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ABSTRACT

Inverse analysis of nonlinear dynamic systems is an important area of research in the eld

of structural health monitoring for civil engineering structures. Structural damage usually in-

volves localized nonlinear behaviors of dynamic systems that evolve into different classes of

nonlinearity as well as change system parameter values. Numerous parametric modal anal-

ysis techniques (e.g., eigensystem realization algorithm and subspace identification method)

have been developed for system identification of multi-degree-of-freedom dynamic systems.

However, those methods are usually limited to linear systems and known for poor sensitivity

to localized damage. On the other hand, non-parametric identification methods (e.g., artificial

neural networks) are advantageous to identify time-varying nonlinear systems due to unpre-

dictable damage. However, physical interpretation of non-parametric identification results is

not as straightforward as those of the parametric methods. In this study, the Multidegree-of-

Freedom Restoring Force Method (MRFM) is employed as a semi-parametric nonlinear identi-

fication method to take the advantages of both the parametric and non-parametric identification

methods.

The MRFM is validated using two realistic experimental nonlinear dynamic tests: (i) large-

scale shake table tests using building models with different foundation types, and (ii) impact test

using wind blades. The large-scale shake table test was conducted at Tongji University using

1:10 scale 12-story reinforced concrete building models tested on three different foundations,

including pile, box and fixed foundation. The nonlinear dynamic signatures of the building

models collected from the shake table tests were processed using MRFM (i) to investigate the

effects of foundation types on nonlinear behavior of the superstructure and (ii) to detect local-

ized damage during the shake table tests. Secondly, the MRFM was applied to investigate the

applicability of this method to wind turbine blades. Results are promising, showing a high level

of nonlinearity of the system and how the MRFM can be applied to wind-turbine blades. Fu-
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ture studies were planned for the comparison of physical characteristic of this blade with blades

created made of other material.
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1 INTRODUCTION

1.1 Problem Statement

As the age of the US infrastructure increases so does damage and fatigues to some critical

infrastructure components. These infrastructure components are in need of reliable methods

that are able to both, evaluate their health and locate damage. With location and quantification

of damage repairs can be made for the continual safe use of these infrastructure components.

As recently as 2013 ASCE has graded the US infrastructure as D+ (ASCE, 2009). The

infrastructure is poor shape and some aspects are at risk of collapse. If this problem is ignored;

it could result in the loss of life, along with economic losses. A Structural Health Monitoring

technique is needed to analyze detect and locate damage on structures.

This study will use the multidegree of freedom Restoring Force Method to accurately locate

and detect damages in structures.

1.2 Motivation

The field of Structural Health Monitoring (SHM) is a growing field and has numerous ap-

plications in many areas in the discipline of civil engineering and in other disciplines such as

aerospace and mechanical engineering. The techniques of SHM can be used in the analysis and

damage detection of a number of structures including, but not limited to, wind turbines, bridges,

offshore oil rigs, airplanes, and buildings. An extensive literature review was done by Doebling

et al. (1996) which covered up to 1996, followed by Sohn et al. (2004), which covered from

1996 to 2001. In the field of SHM evaluation of nonlinear systems is important. This is because

most linear systems only behave linearly in their undamaged state; In complex systems the be-

havior in damaged or undamaged state is often nonlinear. Bornn et al. (2010) found that the

1



majority of SHM techniques focus on initially linear systems and highlights the inadequacy of

linear based methodologies for systems that are initially nonlinear. One example of a nonlinear

multidegree of freedom identification technique is the multidegree of freedom Restoring Force

Method (MRFM).

1.3 Objectives

This study will focus on testing the validity of the multidegree of freedom Restoring Force

Method MRFM on two real world studies. The are several objectives of this study. First, is,

testing to see to see if the MRFM is able to accurately detect damage in a structure. Second, is

to see if the method can indicate the location of where the damage has occurred in the structure.

Finally, the last objective of this study is to investigate the versatility of the MRFM to non-

building structures.

1.4 Scope And Approach

This study will be broken into the analysis of three different data sets. The first data set will

be an analytical data set to understand the results of the RFM and how well it works with given

data. In the second data set, this study evaluates the performance of this chain-like, nonlinear

identification technique on Soil Foundation Structure Interaction (SFSI) under nonstationary

random excitation. The data provided by experiments performed at Tongji University, on a rela-

tively large scale, i.e., 1/10 scale, superstructure with multiple foundation types. This provided

a very unique and challenging opportunity to evaluate the complex nonlinear response of the

superstructure due to SFSI from seismic loads. Various levels of excitations are used which

eccentricities the nonlinearities of the superstructures response. This data also presents a good

opportunity to use a local identification technique to identify system paraments of the super-

structure for change detection. Finally, the last data set which will be analyzed is a preliminary

experimental data set collected from a small scale wind turbine blade. This data provides the
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opportunity to investigate the application of the RFM to wind turbine blades.
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2 RESTORING FORCE METHOD

Yun and Masri (2008) pointed that developing effective Structural Health Monitoring (SHM)

methodologies for complex nonlinear systems is challenging. This complexity is increased

when the system characteristics are uncertain. These uncertainties pertaining to system char-

acteristics can often arise from uncertainty in system parameters or environmental effects on

the system characteristics. Yun and Masri (2008) pointed out several technical challenges to

overcome in both parametric and nonparametric SHM methodologies. One of the major prob-

lems is over-simplification of system models which occurs through model-order reduction and

disregard of environmental effects that may contribute significantly to the system. Another

problem is parametric modeling approaches that are incapable of identifying time-varying or

deteriorating structures.

The nonlinear identification methodology developed by by Yun and Masri (2008) laid out

a few select features that must be included in a reliable SHM method. This guide pointed out

that first, the method should be able to detect system changes for various types of structural

changes. This includes changes to the system parameters and when the system shifts into a

different type of nonlinearity. Next, the method must be able to give some physical interpre-

tations to the identified system parameters. A goal of SHM is to assess structural conditions

and use this information to help establish operation and maintenance strategies. Because of this

goal results should be interpreted with some physical meaning of identification results. This

physical meaning should involve the effects of the change on the health of the structure in both

a global and local approach. The location of the detected changes should also be included in

this physical meaning. Lastly, the method must be able to quantify the uncertainty of the de-

tected changes. This includes measurement uncertainty due to noisy data and uncertainty of the

4



system parameters. The method should be able to detect true changes to the structure instead of

changes based on system uncertainty.

Using these parameters Yun and Masri (2008) proposed a reliable SHM methodology for

change detection in nonlinear dynamic systems. This methodology is based on using the Restor-

ing Force Method as the system identification technique.

2.1 Single Degree Of Freedom Restoring Force Method

The Restoring Force Method (RFM) is a nonparametric, nonlinear system identification

technique, originally developed by Masri and Caughey (1979). This method was developed to

overcome the limitations of other nonlinear identification techniques, such as the Volterra-series

or Weiner-kernal. Both suffer from complications: difficulties obtaining convergence rate, long

computational times, high storage requirements, only capable of identifying nonhysteretic sta-

tionary with white noise as the input. RFM has low sensitivity to noise in the data being pro-

cessed, low storage requirements, quick computation times and most nonlinear system can be

identied.

A nonlinear single-degree-of-freedom (SDOF) system can be expressed as Equation 2.1

kx+ cẋ = F (t)−mẍ (2.1)

mẍ+G(x, ẋ) = F (t) (2.2)

where G(x, ẋ) represents a nonlinear restoring force function that is a function of velocity and

displacement.
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G(x, ẋ) = F (t)−mẍ (2.3)
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Figure 2.1: A nonlinear, single-degree-of-freedom system.

The basic premise is that the RFM identies a series of two dimensional orthogonal poly-

nomial coefficients; from a fitted surface of velocity, displacement and the restoring force of a

system. Because of the orthogonality of the polynomials, an identified coefficient of order ij is

not affected by other coefficients of a different order. This is particulary useful because often

times the correct system order is unknown. The polynomial coefficients identied are able to

generate an approximate restoring force, which estimates the real restoring force. In this study

a series of Chebyshev polynomials are used. The formulation for this approximated restoring

force using the Chebyshev polynomials can be seen in Equation 2.4, where Ti is the Chebyshev

polynomial of the degree i given by

G(x, ẋ) ≈ Ĝ(x̄, ¯̇x) =
m2∑
i=0

n2∑
j=0

CijTi(x̄)Tj(¯̇x) (2.4)

Ti = cos(i arccos(ξ)),−1 < ξ < 1 (2.5)

Chebyshev polynomials are only orthogonal over the range of−1 to 1; the displacement (x)

and velocity (ẋ) has to be normalized over this range. This normalization can be accomplished
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by the Equation 2.6 for the displacement and Equation 2.7.

x̄ = [x− (xmax + xmin)/2]/[(xmax − xmin)/2] (2.6)

¯̇x = [ẋ− (ẋmax + ẋmin)/2]/[(ẋmax − ẋmin)/2] (2.7)

In equation 2.4, Cij is the Chebyshev coefficient given by equation 2.8.

Cij =


(2/π)2v i and j 6= 0

(2/π2)v i or j = 0

(1/π2)v i = j = 0

 , (2.8)

Here in 2.8, the value of v can be found from equation 2.9.

v =

∫ 1

x=−1

∫ 1

y=−1

G(x, y)Ti(x)Tj(y)w(x)w(y) dxdy (2.9)

By using the transformations x = cos(θ) and y = cos(φ), equation 2.9 can be rewritten as

2.10.

v =

∫ π

x=0

∫ π

y=0

G(arccos(x), arccos(y))Ti(θ)Tj(φ) dθdφ (2.10)

To make equation 2.10 solvable by numerical integration, it is made discrete as in equation

2.11

v =
MX2∑
k=1

MY 2∑
l=1

Gkl cos [i(∆θ)(k − 1)] cos [j(∆φ)(l − 1)] ∆θ∆φ (2.11)
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∆θ = π/MX2

∆φ = π/NX2
(2.12)

Gkl = G(cos θk, cos φl)

θk = (k − 1)∆θ 0 ≤ θ ≤ π

φl = (l − 1)∆φ 0 ≤ φ ≤ π

In Equations 2.11 and 2.12, the values for MX and NX are selected by the user. These

are the values for the discretization of the the numerical integration. Here Gkl is a 3d surface

of the restoring force the normalized, transformed velocity and the normalized, transformed

displacement. To get points on this surface requires interpolation, in this study Gaussian Radial

Basis Functions seen in Equation 2.13 were used in the interpolation.

φ(r) = exp(−εr)2 (2.13)

where r = ‖x− xi‖ and ε is the weight of the radial basis function.

The Radial Basis Functions (RBFs) interpolation works by using a series of sum of RBFs,

in this study Gaussian, to fit the surface (Fasshauer, 2007).

s(x, y) =
N∑
j=1

λjφ
j(x, y) (2.14)

where s(x, y) = F (x, y) where F (x, y) is the surface to be interpolated. Enforcing the interpo-

lation conditions results in Bλ = F where A is a matrix with entries Bij = φj(xi, yj)

Interpolation with RBFs offer several distinctive advantages (Carr et al., 1997). First, it is a
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mesh-free interpolation which means that there is no restriction for the geometry of the known

points. The end product from the interpolation is a a smooth single-valued function. Last,

RBFs are suited to interpolate scattered data, even when that data contains large dataless areas,

because of their variational characterizations.

Since the restoring force method is a nonparametric identification technique, the identified

coefficients do not directly reflect any of the stiffness or damping values of the system; however,

they can help to indicate certain parameters about the system, such as the linear and nonlinear

contribution as indicated by Yun et al. (2008). Those coefficients can also be converted from a

Chebyshev series into a power series.

Yun and Masri (2008) took advantage of the fact that while the restoring force method is

non-parametric, parametric relation is possible. This can be seen in equation 2.15

Ĝ(x, ẋ) =
m2∑
i=0

n2∑
j=0

CijTi(x̄)Tj(¯̇x) =
m2∑
i=0

n2∑
j=0

āijx̄
i ¯̇xj =

m2∑
i=0

n2∑
j=0

aijx
iẋj (2.15)

where āij represents the normalized power series coefficient and aij represents the de-normalized

power series coefficients, both of which are parametric. By performing a conversion from the

identified Chebyshev coefficients into power series coefficients, the results will most likely be

different than if an identification was originally accomplished by using a power series. This

is a useful approach because the power series can be related to stiffness like and damping like

coefficients (Hernandez-Garcia et al., 2010).

2.2 Multi-Degree-Of-Freedom Restoring Force Method

Although the RFM was originally developed for a SDOF system, Masri et al. (1982) de-

veloped it into a multidegree of freedom system identification method. The idea behind this

development was that each degree could be separated into its own relative single degree of free-
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dom system, once the severation is established the single degree of freedom method applies.

Figure 2.2 illustartes a multi-degree-of-freedom (MDOF) chain-like dynamic system, where

s is a base excitation, Fk is the force applied to the mass mk, and the absolute displacement at

this mass is measured by xk. To calculate the interstory relative displacement and velocity of

the system, Equations 2.16 and 2.17 can be used respectively.
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Figure 2.2: A nonlinear, multidegree of freedom system, with unknown restoring forces.

zn = xn − xn−1 (2.16)
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żn = ẋn − ẋn−1 (2.17)

z1 = x1 − s (2.18)

ż1 = ẋ1 − ṡ (2.19)

where s is the movement of the base of the structure.

A nonlinear element is interposed between the masses mk and mk−1. This element is rep-

resented by Gk, and generates a restoring force Gk(zk, żk) which is a function of the interstory

relative displacement and velocity. For figure 2.2 the equation of motion is described in equa-

tion 2.20. It should be noted that all nodes will have the restoring force of the node directly

above them contributing to the the force acting upon their structure. Since n would be the top

of the structure, it will have no other restoring force other than its own acting upon it.

mnẍn +Gn(zn, żn) = +Fn(t)

mn−1ẍn−1 +Gn−1(zn−1, żn−1) = Gn(zn, żn) +Fn−1(t)

...

m2ẍ2 +G2(z2, ż2) = G3(z3, ż3) +F2(t)

m1ẍ1 +G1(z1, ż1) = G2(z2, ż2) +F1(t)

(2.20)

The equation 2.20 can be rewritten so that the restoring force appears on the left hand side

as seen in equation 2.21.
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Gn(zn, żn) = −mnẍn +Fn(t)

Gn−1(zn−1, żn−1) = −mn−1ẍn−1 +Gn(zn, żn) +Fn−1(t)

...

G2(z2, ż2) = −m2ẍ2 +G3(z3, ż3) +F2(t)

G1(z1, ż1) = −m1ẍ1 +G2(z2, ż2) +F1(t)

(2.21)

The restoring force for the nodes can now be calculated the same way as in equation 2.4.

This can be represented by equation 2.22.

G(k)(zk, żk) ≈ Ĝ(k)(zk, żk) =
m2∑
i=0

n2∑
j=0

CijTi(z̄k)Tj(¯̇zk) (2.22)

Now each of the real restoring forces for the ith degree of freedom can be approximated

by two dimensional orthogonal polynomials. Again Ti is the Chebyshev polynomial of the ith

degree represented by

Ti = cos(i arccos(ξ)),−1 < ξ < 1 (2.23)

Since the Chebyshev polynomials are only orthogonal over the range of -1 to 1, the interstory

relative displacement (z) and interstory relative velocity (ż) had to be normalized over this

range. This can be accomplished by the equation 2.24 for the displacement and equation 2.25.

z̄ = [z − (zmax + zmin)/2]/[(zmax − zmin)/2] (2.24)

¯̇z = [ż − (żmax + żmin)/2]/[(żmax − żmin)/2] (2.25)

12



In equation 2.22, Cij is the Chebyshev coefficient given by equation 2.8.

Cij =


(2/π)2v i and j 6= 0

(2/π2)v i or j = 0

(1/π2)v i = j = 0

 , (2.26)

Here in 2.26, the value of v can be found from equation 2.27, which was transformed and

made discrete as in equation.

v =
MX2∑
k=−1

MY 2∑
l=−1

Gkl cos [i(∆θ)(k − 1)] cos [j(∆φ)(l − 1)] ∆θ∆φ (2.27)

∆θ = π/MX2

∆φ = π/NX2
(2.28)

Gkl = G(cos θk, cos φl)

θk = (k − 1)∆θ 0 ≤ θ ≤ π

φl = (l − 1)∆φ 0 ≤ φ ≤ π

Like the SDOF RFM, the Multi-degree-of-freedom Restoring Force Method (MRFM) re-

quires inputs of restoring force, velocity and displacement for all the elements of interest. Ve-

locity and displacement can be measured, but to find the restoring force, mass, acceleration and

the input force must be measured.

When the mass is not known, Nayeri et al. (2008) showed that it is possible to still effectively

use this method by assuming that the mass is equal for all degrees of freedom of interest i.e.

mi = mi−1 = ... = m2 = m1. The equation for the restoring force can be normalized by mass
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which is done in equation 2.29.

Gn(zn,żn)
mn

= −ẍn +Fn(t)
mn

Gn−1(zn−1,żn−1)
mn−1

= −ẍn−1 +Gn(zn,żn)
mn−1

+Fn−1(t)
mn−1

...

G2(z2,ż2)
m2

= −ẍ2 +G3(z3,ż3)
m2

+F2(t)
m2

G1(z1,ż1)
m1

= −ẍ1 +G2(z2,ż2)
m1

+F1(t)
m1

(2.29)

The mass normalized restoring force can be written as

Gk(zk, żk)

mk

= Gm
k (zn, żn)

This turns equation into 2.30

Gm
k (zk, żk) ≈ Ĝm

k (zk, żk) =
m2∑
i=0

n2∑
j=0

Cm
ij Ti(z̄k)Tj(¯̇zk) =

m2∑
i=0

n2∑
j=0

amijx
iẋj (2.30)

It should be noted though, that this results in the Chebyshev coefficients to also be nor-

malized by the unknown mass. This does not usually affect damage detection because damage

usually changes the stiffness or damping of the structure of interest and not the mass. If mea-

suring the force acting on the structure is not feasible due to cost or other reasons Nayeri et al.

(2008) showed that that if the assumption that the unknown force acting on the structure is a

stationary white noise process then the NExT technique can be used and it is not necessary to

measure the force. Combing both of these methods increases the number of applications on

which RFM can be used, however there are certain constraints; the restoring force had to be as-

sumed linear, the excitation has to be considered low level gaussian white noise and the masses

at different elements have to be considered equal to one another.
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2.3 Previous Studies Using RFM And MRFM

The RFM is a local identification method as apposed to a global identification methods

such as Eigensystem Realization Algorithm (ERA). For the most part, instead of viewing these

two different methods as competitive they, should be view as complementary (Nayeri et al.,

2008). The local methodology can provide information about a relatively small region of in-

terest through the use of measurements specific to that area, while the global methodology can

provide information about the global systems’ condition through use of a network of sensors

dispersed on the entire structure. However, the local approach may have applications where the

global approach can not be used; for very large sensor networks where the processing power

and storage requirements are too great, the local approach can still be used because each node

is processed individually. However, Nayeri et al. (2008) showed that there was a high degree of

error using the local technique based on the RFM. This was attributed to the fact that interstory

relative displacement was so small, usually in the order of micrometers, which could be consid-

ered within the measurement range of error for the sensors. Nayeri et al. (2008) recommended

using a shaker to generate a significant excitation to increase the interstory relative motion since

the excitation generated by ambient vibrations are too low.

Hernandez-Garcia et al. (2010) used a three story structure at Los Alamos National Labo-

ratory excited by an electro-dynamic shaker. The goal behind the study was to test the effec-

tiveness of both MRFM and ERA, very similar to what Nayeri et al. (2008) did but without the

use of NExT. During the course of their study Hernandez-Garcia et al. (2010) showed that ERA

indicated changes, but did so with a high rate of false positives. While the MRFM was demon-

strated to effectively, robustly and confidently detect changes in the system and the location

of the changes, despite measurement and data processing uncertainties. Because the Cheby-

shev coefficients that are output from the RFM are normalized, which makes it more difficult

to quantify changes, Hernandez-Garcia et al. (2010) decided to use de-normalized power se-
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ries coefficients aij as the dominant restoring force coefficients. The reliable change-sensitive

features were shown to be the dominant restoring force coefficients. These can be used for de-

tecting and assessing the degree of the change. The experimental study was also tested against

a finite element model to validate the results obtained by the MRFM. Overall the MRFM was

shown to be capable of estimating the magnitude of the structural change with more reliability,

higher detection rate and good accuracy compared to ERA, (Hernandez-Garcia et al., 2010).

Another significant RFM study was conducted by Yun et al. (2008). This study was on a

1112 kN orifice viscous damper, utilizing several different identification techniques. The study

used three different methods: a parametric method based on Maxwell models referred to as the

Simplified Design Model (SDM); two nonparametric, one of which was the Single Degree of

Freedom (SDOF) RFM; and an Artificial Neural Networks (ANN) identification technique. It

was found that all the methods could successfully identify the peak force by using any of the

studied methods. The RFM was able to model the damper though with less error than the SDM,

while the ANN had the least amount of error of all of the methods studied. The computational

time for the RFM was shown to be less than both the SDM and the ANN (Yun et al., 2008)

Yun and Masri (2009) used the RFM in their proposed SHM method for complex nonlin-

ear uncertain systems. The RFM would identify the coefficients and changes were detected

with use of statistical pattern recognition techniques. Support vector classification and k-means

clustering were used in the study. The detected changes were shown with different levels of

system uncertainty. The results from classification were shown to be more robust and have

more accurate results when the orthogonal Chebyshev coefficients were used compared to the

non-orthogonal power series coefficients. The results from their study further showed that this

method can be used for detecting small effective changes, a physical meaning can be interpreted

from the detected changes and the uncertainty bounds of the detected changes can be quantified.

Wolfe et al. (2002) did a study on SHM methods for nonlinear viscous dampers. Of partic-
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ular interest was the sensitivity of the proposed approach, based on the RFM, to detect small

changes in the system characteristics of a nonlinear viscus damper with noise-polluted syn-

thetic data. Both analytical and experimental studies were conducted. Their study successfully

demonstrated that even at a 10% noise pollution, that the system coefficients could be identified

with a very low error rate, about 7% for the stiffness characteristics; however for the damping

characteristics the error was higher at around 55%. To quantify the effects of variations in the

system stiffness parameters a Monte Carlo simulation was used.
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3 ANALYTICAL STUDY: SYSTEM IDENTIFICATION FOR

MULTI-DEGREE-OF-FREEDOM OSCILLATORS

This chapter presents a number of analytical dynamic models for a better understanding of

the capabilities and limits of the MRFM. In all of these studies the system parameters were

selected and used to create the data sets. A linear multi-degree of freedom system along with

various types of nonlinear multi-degree of freedom models were used in order to ensure the

quality of the Restoring Force Method system identification technique and its ability to replicate

the restoring force with an approximated solution.

3.1 Examples Of Oscillators

MDOF models of three common oscillators are presented: (a) linear, (b) duffing, and (c)

dead-space nonlinear oscillators. Figure 3.1 shows a generic 7-DOF which can represent any

of these oscillators, where mn is the mass, Gn is the nonlinear element interposed between the

masses, and Fn is the force applied at the mass.
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(a) G7

Figure 3.1: Seven-degree-of-freedom system which can be representative of any nonlinear os-
cillators.
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The linear MDOF model can be described by Equation 3.1. This shows the general equation

for a linear multidegree of freedom system with only interstory connections.

mnz̈n +cnżn +knzn = fn(t)

mn−1z̈n−1 +cn−1żn−1 +kn−1zn−1 = cnżn +knzn+ fn−1(t)

...

m2z̈2 +c2ż2 +k2z2 = c3ż3 +k3z3+ f2(t)

m1z̈1 +c1ż1 +k1z1 = c2ż2 +k2z2+ f1(t)

(3.1)

where cn and kn represent the damping and stiffness constants at the nth degree of freedom.

The duffing MDOF model can be described by Equation 3.2. This shows the general equa-

tion for a duffing multidegree of freedom system with only interstory connections. Duffing

is

mnz̈n +cnżn +k1nzn +k3n(zn)3 =

fn(t)

mn−1z̈n−1 +cn−1żn−1 +k1n−1zn−1 +k3n−1(zn−1)
3 =

cnżn +k1nzn +k3n(zn)3+ fn−1(t)

...

m2z̈2 +c2ż2 +k12z2 +k32(z2)
3 =

c3ż3 +k13z3 +k33(z3)
3+ f2(t)

m1z̈1 +c1ż1 +k11z1 +k31(z1)
3 =

c2ż2 +k12z2 +k32(z2)
3+ f1(t)

(3.2)

where k1n and k3n are stiffness coefficients at the nth degree of freedom. At large displacements

the k3n is expected to be the dominant restoring force term because it is attached to a cubic
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exponentiation of relative displacement.

The dead-space MDOF model can be described by equation 3.3.

mnz̈n +cnżn +kn(zn − gn)[gn ≤ |zn|] =

fn(t)

mn−1z̈n−1 +cn−1żn−1 +kn−1(zn−1 − g)[gn−1 ≤ |zn−1|] =

cnżn +kn(zn − gn)[gn ≤ |zn|]+ fn−1(t)

...

m2z̈2 +c2ż2 +k2(z2 − g)[g2 ≤ |z2|] =

c3ż3 +k3(z3 − g3)[g3 ≤ |z3|]+ f2(t)

m1z̈1 +c1ż1 +k1(z1 − g)[g1 ≤ |z1|] =

c3ż2 +k2(z2 − g2)[g2 ≤ |z2|]+ f1(t)

(3.3)

where gn represents the size of the dead-space. Note the use of Iverson brackets [ ] which are

evaluated at 0 if the condition isn’t meet and at 1 if the condition is meet.

3.2 Analytical Simulation

For all the dynamic systems in this chapter they were created and analyzed in Simulink, a

tool for simulating and modeling dynamics systems. Simulink is well integrated into MATLAB

and can either take commands or give commands to MATLAB. The importance of Simulink in

this study comes from its ability to numerically solve differential equations. All of the dynamic

equations for this study are either linear or nonlinear second order differential equation. To

numerically solve these equations, a fourth-order Runge-Kutta method will be used. The fourth-

order Runge-Kutta is used because it gives accurate values for many dynamic systems. Zill and

Cullen (2006) shows the Runge-Kutta method as follows:
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yn+1 = yn + h
6
(k1 + 2k2 + 3k3 + k4)

k1 = f(xn, yn)

k2 = f(xn + 1
2
h, yn + 1

2
hk1)

k3 = f(xn + 1
2
h, yn + 1

2
hk2)

k4 = f(xn + h, yn + hk3)

y
′

= f(x, y)

(3.4)

here h is a step-size. The step-size must be chosen by the user, when picking a step-size it

is important for it to be small enough to reduce error but if too small will require too much

computation time and memory from the computer. The size is important because the Runge-

Kutta is a numerical method and with a larger step sizes the error for each step is increased this

will give flawed results. The displacement is represented by xn at step n where if n = 0 is the

initial condition for the displacement. Similarly yn is the velocity at step n and again can be

described by the initial condition if n = 0.

To create a dynamic model in Simulink Equations 3.1, 3.2 and 3.3 will be rewritten as

ordinary inhomogeneous second-order differential equations and will be solved for in terms of

acceleration z̈. An example for how this can be done for the for Equation 3.1 can be seen in

Equation 3.5
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z̈7 = − c7ż7
m7

−k7z7
m7

+ c7ż7
m7

z̈6 = − c6ż6
m6

−k6z6
m6

+ c7ż7
m6

+k7z7
m6

+f6(t)
m6

z̈5 = − c5ż5
m5

−k5z5
m5

+ c6ż6
m5

+k6z6
m5

+f5(t)
m5

z̈4 = − c4ż4
m4

−k4z4
m4

+ c5ż5
m4

+k5z5
m4

+f4(t)
m4

z̈3 = − c3ż3
m3

−k3z3
m3

+ c4ż4
m3

+k4z4
m3

+f3(t)
m3

z̈2 = − c2ż2
m2

−k2z2
m2

+ c3ż3
m2

+k3z3
m2

+f2(t)
m2

z̈1 = − c1ż1
m1

−k1z1
m1

+ c2ż2
m1

+k2z2
m1

+f1(t)
m1

(3.5)

All of the cases will be a 7 DOF system with excitation at only the first level and analysis

will only be conducted on the top 6 degrees of freedom. All cases will be analyzed knowing

fully what the restoring force is and analyzed not knowing what the restoring force is and finding

the mass normalized restoring force following the formulation from Equation 2.29.

The following simulation factors will be used:

• Time length will be 200 seconds with a time step of 0.01 seconds

• Excitation will be provided by a broadband random root-mean-square force, with a fre-

quency range from 0.1 Hz to 5 Hz and a scale of 1.5 and an offset of 0.0. . .

Individual model parameters will be disused in there respective sections. Error will be

calculated using the percent error formula in Equation 3.6

Error =
|Approximate− Exact|

Exact
100% (3.6)

The individual code used in Simulink to model all 3 of the system types can be found in the

Appendix.
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3.3 System Identification

In this section the samples cases will be analyzed using the MRFM and discussion will

follow explanting the significance of these various results.

3.3.1 Linear System

A linear case was created this will be the simplest case of all analyzed. The case will first

be analysed as if the mass is known and the restoring force will be calculated and a second case

with unknown mass and the mass normalized restoring force will be calculated. The properties

of the system can be found in Table 3.1 since the properties are known the results will be

compared and the error will be calculated what the difference is. The results can be seen in

Tables 3.2 and 3.3.

24



Table 3.1: Properties for linear system analytical simulation.

Linear System Properties
Element Mass (kg) Stiffness (kg/s2) Damping (kg/s)

7 2 0.50 0.01
6 2 0.75 0.01
5 2 1.00 0.01
4 2 1.25 0.01
3 2 1.5 0.01
2 2 1.75 0.01
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Figure 3.2: Linear phase diagrams of the restoring force vs displacement with reconstructed
restoring force at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f) G2.
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Table 3.2: Identified linear system results for known mass.

Known Mass Linear System Identification Results
Element Stiffness Identified (Error ) Damping Identified (Error )

(kg/s2) Stiffness (kg/s2) ( %) (kg/s) Damping (kg/s) ( %)
7 0.50 0.496 0.78 0.01 0.009 0.64
6 0.75 0.745 0.71 0.01 0.009 0.76
5 1.00 0.993 0.74 0.01 0.009 0.74
4 1.25 1.241 0.74 0.01 0.009 0.75
3 1.5 1.489 0.74 0.01 0.009 0.75
2 1.75 1.737 0.73 0.01 0.009 0.75

Table 3.3: Identified linear system results for unknown mass. All properties are the mass nor-
malized coefficients.

Unknown Mass Linear System Identification Results
Element Stiffness Identified (Error ) Damping Identified (Error )

(1/s2) Stiffness (1/s2) ( %) (1/s) Damping (1/s) ( %)
7 0.25 0.248 0.78 0.01 0.005 0.64
6 0.375 0.372 0.71 0.01 0.005 0.76
5 0.50 0.496 0.74 0.01 0.005 0.74
4 0.625 0.620 0.74 0.01 0.005 0.75
3 0.75 0.745 0.74 0.01 0.005 0.75
2 0.875 0.869 0.73 0.01 0.005 0.75
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Discussion And Conclusions

The results show that with either a known or unknown mass the restoring force method can

accurately describe the linear system characteristics with minimum error. In fact using either

method results in the same error as the other case for each element. So weather the mass is

known or unknown do not directly affect the results, as long as the assumption used, that the

masses are equal to each other is true.

3.3.2 Duffing System

A duffing case was created next. This will be the simplest of all nonlinear system analyzed.

The case will first be analysed as if the mass is known and the restoring force will be calculated

and a second case with unknown mass and the mass normalized restoring force will be calcu-

lated. The properties of the system can be found in Table 3.4 since the properties are known the

results will be compared and the error will be calculated what the difference is. The results can

be seen in Tables 3.5 and 3.6.
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Table 3.4: Properties for duffing system analytical simulation.

Duffing System Properties
Element Mass (kg) k1 (kg/s2) k3 (kg/mm2s2) Damping (kg/s)

7 2.00 2.00 0.75 0.01
6 2.00 1.75 1.00 0.01
5 2.00 1.50 1.25 0.01
4 2.00 1.25 1.50 0.01
3 2.00 1.00 1.75 0.01
2 2.00 0.75 2.00 0.01

Table 3.5: Identified duffing system results for known mass.

Duffing System Properties
Element True Identified Error True Identified Error

k1 k1 % k3 k3 %
(kg/s2) (kg/s2) (kg/mm2s2) (kg/mm2s2)

7 2.00 1.98 0.79 0.75 0.94 25.39
6 1.75 1.73 0.80 1.00 1.16 16.29
5 1.50 1.49 0.58 1.25 1.40 12.48
4 1.25 1.23 1.00 1.50 1.62 8.33
3 1.00 0.98 1.46 1.75 1.85 5.62
2 0.75 0.74 0.96 2.00 2.08 4.31

Table 3.6: Identified duffing system results for unknown mass. All properties are the mass
normalized coefficients.

Duffing System Properties
Element True Identified Error True Identified Error

k1 k1 % k3 k3 %
(1/s2) (1/s2) (1/mm2s2) (1/mm2s2)

7 1.00 0.99 0.79 0.375 0.47 25.39
6 0.875 0.865 0.80 0.50 0.58 16.29
5 0.75 0.745 0.58 0.625 0.70 12.48
4 0.625 0.615 1.00 0.75 0.81 8.33
3 0.50 0.49 1.46 0.875 0.925 5.62
2 0.375 0.37 0.96 1.00 1.04 4.31
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Figure 3.3: Duffing phase diagrams of the restoring force vs displacement with reconstructed
restoring force at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f) G2.
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Discussion And Conclusions

The results show that with either a known or unknown mass the restoring force method can

accurately describe the duffing system characteristics with some error. All though the values

are not that different because of there size the error is greatly exaggerated, in later chapters a

different method will be used to calculate the error. Like the linear system though it is shown

that using either method unknown or known mass, results in the same error for each element.

So weather the mass is known or unknown do not directly affect the results, as long as the

assumption used, that the masses are equal to each other is true.

3.3.3 Dead-Space Nonlinear System

The last case to analyze is the Gap space case. This is the most complicated nonlinear system

that will be analyzed in this study. Like the previous two systems it has physical damping and

stiffness but it also has an additional system property which is a physical dead-space. During

this dead-space there is no stiffness to resist movement, the dead-space can be seen in many

systems an example is a gear, this dead-space exist until the teeth hit together and can vary in

size based on the size of the gears teeth, there are additional examples of dead-spaces beyond

just gears though. Since, the only way to measure a dead-space is through plotting of the phase

diagram, and the RFM can not measure the dead-space, instead it will be shown how the RFM

can approximate the restoring force using higher order coefficients. The properties of the dead-

space space model are seen in Table 3.8.
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Table 3.7: Properties for dead-space nonlinear oscillator analytical simulation.

Dead-Space Nonlinear Oscillator Properties
Element Mass (kg) Stiffness(kg/s2) Dead-Space Size (mm) Damping (kg/s)

7 2.00 0.50 0.50 0.01
6 2.00 0.75 1.00 0.01
5 2.00 1.00 1.50 0.01
4 2.00 1.25 2.00 0.01
3 2.00 1.50 2.50 0.01
2 2.00 1.75 3.00 0.01
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Figure 3.4: Phase diagrams of the restoring force vs displacement with reconstructed restoring
force using up to the 4th order Chebyshev coefficients at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f)
G2.
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Figure 3.5: Phase diagrams of the restoring force vs displacement with reconstructed restoring
force using up to the 8th order Chebyshev coefficients at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f)
G2.
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Figure 3.6: Phase diagrams of the restoring force vs displacement with reconstructed restoring
force using up to the 12th order Chebyshev coefficients at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f)
G2.
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Table 3.8: Dead-space nonlinear oscillator NMSE for model order.

Dead-Space Nonlinear Oscillator Properties
Element Dead-Space 5th Order 7th Order 9th Order 11th Order 12th Order

Size (mm) NMSE % NMSE % NMSE % NMSE % NMSE %
7 0.50 0.80 0.24 0.10 0.04 0.04
6 1.00 0.63 0.40 0.33 0.21 0.20
5 1.50 1.63 0.92 0.28 0.23 0.19
4 2.00 3.36 0.64 0.68 0.24 0.25
3 2.50 7.54 1.57 1.67 0.58 0.54
2 3.00 6.34 5.14 1.78 1.72 1.65
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Discussion And Conclusions

The results of Figures 3.4, 3.5 and 3.6, show how using the higher order coefficients closer

fits to the sharp edges of the dead-space can be achieved. Even when the dead-space is very

large an excellent fit can found, however finding such a fit requires higher order coefficients to

be used.

3.4 Conclusions From The Analytical Study

Several conclusions can be drawn from these analytical studies. It was seen that for the

various types of nonlinearities presented either a close match to their system characteristics

were found or the restoring force their characteristics generated could be closely matched with

high orders of the two dimensional orthogonal Chebyshev polynomials. This gives confidence

in using the restoring force.
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4 EXPERIMENTAL NONLINEAR IDENTIFICATION FOR BUILDING

STRUCTURES WITH DIFFERENT FOUNDATION TYPES

4.1 Experimental Setup

4.1.1 Background

Soil structure interactions can change the dynamic characteristics of the structure (Nayeri

et al., 2008). To better understand This experimental setup, designed by researchers at Tongji

University, Shanghai, China, was meant to help understand the entire structure system, which

includes the superstructure and foundation system.

4.1.2 Equipment

To understand these SFSI, the test made use of a 1:10 scaled 12-story cast-in-place rein-

forced concrete frame building models and used three different foundations types: fixed, pile

and box. Various seismic loading conditions were used. For the fixed foundation type the

scale model building was rigidly attached to the tabletop. However, during the box and pile

foundation testing, the foundations were set into a soil container.

Soil Container

To try and imitate these SFSI seen in a real world example, selection of the soil container

was very important as the improper selection would result in significant error in the data. Since

real world conditions would have no boundary, the soil container had to be designed to have the

same deformation as an infinite dimension container. With boundaries, the waves are reflected

off the boundaries and effects the system. This is called the “box-effect”. To determine the

best way to reduce this ”box-effect”, several boundary simulation methods were used to select

the optimal soil container, the different boundaries used can be seen in Figure 4.1 (a). These
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containers and their responses can be seen in Figure 4.1 (b). By looking at the Figure it can

be seen how closely the flexible wall container matched to the boundaryless model, while the

rigid wall and hexagon containers do not match closely to the boundaryless model. Based on

this, it was decided that the container that imitated the natural conditions the best was a flexible

cylindrical container. It was also found that the error from the boundary is very small and stable

when D, the diameter of the ground plane, divided by d, the base of the structure, is greater than

or equal to 5, e.i., D/d ≥ 5. The container was finally designed to the following specifications

of a 5 mm flexible rubber membrane, with a 3000 mm diameter.

Reinforcement was added to the outside of the container, providing radial rigidity and allows

for the soil to have shear deformation in the horizontal direction. These reinforcement loops

were made of welded steel bars. A top plate, with a large diameter hole cut out, held the flexible

rubber membrane, and the two were secured using bolts. The top plate was supported by four

columns fixed to the base plate. The rubber membrane was also secured to the base plate with

bolts. The column supporting the top plate had a universal joint between the column and the

top plate, allowing the top plate to displace. Final pictures of the soil container can be seen

in Figure 4.2. Crushed rock was epoxied to the floor of the container to prevent the soil from

slipping.

Shaker Table

All tests were performed on a electro-hydraulic shaking table at the State Key Laboratory of

Tongji University and performed by the shaking table division. The shaking table was produced

by MTS. Key properties of the shaking table can be found in Table 4.1.
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Figure 4.1: (a) The container models (b) the responses used in the boundary simulation (Chen,
2001).

Table 4.1: Key Properties of the Shaking Table Used in the Experiment

Table Dimension 4.0m x 4.0m
Maximum Specimen Weight 25 ton
Vibration Direction X, Y, Z
Degrees of Freedom 6
Maximum Acceleration in X, Y and Z respectively 1.2g, 0.8g, 0.7g
Frequency of Operation 0.1 Hz 50Hz
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(a) Vertical view of soil container

 

(b) Horizontal view of soil container

Figure 4.2: Pictures of the container fully assembled. (a) A vertical view of the soil container
(b) a horizontal view of the container with translation of the Chinese characters is ‘Shaking
table tests of structural soil system” (Chen, 2001).
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4.1.3 Sample Preparation

Because of the dimensional transformation from the real world version down to a scaled

model, it was important to take into account the change to the geometric shapes, material

properties, boundary conditions and external influence. The new physical properties should

be analogues to the real world properties; however, the reliability of the data produced from

these experiments depends on weather the scaled model is indeed similar to real wold condi-

tions. Since the main purpose of this experiment was to study the structure foundation system

dynamic, the following principles of the model design were determined. The principles are

as follows: the soil, foundation and superstructure should follow the same similarity relation;

allow gravity distortion, even though it is very difficult to do so without additional weight on

the system; the dynamic loading parameters should be controlled to satisfy the requirements of

the vibration table performance parameters; and the model can not exceed capacity of the lab

equipment capacity.

Following these established principles, the tests adopted the material of the real world struc-

ture, but had to ignore the gravity deformation. To derive the physical quantities, the Buck-

ingham Pi Theorem was used. Which is a key theorem in dimensional analysis and one of the

most popular (Finnemore and Franzini, 2001). Pi theorem allows for n dimensional variables

involved in some physical phenomenon to be written in a dimensionally homogenous equation.

For the real world building a two-way single span of 12 layer reinforced cast-in-place concrete

frame was used, the soil was made of Shanghai soft soil. The soil foundation and superstructure

were all designed according to the similitude relation. The concrete used for the model had

coarse aggregate that contained larger than standard concrete coarse aggregate diameter and

the fine aggregate diameter was smaller than standard concrete fine aggregate diameter. With

the construction methods and material properties of the concrete for the model, the similarity

relation to standard concrete is close. With the adjustment to the mix design of the concrete, a
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lower modulus of elasticity is achieved. The soil water was added and was stirred appropriately

to match the characteristics of the soil to that of the real world building. Before the testing, the

models’ materials were all tested to check the performance parameters of the materials.

4.1.4 Instrumentation

It was important for the system to gather as much information as possible. For this reason it

was instrumented with; accelerometers, strain gauges, pore pressure and soil pressure gauges.

These were installed to acquire different information about the SFSI system. Because of the

choice to use the RFM for the analysis in this study, only the data from the accelerometers will

be used. The locations of the accelerometers can be seen in Figure 4.3. These accelerometers

only measured the acceleration in the X-direction. A0 is the acceleration of the shaker table,

A1 is the start of the superstructure and A7 is the top of the superstructure. Accelerometers

were placed on every other floor between A1 and A7. The accelerometers will be used in

the calculation of mass normalized restoring force, interstory relative velocity and interstory

relative displacement.
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Figure 4.3: Distribution of the accelerometers on the structure for (a) The pile foundation model
(b) The box foundation model (c) The fixed foundation model.
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4.1.5 Excitation

To properly excite the building it was important for the proper selection of seismic waves.

The seismic waves selected for the test consist of the Shanghai artificial wave record (SH), the

Kobe earthquake record (KB), and El Centro earthquake record (EL). A description of these

waves follows.

The first source was the Shanghai artificial wave. The main excitation lasts for about 50

seconds and the entire length is around 78 seconds. It is a broadband frequency, so it has higher

frequencies not seen in historical earthquake records. Also like the other seismic waves, it

had to be adjusted by Buckingham Pi theorem. The scaled time history of acceleration and its

respected FFT for the Shanghai artificial wave can be seen in figure 4.4 (a) and (b) respectively.
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Figure 4.4: Shanghai artificial wave plots for (a) The scaled acceleration time history for the
Shanghai artificial wave (b) The frequency spectrum for the scaled Shanghai artificial wave.

The next source was the Kobe earthquake record is from the Great Hanshin earthquake that

happen on January 17th, 1995, in Japan with an epicenter around 20 km from the city of Kobe.

This earthquake was recorded by the Kobe ocean observatory 0.4km from the epicenter. It

measured a magnitude of 6.8 (Person, 1997). The north-south component was used as the x-

direction input in to the test. Again for this test the time and peak acceleration had to be adjusted

by the Buckingham Pi theorem. The scaled time history of acceleration and its respected FFT

for the Kobe earthquake record can be seen in figure 4.5 (a) and (b) respectively.
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Figure 4.5: Kobe earthquake record plots for (a) The scaled acceleration time history for the
Kobe earthquake record (b) The frequency spectrum for the scaled Kobe earthquake record.

The final source was the El Centro earthquake record was recorded by the El Centro Station

on May 18th, 1940 during the El Centro earthquake that occurred in the Imperial Valley, near

the California, USA and Mexican border (Stover and Coffman, 1993). For the test the north-

south acceleration data from the El Centro earthquake was used (a classic record used in many

structural test) The main excitation lasted about 26 seconds long and the magnitude was 7.1.

For the test though the time and peak acceleration had to be adjusted by the Buckingham Pi

theorem. The scaled x-direction (N-S component) time history of acceleration for the El Centro

earthquake record and its respected FFT can be seen in figure 4.6 (a) and (b) respectively. The

El Centro 1940 earthquake record is commonly used in design applications (Chopra, 2006), this

is a large reason for choosing to use this excitation.
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Figure 4.6: El Centro plots for (a) The scaled acceleration time history for the El Centro earth-
quake record (b) The frequency spectrum for the scaled El Centro earthquake record.
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Table 4.2: Excitation level and its correspond peak acceleration

Excitation Peak acceleration
level units of (G)

1 0.093
2 0.266
3 0.399
4 0.532
5 0.665
6 0.798

4.1.6 Experimental Protocol

Although the shaker table was capable of multiple degrees of freedom, dynamic tests were

only conducted for unidirectional and bidirectional. For the unidirectional test they were con-

ducted in the horizontal X-direction. The three excitation records used were the El Centro earth-

quake record (EL), the Kobe earthquake record (KB) and the Shanghai artificial wave record

(SH). The acceleration data were categorized into seven levels indicated in the range 1 to 7.

Level 1 corresponds to a peak acceleration of 0.093 G, while level 6 corresponds to a peak ac-

celeration of 0.798 G, this can be seen in table 4.2. The tests were carried out in the year 2000,

where the first phase of testing took place in January and the second phase was from September

to December.

The accelerometers mention in 4.1.4 were used to capture the data. The sampling frequency

of the accelerometers was 250 Hz. The setup again is, one accelerometer was installed on the

shaker table and was designated A0. Additional accelerometers were installed at every other

floor; starting with accelerometer A1 installed at the base of the superstructure to A7 installed

at the top of the superstructure. Figure 4.3 shows the building models with sensor locations and

a photograph of the shaking table model.
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4.1.7 Damage Observation After Shake Table Tests

During the experiments the Chen (2001) noticed the development of cracks in the fixed

foundation model. No cracks develop until the 2nd level of excitation for all the wave records.

During the 2nd level of excitations slight vertical cracks of approximately 0.05mm in width

appeared on the end of the beams that are parallel to the direction of the excitation. These

cracks appeared along 1st to 4th floors, the columns did not crack. After the 3rd levels of

excitations more cracks develop these cracks were approximately 0.1mm in width and again

were located on the beams parallel to the direction of the excitation, these cracks were located

on the 1st through 5th floors. After the 4th level of excitations cracks of about 0.5mm in width

developed along the beams on the 3rd and 4th floor. The columns on the 1st floor started to

develop cracks and the columns on the 3rd floor started to develop localized crushed concrete.

After the 4th level of excitation the cracks continued to develop. Finally, after the 6th level

of excitation was applied, horizontal cracks in sizes from 0.2mm to 0.5mm appeared on the

outside of the columns from the 1st to 3rd floor, crushed concrete was visible on the outside of

the columns from 2nd to 3rd story columns, on the beams some of the cracks have almost run

through the beams that are parallel to the direction of excitation this is for all beams from the

1st to the 8th floor the cracks vary in width from 0.1mm to 1mm, the largest cracks are found in

between the 2nd and 5th floor. This last test left the fixed foundation test unstable.

For the pile and box foundation similar cracks developed on the superstructure but these

cracks would develop at higher excitations than the cracks in the fixed foundation. It should

also be noted that these cracks were generally smaller and less numerous but had the same

general fracture pattern. For the pile foundation superstructure, cracks do not develop until the

5th level excitation at this time fine cracks developed on the bottom of the two columns (look

into more detail currently just says northwest and northeast columns find out how they relate

to direction of excitation), beams running parallel to the direction of excitation develop cracks
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smaller than 0.02mm on floors 1 through 2. After all levels of excitation are run fine vertical

cracks appear on floors 1 through 6, these cracks are much smaller than those that appeared on

the fixed foundation. On the actual pile foundation it was noticed that cracking occurred on the

piles themselves. After testing was complete for the box foundation fine cracks had developed

on the column at the ground floor, these cracks were about 0.05mm in width, vertical cracks on

the beams parallel to the direction of excitation had also developed on floors 1 through 5, these

were smaller than 0.08mm in width.

After testing the pile foundation was dug up, cracking developed on all the piles as seen in

Figure 4.7. Even between the piles and pile cap there was cracks, these were the widest cracks

seen on the pile foundation. The cracking also varied with the depth, cracking on the piles

was more severe near the pile cap and were small or nonexistent near the tip. The piles on the

outside of the 3x3 foundation had more severe cracking than the center pile.
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(a) Cracking on the pile foundation

Figure 4.7: Cracking of the pile foundation after testing. Source: (Chen, 2001).

46



4.2 Preprocessing Of Sensor Measurements

It was important that all data sets be processed the same way to ensure uniformity. A

flowchart showing how the data was processed can be seen in Figure 4.8. To explain it, the

recorded acceleration data was first detrended from the 6th order and filtered with a low-pass

filter. The following properties for the filter were applied; the filter passband was set to 110

Hz and the stopband was set to 120 Hz, passband ripple was set to 1 dB and the stopband at-

tenuation was 60 dB. After filtering, the acceleration data was then numerically integrated with

respect to time using the MATLAB command “cumtrapz” to produce the velocity; velocity was

then filtered with the same low pass filter and settings. Velocity was then numerically integrated

in the same manner acceleration was to obtain the displacement data, which was then filter in

the same way acceleration and velocity were. A sample of the acceleration and the calculated

velocity, and displacement time history can be see in Figure 4.9 which is the acceleration, ve-

locity and displacement of the shaker table due to the Shanghai excitation level 6 on the fixed

foundation type.
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Figure 4.8: Flowchart representing how preprocessing was performed.
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Figure 4.9: Response from channel A0, the shaker table, of the fixed foundation model due
to Shanghai excitation level 6 (a) the absolute acceleration (ẍ) time history (b) the absolute
velocity (ẋ) time history (c) The absolute displacement (x) time history.
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4.2.1 Restoring Force Estimation

After the measurements have been taken from the system, it is necessary to calculate the

restoring force to use in the MDOF RFM. Since the information about the mass isn’t readily

available, instead the mass normalized restoring force must be calculated. Some assumptions

had to be made about the structure. It was determined that based on the symmetry of the

models, as can be seen in figure 4.3, that the masses associated with sensors A7 to A2 could be

considered equal. Equation 2.29 will be used to calculate the restoring force. The system will

be simplified as a chain like system with nonlinear elements interposed between 2 successive

floors. Therefore, the following convention will be used; element G7 will represent the system

characteristics of floors 11 and 12; elementG6 will represent the system characteristics of floors

9 and 10; this pattern will follow for all the floors down to element G2 representing the system

characteristics of floors 1 and 2;
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Figure 4.10: Time history of the measured restoring force for Shanghai excitation level 6 for
the fixed foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7
and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2.

Figure 4.10 demonstrates the change in amplitude of the restoring force for the different

elements. At the lower elements, closer to the excitation, the restoring force is higher, because
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it is more directly influenced by the shaking excitation. At the highest element G7 the restoring

force is lower because it is sufficiently far from the excitation. The restoring force helps to

understand where damage will occur. If the dimensions and material properties are all identical

for all elements, damage is more likely to occur where restoring force is larger. Therefore,

damage is more likely to occur in elements G2, G3 and G4 compared to the elements located

higher on the structure.
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

DISPLACEMENT (cm)

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 R

E
S

T
O

R
IN

G
 F

O
R

C
E

 (
N

/k
g)

(f) Restoring force vs displace-
ment at G2

Figure 4.11: Phase Diagrams of restoring force vs displacement for Shanghai excitation level 6
for the fixed foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors
7 and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2..

Figure 4.11 depicts the phase diagram for restoring force vs displacement. The displacement

phase diagram provides insight into the system characteristics. This phase diagram for restoring

force vs displacement most directly relates to the stiffness of the structure (Piersol and Paez,

2009). To start with, Figure 4.11 (a) is predominantly non-linear, exhibiting a very strong,
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sharp, curved nonlinear function. This is because the excitation wasn’t high enough at this level

to create a wide nonlinear shape. Figure 4.11 (f) the restoring force exhibits a strong nonlinear

property which also has a very wide shape and has smoother curves than those seen in 4.11

(a). Figure 4.11 (e) and Figure 4.11 (d) both display some of the widest nonlinear curves.

Each of these phase diagrams for Figure 4.11 depicts a characteristic called hardening. A good

description of hardening is provided by Piersol and Paez (2009), who describe it as a system

characteristic in which small increases in displacement corresponds to rapid increases in the

restoring force.
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(a) Restoring force vs velocity at
G7
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(b) Restoring force vs velocity at
G6

−20 −10 0 10 20 30

−3

−2

−1

0

1

2

3

VELOCITY (cm/s)

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 R

E
S

T
O

R
IN

G
 F

O
R

C
E

 (
N

/k
g)

(c) Restoring force vs velocity at
G5

−20 −10 0 10 20 30

−3

−2

−1

0

1

2

3

VELOCITY (cm/s)

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 R

E
S

T
O

R
IN

G
 F

O
R

C
E

 (
N

/k
g)

(d) Restoring force vs velocity at
G4
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(e) Restoring force vs velocity at
G3
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(f) Restoring force vs velocity at
G2

Figure 4.12: Phase Diagrams of restoring force vs velocity for Shanghai excitation level 6 for
the fixed foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7
and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2..

Similarly, to investigate the relationship between restoring force and damping coefficient,

the phase diagram for restoring force vs velocity can be plotted (Piersol and Paez, 2009). This is
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done in Figure 4.12. All of these restoring force velocity phase diagrams show some variation of

a circular plot. This characteristics tends to indicate that the correlation between restoring force

and velocity is weak, which would indicate that the contribution from the damping coefficients

are small.

4.3 Multidegree Of Freedom Restoring Force Method Results

With the mass normalized restoring force calculated and the velocity and displacement for

each degree of freedom calculated almost all of the data is ready to be input into the MRFM.

As mentioned earlier in Subsection 2.2, the input data must be in the form of interstory relative

displacements, and interstory relative velocities. Through the use of Equations 2.16 and 2.17

the interstory relative displacement and interstory relative velocity was calculated. Now with

the interstory relative velocities, interstory relative displacement and mass normalized restoring

force the restoring force method can be used. Please note that the since the mass normalized

restoring force is being used that, the results will be in the form of the mass normalized coeffi-

cients.

With all the data ready to be used in the MRFM only one last thing remains which is to

choose the model order in the RFM, it is important for the RFM to choose the right model

order. If the model order is too low, under-fitting occurs but using a high model order creates a

risk of over-fitting. Figure 4.13 helped to decided what model order to use. From this figure, it

was determined to use a 4th order model.
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Figure 4.13: Model order vs the NMSE for the (a) fixed foundation (b) box foundation (c) pile
foundation.

4.3.1 Error In Estimation

To ensure the validity of the results, this section will describe the measured error from

the difference between the calculated measured restoring force and the approximated restoring

force. A common measure of error between the measured mass normalized restoring force,

Gm(z, ż), and the approximated mass normalized restoring force, Ĝm
n (z̄, ¯̇z), is the Normalized

Mean Square Error (NMSE), which is a measurement between the difference of the measured

and approximated values, in this case measured and approximated restoring force. NMSE can

be calculated by Equation 4.1 (Worden, 1990)

NMSE(x̂)(%) =
100

Nσ2
x

N∑
i=1

(xi − x̂i)2 (4.1)

where xi is the measured data, in this case it will be the measured restoring force, x̂i is the esti-

mated data in this case the approximated mass normalized restoring force, N is the number of

data points which must be the same for both approximated and measured, restoring forces, and

σ2
x is the variance of the measured data. The normalized mean square can be used to evaluate the

accuracy of identification results (Yun et al., 2008). While the identification results are actually

the Chebyshev coefficients not the approximated restoring force, the Chebyshev coefficients are
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used in the creation of the approximated restoring force, in this sense the NMSE indicates how

well the coefficients can accurately approximate the restoring force. A large NMSE indicates

that there is a large difference between the measured and approximated restoring forces, which

will indicate the identified Chebyshev coefficients are poor indicators of the measured restoring

force. While a small NMSE indicates that there is a small difference between the measured

and approximated restoring force, this indicates that the identified Chebyshev coefficients can

accurately be used to recreate the measured restoring force. So the lower NMSE the better the

identification results are. The NMSE can be used to calculate the error between the two values.

These NMSE values are found in Tables 4.3, 4.4, and 4.5.
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Table 4.3: NMSE of the reconstructed restoring force for all levels of the Shanghai excitation
for the box, pile and fixed foundation models

Fixed Foundation
Mass Normalized Shanghai Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 85.69 32.07 36.38 27.05 15.54 34.62 38.56

Ĝm
3 59.18 11.95 35.67 29.3 19.41 20.21 29.29

Ĝm
4 54.54 14.16 13.55 25.93 9.54 11.08 21.47

Ĝm
5 70.12 35.67 9.29 16.76 7.38 32.26 28.58

Ĝm
6 68.66 41.72 20.24 34.97 10.17 11.8 31.26

Ĝm
7 91.09 66.93 40.01 30.55 34.66 51.39 52.44

Mean for Level 71.55 33.75 25.86 27.43 16.12 26.89 33.60
Box Foundation

Mass Normalized Shanghai Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 19.81 32.33 54.26 60.44 74.40 72.03 52.21

Ĝm
3 17.99 42.50 62.35 81.28 72.01 81.26 59.57

Ĝm
4 22.83 35.79 66.34 65.71 75.39 84.29 58.39

Ĝm
5 9.79 42.88 62.94 74.55 98.77 83.80 62.12

Ĝm
6 13.73 30.69 53.29 93.44 107.67 104.99 67.30

Ĝm
7 25.26 64.40 74.89 81.75 82.00 95.08 70.56

Mean for Level 18.24 41.43 62.35 76.2 85.04 86.91 61.69
Pile Foundation

Mass Normalized Shanghai Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 35.22 8.99 9.26 4.52 5.89 12.34 12.70

Ĝm
3 42.62 9.13 8.31 5.48 11.29 16.49 15.55

Ĝm
4 41.57 29.74 13.87 5.20 9.10 12.78 18.71

Ĝm
5 25.55 20.19 15.86 10.5 19.02 30.99 20.35

Ĝm
6 46.54 24.89 20.04 12.14 34.88 32.8 28.55

Ĝm
7 58.71 105.54 22.77 21.94 41.94 62.94 52.31

Mean for Level 41.7 33.08 15.02 9.96 20.35 28.06 24.7
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Table 4.4: NMSE of the reconstructed restoring force for all levels of the Kobe excitation for
the box, pile and fixed foundation models

Fixed Foundation
Mass Normalized Kobe Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 135.71 158.01 105.65 36.56 46.53 51.32 88.96

Ĝm
3 91.34 8.8 33.04 21.32 41.32 70.81 44.44

Ĝm
4 189.65 15.67 25.26 26.93 39.67 50.41 57.93

Ĝm
5 220.27 40.32 48.69 15.23 22.48 22.7 61.62

Ĝm
6 144.86 35.41 49.5 60.32 37.13 9.43 56.11

Ĝm
7 120.54 196.59 84.63 174.7 66.6 61.91 117.5

Mean for Level 150.4 75.8 57.8 55.84 42.29 44.43 71.09
Box Foundation

Mass Normalized Kobe Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 59.69 62.19 91.78 102.62 93.31 77.64 81.21

Ĝm
3 67.38 59.32 78.01 79.59 116.86 71.29 78.74

Ĝm
4 60.25 87.42 96.48 88.10 63.33 97.29 82.15

Ĝm
5 94.00 80.81 74.59 83.23 68.73 83.20 80.76

Ĝm
6 71.10 72.91 73.64 100.71 99.88 71.34 81.60

Ĝm
7 97.93 86.59 90.20 74.72 80.37 112.82 90.44

Mean for Level 75.06 74.87 84.12 88.16 87.08 85.6 82.48
Pile Foundation

Mass Normalized Kobe Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 162.03 58.95 64.51 47.72 15.31 32.79 63.55

Ĝm
3 159.35 27.26 6.26 12.33 12.01 14.13 38.56

Ĝm
4 48.13 12.57 40.95 33.93 7.96 8.97 25.42

Ĝm
5 145.78 73.29 63.46 41.85 29.85 18.12 62.06

Ĝm
6 92.83 119.54 111.18 32.7 31.1 36.52 70.65

Ĝm
7 109.93 162.84 72.45 44.41 45.32 64.29 83.21

Mean for Level 119.68 75.74 59.8 35.49 23.59 29.14 57.24
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Table 4.5: NMSE of the reconstructed restoring force for all levels of the El Centro excitation
for the box, pile and fixed foundation models

Fixed Foundation
Mass Normalized El Centro Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 90.11 46.45 13.4 5.19 19.58 22.88 32.94

Ĝm
3 93.69 16.35 1.75 3.99 13.77 18.73 24.71

Ĝm
4 55.08 27.28 3.43 5.78 40.26 50.84 30.45

Ĝm
5 64.6 54.71 18.29 12.93 26.89 43.7 36.85

Ĝm
6 68.73 71.52 16.79 26.62 18.74 19.99 37.07

Ĝm
7 85.55 58.33 35.42 41.8 59.01 51.15 55.21

Mean for Level 76.29 45.77 14.85 16.05 29.71 34.55 36.21
Box Foundation

Mass Normalized El Centro Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 19.85 49.47 40.33 29.31 45.79 42.29 37.84

Ĝm
3 16.13 29.03 49.85 38.52 39.99 60.95 39.08

Ĝm
4 15.96 51.66 53.63 40.2 44.41 59.13 44.17

Ĝm
5 53.32 46.87 64.75 58.78 40.49 58.98 53.87

Ĝm
6 19 26.14 60.77 37.22 40.98 54.97 39.85

Ĝm
7 98.99 52.95 57.11 56.3 59.95 73.55 66.48

Mean for Level 37.21 42.69 54.41 43.39 45.27 58.31 46.88
Pile Foundation

Mass Normalized El Centro Excitation Level Mean For
Restoring Force 1 2 3 4 5 6 Node

Ĝm
2 65.00 40.50 8.14 9.23 28.67 32.43 30.66

Ĝm
3 19.30 37.20 4.86 6.00 23.93 31.81 20.52

Ĝm
4 64.61 32.69 15.8 13.63 23.54 30.54 30.14

Ĝm
5 56.94 54.44 24.61 22.27 42.86 82.64 47.29

Ĝm
6 68.58 76.75 33.11 23.73 38.35 68.62 51.52

Ĝm
7 57.44 115.36 49.11 37.10 33.71 51.03 57.29

Mean for Level 57.44 115.36 49.11 37.10 33.71 51.03 57.29
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(f) Restoring force time history at G2

Figure 4.14: Time history of the measured restoring force, in blue, with the approximated
restoring force,in red, overlapped for Shanghai excitation level 6 for the fixed foundation model
at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7 and 8 (d) G4, floors 5 and 6
(e) G3, floors 3 and 4 (f) G2, floors 1 and 2.

It is important to make sure that the estimated mass normalized restoring force, Ĝm
n (z̄, ¯̇z),
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is close to the measured mass normalized restoring force, Gm
n (z, ż), through means of visual

comparison, to ensure similar characteristics are capture in the estimated restoring force. This

is done so in Figure 4.14. Overall, the two restoring forces match relatively closely. Most of the

major peaks overlay; however at some of the smaller peaks a difference is visible between the

two restoring forces. Because the way the NMSE works the smaller peaks have a higher weight

then the larger peaks so even if the larger peaks are closer the smaller peaks will give a higher

NMSE.
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(a) Restoring force vs displace-
ment at G2
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(b) Restoring force vs displace-
ment at G3
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(c) Restoring force vs displace-
ment at G4
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(d) Restoring force vs displace-
ment at G5
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(e) Restoring force vs displace-
ment at G6
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(f) Restoring force vs displace-
ment at G7

Figure 4.15: Phase Diagrams of restoring force vs displacement for Shanghai excitation level 6
for the fixed foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors
7 and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2..

It is also important to make sure that the estimated restoring force, Ĝm
n (z̄, ¯̇z), creates a phase

diagram similar to the measured restoring force, Gm
n (z̄, ¯̇z). This will ensure that the identified

results carry over the similar stiffness system characteristics as the measured restoring force.
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By Figure 4.14 it is visible that for the phase diagram, for displacement vs. restoring force, a

similar third order hardening is achieved in both measured and approximated restoring force.

The overlap shows that most of the characteristics are able to be accurately replicated.
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(a) Restoring force vs velocity at
G2
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(b) Restoring force vs velocity at
G3
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(c) Restoring force vs velocity at
G4
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(d) Restoring force vs velocity at
G5
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(e) Restoring force vs velocity at
G6
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(f) Restoring force vs velocity at
G7

Figure 4.16: Phase Diagrams of restoring force vs velocity for Shanghai excitation level 6 for
the fixed foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7
and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2..

Similarly, this visual comparison also applies to the velocity and restoring force, phase

diagram to ensure that the identified results carry over the same properties as the measured

restoring force. By Figure 4.16 it is visible that for the phase diagram, for velocity vs. restoring

force, a similar circular pattern showing, that restoring force and velocity are not in phase, is

achieved in both measured and approximated restoring force. The overlap shows that most of

the characteristics are able to be accurately replicated.
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4.3.2 MRFM For Fixed Foundation

Several data sets were analyzed with the MRFM. These data sets corresponded to the unidi-

rectional excitations applied to all three foundation types, with the El Centro earthquake record

(EL), the Kobe earthquake record (KB) and the Shanghai artificial wave record (SH) for exci-

tation intensity levels one through six. In total 54 data sets were processed, and each data set

was analyzed for the range from sensor A7 to A2. Each data set analyzed produced 6 tables of

Chebyshev coefficients. In total there are 324 tables of Chebyshev coefficients. One table for

each excitation type, excitation level, foundation type and elements G2 through G7.

Since the results are so numerous, only select results from the MRFM will be show. These

results will primarily be from the Shanghai excitation level 6 and will be for each foundation

type. These results are chosen because of the high level excitation and since the Shanghai

artificial wave is a broadband excitation, able to excite many frequencies.

First, analysis will be run on the fixed foundation. The fixed foundation is chosen since it

is the simplest case to analysis since, there was no foundation, there was no SFSI. The results

from the fixed foundation will establish the analytical approach for the remaining foundations.
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(a) 3D phase diagram for G7 (b) 3D phase diagram for G6 (c) 3D phase diagram for G5

(d) 3D phase diagram for G4 (e) 3D phase diagram for G3 (f) 3D phase diagram for G2

Figure 4.17: 3D phase Diagrams of the measured restoring force vs displacement vs velocity
for Shanghai excitation level 6 for the fixed foundation model at (a) G7, floors 11 and 12 (b)
G6, floors 9 and 10 (c) G5, floors 7 and 8 (d) G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2,
floors 1 and 2..

Since the MRFM is a phase domain system identification technique it is important to see

the phase surface. Figure 4.17 shows the phase surface that is to be fitted by the restoring force

method. This is the surface created by the RBFs interpolation, that the RFM will fit. The slopes

of the figure give insight into the damping and stiffness characteristics of the surface. It should

be noted that the RBFs also capture any noise in the data and fit that to the surface too. This

can explain the numerous small peaks and dips. Figure 4.17 (c) is a good example of this. The

strong slope on the displacement axis indicates the stiffness characteristics of the structure while

the relatively small slope of the velocity axis shows that damping will be a weak characteristic.

These 3d plots generally reinforce what has already been seen in Figure 4.12 and 4.11.
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(d) Identified Chebyshev coeffi-
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Figure 4.18: Identified Chebyshev coefficients for the Shanghai excitation level 6 for the fixed
foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7 and 8 (d)
G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2.

By performing the MRFM identification on the Shanghai excitation level 6 for the fixed

foundation model results in the Chebyshev coefficients seen in Figure 4.18. As mentioned

before, since this is a nonparametric method the Chebyshev coefficients don’t reveal much about

the system. However it can indicate contribution by stiffness-like coefficients and damping-like

coefficients. The columns in Figure 4.18 represent restoring force dependencies on velocity,

displacement or a couple effect of velocity and displacement. The numerical values along the

left hand side of the 3d bar chart are for displacement terms and the numerical values on the

right hand side are for velocity terms, the horizontal numerical numbers are for the actual value
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of the Chebyshev coefficient. So to understand the stiffness-like contribution, look at any of the

values Ci0, where i > 0. Any value here would represent a contribution by only a stiffness-

like term. Similarly C0j , where j > 0, would represent a value by only damping-like term.

As shown before in Figure 4.11 and Figure 4.12, it was primarily expected that the results

would largely be displacement dependent indicating stiffness-like coefficients contribute the

most. This is confirmed in the results obtained in Figure 4.18. There are some contributions by

coupled terms, seen in Figure 4.18 (a)-(f), most notably in 4.18 (a), but these are much smaller

than the displacement dependent terms. It should be noted that the Chebyshev coefficients do

not give a very good indication of the nonlinearity of the system, for this it is best to look at the

power series coefficients.
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Figure 4.19: Identified power series coefficients for the Shanghai excitation level 6 for the fixed
foundation model at (a) G7, floors 11 and 12 (b) G6, floors 9 and 10 (c) G5, floors 7 and 8 (d)
G4, floors 5 and 6 (e) G3, floors 3 and 4 (f) G2, floors 1 and 2.

The identified Chebyshev coefficients in Figure 4.18 can be converted to the power series

coefficients seen in Figure 4.19. The columns in Figure 4.19 represent restoring force damping-

like coefficients, stiffness-like coefficients or a couple effect of both. The numerical values

along the left hand side of the 3d bar chart are for stiffness-like terms and the numerical values

on the right hand side are for damping-like terms. The horizontal numerical numbers are for

the values of the power series coefficient. To summarize this the stiffness-like terms can be

found by looking at any of the values Ai0, where i > 0. Similarly A0j , where j > 0, would

represent a damping-like term. These power series coefficients will give parametric information
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about the system. By taking a look at Figure 4.19, it can be seen that for most of the restoring

force elements G, the stiffness-like coefficients are nonlinear dominant, mostly 3rd order, and

with some linear stiffness-like coefficients. Figure 4.19 (f) and (e) show the largest contribution

of linear elements. This was expected from the results seen in Figure 4.11. On observation

of Figure 4.19 (d) which represents G5, it is observed that this case does not follow the same

pattern as the other restoring force elements. Here the system is controlled by a dominant linear

element. There should be very little reason for this element alone to break the pattern. This

result from G5 will be discussed further.
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4.3.3 Term Wise Identification
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.20: Term wise phase Diagrams of restoring force vs displacement with the first order
displacement dependent Chebyshev coefficient Cm

10 only used to reconstruct the restoring force
plotted for Shanghai excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4

(d) G5 (e) G6 (f) G7.

From Figure 4.18 it was seen that the most dominant term was Cm
10. This can further be

investigated by plotting the term wise coefficients. These help to indicate the contribution from

individual terms (Yun et al., 2008). Figure 4.21 shows strong contributions from the Cm
10. This

can be seen by looking at the slope of each individual figure, a steeper slope indicates a high

contribution.

Figure 4.21 plots the Cm
30 and shows the nonlinear characteristic of the various degrees of

freedom. It can be seen that Figure 4.21 (c)-(f) depicts strong nonlinear contributions compared

to Figure 4.21 (a)-(b).
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.21: Term wise phase Diagrams of restoring force vs displacement with the third order
displacement dependent Chebyshev coefficient Cm

30 only used to reconstruct the restoring force
plotted for Shanghai excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4

(d) G5 (e) G6 (f) G7.
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.22: Term wise phase Diagrams of restoring force vs displacement with the first order
velocity-dependent Chebyshev coefficient Cm

01 only used to reconstruct the restoring force plot-
ted for Shanghai excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4 (d) G5

(e) G6 (f) G7.

Figure 4.22 shows the hysteresis in the displacement phase diagrams are contributed largely

by the Cm
01 term and are important for properly modeling the nonlinear elements. The hysteresis

can be seen decreasing from 4.22 (a) to 4.22 (e).
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.23: Term wise phase Diagrams of restoring force vs displacement with the first order
stiffness-like coefficient am10 only used to reconstruct the restoring force plotted for Shanghai
excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7.

Plotting the power series termwise coefficients helps to show contribution of the terms.

Figure 4.23 shows the contribution of the linear am10 term. It is clearly visible in Figure 4.23 (f)

that there is very little contribution and in Figure 4.23 (d) the linear term is very high and this is

peculiar. It is higher than any other term; more than likely this is error.
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(a) Restoring force vs displace-
ment at G7

−3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

DISPLACEMENT (cm)

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 R

E
S

T
O

R
IN

G
 F

O
R

C
E

 (
N

/k
g)

(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.24: Term wise phase Diagrams of restoring force vs displacement with the third order
stiffness-like coefficient am30 only used to reconstruct the restoring force plotted for Shanghai
excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7.

Figure 4.24 shows the contribution of the nonlinear am30 term. It is clearly visible in Figure

4.23 (d) that there is very little contribution even though the phase diagram shows a very cubic

function again this is some type of error. The rest of the plots in Figure 4.23 show very strong

cubic contributions.
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.25: Term wise phase Diagrams of restoring force vs displacement with the first order
damping-like coefficient am01 only used to reconstruct the restoring force plotted for Shanghai
excitation level 6 for the fixed foundation model at (a) G2 (b) G3 (c) G4 (d) G5 (e) G6 (f) G7.

Figure 4.25 shows the hysteresis in the displacement phase diagrams are contributed largely

by the am01 term. The hysteresis can be seen decreasing from 4.25 (a) to 4.25 (e). The expected

damping energy should decrease as these hysteresis decrease.
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2

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

G
6

G
2

(d) Ĝm
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4

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

G
6

G
4

(k) Ĝm
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7 vs Ĝm
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Figure 4.26: Reconstructed mass normalized restoring forces plotted against other reconstructed
mass normalized restoring forces for Shanghai excitation level 6 for the fixed foundation model
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7 vs Ĝm
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Figure 4.26 shows several important characteristics of the system. The shape of the image

can reveal several key relationships: decrease in amplitude during propagation, phase delay,

possible damage to the structure. The decrease in amplitude can be imagined as a somewhat

75



linear relationship on the Figures. The slope is roughly the ratio of energy transferred from one

non-linear element to the next element. Figure 4.26 (a) - (e) will be an important comparison

for understanding the way the energy decreased in amplitude during propagation. Figure 4.26

(a) and (b) show very similar slopes to each other. This indicates that the force prorogated from

Ĝm
2 (z̄, ¯̇z) to Ĝm

3 (z̄, ¯̇z) and Ĝm
4 (z̄, ¯̇z) is nearly equal. Next, is Figure 4.26 (c) and (d) these two

both contain smaller slopes than the previous figures indicating that a decrease in the energy

has occurred. The rest of the figures can be interpreted similarly.
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Energy Dissipation
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(a) Restoring force vs displace-
ment at G7
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(b) Restoring force vs displace-
ment at G6
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(c) Restoring force vs displace-
ment at G5
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(d) Restoring force vs displace-
ment at G4
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(e) Restoring force vs displace-
ment at G3
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(f) Restoring force vs displace-
ment at G2

Figure 4.27: Term wise phase diagrams of restoring force vs displacement with the first order
velocity dependent, first order displacement dependent, third order displacement dependent,
Chebyshev coefficient used to reconstruct the restoring force plotted for Shanghai excitation
level 6 for the fixed foundation model at (a) G7 (b) G6 (c) G5 (d) G4 (e) G3 (f) G2.

Combining the three dominant term wise Chebyshev coefficients together and plotting them

against the displacement helps to reveal the energy dissipated by the system, Figure 4.27 shows

this plotted. The dissipated energy can be calculated by finding the area inscribed by the fig-

ure. The calculated values from Figure 4.27 are shown fully in Figure 4.28 as a plot of the

calculated dissipated energy for each element vs the peak acceleration. It can be seen that the

lower elements dissipate more energy than the higher elements and that the amount dissipated

decreases at each successive element seems to decrease for Figure 4.27 (b) and (c), which is the

box and pile foundation. However, in the fixed foundation seen in Figure 4.27 (a) the element
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G3, representing the 3rd and 4th floors, dissipate more energy then the element below it. This

is interesting and will be explained by damage latter on in Subsection 4.3.5.

One feature that clearly creates a difference between the 3 excitations is the amount of en-

ergy dissipated by same foundations in each excitation type. This is why the Shanghai artificial

wave record was selected as a representative case for the dissipated energy plots. While not as

clear as the results from the Shanghai artificial wave the results from Kobe and El Centro wave

records for the dissipated energy plotted in Figures 4.29 and 4.30 show some similar trends as

Figure 4.27. As before for the fixed foundation in Figures 4.29 (a) is seen dissipating increasing

amounts of energy at every level of excitation while the fixed foundation in Figure 4.30 (a) is

seen dissipating increasing amount of energy only for the element G2. For the box foundation

in Figure 4.29 (b) a steady rise in the dissipated energy can be seen only at the lowest elements

G2 and G3 the rest of the elements remain nearly constant. Figure 4.30 (b) is particularly inter-

esting because it shows a sharp rise in the dissipated energy only to return to the pre-peak levels,

this may be to some shifting in the soil container causing greater interaction with the foundation

where another shift may cause the interaction to return to normal. The pile foundation shows

interesting trends also in Figure 4.29 (c) shows a sharp drop in dissipated energy after which

the dissipated energy steadily climbs, Figure 4.30 (c) also shows a drop in dissipated energy

for several elements but an increase in the lower elements until the lowest elements suffers a

similar drop in dissipated energy.

78



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

D
IS

S
IP

A
T

E
D

 E
N

E
R

G
Y

 (
cm

−
kN

/k
g)

PEAK ACCSHERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(a) Fixed foundation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
IS

S
IP

A
T

E
D

 E
N

E
R

G
Y

 (
cm

−
kN

/k
g)

PEAK ACCSHERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(b) Box foundation
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(c) Pile foundation

Figure 4.28: Plot of dissipated energy vs peak acceleration for the Shanghai artificial wave
record (a) Fixed foundation (b) Box foundation (c) Pile foundation.
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(a) Fixed foundation
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(b) Box foundation
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(c) Pile foundation

Figure 4.29: Plot of dissipated energy vs peak acceleration for the Kobe wave record (a) Fixed
foundation (b) Box foundation (c) Pile foundation.
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(a) Fixed foundation
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(b) Box foundation
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(c) Pile foundation

Figure 4.30: Plot of dissipated energy vs peak acceleration for the El Centro wave record (a)
Fixed foundation (b) Box foundation (c) Pile foundation.
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4.3.4 Effects Of Foundation

Since the original study was to help understand the different foundations and there effects

this subsection will pay homage to that study and focus on those effects and do some analysis.

The most obvious effect of the foundation and soil system is the reduction in energy being sent

into the superstructure. These effects can be seen for the Shanghai excitation levels in Figure

4.28. Although the Shanghai excitation will be used predominantly, because of its broadband

nature, it is still advised to look at Figures 4.29 and 4.30. The fixed foundation would represent

of a system in which no energy is lost to the soil system, so most of the comparison will be made

between the box foundation and the pile foundation since the soil system is similar in both. It

is fairly obvious the effects of the different foundations and the energy. From Figure 4.28 (a),

(b) and (c), representing the fixed foundation, box foundation and pile foundation, respectively.

It can be discerned that the superstructure for the box foundation dissipates less energy than

superstructure for the pile foundation suggesting, that pile foundation transfers more energy

into its superstructure compared to the box foundation.
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Figure 4.31: Mode shapes for Shanghai excitation level 1 for the fixed foundation model (a) 1st
(b) 2nd (c) 3rd (d) 4th (e) 5th (f) 6th.
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Figure 4.32: Mode shapes for Shanghai excitation level 3 for the box foundation model (a) 1st
(b) 2nd (c) 3rd (d) 4th (e) 5th (f) 6th.
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Figure 4.33: Mode shapes for Shanghai excitation level 6 for the pile foundation model (a) 1st
(b) 2nd (c) 3rd (d) 4th (e) 5th (f) 6th.
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Effects Of Foundation On Mode Shape

Another effect of the foundation can be seen by looking into the mode shapes. For the

visual comparison of the mode shapes consult Figures 4.31, 4.32 and 4.33. Keep in mind the

relative displacement along the x-axis is for the relative displacement for each mode shape.

This provides a connivent measure to compare the mode shapes with. While visually very

similar modes are achieved for the pile and box foundation, the fixed foundation is visually

much different that the other foundation types. Often times, the pile and box foundations have

very large sloping curves while the fixed foundation has much sharp bends in the structure.
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4.3.5 Effects Of Damage

The effects of damage to the structure can be seen in a few different ways. To start with

on the foundation itself. By examining Figure 4.28 (b), which shows dissipated energy at peak

acceleration for the pile foundation. The pile foundation shows higher amounts of dissipated

energy and finally a sharp decrease at all elements for the highest level of excitation correspond-

ing to a peak acceleration of 0.798 G. This sharp decrease may be explained by a lower transfer

of energy into the system because of a broken pile system. Which, the experimental observation

noted that there was sever cracking along the pile foundation after the test. With less energy in

the system there needs to be less damping. The fixed foundation was not damaged because the

foundation itself was part of the shaker table. For the box foundation no damage was reported

to the foundation. This explains both of these foundations in continual dissipation in energy.

The effects of damage on the superstructure can be seen through a plot of the power series

vs the peak acceleration. This will be crossexamined with the mode shapes in Figures 4.31,

4.32 and 4.33. The mode shapes can show were damage is likely to occur and the decrease in

the power series coefficient at that particular location will help to confirm this. Ultimately, the

results are to be compared against the report experimental observation on the cracking and see

if it confirms some of the results from the mode shape and power series coefficients.

While plotting the power series coefficients it was decided to remove the first two levels of

excitation because it was believed that the structure wasn’t fully excited then and these would

yield in accurate results. First, the mass normalized power series coefficients am10, am30, and am01,

which were chosen because of their dominant nature in the recreation of the estimated mass

normalized restoring force, these are plotted against the peak acceleration. Damage can be

detected by a decrease in the stiffness at higher levels of excitation. For this purpose the plots

of am10 are am30 important, for the Shanghai excitation level these plots appear in Figure 4.34 (a),
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(b) for the fixed foundation, Figure 4.34 (d), (e) for the box foundation, Figure 4.34 (g), (h) for

the pile foundation.

Starting with the fixed foundation, by looking at the fixed foundation am10 in Figure 4.34 (a),

a steady decline at higher increments of peak acceleration can be seen, this indicates damage has

occurred on the structure and changed the stiffness. The cracking mentioned in Section 4.1.7

confirms cracking along the superstructure. Another expected results is that there should be an

increase in damping on the structure, this can be seen if compared with Figure 4.34 (c), although

there is some instances of an increase in damping it is difficult to make a significant case for most

of the elements, since the damping coefficients are small and any changes are themselves small,

Instead focusing on elements, G2 representing floors 1 and 2, and and G3 representing floors

3 and 4 respectively. Observing these coefficients is an increase in the damping this could be

explained by increase in cracks on the columns in that area. The cracks would increase friction

which in turns results in higher damping values. This is mentioned before in the Section 4.1.7

that cracking has occurred along columns running from floors 1 to 4. For the box foundation

there was not noticeable damage to the structure the plots in Figures 4.34 (d) and (e) do not

show much in way of change to the stiffness of the structure and Figures 4.34 (f) shows a

decrease in the damping coefficients. Finally the pile structure, as can be seen in Figure 4.34

(g) a decrease in the first order linear stiffness is visible however there is an increase in the

nonlinear third order stiffness in 4.34 (h), but upon closer observation it can be seen that this is

because the third order had very week contributions to begin with so there truly isn’t much of

a change just more contribution probably from the higher excitation. The damping coefficients

associated with the pile foundation do not change much in Figure 4.34 (i), the cracking in the

pile foundation was less sever than that of the Fixed foundation so it is of no surprise that these

coefficients have not changed much.
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(a) am10 vs peak acceleration
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(b) am30 vs peak acceleration
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(c) am01 vs peak acceleration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

 S
E

R
IE

S
 C

O
E

F
F

IC
IE

N
T

PEAK ACCELERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(d) am10 vs peak acceleration
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(e) am30 vs peak acceleration
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(f) am01 vs peak acceleration
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(g) am10 vs peak acceleration
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(h) am30 vs peak acceleration
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(i) am01 vs peak acceleration

Figure 4.34: Plot of mass normalized power series coefficients vs. peak acceleration for the
Shanghai artificial wave record with the following foundation type and coefficient (a) Fixed
foundation am10 (b) Fixed foundation am30 (c) Fixed foundation am01 (d) Box foundation am10 (e)
Box foundation am30 (f) Box foundation am01 (g) Pile foundation am10 (h) Pile foundation am30 (i)
Pile foundation am01.
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(a) am10 vs peak acceleration
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(b) am30 vs peak acceleration
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(c) am01 vs peak acceleration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

2

2.5

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

 S
E

R
IE

S
 C

O
E

F
F

IC
IE

N
T

PEAK ACCELERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(d) am10 vs peak acceleration
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(e) am30 vs peak acceleration
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(f) am01 vs peak acceleration
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(g) am10 vs peak acceleration
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(h) am30 vs peak acceleration
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(i) am01 vs peak acceleration

Figure 4.35: Plot of mass normalized power series coefficients vs. peak acceleration for the
Kobe wave record with the following foundation type and coefficient (a) Fixed foundation am10
(b) Fixed foundation am30 (c) Fixed foundation am01 (d) Box foundation am10 (e) Box foundation
am30 (f) Box foundation am01 (g) Pile foundation am10 (h) Pile foundation am30 (i) Pile foundation
am01.
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(a) am10 vs peak acceleration
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(b) am30 vs peak acceleration
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(c) am01 vs peak acceleration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

 S
E

R
IE

S
 C

O
E

F
F

IC
IE

N
T

PEAK ACCELERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(d) am10 vs peak acceleration
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(e) am30 vs peak acceleration
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(f) am01 vs peak acceleration
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(g) am10 vs peak acceleration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−20

−15

−10

−5

0

5

10

15

20

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

 S
E

R
IE

S
 C

O
E

F
F

IC
IE

N
T

PEAK ACCELERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7

(h) am30 vs peak acceleration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
A

S
S

 N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

 S
E

R
IE

S
 C

O
E

F
F

IC
IE

N
T

PEAK ACCELERATION (G)

 

 

G
2

G
3

G
4

G
5

G
6

G
7
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Figure 4.36: Plot of mass normalized power series coefficients vs. peak acceleration for the El
Centro wave record with the following foundation type and coefficient (a) Fixed foundation am10
(b) Fixed foundation am30 (c) Fixed foundation am01 (d) Box foundation am10 (e) Box foundation
am30 (f) Box foundation am01 (g) Pile foundation am10 (h) Pile foundation am30 (i) Pile foundation
am01.
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5 EXPERIMENTAL NONLINEAR IDENTIFICATION FOR SMALL SCALE WIND

TURBINE BLADE

With concerns for global warming alternative energy sources are becoming extremely popu-

lar. One of the popular alternative energy sources is wind turbines. As demand for wind energy

grows so does the size of the wind turbines, and the remoteness of the locations. Both of these

changes in the wind industry has encouraged research into materials better suited for higher

strength, to deal with the increased size and materials that will have lower maintained, for those

blades in remote locations. Additionally, the size and remoteness of wind turbines has increased

the importance for monitoring system in wind turbines (Yang et al., 2010). This study will focus

on two things, the proposal of using the MDOF RFM for structural monitoring of the blades

and ways that the results can be used for comparing material properties of the basalt fiber blade

to other blades.

5.1 Background

On the material side, basalt fiber is becoming increasingly more common in many different

civil engineering applications (Quagliarini et al., 2012). This is because basalt fiber is thought

to be an alternative to both carbon fiber and glass fiber, because it offers competitive strength

compared to glass fiber (Deak and Czigany, 2009) and considerable cost savings over carbon

fiber (Rosa et al., 2011). In addition with the goal of wind turbines being a ”green“ energy

basalt fiber offers an environmentally friendly material (Deak and Czigany, 2009). A series

of experiments were conducted to investigate the behavior of basalt fiber wind turbine blades.

Although most wind turbine blades are composed of glass fiber or carbon fiber, basalt fiber was

proposed in this study as an alternative that would be cost-effective and comparative in strength

to glass fiber. Future studies were planned to include a comparison between wind turbine blades

composed of basalt fiber, glass fiber, and carbon fiber.
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5.2 Literature Review: Wind Turbines

5.2.1 Introduction

(a) (b)

Figure 5.1: (a)An offshore wind turbine Source: (Hollman, 2006) (b) a land-based wind turbine
Source: (Sherman, 2008)

Wind turbines can be either offshore or land-based. The location of the turbine can affect

cost, noise, aesthetics, and the wind potential. Land-based wind turbines can be located in a

variety of different terrains, e.g., mountains and plains. There are three subtypes of offshore

turbines, i.e., shallow water (30m or less), transitional water (30m to 60m), and deep water

(greater than 60m). This section will analyze the advantages and disadvantages of each.

Land-based wind turbines have a distinct advantage of being lower cost. The higher cost

associated with offshore wind turbines is attributed to the higher cost for foundations, instal-

lations, operation, and maintenance (Musial et al., 2006). Offshore turbines do however have

greater future size capacity since larger turbines are easier to transport on the water. Addi-

tionally cost curves are lower for offshore turbines compared to onshore turbines (Morgan and

Jamieson, 2001).

Floating turbines are a very attractive option. The turbines can be located in deep water far

from shore. Compared to land-based and shallow water wind turbines they have the potential
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to access much higher wind speeds, lower environmental impacts on wildlife, and have little to

no visual impact (Clarke et al., 2009).

Table 5.1: Comparison of Advantages and Disadvantages of Offshore and Land-based Wind
Turbines.

Turbine Type Advantage Disadvantage
Land-based - Lower Cost - Noise emissions more likely

Wind Turbines - Easier operation to disturb populace
- Easier maintenance - Lower wind potential

Offshore - Noise emissions unlikely - Higher Cost
Wind Turbine to disturb populace - Maintenance is more difficult

- Higher wind potential - Operation is more expensive

5.2.2 Floating Wind Turbine Structural Design

Floating wind turbines require a floating structure that can support the weight of the turbine

and restrain pitch, roll, and heave motions within acceptable limits. For a wind turbine, large

wind-driven overturning moments dominate the design (Musial et al., 2006). Wave-loading also

affects the design considerations.

Weight reduction is critical in the structural design of floating wind turbines. The lower

the weight the less buoyancy structure is required. The heaviest component of the structure is

the tower. Lightweight materials may help to reduce tower weight. Lightweight aggregates in

concrete could help reduce concrete options 40% below standard mixtures. There is also a trend

towards direct drive generators, which are smaller and more reliable than modular gear driven

generators (Butterfield et al., 2005).

5.2.3 Floating Wind Turbine Subtypes

Within floating turbines there are several subtypes. Three of the main proposed subtypes

can be seen in Figure 5.2. From left to right those are ballast stabilized (spur-buoy), Mooring

Line stabilized, and buoyancy stabilized (barge).
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The ballast stabilized uses a catenary mooring systems to keep it in place. This is advanta-

geous because of the low cost for the anchors. To prevent overturning, significant ballast must

be added below the center of buoyancy. Because of their nature, catenary mooring systems sub-

ject the wind turbine to larger base motion in all directions because they lack vertical tension.

This could increase additional cost for the turbine (Musial et al., 2003).

Mooring line stabilized platforms use a submerged structure through the use of vertical

moored anchors. This system provides the highest stability level and may be the lowest near

term risk. A tension leg platform uses multiple legs spread out on either side of the base.

The largest portion of the structure is kept submerged and well below the water line to reduce

wave loading. Additionally, reserve buoyancy is kept in the base to prevent the tendons from

losing tension even in extreme conditions. This system requires tendons and anchors which can

withstand greater force than what is seen in the ballast stabilized design. Therefore there is a

greater cost associated with the anchors for Mooring line stabilized platforms (Musial et al.,

2003).

The buoyancy stabilized system uses distributed buoyancy. It takes advantage of the weighted

water plane area for a righting moment. Additionally it also uses a catenary mooring system to

keep it in place (Butterfield et al., 2005).
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Figure 5.2: Three of the subtypes of floating wind turbines Source: (U.S. National Renewable
Energy Laboratory, 2011)

5.2.4 Wind Potential

Wind speed increases as the distance out to sea increases. This increase in wind speed can

be seen in Figure 5.3. Not only does the wind speed increase, but the variation of direction

decreases. A floating wind turbine far out to sea ensures that it receives constant strong winds.

Stronger winds and more constant supplies will increase production and will help to offset

the higher cost of floating wind turbines.
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Figure 5.3: Map of Potential Wind Energy In The United States Source: U.S. National Renew-
able Energy Laboratory (2007)

5.2.5 Hywind

The worlds first full scale floating wind turbine was launched in 2009. This turbine was the

Hywind pilot, a concept developed by Statoil a Norwegian oil and gas company. The project

cost over USD$71 million. This project was not designed to create a revenue but instead will

help acquire knowledge that will benefit future generations of floating wind turbines. The Hy-

wind pilot is a 2.3MW turbine with a 100 meter draft hull, 82.4 meter rotor diameter and a 65m

turbine height (Sprey, 2009).

While a floating wind turbine has many advantages over both shallow water and land-based

turbines, it is, however, generally unused because of the high cost. The floating wind turbines

can capture energy from higher value wind sites, and there are fewer concerns about acoustic
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emissions, environmental impacts, and aesthetic values. Hopefully, with the data gathered from

Hywind, floating wind turbines will eventually become competitive.

5.3 Experimental Study

The experimental study was a preliminary study designed to collect several data sets and use

different system identification techniques to see how they perform on the wind turbine blade.

5.3.1 Sample Preparation

This study was a cooperative, interdisciplinary study with members of the UCF MMAE

department: Dr. Gou and his student Fei Liang. They were responsible for the design and

construction of the wind turbine blade and created it through a pre-impregnated process. The

blade tested in this experiment was composed of basalt fiber with a PVC foam core and a

polyester matrix. The density of the blade was found to be .56 g/cm3. This was determined

through the measurement of the mass and the volume.

Figure 5.4: Photograph of the wind turbine basalt fiber blade.
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5.3.2 Instrumentation

The blade was mounted with three accelerometers to acquire dynamic information about

movement of the blade. The locations of each accelerometer was selected based on the thick-

ness, and width of the blade at the location the sensor was placed. Another factor used in the

selection of sensor location was distance from adjacent sensors. For this study data was col-

lected from sensors A1 to A3 as indicated in Figure 5.5 (a). A3 is the tip of the blade while A1

is closest to the base of the blade. During the study, recordings were taken in the X-direction.

In Figure 5.5 (b) is a photo to show how the blade was instrumented.
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Figure 5.5: Distribution of the accelerometers on the wind turbine blade with (a) An autocad
drawing showing the direction of motion and the direction the force is applied in (b) A photo-
graph with the blade fixed and instrumented.
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5.3.3 Test Protocol

Test were only conducted in the X-direction indicated by Figure 5.5 (a). The X-direction

was of interest because the blade would naturally be excited in this direction by wind during

normal operation. The testing took place during June 2010.

The blade was fixed at its base through use of 2 large C clamps to a large metal table. The

fixing of the blade was to imitate natural conditions where the blade would be fixed to the rotor.

The blade was then excited through the use of a force measuring impact hammer. The hammer

struck the blade directly below sensor A1. The excitation provided was a very quick impulse

force, the results can be seen in Figure 5.6. The resulting recorded acceleration can be seen in

Figure 5.7, please note this is not the raw data but rather the processed data.
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Figure 5.6: Plots of (a) The time history of the force applied to the turbine blade at A1 (b) The
frequency spectrum of the applied force.

5.4 Preprocessing

Much like in Section 4.2 the data collected from this experimental study needed to processed

the same method was used with a few exceptions. The recorded acceleration data was first

detrended from the 15th order and filtered with a band-pass filter. The following properties

for the filter were applied; the high filter passband was set to 1 Hz and the stopband was set

to 0 Hz, passband ripple was set to 1 dB and the stopband attenuation was 60 dB; the high
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filter passband was set to 350 Hz and the stopband was set to 360 Hz, passband ripple was

set to 1 dB and the stopband attenuation was 60 dB. After filtering, the acceleration data was

then numerically integrated with respect to time using the MATLAB command “cumtrapz”

to produce the velocity; velocity was then filtered with the same low pass filter and settings.

Velocity was then numerically integrated in the same manner acceleration was to obtain the

displacement data, which was then filter in the same way acceleration and velocity were. A

sample of the acceleration and the calculated velocity, and displacement time history can be see

in Figure 5.7, 5.8, and 5.9, which is the acceleration, velocity and displacement of the blade at

all three points due to the excitation seen in Figure 5.6 (a) acting at A1.
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Figure 5.7: Time histories of the acceleration of the turbine blade at (a) A3 (b) A2 (c) A1.

98



0 0.5 1 1.5 2 2.5
−1000

0

1000

V
E

L 
(m

m
/s

)

TIME (s)

(a) Velocity at A3

0 0.5 1 1.5 2 2.5
−1000

0

1000

V
E

L 
(m

m
/s

)

TIME (s)

(b) Velocity at A2

0 0.5 1 1.5 2 2.5
−1000

0

1000

V
E

L 
(m

m
/s

)

TIME (s)

(c) Velocity at A1

Figure 5.8: Time histories of the relative velocity of the turbine blade at (a) A1 (b) A2 (c) A3.
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Figure 5.9: Time histories of the relative displacement of the turbine blade at (a) A1 (b) A2 (c)
A3.

5.4.1 Restoring Force Estimation

After the measurements have been taken from the system, the restoring force was ready

to be calculated. The restoring force will be calculated, unlike in Chapter 4 where the mass
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normalized restoring force was calculated. This is because, the mass for each piece was easily

calculated using the density and the volume and it could not be assumed that each mass was

approximately equal.

To calculate the mass, the blade was treated as a lumped mass system. The system will

represented as a chain-like system with nonlinear elements interposed between sensors A3-A2,

A2-A1 and A1 the base, these will be represented byG3,G2 andG1, respectively. The midpoint

between two adjacent sensors was considered the breaking point between the masses. The mass

for sensor 3 was the volume, from tip to the midpoint between sensor 3 and 2, multiplied by the

density, while the mass for sensor 2 was considered the volume from midpoint between sensor

3 and 2 to the midpoint between sensor 2 and 1. The volume of the blades was measured by

using a water overflow displacement test. The blade was submerged until the first midpoint

was reached. The water that was expelled during the overflow was weighed. The overflow

vessel was then refilled; the blade was then submerged again until the second midpoint was

reached. This process was repeated until volume was found over the entire blade. Since this

method would find volume from tip to every midpoint it was necessary to find from midpoint to

midpoint this can be done by the, subtraction of the previous volumes. With the volumes known

one must simply multiply by the density to find the mass.

Now with mass and acceleration measured the restoring force can be calculated following

Equation 2.21. This yields the results seen in Figure 5.10.
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Figure 5.10: Time history of the measured restoring force for the wind turbine blade at (a) G1

(b) G2 (c) G3.
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Figure 5.11: Phase Diagrams of restoring force vs displacement for wind turbine blade at (a)
G1 (b) G2 (c) G3.

As mentioned before the phase diagram displays characteristics about the system. In Figure

5.11 is the phase diagram for restoring force vs displacement by looking at it can be interpreted

that there is a strong contribution from stiffness and that this is nonlinear. These Figures show

hardening in there phase diagram.
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Figure 5.12: Phase Diagrams of restoring force vs velocity for wind turbine blade at (a) G1 (b)
G2 (c) G3.

Similarly to investigate the relationship between restoring force and damping coefficient the

phase diagram for restoring force vs velocity is plotted in Figure 5.12. It can mostly be seen

that all of these restoring force velocity phase diagrams show a circular plot, this tends to show

that the correlation between restoring force and velocity is weak and that the contribution from

the damping coefficients is small.

5.5 Multidegree Of Freedom Restoring Force Method Results

With the restoring force calculated and the velocity and displacement for each degree of

freedom calculated almost all of the data is ready to be input into the MDOF RFM. As men-

tioned earlier in Subsection 2.2, the input data must be in the form of interstory relative dis-

placements, and interstory relative velocities. Through the use of Equations 2.16 and 2.17 the

interstory relative displacement and interstory relative velocity was calculated. Now with the

interstory relative velocities, interstory relative displacement and restoring force, the restoring

force method can be used after selecting an appropriate model order.

To help select the model order Figure 5.13. Based on this figure a 6th order model was used.
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Figure 5.13: Model order vs the NMSE for the wind turbine blade.

5.5.1 Error In Estimation

NMSE as described before in Section 4.3.1, was again used to calculate the goodness of fit

of the results of which can be seen in Table 5.2. Overall the results show that some parts of the

wind turbine are fitted much better than the rest and that noticeably G3, which is the element

at the tip, shows the best fit. As explained before this is to be expected based on the way the

MDFO RFM works.

Table 5.2: NMSE for the wind turbine blade for the three elements of the wind turbine blade.

Wind Turbine Blade NMSE
Element 1 2 3
NMSE 19.82 56.75 31.26
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Figure 5.14: Time history of the measured restoring force, in blue, with the approximated
restoring force,in red, overlapped for the wind turbine blade at (a) G1 (b) G2 (c) G3.

Again a visual fitting is important for the understanding of the error in the analysis. Figure

5.14 is plotted to ensure that the estimated restoring force, Ĝn(z̄, ¯̇z), is close to the measured

restoring force,Gn(z, ż), through means of visual comparison. Overall, the two restoring forces

match relatively closely. Most of the major peaks overlay; however, some of the peaks are over

estimated in Figure 5.14 (c).
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Figure 5.15: Phase Diagrams of restoring force vs displacement for wind turbine blade at (a)
G1 (b) G2 (c) G3.

It is also important to make sure that the estimated restoring force, Ĝm
n (z̄, ¯̇z), creates a

displacement phase diagram similar to the measured restoring force, Gm
n (z̄, ¯̇z). This will ensure

that the identified results carry over the similar stiffness system characteristics as the measured

restoring force. By Figure 5.15 it is visible that for the phase diagram, for displacement vs.

restoring force, a similar third order hardening is achieved in both measured and approximated

restoring force. The overlap shows that most of the characteristics related to the stiffness are

able to be accurately replicated except for the hysteresis.
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Figure 5.16: Phase Diagrams of the measured restoring force and approximated restoring force
vs displacement for wind turbine blade at (a) G1 (b) G2 (c) G3.

Similarly, this visual comparison also applies to the velocity and restoring force, phase
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diagram to ensure that the identified results carry over the same properties related to as the

measured restoring force. By Figure 5.16 it is visible that for the phase diagram, for velocity

vs. restoring force, a similar circular pattern. However, it is not an exact fit and in some case the

approximated restoring force appears to be smaller than the measured restoring force as such in

Figure 5.16 (b) this can probably help to explain that missing hysteresis.

5.6 MRFM For Wind Turbine Blade

(a) 3D phase diagram for G3 (b) 3D phase diagram for G2 (c) 3D phase diagram for G1

Figure 5.17: 3D phase Diagrams of restoring force vs normalized displacement vs normalized
velocity for wind turbine blade at (a) G3 (b) G2 (c) G1.

Now the the phase surface is plotted in Figure 5.17 shows the phase surface that is to be

fitted by the restoring force method. Again it is important to plot the phase surface because

the MDOF RFM is a phase domain technique. The surface will vary by what interpolation

and extrapolation technique is used. This is the surface created by the RBFs interpolation and

extrapolation, that the RFM will fit. The slopes of the figure give insight into the damping and

stiffness characteristics of the surface. It should be noted that the RBFs also capture any noise

in the data and fit that to the surface too. This can explain the numerous small peaks and dips.

While Figure 5.17 (a) and (b) both demonstrate a very well developed slope although highly

noisy, Figure 5.17 (c) shows a poorly developed slope this is probably due to poor excitation to

the system.
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Figure 5.18: Identified Chebyshev coefficients for the wind turbine blade at (a) G3, floors 11
and 12 (b) G2, floors 9 and 10 (c) G1, floors 7 and 8

The first result from the MDOF RFM is the Chebyshev coefficients, these are seen in Figure

5.18. As explain in the previous Chapters 2 and 4, these coefficients are nonparametric but

can be used to indicate contribution by stiffness-like coefficients and damping-like coefficients.

The columns in Figure 5.18 represent restoring force dependencies on velocity, displacement

or a couple effect of velocity and displacement. The numerical values along the left hand

side of the 3d bar chart are for displacement terms and the numerical values on the right hand

side are for velocity terms, the horizontal numerical numbers are for the actual value of the

Chebyshev coefficient. So to understand the stiffness-like contribution, look at any of the values

Ci0, where i > 0. Any value here would represent a contribution by only a stiffness-like term.

SimilarlyC0j , where j > 0, would represent a value by only damping-like term. From the phase

diagrams, displacement and velocity in Figures 5.11 and 5.12, it was expected for a largely

displacement dependent stiffness-like coefficients and very small velocity dependent damping-

like coefficients. Interesting though is that while there was dominant stiffness-like terms in all

these Figures 5.18 (a), (b) and (c), there were also relatively strong contributions from coupled

terms meaning both a stiffness-like and damping-like term contribution. These terms are more

dominant in 5.18 (c). It should be noted that the Chebyshev coefficients do not give a very
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good indication of the nonlinearity of the system, for this it is best to look at the power series

coefficients.
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Figure 5.19: Identified power series coefficients for the wind turbine blade at (a) G3, floors 11
and 12 (b) G2, floors 9 and 10 (c) G1, floors 7 and 8.

5.7 Discussion

The MRFM was able to accurately describe the system characteristics of the wind turbine

blade even with a high degree of nonlinearity in the system. Although there are some uncertain-

ties relating to calculation of each lumped mass it is assured that because the way the MRFM

as seen in Chapter 2, that at least element G3 will have similar characteristics no matter what

mass is used. However, error from the calculation of masses will pass on to both G2 and G1.

Most of the error from the mass calculation deviates from the assumption of a single uniform

density throughout the blade. In fact the blade has the highest density when the basalt fiber is

most numerous as the basalt fiber can weigh in at 2.8g/cm3 (Quagliarini et al., 2012) while the

PVC foam core often used in wind turbine blades has a density of 0.063g/cm3 (Yang et al.,

2013). In an actual application for wind turbine blades this would not be as much of a problem

to calculate the mass since there would be numerous shop drawings with details relating to the

thickness.
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6 SUMMARY AND CONCLUSIONS

6.1 Summary And Conclusions

The results showed in each section are different and will be summarized by there parts.

An overall summary suggest that the restoring force method was applied successfully to each

respective section and valuable information was gained. First, the analytical section in Chap-

ter 3, showed how the MRFM can be applied to a variety of linear and nonlinear systems. It

also confirmed how using both a known mass and a known mass system can result in the same

identification results, this is only true though when the assumptions about the mass normalized

restoring force from Chapter 2 are held true. Second, the results from Chapter 4 showed the

successful application of the MRFM to several foundation types with several levels of excita-

tion. Information was able to be obtained about the differences between the several foundations

and damage to the structure. It was also seen how calculating dissipated energy in the structure

was able to help indicate damage in the superstructure but also in the foundation system itself.

Finally, the MRFM was seen to be a valuable tool to use on wind turbine blades in Chapter 5.

Although, not much information was gain from the test as it was mostly a preliminary test it

gave information into what should be done in future studies.

Ultimately it was seen that the MRFM is a viable option for SHM of nonlinear multidegree

of freedom dynamic systems. It is able to quantify damage, locate damage and is applicable to

a wide variety of structural systems.

6.2 Challenges Presented In The Application Of The Restoring Force

While the MRFM is a very attractive option for SHM capable of identifying damage and

location of damage it still has some challenges to overcome. The following is just a list of
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challenges that were observed during this study.

1. Measurements are needed for force.

• Results from the MRFM are dependent on the force applied to the structure. While

sometimes the force applied to the structure is negligible this is not always true. For

the MRFM to be applied to wind turbine blades in real world applications a way to

measure the force acting over the structure is necessary.

2. Measurement of velocity and displacement.

• The MRFM uses a phase diagram of velocity, displacement and restoring force to

calculate the coefficients. Error in either of these could results in significant error

in the calculated system coefficients. While in this study displacement and velocity

were calculated from numerical integration of acceleration. It would be beneficial to

at least measure the displacement with this information numerical differentiation to

find velocity this would ensure checks on how well velocity was estimated by both

use of acceleration and displacement data.

3. Calculation of structures mass.

• Calculation of the restoring force is dependent on the use of mass. While mass nor-

malized restoring force can be used it should be noted this requires the assumption

that mass at all elements of interest are equal. Error in this assumption especially at

the top elements of this structure will generate error all the way down the structure.

6.3 Suggestions For Future Studies

The suggestions for future studies will be broken into respective sections for; the MDOF

RFM, the shaker table data set and the applications of the MDOF RFM to the wind turbine

blade.
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To begin, the RFM at its heart is a computationally efficient method, while the calculation

of the Chebyshev coefficients is minimum, the RFM can require a decent amount of computa-

tional time depending on the use of interpolation function. Selection of the proper interpolation

function is often important and while the current RBFs is very powerful and useful it is very

slow. There have been many developments in the research of RBFs, there are newer versions

the have faster computational times, less memory requirements and also smoothing functions.

An addition of one of these newer RBFs would be a great replacement to the current RBFs.

Next, for the shaker table data set, while the information from the MDOF RFM has been

extracted and compared with each other it would be wise to compare it with other methods.

Comparison of mode shapes, coefficients and energy dissipation would all be places to start.

Lastly, the wind turbine blade. Some information was gained about this project but to con-

tinue on longer data sets should be collected, a longer data set would give a better opportunity

to acquire more accurate information about the system. Also the MDOF RFM shows that it

would be a useful tool in require information from blades made of different materials, system

parameters such as stiffness and damping could easily be compared between multiple blades.

Utilizing several data sets though to get an average would be the best approach to do so though.

In addition to stiffness and damping coefficients information about dissipated energy from each

type of blade material would be an interesting comparison.
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