Fitt’s Law task was developed using E-Prime, a popular psychological testing 

software suite.  The objective of the Fitt’s Law task was for the participant to move the mouse 

cursor from a starting position on the screen to a target as quickly and accurately as possible.  

The starting position and target were both square in shape.  The target was located at one of 4 

pre-determined angles from the starting position, either 45 degrees, 135 degrees, 225 degrees, or 

315 degrees.  In order to begin each task trial the left mouse button had to be clicked while the 
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mouse cursor was within the starting position.   If the left mouse button was pressed outside the 

confines of the starting position the trial did not start and no data was collected.  Once the trial 

started a variety of measures were recorded for that specific trial.  The Fitts task recorded the 

following data:  total movement time (TMT) in milliseconds, total highlight time (THT) in 

milliseconds, slip errors, and trial outcome (i.e., miss or hit).    

In order to record slip errors, misses, and total highlight time the software registered the 

exact moment the cursor hit the target as well as the number of times the cursor touched the 

target for each trial.  When the participant pressed the left mouse button within the target the 

software recorded the total movement time (TMT) to complete the trial as well as the amount of 

time the participant was within the target prior to pressing the button (THT).  If the pointer 

overlapped the target, but rolled off prior to the button being clicked the software registered a 

slip error.   If the participant clicked the button outside of the target error, that trial was marked 

as an error and was re-administered at a random time during the session.    

The Fitt’s Law task also had the capability of presenting different feedback modalities 

when the cursor touched the target.  The feedback modalities used included tactile, audio, or 

visual cues alone or in combination.   If a feedback cue was present it was delivered when the 

cursor entered the target.  The visual cue consisted of the target changing its visual state from 

white to blue whenever the mouse cursor touched the target.  This feedback was continuous, so 

whenever the cursor was touching the target it remained blue.  The auditory condition consisted 

of a discrete click sound played through headphones whenever the cursor entered the target 

region.  This feedback only occurred on target entry and did not continuously play while the 

cursor was in the target.  Previous research (Vitense et al., 2003) had shown that some users may 
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wait to provide input until after the sound has completed playing, thus the audio sample was 

chosen for its brevity at approximately .1 second in length.  The audio feedback was played at a 

volume level in which all participants were able to hear it and the volume level was held constant 

between the participants.  Finally, the tactile cue consisted of a short medium to high strength 

vibration delivered each time the cursor initially entered the target.  The tactile feedback was 

intended to last only .1 second in length. 

In order to provide tactile cues an additional software package, Immersion Touchware, 

was installed onto the PC.  This software converted sound waves to tactile feedback that could be 

used by the iFeel mouse.  During the tactile condition the software played a sound, which the 

participant was not able to hear, whenever the mouse pointer entered the target area.  The 

Immersion Touchware software package converted this sound to tactile feedback when needed.  

The amount of tactile feedback that was produced, unfortunately, could not be easily quantified; 

however the Touchware software had the capability of tuning the tactile signal to different 

strengths (i.e., very low, low, medium, and high).  In order to be certain that all participants were 

able to discriminate the tactile feedback, the software was tuned to provide a medium to high 

vibro-tactile signal. 

It was possible to play the visual cues in combinations thus the software had the 

capabilities to present bi-modal and tri-modal feedback cue combinations.  The possible bi-

modal conditions included the following feedback combinations visual+tactile, visual+auditory, 

tactile+auditory.  The tri-modal condition was a combination of all three feedback conditions 

resulting in tactile+auditory+ visual.  Additionally, it was possible to include no feedback cues, 

which provided the opportunity to have a no feedback condition. 
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Sensory Screening 

Methods for measuring visual acuity, hearing, and tactile perception were used during 

this study.  In order to measure visual acuity an OPTEC vision testing machine was used.  This 

machine presented a Snellen chart to participants and upon completion allowed for an estimation 

of overall visual acuity.   

A hearing test was developed using the E-Prime software.   This hearing test consisted of 

30 total trials in which after each trial the participant was instructed to report whether they heard 

an audio sample.  Out of the 30 trials only 5 of them actually played the audio cue.  If the 

participant correctly reported hearing a sound it was considered a hit.  If they did not report 

hearing the audio cue when it was present it was considered a miss.  False alarms were also 

recorded in cases in which the participant reported hearing the audio cue when it was not present.  

If the participant correctly reported that they heard the 5 samples and did not have any false 

alarms they were considered to have successfully passed the hearing test.   

A tactile sensitivity test was also used during this study.  A variation of the hearing test 

was used in which tactile cues were presented via the mouse instead of audio cues.  This tactile 

feedback was exactly the same as the one that was employed as the tactile cue during the test 

sessions.  The same criteria as the hearing test was necessary in order to successfully pass the 

tactile screening. 

Pre‐Test Questionnaire 

A pre-test questionnaire that collected relevant health history and previous computer 

experience was developed for this study.  This questionnaire had a subset of questions taken 

from the health assessment questionnaire (HAQ) (Fries et al., 1982).  This subset of questions 
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focused on physical limitations that may inhibit mouse use, such as arthritis or an inability to 

grip objects.  Additionally, this questionnaire included a section that quantified previous 

computer experience, including frequency of computer use, years of experience and typical 

computer use. This pre-test questionnaire was intended to verify that the participants were 

acceptable for the study in regards to health and previous computer experience.   A copy of the 

pre-test questionnaire can be found in Appendix C. 

NASA‐TLX 

The paper based NASA-TLX was chosen to assess the workload experienced throughout 

the different tasks.   The NASA-TLX is a subjective based measure of workload that can provide 

an overall estimation of the workload as perceived by the respondent.  This has been shown to be 

the most valid measure of workload in comparison to competing measures, such as the SWAT 

(Hill et al., 1992).  The NASA-TLX is based upon 6 weighted factors that include: mental 

demand, physical demand, temporal demand, performance, effort, and frustration.  Each of these 

6 factors is weighted according to how important each factor is to the successful completion of 

the task.  These levels of importance are determined through a pair-wise comparison in which 

participants are asked to choose the more important factor contributing to the task among all of 

the different paired combinations.  Each factor is also rated via an absolute score which is 

determined by the participants experience with that factor in the task.  For example, the 

respondent scores their perceptions of mental workload on a 1 (Low) to 100 (High) scale based 

upon their experience with the previous task.    

     Based upon a methodology previously used to examine an auditory enhanced scroll-

bar (see Brewster et al., 1994) the level of annoyance experienced from the task was added as an 
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additional factor using the same 1 (Low) to 100 (High) scale that is found on the NASA-TLX.  

The annoyance factor was not included in the overall workload or the pair-wise comparison 

portions of the NASA-TLX.  This factor was added due to the possible annoyance that may have 

arisen with any of the feedback conditions.  It is believed that one of the biggest problems with 

auditory output in the realm of HCI is the annoyance that it may cause (Brewster, 2003).  This 

measure provided the ability to highlight the possible differences in annoyance between the 

different types of feedback. A copy of the NASA-TLX used in this study can be found in 

Appendix E. 

Feedback Preference Questionnaire 

In order to determine the preferred feedback modality for the groups a preference 

measure was administered.  This measure asked participants to rank the 8 possible feedback 

conditions from their most preferred to their least preferred.  A link to this measure can be found 

in the Appendix D. 

Experimental Design 

This study used a 2 x 2 x 2 x 3 within mixed factorial design.  The between subject factor 

was age at 3 different levels: young, middle-aged, and old.  The within subject variables were the 

presence or absence of each of the three feedback modalities.  Table 3 outlines the feedback 

combinations that were presented to each age group.  There were a total of 8 possible feedback 

conditions presented to each participant. 
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Table 3.  Feedback Combinations Presented 

 

Independent Variables 

Multiple independent variables (IV) were intricate to the completion of the study.  As has 

been previously mentioned age was controlled for three separate levels: young, middle-aged, and 

old.  Feedback was also an independent variable with a total of 8 levels when considering all 

possible feedback combinations: no feedback, visual, tactile, audio, visual+tactile, visual+audio, 

audio+tactile, and visual+audio+tactile.  The target width was varied at three possible diameters 

which were 1/8 inch, ¼ inch, and ½ inch.  The target widths chosen represented typical icon 

sizes that may be seen in a GUI.  The distance the target was presented from the starting position, 

further referred to as the amplitude, was also varied between three distances: 2 inches, 4.5 

inches, and 8 inches.  Trials were presented with different combinations of target width and 

amplitude, which resulted in a total of 9 different types of targeting scenarios within each 

feedback conditions.  Additionally, the target sizes and amplitudes chosen for this study provided 

multiple IDs that fall between 1 and 7 bits. 

Dependent Variables 

Task performance was measured using multiple dependent variables.  Total movement 

time (TMT) was the total trial time in millisecond.  Total highlight time (THT) was the total 
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amount of time in milliseconds that the mouse cursor was within the target prior to activation, 

please see Figure 3.  Slip errors were the number of times the mouse cursor hit the target and 

slipped out prior to successfully activating the target.  Misses were the number of times that a 

trial ended with activation outside of the target.  Workload was the calculated NASA-TLX score.  

Additionally, the separate factors of the NASA-TLX worksheet were also separately examined, 

which for this study included effort and the additional annoyance factor. 

 
Figure 3. Difference between TMT and THT 

 

Procedure 

Upon arriving to the lab, participants were asked to sign an informed consent form (Refer 

to Appendix B).  Upon completion of the informed consent the participant’s vision, hearing, and 

tactile perception were tested.  Following the sensory tests the pre-test questionnaire which 

included the health assessment and computer experience questions was given.  

Participants were given a brief introduction to the testing apparatus and a practice period 

in order to get comfortable completing the task.   The introduction was automated so that the 

complete directions of the task were presented via the software.    The instructions explained 
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what the session would entail, the goals of the task and provided a practice session.  Following 

the instructions the practice sessions was administered during which the participants were shown 

each of the eight feedback condition 3 times in a combination of target widths and amplitudes 

resulting in a total of 24 practice trials.   In order to verify that the participants had a firm 

understanding of the task objectives the participant could not begin the test sessions until they 

perfected the practice session.  If a participant did not effectively complete the practice session 

then additional clarification of the task was given followed by a re-administration of the practice 

session.    

The presentation of the different conditions and sessions was similar to MacKenzie’s 

(1992) review and validation of Fitt’s law tasks application to HCI experiments.  The experiment 

included 8 randomly presented test sessions with each session comprised of one of the possible 

eight feedback conditions.   In order to make certain that the presentation of the feedback 

conditions was counter-balanced a Latin square was used which resulted in 8 possible orders of 

presentation.   Due to having 14 participants per group some of the orders had to be used twice.   

Within each session there were 108 randomly ordered trials, with each possible amplitude 

and target width combination being shown 12 times. Additionally, each amplitude and target 

width combination was shown 3 times for each of the angle orientations (45 degrees, 135 

degrees, 225 degrees, 315 degrees).  Trials that result in a miss was not counted towards the total 

number of trials and a replacement trial for the erroneous trial was re-administered automatically 

during the session. For example, if a participant made 3 errors during the course of a session, 

then the total number of trials for that session resulted in 111.   Each test session lasted 

approximately 4 to 5 minutes. 
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Upon completion of each session the participants were asked to fill out the NASA-TLX 

subjective workload measure.  Participants were instructed to only think about the session that 

they just completed while filling out the workload measure.  Once participants had finished the 

questionnaire they were required to take at least a 2 minute break prior to beginning the next test 

session.  This break was mandatory and was included to reduce possible fatigue and boredom 

during the course of the study.   After each participant had completed all of the sessions they 

were given a post-test questionnaire instructing them to rank the 8 feedback modalities from 

favorite to least favorite.  The entire length of the study session took approximately 90 to 120 

minutes. 

Predictions 

Hypotheses #1 through #10 predict findings for the different feedback conditions within 

each group.  Hypotheses #11 through #14 are specific to differences that will be observed 

between the age groups. 

1. Participants will have significantly lower TMT when feedback cues are present. 

2. The presence of tactile cues will significantly lower TMT. 

3. The TMT from the visual uni-modal condition will be significantly higher in comparison 

to audio or tactile uni-modal conditions. 

4. Participants will have significantly lower TMT for small targets when feedback cues are 

present. 

5. Participants will have significantly lower TMT for small targets when tactile or auditory 

cues are present in comparison to visual cues. 

6. Participants will have significantly lower THT when feedback cues are present. 
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7. The presence of tactile cues will result in significantly lower THT in comparison to when 

visual cues are present. 

8. Participants will have a significantly lower number of slip errors when feedback cues are 

present. 

9. Participants will have a significantly lower number of slip errors when audio or tactile 

feedback is present in comparison to when visual cues are present. 

10. Participants will have significantly lower workload when feedback cues are present. 

11. The older age group will have significantly lower effort when feedback cues are present. 

12. The young age group will have significantly higher IP for the mouse task compared to the 

older adults. 

13. The change in IP from the uni-modal feedback conditions to the no feedback condition 

will be significantly larger in positive directions for the older adults in comparison to the 

young adults. 

14. The change in IP from the bi-modal feedback conditions to the uni-modal feedback 

conditions will be significantly larger in positive directions for the older adults in 

comparison to the young adults. 
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CHAPTER FOUR: RESULTS 

An alpha level of .05 was used as the criterion for statistical significance in all of the 

analyses conducted.  Furthermore, all of the alpha levels are reported as two-tailed unless 

otherwise noted.  In some instances a one-tailed alpha level was used if warranted by a 

directional hypothesis.    

Prior to conducting each of the analyses the data were examined in order to ensure that 

the assumptions of normality were met.  Skewness and kurtosis were examined by calculating a 

z-score by dividing the skewness or kurtosis statistic by the skewness or kurtosis standard error 

respectively.  Based upon Tabachnik & Fidell’s (1996) recommended conventional cut-offs for 

smaller samples, an alpha level of .001 was used in order to determine if any of the groups were 

significantly skewed or kurtotic.   A number of the data sets were significantly skewed.  Unless 

otherwise noted it should be assumed that the data was normalized using a Log10 transformation.  

Tables 4 and 5 shows the raw data for the TMT and THT for each of the age groups respectively. 

Table 4. Raw data means and standard deviations for Total Movement Time. 
 Young Adults 

N = 28 
Middle-Aged 

N = 27 
Older Adults 

N = 27 
Total Movement Time 
(ms) 

 Mean  Standard 
Deviation 

 Mean  Standard 
Deviation 

 Mean  Standard 
Deviation 

No Feedback  903.75  121.28  1108.54  236.21  1126.1  177.21 

Audio  894.05  125.19  1027.67  191.27  983.81  173.39 

Tactile  915.63  137.21  1036.7  176.97  1053.63  139.33 

Visual  900.16  137.45  1088.41  188.3  1096.83  160.95 

Audio+Tactile  887.84  123.18  1057.66  180.34  1035.2  155.88 

Visual+Audio  888.17  120.76  1047.49  185.89  1038.19  158.24 

Visual+Tactile  883.22  135.39  1087.81  206.54  1078.24  162.43 

Visual+Tactile+Audio  896.77  122.84  1050.45  211.75  1047.46  166.69 
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Table 5. Raw data means and standard deviations for Total Highlight Time. 
 Young Adults 

N = 28 
Middle-Aged 

N = 27 
Older Adults 

N = 27 
Total Highlight Time 
(ms) 

 Mean  Standard 
Deviation 

 Mean  Standard 
Deviation 

 Mean  Standard 
Deviation 

No Feedback  231.07  57.82  309.98  125.18  301.35  75.71 

Audio  202.63  60.78  236.56  61.32  228.48  63.17 

Tactile  209.87  67.4  240.13  83.86  240.12  73.5 

Visual  207.42  56.05  266.72  69.22  266.83  75.5 

Audio+Tactile  193.62  61.2  242.34  88.7  223.91  61.82 

Visual+Audio  188.3  52.4  239.08  77.41  226.33  61.68 

Visual+Tactile  192.97  59.63  251.07  85.43  234.09  74.3 

Visual+Tactile+Audio  193.93  58.84  235.14  86.85  213.24  70.03 
 

A correlation matrix containing the age group, feedback and the separate dependent 

measures recorded during the Fitt’s task is shown in Table 6.   A Spearman’s correlation test was 

used due to the non-normal distribution of the timing data as well as the feedback and age group 

variables not being interval in nature.   Age group was positively correlated with TMT (rs = .421, 

p < .001), slip errors (rs = .200, p < .001), THT (rs = .216, p < .001), workload (rs = .165, p < 

.001), and errors (rs = .272, p < .001).  This shows that all of the dependent measures increased 

as age increased. 

Also of note is the significant correlations found for TMT.  TMT was positively 

correlated with slip errors (rs = .376, p < .001), and THT (rs = .742, p < .001).  As the TMT took 

longer, the number of slip errors also increased.  This is to be expected since committing a slip 

error will add to the overall time necessary to successfully complete the trial.  Additionally the 

strong correlation between THT and TMT is due to THT being a subset of the TMT, thus as the 

THT is increased it would also increase the overall TMT.   
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THT was also significantly correlated with feedback (rs = -.234, p < .001) and slip errors 

(rs = .517, p < .001).  In terms of feedback, as additional feedback modalities were added to the 

task THT decreased.    The THT also increased according to the number of slip errors 

committed.  This shows evidence of participants slowing down in order to acquire the target after 

committing slip errors during the trial.   

 
Table 6. Correlation Matrix 

  Age 
Group 

Feedback TMT Slip 
Errors 

THT Workload Errors 

Total Sessions (N = 656) 

Age Group  - .00 .42** .20** .216** .165** .272** 

Feedback   - -.07 -.077* -.23** .06 .24** 

TMT    - .38** .74** .06 -.16** 

Slip Errors     - .52** .19** -.02 

THT      - .04 -.52** 

Workload       - .2** 

Errors        - 

** Correlation is significant at the 0.01 level (2-tailed) 
* Correlation is significant at the 0.05 level (2-tailed) 
 

In order to assess the necessity of running multiple statistical tests to validate the separate 

hypotheses proposed for this study a multivariate analysis of variance (MANOVA) was 

computed for age group and feedback for the performance measures recorded.  These 

performance measures included the following dependent variables: TMT, THT, slip errors, 

errors, and workload.  The results of the MANOVA showed significant findings for age group 

(F(10, 1258) =  24.429, p < .001) and feedback (F(35, 3160) = 2.584, p < .001).  Due to 
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significant findings for the performance measures with both independent variables further 

analyses were conducted to validate each of the proposed hypotheses. 

A primary tenet of a Fitt’s task is that the index of difficulty has a strong influence on 

TMT.  In order ensure the index of difficulty predicted TMT a linear regression was conducted.  

The index of difficulty accounted for 46% of the variation in TMT.  Although the regression 

model is not as strong as previous Fitt’s studies an upward trend in TMT as ID is present in the 

data, see Figure 4.  Full results of the linear regression can be found in table 7.   

The goodness-of-fit of this model is lower than what would be expected; however this is 

likely due to a higher than optimal average error rate.  MacKenzie,  (1992) suggested that for 

Fitt’s data to optimally fit a regression model sustained error rate should be 4% or lower; 

however the data from this study had an average error rate of 7%.  The higher error rate could 

possibly be attributed to variations of the speed and accuracy balancing between participants. For 

example, some participants may have balanced their performance so that they were quicker while 

committing more misses; while others may have paid more careful attention to the number of 

misses committed and lowered their speed.  Effective width measurements should be recorded in 

future studies in order to avoid inflated error rates that may be caused by differences in accuracy 

balancing, experience, or other possible differentiators between participants.   

Effective width calculates the points within and around the target that each participant is 

hitting (MacKenzie, 1992).  The effective width is calculated by measuring the distance that 96% 

of participant’s clicks have hit within and around the target, thus if 96% of the participants hits 

are within .75 inches when targeting the .50 inch target, the effective width would be .75 inches.  

This calculation would individualize the ID for each participant depending upon their 



 

 

58 

 

performance.  This calculation would alleviate issues that may arise due to participants balancing 

their speed and accuracy differently.  Since this study did not account for effective width and the 

data does not fit the regression model as well as other Fitt’s studies the resulting IPs should not 

be compared to other studies employing a Fitt’s task.  Any of the IPs reported are to demonstrate 

trends found within this specific study and should not be directly compared to IPs reported in 

previous or future work. 

Table 7. Index of Difficulty x Total Movement Time Regression Results 
  B  SE B  β 
Constant  290.14  10.39   
Index of Difficulty  171.82  2.41  .68 
R2 = .46, F(1, 5902) = 5072.3, p < .001 

 

 
Figure 4. TMT Means for each ID 
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The sessions were constructed so that the angle of approach was balanced within each of 

the feedback conditions resulting in each presentation of the target being shown at 4 separate 

angles (45, 135, 225, 315) an equal number of times throughout each session.  Previous research 

had not controlled for the angle of approach and this information was collected to ensure that it 

did not affect performance.  In order to determine if angle of approach had an effect on 

performance an 8 (feedback) x 4 (angle of approach) one-way ANOVA was used to highlight 

any significant differences in TMT that may have been caused by the angle of approach.  The 

data was significantly skewed so a Log10 transformation was necessary for the dataset.  The 

results of the analysis showed no significant differences between the angles.  It appears that the 

angle of approach did not affect the resulting TMT in a mouse based target acquisition task, thus 

further analyses will not include it.   

The remainder of the results section is categorized according to each relevant factor from 

this research.  The proposed hypotheses are addressed within the section in which it would be 

most relevant.  

Total Movement Time 

Total movement time (TMT) was the total amount of time in milliseconds that it took a 

participant to complete a trial.  It was predicted that participants would have significantly lower 

TMT when any of the feedback modalities are present.  In order to determine if the presence of 

feedback had any effect on TMT a 2 x 2 x 2 x 3 repeated measures general linear model was 

used.  The within subject factors each had 2 levels for tactile, visual, and audio.  The two levels 

for each of these factors were defined as each modality being present or absent during the trial. 

The between subjects factor was age group which had 3 levels (young, middle-aged, old).   A 
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Mauchly’s test of sphericity was used to determine if the data set met the assumptions of 

sphericity prior to conducting the repeated measures analysis.  The results of this test were 

insignificant, thus sphericity is assumed during further analysis.  It should be noted that the data 

used for this analysis was transformed with a Log10 transformation; however all charts and 

marginal means reported are based upon the untransformed data in order to provide better clarity. 

A significant main effect was found for tactile feedback, F(1, 79) = 4.160, p = .045, see 

Figure 5.   The mean of the conditions with tactile feedback included (i.e., tactile only, 

tactile+visual, tactile+audio, visual+tactile+audio) was 1002.6 ms; while the conditions without 

tactile feedback were 1012.7 ms.  This finding shows that when tactile feedback was present the 

TMT decreased.  These findings support the prediction that the presence of tactile feedback 

would significantly lower TMT. 

A significant main effect was found for audio feedback, F(1, 79) = 32.244, p < .001, see 

Figure 6.   The mean for conditions with audio feedback was 992 ms; while the mean for 

conditions in which audio feedback was not present was 1023.3 ms.  According to this finding 

the inclusion of audio feedback significantly decreased TMT. 

A significant two-way interaction was found between tactile and audio feedback, F(1,79) 

= 16.352, p < .001, see Figure 7.    TMT was lowest when audio feedback was included without 

tactile feedback (M =  988.1 ms); however when tactile was included with audio the TMT 

increased (M = 995.9 ms).  TMT was at its highest when tactile and audio were both not present 

(M = 1037.3 ms).  These findings show that tactile feedback and audio feedback both decrease 

TMT; however audio without tactile resulted in the optimal TMT.   While overall the inclusion 
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of tactile and audio affected TMT in a positive manner visual cues did not significantly affect 

TMT when it was present with or without other modalities.   

A significant main effect was found between the age groups, F(2,79) = 12.709, p < .001.   

A Tukey HSD post-hoc revealed that the young group had significantly lower TMT than the 

middle-aged and older group with both significant at a p < .001 level.  There were no significant 

differences found for TMT between the middle aged and older aged participants.    

A significant two-way interaction was found between age group and the audio condition 

(F(2,79) = 4.718, p = .012).  The presence of audio lowered TMT for the middle and older age 

groups.  The older group had the highest TMT when audio was absent; however when audio was 

present their performance was comparable to the middle-aged group.  The young group 

performed significantly better than the other age groups and although audio improved 

performance there was a smaller improvement in comparison to the other age groups, See Figure 

8.   No other significant interactions were found between the modalities and age group. 

Lastly, it was predicted that the visual feedback uni-modal condition would result in 

significantly higher TMT in comparison to the auditory and tactile uni-modal conditions.  A 

paired-samples t-test was used to determine if the visual feedback condition resulted in 

significantly higher TMT in comparison to the auditory and tactile conditions.  The means 

reported are based upon the post-transformed normalized data; refer to Table 1 for the original 

means.  The alpha levels reported are based upon a one-tailed test due to the implied 

directionality of the hypothesis. 

On average it was found that participants had significantly higher TMT during the visual 

condition (M = 3.0 SE = .008) than in the audio condition (M = 2.99, SE = .008, t(81) = 4.03, p < 
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.001, r = .85).  It was also found that participants had significantly higher TMT during the visual 

condition in comparison to the tactile condition (M = 2.99, SE = .008, t(81) = 2.51, p = .007, r = 

.88).  These findings support the hypothesis that the visual uni-modal feedback condition would 

result in significantly higher TMT than the tactile or audio uni-modal conditions. 

 
Figure 5. Tactile main effect for TMT 

 

 
Figure 6. Audio main effect for TMT 
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Figure 7. Tactile x Audio interaction for TMT 

 

 
Figure 8. Significant interaction between age and audio. 
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conducted, one for each target size (i.e., small, medium, large).  Like previous repeated measures 

the within factors were tactile, audio, and visual with each having two levels (absent or present).  

The between subjects variable was age group at three levels (young, middle-aged, old).  The 

distributions of the three separate tests were significantly non-normal so a Log10 transformation 

was done for all of the analyses.   This normalized the data and further S-K normality tests were 

insignificant post transformation.  The separate data sets also met the assumptions of sphericity 

based upon insignificant findings from Mauchly’s tests of sphericity. 

Small Targets 

The initial repeated measures analysis examined TMT when small (1/8 of an inch) targets 

were present.  A significant main effect was found for audio feedback, F(1,79) = 33.486, p < 

.001, Figure 9.  The conditions in which audio was present (M = 1157.4 ms) had significantly 

lower TMT in comparison to those conditions in which audio was absent (M = 1200.4 ms).  

There was a significant main effect found for tactile feedback, F(1, 79) = 5.374, p = .011, Figure 

10.  When tactile feedback was present (M = 1171.9 ms) participants had significantly lower 

THT in comparison to conditions in which the tactile feedback was missing (M = 1186 ms).  The 

inclusion of visual cues did not significantly affect TMT; while tactile and audio both decreased 

TMT. 

A significant two-way interaction was found between audio and tactile feedback, F(1,79) 

= 14.574, p < .001, Figure 11.   The inclusion of tactile and audio feedback decreased TMT when 

they were both present; however when audio is present without tactile cues the TMT is lower 

than when tactile feedback is also present.  In effect, the inclusion of audio with tactile lowers 
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TMT when compared to tactile alone; while the presence of tactile with audio increases TMT 

when compared to audio alone. 

A significant two-way interaction was also found between visual and tactile cues, F(1, 

79) = 4.002, p = .002, Figure 12.  The presence of tactile without visual cues resulted in lower 

TMT when compared to when both tactile and visual cues were present.  The pairing of visual or 

tactile cues increased TMT in comparison to when they were presented without each other. 

A significant three-way interaction was found between visual, tactile, and audio cues, 

F(1, 79) = 6.654, p = .006, Figure 13.  The presence of audio cues with visual cues did not result 

in different TMT in comparison to when audio was present without visual cues.    Essentially 

when audio is present, regardless if tactile cues are present or not, the addition of visual cues has 

no effect on the resulting TMT.   The lowest TMT overall was when audio was present with or 

without visual feedback.  The addition of tactile feedback increased TMT when paired with 

audio.  In conclusion, pairing visual cues with audio or tactile cues will result in no change or an 

increase in TMT.  Pairing tactile and audio cues together will result in higher TMT in 

comparison to having audio cues only.   

In conclusion, the presence of audio cues or tactile cues will significantly lower TMT; 

while visual cues do not.  When tactile cues are added to audio cues TMT will increase 

compared to when audio cues are present without tactile cues.  The presence of audio cues 

without tactile cues will result in the lowest THT.  Finally, the inclusion of visual cues when 

audio cues are present will result in no difference in TMT.   These findings support the 

hypothesis that participants will have lower TMT when audio or tactile are present.  Visual cues 

did not significantly affect TMT in a positive manner in most cases.   
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Figure 9. Audio main effect for TMT with small targets 

 

 
Figure 10. Tactile main effect for TMT and small targets 
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Figure 11. Tactile x Audio interaction for TMT with small targets 

 

 
Figure 12. Tactile x Visual interaction for TMT with small targets 

 

1100

1120

1140

1160

1180

1200

1220

1240

Absent Present

M
ea
n 
in
 M

ill
is
ec
on

ds

Audio

Tactile Absent

Tactile Present

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

Absent Present

M
ea
n 
in
 M

ill
is
ec
on

ds

Visual

Tactile Absent

Tactile Present



 

 

68 

 

 
Figure 13. Tactile x Visual x Audio interaction for TMT with small targets 
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Figure 14. Audio main effect for TMT with medium targets 

 

 
Figure 15. Tactile x Audio interaction for TMT with medium targets 
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audio feedback (F(1, 79) = 17.952, p < .001), Figure 16.  As was previously seen for other target 

sizes the presence of audio feedback significantly reduced TMT.   A significant two-way 

interaction between audio and age group was also present for large targets (F(2,79) =  4.49, p = 

.014), Figure 17.  The middle and older adults had lower TMT when audio was present; however 

the young adults had no change in TMT when audio was present or absent.  

There was a significant main effect for the visual feedback (F(1, 79) = 4.594, p = .035), 

Figure 18.  The presence of visual feedback increased TMT in comparison to when it was absent.  

There was also a significant two-way interaction between audio and tactile feedback (F(1,79) = 

13.461, p < .001), Figure 19.   As has been seen previously the presence of tactile feedback with 

audio feedback results in increased TMT than when audio is present without tactile feedback.   

However, the addition of audio to the tactile condition results in lower TMT than when tactile is 

present by itself.   

A significant three-way interaction between tactile, audio, and age group was found 

(F(2,79) = 4.505, p = .014), Figure 20 & Figure 21.   Once again the TMT of the young age 

group did not change when audio or tactile feedback was present.  The middle and older adults 

had lower TMT when audio was present and tactile was not; however when tactile was added to 

audio the TMT increased in comparison to when audio was alone.  Essentially, the presence of 

solely tactile or audio improves performance; however when tactile is added to audio the 

resulting TMT is higher than with audio alone.   
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Figure 16. Audio main effect for TMT with large targets 

 

 
Figure 17. Significant interaction between age and audio for TMT and large targets 
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Figure 18. Visual main effect for TMT with large targets 

 

 
Figure 19. Tactile x Audio interaction for TMT with large targets 

 

844

846

848

850

852

854

856

858

860

862

864

Absent Present

TM
T 
M
ar
gi
na

l M
ea
n 
(m

s)
 fo

r 
La
rg
e 

Ta
rg
et
s

Visual

820

830

840

850

860

870

880

Absent Present

TM
T 
M
ar
gi
na

l M
ea
n 
(m

s)
 fo

r 
M
ed

iu
m
 

Ta
rg
et
s

Audio

Tactile Absent

Tactile Present



 

 

73 

 

 
Figure 20. Tactile x Audio x Age Interaction for TMT with large targets with tactile absent 

 

 

 

 

 

 

 

 

 

Figure 21. Tactile x Audio x Age Interaction for TMT with large targets with tactile present 
 

Total Highlight Time 

Total highlight time (THT) is the amount of time, in milliseconds, it takes for a 

participant to activate the target after the cursor has entered the target plain.  It was predicted that 



 

 

74 

 

participants would have significantly lower THT when any of the feedback modalities are 

present.  In order to validate this claim a 2 x 2 x 2 x 3 repeated measures general linear model 

was conducted to determine if the presence of any of the modalities resulted in significantly 

lower THT.  As with the previous repeated measures analyses the within factors were tactile, 

audio, and visual with each having two levels, present or absent.   The between subjects variable 

was age at three levels (i.e., young, middle-aged, old).  According to Mauchly’s test of sphericity 

the assumptions of sphericity were met by this dataset.  A one-tailed alpha level was used due to 

the directionality implied within the hypothesis.    The raw data was not normally distributed so a 

Log10 transformation was done; however the figures and reported means are based upon the pre-

transformation data.  

There was a significant main affect between the age groups, F(2,79) = 5.641, p = .005.   

A Tukey HSD post-hoc analysis revealed that the young adults (M = 202.5 ms) were 

significantly faster than the middle-aged (M = 252.6 ms) and older adults (M = 241.8 ms) with 

significant alpha levels respectively at p = .008 and p = .025.  There were no significant 

differences in THT found between the middle-aged and older adults.  In terms of the feedback 

and age groups, there was a significant interaction between the tactile, visual, audio, and age 

groups, F(2,79) = 3.22, p = .045.  There were no other significant interactions present for age 

group.    

A significant main effect was found for the audio condition, F(1,79) = 72.781, p < .001.  

THT was lower when audio was present (M = 246 ms) in comparison to when it was absent (M 

= 218.6 ms).  There was a significant main effect for the tactile condition, F(1,79) = 45.863, p < 

.001.  When tactile feedback was included (M = 222.5 ms) the THT was lower than when it was 
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absent (M = 242.1 ms).  Lastly, there was a significant main effect for the visual condition, 

F(1,79) = 20.091, p < .001.  The presence of visual cues (M = 226.3 ms) significantly reduced 

the THT in comparison to when it was absent (M = 238.3 ms).   

A significant two-way interaction was found between audio and tactile cues, F(1,79) = 

33.226, Figure 22.  The conditions with audio and tactile cues present (i.e., audio+tactile and the 

trimodal condition) resulted in lower THT compared to the conditions in which they were both 

absent.   The conditions when tactile is present without audio cues, such as tactile uni-modal and 

tactile+visual, do not achieve as low of a THT as when audio is present without tactile cues (i.e., 

audio, audio+visual).   In effect, when tactile or audio are present the resulting THT will be 

lower; however audio is the stronger of the two cues in terms of lowering THT. 

A significant two-way interaction was found between visual and audio cues, F(1,79) = 

6.222, p = .008, Figure 23.  The THT decreased when visual feedback or audio cues were 

present.   Although when audio and visual were both present the lowest THT was observed for 

this interaction; however the change in THT between audio without visual and audio with visual 

was marginal.  Audio once again was shown to be the larger manipulator of the resulting THT. 

   A significant two-way interaction was found between visual and tactile, F(1,79) = 

4.246, p = .022, Figure 24.  The presence of visual and/or tactile cues reduced THT.   Conditions 

with both visual and tactile cues had the lowest THT; however the change in THT caused by the 

addition of visual cues to tactile was not as drastic as the change caused by adding tactile cues to 

visual cues.   Conditions in which tactile cues are present and visual cues are not resulted in 

lower THT compared to when visual cues are present and tactile cues are absent.  This 
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interaction shows that tactile cues are more influential to reducing THT in comparison to visual 

cues. 

A significant three-way interaction was present between visual, tactile and audio cues, 

F(1,79) = 6.315, p = .007, Figure 25.  This significant interaction shows evidence that there is an 

additive affect when comparing between the uni-modal, bi-modal, and tri-modal conditions.  As 

the cues were combined in the bimodal or trimodal conditions the resulting THTs were often 

lower than the uni-modal conditions.  The visual+audio+tactile condition resulted in the lowest 

THT.  Audio feedback influenced the THT the most, with it lowering THTs more with its 

presence in comparison to visual or tactile cues.   

These results provide ample evidence in support of the hypothesis that feedback will 

significantly lower the THT.  Although all of the feedback modalities decreased THT these 

results show that audio feedback was the strongest positive influence on THT followed by tactile 

and then visual.  It is also apparent that combining cues will reduce THT, with a combination of 

visual+audio+tactile cues resulting in the overall lowest THT.  

It was also hypothesized that participants would have lower THT during the tactile uni-

modal condition in comparison to the visual uni-modal condition.   A paired-samples t-test was 

used to determine if tactile feedback significantly reduced THT under what was observed during 

the visual uni-modal condition.   On average, participants were significantly faster during the 

tactile condition (M = 230 ms) in comparison to the visual condition (M = 247, t(81) = 3.76, p < 

.001, r = .81).   As expected these findings show that tactile feedback will significantly lower the 

amount of time necessary to click on the target after highlighting it in comparison to the visual 

feedback condition. 
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Figure 22. Significant two-way interaction between audio and tactile feedback for THT 

 

 
Figure 23. Significant two-way interaction between audio and visual feedback for THT 
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Figure 24. Significant two-way interaction between tactile and visual feedback for THT 

 

 
Figure 25. Significant three-way interaction between audio, tactile, and visual feedback for THT 
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participants would have a lower number of slip errors when a feedback modality was present.  In 

addition, it was also predicted that participants would have a lower number of slip errors when 

tactile feedback or auditory feedback is present in bi-modal conditions.  A Friedman’s ANOVA, 

a non-parametric test, was used to validate these hypotheses.  An initial analysis of the data 

showed that a normal distribution was not present for the raw slip error data.   An attempt was 

made to transform the data via a Log10 transformation; however an S-K test of normality showed 

that the transformed data was still not a normal distribution.   Due to the non-normal distribution 

a non-parametric test was chosen for the analysis.   

The Friedman’s ANOVA was used to determine if there was a significant difference in 

the number of slip errors between the different feedback conditions.  The within subject variable 

was feedback condition with 8 levels, each representing a feedback condition.  The results of the 

Friedman’s ANOVA revealed a significant difference in the number of slip errors committed 

between the conditions, (χ2(7) = 39.759, p < .001).   

A Wilcoxon test was used for additional post hoc analyses.  The post hoc analyses were 

limited to comparing the number of slip errors for each uni-modal condition to the no-feedback 

condition.   Additionally we compared the visual+audio condition and visual+tactile condition to 

the visual uni-modal condition in order to determine if the addition of visual or tactile feedback 

significantly lowered the number of slip errors.   The total number of post-hoc analyses was 

limited to five in order to reduce the possibility of a Type I error.  In order to further avoid the 

possibility of a Type I error a Bonferroni correction was used, which required a finding to have 

an alpha level below .01 in order for it to be considered significant.   
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 The Wilcox signed ranks test revealed that not having any feedback (Mdn = 14) 

significantly increased the number of slip errors compared to the visual condition (Mdn = 11), z 

= -4.084, p < .001, r = -.16.  The number of slip errors was also decreased when comparing the 

audio (Mdn = 10) condition to the no feedback condition, z = -4.146, p < .001, r = -.16.  Finally, 

tactile feedback (Mdn = 11) also significantly reduced the number of slip errors in comparison to 

the no feedback condition, z = -3.265, p = .001, r = -.13.   No significant differences were 

observed between the visual unimodal feedback conditions and the visual+tactile or 

visual+audio.  These findings support the hypothesis that feedback will significantly lower the 

number of slip errors when it is present; however the results do not show any significant 

reductions in the number of slip errors when tactile or audio feedback is present in bi-modal 

situations.   

Misses 

A miss was defined as a trial that ended with a mouse activation outside of the target.  It 

should be noted that trials that resulted in a miss were re-administered for each of the feedback 

conditions.   In order to determine if the feedback modality had any effect on the occurrence of 

misses a Friedman’s ANOVA was conducted.  A Kolmgorov-Smirnov test of normality showed 

that all feedback conditions were significantly non-normal.   Due to the non-normal distribution 

of the data a Friedman’s ANOVA was employed for this analysis. The within subject variable 

was feedback with 8 separate levels that each represented one of the feedback conditions.   

The analysis showed that the number of misses was significantly based upon which 

feedback modality was present (χ2 (7) = 98.275, p < .001).  A Wilcoxon test was used for further 

post hoc analyses.  The post hoc analysis was limited to comparing each uni-modal condition to 
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the no-feedback condition in order to see if the number of misses changed when feedback was 

added.   Additionally we compared the visual, audio, and tactile conditions to each other to 

determine if there are significant differences between the feedback modalities.  The number of 

post-hoc analyses was limited to six in order to reduce the possibility of a Type I error.  A 

Bonferroni correction was used which resulted in an alpha level of .008 as the significant 

criterion.   

 No significant findings were found for the number of misses between the no 

feedback condition (Mdn = 2) and visual feedback condition (Mdn = 3).   The tactile condition 

(Mdn = 5) resulted in a significantly higher number of errors in comparison to the no feedback 

condition, z = -4.881, p < .001, r = -.19.  The audio condition (Mdn = 4.5) also resulted in a 

significant higher number of errors in comparison to the no feedback condition, z = -5.028, p < 

.001, r = -.20.   From these findings it appears that visual feedback does not influence the number 

of misses committed; however the inclusion of audio or tactile feedback significantly increases 

the number of misses. 

 The visual feedback resulted in a significantly lower number of misses in 

comparison to the tactile feedback (z = -4.398, p < .001, r = -.17) and the audio feedback 

condition, z = -3.263, p = .001, r = -.13.   Tactile and audio feedback did not significantly differ 

in the number of misses that were committed.   Overall, having no feedback or visual feedback 

appears to result in the lowest number of misses.  When comparing between the uni-modal 

conditions the visual feedback resulted in fewer misses, while the tactile and audio did not differ 

from each other. 
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Workload 

The NASA-TLX was used to measure the subjective workload experienced from each of 

the feedback conditions.  The NASA-TLX was administered after each feedback condition, so 

each condition had a corresponding workload score.  Workload is quantified as the calculated 

NASA-TLX score for each of the feedback conditions.   It was hypothesized that participants 

will have significantly lower workload when a feedback modality is present.   To highlight the 

effects of feedback on subjective workload a 2 x 2 x 2 x 3 repeated measures general linear 

model was employed.  As was conducted previously the audio, tactile, and visual cues were the 

within subject variables, with each having 2 levels, present or absent.  Age group was the 

between subject variable and had 3 levels (i.e., young, middle-age, and old).   The raw data was 

normally distributed so no transformation was necessary for this analysis.   Due to the proposed 

directionality within the hypothesis a one-tailed alpha level was employed for this analysis.  

Additionally sphericity was assumed due to insignificant findings of the Mauchly’s test of 

sphericity.   

A significant main effect was found for audio, F(1,79) = 6.828, p = .006.  When audio 

cues were present the level of workload increased (M = 46.592) in comparison to when audio 

was absent from the task (M = 44.676).  There was also a significant main effect found for tactile 

cues, F(1,79) = 3.562, p = .032.  As was found with the audio cues, when tactile cues were 

present the workload was significantly higher (M = 46.284) in comparison to when tactile cues 

were absent (M = 44.985).  There were no significant differences in workload for age group or 

among the other feedback conditions.  
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The results of this analysis do not support the proposed hypothesis that the presence of 

feedback will significantly lower workload.   On the contrary, when audio or tactile were present 

the level of subjective workload actually increased.   These findings suggest that in general the 

addition of feedback cues do not have an effect on workload, except in cases in which audio or 

tactile cues may be present. 

Effort 

The NASA-TLX is comprised of 6 factors that include: mental demand, physical 

demand, temporal demand, performance, effort, and frustration.  Each of these scales have a 1 to 

100 continuous scale, with 1 being low and 100 being high.  It was hypothesized that the older 

age group would have lower perceived effort when feedback was present.  A 2 (Tactile) x 2 

(Audio) x 2 (Visual) x 3 (Age) repeated measures general linear model was used to examine the 

relationships between age, feedback and the resulting effort scores.   

A significant main effect was found for audio, F(1,79) = 7.417, p = .008.  When audio 

was present the effort scores significantly increased (M = 34.3) in comparison to when audio was 

not available (M = 30.8).   A significant 2-way interaction was found between tactile and visual 

feedback, F(1, 79) = 4.135, p = .045, Figure 26.  It was found that visual cues without tactile 

cues had significantly lower effort than tactile feedback only; however when tactile feedback 

was added to visual cues the amount of effort significantly increased over the levels present 

when tactile or visual were presented without each other.   No other significant findings were 

present. 



 

 

84 

 

These results do not support the prediction that older adults will have lower effort during 

feedback conditions.  However, these findings showed evidence that audio increased effort and 

that the addition of tactile feedback to visual feedback will also significantly increase effort. 

 
Figure 26. Visual x Tactile two-way interaction for effort 
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two-way interaction was observed between tactile and audio feedback (F(1,79) = 5.044, p = 

.027), Figure 27.  The level of annoyance when audio is present with tactile or when audio is 

present without tactile is higher than conditions in which tactile is present without audio.  This 

provides evidence that audio is the predominant annoyance factor and will result in the highest 

levels of annoyance.   

 
Figure 27. Audio x Tactile two-way interaction for annoyance 
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way ANOVA was conducted to determine if the younger age group had a considerably higher IP 

than the older age group in all of the feedback conditions present.  The within subject variable 

was feedback at 8 levels, with each level representing a feedback condition.   The between 

subject variable was age group at 3 levels: young, middle-aged and old.       

 A significant main effect between the age groups was found for all of the feedback 

conditions.   Table 8 and Table 9 list the results of this analysis along with the means for each of 

the age groups.   A Tukey HSD post hoc analysis found that the young adults had a significantly 

higher IP than the older adults in all of the conditions.   Additionally the young adults had a 

significantly higher IP than the middle-aged adults for the audio, no feedback, visual, and 

visual+tactile; while no significant performance differences were found between middle-aged 

and older adults, please see Figure 28.   These findings support the hypothesis that young adults 

would have significantly higher IP than the older adults in all of the conditions.  These results 

further provide evidence for the generalized slowing that occurs as one ages.  

Table 8. One-way ANOVA results age groups and index of performance 
       
Feedback    F‐Statistic  Significance 
No Feedback    F(2,79) = 9.284  p < .001 

Audio    F(2,79) = 8.607  p < .001 

Visual    F(2,79) = 8.416  p < .001 

Tactile    F(2, 79) = 4.191  p = .019 

Audio+Tactile    F(2, 79) = 4.387  p = .016 

Visual+Tactile    F(2, 79) = 7.537  p = .001 

Audio+Visual    F(2,79) = 6.047  p = .004 

Visual+Audio+Tactile    F(2, 79) = 4.407  p = .015 
 

 



 

 

87 

 

 

Table 9. Index of performance means for the age groups 
  Young Adults    Middle Adults    Older Adults 
Feedback  Mean    SD    Mean    SD    Mean    SD 
No Feedback  4.6    .56    4    .55    3.8    .94 

Audio  4.8    .66    4.2    .66    4.1    .57 

Visual  4.6    .61    4    .61    3.9    .91 

Tactile  4.6    .64    4.2    .61    4.0    .94 

Audio+Tactile  4.7    .54    4.2    .68    4.1    .57 

Visual+Tactile  4.7    .66    4.1    .65    4.0    .94 

Audio+Visual  4.7    .62    4.3    .62    4.0    .89 

Visual+Audio+Tactile  4.7    .56    4.3    .64    4.1    .97 
 

 

 

Figure 28. Average IP for the young and old age groups for each feedback condition 
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compared to the young adults.  In order to test this hypothesis a 7 x 2 one-way ANOVA was 

conducted to determine if the change in performance between the no feedback condition and the 

feedback conditions resulted in the older adults having a significantly larger change in 

performance in comparison to the younger adults.  The within subject variable was the change in 

performance when comparing each feedback condition to the no feedback condition, which 

resulted in 7 levels.  The change in performance was quantified by subtracting the IP of the no 

feedback condition from each of the feedback conditions.  For example, the visual IP minus the 

no feedback IP would equal the change in IP when visual cues were present.  These calculations 

resulted in 7 separate variables that represented the change in performance when each modality 

or combinations of modalities were present.  The between subject variable was age group, which 

had two levels: young and old.   It should also be noted that this data set had a normal 

distribution so a Log10 transformation was not necessary.   

All of the alpha levels are based upon a one-tailed analysis due to the proposed 

directionality within the hypothesis.  Significant findings were present between the age groups 

and the change in IP when tactile feedback was present, F(1, 53) = 4.805, p = .017.   The change 

in IP when tactile was present was significantly higher for the older adults (M = .23) in 

comparison to the young adults (M = .02).   A significant main effect was found for the change 

in IP when audio+tactile feedback was present, F(1, 53) = 5.067, p = .015.  The older adults had 

a much larger improvement in IP (M = .29) when audio and tactile feedback were present 

compared to the young adults (M = .1). There was a significant main affect for the change in IP 

for the visual+audio+tactile feedback condition, F(1, 53) = 4.130, p = .024.  The older adults had 
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a larger increase in performance (M = .27) during the trimodal condition compared to the young 

adults (M = .07).  No other significant differences were found between the age groups. 

The results of this analysis partially support the hypothesis that older adults will make 

larger gains in performance when feedback is present.  During the tactile, audio+tactile, and 

visual+audio+tactile conditions the older adults did have significantly larger changes in 

performance in comparison to the young adults.  However, for all other conditions both age 

groups had similar changes in performance.    These results show that feedback will have a 

greater effect on the performance of older adults in some cases; however it cannot be universally 

assumed that all modality cues will significantly increase performance of older adults more so 

than their younger counterparts. 

Finally, it was hypothesized that the difference in IP from the bi-modal feedback 

conditions to the uni-modal feedback condition would be significantly larger for the older adults 

compared to young adults.  A one-way 6 x 2 ANOVA was conducted to see if the older adults 

had significantly larger increases in performance from the uni-modal to the bi-modal feedback 

conditions.  In order to quantify the changes in performance all of the differences between each 

possible uni-modal and bi-modal condition was calculated.  In total there were six possible 

changes that were calculated, these differences included:   visual+tactile – visual, visual+tactile – 

tactile, visual+audio – audio, visual+audio – visual, audio+tactile – audio, and audio+tactile – 

tactile.  The data was normally distributed so a Log10 transformation was not made.  The within 

subject variables were the six computed changes in IP and the within subject variable was age 

group. 
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This analysis resulted in no significant findings.  There were no differences in the 

changes in performance between the older and younger age groups when looking at the 

difference between uni-modal and bi-modal feedback conditions.  These findings do not support 

the hypothesis.  It should be noted that a change in performance may be present; but this change 

was not significantly different between the age groups.  

Feedback Preference 

After participants had experienced all of the different feedback conditions, they were 

asked to rank the 8 conditions from favorite to least favorite.  Currently, there is not a lot known 

on what type of feedback is preferred when performing a mouse target acquisition task.  This is a 

very important factor that is often overlooked.   Due to the small performance differences these 

feedback conditions create, the acceptance of any of these feedback conditions is very important.  

If the users don’t like the feedback the performance benefits that may be present could become a 

moot point.  In order to understand if there is a preference for a certain type of feedback the an 

analysis of the feedback preference data was conducted.  Other research has not previously 

examined feedback preference so no a priori predictions were made.   

An 8 (feedback) x 3 (age) Kruskall-Wallis Test was employed to examine if there were 

any significant differences in preference between the age groups for each of the 8 feedback 

conditions.  A non-parametric test was chosen because this analysis was based upon ranking 

data.  The results of the analysis found that there were no significant differences in preference 

between the age groups for any of the feedback conditions.    Based upon this data it can be 

assumed that as one ages preference in feedback modality does not significantly differ. 
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Due to there being no significant findings when examining preference based upon age, 

there was interest in examining how the preferences of the different feedback conditions 

compared across the entire group, not separating based upon age.  An additional Kruskall-Wallis 

test that did not include age as a between subject variable showed that there was a significant 

difference in preference between the different modalities (H(7) = 67.435, p < .001).  Figure 29 

shows a box-plot of the different feedback conditions from this analysis.  As demonstrated in the 

box-plot it appears that the visual feedback was generally more preferred than the other 

conditions.     

In order to determine how the feedback conditions compared several Mann-Whitney tests 

were conducted.  In order to avoid Type I errors the number of post-hoc comparisons were 

limited to 5.  Each of the uni-modal (i.e., visual, audio, tactile) conditions was compared with the 

no-feedback condition to determine if there was a preference for one of these conditions over 

having nothing at all.  Furthermore, due to the visual condition appearing to have ranked so well 

two further comparisons were conducted which compared the visual feedback condition to the 

audio and tactile conditions respectively.   To avoid a Type I error a Bonferroni correction was 

made, which resulted in an alpha level of .01 being the criteria for significant results. 

It was found that the visual feedback (Mdn = 2.0) was more preferred than the no-

feedback condition (Mdn = 3.5), U = 2509.5, p = .004, r = -.32.   There was no difference in 

preference between the no feedback conditions and the tactile or audio conditions.  When 

comparing the preferred feedback method between visual and audio it was found that visual 

feedback was more preferred than the audio condition (Mdn = 5.0), U = 1730.5, p < .001, r =  .6.  

The visual feedback was also found to be more highly preferred than tactile feedback (Mdn = 
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5.0), U = 1649.0, p < .001, r = .63.  These findings show strong evidence that visual feedback is 

overall the most preferred among the tactile, audio, and the absence of feedback.   

 
Figure 29. Box-plot of the preference rankings for each feedback condition 
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CHAPTER FIVE: DISCUSSION 

The multiple measures taken in this study, TMT, THT, slip errors, misses, workload, and 

preference, all examine a specific portion of the task.  The discussion will examine the findings 

for each of these measures separately and the overall findings of the study will be made in 

closing in the conclusions portion of the paper.   

Total Movement Time 

Previous studies (Akamatsu, 1995, Vitense et al. 2003, and Jacko et al., 2004) have found 

that the inclusion of additional feedback would reduce TMT and this research reinforced these 

previous findings.  As was predicted the presence of feedback, specifically tactile and audio, 

significantly reduced TMT. Audio cues were shown to result in the lowest observed TMT, 

followed by tactile cues.  The presence of visual cues did not significantly affect TMT, which is 

consistent with previous research (Jacko et al., 2004).   

Interestingly, when tactile and audio cues were presented together TMT was increased 

compared to when audio was not paired with tactile cues.  These findings may clarify 

inconsistent findings from previous studies that examined the effects of tactile feedback on 

performance.  For instance, Gobel et al. (1995) found that tactile feedback significantly 

decreased TMT, while more recently Vitense et al. (2003) found that the presence of tactile 

feedback significantly increased TMT.  The results of this study partially support both of these 

previous findings; although the relationship between the modalities is slightly more complex 

than what was outlined in the previous work.  Tactile cues will reduce TMT; however including 

tactile cues with audio cues will actually increase TMT over what is observed with audio without 

tactile feedback.  Essentially a bimodal advantage is not observed when tactile feedback is 
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coupled with audio cues in comparison to when audio cues are presented alone; however the fact 

that the tactile cues did significantly reduce TMT, in most cases, supports the prediction that 

tactile feedback lowers TMT.  Overall, as expected tactile feedback had a positive influence on 

TMT; however audio was shown to be the most beneficial to reducing TMT. 

 When factoring in how the target size affected TMT the findings were not dramatically 

different from the overall TMT as discussed previously.  It was predicted that the presence of 

any of the feedback modalities would decrease TMT for small targets.  Audio and tactile cues 

did significantly reduce TMT; however visual cues did not positively affect it for small targets.  

The same relationship that was previously observed between audio and tactile with the overall 

TMT was also found when acquiring small targets.  Once again the audio feedback lowered 

TMT more so when not paired with tactile cues.   

The pairing of visual cues with tactile or audio feedback increased TMT, which was 

similar to what was seen when tactile was presented with audio.  When visual cues were 

presented with tactile cues the TMT was increased in comparison to when tactile cues were not 

presented with visual cues.  Additionally, when tactile cues were presented with audio cues TMT 

increased in comparison to when audio was present without tactile.  Overall across all of the 

target sizes audio cues significantly lowered TMT regardless of the size and the coupling of 

tactile or visual cues with audio either made no difference or increased TMT.   

It was hoped that older adults would be able to acquire small targets more quickly with 

feedback; however there were no significant effects present for TMT and age for small or 

medium targets.  Although there were no effects present for age with small or medium targets, it 

was found that audio significantly lowered TMT for older and middle-aged adults when 
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acquiring large targets.  The young adults did not benefit from having audio cues with large 

targets, which may be due to a ceiling effect.  It is likely that the difficulty of acquiring large 

targets was very low for the young adults, thus feedback cues were not necessary to perform well 

on the task.   

Regardless of target size, overall the audio cues had the greatest affect on performance 

for the older adults.  Out of all of the modalities tested, the presence of audio cues significantly 

decreased TMT more so for the older adults than any of the other modalities.  The positive 

influence on the performance of older adults due to audio feedback is reminiscent previous 

findings (Jacko et al., 2004).  Audio cues made relatively small performance changes for the 

young adults; however when older adults completed trials with audio feedback the resulting 

TMT was significantly reduced.  For all other modalities the age groups performed similarly.   

It was expected that tactile feedback would affect TMT in a stronger manner than what 

was observed in this study.  Overall it did reduce TMT significantly more so than visual cues or 

having no feedback at all; however it did not add any extra benefit between the age groups.   Due 

to the high sensitivity and low degradation of tactile sensitivity in the finger tips that comes with 

age the tactile feedback was expected to decrease the TMT of older adults more so than what 

was observed.  The lack of an effect for tactile feedback and age may be due to the delivery of 

the tactile cues.  The cues may not have been delivered specifically to the finger tips for some of 

the computer users.  Depending on how the user held the mouse, it could have been possible for 

the participants to not receive the tactile feedback fully to their finger tips.  If the participant did 

not fully rest their finger tips on the mouse, the tactile feedback may have only been felt in the 

palm of their hands or whichever part of the hand that was resting on the mouse. Further research 
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should take into account how the participants hold the mouse, if a portion of computer users do 

not rest their fingers fully on the mouse tactile feedback may not have the desired effects in older 

populations. 

Total Highlight Time 

Overall the young adults were significantly faster than the other age groups; however the 

feedbacks did not influence the THT of the age groups any differently.  Overall the presence of 

any of the feedback conditions significantly lowered THT; however audio was once again the 

modality that improved performance the most.   Previous research (Gobel etl al., 1995, Akamatsu 

et al., 1995, Vitense et al., 2003, Cockburn & Brewster, 2005) had previously found that tactile 

feedback often resulted in the lowest THT, which was not the case in this study.  Tactile cues 

were significantly quicker in comparison to visual; however its presence did not result in the 

overall best performance.   It is difficult to determine exactly why these results are different than 

previous findings; however it could have been due to the short length of the audio cue that was 

used for this study.  Vitense et al. (2003) observed users waiting until the audio cue completed 

prior to making a response, if he had used a shorter audio clip, such as the .1 second clip from 

this study, his findings may have shown audio to be the better performer.   Additionally, the 

delivery of the tactile feedback in this study may have been slower than the audio due to lag that 

accompanied processing the tactile cue.  Although it is difficult to quantify, the computer setup 

had to convert an audio signal through second party software and then deliver it to the tactile 

mouse, which also took some time to spin up the motor.  These delays, although seemingly 

insignificant on their own, may have been enough to slow down overall system responses when 
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added together.  With current technologies it may be difficult to avoid the delays that are 

inherent in using tactile feedback in a computer interface.   

A bimodal advantage was observed for all of the feedback modalities, although audio 

accounted for the majority of the change in performance and adding visual or tactile to audio 

resulted in slight gains in performance.   A truly additive effect was observed though and the tri-

modal condition resulted in the overall lowest THT.  Previous research (Akamatsu et al., 1995; 

Cockburn & Brewster, 2005) has found that a bi-modal advantage would not occur due to 

performance hitting a ceiling effect.  The bimodal advantage for THT may be related to different 

aspects of the overall mouse task.   

Target acquisition in this task can be broken down into two separate pieces: target 

approach and target activation.  In the current study target approach may have more to do with 

the mental model of the task and less to do with the actual raw feedback cues that are delivered.  

This may explain why tactile and audio individually decreased TMT; however a strong bimodal 

advantage was not found for the two.  If the two stages of the task were to be defined using the 

feed-forward and feedback theories as laid out in the work of Driver & Spence (2001) the 

differences in performance can be theorized.  Since previous research (Vroomen & de Gelder, 

2004) has shown strong evidence for both of these theories it may be postulated that the method 

of modality processing is dependent upon the sensations that are currently available.  For 

example, since the target approach does not include significant modality cues, each of the 

sensory systems may be working autonomously and at a higher level processing, so a mental 

model of the task may be influencing a person’s action.  When the cursor enters the target the 

extra modalities are given and the task at this point is a purely stimulus-response task.  If using 
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the feedback theory of modality processing the sensory modalities communicates with each other 

prior to any higher level processing thus a response can be made without any high level 

processing influencing that response.   When breaking down the task into two separate pieces the 

target activation is less influenced by the mental model of a task and is purely a response to the 

modality stimulus, thus a bimodal advantage similar to previous research (Miller, 1982) is 

observed. 

Slip Errors 

It was hypothesized that due to the feedback creating a more salient target the task would 

be similar to a direct manipulation task, thus the number of slip errors would be reduced.  The 

study found that having any of the feedback modalities present would result in a significantly 

lower number of slip errors; however, there were no significant differences dependent upon the 

type of modality used.  Having feedback present clearly lowered the number of slip errors; but 

none of the modalities outperformed each other.  Additionally, a bimodal advantage was not 

observed when assessing the number of slip errors committed.  These findings provide evidence 

that having visual, audio, or tactile cues will create a target that will allow for a higher level of 

accuracy when initially approached.    

Misses 

Feedback influenced the number of misses that the participants made.  The absence of 

any feedback and visual cues actually resulted in the lowest number of misses; while audio and 

tactile had the most misses.  The fact that the presence of visual cues or no feedback had resulted 

in a significantly lower number of misses, yet also resulted in the highest TMT and THT, shows 
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evidence of a speed accuracy trade-off.  Previous studies have also found similar findings; 

however none of them have been able to offer a reasonable rationale for these results.  

Although, audio and tactile feedback both decreased TMT and THT, it is likely that a 

speed accuracy trade-off occurred.  Both of these conditions resulted in a significantly higher 

number of misses in comparison to having no feedback or visual feedback present.  So as 

performance increased the number of misses increased as well for the tactile and audio 

modalities.  Previous research (Akamatsu & MacKenzie, 1996 & Cockburn & Brewster, 2005) 

has also shown evidence of a speed accuracy trade-off occurring with audio and tactile feedback.  

Akamatsu and MacKenzie hypothesized that the higher number of misses during tactile feedback 

conditions were due to a muscle response triggered by the tactile feedback that cannot be 

reversed even if the cursor is no longer in the target.  If this was the case it would be believed 

that more slip errors would be observed for the tactile or audio conditions when a miss occurred 

in comparison to what may be seen during the no feedback condition.   Through an analysis of 

the data it was found that approximately 62% of the trials that resulted in a miss also had a slip 

error present.  The percentage of slip errors for trials ending in a miss across all of the feedback 

conditions only had a range of 4% (i.e., 60% to 64%).  This likely does not back up Akamatsu & 

MacKenzie’s assumption that participants could not reverse their response even after the cursor 

was no longer in the target.  

These findings raise the question as to what is actually affecting the overall performance 

and reaction times.  Is it the actual modalities used, or is it the user perception of how they 

should be performing?  For example, since audio cues had lower reaction times and accuracy it 

can be argued that the targeting behavior may have been different.  Participants may have falsely 
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felt that they could achieve better performance with audio, so they attempted to do the task 

faster.  Based upon the results of the study, it is unknown why participants performed the task 

differently when these feedback cues were present; however further research examining this 

relationship should be explored.   

Workload & Feedback Preference 

It was predicted that participants would have significantly lower workload when 

feedback is present.   The findings of this study are actually opposite of what was expected.  It 

was believed the inclusion of feedback would make the task easier to accomplish and less effort 

would be necessary to accurately complete the task.  On the contrary, the inclusion of audio or 

tactile cues actually increased the level of workload.  The visual cues did not result in 

significantly higher workload over having no feedback at all.   It is difficult to explain why the 

workload would be higher when tactile or audio modalities are included.   Additionally, the 

audio and tactile cues increased the effort required to complete the task.  Effort increased even 

more when tactile was added to visual cues.  In effect, when visual and tactile were added 

together the amount of effort necessary to complete the task was significantly higher than when 

either of them were present in a uni-modal condition.    

Due to the higher reliance on extra sensory information that is evident in older adults, it 

was hypothesized that the tasks with extra feedback cues would result in significantly lower 

effort for the older adults.  The results of the study showed that the age groups did not differ in 

their effort.  As a whole these workload findings were disappointing; however there may be an 

explanation.  It is likely that the target acquisition task itself, was just too easy.  On average the 

NASA-TLX workload scores were in the low 40s; thus it can be assumed that the task was not 
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mentally demanding which would result in the feedback not being useful.  Future examination of 

the change in workload due to modality cues should likely use a more difficult task that requires 

a higher demand on visual perception.   This may result in the extra modalities being more useful 

to the overall task. 

An annoyance factor was included with this version of the NASA-TLX.  This factor was 

added to ensure that the feedback cues did not significantly increase the levels of annoyance.   It 

was found that both tactile and audio were significantly more annoying to participants.  Although 

visual feedback did not have the overall best TMT or THT it did have lower workload and lower 

levels of annoyance in comparison to tactile or audio.  

Participants were also asked for their preference between each of the feedback 

conditions.  The modalities showed a correlation between level of workload and preferred 

modality.  The most highly preferred modality was the visual cues; which also had the lowest 

workload and annoyance levels of the modalities tested.   

These findings may be related to the dominance of visual perception over the other 

sensory systems.   Colavita, (1974) found that when comparing the reaction times between visual 

and audio cues, the presence of visual cues often dictated reaction times.  There was such a 

strong visual dominance that sometimes participants never even realized that audio cues were 

given with the visual cues.  The previous findings that show a strong tendency for visual 

dominance may explain why the visual cues had lower workload in comparison to the other 

modalities.  People use visual cues as the primary cues when determining a response, the 

addition of tactile or audio may have acted as a distracter resulting in a slightly higher amount of 

workload in order to perceive the ongoing task.   
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Index of Performance 

Significant differences between the age groups were found for IP.  As predicted and seen 

previously with the THT data, the young age group had a significantly higher IP than the older 

age group for all of the feedback conditions presented.  These findings were to be expected 

simply because of the generalized slowing phenomenon.  Although these findings are likely due 

to the slowing that becomes present as one ages prior experience should also be considered when 

examining these findings.  The young adults in this sample spent considerably more hours per 

week on the PC in comparison to the older adults.  On average the young adults spent 10 hours 

more per week on the PC than older computer users.  Interestingly the middle-age group did not 

differ significantly from the older age group in terms of performance, although the middle-aged 

group spent a similar amount of time on the PC as the young age group per week.  Although 

there was a conscious effort to recruit only experienced computer users, these differences may be 

a characteristic of the each of the age populations and would likely prove difficult to completely 

control.    

The difference in performance between the age groups was to be expected and was not 

very surprising.  The more interesting findings were the changes in performance between the age 

groups based upon the feedback conditions.  Previous findings (Laurenti 2005; Cienkowski & 

Carney, 2002; Thompson & Mallou, 2004) suggested that older adults make better use of extra 

sensory information than young adults, it was predicted that the change in performance between 

each of the uni-modal feedback conditions (i.e., visual, audio, and tactile) and the no feedback 

condition would be significantly greater for the older adults.  The findings of this study partially 
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support this concept.  There were significant changes in performance present between the age 

groups; however this was not the case for all of the modality cues.   

The older adults had significantly larger changes in performance compared to the young 

age group when tactile feedback was present.  With the exception of the visual+tactile condition, 

all other conditions with tactile feedback (i.e., tactile, tactile+audio, and visual+tactile+audio) 

resulted in a greater change in performance for the older group than the young group.   This 

change in the performance of older adults is likely due to two factors.  First it has been shown 

that the sensitivity to tactile feedback does not drop off as dramatically as other perceptions as 

one ages, especially when sensing tactile feedback in your finger tips (Stuart et al., 2003).  

Second, tactile feedback has a very quick signal to response time (Nelson et al., 1990).  The 

combination of these two factors can explain the larger changes present in the older group 

whenever tactile feedback is present.  The fact that the visual and audio feedback conditions did 

not create the high levels of change that was predicted is likely due to the sensory degradation 

that becomes evident as one becomes older.  These findings show promise for the 

implementation of tactile cues into computer systems that may be used by older adults.   

It was also predicted that the change between uni-modal conditions and bi-modal 

conditions would be greater for the older age group as well.  There were no significant 

differences found in change in performance from the uni-modal to the bi-modal conditions for 

the young or old age groups.  It is likely that the addition of extra-sensory cues does not 

necessarily result in an additive effect for the older age groups. Considering that the significant 

changes were observed for the older adults when tactile was present, it can be assumed that 

tactile feedback was the primary factor that drove the changes in performance.   
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CHAPTER SIX: CONCLUSIONS 

Key Findings 

The primary purpose of this study was to examine the effects of multimodal feedback on 

the performance of computer users, specifically older adults.  Audio cues tended to have the 

largest positive effect on performance, with it significantly lowering overall TMT and THT more 

so than the other modalities.  Additionally, audio was the only cue to continually influence the 

TMT regardless of target size.  While the visual and tactile conditions did not influence TMT 

beyond small targets, the audio cues continued to have a positive influence during the acquisition 

of medium and large targets as well.  The older adults were especially able to make use of the 

audio cues more than the other age groups when acquiring larger targets.   

The tactile modality also significantly influenced performance in a positive manner; 

however to a lesser extent in comparison to the audio cues.  The most exciting findings 

concerning tactile cues were that when present they made significantly larger positive changes in 

the performance of older adults in comparison to the young adults.  These findings are exciting 

and validate some of the recommendations for including tactile feedback into systems in which 

older adults use.  Additionally, as was expected the presence of visual cues did not have as 

strong of an effect on overall performance in comparison to the other modalities.   

 Although at face value it can be determined that additional feedback will increase 

performance, there are some contrasting findings that make it difficult to assume with certainty 

that the modalities used in this study should be applied to other systems.   Although, audio and 

tactile feedback both decreased TMT and THT, it is likely that a speed accuracy trade-off 

occurred.  Both the audio and tactile conditions resulted in a significantly higher number of 
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misses in comparison to having no feedback or visual feedback present.  So as performance 

increased the number of misses increased as well for the tactile and audio modalities.  These 

findings raise the question as to what is actually affecting the overall performance and reaction 

times.  Is it the actual modalities used, or is it the user perception of how they should be 

performing?  For example, since audio cues had lower overall reaction times and lower accuracy 

it can be argued that the targeting behavior may have been different.  Participants may have 

falsely felt that they could achieve better performance with audio or tactile, so they attempted to 

do the task faster.  Based upon the results and methodology of the study, it is difficult to 

determine with any certainty why participants performed the task differently when these 

feedback cues were present.   

It seems unlikely that the participants felt that they were performing better with tactile or 

audio feedback.  A closer look at the performance factor within the NASA-TLX shows that the 

perceived performance was actually lower for the audio and tactile condition in comparison to 

visual cues or no cues at all.  So, the participants felt they were performing worse when tactile or 

audio was present and accuracy was lower; however their reaction times and THT were reduced 

when they were present.  It is unclear on why the participants were behaving in this way.  If it 

was to be believed that the participants were overconfident in their abilities when audio or tactile 

cues were present we would expect to see perceived performance to be equal to or higher than 

having no feedback; but this is just not the case. Further work in this area should be completed to 

understand what is influencing participants to adjust their speed and accuracy when audio or 

tactile cues are present. 
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To further contrast the positive findings of this study, it was found that conditions in 

which tactile or audio cues were present were the least preferred by participants.  Participants as 

a whole preferred no feedback or visual cues only.  The high levels of annoyance towards tactile 

and audio cues may be relevant to the much lower preference to these modalities.  Additionally, 

if the participants were cognizant of their lower accuracy with these two modalities, it may have 

also influenced their preferences. 

There were some differences between the modalities that, although unlikely, cannot be 

ruled out as being a determining factor in performance and preference.  The delivery of the 

modalities was fundamentally different.  The tactile and audio cues were discrete feedback being 

only .1 second in length and delivered only when the mouse cursor initially hit the target.  

Conversely, the visual cue was a continuous feedback cue.  When the mouse cursor was touching 

the target the visual feedback changed the actual state of the target, so continuous feedback of 

the task was given.  Previous research in this area has not made the distinction between 

continuous or discrete feedback; however this is an avenue that should be explored in future 

research of this type. 

Relevance & Contributions 

Theoretical Implications 

Previous studies have not examined the effects of feedback and age on the performance 

of a mouse based target acquisition task at a fundamental level.  Previous studies (Vintense, 

2003, Jacko et al., 2004) have looked at how extra modalities effect older adult performance; 

however the methodologies consisted of tasks that were applied to the computer human interface 

(i.e., drag and drop files) and did not look at how feedback affected performance at the most 
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basic level of a computer mouse interaction.   This study employed a methodology that is based 

upon a Fitt’s task that examines the mouse target acquisition task at a fundamental level and 

additionally has previously been found to be relevant to HCI tasks (MacKenzie, 1992).  

Additionally, these findings can be attributed to a larger number of mouse tasks in comparison to 

a more specific mouse task, such as a drag and drop task.  The outcomes of this study do support 

findings outside of the HCI realm that extra-sensory information will improve the performance 

in older adults more so than the young adults.  Results such as these have been hinted upon in the 

work by Laurenti et al. (2004); however these findings further solidify evidence of the benefits 

inherent in extra modalities to older adults when working with a computer interface.   

As exciting as the results found concerning the effect of multi-modal feedback on age 

are; the greater implications of the study come in the speed accuracy trade-offs that become 

apparent when tactile or audio cues are present.  Previous studies have also shown evidence of a 

higher level of misses occurring when tactile cues are present; however this study has shown that 

this higher instance of misses is not likely due to a reflexive response to the feedback as implied 

by previous authors.  When considering the increased performance in time-based metrics and the 

lower accuracy present with audio or tactile cues it becomes evident that a behavioral effect on 

how a person performs the task may be influencing the outcome of the performance more so than 

the feedback itself.  Previous studies have not brought to light this possible relationship and it 

highlights an area in which future studies should be done.  A better understanding of how people 

think additional feedback cues may affect performance prior to actually performing the task may 

shed some light on the underlying psychological benefits that people may think are present.   
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Practical Implications 

This study has supported and provided additional evidence that audio and tactile cues are 

not preferred by computer users and are found to be annoying.  These are important findings to 

be considered prior to any audio or tactile cues being applied in any type of user interface.  The 

idea that any feedback is better than nothing may not always hold true if the feedback is found to 

be distracting, annoying, or simply not liked, as was found in this study with audio and tactile 

cues.    

Additionally, due to the contrasting findings involving the measured performance and 

feedback preference it is currently not recommended that a novel sensory feedback, such as 

tactile, is integrated into a computer mouse interaction.  Further research must be conducted 

concerning the basis of the speed-accuracy trade-off as well as the overall preference for these 

modalities prior to a suggested implementation.   It is with great hope that continuation of this 

research will aid in the development of a computer user interface that integrates the benefits that 

have been shown to be evident for the older adults while also creating a more appealing interface 

for the entire computer user population as a whole.  There is great potential for this work to 

change the face of computer interactions for a multitude of applications in the home, public 

spaces, or the workplace. 

 

Limitations & Future Directions 

This study has found significant results that add to the body of HCI research; however 

there were some limitations with the methodology.  First and foremost, the fact that the visual 

cues were a continuous feedback while the audio and visual cues were discrete needs to be 
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addressed.  Rather than confound the results by age effects, it may be beneficial to look at the 

effect of continuous versus discrete feedback for a mouse task regardless of age.  It would be 

beneficial to understand if the style of feedback (i.e., continuous or discrete) changes the 

performance, workload and preference during the mouse task.  In order to examine this 

relationship it would be recommended to perform a study using the same Fitt’s task; however 

feedback duration should be controlled, so each feedback modality will be presented as a .1 

second duration discrete cue as well as a continuous cue.  The findings of a study of this type 

could show evidence of why the visual feedback was preferred and may provide evidence that 

explains the speed accuracy trade-offs that were present for the audio and tactile modalities.   

Additionally, due to the speed-accuracy trade-offs shown for the audio and tactile cues, 

future studies may not want to separate the feedback cues into separate sessions, with each trial 

consisting of the same feedback.  In order to remove the possibility of feedback pre-determining 

performance, it may be beneficial to randomize the feedback present for each trial within a 

session.  This would remove expectations and may show a direct link to how each feedback 

affects performance without any preconceptions altering performance.   

Due to the positive results that have been found with the performance increases found 

with the addition of tactile feedback for older adults, further research should be done in this area.  

It may be beneficial to separate this analysis out from the realm of HCI and perform a similar 

task that examines this relationship using a signal to response paradigm, as used by Colavita 

(1974) or Miller (1982).  Due to the computer experience effects that may be present between the 

age groups one cannot say with certainty that the differences found between the age groups can 
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be attributed to these feedback modalities alone.  Stripping the study down to a basic level may 

provide stronger evidence for the use of tactile cues with older adults. 

 Alternatively, a study examining the performance in which the participants of varying 

ages are given a more complex task with feedback modalities may yield interesting findings.   

The workload scores in this study were relatively low, so the easiness of the task may have made 

the extra feedback less useful for completing the task in comparison to a more mentally 

demanding task.   Paring the different feedback modalities with a more complex task may find 

greater benefits of the different feedback modalities to older populations. 

Finally, effective width should be added to future versions of the instrumentation.  This 

addition would provide a corrective measure for individual differences that may be present 

regarding speed and accuracy balancing.  The ability to remove these potential differences from 

this task would strengthen the relationship between Fitt’s law and the data that is ultimately 

collected.   
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APPENDIX A: PARTICIPANTS WITH ERROR RATES ABOVE 1.5 IQR 
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Young Males 
Participant 

# 
None Visual Audio Tactile VisAud VisTact AudTact VisAudTact

11   X      
14   X  X    
27      X   

Young Females 
8 X      X  
12 X        
21       X  

Middle Males 
59 X        
64 X X    X  X 
68     X    

Middle Females 
73 X  X X X X X X 
63  X       

Older Males 
89   X X X    
77 X X  X     
66 X       X 

Older Females 
41        X 
65  X       
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APPENDIX B: INFORMED CONSENT 

  



 

 

114 

 

 

 
Researchers at the University of Central Florida (UCF) study many topics.  To do this we need 
the help of people who agree to take part in a research study.  You are being invited to take part 
in a research study which will include about 90 people.  You can ask questions about the 
research.  You can read this form and agree to take part right now, or take the form home with 
you to study before you decide.  You will be told if any new information is learned which may 
affect your willingness to continue taking part in this study.  You have been asked to take part in 
this research study because you use a computer for at least 5 hours a week and have no physical 
limitations that may affect your performance when using a computer mouse. You must be 18 
years of age or older to be included in the research study and sign this form.   
 
The person doing this research is Brian Oakley a graduate student from the UCF psychology 
department. Because the researcher is a graduate student he is being guided by Janan Smither, a 
UCF faculty supervisor in the Psychology department. 
 

Study title: The Effects of Multi-Modal Feedback & Age on a Mouse Pointing Task 
Purpose of the research study:  The purpose of this research study is to assess how people respond to 
different types of sensory feedback, such as sound, auditory, or vibrations, when using a computer mouse.   
What you will be asked to do in the study:  In this study you will be asked to perform a large 
number of target acquisition tasks using a mouse.  These target acquisition tasks are similar to 
the actions that would normally be taken when seeking and clicking on an icon on a personal 
computer.  You will also be asked to provide some information concerning your previous 
computer experience.  During the course of the study you will also be asked to fill out additional 
questionnaires that will be used to help us understand your experience during the tasks. 
Voluntary participation:  You should take part in this study only because you want to.  There is 
no penalty for not taking part, and you will not lose any benefits. You have the right to stop 
participation at any time.  Just tell the researcher that you want to stop. You will be told if any 
new information is learned which may affect your willingness to continue taking part in this 
study.   
Location:  This study will be held in a Psychology Department lab located on the Orlando 
campus of the University of Central Florida. 
Time required:  You will only need to participate in a single session that will take approximately 90 
minutes to complete. 
Audio or video taping:  This study does not include any audio or video taping.  
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Risks: There are no expected risks for taking part in this study.  You do not have to answer 
every question or complete every task. You will not lose any benefits if you skip questions or 
tasks. You do not have to answer any questions that make you feel uncomfortable. 
Benefits:  As a research participant you will not benefit directly from this research, besides 
learning more about how research is conducted.  
Compensation or payment:  The session will take approximately 90 minutes to complete and 
for your time you will be given a choice between two compensations. Upon completion of the 
study session you will have the option of choosing 4 points of extra credit or a $20 gift card.  If 
you are a UCF student and decide to withdraw participation, you will receive 1 point of extra 
credit.  If you choose extra credit as your compensation it is your responsibility to know the 
psychology courses in which you may use it. Some psychology courses may handle extra credit 
differently so it is up to you to understand how and if it will be used in your class.  If you are not 
currently a UCF student and withdraw from participation you will receive $10 cash.   
Confidentiality:  Your identity will be kept confidential.  The researcher will make every effort to 
prevent anyone who is not on the research team from knowing that you gave us information, or 
what that information is.  For example, your name will be kept separate from the information you 
give, and these two things will be stored in different places, a locked file cabinet for any papers 
and a password protected computer for digital files. 
Your information will be assigned a code number.  The list connecting your name to this number 
will be kept on a password protected computer.  When the study is done and the data have been 
analyzed, the list will be destroyed.  Your information will be combined with information from 
other people who took part in this study.  When the researcher writes about this study to share 
what was learned with other researchers, he will write about this combined information. Your 
name will not be used in any report, so people will not know how you answered or what you did.  
Study contact for questions about the study or to report a problem: Brian Oakley, Graduate 
Student, Human Factors Program, Psychology Department, (407) 797-7460 or by e-mail at 
ucfstudy@gmail.com or Dr. Janan Smither, Graduate Advisor, Psychology Department at (407) 823-
4344or by email at smither@ucf.edu.  

IRB contact about your rights in the study or to report a complaint:    Research at 
the University of Central Florida involving human participants is carried out under the oversight 
of the Institutional Review Board (UCF IRB).  For information about the rights of people who 
take part in research, please contact: Institutional Review Board, University of Central Florida, 
Office of Research & Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 
32826-3246 or by telephone at (407) 823-2901. 
How to return this consent form to the researcher:  You may print out this document and 
bring it with you to your scheduled session.   If you are unable or unwilling to print out this 
document a copy will be given to you prior to beginning the session. 
 
 
 
By signing this letter, you give me permission to report your responses anonymously in the final 
manuscript to be submitted to my faculty supervisor as part of my course work and may also be 
included in journal publications.   

mailto:ucfstudy@gmail.com�
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□ I have read the procedure described above   

□ I voluntarily agree to take part in the procedure   

□ I am at least 18 years of age or older         

 

___________________________          __________________________       ________ 
Signature of participant                           Printed name of participant                   Date 

 

____________________________________ ____________ 
Principal Investigator  Date 
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APPENDIX C: PRE-TEST QUESTIONNAIRE 
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Background Information Questionnaire 
Participant ID: ___________ 

General Information 

1. What is your age? _______ 
2. What is your gender?      Male            Female 
3. Which is your dominant hand?     Left              Right             Ambidextrous 
4. Regarding your hand grip, are you able to open car doors?  

1 
Without Any 

Difficulty 

2 
With Some 

Difficulty 

3 
With Much 

Difficulty 

4 
Unable To Do 

 
5. Regarding your hand grip, are you able to open previously opened jars? 

1 
Without Any 

Difficulty 

2 
With Some 

Difficulty 

3 
With Much 

Difficulty 

4 
Unable To Do 

 
6. Regarding your hand grip, are you able to turn faucets on and off? 

1 
Without Any 

Difficulty 

2 
With Some 

Difficulty 

3 
With Much 

Difficulty 

4 
Unable To Do 

 
7. Are you physically able to use a PC mouse? 

1 
Without Any 

Difficulty 

2 
With Some 

Difficulty 

3 
With Much 

Difficulty 

4 
Unable To Do 

 
8. How much pain have you experienced in your right hand in the past week:  Place a single 

vertical mark through the line to indicate severity of the pain 
No 
Pain 

Severe 
Pain

 
 

9. How much physical pain have you experienced when using a computer mouse in the past 
week:  Place a single vertical mark through the line to indicate severity of the pain 
No 
Pain 

Severe 
Pain
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Computer Experience 

1. On average, how many hours a week do you use a PC?  _____ hours 
 

2. How many years have you been using a PC? _____ years 
 

3. How would you rate your level of computer experience?  (Please circle one) 
a. Beginner 
b. Intermediate 
c. Expert 

 
4. For what purposes do you primarily use your PC? (Please circle all that apply) 

a. Communication (i.e., E-mail, Instant Messaging, Video Chat) 
b. Accessing the Web 
c. Gaming 
d. Productivity (i.e., Word Processing, Spreadsheets) 
e. Other (Please fill in): _______________________ 
f. Other (Please fill in): _______________________ 
g. Other (Please fill in): _______________________ 

 
5. What is your primary pointing device? (Please circle one) 

a. Mouse 
b. Touch-Pad 
c. Trackball 
d. Pointing Stick (also often referred to as a Pointing Nub) 
e. Other (Please fill in): _______________________ 
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APPENDIX D: FEEDBACK PREFERENCE QUESTIONNAIRE 
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Feedback Preference Questionnaire 
Participant ID: ___________ 

 
INSTRUCTIONS: For each of the following questions please place a vertical mark on the scale 
that represents your feelings regarding the feedback modes you experienced during the study. 

 
1. No Feedback 

 
Really  
Disliked 

Really 
Liked

 
 

2. Visual-Only 
 

Really  
Disliked 

Really 
Liked

 
 

3. Vibration-Only 
 

Really  
Disliked 

Really 
Liked

 
 

4. Audio-Only 
 

Really  
Disliked 

Really 
Liked

 
 

5. Visual+Audio 
 

Really  
Disliked 

Really 
Liked

 
 
 
 
 
 



 

 

122 

 

6. Visual+Vibration 
 

Really  
Disliked 

Really 
Liked

 
 

7. Vibration+Audio 
 

Really  
Disliked 

Really 
Liked

 
 

 
8. Visual+Vibration+Audio 

 
Really  
Disliked 

Really 
Liked

 
 
 

Feedback Ranking 
 

INSTRUCTIONS: For the following section I would like you to rank the feedback conditions in 
order from most favorite (1) to least favorite (8).  Please double-check your rankings to ensure 
you have only used each number once. 

 
___ No Feedback  
___ Visual Feedback  
___ Vibration Feedback 
___ Audio Feedback  
___ Visual+Audio Feedback 
___ Visual+Vibration Feedback  
___ Vibration+Audio Feedback  
___ Visual+Vibration+Audio Feedback  
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APPENDIX E: NASA-TLX WORKLOAD MEASURE 
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Workload Rating Sheet 
Participant ID: ___________                                                       Session: ______________ 

 
INSTRUCTIONS: On each scale place a mark that best indicates your experience with the task. 

 
MENTAL DEMAND:  
Low High

 
 

PHYSICAL DEMAND:  
Low High

 
 

TEMPORAL DEMAND:  
Low High

 
 

EFFORT:  
Low High

 
 

PERFORMANCE:  
Poor Good

 
 

FRUSTRATION:  
Low High

 
 

ANNOYANCE:  
Low High

 

 
 
 



 

 

125 

 

Pair-wise Comparison of Factors 
 

INSTRUCTIONS: Circle the member of each pair that represents the more important contributor 
to workload for the task. 

 
PHYSICAL DEMAND or MENTAL DEMAND 

 
TEMPORAL DEMAND or MENTAL DEMAND 

 
PERFORMANCE or MENTAL DEMAND 

 
FRUSTRATION or MENTAL DEMAND 

 
EFFORT or MENTAL DEMAND 

 
TEMPORAL DEMAND or PHYSICAL DEMAND 

 
PERFORMANCE or PHYSICAL DEMAND 

 
FRUSTRATION or PHYSICAL DEMAND 

 
EFFORT or PHYSICAL DEMAND 

 
TEMPORAL DEMAND or PERFORMANCE 

 
TEMPORAL DEMAND or FRUSTRATION 

 
TEMPORAL DEMAND or EFFORT 

 
PERFORMANCE or FRUSTRATION 

 
PERFORMANCE or EFFORT 

 
EFFORT or FRUSTRATION 
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APPENDIX F: DEBRIEFING FORM 
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The Effects of Multi-modal Feedback & Age on a 
Mouse Pointing Task 

 
DEBRIEFING 

 The purpose of this study was to assess your performance when using a mouse with 
varying types of feedback modalities.  All age groups will likely be observed to have higher 
performance when feedback is present; however previous research has shown that older adults 
will benefit more from this additional feedback.  In addition to observing performance this study 
was also interested in your feelings about using these additional modes of feedback.   The results 
of this study will have implications on future design decisions in human-computer interactions as 
well as provide strong research in the area of multi-modal feedback and computer mice. 
 
Please do not discuss the specifics of this experiment with your peers as some of them may 
not have participated yet.   
 
Thank you for your participation in this research.  If you have any further questions regarding the 
experiment or your participation, please contact either of the following individuals.   
 
Principal Investigator: Brian Oakley 
    E-mail: ucfstudy@gmail.com 
                                   Phone: 407-797-7460 

 
Graduate Advisor: Janan Smither 

        E-mail: smither@ucf.edu 
                   Phone: 407-823-5862 
 
Address: Department of Psychology  

               Univ. of Central Florida  
               4000 Central Florida Blvd.  
               Orlando, FL 32816-1390 

  

mailto:ucfstudy@gmail.com�
mailto:smither@ucf.edu�
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APPENDIX G: IRB APPROVAL LETTER 
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