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ABSTRACT 

For a linear regression, the traditional technique deals with a case where the 

number of observations n more than the number of predictor variables p (n>p). In the 

case n<p, the classical method fails to estimate the coefficients. A solution of this 

problem in the case of correlated predictors is provided in this thesis. A new 

regularization and variable selection is proposed under the name of Sparse Ridge Fusion 

(SRF). In the case of highly correlated predictor , the simulated examples and a real data 

show that the SRF always outperforms the lasso, elastic net, and the S-Lasso, and the 

results show that the SRF selects more predictor variables than the sample size n while 

the maximum selected variables by lasso is n size.  
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CHAPTER ONE: INTRODUCTION 

Regression analysis was first developed by Sir Francis Galton during the late 19th 

century. Galton had observed the relation between heights of parents and offspring, and 

he noted that the heights of children of both tall and short parents appeared to regress 

towards the mediocre point (mean of the group) [11]. Regression analysis is one of the 

most commonly used techniques for analyzing multi factor data. Its wide resumption and 

utility result from the conceptually logical process of using an equation to express the 

relationship between a response variable and one or more predictor variables. Because of 

elegant basic mathematics and statistically advanced theory, the regression analysis is 

also interesting theoretically [23].  

There are different types of regression models, the linear regression and non-

linear regression model. In the linear regression model, the parameters are linear because 

no parameter appears as an exponent or is multiplied or divided by another parameter 

[24]. The model which includes only one predictor variable is called simple linear 

regression, and the model with more than one predictor variables is a multi linear 

regression model. An instance of nonlinear regression is logistic regression, proposed by 

Berkson in 1944 with the introduction of the       model [1]. Logistic regression is used 

for the situations where the response variable is a binary value (0 or 1). This method 

yields a prediction equation, which is constrained to lie between 0 and 1. Also, some 

response variables are counts and the two most popular kinds of regression for count 

variables are Poisson regression and negative binomial regression. Each fits a log-linear 

model involving both quantitative and categorical predictors. Nonparametric regression 
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analysis is another kind of regression models that is a regression model without an 

assumption of linearity. It requires larger sample sizes than regression based on 

parametric models because the data must supply the model structure as well as the model 

estimates [9]. Two nonparametric regressions are Kernel regression and Local 

polynomial regression. The goal of the kernel regression is to obtain efficient predictive 

method. Local polynomial regression uses weighted least squares regression to generate 

estimated of a mean function at each point of interest. When the degree of the polynomial 

is zero, it becomes the kernel regression [12]. The most important challenge in the 

nonparametric regression fitting is selecting a suitable bandwidth (smoothing 

parameters). The model should find a balance between the variance and bias in order to 

get a good fit and leads to the minimization of a mean squared error criterion [21]. 

The work in this thesis is focused on linear regression. Classical linear regression 

deals with the case where the number of variables is less than the number of observations 

(p<n); but when p>n, the classical least squares method cannot be used. Alternative 

methods based on penalized models are used. Ridge regression, was first published by 

Hoerl and Robert Kennard in 1970 [16]. The ridge regression penalty (‖ ‖ 
 ) shrinks 

coefficients toward a common value. Lasso regression penalty was introduced by 

Tabshirani in1996. It is another method to solve the regression problem when p>n. Lasso 

uses            (‖ ‖ ) to shrink some coefficients toward zero. If there is a group of 

highly correlated predictors the lasso picks only one predictor and drops the rest from the 

model [27]. There are several algorithms to solve the lasso, for instance, the least angle 

regression (LARS) algorithm, developed by Efron et al. in 2004 [6]. This algorithm is 
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similar to forward stepwise regression starting from the null model, and picking the 

predictor variable whose coefficient is most correlated with the residuals at each step 

[29]. Another algorithm is the coordinate descent, which is shown to be faster than the 

LARS algorithm [10]. The coordinate descent algorithm was introduced independently 

by (Friedman at al., 2008) and (Wu and Lange, 2008). It is a path-wise algorithm that can 

work on very large datasets, and can take advantage of sparsity in the feature set [10, 31]. 

Another method that performs better than the ridge and lasso is the elastic net, introduced 

by (Zou and Hastie) in 2005. The elastic net combines both the    and    penalties. It is 

used for estimation and model reduction [34].The smooth Lasso method was introduced 

by (Hebiri & Van De Geer) in 2008. It uses the L1 and fused  .∑ (       )
  

   / 

penalties [15]. The local constancy and local linearity are two methods that were 

suggested by (Hawkins & Maboudou-Tchao) in 2013. The locally constant technique 

combines the     and ∑ (       )
  

    together, and the locally linear combines the L2 

and ∑ (             )
    

    together [14]. 

Even though, the previous work gives good results to estimate and select 

variables, some methods need improvement. For instance, the ridge regression cannot get 

any interpretable model as it doesn‟t set any coefficient to zero. The lasso penalty also 

has some problems. When n>>p, the maximum variable selection of the lasso is n, and 

with a highly correlated dataset, it only selects one variable and drops the others. 

Sometimes, the elastic net penalty cannot give good results for the linear and logistic 

http://en.wikipedia.org/wiki/Stepwise_regression
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regression models, and it breaks down on model selection consistency when p>>n [4, 17, 

35].  

In this thesis, a new penalization method is introduced and called Sparse Ridge 

Fusion (SRF). The technique of the SRF is mixture of the   -lasso penalty (∑  |  |
 
    ) 

and   -∑ (             )
    

   . 

The rest of the thesis is organized as follows: In chapter two, the existing methods 

will be reviewed, chapter three shows the solutions of the S-Lasso by using the 

coordinate descents algorithm and discusses the SRF, chapter four explains the 

computations of S-Lasso and SRF, chapter five presents some simulated examples and a 

dataset, and chapter six shows the conclusion of the thesis. 
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CHAPTER TOW: LITERATURE REVIEW 

In this chapter, the principles and techniques of some previous penalized methods 

are presented.  

2.1. The principle of the linear regression model 

The regression model is a statistical relation that gives two main points: 

1. The regression function of Y on X represents the relationship of the mean of the 

probability distribution of Y as a function of X; it captures the notion that Y 

varies systematically as a function of X  

2. The error term represents the deviation of Y from the regression function; there is 

a probability distribution of Y for each level of X that represents the scatter of 

points around the main direction [18]. 

When the regression function is linear, the simple linear regression model is 

written as following equation. 

          (2. 1) 

Where: 

       (    
    )  

 : is a vector of observation with length n 

 : is a design matrix n x p,  = (           )
  

 : are coefficients vector of length p, β= (           )
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Assume that the response is centered and the predictors are standardized. 

Consequently: 

∑  

 

   

     ∑   

 

   

         ∑    
 

 

   

           *         +          *         +  

Note that, since the predictors are standardized and the response is centered, no 

intercept has to be estimated. 

The usual estimation procedure for the parameter vector  ̂ as a function of X and 

y is obtained by minimizing sum of the squared errors with respect to  . 

 ̂          (    )
 (    ) (2. 2) 

It turns out that  ̂ has the form if n>p: 

 ̂   (    )        (2. 3) 

The classical least-squares regression cannot use with the dataset that consists of 

many more predictor variables with pairwise highly correlated than the observations, 

p>>n [7]. When p >> n, the matrix (    ) is not invertible. On the other hand, when the 

rows of the design matrix X are highly correlated, the  ̂ coefficients are dependent on 

different      

2.2. Penalized Least Squares 

Regularization process for classical regression models are dependent on penalized 

least squares: 

   (   )  (    ) (    )   (   )  (2. 4) 
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 (   ) is a penalty term and is based on the tuning parameter   that controls the 

shrinkage estimates. Where the tuning parameter    , the penalty term will not have 

any impact on the equation (2.4), and the ordinary least squares solution is obtained. 

Conversely, the larger the penalty applied, the further the estimates are shrunk towards 

zero. The estimates of the parameter   are acquired by minimizing the equation (2.4) [8]. 

 ̂         *   (   )+  (2. 5) 

2.2.1. Ridge Regression 

Ridge regression, proposed by (Hoerl and Robert Kennard) in 1970, adds an 

           (‖ ‖ 
 ) term to residual sum of squares function [16]. 

In this model,  (   )    ‖ ‖ 
  

 ( )  ‖    ‖ 
    ‖ ‖ 

  (2. 6) 

The ridge coefficients minimize a penalized residual sum of squares. 

 ̂              ‖    ‖ 
    ‖ ‖ 

  (2. 7) 

Where: 

‖    ‖ 
  

 

 
 ∑(   ∑     

 

   

)

 

 

 

   

                                          

‖ ‖ 
  ∑  

 

 

   

                                                               

 : is the shrinkage parameter which controls the size of the coefficients and amount of 

regularization. As   goes up, the amount of shrinkage goes up. 
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The ridge regression is a shrinkage method, not model selection because the 

coefficients are shrunken towards zero, but will never become exactly zero [26, 30]. If 

predictors are very similar, the ridge regression shrinks coefficients toward a common 

value and tends to give the predictors all equal coefficients. Though the ridge regression 

method is computationally simple and standard least square can be used to estimate the 

coefficients, it still cannot get any interpretable model as all the coefficients are still in 

the model. 

2.2.2. Lasso Regression 

Least Absolute Shrinkage and Selection Operator (lasso) was proposed by 

(Tabshirani 1996). Lasso methods are mostly used in problem with big datasets, such as 

genomics [10]. The lasso expected many coefficients to be zero and a small subset to be 

nonzero. [25] 

The lasso problem uses the   - penalized least squares criterion to obtain a sparse 

solution to the optimization problem [27]. 

 ( )  ‖    ‖ 
    ‖ ‖  (2. 8) 

In the equation (2.8) the penalty term is: 

  (   )    ‖ ‖  

Minimizing the equation (2.8) gives: 

 ̂              ‖    ‖ 
   ‖ ‖  (2. 9) 

Where: 
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‖    ‖ 
  

 

 
 ∑(   ∑     

 

   

)

 

 

 

   

                                      

‖ ‖  ∑  |  |
 
   : is   -norm penalty 

The lasso does both ongoing shrinkage and automatic variable selection 

altogether. The lasso incorporate the beneficial features of backwards-stepwise selection 

and ridge regression to equip a sparse, comparatively stable model. Backwards-stepwise 

selection “starts with the full model and sequentially deletes the predictor that has the 

least impact on fit” (13). 

Though the lasso enables a sparse model, it is unstable with high-dimensional 

data and cannot select more variables than the sample size before it saturates when p >n 

[3, 20, 22, 28, 32, 33].  

In general, the lasso fails in the two following cases. [34] 

a) When p>>n, the lasso cannot select more than n variables before it saturates. This 

is a restricted feature for a variable selection method. 

b) If there is a group of highly correlated variables, the lasso only selects one 

variable from the group and ignores the rest. The lassodoes not care which one is 

selected.  

2.2.2.1. Coordinate Descent for lasso problem. 

In this section, the coordinate descent algorithm is used to solve the lasso 

problem. Each coordinate minimization can be done quickly and the related equations 

can be updated as it cycles through the variables [10]. 
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The lasso problem in equation (2.8) is equivalent to: 

 ( )   

 
∑ (   ∑      

 
   )

  
     ∑ |  |

 
    (2. 10) 

The equation (2.10) can be written as below: 

 ( )   

 
∑ (   ∑     ̂          )

  
     ∑ | ̂ |     |  | (2. 11) 

The equation (2.11) is equivalent to the following equation: 

 ( )   

 
∑ (        )

  
     ∑ | ̂ |     |  | (2. 12) 

Where: 

  : is a partial residual 

      ∑    ̂ 
   

 

Then, by taking the derivative of the equation (2.12) with respect to    the 

solutions of    as given by: 

  ( )

     
 

{
 
 

 
  ∑        ∑   

 

 

   

 

   

                                 

 ∑        ∑   
 

 

   

 

   

                                 

 

 

Solving 
  ( )

     
   gives the solutions 

   

{
 
 

 
 
∑       
 
     

∑    
  

   

                                                       

∑       
 
     

∑    
  

   

                                                      

 

 

If the response variable is centered and the predictors are standardized, 

then ∑    
  

      , and the    values become 
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 ̂  {
∑       
 
                                     

∑       
 
                                      

 

 (2. 13) 

By adopting the soft-threshold [5] to write the coordinate descent solution of the 

lasso problem, equation (2.13) 

 ̂ 
       (   ) (2. 14) 

Where S is the soft threshold operator, and is defined as the bellow: 

 ̂ 
      {

                                                | |

                                                | |

                                                                    | |
 (2. 15) 

Where: 

  ∑     

 

   

 

2.2.3. Elastic Net Penalty 

The elastic net was introduced by (Zou and Hastie 2005). Like lasso, it does both 

automatic estimation and variable selection of the model altogether. “It is like a 

stretchable fishing net that retains „all the big fish‟ “[34]. Furthermore, the elastic net can 

select variables more than the sample size. The elastic net penalty is a combination 

of           penalties, and is given by: 

 ̂              ‖    ‖ 
    ‖ ‖    ‖ ‖ 

  (2. 16) 

Where: 

  ‖ ‖    ∑ |  |
 
   : is the L1 (Lasso) penalty 

  ‖ ‖ 
    ∑   

  
   : is the L2 (Ridge regression) penalty. 
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The elastic net penalty method depends on choosing two parameters,    from the 

   penalty and    from    penalty. 

Assume that   
  

     
    then the equation (2.15) is equivalent to minimize of: 

 ̂              ‖    ‖ 
            (   )‖ ‖    ‖ ‖ 

               

 (2. 17) 

Where: 

(   )‖ ‖    ‖ ‖ 
 : is the elastic net penalty 

For      the elastic net penalty becomes the ridge regression, and for     it 

becomes the lasso penalty. 

2.2.4. Smooth Lasso (S-Lasso) 

The smooth lasso (S-Lasso) is first suggested in [15]. It is a mixture of   -lasso 

penalty and   -fusion penalty and it is given by: 

 ̂              {
 

 
 ∑ (   ∑      

 
   )

  
      ∑ |  |

 
      ∑ (       )

  
   }

 (2. 18) 

Where: 

                                   , and  

  ∑ |  |
 
   : is the L1-Lasso penalty which is used for sparsisty in the coefficients 

  ∑ (       )
  

     is the L2 -Fusion penalty which was introduced in [19]. 

Smooth lasso penalty tries to stop not only the erratic coefficient, but also 

coefficients that differ basically from their neighbors [14]. By tuning (  ,   )   0 in the 

equation (2.18), the S-Lasso penalty controls the smoothness of the model. In the first 
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paper of the S-Lasso, The LARS algorithm solution was used to solve the S-Lasso 

problem. In this work, the coordinate descent algorithm solution is used to solve S-Lasso 

problem. 

2.2.5. Local Constancy and Local Linearity penalties 

The local constancy penalty was proposed by (Hawkins & Maboudou-Tchao) in 

2013. It combines both  ‖ ‖ 
  and ∑ (       )

  
    penalties together and add it to the 

function of residual sum of square as shown in bellow: 

 ( )   

 
∑ (   ∑      

 
   )

  
      ∑   

  
      ∑ (       )

  
   ⏟                      

            

 (2. 19) 

Where: 

                             

(      ): are nonnegative regularization parameters.  

The first part of the penalty term is the ridge penalty, and the second part is just 

   (sum of squares) match to the L1 (sum of absolute values) penalty of the fused lasso. 

The first part shrinks the coefficients toward zero and the second part penalizes 

roughness. This gives a smooth model [14]. The local linearity penalty is also suggested 

by (Hawkins & Maboudou-Tchao) in 2013. The local linearity penalty uses the ‖ ‖ 
  and 

∑ (             )
    

    together. 

 ( )   

 
∑ .   ∑      

 
   /

 

  
     ∑   

  
    ∑ (             )

    
   ⏟                          
            

 (2. 20) 
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The first part of the penalty is just the ridge regression, and the second part is to 

penalize the roughness of the model.  
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CHAPTER THREE: SRF FOR LINEAR REGRESSION DETALS 

In this section the Sparse Ridge Fusion (SRF) will be introduced. First, the 

coordinate descent algorithm solution is presented to solve the S-Lasso problem. Then it 

will allow us to a smooth transition to the coordinate descent algorithm solution of the 

SRF. 

The S-Lasso was introduced by Hibiri and van de Geer, and the LARS algorithm 

was used to solve the problem. The goal here in this paper is to estimate the coefficients 

  by using the coordinate descent algorithm in lieu of the LARS algorithm. 

3. 1. Coordinate Descent algorithm for S-Lasso problem 

The model equation with the S-Lasso penalty can be written as follows: 

 ( )  
 

 
 ∑ (   ∑      

 
   )

  
      ∑ |  |

 
      ∑ (       )

  
    (3. 1) 

Now the coordinate descent algorithm can use to solve the S-Lasso problem by 

minimizing the equation (3.1). This gives the following theorem. 

Theorem 1: 

The coordinate descent solution of the S-Lasso problem is given by  

         ̂  
 (     )

    
 

{
 
 

 
 
     
    

                                |  |

     
    

                                |  |

                                                        |  | 

 

   ∑        
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         ̂  
 (     )

    
 

{
 
 

 
 
     

    
                              |  |

     

    
                               |  |

                                                              |  | 

 

   ∑        

 

   

     

          ̂  
 (     )

     
 

{
 
 

 
 
     

      
                          |  |

     

      
                          |  |

                                                      |  | 

 

   ∑        

 

   

(         ) 

Proof: 

The equation (   ) is equivalent to: 

 ( )  
 

 
 ∑ (        )

  
      ∑ |  |      |  |  

  
 
∑ (       )

 
    

  
 
(       )

 
   

 
(       )

 
 (3. 2)  

Where: 

        ∑    ̂ 
   

 

By taking the derivative of the equation (3.2) with respect to   , 

  ( )

     
 

{
 
 

 
  ∑        ∑   

 

 

   

 

   

      (       )    (       )      ̂   

 ∑        ∑   
 

 

   

 

   

      (       )    (       )      ̂   
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Setting 
  ( )

     
   and solving for    gives three cases for    solutions 

             ̂  

{
 
 

 
 
∑         
 
         

∑    
  

      
                                                     ̂   

∑         
 
         

∑    
  

      
                                                    ̂   

 

 

             ̂  

{
 
 

 
 
∑         
 
           

∑    
  

      
                                               ̂   

∑         
 
           

∑    
  

      
                                               ̂   

 

 

            ̂  

{
 
 

 
 
∑         
 
   (         )     

∑    
  

       
                       ̂   

∑         
 
   (         )     

∑    
  

       
                         ̂   
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By using the soft threshold operator, the solution is given by: 
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3.2. Sparse Ridge Fusion (SRF) Penalty 

In this section, a new proposal (SRF) is introduced, and the coordinate descent 

algorithm is used to solve the problem. 

The penalty of  ∑ (             )
    

    applied to the regression problems was 

first used in [14] as a local linearity penalty which was combined with the   - ridge 

penalty. The SRF penalty is   ∑ |  |
 
      

 
∑ (             )

    
   . So, the interest 

is to minimize 
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∑ (             )

    
   } (3. 3) 

Where: 

                                             

∑ |  |
 
   : is the L1-Lasso penalty which is used for sparsity in the coefficients. It shrinks 

the fitted coefficients towards zero.  The second part of the penalty ∑ (         
   
   

    )
 
  penalizes roughness. 

3.2.1 The Sparse Ridge Fusion Estimate 

Given data set (X, y) 

Where: 

 (   ) is a design matrix,                 (

       
   
       

)

   

 

 (   ) is the response variable,             (

  
     
  

)

   

 

(     ): are non-negative values 

Then the residual sum square function with SRF penalty is given as bellow: 

 ( )  
 

 
 ∑ (   ∑      

 
   )

  
      ∑ |  |

 
      

 
∑ (             )

    
    (3. 4) 

Then, using the coordinate descent algorithm to solve the SRF problem by 

minimizing the equation (3.4) gives the following theorem. 

Theorem 2: 

The coordinate descent solution of the SRF is given by following result: 
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Proof: 

The equation (3.4) can be written as following equation: 
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The derivative of equation (   ) with respect to    gives 
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CHAPTER FOUR: COMPUTATIONS 

In this section, an augmented data set is created in order to streamline 

computation of the coordinate descent algorithm solution to solve the S-Lasso and SRF 

problems.  

4.1. Augmented data set for S-Lasso 

Given data set (X, y) 

Where: 

X: is a design matrix n x p                        (

       
   
       

)

   

 

 : is an n observations vector                    (

  
     
  

)

   

 

And (     )    

Now define 
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)   , and      .

 
 
/ 

Where: 

0 is a vector of size p which contains only zeros and J is the p × p matrix defined as 
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  : becomes a (     )     design matrix, and    becomes  (   )   vector of 

observations. 

According to (     ) data set, the lasso penalty will be: 

 ( )  
 

 
 ∑ (  

  ∑    
   

  
   )

   

      ∑ |  
 | 

    (4. 1) 

The minimizing of the equation (4.1) brings the following theorem. 

Theorem 3: 

The S-Lasso solves the lasso type problem by using an augmented data set 

artificially to define a new data set(     ), and the solutions are: 
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   ∑         
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 ) 

Proof: 

The equation     is equivalent to the below: 
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 | (4. 2)  

Where: 
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While the sample size    is    , The S-Lasso can possibly select all   predictor 

variables in all situations. 

The derivative of equation (4.2) with respect to   
  gives 
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In the equation (   )  

∑   
    
   

    ∑       ∑      
 
   

 
    (4. 4) 

∑    
    

    ∑    
  ∑    

  
   

 
    (4. 5) 

By plugging the equations (4.4) and (   ) into (   ), the derivatives become as 

below: 
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Setting 
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    and solving   

  gives three cases for   
  solutions 
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By using the soft threshold operator, the solution is given by 
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4.2. Augmented Data Set Estimate for SRF problem 

Identical to the previous method used to solve the S-Lasso problem, an 

augmented data is created here to simplify computation of the coordinate descent solution 

to solve the SRF problem. 

Therefore, 

   .
 
 
/ 
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Where: 

0 is a vector of size p which contains only zeros and K is the p × p matrix 
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Thus,    becomes a       design matrix, and    becomes an    x   vector of 

observations, and  

       

Since the sample size in the augmented problem is     , the sparse ridge fusion 

(SRF) can possibly select all   predictors in all situations. 

According to (     ) data set, the lasso penalty will be 

 (  )  
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 | 

    (4. 7) 

Where: 

                                                

The minimizing of the equation (4.7) brings the following theorem. 

Theorem 4: 

The SRF solves the lasso type problem by using an augmented data set(     ), 

and the solutions are: 
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Proof: 

The equation (4.7) is equivalent to the bellow 
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The derivative of equation (4.8) with respect to   
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4.3. Computational Techniques 

The        package in   program, written by (Jerome Friedman, Trevor Hastie 

and Rob Tibshirani 2008), contains very efficient procedures for fitting lasso or elastic-

net regularization paths for generalized linear models. This algorithm is fast and can 

handle a large number of variables p. The efficiency of this algorithm comes from using 

cyclical coordinate descent in the optimization process [10]. Since the S-Lasso and SRF 

solve the lasso type problem with the augmented data set(     ), shown in theorem 3 

and theorem 4, the        algorithms can use for fitting the S-Lasso and SRF problems.  

4.3.1 Tuning parameters 

One of the most important functions to use in the        package is          . 

The        function is first run to get a sequence of  -values that corresponding to 

http://cran.r-project.org/web/packages/glmnet/index.html
http://www-stat.stanford.edu/~tibs/lasso.html
http://www.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
http://www.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
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getting one additional non-zero coefficient. After getting the possibility  , the program 

does n-fold cross-validation with n=10 by default, so        is run n times, each with a 

fraction 
   

 
 of the data, and prediction error are collected on the remaining fold [29]. The 

            penalty needs to compute a pair of parameters(        ), so for each   a 

sequence of    is computed, then the best   is chosen that gives the minimum of the 

mean cross-validation error (   ). Also the S-Lasso and SRF have two parameters to 

compute (      ), so the process first needs to use cross-validation to choose appropriate 

values of the penalties        . For each    a sequence of    is computed, then the 

optimal    that gives the minimum value of the mean cross validation error [14]. 
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CHAPTER FIVE: PERFORMANCE STUDY 

In this section several simulated examples and a real data set will introduce to 

compute the mean square error (MSE) and mean prediction error (MPE) to present the 

results of Lasso, elastic net, S-Lasso and SRF problems. 

5.1. Mean Square Error (MSE) and Mean Predictor Error (MPE) 

There are two error terms to illustrate the experimental results of the lasso, elastic 

net, S-Lasso and SRF 

1.  Mean square error (MSE) is a measure of the quality of an estimator. In other 

words, MSE measures the expected squared distance between an estimator 

and the true underlying parameters 

     ( ̂   )  (5. 1) 

2.  The mean squared prediction error measures the expected squared distance 

between what a predictor predicts for a specific value and what the true value 

is, thus it is a measurement of the quality of predictor. 

     {∑ (    ̂ )
  

   } (5. 2) 

While     are supposed to be known in the simulated example, it is easy to 

compute the    , but in the real data set the MSE cannot be calculate because of the 

unknown    , and instead of it, the MPE is calculated that closely related to MSE.  

To show relation between MSE and MPE suppose that 

    ( )      (5. 3) 

Where: 
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 ( )     ,         (    
  ) 

 ( ̂( )    ̂) : is an estimate of  ( ) 

Therefore, mean square error is defined by: 

     , ̂( )   ( )-  (5. 4) 

     ,   ̂( )-         (5. 5) 

      ,   ̂( )-   ,   ̂( )   ( )   ( )-   

            , ̂( )   ( )-    [( ̂( )   ( ))(    ( ))]   ,    ( )-  

 , ̂( )   ( )-     , ,    ( )-     , and   [( ̂( )   ( ))(    ( ))]    

Thus,            

Therefore, the minimizing     is equivalent to minimizing    . 

The MSE in term of matrix becomes [27]. 

    ( ̂   )
 
  ( ̂   ) (5. 6) 

Where  

 : is the population covariance matrix of X. 

5.2. Simulated data 

In this section, six simulated examples are used to compare the prediction 

performance of the lasso, elastic net, S-Lasso and SRF. The first two examples were first 

used the in original paper of lasso to compare the prediction performance between the 

lasso and ridge regression [27]. Third and fourth examples were created as a grouped 

variable situation to show the prediction performance results between the lasso and 
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elastic net has been introduced in [34]. The last two examples are based on the 

smoothness regression that have been stated in [15] 

All examples are simulated from the true model 

          (5. 7) 

Where         (   ) 

a) In example 1, a data set is simulated with 20 observations and 8 predictors  

                                                                         

The pairwise correlation between    and    is designed to be  

        
|   |                                  *         +, and     

b) In example 2, a data set is simulated with 30 observations and 40 predictors 

    

   {
                                    *          +

                                                           
 

And the correlation variables are constructed 

                                                 *          + 

     
 

(      )
                            (   )  *          + 

                                                  

c) In example 3, the number of observations is 100, and the number of predictors is 

40 

   (       ⏟    
  

        ⏟      
  

        ⏟    
  

        ⏟  
  

 ) 

                                      *          +, and      
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d) In example 4, the data set is simulated with 50 observations and 40 predictors  

         ⏟  
  

        ⏟    
  

) , and      

The predictors X were generated as follows: 

        
          (   )                

        
          (   )                 

        
          (   )                  

                 (   ) ,     independent identically distributed,              

Where   
  are independent identically distributed  (      )            

e) Example 5 is about Smooth regression vector. In that example, the regression 

vector is be: 

   (      )
 ,      for             

                    ,      otherwise 

The correlation between    and    is set by: 

          ( |   |)               For (   )  *      +     

Two cases are tested with this example, the first one, when the     

           . The second case is when     ,       and     . 

f) Example 6 is about high sparsity index and smooth regression vector where the 

regression vector is designed by: 

   (      )
   ,                 *       + 

                       ,                 otherwise  

The correlations are the same as in example (e). 
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For this example difference number of   and   are tested in both cases when   

  , and when    .  

5.3. Results of Simulated Examples 

In this section, the methods of the lasso, elastic net, S-Lasso, and SRF are 

compared with each other in terms of accuracy. The performance of their estimator  ̂ in 

term of mean square error (    ) is clarified by box plots in Figures   to   and Tables   

to  . 

 
Figure 1: Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (a) where n=20, p=8 and σ=3  

Table 1: MSE for the simulated example (a) and number of nonzero coefficients 

of four methods where p=8 and n=20 (p<n). 
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Methods Lasso Elastic Net S-Lasso SRF 

MSE 0.8521311 0.7885526 0.3766703 0.3264858 

Non-zero 

Coefficients. 

8 8 8 8 

 

Table 1 and Figure 1 both summarize the predictor results of the simulated 

example (a).The results show that the mean squared error (MSE) value of the SRF 

(0.3264858) and the S-Lasso (0.3766703) are a little smaller than the lasso (0.8521311 

and elastic net (0.7885526), the SRF and the S-Lasso therefore are significantly more 

accurate than the others. On the other hand, this example was constructed with some high 

correlated between covariates, therefore the lasso did not give the good results; the elastic 

net had a better performs than the lasso. In this example the number of predictors is less 

than the number of observations (p<n), and all of the four methods select all the variables 

without dropping any coefficient to  . 
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Figure 2:.Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (b) where n=30, p=40 and σ=3. 

Table 2: MSE for the simulated example (b) and number of nonzero coefficients 

of four methods where p=40 and n=30 (p<n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 267.88064 236.77387 19.94284 15.59672 

Non-zero 

Coefficients. 

15 31 40 40 
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Table 2 and Figure 2 both summarize the predictor results of the simulated 

example (b). This example is constructed with three groups of the correlated predictor 

variables, and the results suggest that the SRF has a very small MSE value (15.59672) 

compared to the lasso (267.88064) and elastic net (236.77387).Also, the S-Lasso gives a 

good result with its MSE value (19.94284). This example was built with a situation of 

some groups of highly correlated between covariate. It is clear that the lasso cannot give 

good results under collinearity conditions, and the elastic net just gives small better 

results than lasso in this situation, On the other hand, the S-Lasso designed to provide a 

smooth and sparse solution, and this is true under the collinearity condition. However, the 

S-Lasso cannot be better than the SRF because there are some points of roughness with 

the true coefficients, and the SRF penalty is designed to penalize the roughness points 

and makes successive coefficients close to each other. In this example the number of 

predictors is more than the number of observations (p<n). Therefore, in selected 

variables, lasso selected 15 variables out of the p=40 because lasso only selects one 

variable from each group of highly correlated variables and ignored the rest while the 

number of selected variables by the elastic net, the S-Lasso, and the SRF are 31, 40, and 

40 respectively. Therefore, the SRF is significantly more accurate than the other methods. 
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Figure 3:.Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (c) where n=100, p=40 and σ=15. 

The results of the example (c) are shown in the following table: 

Table 3: MSE for the simulated example (c) and number of nonzero coefficients 

of four methods where p=40 and n=100 (p<n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 47.29836 43.58239 43.02816 38.82478 

Non-zero 

Coefficients. 

21 22 21 22 
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Table 3 and Figure 3 show the predictor results of the simulated example (c). In 

this example the number of predictor variables is less than the number of 

observations (   ). This example is constructed with an equal correlation between the 

covariates, and a set of 20 pure noise features; this means there are 20 true features and 

20 noise features. The results show that the mean squared error (MSE) value of the SRF 

(38.82478) is smaller than the MSE values of the lasso (47.29836), elastic net (43.58239), 

and S-Lasso (43.02816) because the SRF solves the roughness of the coefficients. On the 

other hand, the S-Lasso gives better results than the lasso, and it presents almost the same 

results as elastic net because the coefficient vector is not smooth. Therefore, SRF is 

significantly more accurate than lasso, elastic net and S-Lasso. In the selected variables, 

the SRF and elastic net each selects 22 predictor variables and the others values of the 

coefficients are to 0 while the lasso and S-Lasso each selects 21 variables. Moreover, in 

this example true coefficients are set with two levels of values 0 and 3, and it gives some 

roughness points of coefficients. Therefore, the S-Lasso could not select more variables 

than the lasso in this situation. On the other hand, while there are not groups of highly 

correlated variables, it gives to lasso more ability to select variables. Results of the 

simulated example (c) demonstrate that the SRF outperforms of the lasso, elastic net, and 

the S-Lasso. 



48 

 

 

Figure 4:.Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (d) where n=100, p=40 and σ=15  

 

The results of the example (d) are shown in the following table: 

Table 4: MSE for the simulated example (d) and number of nonzero coefficients 

of four   methods where p=40 and n=50 (p<n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 141.7251 139.1600 111.7977 106.1705 

Non-zero 

Coefficients. 

11 12 17 20 
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Table 4 and Figure 4 show the results of the simulated example (d). This example 

contains three groups with five components for each groups, and a set of 25 pure noise 

features, it means there are 15 true features and 25 noise features. In this example, the 

number of predictor variables is less than the number of observations (   ). Since the 

mean squared error (MSE) value of the SRF (106.1705) is smaller than the MSE values 

of the other methods, the SRF is significantly more accurate than the lasso, elastic net and 

S-Lasso because the SRF tackles the roughness situation and the SRF always gives better 

results than the other methods under collinearity condition. On the other hand, the SRF 

selected 20 predictor variables out of       and gave 0 to the other coefficients while 

the number of variables selection by the lasso, elastic net and S-Lasso are (11, 12 and 17) 

respectively. While there are three groups of the covariates with strong collinearlity 

between the variables within each group, the lasso cannot be a good method to select 

variables. The elastic net gives better results with collinearity situation, but this example 

constructed with high dimension (    ), and the elastic net breaks down in selected 

variables under the high dimension situation.. Therefore, the results of the simulated 

example (d) show that the SRF dominates the methods of lasso, elastic net and S-Lasso.  
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Figure 5:.Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (e). Left plot is the case where p=100 and n =30 

(p>n). Right plot is the case where p=50 and n=70 (p<n), σ=3 for both case.  

 

The following tables are presented the results of example (e) with the both cases 

p<n and p>n. 

Table 5: MSE for the simulated example (e) and number of nonzero coefficients 

of four methods where p=50 and n=70 (p<n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 4.898895 5.290685 4.1022717 3.495497 

Non-zero 

Coefficients. 

30 29 36 36 
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Table 6: MSE for the simulated example (d) and number of nonzero coefficients 

of four methods where p=100 and n=30 (p>n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 31.009490 36.322612 9.464144 8.579100 

Non-zero 

Coefficients. 

20 30 66 64 

 

Example (e) is the situation where the regression vector is smooth. In this 

example two cases are considered. The cases are related to the number of the 

observations   and predictors  . Right plot of the Figure 5 and Table 5 explain the results 

of the simulated example (e) with case of     where            There are two 

level set of true coefficients, a level with contains 15 components of nonzero and another 

one with 35 zero components. The coefficients of the regression vector vary slowly, or 

smooth. The results of the box plot and the table are clear that the mean squared error 

(MSE) value of the SRF (3.495497) is a smaller than the MSE values of the other 

methods, therefore SRF is significantly more accurate than the lasso, elastic net and S 

Lasso. It is clear that the S-Lasso also gives a better performance than the lasso and 

elastic net under the smooth regression vector, but the S-Lasso doesn‟t gives better results 

than the SRF because the SRF penalizes the roughness within three points while the S-

Lasso does it in two points. On the other hand, while there is a big group of zero 

components, the elastic net has a poor performance compared with the lasso. In the case 

of variable selection, the SRF and S-Lasso both select 36 predictor variables out of 

     and gave 0 to the other coefficients. The number of variables selected by the 
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lasso and elastic net are 30 and 29 respectively. Therefore, the results of the simulated 

example (e) demonstrate that the SRF dominates the methods of the lasso, the elastic net 

and the S-Lasso.  

Left plot of Figure 5 and Table 6 show the results of the simulated example (e) in 

case of p>n where p=100 and n=30. According to the results, the SRF has a high 

performance compare with the other methods, and the lasso still performs better than the 

elastic net. Here the elastic net still has poor results because of big set of the zero 

features. On the other hand, the SRF and S-Lasso give a big set of non-zero coefficients 

64 and 66 respectively which means both have more predictor variables than sample size 

n. The lasso gives only 20 non-zero coefficients and elastic net gives 30, and it is clear 

that the lasso selected variables less than the sample size. Therefore, the results of the 

simulated example (e) in both cases show that the SRF outperforms the methods of lasso, 

elastic net and S-Lasso. 
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Figure 6: Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to Example (f). Left plot is the case where p=100 and n =30 

(p>n). Right plot is the case where p=50 and n=70 (p<n), σ=3 for both case.  

The results of the both cases (p<n) and (p>n) of the example (e) are shown in the 

two following tables 

Table 7: MSE for the simulated example (f) and number of nonzero coefficients 

of four methods where p=50 and n=70 (p<n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 15.77443 15.92286 10.02195 7.46686 

Non-zero 

Coefficients. 

43 45 45 45 
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Table 8: MSE for the simulated example (f) and number of nonzero coefficients 

of four methods where p=100 and n=30 (p>n). 

Methods Lasso Elastic Net S-Lasso SRF 

MSE 1533.27022 1394.21921 113.88964 86.22573 

Non-zero 

Coefficients. 

12 17 55 60 

 

Example (f) is the situation of high sparsity index and smooth regression vector. 

In this example two cases are discussed. When the number of predictors   is less than the 

number of observations   (   ) and the opposite situation when (   )  Left plot of 

the Figure 6 and Table 7 summarize the results of the simulated example (f) with case of 

    where            The results show that the mean squared error (MSE) value 

of the SRF (7.46686) is smaller than the MSE of the other methods, and SRF is 

significantly more accurate than the lasso, elastic net and S-Lasso. The S-Lasso also has a 

better performance compared than the lasso and elastic net because of the smoothness of 

the regression vector. On the other hand, while the MSE value of the lasso (15.77443) is 

smaller than the MSE value of the elastic net (15.92286), the lasso outperforms the elastic 

net because in this case the sparsity index=40 is smaller than the sample size n=70. The 

SRF, the S-Lasso and the elastic net each selects 45 predictor variables out of      and 

gave 0 for the other coefficients while the number of variables selected by the lasso is 43. 

Right plot of Figure 6 and Table 8 explain the results of the simulated example (f) 

in case of p>n where p=100 and n=30. According to the results, the SRF has a high 

performance compare with other methods. Also the S-Lasso has better performance than 
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the lasso and elastic net. In the smoothness of the regression vector, the SRF gives the 

better performance the S-Lasso. On the other hand, in this case (p>n) the elastic net 

performed better than the lasso because the sparsity index is more than the sample size in 

this case. The SRF and S-Lasso give a big set of the number of non-zero coefficients 60 

and 55 respectively which means both had more predictor variables than sample size n 

while the lasso gives only 12 non-zero coefficients and elastic net gives 17. Therefore, 

the results of the simulated example (f) in both cases show that the SRF dominates the 

methods of lasso, elastic net and S-Lasso. 

5.4. Real Data Set 

In this section the calibration problems in near-infrared (NIR) is applied which 

considered in [2]. The original spectral data consist of 700 points measured from 1100 to 

2498 nanometers (nm) wavelengths in steps of 2 nm. Four constituents of biscuit dough 

fat, sugar, flour, and water discussed in this prediction. They had 40 calibration set or 

training set and 40 validation set measured at a different time, but they excluded one 

sample from each of these two data sets, leaving 39 samples in each. The problem was to 

use these spectra to predict four constituents of the dough-fat, sugar, flour, and water. In 

this thesis, the data sets focus only on the constituent of the dough- water. 

Since     are unknown with the real data set, the MSE cannot be easily calculated. 

However, predicted error (   ) can be calculated, which is closely related to    . 
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Figure 7:.Evaluation of cross-validation plots of the lasso, the elastic net, the S-

Lasso and the SRF, based on the calibration data (dough-water) to choose the    best 

lambda that gives the minimum MSE. 

It is clear from the C.V plot in Figure 7 that as lambda increases, the MSE 

increases rapidly. The coefficients are reduced too much and they do not adequately fit 

the responses. In contrast, as lambda decreases, the models are larger and have more 

nonzero coefficients. The increasing MSE suggests that the models are over-fitted. 
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Figure 8: plots of the number of predictors in the fitted lasso, elastic net, S-lasso 

and SRF regularization as a function of lambda. 

The graph of the lasso, elastic net, S-Lasso and SRF on the Figure 8 estimate 

which variables enter the model based on the lambda of their estimates. The optimal 

solution depends on the selected value of lambda, which is chosen based on cross-

validation. 
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Figure 9:.Comparing the accuracy of prediction of the lasso, the elastic net, the S-

Lasso and the SRF, applied to calibration data (dough-water) where p=700 and the 

number observations based on the training and validation sets, n=39 for each of the sets 

The following table is summarized the results: 

Table 9: MPE for the calibration data set (dough-water) and number of nonzero 

coefficients of four methods where p=700 and n=39 (p>n). 

Methods Lasso Elastic Net S-Lasso SRF 

MPE 0.21358440 0.18511157 0.02819653 0.02778441 

Non-zero 

Coefficients. 

9 66 49 47 
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The plot of Figure 9 and Table 9 explain the results of the calibration data set 

focused only on dough-water. The situation here is the number of predictors (     ) 

greatly exceeds the number of observations (    ) . The procedure of the fitted model 

depends on two stages. The first stage which is based on the training data set and the 

model is fitted in this stage. Then for stage two the validation data set is used to test the 

results. According to the results, the mean predictor error (MPE) value of the SRF 

(0.02778441) is smaller than the other methods results; therefore SRF is significantly 

more accurate than the lasso, elastic net and S-Lasso. On the other hand, the SRF, the S-

Lasso, and the elastic net selected more predictor variables than sample size n, which are 

47, 49 and 66 respectively while the lasso only selected 8 variables and gave 0 

coefficients to others. Therefore, the SRF overcomes the methods of the lasso, elastic net 

and S-Lasso. 
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CHAPTER SIX: COUNCLUSIONS 

This thesis proposed sparse ridge fusion (SRF) as a new procedure to solve the 

generalized linear model problem. Several simulated examples with different situations 

of the grouping effect and smooth regression vector were used to test the SRF and 

compared with the lasso, elastic net and smooth lasso methods. The conclusions 

demonstrate that the SRF appears to perform well on all simulated examples compare to 

the other methods in terms of prediction accuracy in the cases when p ≤ n and when p>n. 

Moreover, when the methods are tested on the calibration data set (dough-water), the 

results illustrate that the SRF dominates the lasso, elastic net, and S-Lasso. 
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