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ABSTRACT

The Internet ecosystem comprising of thousands of Autonomous Systems (ASes) now

include Internet eXchange Points (IXPs) as another critical component in the infrastructure.

Peering plays a significant part in driving the economic growth of ASes and is contributing

to a variety of structural changes in the Internet. IXPs are a primary component of this

peering ecosystem and are playing an increasing role not only in the topology evolution of

the Internet but also inter-domain path routing. In this dissertation we study and analyze

the overall affects of peering and IXP infrastructure on the Internet. We observe IXP peering

is enabling a quicker flattening of the Internet topology and leading to over-utilization of

popular inter-AS links. Indiscriminate peering at these locations is leading to higher end-

to-end path latencies for ASes peering at an exchange point, an effect magnified at the

most popular worldwide IXPs. We first study the effects of recently discovered IXP links

on the inter-AS routes using graph based approaches and find that it points towards the

changing and flattening landscape in the evolution of the Internet’s topology. We then study

more IXP effects by using measurements to investigate the networks benefits of peering. We

propose and implement a measurement framework which identifies default paths through

IXPs and compares them with alternate paths isolating the IXP hop. Our system is running

and recording default and alternate path latencies and made publicly available. We model

the probability of an alternate path performing better than a default path through an IXP
iii



by identifying the underlying factors influencing the end-to end path latency. Our first-

of-its-kind modeling study, which uses a combination of statistical and machine learning

approaches, shows that path latencies depend on the popularity of the particular IXP, the

size of the provider ASes of the networks peering at common locations and the relative

position of the IXP hop along the path. An in-depth comparison of end-to-end path latencies

reveal a significant percentage of alternate paths outperforming the default route through

an IXP. This characteristic of higher path latencies is magnified in the popular continental

exchanges as measured by us in a case study looking at the largest regional IXPs.

We continue by studying another effect of peering which has numerous applications

in overlay routing, Triangle Inequality Violations (TIVs). These TIVs in the Internet delay

space are created due to peering and we compare their essential characteristics with overlay

paths such as detour routes. They are identified and analyzed from existing measurement

datasets but on a scale not carried out earlier. This implementation exhibits the effectiveness

of GPUs in analyzing big data sets while the TIVs studied show that the a set of common

inter-AS links create these TIVs. This result provides a new insight about the development

of TIVs by analyzing a very large data set using GPGPUs.

Overall our work presents numerous insights into the inner workings of the Internet’s

peering ecosystem. Our measurements show the effects of exchange points on the evolving

Internet and exhibits their importance to Internet routing.
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Oh dear dad

Can you see me now?

I am myself

Like you somehow.
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CHAPTER 1: INTRODUCTION

Internet eXchange Points (IXPs) have recently grown into an integral component of the

global Internet ecosystem. They facilitate the easy setup of peering between a wide variety

of Autonomous Systems (ASes) in-spite of their diverse business and technology policies.

The dynamics of peering necessitates mutual agreement between a pair of ASes to share

traffic based on a set of predefined criteria. Economic and network profits are the final goal.

The direct exchange of traffic (instead of using a higher tier transit provider) enables the

peering ASes to make significant savings in its transit costs to the larger provider(s) of which

they are customers.

1.1 Motivation

Figure 1.1 exhibits an example of ASes setting up a peering relationship (AS A and B) at an

IXP to exchange traffic while ASes E and F use traditional transit providers to direct their

traffic.

The advent of peering has led to a gradual change in the fundamental routing structure

of the Internet. Recent studies [2, 3] show the Internet to be evolving into a flatter system

from the traditional hierarchical system. The flatter system of peering could be classified
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into two broad types: private, where very large corporations set up their own dedicated (and

expensive) backbone infrastructure; and public, where small, medium and large networks

connect at an IXP located at a suitable geographic location. The peering exchange often

times helps avoid long intra (or sometimes inter) continental backhaul transit links for traffic

destined locally and thus not only helps save on transit costs but also improves network

performance for ASes exchanging traffic at the exchange. Figure 1.1 exhibits an example of

ASes setting up a peering relationship (AS A and B) at an IXP to exchange traffic while

ASes E and F use traditional transit providers to direct their traffic.

The exchange ecosystem of the Internet affects the workings of the Internet in a

variety of ways [4]. Peering affects the growth and evolution of the inter-domain AS topology

which in turn significantly affects end-to-end routing. While peering has definite economic

advantages for the lower tier-ASes, the network benefits of peering have not been studied by

the research community. Networks (both service providers or other organizations) require

greater knowledge in the determining the effectiveness of the peering points. This would

result in informed and beneficial routing policies and ultimately more efficient packet routing

across the Internet which coupled with the economic advantages of peering would lead to

greater synergy between the networks.
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1.2 Approach

In our work, we study the effects of IXPs and the peering fabric on the Internet architecture

and routing dynamics. We study how peering is affecting the growth and evolution of

the inter-domain AS topology and the effects on they are having on end-to-end routing.

Some applications of peering are investigated in overlay routing along-with the design and

implementation of a measurement framework. A recent work by Ager et. al. [5] identify

more peering links at a single European IXP than the total number of these links known in

2010, a significant and rather startling finding. This incredibly rich peering fabric will have

a definite impact on end-to-end path latencies, a characteristic which has not been actively

studied by the research community. Our work is thus a first step in this direction where we

actively analyze paths through the peering exchanges and determine their efficiency. This

analysis of the constantly evolving peering fabric is carried out on a snapshot of the Internet’s

topology and data traffic. Here we look at how Internet path latencies are being affected

by the phenomenon of worldwide peering. We compare end-to-end path latencies of paths

through IXPs with synthetic alternate paths isolating the IXP effects. Such an approach

helps pinpoint the effects IXPs are having on these paths. Using the measurements generated

from our routing analysis framework we learn and identify a generalized linear regression

model identifying the underlying factors affecting the latencies of the paths through the

IXPs.
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The increasing deployment of Internet eXchange Points (IXPs) has on the other hand

led to a new avenue of research in determining additional links in the Internet topology. He

et al. [6] present a framework which extracts new topology information from select IXPs

and verify these edges from existing BGP tables and traceroute data. They report a higher

number of new edges, most of them being of the peer-to-peer type. using available graph-

theoretic methods and available data sources we study AS visibility at IXPs with the primary

aim of establishing the role of these IXPs in determining the evolving Internet topology. We

try to find out if IXP data presents significant connectivity information not present in the

more conventional data sources such as RouteViews BGP data [7] or Skitter data from

CAIDA [8] among others.

Figure 1.1 An example of peering at an IXP. AS A and B bypass the Internet to exchange

traffic at the IXP switch. However ASes E and F need to set up BGP sessions to transmit

data to each other through the Internet’s hierarchical routing infrastructure. A and B could

also set up peering sessions easily with the other IXP participants such as C,D and E based

on their peering policies.
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1.3 Contribution

Our in-depth study and analysis of exchange points presents significant contributions towards

a better understanding of the workings of the peering fabric of the Internet. We design and

implement a measurement framework to infer path latencies of alternate paths isolating the

IXP effects enables us to observe the high rate of over-utilization of default Internet paths

through the public exchange points. We observe that one of ten IXP paths is the best

available path amongst all other Internet paths, a characteristic indicating the potential of

proper planning in the design and selection of an IXP for a peering relationship between

participating ASes. Using the measurement framework we model the underlying dynamics

of the IXP paths and observe that the number of IXP participants, size of provider ASes

of peering networks and the relative location of an IXP along the path exhibit a direct

influence on the performance of an alternate path. we observe IXP paths to be over-utilized

in comparison with similar alternate paths between the same end hosts. One of ten IXP paths

is the best available path amongst all other Internet paths, a characteristic indicating the

potential of proper planning in the design and selection of an IXP for a peering relationship

between participating ASes. Other characteristics of inter-domain Internet routing namely

detours and the formation of triangle inequality violations (TIVs) largely remain consistent

with that seen in previous studies, even with the advent of peering and a definite change

in the Internet’s topology evolution. We observe most IXP paths still possessing efficient

detour alternatives due to the creation of TIVs in the Internet delay space.
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Overall, this dissertation presents useful insight into the workings of route dynamics

at the exchange points across the world. The switching networks at these locations are

responsible for huge amounts of traffic everyday and play a major role in determining network

services for millions of end-users. By pointing out the potential for improvements at these

major locations, the lessons learnt here will be applicable to a large cross-section of ASes

comprising of the peering fabric of the Internet.

1.4 Organization

This dissertation is organized as follows: chapter 2 presents relevant background literature

about IXPs and its applications to Internet routing and topology and is followed by brief

description of related work in chapter 3. Chapter 4 talks about the effects of peering links on

Internet topology evolution. This is followed by chapter 5 which talks about the bandwidth

studies to the popular web destinations and chapter 7 presenting details about parallel

analysis techniques developed for network measurements. Measuring inter-domain routing

performance is presented in chapter 8 which contains the proposed measurement framework

and evaluation results and the modeling effort is detailed in chapter 9. We conclude in

chapter 10 with discussions and the course for future work.
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CHAPTER 2: INTERNET EXCHANGE POINTS

2.1 IXP architecture

IXPs are independently maintained physical infrastructures enabling public peering of mem-

ber ASes. An IXP provides physical connectivity between the different member networks

while the decision to initiate BGP sessions between AS pairs is left to the individual net-

works themselves. Figure 2.1 represents a regular scenario where a set of ASes (A to E)

transmit data to each other using the Internet. Here local ASes end up using international

links to transmit data which increases costs while decreasing network performance. Only

if ASes have a local connection (AS C and D) are these problems mitigated. IXPs enable

public peering between member ASes by providing physical connectivity infrastructure and

the decision to initiate BGP sessions between AS pairs is left to the individual AS networks

themselves. Most IXPs connect members through a common layer-2 switching fabric [9].

The public peering at the IXP then becomes simpler due to the availability of physical in-

frastructure, with member ASes A and B (as shown in figure 2.2) initiating a BGP session to

exchange packets through the IXP switch. On the other hand if E needs to send data to F,

it requires the set up of BGP sessions between routers in the Internet cloud for it to be able

to successfully transfer data to F. Figure 2.2 shows a scenario with the ASes peering at the
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IXP switch. In this case, data sent between these ASes need not traverse the entire Internet

and can be directly shared through the IXP. These peering links reduce transmission delays,

use lesser international bandwidth and thus reduce overall costs of exchanging data for every

IXP member AS.

The question arises as to when should an AS subscribe to an IXP? It is dependent

on a variety of factors, primarily economic in nature. In the scenario shown in figure 2.2, if

there is a significant volume of daily traffic between AS E and F, then it would probably be

better off for F to peer at the IXP. Assuming both are stub ASes, the amount both would

have to pay their respective transit providers would be far greater than the cost of setting up

a peering link at the IXP. Data transfer costs, which in turn is dependent on traffic volumes

are generally the determining factors behind AS peering at IXPs.

Figure 2.1 A set of ASes transmitting data to each other through the Internet. AS C and D

share data through a direct peering link.

The advantages of peering at IXPs has led to a significant growth in the number of

ASes peering at these switching points worldwide. As more and more ASes start peering
8



there is a greater percentage of data packets being routed in the Internet through these

switches. In the following section we conduct some measurements and show that almost

thirty percent of all routes in the Internet traverse an IXP. This leads to a greater number

of peering links being formed at the IXPs thereby affecting the various characteristics of the

Internet topology.

Figure 2.2 A set of ASes peering at an IXP. A and B set up a BGP session to exchange data

while E and F use the Internet cloud to transmit data to each other. Any AS peering at the

IXP may initiate BGP session with a peering AS.

2.2 IXP Growth

An increasing number of IXPs are being deployed across the world to enable more efficient

traffic delivery over the Internet. This growth in the number of IXPs has been skewed with

regard to the geographical location of these new IXPs being set up. There are numerically

higher number of IXPs in Europe and North America than those in Asia or Africa for
9



example. However, there is no denying the fact that with an increasing number of IXPs

coming up and with more ASes peering at these IXPs, the net Internet traffic going through

these IXPs has increased over the years.
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Figure 2.3 Percentage of IXP routes visible in one cycle of Skitter traceroute data every year

for the month of September.

To study the impact of IXP routes we first need to quantify the percentage of routes

going through any IXP in the Internet. To do this, we obtain one complete cycle of Skitter

(now renamed Ark) traceroute data from the year 2004 to 2009 for the month of September.

A complete cycle of data represents different skitter vantage points across the world sending

out traceroute probes to the standard CAIDA destination list and records the paths taken.

Based on the available list of IXP prefixes obtained from PCH and PeeringDB, we search

for routes consisting of hops within these prefixes. An IXP route is thus defined as a route

which contains atleast one hop through the network with a known IXP prefix. We count the
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number of IXP routes obtained within one cycle and calculate its percentage based on the

total number of routes obtained for the same cycle period. Figure 2.3 presents the percentage

of IXP routes obtained every year and we observe that for most years we have atleast 30

percent of all routes traversing an IXP. This means that almost one in every three routes

goes through an IXP. The drop in percentage in 2008 and 2009 can be attributed to the fact

that CAIDA’s skitter architecture underwent a major change that year transferring to the

Ark architecture. This resulted in a fewer traceroute probes being sent out and thus there

were lesser routes recorded during this time. Table 2.1 presents the total number of routes

observed along with the total number of IXP routes obtained. Oliveira et al. [10] point out

that a high number of links and routes are not visible in the Skitter data due to its shrinking

probing scope. The number of routes visible have decreased which is has led to a decrease

in the number of IXP routes too, but it still shows a significant percentage of routes being

taken going through an IXP thereby underlying the importance of IXPs in the evolution of

the Internet ecosystem.

2.3 Data sources and identifying IXP peering links from traceroutes

Internet topology evolution is typically studied by using various established datasets made

available to the research community. BGP routing table dumps from the University of

Oregon’s RouteViews project [7] is the most extensively used resource. AS links appearing

in the BGP tables represent existing links with a high probability of being alive and is
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thus a more reliable source of information. However, if a link breaks or a node is down,

the information takes some time to be updated through the network through BGP updates

thereby leading to higher routing table convergence times. These updates have also been

used as topology snapshots since they show a greater number of AS links over time [11].

Table 2.1 IXP growth obtained from searching known IXP prefixes from one cycle of Skitter

data for the month of September

Year IXP Routes found Total routes visible Percentage

2004 6963592 23312823 29.87

2005 6999045 21370051 32.75

2006 6387175 18455760 34.60

2007 5606309 15541716 36.07

2008 1629327 7020300 23.20

2009 1906532 7407891 25.73

Another widely available source of data is the data released by CAIDA under the

Archipelago (Ark) infrastructure for research use [12]. From various vantage points across

the Internet, ICMP probe packets are sent to a set of destination IP addresses using the

traceroute tool. iPlanes [13] and Dimes [14] are other important and widely used sources of

data publicly available for use in the study of Internet topology evolution.
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There is a limited availability of data with respect to IXPs. PCH [1] maintains and

makes available a set of BGP tables collected from a set of IXP routers worldwide while

PeeringDB [15] is another project where IXP information is manually updated by individual

providers. The recent IXP mapping effort by Augustin et al. [16] present IXP specific

datasets including IXP IDs and network prefixes. Using a variety of tools developed, the

authors come up with a list of IXP members and a set of peering links at these IXPs. They

successfully discover and validate the existence of 44K IXP peering links which is roughly

75% more than reported in previous studies [6, 9]. This additional dataset of peering links

at IXPs is used in this paper to create a more complete Internet topology graph.

IXP peering links have been mentioned as the hidden links which may be the key

to solving ([6, 9]) the well known missing link problem in the study of Internet topology

evolution. Table 4.1 presents a summary of the various data sets used and the nomenclature

used throughout this paper.

Identifying IXPs in a traceroute has been described extensively in [6] and [17]. IXPs

are assigned an IP address block and each AS peers at the IXP with a definite IP address

for the interface within the given block. The list of IXP address blocks are available at PCH

[1] and PeeringDB [15]. With the known list of IXP address prefixes we can search for every

prefix from traceroute data and identify routes which include an IXP hop. As stated in [6]

AS participants may then be identified by following the sequence of IP addresses before and

after the known IXP address. By mapping the IP address of the participants to their AS
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numbers we can obtain the participants at that particular IXP. We use these techniques to

identify paths traversing an IXP in a later section.

2.4 Routing Performance

Our work is built on techniques and lessons from a variety of Internet measurement studies

dealing with latency prediction, topology evolution and peering dynamics. In addition,

statistical modeling methods such as generalized linear models help us identify and validate

learning models from data generated by our measurement framework.

iPlane [13, 18] is the primary reference point in this work as we use publicly avail-

able datasets extensively to carry out our inter-AS latency estimates. The iPlane system

continuously measures and maintains an annotated map of the Internet which is used to

predict paths (both at the router level and the AS level) between arbitrary end nodes on the

Internet. iPlane in itself is based on the broad vision of Clark et. al. [19] who discussed the

need for an Internet wide knowledge plane which builds and maintains models of network

functionality.

While latency measurements for paths utilizing an IXP have not been looked into

in great detail, peering as a plausible source for the creation of quicker detour paths is

mentioned by Zheng et. al. in [20]. The authors argue that routing policies impact RTTs

directly for both intra- and inter-domain routing naturally giving rise to Triangle Inequality
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Violations 1 (TIVs) in the Internet delay space. TIVs have been studied ([21])and used

extensively in overlay routing architectures [22] to implement efficient routing schemes for a

variety of applications. For example, Ly et al. [23] use them to obtain latency reduction in

popular online games.

2.5 Internet Topology

Internet topology evolution research is traditionally carried out with active measurements

with [24] being one of the earliest works constructing topology snapshots from BGP routing

tables and updates. This led to the general technique of constructing AS or router-level

graphs of the Internet topology using both traceroute and BGP data [25, 26, 27] and ana-

lyzed these graphs based on various graph theoretical metrics. The focus has mostly been

on designing measurements to maximize the number of links uncovered and solve the incom-

pleteness problem [28, 9]. Researchers have all along concentrated on finding new links [29]

and removing the expired links [10] formed due to the constantly changing Internet dynamics.

Topology evolution needs to be studied in detail to help in the design and implementation of

better topology generators and evolution models. These topology generators play a major

role as newer and more efficient routing architectures can only be designed when effective

topology maps can be created. Models proposed in [30, 31] aim to generate graphs which

exhibit desired graph characteristics of the Internet.

1Here the default latency between two arbitrary end-hosts is greater than the computed latency between
them via another intermediate host
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IXPs were recently identified as an integral component of the Internet architecture

and were made a focal point of the study in [17] and [16]. He et al. [29, 6] carry out

significant studies on uncovering IXP peering links and suggest that these locations hold the

key to solving the hidden links problem in Internet topology research. By using the very

comprehensive study carried out by Augustin et al. in [16] we aim to measure the impact

these IXPs peering links are having on the evolving Internet topology today. Gregori et al.

in [32] present an initial work discussing the impact IXP links are having on the AS-level

Internet topology while we provide a more in-depth analysis and characterization of various

graph based topology metrics in our work. Our aim is to interpret and analyze the effects

these IXP peering links are having on the Internet topology.

2.6 Triangle Inequality Violations

Internet TIVs have been extensively studied in recent years with Zheng et al [20] reporting

the correlation between inter-domain routing policies of ASes and the formation of TIVs.

The authors surmise peering policies between ASes could lead to alternate shorter paths

and hence more instances of a violation occuring. Savage et al. [33] first show the existence

of detour routes, other paths through an intermediate host but to the same destination

creating a TIV. The authors show that more than 30% of all default routes have a better

detour path. The best detour paths more often have only one intermediate hop as shown in

[22] which means the identification of TIVs do not require computing longer detours across
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numerous other nodes. Lumezanu et al. in [34] analyze many new real world data sets of

varying sizes and granularities to show that the TIVs are not just measurement artifacts and

that their numbers could vary over time. Another section of inequality violation analysis

has been in the performance analysis of network coordinate systems such as Vivaldi [35] and

[21]. Due to the metric nature of these coordinate systems, TIVs cannot be replicated by

the node embeddings. Wang et al. [21] identify these problems in the neighbor selection

process and propose an alert mechanism eliminating the severe violations.

All the prior work analysing TIVs consider any Internet path across arbitrary end-

hosts/ASes. In our work we carry out these study only for those paths traversing an exchange

point. These exchange points paths have different characteristics because of the very nature

of peering in the Internet, bypassing the transit providers and creating newer peering links

between participating ASes. Analyzing these specific TIVs created due to exchange points

have not been carried out in earlier work. IXPs in general and their effects on the topological

evolution of the Internet have been a recent focus of the community. He et al. [6] suggest that

the exchange points hold the key to solving the hidden links problem in Internet topology

research, the primary goal of which is to uncover the maximum number of inter-AS links.

Augustin et al in [16] carry out a comprehensive study in finding these IXP links and are

successful in obtaining almost 18K previously unseen links. IXPs have been accepted to

be an integral part of the Internet ecosystem and are playing a major part in the Internet

interconnection dynamics today.
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As identifying TIVs on a large scale is a computationally involved problem, we use

parallel computing to carry out this process and harness the parallel processing capabilities

readily available to most users. By breaking down the steps of the computation at hand

we observe that the pattern matching and APSP graph algorithms may be implemented

in parallel. This parallel implementation is carried out both on a multi-core CPU and on

the GPGPU with NVIDIA’s CUDA API. Huang et al. [36] propose a GPU based multiple

pattern matching algorithm while the authors in [37] evaluate and implement a signature

matching scheme on an Nvidia G80 GPU which outperforms a serial implementation on

a Pentium4 by up to 9x. In our work we use the PFAC library which uses a variant of

the well-known Aho-Corasick [38] algorithm. GPUs have also been used in solving various

graph problems with Harish et al. [39] first using CUDA to compute the APSP on a graph.

Katz et al in [40] improve this solution to give faster speedup results while Buluc et al in

[41] implement a recursively partioned APSP algorithm and obtain a very high degree of

speedup. We use the technique proposed in [41] to implement our instance of APSP and

explain the process in detail in the following sections.
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CHAPTER 3: RELATED WORK

3.1 Routing Performance

Our work is built on techniques and lessons from a variety of Internet measurement studies

dealing with latency prediction, topology evolution and peering dynamics. In addition,

statistical modeling methods such as generalized linear models help us identify and validate

learning models from data generated by our measurement framework.

iPlane [13, 18] is the primary reference point in this work as we use publicly avail-

able datasets extensively to carry out our inter-AS latency estimates. The iPlane system

continuously measures and maintains an annotated map of the Internet which is used to

predict paths (both at the router level and the AS level) between arbitrary end nodes on the

Internet. iPlane in itself is based on the broad vision of Clark et. al. [19] who discussed the

need for an Internet wide knowledge plane which builds and maintains models of network

functionality.

While latency measurements for paths utilizing an IXP have not been looked into

in great detail, peering as a plausible source for the creation of quicker detour paths is

mentioned by Zheng et. al. in [20]. The authors argue that routing policies impact RTTs

directly for both intra- and inter-domain routing naturally giving rise to Triangle Inequality
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Violations 1 (TIVs) in the Internet delay space. TIVs have been studied ([21])and used

extensively in overlay routing architectures [22] to implement efficient routing schemes for a

variety of applications. For example, Ly et al. [23] use them to obtain latency reduction in

popular online games.

3.2 Internet Topology

Internet topology evolution research is traditionally carried out with active measurements

with [24] being one of the earliest works constructing topology snapshots from BGP routing

tables and updates. This led to the general technique of constructing AS or router-level

graphs of the Internet topology using both traceroute and BGP data [25, 26, 27] and ana-

lyzed these graphs based on various graph theoretical metrics. The focus has mostly been

on designing measurements to maximize the number of links uncovered and solve the incom-

pleteness problem [28, 9]. Researchers have all along concentrated on finding new links [29]

and removing the expired links [10] formed due to the constantly changing Internet dynamics.

Topology evolution needs to be studied in detail to help in the design and implementation of

better topology generators and evolution models. These topology generators play a major

role as newer and more efficient routing architectures can only be designed when effective

topology maps can be created. Models proposed in [30, 31] aim to generate graphs which

exhibit desired graph characteristics of the Internet.

1Here the default latency between two arbitrary end-hosts is greater than the computed latency between
them via another intermediate host
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IXPs were recently identified as an integral component of the Internet architecture

and were made a focal point of the study in [17] and [16]. He et al. [29, 6] carry out

significant studies on uncovering IXP peering links and suggest that these locations hold the

key to solving the hidden links problem in Internet topology research. By using the very

comprehensive study carried out by Augustin et al. in [16] we aim to measure the impact

these IXPs peering links are having on the evolving Internet topology today. Gregori et al.

in [32] present an initial work discussing the impact IXP links are having on the AS-level

Internet topology while we provide a more in-depth analysis and characterization of various

graph based topology metrics in our work. Our aim is to interpret and analyze the effects

these IXP peering links are having on the Internet topology.

3.3 Triangle Inequality Violations

Internet TIVs have been extensively studied in recent years with Zheng et al [20] reporting

the correlation between inter-domain routing policies of ASes and the formation of TIVs.

The authors surmise peering policies between ASes could lead to alternate shorter paths

and hence more instances of a violation occuring. Savage et al. [33] first show the existence

of detour routes, other paths through an intermediate host but to the same destination

creating a TIV. The authors show that more than 30% of all default routes have a better

detour path. The best detour paths more often have only one intermediate hop as shown in

[22] which means the identification of TIVs do not require computing longer detours across
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numerous other nodes. Lumezanu et al. in [34] analyze many new real world data sets of

varying sizes and granularities to show that the TIVs are not just measurement artifacts and

that their numbers could vary over time. Another section of inequality violation analysis

has been in the performance analysis of network coordinate systems such as Vivaldi [35] and

[21]. Due to the metric nature of these coordinate systems, TIVs cannot be replicated by

the node embeddings. Wang et al. [21] identify these problems in the neighbor selection

process and propose an alert mechanism eliminating the severe violations.

All the prior work analysing TIVs consider any Internet path across arbitrary end-

hosts/ASes. In our work we carry out these study only for those paths traversing an exchange

point. These exchange points paths have different characteristics because of the very nature

of peering in the Internet, bypassing the transit providers and creating newer peering links

between participating ASes. Analyzing these specific TIVs created due to exchange points

have not been carried out in earlier work. IXPs in general and their effects on the topological

evolution of the Internet have been a recent focus of the community. He et al. [6] suggest that

the exchange points hold the key to solving the hidden links problem in Internet topology

research, the primary goal of which is to uncover the maximum number of inter-AS links.

Augustin et al in [16] carry out a comprehensive study in finding these IXP links and are

successful in obtaining almost 18K previously unseen links. IXPs have been accepted to

be an integral part of the Internet ecosystem and are playing a major part in the Internet

interconnection dynamics today.
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As identifying TIVs on a large scale is a computationally involved problem, we use

parallel computing to carry out this process and harness the parallel processing capabilities

readily available to most users. By breaking down the steps of the computation at hand

we observe that the pattern matching and APSP graph algorithms may be implemented

in parallel. This parallel implementation is carried out both on a multi-core CPU and on

the GPGPU with NVIDIA’s CUDA API. Huang et al. [36] propose a GPU based multiple

pattern matching algorithm while the authors in [37] evaluate and implement a signature

matching scheme on an Nvidia G80 GPU which outperforms a serial implementation on

a Pentium4 by up to 9x. In our work we use the PFAC library which uses a variant of

the well-known Aho-Corasick [38] algorithm. GPUs have also been used in solving various

graph problems with Harish et al. [39] first using CUDA to compute the APSP on a graph.

Katz et al in [40] improve this solution to give faster speedup results while Buluc et al in

[41] implement a recursively partioned APSP algorithm and obtain a very high degree of

speedup. We use the technique proposed in [41] to implement our instance of APSP and

explain the process in detail in the following sections.
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CHAPTER 4: INTERNET TOPOLOGY EVOLUTION

It has been suggested by the authors in [6] that the extra peering links at IXPs may hold the

key to solving the missing links problem for the AS-level Internet and [16] shows that this

hypothesis is probably true. However, the task ahead of us does not stop at uncovering these

peering links. These additional links obtained need to be studied and analyzed in detail with

respect to the existing Internet topology and their effects measured before a final conclusion

can be arrived at. Any number of questions arise: Do the extra IXP links uncovered have

a significant effect on the growing topology dynamics of the Internet? If the effects of these

links are significant then how do we change our outlook in conducting topology research to

accommodate these newer changes? Does solving the hidden links problem with these newer

IXP links actually mean that we can accurately predict the growth of the Internet and verify

previous evolution models as correct or not?

This chapter presents our study of AS visibility at IXPs with the primary aim of

establishing the role of these IXPs in determining the evolving Internet topology. We try

to find out if IXP data presents significant connectivity information not present in the more

conventional data sources and detail our methodology of studying the effects of IXPs on the

evolving Internet topology [42, 43]. We present our measurement details and datasets and

follow it up with our graph-based analysis, results of which are presented here.
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4.1 AS graph analysis

In this section, we present our methodology to obtain AS information from the different

datasets we choose to consider. Our main aim is to identify the set of ASes visible, the

number of AS links visible and other important network metrics representing important

properties of the resultant graph. We look at topology metrics considered by Mahadevan

et al. in [26] as they appear to fundamentally characterize Internet AS topologies and have

been widely used.

Table 4.1 Datasets analysed and nomenclature

Dataset source Name

RouteViews BGP [7] RV IEWS

CAIDA (Ark/Skitter) [12] CAIDA

Packet Clearing House [1] PCH

DIMES [14] DIMES

IXP Mapping [16] IXPMAP

RV IEWS + CAIDA + DIMES + IXPMAP IXPALL

As this study is primarily meant for comparison purposes, we decided to obtain a

snapshot of Internet topology data from the data sources for a period of 31 days in October

2009. A month’s worth of data provides a reasonable snapshot of the evolving Internet

topology with enough time for different ASes and links to either show up or go down. We
25



obtain AS-level graphs from each data source as mentioned next and merge the 31 daily

graphs into one graph per dataset.

4.1.1 Graph Construction

Table 4.2 Comparing the number of observed links in the PCH, RV IEWS and IXPMAP

graphs

Dataset source Name Links

PCH only (GP ) 370

RV IEWS only (GB) 1408

IXPMAP only (GM) 47507

PCH + RV IEWS (GP ∩GB) 71284

PCH + IXPMAP (GP ∩GM) 57

RV IEWS + IXPMAP (GB ∩GM) 159

PCH + RV IEWS + IXPMAP (GP ∩GB ∩GM) 4250

RouteViews [7] collects and archives static snapshots of BGP routing tables from a

set of monitors which can be accessed from the RouteViews data archives. Deriving the

graphs from October 2009 we obtain a set of AS paths which we then convert to a set of AS

links. The unique AS links obtained are set aside from which every individual AS visible is
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then recorded. The final combined monthly graph we refer to as the RV IEWS graph in the

rest of the paper.

CAIDA’s IPv4 Routed /24 topology dataset [12] uses team-probing to distribute the

work of probing the destinations among the available monitors using the scamper tool and

forms a part of the Archipelago (Ark) topology infrastructure (which was formerly known

as Skitter). Scamper probes are currently sent to a random destination prefix from a set of

7.4 million prefixes. As specified in [26] private ASes generate indirect links which we filter

out during creation of the AS-level graphs and are then combined to form the final CAIDA

graph.

PCH [1] releases the BGP routing tables at various IXP routers (currently 63) from

various locations around the world. These routing table formats are the same as the Route-

Views tables and hence are analyzed using a similar technique. We construct the PCH

graph from these daily graphs.

The DIMES Internet mapping project is a distributed technique carrying out tracer-

oute measurements from individual users located worldwide. Millions of traceroute/ping

measurements are carried out by the low footprint DIMES agents installed on volunteer lo-

cal hosts to present a detailed view of the Internet with a significant percentage of new links

compared to those found in RV IEWS and CAIDA.

The IXP Mapping project [16] releases data specific to IXPs across the Internet with

only peering links unearthed at these IXPs. We term this dataset IXPMAP . This is the
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most comprehensive set of peering links present at IXPs currently available to the research

community and we make it the primary source of study in this paper.

The peering links in IXPMAP are however not useful by themselves as they do not

in any way give a complete picture of the Internet. As in other similar topology related

studies, we combine these peering links with the other views of the Internet we obtain from

the different datasets available to us. As stated earlier, we have the CAIDA traceroute based

dataset (representing the data plane) and the RV IEWS BGP based dataset (representing

the control plane). We compare the links obtained from the PCH data with the other BGP

based dataset (RV IEWS) and present the result in table 4.2. It is observed from the table

that PCH contains only 370 unique links in comparison to RV IEWS and the other IXP-

specific dataset with a high number of links (almost 71k) being common among the BGP

based datasets. The reasoning behind such similarity between these datasets is the fact that

both are derived from BGP tables at a set of routers some of which are actually common to

both sources. Due to such a characteristic of the PCH data we simply combine the unique

links obtained from this dataset to the RV IEWS graph to simplify our analysis and reduce

the number of graphs generated to three.

We complete the entire picture of the Internet by combining CAIDA, RV IEWS,

DIMES and IXPMAP to one entire IXPALL graph. This graph is characterized by the

data plane (CAIDA), the control plane (RV IEWS), extensive peer to peer links (DIMES)

and the peering links (IXPMAP ) and built over a one month period, is relatively represen-

tative of the Internet during that period of time.
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4.1.2 Validity of chosen datasets

As detailed in the subsection above, we carry out a careful consideration of each of the

available datasets before combining them to create the final combined graph of the Internet.

While each of the links made available are validated by the sources before release, it can be

considered that over time some of the links may simply expire and new ones created. This is

specially true for the IXPMAP dataset which is not maintained by the original developers

any more. However we do not consider the dataset to have become corrupt and rendered

useless. By using historical data (from CAIDA and RV IEWS) for that particular month

we obtain a relatively clear and correct snapshot of the Internet for that particular period

and study the graphs. The question of the current validity of the peering links could be raised

when the topology evolution is being studied over an extended period of time, something

which is not the goal in this work. The IXP peering links would have a high probability of

remaining valid for the period considered and thus enable an accurate study of their effects

on the AS-level topology of the Internet.

We carry out graph based comparison studies in the next section between CAIDA,

RV IEWS and the IXPALL datasets and do not report the results of the DIMES dataset

individually. This is because both CAIDA and RV IEWS present distinctly different views

of the Internet as mentioned earlier (the data and control planes respectively) while DIMES

presents an overall view based on the locations of the user agents. However, the unique links

from DIMES are used in creating our view of the complete Internet in IXPALL.
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There are two primary reasons we combine the IXP links with (GP ) and not the

skitter or routeviews derived graphs:

• Not present in BGP tables: As pointed out in [44] most IXP links are not visible in

BGP routing tables. By combining these extra peering links with BGP links we would

get a more complete graph with little overlap between the two merged graphs. Table

4.2 presents a comparison of the number of unique links visible at the PCH, BGP and

the IXPMAP graphs. We observe that a high number of links ( 47k) are visible only

in GM while those in both GP and GM are less than GB and GM . To reduce overlap

as much as possible and for better comparisons, merging GP with GM seems to be a

better option.

• Routers at IXPs: GP is constructed from the BGP tables at routers situated at spe-

cific IXP locations worldwide. However, when there is no significant difference in the

number of links visible at these routers than the BGP dataset, we believe adding the

links to the graph derived from these locations would be a more suitable recreation of

the existing topology.
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4.2 Topology characteristics

4.2.1 Degree distribution

The node degree distribution is the probability distribution of the node degrees in a graph.

In other words, it is the probability that a node selected randomly is of k-degree and this

probability is calculated by:P (k) = n(k)
n

, where n(k) is the number of k-degreee nodes in

a graph with total number of nodes n. Scale-free networks such as the Internet have been

shown to exhibit power law degree distributions [45] and hence the power law exponent is

computed for this metric. This power law model has had a significant effect on Internet

topology research and topology generators ([31],[46]) are designed primarily adhering to this

characteristic.
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Figure 4.1 Node degree distribution. Power law behavior remain evident for all three datasets.

From figures 6.7(a) and 6.7(b) we observe distinct power law characteristics being

followed by all three topology datasets for a wide range of node degrees. The average node

degrees (listed in table 4.3) are in k̄-order with RV IEWS ≤ CAIDA ≤ IXPALL and
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the average node degree in IXPALL exhibiting a significantly higher value than the others.

This is largely due to popular IXP nodes exhibiting high degrees due to multiple peering

ASes at one location. The power law exponents computed are not affected significantly by

these additional high degree nodes with the γ value for the combined IXPALL graph being

slightly higher than the others (refer to 4.3 for complete details). The authors in [26] point

out that a natural cut-off at power-law maximum degree is obtained at: kPL
max = n

1
(γ−1) .

From table 4.3 we observe that the maximum node degree kmax for the IXPALL is closest

to the power law thereby meaning that the power law approximation for this set is relatively

accurate.

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Node degree

CC
DF

 

 
CAIDA
RVIEWS
IXPALL

Figure 4.2 CCDF of node degree distribution for the three datasets. Power law behavior

remains consistent across datasets.

This result shows that the degree distribution of the IXPALL graph still does follow

a power law but with different parameters. By uncovering of these new peering links at IXPs

the basic topology evolution characteristic of the Internet does not deviate from the existing

power law characteristic and its behavior remains the same. The CCDFs of these graphs
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also reiterate this conclusion. The addition of an extremely high number of unique peering

links does not break the power law characteristics of the graph. Figure 6.7(b) shows that

the IXPALL graph has a greater of number of nodes for corresponding node degrees in

comparison with the CAIDA and RV IEWS graphs. This is simply due to the fact that a

high number of low to medium degree ASes (degrees of 10 to 1000) peer at the IXP switches

with each other. The newer links uncovered are between these peering ASes increasing the

total number of ASes with these degree characteristics. However it is evident from the figure

that the net characteristic of the Internet’s degree distribution still remains the same even

with the addition of the IXP peering links.

4.2.2 Power law degree distributions

The now famous paper by Faloutsos et al. [45] exhibiting a power-law degree distribu-

tion of the Internet graph at the router level led to a plethora of research in this evolution

characteristic of the Internet. Suggested scale-free network models based on preferential at-

tachment [47] describe the power law degree distributions with an exponent α between 2 and

3. However there has been a large amount of follow up work where the degree distribution

characteristic has been shown to be a result of an inherent bias of traceroute based measure-

ment mechanisms. Lakhina et al. in [48] show that traceroutes from a small set of sources

to a larger set of destinations measure edges in a highly biased manner with the degree

distribution results differing sharply from that of the actual underlying graph. Achlioptas et
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al. in [49] provide a mathematical proof of the results obtained in [48] while a recent work

by Willinger et al. [50] discuss the origin and reasons behind the scale-free Internet myth.

We discuss this particular issue in this paper as in our first result we do show that the

combined Internet graph exhibits the power-law distribution with an exponent of 2.18 (as

listed in table 4.3). It has to be noted however that the basis for not supporting this power

law characteristic is for traceroute based studies from a very small set of source monitors to

thousands of destination IP addresses across the globe. The authors of [16] carefully select

a large number of traceroute enabled looking glass (LG) servers (about 2300) from which

they send out targeted traceroute probes to responding target hosts within (or a neighbor

of) an AS peering at a known IXP prefix. We believe this technique will not be subject to

the traceroute sampling biases as discussed in [48, 49] and the IXP peering links obtained

also do not show such a property when analyzed in isolation. When combined with the other

datasets to represent the entire Internet, these links end up affecting the graph properties

but nearly not enough when node degree distributions are studied. The IXPMAP dataset

is inherently free of the traceroute bias in our opinion thus making it beneficial for us to

study its effects on the Internet topology. Moreover, the objective of this work is a complete

understanding of the IXP link effects (and not only degree distributions), which we carry

out for other important topology metrics.
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4.2.3 Joint degree distribution

The joint degree distribution gives us an idea of the general neighborhood of a randomly

chosen node with an average degree. The immediate one hop neighborhood of the node

gives significant information not only about the interconnections between nodes but also the

structure of the area around the node.
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Figure 4.3 Normalized average neighbor connections. IXPALL comprises of excess tangen-

tial links connecting high degree nodes.

Mahadevan et al. in [26] define the joint degree distribution (JDD) as the probability

that a randomly selected edge connects k1 and k2-degree nodes:P (k1, k2) = m(k1,k2)
m

, where

m(k1, k2) is the total number of edges connecting nodes of degree k1 and k2. Figure 4.3

shows the JDD for the different graphs. Since CAIDA has the highest number of radial

links connecting low-degree customer AS nodes to high-degree provider AS nodes, it is at

the top for lower node degrees. Since IXPALL contains all these nodes and links from

CAIDA its behavior is very similar initially. However the effect of IXP peering is evident

for medium to high degree nodes (10 to 1000). Numerous peerings between ASes at different
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locations worldwide result in tangential links between ASes of similar higher degrees resulting

in the IXPALL graph showing consistently high values throughout the middle and latter

sections of the graph. Figure 4.4 presents the ccdf of the average neighbor connections against

average node degrees. A higher percentage of CAIDA nodes hae an average neighbor degree

greater than RV IEWS but the effect of the extra peering links added in IXPALL is not

extensive when combined with the graphs. This is because only a small number of extra

nodes with higher number of links are included, thereby not affecting the actual number of

nodes. Thus we can accurately conclude that the peering links at IXPs again significantly

affect the JDD of the Internet topology graphs obtained from the traditional sources.
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Figure 4.4 CCDF of average neighbor connections. IXPALL is not significantly different

due to only a few number of high degree nodes being added to the CAIDA and RV IEWS

datasets.

A summary statistic of the JDD is the average neighbor connectivity, the average

neighbor degree of the average k-degree node. The average neighbor degree for the different

graphs is listed in table 4.3. As seen in the degree distribution plots, CAIDA exhibits values
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greater than the BGP based graphs but the IXP peering nodes have high average neighbor

degrees, which has an overall effect in increasing the average degree of the neighbor nodes

in IXPALL.

Another scalar value summarizing the JDD is the assortative coefficient [51] which

measures mixing patterns between nodes. The coefficient r, which lies between -1 and

1 denotes the correlation between a pair of nodes, with negative values of r indicating

relationships between nodes of different degrees and positive values of r showing that nodes

have correlations between nodes of the same degree. With the scale free nature of Internet,

it is not surprising to see all our graphs being disassortative in nature with a high number of

radial links connecting nodes of different degrees [26]. Since the traceroute based studies are

unable to find a high number of tangential links, all the graphs show higher disassortative

trends. However the peering links in IXPMAP are the source of the tangential links between

high degree nodes thereby resulting in a relatively higher assortative coefficient value.

4.2.4 Clustering coefficient

The value for the local clustering coefficient of a node denotes how close its neighbors are

to forming a clique. This metric serves as a supplement to the JDD by providing more

information about how the neighbors interconnect. If the average number of links between

k-degree nodes is m̄nn(k), then the local clustering coefficient C(k) is (from [26]) :C(k) =

2m̄nn(k)
k(k−1)

. If two neighbors of a node are also connected, then it forms one triangle while a
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triplet of nodes is formed when out of three nodes either two or three nodes are connected

to each other. An open triplet is formed with two connections while a closed triplet is

created when all the nodes are connected to each other. The global clustering coefficient is a

percentage of the number of closed triangles (made up of three closed triplets) in the entire

graph over the total number of triplets in the graph.
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Figure 4.5 Local clustering with increasing node degrees. IXPALL exhibits constant high

clustering values due to a high number of links being clustered at the IXP nodes.

From a high local clustering value of a node it can be inferred that its neighbors have

greater interconnections which in turn leads to greater path variance. Such a characteristic

would provide interesting ramifications for ASes peering at individual IXP locations. A pair

of ASes would be more eager to peer if there is a potential to peer with other ASes already

present at that location. With a high local clustering value, all ASes at the IXP would

be able to transmit traffic to each other more efficiently through a subset of peering ASes.

These highly clustered networks would also help in the routing performance under different

conditions. From table 4.3 we observe CAIDA to have a higher mean clustering value but
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IXPALL exhibits a clustering coefficient double that of the former. As mentioned in [26],

this is due to greater differences in disassortativity and JDD values. In figure 4.5 we observe

IXPALL exhibits high clustering values for lower degree nodes.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Local clustering

CC
DF

 

 
CAIDA
RVIEWS
IXPALL

Figure 4.6 CCDF of local clustering values. IXPALL shows a consistently high probability

for all clustering values considered.

These are due to the CAIDA nodes which are highly disassortative, meaning that

lower degree nodes have a higher probability of being connected to high degree nodes. For

higher degree nodes, the local clustering values are significantly higher. This is because the

average node degree (k̄ ) for IXPALL nodes is much greater in comparison. The ccdf of

local clustering values (figure 4.6) obtained reinforce the above conclusions whereby there is

always a higher probability of nodes exhibiting a particular local clustering value.
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Figure 4.7 CCDF of the Rich club connectivity (RCC) for the three graphs. The highest

connectivity among high degree nodes is in CAIDA while IXPALL high degree nodes are

not connected between themselves.

4.2.5 Rich club connectivity

The Rich club connectivity (RCC) metric, introduced by Zhou and Mondragon in [31, 52]

provides an insight into the properties of power law networks. Rich nodes are a small

number of nodes with large numbers of links forming a core club of nodes which are very

well connected to each other. As defined in [26], if ρ = 1...n is the first ρ nodes ranked in

decreasing order of node degrees, then the RCC φ(ρ/n) is the ratio of the number of links

in the subgraph induced by these ρ nodes to the maximum possible links ρ(ρ − 1)/2. It

is pointed out in [31] that the RCC is a key component in characterising Internet AS-level

topologies.
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Figure 4.7 presents the RCC for the various graphs and it can be seen that CAIDA

exhibits the highest RCC values. Even though IXPALL has a greater number of links its

lower RCC means that the higher degree nodes are not connected extensively with each

other. The subgraphs induced from these high degree nodes do not come close to forming

cliques which can be explained from the location based nature of IXPs. IXPs in general are

not connected to each other and the peering links created at these locations remain localized.

These peering links denote a cooperation only between a pair of nodes which are independent

of other peering links. The IXPALL graph would exhibit higher RCC values if more ASes

at the IXP peer with a greater number of ASes already peering there. The potential for a

greater IXP utilization is evident from this result as there is an opportunity for more ASes

to come up with peering agreements and ensure even better connectivity.
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Figure 4.8 Average node coreness with increasing node degrees. The increase in coreness

roughly follows a power law for all graphs for low and medium and degree nodes before

becoming stable.
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4.2.6 Node coreness

The authors in [26, 53] define the k-core of a graph as the subgraph obtained from the

original graph by the iterative removal of all nodes of degree less than or equal to k. The

node coreness (κ) can be defined as the highest k for which the node is present in the k-core

but removed in the (k + 1)-core. Thus all one degree nodes have coreness equal to 0 while

the maximum node coreness κmax is termed the graph coreness. In this case the κmax-core

of the graph is not empty but the (κmax + 1)-core is. The graph fringe is defined as the set

of nodes in the graph displaying minimum coreness κmin.

The node coreness is a more advanced version of node connectivity than the node

degree as it tells us how well the node is connected to the entire graph. A node may have

a high degree but its connectivity to other parts of the graph is dependent largely on its

neighbors. The best example to describe this is a high degree hub of a star which has a

coreness of 0 with its neighbors only having a very low degree (one), which when removed

leaves the hub disconnected.

From table 4.3 we observe IXPALL exhibits significantly higher average node core-

ness (κ̄) and maximum coreness (κmax) values. The core size ratio is also higher indicating

the general higher general connectivity due to IXP links induced in the graph. Figure 4.8

displays this result showing the effect of the IXP peering links increasing the overall coreness

for nodes with all low, medium and high degrees. It is also evident from the figure that

the increase in node coreness follows a power law increase for nodes upto degrees of 100
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before remaining stable for higher degree nodes. Likewise the fringe size ratio is also the

lowest in IXPALL which means fewer nodes with minumum coreness thereby leading to

a better connected graph than the two others. The coreness result presents an important

characteristic: the fact that the greater number of links also leads to better connectivity.

These new links are not all only tangential links between low degree nodes but contain a

generous amount of radial links leading to better node connectivity.
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Figure 4.9 Distance distribution showing that IXPALL links increase the number of hops

between two arbitrary hops over the Internet.

4.2.7 Distance and eccentricity

The distance distribution d(x) is the probability for a pair of random nodes to be at a

distance of x hops within each other whereas eccentricity is the maximum distance between

the pair of nodes. Thus the maximum eccentricity in a graph is also the maximum distance

and is termed the graph diameter. This metric is important while designing efficient routing
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policies to enable paths with lesser hops to be chosen. The authors in [26] also point out

that the distance distribution plays a major role in helping the network recover from virus

attacks. Figure 4.9 presents the distance distribution values of the three graphs studied. We

observe that about 55 percent of nodes in IXPALL are separated by a distance of 5 hops

while it is lower for the other graphs.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of hops

PD
F

 

 
CAIDA
RVIEWS
IXPALL

Figure 4.10 Eccentricity distribution of three graphs. Similar values are observed with

IXPALL having the highest percentage of nodes separated by 6 hops between them.

Even though IXPALL has a greater number of links (which means that average

distances should decrease), the average distance value is greater suggesting that deployment

of IXPs do not decrease the path lengths between end-hosts on the Internet. There could be

routing performance efficiencies through IXP deployment but the number of hops traversed

largely remain the same. Figure 4.10 shows that maximum distances for a majority of the

nodes are similar across all graphs with almost 70 percent of IXPALL nodes separated by

a maximum of 6 hops from each other.
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Figure 4.11 Normalized node betweenness with n(n− 1) being the normalization factor.
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Figure 4.12 CDF of log of edge betweenness for the three graphs. IXPALL has the highest

percentage of edges with the lowest edge betweenness values.

4.2.8 Betweenness

The most common and effective means of measuring node centrality is betweenness. Nodes

which appear on a greater number of shortest paths between any pair of nodes in the graph

exhibit a higher betweenness value. Such nodes are considered to be more central than

others since it is assumed that majority of the traffic on a network is sent along the shortest

path from source to destination. Potential traffic load on nodes/links may be estimated
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from betweenness values of certain critical nodes which would also point to locations for

potential congestion. Using a relatively quick algorithm [54] to calculate the betweenness

centrality of the nodes, we obtain the normalized betweenness distribution with increasing

node degrees. Since the maximum number of paths possible in a graph is n(n − 1), all the

graphs are normalized by this value and the results shown in figure 4.11. It can be observed

that all three graphs exhibit a power-law function of node betweenness with increasing node

degrees with IXPALL exhibiting lower values overall. Higher numbers of nodes of all degrees

(mainly medium degrees) in IXPALL leads to greater path diversity. This means there is a

presence of a greater number of nodes for paths of equal distance between all pairs of nodes

leading to the lower betweenness values observed.

Figure 4.13 Scatter plor showing edge betweenness centrality for IXPALL for edges with

different node degrees. Centrality values overall remain quite low.

Continuing from the node betweenness values exhibited in figure 4.11 we compute

the normalized edge betweenness for the graphs and present the results in figures 4.12. The

figure shows the CDF of the log of betweenness values for all edges in the three graphs.
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It can be seen that IXPALL has the highest percentage of edges with the lowest edge

betweenness values (as is evident in the scatter plot in figure 4.13 of edge centrality, with

a high concentration of points with very low betweenness values). This means that a high

percentage of IXP peering edges (along with nodes) do not fall on the available shortest paths

between nodes in the entire graph. It has to be noted here that inter-domain routing in the

Internet does not follow conventional shortest path approaches and is actually determined

by inter-ISP routing policies and hot-potato routing in BGP. Betweenness can thus not be

considered as an entirely accurate indicator of Internet path performance except to give an

idea of the relative importance of the nodes/edges along a shortest path. We may conclude

from this result that IXPs do not necessarily decrease the hop count of paths between ASes

peering at those locations as path lengths essentially remain similar to other established

paths from source to destination AS.

4.3 Analysis and discussions

Combining the extra peering links visible at the IXPs with the general structure of the

Internet has given us a varied set of characteristics of the completed picture of the Internet

(the data plane combined with the control plane and the peering links). Comparing the

derived topologies based on the available graph metrics gives us an insight into the effects

the peering links uncovered at the IXPs are having on the topology evolution of the Internet.
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The most widely studied node degree distribution behavior of the Internet remains

essentially unchanged even after the addition of all the peering links. The scale-free nature of

the Internet graph, based on the different views considered, does remain the same. Numerous

instances of related work have noted that the IXP peering links hold the key to solving the

missing links problem and our findings suggest peering links provide a part of the solution to

the problem. However it has to be mentioned that there has been work following the famous

paper by Faloutsos et al. [45] which have discounted the scale-free nature of the Internet

[50, 48, 49] due to inherent biases in the traceroute mechanisms.

Observing the effects of IXP peering links on other important metrics leads to some

interesting insights. Higher JDD values for medium to high degree nodes means that well

connected ASes (and providers, preferably the higher tier ISPs) are setting up peering rela-

tionships at exchange points. Such peering links lead to higher average neighbor degrees. A

generous mix of both tangential and radial links are evident in the IXPALL graph unlike

in CAIDA where there is a high number of radial links connecting nodes of vastly different

degrees. The high JDD also comes with high levels of local clustering due to IXP peering

links. This characteristic should and does directly serve to provide an incentive to ASes to

peer at an IXP. A high number of links inevitably leads to greater local clustering but the

RCC on the other hand displays the fact that there is little interconnection between the IXPs

between themselves. Such connections between IXPs are however not needed since they are

constructed to provide a platform for local interconnectivity amongst coordinating ASes.
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The node coreness metric which points out how ”deep in the core” the node is situated

[26], shows that the nodes in the IXPALL graph are mostly well connected with well

connected neighbors. The IXP substrate has thus become an important component of the

Internet’s infrastructure leading to a ’flatter’ Internet from a hierarchical one. Gill et al. in

[2] reported the changing characteristic of the Internet to a more ”flat” architecture which

can be inferred by the results obtained by us with the coreness metric. The greater number

of peering links between ASes at IXPs lead to those ASes getting deeper into the core of

the Internet with decreasing emphasis on connections with upper tier ASes. The authors in

[55] and [56] have all pointed towards this evolution characteristic of the Internet and our

coreness metric based result presents a theoretical confirmation of these observations.

Node and edge betweenness are two measures of centrality from which further infer-

ences can be made about the effects of IXPs peering links. Both these metrics point towards

lower values for IXPALL which means not many AS-AS peering links are a part of the

shortest paths between ASes. Zheng et al. [20] show that routing policies and the layer 2

technology used on peering links may lead to cases of Triangle Inequality Violations (TIVs)

[21, 34] in the Internet and not necessarily provide significant savings on RTT measurements

between ASes. With most detour paths [57] forming TIVs, peering links do not necessarily

lead to shorter paths along the Internet. The results we obtain again largely confirms this

Internet path characteristic from a theoretical perspective.

Coming back to the questions we posed at the beginning of the paper we observe

that IXP links indeed play a major role on topology characteristics of the Internet. Their
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effects on various important topology metrics should make the Internet topology research

community stand up and take notice of this integral component and give due attention to

uncovering more peering links at IXP locations worldwide. While Augustin et al. in [16]

present a first step in carrying out a comprehensive study to uncover peering links, there is

no sustained effort in the community to continue such studies at the moment. On the other

hand, the flattening of the Internet topology structure [2] shows the growing trend among

the ASes to move away from higher tier transit ISPs towards creating inter-AS peering links.

These characteristics and the incredibly high number of IXP peering links point towards the

fact that IXPs are indeed the key towards solving the missing links problem and with their

addition to the visible Internet topology we will go a long way to verifying the validity of

topology generators and evolution models.

Table 4.3 Table detailing graph summary statistics

Metric Property description CAIDA RVIEWS IXPALL

Average Degree Number of nodes (n) 26957 33199 33606

Number of edges (m) 94161 77101 320728

Average node degree (k̄) 6.98 4.64 19.08

Degree Distr Max node degree (kmax) 4249 2717 11623

Power law max degree (kPL
max) 7301 9690 7809

Exponent of P (k)(−γ) 2.14 2.13 2.16

Maximum degree ratio 0.16 0.08 0.35

Continued on next page
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Metric Property description CAIDA RVIEWS IXPALL

Joint degree distr Avg neighbor degree (k̄nn/(n− 1)) 0.028 0.015 0.019

Assortative coefficient (r) -0.16 -0.20 -0.07

Clustering Mean clustering (C̄) 0.39 0.25 0.29

Clustering coefficient (C) 0.02 0.01 0.04

Coreness Average node coreness (κ̄) 2.05 1.33 4.34

Max node coreness (κmax) 38 25 87

Core size ratio (ncore/n) 3 · 10−3 2 · 10−3 5 · 10−3

Minimum deg in core (kmin
core) 75 38 119

Fringe size ratio (nfringe/n) 0.37 0.33 0.25

Max degree in fringe 3 8 6

Distance Average distance (d̄) 3.364 3.844 3.333

Std deviation of distance (σ) 0.661 0.848 0.655

Eccentricity Graph radius 4 6 5

Average eccentricity (ε̄) 5.522 7.443 6.291

Graph diameter 8 11 9

Betweenness Avg node betweenness 8.78 · 10−5 8.57 · 10−5 6.96 · 10−5

Avg edge betweenness 3.57 · 10−5 4.99 · 10−5 1.45 · 10−5
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CHAPTER 5: BANDWIDTH MEASUREMENTS

5.1 Bandwidth studies of popular web destinations

With IXPs being such an important component of the Internet infrastructure, their role

in accessing popular websites and Internet services from end hosts has become quite signifi-

cant. With a large percentage of Internet traffic now being accessed from wireless and mobile

devices, there is a shift towards providing these services in an efficient and cost-effective man-

ner. We continue our study of IXP effects by focusing on the paths’ available bandwidth

[58, 59]. While we earlier measured and analyzed general paths from various PlanetLab

vantage points, in the second part of the study we concentrate only on the most popular

websites, content distribution networks (CDNs) and cloud computing services. These pop-

ular destinations are accessed by millions of users worldwide on a daily basis or provide

critical services on which these users depend on. A large percentage of Internet traffic is due

to these popular web destinations for which we study IXP effects on these Internet routes.

We now discuss the methodology and intuition behind the measurements we carry out along

with a brief description of the various tools used in our studies.
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5.1.1 Source and destinations

We carry out our experiments from a host at University of Central Florida (UCF) to the

servers serving the top thousand websites across the world according to Alexa’s ranking list

as on March 1st, 2010. These popular websites were chosen for this initial study because

they represent a large section of the Internet traffic and would largely be available with low

down-time. Since our main intention is to study routes from the source to these destinations

traversing an IXP, we conduct traces to these thousand websites and select the set of des-

tinations whose path encounters at-least one IXP hop. Most of these popular websites are

complemented by an array of CDNs at important geographic locations to reduce delivery

latencies and increase reliability by providing a safeguard against delivery failures. Some of

these popular websites are also hosted in the cloud and served by the popular cloud comput-

ing services. Video and music streaming applications (such as Internet radio sites Pandora,

Spotify and so on) fall in the latter category of being served either by CDNs or hosted in

cloud based systems. We group the diverse range of destinations monitored into two major

groups:

1. World Wide Web (WWW): These comprise of the top 1000 websites according to

Alexa’s ranking list as mentioned. Regular websites, music, video providers and other

streaming applications are all classified here.

2. Services: These comprise of the popular CDNs and cloud services which not only

generate content but also provide services to many of the top websites selected.
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After filtering out the set of destinations we conduct specific measurement experi-

ments from the same source host at UCF as previously mentioned. The main reasoning

behind using only one source is because studying the characteristics of IXP routes is a pri-

mary goal of our work and with peering at IXPs dependent on AS agreements, an IXP route

is almost always unique to a given (source AS,destination AS) pair. Only sources within the

same AS would exhibit similar paths whereas geographically co-located hosts have a high

probability of not using a comparable path through the same IXP to the given destination.

Thus the following measurements are performed from one source host at UCF unless other-

wise mentioned, where a particular set of measurements are carried out from a number of

geographically diverse Planetlab [60] vantage points.

5.1.2 Route characteristics studied

Our primary goal in this section is to gain an understanding of the existence of bottleneck

locations on IXP routes and how the existence of these bottlenecks are affected by the IXP.

We use the popular Pathneck active probing tool [61] to accurately locate the bottleneck

hop/link and obtain available bandwidth information. Hu et al. in [62] term these bottleneck

hops as choke points and the downstream link to the choke point as a choke link. We measure

the persistence before identifying the bottleneck hops since this bottleneck location could

change with changes in the underlying IXP path. Frequent link flapping is an undesirable

characteristic of Internet routes which occur mainly due to the propagation of unstable BGP
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routing information. Path stability is thus very important to determine bandwidth choke

points and persistence is a popular metric aimed to quantify the stability of an Internet

route. We follow it up with a bottleneck persistence study to identify if these hops are

loaded only temporarily (which may be due to an external event) or not and the relation

between bottleneck points with both packet loss and queuing delays occurring along the IXP

route. We also measure the standard delay, loss and jitter metrics for the identified IXP

routes.

5.1.3 Tools used

As mentioned previously, we have used Pathneck [61] to identify both route and bottleneck

persistence in our measurements. Pathneck uses a recursive packet train (RPT) probing

approach combining load and measurement packets in its probing mechanism to efficiently

identify the hop limiting the available bandwidth on a path. We also use the Tulip probing

tool [63] to detect the exact position of packet loss along the path and estimate queuing

delay at each router. Tulip loss and queuing probings enable the identification of hops where

losses occur without actually needing to have explicit control over the hops. This enables an

effective way to determine both forward and return path losses on a hop by hop basis along

the entire path.
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Table 5.1 Some important PlanetLab probing source used and the number of IXP routes

visible from each source to top 1000 websites.

Name Location ASNum IXP Routes

chimay-fundp Belgium 2611 371

cs-surrey-sfu Canada 11105 270

sos-ac-jp Japan 2506 118

plab1-sjsu USA 7132 63

pl2-monash Australia 7575 407

free-informatik Germany 680 118

plab2-nec-labs USA 209 4

plab1-cs-hk Hong Kong 3363 77

plab-canterbury New Zealand 9432 185

ops-ii-uam Spain 766 80

5.1.4 Filtering IXP route destinations from each probing source

Carrying out end-to-end measurements from one source host is evidently not representative

of a large section of the Internet. Hence to measure route metrics such as round trip delays
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for an entire path, we distribute our probing experiment over a number of carefully selected

planetlab vantage points across the world. Due to the differing locations of the various

probing sources selected in our experiment, we first carry out traces to the entire list of top

1000 destinations to filter out the respective destinations for which the route traverses an

IXP. Different sources have different providers each having their own routing policies which

leads to a unique set of destination lists from every source node. Table 5.1 presents relevant

information about some of the prominent vantages selected and the number of routes to the

top 1000 destinations traversing an IXP.

5.2 Pathneck measurements and results

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

IXP rank

Nu
mb

er
 of

 ch
ok

e p
oin

ts

 

 
Choke points (WWW)
Non choke points (WWW)
Choke points (Services)
Non choke points (Services)

Figure 5.1 Comparing choke point occurrences in IXPs. A limited difference is visible between

the number of choke points and non-choke points at IXP hops, denoting a high percentage

of choke points occurring at the IXP.
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As mentioned in the previous section, the initial set of measurements performed are

carried out from one particular host within the UCF network. Traceroutes are conducted

to each of the top thousand websites and the paths encountering a known IXP prefix is

filtered out. This set of websites using IXPs from the source host is then probed using

Pathneck to measure link bandwidth details. We obtain a total of 312 different paths to

distinct destinations traversing an IXP. With ten Pathneck probings taking approximately

60 seconds on our host, we cycle through the list of destinations once every 52 minutes. Each

Pathneck probe result is the average of n consecutive recursive probe trains (RPTs) with

a default value of n being 10. This means a destination is probed once every hour and we

carry out this probing for a seven day period. A destination is thus probed 168 times from

one host during the course of our measurement.

5.2.1 Identifying choke points at IXP locations

Pathneck returns the top three choke points encountered along the path from the source to

the destination. From the measurements we observe that hop locations of these choke points

keep changing across the multiple probes being performed. This signifies that the various

hops on the path are more loaded than the others at different times of the day. We first

filter out all IXP hops along the route and measure the number of choke points occurring

within these IXP hops. Interestingly, a high number of IXP hops also exhibit choke point

characteristics. Figure 5.1 presents this result. We plot the total number of choke and non-
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choke points observed for all IXP hops at each unique IXP location and rank the IXPs based

on the number of hops traversed at each. We can observe that the difference in the number

of choke-IXP hops and non-choke IXP hops is lesser than a factor of 10 (on a log scale) in

the maximum while the difference decreases with other IXPs traversed. The figure presents

a useful insight as to how numerous IXP hops are also choke points within the same route.

Thus the initial reasoning behind assuming IXPs would essentially allow more efficient and

faster data transfer may or may not be true in all cases with the hop taken at the IXP

slowing up due to lower available bandwidth. The behavior remains similar for both sets of

destination paths, WWW and Services, with paths to the latter having more instances of

choke points due to the excess traffic on these links (voice, video or streaming applications).

5.2.2 IXP route persistence

The previous result leads to a requirement to study both queuing delays at IXP locations

and end-to-end round trip times to gain a better understanding of the effect of reduced

bandwidth at IXP locations. However, route persistence [64] would play a major factor in

determining the results of delay based measurements with bottleneck locations along a route

varying with a change in the underlying route.

As reported in [62] route persistence may be measured at two levels: IP level (also

termed as location level) and at the AS level. At the IP level, route fluctuations are measured

with changes in the IP addresses of every hop along the path. Changes in the IP address of
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hops may occur more frequently with different routers within the same AS being selected.

Such occurrences lead to a different IP level route but the same AS level route. Only when a

more serious network outage occurs would there be an actual variation in the AS level route

taken by the packet. Thus, routes at the AS level would show a higher degree of persistence

than those at the IP level.

Identifying similar hops at the IP level is a fairly elaborate procedure since multiple

IP addresses may be associated with the same router. We follow the heuristics proposed by

the authors in [62] to detect IP addresses associated with co-located routers:

• All routers within the source UCF network are considered co-located.

• Routers exhibiting similar location information in their DNS names are considered to

be the same.

• After removing digits in the DNS name of the IP address, co-located routers exhibit

similar location information.

• IP address prefixes of the IP addresses are also observed to determine if the routers

are co-located or not.

Figure 5.2 presents the CDF of IXP route persistence at both the IP and AS levels.

The total number of different routes visible from the source to each destination along the

IXP route is measured and its CDF plotted. As stated previously, the dataset used to plot

this graph uses periodic one-hour probing from the same host for a period of seven days.
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Figure 5.2 CDF of route persistence values of IXP paths for both IP and AS level granularity.

The high route persistence values at both levels indicate dominant IXP paths with most paths

differing only by 4-5 AS hops over a 7 day period.

We observe greater differences in the number of routes seen at the IP level with close to

85% of these routes differing by a count of five or below. At the AS level1 the number of

different routes visible are noticeably lesser with more than 97% of the routes to the same

destination having dominant routes with a higher degree of route persistence with less route

flapping. The frequency of route changes at the IP level is greater while we observe that no

route remains constant throughout the entire probing period.

The observation to be noted while measuring IXP route persistence is the fact that

destinations selected are unique with a large volume of traffic being routed to it all times.

The requirement for these websites to provide effective service round the clock is of utmost

importance which leads to a differing inference than that suggested in [65] where the authors

concluded that a third of all Internet routes are short lived. Evidently, most IXP routes

1We merge all AS level route persistence values in the figure as differences in WWW and Service routes
are scarce. This denotes very stable AS level routes for both types of paths.
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change to the popular webservers over a period of time but the AS level route persistence

shows that this change in routes is not significantly high enough to effect our study of

bottleneck links.
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Figure 5.3 Loss position of bottleneck point for IXP hops with respect to the bottleneck

position. Most loss points occur within a few hops after the bottleneck hop as shown by a

greater number of points with negative distances.

5.2.3 Link losses and queuing delays

Investigating the relationship between IXP bottleneck points and the queuing delays be-

comes important once bottleneck/choke points have been identified at the IXP hops and

the IXP paths have been shown to be fairly persistent. As suggested in [62] the relationship

between bottleneck position and loss position helps distinguish between load-determined and

capacity-determined bottlenecks. We use Tulip [63] to detect both packet loss and per hop

queuing delay from our UCF host to the set of 312 destinations using an IXP route. Tulip
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loss and queuing probings are performed one after the other with each probing conducted

with 500 measurements (considered the ideal probing set size [63, 62]) for every router along

the path. Similar to [62], only forward path loss rates from tulip is considered since Pathneck

cannot measure return path loss rates.

Figure 5.3 presents the relation between IXP bottleneck position and loss positions

at the IP level. We would like to emphasize here that we only consider those bottleneck hops

which are also IXP hops and ignore other bottlenecks observed. Here the x-axis represents

the relative position of the bottleneck point with respect to the length of the entire path; i.e.

it is the ratio of the bottleneck hop number and the path length. The y-axis represents the

relative distance (in terms of hops) of the loss point to the particular IXP bottleneck point.

Loss points may occur either before the bottleneck or after it. This is represented by the

positive or negative distances respectively, i.e. if the loss point occurs after the bottleneck

point then it has a higher hop index and so a negative distance and if it occurs earlier, then

its hop index is lesser and so the distance is positive. Loss points occurring at the bottleneck

point will have a distance zero.

From figure 5.3 we observe that there is a greater number of loss points before the

bottleneck IXP when it is traversed earlier on the route. For example, when the bottleneck

position is 0.2 (bottleneck occurring early in the path), the loss points exhibit positive

distance. If the IXP hop gets pushed back the loss points start occurring after the IXP hop.

In fact loss points generally occur within a few hops after the bottleneck. This would be the

regular behavior on any route as hops downstream from the bottleneck would be subject to
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a greater traffic load due to the higher queuing affects at the bottleneck hop, which in turn

leads to higher losses. Interestingly, we do not observe a high percentage of loss points at

the bottleneck point itself (distance equals 0). This would mean that IXPs are not dropping

packets but just queuing them for a longer period of time. Figure 5.4 presents the CDF of the

distances of loss points observed to the bottleneck. It may be inferred from the figure that

almost 50% of the loss points for WWW have distances between 0 and -5 and the probability

that a distance observed is less than 5 is almost 0.8. For the Services dataset almost all the

loss points measured are within the first few hops to the bottleneck point (check figure 5.3

to see most services points located very or less than zero distance to bottleneck). When loss

points remain close to the bottleneck location it can be inferred that bottleneck IXP location

plays a defining role in losses occurring across the IXP route.
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Figure 5.4 CDF of distance from loss point to IXP bottleneck point. Most distances observed

are within a few hops of the bottleneck hop which indicate a definite affect of bottleneck choke

points at IXP locations leading to link losses closer downstream towards the destination.
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Figure 5.5 presents the queuing delays observed for bottleneck and non-bottleneck

links in the IXP routes observed. Queuing delay is a measure of congestion (along with

packet loss) on a path and is measured by tulip as the difference between the median RTT

and minimum RTT from the probing source. Again, the number of 500 measurements for

each router along the path provides a reasonable estimate of the queuing delay. From the

figure it is very evident that queuing delays at the bottleneck points are much larger than

elsewhere with fewer than 97% percent of non-bottleneck links having a queuing delay of

less than 5ms, while only about 55% of bottleneck links have a comparable delay value.

Overall, queuing delays for a majority of the bottleneck IXP links are much higher than the

non-bottleneck IXP links.
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Figure 5.5 CDF of queuing delays at bottleneck IXP links and non-bottleneck links. Queuing

delay is calculated from Tulip measurements by computing the difference between median-

RTT and minRTT. A higher percentage of bottleneck links at the IXPs are increasing packet

queuing latencies.
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5.2.4 End to end delay results

We now present the results of experiments on the end-to-end delays between destinations

traversing both IXPs and non-IXP hops to the popular top 1000 websites2 from the geo-

graphically diverse set of PlanetLab vantage points selected. Latencies are monitored by

pinging the popular destinations from each vantage point for a period of 24 hours after a

traceroute has identified if an IXP path is being taken or not.
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Figure 5.6 Average end-to-end delay obtained from probing sources for IXP and non IXP

destinations. IXP destinations have overall lesser latency in comparison to the non IXP

paths.

Figures 5.6 presents the comparison between end-to-end round trip delay times ob-

served across IXP and non IXP paths for an entire day of probing. Each of the IXP and non

IXP destinations are probed from every source per second for a period of 24 hours. From the

previous section, we have observed that route persistence in case of IXPs has been pretty

2we do not select the Services destinations in this study. With a variety of destinations using IXP
paths from the different PlanetLab vantage points, the measurement process at each location becomes very
involved. We restrict our study in this case to only the popular websites.
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high and so it would not play a major factor in this time-of-day experiment. We can see that

the delay values for IXP routes are constantly lower than those routes not traversing an IXP.

We can make a couple of important inferences from this result. Firstly the popular websites

have a wide variety of content at different points of presence across various geographical

regions each with different providers and hence different Internet routes to these PoPs. As a

result the same website may be reached through an IXP path from one location while it may

be reached through a non IXP path from another location. For the different paths measured

we do see that the IXP paths exhibit lower average latencies than those not traversing an

IXP but it has to be noted here that paths from the same source to destination is not being

compared. Figure 5.6 is giving an overall view of all the paths measured together and not

carrying out a hop by hop comparison of IXP and non IXP paths between the same source

and destination end hosts. This is an avenue for future work we are currently undertaking to

better understand the effect of the IXP by isolating the IXP links along a path. However it is

evident that the popular websites would benefit in terms of path latencies if their providers

engage more extensively in peering at the exchange points, especially if the websites engage

in real time streaming applications/services such as music and media delivery. These appli-

cations are sensitive to delay values which in turn effect the Quality of Experience (QoE) of

the end users.
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CHAPTER 6: TRIANGLE INEQUALITY VIOLATIONS DUE
TO IXPs

The basis of design and implementation of Internet overlay networks lies in the identification

of detour paths with lower end to end latencies than the default paths. These detour paths

lead to an interesting artifact of the Internet delay space when the default direct latency

between two arbitrary end-hosts is greater than the computed latency between them via

another intermediate host. This characteristic of Internet routing is known as Triangle

Inequality Violations (TIVs). In this chapter we study and analyze TIVs created due to

peering at exchange points on a global scale from existing measurement infrastructure.

6.1 Internet triangle inequality violations

TIVs in the Internet delay space are a result of different sets of routing policies employed

by service providers. These routing policies are designed and adopted based on economic

considerations of the corporations with a primary aim of generating profit. While improving

routing performance is implicitly linked to these routing policies (better performance will

drive more customers to the provider) it is not a primary goal. As a result, the default path

across two hosts on the Internet is not always the best route and 30-60% of the time there

is an alternate detour route with a lower latency [33]. Detour paths with lower latencies
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may be formed due to peering as reported by Zheng et al. in [20] which assumes greater

significance with the rise in peering across the global Internet [3].
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47 > 25 + 10


Figure 6.1 A simple example of a triangle inequality violation. Side AB is greater than the

sum of AC and CB.

TIVs have been studied and used extensively to implement efficient routing in overlay

architectures [22, 34]. As a direct result various applications could benefit if TIVs are lever-

aged successfully. For example, Ly et al. [23] use detour paths for latency reduction in online

games. These detour paths provide a greater diversity of paths which are generally more

efficient, have more bandwidth and are often-times much less loaded than the correspond-

ing direct path. These TIVs have also been shown to be widespread [21], with a number

of latency data sets collected and used to measure their occurrence and properties [34]. A

common characteristic of these data sets is that the actual number of nodes monitored are

low, primarily due to the all-to-all nature of these measurements. Latency measurements

are made from every node to all other nodes in the set, or at-least a high percentage of the

remaining nodes ([34] uses 200 and 1715 nodes, one data set in [21] uses 4000 nodes, [22]
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uses 1953). This technique does not lend itself to scale easily thereby making a study of TIV

characteristics restricted.

While the above mentioned data sets have been used widely and has enabled the

determination of important TIV characteristics, we take a different approach in this work.

Our primary aim is to study how increased peering in the global Internet is affecting the

formation of TIVs and if it could be leveraged successfully. IXPs have now become a popular

fabric of the Internet ecosystem and obtaining latency information of paths traversing IXPs

(henceforth called IXP paths) required us to consider the use of a measurement architecture

on a large, global scale. CAIDA’s Ark [66] measurement infrastructure provides the ideal

data; traceroute information enabling the easy identification of IXP paths while latency mea-

surements provide round trip times (RTTs) along the entire path. With 54 source monitors

located worldwide sending probes to every /24 network on the Internet, we obtain a data

set with millions of valid paths available thereby enabling the study of TIV characteristics

on a very large scale.

We now study the characteristics of TIVs created only due to ASes peering at IXP

locations [67]. Lumezanu et al. in [34] propose the concept of mutual advantage between

hosts that benefit from each other, an idea which is quite similarly put into use by ASes

mutually agreeing to peer at an IXP. We measure the effects of these specific TIVs on inter-

domain routing and try to determine if they could be useful in designing routing overlays. We

then carry out a detailed graph based study of the detour paths forming TIVs and identify
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particular characteristics, specially a set of IXP links popular in the detour paths. These

links contribute to the formation of TIVs and improve the end to end latency.

6.2 Experiment setup

6.2.1 Dataset selection

We describe our methodology behind measuring large scale end-to-end TIVs between net-

works across the global Internet. With our focus on obtaining routes comprising of a peering

link at an exchange point, we have two essential requirements to be satisfied in our experi-

mental setup:

Latencies:Source to destination end-to-end latencies to search and compute TIV

occurences.

IXP hops: Intermediate route hop interface IPs to identify the presence of an IXP

along a route. We use a set of known IXP prefixes from PCH [1], PeeringDB [15] and the

IXP Mapping project [16]. Note that a route will almost always have at most one IXP hop

due to the valley free property of Internet routes.

CAIDA’s Archipelago (Ark) active measurement infrastructure provides large scale

traceroute-based topology measurements to all routed /24’s (9.1 million) simultaneously with

a team based parallel probing mechanism. With individual source to destination latencies
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alongwith a complete hop-by-hop trace available, we find their available dataset the most

suitable for this study.

The TIV study is carried out in two phases: we obtain the first complete cycle of

Ark traceroutes from all 54 CAIDA monitors (divided into 3 teams) in October 2010 (a

probing cycle typically completes in 2-3 days) which we call ARKOct. Our study of TIV

characteristics is based on this dataset. Our follow up graph based TIV study is over an

extended time period (we discuss the reasoning behind this in a later section) for which we

identify TIVs for an entire month of Ark traceroutes in January 2011. A total of 32 cycles

(with 2̃88 million paths)of traceroutes are analyzed to identify TIVs due to exchange points

and the underlying AS paths are uncovered (this dataset is called ARKJan). Table 4.3

summarizes the salient features of the datasets used in our study and we release our data

sets and results at [68].

6.2.2 Identifying end to end TIVs due to IXPs

The first step in identifying TIVs is to list all direct paths available in the traceroute dataset

and filter out the IXP-paths. For a given cycle of data, we first parse out all the src-

dest IP pairs and their end to end latencies (giving the triple (srcIP, destIP,RTT )). All

IXP-paths in the cycle are identified using the available IXP prefix lists leading to the

(ixpSrcIP, ixpDestIP, ixpRTT ) triple list. The IP addresses on these lists are now mapped

to the corresponding AS numbers to end up with an AS level map of (srcAS, destAS,RTT )
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triples for both IXP-paths and other regular paths1. Multiple (srcAS, destAS) combinations

are possible for the latter list as different monitors could probe different IP addresses within

the same destination AS. We hence simplify our latency calculation by computing the mean

RTT for all instances of a given (srcAS, destAS) pair. An obvious downside of computing

mean RTT values has been discussed by Lumezanu et. al. in [70] where the authors suggest

median values may create the illusion of TIVs. However, in our analyzed data we observe

a high number of (srcAS, destAS,RTT ) triples with very similar end to end RTT values.

Computing the mean RTT for these paths provides a more representative idea of the actual

RTT between the respective source-destination ASes and also reduces duplicate records of

detour paths between these ASes.

From the previous step we have obtained the set of direct paths between every CAIDA

source monitor and the destination ASes across the global Internet. We also filtered those

direct paths using an IXP. Finding the detour routes traversing an exchange point (through

another source) for every direct path is the next step. Since inter-monitor latencies are not

mentioned in the CAIDA data, we calculate an approximation of the RTT between each

monitor by probing all 54 monitors from one host (within our campus network) and then

computing the relative latency between the monitors with respect to our host. Even though

this value is not accurately representative of the RTT between the source monitors, it is the

best alternative available. Also, TIVs mostly occur when the latency is significantly lower in

a detour path between the (srcAS, destAS) pair and not the sources. As a result, a relative

1IP to AS mapping is a difficult and inexact problem in its own right, but for consistency here we use the
Team Cymru whois service available at [69].
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approximation of the latencies between sources does not affect the creation or destruction of

TIVs in the measurement system.

We now choose every default direct path (both IXP and non-IXP paths) and compute

detours through another source and an alternate IXP path with reduced latencies. We call

these detour paths IXP detours and unless otherwise mentioned all detour paths in the

rest of the paper are these IXP detours. These IXP detour edges are computed using the

Floyd-Warshall shortest path algorithm; which is both memory efficient when used with

large graphs and enables path reconstruction to help obtain the intermediate hops along

the shortest path. We select the best available shortest IXP detour and record the original

latency, the new shortest latency and the detour path.

Algorithm 1 Identifying global TIVs
Require: cycle: Traceroute based scamper data cycles from CAIDA,

ixpPrefix: List of IXP prefixes

1: Filter (srcIP, destIP,RTT ) for every default path to allList

2: Find (ixpSrcIP, ixpDestIP,RTT ) using ixpPrefix to ixpList

3: Map allList and ixpList to (srcAS, destAS,RTT ) using [69] (name allASList and ixpASList)

4: Compute mean RTTs for duplicate (srcAS, destAS) pairs in allASList

5: Compute inter-source latencies and store in srcASList

6: for every path in allASList do

7: Concatenate srcASList, ixpASList to path

8: Run Floyd-Warshall algorithm and select best alternate detour as IXP detour

9: Record srcAS, destAS,RTT , IXP detour RTT and path

10: end for

11: Repeat for next cycle
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Figure 6.2 The sequential and parallel modules in the TIV identification process. The pair

of parallel modules (2 and 4) are implemented in CUDA.

6.2.3 Modules and parallel implementation

• Read the CAIDA data: The data files are generated by CAIDA’s scamper probing

tool and contain thousands of routes with individual hop information. These files are

large, typically 4GB per cycle which must hence be read by our parser in parts.

• Pattern matching to filter IXP path: Searching and identifying IXP routes from

larger traceroute based datasets presents our first opportunity to invoke parallel pro-

cessing by applying pattern matching. With millions of routes to search from for a

specific number of IXP prefixes (we use the list of 373 prefixes from [16]) this impor-

tant step in the process of identifying TIVs can be efficiently implemented in a parallel

fashion.

• Generate AS delay graph: The process of doing the IP-to-AS conversion of the

source, destination IP addresses are now carried out in a serial fashion. Querying the
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team cymru service for the conversion and then replacing the IP addresses with their

respective ASes is done serially.

• All pairs shortest path (APSP): With the IXP-paths filtered out earlier the result

of this step gives us the shortest detour path through an intermediate source and going

through atleast one IXP hop along the way. APSP is another well-known candidate for

parallel GPU programming and we use it to reduce our overall TIV route identification

time. We discuss the APSP implementation in the next section.

6.3 TIV Characteristics
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Figure 6.3 Observed TIV severity information. A large range of severities are observed and

the low absolute values are due to the high number of nodes in the delay space.

We study the characteristics of the end to end TIVs obtained from the ArkOct dataset

in this section. Wang et.al. in [21] carried out a detailed analysis of TIV from four different
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Internet based datasets with an evaluation metric termed TIV Severity. They define the

TIV severity of edge AC of two nodes A,C ∈ S as:

Sev =

∑
d(A,C)/(d(A,B) + d(B,C)

|S|
(6.1)

where S is the delay space with all nodes, B ∈ S and d(A,C) > d(A,B) + d(B,C)

In computing the TIV severities, we consider only the significant TIVs [34]: where the

detour path reduces the direct path latency by atleast 10ms and 10%. Figure 6.3 presents

the observed severity values in TIVs formed due to IXP detour paths. Severities range

from 0.0001 to 0.1 with close to 80% of TIVs exhibiting a severity of 0.001 or below (from

fig. 6.3(b). This means that more severe violations are caused only by a few edges in the

detour paths (fig. 6.3(a) shows the differing severity levels observed) and the distribution is

heavy-tailed.

A major difference between the observed TIV severities reported in [21] is the near

order of magnitude difference in severity values seen, an interesting characteristic. The

datasets used by the authors in [21] were smaller, the maximum number of nodes was 4k

while in ArkOct we see 12722 unique nodes. Due to severity levels being normalized by

the number of nodes in the delay space (|S|) we may naturally infer lower severity values.

However, with a threefold increase in the number of nodes, we see almost a three orders of

magnitude decrease in the TIV severity levels. This means IXP detours are not the only

source of significant TIVs. Regular non-IXP detour routes also reduce path latencies. The
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increased peering in the modern Internet ecosystem [2] is thus not leading to large TIVs even

though the underlying topology is incurring a sea-change.

6.3.0.1 TIV severity with delay
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Figure 6.4 Median delays and severities for TIVS generated due to peering.

Figure 6.4 provides an indication of how detour edge delays affect the severity of the

TIVs they create. Similar to [21] we separate all TIV edges into 10 millisecond bins and plot

the corresponding severity of TIVs within each bin. The median severity remains similar

for delays upto 400ms and only for the longer edges do these severities start changing. This

means TIV severity for IXP detours vary for longer latencies. However the 90th percentile

error bars show that the TIV values for a particular edge length do fluctuate for smaller routes

(< 300ms) leading to the conclusion that smaller routes are susceptible to more severe TIVs
78



instead of only the longer routes. IXP paths overall are not free of the TIV phenomenon

and the view put forward in [20] of peering leading to TIV formation is certainly true.

6.3.0.2 Detour hop characteristics
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Figure 6.5 Detour path characteristics. One intermediate hop show greater severities and

larger latency savings.

We now study hop characteristics of all the IXP detour paths observed in the Ark

measurements. In our alternate path creation strategy, we do not limit the number of detour

hops to a single alternate source to ensure the computation of all available detours. From the

set of available detours we select only the best detour path (with the greatest RTT savings).

Figure 3(a) presents the observed TIV severity values of all the detour paths against the

number of detour hops. We observe the highest number of optimal detour paths have a

single intermediate hop (as also shown in [22]) and the greatest variation in severities. The
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severity level decreases with the increase in number of hops taken by the detour. Longer

detours hence do not lead to more severe TIVs which reinforces the proposition that an RTT

improvement will most likely be made by detouring through one intermediate node. Figure

6.5(b) strengthens this observation. RTT savings are highest for one hop detours (which

also lead to more severe TIVs) and gradually decrease with increasing detour path length.

Note that a greater RTT saving does not always equate to a higher TIV severity. This is

because the severity of an edge is larger when it causes a higher number of violations. Every

violation on the other hand could be either large or small generating a latency reduction of

any magnitude.

6.3.1 Detour path graph properties

We now study TIVs from a graph based perspective with the aim of trying to identify trends

in the background AS-AS linkage suggestive of these violations. We first discuss the graph

creation procedure and then present details about the macroscopic properties of these TIV

graphs.

6.3.1.1 Graph creation

A widely used technique in Internet topology evolution is ([26, 10]) to generate AS-level

maps of the Internet by combining visible AS-AS links from different datasets over a period
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of time (typically a month or more) and create a snapshot for the chosen period. The focus

is primarily on coming up with a representative graph of the Internet. We employ a similar

but simpler approach in creating a graph comprising of the detour edges which generate the

TIVs.
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Figure 6.6 Simplified example of high level and AS-level edges. The solid lines denote direct

paths while dotted lines are detours. Blue denotes a high level edge while red shows the

AS-level edges from which the respective graphs are constructed.

We identify TIVs based on the procedure specified in the previous section for entire

cycles of Ark data in the course of a month (Jan 2011). We run our parsing scripts and carry

out TIV identification for probing cycles for every team. A probing cycle typically lasts for

2 days per team but the simultaneous probing architecture of Ark generates 32 total cycles

divided among the 54 Ark monitors. We then obtain all the direct paths and the detour

paths through intermediate sources for each cycle and separate the detour paths forming

significant TIVs. Every hop in the detour path is now a link from which the detour graph
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is constructed (by combining all the computed IXP detours). It comprises of the source AS,

intermediate sources for the detour and finally the destination ASes. Paths are then broken

down to individual edges and duplicates removed resulting in the graph of all detour links

forming TIVs for the entire month.

We then divide our graph study by creating two detour graphs:

High level: We construct a graph comprising of the edges connecting the source-destination

ASes through the intermediate source and disregarding the individual lower level inter-AS

links. We name this as our high-level view (Gh). The procedure described above gives us

this detour graph.

AS Level: To study further the properties of detour paths, we reconstruct the high-

level detour edges with the internal inter-AS links along the source to the detour hop onwards

to the destination (the graph is called Ga).
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Figure 6.7 Node degree distributions of the High-level and AS-level graphs.
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Figure 6.6 shows the direct and detour paths from a source (S) to destination (D) via

hop A along with the high level (blue) and AS level (red) links.

6.3.2 Graph characteristics

We first compare both graphs in terms of node/links to get an idea of the basic structure of

the graphs. Table 6.1 presents this information. One would expect more nodes and links to

be visible at the AS-level since it presents hop by hop information along the detour paths;

but Table 6.1 shows otherwise. There are close to 400 more unique nodes with almost 47K

extra links in Gh compared to Ga. The low number of links in Ga (19K vs 65K in Gh)

presents us with interesting information about the nature of detours through IXPs. This

means most IXP detours use the same underlying links which lead to creation of the TIV.

Table 6.1 Comparing the number of observed links in the high level (Gh) and AS level graphs

(Ga)

Nodes Links

Gh only 1005 63409

Ga only 616 17402

Both (Gh ∩Ga) 6366 1776
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Entirely different direct paths have a common subset of better detour links through

some common IXPs. These links (which are relatively low in number) provide lower-latency

paths serving as popular detours to the high number of default direct paths.

6.3.3 Degree distribution

The node degree distribution is the most widely used connectivity metric specially since

Faloutsos et al. [45] proposed the degree distribution of the router level Internet to follow

power laws. With these types of distribution being highly variable and traceroute based

studies susceptible to different biases, later work such as [50] have comprehensively de-

mystified the scale-free Internet myth. However, since we do not study complete Internet

topologies here, this does not have any direct consequence on our analysis. It provides useful

information about graph connectivity.

Definition: Degree distribution is the probability that a node selected randomly is

of k-degree and is calculated by: P (k) = n(k)/n where n(k) is the number of k-degree nodes

in a graph with n nodes.

Discussion: Figure 6.7 presents the degree distributions of both graphs obtained.

A lower number of low to medium degree nodes in Ga leads to lesser probability values for

these type of nodes (in 6(a)). Probabilities increase for the medium degree nodes (around

degree 100) denoting high connectivity in the core of the graph, a property not exhibited by

Gh. This reinforces our earlier idea that a high percentage of nodes in the AS level graph
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are well connected with significantly lesser number of low degree nodes than in Gh (as shown

in fig 6.7(b)). Greater node connectivity would invariably lead to higher edge utilization, a

property we study next in terms of betweenness.
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Figure 6.8 Average neighbor connections and node coreness.

6.3.4 Joint degree distribution

The joint degree distribution (JDD) gives us an idea of the general neighborhood of a ran-

domly chosen node with average degree. The immediate one hop neighborhood of the node

gives significant information about the structure of the area around the node.

Definition: The JDD is the probability that a randomly selected edge connects k1 and k2

degree nodes: P (k1, k2) = m(k1,k2)
m

, where m(k1, k2) is the total number of edges connect-

ing nodes of degree k1 and k2. The average neighbor connectivity (a summary statistic of

JDD) [26] is the average neighbor degree of the k degree node. The maximum value for the
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neighbor connectivity in a complete graph is n− 1, which is what we normalize with before

studying this metric in figure 6.9(a).

Discussion: Figure 6.9(a) shows that Gh has a high number of radial links connecting

high degree nodes to low degree nodes; namely the few source nodes to numerous destination

nodes respectively. This results in a high neighbor connectivity value since a destination node

is always directly connected to the source, which is an inherent limitation of our data (we

discuss limitations in a later section). In the AS-level graph the radial links uncovered again

point out the popularity of IXP nodes. Peering ASes connect at these nodes raising their node

degree but are themselves connected to fewer number of nodes which are customer/provider

ASes.

6.3.5 Average node coreness

The node coreness provides more information regarding node connectivity as it exhibits how

well the node is connected to the entire graph and not only its neighbors. A node may have

a high degree but its connectivity to other parts of the graph is dependent largely on its

neighbors. The best example to describe this is a high degree hub of a star; it has a coreness

of 0 if its neighbors all have a degree 1. When these neighbors are removed the hub is left

disconnected.

Definition: The k-core of a graph can be defined as the subgraph obtained from the

original graph by the iterative removal of all nodes of degree less than or equal to k [26]. The
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node coreness (κ) is the highest k for which the node is present in the k-core but removed

in the (k + 1)-core. Thus all one degree nodes have coreness equal to 0 while the maximum

node coreness κmax is termed the graph coreness.

Discussion: Figure 6.8(b) plots the averaged node coreness of the two graphs with

increasing node degrees. The results reinforce the conclusions from the analysis of the average

neighbor connectivity in the previous section. The high level graph has greater node coreness

since due to the high node connectivity of the sources while at the AS level the IXP nodes

(with greater degrees) are connected to the lower degree ASes peering at those locations.

These IXP ASes are deeper in the core of the graph but not extremely well connected. The

importance of these nodes and their links are measured in the next section by the betweenness

centrality metric.

6.3.6 Betweenness

Betweenness is a widely used measure of centrality applicable to both nodes and links. Nodes

which appear on a greater number of shortest paths between an arbitrary pair of nodes in

the graph exhibit a higher betweenness value. Such nodes are considered to be more central

than others since a high percentage of traffic would be routed through these nodes based on

the assumption that the traffic is uniformly distributed across all nodes and links.

Definition: If σij is the number of shortest paths between nodes i and j and l is

either a node or link; then Bl =
∑

ij σij(l)/σij is the betweenness of l [26]. The value is
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normalized by the number of pairs of nodes not including itself, which is (n − 1)(n − 2)/2

for undirected graphs.

Discussion: Figure 6.9(b) presents normalized node betweenness values for both high

level and AS level graphs. As expected from the earlier discussions inferring the popularity

of the AS level links, we observe higher betweenness values for nodes across the entire range

of degrees (low to high). This means most nodes in the AS level graph are popular and

heavily used in the paths from the sources to all the destination ASes. In the high level

graph even though the detour paths traverse an IXP in all cases, betweenness values are

generally on the lower side; which means most of the high level shortest paths are disjoint.

Popular detour nodes (which are other source nodes in this case) are lesser than those at the

AS level. These lower level popular ASes are the IXPs or the customer ASes peering at the

IXP switches.

Edge betweenness is however a more complicated metric which provides different

insight into the structure of the graph studied. The authors in [26] propose it to be a

measure of a combination of link centrality and radiality in a graph. We compute the edge

betweenness centrality as a function of end node degrees (shown in figures 7(c,d)). The high

level graph shows lowest betweenness values are between tangential links connecting low and

high degree edges even though we would expect the betweenness of links connecting low

degree nodes to be the least. The observed behavior is an artifact of our detour computation

procedure where the sources (which are very few in comparison to destinations) are connected

to a high number of end hosts at the graph fringes. This is not the case in the AS level graph
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where tangential and radial nodes within all degree ranges display very low edge betweenness

(as shown in fig 6.9(d)). Higher edge betweenness in both graphs are evident in edges with

greater node degrees but the presence of greater number of high range tangential edges in

the high level graph generates more edges with higher edge betweenness values. The AS

level graph contains more radial links leading to the high concentration of edges with low

edge betweenness values.

6.4 Discussions and conclusions

The CAIDA Ark dataset presented few limitations due to the nature of the measurement

process. Firstly, the sources sending out the probes to all destinations is limited to 54, not

a particularly high number. These source monitors are scattered worldwide but all detours

are routed only through these nodes making our TIV computations dependent on them.

Other latency data sets used to compute TIVs sometimes have All-to-All information for

a richer set of TIVs. However the cost of such an approach is that the data set increases

exponentially with an increase in the number of nodes and hence becomes impractical for

large node sets. This characteristic led us to explore the parallel implementation of TIV

identification using the readily available NVIDIA GPUs. The primary goal of this work is

to observe creation of TIVs on a global scale, for which the Ark data is a very suitable fit.

We first identify steps in the original serial implementation which are potential candi-

dates for parallelization and separate them out as distinct modules. These modules are then
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taken individually and implemented in a parallel fashion with CUDA after we determine the

exact type of operation being carried out. The IXP route identification step is essentially a

pattern matching exercise while All-Pairs Shortest Path scheme is required to compute the

shortest paths between two nodes in a graph. Both these problems have been the subject

of great attention in the parallel computing community from which we study and obtain

the proposed solutions before implementing them in relation to our problem at hand. We

combine the results of these different parallel modules alongwith other stages in the entire

process which are either not parallelizable or would present little or no benefit overall. This

parallel approach to solving our problem yields hugely significant gains in performance and

efficiency in the raw running times in comparison with reference serial implementations.

Once the global TIVs are identified we analyze them in detail to further our under-

standing of their properties. An established severity analysis of these TIVs due to IXPs

exhibit characteristics different from traditional TIVs mainly due to the global nature of the

data and leads us to investigate more deeply into the underlying frameworks. We carry out

a graph based study of these IXP TIVs to provide an initial theoretical basis of indicating

the popularity of peering links responsible for most detours.
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Figure 6.9 Graph properties of AS level and High level graphs. The betweenness graphs (b-d)

denote the popularity of the IXP links at the AS level resulting in higher node betweenness

values. In (c)&(d) the x,y axes denote node degrees of two arbitrary nodes j&k.
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CHAPTER 7: PARALLEL FRAMEWORKS FOR ANALYSIS
WITH GPU

The computation of TIVs across millions of Internet routes at the AS level is characteristi-

cally a candidate for distributed processing. Also the sheer magnitude of the job lends itself

well to an efficient parallel processing solution. We describe and detail the various steps in

the process of TIV identification (in the following sections) and group the major steps into

independent modules, each of which can be associated with different disciplines of parallel

computation. We apply parallel programming techniques to these modules to improve and

adapt our overall approach towards solving the problem of TIV computation. We then imple-

ment efficient schemes available in distributed computing literature to parallelize the entire

process first on a multi-core CPU and follow it up with an implementation on the NVIDIA

GPUs using the CUDA interface [71]. The presence of thousands of threads readily available

on the GPU greatly enhances the efficiency of our original algorithm and ultimately results

in significant savings in overall compute time. We observe that a serial approach typically

takes more than an entire day in identifying global TIVs, while the parallel scheme reduces

the time taken to a few hours, on the same dataset. We report our timing measurement

results and discuss paths for future improvements in processing time and memory efficiency.

Identifying TIVs on a global scale is the first step in studying their characteristics. In

this work we concentrate on identifying the aspects of the TIV identification process which
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are parallelizable and implement some well known parallel solutions to these steps in the

process [72]. We run a wide variety of experiments on various platforms and hardware and

observe significant savings in the time taken for analyzing a complete dataset. More than 280

million Internet paths are analyzed and IXP paths identified from which TIVs are computed.

The main algorithm is divided into four modules of which two are prime candidates to be

implemented in parallel. These two modules were implemented in parallel using the Matlab

Distributed Computing Toolbox (DCT) and CUDA on multiple CPU cores and the GPU

respectively. Individual speedups are recorded before the entire algorithm is studied in detail

from which we obtain a speedup of about 4x in a parallel CPU implementation. A 2x speedup

from the parallel implementation times is observed in the entire process when the GPU is

used. In summary our main contributions are as follows:

• We compute global TIVs (see fig 7.1) on a large scale with paths only through IXPs

and find a large number of detours comprising these TIVs. Ours is the first such

study concentrating on using parallel techniques to measure and identify TIVs due to

peering/IXPs and detour routing across the Internet.

• We identify steps in the TIV identification process which are amenable to parallel

solutions and carry out these implementations in detail. We experiment exhaustively

to obtain timing improvements on a variety of platforms with both CPU and GPUs.
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• We observe 4-8x speedups on the entire process while the individual steps implemented

in parallel exhibit higher speedup values upto 35x. This shows the effectiveness of the

parallel solutions and potential in using these for large scale network data analysis.

• We release our computed datasets and further results at [68] for further analysis and

use by the community.

Figure 7.1 AS locations of computed TIVs in our study. Countries in North America and

Europe naturally have the highest number of ASes visible since a majority of routes measured

in the datasets are hosted in these locations.

7.1 Platforms

In this work we carry out parallel implementations of the serial algorithm in two different

platforms. The ready availability of multi-core architectures and software tools such as

Matlab DCT enables us to implement a parallel version of both pattern matching and APSP
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algorithms. Parallel implementations which are executed on the CPU provide an appropriate

benchmark to measure timing improvements obtained by the GPU implementation.

Our primary CUDA enabled device is a Dell Alienware X11 computer with an Intel

Core 2 Duo CPU running at 2.80Ghz and 4GB of memory. This machine has 2 CUDA

capable devices, the Nvidia GeForce GTX 260M with 112 CUDA cores, 1GB global memory

and the GeForce 9400 with 16 CUDA cores and 256 MB of memory. Both GPUs have 8192

registers available per block and clock speeds of 1.35 GHz and 1.10 GHz respectively. We run

the CUDA driver version 4.0 on the same machine with the GTX 260M as the primary GPU.

For comparison we first implement an optimized serial code and parallel code in Matlab using

its Distributed Computing Toolbox. The CPU experiments are executed in the following

settings:

1. Serial CPU code on Intel Core 2 Duo T9600 @2.80GHz with 4GB RAM with 6MB

shared cache running either Windows 7 or Fedora 13 with dual-boot. Serial code for

pattern matching is carried out using Linux utilities in Fedora. The APSP implemen-

tation uses Microsoft Visual Studio 2010 with C++ and we refrain from using any

built-in libraries (such as Boost).

2. The serial code for APSP is also run on a desktop with Intel Core 2 Quad Q6600

@2.4GHz with 4GB RAM and 8MB shared L2 cache running Fedora 13 (Goddard)

and the linux kernel 2.6.33. This platform provides a perspective on the run-times for

APSP running on both Linux and Windows machines. The timing results are presented

in a later section.
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3. We implement a parallel version of the code in Matlab which uses the Distributed

Computing Toolbox (DCT) to run it in parallel. We install Matlab on the same

computer as in [1] above with the distributed computing server located on the same

machine. This eliminates network communication delays between the Matlab workers

and the server and the only overhead generated is due to the parallel implementation

of the algorithm.

Parallel CPU implementations of pattern matching and APSP both exhibit faster

run times in comparison to the serial CPU implementations. These parallel times enable

us to gain a better understanding of the speedups obtained in the parallel versions of the

algorithm. The following sections presents both the pattern matching and APSP algorithms

in detail discussing the parallel CPU and GPU implementations of both.

7.2 Pattern matching in parallel

This section presents the timing results for both the parallel CPU implementation of the

pattern matching scheme and the GPU implementation of PFAC in CUDA. The parallel

CPU implementation in Matlab is presented first. We then present a more detailed analysis

of the better performing GPU implementation with PFAC.
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Figure 7.2 Pattern matching with PFAC in CUDA. A new thread Ti is started at every

character per line from the input stream and matched using the Aho-Corasick technique

with the transition table of IXP prefixes. When a match is successful, all other threads are

stopped and the entire line returned alongwith the match position.

7.2.1 Parallel CPU implementation and timing results

We first implement a parallel version of the pattern matching scheme in Matlab using the

DCT. The platform provides quick and efficient techniques to run parallel code with the in-

built toolbox handling the inter-process communication details. Table 7.6 presents the times

obtained for the parallel CPU pattern matching implementation we carry out in Matlab. In

comparison to the serial version, we observe speedups in the range of 1-2x for all the dataset

cycles. The Matlab DCT reduces communication but by the very nature of our pattern

matching scheme, we can only search one route for the set of IXP prefixes at a time. This

results in significant times for the traceroutes to be loaded into memory only a few of them

at a time thereby limiting the potential for timing improvements. However the speedups
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obtained translate to a couple hours of execution times, which do represent an improvement

on the overall times.

7.2.2 GPU implementation details

Searching for a certain set of IXP prefixes on the GPU is carried out using the Parallel

Failureless-AC algorithm (PFAC) [73]). The authors in [73] propose a variant of the popular

Aho-Corasick (AC) [38] algorithm exploiting its parallel features. PFAC creates an individual

thread for every byte in the input string from which the pattern matching is carried out.

Using a pre-created state machine of the patterns to be matched, a thread starts the matching

at every position on the input stream. Whenever a thread does not find a pattern (reaches

a failure state) it terminates immediately with no requirement for a back-track transition

to a failure state. As a result, in PFAC there are no failure transitions in the AC state

machine with each final state representing a unique pattern. Such an approach creates a

high number of threads (an average input stream for a traceroute has about 1500 characters)

but most threads terminate very early due to matching failures. These threads are created

at successive memory locations on the input stream providing better spatial locality while

enhancing usage of the high speed shared memory available to the GPU. Moreover, CUDA’s

memory coalescing property allows the GPU to combine memory accesses to consecutive

DRAM locations in a consolidated fashion as one single read request, thereby delivering

near optimal bandwidth on global memory. These enhancements make PFAC a fast, ideal
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solution to our problem of identifying IXP prefix strings on an input string with a set of IP

hops and RTT times. Figure 7.2 details the application of PFAC to the traceroute datasets

used in this work.

7.2.3 CUDA implementation timing results

Figure 7.3 presents a direct comparison between times taken to carry out pattern matching of

the known IXP prefixes on the traceroute-based data to filter out all IXP routes. It is evident

that the parallel CUDA implementation consistently outperforms the serial technique by

halving the time required in searching for the prefix hops and returning the route on success.

With lesser memory available on the GPU (in comparison to the CPU) we also had to break

up our input stream to smaller files which required a higher number of input/output seeks to

disk. In-spite of these additional operations parallel string matching proves effective in our

scenario. To further investigate the working of PFAC and parallel string matching we carried

out the same operation but with single prefixes as our search pattern instead of all 373 at the

same time. Selecting 20 different prefixes at random we carry out both the serial and parallel

searches and we obtain the search times as shown in fig 7.4. Its interesting to observe that

serial outperforms the parallel version consistently all the time. Infact the parallel version

string matching times for a single prefix are very similar to the time it takes to match all

the 373 prefixes. This result gives us valuable insight to the working of the parallel string

matching algorithm used in PFAC, which uses a failureless transition scheme. Here with a
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single prefix the transition table is much smaller but the steps of splitting and loading the

input stream into the GPU memory still takes the same time as before. Moreover another

characteristic of IXPs and Internet policy routing affects the results obtained here. Due to

the valley-free nature of Internet routes, one route could only have one IXP hop in its route.

This means with a single pattern to be matched with (and a smaller transition table) every

route is matched with a prefix only one at a time while a match with all prefixes (and a

larger transition table) would not require repeated memory accesses (per prefix). We thus

conclude that the pattern matching in parallel exercise would be effective when searching

for all unique patterns simultaneously and not one by one as is done in a general serial

implementation with regular expressions (for example with the popular Unix grep tool).
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Figure 7.3 Timing comparison between serial and parallel processes for pattern matching in

our traceroute data. Times taken to carry out the matching in parallel are consistently less

than in serial for every cycle of CAIDA data considered in our experiment (ten).
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7.2.4 Diminished PFAC speedup?

From the timing results obtained in the previous subsection we observe the average speedup

obtained by using PFAC is about 2x for large traceroute datasets while Lin et al. in [73]

show upto 4000x speedups in their test scenarios. The question thus arises as to why our

implementation provides these very limited gains in speedup? The answer lies in the fact

that the nature of our pattern matching requirements greatly underutilizes the capacity of

PFAC resulting in lower improvements in speedup. In the original implementation, PFAC

works by assigning each byte of the input stream to a new GPU thread to start the search

based on the transition table. With the availability of thousands of GPU threads at any

given moment, a huge section of the input stream may be searched simultaneously and it

finally returns the individual start positions at the input stream where the pattern match

occurs. However in our pattern matching case, the input stream consists of multiple lines of

patterned traceroute output containing a series of IP addresses followed by the latency value

observed at that hop along the route. If an IP matching the known IXP prefix IP is found

we need to record the entire path. This path starts from the source IP (at the beginning of

the line) to the final hop in the destination AS (at the end of the line). A line break follows

after which the next route is available. Since we need to return the entire path on which the

pattern match is successful we change the proposed PFAC scheme to save every line being

searched in memory and return it on success. As a result we are able to search only one

line at a time in our experimental setup resulting in a maximum of 500 search threads on

the GPU at a time. With so many available threads remaining idle our observed speedup
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is severely compromised. The running time for PFAC in our implementation thus becomes

bound by the length of each line being searched while the total running time depends on the

number of paths present in the traceroute dataset. As shown in figure 7.2 we load 8k lines1

at a time into the main memory each of which is then sent into the GPU for the IXP pattern

match. More efficient CPU architectures may outperform the PFAC implementation in our

case but this step shows that the GPU may be used to carry out a relatively efficient pattern

match from traceroute datasets and even a third improvement in run-times does provide a

reasonable advancement in the entire measurement and analysis process.
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Figure 7.4 Pattern matching per prefix. Here the serial algorithm outperforms the parallel

version for every random prefix selected. A single prefix results in a smaller transition table

and in this case the net pattern-matching time becomes dependant on the time taken in

loading the input data repeatedly to the GPU and executing PFAC.

1This number is hardware dependent and with more available memory we can increase the number of
traceroute logs loaded.
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7.3 All pairs shortest path in parallel

Parallel implementations of the Floyd-Warshall APSP algorithm has been a focus of the re-

search community with Harish et al. [39] proposing the use of CUDA in this direction. While

the authors implemented a basic version of Floyd-Warshall APSP, subsequent work ([40, 41])

optimized the memory latency and register allocation processes to obtain performance gains.

Buluc et al. in [41] implement a recursively partioned APSP algorithm by casting most op-

erations into matrix multiplications on a semiring. Though there are some added constraints

(for example the order of loops cannot be changed arbitrarily) such an approach lends itself

to a high degree of speedups, a characteristic exploited by the authors. The authors show

a 480x speedup in comparison to a CPU implementation and upto 75x in comparison to an

existing GPU implementation. Such a formidable enhancement in performance leads us to

use this implementation of APSP on CUDA in our working model to compute the shortest

paths in our reference AS delay graph along with a parallel CPU implementation in Matlab

DCT. In this section we look at the parallel implementations in detail.

7.3.1 Implementation details

The authors in [41] make available their optimized recursive implementation of APSP which

we run on the GPU using CUDA after incorporating some changes. We carry out these

changes primarily to ensure that datasets with larger graph sizes may be accomodated in our
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measurement framework (8192 vertices was the maximum graph sizes handled in [41]). With

our AS graphs extending to 9K or 10K nodes we implement a known clustering algorithm

used in the modeling of Internet delay spaces [?] to ensure this requirement for graph sizes

is met. The clustering scheme is a hack to ensure the APSP implementation of [41] can be

used by us. We do not extend their algorithm to accept graphs of larger sizes but instead

use existing networking techniques to work around the size limit. We discuss this issue in

detail in subsection 7.3.3.

The serial recursive code is the optimized approach as shown by the authors in [41]

which provides us with an important baseline to measure and compare our GPU imple-

mentation. Matlab provides us with an opportunity for a reference parallel implementation

using the DCT which incorporates a whole lot of backend management required in running

an algorithm in a distributed fashion.

7.3.2 Timing results

Table 7.1 presents our observations for running times of APSP in our various implemen-

tations. The two serial implementations (iterative and recursive) are run on the windows

and fedora machines and it can be seen that the windows implementations consistently out-

perform the linux code. This is primarily due to the fact that the windows machine has

a greater clock speed and 2GB of extra RAM memory than the machine running fedora.

Secondly, visual studio has advanced memory management features with increased compiler
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performance in comparison to the native gcc 4.4.5 running on the Fedora machine. The

serial recursive times are close to half that of the iterative version indicating the efficiency

of a recursive scheme in the shortest path calculation.

Table 7.1 Timing results (in secs) for the different serial iterative, recursive and different

parallel implementations carried out in our experiments.

Num of

nodes

Serial Itera-

tive Times

Serial Re-

cursive

Times

Parallel

Times

Windows Fedora Windows Fedora DCT GPU

9972 79257 87353 39652 52214 782 31

10250 79812 89103 40002 54287 805 32

10661 81374 91281 44875 58701 811 31

9344 78891 88526 42178 51145 748 28

10441 81365 91892 44992 56488 828 28

10221 81555 89554 46288 56030 886 29

10839 83156 92283 46912 59924 905 28

10058 81617 91221 45764 55585 875 30

The parallel Matlab implementation provides a time improvements which is a couple

of orders of magnitude better than the recursive serial implementations. Even though the

Matlab DCT is incredibly efficient and the fact that we installed the DCT server on the same
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machine as the workers2, the parallel implementation shows a couple orders of magnitude

in time improvements (in comparison to the recursive serial implementations). What also

needs to be noted here is that the Matlab implementation was run on the same machine

running the serial versions on Windows, which means the parallel version in itself is efficient.

The recursive GPU times observed are shown in the last column which indicate a

significant speedup in comparison to the parallel version. Speedups observed are in the range

of 24x-32x is obtained. Speedups are much greater (¿1200x) when compared to the serial

recursive times an even higher if compared with the iterative implementations. However the

most relevant comparison here is with the times obtained with the parallel implementation

carried out in the Matlab DCT. The recursive GPU implementation provides about 30x

speedup while running on the same machine as that running the Matlab DCT denoting a

high level of performance increase when we use the GPU.

7.3.3 Graph sizes

As we observe in table 7.1 the number of nodes in our graphs over which we run the APSP

algorithm are around 10k. The iPlane dataset from which we obtain our traceroutes mon-

itors Internet paths across these ASes while other measurement systems trace to a varied

destination set. With the total number of known ASes in the Internet currently upwards

of 30k, the problem of running the APSP scheme for larger graph sizes becomes important.

2The server being on the same machine reduced communication delays with every Matlab worker running
an instance of the parallel implementation. This helped us isolate and reduce network communication delays
which would increase the total job execution times.
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Buluc et al. [41] mention their recursive implementation is valid only for 8192 node graphs,

an obvious drawback in our case.

To work around this inherent difficulty, we use properties of Internet topology and

path construction to fit our dataset sizes to this known upper limit. Zhang et al. in [?]

propose a global clustering metric and algorithm to cluster ASes globally in the Internet

delay space by iteratively merging nodes into nearby clusters. The distance between nodes

in two clusters is computed by the average delays between the nodes and a cutoff delay

value is used to put the bounding condition for stopping the merging process. In our APSP

implementation, we carry out this clustering scheme to ensure that the total number of nodes

in our graph remains less than the upper limit. By varying the inter-node delay cutoff value

we reduce the total number of nodes in our graph by merging multiple nodes into clusters.

We realize that this technique does not provide a GPU based solution to the problem of

APSP in large graphs, but it does provide us with a relevant and known solution to run

Buluc et al’s [41] recursive implementation on the GPU with regard to our specific use in

determining Internet TIVs. By using the clustering scheme our process can be extended

to run on significantly large datasets running into 20-30k nodes, an unlikely scenario since

no existing individual Internet measurement infrastructure has such a detailed reach. The

drawback in the clustering approach is the loss of granularity due to merging numerous

nearby ASes but then again Internet path latencies are in itself estimates dependent on

various conditions.
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Figure 7.5 Speedups observed in APSP with increasing number of nodes. After the 8192

bound is reached our clustering scheme kicks in which takes a greater amount of time and

reduces the overall observed speedup.

We also carry out a relative comparison of the GPU implementation of the APSP

computation with the parallel CPU implementation and the timing results are presented in

table 7.2. With increasing node sizes a gradual increase in speedups can be observed when

compared to or parallel implementation in Matlab (as shown in figure 7.5). The running

times for the GPU APSP implementation remains consistent with those reported in [41] but

when the graph size increases beyond 8192 vertices our clustering algorithm kicks in to merge

close by nodes. To ensure minimal granularity loss we stop the clustering process as soon as

the number of vertices in the graph goes below the upper bound, which is why the clustering

scheme completes relatively quick (within 10-12s). As shown in the table due to the cluster

computation the 9k and 11k node graph APSP speedups is lower than the 8192 node graph,

but the obtained speedup still points towards an efficient usage of the GPU. Overall with the

clustering technique implemented with respect to our problem, our intuition towards using
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the recursive GPU implementation for APSP proves to be an effective step in the overall

process of computing Internet delay TIVs.

Table 7.2 Comparing APSP times for graphs of various sizes. Speedups obtained upto 8192

vertices remain consistent with previous work but with sizes greater than 8192, our clustering

algorithm first runs to reduce the total number of vertices which in turn almost doubles the

total APSP run times and reduces the speedups obtained.

Num of nodes Parallel DCT GPU Speedup

512 .257 .0177 13x

1024 2.101 0.091 22x

2048 8.363 0.299 28x

4096 57.385 1.688 33x

8192 629.31 16.12 38x

9972 781.82 31.35 23x

10839 905.10 28.29 31x

Figure 7.5 also provides an indication of the asymptotic running time of the parallel

recursive APSP process. With an increasing number of nodes the speedups observed increase

almost linearly upto the upper bound of 8192 vertices after which the clustering scheme takes

an increasing amount of time. With graphs much larger than 8k nodes, clustering times start

increasing linearly while the graph size is reduced by merging closer nodes together.
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Table 7.3 APSP with graph characteristics. Every CAIDA cycle generates equally large

graphs with similar average edge weights resulting in very similar APSP completion times.

Cycle Number Nodes Edges Average weights APSP Times (s)

1257 9972 389805 243.448 31

1261 10250 427144 233.17 32

1269 10661 493121 262.107 31

1270 9344 361480 286.49 28

1271 10441 444507 239.44 28

1272 10221 441017 241.73 29

1273 10839 499583 240.324 28

1274 10058 428457 251.38 28

Thus the speedups obtained can be bound under two different conditions, one under

8k nodes where it increases with increase in graph size (this O(n)) while after a tipping point

at 8192, the increasing trend again reappears.

7.3.4 Recursive APSP on different AS graphs

As CAIDA’s Ark measurement architecture focuses on uncovering greater sections of the

Internet from various vantage points across the world, probes are sent to every known prefix

and the paths measured. Due to the very nature of this type of Internet measurement
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study, every cycle has an approximately similar number of recorded probes. Thus the AS

graphs generated from these cycles of data have similar characteristics and are not random

in nature. In fact previous Internet topology measurement studies ([26, 74]) have mentioned

this AS graph represents the data plane of the Internet due to the underlying mechanism of

traceroutes. This means the graphs which we obtain in every cycle exhibit similar underlying

characteristics alongwith the obvious ones such as number of nodes, edges and so on. Table

7.3 presents some salient properties of the graphs we obtain and study and it is evident

that both the number of nodes and edges in each cycle are consistent. The recursive APSP

scheme calculates the shortest paths in similar amounts of time as well. Latencies between

every AS is represented as the weight of an edge which too does not vary appreciably or

affect the APSP computation times. We present these results to emphasize the fact that the

AS graphs derived are not random in nature and are suitable for a recursive parallel shortest

path solution.

7.4 Overall results

Combining both the serial and parallel modules, we now look at overall times and gains

obtained by implementing the use of GPU’s and CUDA in our measurement and analysis

framework.

Table 7.5 presents a comparison of the overall time taken in our TIV identification

process with both serial and parallel implementations. We select a set of eight cycles of
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CAIDA scamper data (some of the cycles missing in the list were not available at the time of

our experiment for which we obtained the next available one) all of which are of similar sizes

due to the very nature of the Ark measurement infrastructure. As mentioned earlier the

entire process is split up into different modules with string search and APSP being identified

as candidates for our parallel implementation. In table 7.6 we can observe savings obtained

in the first module; the string search to identify IXP routes only within the entire dataset.

We observe the parallel implementation decreases the time taken by more than half than

that in the serial version. With the 373 IXP prefixes being searched in the traceroute data

we are able to separate the routes traversing an IXP with parallel pattern matching quicker

than a regular grep based search. Once the IXP routes have been identified the next step

of creating the delay graph is a set of serial processes which gives us equal delays values in

both implementations before the final shortest path computation. This is where the parallel

recursive CUDA implementation makes significant savings on computation time. For graphs

with upto 8192 vertices (CUDA block size * number of threads per block) the parallel

solution generates results in less than a minute while a regular CPU implementation takes

more than a day. The CUDA implementation of pattern matching and APSP not only carries

out the entire computation with low latency but crucially keeps much of the CPU available

for us to carry out other important operations.

Computing speedups obtained for the GPU implementation, we see that the speedup

obtained from the serial version is approximately 3-6x while it averages between 1-2x for the

parallel implementation. Considering that two large modules in the entire process is serial,
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the final speedups are helpful in identifying the TIVs for further analysis. While individually

the authors of PFAC show a potential of a 4000x speedup compared to serial approaches (and

a 3x speedup from parallel approaches) our pattern matching step reduces total times by a

third. This is due to restraints based on our requirements while the APSP module provides

us with speedups upto 40x. The serial modules in the whole process reduces the overall

speedup but it is nonetheless an improvement considering the length of the entire process.

For example if we consider cycle 1257, the best possible parallel CPU implementation would

take approximately 5 hours to complete while the GPU implementation finishes in about 3

hours.

Table 7.4 Running times (in secs) for increasing number of nodes and routes. The number

of routes measured is increased and the number of visible ASes in the routes denote the

nodes. The effect of the serial modules of the TIV identification algorithm control overall

times observed.

Nodes Routes Parallel GPU Speedup

478 10K 246 215 1.14x

1045 50K 474 391 1.21x

1771 100K 733 585 1.25x

5229 1M 5771 4182 1.37x

7926 5M 9837 6807 1.45x

9972 9M 18148 13489 1.34x
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With a new cycle of CAIDA traceroutes being generated every 48 hours, the time

saved every day in the analysis helps us to carry out passive measurements3 in real time before

the new traces are available. With the transient nature of Internet link delays, route latencies

may change from hour to hour but a quicker analysis process helps identify short/long lived

TIVs and their characteristics.

The nature of TIVs requires the presence of a high number of ASes (nodes in our

graphs) in the traceroute to identify greater instances of a violation occuring since more

nodes lead to a greater number of paths between nodes. However we analyse the entire

running time for one cycle in detail to estimate asymptotic running times for our process for

an increasing number of routes.

Table 7.4 presents the running times for an increasing number of routes analyzed. It

is very evident that the serial modules in our process control the overall times since these

processes in itself are dependent on the number of routes being analyzed. More routes

requires greater amounts of paths being parsed, loaded into memory, greater splits to be

sent to the GPU for PFAC, greater IP to AS mapping required before finally the APSP is

carried out. Inspite of this, the speedups shown in 7.4 do show a slight gradual increase

with increasing number of routes as the GPU enhancements for modules 2 and 4 start to be

more apparent, but their net effects are not extreme. 8192 nodes does prove to be an upper

bound as higher number of nodes lead to global clustering increasing the APSP run times.

3Passive measurement systems do not add traffic to the network unlike in active measurements where
packets are specifically introduced into the network and their effects measured instantly.
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Nevertheless, increasing speedup indicates lower overall runtimes indicating more efficient

execution of our TIV identification algorithm.

Table 7.5 Comparing total run times (in secs) for the entire process. Refer to table 7.6

for breakup of individual modules.Speedups for the proposed implementation using GPU’s

range from 3x-6x versus a serial implementation while in comparison to the best parallel

implementation speedups range between 2-4x.

Cycle Serial Parallel

CPU

GPU

1257 63962 18148 13489

1261 61741 15709 10205

1269 67433 16208 10399

1270 64334 15581 10168

1271 67873 15718 10129

1272 68964 15991 10855

1273 64327 15834 11182

1274 68612 16502 10252
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Table 7.6 Table detailing overall performance results. All times in seconds. The route search

components takes a third less time while APSP decreases processing times from a day to

less than a minute.

Cycle Module

Num

Serial Parallel GPU

1 2733 2733 2733

1257 2 18425 11481 7573

3 3152 3152 3152

4 39652 782 31

Total 63962 18148 13489

1 2786 2786 2786

1261 2 18739 11904 7173

3 214 214 214

4 40002 805 32

Total 61741 15709 10205

1 2804 2804 2804

1269 2 19552 12391 7362

3 202 202 202

4 44875 811 31

Total 67433 16208 10399

Continued on next page
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Cycle Module

Num

Serial Parallel GPU

1 2718 2718 2718

1270 2 19250 11927 7234

3 188 188 188

4 42178 748 28

Total 64334 15581 10168

1 2721 2721 2721

1271 2 19979 11988 7199

3 181 181 181

4 44992 828 28

Total 67873 15718 10129

1 2850 2850 2850

1272 2 19648 12077 7798

3 178 178 178

4 46288 886 29

Total 68964 15991 10855

1 2841 2841 2841

1273 2 19397 11911 8136

3 177 177 177

Continued on next page
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Cycle Module

Num

Serial Parallel GPU

4 46912 905 28

Total 69327 15834 11182

1 2844 2844 2844

1274 2 19829 12608 7203

3 175 175 175

4 45764 875 30

Total 68612 16502 10252
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CHAPTER 8: IXP ROUTING PERFORMANCE

With exchange points definitely affecting the Internet topology evolution as detailed in the

previous chapters, there is a clear need to study the effects of these IXPs on inter-domain

routing performance. Are these exchange points actually providing ASes better routes?

Design considerations typically point towards lower end-to-end latency for shorter, local

routes not requiring inter-continental transit; but does that mean IXP effects are only going

to be prominent in local traffic? Are paths through IXPs any different from those not

traversing them? In this chapter we look towards answering these questions and determining

the effectiveness of end-to-end inter-domain routing through IXPs.

The network benefits of peering through IXPs worldwide has not been studied earlier

and this section of our work presents a first step in this direction. While there are numerous

metrics characterizing Internet paths (bandwidth, loss rates and throughput to name a few),

the defining characteristic is always the end-to-end latency. In this work we first measure

latencies between end-hosts along a path where an intermediate hop traverses an IXP (we

call such a route an IXP path throughout the rest of the paper). These IXP path latencies

are then compared to the latencies obtained from an extensive set of alternate paths between

the same end-hosts but with the IXP hop being bypassed. Identifying valid alternate paths is

an involved process which is first described in detail before we carry out our path comparison

119



studies. Our measurement framework identifies a default IXP path and its latency, obtains

a set of valid alternate paths between the same end-hosts but not traversing the IXP hop,

estimates the latencies of these alternate paths and finally compares these to the default

latencies.

8.1 Path Selection

To infer the effectiveness of IXP paths [75] requires the identification of a path traversing an

IXP, an operation for which traceroute is most suitable. Traceroute not only helps us identify

the IXP hop along the route, it also provides an estimate of the end-to-end latency for the

path between the measured source-destination AS pair (referred to as srcAS and destAS

respectively). However isolating the IXP hop’s effects on this path requires the identification

of alternate paths between the same source and destination hosts which are not traversing

the IXP network. Estimating these valid alternate paths excluding the IXP is an involved

process which we describe (later on) in this section.

8.1.1 IXP path selection

Peering databases such as PCH [1] and PeeringdB [15] along with the IXP Mapping project

[16] publish a set of prefixes which are known to belong to major IXPs across the world. By

searching for IP addresses within these known prefixes along a traceroute enables identifi-
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cation of the IXP paths. Participant ASes at the IXP network are identified by extracting

IP addresses of the hops just before and after the IXP IP (as described in [17]) and then

mapping the IP address to its corresponding AS number1. The end to end latency estimate

for these default IXP paths are obtained from the completed traceroutes to the destination

host and recorded.

8.1.2 Alternate paths: Common provider direct - Type 1

The primary economic benefits of peering for the pair of participating ASes comes from

avoiding transit costs to their respective providers for traffic meant for each other. In the

case of no peering agreement between the two, traffic would be routed towards the destination

through a provider AS (which could be a bigger ISP, transit provider or just a bigger AS with

routes to the destination). We exploit this concept towards identifying potential alternate

paths towards the destination.

Once the participant ASes (say P1 and P2) are identified, providers of these ASes are

determined from a combination of CAIDA’s AS relationship dataset [76] and BGP tables

along with Gao’s AS relationship inference algorithms [77]. We then select those ASes which

are common to both P1 and P2. Finding the common set of providers ensures the alternate

path being identified is not greatly dissimilar to the default IXP path and that a path

would surely exist from these providers to the destination AS (via P2). For large numbers

1IP to AS mapping is itself an in-exact process. We use the widely used Team-Cymru database [69] to
obtain the AS number(s) for a particular IP.
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of available common provider ASes, we select twenty (Section 8.4.5 provides the rationale

behind selecting this value) random ASes and construct paths via these providers to the

destination. The final path is thus an aggregation of the following components:

• Component 1: srcAS− > P1

• Component 2: P1− > Ti

• Component 3: Ti− > destAS

where Ti = {T1, T2, T3, ...Tk} is the set of common providers of P1 and P2, 1 <= i <= k and

k = 20 when number of common providers is greater than 20.

Figure 8.1 depicts the construction of these paths.

8.1.3 Alternate paths: Common provider indirect - Type 2

These paths are designed to isolate the IXP hop from the IXP path and so an additional

component between the set of common providers and P2 is created. The path upto P1 remains

the same as the original, then common providers of participant ASes are determined (as

mentioned in the previous subsection) with component 2 comprising of hops between P1 to

the selected common provider. Component 3 is then the path between the common provider

to P2 and the path is rounded off with the exact same hops between P2 and destAS as in the

default IXP path. The final path is thus an aggregation of the following four components:

• Component 1: srcAS− > P1
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• Component 2: P1− > Ti

• Component 3: Ti− > P2

• Component 4: P2− > destAS

Figure 8.1 presents the extra component and shows how the IXP hop is isolated in

the construction of these indirect paths.

8.1.4 Detour Paths

Traditional detour paths [33] have been used extensively in overlay routing to identify the

best possible alternate routes to a destination via another source known to the overlay

network. In most cases, these paths represent the best available paths between a given set of

hosts and as Gummadi et al. show in [57], if a better detour to the default path exists, the

detour can be constructed via a single random hop. We use the best available detour path

latency for a given IXP path as a benchmark to compare efficiencies of the set of alternate

paths. A detour path is shown in figure 8.1 where a default path from another source to the

same destination comprises of the second detour component.
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Figure 8.1 The various paths measured in our framework between a set of end hosts. The

default path traverses an IXP while the detour comprises of another default path through a

different source to the same destination. Type 1 and 2 alternate paths comprise of individual

components of the common providers of the IXP participant ASes.

8.1.5 Policy Compliance

The diversity of inter-AS routing policies always makes creation of these synthetic alternate

paths a process bound to a high degree of uncertainty with respect to their actual validity.

Creating these end to end AS paths as an aggregate of smaller components requires us to

check if these paths violate an important characteristic such as valley-free routing. For the

the large number (close to one million) of alternate paths constructed, we run Gao’s algorithm

[77] to check for the valley-free property and observe only less than 2% of violations occuring;
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a pointer that our technique of aggregating components to create alternates is realistic and

valid.

8.2 Measurement Framework

Figure 8.2 System model depicting every component in the proposed framework infrastruc-

ture. Traceroutes and inter-AS latencies from iPlane are the starting input files from which

the IXP paths are identified with their participant ASes, their common providers obtained,

alternate paths generated, validated and finally all the latencies recorded.

Figure 8.2 presents the high-level architecture of our measurement framework. It is

a combination of a set of components working with each other to first identify IXP paths

from iplane traces and then the different types of alternate paths and their latencies.
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8.2.1 Dataset selection

Identifying IXP paths requires per hop information of an Internet route, which is why we

look at available traceroute based datasets. CAIDA’s Ark infrastructure [66] and the iPlane

measurement project [13] are two popular sources of a wide variety of traceroute based

measurements readily available to the research community. While Ark mainly comprises of

traceroutes from a set of 54 CAIDA monitors to an IP in every /24 network, iPlane uses

more than 150 PlanetLab vantage points to traceroute to a predefined destination list. An

additional characteristic of the iPlane data is the publication of an Internet atlas with inter-

AS link latencies at the Points of Presence (PoP) level which is extremely relevant to a

study such as ours. As shown in [18] a high percentage of plausible inter-AS paths may be

constructed from the published atlas, a feature which is an integral requirement in our path

design. Hence we decide to use iPlane data made available from iPlane for this work while

looking to use the data from CAIDA in future work. Important characteristics of the iPlane

dataset can be summed up as follows:

• Traceroutes from large set of PlanetLab vantage points to responding hosts. Diverse

geographical locations captured.

• Extensive Internet Atlas with IP to PoP mapping, inter-PoP links and Inter-IP links.

• Inter-PoP latencies published daily. We compute inter-AS latencies from this data.

• Internet atlas enables computation of best available detour route.
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• Path components can be created with low percentage of policy violations.

• Historical data updated with high frequency (latencies are updated everyday).

8.2.2 AS path generator

The iPlane measurement infrastructure conducts traceroutes to numerous destination net-

works from a set of PlanetLab locations. These traceroutes are used to create the Internet

atlas comprising of inter-AS latency/loss estimates. This module uses the traceroutes from

all the vantage points to search for the IXP paths by matching every IP address on a route

to the set of known IXP prefixes released in [16]. IXP participant IPs are identified by

separating the IP addresses of the hops just before and after the IXP IP; the participant

identification process is discussed in detail in [17]. IPs also need to be mapped to their

respective ASes, a problem which in itself has received considerable attention in the research

community. We implement an IP to AS mapper in which the IPs addresses visible in iPlane

is mapped to their corresponding PoPs before the PoPs themselves are mapped to their

ASes. We further verify these ASes by querying the Team Cymru database [69] and drop

the IPs which do not map to the same AS in both the above steps.

Output: Discovered IXP paths from a source to destination AS via an IXP with its

participant ASes.
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8.2.3 AS relationship identifier

This module takes as input the participant ASes in each IXP path and computes their

immediate common providers (if available). Using a combination of Gao’s AS relationship

inference rules [77] and CAIDA AS relationship inference dataset [76], a set of common

providers of the participant ASes are determined. For instances when this set of providers

is large, we limit it to 20 provider ASes by a random selection.

Output: IXP paths with participant ASes and their common providers

(srcAS, P1AS,ComProvAS, P2, DestAS).

8.2.4 Detour path generator

This module searches for the best detour path available in the iPlane atlas between the

source-destination ASes for every IXP path. The possibility of numerous available detours

means we do not need to identify each of them but only the best one. The NetworkX [78]

graph library in python enables quick and efficient searching of the shortest paths through

large graphs and records the shortest detour between the source and destination ASes.

Output: Shortest detour path between source AS to destination AS.
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8.2.5 Alternate path generator

The Type 1 and Type 2 alternate paths are generated in this module before their latencies are

estimated. Its essential function is to search the atlas for the links between individual path

components created from the path generator and relationship identifier. For example a Type 1

path which can be represented by (srcAS, P1AS,ComProvAS,DestAS), is broken down into

component links such as (srcAS, P1AS), (P1AS,ComProvAS) and (ComProvAS,DestAS).

Sub-links between pairs of these ASes are then computed from the Internet atlas and the

entire path (of greater granularity) recorded.2

Output: Type 1 and Type 2 alternate paths with all intermediate hops.

8.2.6 Path validator

The alternate paths created are sent to this module to ensure they do not violate the valley-

free routing property. Since the participant provider ASes are selected based on established

relationship rules (in the relationship identifier), most alternate paths remain valid. We drop

those which violate this property. This module can be further updated with other metrics

to ensure alternate paths of specific types are filtered out.

Output: Alternate paths satisfying the valley-free property of Internet paths.

2srcAS=source AS, destAS=destination AS, IXPIP=IP of IXP, P1AS = Participant 1 AS,P2AS =
Participant 2 AS, ComProvAS = Common Provider AS, defLat = Default IXP path latency, detourLat =
Best detour path latency ,Type1Lat = Latency of type 1 alternate,Type2Lat = Latency of type 2 alternate
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8.2.7 Latency estimator

The last module of the framework uses iplane latency estimates to compute component

latencies for the alternate paths. Each path (Type 1 and Type 2 ) is earlier broken down into

components in terms of ASes. These latencies are then estimated and recorded. Component

latencies are then combined and finally stored along with the default and best available

detour path latencies.

Output: Final result file with each line identifying an IXP path and the correspond-

ing latencies in this format: (srcAS, destAS, IXPIP , P1AS, P2AS, defLat, detourLat,

Type1Lat, Type2Lat)2

8.2.8 Path latency estimation

The default path latencies for IXP paths are obtained directly from the traceroutes files.

Estimating the latencies for the detour and constructed paths require greater attention since

they are composed of individual components. Every component is made up of a set of AS

links, the latencies of which are extracted from the iPlane inter-AS link data.

iPlane provides link latencies between ASes at the PoP level, which leads to a finer

granularity and multiple latency values between the same set of ASes 3. Since we are only

able to construct our path segments at the AS level, we consider the median latency value for

3such a situation would typically occur for big ASes with multiple PoPs across continents
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every unique AS-pair across all their inter-PoP latencies. We recognize that this approach

does not provide an accurate representation of the latency between the considered ASes, but

certainly provides a reasonable estimate.

Algorithm 2 Latency prediction for alternate paths
Require: Source AS componentSrcAS and destination AS componentDestAS numbers to compute latency between

1: iplaneF ile contains AS link latencies in (PoP1,AS1,PoP2,AS2,latency) format

2: if entry exists for componentSrcAS,componentDestAS in iplaneF ile then

3: return Compute median latency and return value

4: end if

5:

6: Direct link unavailable, break path into intermediate links

7: Using first BGP tables and then a python search algorithm, compute path between componentSrcAS to componentDestAS

as a sequence of hops. Save result in linksF ile

8: Initialize finalLatency = 0

9: for all AS1 AS2 pairs in linksF ile do

10: if AS pair entry exists in iP laneF ile then

11: Compute median latency medianLat

12: finalLatency+ = medianLat

13: else

14: Mark path as incomplete

15: end if

16: end for

17: return finalLatency: Final latency of path finalLatency

Algorithm 2 presents the details of our path latency computation process. Here when

the componentSrcAS to componentDestAS links are directly available in the latencies file,

the latency is returned. However as stated in [18], the iPlane atlas contains a high percentage

of Internet paths once broken down into smaller components. To identify the total path we

first use a RouteViews BGP table to search for intermediate links if available. If its not
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available in the BGP table, we carry out a complete search of the iPlane links to obtain

the path between componentSrcAS and componentDestAS as a sequence of AS hops. This

algorithm was implemented using python and the Networkx graph library which is capable

of searching through large graphs at high speeds. The path returned is then broken down

into individual links and the total latency for the path segment computed. If iPlane is unable

to estimate the latency for any link on the path, we mark the path as incomplete and drop

it from further use.

Path latency estimation works in conjunction with the path identification process

described in section 8.1. AS-pairs chosen in the selection process (whether they are srcAS−

destAS or individual path components) are passed to the latency estimation procedure,

which then breaks up the larger components into smaller ones according to the iPlane atlas

before computing and returning the total latency between the AS pair.

8.3 Overall evaluation

8.3.1 Dataset analyzed

We analyze the same paths identified and generated in our modeling study (described in

9.4) and measure the latencies obtained. The IXP paths are identified using the set of IXP

prefixes released in [16] and the corresponding detour, type 1 and 2 alternates generated.
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Path latencies are recorded and further analyzed and the details described in the following

subsections below.

8.3.2 Metrics

Evaluating the performance of IXP paths with the best available alternates is carried out by

using two primary metrics in this study:

RTT (Round Trip Time) Differences: For type 1 and type 2 paths, we compute

difference between the default path latency and that of the best alternate. For alternate

paths which are better than the default, the difference value is positive. Thus the negative

RTT differences denote those paths whose default latencies are the best available. A CDF

of the RTT differences enables us to measure the percentage of better/worse paths in our

dataset. To compare the computed latencies of the best available alternate with detours,

we again compute their RTT difference but with respect to the detour path latency. This

is because detours are a well-known artifact of inter-domain Internet routing and generally

represent the best paths between a pair of end-hosts. Due to this characteristic, the detour

path differences are spread over a greater range of values.

RTT Difference ratios: While the RTT differences provide a direct indication of

the spread between the path latencies observed, computing a ratio of the difference computed

above with respect to the alternate path latency provides us the magnitude of this difference.
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The relative difference ratio is helpful in determining how much better/worse the compared

paths are in relation to each other.

8.3.3 Comparisons with IXP paths
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(a) CDF of RTT differences with IXP paths.
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(b) CDF of RTT difference ratios with IXP paths.
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(c) CDF of RTT differences with detour paths.
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(d) CDF of RTT difference ratios with detour paths.

Figure 8.3 CDF of RTT differences and RTT Difference ratios of alternate paths compared

to IXP paths. Both types of alternates typically outperform the IXP paths while differences

between type 1 and 2 alternates are not very extensive.

Figures 8.3(a) and 8.3(b) present the CDF of the observed RTT differences between

both types of alternate paths and the default path via an IXP. From figure 8.3(a) we may

infer that less than 10% of the paths measured exhibit RTT differences less than 0ms which
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indicate the default path outperforming the alternate paths. From the remaining path

measured the alternates display lower round-trip latencies. Close to 80% of the alternate

paths are better by atleast 500ms thereby indicating that the default paths are being slowed

down significantly. The type 2 alternates perform marginally better than type 1’s but as

shown in the difference ratios (fig 8.3(b)), the margin is not by much. Here the percentage

of paths at different values of ratios pretty much remain the same indicating the fact that

both type 1 and 2 alternates are justifiably better paths instead of the default.

8.3.4 Comparisons with detour paths

Since detour paths have been previously shown to be the best available path from a given

source to destination AS, we also compare the alternates with the best available detour in

figures 8.3(c) and 8.3(d). Unsurprisingly there are greater number of detours which are

significantly better than either alternate path (just less than 20%) with more than 35% of

the paths exhbiting RTT difference ratios of close to 0. This is indicative of the fact that

alternate paths measured in our framework are not as good as the available detour paths but

in fact tend to only isolate the IXP effects, the goal in designing the measurement system.

If these alternates were very similar to detour paths in general then comparison with the

default paths would not be very effective since detours have been shown to outperform most

default Internet paths. Both type 1 and 2 alternates exhibit similar behavior with respect
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to the detours and hence serve to reinforce the results of the previous subsection (8.3.3)

detailing the comparisons with the default paths.
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Figure 8.4 Weekly comparison of the percentage of better type 1 and type 2 alternate paths

in comparison to the default paths. The ratio of better/worse paths remains consistent over

the entire time period of measurement indicating little affects of time on peering performance

and routing policies.

8.3.5 Weekly comparisons

The previous subsections show a higher percentage of alternate paths outperforming the

default paths for the entire time period of data collection, but it does not provide any

indication of a possible skew (for example if any set of IXPs went down for a period of

time, or being heavily loaded due to transient traffic effects). To verify overall stability of

the measurement process, we compute the percentage of alternate paths exhibiting latencies

better/worse than the corresponding default paths for every week. Figures 8.4(a) and 8.4(b)

presents these results. For the 10 week period starting from Feb 17,2012 we simply count the
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total paths and the number of times each alternate path has a lower latency than the default

path. The weekly results are shown in the figures. We observe a constant trend of a higher

percentage (approximately 70% for type 1 and higher for type 2) of alternate paths with

lower latencies in comparison to the default paths. The percentages do not always add up

to 100 since for some paths we are unable to correctly compute the alternate path latencies

and are hence dropped. The greater percentage of better type 2 paths reinforce the results

discussed in figure 8.3(a) where we infer a greater percentage of type 2 paths displaying RTT

differences less than 500ms. Overall, the weekly comparison results show that the number

of alternate paths outperforming the default remains pretty much constant over time and is

thus not a characteristic of the time period of our measurements.

8.4 Evaluating popular IXPs

We now carry out a smaller study of the nine most popular IXPs based on geographical

regions. From publicly available data made available by PCH we select the top 3 IXPs

from Europe, USA and Asia-Pacific regions based on the total traffic handled. Using similar

metrics mentioned the previous section we measure and analyse IXP path performance in

the critical IXPs across the globe.
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Table 8.2 The popular IXPs selected and their respective properties (from PCH [1] on

01/22/2012). T=TeraBytes, G=GigaBytes

Region Name Prefix range Traffic #

members

#

IXP paths

Asia-Pacific

(AP)

Japan Internet Ex-

change

210.171.224.0/24 251G 85 76187

Hong Kong Inter-

net Exchange

202.40.160.0/23 193G 105 27269

Korea Internet

Neutral Exchange

KINX

192.145.251.0/24 86.2G 42 4428

Europe

(EU)

Deutscher Com-

mercial Internet

Exchange

80.81.192.0/22 1.85T 325 431187

80.81.200.0/24

Amsterdam Inter-

net Exchange

195.69.144.0/22 1.55T 484 422521

195.69.145.0/24

London Internet

Exchange

195.66.226.0/23 1.25T 407 336627

195.66.224.0/23

Continued on next page
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Region Name Prefix range Traffic #

members

#

IXP paths

USA (US) Equinix IBX Ash-

burn

206.223.137.0/24 305G 72 143431

206.223.115.0/24

New York Interna-

tional Internet Ex-

change

198.32.160.0/24 191G 137 44022

Seattle Internet

Exchange

206.81.80.0/23 89.6G 151 74368

8.4.1 Dataset details

With iPlane [13] being our chosen dataset, we select an entire cycle of traces conducted

from PlanetLab nodes in 162 locations on 01/22/2012 to all destinations in their selected

destination list. iPlane uses these traceroutes to construct the Internet atlas for the day and

from which inter-AS latencies are estimated. The cycle of iPlane data contains about 20M4

routes of which about 3.6M routes traverse one of the known IXPs. Out of these 3.6M IXP

4M=Million
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paths, 1.55M paths traverse the nine most popular IXPs in the three continents. Of these

known IXP paths, about 1.4M IP addresses are successfully mapped to their corresponding

ASes via iPlane’s IP-to-PoP mapping, PoP-to-AS mapping files and the team Cymru service

[69]. Carrying out this mapping from the IP address to AS is an important step of our

process since we estimate inter-AS latencies while computing individual path component

latencies.

8.4.2 Selecting popular IXPs

As mentioned in section 8.1.1 various peering databases list details such as prefix allocations,

number of participants and total traffic handled for known IXPs worldwide. In this study

[79] we look at the three most popular IXPs in Europe, North America and Asia to try to

understand the peering effects at these major Internet hubs.

PCH presents a list of worldwide IXPs from which we select the top 3 IXPs per region

based on the total traffic exchanged at these locations. Table 8.2 presents the selected IXPs

along with the total traffic handled and the number of participants. While an IXP with

a greater number of participant ASes could also be considered popular, path latencies are

ultimately affected by the total amount of traffic being handled by individual switching

networks at the IXPs. Hence we select the top three IXPs per region based on the total

traffic transmitted across their networks. As mentioned earlier, out of the 3.6M IXP paths

found in the dataset more than 1.55M paths were seen to traverse only the top nine IXPs.
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The 43% traffic on these 9 popular IXPs was the driving factor behind our decision to

concentrate our attention on only these exchanges in this work.
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Figure 8.5 CDF of RTT differences and RTT Difference ratios for paths from the common

provider to the destination (Type 1). 10% of all paths have a negative difference which

means that only one in 10 IXP paths are currently the best available.

8.4.3 Type 1 Paths: Common provider to destination direct

Figures 8.5(a) and 8.5(b) denote RTT differences and difference ratios for the best available

type 1 path with respect to the default IXP path latency. 10% of default paths at all locations

are better than the available alternates. This is a global characteristic which denotes that

one in ten IXP paths are the best available (follow up results show this feature is consistent

for all IXP paths). Figure 8.5(a) shows a gradual increase in the latency difference for paths

in AP with close to 80% paths exhibiting a higher spread in comparison to the EU and US
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paths. This means that the major IXPs in Asia are slowing down traffic significantly more

than their counterparts in EU/US; an effect of greater congestion at the exchanges. The

difference ratios (fig 8.5(b)) remain greater than half for a high percentage of paths which

exhibit the prevalence of quicker paths to the destination from a provider common to both

participants.
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(a) CDF of RTT difference ratios.
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Figure 8.6 CDF to RTT difference ratios for type 1 paths compared to the best available

detour path. 30% of all IXP paths have no better detour but the detours available for

the remaining 70% exhibit latency difference ratios considerably larger. This is due to the

formation of TIVs in the detour delay space.

Evaluating the metrics for type 1 paths in comparison with the best available detours

in figures 8.6(a) and 8.6(b) present some interesting results. Firstly paths across all IXP

locations exhibit similar RTT differences/ratios while close to 30% of the paths measured do

not have a better alternate detour (paths with RTT differences less than zero in fig 8.6(a)).

For the remaining 70% paths, the difference ratios are significantly greater than those in
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default IXP paths (see fig 8.5(b)). This signifies that detour paths are significantly better

than the computed latencies and is representative of overlay routing in general with the

presence of Triangle Inequality Violations (TIVs) [34, 21]. TIVs in the Internet delay space

has been attributed to different AS routing policies along with the effects of peering. The

creation of these TIVs is uniform as suggested in fig. 8.6(a) with 90% of the paths in AP

exhibiting difference ratios of 6 or above. Majority paths through IXPs in the US and EU are

lower in comparison but the overall behavior of large TIVs is consistent across all locations

measured.
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Figure 8.7 CDF of RTT differences and RTT Difference ratios for paths from the common

provider to the destination through the second participant. (Type 2). Paths in AP show

greater RTT differences indicating the relative inefficiency of the popular IXPs at these

locations. Overall there are greater number of better alternate paths than the default IXP

paths.
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8.4.4 Type 2 Paths: Common provider indirect

Type 2 paths are those which best isolate IXP effects from the IXP path. As shown in figure

7.7 approximately 10-20% of all the routes exhibit RTT differences less than 0, reinforcing

our earlier result that ten percent of the current IXP paths are the most efficient available

paths. Figure 8.7(a) shows the RTT differences to be close to or less than zero and the

corresponding difference ratios ranging all the way to -1 (fig 8.7(b)). A greater percentage

of alternate paths in AP continue to show lower latencies while paths in the US generally

outperform those in EU but not by significantly large amounts. The overall picture presents

a forceful argument again of the presence of better alternate paths than default IXP paths

regardess of location.
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Figure 8.8 CDF of RTT differences and difference ratios for computed latencies from type 2

paths in comparison to the best available detour latencies. Almost 20% of the default IXP

paths do not have a better detour available.
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RTT differences between the computed latencies for the alternate type 2 paths and

the best available detour paths is shown in figure 7. Since the detours are computed from

among the iPlane Internet atlas, the set of available detours is limited to the ASes visible

in the dataset. Interestingly from figure 8.8(a) we observe approximately 20% of the default

IXP paths do not have a better detour available. Such a high percentage (we observe 10%

of IXP paths to be the best available in general) can be attributed to the lower sample size

of detour path availability in the iPlane atlas. Savage et al. in [33] state the presence of

a better detour path for 30-80% of default paths, a characteristic mirrored in this result as

well. The difference ratios shown in figure 8.8(b) exhibit the significant savings for those

detours with lower latencies with latency difference ratios ranging upto 20 times that of the

detour latency (again due to the incidence of large TIVs).
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Figure 8.9 CDF of number of common providers for participant ASes. 90% of paths in AP

and close to 80% in EU and US have atleast 20 common providers, due to which we select

20 providers randomly from the common provider set for every path in our computation of

type 1 and 2 alternate paths.
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8.4.5 Common provider characteristics

Building alternate non-IXP paths requires identification of common providers of participant

ASes at the IXP hop along the default path. These common providers hold the key to

determining if the alternate route is more efficient, which is why we study some characteristics

of these ASes in this subsection.
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Figure 8.10 CDF of latency severities for type 1 paths. The presence of a large spread between

the best path through a common provider in comparison with the other alternate paths in

AP results in a higher percentage of paths with greater severity values. Path latencies are

more or similar in the other regions.

From participant ASes of every IXP path we derive their common providers and plot

the CDF of the number of common providers for every path considered (we drop those

paths with no immediate common providers).5 Figure 8.9 presents this result from which we

observe that this number of providers generally range upto 20 for the AP region and double

5Immediate here refers to providers directly one level higher if the tiered hierarchy is imagined. Ultimately
the Tier-1 providers are common to all ASes but are only considered if the participant ASes are tier-2.
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that for most participant ASes in EU and US. The result helps us determine a threshold of

20 common providers which we then select randomly in our alternate path creation process.

8.4.6 Evaluating provider latencies

With the presence of common providers determined (as shown in the previous subsection)

we now evaluate the path latencies through these provider ASes to the destinations. With

a maximum of 20 providers being selected for every IXP path we need to define a numeric

metric to capture the variance in latencies exhibited through these multiple providers. Wang

et al. in [21] propose a TIV severity metric to capture the severity of a particular edge and

we use a similar metric in our study. We define the provider latency severities as:

Severity =

∑
(Latp − Latc)/(Latc)

|N |
(8.1)

where Latc is the computed latency of the best path among all those through the common

providers, Latp is the current latency for the IXP path and N is the total number of ASes

visible in the paths considered. This metric provides a quantitative measure of available

provider latencies with higher number of ASes denoting the chances of greater number and

length(s) of paths being formed.

Figure 8.10 presents a CDF of latency severities calculated for paths through common

providers for type 1 paths. In general a greater percentage of paths in AP exhibit greater

severity than the other regions. This is due to the greater spread in available path latencies
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through the common providers in AP. Evidently most paths through these providers vary

greatly in terms of latencies making optimal path selection a tricky process for the ASes.

Paths in the EU and US regions do not vary as much (for more than 90% of the routes,

severity values are less than 0.01) and this indicates similar routes to the destination through

most providers. It is in AP that routes are more diverse which puts a premium on designing

a useful path selection scheme.

It should be mentioned here that we do not report the results of latency severities for

type 2 paths in this case as it is essentially very similar to figure 8.10. The severity metric,

captures the effects of the different common providers of IXP participants along a IXP path

and these common providers remain the same for both type 1 and type 2 paths. The type 2

paths only contain an extra component (the provider to the second participant) on the entire

path, which in itself mirrors the effects at the provider. Hence figure 8.10 is representative

of the latency severities due to common providers of the IXP participants.

8.5 Limitations

An empirical measurement study such as this is always subject to some limitations which

should be considered before definite conclusions can be made. The primary assumption in

this study is that latencies between ASes are estimated and are not exact. To this end, all

Internet measurements are estimates (traceroutes provide estimates of hop latencies, ICMP

ping provides estimates of end to end path latency) which point us in the general direction
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of what is likely occuring. The latency values used in our computation of individual path

component latencies from iPlane are in itself latency estimates carried out in the iPlane

measurement infrastructure. Also, our end to end latency estimates are computed between

ASes, but it is known that a packet may have to traverse a long distance even after reaching

its destination AS (the Last Mile problem). ASes also have multiple PoPs which could exhibit

vastly different latency values based on the geographic location of the PoP being measured.

Our calculations incorporate median latency values for ASes with multiple latencies to get

around this problem and try to correctly estimate a representative inter-AS latency. On a

related note, IP to AS mapping is an inexact science with broad implications when erroneous.

We try to minimize the possibility of errors at this step by using a single dataset to map

source, destination and participant IP addresses to their corresponding AS numbers. This

is certainly not fool-proof but using the same dataset to carry out the mapping enables

consistent lookups of an AS number for an IP prefix.
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Table 8.1 Paths analyzed from iPlane date ranges with number of IXP paths found along

with the number of alternates generated.(M=Million)

Date Vantages IXP paths Type 1 Type 2 Violations

02-17-12 148 2.63M 89130 88856 6681

02-24-12 151 2.88M 95445 96378 2538

03-03-12 148 2.83M 115962 115531 2217

03-09-12 155 3.08M 129187 122331 5749

03-16-12 153 2.75M 119142 114089 9735

03-23-12 140 2.54M 109613 105309 10932

03-30-12 144 2.49M 120783 115874 6724

04-06-12 144 2.56M 105697 101888 6693

04-13-12 156 2.82M 113357 107807 5784

04-20-12 153 2.96M 122204 117754 4537

04-27-12 140 2.58M 98196 93142 5941

150



CHAPTER 9: IXP PATH MODELING

The measurement framework defined in the previous section helps identify and determine

alternate Internet paths through the IXP participant common providers for the same source-

destination AS pair. In this section, we use Generalized Linear Modeling(GLMs) [80] to

identify a logistic regression model and predict the factors which make an alternate path

better than the default IXP path.

9.1 Background: GLM

Standard linear regression models predict the expected value (the response variable) as a lin-

ear combination of a set of observed values (known as predictors) [80]. The response variables

in many cases are normally distributed, i.e. they may vary in both positive and negative

directions. However for cases where the response variable is not normally distributed, such

as a binary variable, GLMs are used.

Our measurement of path latency estimates if an alternate path is better/worse than

the default IXP path. While the difference between the measured latencies may be modeled,

the actual latency difference (in ms) is a transient property with a wide range of possible

values. We simplify the problem into a yes/no question: is the type 1 or 2 alternate path
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better than the default IXP path? The yes/no choice transforms the response variable

to a Bernoulli variable and enables us to identify a model predicting the probability that

the alternate path is better than the corresponding IXP path for the given combination

of predictors. We explain the rationale and benefits of determining appropriate predictor

variables in the following subsection.

9.2 Predictors for the GLM

Modeling the probability that an alternate path is better than the default first requires the

identification of the predictors1. These are essentially characteristics of the alternate paths

which affect the overall path latency. Recall that the types 1 and 2 paths use the set of

common providers of the participant ASes to construct the best possible alternate. Based

on this feature, we identify the following three predictor variables:

Number of (known) IXP participants: Can be summarized as a measure of IXP

popularity. Bigger IXPs will have a greater number of participant ASes which in turn would

lead to greater traffic exchanged on the IXP network. Higher traffic volume would lead to

greater latencies along the IXP hop. Using a variety of sources such as PCH [1], PeeringDB

[15] and the individual websites of the IXPs, we compile the number of participant ASes at

each IXP monitored.

1In GLMs there is no specific method of identifying the predictors. An expert with sufficient domain
knowledge identifies probable predictors and the model fitting shows if the predictors are useful or not.
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Average degree of common providers: The set of immediate common providers

of participant ASes are generally bigger ASes who are either solely transit providers or

provide routes to other destinations. We measure the size of these providers (in terms of

degree) and compute the average degree of the set. The rationale behind this selection is

that bigger providers will have a greater number of routes available thereby enabling more

choice in creating a better alternate path. Our methodology in computing this common

provider average degree is explained in subsection 9.3.

IXP hop location: The IXP hop is typically located closer to the core of the Internet

since there is a higher probability of middle sized ASes setting up a peering relationship than

a smaller or a stub AS. However if the IXP hop is located closer to the destination, then

the alternate path is quite similar to the default path (the overlap of hops from source to

participant 1 is quite high) and vice versa for IXP hops closer to the source. We thus divide

the IXP path into three sections and denote the IXP hop location as being located within

the three sections of the path: first, middle or end of the path.

9.3 Computing provider AS degree

Computing AS size in terms of node degree is a routine task in Internet topology studies.

Here large graphs of the Internet are constructed using a variety of publicly available datasets

where each node in the graph is an AS and edges between nodes denoting relationships
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between the ASes (customer, provider, peering and so on). We create a map of the Internet

using the following sources:

• RouteViews [7]: Snapshots of BGP routing tables data from the RouteViews project.

• CAIDA’s Ark [12]: The Archipelago topology infrastrucure from CAIDA where a

set of monitors across the globe probe every /24 prefix across the Internet.

• Dimes [14]: Another popular Internet maping project which uses traceroute measure-

ments from millions of end-users worldwide to discover and identify a large number of

links.

• iPlane [18]: Traceroute based probes using PlanetLab to create an Internet atlas of

AS links.

Combining the unique AS links (for 30 successive days) obtained from the above

data sources, we create an Internet map with the known AS relationships from which we

identify the set of common providers. Note that the Internet map we create here need not

be totally complete (a common problem in Internet topology studies known as the missing

links problem) as our primary intention is to identify enough providers common to the

participating ASes.
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9.4 Generating path data

Using our measurement framework (as described earlier), we generate path comparisons for

iplane traceroutes conducted every Friday from the second week of February (2/17/2012)

to the end of May (5/25/2012). Thus a total of 15 cycles of paths are analyzed and their

respective alternates generated. Every iPlane cycle typically contains traceroutes from ap-

proximately 140 PlanetLab vantage points to a wide variety of destinations. We randomly

select 3000 default IXP paths (where the source-destination AS pair is unique) from every

vantage point, thereby analyzing close to 420K paths every week. Type 1, type 2 and detour

paths are generated for every default path analyzed and the predictor variables for each path

is recorded. For use in the modeling step, the data is then formatted into different buckets

for every range of values and a count of the number of successes recorded. A success is

an instance when the alternate path exhibits lower latency than the IXP path. The total

number of paths visible within the range of predictor values is also recorded. THis is because

our model aims to predict the likelihood that an alternate path with the selected predictor

variable combination will be better than the default IXP path.

9.5 Identifying best fit

We carry out the generalized linear modeling approach on our data using Matlab’s statistical

toolbox using the GeneralizedLinearModel class. The functions cycle through all possible
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combinations of predictor variable values and provide the best possible fit. To simplify the

model selection, we only obtain the best possible linear fit for our data2. The three predictor

variables: number of IXP participants (NumPart), average degree of common providers

(AvDeg) and hop location (HopLoc) are divided into buckets and the probability of success

fitted. We use the average R-Square value for the fitted data as the metric for identifying

the best model. It can be defined as the square of the corelation between the response values

and the predicted response values exhibiting a range between 0 and 1. R-Squared values

closer to 1 indicate a greater proportion of the variance of the residuals3 being accounted for

by the predicted model4.

Learning the model also requires a cross-validation technique [81] to ensure the analy-

sis results generalize to independent data sets. To ensure that the predictive model performs

accurately in practice, we carry out a 5-fold cross-validation process to learn the model.

Here the data is randomly partitioned into 5 sub-partitions and the model is trained from a

combination of the 4 sub-partitions. The final sub-partition is then used to test and validate

the selected model. For every model, the R-Squared value is computed and then tabulated

across every partition and finally the model with the highest average R-Squared value is

selected to be the best fit. Table 9.1 displays an abbreviated version of the different values

obtained from the learning process.

2Quadratic and higher order fits are generally even better but come at a higher computing cost and added
complexity.

3Residuals denote the difference between the observed data and predicted values.
4For example, an R-Squared value of 0.7281 denotes that the fit explains 72.81% of the total variation in

the data.
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From the table we observe the following linear model to exhibit the highest R-Squared

average:

y = 1 + x2 + x1 + x3 + x1 : x2 + x3 : x2 + x3 : x1 (9.1)

where x1 = Number of IXP Participants, x2 = Average common provider degree, x3 = IXP

hop location; x1 : x2 denotes an interaction between x1 and x2..
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Figure 9.1 Residual plots for the best fit model identified. The histogram shows few values

on either side of 0 denoting lower error residuals.

The average R-Squared value of 0.94866 denotes a high fit percentage of 94.86% with

the binomial logistic link function. With the model fit being identified, it is now important

to verify and identify potential problems in the fit.

We first analyze the residuals from the respective histogram and CDF plots as shown

in figures 9.1 and 9.2.

The histogram indicates a high percentage of residuals with very low values centered

around zero indicating a good model fit. Analyzing the residuals in more detail by con-

structing their CDF, we observe distinct tails indicating residuals across the median value.
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Figure 9.2 The CDF plot indicates the probability of a few outliers being extremely low with

most residuals remaining close to zero.

However the probability of the really large residuals are extremely low (with probability lower

than 0.05). These values are likely outliers in the data. The CDF reinforces the conclusion

that a high percentage of residuals are zero or really close, indicating a good fit.
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Figure 9.3 Residual plots for the best fit model identified. The histogram shows few values

on either side of 0 denoting lower error residuals. - 1
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Figure 9.4 The CDF plot indicates the probability of a few outliers being extremely low with

most residuals remaining close to zero. - 2

9.6 Predictor variable effects

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.5 The CDF plot indicates the probability of a few outliers being extremely low with

most residuals remaining close to zero. - 3

With the best model fit (as described in the previous subsection) identified we now

look at individual effects of the predictor variables on the model properties. The series of

plots (figures 9.3, 9.4, 9.5) display the predicted value as a function of the single predictor

variable within the prediction bounds for the fitted curve. We discuss each of them in detail:
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Number of IXP participants: Figure 9.3 displays the predictor value increases

with an increase in the number of participants. This behavior is self-evident since an in-

creasing number of participants leads to greater peering opportunities at the exchange points

since most ASes tend to peer with open peering policies. This leads to greater traffic flowing

through the IXP network which in turn increases the probability of greater packet delivery

latencies. Thus the probability that an alternate path is better than the IXP path increases.

The confidence intervals for the predicted values are however fairly wide indicating the inter-

val values need more data points to obtain a closer fit. However, the problem with participant

data from IXPs is that not all the IXPs we monitored had updated participant information

readily available. Peering databases such as PCH and PeeringDB do not update participant

lists frequently while not all official IXP websites are maintained with the information. The

decreased quality of the participant numbers is thus reflected in our model fit with the wider

confidence intervals. However, the trend of increasing probability of a better path with

increased number of participants is verified in this figure.

Common provider average degree: Larger provider ASes will have a greater

number of paths to the destination or faster links to the ASes downstream to the IXP. While

average degree is not a very accurate metric to determine the size of an AS, the average degree

provides us with a fairly good assessment of its reach. Figure 9.4 confirms the intuition that

the larger participant provider ASes increase the probability of finding a better path to the

destination. The tight confidence bounds indicate a good fit of the identified model.
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IXP hop location: The intuition behind selecting this predictor variable is to de-

termine the effects of the length of a path following the IXP hop to the destination AS. A

greater number of hops to be traversed after the IXP would mean the potential for identifying

better alternate paths is greater. However figure 9.5 exhibits a different underlying behavior;

as the IXP hop moves closer to the destination the probability of obtaining a better path

increases. With valley-free Internet paths, IXPs located in the Internet’s core and the final

two-third’s of a path are potentially more loaded due to their increased popularity thereby

increasing the probability of a more efficient alternate being present.

9.7 Discussion

Our goal behind identifying a model to predict probability of better alternate paths is twofold:

firstly we want to study instances leading to the IXP paths being outperformed by valid

alternates and secondly, we aim to identify the underlying factors driving the design of

these alternate paths. Based on the results of the previous subsection we observe how the

predictor variables are affecting the creation of the probability model. We show that the

relation between the observed latencies of IXP paths and the alternates depend significantly

on these variables; pointers which should be considered by ASes looking to set up peering

relationships. With a definite focus on IXP participant number, size of common providers

and IXP hop location on the path, an informed decision as to the network benefit of peering
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at the particular IXP may be taken. Identifying these factors which influence the overall

efficiency of an IXP path is the primary lesson learnt from our modeling study.
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CHAPTER 10: CONCLUSIONS

The Internet AS ecosystem is a constantly evolving and dynamic system driven by the eco-

nomics of the various players in the market. Transit providers, small and large ISPs, content

providers, businesses and home users are all vital components of this network ecosystem

in which underlying economics are the driving forces behind its evolution. For example a

larger ISP provides routing services to smaller customer ISPs in exchange for payments. The

customers need the provider to service their own customers. Now when two or more cus-

tomers observe that they can save significant costs by bypassing their provider, they would

typically invest in setting up peering hardware and exchange traffic along the newly created

peering link. The birth, death and rewiring of inter-AS logical links are thus motivated by

the underlying economics of business relationships between various ASes. The primary goal

of commercial organizations and corporations is to maximize profits and hence the revenues.

In this work, we design and implement a measurement framework to infer path la-

tencies of alternate paths isolating the IXP effects. We consistently observe the high rate

of over-utilization of default Internet paths through the public exchange points. We observe

that one of ten IXP paths is the best available path amongst all other Internet paths, a

characteristic indicating the potential of proper planning in the design and selection of an

IXP for a peering relationship between participating ASes. Providing savings in end to end
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path latencies, the technical goal of an exchange point, may be improved significantly. The

data generated from the proposed framework is also used to model the underlying dynamics

of paths through the IXPs and help predict the availability of better alternate paths. The

goal here was to identify these factors which influence the probability that an available alter-

nate path exists which may outperform the IXP path. We observe that the number of IXP

participants, size of the common providers of these participants and the relative location

of the IXP along the path exhibit a direct influence on the alternate path’s performance.

Modeling these path effects is helpful for ASes to decide on an appropriate peering location

and help in making a qualitative decision of the latency benefits available from carrying out

a peering decision.

We also study the most popular IXPs in three worldwide regions which are responsible

for the efficient transfer of a huge amount of peering traffic. While participating ASes at

these IXPs are generally networks/ISPs of a moderate size and closer to the core, they have

a number of common providers which possess a better path to the destination AS. We find

that the percentage of better paths is greater in Asia in comparison to European and US

exchanges. These alternate paths are also numerically more efficient in terms of latencies

than their counterparts in the other regions which is mainly due to the lower amounts of

traffic being handled daily at these locations.

Overall, this dissertation presents useful insight into the workings of route dynamics

at the exchange points across the world. The switching networks at these locations are

responsible for huge amounts of traffic everyday and play a major role in determining network
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services for millions of end-users. By pointing out the potential for improvements at these

major locations, the lessons learnt here will be applicable to a large cross-section of ASes

comprising of the peering fabric of the Internet.
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