
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2013

Detecting Semantic Method Clones In Java Code Using Method Detecting Semantic Method Clones In Java Code Using Method

Ioe-behavior Ioe-behavior

Rochelle Elva
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Elva, Rochelle, "Detecting Semantic Method Clones In Java Code Using Method Ioe-behavior" (2013).
Electronic Theses and Dissertations, 2004-2019. 2620.
https://stars.library.ucf.edu/etd/2620

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236256694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2620?utm_source=stars.library.ucf.edu%2Fetd%2F2620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DETECTING SEMANTIC METHOD CLONES IN JAVA CODE
USING METHOD IOE-BEHAVIOR

by

ROCHELLE ELVA
B.S. Computer Science, University of The West Indies, St. Augustine, Trinidad 2002

M.S. Computer Science, University of Central Florida, 2005

A dissertation submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2013

Major Professor: Gary T. Leavens

c⃝ 2013 by ROCHELLE ELVA

ii

ABSTRACT

The determination of semantic equivalence is an undecidable problem; however, this

dissertation shows that a reasonable approximation can be obtained using a combination of

static and dynamic analysis. This study investigates the detection of functional duplicates,

referred to as semantic method clones (SMCs), in Java code. My algorithm extends the input-

output notion of observable behavior, used in related work [1, 2], to include the e�ects of the

method. The latter property refers to the persistent changes to the heap, brought about by

the execution of the method. To di�erentiate this from the typical input-output behavior

used by other researchers, I have coined the term method IOE-Behavior; which means its

input-output and e�ects behavior [3]. Two methods are de�ned as semantic method clones,

if they have identical IOE-Behavior; that is, for the same inputs (actual parameters and

initial heap state), they produce the same output (that is result- for non-void methods, and

�nal heap state).

The detection process consists of two static pre-�lters used to identify candidate clone

sets. This is followed by dynamic tests that actually run the candidate methods, to determine

semantic equivalence. The �rst �lter groups the methods by type. The second �lter re�nes

the output of the �rst, grouping methods by their e�ects. This algorithm is implemented in

my tool JSCTracker, used to automate the SMC detection process.

The algorithm and tool are validated using a case study comprising of 12 open source

Java projects, from di�erent application domains and ranging in size from 2 KLOC (thousand

lines of code) to 300 KLOC. The objectives of the case study are posed as 4 research questions:

iii

1. Can method IOE-Behavior be used in SMC detection?

2. What is the impact of the use of the pre-�lters on the e�ciency of the algorithm?

3. How does the performance of method IOE-Behavior compare to using only input-

output for identifying SMCs?

4. How reliable are the results obtained when method IOE-Behavior is used in SMC

detection?

Responses to these questions are obtained by checking each software sample with JSCTracker

and analyzing the results.

The number of SMCs detected range from 0�45 with an average execution time of

8.5 seconds. The use of the two pre-�lters reduces the number of methods that reach the

dynamic test phase, by an average of 34%. The IOE-Behavior approach takes an average of

0.010 seconds per method while the input-output approach takes an average of 0.015 seconds.

The former also identi�es an average of 32% false positives, while the SMCs identi�ed using

input-output, have an average of 92% false positives. In terms of reliability, the IOE-Behavior

method produces results with precision values of an average of 68% and recall value of 76%

on average.

These reliability values represent an improvement of over 37% (for precision) and 30%

(for recall) of the values in related work [4, 5]. Thus, it is my conclusion that IOE-Behavior

can be used to detect SMCs in Java code with reasonable reliability.

iv

To my nieces: Philomena and Wanjiku and nephews: Dominic and Muchemi,

never fear to dream, knowing that the only limitation to their ful�llment

is your willingness

to work hard and to persist in spite of obstacles.

v

ACKNOWLEDGMENTS

I would like to thank my adviser Dr. Gary T. Leavens for his support and guidance in the

last three years. I would also like to thank all who have supported and cheered me on in the

background. Thanks for believing in me. This is your success too.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xv

CHAPTER 1 INTRODUCTION . 1

1.1 The Problem . 4

1.2 My Contribution . 5

1.3 Outline of the rest of the Dissertation . 6

CHAPTER 2 TECHNICAL DEFINITIONS . 7

2.1 Clone Detection and Analysis . 7

2.2 Types of Clones . 9

2.3 Semantic Method Clones . 12

2.3.1 MethodType of Methods . 13

2.3.2 E�ects of Methods . 14

vii

2.4 Notions of Equivalence . 21

2.4.1 Semantic Equivalence . 21

2.4.2 Structural Equivalence . 28

2.5 JastAdd . 30

2.6 Random Sampling . 32

2.7 Privileged Aspects . 34

2.8 Instrumentation in Java . 37

CHAPTER 3 ALGORITHM . 39

3.1 Assumptions . 39

3.2 Overview . 40

3.3 Abstraction . 41

3.4 Filtering . 47

3.4.1 MethodType Filter . 47

3.4.2 E�ects Filter . 49

3.4.3 Bene�ts of �lters . 52

viii

3.5 Testing . 52

3.5.1 Creating the Testing Context . 53

3.5.2 Generating the Test Files . 60

3.5.3 Running the Test Files . 63

3.6 Collection . 66

3.7 JSCTracker . 70

CHAPTER 4 RELATED WORK . 74

4.1 Research on Semantic Clones . 74

CHAPTER 5 EVALUATION . 80

5.1 Pilot Test . 80

5.2 Case Study . 84

5.3 Results . 84

5.3.1 Clone Detection Results . 84

5.3.2 E�ciency of the Algorithm . 87

5.3.3 Comparison of Results for IOE-Behavior and Input-output Analysis 88

ix

5.3.4 Reliability of JSCTracker and IOE-Behavior Analysis 94

CHAPTER 6 DISCUSSION . 98

6.1 How Assumptions Impacted Case Study Results 98

6.2 Design Considerations . 101

6.3 The Case Study Results . 105

6.4 Limitations . 107

6.5 Future Work . 109

CHAPTER 7 CONCLUSIONS . 110

7.1 Summary of Research . 110

7.2 Overview of Results . 111

7.3 Contributions . 113

7.4 Conclusion . 114

APPENDIX PILOT TEST FILES . 115

1 HDelightCode.java File . 116

2 Jude.java File . 123

x

3 MultiClassTest.java File . 125

4 MyTest.java File . 135

5 Shape.java File . 137

6 SmallTest.java File . 140

7 Results.txt File . 143

LIST OF REFERENCES . 147

xi

LIST OF FIGURES

Figure 1.1 Two Semantic Clones from Hacker's Delight [6] 5

Figure 2.1 Venn Diagram of Relationship between R, c and r 8

Figure 2.2 Clones that return twice the value of Object b 12

Figure 2.3 Semantic clones computing the log2(x)�adapted from Hacker's Delight [6] 13

Figure 2.4 Sample method for e�ects analysis . 20

Figure 2.5 NLVM equations for program in Figure 2.4 on page 20. 20

Figure 2.6 Syntax of Classic Java quoted from Flatt et al. [7] 23

Figure 2.7 Part A: Rules for computing methodType for Classic Java AST nodes . 24

Figure 2.8 Part B: Rules for computing e�ects for Classic Java AST nodes 25

Figure 2.9 Part C: Rules for computing MethodTable for Classic Java AST nodes . 27

Figure 2.10 Example showing structural equivalence between objects 29

Figure 2.11 Java AST statement nodes quoted from Hedin et al. [8] 31

Figure 3.1 Pseudo code for algorithm for semantic clone detection 41

Figure 3.2 Data structures used in computing semantic equivalence of methods . . 43

Figure 3.3 Code to compute methodType . 43

Figure 3.4 Example of how method e�ects are recorded 44

Figure 3.5 Code to compute the e�ects of a method 46

Figure 3.6 Pseudo code for methodType �lter . 48

xii

Figure 3.7 Resulting HashMap of methodTypes for methods in Table 3.3 49

Figure 3.8 Pseudo code for e�ects �lter . 50

Figure 3.9 Equivalence classes left after e�ects �lter is applied to methods in Table 3.4 51

Figure 3.10 Code randomly generate parameters and objects 54

Figure 3.11 Code for method randomObjectCreationString 55

Figure 3.12 Code for randomObjectCreationString helping function ConstructorStr . 55

Figure 3.13 Code for helping function getConstrParams 56

Figure 3.14 Code to obtain interface sub-type . 57

Figure 3.15 Helping methods for �nding interface subtypes 58

Figure 3.16 Code to search loaded classes for sub-class of abstract class 59

Figure 3.17 Code to obtain subclass for abstract class 59

Figure 3.18 Pseudo code for generating test �le . 60

Figure 3.19 Pseudo code for generating test �les for an equivalence class 61

Figure 3.20 Pseudo code for generating method call strings 61

Figure 3.21 Structure of equivalence class . 64

Figure 3.22 Pseudo code for newEquals method to test structural equivalence of objects 65

Figure 3.23 Structure of E�ectRec . 65

Figure 3.24 Running test �les with driver . 66

Figure 3.25 E�ectRec array result for methodTypes with no parameters 67

Figure 3.26 E�ectRec array result for methodTypes with parameters 67

Figure 3.27 Sample Output . 69

Figure 3.28 JSCTracker Architecture . 70

xiii

Figure 3.29 JSCTracker Use Case . 72

Figure 3.30 Level 1 Data�ow Diagram of JSCTracker 72

Figure 5.1 Calculator.java . 82

Figure 5.2 Sematic Method Clones found in Calculator.java 83

Figure 5.3 SMCs detected . 86

Figure 5.4 The maximum and minimum sizes SMCs detected 86

Figure 5.5 Number of SMCs detected by input-output versus IOE-Behavior 90

Figure 5.6 Percentage of false positive for IOE-Behavior analysis vs. input-output . 91

Figure 5.7 Number of false positives for IOE-Behavior versus input-output 91

Figure 5.8 Execution time for analysis using method IOE-Behavior vs. input-output 92

Figure 5.9 Execution time speed-up of input-output analysis versus IOE-Behavior . 93

Figure 5.10 Accuracy of SMCs detected in 12 Java test projects 96

Figure 6.1 Methods of class A that can lead to false positives 100

Figure 6.2 Pseudo code for newToString . 101

Figure 6.3 Sample JSCTracker pointcut . 103

Figure 6.4 Percent void methods vs. percent false positives for input-output 106

Figure 6.5 Average execution time per method for IOE-Behavior vs. input-output . 107

xiv

LIST OF TABLES

Table 2.1 Sample Methods with MethodType Information 14

Table 2.2 Class-based versus �eld-based type-based e�ect analysis of code 16

Table 2.3 Aggregate versus with-�eld Refers-to e�ect analysis of code 16

Table 2.4 Computation of e�ects for method including a method call 17

Table 2.5 E�ects of the method scale of Square class in Figure 2.4 on page 20 . . . 21

Table 2.6 Special values for Java types . 34

Table 3.1 Calculating a Method's E�ects . 44

Table 3.2 MethodType and e�ect attributes for 3 methods 46

Table 3.3 Sample methods for methodType analysis 48

Table 3.4 E�ects of methods returned by methodType �lter in Figure 3.7 on page 49 51

Table 3.5 Structure of Test File . 63

Table 5.1 Open source Java code evaluated for SMCs 84

Table 5.2 Analysis of detected clones . 85

Table 5.3 How pre-�lters reduce methods requiring dynamic testing 87

Table 5.4 SMC detection and analysis using method IOE-Behavior vs. input-output 89

Table 5.5 Comparison of JSCTracker Results to Deissenboeck et al [1] 94

Table 5.6 Summary of Analysis Results . 95

xv

CHAPTER 1

INTRODUCTION

The existence of code duplication (or clones) in software, is a reality, as is evidenced

by the number of research papers on software clone detection [9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25], and attempts at refactoring code [26, 27, 28, 29, 30, 31, 32] to

reduce or eliminate this problem. Software clones have been viewed as problematic because

they make software maintenance di�cult, introduce bugs in multiple sites in the code [24]

and increase the possibility for update anomalies and software aging [33]. This has been

of particular concern, because according to existing literature, software maintenance is one

of the most�if not the most costly phase of the software life cycle. It is responsible for as

much as 80% of the total cost of software [33]. However, in the last couple of years, there has

been some debate in the research community on the question of the harmfulness of clones.

Originally they were thought by many to indicate �bad smells� in code [34]. Lozano et al [35]

conducted a study on how clones a�ected code evolution. While the results were inconclusive,

they suggested that the presence of clones in code, negatively impacted maintenance e�orts

and code evolution. On the other hand, others believe that clones are not really harmful

and that maintenance problems thought to be a result of the presence of clones, are instead

caused by �sloppy software design practices� [33]. Some researchers even refer to clones as

essential [36]. The more commonly held position though, is an acknowledgment that clones

need to be monitored and managed and thus detected, but not necessarily re-factored or

removed [37].

1

It is my position that clones are an indication of poor software design and a violation

of the good practice of software reuse. They cause code to be sloppy, and bug-prone and

add to the cost of maintenance e�orts. They should therefore be detected and re-factored

to improve the modularity and overall quality of software.

Different approaches have been investigated by researchers both in academia and

industry, in an attempt to address the software clone issue and its implications for software

maintenance. Some of the strategies developed include the use of string or token-based

techniques [33], abstract syntax trees [21] and program fingerprints [17] or metrics [38, 39].

Basit et al [40] also present a study of duplication at the structural level, identifying design-

level or structural clones.

All of these techniques have had varying degrees of success in accurately detecting

syntactic code clones. That is, clones created as a result of copy and paste and therefore

look alike or have common text. However, they overlook another more complex clone type�

semantic clones. These clones may not be duplicates of code syntax, but represent duplication

of functionality. They can be created by code generators, developers who are unaware

of methods in existing code and therefore unknowingly re-implement functionality already

present in the system. The result is that the code becomes bloated over time, possibly

leading to maintenance problems like duplication of e�orts in activities such as debugging

and analysis.

There has been extensive research on the detection of syntactic clones - that is clones

with common text (see Bellon et al.'s survey [5]). The applications of this research can be

divided into two broad categories: software security and software understanding & mainte-

nance. The former includes research in areas like plagiarism detection [41, 42] and determi-

nation of authorship [18], while the latter focuses on clone detection [27] and re-engineering

or re-structuring software [26]. However, there is comparatively little research done on the

2

detection and management of functionally similar code�semantic clones; although their ex-

istence in real world software is evident in the clone literature. For example, in one study, as

many as 405 semantic clones were identi�ed in 589 KLOC of commercial software written in

C [4]. In my research 46 semantic method clones (SMC's) are identi�ed in the 1320 methods

analyzed in the Apache open-source project. Also, in the work done on semantic clones, the

reliability measures are not provided for the clones detected or those provided are low.

In addition, most of the tools designed for clone detection are aimed at recognizing

only structural similarity of code [5, 10, 24, 33, 43]. This is demonstrated in an experiment

using 4 state of the art tools where only 1% of 109 samples of functionally equivalent code

are �agged as clones [44]. This is supported by Jiang and Su's work [2] in which they report

that in their work on semantic clone detection, 58% of the clones identi�ed were not syntactic

clones. Thus in tests such as this, less than half of the semantic clones would go undetected

by syntactic based detection tools.

One of the fundamental motivations for the detection and removal of syntactic clones,

is their potential for maintenance problems. However, these problems occur due to the

semantic similarity of the clones� not just their textual similarity. Thus, the detection

of semantically equivalent code is also important. It is my thesis therefore, that analyses

for code similarity or duplication, should go beyond syntax checks. The semantics of the

code �namely behavior and functionality should also be given consideration. For, if left

unmonitored, semantic clones can lead to software quality degradation over time. In addition,

this could prove valuable in program restructuring, code reuse and software maintenance.

Also, automating the semantic clone detection, would result in a more subjective and reliable

process.

The focus of my research is CD for the purpose of software maintenance, which as

previously discussed, is responsible for as much as 80% of the total cost of software. The

3

maintenance costs are further increased when code is duplicated (or copied) in multiple

places throughout a program's source code, creating what is known as software clones.

1.1 The Problem

Code duplication in software projects exists in one of two formats: representational

or functional. These give rise to syntactic and semantic clones, respectively. Most of the

tools designed for clone detection are targeted at syntactic clones. However, the detection of

semantic clones is important, since they adversely a�ect the maintainability of code because

of decreased modularity and poor reuse of software. Semantic clones can also lead to degra-

dation in system performance and e�ciency. For example, if the functionality implemented

by the code is invoked often, given that the computational e�ciency of the fragments varies,

the net e�ciency would be lower than that of the most e�cient clone. Hence code would

display sub-optimal performance [4].

To my knowledge, in the existing work on semantic clone detection, there are only two

tools in the literature [1, 2] for automated detection in source code, one tool which analyzes

byte code [45]; another paper that uses manual identi�cation [44] and a tool which applies the

concept of functional similarity to identify missed API re-use opportunities [4]. All of these1

used input-output as the technique for identifying semantic clones. However, this technique

is incomplete, since the behavior of a method also includes its e�ects: changes to the heap

including output values and mutations of static and instance �elds. The omission of e�ects

allows simpler computations, however, it can imply lower precision and higher incidence

of false positives. For this reason, my approach to semantic method clone detection uses

information about a method's e�ect.

1Details on the Algorithm used by Keivanloo et al [45] were not available

4

1.2 My Contribution

This study presents an algorithm and tool� JSCTracker, for the automated detection

of functionally identical Java methods: semantic method clones (SMCs). In addition to

identifying code with similar syntax and similar behavior, it can identify methods such as

those in Figure 1.1 which have identical behavior but not the same syntax.

Figure 1.1: Two Semantic Clones from Hacker's Delight [6]

My approach combines the bene�ts of static and dynamic analysis. The static analysis

of a method's type (return type and parameter type list) and e�ect(persistent changes to

the heap), serves as a double pre-�lter, to reduce the size of the candidate clone set to

be evaluated by potentially expensive dynamic tests. Together, these two types of analyses

provide the information on a method's input, output and e�ects behavior (which I collectively

referred to as IOE-Behavior [3]). This information is used to infer semantic equivalence. My

5

tool�JSCTracker is di�erent from any other existing tools, since it employs both static and

dynamic analyses in the detection process. I show that the use of static analysis reduces the

number of methods to be dynamically tested by an average of 34% compared to methods

that do not use the �lters [1]. It also identi�es SMCs with 68% precision and 76% recall.

1.3 Outline of the rest of the Dissertation

The rest of the chapters are organized as follows:

Chapter 2 gives the de�nitions for key terms and concepts, required to understand my

research. It also o�ers some background to underlying software concepts that have in�uenced

the design decisions.

Chapter 3 is a detailed description of the algorithm used to detect semantic clones,

including the assumptions used in its development. It also includes a description of the tool

JSCTracker, used to automate my CD algorithm.

Chapter 4 describes the related work.

Chapter 5 outlines the evaluation of the algorithm and JSCTracker, using a case

study of 12 samples of Java open-source software. The evaluation includes the results of the

detection process and analysis of the precision and recall of the results.

Chapter 6 presents a discussion of the work covered in this research. It discusses the

limitations of the algorithm and presents an analysis of the results. The chapter ends with

recommendations for future work.

Chapter 7 gives my conclusions. It summarizes the major �ndings and the contribu-

tions of this work to the research area.

6

CHAPTER 2

TECHNICAL DEFINITIONS

This chapter de�nes the primary terms and concepts required to understand this

research. More detailed background is provided where necessary, on related work, which has

in�uenced design decisions.

2.1 Clone Detection and Analysis

Clone detection (CD) refers to the process of analyzing source code to identify in-

stances of code duplication also referred to as software clones (de�ned in more detail in

Section 2.2 on page 9). Given a sample of source code, the reference set or `reference corpus '

as it is referred to in some literature [5], is the set of all of the clones that actually exist in

the source code. This is denoted by R. The set of clones detected by a CD algorithm applied

to the source code is referred to as the returned set (r). Under ideal conditions, r = R.

However, in practice, it is possible that r contains false positives or omits false negatives. A

false positive is a pair of code fragments detected as clones when actually they are not clones.

A false negative on the other hand is a pair of code fragments which are actually clones,

but go undetected. Most CD algorithms, �nd preliminary candidate clone sets (potential

clones). These are further re�ned to eliminate false positives. The subset of the result set r

that are actual clones, that is, are members of R, is denoted by c.

Figure 2.1 shows the relationship between R, r, c, false negatives and false positives.

7

Figure 2.1: Venn Diagram of Relationship between R, c and r

The accuracy or reliability of a CD algorithm is de�ned in terms of two statistics�

precision and recall. Recall is the percentage of the reference set of clones that is in the

returned set of an algorithm. It is computed using equation 2.1.

Recall =
c

R
∗ 100 (2.1)

Precision is the extent to which a CD technique returns accurate results. It is expressed as

the percentage of the returned set that are clones, as shown in equation 2.2.

Precision =
c

r
∗ 100 (2.2)

A perfect CD algorithm therefore has recall and precision values that are 100%.

8

2.2 Types of Clones

A Code fragment is a contiguous bit of code in a sample of source code. It could be

a few lines or several lines. Larger fragments are built from multiple atomic units. These

include functions, methods, procedures, classes, files and packages. For the purpose of this

research, which concentrates on Java, the atomic unit of code fragments is a method. When

there is some level of duplication in code fragments, clones result. If the duplication is in the

text, then the clones are said to be syntactic clones. If the duplication is in functionality or

meaning, then the clones are called semantic clones. Thus, two code fragments are referred

to as clones if they satisfy at least one of the following conditions. They are:

• syntactically identical

• syntactically similar

• semantically identical

• semantically similar

Two code fragments that satisfy such a condition are referred to as a clone pair.

Syntactic clones often result from copy and paste operations. This is not always the case

with semantic clones. Syntactically identical clones have exactly the same text. While

syntactically similar clones have text which di�ers slightly. Semantically identical clones

have the same meaning and perform the same function. Thus they can be substituted for

each other seamlessly. Semantically similar clones perform the same function, most of the

time. The di�erences between these clone types is explained in more detail in the following

paragraphs.

Clones are classi�ed into subtypes based on what they have in common. One such

taxonomy is that of Bellon et al. [5]. They identify 3 classes of clones� Type I, Type

II and Type III clones. Baker adds one more class to this list �parameterized clones, as

9

a subclass of Type III clones [39, 46]. Later other researchers identi�ed another class of

clones�semantic clones. Each of these types is described in more detail below.

• Type I or Exact clones : This is a clone pair which is syntactically identical, meaning

that they have the same code text. For example:

Code Fragment 1 Code Fragment 2

int Add(int a, int b){
return (a + b);

}

int Add(int a, int b){
return (a + b);

}

• Type II or Near miss clones : This is a clone pair in which the members are only

slightly syntactically different, due to less than three minor code modifications, (such

as changes in identi�er names) after the copy and paste action. In the following example

Code Fragments 3 and 4 are near miss clones, since Fragment 3 can be converted to

Fragment 4 by a single change (Add → Sum). Code Fragments 3 and 5 are not

near miss clones since as many as 5 changes are required to transform Fragment 3 to

Fragment 5.

Code Fragment 3 Code Fragment 4

int Add(int a, int b){
return (a + b);

}

int Sum(int a, int b){
return (a + b);

}

Code Fragment 5

int Sum(int x,
int y){

return (x + y);
}

• Type III or Modi�ed clones : These clones have similar code so they are syntactically

similar, but statements and comments may have been removed or added, or placed in

a different sequence. For example:

10

Code Fragment 6 Code Fragment 7

int a = 5;
String str;
int x;

int x;
int a = 5;
String str;

• Parameterized clones : This is a subclass of modi�ed clones. They are clone pairs such

that there exists a bijective relationship between the identi�ers of each of the clones.

It is therefore possible to take any member of the pair and by a series of substitutions

of the parameters, arrive at a pair of exact clones. For example:

Code Fragment 8 Code Fragment 9

int a = 5;
int b = 9;
int x = Change(a,b);

int x = 5;
int y = 9;
int z = Havefun(x,y);

In these two code fragments the parameters a, b, x and Change in Fragment 8 cor-

respond to x, y, z and Havefun in Fragment 9. It should also be noted that Code

Fragments 3 and 5 in the previous example are also parameterized clones�parameters

Sum, x and y can replace Add, a and b to convert code fragment 3 to code fragment

5.

• Type IV or Semantic clones : Semantic clones are code fragments that are functionally

identical. They perform the same function in code and may or may not have any

syntactic similarity. Thus, exact clones are often semantic clones; while code fragments

which look nothing like each other may also be semantic clones. Semantic clones behave

the same way and can therefore be used interchangeably in code. For example both

code fragments 10 and 11 compute the sum of integers from 1 to 11. Fragment 10 uses

a for loop while Fragment 11 uses a while loop, but they both achieve the same end.

Hence, they are functionally identical and thus semantic clones.

11

Code Fragment 10 Code Fragment 11

int total = 0;
for(int i = 1; i <12; i++){

total += i;
}

boolean notdone = true;
int i = 1;
total = 1;
while(notdone){

total+= i;
i++;
notdone = i < 12;

}

2.3 Semantic Method Clones

This research focuses on the detection of semantic method clones (SMCs). Whole

methods are selected, since methods are the unit of functionality of object-oriented languages

and semantic clones represent functional duplication. Also, detecting behavioral equivalence

between arbitrary code fragments is more complex�requiring non-trivial computation of

inputs and outputs. In addition, a primary motivation for clone detection is the identi�cation

of refactoring opportunities. A functional unit is thus an intuitive choice for refactoring, with

least disruption of surrounding code.

The methods in Figure 2.2 are a semantic method clone pair. They return double the

original value of the �eld val of an object of type B, while also updating the �eld value. The

text of the methods is similar, hinting that they may also be syntactic clones. The methods

in Figure 2.3 on the following page are also semantic method clones. While their syntax is

very di�erent, both of the methods compute the log2 of an integer parameter.

int methodA(B b){
b.val = b.val*2;
return b.val;

}

int methodC(B b){
int tmp = b.val + b.val;
b.val = tmp;
return tmp;

}
Figure 2.2: Clones that return twice the value of Object b

12

public static int flp2(int x) {
x = x | (x >>> 1);
x = x | (x >>> 2);
x = x | (x >>> 4);
x = x | (x >>> 8);
x = x | (x >>>16);
return (x - (x >>> 1))
& 0xffffffff;

}

public static int HPow2(int x){
int tmp = x;
int answer = 1;
while(tmp > 1){

answer = 2 * answer;
tmp = tmp/2;

}
return answer;

}

Figure 2.3: Semantic clones computing the log2(x)�adapted from Hacker's Delight [6]

The two primary attributes of methods used in this study's detection of semantic

method clones are methodType and e�ects. Each is discussed in detail in the next two

sub-sections.

2.3.1 MethodType of Methods

A method's methodType, consists of its return type and the list of types of its formal

parameters. Two methods have equivalent methodType if their return type and the sequence

of the types of their formal parameters are the same. Table 2.1 on the next page shows six

methods and their corresponding methodType information. Methods placed in the same

row of the table have an equivalent methodType. For example, in the �rst row, the methods

checkBalance and calcInt both have a return type of double and an empty parameter list.

Thus they have equal methodType. Similarly, the methods of the second row have equivalent

methodsTypes since they both return void and take a single parameter of type double. The

methods in the third and fourth rows are each the only ones with their methodType, in the

given set of methods; since although getType and printState return the same type� String,

they have di�erent parameter lists (empty and Date respectively).

13

Table 2.1: Sample Methods with MethodType Information
Row Methods Return type Parameter List
1 double checkBalance(){...} double ()

double calcInt(){...} double ()
2 void withdraw(double amt) {...} void (double)

void deposit (double amt){...} void (double)
3 String getType(){...} String ()
4 String printState(Date d){...} String (Date)

2.3.2 E�ects of Methods

A method's e�ects are the set of persistent changes to the heap that result from some

execution. This section provides an overview of some existing e�ect analysis algorithms

that in�uenced the e�ects analysis used in my semantic method clone detection. The last

sub�section, describes the e�ects analysis used in this research and explains the motivation

for the design decisions made. De�nitions are also given for important terms and concepts

required to understand the e�ects analysis used.

2.3.2.1 Background

E�ect analysis is the determination of the e�ects of a program, from its source code.

This is essentially undecidable, therefore available algorithms are only approximations. How-

ever, the goal is to ensure that this approximation is as precise as possible. The e�ects of a

method are determined by a process of static analysis used to track write or update accesses.

The result of the analysis is a set of possible e�ects. Pure methods�methods which do not

cause any e�ects [47] have an empty set of possible e�ects.1

1 A thorough discussion on the analysis of methods for purity, can be found in the the work of Salcianu
and Rinard [47].

14

Generally, there are two main approaches to e�ect analysis - Type-based and Refers-

to analysis�commonly called Points-to analysis. Both of these approaches follow a basic

algorithm: each basic block of the code is visited in turn and the write accesses are collected.

The net e�ect is thus taken as the union of all of these writes. The details of each approach

is described in the following paragraphs.

Type-Based E�ect Analysis Type-based e�ects analysis considers all accesses to objects

of the same type as accesses to one object. Thus there is no distinction made between di�er-

ent instances of the same class. Raza�mahefa [48] discusses two types of Type-based e�ect

analysis� Class-based and Field-based analysis. Both of these algorithms are conservative,

assuming that once an object of a certain type has been read or written to, then the same

is true of all objects of that type in the code being analyzed. The distinguishing feature

between the two approaches though, is in the level of granularity considered. Class-based

analysis considers the object as a whole. It does not register reads or writes to individual

�elds. Thus when a �eld of an object is written to, the object type is added to the set of

e�ects,2 independent of the �eld. In �eld-based analysis, however, individual object �elds

are considered. Thus when an object is written to, the object type and the speci�c �eld are

added to the e�ects. This latter algorithm requires more memory to store class and �eld

information. However, it provides a more precise approximation than the class-based analy-

sis. For example, the code in Table 2.2 on the following page creates two Acct instances and

then initializes their data members id, owner and balance. With the class-based algorithm,

the e�ects are recorded simply as writes on an Acct (account) object. Lines 3, 4 and 5 con-

tribute {Acct}to the e�ects. However, in �eld-based analysis, the e�ect will be recorded more

speci�cally as writes on the individual �elds of an Acct object, while ignoring the identities

2 Raza�mahefa also tracks the read accesses in his e�ects analysis. I do not track the read accesses
however, since my research only focuses on persistent changes to the heap. Hence only the variables written
to, are signi�cant.

15

of speci�c objects. Using �eld-based analysis the following contributions are made to the

e�ects: line 3 adds Acct.id ; line 4 adds Acct.owner ; and line 5 adds Acct.balance.

Table 2.2: Class-based versus �eld-based type-based e�ect analysis of code

Code Class-based e�ects Field-based e�ects

1 Acct a = ...; Acct b = ...;
2;
3 a.id = ...;
4 b.owner =;
5 a.balance = ;
6 float x = b.balance;

{Acct}
{Acct.id,
Acct.owner,Acct.balance}

Refers-to e�ects Analysis Refers-to analysis recognizes di�erent instances of objects.

Thus instead of treating all instances of the same type as one object, the analysis uses a

domain that approximately distinguishes individual instances. As with type-based analysis,

there are two levels of Refers-to analyses. The less granular is aggregate analysis. In this

approach, an object's �elds are invisible. Thus writes on a particular �eld are recorded

simply as writes on that particular instance of the object. For example, for the code in

Table 2.3, the assignment of values to the id and balance �elds of the Acct objects in lines

3 and 5 contribute a to the e�ects, while the assignment in line 4 adds b. The �eld-based

version of the Refers-to e�ects analysis is called the with-�eld analysis. In this analysis both

object instances and individual �elds are considered when the write e�ects are recorded. For

example, in Table 2.3, lines 3 and 5 contribute a.id and a.balance to the e�ects; while line 4

contributes b.owner.

Table 2.3: Aggregate versus with-�eld Refers-to e�ect analysis of code

Code Aggregate e�ects With-Field e�ects

1 Acct a = ...; Acct b = ...;
2;
3 a.id = ...;
4 b.owner =;
5 a.balance = ;
6 float x = b.balance;

{a,b}
{a.id,b.owner,
a.balance}

16

The advantage of this type of e�ects analysis is that it is more precise than type-based

analysis, however, it requires more memory storage and processing time.

E�ects of Method Calls In both of the approaches to e�ects analysis (Type-based and

Refers-to) just described, if the statement or expression that constitutes a basic code block

contains a method call, then the e�ects of that call will be the union of the e�ects of the

called method and the e�ects of any other sub-expressions found in the block. An example

of this computation is shown in Table 2.4.

Table 2.4: Computation of e�ects for method including a method call

Method E�ects

public void MergeBalance(Acct a,Acct b)
{

b.balance = b.balance + a.balance;
}

{b}

public void UseMergeBalance(Acct a,Acct b, Acct c)
{

c.balance = MergeBalance(a,b);
}

{b, c}

In the MergeBalance method (in Table 2.4), the set of objects written to only has one

member b, since this object is mutated in the assignment statement. Thus, the net e�ect of

method MergeBalance is given by equation 2.3.

MergeBalance.getE�ects() = {b} (2.3)

The method UseMergeBalance calls MergeBalance, thus, the e�ects of the former include

those of the latter. In addition, UseMergeBalance also writes to object c in the assignment

statement. Thus the e�ects of UseMergeBalance, are the e�ects of MergeBalance
∪

{c}.

17

Hence, the net e�ects of UseMergebalance are given by equation 2.4.

UseMergeBalance.getE�ects() = {b, c} (2.4)

2.3.2.2 My Program Analysis for Method E�ects

Method e�ects analysis is used in this research as a preliminary �lter, to quickly and

e�ciently generate a set of candidate (potential) clones, which will be more accurately re-

�ned using dynamic testing. For this reason, the �eld-based version of Type-based analysis

(described in Section 2.3.2.1 on page 15) is used in my research. The Type-based approach is

selected over the Refers-to analysis, since it is a quicker algorithm, requires less memory, yet

provides adequate information to di�erentiate between methods. The Type-based analysis

will not exclude any candidates that would identi�ed by the Refers-to analysis. Instead, it

provides a greater over-approximation which su�ces at this stage in the algorithm; since dy-

namic testing is available as the �nal �lter to remove imprecision due to over-approximations.

In this context, speed and e�ciency are valued over detail and precision.

The �eld-based, Type-based, e�ects analysis used in this research has been modi�ed

to analyze whole methods and record only mutations, while ignoring read accesses. Only

object parameters and mutated non-local variables are tracked in this analysis. This decision

is made since only these mutations can alter the heap in a way that persists beyond the

method. Thus unnecessary computations are avoided.

For this research a static e�ects analysis called non-local variable mutation analysis

(NLVM) is developed based on Raza�mahefa's work [48]. When analyzing the e�ects of a

18

method, for each program point (or line of code), this analysis tracks all non-local variables,

including object �elds, that have been mutated up to that point.

The equations for NLVMentry(l) and NLVMexit(l) represent the set of non-local

variables mutated before or after the execution of the lth program point (think line of code)

respectively. The domain of the NLVM analysis is the power set of the set of pairs of labels in

the code, L, and variables (non-local variables, receiver object �elds and object parameters

mutated in the method) V, as shown in equation 2.5.Any NLVM equation therefore returns

a set -of pairs of a label and a variable (mutated non-local variable). The label refers to

the line of code where that variable was last mutated, up to the current point in the code.

Thus intuitively, for all program points l, NLVMentry(l) is a subset of the exit value for

the previous program point, as shown in equation 2.6. The NV LMentry (l) refers to e�ects

that are possible up to the start of the l th program point. New variable�label pairs are

then added (of the form variable identi�er, l) for all variables mutated in l. Thus in general,

NV LMexit (l) is the set of de�nitions that existed at the entry into l, union any variable

mutated in l.

P(L× V) (2.5)

NLVMentry(l) ⊆ NLVMexit(l-1) (2.6)

For example, the code for a method to scale a Square object is shown in Figure 2.4 on

the next page. The equations for the NLVM analysis for that code are given in Figure 2.5 on

the following page. The parameter list for this method contains no objects. Thus the NLVM

analysis will only track non-local variables in the body of the method. There is only one�the

receiver object which is of type Square. Since this is a type-based, �eld-based analysis(see

Section 2.3.2.1 on page 15), object variables will be tracked as the classname.�eldname.

19

Static variables will be tracked as classname.variablename; where classname is the type of

the static variable.

1 public void scale(int x){
2 if(x > 2){
3 int tmp = width * x;
4 this.width = tmp;
5 area = width * width;
6 }
7 }

Figure 2.4: Sample method for e�ects analysis

NLVMentry(2) = {}

NLVMentry(3) = NLVMexit(2)

NLVMentry(4) = NLVMexit(3)

NLVMentry(5) = NLVMexit(4)

NLVMexit(2) = NLVMentry(2)

NLVMexit(3) = NLVMentry(3)

NLVMexit(4) = NLVMentry(4)
∪

{(Square.width, 4)}

NLVMexit(5) = NLVMentry(5)
∪

{(Square.area, 5)}

Figure 2.5: NLVM equations for program in Figure 2.4.

Thus for the code in Figure 2.4, NLVMentry(2) = {} since no code has been executed

yet and there are no object parameters. NLVMexit(2) is also equal to {}, since there is no

mutation in line 2. Likewise, for line 3, NLVMentry(3) is the empty set since it is equal to

NLVMexit(2). Also, since there are no non-local mutations in line 3, the exit value is also

empty. Thus NLVMexit(3) is also equal to {}. New variable�label pairs are then added of

the form (variable identi�er,l) for all variables mutated in l. For example, for label 4 in the

code in Figure 2.4, NLVMexit(4) is computed as shown in equation 2.7.

NLVMexit(4) = NLVMentry(4)
∪
{(Square.width, 4)}

= {}
∪
{(Square.width, 4)}

= {(Square.width, 4)} (2.7)

20

The full e�ects analysis for the method scale shown in Figure 2.4 on the preceding

page, is given in Table 2.5.

Table 2.5: E�ects of the method scale of Square class in Figure 2.4 on the previous page
l NLVMentry(l) NLVMexit(l)
1 {} {}
2 {} {}
3 {} {}
4 {} {(Square.width,4)}
5 {(Square.width,4)} {(Square.width,4),(Square.area,5)}

2.4 Notions of Equivalence

This section de�nes the notions of equivalence used in the detection of semantic

method clones (SMCs). It explains what it means for two methods to be semantically the

same and how this is measured.

2.4.1 Semantic Equivalence

The identi�cation of SMCs is essentially the problem of detecting semantic equivalence

between methods. A pair of methods with the same observable IOE-Behavior for all input

values, is said to be semantically equivalent. A method's IOE-Behavior is its input, output

and e�ects behavior. Input refers to state of the heap and the value of parameters when

the method is called. Output refers to the value returned by the method if it is non-void or

nothing for void methods. A method's e�ects are the changes that its execution causes to the

heap and which persist after the method call. E�ects are discussed in detail in Section 2.3.2.2

on page 18. A method's e�ects can include updates to �elds of its receiver object (for non-

21

static methods) and/or updates to static �elds and mutations of object parameters. Semantic

equivalence between two methods can thus be summarized as:

1. ∀A ∀B | A,B ∈ Methods

IOE-Behavior(A) = IOE-Behavior(B) ⇐⇒ SemanticEquivalent(A,B) (2.8)

Two terms A and B are considered to be contextually equivalent if they are both valid

inputs for any given context C[] and in that context they return the same value. Thus

C[A] = C[B]. This means that they can be transparently substituted for each other in

a larger program. Hence another way of de�ning semantic equivalence in clones, is to

say that

2. Two code fragments are semantically equivalent if they are contextually equivalent.

2.4.1.1 De�ning Semantic equivalence in Classic Java

The concept of semantic equivalence of methods is demonstrated in more detail using

Classic Java [7]. This is a small language that contains the basic elements of Java. Due to

its relatively small size compared to Java, it can be used to demonstrate concepts involved

in the determination of semantic equivalence generally and concisely. The syntax for Classic

Java is given in Figure 2.6 on the next page.

In order to measure semantic equivalence between methods, the two propertiesmethod-

Type and e�ects need to be computed for the method candidates. The rules for computing

these attributes for the di�erent Classic Java AST nodes are given in Figure 2.7 on page 24

and Figure 2.8 on page 25 respectively.

22

P = defn∗e

defn = class c extends c implements i∗ {�eld∗ meth∗}| interface i extends i∗ {meth∗}

field = t fd

meth = t md(arg∗){body}

arg = t var

body = e | abstract

e = new c | var | null | e : c.fd | e.md(e∗) | super ≡ this: c.md(e∗) |
view t e | let var = e in e

var = a variable name or this

c = a class name or Object

i = interface name or Empty

fd = a �eld name

md = a method name

t = c | i

Figure 2.6: Syntax of Classic Java quoted from Flatt et al. [7]

In Figure 2.7 the methodType attribute is de�ned for all of the nodes except for

the �eld, arg and body nodes, since as shown in Figure 2.6 these do not contain a method

declaration. The methodType equations all return a set of methodTypes declared in the

particular AST node. Each methodType contains return type and parameter type informa-

tion as de�ned in Section 2.3.1 on page 13. For a method, this equation simply returns its

methodType as a set. The methodTypes for a defn (class or interface), are computed as the

union of all of the methodTypes of its declared methods.

23

P.getMethodType() →
switch (P){

case e:
e.getMethodType ()

case (defn1... defnn)e:∪n
i=1 defni.getMethodType ()

∪
e.getMethodType

default:
empty set}

defn.getMethodType () →
switch (defn){
case class ci extends cj implements i∗ {field∗ meth∗

k}:∪n
k=0 methk.getMethodType()

case i extends i∗ {meth∗
k}:∪n

k=0 methk.getMethodType()
default:

empty set}

meth.getMethodType() →
switch(meth){
case t md {body}:

new methodType(t)
case t md arg1... argn{body}:

new methodType(t,arg1... argn)
default:

empty set}

e.getMethodType() → {new MethodType()}

Figure 2.7: Part A: Rules for computing methodType for Classic Java AST nodes

24

P.getE�ects() →
switch (P){

case e:
e.getEffects()

case (defn1... defnn)e:∪n
i=1 defni.getEffects()

∪
e.getEffects()

default:
empty set}

defn.getE�ects() →
switch (defn){
case class ci extends cj implements i∗ {field∗ meth∗

k}:

cj.getEffects()
∪n

k=0 methk.getEffects()
default:

⊤ }

meth.getE�ects() →
switch(meth){
case t md arg∗{body}:

body.getEffects()
default:

⊤ }

�eld.getE�ects() → empty set

arg.getE�ects() → empty set

e.getE�ects() →
switch(e){
case new c:

(constructor of c).getEffects()
case ei.md(e

∗
j):

ei.getEffects()
∪

md.getDef(md,typeof(ci)).getEffects()
∪n

j=0 ej.

effects()
case c.md(e∗

j):

md.getEffects()
∪n

j=0 ej.effects()

default:
empty set}

body.getE�ects() →
if(isAbstract)

⊤
else

e.getEffects()

Figure 2.8: Part B: Rules for computing e�ects for Classic Java AST nodes

25

The e�ects equations for Classic Java are given for all of the AST nodes. This is

shown in Figure 2.8 on the preceding page. For each type of node, the e�ect information

contains pairs of the object type and �elds that it can mutate�that is both instance and

static �elds. Examples of the attribute de�nitions and equations used in this research are

shown in Section 3.3 on page 41. Since the methods of an interface are all abstract, the e�ects

of the methods of an interface are given as a set called ⊤ (top) each of whose elements is

unknown. This is an over-approximation of the e�ects of the interface so that candidates

would not be �ltered out in the �ltering stage, although they may be when dynamically

tested. The same value ⊤ is used for abstract classes and methods. For other classes, the

e�ects are computed as the union of the e�ects of the super class (if any), and the collective

e�ects of the class methods.

For a method, the getE�ects equation returns the method's e�ects computed as de-

scribed in Section 3.4.2 on page 49. The e�ects of an abstract method have the value ⊤. For

an argument and a �eld, this returns an empty set, since arg and �elds in Classic Java do

not contain method calls.

For an expression(e), the getE�ects method returns an empty set, except for the

method call expressions (including calls to constructors using new). When the method call

is made with a dot expression and the left side is a class name, the e�ects are computed as

the union of the e�ects of the called method and arguments. When the left side of the dot

expression is another expression, then the e�ects are computed as the union of the e�ect of

the expression, called method, and arguments. The e�ect of a constructor call is evaluated as

the e�ects of that constructor method. The e�ects of a call to a super method, are evaluated

as the e�ects of the method in the super class. The e�ects of a body node are returned as

the e�ects of its contained expression or ⊤ if it is abstract. Figure 2.9 on the next page gives

the equations for creating the program MethodTable. The MethodTable equations return

26

a lookup table for the methods in a defn or program. The lookup table contains an entry

for each method, including its class information, location, size, type (static or non-static)

and methodType and e�ect attribute values. For a program, this stores entries for all of the

methods declared in that defn. It is created from the union of the MethodTables of all of

the class defn's that make up the program. The interface defn has a MethodTable in which

all methods have e�ects values of ⊤, since all of the methods are abstract. Methods have a

MethodTable with only one entry and that is the information for that speci�c method.

P.getMethodTable() →
switch (P){

case e:
e.getMethodTable ()

case (defn1... defnn)e:∪n
i=1 defni.getMethodTable ()

∪
e.getMethodTable ()

default:
empty set}

defn.getMethodTable() →
switch (defn){

case class ci extends cj implements i∗ {field∗ meth∗
k}:

cj.getMethodTable ()
∪n

k=0 methk.getMethodTable ()
default:

empty set}

method.getMethodTable() →
new HashMap <TypeEffect ,methodEntry >().add

(MethodTypeEffect(this.getMethodType (),this.getEffects()),
new MethodEntry(this.getClass (),this.getID ,this.isStatic (),
this.start(), this.end()))

Figure 2.9: Part C: Rules for computing MethodTable for Classic Java AST nodes

27

2.4.2 Structural Equivalence

When checking for semantic equivalence, at times it is necessary to be able to de-

termine if the objects returned by two methods are equal; or if receiver objects of methods

and/or parameter objects or static �eld objects have been altered in the same way by method

executions. The use of the Java Object.equals(Object) method is not always appropriate in

these instances, since, unless overridden, this method determines equivalence by checking if

two objects point to the same location in memory. However, for the purposes of this re-

search, the desired notion of object equivalence, is a structural equivalence check. That is a

check that corresponding object �elds or data member values (and not necessarily memory

locations), are equal. Generally in Java, there are three ways in which we can think about

equivalence between two objects: identity, observational and structural equivalence.

Identity means that two objects have the same memory address. However, if two

methods return the same value, which is an object (meaning that the value of corresponding

�elds are the same), but the two objects are stored in di�erent memory locations, identity

will not recognize the two results as equivalent. For example during the dynamic testing

phase for an equivalence class, my algorithm creates new objects to test each method. The

objects created are structurally equivalent so that methods are called on objects in the same

state. However, these objects cannot be expected to have the same identity. Consequently,

if identity is used as the measure of equivalence, false negatives may result. Hence, identity

is not an appropriate measure of equivalence for this research.

Observational equivalence between two methods means that a program cannot be

written to di�erentiate between them. While this notion of equivalence may return correct

results for my algorithm it is unsuitable, since observational equality cannot be computed

28

easily, or e�ciently. This leaves only one other option for evaluating object equivalence�

Structural equivalence.

Two objects of the same class are de�ned as structurally equivalent, if each of their

corresponding �elds stores a structurally equivalent value; the base case is that primitive

values are structurally equal if they are equal values. This means that their values are

the same, even if their locations in memory are di�erent. Corresponding object �elds of

structurally equivalent objects are also structurally equivalent. This is precisely the notion

of equivalence that is required for comparing objects in my CD algorithm. For this reason,

the notion of structural equivalence is used in this research.

Figure 2.10: Example showing structural equivalence between objects

For example, in Figure 2.10 Triangle A and Triangle B would return true using the

Java Object.equals method, since they point to the same address. They are also structurally

equivalent, since they point to the same object and an object is equal to itself. On the other

hand, the Java Object.equals method would return false for Triangle B and Triangle C since

they reference di�erent memory locations. However, these two Triangles are structurally

29

equivalent, given that the corresponding type, base and height �eld values are all equal.

In addition, Triangles A, B and C are also structurally equivalent. Triangle D is not

structurally equivalent to the others, since its height value is di�erent. Square E is also not

structurally equivalent to any of the other objects, as it belongs to a di�erent class and its

�elds are all di�erent.

2.5 JastAdd

JastAdd is a Java-based compiler generator developed by Hedin et al. [8]. It allows

developers to extend Java-like languages by adding attribute descriptions and equations to

compute them. These new descriptions add attributes based on the language's AST�for

my case, the Java AST (a sample of which is shown in Figure 2.11 on the next page).

Each AST node is a class. New attribute descriptions are described in static JastAdd

aspect �les similar in syntax to AspectJ aspects. Basically two types of attributes can be

described: synthesized and inherited. The synthesized attributes are de�ned for each node

and are based on the content of the node. Inherited attributes are de�ned in the parent

node and propagated down the AST to its children nodes. The computation of both types

of attributes is de�ned using equations which are like Java methods. Synthesized attribute

equations are like abstract virtual methods. The attributes themselves are like Java instance

�elds.

Each node in the AST is of the form shown in equation 2.9.

ASTnodename : type ::= components (2.9)

30

1 abstract Stmt;
2 abstract BranchTargetStmt : Stmt; // a statement that can be

reached by break or continue
3 Block : Stmt ::= Stmt*;
4 EmptyStmt : Stmt;
5 LabeledStmt : BranchTargetStmt ::= <Label:String > Stmt;
6 ExprStmt : Stmt ::= Expr;
7 SwitchStmt : BranchTargetStmt ::= Expr Block;
8 abstract Case : Stmt;
9 ConstCase : Case ::= Value:Expr;

10 DefaultCase : Case;
11 IfStmt : Stmt ::= Condition:Expr Then:Stmt [Else:Stmt];
12 WhileStmt : BranchTargetStmt ::= Condition:Expr Stmt;
13 DoStmt : BranchTargetStmt ::= Stmt Condition:Expr;
14 ForStmt : BranchTargetStmt ::= InitStmt:Stmt* [Condition:Expr]

UpdateStmt:Stmt* Stmt;
15 BreakStmt : Stmt ::= <Label:String >;
16 ContinueStmt : Stmt ::= <Label:String >;
17 ReturnStmt : Stmt ::= [Result:Expr];
18 ThrowStmt : Stmt ::= Expr;
19 SynchronizedStmt : Stmt ::= Expr Block;
20 TryStmt : Stmt ::= Block CatchClause* [Finally:Block];
21 AssertStmt : Stmt ::= first:Expr [Expr];
22 LocalClassDeclStmt : Stmt ::= ClassDecl;
23 VarDeclStmt : Stmt ::= Modifiers TypeAccess:Access VariableDecl

*;
24 VariableDeclaration : Stmt ::= Modifiers TypeAccess:Access <ID:

String > [Init:Expr]; // Simplified VarDeclStmt
25 abstract CatchClause ::= Block;

Figure 2.11: Java AST statement nodes quoted from Hedin et al. [8]

Where nodename is the type of node. For example in Figure 2.11 line 20, the AST node is the

`TryStmt '. Its type is Stmt, indicating that this node is a Java statement. The components

are other Java AST nodes which are used in the TryStmt. Components can be given special

names other than the Java AST node type that they belong to. When such a name is used,

the component has the format shown in equation 2.10.

specialname : Java AST node type (2.10)

In the TryStmt de�nition in Figure 2.11 line 20, the AST node components are: Block

de�ned in line 3, CatchClause of which there may be 0 or more (de�ned in line 25); and

another optional Block di�erentiated from the �rst with the special name `Finally ' (The

31

square braces indicate that the component is optional). Each of these components is an

attribute of the node and can be accessed using accessor functions. The naming convention

for the accessor functions use the word `get' followed by the name of the component type,

unless it has a special name, then get is followed by the special name. In the TryStmt exam-

ple, the �rst Block is accessed using the method: getBlock(). The second block is accessed

using the method getFinally(). Since this is an optional component, JastAdd provides the

boolean method to check its existence�hasFinally(). Since there can be multiple Catch-

Clauses the method getNumCatchClause() is available for �nding how many are contained

in the TryStmt. The list of CatchClauses is returned by the method getCatchClause().

2.6 Random Sampling

In dynamic testing, the entire population of all possible inputs (including heap states)

of a method is not available. Thus the selection of a representative sample is important. For

dynamic testing, the population is the domain of all possible combinations of input values

and system states of the methods under investigation. In such testing, a good sample is a

subset of the population, that is representative of the entire set. Such a set is di�cult to

create. However, good research practice strives at ensuring that the di�erences between the

population and sample are minimized as much as possible, and that they are the result of

chance, instead of �aws in the selection process [49]. This is one of the challenges of the

research in this dissertation, since it was not possible to test the entire domain of inputs for

the methods being investigated. To deal with this challenge random sampling is used for

selecting a sample.

Random sampling is considered to be the best way of selecting a sample guaranteed

to be representational of the entire group [49]. In this strategy, a subset is chosen from the

32

whole population such that each element has an equally likely chance of being chosen. Thus

the sampling is fair. The primary advantage of this selection process is that there is a high

probability that the selected sample is truly representative of the whole population. This

probability, however, is directly proportional to the size of the selection. Thus, the larger

the sample, the more likely it is to be representative of the population. One down side is

that special elements of the group which add an interesting dimension to the characteristics

of the whole, may not be selected in the sample. Consequently, some important aspects may

go untested.

An alternative sampling strategy which addresses guaranteeing that special elements

of the population are included, is strati�ed random sampling. This strategy begins by iden-

tifying subgroups within the whole population and then selecting a sample, by randomly

selecting from each sub-group. To ensure that the resulting sample is truly representative of

the entire group, the number of elements selected from each subgroup, is the same proportion

as exists in the whole population.

For example, if the performance of 100, male and female, 5th graders in a Math exam

is under study. A random sample of 10 of the students would not necessarily include both

groups (male and female). To guarantee that both are included, the sub-groups of boys and

girls are created and students chosen from both groups randomly. If for example there are

40 boys and 60 girls. To collect a strati�ed sample of 10 students, 4 boys and 6 girls need

to be selected, so that the proportions in the sample are representative of the whole.

For my research I use a modi�cation of strati�ed random sampling. This strategy

allowed me to consider special input value cases (shown in Table 2.6 on the following page)

such as 0 and null (which could produce atypical method behavior and possibly distinguish

between borderline clones), and other regular values. Large samples of the input are also

generated for testing, to increase the probability that the sample is representative of the

33

domain. Since the input domain can be in�nite, the size of the whole population is also

in�nite. Thus, it is not possible to strictly maintain the relative proportions of special

and regular cases, in the sample. Instead, since the average number of special cases is

approximately 4, I select 2 special cases for numTest (number of tests run) values 1�30 and

3 for more than 30 tests (except when the number of special cases for a particular type is less

than 2. Then all are selected. For example there is only one special value for objects�null.

So this value is always evaluated). This was to ensure that the special cases were sampled

since there was the probability that they might di�erentiate between borderline clones.

Table 2.6: Special values for Java types
Type Special value cases

byte
Byte.MIN_VALUE,
Byte.MAX_VALUE

double

Double.NaN,
Double.NEGATIVE_INFINITY,
Double.MIN_VALUE,0,
Double.MAX_VALUE,
Double.POSITIVE_INFINITY

�oat

Float.NaN,
Float.NEGATIVE_INFINITY,
Float.MIN_VALUE,0,
Float.MAX_VALUE,
Float.POSITIVE_INFINITY

int
Integer.MIN_VALUE, -1, 0, 1, In-
teger.MAX_VALUE

short
Short.MIN_VALUE,0,
Short.MAX_VALUE

String null, �"

long
0,Long.MIN_VALUE,
Long.MAX_VALUE

object null

2.7 Privileged Aspects

In this research, semantic equivalence between methods is ultimately determined by

dynamic tests. This involves calling the candidate clone methods within the test �le and

34

evaluating the output�result and e�ects. This presents a particular challenge for private and

protected methods which according to Java visibility rules, cannot be called outside of their

declaring class or its package. Since these methods also have to be analyzed for semantic

similarity, there must be the facility for calling them in the test �le. Aspects�particularly,

privileged aspects provide this access.

Aspects are class-like �les, used to provide the implementation of some concern (prop-

erty or behavior), which spans di�erent object types. Like classes, they can encapsulate

methods, and �eld declarations. Standard aspects follow variable and method scoping and

visibility rules similar to Java classes; and normally may not be able to access methods de-

�ned as private. In some situations, such as when analyzing for semantic clones, it may be

necessary to relax these access rules to analyze private methods for semantic equivalence. A

special subclass of aspects called privileged aspects have this capability. Using the keyword

privileged in the aspect declaration, grants it access to private methods and data members3.

Another major advantage of aspects, is that they provide the means to change object behav-

ior by modifying a class outside of that class declaration. Aspects can be used to declare new

methods and even �elds for a class. For example, the runTest method (described in detail

in Section 3.5.3 on page 63) for each equivalence class of candidate clones, is declared in an

aspect. This method is de�ned outside of the equivalence class, in a privileged aspect, since

it contains method calls to all methods of the equivalence class, and some of these methods

may be declared private in their declaring class.

The syntax of an aspect shares some similarity with a Java class. However, they

also include aspect-speci�c components such as pointcut, advice, and inter-type declarations.

These features are used to facilitate access to speci�c points in the code and to de�ne the

3 A more in depth study of privileged aspects with examples can be found in [50]

35

actions to be taken when such points are reached. Each of these features is described in the

following paragraphs.

Join points are identi�able points in a program such as the initialization of a data

member or a method call. Pointcuts are the predicates de�ned in an aspect to match speci�c

sets of join points. So pointcuts are written to pick out speci�c join points like method calls,

or object �eld accesses and to identify values or states of the system at that point. An advice

is associated with some pointcuts. It describes the action to be taken� that is the code that

has to be executed when a particular pointcut is encountered. The type of action to be taken

is determined by advice keywords. For example, at a join point, before and after advice have

to be executed before and after the code of the join point respectively. An around advice

de�nes the action that has to be taken instead of executing the code of the join point.

For example, a banking system might want to track how much money it pays out to

customers for the day. The system has some accounts (Acct objects), owned by its customers.

The methods deposit and withdraw are available for all Acct objects. A pointcut :

pointcut call(acct.withdraw(double))

is de�ned for the system. This pointcut will identify all points in the code where there is

a call to withdraw from an Acct and a double parameter is passed. This pointcut can be

named as in the following code. It is the same pointcut as previously described but it has

been given a name�withdrawal.

pointcut withdrawal(Acct a, double amt): call(void Acct.withdraw(
double)) && target(a) & args(amt)

after(Acct a, double amt): withdrawal(a, amt) {
cashOut += amt;

}

36

It takes two parameters the Acct receiver object and the amount to be withdrawn passed as

an argument to the withdraw method. An advice is also de�ned for the pointcut withdrawal.

This advice updates the system variable cashOut after the execution of the join point which

matches the point cut. For example considering 3 customers with accounts a-c and they

each withdraw $10, $20, $30 respectively from their accounts. This would be re�ected by

the following code:

a.withdraw (10);
b.withdraw (20);
c.withdraw (30);

The pointcut would identify these three withdrawals and invoke the advice after each

execution of the call to withdraw. This would result in the following execution:

a.withdraw (10);
cashOut +=10;
b.withdraw (20);
cashOut +=20;
b.withdraw (30);
cashOut +=30;

2.8 Instrumentation in Java

When the type of a formal parameter is an abstract class or an interface, instantiation

presents a problem, since neither kind of type can be instantiated. In such cases, a non-

abstract subclass or an implementing class needs to be used to create the test instance.

This can be achieved by querying the Java virtual machine (JVM) at any given time during

runtime, to check the set of loaded classes to �nd a suitable type from that list. This

functionality is provided by the Java Instrumentation interface introduced into the JDK

(Java Development Kit) 1.5 and later. Instrumentation allows analysis tools like JSCTracker

to be able to passively access the state of the JVM. This query is discussed in more detail

in Section 3.5.1 on page 53.

37

A major and �nal step in the semantic clone detection process described in this

research is testing. This incorporates simulating contexts and generating parameters as de-

scribed in detail in Section 3.5.1. Using these simulated values, method calls are constructed

for the evaluation of the methods under test. Instrumentation is used in this research, to

identify usable sub-types for parameters with types that are abstract classes or Interfaces.

The process of querying the JVM is costly thus steps are taken to minimize the overhead.

These are discussed in detail in Section 3.5.1.

The instrumentation instances can be generated in either of two ways. In one case, the

instance is created prior to the launch of the JVM. This is achieved by de�ning a Java agent

class with a method premain. When the JVM attempts to launch, it detects the presence of

the agent class, and recognizing the premain method, its regular activities are interrupted and

instead it creates an instance of the instrumentation class, loads it and returns this instance

to the premain method, via the instrumentation parameter. This approach is useful when the

monitoring activities are required prior to the execution of the application's main. However,

in instances when the monitoring is required to occur as part of the execution of main, (as

for the purposes of this current research), the instrumentation instance is created after the

JVM has been loaded. In such a case the agent class must provide an agentmain method.

As before, the JVM creates an instance of the Instrumentation class, loads it and returns

that value to the agent method. Once this instrumentation has been made available to the

agent, it can now be accessed and its interface member-methods invoked as with any object.

This can be done within the agent or even within the Java application, by making a static

method call or accessing a static variable. A list of all of the methods of the Instrumentation

interface can be found in the javadoc available in an online document provided by Oracle

[51].

38

CHAPTER 3

ALGORITHM

This chapter begins with a explanation of the underlying assumptions of this research

and the rationale for them. It continues with a detailed description of the stages of my

method IOE-Behavior algorithm for semantic method clone (SMC) detection.

3.1 Assumptions

In the course of implementing the SMC detection algorithm used in this research, a

few assumptions were made because, although not supported by a formal proof, they were

intuitive or narrowed a scope that might have been too wide to investigate reasonably. These

assumptions are discussed below. The impact of these assumptions on the precision of my

experimental results is discussed in Section 6.1 on page 98.

The �rst assumption is that the possible persistent changes brought about by a

method's execution are limited to: changes to receiver objects, class variables and parameter

objects. Virtual machine states and e�ects on external devices such as the system clock, are

not considered. It is assumed that the methods do not change these. This is a reasonable

assumption since, generally, methods in user code cannot modify static �elds of library and

Java System classes. However, in a few cases such as with the system clock and with I/O

devices, this may not be true. This assumption is used in the de�nition of a method's e�ects

39

and in decisions on what variables should be tracked in the analysis of e�ects as described

in Section 3.4.2 on page 49.

The second assumption is that the classes in the source code submitted for analysis,

have at least one constructor that sets its instance and class variables. This assumption was

made because it simpli�es the process of generating multiple random objects.

The third assumption is that the toString method has been overridden for all of the

tested classes. This method is assumed to print out a representation of the object that

facilitates the di�erentiation between structurally di�erent objects. Thus, the assumption is

that the toString method prints out more than just class name and address.

3.2 Overview

My approach to semantic clone detection using method IOE-Behavior, analyzes Java

code at the method level to detect functional equality. Recall from Section 2.4.1 on page 21

that two methods are functionally equivalent if they have the same input-output and e�ects

behavior: IOE-Behavior [3]. There are two contributors to input, namely: the set of param-

eters passed to the method, and the heap state when the method is invoked. Output is the

return value of the method (none for void methods). A method's e�ects are how it changes

the heap, that is, any mutations of non-local variables that persist beyond the method call.

The semantic clone detection algorithm developed in my research is a 4 step process:

abstraction�line 2, �ltering�lines 4�9 and 12�24, testing�lines 26�27 and collection�lines

28�30, as described in the pseudo code in Figure 3.1 and discussed in the sections that follow.

40

1 SemanticCloneDetection(input_files){
2 Create Program AST P from input_files
3 set <methodTypes > types
4 for each method m in P
5 add m.getType () to types
6 for each methodType t in types{
7 if number methods with type t < 2{
8 delete t from types
9 }

10 }
11 Map <TypeAndEffect ,methods >tAndE
12 for each methodType t remaining in types{
13 matchingmeths = methods with type t
14 for each method meth in matchingmeths{
15 meth.getEffects ()
16 }
17 Map <TypeAndEffect ,methods >tmp = group methods by effect
18 for each TypeAndEffect e in tmp{
19 if matching methods < 2{
20 delete e from tmp
21 }
22 }
23 tAndE.add(tmp)
24 }
25 for each TypeAndEffect group in tAndE{
26 create test files files
27 run files
28 collect clones
29 }
30 output clones
31 }

Figure 3.1: Pseudo code for algorithm for semantic clone detection

3.3 Abstraction

The �rst step is the creation of an abstract representation of the code for analysis.

This corresponds to line 2 of the pseudo code in Figure 3.1. The code submitted for testing

is parsed to create an abstract syntax tree (AST). This is generated by a static analysis

tool built on the JastAdd compiler generator, created by Hedin and Magnusson [8]. This

tool (discussed in detail in Section 3.7 on page 70), uses attribute grammars to decorate the

AST with synthesized attributes methodType and method e�ect for AST nodes. The two

attributes are declared as follows using JastAdd attribute grammar syntax:

1 syn HashMap <MethodType ,ArrayList <MethodEntry >> MethodDecl.
MethodTypes ();

41

2 syn EffectType MethodDecl.Effects () circular[new EffectType ()];

They are stored as MethodType and E�ectType objects, which are described in Section 2.3.1

on page 13 and Section 2.3.2.2 on page 18. Equations are available to lazily compute the

value of these synthesized attributes for each of the AST nodes.

Figure 3.2 on the next page describes the data structures used to de�ne and store

the attributes required to evaluate semantic equivalence. The MethodTable is a store of all

of the methods identi�ed in the code. TypeAndE�ect is a record used to store a method's

type, (described in Section 2.3.1 on page 13) and its e�ect, (described in Section 2.3.2.2

on page 18). These records are used to create the equivalence classes of methods with the

same IOE-Behavior. MethodType de�ned in Section 2.3.1 is stored as an object with the

data members return type and the parameter type list. E�ects are stored as an E�ectType

object which is an arraylist of Strings of the form classname.�eldname. A MethodEntry is

an object which stores speci�c method information. The �rst data member is the full name

of the class where the method is declared. Methodname is the name of the method. The

boolean stores whether the method is static. The last two integers store line numbers for

the beginning and ending locations of the method in the code. Fieldname, methodname and

classname are string identi�ers. Parameters are de�ned as Accesses which are the JastAdd

Java compiler's representation of legal Java types.

The type of a method, (its methodType), is computed by extracting the argument

and return type information from the method's declaration. This information is obtained

by querying the attributes typeAccess and Parameter of the MethodDecl node as shown in

the code of Figure 3.3. The MethodDecl node has components ParameterDeclaration* and

TypeAccess representing the argument types and return type respectively. In my implemen-

tation, methodType is declared as an object de�ned by the MethodType class which contains

2 private data members:

42

MethodTable = HashMap <MethodTypeEffect , ArrayList <MethodEntry >>
MethodTypeEffect = (MethodType , Effect)

MethodType = (ReturnType , Parameter+)
Effect = EffectType
EffectType = ArrayList <String >
MethodEntry =(Classname , Fieldname , Methodname , boolean , int , int)
Fieldname = id<String >
Methodname = id<String >
Classname = id<String >
Parameter = Access
Access = type <String >

Figure 3.2: Data structures used in computing semantic equivalence of methods

1 eq MethodDecl.getMethodTypes (){
2 ArrayList <ParameterDeclaration > p = new ArrayList <

ParameterDeclaration >();
3 int size = getNumParameter ();
4 for(int i = 0; i < size; i++){
5 p.add(getParameter(i));
6 }
7 Access reType = getTypeAccess ();
8 return new MethodType(reType , p);
9 }

Figure 3.3: Code to compute methodType

Access returnType;
ArrayList <Parameter > parameters;

My e�ects analysis is a modi�cation of the type-based, �eld-based analysis, described

by Raza�mahefa [48] and explained in detail in Section 2.3.2.2 on page 18. The goal is to

identify persistent changes to the heap. Hence, only updates to receiver objects and non-local

object variables are recorded.

As described in Section 2.3.2.2 on page 18, the e�ect of a method is stored as a set

of Strings, where each String is of the form classname.�eldname�where classname is the

class of the object mutated, or the class to which the static �eld belongs; and �eldname is

the �eld updated. Thus, there is no distinction made between di�erent objects of the same

type. For example, in the method foo in Figure 3.4, the e�ects resulting from the update on

the two Acct objects a and b are the same� update of the balance �eld of an Acct object.

43

1 int foo(Acct a, Acct b){
2 ...
3 a.balance = 25.00;
4 b.balance = 100.00;
5 ...
6 }

Figure 3.4: Example of how method e�ects are recorded

Both lines 3 and 4 of code have an e�ect of {Acct.balance}. Since duplicates are ignored,

the net e�ect of method foo is recorded as {Acct.balance}.

Table 3.1: Calculating a Method's E�ects
Code Statement Effects Method Effects

double getBalance(){ {}

return balance; {}

}

void updateBal(double

newBalance){
{Acct.balance}

balance = newBalance; {Acct.balance}

}

String withdraw (double amt){
{Acct.balance,

Acct.lastActivity}

double acctBalance =

getBalance();
{}

if(acctBalance > amt){

acctBalance-=amt;

updateBal(acctBalance); {Acct.balance}

lastActivity =

todayDate;
{Acct.lastActivity}

return �Withdrawal was

successful.�;

}

return �insufficient funds for

withdrawal.�;
{}

}

When computing the e�ects of a method, each statement is statically analyzed and the

set of writes, (that is those found on the left hand side of assignment statements) is collected.

This is a `may ' analysis, since it is an over-approximation of the actual writes, and tracks

all of the possible writes. For example, the e�ect analysis of conditional statements is an

over-approximation, since the record of possible writes also includes those within conditional

44

statements, which might not occur at runtime. For method call statements, the e�ect is

recorded as the e�ect of the called method. This is demonstrated in the computation of the

e�ects for the withdraw method of the Acct class shown in Table 3.1 on the preceding page.

The effect of a method is declared as a circular attribute in JastAdd, since there

may be mutual recursion among methods. This computation will always terminate since the

e�ect is stored as a set of classname.�eldname pairs (both static and instance �elds), and

there is only a �nite number of class-name and �eld-name pairs in any program. The net

e�ect of a method is evaluated by computing the e�ects of each of the method's statements

and then taking the least upper bound (essentially a union) of that. Thus for a sequential

method A, with statements a1,. . . an, the e�ects of A are given by equation 3.1.

A.getE�ects() = ⊔n
i=1ai.getE�ects() (3.1)

Computations for the e�ects of a loop structure are also similar, since duplication is removed

from the method e�ects, the e�ects of the loop would be the same as the e�ects of one

iteration of the loop.

The code in Figure 3.5 gives the attribute equation for a method's e�ects. The AST

node structure for MethodDecl and Block are given by:

MethodDecl : MemberDecl ::= Modifiers TypeAccess:Access <ID:String >
Block : Stmt ::= Stmt*

If the method is abstract, then its e�ect is ⊤ (Top). This is a value used to represent an over-

approximation of unknown e�ects. As a result, all abstract methods of the same methodType

are placed in the same e�ects group. For non-abstract methods, the e�ect of the method

would be the net e�ect of the Block (The computation is shown in lines 11�21). First, the

e�ect of each statement of the method is evaluated. The join of these values is then recorded

as the method's net e�ects. This is explained in greater detail in Section 3.4.2 on page 49.

45

1 eq MethodDecl.getEffects (){
2 ArrayList <String > ret = new ArrayList <String >();
3 if(hasBlock ()){ //not abstract
4 ret.addAll(getBlock ().getEffects ());
5 }
6 else{
7 return Top
8 }
9 }

10 // ---
11 eq Block.getEffects (){
12 int size = getNumStmt ();
13 ArrayList <String >ret = new ArrayList <String >();
14 for(int i = 0; i < size; i++){
15 ArrayList <String >tmp = Stmt.get(i).getEffects ();
16 ret.addAll(tmp);
17 }
18 HashSet h = new HashSet(ret);// removing duplicates
19 ret.clear();
20 ret.addAll(h);
21 return ret;
22 }

Figure 3.5: Code to compute the e�ects of a method

Table 3.2 shows the values of the attributes methodtype and e�ects for 3 methods the

Acct class.

Table 3.2: MethodType and e�ect attributes for 3 methods
Method MethodType MethodEffect
double checkBal(){

return balance;
} double() {}
void DoubleBal(){

balance = balance * 2;
} void() {Acct.balance}
String copyBal(Acct a){

a.balance = balance;
return �success�;

} String(Acct) {Acct.balance}

46

3.4 Filtering

All of the methods in the code being evaluated, are identi�ed as a preliminary set of

potential method clones�the candidate set. This set is then reduced or re�ned by applying

the methodType and e�ects �lters sequentially. The remaining candidate set (which is a

smaller set than the original one), can then be evaluated further and screened for equivalence.

The �ltering phase possibly reduces the number of methods that have to be evaluated, thus

improving the overall e�ciency of the detection algorithm.

3.4.1 MethodType Filter

The �rst �lter, uses the methodType attribute described in Section 2.3.1 on page 13, to

group methods into equivalence classes. Methods with equivalent methodType (that is return

type and parameter types are the same), are placed in the same equivalence class. Only

equivalence classes containing more than one method are considered for further analysis (see

algorithm overview in Figure 3.1 on page 41, lines 4�9). The pseudo code for the methodType

�lter is given in Figure 3.6 on the following page.

The set of methodTypes for a given Program, is the union of the methodTypes found

in each of its classes and/or interfaces. The ReferenceType.getMethodType() method in Fig-

ure 3.6 on the next page shows the pseudo code for the computation of the methodTypes in a

class or interface. The algorithm takes each method in the ReferenceType in turn, and adds

it to a set of methods of matching type. The result is a set of mappings of methodType to

methods with that type. The addition of the new method to the set is shown in lines 25�31

of Figure 3.6. For each method to be added, a check is made to determine if its type already

exists in the mapping (line 27 of code). If that methodType is already in the mapping, the

47

new method is added to the set of methods with that type already in the mapping (line 28

of code). Conversely, if the methodType is not yet present, then a new entry is made, that

maps the methodType of the new method, to the new method (lines 29�32 of code).

1 Set <MethodType > Program.getMethodType () {
2 Set <MethodType > ret
3 for each ReferenceType r//(class or interface) in Program
4 AddTypes(r.getMethodType (),ret)
5 ret = ret - types with single matching method
6 return ret
7 }
8 --
9 Set <MethodType >AddTypes(Set <MethodType >ret,Set <MethodType >mt){

10 if ret is empty return mt
11 if mt is empty return ret
12 for each methodType t in mt{
13 meths = methods with type t in mt
14 find matching methods matching in ret
15 if (matching is not empty)
16 matching += meths
17 else
18 add t → meths to ret
19 }
20 return ret
21 }
22 // ---
23 Set <MethodType > ReferenceType.getMethodTypes (){
24 Set <MethodType > ret
25 for each method m in ReferenceType{
26 type of m = t
27 if ret already has t
28 add m to list of methods with type t in ret
29 else{
30 add t as new MethodType
31 add m as method with that type in ret
32 }
33 return ret
34 }
35 }

Figure 3.6: Pseudo code for methodType �lter

Table 3.3: Sample methods for methodType analysis
Methods
void deposit(double)
double checkBal()
double calInt()
String getType()
String printState(double)
void withdraw(double)

48

Figure 3.7: Resulting HashMap of methodTypes for methods in Table 3.3

For example, given the six methods in Table 3.3 on the preceding page, applying the

methodType �lter would result in 2 equivalence classes of candidate clones: {checkBal,

calcInt} and {withdraw, deposit}. The fourth method, getType, would be �ltered out

from the �rst set, since although it has the same parameter list as checkBal and calcInt,

its return type is di�erent, thus its output behavior is also di�erent. The fourth and �fth

methods getType and printState do not form a candidate set either, because, although

their return types are the same, their parameter lists are unequal, indicating a variant in

input behavior. Figure 3.7 shows the state of the resulting HashMap for the six methods.

The keys with only one methodEntry are deleted leaving only two methodTypes, each with 2

methods.

3.4.2 E�ects Filter

The e�ects �lter further re�nes the equivalence classes returned by the methodType

�lter. The pseudo code is shown in Figure 3.8 on the following page. Beginning with the

equivalence classes of methodTypes returned by the methodType �lter, each equivalence class

is taken in turn and the e�ects for its members computed lazily. Methods with the same

49

e�ects are grouped into a new equivalence class (lines 4�10 in Figure 3.8). As a result, the

methods in an e�ect group, have the same type and e�ect. This information is stored as a

TypeAndE�ect object as shown in line 7. Each method of an equivalence class is taken in

turn and its TypeAndE�ect is computed. If that key already exists in the e�ectsHashMap

then the value for that key is updated to include the new method. Otherwise, a new entry

is made in the e�ectsHashMap to add that method. The pseudo code which handles this, is

shown in lines 17�23 of Figure 3.8. As before, any method left in a group on its own, is no

longer considered a candidate. Hence, the e�ects �lter can have any of the following e�ects

on an equivalence class returned by the methodType �lter:

• no change

• delete equivalence class

• reduce the size of equivalence class

• split into smaller equivalence classes

1 Program.getEffects (){
2 Set <MethodType > Types = Program.getMethodType ()
3 Map <TypeAndEffect > ret
4 for each methodType t in Types{
5 get set of matching methods meths
6 for each method m in meths{
7 TypeAndEffect tE = new TypeAndEffect(t, m.effects())
8 AddTypeEffects(ret, tE, m)
9 }

10 }
11 ret = ret - typesAndEffects with 1 matching method
12 return ret
13 }
14 // ---
15 Map <TypeAndEffect > AddTypeEffects(TypeAndEffect mappings M,

TypeAndEffect tE, method m)
16 {
17 if(M has tE){
18 get matching methods match
19 add m to match
20 }
21 else{
22 add tE → m to M
23 }
24 return M
25 }

Figure 3.8: Pseudo code for e�ects �lter

50

Continuing from the example in Figure 3.7 on page 49, if the e�ects �lter is applied

to the results of the methodType �lter, as shown in Table 3.4 and Figure 3.9, only one

equivalence class would be left. The equivalence class containing checkBal and calInt

would be split into two smaller equivalence classes each with one method; since the two

methods do not have the same e�ect. These methods would not be considered for further

testing since the equivalence class has only one member. However, the equivalence class

containing withdraw and deposit would remain intact, since these methods have the same

e�ect. This equivalence class would go on to the next stage where the two methods will be

tested dynamically to determine semantic equivalence.

Table 3.4: E�ects of methods returned by methodType �lter in Figure 3.7 on page 49
Methods Code Effect

double checkBal() {return balance ;} {}

double calInt()

{ double interest =
balance * 0.05;

balance += interest ;}
{Acct.balance}

void withdraw(double
amt)

{balance -= amt;} {Acct.balance}

void deposit(double
amt)

{balance += amt;} {Acct.balance}

Figure 3.9: Equivalence classes left after e�ects �lter is applied to methods in Table 3.4

51

3.4.3 Bene�ts of �lters

The bene�t of the two pre-test �lters is to reduce the number of methods that require

dynamic testing. Without these �lters, the number of methods to be tested would increase

considerably. In the example in Figure 3.7 on page 49 and Figure 3.9 on the preceding page,

not using the �lters would require that all 6 methods be tested using the dynamic tests. If

only the methodType �lter was used, 4 methods would need to be tested (see Figure 3.7

on page 49)�this is a reduction of approximately 33% in the required tests. When both

�lters are used as shown in Figure 3.9 on the preceding page, only two methods need to be

tested dynamically � a reduction of about 67% compared to the number of required tests

without the �lters. This is an important contribution in terms of the e�ciency of the general

algorithm, since dynamic testing may be arbitrarily costly. Real data on the e�ciency gains

in practice are provided in Section 5.3.2 on page 87. There, the reduction in the number of

methods for testing ranges from 20% to 48%.

3.5 Testing

The testing phase, shown in lines 25�27 in Figure 3.1 on page 41, is the ultimate

test for the candidate clone sets produced by the �lters. This phase is a dynamic �lter,

comparing the actual behavior of methods when called in the same context. The context

consists of heap states (the value of receiver object �elds and other non-local instance and

class �elds) and parameter values. The testing phase has 3 sub-phases, namely: creating the

test context�test objects and test parameters; generating test �les ; and executing the test

�les.

52

3.5.1 Creating the Testing Context

The testing context for a method is the input as described in Section 2.4.1 on page 21;

it is the set of actual values for parameters, �elds of receiver objects and static �elds. The

creation of this context is necessary for running the dynamic tests.

Primitive values are generated by using Java's random number generator in the

method makeParameter(...) shown in Figure 3.10 on the following page. This method takes

two parameters, the type of the primitive parameter or String to be created (eg. �byte",

�int", �short"); and a �ag indicating if a single parameter is required or an array of that

parameter type. This method is also used to generate primitive and String data members

and static �eld values.

The method randomObjectCreationString() shown in Figure 3.11 on page 55 is used

to generate objects. They are created with a call to a randomly selected constructor of

the object's class (see Figure 3.12 on page 55), with randomly-generated parameter values

where needed (see Figure 3.13 on page 56). When the parameter is an object, a recursive

call to randomObjectCreationString() is used to generate the argument object. Since it is

practically impossible to test all combinations of inputs and heap states for all methods, a

modi�ed strati�ed random sampling of contexts is used to select a representative sample for

test cases. This is discussed in Section 2.6 on page 32.

53

1 public static final Random randomgen = new Random ();
2 public static final String arrayElementDelimiter = "&";
3

4 public static String makeParameter(String type , int size)
5 throws ClassNotFoundException
6 {
7 StringBuilder sb = new StringBuilder ();
8 if(size > 1){sb.append("new " + type + "[]");}
9 for(int i = 0; i < size; i++){

10 if(type.equals("char")){
11 char c = char(randomgen.nextInt(Integer.MAX_VALUE));
12 sb.append("\'" + c + "\'");
13 }
14 else if(type.equals("byte")){
15 sb.append(new Integer(randomgen.nextInt(Integer.MAX_VALUE

).byteValue ());
16 }
17 else if(type.equals("int"))
18 sb.append(Integer.toString(randomgen.nextInt(Integer.

MAX_VALUE)));
19 else if(type.equals("double"))
20 sb.append(Double.toString(randomgen.nextDouble ()));
21 else if(type.equals("float"))
22 sb.append(Float.toString(randomgen.nextFloat ())+ "f");
23 else if(type.equals("short"))
24 sb.append(new Integer(randomgen.nextInt ()).shortValue ());
25 else if(type.equals("long"))
26 sb.append(Long.toString(randomgen.nextLong ())+ "L");
27 else if(type.equals("boolean")){
28 int val = randomgen.nextInt (2);
29 if(val == 0) sb.append("true");
30 else sb.append("false");
31 }
32 else if(type.equals("String")){
33 sb.append("\"" + Long.toString(Math.abs(randomgen.

nextLong ()), 36)+ "\"");
34 }
35 else{
36 String s = randomObjectCreationString(type);
37 if(s == null)return null;
38 sb.append(s);
39 }
40 if((size > 1)&& (i < size -1)){
41 sb.append(arrayElementDelimiter);
42 }
43 }
44 return sb.toString ();
45 }}

Figure 3.10: Code randomly generate parameters and objects

54

1 public static String randomObjectCreationString(String
classname)

2 throws ClassNotFoundException
3 {
4 Random randomgen = new Random ();
5 String s;
6 Constructor [] constrs;
7 try{
8 Class c = Class.forName(classname);
9 Class enclosing = c.getEnclosingClass () ;

10 if(enclosing == null){
11 if(Modifier.isStatic(c.getModifiers ()))
12 return "new " + classname + "()";
13 else { //if(isInnerClass ())
14 return "(new" + enclosing.getName () + "()).new " +

classname + "()";
15 }
16 }
17 return getConstructorString(c);
18 }//end try
19 catch(ClassNotFoundException e){
20 return null;
21 }
22 }

Figure 3.11: Code for method randomObjectCreationString

1 String getContructorString(Class c) throws
ClassNotFoundException{

2 StringBuilder sb = new StringBuilder ();
3 Constructor [] constrs = c.getDeclaredConstructors ();
4 int size = constrs.length;
5 if(size > 0){
6 int pos = randomgen.nextInt(size);
7 Constructor choice = constrs[pos];
8 Class[] params = choice.getParameterTypes ();
9 // constructor has no parameters

10 if(params.length == 0)
11 return "new " + classname + "()";
12 else{
13 StringBuilder sb = new StringBuilder ();
14 sb.append("new " + classname + "(");
15 String cps = getConstrParams(params);
16 if(cps == null) return null;
17 else sb.append(cps + ")");
18 return sb.toString ();
19 }
20 }
21 }

Figure 3.12: Code for randomObjectCreationString helping function ConstructorStr

55

1 public static String getConstrParams(Class [] params)
2 throws ClassNotFoundException
3 {
4 StringBuilder sb = new StringBuilder ();
5 String name ,s;
6 int arrayIndicator;
7 for(int i = 0; i < params.length; i++){
8 name = getMyName(params[i]);
9 if(params[i]. isArray ())

10 arrayIndicator = 2;
11 else
12 arrayIndicator = 1;
13 s = makeParameter(name ,arrayIndicator);
14 if(s==null)
15 return null;
16 sb.append(s);
17 if(i == params.length -1)
18 sb.append("\)");
19 else
20 sb.append(",");
21 }
22 return sb.toString ();
23 }

Figure 3.13: Code for helping function getConstrParams

Interfaces and abstract classes present a challenge since they cannot be instantiated.

An instantiable subtype is used instead. This is achieved using Java Instrumentation. The

Instrumentation API available in Java versions from 1.5, allows for querying the set of classes

loaded by the JVM for a set of subtypes of the required interface or abstract class (this is

described in more detail in Section 2.8 on page 37).

A user-de�ned number of test cases (numChoices) is used to determine how many

such subtypes will be collected before one is selected at random. If less than numChoices

possible subtypes are found, then the list is limited to the number found. One subtype

is selected at random from the retrieved list. The methods getInterfaceSubType shown in

Figure 3.14 on the following page and getClassSubClass in Figure 3.17 on page 59 are used

to �nd the subtype of an interface and the sub-class of an abstract class, respectively.

This process of querying the JVM using instrumentation can be computationally

costly, so the algorithm maintains a cached list of all already identi�ed subtype substitutions

56

to reduce the cost of subsequent searches. This list is updated each time a new substitution

is made (see Figure 3.15 on the following page). This makes the creation of abstract objects

and interfaces less random, but reduces the cost of the computation. This trade o� was

accepted since the cost of instrumentation is very high (about 0.2 seconds).

While the selection of the subtype would be less random, the constructor used to

create the test object is still selected at random; thus maintaining some level of randomness.

In cases where no class substitution can be found, the a�ected methods are not tested, since

their method call cannot be constructed. However, the other equivalence classes may still

be tested. A message is also output to the user that a substitute could not be found for the

named class.

1 final Random r = new Random ();
2 public static Class getInterfaceSubType(Class iface , int

numChoices){
3 // Input: accepts an interface name , and the number of options

to explore
4 // searches the list of loaded classes for classes

implementing the interface
5 // Output: returns a randomly selected member of the first n

sub -types found //where n = numChoices
6 int pick = r.nextInt(numChoices);
7 HashMap <Class , ArrayList <Class >> currentTable =

MyJavaAgent.getImplementingTable ();// cached list
8 // search cached list
9 Class c;

10 c = searchAlreadyFound(currentTable ,iface ,numChoices ,pick);
11 if(c!= null){
12 return c;
13 }
14 else{
15 c = getLoadedSubType(iface ,numChoices ,pick);
16 }
17 return null;
18 }

Figure 3.14: Code to obtain interface sub-type

57

1 Class searchAlreadyFound(HashMap <Class , ArrayList <Class >>
currentTable ,Class iface , int numChoices , int pick){

2 if(currentTable.containsKey(iface)){
3 ArrayList <Class > tmp = currentTable.get(iface);
4 if(tmp.size()< numChoices){
5 pick = r.nextInt(tmp.size());
6 }
7 return tmp.get(pick);
8 }
9 else

10 return null;
11 }
12 // ---
13 Class getLoadedSubType(Class iface , int numChoices , int pick){
14 // search for implementing classes in loaded classes
15 Class[] cls = MyJavaAgent.getInstrumentation ().

getAllLoadedClasses ();
16 int numfound = 0;
17 int iter = 0;
18 ArrayList <Class > targetClasses = new ArrayList <Class >();
19 while((iter < cls.length) && (numfound < numChoices)){
20 Class curr = cls[iter];
21 if(Arrays.asList(curr.getInterfaces ()).contains(iface)

&& !curr.isInterface ()&& !isAbstract(curr)) {
22 targetClasses.add(curr);
23 numfound ++;
24 }
25 iter ++;
26 }
27 if(! targetClasses.isEmpty ()){
28 updateImplementingTable(iface , targetClasses);
29 if(targetClasses.size() < numChoices){
30 pick = r.nextInt(targetClasses.size());
31 }
32 return targetClasses.get(pick);
33 }
34 return null;
35 }

Figure 3.15: Helping methods for �nding interface subtypes

58

1 Class getLoadedSubClass(Class SpClass , int numChoices , int pick
){

2 // search for sub -classes in loaded classes
3 if(! MyJavaAgent.getInstrumentation ().equals(null)){
4 Class[] cls = MyJavaAgent.getInstrumentation ().

getAllLoadedClasses ();
5 int numfound = 0;
6 int iter = 0;
7 ArrayList <Class > subClasses = new ArrayList <Class >();
8 while((iter < cls.length) && (numfound < numChoices)){
9 Class curr = cls[iter];

10 if((SpClass.isAssignableFrom(curr)) && !isAbstract(curr))
{

11 subClasses.add(curr);
12 numfound ++;
13 }
14 iter ++;
15 }
16 if(! subClasses.isEmpty ()){
17 nonAbstractSubClassTable.put(SpClass , subClasses);
18 if(subClasses.size() < numChoices){
19 pick = r.nextInt(subClasses.size());
20 }
21 return subClasses.get(pick);
22 }
23 else{
24 return null;
25 }
26 }
27 }

Figure 3.16: Code to search loaded classes for sub-class of abstract class

1 public static Class getClassSubClass(Class SpClass , int
numChoices){

2 Random r = new Random ();
3 Class c;
4 int pick = r.nextInt(numChoices);
5 HashMap <Class , ArrayList <Class >> currentTable = MyJavaAgent.

getSubClassTable ();
6 //check Cache
7 c = searchAlreadyFound(currentTable ,SpClass ,numChoices ,pick);
8 if(c!= null){
9 return c;

10 }
11 else{
12 c = getLoadedSubClass(SpClass , numChoices , pick);
13 if(c!= null){
14 return c;
15 }
16 }
17 return null;
18 }

Figure 3.17: Code to obtain subclass for abstract class

59

3.5.2 Generating the Test Files

The generation of the test �les is carried out through an automated process described

in the pseudo code in Figure 3.18. The main generated test �le consists of a series of method

calls to the methods in a given equivalence class. It is my hypothesis that a good approx-

imation for detecting semantic equivalence between methods can be obtained by running

these methods on a su�ciently large sample of their input domain�including both state

and argument values.1

1 Files generateTestFiles(int numTests){
2 HashMap <TypeAndEffects , ArrayList <MethodEntry >>equiClasses =

Program.getTypeAndEffect ();
3 For each TypeAndEffects mapping in equiClasses{
4 Generate files for class
5 }
6 create driver class to run all files
7 }

Figure 3.18: Pseudo code for generating test �le

To test this hypothesis, my algorithm runs multiple tests on objects in the same state

and also runs each set of input parameter values with objects in multiple states. The details

of how test states or contexts are created are described in Section 3.5.1 on page 53. Each

method is tested with a user-de�ned number of test cases numTests. This is called the test

set. For methods with a non-empty parameter list, numTests sets of parameter values are

used. For non-static methods numTests receiver object states are used. For static methods,

numTests tuples of the static �elds of the class containing the method are used if such �elds

exist. The structure of the test �le is thus determined by the methodType of the equivalence

class as summarized in Table 3.5 on page 63. Pseudo code for handling cases with non-empty

and empty parameter lists are given in the �rst and second methods in Figure 3.20 on the

following page.

1 The algorithm uses a timeout for method executions.

60

1 generateFilesForEquiClass(Equivalence class of methods grouped
by type and effect class){

2 Create class with constructor for equivalence class
3 if methodType has parameters
4 generate numTests sets of parameters
5 if has non -static methods
6 generate numTests sets of each receiver object
7 if has static fields
8 generate numTests sets of static fields
9 for i=1 to number of methods in class{

10 if(has parameters){
11 getMethodCallStringsWithParameters(method ,

parameters , states)
12 }
13 else{
14 getMethodCallStringsWithoutParameters(method ,

states)
15 }
16 }
17 create aspect code using method call strings
18 write aspect code to files
19 }

Figure 3.19: Pseudo code for generating test �les for an equivalence class

1 String getMethodCallStringsWithParameters(method , parameters ,
states){

2 for i =1 to numTests{
3 for j =1 to numTests{
4 create method call with state i and parameter set j
5 add code to store result as EffectRec in array
6 }
7 add code to Convert result array to String and hash

into result hash on resultString
8 }
9 }

10 // ---
11

12 String getMethodCallStringsWithoutParameters(method , states){
13 for i =1 to numTests{
14 create method call with state i
15 add code to store result as EffectRec in array
16 }
17 add code to Convert result array to String and hash

into result hash on resultString
18

19 }

Figure 3.20: Pseudo code for generating method call strings

61

For example, suppose the user-de�ned test-set size is 5. Then to test a non-static

method A.b(c, d , e) we use 5 samples of objects of type A in di�erent states. We also use

5 di�erent tuples of the parameters c, d, and e. Note that this is only 5 tuples, not all

combinations of 5 values for each parameter. Thus the total number of tests for method b is

5× 5 or 25.

Analyzing private methods to identify semantic clones presented a challenge: how to

make calls to private methods outside of their class, when they are only visible inside of their

de�ning class. I considered three options for handling this. The �rst was to modify the code

being tested, so that all methods are declared public. A second approach, like the �rst, would

require modifying the code in the input test classes. In this approach new public methods

can be de�ned within a class, to call the private class methods. A third possible approach

is to generate privileged AspectJ aspects. This is described in Section 2.7 on page 34. This

approach presents several advantages. It facilitates the desired functionality with very little

implementation e�ort, since existing software is reused.2 Plus there is no need to change the

code in multiple input �les. Also, the use of a privileged aspect also allows access to private

methods and �elds without changing their visibility. Thus the AspectJ approach is adopted

in this study.

For each equivalence class of candidate clones, a matching class and at least one

privileged aspect are created. The class is used to instantiate the instance of the equivalence

class so that its member methods can be run. The privileged aspect de�nes the runTest

method. This is fundamentally a set of method calls to each of the methods of the equivalence

class in all of the created contexts. The runTest method is de�ned as an advice, when the

pointcut of a call to an equivalence class constructor, is encountered. The method runTest

is placed in a privileged aspect to ensure that calls to private methods, would not be blocked

2Actually AspectJ is implemented using the second approach.

62

by Java's visibility rules. A single test-driver is also created. This is the �le used to run all

of the tests. It creates an instance of each equivalence class, running its runTest method

as part of the equivalence class constructor. Thus it runs all of the methods under test to

identify the clones.

Table 3.5: Structure of Test File
MethodType Structure of Test File

Empty
Parameter
List

Non-Static n method calls to each method, each time with
a di�erent receiver object state

Static if member class has static �elds, n method
calls to method, each time with a di�erent
static �eld values; Otherwise one method call
to method

Non-Empty
Parameter
List

Non-Static n receiver objects are created, and n tuples of
parameter values. In all n × n method calls
are made to method. Method is called on each
receiver object with each of the parameter tu-
ples in turn.

Static n tuples of parameter values are created; if
member class has static �elds n tuples of
static �eld values are created. If there are
static �elds n × n method calls are made to
method. For each tuple of static �eld values,
the method call is made with each of the pa-
rameter tuples in turn. Otherwise the method
is called n times � once with each tuple of pa-
rameter values

3.5.3 Running the Test Files

The �le generation stage generates at least 2 �les for each equivalence class�a class

�le and at least one privileged aspect. The structure of the equivalence class is shown in

Figure 3.21 on the following page.

The generated test �les evaluates the dynamic behavior of the clone candidates, by

using method calls to run each member of an equivalence class on the same input and then

comparing the corresponding outputs and e�ects. Part of the dynamic testing for semantic

63

clones, is determining equivalence. The testing phase compares methods in a candidate set

for identical IOE-Behavior. The comparison of output values is trivial, for primitive types.

However, for values that are objects, their �nal states are checked for structural equivalence.

Figure 3.21: Structure of equivalence class

To perform structural equality tests, I use the newEquals method shown in Figure 3.22 on

the next page. This method uses a depth �rst traversal and compares objects by recursively

comparing the corresponding �elds. To prevent the comparison from entering an in�nite loop

for circular objects, a timeout feature is used to terminate the comparison at a certain depth

of the search. If the values are the same up to that point, the two objects are considered

clones. The limitations introduced as a result, are discussed in Section 6.4 on page 107.

To facilitate this comparison of method outputs, the results of the method tests are

stored in an E�ectRec object. The datamembers of the E�ectRec object are shown in

Figure 3.23 on the next page.

All of the �elds of the E�ectRec object are Strings. Thus the components of the

output of a method's execution need to be converted to Strings. Strings are used because

they are easy to compare. Other types of objects were not used because they could be

64

mutated. To obtain the String for primitive values, the value is converted to an object of

the corresponding wrapper class and the toString() method is used to obtain a String.

1 boolean newEquals(Object o1 , Object o2, int time){
2 if (time == timeout)
3 return true
4 if type o1 != type o2
5 return false
6 current fieldIndex = 0
7 while has more fields && time < timeout{
8 if(isPrimitive o1.current field){
9 if(o1.current != o2.current)

10 return false
11 }
12 else{
13 newEquals(o1.current ,o2.current , time ++)
14 }
15 fieldIndex ++
16 }
17 return true;
18 }

Figure 3.22: Pseudo code for newEquals method to test structural equivalence of objects

1 public class EffectRec {
2 private String fromretVal;
3 private String fromTarget;//from receiver object
4 private ArrayList <String >fromParams;
5 private ArrayList <String > sfields;
6 ...
7 }

Figure 3.23: Structure of E�ectRec

The fromretVal �eld is the value returned by the method, represented as a String.

The fromTarget �eld represents the state of the receiver object after the execution of a non-

static method. For static methods it is by default the empty String. The fromParams �eld

keeps track of the state of object parameters after the execution of the method. If there are

no object parameters for the method, then this �eld is set to the empty ArrayList. Otherwise

the String representation for each object parameter in order of appearance in the parameter

list, is added to the ArrayList to create the value for the fromParams �eld. The s�elds is

the String representation of the state of the static �elds (included in the method's e�ects),

after the execution of the method. To create this String an alphabetical listing of all of the

65

static �elds that might be modi�ed is created. A String representation for each �eld in order

is added to the ArrayList.

3.6 Collection

This phase involves running the Test Driver created in the generate test �les step of

my algorithm. As each test �le is executed by the Driver, a subset of the methods tested

is returned as an equivalence class of semantic clones�that is, each element of the class,

produced identical results for every test case. Figure 3.24 shows how clones output are

collected by the driver.

Figure 3.24: Running test �les with driver

Execution of the test �les for an equivalence class produces a 1-dimensional or 2-

dimensional array of E�ectRec for each method, depending on the methodType of the meth-

ods of the given equivalence class. For methodTypes with an empty parameter list, a 1-

66

dimensional array of E�ectRec is created for each method as shown in Figure 3.25. This

array is of length numTests�the user de�ned number of tests. Each i th index in the array

is the result obtained by running the method using the i th generated context as input. For

methodTypes with a non-empty parameter list, a 2-dimensional array of E�ectRec is created

as shown in Figure 3.26. Each i th row in the array is the result of running the method on

the i th generated context. Each j th element in the row is the result of running the method

using the j th generated parameter tuple.

Figure 3.25: E�ectRec array result for methodTypes with no parameters

Figure 3.26: E�ectRec array result for methodTypes with parameters

Each array is converted to a single String using a combination of the methods E�ec-

tRec.toString() and the built-in Java method Arrays.toString(). For the 1-dimensional array,

67

the E�ectRec at each index is converted to a String using E�ectRec.toString(). The Strings

are then concatenated to produce a single String. For the 2-dimensional array, each row is

converted to a String using the same algorithm as the 1-dimensional array. The resulting

Strings are then concatenated (in ascending order of row number), to create a single String.

The tested method is then added to a Hashmap of clones, on the key of the result-string.

The use of the hash table automates the comparison of the method's results and e�ects;

since methods with the same IOE-Behavior will produce the same results and therefore the

same result string; and will consequently hash to the same location in the Hashmap. When

a value hashes to an already occupied row of the Hashmap and the Strings match, the value

�eld of that row is updated to include the new method.

The collection of the semantic clones is done through iteration through the Hashmap.

For each key the corresponding value, which is a set of methods is extracted. The values

containing more than one method are returned as equivalence classes of clones.

A statistical data report is also output. This includes the following information:

number of clones, number and size of clone classes, clone location, clone size in LOC and

total execution time as shown in Figure 3.27.

68

Cloneclass 0:

org.apache.commons.lang3.concurrent.BasicThreadFactory.

getThreadCount Location: lines 191 - 193, Clone size: 3 LOC

org.apache.commons.lang3.concurrent.TimedSemaphore.getPeriod
Location: lines 372 - 374, Clone size: 3 LOC

Cloneclass 1:

org.apache.commons.lang3.concurrent.TimedSemaphore.shutdown Location

: lines 254 - 268, Clone size: 15 LOC

org.apache.commons.lang3.concurrent.TimedSemaphore.acquire Location:
lines 292 - 310, Clone size: 19 LOC

org.apache.commons.lang3.concurrent.TimedSemaphore.endOfPeriod
Location: lines 414 - 420, Clone size: 7 LOC

Number of Clones: 5
Number of Clone Classes: 2
Maximum Clone Size : 19 LOC
Maximum Clone Class Size : 3 clones
Minimum Clone Size: 3 LOC
Minimum Clone Class Size: 2 clones
Average Clone Size: 9.0 LOC
Average Clone Class Size: 2.0 clones
Length of program execution: 0.203 seconds

Figure 3.27: Sample Output

69

3.7 JSCTracker

Figure 3.28: JSCTracker Architecture

My semantic clone detection tool�JSCTracker is developed to automate the semantic

clone detection process using method IOE behavior. Its architecture, use cases and level 1

data�ow diagrams are shown in Figure 3.28, Figure 3.29 on page 72 and Figure 3.30 on

page 72. JSCTracker consists of 5 major components: a static analysis tool, a �ltering

component, an automated test generator, compilers and a clone repository. Each of these

components is responsible for executing one of the use cases shown in Figure 3.29.

The static analysis tool is used to create the decorated AST for the code to be ana-

lyzed. This component uses some of the features of JastAdd [8]; and houses the implemen-

tation of the abstraction phase of the CD algorithm as described in Section 3.3 on page 41.

This component is directly linked with the user interface to receive the test code. Its output

is a decorated AST. The decoration or annotations are generated by 2 �les methodTypes.jrag

and e�ects.jrag which de�ne aspects for computing the program attributes methodType and

e�ects. Each attribute is de�ned by synthesized attribute equations, which are essentially

methods used to compute the attribute value for the di�erent types of nodes in the AST.

The pseudo code for computing these attributes is given in Section 3.3 on page 41. The tool

70

data �ows of this component are re�ected in processes 1.1 and 1.2 in Figure 3.30 on the next

page.

The �ltering component implements the methodType and e�ects �lters of the algo-

rithm shown in Figure 3.28 on the preceding page and explained in detail in Section 3.4 on

page 47. It accepts the decorated AST as input (as shown in step 2 of the architecture), and

outputs sets of candidate clones shown in step 3. The data �ow of this component is re�ected

in process 1.3 of Figure 3.30 on the following page. The �ltering mechanism is e�ected by 2

main �les: TypeAndE�ect.jrag and Hash.jrag. The �rst �le de�nes the attribute typeAndEf-

fect for AST nodes. This is the combination of type and e�ect of methods. The Hash.jrag

�le de�nes hash functions for the objects used to store the new program attributes. These

functions are necessary, because during the processing of the �lters, the program attributes

are stored in Java HashMaps as described in Section 3.4 on page 47.

The automated test generator accepts the decorated AST and a set of candidate clones

as input, as shown in steps 3 and 4 of Figure 3.28 on the preceding page. It queries the

decorated AST via attribute accessor method calls, to obtain information about the methods

in the candidate clone sets, so as to generate the test �les for these methods. The output of

is a set of �les. A Java class �le containing a constructor used to instantiate the candidate

clone class and one or more privileged aspects containing the code to call the methods in the

candidate clone set. This component of the tool, implements the `generate test �le' phase of

the CD algorithm. It's data�ows are represented by process 1.4 in Figure 3.30 on the next

page.

The compilers and JVM are external components of the tool. They are used to

process output �les from the automated test generator, shown in steps 6a and 6b of Figure

3.28 and process 1.5 of Figure 3.30. Two compilers are used. The Java compiler (JDK 1.7),

71

is used to compile and run the Java class �les. The AspectJ ajc compiler 3.0 is used to

compile the aspects.

The �nal component is the clone repository. As the test �les for each equivalent set

of candidate clones are run, the detected clones are stored in the repository to be output at

the end. This is shown in step 7 of Figure Figure 3.28 on page 70.

Figure 3.29: JSCTracker Use Case

Figure 3.30: Level 1 Data�ow Diagram of JSCTracker

72

JSCTracker takes 5 inputs. Each input is described below.

1. an integer indicting the type of analysis required. There are two options. The number

1 is used for clone detection using only the methodType �lter. The number 2 is for

clone detection using both methodType and e�ects �lters.

2. an integer, identifying the percentage of similarity between semantic clones detected.

To detect semantic equivalence, 100% is used.

3. an integer indicating the size of the test-set

4. a String for the path where generated �les should be placed

5. a String for the path where the code to be evaluated can be found.

73

CHAPTER 4

RELATED WORK

Recently, there is increased interest in the detection of semantic clones. Although

called by di�erent names: wide-miss clones, high-level concept clones [52], functionally equiv-

alent code [1, 2], behavioral clones [53], representationally similar code fragments [54] and

simions [44], the goal is the same however, to identify clones created by activities other than

copy and paste.

This chapter discusses the current research in semantic clone detection. It outlines

the di�erences between my algorithm and those of other researchers and their relative merits.

4.1 Research on Semantic Clones

Marcus and Maletic [52] present some work on the manual identi�cation of semantic

clones which they refer to as wide-miss or high-level concept clones. For the detection

process, they use latent semantic indexing, using Mosaic. Their experimental results reveals

that their algorithm is not precise, and is unable to identify semantic clones unless all of

the identi�ers are the same (much like syntactically equivalent clones). My algorithm has

precision values of 68% (see Section 5.3.4 on page 94) and is capable of identifying semantic

clones with similar or completely di�erent structure and identi�er names.

Jiang and Su [2] investigate functional similarity in code fragments within methods in

the Linux system using their tool EQMiner. Their algorithm detects semantic clones, using

74

code fragment input-output behavior. They report that about 42% of the semantic clones

detected were also syntactic clones, thus the other 58% would be missed by syntactic clone

detectors. Jiang and Su's algorithm is scalable, capable of analyzing millions of LOC. This is

achieved by using parallelism and some other heuristics. In general they use less restrictive

rules in their analysis to foster scalability. However, some of these decisions while improving

scalability, may negatively impact the accuracy of the results. I cannot compare the results

of my work to theirs, since I study Java code, while they focus on the Linux system written

in C. Also, my level of granularity is the method, while theirs is a code fragment. However,

the two algorithms can be compared in principle.

For example candidate clones are not compared to all other candidates in their equiv-

alence class. Instead, one member of the equivalence class is selected to represent the group.

Each member of the equivalence class is only compared to the representative. While this

reduces the number of comparisons from order n2 to n (where n is the size of the equivalence

class), the accuracy of the results depends on the merit of the selected representative. This

can lead to false negatives. In my algorithm, the use of the Hashmap to store clone candi-

dates on methodType and e�ects keys, implicitly compares each candidate to all of the other

members of the equivalence class, thus reducing the probability of returning false negatives.

Jiang and Su identify semantic clones as displaying the same input-output behavior.

My algorithm also subscribes to this approach and takes it further, to include a method's

e�ects. E�ects are not used by Jiang and Su. Another di�erence is the number of dynamic

tests used. They use 10 tests. This improves the time and scalability of the algorithm,

but my experiments showed that 10 was an insu�cient number of test cases to di�erentiate

between clones accurately. As a result, my tool JSCTracker allows the user to enter the

number of tests as an input parameter. The user can enter 10�20. However, I recommend

20�30 tests. Increasing the number of test cases explores a wider range of the input domain

75

of the methods. Consequently, the probability of false positives is reduced. Also, since the

level of granularity of my investigation is a method, which is a naturally occurring executable

program unit, my computations are simple and provide a less invasive and possibly a less

disruptive starting point for code maintenance through refactoring. Code fragments on the

other hand, need to be modi�ed to create methods with inputs. This is not a trivial process.

Jiang and Su provided no recall value, so my algorithm's recall values could not be

compared. However, they do report the same precision value as my algorithm: a false positive

rate of 32% which yields precision value of 68%. However, this was computed using half a

percent of the returned clusters in some cases. For example in their results for clusters of

sizes 2�4 where there were over 10000 found, only 50 were examined). Also, the examined

clusters were not selected at random. In my algorithm at least 50% of all returned clones

were evaluated in the measure of precision and those examined were selected at random

(see Section 5.3.4 on page 94). This di�erence a�ects the reliability of the precision values

reported.

Another application of semantic clone detection is demonstrated by Kawrykow and

Robillard [4]. By analyzing the byte code of libraries and the source code of the library clients,

they use functional similarity to identify instances of less than optimal usage of APIs, where

developers re-implemented library functions, instead of making calls to an available API

function. This project is not de�ned as a clone detection project, however, conceptually it is

an application of semantic clone detection between a project and some selected APIs. Using

their detection tool iMaus, they study 10 widely used Java projects from the SourceForge

repository. The output of their tool is a set of semantic clone candidates, these are grouped

into API usage pattern groups. Each usage group is then manually inspected, to identify

and validate the clones found. The tested projects range in size from 20 to 539 KLOC. They

�nd 4�341 method imitations (functional duplicates), with the average precision of 31%.

76

Kawrykow and Robillard's work has one advantage over mine. They are able to

analyze the byte code of the API libraries. However, their precision values are 37% lower

and there is no measure of the recall values of the algorithm. Their detection process is not

fully automated, hence it is less objective than my automated IOE-Behavior method. Also

their work compares the tested projects to API libraries and not to themselves.

Juergens and Gode [44] investigate commercially used Java code JabRef to detect

semantic clones, using the code fragment as the level of granularity. Through manual in-

spection of 2,700 LOC, they �nd that 32 out of 86 utility methods are partially semantic

clones � a little over 37%. In their study, they search for semantic clones within JabRef and

also between JabRef code and Apache Commons methods. My approach to semantic clone

detection di�ers from theirs in two main ways. Firstly, my algorithm is automated, which

makes the semantic clone detection process objective. Secondly, I focus on the behavior of

entire methods, while they study code fragments (lines of code that may not constitute a

whole method). I select the method as my level of granularity, because of the natural pro-

gression that it o�ers for code refactoring. Also, extracting a code fragment in a way that

preserves its semantics, is di�cult. In addition, Java does not have call by reference, thus it

is di�cult to extract variable assignment fragments.

The work presented by Dissenboeck et al [1] was developed about the same time as

mine, although we were unaware of each other's work. They present an algorithm for the

dynamic detection of functionally similar code fragments in Java. Their work focuses on

di�erent levels of granularity of code - fragments of methods and whole methods. They

also subscribe to the use of input-output behavior through dynamic testing to categorize

functionally similar code as described in [25].

My approach to semantic clone detection is di�erent from that de�ned by Deis-

senboeck et al. [1] because I only consider semantic method clones and include method

77

e�ects in the detection process. The reason for this choice has already been explained ear-

lier. Another di�erence is that while Deissenboeck et al use all of the constructors for the

methods found, to generate the test cases, I use a user-de�ned number of randomly selected

constructors with the same number of randomly-generated actual input values (including

object states and heap states). Consequently, while my algorithm may not test every con-

structor of a class, it produces and tests a larger subset of the input domain; since it also

includes a variety of parameter values with each object state and also heap states. My

algorithm also combines static analysis to pre-�lter the candidate set, before the dynamic

testing, thus reducing the actual number of methods to be tested�hence improving the

overall e�ciency of the clone detection process.

McMillan et al. [42] use the concept of semantic clones to detect similarity between

Java software applications. In their work, they use a tool CLAN (closely related applications)

to generate a similarity index from 0�1 between the test subjects. Their research is di�erent

from most other semantic clone work because of the granularity of the candidate clones.

In most semantic clone detection work, such as mine, the level of granularity is the code

fragment or method. However, McMillan et al. study the application as a whole. Their

work has applications in plagiarism detection and facilitating software reuse.

Keivanloo et al. use a metric-based algorithm to detect Type III clones in Java byte

code [45]. Their algorithm is implemented in a tool called SeByte which uses a combination

of set theory and pattern matching supported by the Semantic Web inference engine, in

the detection process. One obvious advantage of their algorithm is that they do not need

access to the source code. However, while they de�ne their algorithm as semantic clone

detection, by the de�nition used in my research, it is not. Their target is Type III clones

which are near miss or parameterized clones (discussed in Section 2.2 on page 9) and these

are not necessarily semantically equivalent. For example, two code fragments which are only

78

di�erent in the name of the method that they call, are parameterized clones. However, they

would produce di�erent output, unless the two methods had identical e�ects.

79

CHAPTER 5

EVALUATION

This chapter describes the processes used to validate my semantic method clone

(SMC) detection algorithm and the tool�JSCTracker. It also details the case study used as

part of this process, and the analysis of the results data obtained. The validation objectives

are expressed as seeking answers to the following 4 research questions:

1. Can method IOE-Behavior analysis be used in practice to detect SMCs in Java source

code?

2. Do the pre-testing �lters used in method IOE-Behavior analysis improve the precision

and e�ciency, of the SMC detection process?

3. How does SMC detection using method input-output behavior (obtained from method-

Type information), compare to that of SMC detection using method IOE-Behavior?

4. How reliable is method IOE-Behavior for the detection of SMCs?

These questions are addressed in a case study, preceded by a pilot test. Each of these is

described in detail in the following sections.

5.1 Pilot Test

The �rst phase of the case study is a pilot test in which JSCTracker is used to

automate the SMC detection process. The test subjects are small Java projects including

80

22 classes ranging in size from 70 lines of code (LOC) with 12 methods, to 900 LOC and 39

methods. These projects are used to test the algorithm's robustness for identifying di�erent

categories of SMCs: from the syntactically identical to the very structurally divergent yet

functionally equivalent code. For the latter type of clone, I translate C code found in Hacker's

Delight [6] to create Java methods that are syntactically very di�erent but are semantically

equivalent. An example of this type of SMC pair is shown in Figure 2.3 on page 13. The

test �le containing these methods is HDelightCode.java. It can be found in the Appendix ,

along with the results �le. Figure 5.1 on the next page and Figure 5.2 on page 83 show code

for a sample of the pilot test �les Calculator.java and the results from analyzing this class.

All of the other test �les and corresponding result �les are in the Appendix .

Special care is taken in creating the pilot test �les, to ensure that both static and

instance methods are investigated. Examples of such methods, with a variety of primitive

and object return types and parameter types, and arrays of the same are included in the

test �les to ensure that the di�erent types of SMC are evaluated. The �nal stage of the pilot

test is to evaluate the scalability of the tool, by re�ectively evaluating the semantic clones

in the source code of JSCTracker.

81

1 package genfiles;
2

3 import java.awt.Rectangle;
4

5 public class Calculator {
6

7 private int balance;
8

9 public Calculator (){balance = 0;}
10 // --
11 public Calculator(int arg){balance = arg; }
12 // --
13 public int getBal (){return balance ;}
14 // --
15 public Rectangle OutlineCalculator (){
16 return new Rectangle(balance , 2* balance);

}
17 // --
18 public Rectangle CalculatorRectangle (){
19 int width = balance; int height = 2 *

balance;
20 Rectangle r = new Rectangle(width , height);
21 return r;}
22 // ---------------------------------------
23 public int[] TestArrays (){
24 int[] x = {1,2,3};
25 return x; }
26 // --------------------------------------
27 public int[] Test2 (){
28 int[] x = {1,2,3};
29 return x; }
30 // --------------------------------------
31 public String reverseIt(String source) {
32 int i, len = source.length ();
33 StringBuffer dest = new StringBuffer(len);
34 for (i = (len - 1); i >= 0; i--){
35 dest.append(source.charAt(i));
36 }
37 return dest.toString ();
38 }
39 // -------------------------------------
40 public String toString (){
41 return Integer.toString(balance);
42 }
43 }

Figure 5.1: Calculator.java

82

I am entering main
Percentage Similarity: 100
9 methods were found before filtering

4 Methods to be tested after filter
2 equivalence classes of Methods to be tested after filter
I am out of main
--

Cloneclass 0:
--
genfiles.Calculator.TestArrays Location: lines 23 - 25, Clone size:

3 LOC

genfiles.Calculator.Test2 Location: lines 27 - 29, Clone size: 3 LOC

Cloneclass 1:

genfiles.Calculator.OutlineCalculator Location: lines 15 - 16, Clone

size: 2 LOC

genfiles.Calculator.CalculatorRectangle Location: lines 18 - 21,
Clone size: 4 LOC

--
Number of Clones: 4
Number of Clone Classes: 2
Maximum Clone Size : 4 LOC
Maximum Clone Class Size : 2 clones
Minimum Clone Size: 2 LOC
Minimum Clone Class Size: 2 clones
Average Clone Size: 3.0 LOC
Average Clone Class Size: 2.0 clones

Length of program execution: 0.14 seconds

Figure 5.2: Sematic Method Clones found in Calculator.java

Since the semantic clones are deliberately added to the test code (except in the case

of JSCTracker), the complete corpus of SMCs is known. This makes it easy to compute the

precision and recall values. In the pilot test I am able to identify all of the SMCs, with 100%

precision and recall�meaning that there are no false positives or false negatives. JSCTracker

re�ectively identi�es 4 SMCs in the JSCTracker code. They were 2 pairs of static methods

that had been duplicated in two di�erent classes. These methods were also syntactic clones.

83

5.2 Case Study

Twelve relatively large samples of Java open-source software belonging to a variety

of domains (shown in Table 5.1), are used to validate my tool and algorithm. Each sample

project is checked for SMCs using JSCTracker and the SMC data analyzed.

Table 5.1: Open source Java code evaluated for SMCs
Software Domain Size in LOC
hsqldb-2.29 Java database engine 296,408
apache-commons-lang3-3.1 Standard Libraries 218,937
�ndbugs-2.0.1 Java based code analyzer 186,069
sablecc-4 Compiler generator 176,848
jabRef-2.6 Reference management 102,015
freemind-0.8.1 Mind-mapping 72,598
jetty-6.1.2.4 Web-services 50,516
jhotdraw-7.0.6 Framework for creating drawing editor 50,483
openJava-1.1 Extensible Java language 39,353
doctorj-5.0.0 Code Analyzer 38,399
quilt-0.6 Test coverage evaluator 9,654
importscrubber-1.4.3 Code beauti�er 2,062

5.3 Results

The results of the case study are recorded for the number and size of SMCs and SMC

classes identi�ed. The total execution time of the analysis is also recorded. These results

are then analyzed to answer the 4 research questions.

5.3.1 Clone Detection Results

Research Question 1: Can method IOE-Behavior analysis be used in practice to detect

SMCs in Java source code?

84

Table 5.2 gives a summary of the results obtained from the analysis of the 12 code

samples. The second column reports the number of actual SMCs found�actual clones refer

to the detected clones, minus the false positives. Columns 3, 4 and 5 provide information on

the maximum, minimum and average SMC size, in lines of code. The last three columns�7,

8, and 9 give the maximum, minimum and average SMC class size. The unit of measure is

the clone. For example a SMC class with 3 clones has a size of 3.

Table 5.2: Analysis of detected clones

Software

#
Ac-
tual
SMCs
found

Max.
SMC
size
in
LOC

Min
SMC
size
in
LOC

Avg.
SMC
size
in
LOC

#
SMC
classes

Max
SMC
class
size

Min
SMC
class
size

Avg
SMC
class
size

hsqldb 6 6 2 3 2 4 2 3
apache 45 28 3 8 16 5 2 2
�ndbugs 19 22 3 2 6 4 2 1
jabRef 5 26 9 14 2 3 2 2
freemind 0 0 0 0 0 0 0 0
jetty 0 0 0 0 0 0 0 0
jhotdraw 2 4 4 4 1 2 2 2
openJava 8 3 3 3 4 2 2 2
doctorj 5 5 5 5 2 2 2 2
quilt 2 4 4 4 1 2 2 2
sablecc 15 4 4 4 6 5 2 2
import-
scrubber 0 0 0 0 0 0 0 0

Total 107
Average 16.46 8.50 3.08 3.92 3.33 2.42 1.50 1.50

An average of 16 SMCs are detected in the 12 Java code samples tested. The actual

numbers of detected SMCs ranges from 0 (in freemind, jetty and importscrubber), to 45 (in

apache); with an average of approximately 5 false positives. The maximum number of SMCs

are detected in apache, with almost 100% precision. Figure 5.3 on the following page shows

the number of SMCs detected in each software sample�including false positives. The SMCs

identi�ed ranged in size from 2 LOC to 28 LOC. On average, the maximum detected SMC

size is 8 LOC, while the average minimum is 3 LOC. From Figure 5.4 on the next page,

85

the SMC sizes do not vary for the 8 smaller software samples. They have maximum and

minimum SMC sizes that are equal to each other. The 4 largest software samples (hsqldb,

apache, �ndbugs, jabRef) on the other hand, have SMC sizes ranging from 17�25 LOC in

apache, �ndbugs and jabRef, to 4 LOC in hsqldb.

Figure 5.3: SMCs detected

Figure 5.4: The maximum and minimum sizes SMCs detected

86

On average, the maximum number of SMC classes identi�ed in any of the tested

software is 3. The actual number of SMC equivalence classes identi�ed range from 0 in

freemind, jetty and importscrubber to 16 for apache. Between 1 and 6 SMC equivalence

classes are detected in the other code samples.

Generally, the SMC class size is 2. The four largest samples of software have SMC

classes with sizes 3�5. Of the smallest 8 samples of software, only sablecc has SMC class size

greater than 2. A SMC equivalence class size of 5 is detected for the test software sablecc.

5.3.2 E�ciency of the Algorithm

Research Question 2: Do the pre-testing �lters used in method IOE-Behavior analysis

improve the precision and e�ciency, of the SMC detection process?

Table 5.3: How pre-�lters reduce methods requiring dynamic testing

Software

#
Meth-
ods
before
E�ects
�lter

#
Meth-
ods
after
E�ects
�lter

% re-
duction

hsqldb 2724 2126 22
apache 1320 867 34
�ndbugs 429 242 44
jabRef 1361 862 37
freemind 1416 863 39
jetty 998 746 25
jhotdraw 210 110 48
openJava 699 556 20
doctorj 1328 992 25
quilt 623 420 33
sablecc 1317 853 35
importscrubber 131 76 42

Total 12556 8713 404
Average 1046 726 33.67
Median 1158 800 34.77

87

The e�ciency contribution of my algorithm over existing methods, is evaluated as

the reduction in the number of methods that require dynamic testing. In the algorithms

used by Jiang et al [2] and Deissenboeck et al [1], prior to testing, candidate clones are

placed into equivalence classes based on input-output behavior. Table 5.3 on the preceding

page shows the di�erence in the number of methods that require dynamic testing, using this

type of algorithm and my proposed IOE-Behavior algorithm, for SMC detection. It shows

that using IOE-Behavior with its e�ects �lter, reduces the number of methods requiring

testing by a minimum of 20% (in openJava) and a maximum of 48% (in jhotdraw). The

average reduction is approximately 34%. Eight of the 12 samples of software analyzed

have the average or greater than the average reduction in the number of methods to be

tested. Recall from Section 3.5.2 on page 60, that a reduction in the number of methods,

means a quadratic reduction in the number of tests run. Thus, for 100 methods, considering

the minimum reduction recorded�20%, when 100 methods are reduced to 80, there is a

signi�cant reduction in the number of tests run by 202. The impact is even greater for

higher percentages of method reduction.

5.3.3 Comparison of Results for IOE-Behavior and Input-output Analysis

Research Question 3: How does SMC detection using method input-output behavior (ob-

tained from methodType information), compare to that of SMC detection using method

IOE-Behavior?

To answer the third research question, the performance of JSCTracker for detecting

SMC's using method IOE-Behavior is compared to similar detection, using method input-

output only. The results for the latter are obtained by using the methodType analysis option

88

in JSCTracker. In this analysis a method's return type and its parameter types are used to

generate equivalence classes. Methods in each equivalence class are then run and the SMCs

are identi�ed as those methods that return the same value when given the same inputs.

Void methods cannot be tested in this way, since they have no return value. In an over-

approximation, all void methods of the same methodType, are returned as SMCs. Table 5.4

presents the results of SMC detection using IOE-Behavior versus input-output. Three major

di�erences are evident in the results. Three striking di�erences are in the number of clones

detected, the number of false positives and the execution time.

Table 5.4: SMC detection and analysis using method IOE-Behavior vs. input-output

Software

#
SMCs
found
using
IOE-
Behav-
ior

#
false
posi-
tives
with
IOE-
Behav-
ior

Exe-
cution
time
in secs
using
IOE-
Behav-
ior

#
SMCs
found
using
only
input-
output

#
false
posi-
tives
with
input-
output

Exe-
cution
time
in sec
using
only
input-
output

hsqldb 10 4 45.183 1825 1817 26.981
apache 46 1 11.582 165 106 7.537
�ndbugs 24 5 4.524 108 87 3.042
jabRef 7 2 10.159 538 533 4.167
freemind 2 2 7.731 474 474 0.484
jetty 0 0 5.765 437 433 1.092
jhotdraw 2 0 2.309 26 24 1.904
openJava 8 0 1.317 84 64 0.358
doctorj 7 3 1.635 799 791 3.964
quilt 14 12 6.463 285 281 1.233
sablecc 45 30 2.795 647 627 0.796
import-
scrubber 0 0 1.873 30 30 0.39

Total 165 59 96.66 5418.00 5267.00 24.97
Average 13.75 4.92 8.44 451.50 438.92 2.08

Using method IOE-Behavior, an average of approximately 14 SMCs are detected

per project. The maximum number (46) is detected in apache, a close second is 45 SMCs

detected in sablecc; while 0 SMCs are identi�ed in importscrubber and jetty. Using only

89

input-output behavior, an average of approximately 452 SMCs are detected. In half of the

code samples the number of detected SMCs is above the average or slightly below. The

maximum number (1825) of SMC's is detected in hdsql. The minimum number of SMCs

(26) is detected in jhotdraw. The number of SMC's detected in 10 out of the 12 projects

analyzed using method IOE-Behavior, are less than the minimum number of those identi�ed

using input-output behavior only.

The SMCs identi�ed using input-output have a much higher incidence of false pos-

itives than SMC detection using IOE-Behavior. Figure 5.6 on the next page demonstrates

the percentage of false positives for each of the 12 samples of test code when input-output or

IOE-Behavior is used. For all but one of the code samples, the percentage of false positives

is greater than 70% for the input-output analysis. The only exception apache reports a false

positive rate of 64%. For 7 of the code samples (hsqldb, jabRef, freemind, jetty, doctorj, quilt,

sablecc and importscrubber), the detected SMCs had over 95% false positives. This includes

importscrubber and freemind with a false positive rate of 100%.

Figure 5.5: Number of SMCs detected by input-output versus IOE-Behavior

90

Figure 5.6: Percentage of false positive for IOE-Behavior analysis vs. input-output

The detection of SMCs using IOE-Behavior identi�ed fewer false positives. For 9 out

of the 12 code samples less than 42% of the identi�ed SMC's are false. The 3 remaining code

samples freemind, quilt and sablecc had 100%, 86% and 67% respectively.

Figure 5.7: Number of false positives for IOE-Behavior versus input-output

91

Figure 5.7 on the preceding page shows the relationship between the actual number

of false positives identi�ed for each of the two types of analyses�input-output and method

IOE-Behavior.

Figure 5.8: Execution time for analysis using method IOE-Behavior vs. input-output

Generally, the method IOE-Behavior analysis had execution times on average over

4 times slower than input-output analysis�8.44 seconds versus 2.08 seconds. The actual

di�erences in time ranges from over 7 times slower for freemind, approximately 2 times

slower for hdsql, apache and jabref ; while less than 1 second slower for jhotdraw. The one

outlier in this data is doctorj, for which the execution time is almost 2 times faster for the

method IOE-Behavior analysis than the input-output analysis. One possible explanation for

this is that the latter analysis involved the processing of almost 800 detected SMCs (791),

while the former returned a mere 7 clones. Figure 5.8 shows the actual execution times for

the two types of analysis; while the relative speed of the two types of analyses, (expressed

as speed-up of input-output analysis) is shown in Figure 5.9 on the following page. From

92

Figure 5.9 it is evident that as the code size of the software samples decreased, the relative

execution time speedup increased. Two outliers to this observation are freemind and doctorj.

For both of these code samples, the execution time is smaller than that of the two smallest

code samples.

Figure 5.9: Execution time speed-up of input-output analysis versus IOE-Behavior

Deissenboeck et al [1] use an input-output type of analysis to detect semantic clones.

Table 5.5 on the next page shows the number of SMCs identi�ed by JSCTracker and by

Deissenboeck et al for the same software. In all cases, except for jabRef and apache, JSC-

Tracker detects less clones than reported by Deissenboeck et al. Although I use the same

version of the software as in Deissenboeck et al, the number of clones identi�ed in the two

studies, cannot be strictly compared, since theirs does not provide precision and recall val-

ues. However, considering the di�erence in the number of clones reported when using the

93

input-output method, compared to the IOE-Behavior analysis, it suggests that there may

be false positives in the clones reported by Deissenboeck et al. It should be noted also, that

7 of the source code samples used in my research, are not analyzed by Deissenboeck et al.

Table 5.5: Comparison of JSCTracker Results to Deissenboeck et al [1]

Software

Actual
SMC found

by
JSCTracker

SMC
detected in

Deis-
senboeck et

al

apache 45 54
jabRef 5 55
freemind 0 11
jetty 0 15
jhotdraw 2 18

5.3.4 Reliability of JSCTracker and IOE-Behavior Analysis

Research Question 4: How reliable is method IOE-Behavior for the detection of SMCs?

The reliability of my method IOE-Behavior analysis for SMC detection is determined

using precision and recall measures as de�ned in Section 2.1 on page 7.

Table 5.6 gives the execution times and a summary of the accuracy of the results

obtained from the analysis of the 12 code samples. The second column of the table shows the

SMC corpus� the total number of SMCs found in the software. This is obtained in a two part

process. First, an over approximation of the clone corpus is obtained by running JSCTracker

using only the methodType �lter. This set is further re�ned by manually verifying the

returned clones. The methodType �lter method, returns a large number of clones (up to

1825), because of the size of the test projects and also because all void methods of the

same type are returned as SMC candidates without further testing. The same is also true

94

for abstract methods. Hence, for practical reasons, only a randomly selected sample of

the identi�ed SMC classes are veri�ed manually. For results with less than 10 equivalence

classes, all of the classes are manually veri�ed. For results with greater than 10 equivalence

classes, 10 or 50% (whichever is greater), of the classes are selected at random for manual

veri�cation. The third column gives the number of SMCs detected by JSCTracker. The next

three columns provide information about the accuracy of the clone detection process. The

false positives are the number of incorrect clones reported, while the false negative column

holds the number of clones that exist in the corpus, but are not identi�ed by the tool. The

precision column shows the degree of correctness of the detected SMCs, while the recall

column presents the percentage of the corpus that is detected. The Execution time of the

clone detection process is shown in the last column.

Table 5.6: Summary of Analysis Results

Software

Size
of
SMC
cor-
pus

#
SMCs
found

#
False
Posi-
tives

%
Preci-
sion

#
False
Nega-
tives

%
Re-
call

Time
in
sec-
onds

hsqldb 8 10 4 60 2 75 45.183
apache 59 46 1 98 14 76 11.582
�ndbugs 21 24 5 79 2 90 4.524
jabRef 5 7 2 71 0 100 10.159
freemind 0 2 2 0 0 na 7.731
jetty 4 0 0 na 4 0 5.765
jhotdraw 2 2 0 100 0 100 2.309
openJava 20 8 0 100 12 40 1.317
doctorj 8 7 3 57 4 50 1.635
quilt 4 14 12 14 2 50 6.463
sablecc 15 45 30 33 0 100 2.795
import-
scrubber 0 0 0 na 0 na 1.873

Total 146 165 59 613.18 40 681.75 96.66
Average 12.17 13.75 4.92 68.13 4 75.75 8.06

The computation of precision is done through automated testing. Each returned

SMC class is resubmitted to JSCtracker and tested with a large number of tests (302 to 1002

95

compared to the 202 used in the standard detection). Starting with 302 tests, and increasing

in 102 increments, the class is tested as described in Section 3.5 on page 52, until the clone

classes returned, reach a �xed point. Because of the limitations of class size in Java, in some

test cases, 702 tests are not possible. In such cases, the veri�cation of precision consists of a

combination of automated tests and manual checks of the SMC class.

The recall analysis is completely manual. The SMC corpus or body of clones found in

any code sample, is obtained in a two part process. First, an over approximation of the SMC

corpus is obtained by running JSCTracker using only the methodType �lter. This set is

further re�ned by manually verifying the returned SMC equivalence classes. Because a large

number of clones may be identi�ed, to keep the process practical, only a randomly selected

sample of the clone classes are veri�ed manually. For results with less than 20 equivalence

classes, all of the classes are manually veri�ed. For results with greater than 20 equivalent

classes, 50% of the classes are selected at random for manual veri�cation. The recall value

for any analysis is then computed as the percentage of the SMC corpus that is identi�ed.

Figure 5.10: Accuracy of SMCs detected in 12 Java test projects

96

This is described in detail in Section 2.1 on page 7. The use of the results of the

methodType �lter to obtain the SMC corpus is valid, since any equivalence class of clones

returned by this �lter, has the same return type and parameter types. It is thus a valid

super set of the set of clones with the same IOE-Behavior.

From the accuracy analysis, the average precision value is 68%. Thus on average,

approximately 7 out of 10 SMCs identi�ed, are actually clones. The average recall value is

about 76%. This means that on average, over 3 out of every 4 clones in the identi�ed SMC

corpus are detected as SMCs by my algorithm and the tool. SMCs are detected with 100%

precision in 2 of the tested projects�jhotdraw and openjava, while 98% precision is obtained

for apache.

97

CHAPTER 6

DISCUSSION

This chapter is divided into �ve sections. The �rst explains how the assumptions of

this study impact the results obtained. The second discusses design decisions, explaining

why they are made. Both of these sections also provide suggestions of alternate approaches

that may improve results and should therefore be explored. The third discusses the results

in the evaluation chapter. This is followed by a discussion of the limitations of the current

work. The chapter ends with suggestions for future work.

6.1 How Assumptions Impacted Case Study Results

This section discusses assumptions used to make design decisions or to de�ne the

scope of my research.

One of the key contributions of this research is the inclusion of a method's e�ects in

determining its semantics. I devised the static non-local variable mutation (NLVM) analysis,

described in Section 2.3.2.2 on page 18 to determine a method's e�ects. In this analysis, the

e�ects of a method are given as the set of non-local variables that it mutates. This includes

instance variables, class variables and object parameters (and recursively the instance and

class �elds of those objects). The assumption is that these are the only components of the

heap that a method can alter. However, as a result of this assumption the e�ect of a method

on the system clock and system output streams are not considered in the NLVM e�ects

98

analysis. Consequently methods that output di�erent strings to the console are included

in the de�nition of SMC although they should not be. Alternatively, persistent changes to

system variables such as the output stream and JVM states could be tracked separately and

included in the NLVM analysis of e�ects.

One of the assumptions of my research as described in Section 3.1 on page 39, is that

all classes have at least one constructor which sets its instance variables. This assumption is

true for most classes. However, there are classes for which it is not so. When random objects

of these classes are generated, the returned object is always in the same state�the instance

variables are all set to the Java default values for their type. This reduces the number of

input states tested, since only one state of the object is being generated. The result is a

higher occurrence of false positives, where a di�erence in an object's structural state, would

produce di�erent results. For example, considering a class A with instance variables int val

and boolean state, if A has no constructor that sets its instance �eld values, whenever

an object of A is created by the randomObjectCreationString method shown in Figure 3.11

on page 55, the instance variables val and state will always have the Java default int and

boolean values of 0 and false respectively. Thus, the methods setState and resetState as

shown in Figure 6.1 on the following page, will be falsely identi�ed as semantic method

clones�SMCs. This is because a.val will always be 0 and thus isEven will be true. Hence

a.state is always set to true, and the two methods which have the same e�ects, will also

appear to always return the same heap state. This constructor limitation has less impact for

methods that take multiple parameters, some of which are not a�ected by the constructor

problem; since the other parameters can contribute to creating di�erences in input state.

One approach to eliminating this problem, would be to check the side e�ects of a

selected constructor. If its e�ects do not include the instance variables of the class, then the

relevant methods would be called to initialize the instance variables.

99

private void setState (){
if(a.val == 0)

a.state = true;
}

private void resetState (){
if(a.val.isEven ()){

a.state = true;
}
else{

a.state = false;
}

}
Figure 6.1: Methods of class A that can lead to false positives

In the dynamic testing phase of my algorithm, the results or outputs of methods

are converted into a String for comparison purposes to detect semantic equivalence. When

methods return an object, it is assumed that the object returned has a toString method

that prints out more than just the class name or its memory address. It is assumed that

the string returned distinguishes the object's state by including information derived from

instance variable �eld values. An alternative to this assumption would be to use AspectJ

to override the toString method to ensure that it prints out the values of the structural

components of the object. I tested the usefulness of such a method using the newToString

method whose pseudocode is shown in Figure 6.2 on the next page. This method prints out

the state of an object as a table of �eld names and their corresponding values. For non-

primitive values, the method recursively prints the �eld values. It includes a time out feature

to prevent in�nite loops for circular objects. Adding this method to the implementation of

JSCTracker greatly increased the execution time to analyze projects by over 2 minutes. As

a result, I decided that the advantage of using this method (guaranteeing the output of the

toString method), is outweighed by its disadvantage (namely the increase in execution time).

Thus this method is not incorporated into the tool.

100

1 Final int timeout =12;
2 pointcut overrideToString(Object a): call(* String Object.

toString ()) && target(a) && (withincode(private EffectRec
utility.MethodTests +.pRun *())||

3 withincode(private EffectRec utility.MethodTests +. stateMethod
*()) ||

4 withincode(private EffectRec [] utility.MethodTests +. pMethod *())
);

5 // -----------------------------------
6 String around(Object a): overrideToString(a){
7 try{String str = newToString(a,0);
8 return str;
9 }

10 catch(Exception e){return null;}
11 }
12 // -----------------------------------
13 private String newToString(Object o, String status , int depth){
14 if(depth == timeout)return status;
15 else{
16 depth ++;
17 StringBuilder sb = new StringBuilder ();
18 sb.append(status);
19 for each field i of o{
20 if(field[i]. isPrimitive ()){
21 sb.append(field[i].name + ": " + field[i]. toString ());
22 }
23 else{
24 sb.append(field[i].name + ": ");
25 sb.append(newToString(field[i],sb.toString (),depth));
26 sb.append("\n");
27 }
28 }
29 }
30 }

Figure 6.2: Pseudo code for newToString

6.2 Design Considerations

Denotational semantics and symbolic execution are two alternatives that I explored

for checking for semantic equivalence between methods. However, I chose not to use either,

because �nding a unique, normal form expression or equation to represent the semantics

of a method is undecidable and a good approximation di�cult to achieve. Thus these

approaches do not help check for semantic equivalence. Consequently, I choose to use a

method's observable behavior: the combination of input-output and e�ects which I refer

101

to as a method's IOE-Behavior. I selected this option since it is an easily computable

approximation for this undecidable problem.

The SMC detection algorithm is language independent. However, the implementation

for testing is done in Java. Java is selected because JSCTracker is built around the JastAdd

compiler generator (described in Section 2.5 on page 30); and at the time of development this

is the only language supported by JastAdd. Java is also a good language choice because of its

portability, the availability of extensive libraries and Integrated Development Environment

(IDE) support like Eclipse. However, there are some cons to using Java especially with

respect to space usage.

A particular problem for space usage is HashMaps. These data structures (HashMaps),

are used at several points in the implementation of my algorithm. This type of data structure

is selected because it is time-e�cient. For example, a HashMap is used to store methods on

the key of their methodType and e�ect. This is a quick way to generate equivalence classes

post �ltering. A HashMap is also used to store the results of methods during the testing

stage. Since the result is used as the HashMap key, methods with the same result hash

to the same bucket. This eliminates the need for comparing each method to every other

method in the equivalence class, to determine semantic equality. However, while the use of

a HashMap renders the algorithm more e�cient in some ways, because the implementation

is in Java, this also causes the JSCTracker application to be memory intensive. This can be

optimized though, if code can be written to manipulate or control garbage collection; allow-

ing for HashMaps to be disposed of once they are no longer needed. However, since Java

handles its own garbage collection, the application is not always as e�cient as it might be, if

it were implemented in C or C++, where the developer has control over memory allocation

and deallocation.

102

In the �rst iteration of JSCTracker, private methods were not analyzed for semantic

equivalence. The logic was that these methods should not be visible to the analyzer, since this

would violate Java's visibility rules. I later decided to include such methods as they are part

of real world projects and should be analyzed for in-house code maintenance. Privileged

aspects described in Section 2.7 on page 34 are used to provide this facility. The use of

AspectJ also allowed for bypassing calls to the Java Object .equals method, replacing it with

a method that evaluates structural equivalence�newEquals shown in Figure 3.22 on page 65.

There are some problems with using AspectJ though. The weaving of aspects nec-

essary for running the application, is time-consuming. There are also issues with AspectJ

with regards to limitations on aspect size. I had to take care in the automatic �le generation

process to ensure that the generated aspect does not exceed the maximum size allowed by

the JVM.

Another possible drawback of using AspectJ is that there are dependencies in the code

of my JSCTracker tool that may not be obvious. For example modi�cation of the code can

possibly change how pointcuts are handled. This can alter the behavior of the application,

since an advice may then be executed at points where it is not intended; or it may not be

executed at program points where it is required. For example, in the AMT1Testcase pointcut

in Figure 6.3, the matching joinpoint (shown in line 1 of the code), is a call to a constructor

of the AMT1 class, which takes no parameters. The pointcut provides an advice (shown in

lines 2�4) that runs the RunTest method after completing the constructor call.

1 pointcut AMT1Testcase (): call(AMT1.new());
2 after() returning(AMT1 a): AMT1Testcase (){
3 a.RunTest ();
4 }

Figure 6.3: Sample JSCTracker pointcut

103

The identi�cation of this pointcut and execution of the related advice can be a�ected if any

of the following occur:

• the signature of the constructor is changed to include parameters

• the name of the test class is changed from AMT1

If either change occurs, the pointcut AMT1Testcase is not identi�ed, so the advice will not

be invoked, thus the method RunTest will not be executed. Hence, if any of these changes

are made to the code, it should be re�ected in a matching modi�ed de�nition of the pointcut

or the creation of a new pointcut; otherwise the advice will not work as expected. This

problem is only possible, for persons who are allowed maintenance access to the JSCTracker

code, since regular users of the tool cannot access its code. Providing proper documentation

for the tool can reduce the probability of such problems.

When comparing methods for equivalence, I decided not to consider sub-typing in

determining methodTypes or determining equivalence of e�ects. For example considering

two classes A and B, such that B is a subclass of A. The two methods MethA1 and MethB1

with the following signatures:

int MethA1(int x,A o1)

int MethB1(int x,B o1)

will not be stored in the same equivalence class and thus never checked for equivalence.

I made this decision since the subtype relationship is not symmetric and thus would not

produce equivalence classes as required by the algorithm. Also, Java's type checking rules

104

do not allow for replacing one method with another that has di�erent parameter types in all

cases, hence, such methods would not be both able to replace each other.

6.3 The Case Study Results

Two marked patterns of the case study results are the high number of false positives for

the input-output SMC analysis (as used in related work) and the di�erence in execution time

between the input-output SMC detection and method IOE-Behavior analysis (Section 5.3.3

on page 88).

An explanation for the high number of false positives in algorithms that do not

consider method e�ects is that such an input-output analysis does not use any dynamic

testing to determine semantic equivalence of void methods. Instead, all void methods of the

same type are assumed to be SMCs. It is this failure to test these methods that results

in the low precision values (high number of false positives), for the input-output analysis

of SMC. Figure 6.4 on the next page compares the number of void methods found in the

12 test projects against the number of false positive SMCs identi�ed. The two lines in the

line-graphs are the same general shape, indicating a relationship between the number of false

positives and the incidence of void methods in the code. For hsqldb and doctorj the number

of false positives exceeds the number of void methods indicating that there are false positives

which are not void methods. For jabRef, freemind and jetty the number of void methods

exceeds the number of false positives indicating that some of the void methods are actual

SMCs.

An alternate approach for the input-output analysis would be to exclude all void

methods from analysis. This would improve precision, by reducing the number of false

105

positives. However, it would reduce recall since the number of false negatives would increase,

as void SMCs would go undetected. The issues created by void methods, support the use of

a method's e�ects in determining semantic equivalence.

Figure 6.4: Percent void methods vs. percent false positives for input-output

The second prominent result of the case study, is the execution time di�erence between

analysis using method IOE-Behavior versus that using input-output behavior. To investigate

this trend further, I removed the void methods from the set of SMCs returned by the input-

output analysis. Further analysis of the execution times, by computing the average time

taken for each method, shows that, when ignoring void methods, on average method IOE-

Behavior analysis of SMCs takes 0.010 seconds per method while input-output analysis takes

0.015 seconds per method. A possible explanation is that the IOE-Behavior analysis is faster

since the extra �lter used in this method reduces the number of methods (in each equivalence

class) actually tested. Figure 6.5 on the following page shows the relative execution times

per method for each of the code samples. There is one outlier�openJava for which the

input-output took considerably more time than the method IOE-Behavior analysis.

106

Figure 6.5: Average execution time per method for IOE-Behavior vs. input-output

6.4 Limitations

One of the primary limitations is the use of only an approximation of the input space

of the tested methods. Since the input space is possibly in�nite in size, only a small fraction

of it can be tested. To make this sample representative of the whole, samples are generated

at random using an unbiased process to ensure that all cases are equally likely. However,

because all cases are not tested, the results will not be 100% accurate. In some cases, the

randomly generated objects are not appropriate, particularly when specially formated data

is required. For example with methods that require a �le name or XML formatted string,

my algorithm would generate a string, but the formatting test will fail and it would not be

possible to run such methods for further testing. This issue can be addressed in future work

by taking into account preconditions in the random generation of objects.

The computation of the accuracy of the algorithm is also an approximation. Each

project contains thousands of lines of code and methods, so it is not practical to manually

107

check each method to obtain the SMC corpus. Instead, a sample size of 50% of all equivalence

classes are tested. Since all of the methods are not tested, there is a possibility that the

corpus is incomplete. Testing 50% provides odds of 1 in 2 that a method would be checked.

This is a higher percentage (in some cases as high as 49% higher), than that used by Jiang

and Su [2] in related work.

The use of �lters is intended to improve e�ciency. However, they may present some

possible threats to recall. First, when using methodTypes, di�erences between types, such as

Double and double, which might not make any functional di�erence in some abstract sense,

would prevent the algorithm from grouping these methods together. There is a similar

issue with subtyping. For example considering two methods foo1 and foo2 with an object

parameter. If foo1 takes a parameter of object type A and foo2 takes an object of type B

(where A is the supertype of B), our �rst �lter will separate foo1 and foo2 . However, if the

methods do not change any �elds of the parameter, (or only change super class �elds), they

can possibly have the same observable behavior. But foo2 cannot take arguments of type A.

Second, since the NLVM e�ects analysis is conservative, there is the possibility that methods

are split into di�erent groups that might not really di�er in their write e�ects. However,

mere testing will not improve recall, since it only splits apart method groups, it does not

make them form.

The assumption that the toString method is appropriate for all classes may not always

be true. When this method is not overridden in a class, a call is made to the Object .toString

method. Since Object ′s toString method only returns a string containing a class name and

an address, when the string is used in structural equivalence comparisons, it can lead to false

negatives.

The evaluation of a method's e�ects include changes to its receiver object if any, plus

changes to non-local variables. This is not a complete list of all of the possible e�ects of

108

a method. Changes to the system variables and external devices, such as �le outputs also

need to be considered.

6.5 Future Work

For future work I would like to implement JSCTracker for C++ or C#. This would

also mean using a di�erent compiler generator which can handle either of these two lan-

guages. I would also like to apply JSCTracker to grading students' programming assign-

ments to provide qualitative feedback. This would be done by using the concept of degree

of semantic similarity and an instructor-provided oracle. JSCTracker can also be used to

identify refactoring opportunities in code. This can then be used as input for refactoring

tools.

109

CHAPTER 7

CONCLUSIONS

This chapter summarizes the research problem addressed in my dissertation and the

approaches applied to arriving at a solution. It also outlines the experimental results and

provides a description of the contributions made to the research area.

7.1 Summary of Research

The determination of semantic equivalence between two code fragments is a formally

undecidable problem. While the problem is undecidable, the thesis of my dissertation is that

a good approximation can be reached, by using a combination of input-output and e�ects

behavior of a method. I refer to this as a method's IOE-Behavior. In related work [1, 2],

semantic equality between code fragments has been estimated by using automatically gen-

erated dynamic tests, to run methods. This dynamic testing involves generating parameter

values for a method and tracking the results when that method is called with these param-

eters. The IOE-Behavior analysis also uses this approach, but in addition, it incorporates a

new dimension: the method's e�ects. A method's e�ects refer to how its execution changes

the heap. In my research, a method's e�ect information is used in two ways. First, it is used

as a pre-�lter to group methods of the same type (already �ltered by method type), into

equivalence classes based on e�ects. Equivalence classes of size 1 are omitted from further

analysis. Hence, the use of the pre-�lter eliminates unnecessary testing by removing unlikely

110

clone candidates, before the testing phase. As a result, the overall number of methods that

need to be tested, using the dynamic tests, is reduced. Secondly, a method's e�ects are

considered as part of its output behavior, along with the return value. Thus, when using

method IOE-Behavior, even void methods have output behavior that can be checked.

7.2 Overview of Results

My semantic method clone (SMC) detection algorithm using method IOE-Behavior,

and my tool JSCTracker used to implement it, are validated using a case study with 12

large samples of Java open source code. The test projects are for applications in di�erent

domains (including database management systems and code analyzers); and range in size

from approximately 2 KLOC to 297 KLOC� with an average of over 103 KLOC. The

goal of the case study was to test the hypothesis that: a good approximation to detecting

semantic similarity between Java methods can be reached, by using method IOE-Behavior. For

investigation purposes, the hypothesis is broken down and expressed as 4 research questions.

The �rst research question is: �Can method IOE-Behavior analysis be used in practice

to detect SMCs in Java source code?� This was answered in the a�rmative as a total of 107

actual SMCs were detected in the test projects. The number of SMCs identi�ed in individual

projects ranged from 0 to 46; with an average of 16 SMCs. The number of SMCs detected

increased with project size, with one exception. This suggests that the type of project may

also impact the number of SMCs detected.

The second research question is: �Do the pre-testing �lters used in method IOE-

Behavior analysis improve the precision and e�ciency, of the SMC detection process?� The

results of the case study show that �ltering the methods by type and then with e�ects

111

information, reduces the number of methods to be tested dynamically, by an average of

about 34%�a maximum of 48% and a minimum of 20%. This reduction in the number of

methods could mean a quadratic reduction in the number of dynamic tests run. For example,

considering a project with 100 methods, a 34% reduction in the number of methods, means

that the number of tests required could be reduced by 342 tests. The elimination of the

unnecessary tests increases the overall e�ciency of the SMC detection algorithm.

The third research question is: �How does SMC detection using method input-output

behavior (obtained from methodType information), compare to that of SMC detection using

method IOE-Behavior?� To �nd an answer to this research question, the case study com-

pares SMC detection using IOE-Behavior to the detection algorithms used in related work,

which use only method input-output. The comparison is made on two levels�precision of

results and execution time. The method IOE-Behavior analysis is more accurate, since void

methods are not ignored or accepted as SMCs as a default. This is further supported by the

case study results which show that the ratio of false positives returned when method IOE-

Behavior is used, is on average 32% while it is 92% when only input-output (methodType), is

used. The execution time seems better for the input-output algorithm, which has execution

times ranging from less than half of a second to almost 27 seconds, while IOE-Behavior had

execution times from less than 2 seconds to about 45 seconds. However, the input-output

approach never tests the void methods, which make up on average 11% to 87% of the meth-

ods in the projects tested. A more accurate comparison of the execution times, therefore, is

the average time per method. When the average execution time per Java method is evalu-

ated, the times for input-output and method IOE-Behavior are only thousandths of a second

di�erent. Indeed on average, execution time per method for IOE-Behavior analysis is 0.005

seconds faster.

112

The forth research question is: �How reliable is method IOE-Behavior for the detection

of SMCs?� To answer this question, the reliability of the algorithm and tool were assessed in

terms of precision and recall of the SMCs identi�ed. Precision and recall values of 68% and

76% respectively were reported by the case study results. This is a de�nite improvement

over the 31% reported by Kawrykow and Robillard [4] but the same as that reported by

Jiang et al [2]. The lowest recall value for a test project is 30%, while the highest is 100%

reported for 25% of the projects tested. The average recall is 76%.

7.3 Contributions

The primary contribution of this research is the inclusion of the e�ects of a method in

analysis of its semantic behavior. In the related work, researchers have begun to investigate

semantic similarity between code fragments. They have employed di�erent approaches, but

at the heart of most of these is the use of dynamic testing [1, 2]. In this study, I present

a novel approach to semantic method clone detection, which combines static and dynamic

analysis in the detection of SMCs.

In previous research, only input-output behavior has been used in determining se-

mantic equivalence. In such schemes the semantic equivalence of code fragments when run

on the same input, is determined by the value that is output. This works for non-void

methods. However, it does not work for void methods, since they have no return value to be

used for comparison. Using method IOE-Behavior in semantic clone detection, allows for the

evaluation of both void and non-void methods, since, the e�ects of a method are included in

the comparison. Thus, even void methods have e�ects that can be used for comparison in

determining semantic equivalence.

113

7.4 Conclusion

The motivation for my research is to detect semantic method clones, in Java software,

using method IOE-Behavior and to evaluate the merits of my algorithm as it compares to

existing related work. Both of these goals have been met as is evidenced by the results for

the 4 research questions posed. It is my conclusion therefore, that method IOE-Behavior

can be used to detect semantic method clones in Java software, with a reasonable degree of

reliability. This is supported by the precision and recall values when compared to existing

related work. The precision value of 68% is an improvement of 37% compared to that

reported by Kawrykow and Robillard [4] but the same as that reported by Jiang and Su

[2]. However, when comparing the heuristics used to measure precision, my method for

measuring precision is more representational of the entire case study than Jiang and Su.

The recall value of 76% is a 30% improvement over the only recall value that I could �nd,

reported by Bellon et al [5] for the detection of syntactic clones.

114

APPENDIX

PILOT TEST FILES

115

1 HDelightCode.java File

package g e n f i l e s ;

pub l i c c l a s s HDelightCode {

i n t numb ;

pub l i c HDelightCode () {

numb = 0 ;

}

pub l i c s t a t i c i n t f l p 2 (i n t x) {

// r e tu rn s the g r e a t e s t power o f 2 l e s s than or equal to x

x = x | (x >>> 1) ;

x = x | (x >>> 2) ;

x = x | (x >>> 4) ;

x = x | (x >>> 8) ;

x = x | (x >>>16) ;

r e turn (x − (x >>> 1))& 0 x f f ;

}

//−−−

pub l i c s t a t i c i n t HighestPowerof2 (i n t x) {

// r e tu rn s the g r e a t e s t power o f 2 l e s s than or equal to x

i n t tmp = x ;

i n t answer = 1 ;

116

whi le (tmp > 1) {

answer = 2 ∗ answer ;

tmp = tmp/2 ;

}

re turn answer ;

}

//−−−

pub l i c s t a t i c i n t i s q r t 1 (i n t x) {

// t h i s method f i n d s the nea r e s t square root o f x

i n t x1 ;

i n t s , g0 , g1 ;

i f (x <= 1) re turn x ;

s = 1 ;

x1 = x − 1 ;

i f (x1 > 65535) { s = s + 8 ; x1 = x1 >>> 16;}

i f (x1 > 255) { s = s + 4 ; x1 = x1 >>> 8;}

i f (x1 > 15) { s = s + 2 ; x1 = x1 >>> 4;}

i f (x1 > 3) { s = s + 1 ;}

g0 = 1 << s ; // g0 = 2∗∗ s .

g1 = (g0 + (x >>> s)) >>> 1 ; // g1 = (g0 + x/g0) /2 .

whi l e (g1 < g0) { // Do whi l e approximations

g0 = g1 ; // s t r i c t l y dec r ea s e .

117

g1 = (g0 + (x/g0)) >>> 1 ;

}

re turn g0 ;

}

//−−−

pub l i c s t a t i c i n t f indSquareRoot (i n t myNumber) {

// f i nd the nea r e s t square root o f myNumber

f i n a l double EPSILON = .00001 ;

i n t guess = 1 ;

double root = Math . s q r t (myNumber) ;

whi l e (EPSILON < Math . abs (Math . pow(root , 2) − myNumber))

{

guess++;

}

re turn (i n t) root ;

}

//−−−

// Revers ing b i t s in a word , ba s i c in te r change scheme .

pub l i c s t a t i c i n t rev1 (i n t x) {

x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >>> 1 ;

x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >>> 2 ;

x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >>> 4 ;

x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >>> 8 ;

x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >>> 16 ;

re turn x ;

118

}

//−−

pub l i c s t a t i c i n t rev14 (i n t x) {

// r e v e r s e s the b i t s in a word

x = sh l r (x , 15) ; // Rotate l e f t 15 .

// x = (x << 15) | (x >> 17) ; // A l t e rna t i v e .

x = (x & 0x003F801F) << 10 | (x & 0x01C003E0) |

(x >>> 10) & 0x003F801F ;

x = (x & 0x0E038421) << 4 | (x & 0x11C439CE) |

(x >>> 4) & 0x0E038421 ;

x = (x & 0x22488842) << 2 | (x & 0x549556B5) |

(x >>> 2) & 0x22488842 ;

r e turn x ;

}

//−−−

pub l i c s t a t i c i n t s h l r (i n t x , i n t n) {

re turn (x << n) | (x >> (32 − n)) ;

}

//−−−

pub l i c s t a t i c i n t f f s t r 1 1 (i n t x , i n t n) {

// f i nd f i r s t s t r i n g o f n 1 ' s in number x

i n t k , p ;

p = 0 ; // I n i t i a l i z e p o s i t i o n to re turn .

whi l e (x != 0) {

k = nlz (x) ; // Skip over i n i t i a l 0 ' s

119

x = x << k ; // (i f any) .

p = p + k ;

k = n lz (~x) ; // Count f i r s t /next group o f 1 ' s .

i f (k >= n) // I f enough ,

re turn p ; // re turn .

x = x << k ; // Not enough 1 ' s , sk ip over

p = p + k ; // them .

}

re turn 32 ;

}

//−−−

pub l i c s t a t i c i n t f f s t r 1 2 (i n t x , i n t n) {

// f i nd f i r s t s t r i n g o f n 1 ' s in number x

i n t s ;

whi l e (n > 1) {

s = n >>> 1 ;

x = x & (x << s) ;

n = n − s ;

}

re turn n l z (x) ;

}

//−−−

pub l i c s t a t i c i n t n l z (i n t x) {

// r e tu rn s the number o f l e ad ing z e ro s in a word

i n t n ;

120

i f (x == 0) {

re turn (32) ;

}

n = 0 ;

i f (x <= 0x0000FFFF) {

n = n +16; x = x <<16;

}

i f (x <= 0x00FFFFFF) {

n = n + 8 ; x = x << 8 ;

}

i f (x <= 0x0FFFFFFF) {

n = n + 4 ; x = x << 4 ;

}

i f (x <= 0x3FFFFFFF) {

n = n + 2 ; x = x << 2 ;

}

i f (x <= 0x7FFFFFFF) {

n = n + 1 ;

}

re turn n ;

}

//−−

pub l i c s t a t i c i n t n lz2a (i n t x) {

// r e tu rn s the number o f l e ad ing z e ro s in a word

i n t y ;

121

i n t n , c ;

n = 32 ;

c = 16 ;

do {

y = x >>> c ; i f (y != 0) {n = n − c ; x = y ; }

c = c >>> 1 ;

} whi l e (c != 0) ;

r e turn n − x ;

}

//−−

// Revers ing the r ightmost 6 b i t s in a word .

pub l i c s t a t i c i n t rev3 (i n t x) {

re turn (x∗0x00082082 & 0x01122408) % 255 ;

}

//−−−

}

122

2 Jude.java File

package g e n f i l e s ;

pub l i c c l a s s jude {

pub l i c s t a t i c void main (S t r ing [] a rgs) {

}

p r i va t e i n t id ;

pub l i c jude () { id = 4 ;}

pub l i c s t a t i c boolean p r i n tS t r i n g () {

System . out . p r i n t l n (" This needs to work ") ;

r e turn t rue ;

}

pub l i c s t a t i c boolean echoStr ing () {

System . out . p r i n t l n ("Come on baby ") ;

r e turn t rue ;

}

pub l i c s t a t i c void pStr ing () {

System . out . p r i n t l n (" This needs to work ") ;

}

pub l i c s t a t i c void eS t r i ng () {

System . out . p r i n t l n ("Come on baby ") ;

}

123

pub l i c s t a t i c void p1 (S t r ing s) {

System . out . p r i n t l n (s) ;

}

pub l i c s t a t i c void p2 (S t r ing s t r) {

System . out . p r i n t l n (s t r) ;

}

pub l i c s t a t i c boolean d1 (St r ing s) {

System . out . p r i n t l n (s) ;

r e turn t rue ;

}

pub l i c s t a t i c boolean d2 (St r ing s t r) {

System . out . p r i n t l n (s t r) ;

r e turn t rue ;

}

}

124

3 MultiClassTest.java File

package g e n f i l e s ;

import java . awt . Rectangle ;

pub l i c c l a s s Mult iClassTest {

}

c l a s s Assignment2 {

pub l i c i n t aTotal (i n t a , i n t b , i n t c) {

re turn a+b+c ;

}

//−−

pub l i c S t r ing s t r i ngReve r s e (S t r ing source) {

i n t i , l en = source . l ength () ;

S t r i ngBu f f e r des t = new St r i ngBu f f e r (l en) ;

f o r (i = (l en − 1) ; i >= 0 ; i−−){

des t . append (source . charAt (i)) ;

}

re turn dest . t oS t r i ng () ;

}

//−−−

// code example from http ://www. l e e p o i n t . net /notes−java /data/ ar rays

/31 a r r a y s e l e c t i o n s o r t . html

pub l i c i n t [] s o r t I n t s (i n t [] x) {

f o r (i n t i =0; i<x . length −1; i++) {

125

f o r (i n t j=i +1; j<x . l ength ; j++) {

i f (x [i] > x [j]) {

i n t temp = x [i] ;

x [i] = x [j] ;

x [j] = temp ;

}

}

}

re turn x ;

}

//−−

// code example from http ://www. l e e p o i n t . net /notes−java /data/ ar rays

/31 a r r a y s e l e c t i o n s o r t . html

pub l i c i n t [] Bet te rSor t (i n t [] x) {

f o r (i n t i =0; i<x . length −1; i++) {

i n t minIndex = i ; // Index o f sma l l e s t remaining value .

f o r (i n t j=i +1; j<x . l ength ; j++) {

i f (x [minIndex] > x [j]) {

minIndex = j ; // Remember index o f new minimum

}

}

i f (minIndex != i) {

/ / . . . Exchange cur r ent element with sma l l e s t remaining .

i n t temp = x [i] ;

x [i] = x [minIndex] ;

126

x [minIndex] = temp ;

}

}

re turn x ;

}

//−−−

pub l i c double ConvertTempFtoC(double temp) {

re turn ((temp − 32) /9 . 0) ∗ 5 ;

}

//−−−

pub l i c double TempConverter (double t) {

double tmp = t − 32 ;

tmp = tmp/9 ;

tmp∗=5;

re turn tmp ;

}

//−−−

pub l i c c l a s s MyInner{

pub l i c void innerM1 () {}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pub l i c S t r ing innerM2 (i n t i , S t r ing s) {

re turn "abcd " ;

}

//−−−

}

127

//−−−

pub l i c s t a t i c c l a s s Innner2 {

pub l i c S t r ing newInner (i n t i , S t r ing y) {

re turn "Hellow " ;

}

pub l i c s t a t i c void doNothing (i n t x) {}

}

//−−

pub l i c S t r ing ForeCast (i n t temp) {

i f (temp > 90) {

re turn " I t i s steamy ! " ;

}

e l s e i f (temp > 80) {

re turn " I t i s hot ! " ;

}

e l s e i f (temp > 70) {

re turn " I t i s g r ea t ! " ;

}

e l s e i f (temp > 60) {

re turn " I t i s co ld ! " ;

}

e l s e {

re turn " I t i s f i d g e ! " ;

}

}

128

//−−−

pub l i c S t r ing ArrayStr ing (i n t [] x) {

S t r i ngBu i l d e r sb = new St r ingBu i l d e r () ;

i f (x . l ength > 0) {

f o r (i n t i = 0 ; i < x . l ength − 1 ; i++){

sb . append (In t eg e r . t oS t r i ng (x [i])+ " ,") ;

}

sb . append (In t eg e r . t oS t r i ng (x [x . l ength − 1])) ;

}

re turn sb . t oS t r i ng () ;

}

//−−−

pub l i c i n t [] TestArrays () {

i n t [] x = {1 ,2 , 3} ;

r e turn x ;

}

//−−−

pub l i c i n t [] Test2 () {

i n t [] x = {1 ,2 , 3} ;

r e turn x ;

}

//−−−

}

c l a s s Ca l cu la to r3 {

p r i va t e i n t balance ;

129

pub l i c Ca l cu la to r3 () {

balance = 0 ;

}

//−−−

pub l i c Ca l cu la to r3 (i n t arg) { balance = arg ; }

//−−

pub l i c i n t getBal () { re turn balance ; }

//−−

pub l i c i n t Add(i n t a) { re turn a + getBal () ; }

//−−

pub l i c i n t Sub(i n t a) { re turn a − getBal () ; }

//−−−

pub l i c i n t BalanceBurp (i n t a , i n t b , i n t c) {

re turn getBal ()− a + a − b + c + b − c ;

}

//−−

pub l i c i n t Avg(i n t a , i n t b) {

re turn (a + b + getBal ()) /3 ;

}

//−−−

pub l i c i n t returnParam (i n t a) { re turn a ; }

//−−

pub l i c i n t Zero () { re turn 0 ;}

//−−

pub l i c i n t square () { re turn 4 ∗ 4 ;}

130

//−−

pub l i c i n t D i f f (i n t x) { re turn x − balance ; }

//−−−

pub l i c i n t MinusSel f () { re turn balance − balance ; }

//−−

pub l i c i n t I d en t i t y () { re turn balance ∗ 1 ;}

//−−

pub l i c i n t TimesZero () { re turn balance ∗ 0 ;}

//−−

pub l i c boolean equal (Ca l cu la to r3 c) {

re turn balance == c . balance ;

}

//−−

pub l i c boolean Same(Ca l cu la to r3 p) {

boolean r e t ;

i f (ba lance == p . balance) {

r e t = true ;

}

e l s e {

r e t = f a l s e ;

}

re turn r e t ;

}

//−−

pub l i c Ca l cu la to r3 DoubleCalculator () {

131

r e turn new Calcu la to r3 (balance ∗2) ;

}

//−−−

pub l i c Ca l cu la to r3 NewCalculator () {

Ca l cu la to r3 c = new Calcu la to r3 () ;

c . ba lance = balance ∗2 ;

r e turn c ;

}

//−−

pub l i c S t r ing toS t r i ng () {

re turn In t eg e r . t oS t r i ng (balance) ;

}

//−−

pub l i c Ca l cu la to r3 MergeCal (Ca l cu la to r3 c) {

re turn new Calcu la to r3 (balance + c . ba lance) ;

}

//−−

pub l i c Ca l cu la to r3 AddCal (Ca l cu la to r3 c) {

Ca l cu la to r3 r e s u l t = new Calcu la to r3 (0) ;

r e s u l t . ba lance = balance + c . ba lance ;

r e turn r e s u l t ;

}

//−−

pub l i c Rectangle MyRectangle (i n t x , i n t y) {

re turn new Rectangle (x , y) ;

132

}

//−−

pub l i c Rectangle Out l ineCa l cu la to r () {

re turn new Rectangle (balance , 2∗ balance) ;

}

//−−

pub l i c Rectangle Ca lcu la to rRectang l e () {

i n t width = balance ;

i n t he ight = 2 ∗ balance ;

Rectangle r = new Rectangle (width , he ight) ;

r e turn r ;

}

//−−

pub l i c i n t [] TestArrays () {

i n t [] x = {1 ,2 , 3} ;

r e turn x ;

}

//−−−

pub l i c i n t [] Test2 () {

i n t [] x = {1 ,2 , 3} ;

r e turn x ;

}

//−−−

pub l i c S t r ing r e v e r s e I t (S t r ing source) {

i n t i , l en = source . l ength () ;

133

St r i ngBu f f e r des t = new St r i ngBu f f e r (l en) ;

f o r (i = (l en − 1) ; i >= 0 ; i−−){

des t . append (source . charAt (i)) ;

}

re turn dest . t oS t r i ng () ;

}

//−−−

pub l i c i n t MyTotal (i n t a , i n t b , i n t c) {

re turn a+b+c ;

}

}

134

4 MyTest.java File

package g e n f i l e s ;

pub l i c c l a s s MyTest {

p r i va t e i n t id ;

pub l i c MyTest (i n t x) {

id = x ;

}

pub l i c s t a t i c void getProduct () {

System . out . p r i n t l n (" h e l l o world ") ;

}

pub l i c s t a t i c void anotherMethod () {

System . out . p r i n t l n (" Blah blah ") ;

}

pub l i c i n t someMethod () {

re turn id + 0 ;

}

pub l i c i n t getID () {

re turn id ;

}

135

pub l i c S t r ing toS t r i ng () {

S t r i ngBu i l d e r sb = new St r i ngBu i l d e r () ;

sb . append (" id : "+ id + "\n") ;

r e turn sb . t oS t r i ng () ;

}

pub l i c boolean p r i n tS t r i n g (S t r ing s) {

System . out . p r i n t l n (s) ;

r e turn t rue ;

}

pub l i c boolean echoStr ing (S t r ing s t r) {

System . out . p r i n t l n (s t r) ;

r e turn t rue ;

}

}

136

5 Shape.java File

package g e n f i l e s ;

pub l i c c l a s s Shape {

i n t numsides ;

i n t l ength ;

i n t width ;

boolean quad ;

pub l i c Shape (i n t n , i n t l , i n t w) {

numsides = n ;

l ength = l ;

width = w;

quad = isquad () ;

}

//−−

pr i va t e i n t area () { re turn l ength ∗ width ; }

//−−

pr i va t e i n t per imeter () {

i n t tmp1 = 2∗ l ength ;

i n t tmp2 = 2∗ width ;

i n t r e s = tmp1 + tmp2 ;

re turn r e s ;

}

//−−

137

pr i va t e boolean isquad () { re turn (numsides == 4) ; }

//−−

pr i va t e void en l a rg e (i n t howbig) {

l ength = length ∗ howbig ;

width = width ∗ howbig ;

}

//−−

pr i va t e Shape copyshape () {

Shape s = new Shape (numsides , length , width) ;

r e turn s ;

}

//−−

pr i va t e void maximize (i n t x) {

width = width ∗ x ;

l ength = length ∗ x ;

}

//−−−

pr i va t e i n t sizeAround () { re turn (2∗ (l ength+width)) ; }

//−−−

pub l i c Shape merge (Shape s) {

Shape tmp = new Shape (0 , 0 , 0) ;

tmp . l ength = length + s . l ength ;

tmp . width = width + s . width ;

tmp . numsides = numsides + s . numsides −1;

tmp . quad = tmp . isquad () ;

138

re turn tmp ;

}

//−−

pub l i c Shape j o i n (Shape s) {

Shape tmp = new Shape (0 , 0 , 0) ;

tmp . l ength = length + s . l ength ;

tmp . width = width + s . width ;

tmp . numsides = numsides + s . numsides −1;

tmp . quad = tmp . isquad () ;

r e turn tmp ;

}

//−−−

pub l i c void DoubleSize () {maximize (2) ; }

//−−−

pub l i c void growTwice () { en l a rg e (2) ; }

//−−

pub l i c S t r ing toS t r i ng () {

S t r i ngBu f f e r sb = new St r i ngBu f f e r () ;

sb . append (" numsides : " + numsides + "\n") ;

sb . append (" l ength : " + length + "\n") ;

sb . append (" width : " + width + "\n") ;

r e turn sb . t oS t r i ng () ;

}

//−−−

}

139

6 SmallTest.java File

package g e n f i l e s ;

import java . u t i l .Random ;

pub l i c c l a s s SmallTest {

pub l i c s t a t i c i n t i s q r t 1 (i n t x) {

// t h i s method f i n d s the nea r e s t square root o f x

i n t x1 ;

i n t s , g0 , g1 ;

i f (x <= 1) re turn 0 ;

s = 1 ;

x1 = x − 1 ;

i f (x1 > 65535) { s = s + 8 ; x1 = x1 >>> 16;}

i f (x1 > 255) { s = s + 4 ; x1 = x1 >>> 8;}

i f (x1 > 15) { s = s + 2 ; x1 = x1 >>> 4;}

i f (x1 > 3) { s = s + 1 ;}

g0 = 1 << s ; // g0 = 2∗∗ s .

g1 = (g0 + (x >>> s)) >>> 1 ; // g1 = (g0 + x/g0) /2 .

whi l e (g1 < g0) { // Do whi l e approximations

g0 = g1 ; // s t r i c t l y dec r ea s e .

g1 = (g0 + (x/g0)) >>> 1 ;

}

// System . out . p r i n t (" g0 : " +g0+ " ") ;

i f (g0 < 0)

re turn 0 ;

140

e l s e re turn g0 ;

}

//−−

pub l i c s t a t i c i n t f indSquareRoot (i n t myNumber) {

// f i nd the nea r e s t square root o f myNumber

f i n a l double EPSILON = .00001 ;

i n t guess = 1 ;

double root = Math . s q r t (myNumber) ;

whi l e (EPSILON < Math . abs (Math . pow(root , 2) − myNumber))

{ guess++;}

re turn (i n t) root ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pub l i c s t a t i c void main (S t r ing [] a rgs) {

Random r = new Random() ;

f o r (i n t i = 0 ; i < 100 ; i++){

i n t va l = r . next Int () ;

i f (f indSquareRoot (va l)==i s q r t 1 (va l))

System . out . p r i n t l n (i +". t rue (" +

findSquareRoot (va l)+ " , "+i s q r t 1 (va l)) ;

e l s e

System . out . p r i n t l n (i +". FALSE (" +

findSquareRoot (va l)+ " , "+i s q r t 1 (va l)) ;

}

141

}

}

142

7 Results.txt File

I am ent e r i ng main

Percentage S im i l a r i t y : 100

94 methods were found be f o r e f i l t e r i n g

79 Methods to be t e s t ed a f t e r f i l t e r

21 equ iva l ence c l a s s e s o f Methods to be t e s t ed a f t e r f i l t e r

Done complet ing with e f f e c t s

I am out o f main

C lonec l a s s 0 :

−−

g e n f i l e s . Assignment2 . ConvertTempFtoC Locat ion : l i n e s 53 − 55 ,

Clone s i z e : 3 LOC

g e n f i l e s . Assignment2 . TempConverter Locat ion : l i n e s 57 − 62 , Clone

s i z e : 6 LOC

−−

Clonec l a s s 1 :

−−

g e n f i l e s . jude . p1 Locat ion : l i n e s 25 − 27 , Clone s i z e : 3 LOC T

g e n f i l e s . jude . p2 Locat ion : l i n e s 29 − 31 , Clone s i z e : 3 LOC T

−−−

143

Clonec l a s s 2 :

−−

g e n f i l e s . MyTest . p r i n t S t r i n g Locat ion : l i n e s 31 − 34 , Clone s i z e : 4

LOC

g e n f i l e s . MyTest . e choStr ing Locat ion : l i n e s 36 − 39 , Clone s i z e : 4

LOC

−−−

Clonec l a s s 3 :

−−−

g e n f i l e s . Ca l cu la to r3 . Out l ineCa l cu la to r Locat ion : l i n e s 199 − 201 ,

Clone s i z e : 3 LOC

g e n f i l e s . Ca l cu la to r3 . Ca l cu la to rRectang l e Locat ion : l i n e s 203 −

208 , Clone s i z e : 6 LOC

−−−

Clonec l a s s 3 :

−−−

g e n f i l e s . Ca l cu la to r3 . getBal Locat ion : l i n e s 128 − 128 , Clone s i z e :

1 LOC

g e n f i l e s . Ca l cu la to r3 . I d en t i t y Locat ion : l i n e s 152 − 152 , Clone

s i z e : 1 LOC

−−−

Clonec l a s s 5 :

144

−−−

g e n f i l e s . Ca l cu la to r3 . MergeCal Locat ion : l i n e s 185 − 187 , Clone

s i z e : 3 LOC

g e n f i l e s . Ca l cu la to r3 . AddCal Locat ion : l i n e s 189 − 193 , Clone s i z e :

5 LOC

−−−

Clonec l a s s 6 :

−−

g e n f i l e s . Shape . merge Locat ion : l i n e s 43 − 50 , Clone s i z e : 8 LOC

g e n f i l e s . Shape . j o i n Locat ion : l i n e s 52 − 59 , Clone s i z e : 8 LOC

−−

Clonec l a s s 7 :

−−−

g e n f i l e s . Ca l cu la to r3 . DoubleCalculator Locat ion : l i n e s 171 − 173 ,

Clone s i z e : 3 LOC

g e n f i l e s . Ca l cu la to r3 . NewCalculator Locat ion : l i n e s 175 − 179 ,

Clone s i z e : 5 LOC

−−

Clonec l a s s 8 :

−−

g e n f i l e s . Ca l cu la to r3 . equal Locat ion : l i n e s 156 − 158 , Clone s i z e :

3 LOC

145

g e n f i l e s . Ca l cu la to r3 . Same Locat ion : l i n e s 160 − 169 , Clone s i z e :

10 LOC

−−−

Number o f Clones : 12

Number o f Clone C la s s e s : 9

Maximum Clone S i z e : 10 LOC

Maximum Clone Class S i z e : 2 c l on e s

Minimum Clone S i z e : 1 LOC

Minimum Clone Class S i z e : 2 c l on e s

Average Clone S i z e : 4 . 0 LOC

Average Clone Class S i z e : 2 . 0 c l one s

Length o f program execut ion : 54 .576 seconds

146

LIST OF REFERENCES

[1] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, �Challenges of the dynamic
detection of functionally similar code fragments,� Software Maintenance and Reengi-
neering, European Conference on, vol. 0, pp. 299�308, 2012.

[2] L. Jiang and Z. Su, �Automatic mining of functionally equivalent code fragments via
random testing,� in Proceedings of the eighteenth international symposium on Software
testing and analysis, ISSTA '09, (New York, NY, USA), pp. 81�92, ACM, 2009.

[3] R. Elva and G. Leavens, �Semantic clone detection using method IOE-behavior,� in
Software Clones IWSC, 2012 6th International Workshop on, pp. 80 �81, june 2012.

[4] D. Kawrykow and M. P. Robillard, �Improving API usage through automatic detection
of redundant code,� in Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, ASE '09, (Washington, DC, USA), pp. 111�122,
IEEE Computer Society, 2009.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, �Comparison and evaluation
of clone detection tools,� IEEE Transactions on Software Engineering, vol. 33, pp. 577�
591, September 2007.

[6] H. S. Warren, Hacker's Delight. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[7] M. Flatt, S. Krishnamurthi, and M. Felleisen, �A programmer reduction semantics for
classes and mixins,�

[8] G. Hedin and E. Magnusson, �JastAdd: an aspect-oriented compiler construction sys-
tem,� Sci. Comput. Program., vol. 47, pp. 37�58, Apr. 2003.

[9] T. LaToza, �A literature review of clone detection analysis.� Online, Retrieved May 5,
2008 2005.

[10] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, �The development of a software
clone detector.� http://www.cs.cmu.edu/ aldrich/courses/654-sp05/tools/latoza-clone-
detection-05.pdf, 1995 Retrieved May 5, 2008.

[11] R. Komondoor and S. Horwitz, �Using slicing to identify duplication in source code,�
in In Proceedings of the 8th International Symposium on Static Analysis, pp. 40�56,
Springer-Verlag, 2001.

[12] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein, Reverse en-
gineering, ch. Pattern matching for clone and concept detection, pp. 77�108. Norwell,
MA, USA: Kluwer Academic Publishers, 1996.

147

[13] J. Krinke, �Identifying similar code with program dependence graphs,� Proceedings of
the Eighth Working Conference on Reverse Engineering, pp. 301�309, 2001.

[14] B. Baker, �On �nding duplication and near-duplication in large software systems,� Re-
verse Engineering, 1995., Proceedings of 2nd Working Conference on, pp. 86�95, Jul
1995.

[15] J. H. Johnson, �Navigating the textual redundancy web in legacy source,� in CASCON
'96: Proceedings of the 1996 conference of the Centre for Advanced Studies on Collabo-
rative research, p. 16, IBM Press, 1996.

[16] B. H. Nicolas Juillerat, �An algorithm for detecting and removing clones in Java code.�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3829, 2006.

[17] J. H. Johnson, �Identifying redundancy in source code using �ngerprints,� in CASCON
`93: Proceedings of the 1993 conference of the Centre for Advanced Studies on Collabo-
rative research, pp. 171�183, IBM Press, 1993.

[18] H. Ding and M. H. Samadzadeh, �Extraction of Java program �ngerprints for software
authorship identi�cation,� Journal of System Software, vol. 72, no. 1, pp. 49�57, 2004.

[19] S. Schleimer, D. S. Wilkerson, and A. Aiken, �Winnowing: local algorithms for document
�ngerprinting,� in SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, (New York, NY, USA), pp. 76�85, ACM, 2003.

[20] R. Koschke, �Survey of research on software clones,� in Duplication, Redundancy, and
Similarity in Software (R. Koschke, E. Merlo, and A. Walenstein, eds.), no. 06301 in
Dagstuhl Seminar Proceedings, (Dagstuhl, Germany), Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[21] I. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, �Clone detection using ab-
stract syntax trees,� Software Maintenance, 1998. Proceedings. International Conference
on, pp. 368�377, Nov 1998.

[22] V. Wahler, D. Seipel, J. Wol�, and G. Fischer, �Clone detection in source code by
frequent itemset techniques,� Source Code Analysis and Manipulation, 2004. Fourth
IEEE International Workshop on, pp. 128�135, Sept. 2004.

[23] W. S. Evans, C. W. Fraser, and F. Ma, �Clone detection via structural abstraction,�
in WCRE '07: Proceedings of the 14th Working Conference on Reverse Engineering,
(Washington, DC, USA), pp. 150�159, IEEE Computer Society, 2007.

[24] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, �Deckard: Scalable and accurate tree-
based detection of code clones,� in ICSE '07: Proceedings of the 29th international
conference on Software Engineering, (Washington, DC, USA), pp. 96�105, IEEE Com-
puter Society, 2007.

[25] M. Gabel, L. Jiang, and Z. Su, �Scalable detection of semantic clones,� in ICSE '08:
Proceedings of the 30th international conference on Software engineering, (New York,
NY, USA), pp. 321�330, ACM, 2008.

148

[26] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis, �Measuring clone
based reengineering opportunities,� Software Metrics Symposium, 1999. Proceedings.
Sixth International, pp. 292�303, 1999.

[27] F. V. Rysselberghe and S. Demeyer, �Evaluating clone detection techniques from a
refactoring perspective,� ase, pp. 336�339, 2004.

[28] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, �Extracting code clones for
refactoring using combinations of clone metrics,� in Proceeding of the 5th international
workshop on Software clones, IWSC '11, (New York, NY, USA), pp. 7�13, ACM, 2011.

[29] M. F. Zibran and C. K. Roy, �Towards �exible code clone detection, management, and
refactoring in ide,� in Proceeding of the 5th international workshop on Software clones,
IWSC '11, (New York, NY, USA), pp. 75�76, ACM, 2011.

[30] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, �Automated scheduling for
clone-based refactoring using a competent ga,� Softw. Pract. Exper., vol. 41, pp. 521�
550, April 2011.

[31] R. Tairas and J. Gray, �Sub-clone refactoring in open source software artifacts,� in
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC '10, (New York,
NY, USA), pp. 2373�2374, ACM, 2010.

[32] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, �A novel approach to optimize
clone refactoring activity,� in Proceedings of the 8th annual conference on Genetic and
evolutionary computation, GECCO '06, (New York, NY, USA), pp. 1885�1892, ACM,
2006.

[33] H. A. Basit and S. Jarzabek, �Detecting higher-level similarity patterns in programs,� in
ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, (New York, NY, USA), pp. 156�165, ACM, 2005.

[34] T. Bakota, R. Ferenc, and T. Gyimothy, �Clone smells in software evolution,� Software
Maintenance, 2007. ICSM 2007. IEEE International Conference on, pp. 24�33, Oct.
2007.

[35] A. Lozano, M. Wermelinger, and B. Nuseibeh, �Evaluating the harmfulness of cloning: A
change based experiment,� in MSR '07: Proceedings of the Fourth International Work-
shop on Mining Software Repositories, (Washington, DC, USA), p. 18, IEEE Computer
Society, 2007.

[36] S. Jarzabek and Y. Xue, �Are clones harmful for maintenance?,� in Proceedings of the
4th International Workshop on Software Clones, IWSC '10, (New York, NY, USA),
pp. 73�74, ACM, 2010. 11 references.

[37] C. Kapser and M. W. Godfrey, ��Cloning considered harmful� Considered harmful,�
in Proceedings of the 13th Working Conference on Reverse Engineering, WCRE '06,
(Washington, DC, USA), pp. 19�28, IEEE Computer Society, 2006. 30 references.

[38] K. Kontogiannis, �Evaluation experiments on the detection of programming patterns
using software metrics,� Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on, pp. 44�54, Oct 1997.

149

[39] R. Koschke, R. Falke, and P. Frenzel, �Clone detection using abstract syntax su�x trees,�
Reverse Engineering, 2006. WCRE '06. 13th Working Conference on, pp. 253�262, Oct.
2006.

[40] H. A. Basit, U. Ali, and S. Jarzabek, �Viewing simple clones from structural clones'
perspective,� in Proceedings of the 5th International Workshop on Software Clones,
IWSC '11, (New York, NY, USA), pp. 1�6, ACM, 2011. 6 references.

[41] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, �E�cient plagiarism detection for large
code repositories,� Softw. Pract. Exper., vol. 37, no. 2, pp. 151�175, 2007.

[42] C. McMillan, M. Grechanik, and D. Poshyvanyk, �Detecting similar software applica-
tions,� in Proceedings of the 2012 International Conference on Software Engineering,
ICSE 2012, (Piscataway, NJ, USA), pp. 364�374, IEEE Press, 2012.

[43] T. Kamiya, S. Kusumoto, and K. Inoue, �Cc�nder: a multilinguistic token-based code
clone detection system for large scale source code,� Software Engineering, IEEE Trans-
actions on, vol. 28, pp. 654�670, Jul 2002.

[44] E. Juergens, F. Deissenboeck, and B. Hummel, �Code similarities beyond copy & paste,�
in Proceedings of the 2010 14th European Conference on Software Maintenance and
Reengineering, CSMR '10, (Washington, DC, USA), pp. 78�87, IEEE Computer Society,
2010.

[45] I. Keivanloo, C. Roy, and J. Rilling, �Sebyte: A semantic clone detection tool for inter-
mediate languages,� in Program Comprehension (ICPC), 2012 IEEE 20th International
Conference on, pp. 247�249, 2012.

[46] B. Baker, �On �nding duplication and near-duplication in large software systems,� Sec-
ond Working Conference on Reverse Engineering(WCRE `95), pp. 86 � 95, 1995.

[47] A. Salcianu and M. C. Rinard, �Purity and side e�ect analysis for Java programs,� in
Veri�cation, Model Checking and Abstract Interpretation, pp. 199�215, 2005.

[48] C. Raza�mahefa, A study of side-e�ect analyses for Java. PhD thesis, School of Com-
puter Science, Mc. Gill Univeristy, Montreal, 1999. 81 pages.

[49] N. E. Wallen and J. R. Fraenkel, Educational Research : A Guide to the Process, ch. 7.
L. Erlbaum., 2000.

[50] J. Gradecki and N. Lesiecki, Mastering AspectJ: aspect-oriented programming in Java.
Java open source library, Wiley, 2003. 434 pages.

[51] �java.lang.instrument Java platform SE 6.� http://docs.oracle.com/javase/6/docs/
api/java/lang/instrument/package-summary.html, Feb. 2012.

[52] A. Marcus and J. I. Maletic, �Identi�cation of high-level concept clones in source code,�
in Proceedings of the 16th IEEE international conference on Automated software engi-
neering, ASE '01, (Washington, DC, USA), pp. 107�, IEEE Computer Society, 2001.

[53] E. Juergens, F. Deissenboeck, and B. Hummel, �Clone detection beyond copy & paste,�
in Proc. of the 3rd International Workshop on Software Clones, 2009.

150

http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html

[54] D. Workman, �On the analysis of semantic clones,� Technical Report CS-TR-09-04,
University of Central Florida, Department of EECS,University of Central Florida,4000
Central Florida Blvd,Orlando, Florida, 32816, USA, May 2009.

151

	Detecting Semantic Method Clones In Java Code Using Method Ioe-behavior
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 The Problem
	1.2 My Contribution
	1.3 Outline of the rest of the Dissertation

	CHAPTER 2 TECHNICAL DEFINITIONS
	2.1 Clone Detection and Analysis
	2.2 Types of Clones
	2.3 Semantic Method Clones
	2.3.1 MethodType of Methods
	2.3.2 Effects of Methods

	2.4 Notions of Equivalence
	2.4.1 Semantic Equivalence
	2.4.2 Structural Equivalence

	2.5 JastAdd
	2.6 Random Sampling
	2.7 Privileged Aspects
	2.8 Instrumentation in Java

	CHAPTER 3 ALGORITHM
	3.1 Assumptions
	3.2 Overview
	3.3 Abstraction
	3.4 Filtering
	3.4.1 MethodType Filter
	3.4.2 Effects Filter
	3.4.3 Benefits of filters

	3.5 Testing
	3.5.1 Creating the Testing Context
	3.5.2 Generating the Test Files
	3.5.3 Running the Test Files

	3.6 Collection
	3.7 JSCTracker

	CHAPTER 4 RELATED WORK
	4.1 Research on Semantic Clones

	CHAPTER 5 EVALUATION
	5.1 Pilot Test
	5.2 Case Study
	5.3 Results
	5.3.1 Clone Detection Results
	5.3.2 Efficiency of the Algorithm
	5.3.3 Comparison of Results for IOE-Behavior and Input-output Analysis
	5.3.4 Reliability of JSCTracker and IOE-Behavior Analysis

	CHAPTER 6 DISCUSSION
	6.1 How Assumptions Impacted Case Study Results
	6.2 Design Considerations
	6.3 The Case Study Results
	6.4 Limitations
	6.5 Future Work

	CHAPTER 7 CONCLUSIONS
	7.1 Summary of Research
	7.2 Overview of Results
	7.3 Contributions
	7.4 Conclusion

	APPENDIX PILOT TEST FILES
	1 HDelightCode.java File
	2 Jude.java File
	3 MultiClassTest.java File
	4 MyTest.java File
	5 Shape.java File
	6 SmallTest.java File
	7 Results.txt File

	LIST OF REFERENCES

