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ABSTRACT 

 

Organic field effect transistors (OFETs) are of significant research interest due to their 

promising applications in large area, low-cost electronic devices such as flexible displays, sensor 

arrays, and radio-frequency identification tags. A major bottleneck in fabricating high-

performance OFET is the large interfacial barrier between the metal electrodes and organic 

semiconductors (OSC) which results in an inefficient charge injection. Carbon nanotubes (CNTs) 

are considered to be a promising electrode material which can address this challenge. 

In this dissertation, we demonstrate fabrication of high-performance OFETs using 

aligned array CNT electrodes and investigate the detailed electronic transport properties of the 

fabricated devices. The OFETs with CNT electrodes show a remarkable enhancement in the 

device performance such as high mobility, high current on-off ratio, higher cutoff frequency, 

absence of short channel effect and better charge carrier injection than those OFETs with metal 

electrodes. From the low temperature transport measurements, we show that the charge injection 

barrier at CNT/OSC interface is smaller than that of the metal/OSC interface. A transition from 

direct tunneling to Fowler-Nordheim tunneling observed in CNT/OSC system shows further 

evidence of low injection barrier. A lower activation energy measured for the OFETs with CNT 

electrodes gives evidence of lower interfacial trap states. Finally, OFETs are demonstrated by 

directly growing crystalline organic nanowires on aligned array CNT electrodes. 

In addition to investigating the interfacial barrier at CNT/OSC interface, we also studied 

photoconduction mechanism of the CNT and CNT/OSC nanocomposite thin film devices. We 

found that the photoconduction is due to the exciton dissociations and charge carrier separation 

caused by a Schottky barrier at the metallic electrode/CNT interface and diffusion of the charge 
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carrier through percolating CNT networks. In addition, it is found that photoresponse of the 

CNT/organic semiconductor can be tuned by changing the weight percentage of CNT into the 

organic semiconductors. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 General Background and Motivation  

Organic electronic devices, also known as plastic electronic devices, have attracted 

tremendous attention in the recent years due to their advantages, including transparency, 

flexibility, light-weight, low cost and solution processability (Figure 1.1) [1-8]. Research interest 

in the organic electronics has steadily increased in the last two decades. It is clearly seen in the 

Figure 1.2 that the number of publication in the area of organic electronics is increased 

exponentially with time. Organic field effect transistors (OFETs) are considered as one of the 

promising active elements in the organic electronic devices such as flexible displays, sensor 

arrays, and radiofrequency identification tags [1-5]. In order to fabricate high-performance 

organic electronics devices, OFETs should have high mobility, high current on-off ratio, high on-

current and high switching speed. 

 

 

Figure 1.1: Application of organic electronic devices. Adapted from reference [1, 9-11] 
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 In the recent years, remarkable attempts have been made in fabricating high-performance 

OFETs using various organic semiconductors (OSCs) and optimizing the processing parameters. 

The performance of the OFETs not only depends on the molecular properties of the organic 

semiconductors but also it strongly depends on the nature of the interfaces that forms between 

metal electrodes and organic semiconductors [12-18]. The electrode/OSC interface limits the 

carrier charge injection from the metal electrode to the organic semiconductors, which is one of 

the major bottlenecks in fabricating high-performance OFET [12-14].  

 

Figure 1.2: Number of publications on organic electronics in last ~ 20 years. Source: ISI Web of 

Science.  

Currently, metals like gold, palladium are widely used as source and drain electrodes in 

the OFETs. When a layer of organic semiconductors is contacted by the metal electrodes, various 

charge injection barriers such as Schottky barrier, dipole barrier are formed at the metal/OSC 

interface [12-16]. Due to these barriers, the contact resistances at metal/OSC interface become 

very large which limits the charge injection from the metal electrode to organic semiconductors 

and limits the performance of the OFETs [12-20]. Therefore, fabrication of   high-performance 
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FET using metal electrodes still remains a major challenge [18-20]. In addition, since metal 

electrodes are not flexible, it is another hurdle to utilize the metal electrodes in flexible electronic 

devices. To realize the overall goal of organic electronics, recently researchers are looking for 

alternative electrode materials for the OFETs with high charge carrier injection capability, 

excellent interfacial compatibility with the organic semiconductors and suitability for use in 

flexible organic electronics.    

One of the most promising materials to replace the metal electrodes in high-performance 

OFETs is carbon nanotube (CNT). The carbon nanotubes are the sheets of the carbon atom rolled 

into one or more concentric hollow cylinders. The diameter of individual single-walled carbon 

nanotube is in the range of 1-3 nm and length up to few cm [21, 22]. The work function of 

carbon nanotube is in the range of 4.7-5.2 eV [21], which is well-aligned with the highest 

occupied molecular orbital (HOMO) level of many organic semiconductors such as pentacene, 

poly (3-hexylthiophene) (P3HT). Since both the carbon nanotubes and the organic 

semiconductors mainly consist of carbon, a better interfacial contact at the CNT/OSC interface is 

expected due to a strong π-π interaction between them [23]. In addition, the current carrying 

capacity of the carbon nanotubes (10 µA/nm
2
) is significantly higher than the current carrying 

capacities of the noble metal (10 nA/nm
2
) [24].  The CNT thin films are also flexible, transparent 

in the visible range and solution processible [21, 22, 25]. 

Due to their high conductivity, high work-function and π-π interaction with organic 

semiconductors, the CNTs are considered as potential electrode material in many optoelectronic 

devices including solar cells, flexible light emitting diode, and OFETs [25-33]. Fabrication of 

OFETs has been demonstrated using individual CNT electrodes [27, 28], CNT random network 

electrode [29-31], and CNT/polymer composite electrodes [32, 33]. The OFET devices with 
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CNT electrodes have shown improved performance than that of the devices with metal 

electrodes. It is speculated that improved device performance with CNT electrodes may due to 

the improved injection of charge carriers from CNT to organic semiconductors owing to strong 

π-π bonding between the CNTs and organic semiconductors.   

Although previous studies have showed the improved performance for the devices with 

CNT electrodes than that of their control devices fabricated with metal electrodes, fabrication of 

high-performance OFETs with CNT electrodes is still remained a significant challenge. In 

addition, the nature of the CNT/OSC interface in not well understood. In particular, charge 

injection and transport mechanisms in the device with CNT electrode are still unexplored. 

Therefore, fabricating the high-performance OFETs with CNT electrodes, understanding the 

charge injection and transport mechanism, and determining the charge in injection barriers at the 

CNT/OSC interface are of great importance for achieving the overreaching goal of the CNT 

electrodes in organic electronics. 

1.2 Thesis Statement and Organization 

In this dissertation, we demonstrate fabrication of high-performance OFETs using 

aligned array CNT electrodes and investigate the detailed electronic transport properties of the 

fabricated devices. The OFETs with CNT electrodes show a remarkable enhancement in the 

device performance such as high mobility, high current on-off ratio, higher cutoff frequency, 

absence of short channel effect and better charge carrier injection than those OFETs with metal 

electrodes. From the low temperature transport measurements, we show that the charge injection 

barrier at CNT/OSC interface is smaller than that of the metal/OSC interface. A transition from 

direct tunneling to Fowler-Nordheim tunneling measured in CNT/OSC system shows further 
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evidence of low injection barrier. In addition, a lower activation energy observed in the OFETs 

with CNT electrodes gives evidence of lower interfacial trap states. Finally, OFETs are 

demonstrated by directly growing crystalline organic nanowires on aligned array CNT 

electrodes. 

In addition to investigating the interfacial barrier at CNT/OSC interface, we also studied 

photoconduction mechanism of the CNT and CNT/OSC nanocomposite thin film devices. We 

found that the photoconduction is due to the exciton dissociations and charge carrier separation 

caused by a Schottky barrier at the metallic electrode/CNT interface and diffusion of the charge 

carrier through percolating CNT networks. In addition, it is found that photoresponse of the 

CNT/organic semiconductor can be tuned by changing the weight percentage of CNT into the 

organic semiconductors. 

The organization of this thesis as follows: A background review on organic 

semiconductors, organic field effect transistors, physics of charge injection in the OFETs, and 

summary of  the previous work CNT electrodes for OFETs are presented in chapter 2.  

Chapter 3 describes details of the design, fabrication and characterization of the organic 

electronic devices using various micro and nanofabrication tools. This chapter includes a 

description of assembly for aligned array CNTs via dielectrophoretic, fabrication of aligned array 

CNTs electrodes using electron beam lithography (EBL) and plasma etch; fabrication of metal 

electrodes using photolithography followed by EBL and thermal deposition; fabrication of the 

OFETs based on various organic semiconductors, and  measurement setups of the devices at 

room and low temperatures.   

In chapter 4, we investigate room temperature electronic transport properties of the 

OFETs with CNT aligned array electrodes. A series of OFETs based various organic 
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semiconductors (such as pentacene, P3HT) with aligned array CNT electrodes as well as metal 

electrodes are fabricated.  All the OFETs with CNT electrodes show improved device 

performance, such as higher mobility, higher current on-off ratio, and higher cut-off frequency, 

than that of the OFETs with metal electrodes.  

After discussing the room temperature device properties, in chapter 5 we investigate the 

physics of charge injection and transport in the OFETs with aligned array CNT electrodes using 

temperature dependent electronic transport measurement. We show that in the high temperature 

range (300-200 K), the charge injection mechanism is dominated by thermal emission which is 

well explained by Richardson Schottky model. The charge injection barrier at CNT/OSC 

interface is lower than that of at metal/ OSC interface. In addition, the barrier height at the 

CNT/OSC interfaces can be tuned by the gate-voltage.  At low temperature the current-voltage 

characteristics show a transition from direct tunneling to Fowler-Nordheim tunneling, which 

shows a further evidence of a lower injection barrier at CNT/OSC interface. From the study of 

the transport mechanism, we show that that the charge transport is improved in the devices with 

CNT electrode, and interfacial traps state at the CNT/organic interface is lower than that of the 

metal/OSC. 

The chapter 6 demonstrates a bottom up approach to fabricate OFETs by growing organic 

crystalline nanowires on aligned array CNT interdigitated electrodes which exploit strong π-π 

interaction for both efficient charge injection and transport. The organic nanowire OFETs with 

CNT electrodes show a  remarkable enhancement of the device performance such as high 

mobility, high current on-off ratio, absence of short channel effect and better charge carrier 

injection than that OFETs with gold electrodes. This is attributed to the improved contact via 
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strong π-π interaction CNT electrodes with the crystalline organic nanowires as well as the 

improved morphology of organic semiconductor due to one dimensional crystalline structure. 

In Chapter 7, the thesis shifted its focus on photoconduction mechanism of the CNT and 

CNT/OSC nanocomposite thin film devices. We show that that the photoconduction is due to the 

exciton dissociations and charge carrier separation caused by a Schottky barrier at the metallic 

electrode/CNT interface and diffusion of the charge carrier through percolating CNT networks. 

In addition, we also show that that photoresponse of the CNT/organic semiconductor can be 

tuned by changing the weight percentage of CNT into the organic semiconductors. 

Finally in chapter 8, we summarize the finding of this dissertation and propose the 

possible future directions related to this work.   
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CHAPTER 2:  BACKGROUND 
 

2.1 Organic Field Effect Transistors (OFETs) 

Since the first discovery of the organic field effect transistors (OFETs) (Figure 2.1) based 

on organic semiconductors in the 1980’s, OFETs have attracted broad attention because they 

could serve as a key component in the organic electronic devices such as organic flexible 

display, sensor arrays, flexible smart cards, radiofrequency identification (RF-ID) tags [1-9]. One 

of the main components of the OFETs is organic semiconductors, which are carbon-rich 

compound with semiconductor properties. Although mobility of the organic semiconductors is 

lower than inorganic ones, organic semiconductors have a number of special advantages. One of 

the major advantages is that organic devices can be fabricated at low temperature (less than 200 

0
C) using various simple and low-cost techniques such as spin-coating, drop-casting, spray-

coating, and vacuum thermal deposition. In addition, organic semiconductor devices are flexible, 

transparent and light-weight. Another advantage of the organic semiconductors over the 

inorganic one is that it can be easily tuned the properties by tailoring structure of the organic 

semiconductors.   

Due to continuous advancement of organic semiconductor materials by tailoring their 

electronics properties and significant improvement in device fabrication process, the 

performance of the OFETs is increased with time. The field-effect mobility of the OFETs based 

on organic semiconductor materials is in the ranges of  of 0.1–1 cm
2
 /V.s [1-9]. The prototypes 

of the OFETs based organic electronic devices have been demonstrated such as OFET-driven 

liquid-crystal displays (LCD), organic light-emitting diode (OLED) displays, and organic logic 
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circuits [1-9]. On the scientific sides, OFETs are also use an effective and powerful tool unit to 

test charge transport in high band-gap and low-conductivity organic semiconductors. 

 

Figure 2.1: Schematic of a typical bottom-contact bottom-gate organic field effect transistor 

(OFET).  

2.2 Organic Semiconductors for OFETs 

Organic semiconductors are carbon-rich and pi-conjugated materials with semiconductor 

properties. The term conjugated refers as the existence of the alternative single and double 

carbon-carbon bond.  Other components of the organic semiconductors are hydrogen and 

oxygen. Organic semiconductors can be classified into two categorize: small molecule and 

polymer regioregular polythiophene (P3HT) (Figure 2.2) [10]. In the small molecule organic 

semiconductors, such as pentacene, the carbon atoms form larger molecules and typically with 

benzene ring as basic unit and π-electrodes are delocalized through the molecules.  On the other 

hand, in polymer carbon atoms form a long chain and the π-electrodes along the chain and form a 

one-dimensional π-electrodes system. Since the properties of the carbon atoms are the origin for 
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the both of small molecule and polymer semiconductor, their electronics transport properties are 

almost similar. A large number organic small molecules and polymers are used to fabricate the 

OFETs. Two representative and well-studied organic semiconductors (one small molecule and 

one polymer) are discussed in below. 

 

Figure 2.2: Organic semiconductors. Schematic representation of (a) pentacene and (b) 

Buckminsterfullerene (or buckyball) (C60) (b) regioregular poly(3-hexylthiophene) (RR-P3HT), 

(d) poly ( 3, 3 didodecylquarterthiophene) (PQT). Adapted from reference [5].  

 

(a) Pentacene 

Pentacene (C22H14) is one of the well-studied and most promising organic 

semiconductors for their potential application in future organic electronic devices [11, 12].  The 

highest occupied molecular orbital (HOMO), or ionization potential of the pentacene of is 5.1 

eV. Transistors fabricated with pentacene usually shows p-channel transistor behavior. This is 

because the work function of Fermi level of gold (5.1 eV) is well matched with HOMO level of 

the pentacene, which results in a small barrier for holes (positive charge carrier) and a large 

barrier for the electrons.  The common deposition technique of fabricating the pentacene device 
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is the vacuum evaporated method, and the vacuum evaporated pentacene thin film shows better 

polycrystalline structure than that of the solution processible polymers thin film. Due to their 

well crystalline structure (better morphology), the charge transport through the pentacene thin 

film is more efficient. Pentacene thin film transistors have shown higher mobility, better on-off 

ratio, and better reliability than that of the most other organic semiconductors [1]. 

(2) P3HT 

Poly(3-hexylthiophene) (P3HT) (C10H14S)n is one of the first solution-processible organic 

semiconductors which was used to fabricate transistors. The HOMO level of the P3HT typically 

in the range of 4.9-5.0 eV [9], which is well- matched with work-function of the many air stable 

electrode material such as gold. The P3HT has excellent solubility in variety of solvent such as 

chloroform, and P3HT thin films can be prepared in different solution processible methods such 

as spin-coating, dip-coating, screen printing or inkjet printing. The P3HT thin films are 

microcrystalline structure and it is microcrystalline structure depends on several factors such as 

regioregularity, molecular weight, deposition conditions. The mobility of the regioregular P3HT 

thin film transistors varies by two order of magnitude depending on the solvent used and highest 

mobility has been achieved with chloroform solvent.  

2.3 Device Structure of OFETs 

 The main component of the OFETs is organic semiconductors (OSC), which can be 

either conjugate polymers or small molecules organic semiconductors [1-2]. Relatively wide 

band gap organic semiconductors  with band gaps in the range of   2-3 eV are used in fabricating 

the OFETs. Besides the OSC, the other major components of typical OFETs are source-drain 

electrodes with channel length (L) and width (W) that are contacted with OSC thin layer, gate 
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electrode which is separated from the OSC layer by a dielectric layer. The structure of OFETs 

depends on the arrangement of the components, which can be divided into bottom-gate bottom-

contact, bottom-gate top-contact, and top-gate bottom contact and top-gate top-contact 

configurations [5]. The schematic of a bottom-contact bottom-gate OFET is shown OFETs in 

Figure 2.1.  In these OFETs, the source and drain metal electrodes are fabricated using either 

photolithography or electron beam lithography (EBL) or combination of photolithography and 

EFL on substrate, and finally organic semiconductor is deposited on the electrodes. The most 

common substrate for the OFETs is heavily doped silicon (Si) wafer with a thermally grown 

insulating silicon dioxide (SiO2) layer. The SiO2 (dielectric constant of 3.9) is used as dielectric 

layer and heavily doped silicon (Si) wafer is used as the gate electrode. The major advantage of 

the bottom contact and bottom contact devices is that these OFETs can be fabricated with 

smaller device feature size through the photolithography or EBL techniques. 

2.4 OFET Operation and Electrical Characterization 

 

In order to operate OFETs, gate-voltage (Vg) is applied at the gate electrode and drain-

voltage (Vd) is applied at the drain electrode. The source electrode are usually kept at ground (Vd  

= 0 V). When a positive Vg is applied at the gate electrodes, the source electrode becomes more 

negative than the gate electrodes and the electron are injected from the source electrodes. On the 

other hand, when a negative Vg is applied at the gate electrodes, the source electrode becomes 

more positive than the gate electrodes and the holes are injected from the source electrodes. 

When Vg  is applied at gate electrodes, charge carriers (holes due to negative  Vg and electrons 

due to positive Vg) accumulate at near the dielectric/OSC interface and formed a conducting 

channel in the thin layer OSC in the between the source and drain electrodes (Figure 2.3). 
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Figure 2.3:  Schematic illustration of the operation of the OFETs at gate-voltage (Vg) and is 

drain-voltage (Vd). 

  

The induced charge carriers and output current of the OFETs can easily be tuned by 

controlling the Vg. When Vd is applied at the drain electrodes, the charge carriers injection from 

the source electrodes into the OSC and then transport though the conducting channel to drain 

electrode. The output characteristics (I-Vd curves at different Vg) of a typical transistor are shown 

in Figure 2.4(a).  The current is increased linearly with bias voltage at the low bias regime, and it 

saturates at higher bias-voltage. Figure 2.4 (b) and 2.4 (c) show transfer characteristics (I-Vg 

curve) of the OFETs at linear regime and transfer characteristics at saturation regime.    
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Figure 2.4: Transistor characteristics of typical OFETs (a) Output characteristics, (b) Transfer 

characteristics at linear regime and (c) Transfer characteristics at saturation regime. Adapted from 

reference [5]. 

   

(1) Mobility: 

To determine the quality of the OFETs, one of the most important parameters is field 

effect mobility. The mobility of the devices is related to the efficiency of the charge carrier 

transport in the materials. The mobility is derived from linear regimes and saturation regimes. At 

low Vd, (│Vd │> │Vg – Vt│), drain current increase linearly with increasing Vd (known as linear 

regime of the transistor curve). When the │Vd │< │Vg – Vt│, Id becomes independent of Vd and 

it saturates (saturation regime). The drain current in the linear and saturation regimes of the 

OFETs are given by Equation 1 and 2 respectively [2]:    
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Where Ci is the capacitance per unit area of the insulating layer, Vt is the threshold voltage, and 

the µ is the field effect mobility. The transconductance gm is the change of the drain-current with 

gate voltage and it is calculated from the transfer curves: 
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The linear mobility of the OFETs is determined by extracting the (gm). Using equation (2.1) the 

linear mobility is given by   
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In the saturation regime the drain current varies with the square of gate-voltage. The threshold 

voltage is extracted from the slope of square root of drain current versus gate voltage curve and 

the saturation mobility is calculated using equation (2.5).    
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(2) Current On-Off Ratio 

The current on-off ratio is the maximum-current (on-current) divided by the minimum-

current (off-current) between source and drain electrodes. The definition of the current on-off 

ratio is somewhat arbitrary and there is no standard way of reporting the on-off. The voltage 

range (both gate-voltage and drain-voltage) for the measurement of  current as function of gate-

voltage are varies from studies to studies and the on-off ratio is calculated from the 

corresponding I-Vg curves.  

The current on-off ratio is very important parameter for any organic transistors and it is  

particularly important for their application in flexible display and logic circuit. The high on-off 

ratio provides a high contrast in the organic flexible display and higher on-off ratio provides 

clear switching in between the on-state and off-state in the logic circuits.  If the on-off ratio is 

low with a high on-current, even the circuit is in the off-state, the circuit will dissipate a large 
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amount of energy due to high off-current, which results in a large power dissipation. The lower 

power dissipation of logic circuit is important factors for their practical applications [7].  

(3) Threshold Voltage  

Threshold voltage (VT) is the minimum gate-voltage at which conducting channel is 

formed in between the source and drain electrodes and current is started to flow of a transistor. 

At the threshold voltage, all the traps in the semiconductors are filled and thermally activated 

charge carriers begin to play a major rule in the transport of the transistors. The VT  can be 

determined from the I-Vg curves at different techniques such as by extrapolating a linear fit of 

the Id-Vg plot (for low Vd), or (Id)
 ½

- Vg plot (for high Vd) to the Id  = 0  (Figure 2.4).  

(4) Subthreshold Swing  

Subthreshold Swing (S), also known as subthreshold slope, is defined as the rate at which 

drain current changes by one decade with the gate-voltages. A small value of subthreshold swing 

indicates a higher speed of the devices. The subthreshold swing is calculated from the transfer 

curves of the devices and it is given by 
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2.5 Limitation of Charge Injection at Metal/Organic Semiconductor Interface 

The charge transport in the organic filed effect transistors mainly governed by the two 

processes: charge injection at metal electrode /organic semiconductor interface and charge 

transport through the channel formed in the organic semiconductor in between source and drain 

electrodes [13-19]. The schematic of charge injection and charge transport through the grain 

boundaries are illustrated in in Figure 2.5. It can be seen from this figure that at first charge 
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carriers are injected from the source electrode into the organic semiconductor though the 

electrodes/organic semiconductor interface and then the charge carriers transport though the 

transistor channel. 

 

Figure 2.5: (a) The charge injection at the electrode/ organic semiconductor interface and charge 

transport though grain boundaries the channel of organic transistor.   

 

In the p-channel transistor, holes have to be injected from the source electrode into the 

LUMO level, and in n-channel OFETs, the electrons need to be injected from the electrodes into 

the LUMO (lowest unoccupied molecular orbital) level of the organic semiconductors. In order 

to efficient injection from the electrode to organic semiconductors, the charge carriers have to 

overcome the charge injection barrier at between metal/organic semiconductor interfaces. 

In Mott-Schottky model, the barrier height is defined by the difference of the metal work-

function and the HOMO or LUMO level of the OSC (Figure 2.6 a) [13, 14]. The barrier formed 

at the metal/OSC interface known as Schottky barrier height. The hole injection barrier (ΦBh) and 

electrodes injection barrier (ΦBe) depend on the position of the HOMO and LUMO with respect 
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to the Fermi level of the metal (EFM) [13]. According the theoretical description of the 

metal/OSC contacts, electron injection barrier is given by  

AmLUMOFMeB EEE   ,         (2.7) 

where, ɸm is the work-function of the metal, which is the energy the energy required to remove 

an electron from the Fermi level to vacuum level (VL), and EA is the electron affinity of the OSC 

which is energy difference from the LUMO level to the vacuum level. The hole injection barrier 

is given by  

mIFMHOMOhB EEE  ,         (2.8) 

Where, EI is the ionization potential of the organic semiconductor which corresponds to the 

energy difference from the HOMO level  to the vacuum level.  

 

Figure 2.6: Energy band diagram of a contact at between a metal and OSC (a) without diploe 

barrier and (b) diploe barrier at the metal/OSC interface. The charge injection barrier height for   

electrode and hole are denoted by ΦBe and ΦBh. 
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According to Mott-Schottky model, a good Ohmic contact is expected when the work-

function of the metal electrodes is well-matched with HOMO level or LUMO of the OSC. 

Although Mott-Schottky model gives a general idea about the metal/OSC interface, the scenario 

of actual metal/OSC interface is more complicated, which cannot simply be explained by this 

model. Previous studies showed that Schottky barrier formed at the metal/OSC interface 

irrespective to work-function of the metal electrodes and geometry of the interface, known as 

Fermi level pining [19]. Even the work-function of the metal is well matched with the HOMO 

level of the OSC, in actual system barrier is formed at the interface due to diploe formation. The 

dipole layer is formed at the interfaces due to for various reasons such as charge transfer, 

covalent bonding, redistribution of the electrode cloud, image force induced polarization, 

permanent surface molecular dipole [13, 14, 19].  

Because of the formation of dipole layer, the vacuum level of the OSC is shifted and 

makes a barrier at the interfaces, which is known as dipole barrier (Figure 2.6 b). The value of 

the dipole barrier is determined by the magnitude of the dipole layer formed at the interface. If a 

diploe barrier (Δ) is formed at metal/OSC interface then the injection barrier is modified from the 

simple equation 1 and 2 by Δ as follows [13]: 

  AmLUMOFMeB EEE  ,        (2.9) 

  

 mIFMHOMOhB EEE  ,        (2.10) 

 

The formation of dipole barrier has a detrimental effect on the charge injection of the 

OFET. This is because  the dipole barrier gives rise to a “push back” effect, a decrease of surface 

dipole potential energy of the metal surface in contact with the organic semiconductor [13,14]. 
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As a result, the effective work- function of metal is reduced significantly. It is reported that when 

atomically clean gold with work function of ~ 5.2 eV is contacted with OSC in either top contact 

or bottom contact, the work-function of the gold is reduced to ~ 4.5 eV [13, 15, 20]. This shows 

that the effective work-function of the metal actually reduced significantly due to formation of 

diploe barriers at the interface. As a result dipole barrier increase the barrier, leading to a large 

contact resistance at metal/OSC interface and the charge injection is limited by the metal/OSC 

interfaces. In addition, the charge injection at metal/OSC interface is also limited by several 

factors such as presence of impurities, morphological discontinuities, interfacial traps, and 

structural disorder at the interfaces [13-15]. 

 

Figure 2.7: Variation of field effect mobility with channel length of the OFETs. Adapted from 

reference [21] 

 

Because of the large interfacial barriers at metal/OSC interface, contact resistance 

becomes large and limits the charge injection in the OFETs [13-17,22-29]. This becomes more 

significant in the short channel devices. When the channel length is reduced; the contact 

resistance at metal/OSC interface becomes very high compared to the resistance of the organic 
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semiconductors in the channel, leading to a significant reduction in mobility (Figure 2.7)  and 

current on-off ratio [25-29]. However, short channel OFETs is required in fabricating high 

switching speed OFETs. This is because the switching speed of transistors is inversely 

proportional to channel length, to increase the switching speed OFETs should fabricate with 

short channel [30].     

To improve the charge injection from the metal electrodes into the organic 

semiconductors, several approaches has been developed and tested in the literature. The common 

approaches are control of the interfacial dipoles though thio-based self-assemble monolayers 

(SAMs), and charge injection layer in OFETs [31-33]. However, these techniques are strongly 

dependent on the materials or architecture. Improving charge injection using the matching 

electrodes is clearly not technologically appealing, because some of the electrode materials are 

not environment friendly .For example: low work-function metal have strong reactivity with air 

which results in poor stability of the OFETs. Although the use of the polar, thio-based self-

assemble monomers is one of the most successful approaches for the controls of the metal/OSC 

interface barrier, this approach has shortcomings. The surface energy of the metal electrodes can 

be dramatically altered by growing of the SAMs on the electrodes. This may occurs in variation 

of work-function of the metal. In addition, the variation of the wettability induced by the SAM 

growth can have an effect on the film morphology at the metal/OSC interface [31].  

2.6 Carbon Nanotube (CNT) Electrode for OFETs 

In order to overcome the limitations of the metal electrodes, recently carbon nanotubes 

(CNTs) are considered as promising electrode materials in fabricating organic electronic devices.  
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Now we briefly discuss about the basic of CNTs and their electronic, optical and mechanical 

properties. Then we review and summarize the previous works on CNT electrodes for OFETs.  

2.6.1 Properties of CNTs  

 

 

Figure 2.8: schematic representations of a single-walled carbon nanotube (SWNT), a multiwalled 

carbon nanotube (MWNT) and a bundle of SWNTs. Adapted from reference [34]. 

 

The carbon nanotubes are the sheets of the carbon atom rolled into one or more 

concentric hollow cylinders. The CNTs can be either single-walled carbon nanotube (SWNT) or 

multi-walled carbon nanotube (MWNTs). The single-walled carbon nanotube (SWNT) is a 

cylinder of single layer of graphene sheet, whereas the MWNT is a coaxial cylinder of multiple 

layers of graphene sheet [35, 36] (Figure 2.8). The typical diameter of an individual SWNT is in 

the range of 1-3 nm and length up to few cm. Due to high aspect ratio CNTs are considered as 

one-dimensional materials. The electronic properties of the CNT strongly depend on rolling on 

the graphene sheet. Depending on the chirality CNTs can be either semiconducting or metallic. 

The electronic and optical properties of the individual semiconducting CNT depends on the band 

gaps and that the band gap varies inversely proportional to CNT diameter as Eg ~ 1/r, where Eg is 

the band gap and r is radius of the CNTs. The individual semiconducting SWNT field effect 

transistors have shown extraordinary device performances such as mobility, and current on-off 
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ratio. The semiconducting SWNT have shown a high mobility up to 100 000 cm
2
/Vs as well as 

high conductivity up to 400 000 S/cm [35]. 

Due to their exceptional electronic, optical and mechanical properties, CNT thin films, 

both randomly distributed (Figure 2.9 a) or aligned array CNTs, have been considered promising 

materials in the next-generation devices. The CNT thin film of thickness 50-100 nm shows high 

optical transparency in the visible light and high electrical conductivity [35, 37]. The electronic 

and optical properties of the CNT thin films are strongly depend on chirality of the nanotube, 

purity, doping, length, orientation of nanotubes, thin thickness. For example, resistivity of the 

thin film is decreased with increasing the film thickness (Figure 2.9 b, c). The CNT thin films 

have extraordinary mechanical properties such as mechanical flexibility, strechability, and 

transparency (Figure 2.9 d). This suggest that CNT thin films can be used as transparent and 

conducting electrodes in the optoelectronics device applications such as solar cells [38], light 

emitting diodes [37] and organic field effect transistors [39-48]. One of the most important 

properties of CNT thin films is their high work-function which is in the range of 4.7-5.2 eV,[35]. 

The work-function of the CNT is well-matched with HOMO level of the most of p-type organic 

semiconductors. This suggest that CNT thin films can be used as source and drain electrode 

material in the p-channel organic transistors, and as an anode in the organic solar cell. 
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Figure 2.9: (a) SEM images of carbon nanotube thin film. (b) Sheet resistance versus film 

thickness of SWNT films. Inset: conductivity versus film thickness. (c) Transmittance spectra for 

SWNT films of thickness 20, 40, 80, and 120 nm. The transmittance of the SWNT films 

decreases monotonically with the film thickness. The 20 and 40 nm films exhibit sufficiently 

high transparency (>80%) over a wide spectral range from 300 to 1100 nm. Inset: sheet 

resistance versus temperature curve taken with a SWNT film of 40 nm in thickness. Adapted 

from reference [37].  

 

In addition, since carbon is the common material in the both CNTs and organic 

semiconductors, a better interfacial contact at the CNT/organic semiconductor interface is 

expected due to a strong π-π interaction between the CNTs and organic semiconductors.(Figure 

2.10) [49]. Another important feature of the CNTs is that they have electric field emission 

properties due to their one dimensional structure and it is believe that the field emission property 

enhanced charge injection from the CNT into the organic semiconductors. The reason for such 

an enhancement is that when an electric field is applied in CNT electrodes, a large local field is 

generated at the nanotube apex and increases charge injection. 
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Figure 2.10: Supramolecular structures of CNTs and organic semiconductors due to Strong π-π 

interaction. Adapted from reference [49] 

 

  

2.6.2 Progress in OFET fabrication with CNT Electrodes 

Because of the extraordinary electrical, optical, and mechanical properties, carbon 

nanotubes have been considered as a promising electrode material for organic electronics 

devices. Recently, CNTs have been used as electrode materials to fabricate organic field effect 

transistors [39-48]. Carbon nanotube electrode has been fabricated using both the individual 

CNT as well as CNT thin films. Based on number of CNTs and their orientations in the 

electrodes, these techniques can be classified into three major categories: (a) Individual CNT 

electrodes, (b) random network CNT electrodes, and (c) CNT/polymer composite electrodes 

(Figure 2.11).  Although different research groups used their own approaches to fabricate CNT 

electrodes and OFETs using CNT electrodes, performance of the OFETs with CNT electrodes 

are higher that of their control OFETs with metal electrodes. All the techniques for the CNT 

electrode fabrication have their own advantages and limitations. Now, we discuss different 

techniques of the CNT electrode fabrication, their advantages as well as the limitation involved 

in the processes.   
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Figure 2.11: Schematic diagram of the OFETs fabrication using (a) individual CNT electrode (b) 

Random network CNT electrode and (c) CNT/polymer composite electrodes. SEM image of 

carbon nanotube adopted from reference [37]. 

 

 (1) Individual CNT Electrodes  

The individual CNT electrodes are fabricated by cutting the CNTs and leaving the two 

ends separated by a nano-gap. The most common and simplest technique in fabricating nanogap 

electrode from individual CNT is the electrical breakdown (Figure 2.12) [39-42]. Individual 

CNT electrodes were fabricated by the electrical breakdown of the SWNTs [39], as well as 

MWNTs [42]. In this technique, the CNTs were deposited onto silicon wafer by using either 

chemical vapor deposition spin-coating or arc-discharging method followed by making top 

electrical contacts by conventional lithography and thermal deposition of metal. Then, a high 

current is applied between the two metal leads. As a result the nanotubes break due to joule 

heating, which is known as electrical breakdown [51]. The each ends of the nanotubes are served 

as source and drain electrodes for the organic transistors.  
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Fabrication of OFETs using individual CNT electrodes has been demonstrated by 

depositing the organic semiconductors such as pentacene [40], P3HT [41], and fullerene (C60). 

[45] The organic semiconductors were deposited into the electrode gap onto the CNT electrodes 

by either in solution phase or thermal evaporation method. A composite of atomic force 

microscopy (AFM)/ scanning electron microscopy (SEM) image of the pentacene OFETs 

connected by individual CNT source and drain electrodes is shown in Figure 2.12 a and 2.12 b. 

The channel length of the transistor is 40 nm (here gap size is the channel length) and channel 

width is 2.5 nm (CNT diameter). The characteristics of the OFETs with individual CNT 

electrodes are in Figure 2.12c. The output curve of the transistor shows superliner behavior; 

which is a signature of short channel effect [25-29]. The short channel effect in the 

nanotransistor with high oxide thickness (comparable to the channel length) is not unexpected 

due to inefficient gate coupling. The transfer curves shows a typical p-type transport 

characteristics with current on-off ratio of 10
2
 and on-current of 2 nA at Vd = 8V. The 

performance of the nanotransistor using CNT electrodes is better than that of transistor fabricated 

using gold (Au) electrode with channel length of 20 nm and width of 250 nm. By normalizing 

the channel width, the estimated on-current of the transistor with individual CNT electrode is 

about 100 times higher than that on-current of the transistor fabricated using gold (Au) electrode. 

The improved devices performance using CNT electrodes is attributed to the efficient electron 

injection from the CNT electrode into the pentacene. Although all OFETs tested in this study 

have shown the similar on-current, however, the on-off various from 10 to 10
4
. This variation of 

the on-off ratio is attributed to the variation in the nanotube diameter because small variations in 

nanotube diameter significantly alter the electrostatic in the interface of the nanotube/pentacene 

[40].  
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Figure 2.12: (a) Schematic diagram (top) of an individual pentacene island contacted by two 

metallic carbon nanotubes that act as source and drain electrodes. (b) Pentacene nanotransistor 

having a channel length of 40 nm and width of 2.5 nm (nanotube diameter). (c) Transfer and 

output (inset) characteristics of the corresponding device. The transfer characteristic is shown 

using Vds = 5 V. Adapted from reference [40]. 

 

The electric breakdown method for fabricating of nanogap electrodes has both the 

advantages as well as disadvantages. The advantages of this method are that it is simple, easy 

and cost-effective, as it does required the sophisticated nanofabrication tools such as EBL 

instruments. On the other hand, the major limitation is that the electrode gap sizes formed by the 

electrical breakdown are not well-controlled. For example, C. M. Aguirre et al found the 

electrode gap is in the range of ~ 20-200 nm, whereas D. et al. found that it is in the range of 10-

60 nm [40, 43].  The variation of the nanotube electrode gap may be related to several factors 

such as nanotube length, diameter, substrate, breaking environments, charity of the CNTs, and 

defect in the CNTs. 

Controlled fabrication of the individual CNT electrodes has been demonstrated by Guo et 

al. They formed nanotube electrodes by cutting the individual nanotube using precise local 

oxidation though window opened by the electron beam lithography (EBL) [39]. In this study, 
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individual CNTs with diameter of 1-2 nm were grown by CVD on silicon substrate followed by 

contact with metallic electrodes (5 nm Cr and 50 nm gold) with a separation of ~ 20 µm. The 

CNTs devices were coated with polymethylmethacrylate (PMMA) by spin coating and a window 

less than 10 nm were opened by EBL. Finally the nano-gap electrodes of 10 nm were fabricated 

by locally oxygen plasma ion etching the nanotube through the open window. Focused ion beam 

as well as electron beam induced oxidation methods are also used to fabricate nano-gap CNT 

electrodes [45, 51]. K. Horiuchi et al used focused Ga
2+

 ion beam in fabricating individual CNT 

electrode using MWNT contacted by metal pads on a silicon substrate. 

 (2) Random Network CNT electrodes  

As we discussed in the last section that individual CNT electrode can be used as an 

efficient point contact for organic nanotransistor. Although nanotransistor has potential 

applications in the area of nanoelectronics, they are not suitable for large area organic 

electronics. In order to large scale application, the large area transistors are required that required 

long channel length and width electrodes. Carbon nanotube random network (CNT thin film) has 

been used as electrode materials for fabricating the large area organic transistor. To fabricate 

random network CNT electrodes, at first CNT this are deposited by both vapor-phase and 

solution-phase deposition methods, such as CVD [44], transfer-printing of CVD grown CNT 

[53], surface selective deposition [52], spray coating [48] and airbrushing [53]. 



33 
 

 

Figure 2.13: (a) Schematic of the fabrication the SWNT electrode by spray coating technique. 

Output characteristics of a representative PQT OFET with (b) SWNT electrodes, and (c) gold 

electrode. Adapted from reference [48]. 

 

  C. H. Chang et al reported pentacene based thin film transistor with MWNT source and 

drain electrodes [44]. They formed the MWNT source and drain electrodes by depositing and 

pattering a Fe/Ti catalyst layer followed by growing of MWNT though the CVD (Figure 2.13). 

Finally, a thin layer of the pentacene film (~40 nm) was deposited using thermal evaporation to 

fabricate the transistor. The pentacene transistor with MWNT exhibits good device performance 

with saturation mobility of 0.14 cm
2
/(V.s), on-off ratio of 10

6 
and low contact resistance (30 kΩ-

cm) at Vg = -50V. Similarly, Q. Cao et al fabricated transparent and flexible OFETs using CNT 

network electrodes which are formed by transfer-printing of nanotube grown by CVD [46]. 

Although OFETs fabricated using CVD grown CNT electrodes shown improved performance, 

this method has limitations in the practical application. This is because the CVD method is 

expensive and laborious. In addition, in the CVD method the CNT electrodes are fabricated at 

temperature up to 700 
0
C. Therefore, CVD is not a suitable method for fabricating CNT 

electrode for low-cost, and low-temperature processible organic electronic devices.  
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Solution-processed carbon-paste electrode fabrication using surface selective deposition 

techniques was demonstrated by Wada et al [52]. In this process a carbon paste solution is 

deposited on the region and the ultraviolet light irradiation is used to remove the self-assembled 

monolayers. The resulting CNT thin film using this process shows mechanical and thermal 

stability. The CNT paste electrodes of channel length of 150 µm and width 1000 µm were used 

to fabricate OFETs using pentacene as well as P3HT. In this study, it is found that the 

performances of these OFETs are higher than the corresponding the control devices using gold 

electrodes. Similar to the carbon-paste electrode, Zhang et al used spray deposited SWNT as the 

bottom contacted source and drain electrodes for poly ( 3, 3 didodecylquarterthiophene) (PQT) 

based OFET[48]. The schematic of the CNT electrode fabrication by spray coating technique is 

shown in Figure 2.13a, where the electrodes dimension were defined by photo resist and masks 

and CNT solution is deposited by spray coating. Finally, the transistors were fabricated by the 

spin coating of the PQT solution onto the CNT electrode.  

The output characteristics of a representative PQT OFET with CNT electrodes and gold 

electrodes are shown in Figure 2.13 b and 2.13 c. It is clearly seen in this Figure that the output 

current of the PQT transistor with CNT electrode is higher than that of the PQT transistor with 

gold electrodes. In addition, compare to gold contact PQT OFET, the CNT contacted PQT OFET 

shows higher mobility of 0.12 cm
2
/V.s and higher on-off ratio of 10

6
. The linear behavior  of the 

output curves at low bias of the PQT transistor with CNT electrode indicates excellent interfacial 

contact at between the CNT and PQT. It is believed that the improved device performance of the 

CNT contact PQT OFETs is due to the low injection barrier. A. Southard et al has shown another 

easy and inexpensive method for fabricating of solution-processed CNT electrode [53]. They 

fabricated CNT electrodes from airbrushed CNT thin films with sheet resistance < 1 kΩ/sq and 
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transparency >80%. They fabricate an all-carbon transparent, flexible organic thin film transistor 

in which pentacene used as active channel materials, and the CNT films are used as a gate, 

source, and drain electrodes. They found that performance of the airbrushed CNT electrode is 

similar to the performance of the CNT electrodes fabricated from CVD grown.  

(3) CNT/polymer Composites Electrodes 

      CNT/polymer composites have also attracted special interest to the researchers as 

electrode material for the OFETs. The composites materials are not only demonstrate enhanced 

the properties of the individual components but also provide additional functionalities. In 

addition, the CNT/polymer composite is cheap and printable, which allow fabricating of low cost 

organic devices. The development of the CNT/polymer composite pattern without degradation of 

CNT properties plays an important rule to fabricate the CNT/polymer composite electrodes and 

controlled design of such pattern is the key challenge for practical application of the composite 

electrodes in organic electronics.   

M. Lefenfeld et al  demonstrated the high-performance organic transistors with   printed 

dinonylnaphalene sulfonic acid doped polyaniline/SWNT (DNNSA-PANI/SWNT) electrode 

(Figure 2.14) [54]. The thickness of the electrodes is ~ 1 µm with a conductivity of 3 S cm. The 

DNNSA-PANI/SWNT electrodes formed the excellent contact with both the p-type and n-type 

OSC. The minimum channel length that used for electrode fabrication was 15 µm. The DNNSA-

PANI/SWNT electrodes were fabricated using thermal imaging, a technique that enables the 

printing of multiple layer, successive layers via transferring conducting polymer from the donor 

sheet to circuit using localized laser-induced heating [56]. The printed-transferred method does 

suffer from any issue about chemical incompatibilities that commonly arise in the solution 
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processed multilayer plastic circuit. However, the edges of the electrodes fabricated in this 

method are not well defined, which makes difficult to control the dimension of electrodes.  

 

Figure 2.14: (a) AFM image of a 1:1 P3HT: SWNT composite deposited on a surface with 

prepatterned regions of SiO2 and Octadecyltrimethoxysilane (OTMS) , illustrating successful 

resolution of 3 μ m feature sizes. (b) AFM image of a 1:1 P3HT: SWNT composite deposited on 

a surface with prepatterned regions of SiO2 and OTMS, illustrating a typically achievable tube 

density gradient. (c) AFM image of a 1:1 P3HT: SWNT composite deposited on a surface with 

prepatterned regions of Au and OTMS. (d)  Transfer curve, SWNT/pentacene and (e) Output 

curves, SWNT/pentacene device. Adapted from reference [55]. 

 

In order to achieve better resolution of the electrode channel, solution-processed selective 

surface functionalization techniques has been used by Hellstrom et al [55]. They deposited the Al 

of 40 nm using shallow masks by thermal evaporation followed by self-assembled monolayer of 

octadeyltrimethoxysilane treatment. After silane treatment, Al was etched away and 1:5 rr-

P3HT: SWNT composite was spin-casted. Finally, the samples were annealed and then 
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immersed in chloroform and sonicated until any stray materials were removed. Compared to the 

patterning on pristine the CNT, the CNT/polymer composite shows improved the reliability of 

the pattering process and improved the overall electrode uniformity. In addition, the minimum 

feature size of CNT electrodes of 3 µm over areas of 3 cm
2
 is achieved. The typical sheet 

resistance of the CNT/polymer composite electrode is in the range of 1-4 kΩ/sq. By integrating 

of the CNT/polymer composite electrodes of channel length of 50-150 µm with the pentacene 

and C60, both p-type and n-type OFETs were fabricated. These devices have showed excellence 

field effect transistors with mobility of 0.2-0.7 cm
2
/(V.s)  for pentance devices and  0.6-1.5 

cm
2
/(V.s) for C60 devices [55]. Most recently, Chang et al used have demonstrated the solution 

based direct pattering of the SWNT/poly(3, 4 - ethylenedioxythiophene)-

poly(styrenesulfonate)(PEDOT-PSS) composite electrodes by microcontact printing [56] These 

pattern electrodes show high transparency, conductivity and electromechanical stability.  

In addition to SWNTs, MWNTs are also good candidate for to be used as electrode for 

the organic transistor due to their high conductivity and mechanical strength [57]. However, 

there are some limitations to fabricate and application of MWNT electrodes. The MWNT are not 

well soluble in solution and their work is low, which is not matched with HOMO level of the p-

type OSC. To address this issue, Hong K et al showed that if MWNTs are wrapped with PSS, 

they become water soluble and their work-function are  increased to 4.83 eV, which is 0.36 

higher than that of untreated MWNTs [59].The mobility of the pentacene transistor fabricated 

using wrapped MWNTs (0.043 cm
2
/V.s) have shown four time higher than mobility of the 

control devices fabricated using gold electrodes (0.011 cm
2
/V.s). The major advantage of the 

CNT/polymer composite electrodes are solution processible cover the large area and low-cost 

fabrication.  
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2.7 Why There Is a Need More Study On CNT Electrodes  

Although all research groups have showed improved device performance with CNT 

electrodes than that of the control OFET devices with metal electrodes, fabrication of high-

performance OFETs with CNT electrodes is still remained a significant challenge. The reported 

CNT electrodes were fabricated from the individual CNTs, random network CNTs and 

CNT/polymer composite electrodes [40-49,51-57]. Individual CNTs have shown as efficient 

point contact for nano-scale OFET, they are not appropriate for practical application in large area 

electronic devices. The most commonly used approach is to use random network of CNTs as 

electrode materials, which were fabricated using either transfer printing, spray coating, or 

airbrushing method. In these methods, short channel length CNT electrodes cannot be fabricated 

due their low resolution, which are required for fabricating the high-performance OFETs. In 

addition, optimum charge injection may not occur due to the random alignment of CNT tips in 

the electrodes. One possible drawback of the CNT/polymer composite electrodes is that when 

gate voltage is applied to the OFET, a part of the applied gate voltage also modulates the 

electrodes which affect the device performance. As a result, the performance parameter such as 

mobility extracted from the OFETs contacted with CNT/polymer composite electrodes may 

earthier under or overestimated. In another report, CNT array electrode was fabricated by 

anchoring CNTs onto titanium contact using vacuum filtration method [40]. In this electrode 

pattern, CNTs appears to be random, density of the CNT is very low and dimension of the 

electrodes appears to be not well defined which may cause charge injection not only from the 

CNT electrode but also from the base metal electrode where CNTs are anchored.  

Therefore, in order to fabricate high-performance OFETs we need a new approach for 

fabricating CNT electrodes which should have well defined channel length and width with high 
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resolution, highly conducting, and metallic in nature.   The more efficient charge injection may 

be obtained if CNT electrode is fabricated from ultra-high density aligned array where individual 

CNTs are closely packed with tips parallel to each other’s with well-defined channel lengths. In 

addition, electrode fabricated aligned array CNTs they may provide more homogeneity from 

electrode to electrodes and can cover large areas. 

In addition to limitation of the CNT electrodes fabrication techniques, the nature of the 

CNT/OSC interface is not understood from the previous work. In particular, charge injection and 

transport mechanisms in the device with CNT electrode are still unexplored. Therefore, 

fabricating the high-performance OFETs with aligned array CNT electrodes, understanding the 

charge injection and transport mechanism, and determining the charge in injection barriers at the 

CNT/OSC interface are of great importance for achieving the overreaching goal of the CNT 

electrodes in organic electronics. 
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CHAPTER 3: DEVICE FABRICATION AND EXPERIMENTAL 

METHODS

  

 

 

3.1 Introduction  

Electronic and optoelectronic devices based on carbon nanotubes and organic 

semiconductors were fabricated using various micro and nanofabrication tools. I have developed 

new techniques to fabricate high-performance electronics devices. Organic electronic devices 

(mainly organic filed effect transistors) were fabricated using aligned array carbon nanotube 

electrodes (CNTs) thin films, which will be discussed in chapter 4, 5, and 6. In addition, I also 

fabricate optoelectronic devices where CNT thin films were used as an active channel material, 

which will be discussed in chapter 7.  

Organic field effect transistors (OFETs) based on various organic semiconductors were 

fabricated using aligned array CNT were materials. To compare the OFET device performance 

with CNTs aligned array, control OFETs devices were also fabricated with metal electrodes such 

as Au, Pd. All the transistors are fabricated in the bottom-contact and bottom-gate configuration. 

The schematic of a typical bottom-contact and bottom-gate configuration OFETs is shown in 

Figure 3.1. The geometry of the devices such as the channel length (L), channel width (W) is 

different in the different studies. For example: To demonstrate high-performance organic 

transistors we fabricated the devices using CNT electrodes with L = 0.7 µm (will discuss in 

chapter 4), whereas to investigate the charge injection mechanism though the carbon nanotube 

and organic interface, we fabricate devices with L = 0.2 µm (will discuss in chapter 5). In this 

                                                 

 Portions of this chapter have been published in the following journals:  Mater. Express 1, 80 

(2011); ACS Appl. Mater. Interfaces 3, 1180 (2011); Appl. Phys. Lett. 100, 023301 (2012); and 

ACS Nano 6, 4993 (2012).   
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chapter, we discuss in details about the electrodes fabrication as well as OFETs fabrication. The 

room temperature electronics transport properties and device performance are discuss in the 

chapter 4, and the low temperature electrical transport characterization and charge injection 

mechanism through the carbon nanotube and organic semiconductor interface are discussed in 

chapter 5. To improve the better charge injection we also fabricated OFETs by directly growth 

nanowires on the surface of the carbon nanotube electrodes. We discuss the characterization of 

the growth of the nanowires on the electrodes and the device performance in the chapter 6.  

 

 

Figure 3.1: Schematic of a bottom-contact and bottom-gate configuration organic field effect 

transistor (OFETs).   

 

In this chapter, fabrication of OFETs using aligned array CNTs source and drain 

electrodes will be discussed. Single walled carbon nanotube (SWNT) electrodes are fabricated 

through dielectrophoretic (DEP) assembly of SWNTs in a dense array and oxidative cutting of 

the SWNTs array by electron beam lithography (EBL) followed by precise oxygen plasma 

etching. At first I will discuss the fabrication of the metal electrodes which are used to assemble 

the carbon nanotube via DEP technique. Then the assembly of the carbon nanotube using DEP 

method will be discussed. Then the fabrication steps of the aligned array carbon nanotubes 
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electrodes will be discussed. Finally I will discuss the different fabrication methods of the 

organic transistors using aligned array carbon Nanotube electrodes.   

3.2 Fabrication of Metal Electrodes  

 

 

Figure 3.2: Schematic illustration of photolithography process. (a) Heavily doped Si substrates 

with a thermally grown 250 nm thick SiO2 layer as a dielectric.  (b) Spin-coating photoresist (c) 

Radiation of the UV light on the photoresistant though the mask. (d) Developing the photoresist. 

(e) Thermal deposition of metal (f) Lift off (removing the photoresist). 

 

We used heavily doped silicon (Si) wafer with diameter of 3 inch, obtained from Silicon 

Quest International, used as substrate. The silicon substrate is covered with thermally grown 250 

nm thick SiO2 layer which is used as a dielectric layer with dielectric constant of 3.9. We used 

both photo-lithography and electron beam lithography (EBL) followed by metal deposition in  

fabricating the metal electrodes.  
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3.2.1 Photo Lithography 

The schematic steps for the photo lithography are illustrated in Figure 3.2. The contact 

pad, connecting wires between contact pad and electrode, and alignment markers for secondary 

EBL are drawn on the Si substrate by photo lithography (Figure 3.3). At first the photoresist 

(Shipley S1813) is spin coated on the silicon wafer at 300 rms for 30 seconds followed by baking 

in oven at 110 
0
C for 3 minutes. The wafer is then exposed in UV through a Karl Seuss mask 

aligner for 8.3 seconds. Finally the Si wafer is developed in CD-26 for 25 seconds and rinse with 

deionize water (DI) water followed by nitrogen blown dry. The optical patterns are checked with 

optical microscopy. 

 

Figure 3.3: Schematic of a chip (without electrode pattern) contains contact pads, connecting 

leads and alignment markers for EBL. 

3.2.2 Metallization 

After develop, metal are deposited on the wafer by thermal deposition method.  The 

contact pad, connecting wires between contact pad and electrode, markers for secondary EBL are 
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fabricated by depositing the chromium (Cr) of 3 nm followed by gold of 45 nm. Cr is used as a 

sticking layer in between gold and SiO2 substrate. The thermal deposition is performed at 

vacuum pressure of less than 5×10
-6

 torr and the deposition rate are 0.1 A
0
/s and 0.4 A

0
/s for Cr 

and Au respectively. After metallization, the wafer is kept into PG remover, obtained from 

Microchem, for 1-2 hours. After that wafer were rinse with acetone, IPA and DI water followed 

by blown away nitrogen gas. Sometimes it is found that the liftoff was not work properly, that 

means that if the metal are still remained in the unwanted position on the chips. In this case, the 

wafer is kept into the acetone for longer time and then perform the sonication about  few seconds 

(say 30s ) and rinse with acetone, IPA and DI water and blown away with nitrogen gas.  

3.2.3 Electron Beam Lithography (EBL)  

The electron beam lithography (EBL) is used to fabricate the small metal electrode 

pattern (Figure 3.4) . The EBL was done by Zeiss Ultra-55 SEM combined with Nabity pattern 

generator. At first,  PMMA (poly(methylmethacrylate)) is spin coated on the chips at 4000 rpm 

for 60 seconds, (thickness less than 300 nm) followed by baking at 180
0 

C for 15 minutes on a 

hotplate. The electrode pattern was designed by designed CAD software. The electrode patterns 

with different channel lengths and channel widths are then defined by opening a window in 

PMMA resist via EBL writing. In the EBL, 28 KeV  is used  to expose the resist at current level 

of 30 PA and area dose of 300 µC/cm
2
.  After that the chips are developed by a mixture of MIBK 

and IPA (1:3) for 70 sec, kept into IPA for 15 sec and blown dry with nitrogen. 
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Figure 3.4: Schematic of a chip with electrode pattern (shown in right side). The electrodes are 

drawn by electron beam lithography (EBL). 

 

Then metal is deposited by either electron beam deposition as well as thermal disposition 

deposition depending on the metal. Thermal deposition is used to deposit gold, whereas electron 

beam deposition is used to deposit Pd, Cr, and Ti. The metallization is performed at pressure less 

than 5×10
-6

 torr with deposition rate of 0.3 A
0
/s for Pd and gold, and 0.1 A

0
/s for Cr.  Before 

depositing the Pd or gold, Cr with thickness of 3 nm is deposited as a striking layer. Usually the 

thickness of the deposited metal is 30 nm.  After the metallization, the chip/wafer is kept in 

acetone and rinse with IPA, DI water and blown with nitrogen. The fabricated electrodes patterns 

are checked with optical microscopy. The small electrode patterns were checked by scanning 

electron microscopy (SEM) or atomic force microscopy (AFM) imaging. Figure 3.5 shows 

optical image of the electrode pattern fabricated using EBL.   
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Figure 3.5: (a) Optical microscopy image of the electrodes pattern fabricated by electron beam 

lithography (EBL) (b) High magnified image. This image shows two electrodes along with 

markers.   

 

3.3 Fabrication of Carbon Nanotube Aligned Array Electrodes  

I have developed a new technique fabrication of aligned array CNT electrodes. The major 

steps for fabricating of aligned array CNT electrodes are follows and details of these are 

discussed in the following sections: 

(a) Assembly of CNT by Dielectrophoretic  

(b) Defined CNT electrode pattern by EBL 

(c) Make CNT electrode by plasma etch 

3.3.1 Carbon Nanotube Solution 

An important step for fabricating of aligned array CNT electrodes is the alignment of 

CNT with ultra-high density which was done via dielectrophoretic (DEP) technique [1-8]. We 

used high quality single walled carbon nanotube (SWNT) solution obtained from Brewer Science 
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to assemble SWNT in a dense array via dielectrophoresis (DEP). The SWNT solution was free 

from surfactant, catalytic particles and bundles, stable for many months, and contained mostly 

individual SWNTs [9]. The average diameter of the SWNTs was 1.7 nm and the length of the 

nanotubes varied from 0.3 to 10 µm with a median value of 1.5 µm as determined from atomic 

force microscopy (AFM) and scanning electron microscopy (SEM) investigations [10].
 
  

3.3.2 Dielectrophoresis Assembly of Carbon Nanotubes  

If the charge particles are placed in a uniform or non- uniform electric field, effective 

dipoles are formed due to redistribution of the free and bound charges. For an isotropic and 

electrically neutral particles the dipoles are equal and opposite charge. If the uniform electric 

field is applied to the isotopic and electrically neutral particles the net electrostatic force is zero 

because the magnitude of the electric forces are equal but opposite directions.  When a non- 

uniform electric field is applied to particles, forces acted on the dipole at the two ends are 

different, which induces force and torque on the charge particle that cause it to rotation and 

translation motion along the electric fields (Figure 3.6)[5, 10, 11]. The dielectrophoretic (DEP) 

method is very efficient for particle with high aspect ratio particle such as carbon nanotube, 

nanowire. Due to their high aspect ratios and anisotropic shape, these particles act efficiently 

with electric field, which result in the large diploe moment at the two end of the particle and 

make large DEP force on the particles.  
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Figure 3.6: A carbon nanotube in the electric field between two charge electrodes.    

 

The relation between the DEP force (FDEP) and created dipole moment (P) in the chage particle 

due to non-uniform electrical field (E) is given by [5]  

EpF


).(            (3.1) 

Considering carbon nanotube are considered as a long prolate spheroid the induced dipole 

moment is given by  
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 where,  r and l is the radius and length of the CNTs respectively, absolute permittivity of the 

medium (solvent ), Kf is the Claussius-Mossotti factor which is described by  
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where εp is the permittivity of the nanotube, σ is the conductivity, and ω = 2πf is the frequency of 

the applied ac voltage. Combining 3.1 and 3.2, the time averaged DEP force (FDEP) is [5,12] 

  ,Re 2

RMSfmDEP EKF                        (3.4)  
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Figure 3.7: (a) Dielectrophoretic (DEP) setup for assembly of CNTs. (b) Simulated electric field 

around in between Pd source and drain electrodes. (c) Schematic of aligned array CNT via DEP. 

 

DEP is very simple, easy, low-cost and time effective method for assembly the 

nanoparticles. DEP has been shown to assemble 2D, 1D and 0D nanomaterial’s at the selected 

position of the circuit for device applications [2, 3, 6, 10, 13]. Our group recently shown that 

CNT can be directly integrated to the prefabricated patterns in a 2D array with controllable 

alignment and linear density using DEP method.  Figure 3.7a show a cartoon of the DEP 

assembly set up. Palladiums (Pd) of 5 µm x 25 µm were used as a base material to anchor the 

aligned CNTs. We obtained the CNT aqueous solution from Brewer Science Inc. The solution 

was highly purified, stable, and surfactant free and it was diluted by six times in DI water for the 

DEP assembly. A 3 μL drop of the solution was placed on the Pd patterns and an ac voltage of 5 

Vp-p at 300 kHz was applied between the Pd patterns for 30 seconds. Because of the non-

uniform electric field, the DEP force act on the dipoles at the two end of the nanotube differently 

which result in a translational motion of the nanotube along the electric field gradient and align 

the nanotubes in the direction of the electric field lines (Figure 3.7b, 3.7c) [5]. 

 The SWNT assembly by DEP depends on several parameters such as applied voltage 

(V), frequency (f) of the applied voltage, concentration of nanotube solution, and time of the 

applied field. By optimization these parameters such as (V= 5V, f = 300 kHz, and t = 30 s) and 

by controlling the concentration of the nanotube solution, we can reproducibly control the linear 
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density of the nanotube in the aligned array. For this study we used parameters (solution 

concentration 8 µg/ml) to obtain dense array.  Figure 3.8 shows a representative SEM image of a 

part of the assembled SWNTs with an average linear density of ~30 SWNTs/μm. The resistance 

of this array is ~ 525 Ω and the corresponding sheet resistance is ~2.6 KΩ/sq. In addition, the 

SWNT aligned arrays are metallic. The low resistance and metallic behavior of the SWNT 

aligned array make them ideal material for electrodes. The details of the SWNT are characterized 

by AFM, SEM and electrical transport measurement. (will be discussed in Chapter 4). 

 

Figure 3.8: Scanning electron microscopy (SEM) of aligned array SWNT array. The linear 

density of the array is ~ 30 SWNT/µm. 

 

3.3.3 Electron Beam Lithography (EBL) for CNT Electrodes Fabrication 

 After assembly of SWNTs in a dense array, the electrode patterns are drawn by EBL 

followed by precise oxidative cutting of the SWNTs array though the open window using plasma 

etching (Figure 3.9). The process steps of the EBL are similar to what I discussed in earlier about 

fabrication of the metal electrodes (see section 3.2.4). In order to perform EBL on the CNT 

array, a layer of PMMA (~thickness 400 nm) was spin coated on the chips containing aligned 

CNT arrays followed by baking at 180
0 

C for 15 minutes on a hotplate (Figure 3.9). The CNT 



56 
 

electrode was then defined by opening a window in PMMA resist via EBL writing and 

developing in a mixture of MIBK and IPA (Figure 3.10).  The channel length and channel width 

of the electrodes are controlled using the DisignCAD software. We fabricated CNT electrodes of 

L = 200 nm, 700 nm, 2, 3, 4 µm with W = 25 μm to fabricate devices. 

 

Figure 3.9: Schematic illustration of carbon nanotube electrodes fabrication method from the 

aligned array. (i) Spin coating PMMA resist, (ii) opening a window on the CNTs array via EBL, 

(iii) etching the exposed CNTs by oxygen plasma, and finally (iv) remove PMMA by keeping 

into chloroform for 12 hours. 

 

3.3.4 Plasma Etching 

Etching is a method which is used to remove the material from the wafer or any other 

substrates. The etching process can be classified into mainly in two categories: wet etching and 

dry etching. To fabricate the CNT electrodes, we used plasma etching which is a purely chemical 

dry etching technique. During the process of electrode fabrication, I found that the fabrication of 

the CNT electrodes depends on several parameters such as thickness of PMMA layer, dose 
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parameter of the EBL, etching time, and gas flow in the plasma etcher chamber. It is found that 

compared to the other parameters, etching time is dominated and more sensitive. When the 

devices process with same parameters and then etched with different etching time, I found that 

device to device varies significantly. For example, when the sample is etched for 30 sec, the 

CNTs are not etched completely from the desired place (uncoated CNTs by PMMA). On the 

other hand, when the sample is etched for 90 sec, the CNTs etched from entire place (both coated 

CNT as well as uncoated CNTs by PMMA). To optimize this process, I made a series of the 

devices and then used different plasma etching times for different devices and checked with the 

devices by SEM. Finally, I found that optimize etching time is 80 seconds for fabrication of the 

CNT electrodes.  

 

 
Figure 3.10: Optical microscopy image of CNT electrode fabrication steps (after EBL and 

develop). This figure shows a straight window is opened by EBL. 

 

After the EBL and development, the chips were then placed in an oxygen plasma 

chamber and exposed CNT were etched away through the open window (Figure 3.9 and 3.10). A 

mixture of oxygen (20%) and argon (80%) gas with flow rate of 15-20 CCM was used. Finally, 

devices were kept into the chloroform for 12 hours and rinse with acetone, IPA, and DI water to 
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remove the remaining PMMA (Figure 3.9). The SEM of a part of SWNT aligned array 

electrodes are shown in Figure 3.11. As we see from this Figure shows that SWNT electrodes 

have well defined channel length and width. 

 

Figure 3.11: Scanning electron microscopy (SEM) image of CNT aligned array electrodes with 

length of (a) 400 nm, (b) 2 µm. The image shows a part of the whole electrodes. The width of the 

electrodes is 25 µm.   

 

3.4 Fabrication of Organic Field Effect Transistors 

After the CNT electrodes and metal electrode, OFETs were fabricated with various 

organic semiconductors such pentacene, P3HT, P3HT nanowires. All the OFETs are fabricated 

in bottom-gated and bottom-contacted configurations. The OFETs are fabricated either thermal 

vacuum deposition method or solution processed deposition methods depending on the organic 

semiconductors. To fabricate pentacene OFETs thermal deposition method was used whereas to 

fabricate the P3HT film and P3HT nanowire OFETs, solution processed method was used.    
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3.4.1 Vacuum Thermal Deposition Methods 

We used vacuum thermal deposition method to deposit the thin film of small molecule 

organic semiconductors such as pentacene, buckminsterfullerene (or buckyball) (C60). 

Pentacene power was purchased from Sigma Aldrich. Pentacene was deposited by thermal 

evaporation onto both aligned array electrodes and Pd electrodes. To pentacene deposition, the 

pentacene power is loaded into the quartz crucible and kept is metal boat. The pentacene 

deposition is performed at pressure of 1×10
-6

 pa. The deposition rate was 0.2 A
0
/s and thickness 

of the pentacene thin film was 30 nm. Although deposition of the pentacene is similar to metal 

deposition, I found that deposition rate in the pentacene is more sensitive than the metal 

deposition and the grain size of the pentacene thin film varies on the deposition rate. The 

deposition rate is kept slow to get a smooth thin film with a uniform grain size. The details 

characterization of pentacene thin films will be discussed in the next chapter. Similar steps are 

also followed to deposit the buckminsterfullerene (or buckyball) (C60).     

3.4.2 Solution Processed Deposition Methods 

We used solution process vacuum deposition method (drop costing,  direct growth) to 

deposit the thin film of polymer semiconductors such as P3HT (poly(3-hexylthiophene)), P3HT 

nanowire, and Poly (2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT).  

P3HT powder was purchased from EMD chemicals Inc and was dissolved into 1,2 

dichlorobenzene by stirring the solution with magnetic stirrer for 2 hours at 40 
0
C. The 

concentration of the solution was 5 mg/ml. The solution was then filtered with 0.2 μm syringe 

filter. A thin film of P3HT was then deposited onto chips containing both CNT and Au electrode 
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by drop cast method inside a N2 glove box. The fabricated devices were then thermally annealed 

at 130-140 
0
C on a hot plate for 15 minutes to evaporate the solvent.  

PBTTT power was dissolved in anisole with a concentration of 0.25 mg/mL at 90 
o
C in a 

glass vial. Bottom contacted PBTTT FETs were fabricated by depositing PBTTT film onto chips 

containing both CNT and Au electrode by drop cast method inside a N2 glove box and kept 12 h 

to evaporate the solvent.  

P3HT nanowire OFETs were fabricating by directly growing the nanowire on the surface 

on the CNTs. The details about this fabrication will be discussed in chapter 6.   

3.5 Characterization and Measurement 

3.5.1 Process Characterization 

The scanning electron microscopy (SEM) images were taken using Zeiss Ultra -55 SEM 

with an accelerating voltage 1 kV. Tapping mode atomic force microscopy (AFM) images were 

acquired by Dimension 3100 AFM (Veeco). We performed the Raman spectroscopy using a 

Renishaw In via Raman microscope. The spectrometer was calibrated with a Si standard using a 

Si band position at 520.3 cm
-1

.   

3.5.2 Room Temperature Transport Measurement Setup 

The electrical transport measurements of the CNT arrays was carried out by DL 

instruments 1211 current preamplifier and a Keithley 2400 source meter interfaced with 

LabView program. The OFET characteristics were measured using Hewlett-Packed (HP) 4145B 

semiconductor parametric analyzer connected to a probe station inside an enclosed glove box 

system filled with nitrogen gas (Figure 3.12) 
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Figure 3.12: Electronics transport measurement setup for device characterization at room 

temperature. 

 

3.5.3  Low Temperature Transport Measurement Setup 

We measured current-voltage (I-V) characteristics of our devices at different temperatures 

in the range of 300 K to 77 K. In order to take reproducible measurements at each temperature, 

we measured each I-V curve at least two times, and waited for 15 minutes in successive 

measurements. The temperature was controlled with a lakeshore temperature controller and we 

waited at least 10 minutes to stabilize the temperature before taking data. 
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CHAPTER 4: DEVICE PERFORMANCE OF ORGANIC FIELD EFFECT 

TRANSISTORS WITH CARBON NANOTUBE ELECTRODES 
 

4.1 Introduction 

Organic field effect transistor (OFET) has attracted tremendous attention due to their 

low-cost fabrication process and prospect for large area, flexible, transparent electronic device 

applications [1-2]. The performance of the OFET device is not only depends on the molecular 

properties of the organic semiconducting material, but also it is extremely sensitive to the 

organic material-metal electrode interface [3-5]. The metals such as gold, palladium are widely 

used as source and drain (S/D) electrodes for OFET device [3]. When metal electrodes are 

contacted with organic semiconducting material, in addition to the Schottky barrier, dipole 

barrier is formed at the interface [6,7]. As a result, the contact resistance between the metal and 

semiconductor become very large and charge transport is often limited by the interface [1-5, 7-9] 

. In addition, metal electrodes are not solution processed and they are not flexible. However, 

flexible electrodes are required in the application of flexible electronics. In order to overcome the 

problems of high contact resistance, dipole formation and non-flexibility of metal electrodes, 

carbon nanotube (CNT) has been considered as a promising electrode materials for organic 

electronics due to their highly conducting, flexible, and one-dimensional structure [10-19]. In the 

previous chapter, we demonstrated a novel, controlled and highly reproducible approach for the 

fabrication of CNT aligned array electrode.  The ultra-high density CNTs were aligned with a 

very high linear density (~30 CNTs/μm) from high quality CNT aqueous solution by 

                                                 

 Portions of this chapter have been published in the following journals:  Mater. Express 1, 80 

(2011); ACS Appl. Mater. Interfaces 3, 1180 (2011); Appl. Phys. Lett. 100, 023301 (2012); and 

ACS Nano 6, 4993 (2012). 
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dielectrophoresis (DEP) techniques. The CNT source and drain electrodes are fabricated with 

electron beam lithography (EBL) followed by etching CNTs with oxygen plasma.  

In this chapter, at first we discuss the characterization of the CNT assembly as well as 

CNT aligned array electrodes. Then we demonstrate fabrication of high-performance OFETs 

using aligned array CNT electrodes and investigate the detailed electronic transport properties of 

the fabricated devices. A number of promising organic semiconductors, such as poly(3-

hexylthiophene) (P3HT) and pentacene, are used to fabricate OFETs. To examine the 

functionality and efficiency of the CNT array electrodes, the performance of the CNT contact 

OFETs are compared with the performance of the metal electrode contact OFETs.  The OFETs 

with CNT electrodes show a remarkable enhancement in the device performance such as high 

mobility, high current on-off ratio, higher cutoff frequency, absence of short channel effect and 

better charge carrier injection than those OFETs with metal electrodes. 

4.2 Characterization of CNT Assembly and CNT Electrodes 

 

 

Figure 4.1: The scanning electron microscopy (SEM) image of a typical aligned array single 

walled carbon Nanotubes (SWNTs), assembled by dielectrophoresis (DEP).(b) High magnified 

image of the SWNT assembly. 
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Figure 4.1 shows a representative SEM image of a densely aligned array of CNT 

assembled via DEP and the high magnified SEM image is shown in inset of this Figure 4.1 b. 

The linear density of the SWNT in the electrodes is about 30 SWNTs/µm. The resistance of this 

array was ~ 525 Ω (Figure 2b) with a corresponding resistivity of ~2.5 kΩ/sq. We have recently 

shown that by controlling the concentration of the CNT in the solution, we can reproducibly 

control the linear density of the CNT in the array from 1 CNT/µm to 30 CNT/µm [20] .This 

study also showed that at low densities, almost all of the nanotubes are well aligned and are 

parallel to each other whereas, at higher density, about 90% are aligned within ±10
0
 of the 

longitudinal axis [20].  In this experiment, we only used densely packed aligned array so that the 

resistance of the array is low (<1 KΩ). In addition we have also verified the metallic nature of 

the array by measuring current-gate voltage characteristics (Figure 4.2). This Figure clearly show 

that current is independent of the gate voltage, indicating that CNT array act as a metallic sheet. 

The low resistance and metallic behavior of the array makes them ideal material for OFET 

electrodes.  

 

Figure 4.2: (a) Current (I)-voltage (V), and (b) Current-gate voltage (Vg) characteristics at V =100 

mV of typical aligned array SWNT. 
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Figure 4.3: (a) SEM image of a part of the SWNT aligned array electrodes. (b) High 

magnification AFM image of CNT tips in the CNT electrodes. (c)  SEM image of a part of 

aligned array SWNT electrodes.    

 

Figure 4.3 shows a SEM image of a part of CNT electrodes with well-defined channel 

length and width. Figure 4.3a shows of an electrodes with channel length L = 2 µm, whereas 

Figure 4.3 shows of a electrodes with channel length L = 200 nm. The linear density of the CNT 

in the electrodes is about 30 CNTs/µm.  The rms surface roughness of the CNT arrays in the 

electrodes is about 1.8 nm. The images also show no residual nanotubes in the channel which 

was further confirmed by measuring current-voltage characteristics of the electrodes before 

depositing pentacene, which showed negligible current (sub pA noise current, not shown here). 

In the electrodes, the nanotubes are well aligned where individual nanotubes are closely 

packed with  parallel and open-ended tips, as shown in the atomic force microcopy (AFM) image 

(Figure 4.3b). One fundamental advantage of our electrode pattern is that all the tips of CNTs in 

the electrodes are parallel and open ended; because in our experiment, electrodes are formed 

though oxidative cutting of each CNTs in the middle by oxygen plasma etching. This is in 



68 
 

distinct contrast to the previous reports of CNT electrode fabrication. The parallel and open-

ended tips are advantageous because parallel tips can enhance tunneling of the charge carriers at 

nanotube electrodes and pentacene interface due to electric field enhancement at these tips. In 

addition, open-ended tips provide higher field emission than the close-end nanotube tips. 

4.3 Poly(3-hexylthiophene)(P3HT) Transistor with CNT Aligned Array Electrodes  

4.3.1 Fabrication of P3HT Transistors  

 

 

Figure 4.4: The representative SEM images of the (c) CNT electrode and (d) gold electrode. The 

electrode geometry of the both CNT and gold electrodes are the same. (c) Schematic diagram of 

P3HT OFET with aligned array CNT electrodes. (d) AFM image of deposited P3HT thin film.    

 

We fabricated P3HT OFET using aligned array CNT electrodes with channel length of 2 

um and width 25 um (Figure 4.4a) To investigate the performance of the OFET with CNT 

electrodes, control devices were also fabricated using gold electrodes with the similar geometry 

of the CNT electrodes (Figure 4.4b). The schematic diagram of the P3HT OFET with CNT 

electrodes is shown in Figure 4.4c.  A thin film of P3HT was then deposited onto chips 

containing both CNT and Au electrode by drop cast method inside a N2 glove box. The 

fabricated devices were then thermally annealed at 130-140 
0
C on a hot plate for 15 minutes to 
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evaporate the solvent.  The atomic force microscopy (AFM) image of the P3HT thin film is 

shown is Figure 4.4d. The details of the P3HT OFET fabrication are discussed in chapter 3. The 

OFET characteristics were measured using Hewlett-Packed (HP) 4145B semiconductor 

parametric analyzer connected to a probe station inside an enclosed glove box system filled with 

nitrogen gas. 

4.3.2 Transport Properties of P3HT Transistors 

 

As an example of the effectiveness of our aligned CNT array electrode, we fabricated 

P3HT thin film OFET using CNT array electrodes (CNT/OFET). For control experiment, OFET 

with gold electrodes was also fabricated (Au/OFET). The SEM of the gold electrode is shown in 

Figure 4.4b. The source-drain current (Id) versus source-drain voltage (Vd) characteristics (output 

curve) of the CNT/ OFET and Au/OFET were measured at different gate voltages (Vg) and are 

shown in Figure 4.5a and 4.5b respectively. 

 

 

Figure 4.5: Output characteristics (Id versus Vd at various Vg) of P3HT film OFET with (a) CNT 

align array electrodes and (b) gold electrode at Vg  = 0, -20,-40, -60 and -80V. Both OFETs has 

L= 2 μm and W = 25 μm. Both curves are plotted in the same scale to see the clear difference in 

output current value of these two OFETs. 
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Compared to the output curve of Au/OFET device, output curve of CNT/OFET device 

shows better drain current modulation with Vg. In addition, saturation current Id,sat (2.5 μA) of 

CNT/OFET device is higher than the saturation current (0.9 μA) of the Au/OFET device at Vg= - 

80 V. In low Vds region, the curve shows a sub-linear onset due to contact resistance, hallmark of 

short channel OFETs. Since the channel length of our device is only 2 µm, the nonlinear onset 

behavior appears in our device. Similar nonlinear behavior has also been observed for the OFETs 

fabricated with RGO electrode as well as OFET with metal electrode[21].   

 Transfer characteristics of the CNT/OFET and Au/OFET device are shown in left axis in  

Figure 4.6a and 4.6b respectively ,where Id is plotted as a function of Vg with a fixed Vd = -60V.  

The √Id versus Vg plots are shown right axis of Figure 4.6a and 4.6b, from where threshold 

voltage (VT) was calculated to be 0 V and 10 V for CNT/OFET and Au/OFET device 

respectively. From here, the saturation mobility (µsat) and linear mobility (µlin) of the devices 

were calculated using following standard formula  

µsat=Id,sat(2L/WCi)(1/(Vg-VT)
2
)          (4.1) 

µlin= (L/WCiVd)(dId/dVg)          (4.2) 

 where Ci is the capacitance per unit area of the gate insulator (13.8 nF/cm
2
) [21]. The calculated 

µlin and µsat of CNT/OFET device are 0.004 and 0.005 cm
2
/Vs respectively. On the other hand, 

both µlin and µsat of Au/OFET device are 0.001 cm
2
/Vs, five times smaller than that of 

CNT/OFET.  The current on/off ratio of CNT/OFET device is 5×10
3
, whereas Ion/Ioff of 

Au/OFET is only 9×10
1
. The current on-off ratio of CNT/OFET device is more than two order 

magnitude higher than the on-off ratio of Au/OFET. From these results, we conclude that OFET 

with aligned CNT array electrode shows superior device performance including higher mobility, 

higher on-current and higher current on-off ratio than OFET with gold electrodes.  
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Figure 4.6: Transfer characteristics (Id versus Vg)  at Vd = -60V (left axis) and √Id  (right axis) of 

the P3HT film OFET with (a) CNT aligned array electrode and (b) gold electrode 

 

The reasons for better device performance with aligned array CNT electrode compared to 

Au electrode are as follows: The work function of gold (5.1 eV)  and CNT (5.0 eV) are very 

close, and according to Schottky-Mott model, good contact of P3HT is expected with both gold 

and CNT [1, 6, 17]
.
 However, when gold electrode is contacted with organic material, the dipoles 

barriers are formed at the interface [6,7] and charger carrier transport though the interface is 

limited by this barrier. In addition, the gold contact exhibits 2D electrostatic effect and it has 

little influence on the tunneling of the charge carrier though the Au/semiconductor interface. On 

the other hand,  the individual CNTs in the CNT array electrodes having a form factor which 

enhance the electric field at the apex of nanotube that assists the tunneling the charge carrier 

though the contact barrier [15, 16, 19]
.
 Moreover, the strong π-π bonding between CNT and 

organic material makes strong interfacial contact and reduces the barrier height [14, 16]. 

Therefore, the possible reasons for improved device performance using CNT electrode over gold 

electrode device  are due to  absence of the dipole barrier, CNT geometry induced electric field 

and  strong π-π bonding between CNT and organic material. 
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In this section, I showed the fabrication of OFET using both CNT array electrode and 

gold electrode in order to examine the functionality of the CNT array electrodes. It was found 

that OFET device with CNT electrode has shown better performance than the device with gold 

electrode. The improved device performance using CNT array electrode is attributed to absence 

of dipoles formation, strong bonding interaction between CNT/organic material and the 

geometry structure of aligned array CNT electrode.  

4.4 Pentacene Transistors with CNT Aligned Array Electrodes   

For many applications of organic electronic such as integrated circuits, OFETs should 

operate at high switching speed with a high on-current [22, 23]. The switching speed of OFETs 

is proportional to the mobility (μ) and inversely proportional to the square of the channel length 

(L) [24, 25]. In addition, the on-current is also inversely proportional to the channel length. 

Therefore, in order to raise the switching speed and on-current, OFETs with small channel length 

(short channel OFETs) and high mobility are required. Up until now, short channel OFETs were 

fabricated using metal electrodes (mostly gold) where interfacial barriers such as Schottky 

barrier and dipole barrier are known to create major bottleneck for charge carrier injection [6, 7].  

Both the theoretical and experimental studies reveal that when the channel length is reduced, the 

contact resistance at metal-organic semiconductor interface becomes very high  compared to the 

resistance of the organic semiconductors in the channel[8],
8
 leading to a significant reduction in 

mobility. Moreover, these devices show a lower current on-off ratio due to a high off current and 

displays parabolic behavior in the output current, known as short channel effect.[8, 25]
 

Therefore, achieving high performance short channel OFETs still remains a significant 

challenge. One way to overcome the challenges of short channel devices is to search for 
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alternative electrode materials with more efficient charge injection into organic materials. In the 

last section I have shown that due to its unique electronic properties and strong π-π interaction 

with organic semiconductors [14] carbon nanotubes electrode can overcome the limitations of 

metal electrodes in fabricating high performance short channel devices.   

In this section, we discuss the high-performance pentacene OFETs using aligned array 

carbon nanotubes electrode with L = 0.7 μm.  The electronic transport measurement of 10 such 

devices show that the maximum mobility is 0.65 cm
2
/Vs with an average of 0.25 cm

2
/Vs, and the 

current on-off ratio is in the range of 2.9×10
3
 to 1.7×10

6
. The maximum mobility and on-off ratio 

reported here are the highest reported for the short channel pentacene OFETs. We also show that 

the calculated maximum cutoff frequency (fc) of the device is 211 MHz with an average of 81.5 

MHz. The maximum fc of our device is one order of magnitude higher than the fc of control and 

reported devices fabricated using gold electrodes. We attribute the high performance of our 

devices using nanotubes electrodes to improve charge injection and better interfacial contacts 

between pentacene and the aligned array carbon nanotube electrodes. 

4.4.1  Fabrication of Pentacene Transistors 

To fabricate penance OFETs, we used CNT electrodes with channel length 700 um and 

channel with of 25 µm. Here short channel CNT electrodes were used deliberately because we 

discussed that to fabricate high-switching speed OFETs, the device channel length should be 

small.  The scanning electron microscopy (SEM) image of a part of the SWNT aligned array 

electrodes is shown in Figure 4.7. 
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Figure 4.7: (a) SEM image of a part of the CNT aligned array electrodes with channel length of 

700 nm.  

In order to compare the performance of our SWNT aligned array electrodes, gold 

electrodes of similar geometry were fabricated for control experiments. The pentacene thin film 

(30 nm) was thermally evaporated on top of the SWNT electrodes and gold electrodes. Figure 

4.8 is a part of the AFM image of the deposited pentacene thin film, showing a nearly uniform 

gain size and morphology throughout.  

 

Figure 4.8: AFM image of deposited pentacene thin film. (a) height image (b) phase image and 

(c) surface image. The scale bars in Figures (a), (b), and (c) are 1 μm. 

 

We did not observe any noticeable difference between the morphologies of the pentacene 

films deposited on SWNT and gold electrodes (Figure 4.9). The OFET characteristics were 
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measured using Hewlett-Packed (HP) 4145B semiconductor parametric analyzer connected to a 

probe station inside an enclosed glove box system with nitrogen gas flow. 

 

 

Figure 4.9:  (a) AFM height image of deposited pentacene thin film. The morphology of the film 

(a) rms surface roughness is  ~ 3-4 nm (b) grain size is 100-150 nm.  

 

4.4.2 Short Channel Pentacene Transistors  

The electronic transport characteristics of a typical pentacene OFET using aligned SWNT 

array electrodes with high mobility and high current on-off ratio are shown in Figure 4.10a and 

4.10b respectively. The transfer characteristics (Figure 4.10a) show a well modulation of drain 

current (Id) with gate voltage (Vg) with a current on-off ratio of 1.7×10
6
.The linear mobility (μ) of 

the device is 0.25 cm
2
/Vs, calculated using standard formula )/)(/( gddi dVdIVWCL  where, 

Vd is the source-drain voltage, Ci is the capacitance per unit area of the gate insulator (13.8 

nF/cm
2
). The output characteristics (Id-Vd curves) of the same device (Figure 4.10b) displays a 

high output current of ~ 215 μA at Vg = - 60 V and Vd = - 60 V. Although a high output current in 
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the short channel OFETs is expected, well gate modulation with high on-off ratio is not typically 

observed in short channel OFETs using conventional metal electrodes. The linear behavior of the 

output curves at low bias is consistent with ideal ohmic contact, suggesting a good interfacial 

contact between the aligned nanotube electrode and pentacene. Out of the 10 pentacene/SWNT 

OFET devices that we have measured, we found that the motilities are in the range of 0.09 to 

0.65 cm
2
/Vs with an average of 0.25±0.16 cm

2
/Vs and the on-off ratios of the most of the 

devices are greater than 10
4
 with a maximum of 1.7×10

6
. The maximum mobility of 0.65 cm

2
/Vs 

and maximum on-off ratio of 1.7×10
6
 of our short channel devices using SWNT aligned array 

electrodes are the highest reported for any submicron pentacene OFETs [25, 26]. 
 
 

 

Figure 4.10: (a) Transfer characteristics (Id versus Vg) at Vd  = -10 V (left axis) and √Id (right axis) 

of typical OFETs using SWNT aligned array electrodes and. Output characteristics (Id versus Vd) 

at Vg = 0 to -60 V with -15 steps of the same device. 

 

The performance of our OFETs using SWNT aligned array electrodes are also better 

compared to our control OFETs using gold electrodes with identical device geometry, which 

were fabricated and measured under same experimental conditions. The transfer and output 

characteristics of a typical pentacene/gold device are shown in Figure 4.11a and 4.11b 
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respectively. The mobility, on-off ratio, and output current of this device are 0.03 cm
2
/Vs, 

1.3×10
4
 and 17 μA (at Vg = -60V and Vd = -60V) respectively. The mobility of the measured 10 

pentacene/gold devices is in the range of 5×10
-3 

to 0.05 cm
2
/Vs with an average of 0.02±0.01 

cm
2
/Vs, and the on-off is in the range of 5.8×10

2
 to 2.1×10

4
.
 
Therefore, the maximum mobility 

and maximum on-off ratio of the devices using nanotube electrodes are ~13 times and ~100 

times higher than that of devices using gold electrodes, respectively. In addition, the output 

curves of the OFETs using gold electrodes show a non-linear behavior at both low and high bias, 

a common phenomenon observed in short channel OFETs with metal electrodes and high gate 

thickness [23, 24].
 
  

 

Figure 4.11: (a) Transfer characteristics (Id versus Vg) at Vd  = -10 V (left axis) and √Id (right axis) 

of typical OFETs using gold electrodes and. Output characteristics (Id versus Vd) at Vg = 0 to -60 

V with -15 steps of the same device. 

In contrast, although our pentacene/SWNT OFETs fabricated using a small channel length (0.7 

μm) and comparable oxide thickness (0.25 μm), they show linear behavior of the output curves  

and provide a higher mobility along with higher on-off ratio (Figure 4.10), suggesting that the 

performance is not limited by short channel effect. As the short channel effect is a major 
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bottleneck in reducing the device size for high performance OFETs, [5, 8, 23]
   

the improvement 

of our short channel devices using SWNT electrodes is very significant. The performance of the 

OFETs mainly depends on the film morphology of the channel materials and the contact barriers 

between the films and electrodes. As the both the film morphologies of the pentacene/SWNT and 

pentacene/gold devices are the same, the improved performance of pentacene/SWNT devices are 

mainly arose from the improved contact.  

 

Figure 4.12: Box plot of the on-current of 10 pentacene/SWNT (top red box) and 10 

pentacene/gold devices (bottom blue box). 

 

In order to demonstrate improved charge injection of the SWNT aligned array electrodes, 

we show box plots of on-current of all measured pentacene/SWNT devices (red) along with all 

pentacene/gold devices (blue) in Figure 4.12. The on-current is calculated from the transfer curve 

at Vg= -60 V and Vd = -10V. The average on-current of pentacene/SWNT devices is 65 μA with a 

maximum of 100 μA, whereas the average on-current of pentacene/gold device is only 6.6 μA 

with a maximum of 11 μA. Therefore, the both average and the maximum on-current of the 
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pentacene/SWNT devices are ~10 times higher than that of pentacene/gold devices. This clearly 

demonstrates that the charge injection from densely aligned SWNT array electrodes with open 

ended tips is much better than that of the gold electrodes.  

4.4.3 High-Frequency Pentacene Transistors  

The short channel OFETs with high mobility can provide improved switching speed, 

which is required for many practical applications such as display electronics. The unity gain 

cutoff frequency of the transistors in the linear region is described as  

fc = (μVd/2πL
2
)[CiWL/(CiWL+Cp)       (4.3) 

 where Ci is the gate capacitance per unit area and CP is the parasitic capacitance. Considering Cp 

<< CiWL, [5, 27] we calculated fc of our devices and a plot of the fc versus on-off ratio is shown 

in Figure 4.13.  This plot shows that compared to the pentacene/gold devices (blue circles), most 

of the pentacene/SWNT devices (red stars) have a higher fc along with a higher on-off ratio. The 

average fc of the pentacene/SWNT device is 81.5±54.4 MHz with a maximum of 211 MHz, On 

the other hand, average fc of the pentacene/gold devices is only 6.5±4.5 MHz with a maximum of 

16.5 MHz. While the fc of the pentacene/gold devices is similar to the other reported fc the 

OFETs using gold electrodes,[28] the maximum fc = 211 MHz for SWNT/pentacene OFET 

reported here is one order magnitude higher than the previous best reported fc of the OFETs 

(Table 4.1).[4, 24, 28]   Recently, it was shown that calculated value of fc is similar to the 

measured value [28] justifying the assumption of negligible Cp in our devices. Nevertheless, if 

we consider Cp is comparable CiWL in our devices, the maximum fc  of the SWNT/pentacene will 

still be more than 100 MHz, which is still higher than fc for any OFETs using metal electrodes. 
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Figure 4.13: Cutoff frequency is plotted against corresponding current on-off ratio for 10 

pentacene/SWNT devices (red star) and 10 pentacene/gold devices (blue circle). 

 

The improved performance of our short channel OFETs using SWNT electrodes over the 

control and reported OFETs using gold electrodes is attributed to enhanced charge injection from 

aligned array SWNT electrodes. Compared to gold, carbon nanotube form a lower contact barrier 

with pentacene due to strong pi-pi interaction leading to higher charge injection from nanotube 

electrodes into the pentacene [14]. Additionally, in contrast to gold, carbon nanotubes have 

electric field emission properties due to their one dimensional structure and the larger field 

emission comes from the nanotube tips than the side-wall [29, 30]. The open-ended tips 

composed of irregular-shaped graphitic sheets which have more dangling bond states on their 

edges than the flat edge of the usual close-ended nanotubes [30]. These dangling bond states 

have a better coupling with states of the emitted electrons which results in more emission 

current[30, 31].  The density of nanotubes in our aligned array electrodes is very high (~15-20 

SWNTs/μm) and they are parallel to each other’s. Since, in our nanotubes electrodes, all the 

nanotube tips are open-ended fabricated through oxidative etching, the field emission of the 

nanotubes are enhanced [32]. Therefore, a large number of parallel nanotubes with open-ended 
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tips contribute to the field emission simultaneously resulting in higher charge injection in the 

devices. 

Table 4.1: Comparison of our OFETs performance with the reported short channel OFETs. 

 
 

4.5 PBTTT Transistor with CNT Aligned Array Electrodes  

In this section, we show fabrication and electronic transport properties of the Poly (2,5-

bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT) field effect transistors using 

aligned array CNT electrodes.  

4.5.1 Fabrication of PBTTT Transistors 

PBTTT power was dissolved in anisole with a concentration of 0.25 mg/mL at 90 
o
C in a 

glass vial.  Bottom contacted PBTTT FETs were fabricated by depositing PBTTT film onto 

chips containing both CNT and Au electrode by drop cast method inside a N2 glove box and kept 

12 h to evaporate the solvent. The channel length and width for both CNT and gold electrode 

were 2 µm and 25 µm respectively.  The CNT/PBTTT and Au/PBTTT devices were fabricated at 

same run and measured at the same time to minimize the experimental errors.  The AFM images 

of the thin films with thickness of ~ 80 nm on the chip contain CNT electrodes are shown in 

Figure 4.14.  
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Figure 4.14: AFM image of deposited PBTTT thin film. (a) height image (b) phase image. The 

scale bars: 500 nm. 

 

4.5.2 Transport Properties of PBTTT Transistors 

Figure 4.15 shows Id - Vd curves at Vg = 0 V to -80 V with -20 V interval of a 

representative CNT/PBTTT device. This figure shows excellent current modulation along with 

current saturation with gate voltage. In addition, the linear behavior of the output curves a low Vd 

indicating a good interfacial contact between CNT electrode and PBTTT. The calculated linear 

mobility for this device is found to be 0.06 cm
2
/V.s and current on-off ratio of 1×10

4
.    

 

 

Figure 4.15: (a) Output characteristics (Id versus Vd) at Vg = 0 to -80 V with -20V steps of the 

same device. (b) Transfer characteristics (Id versus Vg) at Vd  = -20 V of typical CNT/PBTTT 

device. 
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Figure 4.16: (a) Output characteristics (Id versus Vd) at Vg = 0 to -80 V with -20V steps of the 

same device. (b) Transfer characteristics (Id versus Vg) at Vd  = -20 V of typical gold/PBTTT 

device. 

 

The Id-Vd and Id -Vg curves of the gold/PBTTT device are shown in Figure 4.16. The 

mobility and current on-off ratio of this device are 9.3×10
3
 and 0.03 cm

2
/V.s, respectively. 

Although mobility of the CNT/PBTTT is slightly higher than that of the mobility of the 

gold/PBTTT OFET, the improvement is not significant. This slightly higher mobility in the 

CNT/PBTTT device may due to device-to-device variation.  In order to examine the device-to-

device reproducibility, we measured total 18 devices (9 CNT/PBTTT devices and 9 gold/PBTTT 

devices). The mobility versus corresponding current on-off ratio of these devices is shown in 

Figure 4.17. This figure shows that the device performances such as mobility, current on-off 

ratio are not improved with the CNT electrode. This result is a sharp contrast to our result 

obtained for the CNT/P3HT and CNT/pentacene OFETs. We showed in the last sections that 

both the performance of the P3HT and pentacene OFETs were significantly improved with CNT 
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electrodes. Currently it is not clear why CNT electrodes cannot improve the performance of the 

PBTTT OFETs. We are still working on this project to understand this. 

 

Figure 4.17: Mobility versus corresponding current on-off ratio for 9 CNT/PBTTT devices (red 

circle) and 9 gold/PBTTT devices (green circle). 

 

4.6 C60 Transistor (n-type) with CNT Aligned Array Electrodes  

In the last few sections, we have demonstrated p-type OFETs with aligned array CNT 

electrodes such as P3HT OFET, pentacene OFETs. In this section, we show the fabrication and 

characterization of  n-type OFETs based on Buckminsterfullerene (or buckyball) (C60). Both p-

type and n-type transistor are required in fabricating the logic circuits.  

4.6.1 Fabrication of C60 Transistors 

We obtained C60 power from Nano-C. The C60 OFETs were fabricated by thermal 

evaporation of C60 into the chip contained CNT electrodes in a vacuum chamber at pressure 

1×10
-6

 Pa. Since the fabrication process of the C60 OFETs is similar to the fabrication process of 

the pentacene OFETs, here we do not discuss the details fabrication steps of C60 FETs.. The 
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thickness of the C60 film is ~ 30 nm. In this study we used CNT electrodes with channel length 

of 2 um and channel width 25 um. 

 

Figure 4.18: (a) Transfer characteristics (Id versus Vg) at Vd  = 80 V of typical CNT/C60 device. 

(b) Output characteristics (Id versus Vd) at Vg = 0 to 80 V with 20V steps of the same device. 

 

4.6.2 Transport Properties of C60 Transistors 

The Id - Vg and Id - Vd characteristics of a typical CNT/C60 OFETs are shown in Figure 

4.18a and 4.18b respectively. The main different of the CNT/C60 OFETs devices with p-type 

OFETs (CNT/P3HT, CNT/pentacene)  is that in this device the  magnitude  of the current is 

increased with positive gate-voltage, which is typical behavior of the n-type. The current on-off 

ratio and mobility of CNT/C60 device is 1.7×10
4
 and 0.12 cm

2
/Vs. We also measured the control 

devices fabricated with gold electrodes. The Id - Vg and Id - Vd characteristics of a typical 

gold/C60 OFETs are shown in Figure 4.19a and 4.19b respectively. The current on-off ratio and 

mobility of gold/C60 device is 5.8×10
3
 and 0.07 cm

2
/Vs, which are lower than that of the 

CNT/C60 device. 
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Figure 4.19:  (a) Transfer characteristics (Id versus Vg) at Vd  = 80 V of typical gold/C60 device. 

(b) Output characteristics (Id versus Vd) at Vg = 0 to 80 V with 20V steps of the same device. 

 

4.7 Conclusion   

We demonstrated high performance OFETs using aligned array carbon nanotube source 

and drain electrodes. For fabricating OFETs we used various organic semiconductors (both p-

type and n-type). All the devices fabricated with CNT electrodes have shown improved device 

performance than that of the device fabricated with metal electrodes. Our short channel OFETs 

with SWNT array electrode show high on-current, high current on-off ratio and does not show 

“short channel” effect owing to improved charge injection from densely aligned SWNTs with 

open-ended and parallel tips. The maximum mobility of 0.65 cm
2
/Vs and a maximum on-off 

ratio of 1.7×10
6
 of the OFETs with CNT electrodes reported here are higher than that of other 

reported short channel devices. The maximum cutoff frequency of our device is 211 MHz, which 

is the best reported so far for organic transistors. Our result presented here is a significant step 

forward in fabricating high performance organic electronic devices.   
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CHAPTER 5: CHARGE INJECTION AND TRANSPORT MECHANISMS 

OF ORGANIC FIELD EFFECT TRANSISTORS WITH CARBON 

NANOTUBE ELECTRODES

 

 

5.1 Introduction  

Due to large interfacial contact barrier, one of the major problems in the fabrication of 

high performance organic electronic devices is inefficient charge injection from metal electrode 

into organic semiconductors (OSC)[1-5]. When the metal electrodes are contacted with the OSC, 

interfacial barriers such as Schottky barrier, dipole barrier are formed at the metal-OSC interface 

[6-9]. To be injected into the OSC, the charge carriers must overcome the large interface 

potential barrier either by thermal emission or tunneling [10-14]. A decrease in barrier height and 

width will improve the charge injection which in turn will have significant impact in fabricating 

high-performance organic electronic devices. Due to their unique electronic properties carbon 

nanotubes (CNTs) are considered to be a promising electrode material that can overcome the 

limitations of metal electrodes [15-22]. Recent room temperature studies by our group and others 

have shown that, compared to organic field effect transistor (OFET) using standard metal 

electrodes, OFETs using CNT electrodes have better mobility and higher on-current [17-22].  It 

is speculated that such improved device performance may be due to the improved injection of 

charge carriers from CNT to OSC owing to strong π-π bonding between the CNTs and OSC.[18, 

23] Although metal/OSC contact has been studied in great detail, very little information has been 

reported on the nature of CNT/OSC contact. In particular, there is no information about the 

barrier height or charge injection mechanism at the CNT/OSC interface. Such understanding can 

                                                 
 Portions of this chapter have been published in the following journals:  ACS Nano 6, 4993 

(2012). 
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be obtained from low temperature transport study and is of great importance for achieving the 

overreaching goal of the CNT electrodes in organic electronics. 

In this chapter, we study charge carrier injection mechanism at CNT electrode/ pentacene 

interface using the temperature dependent electronic transport measurements and provide direct 

evidences of low charge carrier injection barrier. We show that, the current density-voltage (J-V) 

characteristics of the device above 200 K are well described by Richardson Schottky (RS) model 

indicating that charge carrier injection is dominated by thermal emission at high temperature 

regime. We calculated a barrier height (φB) of 0.16 eV of the CNT/pentacene which is much 

lower compared to the reported value of barrier height for metal/pentacene devices. We also 

show that the charge carrier injection mechanism crosses over from thermal emission to 

tunneling mechanism below 200 K, where charge injection is weakly temperature dependent. 

The J-V characteristics show a transition from direct tunneling at low bias to F-N tunneling 

mechanism at high bias further confirming low charge injection barrier at the CNT/pentacene 

interface.  

5.2 Theoretical Background of Charge Injection   

The schematic diagram of a typical interface at different temperatures (T) and bias 

voltages (V) are shown in Figure 5.1a considering a simple rigid band model. Depending upon 

the temperature and bias voltage, different transport phenomena can occur as described by the 

phase diagram of Figure 5.1b. At low bias voltage and sufficiently high temperature, a large 

number of thermally activated charge carriers can overcome the barrier height (φB) in a classical 

way resulting in thermionic emission (Figure 5.1a, I) [13, 14]. If the barrier height is large, this 

kind of emission will occur at temperatures higher then room temperature. Whereas, for a low 
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barrier height, thermionic emission can occur even at low temperatures. The J-V characteristics 

in this regime can be modeled using Richardson-Schottky (RS) equation for   thermionic 

emission [13]:   

]
)4(

exp[ 0

3

2*

Tk

dVq
TAJ

b

rB 
       (5.1) 

where A
*
 is effective Richardson constant, εr is the permittivity of the OSC, ε0 is the permittivity 

of vacuum, q is the electron charge, and d is the width of the interface barrier. The barrier height 

(φB) can be directly calculated from thermal emission regime by recognizing that at V = 0 V, 

* 2

0 exp( / )]B bJ J A T k T   . Therefore, a plot of ln(J0/T
2
) versus T

-1
 will show activated 

behavior and the slope will give the value for φB [24] 

 

Figure 5.1: (a) Schematic diagram of a interfacial barrier at different temperatures and voltages. 

The circles represent the charge carriers and the arrow indicates the charge carrier injection 

processes: (I) thermionic emission, (II) direct tunneling, and (III) Fowler-Nordheim (F-N) 

tunneling. (b) Typical phase diagram of transport regimes at various temperature and voltages. 
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When the temperature decreases, there may not be enough thermal energy for the charge 

carriers to overcome the barrier height and the charge injection is dominated by tunneling 

through the interface barrier [13, 14, 25]. With increasing bias voltage, the shape of the tunnel 

barriers changes from trapezoidal (II in Figure 5.1a) to triangular (III in Figure 5.1a) [26].
 
At low 

bias voltage, the tunnel barrier is trapezoidal (Figure 5.1a, II) and the J-V relation is described by 

direct tunneling mechanism [13]: 
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where, ћ is the Planck’s constant divided by 2π,  m is the effective mass of the charge carrier. 

When the bias voltages exceed the barrier height, the tunnel barrier becomes triangular (Figure 

5.1a, III ) and the J-V relation is described by Fowler-Nordheim (F-N) tunneling [13]:  
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The above J-V relations in Eq (2) and Eq (3) can be linearized in a logarithm scale to become Eq. 

(4) and Eq. (5) respectively 
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Therefore, a plot of ln (J/V
2
) against 1/V will show logarithmic dependence in direct 

tunneling (low bias) regime and linear dependence with a negative slope in F-N tunneling (high 

bias) regime with an inflection point, describing the transition from direct to F-N tunneling 
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regime. In cases of interfaces with large barrier height and width, only F-N tunneling can be 

observed and no measurable current can be detected before the onset of F-N tunneling. Whereas 

for the interface with a small barrier height and width, the both direct and F-N tunneling can be 

observed with a transition from one regime to another.[27] Therefore, a transition from direct 

tunneling to F-N tunneling is a hallmark of low interfacial barrier [27] and has not been observed 

in the  metal/OSC interface where the interface barrier is large. 

5.3 Experimental Methods 

 

 

Figure 5.2: (a) SEM image of a part of densely aligned SWNT source and drain electrodes. The 

SWNTs were assembled versus dielectrophoresis. (b) High magnification SEM image of the 

Figure (a).  Tapping mode AFM (c) height and (d) surface image of the deposited pentacene thin 

film. The white region marks the channel area defined by the SWNT electrodes where pentacene 

is deposited onto the SiO2 substrate. The scale bars in the Figure s (a), (c) and (d) are 1 μm, and 

in Figure (b) is 200 nm . 

To examine the charge injection mechanism at the CNT/OSC interface, we fabricated 

single walled carbon nanotube (SWNT) source and drain electrodes through dielectrophoretic 
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(DEP) assembly of SWNTs in a dense array and oxidative cutting of the SWNTs array by 

electron beam lithography (EBL) followed by precise oxygen plasma etching. The details of the 

SWNT assembly and electrode fabrication can be found in our recent publications [17-19, 28]. In 

brief, we used heavily doped silicon as substrates for fabricating our devices. The silicon 

substrate is coated with a thermally grown 250 nm thick SiO2 layer which is used dielectric 

layer.. Palladium (Pd) patterns of 5 µm × 25 µm, fabricated by optical lithography, were used to 

align the nanotubes via ac dielectrophoresis (DEP) from a high quality, stable and surfactant free 

SWNT aqueous solution. For this study, we fabricated 5 samples with 25 - 30 SWNT/µm in the 

array. (See Chapter 3 for detailed fabrication).  The resistances of the assembled SWNT arrays 

were in the range of 400 Ω - 800 Ω   with corresponding sheet resistances of 1.5- 3 KΩ/□ making 

them suitable as an electrode material. After the assembly, SWNT source and drain electrodes of 

channel length L = 200 nm  and width W = 25 µm were fabricated by defining a window using 

standard EBL process and oxygen plasma etching of the exposed nanotubes inside the window. 

Figure 5.2a shows a scanning electron microscopy (SEM) image of a part of the SWNT 

source and drain electrodes. Figure 5.2b shows a high magnification image of the electrode. 

From this image, we calculate 68 SWNTs in 2.8 µm long image, giving a linear density of 24 

SWNTs/µm. The nanotubes are swollen due to the low kV imaging. Figure 5.2b also shows that 

most of the nanotubes in the electrodes are well aligned with open-ended tips (see also AFM 

image in Chapter 4). Finally, we deposited pentacene thin film of 30 nm by thermal evaporation. 

Figure 5.2 c and 5.2 d show a part of the height and surface view of the AFM image of the 

deposited pentacene film morphology. The morphology of the pentacene film within the channel 

on SiO2 substrate slightly differs than the morphology of pentacene on the nanotube electrodes. 

The pentacene grain size on nanotube electrodes is   ~ 140 - 160 nm with a surface roughness of  
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~ 3 nm, whereas  pentacene grain size within the channel on SiO2 substrate is   ~ 170 - 190 nm 

with a surface roughness of ~ 4.2 nm (see  Figure 5.3).  

 

Figure 5.3:  Atomic force microscopy (AFM) images and their height profiles of the pentacene 

film on (a) SiO2 within the channel (b) SWNT electrodes. The height profiles show that the 

typical pentacene grain size within the channel is ~180 nm with rms surface roughness of ~ 4.2 

nm. On the other hand, the typical pentacene grain size on SWNT electrode is ~150 nm with rms 

surface roughness of ~ 3 nm 

 

In this study, we chose L = 200 nm because at this channel length the contact resistance is 

much more dominating over the channel resistance  so that the charge transport characteristics 

will be dominated by contact. To determine the contact resistance, we have fabricated pentacene 

devices using SWNT electrodes of different channel lengths (L= 200 nm, 700 nm, 2, 3 and 4 µm) 

and measured the total resistance (R) of the devices at room temperature at Vg = -80 V. This is 

plotted in Figure 5.4. The total resistance of the devices is equal to the sum of the contact 
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resistance (Rc) and chancel resistance (Rch );   R = Rc+ Rch. The R vs L plot shows that R is 

increased linearly with increasing L. We calculated Rc ~ 2 M of the SWNT/pentacene by 

extrapolating the linear line to L= 0 µm. For the device of L = 200 nm, the total resistance is 2.3 

M demonstrating that the contact resistance (2 M) is much higher than the channel resistance 

(0.3 M).   

 

Figure 5.4: Plot of total resistance as a function of channel length of the SWNT/pentacene 

devices. 

 

Another reason for choosing as small channel length as possible is to reduce the number 

of grain boundaries in the active material. It is well known that the conductivity of the OSC is 

limited by the grain boundaries, and the strong temperature dependence of the resistance and 

mobility of the OSC arise from the grain boundaries [29, 30] In larger channel length devices, 

there are many grain boundaries and the conductivity of the OSC is dominated by them. On the 

other hand, for very short channel length device, there are only a few grain boundaries and the 

conductivity is dominated by contact. Since the average grain size of the pentacene in our 

devices is about 180 nm, there will be only one grain boundary on an average along the channel 
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of our device (see Figure 5.2c) making these devices appropriate for studying interface effect. 

The devices were then bonded and loaded into a cryostat for the low temperature transport 

measurements. A total of 5 devices were measured. We measured I-V characteristics of our 

devices at different temperatures in the range of 300 K to 77 K. In order to take reproducible 

measurements at each temperature, we measured each I-V curve at least two times, and waited 

for 15 minutes in successive measurements. The temperature was controlled with a lakeshore 

temperature controller and we waited at least 10 minutes to stabilize the temperature before 

taking data.  

5.4 Charge Injection Mechanism  

 

5.4.1 Temperature Dependent Transport Characteristics 

Before going to the low-temperature electronic transport measurement, the devices are 

characterized in room temperature (300 K). The current-voltage (I-V) characteristics at gate-

source voltages (Vg) = 0 to -80 V, and I-Vg characteristics at fixed V = -20 and -40V of a typical 

SWNT/pentacene and a Pd/pentacene devices at temperature room temperature (300 K) are 

shown in Figure 5.5. The I-V curves of both the devices show a non-linear behavior at low bias, 

indicating that charge transport is limited by the contact. This is expected because channel length 

of our devices is only 200 nm. As we see from the Figure 5.5 (b and d) that the on-current of the 

SWNT/pentacene (13µA) is ~16 time higher the on-current of the Pd/pentacene device (0.8 µA) 

at same V = -40 V and Vg = - 80 V condition. In addition, the  current on-off ratio of the 

SWNT/pentacene is 3.4× 10
4 

whereas it is only 5.1× 10
1 

for  Pd/pentacene device at V = - 40V. 

Therefore, SWNT/pentacene device have better performance than Pd/pentacene devices. This 
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suggests that charge injection from the SWNT electrode is more efficient into pentacene due to 

low injection barrier at SWNT/pentacene interface.  

 

Figure 5.5: I-V characteristics at Vg = 0 to -80 V with -10 V steps of typical devices using (a) 

SWNT aligned array electrodes and (c) Pd electrodes. I-Vg characteristics at V = -20 V and -40V 

of the devices using (b) SWNT aligned array electrodes (d) Pd electrodes. 

 

The higher current of the SWNT/pentacene device than that of the Pd/pentacene device 

also suggests that charge injection in the SWNT/pentacene devices coming from the SWNT 

electrodes, not from Pd used to anchor SWNTs.  In addition, if the charge injection of the 

SWNT/pentacene devices were occurred from Pd patterns which are 5 µm apart, then the output 

current of the SWNT/pentacene device would be less than the Pd/pentacene devices (200 nm) at 
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the same bias voltage as the current is inversely proportional to the channel length for a fixed 

voltage. Therefore, the much higher current for the SWNT/pentacene devices show strong 

evidence that the charge injection mainly occurs from the SWNTs. 

Figure  5.6 shows current-voltage (I-V) characteristics of a representative device at zero 

gate voltage plotted in a log-log scale measured at different temperatures from 300 K to 77 K 

(see Figure  5.5 for room temperature OFET characteristics).  It can be seen from this Figure  

that the current strongly depends on both the temperature and voltage. Three interesting features 

can be seen in this Figure. At high temperature (above 200 K) and low bias voltage (regime I), 

the I-V curves strongly depend on the temperature, indicating thermally activated charge 

injection mechanism [13, 14] At low temperature (< 200 K), the I-V curves show weakly 

temperature-dependent phenomenon with current either weakly voltage dependent (regime II) or 

strongly voltage dependent phenomenon (regime III) that can be well described by the tunneling 

mechanism.
14, 25

  

5.4.2 Thermionic Emission Mechanism  

The strongly temperature-dependent I-V curves in regime I can be well described by the 

RS model for thermionic emission (Eq 5.1). This is shown in Figure 5.7(a) where we plot lnJ 

against V
1/2

 for temperatures above 200 K. As expected from the RS model (lnJ vs V
1/2

), all the 

curves show a straight line with positive slope. These data also allow us for the calculation of 

barrier height ( B ) at the SWNT/pentacene interface.  In order to calculate the B , we first 

determined J0 as function of the temperature by extrapolating the straight lines of Figure 5.7a to 

V = 0 V, and plotted ln (J0/T
2
) as a function of 1/T in Figure 5.7b. This Figure clearly shows that 

the ln(J0/T
2
) versus 1/T  plot  follows a linear relation with negative slope at higher temperature 



101 
 

range( above 200 K), denoted by the dot line. However, this plot deviates from the linear relation 

and becomes weakly temperature-dependent at lower temperature (below 200 K). This is 

consistent with Figure 5.6, region II and III where we saw weakly temperature-dependent I-V 

curves and signifies a transition from thermionic emission to tunneling mechanism. This 

transition phenomenon of our devices can be easily understood. At high temperature, a large 

number of charge carriers have energies large enough to cross the barrier height in a classical 

way [14]. However, when the temperature decreases, the energies of the charge carriers become 

low which may not be sufficient enough to overcome the barrier height and hence the thermionic 

emission stops. The charge injection only then occurs quantum mechanically by tunneling [14, 

25].
  

 

Figure 5.6: Log-log plot of the I-V characteristics of the SWNT/pentacene device in the 

temperature range of 300 - 77 K at Vg = 0V. I, II and III indicate the three different charge 

transport regimes depending on the T and V (marked by solid green lines). I, II and III 

corresponds to the regimes described in Figure 5.1. 
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5.4.3 Barrier Height at CNT/Organic Semiconductor Interface  

We calculated a barrier height of 0.16 eV at the SWNT/pentacene interface from the 

slope of ln (J0/T
2
) versus 1/T plot in Figure 5.7b. We have measured and analyzed 5 

SWNT/pentacene devices in this study and all the devices have shown similar transport 

characteristics. The calculated barrier height of the SWNT/pentacene interface is significantly 

lower than that of the  reported barrier height of 0.5-0.85 eV at gold/pentacene interface 

measured by different groups[ 6, 31, 32], as well as our control Pd/pentacene device where we 

obtained a barrier height of 0.35 eV (Figure  5.8). 

 

Figure  5.7: (a) ln(J/T
2
) versus V

1/2
 plot of  the  I-V data at  temperature 300 to 200 K (regime I in 

Figure 5.6). The current densities at zero bias voltage (J0) were obtained by extrapolating of the 

ln (J/T
2
) curve at V = 0 V. (b) The relation between ln (J0/T

2
) and 1/T. From the slope of the 

dotted line the interfacial energy barrier height at the SWNT/pentacene interface is determined to 

be 0.16 eV. 

 

    Interestingly, our measured barrier height at SWNT/pentacene is also similar to the 

barrier height reported for graphene/pentacene interface [33].  We note that we did not apply any 

Vg in the temperature-dependent I-V characteristics of our devices to extract the true barrier 
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height at the SWNT/OSC interface [12, 14]. It has been reported that Schottky barrier can be 

significantly reduced by applying Vg, and a barrier height measured at Vg other than 0 V is not a 

true barrier height [12, 14]. In addition, a finite Vg also reduces the tunnel barrier width in the 

tunneling regime enhancing the tunnel current [14]. 

 

Figure  5.8: (a) ln(J/T
2
) versus V

1/2 
plot of  a representative Pd/pentacene device. The plot shows 

a linear relation in between lnJ and V
1/2

, which is consistent with Richardson-Schottky (RS) 

model for   thermionic emission. (b) Plot of ln (J0/T
2
) as a function of 1/T.  The current densities 

at zero bias voltage (J0) were obtained by extrapolating of the ln (J/T
2
) curves to V = 0 V. From 

the slope of the ln (J0/T
2
) versus 1/T, we calculated barrier height of 0.35 eV at Pd/pentacene 

interface.  

 

In previous room temperature transport studies of the SWNT contacted OFET devices, 

better charge mobility and higher on-current were reported compared to the metal contacted 

devices [17-22].  It was speculated that the better performance was due to improved charge 

injection at the SWNT/OSC. However, no direct evidence of the barrier height at the 

SWNT/OSC was reported. Our study shows for the first time that a low charge injection barrier 

indeed exists at the SWNT/OSC interface. The work-functions for Pd, Au are 5.1 eV and it is 5.0 

eV for SWNT [19, 34] while the highest occupied molecular orbital (HOMO) level of the 

pentacene is 5.1 eV [32]. Although the work-function of the metal (Pd, Au) and SWNT matches 
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with the HOMO level of the pentacene, however, significant barrier exist between the metal and 

pentacene interface. It has been reported that when pentacene is contacted with gold electrode, 

pentacene is physisorped onto the gold surface leading to the formation of dipole barriers at 

Au/pentacene interfaces [6-9]. This gives rise to a “push back” effect, a decrease of surface 

dipole potential energy of the gold surface in contact with the OSC [8, 9, 35]. As a result, the 

effective work function of gold electrodes reduces to 4.5 eV,
 
giving rise to a large Schottky 

barrier for hole injection. Similar work function lowering may also occur for Pd/pentacene 

devices. In contrast, strong π-π interaction exists between the SWNT and pentacene [23]. 

Therefore, significant dipole formation may not occur and work-function of the SWNT may not 

be modified in contact with OSC causing the barrier to remain low.    

5.4.4 Tunneling Mechanism 

 

 

Figure 5.9: ln (J/V
2
) versus 1/V plot of the data for weakly temperature-dependent I-V data at 

temperature 180 - 77 K (regime II and III in Figure 5.6). The curves show a transition from direct 

tunneling to F-N tunneling with a voltage inflection point. 

In Figure 5.7, we observed a deviation from RS model at temperatures below 200 K, 

possibly due to a transition from thermionic emission to tunneling. In order to confirm that 
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tunneling is indeed the injection mechanism, we analyzed our low temperature data using both 

the direct tunneling and F-N tunneling models. We mentioned earlier that a plot of ln (J/V
2
) 

versus 1/V will show logarithmic dependence in direct tunneling (low bias) regime and linear 

dependence with a negative slope in F-N tunneling (high bias) regime with an inflection point, 

describing the transition from direct to F-N tunneling regime. Such a transition from direct to F-

N tunneling is a hallmark of low interfacial barrier [27]. Figure 5.9 shows a plot of the ln (J/V
2
) 

versus 1/V  in the temperatures range of 180 K - 77 K. The most important feature of this Figure 

is that all the curves shows two distinct transport regimes with a voltage inflection points (Vt).  

The Vt of this devices is 2.8 V (1/V~0.35V
-1

). When V > 2.8 V, we observed a linear relationship 

of the ln (J/V
2
) versus 1/V curves with negative slope for all the temperatures. This is more 

clearly shown in Figure 5.10a and is consistent with F-N tunneling model (Eq 5.5). From the 

slope of the ln (J/V
2
) versus 1/V curves and using a barrier height of 0.16 eV, we have calculated 

a barrier width d ~ 20 nm of the SWNT/pentacene interface. However when V < 2.8 V, the 

transport characteristics changes and the curves cross over to a logarithmic dependence in 1/V in 

agreement with direct tunneling .  This is more clearly shown in supplementary Figure 5.10b. 

Therefore, from these results we confirm that the charge carrier injection of our device is 

dominated by direct tunneling at voltage less than transition voltage, and by F-N tunneling at the 

voltage higher than the transition voltage.  In addition, the exhibition of the inflection point in the 

ln(J/V
2
) versus (1/V) plots in Figure 5.10a provides a signature of  a transition from direct 

tunneling to F-N tunneling in our devices. This confirms a change of the barrier shape at the 

SWNT/pentacene interface from trapezoidal to triangular with increasing bias voltage, as 

illustrated by band energy diagram in Figure 5.1.  
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The transition from the direct tunneling to F-N tunneling was not observed in the devices 

which have sustainable interfacial barrier height and width [27].Although F-N tunnelling  has 

been reported in organic devices fabricated with metal electrodes [29, 36-38],
 
the direct 

tunnelling as well as the transition from direct to F-N tunneling has not been observed in these 

devices. This is due to the existence of high barrier width at the metal/OSC interfaces. In 

contrast, we observed a transition from direct tunneling to F-N tunneling of our devices 

fabricated with SWNT electrode along with a low barrier height, which confirms that interfacial 

barrier height and width of SWNT/pentacene interface is very small 

 

Figure 5.10:  ln (J/V
2
) versus 1/V plot of the data for weakly temperature-dependent I-V data at 

temperature 180 - 77 K (regime II and III in Figure 5.6). The curves show a transition from direct 

tunneling to F-N tunneling with a voltage inflection point. 

 

In this section I discussed charge injection mechanism at from the SWNT electrode to 

pentacene semiconductor. In this study a very short channel length SWNT electrodes L = 200 nm 

is used to confirm that the charge transport is dominated by the contact. It is found that charge 

injection barrier at SWNT/pentacene interfaces is smaller than barrier height at metal/pentacene 

interfaces. As we found that CNT forms better interfacial contact with pentacene, now we are 
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interested to investigate charge transport mechanisms in the pentacene device with SWNT 

electrodes. 

5.4.5 Gate-Voltage Dependent Barrier Height at CNT/Organic  Interface 

In the last section, we discussed the charge injection mechanism of our devices at gate-

voltage (Vg) at zero voltage, and determined the barrier height at the SWNT/pentacene interface. 

It is well known that the barrier height strongly depends on the gate voltage. In order to 

investigate how the barrier height changes with the gate-voltage in our devices, we performed 

gate-voltage dependent and temperature-dependent transport measurement of our 

SWNT/pentacene device fabricated with channel length of 700 nm. 

 

Figure 5.11:  Log-log plot of the I-V characteristics of the SWNT/pentacene device in the 

temperature range of 300 - 77 K at (a) Vg = 0V and (b) Vg = -80 V. 

 

In this study we did not use our device with channel length of 200 nm (which is used to 

investigate the charge injection at zero gate voltage), because this device did not show any gate- 

dependent transport due to short channel effect. We did not also use the larger channel length 

devices (larger than 700 nm), because in that case device will be dominated by the channel, not 

contact dominated. As we are investigating the interface, the contact dominating devices are 



108 
 

required for this study. The fabrication of devices, electronic transport measurement and analysis 

for calculating barrier height is similar to what we discussed in the previous section. Only 

difference in this study is that here we measured our devices at different gate voltages.  

Figure 5.11 (a) and 5.11 (b) shows the I-V characteristics of a representative 

SWNT/pentacene device plotted in a log-log scale measured at different temperatures from 260 

K to 77 K at Vg= 0 and Vg = -80 V, respectively.  It can be easily seen from this figures that 

current strongly depends on both the temperature and voltage, and the magnitude of the current 

at Vg = - 80 V is higher than the current at Vg = 0V. 

 

Figure 5.12: (a) ln(J/T2) versus V1/2 plot of  a representative SWNT/pentacene device at Vg = 

0V in the temperature 280-200 K. (b) Plot of ln (J0/T2) as a function of 1/T. The barrier height 

of 0.27 eV at Pd/pentacene interface. 

 

 The strongly temperature-dependent I-V curves are analyzed with the RS model. Figure 

5.12a is a plot of the  lnJ against V
1/2 

for temperatures above 260-200 K at Vg = 0V. By the 

similar analysis, what are explained in details in the last section, we calculated a barrier height of 
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0.27 eV at the SWNT/pentacene interface at Vg = 0V from the slope of ln (J0/T
2
) versus 1/T plot 

is shown Figure 5.12b.   

 

Figure 5.13: (a) ln(J/T
2
) versus V

1/2
 plot of  a representative SWNT/pentacene device at Vg = -

80V. (b) Plot of ln (J0/T
2
) as a function of 1/T. The barrier height of 0.1 eV at Pd/pentacene 

interface. 

 

The ln(J/T
2
) versus V

1/2 
plot of  a the SWNT/pentacene device at Vg = -80V is shown in 

Figure 5.13(a). From the slope of the of ln (J0/T
2
) versus 1/T (Figure 5.13b) the barrier height is 

calculated and it is found to be  0.27 eV at Pd/pentacene interface at Vg = 0 V, which is higher 

than the barrier height of our devices at Vg = - 80V. Therefore, we conclude that barrier height of 

the SWNT/pentacene interface is decreased with increasing the gate voltage. This is because 

Fermi level of the pentacene is changed with the gate-voltage which reduced the barrier height at 

SWNT/pentacene interface.   

5.5 Charge Transport Mechanism 

Because of significant advancement of organic semiconductor materials synthesis and 

device engineering, the performance of organic field effect transistors (OFETs) has improved 

continuously over the last few decades. The performance of the OFETs strongly depends on the 
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efficient injection of charge carriers from the metal electrodes into organic semiconductors and 

their transport through the active channel organic semiconductors. However, the charge injection 

and transport in the OFETs fabricated by polycrystalline organic semiconductors are limited 

several factors including a large interfacial barriers at the metal/organic semiconductor interface 

due to Schottky barrier and dipole barriers, trapping states due to grain boundaries at the organic-

organic interfaces in the channel, and trapping states in the dielectric/organic semiconductor 

interfaces[39-50]. In order to improve charge injection in the OFETs recently carbon nanotubes 

are considering promising electrodes material due to their due extraordinary electronics 

properties and their pi-pi interaction with the organic semiconductors. Several research groups 

including our group have shown that performance of the OFETs fabricated with CNT electrodes 

are improved than that of the device fabricated with conventional metal electrodes.  

In the previous section, we have found that the interfacial charge injection barrier at 

CNT/OSC interface is significantly lower than of the metal/OSC interface. From these studies 

although it is clear that CNT forms a better interfacial contact is form in between the CNT and 

organic semiconductors and devices performance is improved with CNT electrodes, the charge 

transport mechanism in the devices with CNT electrodes is not explored. In order to realize the 

overall goal of CNT electrode in the OFETs, it is very important to investigate transport in the 

devices with CNT electrodes. 

In this section, we investigate the temperature and gate bias dependent electronic charge 

transport of the pentacene OFETs with carbon nanotube electrodes with channel length of 2 µm 

and channel width of 25 µm. We found that mobility of the devices is decreased with decreasing 

the temperature and the thermally activated mobility can be well explained by multiple trapping 

and thermal released (MTR) model. The activation energy are decreased with increasing gate-
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voltage and the minimum activation energy for pentacene device with CNT electrodes (~ 19 

meV) is lower than the activation energy for our control device (~ 41 meV) as well as reported 

devices with metal electrodes. The low activation energy of the devices with CNT electrodes 

suggest that trapping state is lower at  SWNT/pentacene interface. 

5.5.1 Temperature and Voltage Dependent Transport Properties    

We measured temperature dependent I-Vg characteristics of our SWNT/pentacene and 

gold/pentacene devices at different bias voltages. Figure 5.14a and 5.14b show current I -Vg 

characteristics at bias-voltage (V) = -80V in the temperature range of 300 K to 77 K for of a 

SWNT/pentacene device and gold/pentacene devices. 

 

Figure 5.14: Temperature dependent I-Vg characteristics at V = -80V for (a) for 

SWNT/pentacene OFETs and (b) gold/pentacene OFET. 

 

The I-Vg curves show that they are strongly temperature dependent and the on-current is 

decreased with decreasing temperature. However, it clearly shows that the on-current of the 

SWNT/pentacene device is significantly higher than the on current of the gold/pentacene device.  

The on-current measured at V= -80V and Vg = -80V) for the SWNT/pentacene device 13 µA, 

whereas it is only 1.2 µA for the gold/pentacene device. The linear mobility of the devices is 
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calculated using the formula: )/)(/( gi dVdIVWCL ,where, Ci is the capacitance per unit area 

of the gate insulator (13.8 nF/cm
2
) and dI/dVg is the slope of the I-Vg curve.  

 

Figure 5.15: Mobility versus gate-voltage at V= -80V in the temperature range of 300K to 77K 

for (a) SWNT/pentacene and (b) gold/pentacene device. 

 

Figure 5.15a and 5.15b show a plot of the mobility as a function of gate-voltage for a 

SWNT/pentacene device and gold/pentacene device. These plots show that mobility of the 

SWNT contacted devices is one order magnitude higher than the gold contacted device.  One can 

easily see from these plots is that as mobility is increased with gate-voltage and mobility can be 

increased by 5 orders of magnitude by changing the gate-voltage. Similar, the gate-voltage 

dependent mobility has been observed for amorphous silicon, polycrystalline silicon and organic 

semiconductors [47, 48, 51]. One possible reason for increasing of the mobility with gate voltage 

could be due to increase the charge carrier in the channel with increasing gate-voltage. When a 

larger gate-voltage is applied in the devices, the concentration of the charge carriers in the 

channel is increased which results in an increase of mobility [45]. Another possible reason could 

be related to the modulation of the contact resistance of the device with gate-voltage. At lower 

gate voltage, contact resistance is higher and linear mobility is limited by the contact resistance. 
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However, the contact resistance of the device is decreased with increasing the gate-voltage [52] 

and overall device performance is no longer dominated by contact and hence mobility becomes 

independent of gate-voltage. 

5.5.2 Activation Energy of OFETs 

 

 

Figure 5.16: Logarithm plot of field effect mobility versus temperature for different gate-

voltages for (a) SWNT/pentacene OFETs and (b) gold/pentacene OFETs.  

 

We extracted mobility as function of the temperature for fixed gate-voltages. Figure 5.16 

(a) and 5.16 (b) show the plots of the extracted mobility versus inverse of temperature at 

different gate-voltage of the SWNT/pentacene and gold/pentacene devices. As we see from the 

both of these Figure that mobility is thermally activated over a wide range of temperature for all 

gate-voltage. The decrease in the mobility with decreasing temperature is an indication of  a 

thermally activated charge transport mechanism in the pentacene devices, and shows that 

trapping state are in near the band edges and Fermi level does not reach the mobile states. The 

temperature dependent mobility of our device can be explained using multiple trapping and 

thermal released (MTR) model [44, 53, 54].  
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In MTR model, it is assume that the charge carriers are trapped by the shallow or deep 

traps in the organic semiconductors, and they are released due to thermal activation and 

contribute to the conduction. We fit the data (solid lines) to the form [44, 53, 54] 

µ = µ0exp[-Ea/KbT]         (5.7) 

where, µ0 is free carrier mobility, Ea is active energy. Activation energy is the energy difference 

between the Fermi level and transport level at which charges are able to hop to the next site and 

kb is Boltzmann constant. By fitting the data with the MTR model we found that activation 

energy for the SWNT/pentacene devices are 19.78, 35.25 and 64.5meV at Vg of -80, -60 and -40 

V respectively.  A similar temperature dependent mobility plot for the gold/pentacene devices is 

shown in Figure 5.16b. The mobility value of the gold/pentacene device is lower than that of the 

SWNT/pentacene device. In addition, activation energies for the SWNT/pentacene device are 

41.28, 61.92 and 79.12, meV at Vg of -80, -60 and -40 V respectively. Therefore activation 

energy of the SWNT/pentacene device is lower than that of the gold/pentacene device. 

In order to further confirm that the activation energy is lower for the devices with SWNT 

electrodes, we also calculated the activation energy from temperature dependent current data.  

Figure 5.17(a) and 5.17(b) show logarithm plot of current as function of temperature 

SWNT/pentacene and gold/pentacene for different gate-voltage. From here we also found that 

the lnI versus T
-1

 plot are fitted with MTR model and activation energy (EI) for the 

SWNT/pentacene device (18.92 meV) is lower than activation energy (EI) for the 

CNT/pentacene device (49.88 meV). 

Table 5.1 shows a summary of activation energy of our devices which are calculated 

from mobility data as well as from the current data. In order to understand the effect of gate-

voltages on the activation energy as well as to compare the activation energies for the 
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SWNT/pentacene and gold/pentacene devices, activation energy is plotted as function of gate-

voltage (Figure 5.18). This plot clearly shows that activation energy for the SWNT/pentacene 

devices is lower than that of the activation energy of the gold/pentacene devices for all gate-

voltages. It is clearly seen from this table that (i) for a fixed gate-voltage the both EI and Eµ for 

the SWNT/pentacene device are lower than that of the gold/pentacene device and (ii) both EI and 

Eµ for both the devices are decreasing with increasing gate-voltage. The similar behavior has 

been reported for the organic transistors with metal electrodes [42, 47].   

 

Figure 5.17: Logarithm plot of current versus temperature for different gate-voltages for (a) 

SWNT/pentacene OFETs and (b) gold/pentacene OFETs. 

 

Table 5.1: Summary of activation energy for CNT/pentacene and gold/pentacene device at 

different gate-voltages. Eµ and EI are activation energy calculated from temperature dependent 

mobility and temperature dependent current. Pn denotes here as pentacene. 

 

 

It is worth mentioning that activation energy of our pentacene device with SWNT 

electrodes is smaller than the reported for pentacene device with standard metal electrodes [43, 
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46, 55, 56] The activation energy is correlated with trapping state density in the devices. In the 

polycrystalline organic semiconductors trapping states are originated from disorder of 

electrode/organic interfaces, dielectric/organic interface, and disorder of grain boundaries in 

between the crystalline regions in the channel. We used same substrate, dielectric materials, 

identical electrodes geometry to fabricate the SWNT/pentacene and gold/pentacene devices. In 

addition, the devices were fabricated in the same deposition and the morphology of the deposited 

films is found to be similar. Therefore it can be easily assumed that the traps density due to grain 

boundaries and dielectric/organic interface for both of the SWNT/pentacene and gold/pentacene 

devices are the same. More importantly, we believe that compared to traps in the channel and 

dielectric/organic interface, the traps at the electrode/organic interface are larger and they are 

dominating in our devices. This is because the active channel length of our devices is very small 

which reduces the number of gain boundaries in the channel. The activation energy of our 

devices provides insight information of the contact rather than channel material, and low 

activation energy our SWNT/pentacene device suggests that traps state at the SWNT/pentacene 

interface is low.   

 

Figure 5.18: Activation energy for the mobility as function of gate voltages for both 

SWNT/pentacene and gold/pentacene devices. (b) Activation energy for the current as function 

of gate- voltage for both SWNT/pentacene and gold/pentacene devices. 
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The large activation energy in the gold contact pentacene device infers that the trapping 

state at the gold/pentacene is higher.  The larger trapping state obtained in the metal/pentacene 

device are not unexpected. Because the interfacial trap strongly depends on the surface of the 

electrodes. The electrode roughness has also effect on the morphology of the deposited organic 

semiconductor. In the case gold electrodes, small and rough- nanocrystalline domain are formed 

on its surface. The increase of the roughness of the gold electrode surface induces the disoriented 

growth of organic semiconductor, which leads to large interface disorders [56]. On the other 

hand, the roughness of SWNT can provides the sites for the nucleation growth of organic 

material and provides the appropriate energy levels for charge injection. In the previous studies, 

lower activation energy of ultrathin bismuth selenite field effect transistors is attributed to a 

small Schottky barrier between metal and bismuth selenite interface. [57]. We also recently 

showed that Schottky barrier height between pentacene and SWNT interface is lower than the 

Schottky barrier height at the pentacene and metal. Therefore, a lower barrier height in between 

SWNT/pentacene interface also supports lower activation energy in our devices. 

5.6 Conclusion   

The charge injection and transport mechanisms of the SWNT/pentacene devices were 

investigated by temperature dependent electronic transport measurement.  The contact dominated 

devices (fabricated with 200 nm SWNT electrode) were used to study charge injection 

mechanism, whereas channel dominated devices (fabricated with 2 µm SWNT electrode) were 

used to study charge transport mechanism.    

  From the charge injection study, we found that in the temperature range 300-200 K, the 

charge injection mechanism is dominated by thermal emission which is well explained by 
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Richardson Schottky (RS) model. The calculated barrier height at SWNT/pentacene interfaces is 

smaller than barrier height at metal/pentacene interfaces. We observed a transition from thermal 

emission to the tunneling mechanism at temperature below 200 K. In addition, at low 

temperature the current-voltage characteristics show a transition from direct tunneling to Fowler-

Nordheim tunneling, which suggests that barrier width at the SWNT/pentacene interface is very 

low.   

From the charge transport study, we found that the thermally activated mobility and 

charge transport conduction in our device can be explained by multiple trapping and thermal 

released (MTR) model.  The activating energy of the devices are decreased with increasing  gate-

voltage dependent, and the minimum activation energy for pentacene device with CNT 

electrodes (~19 meV) is lower than the minimum  activation energy for the devices with metal 

electrodes (~ 41 meV). From the both of transport and charge injection mechanism studies we 

conclude that CNT electrodes can enhance performance of organic electronic devices due to 

efficient charge injection and better charge transport in the organic semiconductors.  
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CHAPTER 6: FABRICATION OF ORGANIC NANOWIRE TRANSISTORS 

WITH CARBON NANOTUBE ELECTRODES BY INTERFACE 

ENGINEERING

 

 

6.1 Introduction  

The device performance of organic field effect transistors (OFET) is currently limited by 

the contact resistance between metal electrodes and organic semiconductors as well as the 

morphology of the semiconducting channel materials because of their highly anisotropic charge 

transport characteristics [1-4]. Contact resistance depends on the morphology of the interface, 

electrode work function, and dipole formation between electrodes and organic materials [3, 5-7]. 

On the other hand, the nano-scale morphology of the organic semiconductors such as conjugated 

polymers is extremely sensitive to the polymer’s molecular weights, the solvent to dissolve the 

polymer and cast films from, and the substrate treatments [8, 9]. For example, the typical field 

effect charge mobility value for the most common solution processed conjugated polymer, 

poly(3-hexylthiophne) (P3HT), varies by several orders of magnitude depending upon the 

applied processing parameters [4, 5].  Therefore, high performance OFETs can be fabricated by 

designing new device architecture to improve the electrode/semiconductor contact for better 

charge injection and the morphology of the semiconductor for enhance charge mobility, where 

appropriate source and drain (S/D) electrode materials with excellent contact and highly ordered 

crystalline organic semiconducting materials hold the key. 

Single walled carbon nanotubes (SWNTs) are a promising candidate for electrode 

materials in OFETs due to their unique electrical properties [10, 11]. The work function of 

SWNT thin films is in the range of 4.7-5.2 eV [12] which is well aligned with the HOMO 

                                                 

 Portions of this chapter have been published in the following journals:  ACS Appl. Mater. 

Interfaces 3, 1180 (2011). 
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(highest occupied molecular orbital) level of many conjugated polymers including P3HT (1). In 

addition, the π-π interaction between SWNTs and the conjugated polymers is expected to result 

in better charge injection. A few research groups have reported the fabrication of OFETs using 

individual SWNT [13, 14] randomly oriented SWNT network [15-17], and SWNT/polymer 

composite film [18, 19] as electrodes. In all of these studies, the organic materials were deposited 

by spin coating, drop casting or by thermal evaporation which resulted in poor morphology. 

Despite the conceptual advantages and attractive features of SWNTs as an electrode material, so 

far the performance of the OFET using SWNT electrodes did not demonstrate any improvement 

compared to that of conventional OFET fabricated with standard metal electrodes probably 

because of poorly defined crystalline structure of semiconductor materials.  

 One potential key step of improving the OFET device performance could be the direct 

growth of crystalline conjugated polymer such as P3HT nanowires on the SWNT electrodes to 

improve the electrode/semiconductor interface and the morphology of semiconductor. Compared 

to the OFETs from solution cast P3HT films, OFETs from crystalline P3HT nanostructures is 

expected to show improved mobility attributed to their increased interchain stacking with 

overlapped π-π orbital and unique crystalline structure and morphology [20-24]. In addition, the 

surface treatments or other processing parameters will not have significant impact on the 

crystalline structures of P3HT since the ordered nano-scale morphology is developed during the 

growth process. In such devices, the strong π-π interaction between SWNTs and the polymer 

nanowires will enhance the charge carrier injection from SWNT electrode to crystalline 

nanowires. In addition, the polymer nanowires will eliminate the crystal domain boundaries in 

thin films and improve the charge carrier transport through the channel along the one 

dimensional supramolecular self-organized structures [20].  
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In this chapter, we demonstrate a bottom up approach to fabricate OFETs by growing 

P3HT crystalline nanowires on solution processed aligned array SWNT interdigitated electrodes 

which exploit strong π-π interaction for both efficient charge injection and transport. Ultra-high 

density SWNTs were aligned from their aqueous solutions via dielectrophoresis (DEP), while 

electron beam lithography (EBL) and oxygen plasma etching technique was used to define the 

SWNT electrode pattern. The P3HT crystalline nanowires were directly grown from SWNT 

surface to connect the SWNT electrodes. For comparison of device properties, control OFETs of 

P3HT nanowires deposited on gold electrodes were also fabricated. Electron transport 

measurements on 28 devices showed that, compared to the OFETs with gold electrodes, the 

OFETs with SWNT electrodes have shown better mobility and better current on-off ratio with a 

maximum of 0.13 cm
2
/Vs and 3.1×10

5
 respectively. The improved device characteristics with 

SWNT electrodes were also demonstrated by the improved charge injection and the absence of 

short channel effect which was dominant in gold electrode OFETs. Such remarkable 

enhancement of the device performance as high mobility, high current on-off ratio, absence of 

short channel effect and better charge carrier injection can be attributed to the improved contact 

via strong π-π interaction between SWNT electrodes and the crystalline P3HT nanowires as well 

as the improved morphology of P3HT due to one dimensional crystalline structure. 

6.2 Experimental Methods 

6.2.1 Fabrication of CNT Interdigitated Electrodes 

The fabrication of interdigitated nanotube electrodes is the same procedure for fabrication 

of the CNT electrodes (except the design of the electrode itself). The interdigitated nanotube 

electrodes fabrication procedures are illustrated in Figure 6.1a. The details of the CNT electrodes 

fabrication are explained in the Chapter 4. At first, SWNT were aligned between the Pd patterns 
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using DEP[25-29]. Highly purified, stable and surfactant free SWNT aqueous solution was 

obtained from Brewer Science Inc (30) and used for the CNT electrode fabrication. Details of the 

SWNT alignment and characterization can be found in our recent report [31]. After SWNT 

alignment, PMMA was spin coated on the samples and interdigitated CNT electrodes are 

fabricated using the electron beam lithography (EBL) and followed by plasma etching. The 

scanning electron microscopy (SEM) image of a part of the integrated electrodes is shown in 

Figure 6.1b.  For control experiment, gold interdigitated electrodes were also fabricated with the 

same geometry of SWNT electrodes by EBL and thermal deposition of gold and standard lift off. 

All of the OFET devices in this experiment had channel length (L) of 1 µm and total channel 

width (W) of 40 μm.  

 

Figure 6.1: (a) Schematics of SWNT aligned array interdigitated electrode fabrication. (b) SEM 

image of a part of SWNT interdigitated electrode. 
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6.2.2 Growth of Organic Nanowire on CNT Interdigitated Electrodes  

P3HT and anisole were purchased from Rieke Metals, Inc and Acros Organics (New 

Jersey, USA) respectively and used as received. In this experiment, no additional surface 

treatment such as octadecyltrichlorosilane (OTS) or hexamethyldisilazane (HMDS) was 

performed on SiO2 surface. P3HT powder was dissolved in anisole with a concentration of 0.25 

mg/mL at 90 
o
C in a glass vial. One chip of SWNT electrode was then immersed inside the 

P3HT solution, which was cooled down to room temperature at a rate ~ 20 
0
C/hour and kept 12 

hours for P3HT crystallization. 

6.2.3 Characterization of Devices 

 

 

Figure 6.2: (a) AFM image of P3HT nanowire growth on SWNT interdigitated electrodes (This 

image represents only a part of the device). (b) High magnification image of Figure (a). (c) TEM 

images of P3HT nanowires growth on SWNT surface. Inset in (c): Selected area electron 

diffraction (SAED) pattern of the nanowires. 

 

Tapping mode atomic force microscopy (AFM) images were acquired by Dimension 

3100 AFM (Veeco). The scanning electron microscopy (SEM) images were taken using Zeiss 

Ultra -55 SEM with an accelerating voltage 1 kV. Raman spectroscopy was performed using a 

Renishaw InVia Raman microscope comprised of a laser (532 nm line of solid Si laser), a single 

spectrograph fitted with holographic notch filters, and an optical microscope (a Leica microscope 
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with a motorized XYZ stage) rigidly mounted and optically coupled to the spectrograph. The 

spectrometer was calibrated with a Si standard using a Si band position at 520.3 cm
-1

.  The 

electrical transport measurements of SWNT array were carried out by DL instruments 1211 

current preamplifier and a Keithley 2400 source meter interfaced with LabView program. The 

OFET characteristics were measured using Hewlett-Packed (HP) 4145B semiconductor 

parametric analyzer connected to a probe station inside an enclosed glove box system filled with 

nitrogen gas. 

 

Figure 6.3: TEM images of P3HT supramolecular structures on SWNT. This shows that P3HT 

nanowires crystallize on the SWNT surface. 

 

Figure 6.1b shows a SEM image of a part of the fabricated SWNT electrode with well-

defined channel length L = 1 μm. For channel width, we considered all contributions including 

channel between parallel SWNT fingers as well as channel between the SWNT fingers and 

SWNT base. The total channel width were W = 40 μm giving a W/L ratio of 40.  After the 

oxygen plasma etching, we measured the Id - Vd again and found the current to be in the pico-

ampere range suggesting that no SWNT was left in the channel. The interdigitated electrode 
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patterns were chosen in this work because the interdigitated patterns provide maximum surface 

area for the growth of P3HT nanowires. In addition, the interdigitated electrodes can increase the 

output current by increasing the channel width while keeping the device size small. 

 

Figure 6.4: Raman scattering spectra of (a) SWNTs with P3HT nanowires, and (b) pristine 

SWNTs 

 

The unique feature of our OFET fabrication using SWNT electrodes is the direct growth 

of crystalline P3HT nanowires in between SWNT interdigitated electrodes by a bottom up 

approach [23]. When the chip containing SWNT electrodes was immersed into the hot P3HT 

solution and allowed to cool down to room temperature, it induced the crystallization of P3HT in 

the solution to form 1D nanowire-like crystals [24].
 
Since SWNTs function as the nucleation 

cores for P3HT through the π-π interactions, P3HT nanowires grow from the surface of SWNTs 

[23], generating the interconnections (P3HT nanowire network) among the SWNTs in the 

electrodes. The AFM images (Figure 6.2a and 6.2b) clearly show that the P3HT nanowires 

connect SWNT source and drain interdigitated electrodes.  Since P3HT nucleates on all the 
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SWNTs, the brighter part represents SWNT electrodes while the relatively darker part represents 

the channel. For a control experiment, individually dispersed SWNTs (not in the electrode form) 

were also placed in the P3HT solution under the same condition.  

 

Figure 6.5: (a) SEM image of a representative gold interdigitated electrode (control 

electrode).The geometry and dimension of this electrode are the same as that of SWNT 

interdigitated electrode, i.e: channel length L=1 μm and channel width W = 40 μm. (b) SEM 

image of the P3HT nanowire OFET with gold interdigitated electrode. Unlike SWNT electrode, 

here the nanowires get deposited on the gold electrode. 

 

The transmission electron microscopy (TEM) images of this growth (Figure 6.2c and 

Figure 6.3) show that the P3HT nanowires grow from nanotube surfaces and no free P3HT 

nanowires were observed in the solution. The obtained selected area electron diffraction (SAED) 

patterns of these nanowires (inset in Figure 6.2c) show the (020) reflection (d = 0.38±0.01 nm), 

confirming that the polymer chains were well-stacked perpendicularly to the nanowire long axis 

(direction of π-π interaction). In addition, Raman spectra of SWNTs and SWNTs with P3HT 

nanowires (see Figure 6.4) indicates the molecular level interaction between SWNT and P3HT, 

suggesting good contact between two materials. Gold interdigitated electrodes (Figure 6.5) with 

the same architecture as SWNT electrodes were also immersed into the P3HT hot anisole 

solutions to check the growth of P3HT nanowires on the gold electrodes. Since there is no 
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interaction between gold electrodes and P3HT, it is not surprising to find out that P3HT form 

nanowires in the cooled solution and deposit randomly on the gold electrodes (Figure 6.5).  The 

gold electrode OFET with similar P3HT coverage density as the SWNT electrode OFET was 

fabricated for comparison of device characteristics. A total of 14 OFET devices with SWNT 

electrodes and 14 OFET devices with gold electrodes were studied. 

6.3 Transport Properties of Organic Nanowire Transistors 

 

 

Figure 6.6: (a) Output characteristics of a representative P3HT-nanowire OFET with SWNT 

interdigitated electrodes with dimension of L =1 μm and W= 40 μm, fabricated on a Si/SiO2 

substrate with an oxide thickness of 250 nm. (b) Transfer curve of the same OFET showing the 

current on-off ratio (Ion/Ioff) of 3.1×10
5
. 

 

The output characteristics (Id - Vd) of a representative OFET device with SWNT 

electrodes shows excellent gate modulation along with current saturation (Figure 6.6a). The 

transfer characteristic (Id - Vg ) of the same device at a fixed Vd= - 60 V  ( Figure 6.6b) shows the 

current varies over five orders of magnitude  (Ion/Ioff = 3.1×10
5
 ) with a threshold voltage (VT) of 

-20V. The saturation mobility (µsat) and linear mobility (µlin) of the OFET devices were 

calculated using the following standard formulas  
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µsat=Id,sat(2L/WCi)(1/(Vg-VT)
2
)        (6.1) 

µlin= (L/WCiVd)(dId/dVg)         (6.2) 

where, Ci is the capacitance per unit area of the gate insulator (13.8 nF/cm
2
)  [1]. The µsat and µlin 

of this device were 0.065 cm
2
/Vs and 0.04 cm

2
/Vs respectively. From the AFM images, it is 

estimated that the OFET channel is ~50% covered by P3HT nanowires, giving an effective 

channel width of 20 µm. Using this effective channel width, the calculated effective saturation 

and linear mobility were 0.13 and 0.08 cm
2
/Vs, respectively. All 14 studied SWNT electrode 

OFET devices have shown similar saturation behavior with effective µsat varying from 0.03 to 

0.13 cm
2
/Vs (average µsat = 0.07±0.03 cm

2
/Vs), with corresponding Ion/Ioff varying from 7.1× 10

3 

to 3.1× 10
5
. The maximum mobility (0.13 cm

2
/Vs) of the fabricated devices is one order of 

magnitude higher than the previous reported values of P3HT film OFET spin coated on the 

carbon nanotube electrode [16]. This is rather impressive considering the fact that no surface 

treatment was performed on our devices. The reason for the improved mobility of our P3HT 

nanowire OFETs with SWNT electrode is due to highly ordered crystalline nanowire form of the 

P3HT which provide better charge transport pathways, as well as direct growth of these 

nanowires on the surface of nanotube electrode which provides better interface.  

6.4 Comparison of Device Performances  

We have also measured control P3HT nanowire OFETs with gold interdigitated 

electrodes. Output characteristics of one of our best P3HT-nanowire OFET with gold 

interdigitated electrode is shown in Figure 6.7a. The output current shows parabolic behavior 

with voltage without showing any saturation, typical of space charge limited conduction and has 

been commonly observed in short channel metal electrode OFETs [32-34]. The parabolic 
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behavior indicates the presence of an interfacial barrier at P3HT/gold interface. The transfer 

characteristics of the same device is presented in Figure 6.7b measured in the linear regime (Vd = 

- 40V) which show a current on-off ratio 2.6×10
4
. Since the output curve is not saturated, we 

only calculated effective linear mobility µlin = 0.045 cm
2
/Vs for this device by considering ~50% 

coverage (Figure 6.5). Of the 14 devices that we measured using gold electrodes, majority of 

them showed short channel behavior with µlin varying from 0.001 to 0.045 cm
2
/Vs (average  µlin 

= 0.02±0.01 cm
2
/Vs).  The corresponding Ion/Ioff of the devices varies from 10 to 3×10

4
. Figure 

6.8 shows a summary of the device characteristics for all SWNT electrode OFETs and gold 

electrode OFETs. From here, we see that while SWNT electrode OFETs have shown an 

improved and more consistent device performance, gold electrode OFETs show a larger 

variation in performance. This again shows that how short channel effect dominates gold 

electrode OFETs.   

 

Figure 6.7: (a) Output characteristics of the best P3HT-nanowire OFET device with gold 

interdigitated electrodes (b) Transfer curve of the same device. 
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Figure 6.8: Mobility as function of corresponding current on-off ratio of 14 SWNT/P3HT 

nanowire OFETs as well as 14 gold/P3HT nanowire OFETs. Mobility values and their 

corresponding current on-off ratios of the OFETs with SWNT electrode are more consistence 

and higher than the OFETs with gold electrodes. 

 

It is well known that when L is less than 10 times the oxide thickness (tox), the device 

performance is dominated by the short channel effect [1, 3, 32-34] which manifests as parabolic 

behavior of output current without saturation and high off current. Therefore, the observed short 

channel effect in the gold electrode OFET (tox = 250 nm, L=1 µm) is as-expected. Since  Ion/Ioff  

depends on L according to  

Ion/Ioff  = (4Ci /9toxεε0)L
2
            (6.3) 

where, ε0 is the vacuum permittivity and ε is the dielectric constant of channel insulator [35], it is 

very difficult to achieve perfect transistor behavior and high Ion/Ioff  in a short channel OFET. It 

is, however, interesting to observe that the OFET with SWNT electrodes (same L and tox) did not 

show any short channel effect, instead it showed perfect saturation with high Ion/Ioff (Figure 6.6a 

and 6.6b). Such observation is significant because the short channel effect is a major bottleneck 

in reducing the device size for high performance OFETs. It is believed that the better contact 
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between P3HT nanowires and SWNT electrodes as well as the improved morphology of the 

channel material due to their crystalline nanowire structures eliminated the short channel effect. 

To investigate the role of P3HT/SWNT electrode contact in the charge injection into the P3HT 

nanowires, low bias output characteristics with zero and -60V gate voltage was plotted for both 

SWNT and gold electrodes (Figure 6.9a and 6.9b). From these curves, it is clear that the OFET 

with SWNT electrodes provides more output current than that with gold electrode under the 

same applied voltage.  

 

Figure 6.9: Comparison of charge injection from SWNT electrode and gold electrode into the 

P3HT nanowires at low bias ( Vd  = -10V ) and with a gate voltage (a) Vg = 0 V and (b) Vg = - 60 

V. The both curves shows that compare to gold electrode, SWNT electrodes provides a higher 

drain current due to a better charge injection.   

The remarkable improvement of the device performance including high mobility, high 

current on-off ratio, the absence of short channel effect and better charge carrier injection can be 

attributed to the improved contact between aligned array SWNT electrodes with the crystalline 

P3HT nanowires as well as improved morphology of P3HT. The SWNTs and P3HTs share the 

same conjugated carbon hexagonal ring structure, and strong π-π interaction exists between 

P3HT nanowires and SWNTs. This makes excellent interfacial contact between P3HT nanowires 
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and SWNTs and leads to efficient charge carrier injection from SWNT electrodes to P3HT 

nanowires. The highly ordered P3HT nanowires reduce the gain boundaries in the channel, 

provide the high current conducting path between nanotube S/D electrodes, and enhanced the 

hole mobility in the device [4, 5, 20-22].  

6.5 Conclusion   

We demonstrated new device architecture for high performance OFET fabrication using 

the direct growth of crystalline P3HT nanowires on SWNT interdigitated electrodes. Compared 

to the OFETs with metal electrodes, the devices with SWNT electrodes have shown consistently 

high mobility and high current on-off ratio with a maximum of 0.13 cm
2
/Vs and 3.1×10

5
, 

respectively. The improved device characteristics were also demonstrated by the absence of short 

channel effect which was dominant in gold electrode OFETs. Such remarkable improvement of 

the device performance as high mobility, high current on-off ratio, absence of short channel 

effect and better charge carrier injection can be attributed to the improved contact via strong π-π 

interaction SWNT electrodes with the crystalline P3HT nanowires as well as the improved 

morphology of P3HT due to one dimensional crystalline structure. Our results presented here 

will have significant impact on the development of high performance organic electronic devices. 
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CHAPTER 7: OPTOELCTRONIC TRANSPORT PROPERTIES OF 

CARBON NANOTUBE/ORGANIC SEMICONDUCTOR THIN FILM 

DEVICES

 

     

 

7.1 Introduction 

Carbon nanotubes (CNTs) have attracted a lot of attentions for their potential applications 

in nanoelectronics and optical devices due to their extraordinary electrical, optical and 

mechanical properties [1]. The CNTs have shown both the electroluminescence and as well as 

photoconductivity (Figure 7.1). In particular, photoresponse studies of pure CNT films and 

CNT/polymer composites have attracted tremendous attention because of their easy 

processability at macroscopic dimensions and promising applications in optoelectronic devices 

[1-4]. However, these studies also generated considerable debate about the origin of 

photoconductions in CNT films. 

 

Figure 7.1: Light emission from a nanotube. ( a) Schematic of a modified (‘trenched’),back-gated 

nanotube transistor used to produce a sudden change in the potential along the nanotube. (b) 

Optical image of the trench and of the light emitted at its edge. (c) Photoconductivity with a 

nanotube.  Schematic of a photoconductivity in a carbon nanotube. Adapted from reference [1]. 

In individual semiconducting single walled carbon nanotube (SWNT) field effect 

transistor (FET) devices, photoresponse in the near-infrared (NIR) regime was explained using 

                                                 

 Portions of this chapter have been published in the following journals: Carbon, 48, 1539 

(2009); J. Appl. Phys. 106, 074307(2009) 
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an exciton model (Figure 7.2a) [5, 6]. In another study that involved individual SWNT FET 

device, the photoresponse under UV illumination was explained by the desorption of molecular 

oxygen from the SWNT surface which caused a reduction in hole carriers [7]. In contrast, for a 

large area SWNT film, it was argued that the NIR photoresponse was caused by either the 

thermal effect [8, 9], or excitonic [10-13]. Itkis et al. found that in single walled carbon nanotube 

(SWNT) film, the photoresponse was due to a bolometric effect, a change in conductivity due to 

heating of the SWNT network (Figure 7.2b)  [8], while Levitsky et al showed that in SWNT 

film, molecular photodesorption to be responsible for change in conductivity upon near infrared 

(NIR) source illumination [14]. Pradhan et al. [9] in SWNT/polymer composite also found that 

the photoresponse is bolometric.  

 

Figure 7.2:  (a) The photoelectric response of the device illuminated by the 780 nm laser with 

450 mW. (b) Modulation of resistance of SWNT film at 50 K under square-wave pulses of 

power P 0 0.12 mW IR radiation. Adapted from reference [9, 12]. 

 

However, in these measurements, the size of the electrodes was either smaller than the 

laser spot size or the laser was positioned in the middle and authors did not check the effect of 

contacts. Further investigations of photoresponse in macroscopic SWNT films [10, 11, 13, 14-

16] with large electrode separation have shown that the photocurrent generation depends upon 



143 
 

the position of the laser spot and maximum photoresponse occurs at the metal-SWNT film 

interface which can be explained by the Schottky barrier modulation model [11].The ongoing 

debate about the origin of photoconductivity calls for further experimental and theoretical 

investigations not only in pure CNTs but also in materials where CNTs are used as filler such as 

CNT/polymer composite. 

Incorporation of SWNTs in the polymer matrix has led to a new class of composite 

materials with multiple functionality and tailored properties [4,17, 18]. For example, optical 

absorption of SWNTs are dominated by the singularities of their 1D band structure and absorb 

beyond the visible range into the NIR regime, while poly(3-hexylthiophene)-block-polystyrene 

polymer (P3HT-b-PS) does not show photo sensitivity beyond 700 nm. Therefore, SWNT/P3HT 

composite can absorb both in the visible and NIR regimes.  In addition, their ease of 

processability in solution, mechanical flexibility, and low cost of device fabrication at 

macroscopic dimension make them attractive candidate for large area optoelectronic devices 

such as fast optical switches, photo detectors and solar cells. Despite their obvious advantages in 

optoelectronic applications, the optoelectronic transport investigation of large area pure CNT and 

CNT/polymer composites did not receive much attention. 

In this chapter, we discuss  photoresponse study of multi-walled carbon nanotube 

(MWNT) film, SWNT film and SWNT/polymer composite thin films to investigate the 

photoconduction mechanism. We found that the photocurrent in all of our films is position 

dependent with maximum photocurrent occurring when illuminated at the metal/CNT film 

interface and can be explained by excitonic model. While the photocurrent generation can be 

explained by a Schottky type barrier modulation at the metal/CNT film interface, the slow time 

response can be described by a model of the diffusion mediated conduction of charge carriers 
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through many interconnected CNTs. We show that the photoresponse of the CNT/organic 

semiconductor nanocomposite can be tuned by concentration of SWNTs into the organic 

semiconductors. 

7.2 Experimental Methods 

The SWNT, multi-walled carbon nanotube (MWNT) and SWNT/polymer composite 

films were prepared by drop casting and spin coating method. At first, 3 mg of SWNT was added 

into 1 ml chloroform in a vial followed by sonication for 1 hour in an ice water bath. Appropriate 

amount of solution was then drop cast onto a glass slide to make a thin film of SWNT. The slide 

was kept on a hot plate at around 40-50 
0
C for 10-15 minutes to evaporate the residual solvent. 

The resulting film had a thickness of ~ 60 μm. MWNT films were made by the same method as 

SWNT films. Figure 7.3 (a) shows the scanning electron microscopy (SEM) images of   MWNT 

thin films. 

For SWNT/polymer composites film, the appropriate amount of SWNT/P3HT-b-PS 

mixture was added to the appropriate amount of PS solution. In order to create a good dispersion 

of SWNTs in the electrically and thermally insulting polystyrene (PS) matrix, first SWNTs were 

dispersed into P3HT-b-PS in a 1:1 ratio. This is done by adding 5 mg of SWNTs with 5 mg 

P3HT-b-PS  into 5 ml chloroform in a vial followed by sonication for 1 hour in an ice water bath 

while the temperature was maintained at 18 -20 
0
C. The SWNTs were well dispersed and the 

solution was very uniform and stable. A 10 wt% PS solution was then made by adding 1.5 gm PS  

into 10 ml chloroform in a vial and placing it on a rotating stirrer for about 45 minutes. In order 

to make the composite solution, the appropriate amount of SWNT/P3HT-b-PS mixture was 

added to the appropriate amount of PS solution. For example, 0.25% composite was made by 
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mixing 0.25 ml solution of SWNT/P3HT-b-PS with l ml solution of PS in a vial and placed on a 

shaker for about 7-8 minutes for fine mixing. To prepare the film, the resulting composite 

solution was spin coated at 300 rpm onto a cleaned glass substrate.  Similarly, composite films 

were made with SWNT weight percentage of 0.5%, 0.75%, 1%, 1.5%, 2%, 5%, 10%, in the 

polymer matrix. The average thickness of each film was about 60 μm. In addition, a pure P3HT-

b-PS film and a pure SWNT film were also prepared for control experiments.Composite films 

were made on a glass slide with different SWNT weight percentage in the polymer matrix by 

spin coating. The degree of dispersion and orientation of SWNTs in the polymer matrix were 

examined by high resolution Scanning Electron Microscopy (HRSEM, Zeiss ULTRA-55 FEG) 

at an accelerating voltage of 1 KV. Finally, conducting silver paste was used to make a pair of 

electrodes with channel length 10 mm and channel width 25 mm. In addition, MWNT sample 

were also prepared with different electrode separations d = 2, 3, 5, 10, 20, 25, 40, 50 mm with a 

fixed width of 25 mm (Figure 7.3b). The device was then left at room temperature for few hours 

to dry. 

Figure 7.3(c) shows a schematic diagram of a final device and the electrical transport 

measurement setup. The dc transport measurements were carried out using a standard two-probe 

technique, both in the dark and under illumination by a laser spot, positioned at three different 

locations. L corresponds to illumination on the left electrode/film interface, M is between the 

electrodes in the middle of the sample, and R is the right electrode/film interface. The near IR 

(NIR) photo source consists of a semiconductor laser diode with peak wavelength of 808 nm 

(1.54 eV) driven by a Keithley 2400. The laser spot size was approximately 10 mm long and 1 

mm wide.  The power intensity of the laser was ~ 4 mW/mm
2  .

Photocurrent was measured under 

small Vbias (1mV). Data was collected by means of LabView program interfaced with the data 
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acquisition card and current preamplifier (DL instruments: Model 1211) capable of measuring 

sub pA signal.The dark current (Idark) and current upon laser illumination (Ilight) were measured 

under small bias voltage of 1mV. Photocurrent (Iphoto) was calculated by subtracting the Idark from 

the Ilight. 

7.3 Photoresponse of Multi-walled CNT Thin Films 

 

 

Figure 7.3: (a) Scanning electron micrograph of a MWNTs film (b) An optical micrograph of 

one of the samples showing two pairs of electrodes. (c) Schematic diagram of the device and 

electric transport measurement set up. The spacing between the electrode varied from 2 – 50 

mm, and wavelength of NIR source is 808 nm. L, M and R mark the position of the laser. 

 

Although there are several studies of photoresponse in SWNT films, there are only a few 

experimental reports on the photoresponse of multi-walled carbon nanotube (MWNT) films [4, 
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19]. It should be noted that unlike SWNT, the band structure of MWNT is very complex and 

difficult to model and the transport properties of MWNTs is usually diffusive [20]. The 

mechanism for photoresponse in MWNT is not well understood and calls for further 

experimental and theoretical studies. In particular, experiments of MWNT films with different 

electrodes separation can be useful in understanding the photoconduction mechanisms in these 

films. Moreover, MWNT films can be advantageous for practical applications over SWNT films 

as they can be mass produced, cheaper than SWNT (~$500/g of SWNT vs. < $10/g of MWNT) 

[21] 

 

Figure 7.4: Representative photocurrent, as a function of time  for a film with 10 mm electrode 

separation under NIR source illumination at positions L, M, and R (Vbias = 1mV). The NIR laser 

is turned on and off at every 100 s interval.   

 

In this section, we present a near-infrared photoresponse study of MWNT film with 

different electrodes separation to investigate the photoconduction mechanism in MWNT film. 

We observed strong dependence of photocurrent on the position of laser spot with maximum 

photoresponse occurring at the metal MWNT interface. We also show that the time constant of 
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dynamic photoresponse at metal-film interface depends upon the electrode separation and that 

the time constant increases from 0.35 to 5.3 seconds as the electrode separation increases from 2 

mm to 50 mm. While the photocurrent generation can be explained by a Schottky type barrier 

modulation at the metal-MWNT film interface, the slow time response can be described by a 

model of the diffusion mediated conduction of charge carriers through many interconnected 

MWNTs.   

Figure 7.4 shows a typical photoresponse curve for one of our MWNT films with 

electrode separation d = 10mm, where we plot photocurrent as a function of time (t) when the 

laser spot was positioned at L, M, and R and was turned on and off every 100 s interval. It can be 

seen that the photocurrent strongly depends on the position of the laser spot. When illuminated at 

position L there is an increase in photocurrent. When shined at position M, there was almost no 

photocurrent generation, whereas position R shows a decrease in photocurrent when illuminated 

by the NIR source. It can be seen that the on and off current is completely reproducible over 

several cycles. Similar position dependent behaviour of the photocurrent has been observed in all 

our samples with electrode separations ranging from 2 mm to 50 mm. The large enhancement of 

photocurrent at the metal – carbon nanotubes interface   can be described by Schottky barrier 

model [11]. When the laser is shined at the left metal-nanotube interface, photons are absorbed 

by carbon nanotubes which in turn create excitons (bound electron-hole pair). Some of these 

electrons have enough energy to overcome the barrier potential by tunnelling or thermal 

emission and fall into metal electrode leaving holes in the nanotube film. This induces a 

separation of electrons and holes at the interfaces and creates a local electric field. Therefore, a 

positive photocurrent generates at this interface. On the other hand, when the laser shines at right 

interface, the separation of electrons and holes also generates a local electric field, however, in 
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the opposite direction than that of left interface. Therefore the photocurrent is negative with 

almost same magnitude as of left electrode. However, when the laser light shines at the middle 

part of the sample M, electron-hole pairs are also generated but because of the absence of 

interface they do not get separated and no local electric field is created at this point. So, compare 

to the photocurrent at left or right metal-nanotube interface, a much smaller photocurrent is seen 

at the middle position.The reason for a very small positive photocurrent at M   can be explained 

as follows: the spot size of our near infrared (NIR) source is approximately 10 mm long and 1 

mm wide and the positioning was done manually. Because of the finite width (10 mm long and 1 

mm wide) of the NIR source and manual positioning, there is always a small error in positioning. 

Therefore although the laser was positioned in the middle, there might be small imbalance in 

positioning towards the left electrode which in turn can create charge carrier imbalance giving a 

very small photocurrent.  

 

Figure 7.5: (a) Photocurrent versus time for a few different laser intensities. (b) Dependence of 

photocurrent of the MWNT film on the laser intensity. 

 

Figure 7.5a shows a representative plot of photocurrent vs. time when illuminated at 

position L for another sample with electrode separation 25 mm for a few laser intensities (2.37, 
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3.33, 4.01, and 5.68 mW/mm
2
 from bottom to top). The intensity of laser light was changed by 

changing the height between the sample and laser source. The plot is shown for two cycles of the 

laser being turned on and off at every 100 s intervals. In Figure 7.5b we plot the photocurrent 

versus laser power intensity for the same sample shown in Figure 7.5a for all the laser intensities. 

The solid line is a linear fit of the data which shows that the photocurrent increases linearly with 

intensity. Similar observation was reported for SWNT films [13].  When the intensity of the laser 

light is higher, more photons are absorbed by the carbon nanotubes and generate more excitons.  

So a greater number of electrons have the probability to overcome the Schottky barrier, 

generating a larger photovoltage. On the other hand, when intensity of laser light is low, a 

smaller photovoltage is generated. 

 

Figure 7.6: Time response of the photocurrent. (a) Raising part of normalized photocurrent as a 

function of time for all film with electrode separations of 2-50 mm. The laser light was 

positioned at left MWNTs/electrode interface. (b) Sample with electrode separation 10 mm. The 

open circles are data and the solid line is the exponential fit with a time constant τ = 2.65 s. 

 

We now investigate the time response of the photocurrent. Figure 7.6a shows a plot of the 

rising part (first 40 s) of the  normalized photo-current (I/Imax) versus time  for all of our MWNT 

films with electrode separations of 2, 3, 5, 10, 20, 25, 40 and 50mm when illuminated at left 
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electrode. The top curve is for d = 2 mm and the bottom is for d = 50 mm. Two features can be 

noticed from this data: (i) the response time, also known as time constant, time takes to reach 

maximum photocurrent is rather slow and (ii) the response time increases with increasing 

separation. The dynamic response to the NIR source can be well described by 

 )/)(exp(1 00 ttII  , where   is time constant, t0 is the time when NIR is switched on, 

and  I0 is the steady state photo current. Figure 7.6b shows a fit of this equation for one of the 

sample with electrode separation of 10 mm. Open circles are the experimental points and the 

solid line is a fit to the above equation. From this fit we obtain  =2.65 s. Similar fits were done 

for all the samples and the measured time constants were 0.35, 0.62, 1.50, 2.65, 3.39, 4.13 and 

5.27 seconds for 2, 3, 5, 10, 20, 25, 40 and 50 mm electrode separations respectively. From here, 

we conclude that the time constant increases with increasing electrode separations. Similar 

increases in time constants were also obtained for the decaying part when the laser was switched 

off and for the right electrode-CNT film interface. 

There is a lot of debate about the origin of slow time response of photocurrent in CNT 

films. Previous studies in SWNT films have shown that bolometric effect [8], molecular 

photodesorption [7] and charge carrier diffusion [10] can explain the photoresponse and slow 

time response in photocurrent. In bolometric mechanism, the temperature of carbon nanotube 

raises upon NIR source illumination which causes a decrease in resistance of nanotube film and 

hence generates only a positive photoresponse. However, in our experiment, we find both 

positive and negative photoresponse at two different interfaces L and R respectively. On the 

other hand, in photodesorption effect, there is an increasing drift current over time. But our data 

is highly reproducible and we did not find any drift current over time for several cycles (Figure 

7.4). So, we rule out both bolometric and photodesorption in our film.  
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Figure 7.7: Variation of time constant with electrode separation. The black squares are the 

measured time constant and the solid line is a fit to the diffusion model. 

 

We now examine whether carrier diffusion model can explain our data. According to the 

diffusion model, considering a parabolic impurity density distribution, the time constant can be 

described as [10, 22]   
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where d  is the electrode separation, Lp is diffusion length, Dp is diffusion coefficient of hole, In 

is modified Bessel of the first kind of order n and r ~ d
α
 is a real constant for a parabolic impurity 

density distribution function. According to this model, the time constant should increase with 

increasing electrode separations. In order to see whether the diffusion model can describe the 

slow time response in our MWNT networks, we plotted the time constant as a function of 

electrodes separation in Figure 7.7 and fitted the data with the above equation. The black squares 

are the measured time constants while the solid curve is a fit to the diffusion equation for charge 

carrier using Lp=1 mm, Dp=0.01cm
2
/Vs and α=1.4 as fitting parameters. These parameters are 



153 
 

similar to what was obtained for SWNT networks.  It can be seen from Figure 7.7 that the 

experimental data can be fitted reasonably well with the diffusion model. Therefore, we conclude 

that the slow time response in our film is due to the diffusion of free charge carriers that was 

created at the metal-MWNT film interface.  In other words, the slow response is due to the 

diffusion mediated charge transport through many interconnected individual MWNTs. 

7.4 Photoresponse of Single-Walled CNT Films 

In this section, we investigate the excitonic and thermal effect on the photoresponse of 

SWNT films using photocurrent-time and current-voltage characteristics under NIR laser 

illumination at different positions of the sample. We show that the photocurrent is position 

dependent with maximum photoresponse [(light current-dark current)/dark current] of ~40% 

occurring at the SWNT/electrode interface. By examining the I-V characteristics in the dark and 

under NIR laser illumination, we found that (i) a photovoltage is generated while laser is 

illuminated at the interface, and (ii) the resistance change due to laser illumination is only 0.4%. 

By comparing the two sets of measurements, we show that the thermal contribution in the 

photoresponse is only 0.4% while excitonic contribution is more than 39%. Our study clearly 

suggests that the dominant photoresponse mechanism in SWNT film is due to exciton generation 

and dissociation into electron and holes at the SWNT/electrode interface.    

Photocurrents of the nanotube film as a function of time (t) in the dark and under laser 

source illuminated at L, M, and R of the device are shown in Figure 7.8 (a)-(c). The laser was 

turned on at t = 50 s and was switched on and off every 50 s intervals. The two cycles of 

photocurrent demonstrate the reproducibility and stability of on and off current. When laser 

source is illuminated at position L, M and R, we observed an increased in photocurrent at 
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position L (Figure 7.8a), decrease of photocurrent at position R (Figure 7.8b) and almost no 

change of photocurrent at M (Figure 7.8c).  These Figures clearly show that photocurrent is 

positional dependent and a large enhancement of photocurrent at the electrode/nanotube 

interfaces.  At position L, the Idark and Ilight of the device are ~9.95 µA and ~13.93 µA 

respectively and the calculated photoresponse is 40.2%. Similarly, the photoresponse under laser 

illumination at R is 40.5%. However, we observed a negligible photoresponse at position M due 

to almost zero photocurrent generation in the middle of the device.  

 

Figure 7.8: Photocurrent as a function of time under NIR laser illumination at positions L, M and 

R. Under laser illumination photocurrent is (a) increased, (b) decreased and (c) no change. The 

laser is turned on and off at every 50 s interval. 

 

In order to examine the photoresponse mechanism of nanotubes, we measured I-V 

characteristics of the device both in the dark and under laser source illumination at positions L, 

M and R. This is shown in Figure 7.9. We note that all the I-V curves are linear, and while the I-V 

curves in the dark and M pass through the origin, there is an offset for L and R. This offset will 

be discussed in a later section. To investigate possible thermal contribution in the photoresponse, 

we first calculated the resistance of the devices from these I-V curves which is 238.8
 
KΩ in dark, 

while it is 237.9, 238.3 and 238.1 KΩ under laser illumination at M, L and R respectively. The 
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main characteristic of the photoresponse in the thermal model is resistance change (ΔR/R) of the 

film due to increase of temperature under laser illumination [23, 24]. The ΔR/R of our device is 

very small, and the maximum calculated ΔR/R is only ~0.4%. This indicates that the maximum 

thermal contribution upon laser illumination is no more than 0.4% while the total photoresponse 

is ~40%.  

 

Figure 7.9: (a) I-V characteristics of the device in dark and under laser illumination at positions 

L, M and R .The I-V curves in dark and for position M pass though the origin. I-V curves for 

position L and R are shifted above or below the origin respectively and generating an offset 

voltage -0.53 and +0.62 mV respectively. (b) Time response of photocurrent of the SWNT film. 

The open circles are data and the solid line are the exponential fit with a time constant τ = 4.1 s 

for rising for the laser illumination at left electrode/nanotube interface 

 

We now examine the excitonic contribution to the photoresponse. As we see in Figure 

7.9a that I-V curves under laser source illumination at position M pass though the origin which 

indicates that photovoltage generation under laser illuminated at M was zero.  This is consistent 

with Figure 7.8c where no photocurrent was observed at position M. On the other hand, the I-V 

curves for position L and R are shifted above or below the origin respectively and generating a 

negative photovoltage of -0.5 mV and a positive photovoltage of +0.6 mV respectively. In 
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addition, we also observed offset current of +2.2 µA and -2.5 µA at position L and R 

respectively. The opposite signs of the offset current and photovoltage are consistent with the 

result shown in Figure 7.8a and 7.8b. A large position dependent photoresponse as well as 

opposite sign of the photovoltage maxima at the interfaces indicate the existence of a locally 

generated electric field at the electrode/nanotube interface [25, 26]. 

Table 7.1: Comparison of thermal and exciton photoresponse of SWNT thin film   

 

 

Now we discuss the contribution of the thermal effect and excitonic effect in the 

photoresponse of our device. From the current-voltage characteristics and photocurrent profiles 

(Figure 7.8 and 7.9a), we have already showed that the maximum thermal photoresponse of our 

device is only 0.4%, whereas total photoresponse are 40.2% and 40.5% at left and right 

interfaces respectively. If we consider the total photoresponse of our device is a combination of 

thermal and excitonic mechanisms, then the excitonic photoresponse at both left and right 

interfaces are more than 39% (Table 7.1). This clearly shows that the dominant contribution in 

the photoresponse of our nanotube film is excitonic. It has been reported that  by illuminating 

with NIR  source of intensity 30 mW/mm
2
 on the nanotube bundle for 1h, the increases in 

temperature is about 0.5 K [27].
 
 In our experiment, the intensity of the NIR laser was lower (4 

mW/mm
2
 ) and it was  illuminated on the device only for 4-5 minutes. This also suggests that 
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increased of nanotubes temperature and hence the thermal photoresponse due to laser 

illumination in our device are very small.  

Another important parameter to distinguish between the thermal and excitonic 

mechanisms of the photoresponse is the time constant. Figure 7.9b shows a plot of photocurrent 

as a function of time for nanotube film when the laser is turned on at t =50 s and turn off at 

position L. When the laser source turns on (off), current slowly increases (decreases) until it 

reaches its steady state. The dynamic response of our device to the laser source can be described 

well by simple kinetic model I(t) = Idark + D{1- exp(-(t-t0)/)} and I(t) = Idark + D exp(-(t-t0)/) for 

growth and decay respectively, where  is the time constant, and t0 is the time when laser was 

switched on or off and D is the scaling constant [25, 26, 28].
 
 In the Figure, open circles are the 

experimental data points and the solid lines are the fits to the above equations. From these fits, 

we calculated time constants, and found to be 4.1 and 5.4 seconds for growth and decay of the 

photocurrent respectively.  In order to determine whether this slow time response indeed comes 

from the laser illumination on the device or not a delay due to an R-C like circuit existing in the 

entire setup, we also measured the time response of this film with a step function voltage (not 

shown here). We found that unlike laser source, the current increases almost instantaneously to a 

bias voltage switch. Therefore, the slow time response indeed comes from the laser illumination 

and not a delay due to an R-C like circuit existing in the entire setup.  

The time constant measured in our study is much larger than what has been measured for 

thermal response (typically in the order of millisecond) [8],   and is similar to other studies of 

excitonic photoresponse in nanotube films [10, 11, 25, 26].
 
 All the results presented here show 

that the dominant photoresponse mechanism is consistent with the excitonic model [10, 14, 25, 

26, 29 ]. When NIR laser is illuminated on the nanotube film, excitons are generated and 
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dissociated into free charge carriers at electrode/nanotube interface. Some energetic electrons 

overcome the barrier at the interface and enter into the metal electrode leaving the hole in the 

film. Once the barrier is crossed, the electrons cannot return into the film due to the Schottky 

barrier asymmetric profiles. This causes a hole-electron separation and generates a positive 

photovoltage at right contact. Similarly, a negative photovoltage is generated at the left contact 

because the right contact is a mirror image of the left contact. Therefore, opposite sign of 

photocurrent has been observed due to sign inversion of the photovoltage maxima between the 

contacts. The generated charges then diffuse through the percolating inter-nanotube junctions 

causing a large response time [25]. 

7.5 Photoresponse of CNT/Organic Semiconductor Composite Films 

In this section, we present a photoresponse study of SWNT/P3HT-b-PS polymer 

composite films with different SWNTs loading ratios in the polymer matrix under NIR 

illumination. Figure 7.10 (a) and (b) show the scanning electron microscopy (SEM) images of   

pure SWNT film and 1% wt SWNT / P3HT-b-PS composite film respectively. The schematic 

diagram of the device and electric transport measurement set up is shown in Figure 7.10c. Figure 

7.10d shows a typical photoresponse curve for one of the composite films with 1% SWNTs, 

where the photocurrent (Iphoto) was plotted as a function of time (t) when the laser spot was 

positioned at L, M and R. The laser was turned on at t = 50 s and was switched off and on at 50 s 

intervals. Two cycles are shown to demonstrate the reproducibility of the on-off current. Similar 

to MWNT and SWNT films photoresponse, when illuminated at position L there is an increase in 

photocurrent, while at position M there is a very small photocurrent generation, whereas position 



159 
 

R shows a decrease in photocurrent. The dark current for this sample was 0.245 nA and the 

current under illumination at position L was 0.499 nA, giving an enhancement of 104%. 

 

Figure 7.10: SEM image of the (a) 1% wt SWNT / P3HT-b-PS composite film (b) 100%  SWNT  

film  (scale bar : 1 µm). (c) Schematic diagram of the device and electric transport measurement 

set up. NIR laser wavelength was 808 nm and laser intensity was 4 mW/mm
2
. L, M and R mark 

the positions of the laser with respect to the electrode. (d) Photocurrent as a function of time for 

1%  SWNT/P3HT-b-PS composite film under NIR illumination at positions L, M and R. The IR 

laser is turned on t = 50 s and turned off and on at every 50 s interval. Vbias = 1 mV. 

 

Figure 7.10d shows a typical photoresponse curve for one of the composite films with 1% 

SWNTs, where the photocurrent (Iphoto) was plotted as a function of time (t) when the laser spot 

was positioned at L, M and R. The laser was turned on at t = 50 s and was switched off and on at 

50 s intervals. Two cycles are shown to demonstrate the reproducibility of the on-off current. 

Similar to MWNT and SWNT films photoresponse, when illuminated at position L there is an 

increase in photocurrent, while at position M there is a very small photocurrent generation, 

whereas position R shows a decrease in photocurrent. The dark current for this sample was 0.245 
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nA and the current under illumination at position L was 0.499 nA, giving an enhancement of 

104%. 

 

Figure 7.11: I-V characteristics of a 1% SWNT composite film in the dark and illuminated at L, 

M and R on the sample. 

 

In order to inspect the position dependent photocurrent further, we measured current–

voltage (I –V) characteristics of the composite films in dark and under laser light illumination at 

positions L, M and R. Figure 7.11 shows a representative I-V curve for the 1% composite film. It 

can  be seen that the I-V curves in the dark and at position M go directly though the origin, 

whereas when illuminated at position L and R, the I-V curve is slightly shifted above or below 

the origin, respectively. At zero applied bias, there is about +0.23 nA current at L and -0.26 nA at 

R. All the I-V curves show Ohmic behaviour from which we can calculate the resistances of the 

sample under different illumination condition. The resistances of the sample in the dark are 5.35 

GΩ, while it is 5.11, 5.20 and 5.15 GΩ for NIR illumination at M, L and R respectively. So, the 

resistance slightly decreases under illumination with a maximum decrease of ~4.5%.  
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Figure 7.12: Photocurrent of (a) 0.25%, (b) 0.5%, (c) 0.75%, (d) 5%, (e) 10% SWNT composite 

films and (f) pure SWNT film. The NIR was turned on at t = 50 s and turned off at t = 100 s.  

 

A small change (less than 2%) in conductivity upon NIR illumination in SWNT film was 

found in previous studies and was explained by a thermal effect. [7, 8] If thermal effect was 

responsible for photocurrent generation in our sample, it would have only generated a 4.5% 

change in photocurrent.  Therefore, a photocurrent enhancement of 104% in our sample at the 

electrode-metal interface cannot be described using thermal effect. In addition, the resistance 

decreases under illumination at all positions which can cause an increase in photocurrent only. 
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Whereas, in position R we observed a decrease in photocurrent providing further evidence that 

thermal effect is not responsible for photoresponse in our sample. Furthermore, a finite current at 

zero bias at position L and R suggests that a photovoltage is generated upon NIR illumination at 

the SWNT-metal interface. 

 

Figure 7.13: Variation of the photoresponse in the SWNT/polymer composite film with different 

loading ratios of the SWNT.  

 

Similar behaviour of the photocurrent has been observed in all our samples with different 

SWNT loading ratios excluding the pure P3HT-b-PS film. For this sample, under 1 mV bias, 

signal to noise (S/N) ratio was extremely low, therefore the photocurrent was not very 

reproducible. The S/N ratios for all other composite films were more than 50 making the 

photocurrent easier to detection.  Figure 7.12 shows Ilight for 0.25 %, 0.5%, 0.75%, 5%, 10%  

weight percentage of SWNT in the polymer matrix and pure SWNT film when illuminated at 

position L. The laser was switched on at t = 50 s and off at t = 100 s. Table 7.2 summarizes the 

experimental data from all of the samples, where dark current, light current, photoresponse, and 
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external quantum efficiency (EQE) are shown for the different loading ratios of SWNT 

composite films at position L. The EQE at  = 808 nm at a fixed power of 4 mW/mm
2
 was 

calculated using AnmWREQE  1240)(  , where R is the responsivity defined by the 

photocurrent per watt of input power.  

Table 7.2: Dark current, light current, photoresponse and external quantum efficiency (EQE) for SWNT/P3HT-b-

PS composite films under the NIR illumination at position L. 

 

 
 

As can be seen from Table 7.2 and Figure 7.13, the amount of SWNTs in the polymer 

matrix has a strong influence on the photoresponse. The photoresponse is 157% for 0.25% 

SWNT/P3HT-b-PS composite film while it is only 40% for pure SWNT film. The stronger 

photoresponse in SWNT/P3HT-b-PS films could be caused by the fact that the off current of the 

composite films can be reduced by several orders of magnitude by reducing the SWNT content 

in the polymer matrix, which allows easy detection of the photocurrent when SWNTs are in an 

electrically and thermally insulating polymer host.  

We note that in SWNT-polycarbonate composite films studied by Pradhan et al. [9] a 

photoresponse enhancement in composite film was also observed. However, the maximum 
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photoresponse in their study was only 5%. In our case, the maximum photoresponse is much 

higher (157%) which is 31 times larger than that of ref [9]. One possibility for the low 

enhancement in the study of Pradhan et al. [9], could be due to the fact that in their study, the 

illumination of NIR was around the middle part of the sample and that the authors did not check 

the effect of contact.    

 

Figure 7.14: Time response of the photocurrent for 1% SWNT/P3HT-b-PS composite film with 

NIR illuminated at position L (a) and R (b). The open circles are the experimental points and the 

solid line is an exponential fit of the data.  

 

We now examine the slow time response of photocurrent when NIR source is switched 

on. Figure 7.14 is a plot of photocurrent as a function of time for the 1% composite film when 

the NIR is turned on at t =50 s, at position L (Figure 7.14a) and at position R (Figure 7.14b). 

When illuminated by the NIR source the current slowly increased (decreased for R) until it 

reached its steady state.The dynamic response to the NIR source can be well described 

by  )/)(exp(1 00 ttII  , where   is time constant, t0 is the time when NIR is switched 

on, and I0 is the steady state photo current. In both Figures, the open circles are the experimental 

data points and the solid lines are a fit to the above equation. From the fit in Figure 7.14 the time 

constant was calculated to be 5.7 and 4.9 seconds for position L and R respectively. Similar fits 



165 
 

were also done for all the samples and time constants were calculated. The time constant 

measured for all our sample ranged from 3.18 to 5.7 second. 

What causes photoresponse in our SWCNT/P3HT-b-PS composite samples? In previous 

studies, the photoresponse in SWCNT film has been explained by either thermal or excitonic 

mechanisms. In thermal mechanism, the temperature of the carbon nanotube film raises upon 

NIR illumination causing a decrease in the resistance of the nanotube film, hence a positive 

photoresponse [8].  We rule out thermal mechanism because both the positive and negative 

photoresponse at two different positions cannot be explained by this model. In addition, the I-V 

curves at different positions show that even if thermal effect were present, it may account for a 

5% change in current only, not the 157% seen in our sample. Our results presented here are 

consistent with the model of exciton generation upon NIR absorption and exciton dissociation at 

the metallic electrode -SWCNT interface due to a Schottky barrier [11]. In other words, when the 

laser light is illuminated at the interface, some energetic electrons overcome the asymmetric 

tunnel barrier at the interface and fall into the metal electrode leaving holes in the film. This 

causes an electron-hole separation at the interface and thereby creates a local electric field. 

Under the influence of this electric field, the carrier then diffuses to the other electrode through 

percolating SWCNT networks. Similar phenomenon occurs at the other electrode except that the 

right contact is a mirror image of the left contact and, therefore, the sign of photoresponse 

reverses. Whereas, when the laser is shined in the middle part of the sample electron hole pairs 

are created, however, the charge does not get separated so the overall photovoltage is almost 

zero. However, in our experiment, a very small photocurrent (5.7%) is seen at position M. The 

reason for a very small positive photocurrent at M   can be explained as follows: the spot size of 
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our near infrared (NIR) source is approximately 10 mm long and 1 mm wide and the positioning 

was done manually. Because of the finite width (10 mm long and 1 mm wide) of the NIR source 

and manual positioning, there is always a small error in positioning. Therefore although the laser 

was positioned in the middle, there might be small imbalance in positioning towards the left 

electrode which in turn can create charge carrier imbalance giving a very small photocurrent. 

Another reason could be that, even if the laser was positioned accurately at M, the thermal effect 

could also account for about 4.7% photocurrent. The interface between the SWCNTs and 

polymer may also help dissociate the exciton [30-32] and could be responsible for the ~ 5% 

change in conductivity in the middle part of the sample.  

7.6 Conclusion 

In conclusion, we presented photoconduction mechanism of the CNT and CNT/organic 

semiconductor nanocomposite thin film devices. We found that the photoconduction is due to the 

exciton dissociations and charge carrier separation caused by a Schottky barrier at the metallic 

electrode/CNT interface. The time constant for dynamic photoresponse increases with increasing 

electrode separations and can be explained by the diffusion of charge carriers through 

percolating CNT interconnects. We found that the photoconduction mechanism in our devices 

was not caused by a thermal effect but by exciton dissociations at the metal/CNT interface. The 

photoresponse of the CNT/polymer composite film can be tuned by changing the weight 

percentage of CNT into the organic semiconductor composite. This study not only provides 

further evidence about the origin of photoresponse in SWNTs in favor of excitonic model but 

also offers opportunity to fabricate new classes of optoelectronic devices such as low cost 

infrared photo detectors and position sensitive detectors using CNT as well as CNT/organic 

semiconductor composites.  
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CHAPTER 8: CONCLUSIONS 
 

8.1 Summary 

In this dissertation, we fabricated organic field effect transistors using aligned array 

carbon nanotube (CNT) electrodes, and investigated the charge injection and transport 

mechanisms of the fabricated devices. In addition, we also investigated the photoconduction 

mechanisms in the CNT and CNT/organic semiconductor nanocomposite thin film devices. The 

background of organic electronic devices, basic concept of charge injection in the organic field 

effect transistors, and summary of the previous work on carbon nanotube electrodes were 

discussed in chapter 1-2. The details of the fabrication of the organic field effect transistors with 

carbon nanotubes electrode as well metal electrodes, characterization of the process and 

experimental setup for electronic transport measurements were presented in chapter 3.  

The room temperature electronic transport properties of the CNT contacted OFETs based 

various organic semiconductors such as pentacene, P3HT were discussed in chapter 4. All the 

OFETs fabricated with CNTs electrode have shown better performance than that of the OFETs 

with metal electrodes. Our short channel OFETs with CNT aligned array electrode showed a 

maximum mobility of 0.65 cm
2
/Vs and a maximum on-off ratio of 1.7×10

6
, which are higher 

than that of other reported short channel devices with metal electrode. In addition, the maximum 

cutoff frequency of our device is 211 MHz, which is the best reported so far for organic 

transistors. We also demonstrated fabrication of n-channel organic field effect transistors with 

aligned array carbon nanotube electrodes. 

In chapter 5, the charge injection and transport mechanisms in the OFETs with aligned 

array were investigated by temperature dependent electronic transport measurements.  We 
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showed that in the high temperature range (300 K-200 K), the charge injection mechanism is 

dominated by thermionic emission which is well explained by Richardson Schottky (RS) model. 

The calculated barrier height at CNT/pentacene interface (0.16 eV) is smaller than barrier height 

at metal/pentacene interfaces (0.35 eV). However, a transition from thermal emission to the 

tunneling mechanism is observed at temperature below 200 K. In addition, at low temperature 

the current-voltage characteristics show a transition from direct tunneling to Fowler-Nordheim 

tunneling, which further confirms a injection barrier at the CNT/pentacene interface.  By 

analyzing thermally activated mobility and charge conduction mechanism, we showed that 

activation energy for pentacene device with CNT electrodes (~19 meV) is lower than the 

activation energy for the devices with metal electrodes (~ 41 meV). This  confirms that the 

interfacial trap states at the CNT/pentacene interface are lower than that of at the 

metal/pentacene interface. 

New device architecture for fabricating of high-performance OFET using the direct 

growth of crystalline nanowires on CNT electrodes was demonstrated in Chapter 6. We showed 

that compared to the organic nanowire OFETs with metal electrodes, the organic nanowires 

OFETs with CNT electrodes have shown consistently high mobility and high current on-off ratio 

with a maximum of 0.13 cm
2
/Vs and 3.1×10

5
, respectively. The improved device characteristics 

was attributed to the improved contact via strong π-π interaction CNT electrodes with the 

crystalline P3HT nanowires as well as the improved morphology of P3HT due to one 

dimensional crystalline structure.  

In chapter 7, we investigated photoconduction mechanism of the CNTs  and CNT/organic 

semiconductors composite thin films. Photoresponse of these films showed a position dependent 

with maximum photoresponse occurring at CNT/metal interface and is consistent with the model 
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of Schottky barrier modulation for photocurrent generation. We also showed that photoresponse 

of CNT/organic semiconductor thin film can be tuned by changing the weight percentage of 

CNT into the organic semiconductors.  

8.2 Future Directions 

The organic electronics is relative new and exciting area. It is my pleasure and honor to 

contribute in the area. In this thesis, we performed several experimental works to fabricate the 

high-performance electronic devices using aligned array carbon nanotubes and to understand the 

fundamental charge transport and injection mechanisms. More experimental and theoretical 

works are needed in realizing the overall goal of carbon nanotube electrodes in organic 

electronics devices.  Based on our works presented here, we have few recommendations for 

future works in this direction. 

.  

Figure 8.1: Atomic Force Microscopy image Aligned array carbon nanotube electrodes with high 

aspect ratio. This image is part of the whole electrode. Scale bar: 500 nm  

 

First recommendation for the future work is to fabricate OFETs with high aspect ratio 

with very short channel length(less than 50 nm) CNT aligned array electrodes. We have some 

preliminary data on this project. Atomic force microscopy image of a high aspect ratio CNT 

aligned array electrode is shown in Figure 8.1. It is expected that the charge transport will be 
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enhanced in the OFETs with high aspect ratio CNT electrodes due to reduction of the grain 

boundaries of the organic semiconductor in the channel. These OFETs can be important tools to 

understand the physics of the charge transport and injection in the through the organic transistors 

Our work can be extended to other conjugated polymers. For example, Poly(3,3’’’-

didodecyl quarter thiophene) (PQT-12), a conjugated polymer with very similar molecular 

structure but different crystalline morphology in film state, was demonstrated to form similar 

centipede-like the structure with CNTs as P3HT. As shown in the TEM image (Figure 8.2), 

PQT-12 nanowires grow perpendicularly from the surface of SWNTs. Unlike P3HT, PQT-12 

nanowires can have a much larger width (30-50 nm), offering the opportunity to investigate the 

influence of nanowire width on CNT electrode properties.    

 

Figure 8.2: Transmission electron microscopy (TEM) images of perpendicular growth of PQT-12 

nanowire on the surface of SWNTs. 

 

We tested a few common organic semiconductors (pentacene, P3HT) in our study and we 

found the improved device performance with aligned array CNT electrodes. In order to fully 

understand the effectiveness of CNT electrode in the organic transistors, more organic 

semiconductors need to be tested. The fabrication and investigation of the OFETs with aligned 
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array CNT electrodes based on large number of organic semiconductors will be a significant 

contribution in this area. In addition, since the surface modification is increased the OFETs 

performance, it will be very interesting to investigate the effect of surface treatment in the 

devices with aligned array CNT electrodes.   

In this work, we did not fabricate the OFETs with longer channel length (higher than 5 

µm). This is because we were unable to assembly the CNTs in between the palladium pattern 

with larger channel length. It is well established that mobility of the OFETs is increased 

significantly with increasing channel length. As we shown that device performance is enhanced 

in the short channel OFET with aligned array CNT electrodes, it is expected that device 

performance can be further improved by using longer channel length CNT electrodes. Therefore, 

it will be also interesting to fabricate OFETs with longer channel length CNT aligned array 

electrodes. To fabricate of longer channel length CNT electrodes, CNT need to be aligned other 

than dielectrophoresis method such as chemical vapor deposition method. 

   In this dissertation, we have shown that charge injection, charge transport and the 

performance of the OFETs with aligned array CNT electrodes are improved. To better 

understand the charge injection and charge transport in the OFETs with aligned array CNT 

electrode, theoretical work are also required.    
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