
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2015

Information Propagation Algorithms for Consensus Formation in Information Propagation Algorithms for Consensus Formation in

Decentralized Multi-Agent Systems Decentralized Multi-Agent Systems

Christopher Hollander
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Hollander, Christopher, "Information Propagation Algorithms for Consensus Formation in Decentralized
Multi-Agent Systems" (2015). Electronic Theses and Dissertations, 2004-2019. 1136.
https://stars.library.ucf.edu/etd/1136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236256667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1136?utm_source=stars.library.ucf.edu%2Fetd%2F1136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INFORMATION PROPAGATION ALGORITHMS FOR CONSENSUS FORMATION IN
DECENTRALIZED MULTI-AGENT SYSTEMS

by

CHRISTOPHER D. HOLLANDER
B.A. Mathematics, University of South Florida, 2004

M.S. Modeling and Simulation, University of Central Florida, 2007

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2015

Major Professor: Annie S. Wu

c© 2015 Christopher D. Hollander

ii

ABSTRACT

Consensus occurs within a multi-agent system when every agent is in agreement about the value

of some particular state. For example, the color of an LED, the position or magnitude of a vector,

a rendezvous location, the most recent state of data within a database, or the identity of a leader

are all states that agents might need to agree on in order to execute their tasking.

The task of the decentralized consensus problem for multi-agent systems is to design an algorithm

that enables agents to communicate and exchange information such that, in finite time, agents are

able to form a consensus without the use of a centralized control mechanism.

The primary goal of this research is to introduce and provide supporting evidence for Stochastic

Local Observation/Gossip (SLOG) algorithms as a new class of solutions to the decentralized

consensus problem for multi-agent systems that lack a centralized controller, with the additional

constraints that agents act asynchronously, information is discrete, and all consensus options are

equally preferable to all agents. Examples of where these constraints might apply include the

spread of social norms and conventions in artificial populations, rendezvous among a set of specific

locations, and task assignment.

This goal is achieved through a combination of theory and experimentation. Information propaga-

tion process and an information propagation algorithm are derived by unifying the general structure

of multiple existing solutions to the decentralized consensus problem. They are then used to define

two classes of algorithms that spread information across a network and solve the decentralized

consensus problem: buffered gossip algorithms and local observation algorithms. Buffered gossip

algorithms generalize the behavior of many push-based solutions to the decentralized consensus

problem. Local observation algorithms generalize the behavior of many pull-based solutions to the

decentralized consensus problem. In the language of object oriented design, buffered gossip al-

iii

gorithms and local observation algorithms are abstract classes; information propagation processes

are interfaces. SLOG algorithms combine the transmission mechanisms of buffered gossip al-

gorithms and local observation algorithms into a single “hybrid” algorithm that is able to push

and pull information within the local neighborhood. A common mathematical framework is con-

structed and used to determine the conditions under which each of these algorithms are guaranteed

to produce a consensus, and thus solve the decentralized consensus problem. Finally, a series of

simulation experiments are conducted to study the performance of SLOG algorithms. These ex-

periments compare the average speed of consensus formation between buffered gossip algorithms,

local observation algorithms, and SLOG algorithms over four distinct network topologies.

Beyond the introduction of the SLOG algorithm, this research also contributes to the existing lit-

erature on the decentralized consensus problem by: specifying a theoretical framework that can

be used to explore the consensus behavior of push-based and pull-based information propaga-

tion algorithms; using this framework to define buffered gossip algorithms and local observation

algorithms as generalizations for existing solutions to the decentralized consensus problem; high-

lighting the similarities between consensus algorithms within control theory and opinion dynamics

within computational sociology, and showing how these research areas can be successfully com-

bined to create new and powerful algorithms; and providing an empirical comparison between

multiple information propagation algorithms.

iv

TABLE OF CONTENTS

LIST OF FIGURES . x

CHAPTER 1: INTRODUCTION . 1

Prelude to the Stochastic Local Observation/Gossip (SLOG) Algorithm 2

Goals and Contributions . 5

Methodology . 6

Outline . 7

CHAPTER 2: SOLUTIONS FOR THE DECENTRALIZED CONSENSUS PROBLEM . 9

Push-Based Solutions to the Decentralized Consensus Problem 10

Pull-Based Solutions to the Decentralized Consensus Problem 13

Notation . 15

CHAPTER 3: INFORMATION PROPAGATION PROCESSES AND ALGORITHMS . . 17

Information Propagation Processes . 17

Timing Models . 18

State Values . 19

v

Buffers . 19

Transfer Mechanism . 19

Transfer Protocol . 20

State Update Protocol . 20

Information Propagation Algorithms . 21

CHAPTER 4: BUFFERED AND UNIFORM GOSSIP ALGORITHMS 22

Buffered Gossip Algorithms . 23

Definition . 23

Mechanics . 25

Buffered Gossip Algorithms as Solutions to the Decentralized Consensus Problem . 26

A Solution Framework for Buffered Gossip Algorithms 26

Convergence to a Consensus State . 28

Robustness to Noise and Node Failure . 32

Stability of the Consensus State . 33

Uniform Gossip Algorithms . 34

Definition . 34

Uniform Gossip Algorithms as Solutions to the Discrete Consensus Problem 35

vi

An Experimental Comparison between Buffered and Uniform Gossip Algorithms 36

Experimental Design and Methodology . 37

Hypotheses . 39

Empirical Results . 41

Random Networks . 41

Scale-Free Networks . 46

Small World Networks . 50

Lattice Networks . 54

Impact of Network Topology . 58

Summary of Results . 58

CHAPTER 5: BUFFERED GOSSIP AND LOCAL OBSERVATION ALGORITHMS . . 60

Local Observation Algorithms . 61

Definition . 61

Mechanics . 62

Local Observation Algorithms as Solutions to the Decentralized Consensus Problem 63

Consensus under Proportional Selection 64

Consensus under Maximum Frequency Selection 64

vii

Consensus under Arbitrary Selection-Based State Update Protocols 65

Robustness to Noise and Node Failure . 66

An Experimental Comparison between Buffered Gossip and Local Observation Algorithms 67

Experimental Design and Methodology . 67

Expectations . 70

Empirical Results . 72

Random Networks . 72

Scale-Free Networks . 77

Small World Networks . 82

Lattice Networks . 87

Impact of Network Topology . 92

Summary of Results . 93

CHAPTER 6: STOCHASTIC LOCAL OBSERVATION/GOSSIP ALGORITHMS 94

Stochastic Local Observation/Gossip (SLOG) Algorithms 95

Definition . 95

Mechanics . 96

SLOG Algorithms as Solutions to the Consensus Problem 97

viii

An Experimental Investigation of the SLOG Algorithm 99

Experimental Design and Methodology . 100

Expectations . 102

Empirical Results . 104

Random Networks . 104

Scale-Free Networks . 109

Small World Networks . 114

Lattice Networks . 118

Impact of Network Topology . 123

Summary of Results . 123

CHAPTER 7: CONCLUSIONS . 125

Discussion . 125

Future Work . 127

Conclusions . 129

LIST OF REFERENCES . 132

ix

LIST OF FIGURES

Figure 4.1: Transmission along the nodes of a directed spanning tree, Ω, with root node, ω. 30

Figure 4.2: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Erdös-Renyi random networks. . 43

Figure 4.3: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Erdös-Renyi random networks. 45

Figure 4.4: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Barabasi-Albert scale-free net-

works . 47

Figure 4.5: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Barabasi-Albert scale-free networks. 49

Figure 4.6: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Newmann-Watts-Strogatz small

world networks . 51

x

Figure 4.7: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Newmann-Watts-Strogatz small world networks. . . 53

Figure 4.8: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on lattice networks. 55

Figure 4.9: Data from the empirical comparison of the uniform and buffered gossip al-

gorithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on lattice networks. 57

Figure 5.1: A failure scenario for a local observation algorithm using maximum fre-

quency selection. 65

Figure 5.2: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as box plots that show the interquartile range,

median value, and outliers of the consensus time on Erdös-Renyi random

networks. 73

Figure 5.3: Data from the empirical comparison between buffered gossip algorithms and

local observation, as errorbar plots of the 95% confidence intervals for the

mean consensus time on Erdös-Renyi random networks. 75

Figure 5.4: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as box plots that show the interquartile range,

median value, and outliers of the consensus time on Barabasi-Albert scale-

free networks. 78

xi

Figure 5.5: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as errorbar plots of the 95% confidence intervals

for the mean consensus time on Barabasi-Albert scale-free networks. 80

Figure 5.6: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as box plots that show the interquartile range,

median value, and outliers of the consensus time on Newmann-Watts-Strogatz

small world networks. 83

Figure 5.7: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as errorbar plots of the 95% confidence inter-

vals for the mean consensus time on Newmann-Watts-Strogatz small world

networks. 85

Figure 5.8: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as box plots that show the interquartile range,

median value, and outliers of the consensus time on lattice networks. 88

Figure 5.9: Data from the empirical comparison between buffered gossip algorithms and

local observation, visualized as errorbar plots of the 95% confidence intervals

for the mean consensus time on lattice networks. 90

Figure 6.1: Data from the empirical comparison between information propagation al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Erdös-Renyi random networks. . 105

xii

Figure 6.2: Data from the empirical comparison between information propagation algo-

rithms,visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Erdös-Renyi random networks. 106

Figure 6.3: Data from the empirical comparison between information propagation al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Barabasi-Albert scale-free net-

works. 110

Figure 6.4: Data from the empirical comparison between information propagation algo-

rithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Barabasi-Albert scale-free networks. 111

Figure 6.5: Data from the empirical comparison between information propagation al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on Newmann-Watts-Strogatz small

world networks. 115

Figure 6.6: Data from the empirical comparison between information propagation algo-

rithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on Newmann-Watts-Strogatz small world networks. . . 116

Figure 6.7: Data from the empirical comparison between information propagation al-

gorithms, visualized as box plots that show the interquartile range, median

value, and outliers of the consensus time on lattice networks. 119

Figure 6.8: Data from the empirical comparison between information propagation algo-

rithms, visualized as errorbar plots of the 95% confidence intervals for the

mean consensus time on lattice networks. 120

xiii

CHAPTER 1: INTRODUCTION

In a multi-agent system, consensus occurs when every agent is in agreement about the value of

some particular state. Examples of such states are the color of an LED, the position or magnitude

of a vector, a rendezvous location, the most recent state of data within a database, or the identity

of a leader.

In the decentralized consensus problem for multi-agent systems, one is tasked with designing a

method that enables agents to communicate and exchange information such that, in finite time,

every agent possesses the same information without using a centralized control mechanism [1–4].

Decentralization is important because it offers a degree of simplicity, scalability, and robustness to

error that cannot be easily obtained with a centralized approach [5,6]. The decentralized consensus

problem is one of the most important problems in multi-agent systems, because many system-

level actions require that one or more agents to coordinate and cooperate. This coordination and

cooperation can only occur if all agents involved possess the same information [1, 3, 4].

In this dissertation, I propose the Stochastic Local Observation/Gossip (SLOG) algorithm as a new

solution the decentralized consensus problem for multi-agent systems when the consensus options

are discrete, agents act asynchronously, and all options for consensus are equally preferable to

all agents. As a note on terminology, I refer to the information agreed upon by all agents as the

consensus state, and use the term consensus option to describe any piece of information that is

exchanged by agents and may therefore become the consensus state.

Rendezvous is one specific application area of the consensus problem that can benefit from the

SLOG algorithm. In the rendezvous problem, a population of agents tries to agree on a specific

location that every agent should meet at. This location can be either continuous or discrete. Ex-

amples of continuous locations might be a GPS location or a a set of map coordinates. A discrete

1

location could be a waypoint or a specific landmark. The typical solution for the rendezvous prob-

lem in the continuous domain is to have each agent use a gossip algorithm that averages incoming

information with existing information [2, 3, 7–9]. In the discrete domain, the rendezvous problem

has been solved by using an approach that is common in opinion dynamics: each agent surveys its

neighbors and uses a heuristic to update its state based on those observations [9, 10]. Hollander

and Wu [11] have also shown that gossip algorithms can be solve the rendezvous problem in the

discrete domain. The SLOG algorithm can also be applied to the rendezvous problem because it

too is a solution to the decentralized consensus problem in the discrete domain. Furthermore, be-

cause the SLOG algorithm combines aspects of opinion dynamics and gossip algorithms, it should

be able to solve the decentralized consensus problem faster than a gossip algorithm, and without

the risk of failure that exists in some opinion dynamics models.

Prelude to the Stochastic Local Observation/Gossip (SLOG) Algorithm

The need for the Stochastic Local Observation/Gossip (SLOG) algorithm can be traced back to a

review of the literature on gossip algorithms that I conducted while researching normative multi-

agent systems [12, 13].

In the existing literature on gossip algorithms, both within the continuous and discrete domains,

there is an assumption that agents process information as soon as that information is received -

they do not accumulate data by buffering incoming transmissions or storing past information in

memory [14–21]. As a result of this assumption, it is unclear what should happen if an agent that

is executing a gossip algorithm receives two or more incoming transmissions at the same time.

The existing literature has no answer to this question, but it seems to suggest that, in practice,

the reception of multiple simultaneous transmissions is typically treated as noise and all incoming

simultaneous transmissions are ignored. This approach enables the formation of consensus, but it

2

prevents an agent from reacting based on the aggregation of the information contained within those

transmissions, and thereby imposed limits on an agent’s level of intelligence.

If agents are able to accumulate and respond to multiple pieces of information, then perhaps those

responses could be engineered to increase the speed of consensus. It is well known within the field

of AI that heuristics can often speed up the search for a solution, and that the use of such heuristics

requires the accumulation of data. If gossip algorithms are only using a single data point for their

decision making, then surely there is room for improvement. I developed the buffered gossip

algorithm in response to this idea and applied it to solving the consensus problem in the case

where the consensus options are discrete and agents act asynchronously. Simulation experiments

comparing the performance of the buffered gossip algorithm against the uniform gossip algorithm

[11, 22] find that using a buffer can substantially increase in the speed of consensus.

The buffered gossip algorithm, which allows agents to accumulate incoming transmissions, is func-

tionally similar to some of the opinion dynamics models that are studied in computational sociol-

ogy [7–10, 23–25]. In a buffered gossip algorithm, each agent transmits to only a single neighbor,

but it is possible for an agent to to be the transmission target for multiple neighbors - i.e. an

agent can receive multiple transmissions. In many opinion dynamics models, each agent queries

information from every neighbor - i.e. every agent receives multiple transmissions. The similarity

between the buffered gossip algorithm and opinion dynamics models begs the question: “how does

the buffered gossip algorithm compare to similar opinion dynamics models on the decentralized

consensus problem?”

Gossip algorithms and opinion dynamics models originate from two very different domains, and

the mathematical tools used to study them are often quite different. To compare these algorithms

“apples to apples”, I develop the idea of an information propagation process to abstract the func-

tionality of gossip algorithms and opinion dynamics models. I adapt the widely-used terms of

3

push and pull to refer to specific types of information propagation processes: push-based pro-

cesses behave similar to gossip algorithms; pull-based processes behave similar to opinion dy-

namics models. Because an information propagation process is abstract, I define an information

propagation algorithm to be a concrete representation of an information propagation process: the

buffered gossip algorithm is a push-based information propagation algorithm; many opinion dy-

namics models are pull-based information propagation algorithms. Using this framework, I define

the local observation algorithm as a generalization of the voter model [23,26–29] and label propa-

gation algorithm [30]) - opinion dynamics models that are similar to the buffered gossip algorithms

that I have previously studied. I then compare the performance of the buffered gossip algorithm

against the local observation algorithm on the decentralized consensus problem for multi-agent

systems when the consensus options are discrete and agents act asynchronously. The data from

this comparison between buffered gossip and local observation is inconclusive with regards which

algorithm is “best”, as measured by the speed of consensus. Local observation algorithms are fast,

but they do not always produce a consensus. Buffered gossip algorithms guaranteed a consensus,

but they are not always as fast as a local observation algorithm.

My comparison between the buffered gossip algorithm and opinion dynamics models suggests that

neither approach is universally “better” than the other. Because buffered gossip algorithms are

almost identical to local observation algorithms, I am curious to know whether or not performance

improvements can be obtained if one combines a buffered gossip algorithm with a local observation

algorithm. In reality, the simplicity of these algorithms makes their combination trivial. The

Stochastic Local Observation/Gossip (SLOG) algorithm is the implementation of this combination.

4

Goals and Contributions

The primary goal of this dissertation is to propose a new class of solutions for the consensus prob-

lem for multi-agent systems that lack a centralized controller, with the additional constraints that

agents act asynchonously, information is discrete, and all consensus options are equally preferable

to all agents (e.g. social norms [12]). The initial work described in this dissertation suggests that

the proposed algorithm – the Stochastic Local Observation/Gossip (SLOG) algorithm – will have

an average consensus time that is less than than either a buffered gossip algorithm or a local ob-

servation algorithm (both of which are faster than the standard uniform gossip algorithm), and that

this relative performance will be universal across all multiple types of network topology.

The secondary goal of this dissertation is to formally present the research that lead to the creation

of the SLOG algorithm. Toward this end, I will introduce the buffered gossip algorithm as a push-

based information propagation algorithm compare the consensus behavior of the buffered gossip

algorithm against the uniform gossip algorithm. I will also introduce the local observation algo-

rithm as a pull-based information propagation algorithm, and present the results from experiments

in which I compare the consensus behavior of the buffered gossip algorithm against the local ob-

servation algorithm. To the best of my knowledge, such a direct comparison between push-based

and pull-based methods of information propagation algorithms has yet to be done.

With these goals in mind, this dissertation contributes to the existing literature on the decentralized

consensus problem in the following ways:

1. It specifies a theoretical framework that can be used to explore the consensus behavior of

push-based and pull-based information propagation algorithms. Such a framework can help

practitioners evaluate potential solutions in the real world.

2. It introduces buffered push-based information propagation algorithms, which allow agents

5

to buffer incoming transmissions, and are also capable of encapsulating the behavior of tra-

ditional “unbuffered” push-based information propagation algorithms. This allows current

and future push-based algorithms to be evaluated and compared against one another within

a common framework.

3. It highlights the similarities between two fields of research that are often treated independent

of one another (consensus algorithms within control theory and opinion dynamics within

computational sociology.) and shows how they can be successfully combined to create new

and powerful algorithms.

4. It compares the average consensus speed between multiple information propagation algo-

rithms. These results provide a general notion of relative performance that can help prac-

titioners evaluate solutions to decentralized consensus problems that are encountered in the

real world – assuming that those problems meet the constraints of discreteness, asynchronic-

ity, and solution equality as studied in this dissertation.

Methodology

I use a combination of theory and multi-agent simulation experiments to study the buffered gossip

algorithm, the local observation algorithms, and the stochastic local observation/gossip algorithm.

In my research on the buffered gossip algorithm and its comparison to the uniform gossip algo-

rithm in the context of the decentralized consensus problem, I define a mathematical model of

buffered push-based information propagation algorithms and prove that they will always yield a

consensus when certain conditions hold true. I use multi-agent simulation to investigate the impact

of heuristic decision making in the decentralized consensus problem. I run multiple simulations

in which agents attempt to reach a consensus on some value, both with and without a buffer. The

6

agents that do not use a buffer mimic the functionality of the uniform gossip algorithm and adopt

every value they receive, as they receive it. The agents that use a buffer employ a buffered gossip

algorithm and use heuristics to decide which value to adopt.

My research on the performance differences between the buffered gossip algorithm and local ob-

servation algorithm relies on multi-agent simulation to compare the behavior of agents that use

push-based information propagation algorithms against the behavior of agents that use pull-based

information propagation algorithms. Prior to this experimentation, however, I employ theory to

show that not all pull-based information propagation algorithms are actually capable of producing

a consensus.

As with my research on the buffered gossip algorithm and the local observation algorithm, my

study of the SLOG algorithm also makes use of both theory and multi-agent simulation. Using

the same theoretical arguments that underly buffered push-based information propagation algo-

rithms, I will show that Stochastic Observation/Gossip algorithms are also guaranteed to produce

a consensus when certain conditions hold true, and I will use multi-agent simulation to conduct a

series of experiments that measure the consensus speed of these “hybrid” algorithms against the

consensus speed of push and pull algorithms.

To maintain consistency and limited scope, I constrain my focus to multi-agent systems that lack a

centralized controller, with the additional constraints that agents act asynchronously, information

is discrete, and all consensus options are equally preferable to all agents.

Outline

Having introduced the research covered in this dissertation, I next discuss the decentralized con-

sensus problem and its existing push-based and pull-based solutions. This background provides

7

context to the Stochastic Local Observation/Gossip algorithm and the work that follows. To gen-

eralize push-based and pull-based solutions to the decentralized consensus problem, I formally

define information propagation algorithms as concrete implementations of an information propaga-

tion process. These definitions are followed by a series of experiments that build upon one another.

First, I explore how the ability to accumulate information can increase the speed of consensus

formation by comparing the buffered gossip algorithm against the uniform gossip algorithm. Sec-

ond, I reflect on the similarities between the buffered gossip algorithm and the local observation

algorithm and highlights their differences by comparing their performance on the decentralized

consensus problem. Finally, I propose the Stochastic Local Observation/Gossip (SLOG) algo-

rithm as a new solution to the decentralized consensus problem for multi-agent systems wherein

the consensus options are discrete and agents act asynchronously. The SLOG algorithm is com-

pared against both buffered gossip algorithms and local observation algorithms. Following these

experiments, I discuss the potential for future work and present my conclusions.

8

CHAPTER 2: SOLUTIONS FOR THE DECENTRALIZED CONSENSUS

PROBLEM

Before discussing the Stochastic Local Observation/Gossip Algorithm, it is beneficial to establish

context by first presenting some of the existing solutions to the decentralized consensus problem

for multi-agent systems when the consensus options are discrete and agents act asynchronously.

In the decentralized consensus problem for multi-agent systems, one is tasked with designing a

method that enables agents to communicate and exchange information such that, in finite time,

every agent possesses the same information without using a centralized control mechanism [1–

4]. The decentralized consensus problem is one of the most important problems in multi-agent

systems, because many system-level actions require that one or more agents to coordinate and

cooperate. This coordination and cooperation can only occur if all agents involved possess the

same information [1, 3, 4].

Solutions to the decentralized consensus problem can be broken down into six categories based

on the type of information (continuous valued or discrete valued) and the communication scheme

between agents (push-based, pull-based, or a combination of both). In multi-agent systems, push-

based communication occurs when one agent transmits information directly to one or more neigh-

boring agents. Pull-based communication occurs when one agent observes or requests (and re-

ceives) information from one or more neighboring agent. Communication that is both push-based

and pull-based occurs when an agent both gathers information from and transmits information to

its neighbors.

The existing literature covers different aspects within four of these solution categories: consensus

formation in the continuous domain with pull-based communication between agents [7–9]; con-

9

sensus formation in the discrete domain with pull-based communication between agents [9, 10];

consensus formation in the continuous domain with push-based communication between agents

[2, 3, 18, 19]; and, consensus formation in the discrete domain with push-based communication

between agents [5, 11, 19–21, 26, 31, 32]. We have found no evidence of any significant study on

solutions to the consensus problem that use push-pull communication between agents in either the

continuous or discrete domain.

Given the breadth of study on consensus formation in the continuous domain, and my primary

goal of establishing context for the SLOG algorithm, I focus this section on existing methods

consensus formation in the discrete domain – where the consensus options are discrete and cannot

be averaged together or otherwise recombined. First, I discuss the prominent push-based solutions

to the decentralized consensus problem, and then I discuss the prominent pull-based solutions.

Finally, I introduce the mathematical notation that is used in the remainder of this work.

Push-Based Solutions to the Decentralized Consensus Problem

To solve the decentralized consensus problem in the discrete domain, agents can either commu-

nicate amongst themselves, or they can elect a leader that will speak for the population. Gossip

algorithms [14–19] and leader election algorithms [32–34] define how agents receive, process, and

transmit information in a decentralized environment in order to implement these paradigms using

push-based communication.

Solutions to the decentralized consensus problem that use gossip algorithms depend on randomness

to slowly drive a system towards consensus. Agents using a gossip algorithm contain a state value,

a gossip mechanism, and a gossip protocol. The state value stores the information being spread

through the network. The gossip mechanism determines how the agent selects the target(s) for its

10

transmission. Traditionally, selection of transmission targets is done uniformly and at random, but

there is no strict requirement for this practice. Three general gossip mechanisms are used in the

existing literature: select a single target from the local neighborhood (randomized gossip) [4, 21,

35, 36], select a single target from the entire network (geographic gossip) [5, 6, 14–16, 37–40], or

select multiple targets from the local neighborhood [21,41] (broadcast gossip). The gossip protocol

determines what the contents of a transmission will be, and how the receiver of a transmission will

use the new information to update their internal state. The specific implementation of the gossip

protocol depends on the problem being solved. Gossip algorithms can be directed or undirected

with respect to their transmission of information. If the gossip algorithm is directed, only the

receiver changes its state value. If the gossip algorithm is undirected, then each receiver implicitly

sends its original state value back to the sender and all nodes change their state value. In practice,

only gossip algorithms that use the randomized or geographic gossip mechanism are undirected.

Gossip algorithms that employ the broadcast gossip mechanism are always directed.

With respect to the decentralized consensus problem in the discrete domain, we are most interested

in gossip protocols used for information dissemination [5,14,19–21,31,38,42] (other common pro-

tocols include those for aggregation [17,18,29] and the construction of overlay networks [19,36]).

In protocols for information dissemination, the task is to design an algorithm that results in every

agent having the same state value as quickly as possible. As information spreads, it can either

replace the current information contained within an agent [14,19,21], or it can be stored alongside

the existing information with the goal of having every agent aware of all other state values in the

system [19, 31]. Common applications of information spread protocols include database synchro-

nization [14,20], balancing processor loads [5,42], and accumulating information for use by other

algorithms [31].

Solutions to the decentralized consensus problem that use leader election algorithms [32–34] de-

pend on a single entity, called the leader, to dictate a consensus value to the rest of the population.

11

Paxos [32,33] is the standard algorithm for leader-based consensus formation within the tech indus-

try, finding popularity within companies such as Google, Microsoft, Amazon, and IBM. Despite

this popularity, it is widely recognized that Paxos is difficult to implement, and the real-world

implementations of Paxos that do exist do not reflect the theoretical simplicity of the original algo-

rithm [34]. Many variations of Paxos have been created as a result of the various implementation

challenges faced by software engineers - but they all operate according to the same general theory.

Agents that implement Paxos behave according to a predefined role. They can be either a pro-

poser, an acceptor, a leader, or a combination of the three. A proposer transmits potential values

for consensus to the acceptors. An acceptor chooses whether or not to accept the proposed value

and lets the sender of that value know if it is accepted. If a majority of acceptors accept a proposed

value, then the proposer of that value may become the leader. Learners determine the consensus

value by receiving information from the acceptors and identifying the value accepted by a majority

of acceptors. For a full description of how Paxos works, I refer the reader to the work of Lam-

port [32]. One of the biggest strengths of Paxos, besides its ability to form a consensus, is that it is

fault tolerant. Leaders are selected based on a majority vote, so the failure of an agent to transmit

does not stop the consensus process. Leaders can also be replaced in the event that they fail. Paxos

has been primarily applied to database replication in IT systems [43], but more recently it has also

been proposed for consensus formation in multi-agent systems [44].

Despite their success in the literature on the consensus problem, both gossip algorithms and Paxos-

derived leader election algorithms have flaws that appear in a discrete domain when agents are

allowed to communicate directly with one another.

In the case of gossip algorithms, the issue of competition between values is largely neglected.

The research on information dissemination when agents can only store a single value is primarily

interested in the propagation speed, and it is often assumed that the systems start with only one

agent containing that information; all other agents are initialized without any information. In

12

the decentralized consensus problem, as we study it, every agent is initialized with a different

value, and those values must compete for dominance. It is unknown if the existing performance

models for gossip algorithms continue to hold true in the presence of competing information. In

the research that allows agents to build up information in every node, there is no certain way to

know if and when every agent in a truly decentralized system has all of the information. So, there

can be no guarantee that all agents will select the same value from among the information they are

aware of. In large networks, this also requires that every agent maintain a large memory.

In the case of leader election algorithms, the selection of a leader must occur before consensus is

possible; this raises the question, “would it be faster just to use a different consensus algorithm to

choose the consensus option, instead of first picking a leader and then having that leader propagate

the value through the network by using an information dissemination algorithm?” Furthermore,

many leader election algorithms rely on the ability of agents to broadcast information. Standard

Paxos [32,33] and Raft [34], specifically, also require that agents be able to respond to a transmis-

sion. This requirement for bi-directional communication is a limitation that I do not assume in this

study of the decentralized consensus problem.

Pull-Based Solutions to the Decentralized Consensus Problem

Models of opinion dynamics use pull-based communication to solve the decentralized consensus

problem in the discrete domain via randomized information propagation or leader election. The

major models of opinion dynamics that apply to the discrete domain include the threshold model,

the majority rule model, the minority rule model, and the voter model.

Agents that model opinion dynamics change their state value based on the states of all of their

neighbors.

13

In threshold models [23], agents change their state value to some value, x, only if the proportion

of neighbors with a state value of x exceeds a threshold. When the threshold is set above 50%

these models follow the majority rule [23–25]. The majority rule dictates that an agent adopts the

state equal to the statistical mode of its neighbor’s states. The majority rule is also studied heavily

in sociophysics, with the additional assumption that the selected agent’s neighbors also change

their state to the majority. Opposite to the majority rule is the minority rule [23, 25, 45, 46], where

an agent adopts the state least represented by its neighbors. The minority rule is also studied in

sociophysics with the same update assumption as the majority rule.

The voter model [23, 26, 27] is an opinion dynamics model in which two agents are selected from

the population and one agent adopts the state of the other. This is identical to one agent choosing

another at random, and then adopting the state of the selected agent (or vice versa). Originally,

the voter model used global neighborhoods, where any two agents could be chosen at random, but

more recent studies on the voter model have used local neighborhoods. In voter models that use lo-

cal neighborhoods, one agent is selected at random from within the entire network, and the second

agent is selected from the set of neighbors that are topologically local to the first agent. There also

exist nonlinear voter models that produce results not currently observed in the mainstream research

on gossip algorithms [28]. These nonlinear voter models show that it is possible for systems to pro-

duce stable patterns of stripes and clusters that are not all the same value, even when their topology

suggests that a consensus should be reached; i.e. the system becomes stable, but the final state

does not represent a consensus. Similar results have recently been produced by imposing social

behaviors on agents that transmit information via gossiping [13]. Hollander and Wu investigate

what happens when social processes, such as internalization and social enforcement, are applied to

directed randomized gossip algorithms. Their findings show that if agents are able to maintain two

signals, with a bias that determines which signal is more likely to be transmitted, there are many

circumstances in which consensus is unobtainable. When a system is unable to obtain a consensus,

14

majority-driven self-imposed sanctions cause it to self-organize into stable, diverse, clusters where

all agents within each cluster are attempting to transmit the same signal.

The current literature on opinion dynamics suggests that both threshold models and voter models

have the capability – but not always the ability – to solve the decentralized consensus problem in

the discrete domain. Most of the existing research in field of opinion dynamics seeks understand

how information spreads, and not necessarily to design algorithms that produce a consensus. One

example that epitomizes this goal is in the Label Propagation algorithm [30, 47]. The Label prop-

agation algorithm is an algorithm designed to detect communities within social networks. In the

label propagation algorithm, an agent updates its state value to the value held by the majority of its

local neighbors. In the event that there are an even number of neighbors and the is a tie in the pro-

portional representation of a value, the agent picks a value at random from among the tied values.

The Label Propagation algorithm, while simple and straight forward, is often incapable of solving

the decentralized consensus problem in large populations of agents with simple communication

networks (e.g. lattice or grid topologies). This inability to form a consensus seems to be caused

by the use of the majority rule on networks that have groups of nodes with a high clustering coef-

ficient linked by nodes with low clustering coefficients. Clusters of agents adopt the same value,

and then reinforce that value from the inside. Because there are not enough incoming edges from

other clusters, the agents will never deviate from their state value.

Notation

Within this dissertation, I use a common notation to ensure consistency among the multiple def-

initions, proofs, and analyses related to the SLOG algorithm. Multi-agent systems are mod-

eled as a communication networks; nodes represent agents and edges represent the communi-

cation/interaction links between those agents. I indicate matrices and vectors with bold upper and

15

lowercase symbols: M for matrices and v vectors. Individual elements are indexed, non-bold,

lowercase symbols: mij for matrices and vi for vectors. The number of elements in an arbitrary

set, S, is denoted |S|. The probability of an arbitrary event, E, is denoted P (E).

16

CHAPTER 3: INFORMATION PROPAGATION PROCESSES AND

ALGORITHMS

Information propagation processes and algorithms provide a method by which to relate gossip

algorithms with models of opinion dynamics and serve as a unifying framework for the definition

and discussion of buffered gossip algorithms, local observation algorithms, and Stochastic Local

Observation/Gossip algorithms.

Information Propagation Processes

I define an information propagation process as an abstraction layer for algorithms that define how

nodes receive, process, and transmit information in a decentralized environment. An information

propagation process defines the general attributes and behaviors that these algorithms must have,

without an emphasis on the implementation details. As a result, many algorithms can be modeled

as information propagation processes. For example, the push-based and pull-based information

propagation algorithms that are discussed in chapter 2 are all information propagation processes.

Formally, let G = (V,E) be an arbitrary network defined by a set of nodes, V , and a set of edges,

E = {(u, v) : u, v ∈ V }, such that node u points to node v. Let the neighbors of node u be defined

as N(u) = {v : (u, v) ∈ E ∧ u 6= v}.

An information propagation process specifies how information is propagated over G when each

node, u ∈ V , is treated as a self-contained unit with an independent timing model, state value,

buffer, transfer mechanism, transfer protocol, and state update protocol. The frequency at which

data is transfered along the edge (u, v) is determined by the timing model of u. The state value of

node u contains one possible consensus value. The buffer of node u contains consensus values that

17

may be in conflict with the state value of node u. The successful transfer of data along the edge

(u, v) from node u to node v is controlled by the transfer mechanism and transfer protocol of node

u, and the state update protocol of node v.

Timing Models

The timing model of node u ∈ V controls the rate at which node u exchanges data with neighboring

nodes in accordance with its transfer mechanism and the rate at which node u updates the state

value xu in accordance with its state update protocol. A timing model can either be asynchronous

or synchronous.

Under an asynchronous timing model, nodes activate independently of one another. For the pur-

poses of analysis, I assume that every node in the network possesses a clock that ticks according

to a Poisson process with rate λ = 1. This is equivalent to a single clock that ticks according

to a Poisson process with a rate of n = |V | [18]. I call the instant of time during which these

n nodes act a time step and reserve the term tick to denote the advancement of a node’s internal

clock. One time step can be thought of as a discrete unit of time. In practice, this means that under

an asynchronous timing model an average of nλ nodes are chosen independently and uniformly,

at random, to transmit their information during each time step [18]; i.e. on average, one time step

consists of nλ ticks.

Under a synchronous timing model, the internal clock of each node is dependent on the clock of

some other node in the network. Nodes using a synchronous timing model can be configured to

activate sequentially, partially in parallel, or fully in parallel with each time step.

This dissertation focuses on asynchronous timing models because they fit naturally within the

context of a decentralized system in which all entities are independent of one another.

18

State Values

The state value of node u ∈ V is defined as xu ∈ S where S is the set of all possible state values.

For example, in the decentralized rendezvous problem, these values are rendezvous locations; in

the leader election problem, these values are candidate identifiers; and, in the norm emergence

problem, these values represent social norms.

Buffers

The buffer of node u ∈ V stores the data that node u has received from N(u) since the last

tick of node u. The buffer of node u is defined as βu ⊂ V × S such that βu = {(v, xv)} is a

set of tuples of node v ∈ N(u) and the state value xv as seen by node u. For example, β1 =

{(2, 11), (3, 12), (4, 11)} indicates that node 1 received the state value 11 from nodes 2 and 4 and

the state value 12 from node 3. For convenience, β without a subscript to denotes the set of all

buffers in the network.

Transfer Mechanism

The transfer mechanism of node u ∈ V is a decision rule that determines how information is

exchanged between nodes. There are six basic transfer mechanisms: uniform gossip, where in-

formation is transmitted from node u to a single node, v ∈ N(u); multicast, where information is

transmitted from node u to multiple neighboring nodes, W ⊂ N(u); broadcast, where information

is transmitted from node u to all neighboring nodes, N(u); simple observation, where information

is transmitted from a single node, v ∈ N(u), to node u; partial observation, where information

is transmitted from multiple neighboring nodes, W ⊂ N(u), to node u; and local observation,

where information is transmitted from all neighboring nodes, N(u), to node u. Uniform gossip,

19

multicast, and broadcast mechanisms are all push-based. Simple, partial, and local observation

are pull-based mechanisms. In addition to these six mechanisms, a hybrid approach can also be

used that combines two or more approaches; for example, the push-pull algorithm introduced by

Karp [20] combines the push and pull mechanisms.

Transfer Protocol

The transfer protocol of node u ∈ V determines what will be transmitted to the selected neighbor,

v ∈ N(u), and what that neighbor will do with the new information once it has been received. This

dissertation seeks to explain the fundamental behavior of information propagation in the context

of consensus formation. To this end, it focuses on transfer protocols in which the value of node

u, denoted xu, is transmitted without modification and stored as a tagged pair within the buffer of

node v; i.e., if node u transmits xu to a neighboring node, v ∈ N(u), then xu is stored in βv as the

tuple (u, xu). This transmission can occur through any valid transfer mechanism.

State Update Protocol

The state update protocol of node u ∈ V , defined as f : (V × S)n → V × S, describes

how xu is derived from βu. This derivation uses the companion functions g : V × S → V

and h : V × S → S that extract the components of the tuple returned by f . For example, if

β1 = {(2, 11), (3, 12), (4, 11)} then one possible result is that f(β1) = (4, 11), g(β1) = 4, and

xu = h(β1) = 11.

State update protocols can be either selection-based or aggregation-based. In a section-based

state update protocol, the new state value is an element in the original state space of the sys-

tem; h(f(βu)) ∈ S. In an aggregation-based state update protocol, the new state value is not

20

necessarily in the original state space of the system; for example, a real number, h(f(βu)) ∈ R,

or an object constructed from multiple elements within βu. I focus on selection-based state update

protocols because this work is on consensus formation in the discrete domain, where the consensus

is chosen from a set of initial consensus options.

Information Propagation Algorithms

If an information propagation process is intended to abstract away implementation detail, then an

information propagation algorithm defines those details with regards to how a node receives, pro-

cesses, and transmits information within a decentralized environment. An information propagation

algorithm is defined by assigning a specific value to the timing model, transfer mechanism, trans-

fer protocol, and state update protocol of an information propagation process. This relationship is

analogous to the relationship between a base class and a derived class within the object oriented

programming paradigm. For example, information propagation algorithm can be defined as the

information propagation process that uses an asynchronous timing model, a uniform gossip trans-

fer mechanism, a transfer protocol in which the node transmits information without modification

and stores information as a tagged pair of the data and the sender, and a state update protocol that

selects an element from the buffer at random.

21

CHAPTER 4: BUFFERED AND UNIFORM GOSSIP ALGORITHMS

The uniform gossip algorithm is a standard solution to the decentralized consensus problem that

makes the assumption that agents process information as soon as that information is received [14–

21]. More generally, the existing literature on the decentralized consensus problem in the discrete

domain does not appear to explore gossip algorithms that are able to accumulate information - such

as by buffering incoming transmissions or retaining past information in memory.

Under this assumption of instantaneous processing, an agent’s behavior in response to the recep-

tion of multiple simultaneous transmissions is undefined; furthermore, the inability to accumulate

information for future reference limits an agent’s level of intelligence. It is well known within

the field of AI that heuristics can often speed up the search for a solution, and that the use of

such heuristics requires the accumulation of data. If agents are able to accumulate and respond

to multiple pieces of information, then those responses can be engineered to increase the speed of

consensus.

I propose buffered gossip algorithms as push-based information propagation algorithms that allow

agents to accumulate information between their own actions, and thereby handle the reception of

multiple simultaneous transmissions and employ heuristic decision making. It is my expectation

that these buffered gossip algorithms will solve the decentralized consensus problem faster than the

uniform gossip algorithm. To challenge this expectation, I formally define buffered gossip algo-

rithms and the uniform gossip algorithm as push-based information propagation algorithms. Next,

I describe the experimental design and methodology that will be used to empirically compare the

consensus behavior between a set of buffered gossip algorithms and the uniform gossip algorithm.

Finally, I analyze and summarize the results of those experiments.

22

Buffered Gossip Algorithms

Buffered gossip algorithms are push-based information propagation algorithms that allow agents to

accumulate information and solve the decentralized consensus problem when all consensus options

are discrete and agents act asynchronously. The behavior of these buffered gossip algorithms is

central to the behavior of the Stochastic Local/Observation Gossip (SLOG) algorithms, and so

buffered gossip algorithms must be understood before the behavior of a SLOG algorithm can be

analyzed. Towards these ends, I first define buffered gossip algorithms and describe their basic

mechanics. Then, I show that a buffered gossip algorithm will successfully solve the decentralized

consensus problem when a network contains a directed spanning tree, and the nodes of that network

employ both an asynchronous timing model and a selection-based state update protocol.

Definition

As an information propagation algorithm, I define a buffered gossip algorithm by fixing the timing

model, transfer mechanism, transfer protocol, and state update protocol of node u within a specific

range of values. Each combination of values within this range defines a unique buffered gossip

algorithm.

The timing model of a buffered gossip algorithm is either asynchronous or synchronous. In this

dissertation, I limit my discussion to asynchronous timing models due to the focus on decentralized

systems, and because it is often impractical to maintain the synchronization of large decentralized

populations.

Buffered gossip algorithms use a uniform gossip transfer mechanism along with a transfer protocol

in which node u transmits the value of xu without modification and stores incoming information as

a tagged pair within the buffer. Therefore, each node using a buffered gossip algorithm transmits

23

to only one neighbor at a time, and that neighbor is selected uniformly at random. Upon receiving

a transmission, these nodes store the associated information in their buffer along with the identifi-

cation of the sender. As a result of this transmission behavior, there is a positive probability that

βu contains more than one piece of information prior to the execution of the state update protocol

(i.e. P (|βu| > 1) > 0). This probabilistic condition is further satisfied when it is possible for

a node receives multiple simultaneous transmissions from its neighboring nodes, or when a node

accumulates information over a finite period of time.

Although there are many possible implementations of a state update protocol, my interest in the

decentralized consensus problem in a discrete domain drives me to focus on two specific selection-

based state update protocols that ensure (g(f(βu)), h(f(βu))) ∈ βu: proportional selection (fprop)

and maximum frequency selection (fmaxf). These selection-based state update protocols are based

on two well known methods of information dissemination in opinion dynamics: the “voter model”

[26] and the “label propagation algorithm” [30], respectively. The implementation of each of these

state update protocols produces two distinct buffered gossip algorithms. Nodes that use a buffered

gossip algorithm that implements the proportional selection protocol select a single element of

βu, chosen uniformly at random and returns the associated state value. For example, if βu =

{(2, 1), (3, 1), (4, 2)} then P (xu = h(fprop(βu)) = 1) = 2/3 and P (xu = h(fprop(βu) = 2)) =

1/3. A buffered gossip algorithm using proportional selection is equivalent to a voter model [23,

26–29] on a network with a time-varying topology. At any given time step, t, the neighborhood of

each node, u, consists only of those nodes transmitting to node u. Nodes that use a buffered gossip

algorithm that implements the maximum frequency selection protocol select a single element of βu,

chosen such that h(fmaxf (βu)) is the most frequently occurring state value in node u’s buffer (with

ties broken randomly) and g(fmaxf (βu)) is a randomly chosen node associated with f(βu). For

example, if βu = {(2, 1), (3, 1), (4, 2)} then P (h(fmaxf (βu)) = 1) = 1 with P (g(fmaxf (βu)) =

2) = 0 and P (g(fmaxf (βu)) = 3) = 0 with the final result that P (xu = 1) = 1. A buffered gossip

24

algorithm using maximum frequency selection is equivalent to the Label Propagation Algorithm

[29,30] on a network with a time-varying topology. At any given time step, t, the neighborhood of

each node, u, consists only of those nodes transmitting to node u.

Mechanics

Alternatively, I can define a buffered gossip algorithm through its mechanics. If u ∈ V is a node

that uses a push-based information propagation algorithm, then node u displays the following

behavior: when the internal clock of node u ticks, the first thing that node u does is to update

its state value according to its state update protocol; next, the updated state value is transmitted

to and stored in the buffer of one or more randomly chosen neighbors; after transmission has

occurred, node u clears its buffer and waits for the next tick of its internal clock. This process of

updating state, transmitting from node u to neighbors W ⊆ N(u), and buffer erasing is described

by algorithm 1.

Algorithm 1 The Buffered Gossip Algorithm
1: procedure ACT(u ∈ V)
2: xu ← h(f(βu))
3: for all v ∈ W : W ⊆ N(u) do
4: βv ← βv ∪ (u, xu)
5: end for
6: βu ← ∅
7: end procedure

If |W | = 1 then I define this information propagation algorithm to be a buffered gossip algorithm.

If 1 < |W | ≤ |N(u)| then I define this information propagation algorithm to be buffered multicast

algorithm. Finally, if |W | = |N(u)| then I define this information propagation algorithm to be

buffered broadcast algorithm. Within the existing literature on push-based information propagation

algorithms for the decentralized consensus problem, the majority of work is aimed at the case when

|W | = 1. In this dissertation, I continue this trend by focusing on buffered gossip algorithms.

25

Buffered Gossip Algorithms as Solutions to the Decentralized Consensus Problem

To show that a buffered gossip algorithm can solve the decentralized consensus problem in the

discrete domain, I first describe a solution framework that allows us to study how the distribution of

state values within a network changes over time. I then use this framework to show that a buffered

gossip algorithm will successfully solve the decentralized consensus problem when a network

contains a directed spanning tree, and the nodes of that network employ both an asynchronous

timing model and a selection-based state update protocol. Formally, I say that the network, G,

contains a directed spanning tree, Ω, if Ω is a subgraph of G. Next, I will discuss the impact of

noise and node failure on the ability of a buffered gossip algorithm to form a consensus. Finally,

I will show that once consensus is achieved, it remains in place until externally influenced. I do

not investigate alternative timing models (e.g. synchronous) or non-selection based state update

protocols (e.g. averaging) within this dissertation, and I do not derive the theoretical bounds for

the consensus time of a buffered gossip algorithm; however, it is possible that current work in the

literature on the voter model and Label Propagation Algorithm may be useful for future research

that examines this particular issue.

A Solution Framework for Buffered Gossip Algorithms

When a multi-agent system is modeled as a network of nodes, the state of the network can be

represented as a vector, and linear algebra can be used to study how the distribution of state values

within the network changes over time.

When every node in a network uses a buffered gossip algorithm, an adoption matrix, denoted

A(t), can be used to represent the spread of information at the end of the tth time step. Let

avu = w : w ∈ {0, 1} denote an element in the adoption matrix. The value w determines whether

26

or not xu is used by node v when determining xv. Consequently, A(t) defines a weighted graph of

G in which avu = w indicates an edge from node u to node v with weight w.

Adoption matrices are constructed by a network level state update protocol of the form F : β →

R|V |×|V |, where β =
{
β1, β2, . . . , β|V |

}
. Network level state update protocols are algorithms that

simplify the analysis of an entire network by creating adoption matrices from the buffers of all

nodes within a network. In the discrete domain, adoption matrices must be row stochastic so that

they satisfy the conditions A(t)1 = 1 and aij ∈ {0, 1}. If an adoption matrix does not satisfy these

conditions, then it reflects one or more illogical state updates (e.g. an agent attempts to be in two

unique places at once, or partially present in multiple locations). I can construct a row stochastic

adoption matrix using the network level state update protocol Fnetwork (defined by algorithm 2).

Algorithm 2 The Network Level State Update Protocol, Fnetwork
1: function Fnetwork(β)
2: A← 0
3: for all v ∈ V do
4: u← g(f(βv))
5: avu ← 1
6: end for
7: if

∑
u avu = 0 then

8: avv = 1
9: end if

10: return A
11: end function

In Fnetwork, f is the selection-based state update protocol of an individual node (e.g. proportional

selection or maximum frequency selection) and g is the node selection companion function. Once

an adoption matrix has been constructed, the rows indicate which state values node v used to

determine xv at the end of the tth time step and the columns indicate which nodes received xu at

the end of the tth time step. For example, if f is proportional selection, then for each node v ∈ V ,

avu = 1 where node u is chosen uniformly from g(βv). Similarly, if f is maximum frequency

selection, then for each node v ∈ V , avu = 1 where node u is chosen such that it is associated with

27

the most frequently occurring state value present in βv (i.e. mode (h(βv))).

Using these adoption matrices, I can study how the distribution of state values changes over time

within a network of nodes that all use a buffered gossip algorithm. I can model these changes as

the evolution of the linear system

x(t+ 1) = A(t)x(t) (4.1)

where x(t) is the state vector of the nodes at the end of the tth time step. Under these dynamics, the

decentralized consensus problem is solved when x(t + 1) = x(t) = κ1, where κ is the consensus

state of the system.

Convergence to a Consensus State

The first step in showing that a buffered gossip algorithm is capable of solving the decentralized

consensus problem is to identify the conditions under which a consensus will form within a net-

work of nodes using the algorithm. When using a push-based information propagation algorithm,

this can occur as the result of an information cascade: when the state value of one node is propa-

gated to every other node in the network. A consensus sequence specifies an ordered sequence of

adoptions that cause an information cascade.

Definition 1 A consensus sequence is a finite set Aκ = {A(t1),A(t2)...A(tn)} with 0 ≤ t1 <

t2 < · · · < tn < ∞ such that κ1 = A(tn) · · ·A(t2)A(t1)x(t1). A consensus sequence specifies

an ordered sequence of adoptions that propagate a single value to every node in the network.

For any specific network, there may be multiple consensus sequences. Semantically, each matrix

in a consensus sequence can be associated with an adjacency matrix that represents a path in G.

28

These paths denote the flow of information between nodes at the end of the associated time step.

I will now show that if a finite network, G, contains a directed spanning tree and if the nodes in G

use a buffered gossip algorithm with a selection-based state update protocol and an asynchronous

timing model, then at least one consensus sequence exists (lemma 1) and state information will

eventually be transmitted according to that sequence (lemma 2).

Lemma 1 If a finite network, G, has a directed spanning tree and if the nodes in G use a buffered

gossip algorithm with a selection-based state update protocol and an asynchronous timing model,

then a consensus sequence exists.

Proof 1 The proof of lemma 1 is similar to a breadth first search.

Let G = (V,E) be a finite network, let Ω be a directed spanning tree of G with root ω ∈ V , and

let d be the number of nodes that will act during time step t.

Because d is Poisson distributed when an asynchronous timing model is used, P (d = 1)n > 0

if n > 0 is finite (i.e. there is a positive probability that only one node will be active n times in

a row). Because Ω is a directed spanning tree of G with root ω, G is connected and there is at

least one path from ω to every other node in the network. Because nodes act independently and

P (d = 1) > 0, P (ω acts alone) > 0 at some time step t ≥ 0 (i.e. it is possible for ω to be the

only node to act during an arbitrary time step). Likewise, if the k children of ω are enumerated

as w1 . . . wk, then P (ω acts alone)k > 0 for some t ≥ 0. Because all nodes use a buffered gossip

algorithm, each time ω acts it will transmit to one and only one neighbor. Because neighbors are

selected uniformly at random, if k > 1 there is a positive probability that the selected neighbor will

not have already received xω in the previous k time steps. Thus, after k time steps, βwi
= {(ω, xω)}

for the ith child of ω (i.e. it is possible for ω to sequentially transmit its state value to each child,

one after the other).

29

t = t1 t = t2 t = t3

t = t4

t = t7

t = t5 t = t6

t = t8 t = t9

ω ω ω

ω ω ω

ω ω ω

Figure 4.1: Transmission along the nodes of a directed spanning tree, Ω, with root node, ω.

Similarly, there is a positive probability that after ω has executed k transmissions, each child of

ω, wi, will act k′ time steps in a row and pass along xω to their k′ children, because node wi

will adopt xω as their own state since all nodes use a selection-based state update protocol and

βwi
= {(ω, xω)}. This process will continue recursively until xω has been adopted by every node

in the network, one level at a time, moving from root to leaf.

There are n adoption matrices corresponding to all of these single-node actions. n is finite because

G is finite. Thus, the finite set of these matrices form one possible consensus sequence. �

Figure 4 visualizes the transmission process along Ω that is described in the proof of lemma 1.

Given a network, G, that has a directed spanning tree, Ω, the root node, ω, starts out in state black

30

and proceeds to transmit that information to its children over the next two ticks. Those child then

pass along the black information to their children over the next five ticks. Finally, consensus is

achieved when the last node adopts the black information during the ninth tick.

Lemma 2 If a consensus sequence exists, then it is guaranteed to be observed in asymptotic time.

Proof 2 Let Ei be the event “A consensus sequence is observed during the time period ∆t =

(i, i + |Aκ|].” Ei is independent from Ei+1 because each node acts independently of one another

and of past histories. Furthermore, P (Ei) > 0 for all i ≥ 0 because lemma 1 establishes the

existence of Aκ. Thus,
∑∞

t=0 P (Et) = ∞. Hence, by the second Borel-Cantelli Lemma, the

number of observations of Ei will approach infinity as t→∞ and so the probability of observing

a consensus sequence in asymptotic time is 1. �

Combining lemma 1 and lemma 2, I can now state the criteria for consensus under a buffered

gossip algorithm.

Theorem 3 If a finite network, G, contains a directed spanning tree and if the nodes in G use a

buffered gossip algorithm with a selection-based state update protocol and an asynchronous timing

model, then consensus will be obtained in asymptotic time.

Proof 3 By direct application of lemma 1 and lemma 2. �

It should be noted that, in practice, a consensus sequence does not always reflect a tree. Initial con-

figurations and simultaneous action can lead to actual consensus sequences that are much shorter

than one might expect based on the naive sequences constructed in lemma 1.

31

Robustness to Noise and Node Failure

The second step in showing that a buffered gossip algorithm is capable of solving the decentralized

rendezvous problem is to show that it is robust to noise and node failure. Noise occurs when, for

whatever reason, incorrect information is either transmitted or received. Node failure occurs when

a node stops transmitting.

Theorem 3 implies that noise will not prevent consensus, but it may interfere with the formation

of a consensus sequence and thus reduce the speed at which consensus occurs. Because the infor-

mation transmitted between nodes may not be accurate in the presence of noise, partially formed

consensus sequences may be broken. Because noise is random, however, there is a positive prob-

ability that a consensus sequence is able to form without disruption, and so lemma 1 and lemma

2 continue to hold. One interesting consequence of the buffered gossip algorithm’s robustness to

noise is that even though consensus will be obtained, it is possible that the final consensus state

is an error value. Typically, this is undesirable behavior - but it could be leveraged by intelligent

social agents as the basis of creativity, exploration, and innovation.

Theorem 3 also implies that node failure will only prevent consensus when two conditions hold:

1) the node(s) that fail are cut points within every possible directed spanning tree of G; i.e. their

removal results in the inability to construct a directed spanning tree in G; and 2) the node(s) that

fail never reactivate. If both of these conditions do not hold, then node failure will only delay the

formation of a consensus by the same argument given on the impact of noise.

These conclusions align with the existing knowledge that robustness to noise and node failure is

one of the major strengths of a gossip-based approach to consensus formation [5, 6, 20].

32

Stability of the Consensus State

The final step in showing that a buffered gossip algorithm is capable of solving the decentralized

consensus problem is to show that once a consensus has been obtained, the consensus will be

maintained until new information becomes available. Theorem 3 establishes that buffered gossip

algorithms are capable of solving the decentralized consensus problem by achieving consensus

in the context of locational information, but it does not ensure that the system will maintain that

consensus once it has been obtained.

Lemma 4 ensures that if the system achieves consensus, it will remain in consensus until acted

upon by external forces.

Lemma 4 If a finite network, G, contains a directed spanning tree and if the nodes in G use

a buffered gossip algorithm with a selection-based state update protocol and an asynchronous

timing model, then xc = κ1 is a fixed point of x(t+ 1) = A(t)x(t).

Proof 4 By construction, A(t) is row stochastic, so A(t)1 = 1. Thus, 1 is an eigenvector of

A(t) with an eigenvalue of λ = 1. Because scalar multiples of eigenvectors are also eigenvectors,

xc = κ1 is an eigenvector of A(t) with an eigenvalue λ = 1. So A(t)κ = κ, and thus the

consensus state, κ, is a fixed point of x(t+ 1) = A(t)x(t). �

Thus, a buffered gossip algorithm with a selection-based state update protocol and an asynchronous

timing model is a solution to the decentralized consensus problem in the discrete domain if the

finite network, G, contains a directed spanning tree.

33

Uniform Gossip Algorithms

The uniform gossip algorithm [5,14,15] can be modeled as a push-based information propagation

algorithm in which an agent processes information as soon as that information is received. Using

a state update protocol that I call tail selection, it is possible to enable the instantaneous processing

of information and still account for the presence of a buffer. An additional benefit of using tail

selection is that the uniform gossip algorithm can be treated as a buffered gossip algorithm. This

relationship between the uniform gossip algorithm and buffered gossip algorithms is important be-

cause it allows us to directly compare the algorithms against one another and explore the impact

that a buffer can have on the speed at which the decentralized consensus problem is solved. Be-

fore this comparison can be made, however, I will first define the uniform gossip algorithm as a

specific type of buffered gossip algorithm. I will then show that the uniform gossip algorithm will

successfully solve the decentralized consensus problem under the same conditions as the buffered

gossip algorithm.

Definition

In the original description of the uniform gossip algorithm [20], nodes transmit their state value

to a neighbor that has been selected according to a uniform distribution, and that neighbor then

immediately updates its own state value to reflect the newly received information. As a result of

this process, the state value of each node at the end of a time step reflects the last transmission that

it received.

The behavior of the uniform gossip algorithm can be modeled as a push-based information propa-

gation algorithm by using a buffered gossip algorithm in which the buffer is ordered by transmis-

sion sequence and tail selection is used as the state update protocol. Tail selection, denoted ftail,

34

is a selection-based state update protocol that selects the last element in the buffer. For example,

if βu = {(2, 1), (3, 1), (4, 2)} then P (xu = h(ftail(βu) = 2)) = 1. Nodes using tail selection

are equivalent to nodes that lack a buffer for long-term storage and overwrite their state value in

response to every transmission. As such, the uniform gossip algorithm is only affected by the

randomness of the incoming transmissions. The uniform gossip algorithm uses the same gossip

mechanism and gossip protocol as the buffered gossip algorithm. Behaviorally, the use of the tail

selection state update protocol causes the uniform gossip algorithm to behave like a voter model

on a network with a time-varying topology. At any given time step, t, the neighborhood of each

node, u, consists only of those nodes transmitting to node u.

Because the uniform gossip algorithm is a buffered gossip algorithm, its mechanical definition is

identical to the mechanical definition of a buffered gossip algorithm, as defined in algorithm 1. As

with the buffered gossip algorithm, it is possible for |W | to vary; however, the exiting literature

only appears to consider the case when |W | = 1.

Uniform Gossip Algorithms as Solutions to the Discrete Consensus Problem

Because the uniform gossip algorithm can be modeled as a buffered gossip algorithm with a

selection-based state update protocol (i.e. tail selection), it is guaranteed to solve the decentral-

ized consensus problem under the same conditions as the buffered gossip algorithm.

According to theorem 3, if a finite network, G, contains a directed spanning tree and if the nodes in

G use a buffered gossip algorithm with a selection-based state update protocol and an asynchronous

timing model, then consensus will be obtained in asymptotic time. The uniform gossip algorithm

can be modeled as a buffered gossip algorithm with tail selection. Tail selection is a selection-

based state update protocol. Therefore, if a finite network, G, contains a directed spanning tree,

and if the nodes in G use the uniform gossip algorithm with an asynchronous timing model, then

35

consensus will be obtained in asymptotic time.

Similarly, because the uniform gossip algorithm can be modeled as a buffered gossip algorithm,

it has the same robustness to noise and node failure as other buffered gossip algorithms with

selection-based state update protocols, and lemma 4 provides the conditions under which a con-

sensus formed by the uniform gossip algorithm is stable.

Therefore, the uniform gossip algorithm with an asynchronous timing model is a solution to the

decentralized consensus problem in the discrete domain if the finite network,G, contains a directed

spanning tree.

An Experimental Comparison between Buffered and Uniform Gossip Algorithms

Multi-agent simulation can be used to empirically compare the consensus behavior between a set of

buffered gossip algorithms and the uniform gossip algorithm. The data from such a comparison can

then be used to determine the impact that a buffer can have on the speed at which the decentralized

consensus problem can be solved.

I have created such a simulation using Python and the NetworkX [48] and Numpy [49] libraries. In

the remainder of this section, I describe the experimental design and methodology that structures

my experiments on the impact of information accumulation. I then discuss my hypotheses and

present the results of my simulations. Finally, I interpret those results as they related to the impact

of information accumulation on the speed of consensus formation within a decentralized system of

asynchronous agents.

36

Experimental Design and Methodology

The simulation used to explore the behavior of the uniform and buffered gossip algorithms models

a multi-agent system consisting of n = |V | asynchronous agents that are connected by a static

communication network. Each node in the network represents an agent and an edge connects two

nodes if there is a communication link between the associated agents. The state value of each node

represents that node’s desired consensus option and is encoded as an integer value. Each node can

store up to n transmissions in its buffer, and those transmissions are stored in the order in which

they are received. If a node receives multiple transmissions from the same agent before it is able

to clear its buffer, only the most recent transmission is retained. To account for the diversity of

many real-world networks, the communication network can be structed as either an Erdös-Renyi

random network, a Barabasi-Albert scale-free network, a Newman-Watts-Strogatz small world

network [50], or a lattice network.

Nodes use an asynchronous timing model, where the expected number of nodes that act in a single

time step follows a Poisson distribution with λ = |V |. Because asynchronous timing models are

used, it is possible that some nodes will act multiple times within a single time step. Simulation

time is measured in steps. One step has passed when all active nodes have updated their state value

and spread their information in accordance with their action algorithm. Thus, one step is equivalent

to one time step. Those nodes that act within a single step do so in a uniformly random order.

The state update protocol (proportional selection, maximum frequency selection, or tail selec-

tion) and the network topology (Erdös-Renyi random, Barabasi-Albert scale-free, Newman-Watts-

Strogatz small world, or lattice) are the primary independent variables. For each combination

of state update protocol and network topology, I randomly construct 300 networks with the se-

lected topological structure and then conduct 30 independent simulations of rendezvous over each

network. These networks are constructed randomly, with 2 ≤ |V | ≤ 100 and 2 ≤ |S| ≤ 5

37

being chosen according to a uniform distribution. The decision to vary network and state space

size was made to test solution potential over a wide range of possibilities. Additionally, Erdös-

Renyi random networks use a random value in the range [0, 1] for their connection probability, and

are guaranteed to be connected; Barabase-Albert scale-free networks and Newman-Watts-Strogatz

small world networks are randomly parameterized based on the number of nodes in the network;

and lattice networks are guaranteed to be square and do not wrap to form a torus. The parameters

associated with each network topology are a requirement of the NetworkX library.

The consensus time (measured in steps) is the dependent variable under study, with the charac-

terization that a value of 100, 000 represents a failure to achieve consensus. Nodes successfully

form a consensus if the state of every node is identical within 100, 000 steps. Nodes fail to form a

consensus if either periodic behavior is observed or the simulation runs in excess of a maximum

time limit (100, 000 steps). The simulation software is capable of detecting periodic behavior of

up to 100 unique states. Behavior is considered to be periodic if a sequence of state distributions

repeats continuously for 10, 000 consecutive steps (e.g. a sequence of 10 state distributions repeats

1, 000 times in a row).

Each simulation runs until either consensus is reached, a non-consensus stable state is observed

(either fixed or periodic), or a time limit of 110, 000 steps is exceeded. This produces a total of

9, 000 data points per experimental configuration. To remove randomness as a cause for differ-

ences between experimental configurations, each configuration is initialized with same sequence

of random numbers (i.e. simulation 17 of the configuration {proportional, random} uses the same

random seed as simulation 17 of the configuration {maximum, lattice}).

As with the theoretical proofs of consensus, these experiments focus on information propagation

algorithms with proportional selection and maximum frequency selection state update protocols

because they are similar to the voter model and the label propagation algorithm; although because

38

they are being used in a new context there is no guarantee that they will display the same behavior.

I also make the simplifying assumption that in the event of a node receiving multiple transmissions

from the same neighbor prior to a state update, only the most recent transmission is kept in the

buffer. Finally, because this dissertation focuses on comparing consensus speed between different

algorithms, and because noise and node failure only prevent consensus formation in very specific

scenarios, I assume here that information is transmitted without error and nodes do not fail during

consensus formation. This assumption simplifies the experiments by holding the noise and node

failure probabilities constant at a value of 0.0.

Hypotheses

To compare the relative consensus speed between buffered and uniform gossip algorithms, I use

Welch’s t test [51] and ANOVA on the data generated by the multi-agent simulation to test the

following hypotheses:

• Because maximum frequency selection is explicitly designed to be less random than pro-

portional selection, I expect that the mean consensus time of a buffered gossip algorithm

using maximum frequency selection (µmax) is less than the the mean consensus time of a

buffered gossip algorithm using proportional selection (µpro). Supporting evidence for this

expectation exists if I am able to reject the null hypothesis: H1: µmax ≥ µpro.

• Because maximum frequency selection is explicitly designed to be less random than the uni-

form gossip algorithm, I expect that the mean consensus time of a buffered gossip algorithm

using maximum frequency selection (µmax) is less than the the mean consensus time of the

uniform gossip algorithm (µuni). Supporting evidence for this expectation exists if I am able

to reject the null hypothesis: H2: µmax ≥ µuni.

39

• Because randomness is a core component of proportional selection and the uniform gos-

sip algorithm, I expect that the mean consensus time of a buffered gossip algorithm using

proportional selection (µpro) is equal to the the mean consensus time of the uniform gossip

algorithm (µuni). Supporting evidence for this expectation exists if I fail to reject the null

hypothesis: H3: µpro = µuni.

I also consider the impact of network topology on consensus speed by testing hypotheses related

to four different types of networks (random, lattice, scale-free, and small world):

• Because differences in network topology have been found to affect the performance of the

label propagation algorithm [30], and because the label propagation algorithm is the ba-

sis for maximum frequency selection, I expect that there will be differences between the

mean consensus times of a buffered gossip algorithm using maximum frequency selec-

tion on a random network (µmax(random)), a scale-free network (µmax(scale)), a small

world network(µmax(small)), and a lattice network (µmax(lattice)). Supporting evidence

for this expectation exists if I am able to reject the null hypothesis: H4: µmax(random) =

µmax(lattice) = µmax(scale) = µmax(small).

• Because differences in network topology have been found to affect the performance of the

voter model [27], and because the voter model is the basis for proportional selection, I expect

that there will be differences between the mean consensus times of a buffered gossip algo-

rithm using proportional selection on a random network (µpro(random)), a scale-free net-

work (µpro(scale)), a small world network(µpro(small)), and a lattice network (µpro(lattice)).

Supporting evidence for this expectation exists if I am able to reject the null hypothesis: H5:

µpro(random) = µpro(lattice) = µpro(scale) = µpro(small).

• Because differences in network topology have been found to affect at least one randomized

40

algorithm used in information propagation (e.g. the voter model [27]), and because random-

ness is a core component of the uniform gossip algorithm, I expect that there will be differ-

ences between the mean consensus times of the uniform gossip algorithm on a random net-

work (µmax(random)), a scale-free network (µmax(scale)), a small world network(µmax(small)),

and a lattice network (µmax(lattice)). Supporting evidence for this expectation exists if I am

able to reject the null hypothesis: H6: µuni(random) = µuni(lattice) = µuni(scale) =

µuni(small).

Finally, given the established literature that illustrates the potential impacts of network topology, I

expect that the relative performance of a buffered gossip algorithm using proportional selection or

maximum frequency selection, and the uniform gossip algorithm, differs across network topolo-

gies. For consistency, I denote this test as H7 and verify it by graphical analysis.

Empirical Results

This section discusses the results of my experiments on 300 randomly generated Erdös-Renyi ran-

dom networks, 300 randomly generated Barabasi-Albert scale-free networks, 300 randomly gener-

ated Newman-Watts-Strogatz small world networks, and 300 randomly generated lattice networks.

Random Networks

Figure 4.2 visualizes the experimental data from 300 randomly generated Erdös-Renyi random

networks using a standard box plot. The upper and lower boundaries of each box correspond to the

first and third quartile of the data, with the middle line representing the median value. The upper

and lower whiskers extend out to the largest and smallest value within 1.5× IRQ of the boundary.

The individual points represent the outliers of the observed data. The x-axis indicates the state up-

41

date protocol used by each algorithm. The y-axis indicates the number of steps until consensus is

achieved. The y-axis has been transformed logarithmically in order to improve the overall visual-

ization of the data; the data itself has not been transformed. One can observe that a buffered gossip

algorithm using maximum frequency selection has the lowest median consensus time and smallest

third quartile of the three algorithms. These observations suggest that, when agents communicate

over Erdös-Renyi random networks, a buffered gossip algorithm using maximum frequency se-

lection should produce lower consensus times in comparison to a buffered gossip algorithm using

proportional selection or the uniform gossip algorithm.

42

●

●●

●
●

●●●
●
●

●

●

●
●
●●
●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●
●●
●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●●
●●
●
●

●

●
●

●●●●

●
●

●●

●

●

●
●
●

●●

●●

●

●

●●

●
●
●

●
●
●

●

●●●
●

●

●
●●●●●

●●

●

●●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●●

●
●

●●●

●

●

●

●
●

●

●●

●
●

●

●●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●●
●●

●

●
●

●

●●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●
●

●

●
●
●●
●
●●●

●

●
●

●
●●●●

●

●
●

●

●

●

●

●

●

●●

●
●●●

●

●●●

●

●

●
●

●

●

●

●

●
●●
●●

●●
●●

●●

●●●

●

●●

●

●●

●

●

●
●
●

●
●

●●●●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●●
●
●
●●
●

●
●●

●

●●
●
●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●

●

●

●

●●●
●●

●

●●

●●
●

●

●●

●

●

●●●●
●
●

●
●●
●

●

●

●
●
●●●●

●

●

●

●

●●●●●
●●●●●
●

●
●

●●●●●
●

●

●

●

●●●

●

●
●●●
●
●

●●●●

●

●

●
●

●
●

●

●●

●

●

●

●●
●
●
●

●●

●

●

●

●

●

●
●
●
●

●

●
●
●
●●●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●●
●
●
●

●●
●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●●
●

●

●
●

●●

●●
●

●●

●

●

●

●

●

●●

●

●
●
●

●●

●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●●
●●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●●
●

●

●●

●●

●●

●

●●

●●
●●
●●

●
●●●

●

●●●

●

●●

●
●

●

●●
●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●

●
●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●●

●●

●

●

●

●

●

●●

●
●
●

●

●●●
●

●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●

●●●
●
●
●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●
●●

●●

●

●

●●

●●
●

●

●

●
●

●

●
●
●
●●

●

●●

●●

●

●●●

●

●●

●
●
●

●

●

●

●
●

●
●●
●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●●
●●
●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●●
●●●

●

●
●
●●
●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●●●

●●●
●

●

●

●

●

●
●●●●

●
●

●

●
●
●
●

●

●

●

●●●
●

●

●

●
●
●●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●
●

●●●

●

●

●

●●●
●

●
●

●
●
●

●
●

●

●

●

●

●
●●
●

●●

●

●

●

●
●
●

●

●
●
●
●
●

●

●

●●●

●

●
●●

●

●
●

●

●
●

●
●●

●

●●
●●
●

●
●
●●●

●

●
●

●●

●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●●

●

●

●
●●●
●
●

250

500

750
1000
1250

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 4.2: Data from the empirical comparison of the uniform and buffered gossip algorithms, vi-

sualized as box plots that show the interquartile range, median value, and outliers of the consensus

time on Erdös-Renyi random networks.

Figure 4.3 visualizes the mean consensus time of the random network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. I test hypotheses

43

H1 (µmax ≥ µpro), H2 (µmax ≥ µuni), and H3 (µpro = µuni) in the context of Erdös-Renyi random

networks using the data visualized in Figure 4.3. I reject hypotheses H1 and H2 (tH1(13340.78) =

−38.85, tH2(15499.30) = −23.00, p < 0.01 for both). This suggests that there is evidence to

support the claim that the mean consensus time of a buffered gossip algorithm using maximum

frequency selection (µmax = 79.12, σmax = 64.94) is less than the the mean consensus time of

a buffered gossip algorithm using proportional selection (µpro = 137.91, σpro = 128.06) and less

than the mean consensus time of the uniform gossip algorithm (µuni = 107.89, σuni = 99.38). I

also reject H3 (t(16953.49) = 17.57, p < 0.01), because there is not evidence to support the claim

that the mean consensus time of a buffered gossip algorithm using proportional selection (µpro =

137.91, σpro = 128.06) is equal to the the mean consensus time of the uniform gossip algorithm

(µuni = 107.89, σuni = 99.38). Instead, the evidence suggests that the mean consensus time of the

uniform gossip algorithm is less than the mean consensus time of a buffered gossip algorithm using

proportional selection. The rejection of H3 may suggest that even though randomness is central to

proportional selection and the uniform gossip algorithm, there are other factors that I have not yet

examined that may influence the length of time required to form a consensus.

44

●

●

●

80

100

120

140

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 4.3: Data from the empirical comparison of the uniform and buffered gossip algorithms,

visualized as errorbar plots of the 95% confidence intervals for the mean consensus time on Erdös-

Renyi random networks.

45

Scale-Free Networks

Figure 4.4 visualizes the experimental data from 300 randomly generated Barabasi-Albert scale-

free networks using a standard box plot. The x-axis indicates the state update protocol used by

each algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis

has been transformed logarithmically in order to improve the overall visualization of the data;

the data itself has not been transformed. I observe that a buffered gossip algorithm using maxi-

mum frequency selection has the lowest median consensus time and smallest third quartile. These

observations suggest that, when agents communicate over Barabasi-Albert scale-free networks, a

buffered gossip algorithm using maximum frequency selection should produce lower consensus

times in comparison to a buffered gossip algorithm using proportional selection or the uniform

gossip algorithm.

46

●●
●

●●
●

●

●
●

●
●●

●●

●

●

●

●

●●
●

●

●
●●●

●●
●●

●●
●

●

●
●●●●

●

●
●

●

●●●●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●
●
●

●●

●
●●
●

●

●●

●●●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●
●

●

●

●
●
●
●
●

●

●

●

●

●
●●●
●●

●●●●●

●

●●
●
●
●●
●

●●
●
●●

●●

●

●
●
●

●

●

●●
●

●●●●
●
●

●

●

●
●

●

●

●

●
●
●
●

●

●
●

●●
●
●

●●
●
●●●

●
●
●●

●

●●
●●
●

●●●

●
●
●

●
●
●●

●

●
●

●
●

●

●
●

●●

●
●

●●
●
●
●●

●●
●
●

●

●●●

●

●
●

●

●

●

●
●
●
●●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●
●●

●

●●

●

●

●
●

●
●●
●

●●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●
●●

●●
●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●
●
●

●

●
●●●

●

●●
●

●

●

●●

●
●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●●
●
●●●

●

●

●
●
●

●

●
●●
●
●

●●

●

●
●

●
●●
●
●

●

●

●

●●
●●●

●
●

●
●
●
●

●

●●
●

●
●●

●

●
●
●
●●

●
●
●

●●

●

●
●
●●●●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●
●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●●

●

●●
●
●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●
●
●

●

●●

●
●

●

●●

●

●●

●

●

●●
●●

●
●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●●●
●●
●
●●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●
●
●●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●
●●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●
●●●●
●

●

●

●

●
●

●

●●
●●●
●●

●

●

●

●

●

●

●
●

●

●●●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●●

●●

●●
●

●

●

●●
●
●
●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●

●●●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●
●
●
●
●●

●
●

●

●

●

●

●
●

●

●

●
●●
●●
●

●
●
●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●●
●
●

●

●

●●
●

●

●
●

●
●

●●●

●
●

●
●

●●●

●
●

●●
●●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●●●

●

●

●●

●●

●

●
●
●

●

●

●
●
●
●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●
●●●

●

●

●●

●●
●

●●

●

●

●
●●●
●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●●
●●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●●
●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●
●

●

●●

●

●

●

●●

●

●●●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●

●●
●
●

●
●
●
●
●●
●●
●●

●

●●
●●●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●●
●

●

●
●

●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●●●

●

●●

●●
●
●
●

●

●

●

●●

●

●●

●

●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●
●

●●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●
●

●

●

●
●
●
●

●

●

●●●

●●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●●●
●
●●●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●

●

●●
●
●
●●●

●

●
●
●

●

●

●

●

●●
●●

●

●
●

●●

●

●
●●
●●
●

●

●

●
●
●
●●

●
●

●●

●

●

●

●
●
●

●

●

5000

10000
15000

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 4.4: Data from the empirical comparison of the uniform and buffered gossip algorithms, vi-

sualized as box plots that show the interquartile range, median value, and outliers of the consensus

time on Barabasi-Albert scale-free networks

Figure 4.5 visualizes the mean consensus time of the scale-free network data along with the

95% confidence interval of each mean. The x-axis indicates the state update protocol used by

each algorithm. The y-axis indicates the number of steps until consensus is achieved. I test

47

hypotheses H1 (µmax ≥ µpro), H2 (µmax ≥ µuni), and H3 (µpro = µuni) in the context of

scale-free networks using the experimental data that underlies Figure 4.5. I reject hypotheses

H1 and H2 (tH1(9591.36) = −21.49, tH2(9696.97) = −19.41, p < 0.01 for both). This sug-

gests that there is evidence to support the claim that the mean consensus time of a buffered

gossip algorithm using maximum frequency selection (µmax = 47.41, σmax = 125.68) is less

than the the mean consensus time of a buffered gossip algorithm using proportional selection

(µpro = 206.81, σpro = 692.37) and less than the mean consensus time of the uniform gossip

algorithm (µuni = 180.40, σuni = 637.70). I also reject H3 (tH3(17877.61) = 2.66, p < 0.02),

because there is not sufficient evidence to support the claim that the mean consensus time of a

buffered gossip algorithm using proportional selection (µpro = 206.81, σpro = 692.37) is equal

to the the mean consensus time of the uniform gossip algorithm (µuni = 180.40, σuni = 637.70).

Instead, the evidence suggests that the mean consensus time of the uniform gossip algorithm is less

than the mean consensus time of a buffered gossip algorithm using proportional selection. The re-

jection of H3 may suggest that even though randomness is central to proportional selection and the

uniform gossip algorithm, there are other factors that I have not yet examined that may influence

the length of time required to for a consensus.

48

●

●

●

50

100

150

200

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 4.5: Data from the empirical comparison of the uniform and buffered gossip algorithms, vi-

sualized as errorbar plots of the 95% confidence intervals for the mean consensus time on Barabasi-

Albert scale-free networks.

49

Small World Networks

Figure 4.6 visualizes the experimental data from 300 randomly generated Newman-Watts-Strogatz

small world networks using a standard box plot. The x-axis indicates the state update protocol

used by each algorithm. The y-axis indicates the number of steps until consensus is achieved. The

y-axis has been transformed logarithmically in order to improve the overall visualization of the

data; the data itself has not been transformed. I observe that a buffered gossip algorithm using

maximum frequency selection has the lowest median consensus time and smallest third quartile.

These observations suggest that, when agents communicate over Newman-Watts-Strogatz small

world networks, a buffered gossip algorithm using maximum frequency selection should produce

lower consensus times in comparison to a buffered gossip algorithm using proportional selection

or the uniform gossip algorithm.

50

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●
●

●

●●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●●●
●

●●

●

●
●

●

●

●
●
●

●

●

●●●
●●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●●
●
●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●
●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●●

●

●
●●●●
●

●

●

●

●

●●

●

●

●●

●
●●
●●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●
●
●
●

●

●●●●
●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●●
●●●
●
●

●
●
●●

●

●●
●
●

●

●●●
●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●●

●

●●●●

●

●

●

●

●

●
●●
●
●●
●

●

●●

●

●
●

●
●●●●
●

●
●●

●●●●

●
●●●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●
●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●
●●●
●

●

●

●

●●●●●
●

●

●●●●

●

●

●●
●●
●

●

●●

●
●●
●
●

●
●

●
●●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●
●

●

●
●●

●

●

●

●
●

●

●

●●
●●
●

●●

●

●●
●
●●●●
●
●
●

●

●

●

●●

●
●
●
●
●●
●●
●●
●

●
●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●
●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●●

●

●

●

●

●

●

●
●●●
●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●●
●●
●

●
●●

●

●
●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●
●
●

●
●
●
●

●

●●
●
●●

●
●

●

●
●●

●

●

●

●

●

●

●●●
●
●
●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●●

●●

●

●●
●●●

●

●
●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●●●●●

●

●

●

●

●
●

●
●
●
●

●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●●●
●

●

●

●

●
●

●●
●
●

●

●●

●●

●

●●
●

●

●●

●
●
●●
●●
●
●
●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●
●●

●●

●

●
●

●

●
●

●
●
●

●

●●

●●●●

●●●

●

●

●
●

●

●

●

●●
●
●

●●

●

●●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●●

●

●
●●
●

●

●

●

●

●●
●

●●
●

●

●

●●
●

●
●
●●●

●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●

●

●
●●

●

●

●●

●
●

●

●
●●

●

●
●●

●

●

●●
●
●

●
●●
●●

●●

●

●
●●
●●●●
●●●

●

●●

●

●

●

●●

●●●
●
●

●

●

●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●

●●●
●

●

●
●

●

●
●●

●

●

●
●●
●●

●

●
●

●
●

●

●●●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●
●
●

●
●
●
●●
●
●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●
●

●●

●
●

●●

●●

●

●
●
●
●

●●

●
●●

●

●

●
●●●●●
●●●
●
●

●●
●

●

●

●●●
●

●

●●●

●●●
●
●●●

●
●

●

●
●●

●

●
●

●
●
●

●
●

●

●

●

●
●

●
●●

●

●●

●
●
●

●●●●

●

●●
●●

●
●

●

●

●

●●

●

●

●
●●

●●

●
●

●

●

●
●

●
●

●●●
●
●
●
●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●●

●

●

2500

5000
7500

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Small World Networks

Figure 4.6: Data from the empirical comparison of the uniform and buffered gossip algorithms, vi-

sualized as box plots that show the interquartile range, median value, and outliers of the consensus

time on Newmann-Watts-Strogatz small world networks

Figure 4.7 visualizes the mean consensus time of our small world network data along with the

95% confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. I test hypotheses

51

H1 (µmax ≥ µpro), H2 (µmax ≥ µuni), and H3 (µpro = µuni) in the context of small world

networks using the experimental data that underlies Figure 4.7. I reject hypotheses H1 and H2

(tH1(17809.95) = −16.83, tH2(16262.43) = −6.23, p < 0.01 for both). This suggests that there

is evidence to support the claim that the mean consensus time of a buffered gossip algorithm using

maximum frequency selection (µmax = 52.49, σmax = 180.70) is less than the the mean consensus

time of a buffered gossip algorithm using proportional selection (µpro = 95.66, σpro = 163.00) and

less than the mean consensus time of the uniform gossip algorithm (µuni = 67.07, σuni = 128.73).

I also reject H3 (tH3(17080.96) = 13.06, p < 0.01), because there is not sufficient evidence to

support the claim that the mean consensus time of a buffered gossip algorithm using proportional

selection (µpro = 95.66, σpro = 163.00) is equal to the the mean consensus time of the uniform

gossip algorithm (µuni = 67.07, σuni = 128.73). Instead, the evidence suggests that the mean

consensus time of the uniform gossip algorithm is less than the mean consensus time of a buffered

gossip algorithm using proportional selection. The rejection of H3 may suggest that even though

randomness is central to proportional selection and the uniform gossip algorithm, there are other

factors that I have not yet examined that may influence the length of time required to form a

consensus.

52

●

●

●

50

60

70

80

90

100

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Small World Networks

Figure 4.7: Data from the empirical comparison of the uniform and buffered gossip algorithms,

visualized as errorbar plots of the 95% confidence intervals for the mean consensus time on

Newmann-Watts-Strogatz small world networks.

53

Lattice Networks

Figure 4.8 visualizes the experimental data from 300 randomly generated lattice networks using

a standard box plot. The x-axis indicates the state update protocol used by each algorithm. The

y-axis indicates the number of steps until consensus is achieved. The y-axis has been transformed

logarithmically in order to improve the overall visualization of the data; the data itself has not been

transformed. I observe that the uniform gossip algorithm has the lowest median consensus time

and smallest third quartile. I also observe that the total performance range (including outliers) is

similar between a buffered gossip algorithm using maximum frequency selection, a buffered gos-

sip algorithm using proportional selection and the uniform gossip algorithm; although the median

value and third quartile of a buffered gossip algorithm using maximum frequency selection is less

than the median value and third quartile of the proportional data. These observations suggest that

when agents communicate through lattice random networks, the uniform gossip algorithm should

produce lower consensus times in comparison to a buffered gossip algorithm using maximum fre-

quency selection or proportional selection, but it would not be uncommon for all three algorithms

to produce similar results.

54

●●

●

●

●

●●
●

●●●●

●

●
●
●●

●

●

●

●●●●
●

●

●

●

●●
●

●●
●

●●
●

●●●

●

●●
●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●●●

●

●●●●
●

●

●●●

●

●●●●
●

●

●●●

●

●

●

●●●

●

●●●●
●

●

●

●

●●
●

●●●●

●

●●

●

●●●●●
●

●

●●

●

●●
●

●●●

●
●

●●●

●

●

●

●●
●

●●
●

●●
●

●●●●

●

●

●

●●
●

●●●●

●

●

●

●●
●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●●●

●

●●

●

●●
●

●●●●
●

●

●●●

●

●

●

●●●●

●

●

●

●●●

●

●●●●
●

●

●

●

●●●●

●

●●●●

●

●

●

●●●●

●

●●●

●

●●●
●

●

●●

●

●●
●

●●●●

●

●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●

●●●●

●

●●●
●

●

●●●●
●

●

●●

●

●●●●

●

●●●●

●

●●●

●

●●

●

●●
●

●●
●

●●●●
●

●

●●●
●

●

●

●

●●
●

●●●●

●

●

●

●●
●

●●●●

●

●●●

●

●●

●

●●
●

●●●●

●

●

●

●●●●

●

●

●

●●
●

●●●●

●

●●●

●

●
●
●●

●

●●●
●

●

●

●
●

●
●

●

●●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●

●●
●
●

●

●●●
●

●

●
●
●●

●

●●●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●

●

●
●
●

●

●
●
●●

●

●●●
●
●

●

●●●
●●●
●

●

●●●
●
●

●

●●●
●

●

●
●
●

●

●
●
●●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●●

●

●
●
●●●

●

●●●
●●

●

●
●

●

●
●
●●
●

●●
●

●

●●●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●

●

●
●
●

●

●●●
●

●

●
●
●

●

●●●
●
●

●

●●●
●●

●

●
●

●

●
●
●●

●

●●●
●
●

●

●●●
●

●

●
●
●

●

●●●
●

●

●
●
●

●

●
●
●●

●

●●●
●

●

●
●
●●

●

●
●
●

●

●

●●●
●

●

●
●
●

●

●●●
●
●

●

●●●
●●
●

●

●●●
●●

●

●
●

●

●
●
●●

●

●

●●●
●
●

●

●●●
●
●

●

●●●
●

●

●
●
●

●

●●●
●
●

●

●●●
●

●

●
●
●

●

●●●
●●
●

●

●●●
●●●
●

●

●●●
●●

●

●
●
●●

●

●
●
●

●

●●●
●
●

●

●●●
●●

●

●

●
●●
●

●

●
●

●

●
●
●●

●

●●●
●●
●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●

●

●
●
●

●

●
●
●

●

●●●
●
●

●

●●●
●●

●

●
●

●

●
●
●

●

●●●
●

●

●
●
●

●

●●●
●

●

●
●

●

●
●
●

●

●●●
●
●

●

●●●
●

●●
●
●

●

●●●
●●
●

●

●●●
●●
●

●●
●

●

●
●

●

●
●

250

500

750
1000

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 4.8: Data from the empirical comparison of the uniform and buffered gossip algorithms, vi-

sualized as box plots that show the interquartile range, median value, and outliers of the consensus

time on lattice networks.

Figure 4.9 visualizes the mean consensus time of the lattice network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. I test hypotheses

55

H1 (µmax ≥ µpro),H2 (µmax ≥ µuni), andH3 (µpro = µuni) in the context of lattice networks using

the experimental data that underlies Figure 4.9. I reject hypotheses H1 (tH1(16329.79) = −11.03,

p < 0.01). This suggests that there is evidence to support the claim that the mean consensus

time of a buffered gossip algorithm using maximum frequency selection (µmax = 101.26, σmax =

92.48) is less than the the mean consensus time of a buffered gossip algorithm using proportional

selection (µpro = 119.69, σpro = 128.80). I fail to reject H2 (tH2(17635.54) = 3.45, p = 1). This

suggests that there is not sufficient evidence to support the claim that the mean consensus time of

a buffered gossip algorithm using maximum frequency selection (µmax = 101.26, σmax = 92.48)

is less than the mean rendezvous time of the uniform gossip algorithm (µuni = 96.12, σuni =

106.85). I also reject H3 (tH3(17404.13) = 13.36, p < 0.01), because there is also not sufficient

evidence to support the claim that the mean consensus time of a buffered gossip algorithm using

proportional selection (µpro = 119.69, σpro = 128.80) is equal to the the mean consensus time of

the uniform gossip algorithm (µuni = 96.12, σuni = 106.85). Instead, as in a random network, the

evidence suggests that the mean consensus time of the uniform gossip algorithm is less than the

mean consensus time of a buffered gossip algorithm using proportional selection. The rejection of

H3 may suggest that even though randomness is central to proportional selection and the uniform

gossip algorithm, there are other factors that I have not yet examined that may influence the length

of time required to form a consensus.

56

●

●

●

95

100

105

110

115

120

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 4.9: Data from the empirical comparison of the uniform and buffered gossip algorithms,

visualized as errorbar plots of the 95% confidence intervals for the mean consensus time on lattice

networks.

57

Impact of Network Topology

In regards to comparing the mean consensus time across network topology, I reject H4, H5, and

H6 (p < 0.01 for each). The evidence supports the claim that consensus time is sensitive to the

topology of the agent communication network. Furthermore, one can observe evidence to support

hypothesis H7: the communication topology appears to produce a difference in the relative perfor-

mance of a buffered gossip algorithm proportional selection or maximum frequency selection, and

the uniform gossip algorithm.

Summary of Results

Consensus was observed in all of the experiments comparing buffered gossip algorithms against

the uniform gossip algorithm. In the worst case, the maximum consensus time was 19909 steps

and occurred under proportional selection over a Barabasi-Albert scale-free network with |V | = 84

nodes, |E| = 83 edges, and |S| = 6.

The results of these experiments suggest that while the state update protocol does exhibit influence

on the consensus time, the topology of the communication network may be the most critical factor

in the speed of consensus. Evidence of this behavior is found in the observed consensus times

across the four network topologies tested in the experiments – the mean consensus time varies more

between the type of network than the state update protocol. This finding is in line with the existing

research on the voter model and Label Propagation Algorithm. Furthermore, the underlying theory

of the buffered gossip algorithm also suggests that the topology is critical to the overall success of

a consensus problem solution; e.g. disconnected networks will never achieve consensus.

In regards to the impact that a buffer can have on the speed of consensus, the results suggest that

algorithms which store information in a buffer typically have lower mean consensus times than

58

those that do not. In the worst case among the results (lattice networks), a buffered gossip algorithm

using maximum frequency selection is only slightly worse than the uniform gossip algorithm.

59

CHAPTER 5: BUFFERED GOSSIP AND LOCAL OBSERVATION

ALGORITHMS

Buffered gossip algorithms, which allow agents to accumulate incoming transmissions, are func-

tionally similar to some of the opinion dynamics models that are studied in computational sociol-

ogy (e.g. the voter model or the label propagation algorithm). In a buffered gossip algorithm, each

agent transmits to only a single neighbor, but it is possible for an agent to to be the transmission

target for multiple neighbors - i.e. an agent can receive multiple transmissions. In many opinion

dynamics models, each agent queries information from every neighbor - i.e. every agent receives

multiple transmissions.

To determine whether or not the functional similarities between buffered gossip algorithms and

models of opinion dynamics also lead to similarities in performance on the decentralized con-

sensus problem, I first define the local observation algorithm as abstraction layer for models of

opinion dynamics and other pull-based information propagation algorithms. Next, I describe the

experimental design and methodology that is used to empirically compare the performance of lo-

cal observation algorithms against the uniform gossip algorithm and buffered gossip algorithms

with identical timing models, transfer protocols, and state update protocols. To the best of my

knowledge, such a direct comparison between push-based and pull-based methods of information

propagation algorithms has not yet been done. Finally, I analyze and summarize the results of

those experiments.

60

Local Observation Algorithms

Local observation algorithms are pull-based information propagation algorithms can that be used

to solve the decentralized consensus problem when all consensus options are discrete and agents

act asynchronously. Local observation algorithms generalize models of opinion dynamics that

use pull-based algorithms to obtain information by requesting it from or observing neighboring

agents (as opposed to pushing their own values on to one or more specific neighbors as push-based

algorithms do). The behavior of local observation algorithms is also central to the behavior of the

Stochastic Local/Observation Gossip (SLOG) algorithm, and so like buffered gossip algorithms,

these algorithms must be understood before defining the SLOG algorithm. Towards this end, I

first define local observation algorithms and describe their basic mechanics. I then show that local

observation algorithms are capable of solving the decentralized consensus problem, but there is

not always a guarantee that they will.

Definition

As an information propagation algorithm, I define a local observation algorithm by fixing the

timing model, transfer mechanism, transfer protocol, and state update protocol of node u within

a specific range of values. Each combination of values within this range defines a unique local

observation algorithm.

The timing model of a local observation algorithm is either asynchronous or synchronous. In this

dissertation, I limit my discussion to asynchronous timing models due to the focus on decentralized

systems, and because it is often impractical to maintain the synchronization of large decentralized

populations.

Local observation algorithms use a local observation transfer mechanism along with a transfer

61

protocol in which multiple nodes, W = N(u), transmit their state value to node u without modi-

fication and node u stores incoming information as a tagged pair within the buffer βu. Therefore,

each node using a local observation algorithm receives information from all neighboring nodes

during a single tick. Upon receiving a transmission, these nodes store the associated information

in their buffer along with the identification of the sender. As a result of this transmission behavior,

the buffer of node u will contain always multiple elements (i.e. P (|βu| > 1) = 1).

To compare local observation algorithms against the buffered gossip algorithms I described in

chapter 4, the local observation algorithms that I study in this dissertation use either maximum

frequency selection or proportional selection as their state update protocol. Local observation

algorithms that use proportional selection are functionally identical to a voter model [26,27]. Local

observation algorithms that use maximum frequency selection are functionally identical to the

Label Propagation Algorithm [30, 47].

Mechanics

Local observation algorithms can also be defined by their mechanics. If u ∈ V is a node that uses a

pull-based information propagation algorithm, then node u displays the following behavior: when

the clock of node u ticks, node u observes its neighborhood, N(u), and stores the state value of

each neighbor in βu; next, node u updates xu according to its state update protocol. After xu has

been updated, node u clears its buffer and waits for the next tick of its internal clock. This process

of observing neighbors, updating state, and buffer erasing is described by algorithm 3.

If |W | = 1 then I call the information propagation algorithm a simple observation algorithm. If 1 <

|W | ≤ |N(u)| then I call the information propagation algorithm a partial observation algorithm.

Finally, if |W | = |N(u)| then I call the information propagation algorithm a local observation

algorithm. Within the existing literature on pull-based information propagation algorithms for the

62

Algorithm 3 The Local Observation Algorithm
1: procedure ACT(u ∈ V)
2: for all v ∈ W : W ⊆ N(u) do
3: βu ← βu ∪ (v, xv)
4: end for
5: xu ← h(f(βu))
6: βu ← ∅
7: end procedure

decentralized consensus problem, the majority of work is aimed at the case when |W | = |N(u)|. In

this dissertation, I continue this trend by focusing on local observation algorithms, and not simple

or partial observation algorithms.

Local Observation Algorithms as Solutions to the Decentralized Consensus Problem

Specific types of local observation algorithms, especially the voter model and majority-based algo-

rithms such as the label propagation algorithm, have been long studied in the literature on opinion

dynamics and computational social science. It is well known that the the voter model solves the

discrete decentralized consensus problem when an asynchronous timing model is used, but not

necessarily when the timing model is synchronous [23, 26–28, 52, 53]. The Label Propagation Al-

gorithm is not generally a solution to the discrete decentralized consensus problem [30, 47], but it

is possible to sometimes observe consensus formation.

Using the existing knowledge of the voter model and label propagation algorithm, along with the

mathematical framework developed for the buffered gossip algorithm, I derive the conditions un-

der which local observation algorithms are capable of solving the decentralized consensus problem

in the discrete domain and within the assumptions of this dissertation. Towards this end, I discuss

consensus formation in local observation algorithms that use a proportional selection state update

protocol, consensus formation in local observation algorithms that use a maximum frequency se-

63

lection state update protocol, and consensus formation in local observation algorithms in general.

I also discuss the impact of noise and error on local observation algorithms.

Consensus under Proportional Selection

A local observation algorithm with a state update protocol that implements proportional selection

is a voter model. It is known that consensus will be achieved if a voter model uses an asynchronous

timing model [23, 26–28, 52, 53]. Thus, a local observation algorithm that uses an asynchronous

timing model with proportional selection will solve the discrete decentralized consensus problem.

Alternatively, because proportional selection chooses a single element from a buffer at random,

consensus occurs by the same type of arguments as made in lemma 1, lemma 2, and theorem 3.

Stability of the consensus is ensured by lemma 4.

Consensus under Maximum Frequency Selection

A local observation protocol with a state update protocol that implements maximum frequency

selection is a label propagation algorithm. It is known that the label propagation algorithm is not

guaranteed to achieve a consensus when an asynchronous timing model is used. Thus, in general,

a local observation algorithm that uses an asynchronous timing model with maximum frequency

selection is not guaranteed to solve the discrete decentralized consensus problem.

As an example of this failure to solve the discrete decentralized consensus problem, assume that

G = (V,E) is a 4 × 3 lattice network with S = {white, black} and all nodes u ∈ V are using

a local observation algorithm with an asynchronous timing model and a state update protocol that

implements maximum frequency selection. Figure 5 displays a configuration under which it is

impossible to reach a consensus in G. When the clock of node un ticks, un will populate βun with

64

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

Figure 5.1: A failure scenario for a local observation algorithm using maximum frequency selec-
tion.

the state values of its neighbors and then apply maximum frequency selection to pick the new value

for xun . For nodes u1, u2 and u3 this means that xun = white since u4 = u5 = u6 = white, while

for nodes u10, u11 and u12 this means that xun = black since u7 = u8 = u9 = black. Likewise,

xu4 = white since u1 = u5 = white and u7 = black; xu5 = white since u2 = u4 = u6 = white

and u8 = black; and xu6 = white since u3 = u5 = white and u9 = black. For similar reasons,

xun = black for nodes u7 = u8 = u9. Thus, it is impossible to achieve a consensus because every

node in V will maintain its current state value.

Consensus under Arbitrary Selection-Based State Update Protocols

A local observation algorithm using an arbitrary selection-based state update protocol cannot be

guaranteed to solve the discrete decentralized consensus problem because there is a chance that

the selection-based state update protocol will exhibit behavior similar to maximum frequency se-

lection. Specifically, because nodes that use local observation algorithms will always account for

the state value of every neighbor, a directed spanning tree, Ω, in the network G does not neces-

65

sarily reflect the transmission activity within a system using a local observation algorithm, as it

does in the case of a buffered or uniform gossip algorithm. As a consequence of this representa-

tion, a consensus sequence may not exist, and so theorem 3 does not always apply. For example,

if one assumes that only one node acts per time step, and all nodes have four neighbors, then a

node using a local observation will always have four values in its buffer, whereas a node using

a buffered gossip algorithm will have at most one value in its buffer. If a buffer has more than

one element, then there is no singular “root” node. Therefore, I claim that the viability of a local

observation algorithm as a solution to the discrete decentralized consensus problem depends not

only the existence of a directed spanning tree, timing model, and state update protocol - but also

the neighborhood topology of each node. As an example of this dependency, consider a line graph

and a lattice. Nodes using a local observation algorithm on a line graph will reach consensus under

maximum frequency selection because the nodes break ties randomly and always have only one or

two neighbors, but on a lattice there is a possibility that the fixed state will not represent consensus

(see figure 5).

Robustness to Noise and Node Failure

When theorem 3 holds for local observation algorithms, such as in the case of proportional selec-

tion, I can conclude that noise will not prevent consensus, but it may interfere with the formation

of a consensus sequence and thus reduce the speed at which consensus occurs. The cause for this is

the same as with the buffered algorithm. Because the information transmitted between nodes may

not be accurate in the presence of noise, partially formed consensus sequences may be broken.

However, because noise is random, there is a positive probability that a consensus sequence is able

to form without disruption, and so lemma 1 and lemma 2 continue to hold.

I can also conclude that, when theorem 3 holds, node failure will only prevent consensus when two

66

conditions hold: 1) the node(s) that fail are cut points within every possible directed spanning tree

of G; i.e. their removal results in the inability to construct a directed spanning tree in G; and 2) the

node(s) that fail never reactivate. These are the same conditions that must occur with a buffered

gossip algorithm. If both of these conditions do not hold, then node failure will only delay the

formation of a consensus by the same argument given on the impact of noise. Unlike the case

of the buffered gossip algorithm, however, systems that use local observation algorithms may be

more sensitive to node failure due to their typical buffer size.

An Experimental Comparison between Buffered Gossip and Local Observation Algorithms

Multi-agent simulation can be used to empirically compare the consensus behavior between a set of

buffered gossip algorithms, a set of local observation algorithms, and the uniform gossip algorithm.

The data from such a comparison can be used to determine whether or buffered gossip and local

observation algorithms are similar in their performance on the decentralized consensus problem.

To conduct these comparisons, I use the same simulation software as used in my experiments

comparing the buffered gossip algorithm against the uniform gossip algorithm. In the remainder of

this section, I describe the experimental design and methodology that structures my experiments.

I then discuss my expectations and present the results of my simulations. Finally, I interpret those

results as they related to the relative performance of the buffered gossip and local observation

algorithms on the consensus problem within a decentralized system of asynchronous agents.

Experimental Design and Methodology

The simulation used to explore the behavior of buffered gossip and local observation algorithms

models a multi-agent system consisting of n = |V | asynchronous agents that are connected by a

67

static communication network. Each node in the network represents an agent and an edge connects

two nodes if there is a communication link between the associated agents. The state value of each

node represents that node’s desired consensus option and is encoded as an integer value. Each

node can store up to n transmissions in its buffer, and those transmissions are stored in the order in

which they are received. If a node receives multiple transmissions from the same agent before it is

able to clear its buffer, only the most recent transmission is retained. To account for the diversity of

many real-world networks, the communication network can be structed as either an Erdös-Renyi

random network, a Barabasi-Albert scale-free network, a Newman-Watts-Strogatz small world

network [50], or a lattice network.

Nodes use an asynchronous timing model, where the expected number of nodes that act in a single

time step follows a Poisson distribution with λ = |V |. Because asynchronous timing models are

used, it is possible that some nodes will act multiple times within a single time step. Simulation

time is measured in steps. One step has passed when all active nodes have updated their state value

and spread their information in accordance with their action algorithm. Thus, one step is equivalent

to one time step. Those nodes that act within a single step do so in a uniformly random order.

The state update protocol (proportional selection, maximum frequency selection, or tail selec-

tion) and the network topology (Erdös-Renyi random, Barabasi-Albert scale-free, Newman-Watts-

Strogatz small world, or lattice) are the primary independent variables. For each combination

of state update protocol and network topology, I randomly construct 300 networks with the se-

lected topological structure and then conduct 30 independent simulations of rendezvous over each

network. These networks are constructed randomly, with 2 ≤ |V | ≤ 100 and 1 ≤ |S| ≤ 5

being chosen according to a uniform distribution. The decision to vary network and state space

size was made to test solution potential over a wide range of possibilities. Additionally, Erdös-

Renyi random networks use a random value in the range [0, 1] for their connection probability, and

are guaranteed to be connected; Barabase-Albert scale-free networks and Newman-Watts-Strogatz

68

small world networks are randomly parameterized based on the number of nodes in the network;

and lattice networks are guaranteed to be square and do not wrap to form a torus. The parameters

associated with each network topology are a requirement of the NetworkX library.

The consensus time (measured in steps) is the dependent variable under study, with the charac-

terization that a value of 100, 000 represents a failure to achieve consensus. Nodes successfully

form a consensus if the state of every node is identical within 100, 000 steps. Nodes fail to form a

consensus if either periodic behavior is observed or the simulation runs in excess of a maximum

time limit (100, 000 steps). The simulation software is capable of detecting periodic behavior of

up to 100 unique states. Behavior is considered to be periodic if a sequence of state distributions

repeats continuously for 10, 000 consecutive steps (e.g. a sequence of 10 state distributions repeats

1, 000 times in a row).

Each simulation runs until either consensus is reached, a non-consensus stable state is observed

(either fixed or periodic), or a time limit of 110, 000 steps is exceeded. This produces a total of

9, 000 data points per experimental configuration. To remove randomness as a cause for differ-

ences between experimental configurations, each configuration is initialized with same sequence

of random numbers (i.e. simulation 17 of the configuration {proportional, random} uses the same

random seed as simulation 17 of the configuration {maximum, lattice}).

As with the theoretical proofs of consensus, these experiments focus on information propagation

algorithms with proportional selection and maximum frequency selection state update protocols

because they are similar to the voter model and the label propagation algorithm; although because

they are being used in a new context there is no guarantee that they will display the same behavior.

I also make the simplifying assumption that in the event of a node receiving multiple transmis-

sions from the same neighbor prior to a state update, only the most recent transmission is kept

in the buffer. Because this dissertation focuses on comparing consensus speed between different

69

algorithms, and because noise and node failure only prevent consensus formation in very spe-

cific scenarios, I assume that information is transmitted without error and nodes do not fail during

consensus formation. This assumption simplifies the experiments by holding the noise and node

failure probabilities constant at a value of 0.0. Furthermore, I include the uniform gossip algorithm

in these experiments as a baseline measure of performance because the uniform gossip algorithm

is an established solution for the decentralized consensus problem, and because the uniform gossip

algorithm can be implemented as a buffered gossip algorithm. Finally, I rely strictly on graphical

analysis and forgo hypothesis testing because there are 5 separate algorithms in these experiments.

Expectations

To compare the relative consensus speed between buffered gossip algorithms, local observations,

and the uniform gossip algorithm, I analyze plots and compare basic statistical measures of the data

generated by the multi-agent simulation. Based on the known behavior of the voter model and the

label propagation algorithm, along with results of my comparison of buffered gossip algorithms

against the uniform gossip algorithm, I expect to observe the following behaviors:

• Because a local observation algorithm using maximum frequency selection is functionally

equivalent to the label propagation algorithm, and it is known that the label propagation

algorithm does not always form a consensus, I expect that the mean consensus time of a

buffered gossip algorithm using maximum frequency selection will be less than the mean

consensus time of a local observation algorithm using maximum frequency selection.

• Because a local observation algorithm using proportional selection is functionally equivalent

to a voter model, and because nodes that use local observation typically have access to more

information than nodes that use buffered gossip, I expect that the mean consensus time of a

70

buffered gossip algorithm using maximum frequency selection will be greater than the mean

consensus time of a local observation algorithm using proportional selection.

• Because a local observation algorithm using maximum frequency selection is functionally

equivalent to the label propagation algorithm, and it is known that the label propagation

algorithm does not always form a consensus, I expect that the mean consensus time of a

buffered gossip algorithm using proportional selection will be less than the mean consensus

time of a local observation algorithm using maximum frequency selection.

• Because a local observation algorithm using proportional selection is functionally equiva-

lent to a voter model, and because nodes that use local observation typically have access to

more information than nodes that use buffered gossip, I expect that the mean consensus time

of a buffered gossip algorithm using proportional selection will be greater than the mean

consensus time of a local observation algorithm using proportional selection.

• Because a local observation algorithm using maximum frequency selection is functionally

equivalent to the label propagation algorithm, and it is known that the label propagation

algorithm does not always form a consensus, I expect that the mean consensus time of a

uniform gossip algorithm will be less than the mean consensus time of a local observation

algorithm using maximum frequency selection.

• Because a local observation algorithm using proportional selection is functionally equivalent

to a voter model, and because nodes that use local observation typically have access to more

information than nodes that use uniform gossip, I expect that the mean consensus time of a

uniform gossip algorithm will be greater than the mean consensus time of a local observation

algorithm using proportional selection.

• Because a local observation algorithm using maximum frequency selection is functionally

equivalent to the label propagation algorithm, and it is known that the label propagation

71

algorithm does not always form a consensus, I expect that the mean consensus time of a

local observation algorithm using maximum frequency selection will be greater than the

mean consensus time of a local observation algorithm using proportional selection.

As with my comparison of buffered gossip algorithms against the uniform gossip algorithm, I also

expect to observe differences in consensus speed across network topology.

Empirical Results

This section discusses the results of the experiments on 300 randomly generated Erdös-Renyi ran-

dom networks, 300 randomly generated Barabasi-Albert scale-free networks, 300 randomly gener-

ated Newman-Watts-Strogatz small world networks, and 300 randomly generated lattice networks.

Random Networks

Figure 5.2 visualizes the experimental data from 300 randomly generated Erdös-Renyi random

networks using a standard box plot. The upper and lower boundaries of each box correspond to

the first and third quartile of the data, with the middle line representing the median value. The

upper and lower whiskers extend out to the largest and smallest value within 1.5 × IRQ of the

boundary. The individual points represent the outliers of the observed data. The x-axis indicates

the state update protocol used by each algorithm. The y-axis indicates the number of steps until

consensus is achieved. The y-axis has been transformed logarithmically in order to improve the

overall visualization of the data; the data itself has not been transformed.

72

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●
●

●●

●
●

●

●●●

●●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●
●●

●

●

●●

●
●●

●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●●

●
●●●●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●

●
●

●

●●●

●

●

●

●
●
●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●●

●

●

●●

●●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●
●●●

●

●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●
●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●

●

●●●

●
●

●

●

●●
●

●

●
●

●

●

●

●●●

●

●
●

●

●

●
●

●

●●●

●

●

●
●

●

●

●
●●●
●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●

●●●●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●

●●

●

●

●
●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●●

●
●

●●

●
●

●●●

●●

●

●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●
●

●

●●●●
●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●
●
●
●

●●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●
●●

●

●●

●

●
●●

●

●
●
●●
●

●

●
●●

●

●●●●
●
●
●

●

●●

●●

●●
●●●
●

●●●●
●●●
●
●
●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●
●●●●
●

●

●●●
●

●

●
●
●
●●●
●
●

●●●
●

●
●●
●
●
●

●

●●
●
●
●●
●●
●

●
●
●●●●●●

●

●
●
●●

●●

●
●●
●
●
●

●
●●
●
●
●
●

●
●
●

●

●

●
●
●●
●
●

●●

●

●
●

●

●
●●
●

●
●

●

●

●●●

●
●

●●●
●●●●●●
●
●
●

●●
●●

●●

●

●

●

●

●
●●
●●●
●
●●●
●●●

●

●●●
●
●●●●
●
●●●●
●●●
●
●
●
●
●

●●●
●

●

●●●
●
●

●●

●
●
●
●
●
●

●

●
●●●●

●

●

●

●
●
●

●
●●
●
●

●●

●
●●
●●

●

●●

●

●
●
●●●●

●

●
●●

●●
●
●●
●
●●
●

●

●●

●
●●

●

●

●

●●

●●
●●●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●●
●

●●

●

●●●

●●

●

●

●●
●
●

●●

●
●●
●
●

●

●

●
●●
●
●

●

●

●
●●●●●
●●
●
●

●

●●●
●
●
●

●

●

●

●

●
●
●
●

●
●
●
●
●

●●
●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●●
●

●

●●

●●
●●●●
●

●

●

●
●●
●●
●

●
●●
●●

●

●●●

●

●
●

●

●
●

●
●

●

●
●
●
●

●●
●
●
●●●●●
●
●

●

●●
●

●●
●

●
●●
●

●

●

●

●

●

●

●
●●

●●
●●

●●
●

●

●

●

●
●

●●
●
●

●●●
●

●

●●

●

●

●

●
●
●

●

●
●

●
●●●●●
●
●

●

●
●
●●●●

●
●

●●

●
●

●●
●
●●

●●

●

●

●●

●
●
●
●●●

●

●●●●

●

●●●●●●

●●

●
●●
●
●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●●●●

●●

●●●

●

●

●

●●

●

●●
●
●

●

●●●

●

●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●
●
●
●

●

●●

●
●

●

●●●●

●

●

●

●

●
●

●●
●

●●

●

●●

●

●
●

●●

●●
●●

●

●
●
●

●●●●

●

●●●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●●
●
●

●

●

●

●
●
●●●

●

●

●

●
●●
●

●

●

●

●

●
●●

●

●●

●
●
●●

●
●
●

●
●
●●
●
●●●
●
●
●
●
●●●●

●
●●

●

●

●

●
●

●

●●
●
●●●

●

●●●
●
●
●
●

●

●

●

●

●●
●
●●
●●
●●

●●

●●●
●

●●

●

●●

●

●

●
●
●
●
●

●●●●
●
●
●●
●

●
●
●●

●

●

●

●

●

●

●

●

●●
●

●●●●●

●●

●
●

●

●

●

●

●
●

●
●
●
●●●

●
●

●

●●●●
●●●

●
●●
●

●●
●●
●

●

●

●
●
●

●
●
●●
●

●●
●

●●●

●

●

●
●

●

●

●

●●●

●

●

●●

●●●●

●

●
●

●

●

●

●

●

●
●●●

●
●
●

●

●

●
●
●
●
●

●

●

●●

●●

●

●

●

●
●●●●
●
●

●●

●●●
●

●●

●
●

●●●●
●●
●●
●●

●

●
●●●●●●●

●

●
●
●●●●●●●●●●
●
●●

●●●●●
●

●

●

●

●●●

●

●●●●
●●
●●●●

●

●

●●
●●
●
●●

●

●

●
●●●●●

●●

●
●
●

●

●

●
●
●
●

●

●●
●
●●●
●●●●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●
●
●●

●●
●●●

●●
●
●
●
●

●

●●

●
●
●
●
●

●●

●

●
●
●●
●

●

●
●
●●
●●
●
●●

●

●

●

●

●

●●

●

●
●
●
●●
●
●●
●

●
●

●

●

●

●

●

●

●
●●
●●
●●
●
●●

●
●●

●●

●

●
●

●
●●
●
●
●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●●

●
●●
●●
●●

●

●●
●●●
●
●●
●●●●

●

●●●

●

●●
●●
●
●●
●●

●

●
●●

●
●
●●●
●

●

●

●

●

●

●●●
●
●●●

●

●
●
●

●
●

●

●

●

●●
●
●

●

●

●

●
●
●●●●
●●●

●●

●

●

●

●
●

●●
●
●●

●

●●●
●

●

●
●

●●

●
●●●
●
●

●

●

●

●
●

●

●●●
●
●●●●
●

●
●
●●●
●
●

●

●

●
●

●

●

●

●●●
●
●

●

●

●●
●●●●●
●
●

●●
●

●

●
●
●

●

●●
●●

●

●●●●
●●
●

●
●●

●●
●

●

●

●
●

●
●
●●●●

●

●●

●●
●

●●●

●

●●
●●
●

●

●

●
●●

●
●●
●●

●●

●●

●
●
●

●

●●

●

●
●

●●
●

●

●

●

●●
●●●
●
●

●

●●
●●
●●●

●

●

●

●

●●

●
●●●●
●

●

●
●●●
●

●●

●

●

●

●

●●

●

●
●
●
●●
●

●
●
●
●●
●

●
●

●

●

●●

●

●●
●

●

●

●

●
●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●●●

●

●
●
●

●
●

●●

●
●

●

●●

●●

●

●●●
●●●●

●

●
●
●
●
●●●●
●
●
●

●●
●
●
●

●

●

●●●●
●

●

●
●●●

●

●●

●

●
●●

●

●

●

●
●●

●

●

●●
●

●

●
●
●●●

●
●
●

●

●
●
●●●
●

●
●
●●●●
●●

●
●
●
●●
●

●

●

●

●
●●●

●●

●

●

●

●●●

●

●●
●●●
●

●

●●●

●

●●●

●
●
●

●

●
●

●
●●

●

●●●●●
●
●●●●

●

●●

●●
●●

●
●
●

●
●

●●
●
●
●●
●

●

●

●
●
●

●

●●
●
●
●●●●●●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 5.2: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as box plots that show the interquartile range, median value, and outliers

of the consensus time on Erdös-Renyi random networks.

In figure 5.2 one can observe that a local observation algorithm using maximum frequency selec-

tion yields the lowest median consensus time and smallest third quartile of the tested algorithms,

but there are also many outliers that greatly exceed the worst-case consensus time of the other

73

information propagation algorithms. These outliers are not unusual given the relationship between

a local observation algorithm using maximum frequency selection and the label propagation algo-

rithm. Due to the uncertainty in the performance of a local observation algorithm using maximum

frequency selection, a local observation algorithm using proportional selection may yield better

results in the long run, even though its typical behavior is worse than a local observation algorithm

using maximum frequency selection.

Figure 5.3 visualizes the mean consensus time of the random network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

74

●

●

●

●

●

1000

2000

3000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 5.3: Data from the empirical comparison between buffered gossip algorithms and local

observation, as errorbar plots of the 95% confidence intervals for the mean consensus time on

Erdös-Renyi random networks.

In figure 5.3 one can observe that the mean consensus time of a local observation algorithm

using proportional selection (µlo.pro = 45.18, σlo.pro = 41.08, 95% CIµ [44.33, 46.03]) is less

than the mean consensus time of a local observation algorithm using maximum frequency se-

75

lection (µlo.max = 3218.48, σlo.max = 18388.50, 95% CIµ [2838.53, 3598.44]), a buffered gos-

sip algorithm using either maximum frequency selection (µbg.max = 79.12, σbg.max = 64.94,

95% CIµ [77.77, 80.46]) or proportional selection (µbg.pro = 137.91, σbg.pro = 128.06, 95% CIµ

[135.27, 140.56]), and the uniform gossip algorithm (µuni = 107.89, σuni = 99.38, 95% CIµ

[105.84, 109.95]).

At the opposite end of the spectrum, a local observation algorithm using maximum frequency

selection has a much greater mean consensus time than the compared algorithms. This extreme

difference is most likely due to the inclusion of experimental runs in which consensus was not

reached, and therefore the consensus time was marked as 110, 000 steps (See figure 5.2). These

values were included in the analysis to highlight the impact of failure on the performance of the al-

gorithm. If the simulations had been run for a longer period of time, the associated mean consensus

times for failing algorithms would be further biased.

Based on the observations for the experiments on Erdös-Renyi random networks, as represented in

figure 5.3 and figure 5.2, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion is less than the mean consensus time of a local observation algorithm using maximum

frequency selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is less

than the mean consensus time of a local observation algorithm using maximum frequency

selection.

76

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a uniform gossip algorithm is less than the mean consensus

time of a local observation algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a local observation algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a local observation algorithm using propor-

tional selection.

In general, the observations represented in figure 5.3 and figure 5.2, suggest that a local observation

algorithm using proportional selection is the best choice for fast consensus formation over an

arbitrary Erdös-Renyi random network. These observations also suggest that the local observation

algorithm using maximum frequency selection is the worst choice for consensus formation due to

its lack of stability.

Scale-Free Networks

Figure 5.4 visualizes the experimental data from 300 randomly generated Barabasi-Albert scale-

free networks using a standard box plot. The x-axis indicates the state update protocol used by

each algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis

has been transformed logarithmically in order to improve the overall visualization of the data; the

data itself has not been transformed.

77

●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●

●
●

●

●

●

●●●●●

●

●●
●●●

●
●

●

●

●●

●

●
●●

●

●

●●

●

●●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●●●●●

●

●●

●●●●●●●

●●●
●
●●
●
●●

●●●●●●●

●

●●

●●
●●●

●

●
●
●

●

●●●●
●●●●●●●●●●●

●

●●●
●
●
●●

●

●

●●
●●
●
●
●

●

●●
●●●

●

●

●●

●
●

●

●
●
●●
●●

●●
●●●
●

●

●●●

●
●

●

●

●

●
●
●●

●
●

●

●
●

●
●●

●

●

●
●

●
●●

●

●

●
●
●

●●

●

●

●
●●●●●●
●

●

●●
●●
●●

●

●●

●

●●
●●

●

●
●●
●●
●
●
●

●●●
●●●●
●
●

●
●

●

●

●

●
●
●

●
●●●

●

●●
●●
●
●●
●●●
●

●
●●

●

●
●

●

●
●
●

●●●

●

●

●
●

●
●●●

●

●
●●
●

●

●

●
●

●

●●

●

●
●

●
●●
●

●

●●
●

●

●

●
●
●●●

●
●

●

●

●

●●

●●
●

●
●
●

●

●

●

●●
●
●
●

●●
●
●

●

●●●●
●●●
●●

●

●
●

●
●
●
●●
●●
●●
●
●●●
●

●●●
●
●
●

●

●

●

●

●
●

●

●●

●●

●
●●

●●●●●
●
●●

●
●
●

●
●

●

●

●

●

●●●
●●
●●

●

●

●

●
●
●

●

●●

●

●

●●●
●
●●●

●

●

●
●●●●●

●●●

●

●
●
●

●●

●●

●

●

●
●
●●
●●
●

●
●
●
●

●

●●●●●●●●
●
●

●●
●

●
●

●
●
●●●
●●
●

●

●

●

●
●●

●
●

●

●
●

●

●
●
●

●
●
●
●

●

●

●
●

●

●

●
●
●

●●
●
●
●●●

●●

●

●

●
●
●

●

●

●
●
●●

●

●
●

●

●●

●
●●
●

●
●

●
●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●
●
●

●
●

●

●

●●

●●●●●
●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●
●
●●●

●●

●

●●
●
●

●

●

●●
●●

●
●

●

●
●

●
●●
●
●

●
●
●

●

●
●
●

●

●

●

●●●
●
●●

●

●
●

●

●●
●

●●

●

●
●

●

●

●

●
●●
●

●
●

●●●●

●

●●

●
●●

●●●

●●
●
●

●
●
●
●●

●●

●

●

●

●

●●
●
●

●
●●●
●●●●
●●
●

●
●
●●●●

●

●
●

●

●●●●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●
●
●●●
●
●

●●

●
●●
●

●

●●
●●●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●
●

●

●

●
●
●
●
●

●

●

●

●

●
●●●
●●

●●●●●

●

●●
●
●
●●
●
●●
●
●●

●●

●

●●
●

●

●

●●
●

●●●●
●
●

●

●

●
●

●

●

●

●
●
●
●

●

●
●
●●
●
●

●●
●●●●

●
●
●●
●

●●
●●
●
●●●

●●●

●
●
●●

●

●
●
●
●

●

●
●

●●

●
●

●●
●
●
●●

●●
●●
●

●●●

●
●
●

●

●

●

●●
●
●●
●
●

●

●

●

●
●
●
●

●

●
●
●
●

●

●

●
●

●

●
●
●●

●

●●

●

●

●
●

●
●

●●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●
●
●
●●●

●●

●

●
●

●●

●

●

●
●

●
●
●●

●

●
●●

●●
●●
●
●●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●●●

●

●
●●●

●

●●
●

●

●

●●
●
●
●

●

●

●

●
●

●●

●

●

●●
●

●

●
●

●

●

●●
●
●

●
●●

●
●
●
●
●
●

●

●
●

●

●

●●
●
●
●

●●●
●●●

●

●

●
●
●

●
●
●●●
●

●●

●

●
●

●
●●
●
●

●

●

●
●●
●●●
●
●
●
●
●
●
●
●●
●
●
●●

●

●
●●
●●
●●
●

●●

●
●
●
●●●●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●
●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●
●
●●●

●

●●

●

●●●
●

●

●

●

●●●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●

●

●
●●

●

●●

●
●

●

●●
●

●●

●
●

●●
●●

●●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●●●
●●
●
●●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●
●●

●

●
●●

●

●
●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●
●
●

●

●
●

●●
●●
●●
●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●
●●

●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●
●
●●●●●

●

●

●
●
●

●

●●●●●
●●

●
●

●

●
●

●

●●

●

●●●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●●

●
●●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●●●●

●●

●●
●
●

●

●●
●
●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●
●●●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●
●●
●●

●
●

●

●

●

●

●
●
●

●

●
●●
●●
●

●
●
●
●

●

●

●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●●
●
●

●

●

●●
●

●

●
●

●
●

●●●

●
●

●
●
●●●

●●

●●●
●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●●

●
●

●

●●

●

●
●
●
●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●●●

●

●

●●

●●

●

●
●
●

●

●
●
●
●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●
●●●

●

●

●●

●●
●

●●

●

●

●
●●●●
●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●
●●

●●

●

●
●
●●
●●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●●●

●

●
●

●●●●

●

●
●●●

●

●
●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●●
●

●
●

●●

●

●●

●

●

●

●

●
●

●

●●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●●

●

●●

●

●

●

●●

●

●●●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●●●

●●
●
●

●●
●
●
●●
●●
●●

●

●●
●●●

●

●

●●●

●●
●

●

●

●

●

●

●
●
●
●●●

●

●
●
●
●

●

●●
●

●

●
●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●
●●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●

●
●●

●

●

●
●

●
●●

●
●

●
●

●

●

●
●●●

●

●●

●●
●
●
●

●

●
●

●●

●

●●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●
●
●
●

●

●●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●●
●
●
●●●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●
●
●

●

●
●
●
●

●

●

●●●

●●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●●●●
●●●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●
●●
●

●

●

●
●

●

●

●●
●
●●
●●

●
●
●
●
●

●

●

●

●●●
●

●

●
●

●●

●

●
●●
●●
●

●

●

●
●
●
●●

●
●

●●

●

●

●

●●●

●

●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 5.4: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as box plots that show the interquartile range, median value, and outliers

of the consensus time on Barabasi-Albert scale-free networks.

In figure 5.4 one can observe that a local observation algorithm using maximum frequency selec-

tion yields the lowest median consensus time and smallest third quartile of the tested algorithms,

but there are also outliers that greatly exceed the worst-case consensus time of the other informa-

78

tion propagation algorithms due to a failure of consensus. If these failed attempts at consensus are

accounted for, then a local observation algorithm using proportional selection is expected to have

the lowest mean consensus time in the long run.

Figure 5.5 visualizes the mean consensus time of our scale-free network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

79

●

●

●

●

●

50

100

150

200

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 5.5: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as errorbar plots of the 95% confidence intervals for the mean consensus

time on Barabasi-Albert scale-free networks.

In figure 5.5 one can observe that the mean consensus time of a local observation algorithm us-

ing proportional selection (µlo.pro = 30.30, σlo.pro = 30.85, 95% CIµ [29.67, 30.94]) is less than

the mean consensus time of a buffered gossip algorithm using either maximum frequency se-

80

lection (µbg.max = 47.41, σbg.max = 125.68, 95% CIµ [44.81, 50.00]) or proportional selection

(µbg.pro = 206.81, σbg.pro = 692.37, 95% CIµ [192.50, 221.11]), and the uniform gossip algorithm

(µuni = 180.40, σuni = 637.70, 95% CIµ [167.23, 193.58]). The mean consensus time of a local

observation algorithm using maximum frequency selection (µlo.max = 53.51, σlo.max = 2318.54,

95% CIµ [5.61, 101.42]) is less than a buffered gossip algorithm using proportional selection and

less than the uniform gossip algorithm, but not necessarily less than a local observation algorithm

using proportional selection or a buffered gossip algorithm using maximum frequency selection.

As with information propagation over a random network, there are instances in which a local ob-

servation algorithm using maximum frequency selection fails to achieve consensus. The inclusion

of these events biases the mean consensus time and highlights the impact that such failures can

have on the performance of the algorithm.

Based on the observations for the experiments on Barabasi-Albert scale-free networks, as repre-

sented in figure 5.5 and figure 5.4, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

not less than the mean consensus time of a local observation algorithm using maximum

frequency selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a uniform gossip algorithm is not less than the mean consensus

81

time of a local observation algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a local observation algorithm using proportional selection.

The results of these experiments do not allow me to conclude that “the mean consensus time of

a buffered gossip algorithm using maximum frequency selection is less than the mean consensus

time of a local observation algorithm using maximum frequency selection.” or that “the mean

consensus time of a local observation algorithm using maximum frequency selection is greater

than the mean consensus time of a local observation algorithm using proportional selection”. I

conjecture, however, that as the sample size increases, the number of consensus failures under a

local observation algorithm with maximum frequency selection will increase the associated mean

consensus time until it is much larger than all other algorithms tested in this experiment.

In general, the observations represented in figure 5.5 and figure 5.4, suggest that a local observation

algorithm using proportional selection is the best choice for fast consensus formation over an ar-

bitrary Barabasi-Albert scale-free network. These observations also suggest that a buffered gossip

algorithm using maximum frequency selection has the highest mean consensus time, however, the

local observation algorithm using maximum frequency selection is the worst choice for consensus

formation due to its lack of stability.

Small World Networks

Figure 5.6 visualizes the experimental data from 300 randomly generated Newman-Watts-Strogatz

small world networks using a standard box plot. The x-axis indicates the state update protocol

used by each algorithm. The y-axis indicates the number of steps until consensus is achieved. The

y-axis has been transformed logarithmically in order to improve the overall visualization of the

82

data; the data itself has not been transformed.

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●

●●●●●●

●●
●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

●●●●●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●●●
●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●
●
●●

●

●

●
●●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●●●
●

●●●

●

●●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●●●

●

●

●●●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●●

●

●

●●●●●●

●

●

●●●

●
●●

●

●●●
●
●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●●
●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●●●

●

●

●

●

●
●●

●

●●●

●

●

●●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●●●●

●

●

●●●

●

●

●●●

●

●

●●●●●●●●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●●●

●

●
●

●
●
●●
●

●
●
●●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●

●●
●●

●●
●

●

●
●
●

●

●
●
●

●

●●
●●

●

●
●

●

●

●
●
●
●
●

●
●
●●
●●●●
●●●

●

●●

●
●

●
●●

●●
●

●

●●

●

●●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

●
●
●●
●●●●●
●
●

●

●●
●
●
●●
●
●

●●

●
●●
●

●
●●●
●●

●

●
●
●●
●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●
●●
●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●●
●
●●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●
●

●

●
●

●

●●

●

●●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●●●●
●
●

●
●

●●

●●●

●

●

●●

●
●●
●
●
●

●
●

●●

●
●

●

●

●●

●
●

●●

●●●
●

●

●

●

●

●

●●●
●

●

●●●

●●
●

●

●●
●

●

●

●
●●●
●●
●
●

●●

●●●

●
●●●
●
●

●
●
●●
●●
●
●
●●●●●

●

●
●●●

●

●
●●
●●

●●

●
●
●

●
●
●

●

●
●
●
●●
●

●●

●
●

●

●

●

●

●●
●●●

●
●

●
●

●
●●
●
●

●

●

●●
●
●

●

●
●
●

●

●

●●●●

●
●

●●
●
●
●
●
●
●
●
●

●●●

●

●
●
●

●

●
●
●

●

●

●

●●
●●

●
●

●

●●●
●
●●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●●

●
●

●
●

●●
●
●●

●

●

●

●

●

●
●
●

●

●●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●●
●●●

●●

●

●
●

●

●

●
●
●

●
●

●●●
●●●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●●●●●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●
●●
●●
●
●
●
●
●

●

●

●

●

●

●●●

●

●

●
●

●

●●
●●

●

●
●●●●
●

●
●

●
●

●●

●

●

●●
●
●●
●●

●●●●
●

●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●●●●
●
●

●●

●●

●

●

●

●

●
●●

●

●

●

●
●●●
●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●●
●●●●
●

●
●
●●
●
●●
●
●
●

●●●
●

●●

●

●●●●●●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●●●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●
●

●
●

●●

●

●
●●

●

●

●
●
●●

●

●

●

●
●●●

●

●

●●●

●

●●●●

●

●

●
●

●

●
●●
●
●●●

●

●●

●

●●

●
●●●●●

●
●●

●●●●
●
●●●●

●●

●

●●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●
●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●●
●
●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●●
●●●●

●
●
●

●●●●●
●

●

●●●●
●

●

●●
●●
●

●

●●

●
●●
●●

●
●
●●●
●
●
●

●

●
●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●●●

●

●●●
●

●

●

●
●

●

●

●●●●
●

●●

●
●●
●
●●●●
●
●●

●

●

●

●●
●●●
●
●●●●●●●

●
●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●●●●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●
●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●●

●

●

●
●

●

●

●
●●●●

●

●●

●

●●

●

●
●●●

●

●

●

●

●

●

●
●●
●●
●
●●●

●

●
●●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●
●
●
●

●
●

●

●

●●

●

●

●●●
●
●
●
●

●

●●

●●

●
●

●

●

●

●

●

●●

●
●●
●
●
●
●

●
●
●●

●

●●●●●

●
●

●

●
●●

●

●

●
●

●

●
●●●
●●●●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●●

●

●

●
●●●

●
●

●●
●●

●

●●
●●●

●

●
●●
●
●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●●●●●
●

●

●
●
●
●

●●●
●
●

●●
●

●
●
●●

●
●
●●
●
●

●

●

●●●●
●

●

●

●
●

●●
●
●
●

●●

●●

●

●●●

●

●●
●
●●●●●
●
●●
●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●●●
●●

●

●
●

●

●
●

●
●
●

●

●●
●●●●
●●●

●

●

●
●

●

●

●

●●
●
●

●●

●

●●
●

●

●

●●

●●
●
●

●
●

●

●

●
●

●
●
●

●

●●

●

●●

●
●

●

●●

●

●●●

●●

●

●●●
●

●

●

●
●

●●
●
●●
●

●

●

●●
●

●
●
●●●

●

●

●

●
●

●

●
●●
●
●

●

●

●
●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●
●
●
●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●●

●

●
●

●
●●
●

●

●●

●
●

●

●●●

●

●●
●
●

●

●●
●
●

●
●●●●

●●
●

●
●●
●●●●
●●●

●

●●

●

●
●

●●

●●●
●
●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●
●
●

●●

●

●

●●●●

●●●
●

●
●
●
●
●
●●

●

●

●●●●●

●

●
●

●
●

●

●●●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●
●
●

●
●
●
●●●
●

●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●
●
●
●
●●

●
●

●●

●●

●

●
●●●
●●
●
●●

●

●
●
●●●●●
●●●
●
●
●●
●
●

●

●●●
●

●

●●●
●●●●
●●●
●
●
●
●
●●
●

●●
●
●●

●●

●

●

●

●
●
●
●●

●

●●
●
●
●

●●●●
●

●●●●
●
●

●

●

●

●●
●

●
●
●●

●●

●
●

●

●

●
●

●
●

●●●
●
●
●●
●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●
●
●●●●
●
●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps
Consensus Time on

Small World Networks

Figure 5.6: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as box plots that show the interquartile range, median value, and outliers

of the consensus time on Newmann-Watts-Strogatz small world networks.

An examine of 5.6 reveals that a local observation algorithm using maximum frequency selec-

tion yields the lowest median consensus time and smallest third quartile of the tested algorithms,

83

but there are also many outliers that greatly exceed the worst-case consensus time of the other

information propagation algorithms due to a failure of consensus. If these failed attempts at con-

sensus are accounted for, then either a local observation algorithm using proportional selection or

a buffered gossip algorithm using maximum frequency selection is expected to have the lowest

mean consensus time in the long run.

Figure 5.7 visualizes the mean consensus time of the small world network data along with the

95% confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

84

●

●

●

●

●

1000

2000

3000

4000
5000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Small World Networks

Figure 5.7: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as errorbar plots of the 95% confidence intervals for the mean consensus

time on Newmann-Watts-Strogatz small world networks.

An examination of figure 5.7 reveals that the mean consensus time of a local observation algo-

rithm using proportional selection (µlo.pro = 59.82, σlo.pro = 114.96, 95% CIµ [57.45, 62.20])

is less than the mean consensus time of a buffered gossip algorithm using proportional selec-

85

tion (µbg.pro = 95.66, σbg.pro = 163.00, 95% CIµ [92.29, 99.02]) and the uniform gossip al-

gorithm (µuni = 67.07, σuni = 128.73, 95% CIµ [64.41, 69.73]). It is also much less than

the mean consensus time of a local observation algorithm using maximum frequency selection

(µlo.max = 4638.21, σlo.max = 21925.25, 95% CIµ [4185.17, 5091.24]). It is not, however, less

than the mean consensus time of a buffered gossip algorithm using maximum frequency selection

(µbg.max = 52.49, σbg.max = 180.70, 95% CIµ [48.76, 56.22]).

As with information propagation over a random network, there are instances in which a local ob-

servation algorithm using maximum frequency selection fails to achieve consensus. The inclusion

of these events biases the mean consensus time and highlights the impact that such failures can

have on the performance of the algorithm. If the simulations had been run for a longer period of

time, the associated mean consensus times for failing algorithms would be further biased.

Based on the observations for the experiments on Newman-Watts-Strogatz small world networks,

as represented in figure 5.7 and figure 5.6, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion is less than the mean consensus time of a local observation algorithm using maximum

frequency selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency se-

lection is not greater than the mean consensus time of a local observation algorithm using

proportional selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is less

than the mean consensus time of a local observation algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

86

greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a uniform gossip algorithm is less than the mean consensus

time of a local observation algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a local observation algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a local observation algorithm using propor-

tional selection.

In general, the observations represented in figure 5.7 and figure 5.6, suggest that a buffered gossip

algorithm using maximum frequency selection is the best choice for fast consensus formation

over an arbitrary Newmann-Watts-Strogatz small world network. These observations also suggest

that the local observation algorithm using maximum frequency selection is the worst choice for

consensus formation due to its lack of stability.

Lattice Networks

Figure 5.8 visualizes the experimental data from 300 randomly generated lattice networks using

a standard box plot. The x-axis indicates the state update protocol used by each algorithm. The

y-axis indicates the number of steps until consensus is achieved. The y-axis has been transformed

logarithmically in order to improve the overall visualization of the data; the data itself has not been

transformed.

87

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●
●●

●●

●

●

●

●●●

●

●●●
●●

●

●●●●●●
●●

●

●
●
●●
●
●●●●

●

●
●
●●

●

●
●
●●●●●

●

●
●
●●
●
●●
●
●●
●
●●●
●
●●
●
●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●
●
●●●
●
●●●●●

●

●●●

●

●●●●●

●

●●●

●

●
●
●●●
●
●●●●●

●

●
●
●●
●
●●●●

●

●●
●
●●●●●●

●

●●
●
●●
●
●●●

●●
●●●

●

●
●
●●
●
●●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●
●
●●●●

●

●
●
●●●●

●

●●●

●

●●
●
●●
●
●●●●●

●

●●●

●

●
●
●●●●

●

●
●
●●●
●
●●●●●

●

●
●
●●●●
●
●●●●

●

●
●
●●●●

●

●●●

●

●●●●

●

●●
●
●●
●
●●●●

●

●●●

●

●●●

●

●
●
●●●●

●

●●●

●

●
●
●●●●

●

●●●●

●

●●●●●

●

●●
●
●●●●
●
●●●●

●

●●●

●

●●
●
●●
●
●●
●
●●●●●

●

●●●●

●

●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●●●

●

●●
●
●●
●
●●●●

●

●
●
●●●●

●

●
●
●●
●
●●●●

●

●●●

●

●
●
●●

●

●●●●

●

●

●●
●●
●
●●
●
●● ●●

●

●

●
●
●

●
●

●●

●

●

●●

●

●●●

●

●

●
●
●

●●●

●

●

●
●
●

●
●
●

●
●
●

●
●
●

●

●

●
●
●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●
●
●

●
●
●

●●

●

●

●
●
●
●

●

●

●
●●

●

●

●
●
●

●
●
●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●
●

●
●
●

●●●

●

●●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●●●

●

●

●

●

●
●
●

●
●

●●

●

●●

●

●●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●●●
●

●
●

●

●
●
●

●
●
●

●●●

●

●

●●●

●

●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●●

●

●

●
●
●

●
●

●●

●

●●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●●●

●

●
●

●

●
●
●

●

●●●●●●
●
●

●

●●●●

●

●
●
●●

●

●●●●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●
●

●

●●●●
●●●

●

●●●●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●

●

●
●

●

●
●
●

●

●●●●
●

●

●
●
●●●

●

●●●●
●

●

●
●

●

●
●
●●●●●
●

●

●●●●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●
●

●

●
●
●●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●

●

●
●
●●

●

●
●●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●
●●

●

●●●●
●

●

●
●

●

●
●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●
●●

●

●●●●
●●●

●

●●●●
●

●

●
●
●●

●

●
●
●

●

●●●●
●

●

●●●●
●
●

●

●
●●
●

●

●
●

●

●
●
●●

●

●●●●
●●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●
●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●
●

●

●●●●●●
●
●

●

●●●●
●●

●

●●●●●
●
●●
●

●

●
●

●

●
●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 5.8: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as box plots that show the interquartile range, median value, and outliers

of the consensus time on lattice networks.

An examine of 5.6 reveals that a local observation algorithm using maximum frequency selection

yields the lowest median consensus time and smallest third quartile of the tested algorithms, but

there are outliers that greatly exceed the worst-case consensus time of the other information propa-

88

gation algorithms due to a failure of consensus. If these failed attempts at consensus are accounted

for, then either a local observation algorithm using proportional selection or the unbuffered gossip

algorithm is expected to have the lowest mean consensus time in the long run.

Figure 5.9 visualizes the mean consensus time of the lattice network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

89

●

●

●

●

●

500

1000

1500

2000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 5.9: Data from the empirical comparison between buffered gossip algorithms and local

observation, visualized as errorbar plots of the 95% confidence intervals for the mean consensus

time on lattice networks.

In figure 5.9 I observe that the mean consensus time of a local observation algorithm using pro-

portional selection (µlo.pro = 80.78, σlo.pro = 72.10, 95% CIµ [79.29, 82.27]) is less than the mean

consensus time of a local observation algorithm using maximum frequency selection (µlo.max =

90

1800.76, σlo.max = 13833.05, 95% CIµ [1514.93, 2086.59]), a buffered gossip algorithm using ei-

ther maximum frequency selection (µbg.max = 101.26, σbg.max = 92.48, 95% CIµ [99.35, 103.17])

or proportional selection (µbg.pro = 119.69, σbg.pro = 128.80, 95% CIµ [117.03, 122.35]), and the

uniform gossip algorithm (µuni = 96.12, σuni = 106.85, 95% CIµ [93.91, 98.33]).

A local observation algorithm using maximum frequency selection has a much greater mean con-

sensus time than the compared algorithms. As with the other experiments related to question Q2,

this extreme difference is most likely due to the inclusion of experimental runs in which consensus

was not reached (see figure 5.8). If the simulations had been run for a longer period of time, the

associated mean consensus times for failing algorithms would be further biased.

Based on the observations for the experiments on lattice networks, as represented in figure 5.9 and

figure 5.8, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion is less than the mean consensus time of a local observation algorithm using maximum

frequency selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a local observation algorithm using proportional

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is less

than the mean consensus time of a local observation algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a local observation algorithm using proportional

selection.

91

• The mean consensus time of a uniform gossip algorithm is less than the mean consensus

time of a local observation algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a local observation algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a local observation algorithm using propor-

tional selection.

In general, the observations represented in figure 5.9 and figure 5.8, suggest that a local observation

algorithm using proportional selection is the best choice for fast consensus formation over an

arbitrary lattice network. These observations also suggest that the local observation algorithm

using maximum frequency selection is the worst choice for consensus formation due to its lack of

stability.

Impact of Network Topology

In regards to comparing the mean consensus time across network topology, the experimental results

support the expectation that consensus time is sensitive to the topology of the agent communication

network. The communication topology appears to produce a difference in the relative performance

of information propagation algorithms using proportional selection or maximum frequency selec-

tion, as well as the uniform gossip algorithm.

92

Summary of Results

Consensus was not observed in all of the experiments comparing buffered gossip algorithms against

local observation algorithms. Local observation algorithms using maximum frequency selection

failed to arrive at a consensus at least once on every type of network that we tested. All other

algorithms, however, did reach consensus.

Unlike with the results of the experiments between buffered gossip algorithms and the uniform

gossip algorithm, the topology of the communication network has a lesser impact in the speed of

consensus for local observation algorithms than the state update protocol. This is primarily due to

the inability of the maximum frequency selection state update protocol to guarantee a consensus.

Of particular interest is the observation that local observation algorithms, buffered gossip algo-

rithms, and the uniform gossip algorithm appear to have very similar consensus times on small

world and lattice networks. Further research is required to determine if this similarity in perfor-

mance applies across all regular networks, or just a coincidence.

In regards to the similarity of performance between buffered gossip and local observation algo-

rithms on the decentralized consensus problem, the results suggest that local observation algo-

rithms are typically faster than buffered gossip algorithms - but local observation algorithms using

the maximum frequency state update protocol are not guaranteed to produce a consensus.

93

CHAPTER 6: STOCHASTIC LOCAL OBSERVATION/GOSSIP

ALGORITHMS

The local observation algorithms examined in this dissertation tend to yield better performance on

the decentralized consensus problem than buffered gossip algorithms, but given identical timing

models, transfer protocols, and state update protocols, it cannot be guaranteed that a local obser-

vation will always solve the decentralized consensus problem. I use the term stability to refer to

guarantee that a consensus will be reached, regardless of the length of time required. The buffered

gossip algorithms studied in this dissertation are stable. Certain local observation algorithms stud-

ied in this dissertation are not stable; e.g. those that use the maximum frequency state update

protocol.

I propose Stochastic Local Observation/Gossip (SLOG) algorithms as information propagation

algorithm that combines the speed of a local observation algorithm with the stability of a buffered

gossip algorithm. This “hybridization” is designed to allow SLOG algorithms to out-perform

both buffered gossip algorithms and local observation algorithms on the decentralized consensus

problem. To demonstrate this performance improvement, I define SLOG algorithms as information

propagation algorithms that use both push-based and pull-based transfer mechanisms. Next, I

describe the experimental design and methodology that will be used to empirically compare the

consensus behavior between SLOG algorithms, buffered gossip algorithms and local observation

algorithms. Finally, I analyze and summarize the results of those experiments.

94

Stochastic Local Observation/Gossip (SLOG) Algorithms

Stochastic Local Observation/Gossip (SLOG) algorithms combine the speed of a local observation

algorithm with the stability of a buffered gossip algorithm. To show how this is possible, I de-

fine SLOG algorithms as information propagation algorithms and describe their basic mechanics.

Then, I show that SLOG algorithms can successfully solve the decentralized consensus problem

when a network contains a directed spanning tree, and the nodes of that network employ both an

asynchronous timing model and a selection-based state update protocol.

Definition

As an information propagation algorithm, I define a Stochastic Local Observation/Gossip (SLOG)

algorithm by fixing the timing model, transfer mechanism, transfer protocol, and state update

protocol of node u within a specific range of values.

The timing model of a SLOG algorithm is either asynchronous or synchronous. In this dissertation,

I limit my discussion to asynchronous timing models due to the focus on decentralized systems, and

because it is often impractical to maintain the synchronization of large decentralized populations.

SLOG algorithms use a stochastic transfer mechanism along with a transfer protocol in which

state values are transmitted without modification and stored as part of a tagged pair that identifies

both the transmitted state value and identification of the sender. A stochastic transfer mechanism

combines a uniform gossip transfer mechanism and a local observation transfer mechanism. Nodes

that use a stochastic transfer mechanism will act according to a pull-based transfer protocol with

probability 0 ≤ α ≤ 1 and a push-based transfer mechanism with probability 1− α.

As with the other information propagation algorithms that this dissertation studies, nodes that

95

use a SLOG algorithm use either maximum frequency selection or proportional selection as their

state update protocol. SLOG algorithms that use proportional selection can be thought of as voter

models on dynamic networks - they randomly consider every neighbor with probability α and a

subset of their entire neighborhood with probability 1 − α. Similarly, SLOG algorithms that use

maximum frequency selection can be thought of as Label Propagation Algorithms on dynamic

networks.

Mechanics

SLOG algorithms can also be defined by their mechanics. A stochastic push-pull information

propagation algorithm is an information propagation algorithm in which nodes use a stochastic

transfer mechanism. If u ∈ V is a node that uses a stochastic push-pull information propagation

algorithm, then node u displays the following behavior: when the internal clock of node u ticks,

the first thing that node u does is to determine whether or not, with uniform probability α, it

will clear its buffer and replace the contents with the observed values of one or more neighbors;

next, node u updates its state value according to its state update protocol; following this update,

the new state value of node u is transmitted to and stored in the buffer of one or more randomly

chosen neighbors; after transmission has occurred, node u clears its buffer and waits for the next

tick of its internal clock. This process of stochastic observation, updating state, transmitting from

node u to neighbors W ⊆ N(u), and buffer erasing is described by algorithm 4. The size of

W and Y determine the specific stochastic push-pull information propagation algorithm that is

implemented. As with push-based and pull-based information propagation algorithms, |W | = 1,

1 < |W | ≤ |N(u)|, or |W | = |N(u)| and likewise for Y . In order to remain consistent with the

buffered gossip and local observation algorithms invested in this current body of research, I study

the case when |W | = |N(u)| and |Y | = 1.

96

Algorithm 4 The Stochastic Local Observation/Gossip Algorithm
1: procedure Act(u ∈ V)
2: X ← UNIFORM(0, 1)
3: if X < α then
4: βu = ∅
5: for all v ∈ W : W ⊆ N(u) do
6: βu ← βu ∪ (v, xv)
7: end for
8: end if
9: xu ← h(f(βu))

10: for all v ∈ Y : Y ⊆ N(u) do
11: βv ← βv ∪ (u, xu)
12: end for
13: βu ← ∅
14: end procedure

SLOG Algorithms as Solutions to the Consensus Problem

The first step in showing that the SLOG algorithm is a solution to the consensus problem is to

identify the values of alpha for which consensus formation is guaranteed. The second step is to

identify the conditions under which the SLOG algorithm is robust to noise and error.

The conditions under which a SLOG algorithm solves the decentralized consensus problem are

trivial when α = 0 or α = 1.

Lemma 5 If a finite network, G, contains a directed spanning tree and if the nodes in G use a

SLOG algorithm with α = 0, a selection-based state update protocol and an asynchronous timing

model, then a stable consensus will be obtained in asymptotic time.

Proof 5 If α = 0 then a SLOG algorithm is a buffered gossip algorithm, and hence by direct

application of theorem 3 and 4 it is a solution to the consensus problem. �

Lemma 6 If a finite network, G, contains a directed spanning tree and if the nodes in G use a

97

SLOG algorithm with α = 1, a selection-based state update protocol and an asynchronous timing

model, then a stable consensus is not guaranteed to be obtained in asymptotic time.

Proof 6 If α = 1 then a SLOG algorithm is an observation algorithm. A counterexample to

successful consensus formation when maximum frequency selection is used as the state update

protocol is given in figure 5, and so it cannot be guaranteed that a SLOG algorithm will solve the

consensus problem for an arbitrary state update protocol. �

When 0 < α < 1 we can show when the SLOG algorithm solves the discrete decentralized

consensus problem using a technique similar to the one we used to show that the buffered gossip

algorithm solves the discrete decentralized consensus problem.

Theorem 7 If a finite network, G, contains a directed spanning tree and if the nodes in G use a

SLOG algorithm with 0 < α < 1, a selection-based state update protocol and an asynchronous

timing model, then a stable consensus will be obtained in asymptotic time.

Proof 7 If 0 < α < 1 then with probability 1−α > 0 a SLOG algorithm acts as a buffered gossip

algorithm at tick t. Thus, there is a positive probability that a SLOG algorithm acts continuously

as a buffered gossip algorithm long enough to construct a consensus sequence as per lemma 1.

So, by the second Borel-Cantelli Lemma, a consensus sequence is observed with probability 1 as

t → ∞. Hence, in a network where all nodes use a SLOG algorithm, a stable consensus will be

achieved in asymptotic time as per theorem 3 and lemma 4. �

Thus, a SLOG algorithm is guaranteed to produce a consensus when 0 ≤ α < 1. A consensus is

possible when α = 1, but the specific state update protocol will determine if it is guaranteed.

98

With regards to robustness to noise and error, SLOG algorithms are also subject to the same be-

haviors as buffered gossip algorithms and local observation algorithms. When α = 1, a SLOG

algorithm is functionally identical to a local observation algorithm. When α = 1, a SLOG algo-

rithm is functionally identical to a buffered gossip algorithm. In the case where 1 < α < 0, the

same arguments about robustness can made as for consensus formation – SLOG algorithms behave

like buffered gossip algorithms.

An Experimental Investigation of the SLOG Algorithm

Multi-agent simulation can be used to empirically explore a SLOG algorithm and compare it’s

consensus behavior against buffered gossip algorithms, local observation algorithms, and the uni-

form gossip algorithm. The data from these comparisons can be used to determine the relative

performance of each algorithm on the decentralized consensus problem and test whether or not

SLOG algorithms really do out-perform other information propagation algorithms with the same

timing model, transfer protocol, and state update protocol.

To conduct these comparisons, I use the same simulation software as used in my experiments

comparing the buffered gossip algorithm against the uniform gossip algorithm. In the remainder of

this section, I describe the experimental design and methodology that structures my experiments.

I then discuss my expectations and present the results of my simulations. Finally, I interpret those

results as they related to the relative performance of the buffered gossip and local observation

algorithms on the consensus problem within a decentralized system of asynchronous agents.

99

Experimental Design and Methodology

The simulation used to explore the behavior of SLOG algorithms and compare them against

buffered gossip algorithms, local observation algorithms, and the uniform gossip algorithm models

a multi-agent system of n = |V | asynchronous agents that are connected by a static communica-

tion network. Each node in the network represents an agent and an edge connects two nodes if

there is a communication link between the associated agents. The state value of each node rep-

resents that node’s desired consensus option and is encoded as an integer value. Each node can

store up to n transmissions in its buffer, and those transmissions are stored in the order in which

they are received. If a node receives multiple transmissions from the same agent before it is able

to clear its buffer, only the most recent transmission is retained. To account for the diversity of

many real-world networks, the communication network can be structed as either an Erdös-Renyi

random network, a Barabasi-Albert scale-free network, a Newman-Watts-Strogatz small world

network [50], or a lattice network.

Nodes use an asynchronous timing model, where the expected number of nodes that act in a single

time step follows a Poisson distribution with λ = |V |. Because asynchronous timing models are

used, it is possible that some nodes will act multiple times within a single time step. Simulation

time is measured in steps. One step has passed when all active nodes have updated their state value

and spread their information in accordance with their action algorithm. Thus, one step is equivalent

to one time step. Those nodes that act within a single step do so in a uniformly random order.

The state update protocol (proportional selection, maximum frequency selection, or tail selec-

tion) and the network topology (Erdös-Renyi random, Barabasi-Albert scale-free, Newman-Watts-

Strogatz small world, or lattice) are the primary independent variables. For each combination

of state update protocol and network topology, I randomly construct 300 networks with the se-

lected topological structure and then conduct 30 independent simulations of rendezvous over each

100

network. These networks are constructed randomly, with 2 ≤ |V | ≤ 100 and 1 ≤ |S| ≤ 5

being chosen according to a uniform distribution. The decision to vary network and state space

size was made to test solution potential over a wide range of possibilities. Additionally, Erdös-

Renyi random networks use a random value in the range [0, 1] for their connection probability, and

are guaranteed to be connected; Barabase-Albert scale-free networks and Newman-Watts-Strogatz

small world networks are randomly parameterized based on the number of nodes in the network;

and lattice networks are guaranteed to be square and do not wrap to form a torus. The parameters

associated with each network topology are a requirement of the NetworkX library.

The consensus time (measured in steps) is the dependent variable under study, with the charac-

terization that a value of 100, 000 represents a failure to achieve consensus. Nodes successfully

form a consensus if the state of every node is identical within 100, 000 steps. Nodes fail to form a

consensus if either periodic behavior is observed or the simulation runs in excess of a maximum

time limit (100, 000 steps). The simulation software is capable of detecting periodic behavior of

up to 100 unique states. Behavior is considered to be periodic if a sequence of state distributions

repeats continuously for 10, 000 consecutive steps (e.g. a sequence of 10 state distributions repeats

1, 000 times in a row).

Each simulation runs until either consensus is reached, a non-consensus stable state is observed

(either fixed or periodic), or a time limit of 110, 000 steps is exceeded. This produces a total of

9, 000 data points per experimental configuration. To remove randomness as a cause for differ-

ences between experimental configurations, each configuration is initialized with same sequence

of random numbers (i.e. simulation 17 of the configuration {proportional, random} uses the same

random seed as simulation 17 of the configuration {maximum, lattice}).

As with the theoretical proofs of consensus, these experiments focus on information propagation

algorithms with proportional selection and maximum frequency selection state update protocols

101

because they are similar to the voter model and the label propagation algorithm; although be-

cause they are being used in a new context there is no guarantee that they will display the same

behavior. I also make the simplifying assumption that in the event of a node receiving multiple

transmissions from the same neighbor prior to a state update, only the most recent transmission

is kept in the buffer. Because this dissertation focuses on comparing consensus speed between

different algorithms, and because noise and node failure only prevent consensus formation in very

specific scenarios, I assume that information is transmitted without error and nodes do not fail

during consensus formation. This assumption simplifies the experiments by holding the noise and

node failure probabilities constant at a value of 0.0. Finally, I rely strictly on graphical analysis

and forgo hypothesis testing because there are 7 separate algorithms in these experiments.

Expectations

To compare the relative consensus speed between information propagation algorithms, I analyze

plots and compare basic statistical measures of the data generated by the multi-agent simulation.

Because SLOG algorithms combine local observation with buffered gossip, it is expected that

their performance will lie between local observation algorithms and buffered gossip algorithms;

however, because local observation algorithms using maximum frequency selection do not always

solve the consensus problem, I expect to observe the following results:

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion will be greater than the mean consensus time of a SLOG algorithm using maximum

frequency selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion will be greater than the mean consensus time of a SLOG algorithm using proportional

selection.

102

• The mean consensus time of a buffered gossip algorithm using proportional selection will

be greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection will be

greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a uniform gossip algorithm will be greater than the mean con-

sensus time of a SLOG algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm will be greater than the mean con-

sensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency se-

lection will be greater than the mean consensus time of a SLOG algorithm using maximum

frequency selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion will be greater than the mean consensus time of a SLOG algorithm using proportional

selection.

• The mean consensus time of a local observation algorithm using proportional selection will

be greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a local observation algorithm using proportional selection will

be less than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a SLOG algorithm using maximum frequency selection will be

less than the mean consensus time of a SLOG algorithm using proportional selection.

103

As with my comparison of other information propagation algorithms, I also expect to observe

differences in consensus speed across network topology.

Empirical Results

This section discusses the results of the experiments on 300 randomly generated Erdös-Renyi ran-

dom networks, 300 randomly generated Barabasi-Albert scale-free networks, 300 randomly gener-

ated Newman-Watts-Strogatz small world networks, and 300 randomly generated lattice networks

are discussed below.

Random Networks

Figure 6.1 visualizes the experimental data from 300 randomly generated Erdös-Renyi random

networks using a standard box plot. The upper and lower boundaries of each box correspond to

the first and third quartile of the data, with the middle line representing the median value. The

upper and lower whiskers extend out to the largest and smallest value within 1.5 × IRQ of the

boundary. The individual points represent the outliers of the observed data. The x-axis indicates

the state update protocol used by each algorithm. The y-axis indicates the number of steps until

consensus is achieved. The y-axis has been transformed logarithmically in order to improve the

overall visualization of the data; the data itself has not been transformed.

In figure 6.1, I observe that a local observation algorithm using maximum frequency selection

and a SLOG algorithm using maximum frequency selection have a similar median consensus time

and a similar interquartile range for the consensus time. Furthermore, these values appear to be

less than the corresponding values of the other five algorithms considered in this experiment. The

outlying data points associated with the SLOG algorithm, however, are much less than those as-

104

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●
●

●●

●
●

●

●●●

●●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●
●●

●

●

●●

●
●●

●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●●

●
●●●●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●●

●
●

●

●●●

●

●

●

●
●
●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●●

●

●

●●

●●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●
●●●

●

●●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●
●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●

●

●●●

●
●

●

●

●●
●

●

●
●

●

●

●

●●●

●

●
●

●

●

●
●

●

●●●

●

●

●
●

●

●

●
●●●
●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●

●●●●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●

●●

●

●

●
●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●●

●
●

●●

●
●

●●●

●●

●

●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●
●

●

●●●●
●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●
●
●
●

●●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●
●●

●

●●

●

●
●●

●

●
●
●●
●

●

●
●●

●

●●●●
●
●
●

●

●●

●●

●●
●●●
●

●●●●
●●●
●
●
●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●●●

●

●

●

●
●●●●
●

●

●●●
●

●

●
●
●
●●●
●
●

●●●
●

●
●●
●
●
●

●

●●
●
●
●●
●●
●

●
●
●●●●●●

●

●
●
●●

●●

●
●●
●
●
●

●
●●
●
●
●
●

●
●
●

●

●

●
●
●●
●
●

●●

●

●
●

●

●
●●
●

●
●

●

●

●●●

●
●

●●●
●●●●●●
●
●
●

●●
●●

●●

●

●

●

●

●
●●
●●●
●
●●●
●●●

●

●●●
●
●●●●
●
●●●●
●●●
●
●
●
●
●

●●●
●

●

●●●
●
●

●●

●
●
●
●
●
●

●

●
●●●●

●

●

●

●
●
●

●
●●
●
●

●●

●
●●
●●

●

●●

●

●
●
●●●●

●

●
●●

●●
●
●●
●
●●
●

●

●●

●
●●

●

●

●

●●

●●
●●●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●●
●

●●

●

●●●

●●

●

●

●●
●
●

●●

●
●●
●
●

●

●

●
●●
●
●

●

●

●
●●●●●
●●
●
●

●

●●●
●
●
●

●

●

●

●

●
●
●
●

●
●
●
●
●

●●
●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●●
●

●

●●

●●
●●●●
●

●

●

●
●●
●●
●

●
●●
●●

●

●●●

●

●
●

●

●
●

●
●

●

●
●
●
●

●●
●
●
●●●●●
●
●

●

●●
●

●●
●

●
●●
●

●

●

●

●

●

●

●
●●

●●
●●

●●
●

●

●

●

●
●

●●
●
●

●●●
●

●

●●

●

●

●

●
●
●

●

●
●

●
●●●●●
●
●

●

●
●
●●●●

●
●

●●

●
●

●●
●
●●

●●

●

●

●●

●
●
●
●●●

●

●●●●

●

●●●●●●

●●

●
●●
●
●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●●●●

●●

●●●

●

●

●

●●

●

●●
●
●

●

●●●

●

●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●
●
●
●

●

●●

●
●

●

●●●●

●

●

●

●

●
●

●●
●

●●

●

●●

●

●
●

●●

●●
●●

●

●
●
●

●●●●

●

●●●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●●
●
●

●

●

●

●
●
●●●

●

●

●

●
●●
●

●

●

●

●

●
●●

●

●●

●
●
●●

●
●
●

●
●
●●
●
●●●
●
●
●
●
●●●●

●
●●

●

●

●

●
●

●

●●
●
●●●

●

●●●
●
●
●
●

●

●

●

●

●●
●
●●
●●
●●

●●

●●●
●

●●

●

●●

●

●

●
●
●
●
●

●●●●
●
●
●●
●

●
●
●●

●

●

●

●

●

●

●

●

●●
●

●●●●●

●●

●
●

●

●

●

●

●
●

●
●
●
●●●

●
●

●

●●●●
●●●

●
●●
●

●●
●●
●

●

●

●
●
●

●
●
●●
●

●●
●

●●●

●

●

●
●

●

●

●

●●●

●

●

●●

●●●●

●

●
●

●

●

●

●

●

●
●●●

●
●
●

●

●

●
●
●
●
●

●

●

●●

●●

●

●

●

●
●●●●
●
●

●●

●●●
●

●●

●
●

●●●●
●●
●●
●●

●

●
●●●●●●●

●

●
●
●●●●●●●●●●
●
●●

●●●●●
●

●

●

●

●●●

●

●●●●
●●
●●●●

●

●

●●
●●
●
●●

●

●

●
●●●●●

●●

●
●
●

●

●

●
●
●
●

●

●●
●
●●●
●●●●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●
●
●●

●●
●●●

●●
●
●
●
●

●

●●

●
●
●
●
●

●●

●

●
●
●●
●

●

●
●
●●
●●
●
●●

●

●

●

●

●

●●

●

●
●
●
●●
●
●●
●

●
●

●

●

●

●

●

●

●
●●
●●
●●
●
●●

●
●●

●●

●

●
●

●
●●
●
●
●
●

●

●

●

●

●

●●

●●

●

●●

●
●●

●●●

●
●●
●●
●●

●

●●
●●●
●
●●
●●●●

●

●●●

●

●●
●●
●
●●
●●

●

●
●●

●
●
●●●
●

●

●

●

●

●

●●●
●
●●●

●

●
●
●

●
●

●

●

●

●●
●
●

●

●

●

●
●
●●●●
●●●

●●

●

●

●

●
●

●●
●
●●

●

●●●
●

●

●
●

●●

●
●●●
●
●

●

●

●

●
●

●

●●●
●
●●●●
●

●
●
●●●
●
●

●

●

●
●

●

●

●

●●●
●
●

●

●

●●
●●●●●
●
●

●●
●

●

●
●
●

●

●●
●●

●

●●●●
●●
●

●
●●

●●
●

●

●

●
●

●
●
●●●●

●

●●

●●
●

●●●

●

●●
●●
●

●

●

●
●●

●
●●
●●

●●

●●

●
●
●

●

●●

●

●
●

●●
●

●

●

●

●●
●●●
●
●

●

●●
●●
●●●

●

●

●

●

●●

●
●●●●
●

●

●
●●●
●

●●

●

●

●

●

●●

●

●
●
●
●●
●

●
●
●
●●
●

●
●

●

●

●●

●

●●
●

●

●

●

●
●

●●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●●●

●

●
●
●

●
●

●●

●
●

●

●●

●●

●

●●●
●●●●

●

●
●
●
●
●●●●
●
●
●

●●
●
●
●

●

●

●●●●
●

●

●
●●●

●

●●

●

●
●●

●

●

●

●
●●

●

●

●●
●

●

●
●
●●●

●
●
●

●

●
●
●●●
●

●
●
●●●●
●●

●
●
●
●●
●

●

●

●

●
●●●

●●

●

●

●

●●●

●

●●
●●●
●

●

●●●

●

●●●

●
●
●

●

●
●

●
●●

●

●●●●●
●
●●●●

●

●●

●●
●●

●
●
●

●
●

●●
●
●
●●
●

●

●

●
●
●

●

●●
●
●
●●●●●●

●
●

●
●

●

●●●●

●
●
●●●
●

●
●

●●●
●●●●
●●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●●●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●●●
●

●●

●●

●
●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●●
●

●

●●
●
●

●●●●

●

●●
●

●
●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●
●

●

●●

●

●
●
●●●
●
●●
●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●
●●
●●
●●●●

●

●●●●●●

●

●●

●
●
●●
●●
●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●
●
●

●

●

●●●

●

●

●

●

●●
●
●●●

●

●

●

●
●

●
●
●

●

●
●

●

●
●
●
●

●●●

●
●●●●●●

●

●●
●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●●●

●

●

●

●

●●
●

●

●●

●●
●
●●

●

●
●●
●●●
●

●
●

●

●

●●●●

●

●●
●
●
●
●

●●●

●

●

●

●

●
●●●●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●
●
●

●●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

●
●

●
●
●●

●

●
●●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●●●●

●

●

●
●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●
●
●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●●●

●
●
●

●

●

●

●
●

●

●

●

●●●
●
●
●
●

●●

●

●
●●

●

●●

●

●

●
●
●

●
●
●
●
●
●●

●

●●●
●●
●

●

●●●●●
●
●●●●
●
●●●
●
●●●●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●

●●●

●

●●●

●

●
●
●
●

●
●

●

●●

●

●
●●
●

●●
●●
●

●

●●

●
●

●
●●
●●●
●●

●

●
●
●●●
●
●
●

●

●●

●
●

●

●

●

●●
●●
●

●

●

●●
●
●
●●
●
●

●●●

●
●

●
●●●

●

●●

●

●
●
●
●●
●

●

●

●
●
●

●●●
●●
●●●

●●

●

●

●
●

●

●●

●

●
●
●●

●●

●

●
●●●●
●

●

●

●

●●

●
●
●

●●

●●
●
●●●

●

●
●
●●●●

●

●

●

●

●●●

●●●
●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●
●●
●
●●

●
●
●

●
●

●●●
●

●

●

●●●

●

●●

●●
●
●
●

●

●●●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●
●
●
●

●

●●
●
●

●
●
●●

●

●
●
●
●●●

●

●●

●●
●
●

●

●●●

●

●
●
●●
●●●
●

●

●

●
●

●●●●
●●●
●●
●●

●

●●
●

●●

●

●
●

●
●●●●●
●

●

●
●
●
●

●
●
●

●

●
●
●●●

●

●
●●
●

●

●

●●●●●
●
●

●

●

●

●●
●
●
●
●
●

●
●
●●●
●
●

●
●
●●

●

●●

●

●

●

●●●
●

●
●

●

●

●
●
●●
●●
●
●

●●

●

●

●

●

●●●
●●
●
●●●●●

●

●

●
●

●●

●
●●●●●●
●●●

●

●

●

●
●●●●●●●
●
●●
●
●
●
●●●●

●
●
●
●●

●

●●

●
●

●●●●●

●

●
●

●
●
●●
●●
●
●
●

●
●●

●
●
●

●
●
●

●

●●●

●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 6.1: Data from the empirical comparison between information propagation algorithms, vi-
sualized as box plots that show the interquartile range, median value, and outliers of the consensus
time on Erdös-Renyi random networks.

sociated with the local observation algorithm. This observation suggests that of the seven total

algorithms compared, a Stochastic Local Observation/Gossip algorithm should tend to offer the

fastest consensus speed.

Figure 6.2 visualizes the mean consensus time of the random network data along with the 95%

105

●

●

●

●

●

●

●

1000

2000

3000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Erdos−Renyi Random Networks

Figure 6.2: Data from the empirical comparison between information propagation algo-
rithms,visualized as errorbar plots of the 95% confidence intervals for the mean consensus time
on Erdös-Renyi random networks.

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

106

In figure 6.2, one can observe that the mean consensus time of a SLOG algorithm with maxi-

mum frequency selection (µslog.max = 19.32, σslog.max = 23.98, 95% CIµ [18.82, 19.82]) is less

than all other algorithms studied in this experiment. The mean consensus time of a local observa-

tion algorithm using maximum frequency selection is the highest (µlo.max = 3218.48, σlo.max =

18388.50, 95% CIµ [2838.53, 3598.44]). The mean consensus time of a SLOG algorithm us-

ing proportional selection (µslog.pro = 64.18, σslog.pro = 59.20, 95% CIµ [62.96, 65.40]) is less

than the mean consensus time of buffered gossip algorithms using either maximum frequency

selection (µbg.max = 79.12, σbg.max = 64.94, 95% CIµ [77.77, 80.46]) or proportional selec-

tion (µbg.pro = 137.91, σbg.pro = 128.06, 95% CIµ [135.27, 140.56]), and is also less than the

mean consensus time of the uniform gossip algorithm (µuni = 107.89, σuni = 99.38, 95% CIµ

[105.84, 109.95]). The mean consensus time of a local observation algorithm using proportional

selection (µlo.pro = 45.18, σlo.pro = 41.08, 95% CIµ [44.33, 46.03]), however, is less than a SLOG

algorithm with proportional selection.

Based on the observations for the experiments on Erdös-Renyi random networks, as represented in

figure 6.2 and figure 6.1, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

107

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a local observation algorithm using maximum frequency se-

lection is greater than the mean consensus time of a SLOG algorithm using proportional

selection.

• The mean consensus time of a local observation algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a local observation algorithm using proportional selection is

less than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a SLOG algorithm using maximum frequency selection is less

than the mean consensus time of a SLOG algorithm using proportional selection.

In general, the observations represented in figure 6.2 and figure 6.1, suggest that a SLOG algo-

rithm using maximum frequency selection is the best choice for fast consensus formation over an

arbitrary Erdös-Renyi random network. These observations also suggest that the local observation

108

algorithm using maximum frequency selection is the worst choice for consensus formation due to

its lack of stability.

Scale-Free Networks

Figure 6.3 visualizes the experimental data from 300 randomly generated Barabasi-Albert scale-

free networks using a standard box plot. The x-axis indicates the state update protocol used by

each algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis

has been transformed logarithmically in order to improve the overall visualization of the data; the

data itself has not been transformed.

In figure 6.3, one can observe that a local observation algorithm using maximum frequency se-

lection has a slightly smaller median consensus time than a SLOG algorithm using maximum

frequency selection, but a similar interquartile range for the consensus time. Furthermore, these

values appear to be less than the corresponding values of the other five algorithms considered in

this experiment. The outlying data points associated with the SLOG algorithm, however, are much

less than those associated with the local observation algorithm (which has runs in which consensus

is not achieved, as denoted by the outliers with a value of 110, 000). This observation suggests that

of the seven total algorithms compared, a Stochastic Local Observation/Gossip algorithm should

tend to offer the fastest consensus speed.

Figure 6.4 visualizes the mean consensus time of our scale-free network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

109

●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●

●
●

●

●

●

●●●●●

●

●●
●●●

●
●

●

●

●●

●

●
●●

●

●

●●

●

●●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●●●●●

●

●●

●●●●●●●

●●●
●
●●
●
●●

●●●●●●●

●

●●

●●
●●●

●

●
●
●

●

●●●●
●●●●●●●●●●●

●

●●●
●
●
●●

●

●

●●
●●
●
●
●

●

●●
●●●

●

●

●●

●
●

●

●
●
●●
●●

●●
●●●
●

●

●●●

●
●

●

●

●

●
●
●●

●
●

●

●
●

●
●●

●

●

●
●

●
●●

●

●

●
●
●

●●

●

●

●
●●●●●●
●

●

●●
●●
●●

●

●●

●

●●
●●

●

●
●●
●●
●
●
●

●●●
●●●●
●
●

●
●

●

●

●

●
●
●

●
●●●

●

●●
●●
●
●●
●●●
●

●
●●

●

●
●

●

●
●
●

●●●

●

●

●
●

●
●●●

●

●
●●
●

●

●

●
●

●

●●

●

●
●

●
●●
●

●

●●
●

●

●

●
●
●●●

●
●

●

●

●

●●

●●
●

●
●
●

●

●

●

●●
●
●
●

●●
●
●

●

●●●●
●●●
●●

●

●
●

●
●
●
●●
●●
●●
●
●●●
●

●●●
●
●
●

●

●

●

●

●
●

●

●●

●●

●
●●

●●●●●
●
●●

●
●
●

●
●

●

●

●

●

●●●
●●
●●

●

●

●

●
●
●

●

●●

●

●

●●●
●
●●●

●

●

●
●●●●●

●●●

●

●
●
●

●●

●●

●

●

●
●
●●
●●
●

●
●
●
●

●

●●●●●●●●
●
●

●●
●

●
●

●
●
●●●
●●
●

●

●

●

●
●●

●
●

●

●
●

●

●
●
●

●
●
●
●

●

●

●
●

●

●

●
●
●

●●
●
●
●●●

●●

●

●

●
●
●

●

●

●
●
●●

●

●
●

●

●●

●
●●
●

●
●

●
●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●
●
●

●
●

●

●

●●

●●●●●
●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●
●
●●●

●●

●

●●
●
●

●

●

●●
●●

●
●

●

●
●

●
●●
●
●

●
●
●

●

●
●
●

●

●

●

●●●
●
●●

●

●
●

●

●●
●

●●

●

●
●

●

●

●

●
●●
●

●
●

●●●●

●

●●

●
●●

●●●

●●
●
●

●
●
●
●●

●●

●

●

●

●

●●
●
●

●
●●●
●●●●
●●
●

●
●
●●●●

●

●
●

●

●●●●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●
●
●●●
●
●

●●

●
●●
●

●

●●
●●●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●
●

●

●

●
●
●
●
●

●

●

●

●

●
●●●
●●

●●●●●

●

●●
●
●
●●
●
●●
●
●●

●●

●

●●
●

●

●

●●
●

●●●●
●
●

●

●

●
●

●

●

●

●
●
●
●

●

●
●
●●
●
●

●●
●●●●

●
●
●●
●

●●
●●
●
●●●

●●●

●
●
●●

●

●
●
●
●

●

●
●

●●

●
●

●●
●
●
●●

●●
●●
●

●●●

●
●
●

●

●

●

●●
●
●●
●
●

●

●

●

●
●
●
●

●

●
●
●
●

●

●

●
●

●

●
●
●●

●

●●

●

●

●
●

●
●

●●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●
●
●
●●●

●●

●

●
●

●●

●

●

●
●

●
●
●●

●

●
●●

●●
●●
●
●●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●

●
●●●

●

●
●●●

●

●●
●

●

●

●●
●
●
●

●

●

●

●
●

●●

●

●

●●
●

●

●
●

●

●

●●
●
●

●
●●

●
●
●
●
●
●

●

●
●

●

●

●●
●
●
●

●●●
●●●

●

●

●
●
●

●
●
●●●
●

●●

●

●
●

●
●●
●
●

●

●

●
●●
●●●
●
●
●
●
●
●
●
●●
●
●
●●

●

●
●●
●●
●●
●

●●

●
●
●
●●●●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●
●
●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●
●
●●●

●

●●

●

●●●
●

●

●

●

●●●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●

●

●
●●

●

●●

●
●

●

●●
●

●●

●
●

●●
●●

●●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●●●
●●
●
●●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●
●●

●

●
●●

●

●
●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●
●
●

●

●
●

●●
●●
●●
●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●
●●

●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●
●
●●●●●

●

●

●
●
●

●

●●●●●
●●

●
●

●

●
●

●

●●

●

●●●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●●

●
●●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●●●●

●●

●●
●
●

●

●●
●
●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●●
●●●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●●
●
●●
●●

●
●

●

●

●

●

●
●
●

●

●
●●
●●
●

●
●
●
●

●

●

●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●●●
●
●

●

●

●●
●

●

●
●

●
●

●●●

●
●

●
●
●●●

●●

●●●
●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●●

●
●

●

●●

●

●
●
●
●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●●●

●

●

●●

●●

●

●
●
●

●

●
●
●
●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●
●●●

●

●

●●

●●
●

●●

●

●

●
●●●●
●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●
●●

●●

●

●
●
●●
●●●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●●●

●

●
●

●●●●

●

●
●●●

●

●
●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●●
●

●
●

●●

●

●●

●

●

●

●

●
●

●

●●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●●

●

●●

●

●

●

●●

●

●●●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●●●

●●
●
●

●●
●
●
●●
●●
●●

●

●●
●●●

●

●

●●●

●●
●

●

●

●

●

●

●
●
●
●●●

●

●
●
●
●

●

●●
●

●

●
●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●
●●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●

●
●●

●

●

●
●

●
●●

●
●

●
●

●

●

●
●●●

●

●●

●●
●
●
●

●

●
●

●●

●

●●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●
●
●
●

●

●●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●●
●
●
●●●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●●
●

●
●
●

●

●
●
●
●

●

●

●●●

●●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●●●●
●●●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●
●●
●

●

●

●
●

●

●

●●
●
●●
●●

●
●
●
●
●

●

●

●

●●●
●

●

●
●

●●

●

●
●●
●●
●

●

●

●
●
●
●●

●
●

●●

●

●

●

●●●

●

●

●
●

●●●●●●●

●

●●●●●●●

●
●●●●

●●●●●●●

●●
●
●●●●
●●●
●●

●

●

●
●
●
●●
●

●●

●

●
●

●●

●

●●●●●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●
●
●●
●
●

●

●●●●●●●

●

●●●●●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●

●
●●

●●●●●

●●●●●●●

●

●●●

●●

●●●●●
●●
●●
●●
●
●●

●
●
●●
●
●
●
●●●●●●●
●
●●
●
●

●
●●●
●●
●

●●
●
●

●
●●●●
●
●
●
●
●

●

●
●●●●●●
●

●

●●●
●●●

●

●

●●●
●
●●
●●
●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●
●

●
●
●
●
●
●

●
●

●●

●
●●
●

●

●
●
●
●●

●

●●
●●
●●

●

●●
●●●
●
●

●●

●●

●

●

●

●
●
●
●

●

●●
●

●

●
●

●

●

●●

●
●●

●●●

●

●●
●●

●
●

●

●●

●●
●●●

●

●
●●●
●
●

●
●●

●

●

●
●●●
●
●
●

●

●●●
●

●

●●
●
●
●
●●
●
●
●●●●

●

●●

●

●

●

●

●

●
●●●
●●
●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●
●●
●●
●
●●●
●●

●

●

●

●
●
●●

●

●

●

●
●●
●●
●

●

●

●

●

●
●●

●

●●●
●
●
●●●
●
●
●
●●●
●

●

●●
●●
●

●

●●●

●
●

●

●
●
●●
●

●

●
●

●●

●

●
●

●●

●●

●

●

●
●
●●

●●

●
●

●

●

●

●●●
●

●

●

●

●
●
●
●

●●

●●

●
●●
●
●
●
●
●

●

●●

●●●

●
●

●

●
●

●

●●
●

●
●●
●
●
●

●

●

●●●

●

●
●

●
●●

●

●
●●●
●●●●●●●

●
●

●

●

●

●

●
●

●

●●●
●●●
●

●

●

●

●●
●●●
●

●

●

●●
●

●

●

●

●●

●●
●

●●

●

●●
●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●●

●
●●
●

●

●●

●

●●
●
●●●

●

●

●

●

●

●●●

●●
●
●

●
●●
●●

●

●

●

●

●

●●●●●

●
●

●●●

●
●
●
●●●
●●●
●
●●
●
●

●
●●●

●●
●

●
●

●

●

●●

●●

●

●

●●
●●●●●●●●●

●

●

●

●
●
●●●●●●

●

●●
●

●
●●

●●

●●

●
●

●●

●

●
●
●
●●

●

●
●
●

●
●●

●
●
●

●

●●

●●

●●
●●
●

●●
●
●●

●

●

●
●●

●●●
●

●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 6.3: Data from the empirical comparison between information propagation algorithms, vi-
sualized as box plots that show the interquartile range, median value, and outliers of the consensus
time on Barabasi-Albert scale-free networks.

In figure 6.4, one can observe that the mean consensus time of a SLOG algorithm with maximum

frequency selection (µslog.max = 8.53, σslog.max = 40.06, 95% CIµ [7.71, 9.36]) is less than all

other algorithms studied in this experiment. The mean consensus time of a buffered gossip algo-

rithm algorithm using proportional selection is the highest (µbg.pro = 206.81, σbg.pro = 692.37,

95% CIµ [192.50, 221.11]). The mean consensus time of a SLOG algorithm using proportional

110

●

●

●

●

●

●

●

50

100

150

200

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Barabasi−Albert Scale−Free Networks

Figure 6.4: Data from the empirical comparison between information propagation algorithms, vi-
sualized as errorbar plots of the 95% confidence intervals for the mean consensus time on Barabasi-
Albert scale-free networks.

selection (µslog.pro = 44.00, σslog.pro = 43.59 95%, CIµ [43.10, 44.90]) is less than the mean con-

sensus time of buffered gossip algorithms using either maximum frequency selection (µbg.max =

47.41, σbg.max = 125.68, 95% CIµ [44.81, 50.00]) or proportional selection, and is also less than

the mean consensus time of the uniform gossip algorithm (µuni = 180.40, σuni = 637.70, 95%

CIµ [167.23, 193.58]). The mean consensus time of a local observation algorithm using pro-

111

portional selection (µslog.pro = 44.00, σslog.pro = 43.59, 95% CIµ [43.10, 44.90]), however, is

less than a SLOG algorithm with proportional selection. The relative comparison of the mean

consensus time for a local observation algorithm using maximum frequency selection is incon-

clusive due to the scenarios in which the algorithm fails to produce a consensus on a scale-free

network. In 6.4 this is manifest by the large confidence interval for the associated algorithm

(µlo.max = 53.51, σlo.max = 2318.54, 95% CIµ [5.61, 101.42]), but in reality, this interval will

continue to widen as the sample size increases.

Based on the observations for the experiments on Barabasi-Albert scale-free networks, as repre-

sented in figure 6.4 and figure 6.3, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using proportional selection.

112

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a local observation algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a local observation algorithm using proportional selection is

less than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a SLOG algorithm using maximum frequency selection is less

than the mean consensus time of a SLOG algorithm using proportional selection.

These results do not allow me to conclude that “the mean consensus time of a local observation

algorithm using maximum frequency selection will be greater than the mean consensus time of a

SLOG algorithm using proportional selection”.

In general, the observations represented in figure 6.4 and figure 6.3, suggest that a SLOG algorithm

using maximum frequency selection is the best choice for fast consensus formation over an arbi-

trary Barabasi-Albert scale-free network. These observations also suggest that a buffered gossip

algorithm using maximum frequency selection has the highest mean consensus time, however, the

local observation algorithm using maximum frequency selection is the worst choice for consensus

formation due to its lack of stability.

113

Small World Networks

Figure 6.5 visualizes the experimental data from 300 randomly generated Newman-Watts-Strogatz

small world networks using a standard box plot. The x-axis indicates the state update protocol

used by each algorithm. The y-axis indicates the number of steps until consensus is achieved. The

y-axis has been transformed logarithmically in order to improve the overall visualization of the

data; the data itself has not been transformed.

In figure 6.5, one can observe that a SLOG algorithm using maximum frequency selection and a

local observation algorithm using maximum frequency selection have similar smaller median con-

sensus times along with a similar interquartile ranges for the consensus time. Furthermore, these

values appear to be less than the corresponding values of the other five algorithms considered in

this experiment. The outlying data points associated with the SLOG algorithm, however, are much

less than those associated with the local observation algorithm (which has runs in which consensus

is not achieved, as denoted by the outliers with a value of 110, 000). This observation suggests that

of the seven total algorithms compared, a Stochastic Local Observation/Gossip algorithm should

tend to offer the fastest consensus speed.

Figure 6.6 visualizes the mean consensus time of the small world network data along with the

95% confidence interval of each mean. The x-axis indicates the state update protocol used by each

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

In figure 6.6, one can observe that the mean consensus time of a SLOG algorithm with maximum

frequency selection (µslog.max = 28.36, σslog.max = 125.35, 95%CIµ [25.77, 30.95]) is less than all

other algorithms studied in this experiment. The mean consensus time of a local observation algo-

114

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●

●●●●●●

●●
●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

●●●●●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●●●
●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●
●
●●

●

●

●
●●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●●

●

●

●●
●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●●●
●

●●●

●

●●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●●●

●

●

●●●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●●

●

●

●●●●●●

●

●

●●●

●
●●

●

●●●
●
●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●●
●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●●●

●

●

●

●

●
●●

●

●●●

●

●

●●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●●●●

●

●

●●●

●

●

●●●

●

●

●●●●●●●●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●
●●●

●

●
●

●
●
●●
●

●
●
●●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●

●●
●●

●●
●

●

●
●
●

●

●
●
●

●

●●
●●

●

●
●

●

●

●
●
●
●
●

●
●
●●
●●●●
●●●

●

●●

●
●

●
●●

●●
●

●

●●

●

●●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

●
●
●●
●●●●●
●
●

●

●●
●
●
●●
●
●

●●

●
●●
●

●
●●●
●●

●

●
●
●●
●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●
●●
●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●●
●
●●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●
●

●

●
●

●

●●

●

●●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●●●●
●
●

●
●

●●

●●●

●

●

●●

●
●●
●
●
●

●
●

●●

●
●

●

●

●●

●
●

●●

●●●
●

●

●

●

●

●

●●●
●

●

●●●

●●
●

●

●●
●

●

●

●
●●●
●●
●
●

●●

●●●

●
●●●
●
●

●
●
●●
●●
●
●
●●●●●

●

●
●●●

●

●
●●
●●

●●

●
●
●

●
●
●

●

●
●
●
●●
●

●●

●
●

●

●

●

●

●●
●●●

●
●

●
●

●
●●
●
●

●

●

●●
●
●

●

●
●
●

●

●

●●●●

●
●

●●
●
●
●
●
●
●
●
●

●●●

●

●
●
●

●

●
●
●

●

●

●

●●
●●

●
●

●

●●●
●
●●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●●

●
●

●
●

●●
●
●●

●

●

●

●

●

●
●
●

●

●●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●●
●●●

●●

●

●
●

●

●

●
●
●

●
●

●●●
●●●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●●●●●
●

●

●
●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●
●●
●●
●
●
●
●
●

●

●

●

●

●

●●●

●

●

●
●

●

●●
●●

●

●
●●●●
●

●
●

●
●

●●

●

●

●●
●
●●
●●

●●●●
●

●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●●●●
●
●

●●

●●

●

●

●

●

●
●●

●

●

●

●
●●●
●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●●
●●●●
●

●
●
●●
●
●●
●
●
●

●●●
●

●●

●

●●●●●●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●●●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●
●

●
●

●●

●

●
●●

●

●

●
●
●●

●

●

●

●
●●●

●

●

●●●

●

●●●●

●

●

●
●

●

●
●●
●
●●●

●

●●

●

●●

●
●●●●●

●
●●

●●●●
●
●●●●

●●

●

●●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●
●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●●
●
●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●●
●●●●

●
●
●

●●●●●
●

●

●●●●
●

●

●●
●●
●

●

●●

●
●●
●●

●
●
●●●
●
●
●

●

●
●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●●●

●

●●●
●

●

●

●
●

●

●

●●●●
●

●●

●
●●
●
●●●●
●
●●

●

●

●

●●
●●●
●
●●●●●●●

●
●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●●●●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●
●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●●

●

●

●
●

●

●

●
●●●●

●

●●

●

●●

●

●
●●●

●

●

●

●

●

●

●
●●
●●
●
●●●

●

●
●●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●
●
●
●

●
●

●

●

●●

●

●

●●●
●
●
●
●

●

●●

●●

●
●

●

●

●

●

●

●●

●
●●
●
●
●
●

●
●
●●

●

●●●●●

●
●

●

●
●●

●

●

●
●

●

●
●●●
●●●●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●●
●●

●

●

●
●●●

●
●

●●
●●

●

●●
●●●

●

●
●●
●
●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●●●●●
●

●

●
●
●
●

●●●
●
●

●●
●

●
●
●●

●
●
●●
●
●

●

●

●●●●
●

●

●

●
●

●●
●
●
●

●●

●●

●

●●●

●

●●
●
●●●●●
●
●●
●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●●●
●●

●

●
●

●

●
●

●
●
●

●

●●
●●●●
●●●

●

●

●
●

●

●

●

●●
●
●

●●

●

●●
●

●

●

●●

●●
●
●

●
●

●

●

●
●

●
●
●

●

●●

●

●●

●
●

●

●●

●

●●●

●●

●

●●●
●

●

●

●
●

●●
●
●●
●

●

●

●●
●

●
●
●●●

●

●

●

●
●

●

●
●●
●
●

●

●

●
●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●
●
●
●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●●

●

●
●

●
●●
●

●

●●

●
●

●

●●●

●

●●
●
●

●

●●
●
●

●
●●●●

●●
●

●
●●
●●●●
●●●

●

●●

●

●
●

●●

●●●
●
●

●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●
●
●

●●

●

●

●●●●

●●●
●

●
●
●
●
●
●●

●

●

●●●●●

●

●
●

●
●

●

●●●
●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●
●
●

●
●
●
●●●
●

●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●
●
●
●
●●

●
●

●●

●●

●

●
●●●
●●
●
●●

●

●
●
●●●●●
●●●
●
●
●●
●
●

●

●●●
●

●

●●●
●●●●
●●●
●
●
●
●
●●
●

●●
●
●●

●●

●

●

●

●
●
●
●●

●

●●
●
●
●

●●●●
●

●●●●
●
●

●

●

●

●●
●

●
●
●●

●●

●
●

●

●

●
●

●
●

●●●
●
●
●●
●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●
●
●●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●●

●
●●

●●

●

●

●●●●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●●

●

●

●

●●
●
●●
●
●●●
●

●

●
●

●

●

●
●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●●●

●

●
●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●
●

●●●
●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●
●

●●

●

●●●
●

●
●

●
●

●
●●

●

●

●

●

●
●●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●●●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●
●
●

●

●
●

●

●●

●
●

●
●
●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●
●

●
●

●●

●●●

●●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●
●●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●
●
●

●

●

●
●

●●

●

●
●

●
●●

●

●

●●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●●

●
●●
●

●

●

●

●●●

●

●
●

●

●●

●

●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●●

●●●

●

●
●

●●

●

●●

●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●●

●●

●

●

●●

●●●
●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●
●●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●●
●●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●
●
●●
●●●●

●

●

●

●

●●
●

●●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●●●●●●
●

●

●

●
●

●
●

●

●●●●
●●●

●
●

●

●
●
●●
●
●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●
●
●●●

●

●●
●
●

●
●
●
●
●

●

●

●

●
●
●
●●
●●●
●

●
●
●
●

●

●

●●●
●
●
●
●●●●

●

●

●●●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●●

●●●●●●
●
●●

●●

●

●

●

●

●
●
●●

●●
●●
●●●

●

●

●

●

●

●

●●
●

●
●
●
●●●

●●

●●
●●●

●

●
●●●●

●
●

●

●
●
●

●

●●
●
●
●

●

●●
●●
●
●●

●
●●

●

●●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●●
●

●

●●

●
●●
●●
●
●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●
●●●●
●
●

●
●●
●
●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●●
●
●

●

●

●●●
●●●

●●●●
●●●●●●●

●
●

●

●
●●●

●

●●

●
●
●
●
●●●●

●●

●●●

●

●

●

●

●

●

●

●

●●●●●●
●●●
●●

●

●
●
●
●●●
●
●
●
●

●●●●

●

●

●

●●●

●

●
●
●●●
●

●●●

●●
●

●●●●

●

●

●

●
●
●

●

●
●●●●●
●
●

●●
●●●
●
●●
●

●
●

●
●

●●

●●●
●
●

●
●●

●

●
●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Small World Networks

Figure 6.5: Data from the empirical comparison between information propagation algorithms, vi-
sualized as box plots that show the interquartile range, median value, and outliers of the consensus
time on Newmann-Watts-Strogatz small world networks.

rithm using maximum frequency selection is the highest (µlo.max = 4638.21, σlo.max = 21925.25,

95% CIµ [4185.17, 5091.24]). The mean consensus time of a SLOG algorithm using proportional

selection (µslog.pro = 75.51, σslog.pro = 112.61, 95% CIµ [73.18, 77.83]) is less than the mean con-

sensus time of buffered gossip algorithms using proportional selection (µbg.pro = 95.66, σbg.pro =

163.00, 95% CIµ [92.29, 99.02]), but greater than the mean consensus time of a buffered gos-

115

●

●

●

●

●

●

●

1000

2000

3000

4000
5000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Small World Networks

Figure 6.6: Data from the empirical comparison between information propagation algorithms,
visualized as errorbar plots of the 95% confidence intervals for the mean consensus time on
Newmann-Watts-Strogatz small world networks.

sip algorithm using maximum frequency selection (µbg.max = 52.49, σbg.max = 180.70, 95% CIµ

[48.76, 56.22]), a local observation algorithm using proportional selection (µlo.pro = 59.82, σlo.pro =

114.96, 95% CIµ [57.45, 62.20]), and the uniform gossip algorithm (µuni = 67.07, σuni = 128.73,

95% CIµ [64.41, 69.73]).

116

Based on the observations for the experiments on Newman-Watts-Strogatz small world networks,

as represented in figure 6.4 and figure 6.3, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion is not greater than the mean consensus time of a SLOG algorithm using proportional

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is not greater than the mean con-

sensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a local observation algorithm using maximum frequency se-

lection is greater than the mean consensus time of a SLOG algorithm using proportional

selection.

117

• The mean consensus time of a local observation algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a local observation algorithm using proportional selection is

less than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a SLOG algorithm using maximum frequency selection is less

than the mean consensus time of a SLOG algorithm using proportional selection.

In general, the observations represented in figure 6.6 and figure 6.5, suggest that a SLOG algo-

rithm using maximum frequency selection is the best choice for fast consensus formation over an

arbitrary Newmann-Watts-Strogatz small world network. These observations also suggest that the

local observation algorithm using maximum frequency selection is the worst choice for consensus

formation due to its lack of stability.

Lattice Networks

Figure 4.8 visualizes the experimental data from 300 randomly generated lattice networks using

a standard box plot. The x-axis indicates the state update protocol used by each algorithm. The

y-axis indicates the number of steps until consensus is achieved. The y-axis has been transformed

logarithmically in order to improve the overall visualization of the data; the data itself has not been

transformed.

In figure 6.7, one can observe that, unlike in the other networks, all seven algorithm appear to have

fairly similar performance. The median consensus time of a local observation algorithm using

maximum frequency selection is lowest, but this particular algorithm also has instances in which

118

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●
●●

●●

●

●

●

●●●

●

●●●
●●

●

●●●●●●
●●

●

●
●
●●
●
●●●●

●

●
●
●●

●

●
●
●●●●●

●

●
●
●●
●
●●
●
●●
●
●●●
●
●●
●
●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●
●
●●●
●
●●●●●

●

●●●

●

●●●●●

●

●●●

●

●
●
●●●
●
●●●●●

●

●
●
●●
●
●●●●

●

●●
●
●●●●●●

●

●●
●
●●
●
●●●

●●
●●●

●

●
●
●●
●
●●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●
●
●●●●

●

●
●
●●●●

●

●●●

●

●●
●
●●
●
●●●●●

●

●●●

●

●
●
●●●●

●

●
●
●●●
●
●●●●●

●

●
●
●●●●
●
●●●●

●

●
●
●●●●

●

●●●

●

●●●●

●

●●
●
●●
●
●●●●

●

●●●

●

●●●

●

●
●
●●●●

●

●●●

●

●
●
●●●●

●

●●●●

●

●●●●●

●

●●
●
●●●●
●
●●●●

●

●●●

●

●●
●
●●
●
●●
●
●●●●●

●

●●●●

●

●
●
●●
●
●●●●

●

●
●
●●
●
●●●●

●

●●●

●

●●
●
●●
●
●●●●

●

●
●
●●●●

●

●
●
●●
●
●●●●

●

●●●

●

●
●
●●

●

●●●●

●

●

●●
●●
●
●●
●
●● ●●

●

●

●
●
●

●
●

●●

●

●

●●

●

●●●

●

●

●
●
●

●●●

●

●

●
●
●

●
●
●

●
●
●

●
●
●

●

●

●
●
●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●
●
●

●
●
●

●●

●

●

●
●
●
●

●

●

●
●●

●

●

●
●
●

●
●
●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●
●

●
●
●

●●●

●

●●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●●●

●

●

●

●

●
●
●

●
●

●●

●

●●

●

●●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●●●
●

●
●

●

●
●
●

●
●
●

●●●

●

●

●●●

●

●

●
●
●

●
●

●●

●

●

●
●
●

●
●

●●

●

●●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●●

●

●

●
●
●

●
●

●●

●

●●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●●●

●

●
●

●

●
●
●

●

●●●●●●
●
●

●

●●●●

●

●
●
●●

●

●●●●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●
●

●

●●●●
●●●

●

●●●●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●

●

●
●

●

●
●
●

●

●●●●
●

●

●
●
●●●

●

●●●●
●

●

●
●

●

●
●
●●●●●
●

●

●●●●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●
●

●

●
●
●●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●
●

●

●
●
●●

●

●●●●

●

●
●
●●

●

●
●●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●
●●

●

●●●●
●

●

●
●

●

●
●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●
●

●

●●●●

●

●
●
●

●

●●●●
●●

●

●●●●
●●●

●

●●●●
●

●

●
●
●●

●

●
●
●

●

●●●●
●

●

●●●●
●
●

●

●
●●
●

●

●
●

●

●
●
●●

●

●●●●
●●

●

●●●●

●

●
●

●

●
●
●

●

●●●●

●

●
●●

●

●
●
●

●

●●●●
●

●

●●●●
●

●

●
●

●

●
●
●

●

●●●●

●

●
●
●

●

●●●●

●

●
●

●

●
●
●

●

●●●●
●

●

●●●●●●
●
●

●

●●●●
●●

●

●●●●●
●
●●
●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●
●
●

●
●

●

●●

●

●

●●
●
●

●●

●

●

●●

●
●

●
●

●●

●●

●

●
●
●

●
●

●

●
●

●
●
●
●

●
●
●
●

●
●

●

●
●

●
●
●
●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●
●
●

●
●

●●

●
●

●
●

●●●

●●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●
●
●

●
●

●●●

●
●

●
●

●●

●●

●

●
●
●

●
●
●
●

●
●

●

●●

●

●

●●●

●
●

●
●

●●●

●●

●

●

●●●●

●
●

●
●
●
●

●
●

●

●

●
●●●●

●●

●

●
●
●

●
●
●
●

●
●

●

●
●

●
●
●
●

●
●

●

●●

●

●

●

●
●

●
●
●
●

●
●

●

●●

●

●
●
●

●
●
●
●

●
●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●●

●
●

●
●
●
●

●
●

●●●●●●

●●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●
●
●

●
●

●

●
●

●
●

●●

●●

●

●
●
●

●
●

●●●●

●
●

●
●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●●

●

●

●●●

●●

●

●

●

●
●

●
●
●
●

●
●

●●●●●

●●

●

●

●

●●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●

●●●

●●

●

●

●●●

●●

●

●

●●

●
●

●
●

●●●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●●●●
●

●
●

●
●

●

●
●

●
●

●●●

●●

●

●

●●

●●

●

●
●
●

●
●
●
●

●
●

●

●●

●

●

●

●
●

●
●
●
●

●
●

●

●●

●

●

●●●

●●

●

●

●●

●
●

●
●
●
●

●
●

●

●●

●

●
●
●

●
●

●

●●

●

●
●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●●
●
●

●●

●

●

●●

●●

●

●

●

●

●
●●●●

●
●

●
●
●
●

●
●

25000

50000
75000

100000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 6.7: Data from the empirical comparison between information propagation algorithms, vi-
sualized as box plots that show the interquartile range, median value, and outliers of the consensus
time on lattice networks.

consensus did not occur. A SLOG algorithm using maximum frequency selection has the second

fastest median consensus time - and without any failures of convergence.

Figure 4.9 visualizes the mean consensus time of the lattice network data along with the 95%

confidence interval of each mean. The x-axis indicates the state update protocol used by each

119

●

●

●

●

●

●

●

500

1000

1500

2000

Lo
ca

l O
bs

er
va

tio
n

(M
F

)

Lo
ca

l O
bs

er
va

tio
n

(P
)

B
uf

fe
re

d
G

os
si

p
(M

F
)

B
uf

fe
re

d
G

os
si

p
(P

)

U
ni

fo
rm

 G
os

si
p

S
LO

G
 (

M
F

)

S
LO

G
 (

P
)

Algorithm

S
te

ps

Consensus Time on
Lattice Networks

Figure 6.8: Data from the empirical comparison between information propagation algorithms,
visualized as errorbar plots of the 95% confidence intervals for the mean consensus time on lattice
networks.

algorithm. The y-axis indicates the number of steps until consensus is achieved. The y-axis has

been transformed logarithmically in order to improve the overall visualization of the data; the data

itself has not been transformed.

In figure 6.8, one can observe that the mean consensus time of a SLOG algorithm with maximum

120

frequency selection (µslog.max = 58.92, σslog.max = 71.93 95%, CIµ [57.43, 60.40]) is less than all

other algorithms studied in this experiment. The mean consensus time of a local observation algo-

rithm using maximum frequency selection is the highest (µlo.max = 1800.76, σlo.max = 13833.05

95% CIµ [1514.93, 2086.59]). The mean consensus time of a SLOG algorithm using propor-

tional selection (µslog.pro = 105.89, σslog.pro = 123.04, 95% CIµ [103.35, 108.43]) is less than

the mean consensus time of buffered gossip algorithms using proportional selection (µbg.pro =

119.69, σbg.pro = 128.80 95% CIµ [117.03, 122.35]), but greater than the mean consensus time

of a local observation algorithm using proportional selection (µlo.pro = 80.78, σlo.pro = 72.10

95% CIµ [79.29, 82.27]), the uniform gossip algorithm (µuni = 96.12, σuni = 106.85 95% CIµ

[93.91, 98.33]), and a buffered gossip algorithm using maximum frequency selection (µbg.max =

101.26, σbg.max = 92.48 95% CIµ [99.35, 103.17]).

Based on the observations for the experiments on lattice networks, as represented in figure 6.8 and

figure 6.7, I conclude that, with a high probability,

• The mean consensus time of a buffered gossip algorithm using maximum frequency selection

is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a buffered gossip algorithm using maximum frequency selec-

tion is not greater than the mean consensus time of a SLOG algorithm using proportional

selection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a buffered gossip algorithm using proportional selection is

121

greater than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a uniform gossip algorithm is greater than the mean consensus

time of a SLOG algorithm using maximum frequency selection.

• The mean consensus time of a uniform gossip algorithm is not greater than the mean con-

sensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a local observation algorithm using maximum frequency selec-

tion is greater than the mean consensus time of a SLOG algorithm using maximum frequency

selection.

• The mean consensus time of a local observation algorithm using maximum frequency se-

lection is greater than the mean consensus time of a SLOG algorithm using proportional

selection.

• The mean consensus time of a local observation algorithm using proportional selection is

greater than the mean consensus time of a SLOG algorithm using maximum frequency se-

lection.

• The mean consensus time of a local observation algorithm using proportional selection is

less than the mean consensus time of a SLOG algorithm using proportional selection.

• The mean consensus time of a SLOG algorithm using maximum frequency selection is less

than the mean consensus time of a SLOG algorithm using proportional selection.

In general, the observations represented in figure 6.8 and figure 6.7, suggest that a SLOG algo-

rithm using maximum frequency selection is the best choice for fast consensus formation over an

arbitrary Newmann-Watts-Strogatz small world network. These observations also suggest that the

local observation algorithm using maximum frequency selection is the worst choice for consensus

formation due to its lack of stability.

122

Impact of Network Topology

In regards to comparing the mean consensus time across network topology, the experimental results

support the expectation that consensus time is sensitive to the topology of the agent communication

network. The communication topology appears to produce a difference in the relative performance

of information propagation algorithms using proportional selection or maximum frequency selec-

tion, as well as the uniform gossip algorithm. What is especially interesting, however, is that the

mean and median consensus time resulting from the use of various algorithms appears to become

similar on lattice-like networks.

Summary of Results

Consensus was not observed in all of our experiments. Local observation algorithms using maxi-

mum frequency selection failed to arrive at a consensus at least once on every type of network that

we tested. All other algorithms, however, did reach consensus.

As with the results of my other experiments on involving buffered gossip algorithms and the uni-

form gossip algorithm, the topology of the communication network may be the most critical factor

in the speed of consensus for SLOG algorithms. Evidence of this behavior is found in the observed

consensus times across the four network topologies tested in these experiments – the mean con-

sensus time varies more between the type of network than the state update protocol. Regardless

of the network topology, however, a SLOG algorithm using maximum frequency selection always

has both a lower median consensus time and a mean consensus time than a SLOG algorithm using

proportional selection. There are instances in which a local observation algorithm using maximum

frequency selection may perform better; but, that performance comes with the risk that consensus

may not be achieved.

123

In regards to the relative performance improvement gained by combining push-based and pull-

based transfer mechanisms into a stochastic transfer mechanism, that SLOG algorithms out-perform

other information propagation algorithms with the same timing model, transfer protocol, and state

update protocol. The SLOG algorithm using maximum frequency is guaranteed to produce a con-

sensus, and produces that consensus faster than either local observation algorithms, buffered gossip

algorithms, or the uniform gossip algorithm.

As a solution to the decentralized consensus problem, these results indicate that the SLOG algo-

rithm may be a universally better solution than either buffered gossip algorithms or local observa-

tion algorithms using the same state update protocol.

124

CHAPTER 7: CONCLUSIONS

Having introduced three types of information propagation algorithm, I will now discuss the impli-

cations of my experimental result on the decentralized consensus problem in the discrete domain.

Following this discussion, I will propose a number of avenues for future research. Finally, I will

summarize the entirety of my research and present my conclusions.

Discussion

The data and observations from our three experiments on buffered gossip algorithms, local ob-

servation algorithms, and Stochastic Local Observation/Gossip (SLOG) algorithms suggests that

SLOG algorithms using maximum frequency selection have the lowest mean consensus time of

all algorithms examined. With the exception of local observation algorithms, the use of a propor-

tional selection protocol always results in greater consensus times than an equivalent algorithm

with a maximum frequency selection state update protocol. Local observation algorithms using a

maximum frequency selection state update protocol are fast, but they are not always successful at

producing a consensus. Buffered gossip algorithms using maximum frequency selection always

reach a consensus, but not as fast as successful local observation algorithms. SLOG algorithms

using maximum frequency selection combine local observation and buffered gossip to to produce

an algorithm that always reaches a consensus, and does so nearly as fast as a successful local obser-

vation algorithm. Furthermore, the relative performance of the SLOG algorithm using maximum

frequency selection was consistent across all examined network topologies. In every case, the

SLOG algorithm using maximum frequency selection produced a consensus in the least amount of

time relative to the other algorithms.

125

A SLOG algorithms using maximum frequency selection is most likely able to outperform its

competition because of two primary factors: the use of a state update protocol that innately tries

to build towards consensus, and the expected size of a node’s buffer. The maximum frequency

selection state update protocol is designed to select information based on a majority, and randomly

if no majorities exist. Naturally, as nodes start to possess the same state value, local majorities will

be reinforced and their value spread outwards. This behavior is in contrast to proportional selection,

where it is possible for randomness to eat away at a majority. When maximum frequency selection

is combined with a local observation transfer mechanism, a node can easily detect the presence

of local majorities and so one would expect consensus to occur quickly. This does not always

happen, however, because the consideration of every neighbor can lead to groups of nodes that

get “stuck”, as depicted figure 5. In a SLOG algorithm, a node considers the state of all of its

neighbors with probability α. When α < 1, there are times when a node considers only a subset of

those neighbors. If only a subset of neighbors are considered, then a node is less likely to get stuck

in a single state because it is possible for that node to consider two disjoint subsets of neighbors

within two consecutive steps. This behavior, which results in the condition E(|βu|) < N(u), is at

the core of the SLOG algorithm’s stability.

With regards to the decentralized consensus problem and its areas of application, such as ren-

dezvous, my research supports the use of a SLOG algorithm as the baseline solution, unless prob-

lem constraints prohibit their usage, or the problem structure allows the creation of specialized

algorithms that can out-perform a SLOG algorithm. One such constraint that may occur is a limi-

tation on the buffer size of a node to a value much smaller than the number of neighbors each node

is expected to have. In this case, however, the SLOG algorithm could be modified to observe a

subset of neighbors, instead of every neighbor; but, there is no guarantee that the performance of

such an algorithm would be comparable. One example of beneficial problem structure would be

the allowance of broadcast communication. If a node is able to broadcast its state value to every

126

neighbor, then it may be possible to obtain a consensus in less time than one would with a SLOG

algorithm; but, this has not yet been tested.

Future Work

I have explored the consensus behavior of simple information propagation algorithms, but this

exploration has been limited to questions concerning the possibility of consensus and the relative

time in which consensus is reached among a specific set of information propagation algorithms.

There are at least four additional research questions that can build on the results presented in this

dissertation.

E1: Can the average consensus time of an information propagation algorithm be estimated with-

out simulation?

E2: What is this consensus behavior of additional state update protocols?

E3: How does error impact the speed of consensus?

E4: How do the algorithms introduced in this dissertation perform when implemented in real

systems?

Question E1 is motived by a knowledge gap in this dissertation. I have successfully shown that a

number of information propagation algorithms are guaranteed to produce a consensus, but I have

said nothing as to how one might compute either the average consensus time or the bounds of

the consensus time. My experimental results indicate that the bounds may be very wide, as some

simulations finish in under 5 steps and others halt after tends of thousands of steps. With regards

to calculating the average consensus time, however, absorbing Markov chains may prove to be a

127

good starting location. Preliminary research on this approach [22] shows that absorbing Markov

chains can be used to model buffered gossip algorithms using proportional selection, but their

construction quickly becomes infeasible as the size of the network exceeds 10-15 nodes. Another

concern with computing the bounds on consensus time is related to scalability. Specifically, how

does the consensus time scales with the size of the network or measures of centrality (e.g. average

degree, betweenness or clustering coefficient)? This is a question of practicality, as exponential

scaling would imply that even though consensus will eventually be reached on a large network,

the time required to obtain it may be longer than the lifespan of the user. On the other hand, if the

scaling is linear or logarithmic, then even large networks will form a consensus within a reasonable

amount of time.

Question E2 is the most straightforward extension to this dissertation. I have focused only on two

simple approaches to reducing the values in a buffer - select a value at random, or select the most

represented value. Other possible approaches, of equal simplicity, might be to select the value

least represented, or keep the current state value if the values in the buffer are not all equal to one

another. It is also worth investigating more complicated reduction methods that incorporate the

tracking of previous values, or wait multiple steps between state updates. The more state update

protocols that are investigated, the better our understanding of consensus formation will become.

Question E3 is motivated by another knowledge gap in this dissertation. I have shown that the

information propagation algorithms studied are robust to noise and node failure when it comes to

consensus formation, but I do not fully explore how transmission error impacts the time required to

research consensus. For instance, if a node using a local observation algorithm failed to observe all

of of its neighbors, would that increase or decrease the mean consensus time? Likewise, what if a

gossip algorithm mistakenly transmitted to more than one neighbor at a time? The answers to these

questions could have profound implications to the use of these algorithms in the real world. Based

on the differences in consensus behavior between a local observation algorithm using maximum

128

frequency selection and a SLOG algorithm using maximum frequency selection, I expect that the

presence of error may be beneficial in certain circumstances. In the specific case of these two

algorithms, the SLOG algorithm can be thought of as a local observation algorithm in which a

node fails to observe all of its neighbors with probability 1 − α; the algorithm becomes stable in

the presence of error.

Question E4 is motivated by practicality. This dissertation studies information propagation algo-

rithms in a pure environment, where consideration is not given to hardware or software restrictions.

In the real world, however, there are often constraints that must be be accounted for. These con-

straints have the potential to impact the consensus time of a system, although as long as the basic

assumptions discussed in our proofs are met, consensus will still be possible. One example of

such a real-world system might be a team of robots that must rendezvous at specific waypoints. In

this example, there may be hardware limitations that restrict how often transmissions can be sent

between the agents; or limitations with regards to how fast the CPU can process incoming data.

Conclusions

The task of the decentralized consensus problem for multi-agent systems is to design an algorithm

that enables agents to communicate and exchange information such that, in finite time, every agent

comes to possess the same information without the use of a centralized control mechanism.

The primary goal of this research is to introduce and provide supporting evidence for Stochastic Lo-

cal Observation/Gossip (SLOG) algorithms as new solutions to the decentralized consensus prob-

lem for multi-agent systems that lack a centralized controller, with the additional constraints that

agents act asynchronously, information is discrete, and all consensus options are equally preferable

to all agents. Examples of where these constraints might apply include the spread of social norms

129

and conventions in artificial populations, rendezvous among a set of specific waypoints, and task

allocation.

Prior to introducing SLOG algorithms, I derive the concepts of an information propagation process

and an information propagation algorithm, and then use the structure provided by these concepts

to define two algorithms that spread information across a network and solve the decentralized con-

sensus problem: the buffered gossip algorithm and the local observation algorithm. The buffered

gossip algorithm spreads information according to a push-based methodology and generalizes the

well-known and widely-used uniform gossip algorithms. The local observation algorithm spreads

information according to a pull-based methodology and generalizes multiple opinion dynamics

models, including the voter model and the label propagation algorithm. I use linear algebra and

probability to verify that these algorithms are solutions to the decentralized consensus problem.

SLOG algorithms are information propagation algorithms that combine the transmission mecha-

nisms of buffered gossip algorithms and local observation algorithms into a single “hybrid” algo-

rithm that is able to push and pull information within the local neighborhood. As with buffered

gossip algorithms and local observation algorithms, I use linear algebra and probability to verify

that these algorithms are solutions to the decentralized consensus problem.

I use a series of simulation experiments to study the performance of SLOG algorithms. These ex-

periments compare the average speed of consensus formation between buffered gossip algorithms,

local observation algorithms, and SLOG algorithms over four distinct network topologies. The

uniform gossip algorithm is used as a baseline of measurement due its established history and

presence in the related literature.

The data and observations from these experiments suggests that SLOG algorithms have the poten-

tial to solve the decentralized consensus problem faster than the experimental alternatives. These

experiments also support the theoretical findings that SLOG algorithms will always reach a con-

130

sensus when a basic set of assumptions hold true: the network contains a directed spanning tree,

and the nodes of that network employ both an asynchronous timing model and a selection-based

state update protocol.

By leveraging models from the field of computational social science (opinion dynamics) and apply-

ing their core ideas to a standard problem in both control theory and computer science (consensus

formation), I have been able to bridge a divide created by terminology and analytical technique

and construct a novel solution to the decentralized consensus problem that is both fast and stable.

This result has implications that reach beyond the context of the decentralized consensus problem

by adding support to the idea that the hybridization of existing algorithms can open new avenues

for advancing solutions to both existing and future problems.

131

LIST OF REFERENCES

[1] W. Ren, R. Beard, and E. Atkins, “A survey of consensus problems in multi-agent coordi-

nation,” in Proceedings of the 2005 American Control Conference, pp. 1859–1864, IEEE,

2005.

[2] W. Ren, R. Beard, and E. Atkins, “Information consensus in multivehicle cooperative con-

trol,” Control Systems, IEEE, vol. 27, pp. 71–82, April 2007.

[3] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent

systems,” Proceedings of the IEEE, vol. 95, pp. 215–233, Jan 2007.

[4] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione, “Gossip Algorithms

for Distributed Signal Processing,” Proceedings of the IEEE, vol. 98, pp. 1847–1864, Nov.

2010.

[5] N. Alon, A. Barak, and U. Manber, “On disseminating information reliably without broad-

casting.,” in ICDCS, pp. 74–81, IEEE Computer Society, 1987.

[6] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks,” Random

Structures & Algorithms, vol. 1, no. 4, pp. 447–460, 1990.

[7] J. Lin, A. Morse, and B. D. O. Anderson, “The multi-agent rendezvous problem,” in Proceed-

ings of the 42nd IEEE Conference on Decision and Control, vol. 2, pp. 1508–1513 Vol.2, Dec

2003.

[8] J. Lin, A. Morse, and B. D. O. Anderson, “The multi-agent rendezvous problem - the asyn-

chronous case,” in Proceedings of the 43nd IEEE Conference on Decision and Control, vol. 2,

pp. 1926–1931 Vol.2, Dec 2004.

132

[9] A. Pelc, “Disc 2011 invited lecture: Deterministic rendezvous in networks: Survey of models

and results,” in Distributed Computing (D. Peleg, ed.), vol. 6950 of Lecture Notes in Com-

puter Science, pp. 1–15, Springer Berlin Heidelberg, 2011.

[10] J. Fang, A. Morse, and M. Cao, “Multi-agent rendezvousing with a finite set of candidate

rendezvous points,” in Proceedings of the 2008 American Control Conference, pp. 765–770,

June 2008.

[11] C. D. Hollander and A. S. Wu, “Gossip-based solutions for discrete rendezvous in populations

of communicating agents,” PLoS ONE, vol. 9, November 2014.

[12] C. D. Hollander and A. S. Wu, “The current state of normative agent-based systems,” Journal

of Artificial Societies and Social Simulation, vol. 14, no. 2, 2011.

[13] C. D. Hollander and A. S. Wu, “Using the process of norm emergence to model consensus

formation,” in Proceedings of the 5th IEEE International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), pp. 148 –157, October 2011.

[14] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,

and D. Terry, “Epidemic algorithms for replicated database maintenance,” ACM SIGOPS

Operating Systems Review, vol. 22, no. 1, pp. 8–32, 1988.

[15] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey of gossiping and broad-

casting in communication networks,” Networks, vol. 18, no. 4, pp. 319–349, 1988.

[16] J. Hromkovic, R. Klasing, B. Monien, and R. Peine, “Dissemination Of Information In

Interconnection Networks (Broadcasting & Gossiping),” Combinatorial Network Theory,

pp. 125–212, 1996.

133

[17] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,”

in 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.,

pp. 482– 491, IEEE, 2003.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE

Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[19] A.-M. KerMarchrec and M. van Steen, “Gossiping in distributed systems,” SIGOPS Operat-

ing Systems Review, vol. 41, no. 5, pp. 2–7, 2007.

[20] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized rumor spreading,”

in Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 565–574,

IEEE, 2000.

[21] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource location protocols,”

Journal of the ACM, vol. 51, pp. 943–967, Nov. 2004.

[22] C. D. Hollander and A. S. Wu, “Distributed consensus formation through unconstrained gos-

siping,” Computer Research Repository (CoRR), vol. abs/1301.2722, 2013.

[23] C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social dynamics,” Reviews

of Modern Physics, vol. 81, p. 591, May 2009.

[24] P. Krapivsky and S. Redner, “Dynamics of majority rule in Two-State interacting spin sys-

tems,” Physical Review Letters, vol. 90, June 2003.

[25] M. Mobilia and S. Redner, “Majority versus minority dynamics: Phase transition in an inter-

acting two-state spin system,” Phys. Rev. E, vol. 68, p. 046106, Oct 2003.

[26] T. M. Liggett, Interacting Particle Systems. Springer Berlin Heidelberg, 2005.

134

[27] V. Sood and S. Redner, “Voter model on heterogeneous graphs,” Physical Review Letters,

vol. 94, p. 178701, May 2005.

[28] F. Schweitzer and L. Behera, “Nonlinear voter models: the transition from invasion to coex-

istence,” The European Physical Journal B, vol. 67, no. 3, pp. 301–318, 2009.

[29] M. Yildiz, R. Pagliari, A. Ozdaglar, and A. Scaglione, “Voting models in random networks,”

in Information Theory and Applications Workshop (ITA), 2010, pp. 1–7, Jan 2010.

[30] U. N. Raghavan, R. Albert, and S. KuMarcha, “Near linear time algorithm to detect commu-

nity structures in large-scale networks,” Phys. Rev. E, vol. 76, p. 036106, Sep 2007.

[31] D. Mosk-Aoyama and D. Shah, “Computing separable functions via gossip,” in Proceedings

of the 25th Annual ACM Symposium on Principles of Distributed Computing, PODC ’06,

(New York, NY, USA), pp. 113–122, ACM, 2006.

[32] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, 2001.

[33] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems, vol. 16,

pp. 133–169, May 1998.

[34] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,” in

Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,

USENIX ATC’14, (Berkeley, CA, USA), pp. 305–320, USENIX Association, 2014.

[35] D. Kempe and J. Kleinberg, “Protocols and impossibility results for gossip-based communi-

cation mechanisms,” in Proceedings of the 43rd Annual IEEE Symposium on Foundations of

Computer Science, pp. 471–480, IEEE Comput. Soc, 2002.

[36] A. J. Ganesh, A. M. KerMarchrec, and L. Massoulie, “Peer-to-peer membership management

for gossip-based protocols,” IEEE Transactions on Computers, vol. 52, no. 2, pp. 139– 149,

2003.

135

[37] B. Pittel, “On Spreading a Rumor,” SIAM Journal on Applied Mathematics, vol. 47, pp. 213–

223, Sept. 1987.

[38] P. T. Eugster, R. Guerraoui, A.-M. M. KerMarchrec, and L. Massoulie, “Epidemic informa-

tion dissemination in distributed systems,” Computer, vol. 37, pp. 60–67, May 2004.

[39] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic gossip: efficient aggrega-

tion for sensor networks,” in Proceedings of the 5th International Conference on Information

Processing in Sensor Networks, pp. 69–76, IEEE, 2006.

[40] A. D. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic Gossip: Efficient Averag-

ing for Sensor Networks,” IEEE Transactions on Signal Processing, vol. 56, no. 3, pp. 1205–

1216, 2008.

[41] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for

consensus,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2748–2761, 2009.

[42] A. Kashyap, T. Basar, and R. Srikant, “Consensus with Quantized Information Updates,” in

Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2728–2733, IEEE,

Dec. 2006.

[43] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An engineering perspec-

tive,” in Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Com-

puting, PODC ’07, (New York, NY, USA), pp. 398–407, ACM, 2007.

[44] A. Mocanu and C. Bădică, “Bringing paxos consensus in multi-agent systems,” in Pro-

ceedings of the 4th International Conference on Web Intelligence, Mining and Semantics

(WIMS14), WIMS ’14, (New York, NY, USA), pp. 51:1–51:6, ACM, 2014.

[45] A. Campbell and A. S. Wu, “On the significance of synchroneity in emergent systems,” in

Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Sys-

136

tems - Volume 1, AAMAS ’09, (Richland, SC), pp. 449–456, International Foundation for

Autonomous Agents and Multiagent Systems, 2009.

[46] J. P. Hecker, A. S. Wu, J. A. Herweg, and J. C. Sciortino, Jr., “Team-based resource allocation

using a decentralized social decision-making paradigm,” vol. 6964, pp. 696409–696409–9,

SPIE, 2008.

[47] X. Liu and T. Murata, “How Does Label Propagation Algorithm Work in Bipartite Net-

works?,” in Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web In-

telligence and Intelligent Agent Technologies, 2009. WI-IAT ’09., vol. 3, pp. 5–8, 2009.

[48] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,

and function using NetworkX,” in Proceedings of the 7th Python in Science Conference

(SciPy2008), (Pasadena, CA USA), pp. 11–15, Aug. 2008.

[49] T. E. Oliphant, “Python for scientific computing,” Computing in Science & Engineering,

vol. 9, no. 3, 2007.

[50] M. E. J. Newman and D. J. Watts, “Renormalization group analysis of the small-world net-

work model,” Physics Letters A, vol. 263, pp. 341–346, 1999.

[51] B. L. WELCH, “The generalization of student’s problem when several different population

varlances are involved,” Biometrika, vol. 34, no. 1-2, pp. 28–35, 1947.

[52] M. A. Nowak and R. M. May, “Evolutionary games and spatial chaos,” Nature, vol. 359,

p. 826, 1992.

[53] B. A. Huberman and N. S. Glance, “Evolutionary games and computer simulations,” Pro-

ceedings of the National Academic of Sciences of the United States of America, vol. 90,

no. 16, pp. 7716–7718, 1993.

137

	Information Propagation Algorithms for Consensus Formation in Decentralized Multi-Agent Systems
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	Prelude to the Stochastic Local Observation/Gossip (SLOG) Algorithm
	Goals and Contributions
	Methodology
	Outline

	CHAPTER 2: SOLUTIONS FOR THE DECENTRALIZED CONSENSUS PROBLEM
	Push-Based Solutions to the Decentralized Consensus Problem
	Pull-Based Solutions to the Decentralized Consensus Problem
	Notation

	CHAPTER 3: INFORMATION PROPAGATION PROCESSES AND ALGORITHMS
	Information Propagation Processes
	Timing Models
	State Values
	Buffers
	Transfer Mechanism
	Transfer Protocol
	State Update Protocol

	Information Propagation Algorithms

	CHAPTER 4: BUFFERED AND UNIFORM GOSSIP ALGORITHMS
	Buffered Gossip Algorithms
	Definition
	Mechanics
	Buffered Gossip Algorithms as Solutions to the Decentralized Consensus Problem
	A Solution Framework for Buffered Gossip Algorithms
	Convergence to a Consensus State
	Robustness to Noise and Node Failure
	Stability of the Consensus State

	Uniform Gossip Algorithms
	Definition
	Uniform Gossip Algorithms as Solutions to the Discrete Consensus Problem

	An Experimental Comparison between Buffered and Uniform Gossip Algorithms
	Experimental Design and Methodology
	Hypotheses
	Empirical Results
	Random Networks
	Scale-Free Networks
	Small World Networks
	Lattice Networks
	Impact of Network Topology

	Summary of Results

	CHAPTER 5: BUFFERED GOSSIP AND LOCAL OBSERVATION ALGORITHMS
	Local Observation Algorithms
	Definition
	Mechanics
	Local Observation Algorithms as Solutions to the Decentralized Consensus Problem
	Consensus under Proportional Selection
	Consensus under Maximum Frequency Selection
	Consensus under Arbitrary Selection-Based State Update Protocols
	Robustness to Noise and Node Failure

	An Experimental Comparison between Buffered Gossip and Local Observation Algorithms
	Experimental Design and Methodology
	Expectations
	Empirical Results
	Random Networks
	Scale-Free Networks
	Small World Networks
	Lattice Networks
	Impact of Network Topology

	Summary of Results

	CHAPTER 6: STOCHASTIC LOCAL OBSERVATION/GOSSIP ALGORITHMS
	Stochastic Local Observation/Gossip (SLOG) Algorithms
	Definition
	Mechanics
	SLOG Algorithms as Solutions to the Consensus Problem

	An Experimental Investigation of the SLOG Algorithm
	Experimental Design and Methodology
	Expectations
	Empirical Results
	Random Networks
	Scale-Free Networks
	Small World Networks
	Lattice Networks
	Impact of Network Topology

	Summary of Results

	CHAPTER 7: CONCLUSIONS
	Discussion
	Future Work
	Conclusions

	LIST OF REFERENCES

