
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2006

Genetically Engineered Adaptive Resonance Theory (art) Neural Genetically Engineered Adaptive Resonance Theory (art) Neural

Network Architectures Network Architectures

Ahmad Al-Daraiseh
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Al-Daraiseh, Ahmad, "Genetically Engineered Adaptive Resonance Theory (art) Neural Network
Architectures" (2006). Electronic Theses and Dissertations, 2004-2019. 786.
https://stars.library.ucf.edu/etd/786

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/786?utm_source=stars.library.ucf.edu%2Fetd%2F786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

GENETICALLY ENGINEERED ADAPTIVE RESONANCE THEORY (ART) NEURAL
NETWORK ARCHITECTURES

by

AHMAD A. AL-DARAISEH
B.S. Yarmouk University, 1998

M.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2006

Major Professor: Michael Georgiopoulos

 ii

© 2006 Ahmad A. Al-Daraiseh

 iii

ABSTRACT

Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural

network architectures in solving classification problems. One of the limitations of Fuzzy

ARTMAP that has been extensively reported in the literature is the category proliferation

problem. That is Fuzzy ARTMAP has the tendency of increasing its network size, as it is

confronted with more and more data, especially if the data is of noisy and/or overlapping

nature. To remedy this problem a number of researchers have designed modifications to the

training phase of Fuzzy ARTMAP that had the beneficial effect of reducing this

phenomenon.

In this thesis we propose a new approach to handle the category proliferation problem

in Fuzzy ARTMAP by evolving trained FAM architectures. We refer to the resulting FAM

architectures as GFAM. We demonstrate through extensive experimentation that an evolved

FAM (GFAM) exhibits good (sometimes optimal) generalization, small size (sometimes

optimal size), and requires reasonable computational effort to produce an optimal or sub-

optimal network. Furthermore, comparisons of the GFAM with other approaches, proposed in

the literature, which address the FAM category proliferation problem, illustrate that the

GFAM has a number of advantages (i.e. produces smaller or equal size architectures, of

better or as good generalization, with reduced computational complexity).

Furthermore, in this dissertation we have extended the approach used with Fuzzy

ARTMAP to other ART architectures, such as Ellipsoidal ARTMAP (EAM) and Gaussian

ARTMAP (GAM) that also suffer from the ART category proliferation problem. Thus, we

have designed and experimented with genetically engineered EAM and GAM architectures,

named GEAM and GGAM. Comparisons of GEAM and GGAM with other ART

architectures that were introduced in the ART literature, addressing the category proliferation

problem, illustrate similar advantages observed by GFAM (i.e, GEAM and GGAM produce

 iv

smaller size ART architectures, of better or improved generalization, with reduced

computational complexity).

Moverover, to optimally cover the input space of a problem, we proposed a

genetically engineered ART architecture that combines the category structures of two

different ART networks, FAM and EAM. We named this architecture UART (Universal

ART). We analyzed the order of search in UART, that is the order according to which a FAM

category or an EAM category is accessed in UART. This analysis allowed us to better

understand UART’s functionality. Experiments were also conducted to compare UART with

other ART architectures, in a similar fashion as GFAM and GEAM were compared. Similar

conclusions were drawn from this comparison, as in the comparison of GFAM and GEAM

with other ART architectures.

Finally, we analyzed the computational complexity of the genetically engineered ART

architectures and we compared it with the computational complexity of other ART

architectures, introduced into the literature. This analytical comparison verified our claim that

the genetically engineered ART architectures produce better generalization and smaller sizes

ART structures, at reduced computational complexity, compared to other ART approaches.

In review, a methodology was introduced of how to combine the answers (categories)

of ART architectures, using genetic algorithms. This methodology was successfully applied

to FAM, EAM and FAM and EAM ART architectures, with success, resulting in ART neural

networks which outperformed other ART architectures, previously introduced into the

literature, and quite often produced ART architectures that attained optimal classification

results, at reduced computational complexity.

 v

I dedicate this work to the greatest woman on earth, my Mother, to my greatest

Father, to my soul mate my wife, to my daughter NOOR the light of my life, to my son

MO’MEN the faith of it, and finally to my unborn yet baby (Abdallah if male, Tasneem if

female).

I love you all

 vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Michael Georgiopoulos, who

gave me his time and advice to help me finish this dissertation. Without his encouragement,

support, and guidance, this dissertation would not have been published. I would like to thank

my committee members, Dr. Ronald F. Demara, Dr. Kent Williams, Dr. Sheau-Dong Lang,

and Dr. Takis C. Kasparis, for their support and willingness to serve on my defense

examination.

I would like to thank Dr. Gerd Brummel my manager at Siemens PG. Dr. Brummel

was one of those who always encouraged me and stood by my side until I finished this work.

Thank you very much Dr. Brummel.

I would like to thank my parents and wife for their help and support, and my kids

Noor and Mo’men for their disturbance ☺. I also would like to thank my friends and brothers

who helped me and prayed for me.

Special thanks to UCF and to those who are working hard to improve it and make it

better, please don’t raise your tuition fees anymore.

 vii

TABLE OF CONTENTS

LIST OF FIGURES ...x
LIST OF TABLES... xiii
LIST OF ACRONYMS/ABBREVIATIONS...xiv
1. INTRODUCTION ...1

1.1 ART, Features and Limitations..1
1.2 Genetic Algorithms and Neural Networks Combination...3

1.2.1 Using GA with MLP NN ..4
1.2.2 Using GAs with Other NN Models (other than MLP-NNs)6
1.2.3 Using GAs with ART NNs ...6

1.3 Motivation..7
1.4 Research Overview ..8

1.4.1 Using GAs to Evolve ART Architectures...8
1.4.2 Universal ART (UART) ...9
1.4.3 Experiments and Comparisons ...10
1.4.4 Analysis...10
1.4.5 User Interface Development ...11

2. BACKGROUND ...13
2.1 Fuzzy ARTMAP (FAM)..13

2.1.1 FAM Category Geometrical Representation ..15
2.1.2 FAM Operations and Parameters..16

2.2 Ellipsoidal ARTMAP (EAM)..20
2.2.1 EAM Category Geometrical Representation ..21
2.2.2 EAM Operations and Parameters..22

2.3 Gaussian ARTMAP (GAM) ..26
2.3.1 GAM Operations and Parameters ...28

2.4 Genetic Algorithms..31
2.4.1 Chromosome Representation..32
2.4.2 Genetic Operators ...33
2.4.3 Selection..34

3. GENETIC FUZZY ARTMAP (GFAM)..36
3.1 Justification of the Evolutionary Choices for GFAM..41

3.1.1 Justification of the Fitness Function Choice for GFAM...41
3.1.2 Justification of the Genetic Operators Choices for GFAM44

3.2 Experiments with GFAM...51
3.2.1 Databases ..51
3.2.2 Experimental Procedure – Experimental Results ...57

3.3 GFAM Performance...57
3.3.1 Performance Comparisons of GFAM and other ART Networks............................58
3.3.2 Performance Comparisons of GFAM and Other Neural Networks........................63

3.4 GFAM Summary and Conclusions..65
4. GEAM AND GGAM...67

4.1 Genetic Ellipsoidal ARTMAP (GEAM)..67
4.1.1 GEAM Experiments and Results ..72

4.1.1.1 GEAM Performance ..72
4.1.1.2 Performance Comparisons of GEAM and other ART Networks73

4.1.2 Summary/Conclusions ..78
4.2 Genetic Gaussian ARTMAP (GGAM)..79

4.2.1 GGAM Experiments and Results..84

 viii

4.2.1.1 GGAM Performance..85
4.2.1.2 Performance Comparisons of GGAM and other ART Networks....................86

4.2.2 Summary/Conclusions ..92
5. UNIVERSAL ART (UART) ...93

5.1 UART Design ..95
5.1.1 Performance Phase of UART..97
5.1.2 Geometry Selection Phase (Genetic Phase) of UART..99

5.2 Results of UART..105
5.2.1 UART Performance ..105
5.2.2 Performance Comparisons of UART and other ART Networks106
5.2.3 Performance Comparisons of UART and other Genetic ART Networks.............112

5.3 UART Summary ..115
6. ANALYSIS..117

6.1 UART Order of Search Analysis ...117
6.2 Time Complexity Analysis ..129

7. USER INTERFACE ..133
7.1 GFAM User Interface ..133

7.1.1 GFAM Controls ..134
7.1.2 GFAM UI Abstract Design...144

7.1.2.1 GFAMForm Object..144
7.1.2.2 GraphForm Object ...146
7.1.2.3 FNode Object ...147
7.1.2.4 PtrnNode Object...147
7.1.2.5 Chrom Object...148
7.1.2.6 Cat Object ..149
7.1.2.7 AddCatForm Object...149

7.2 GEAM User Interface ..149
7.2.1 GEAM Controls ..151
7.2.2 GEAM UI Abstract Design...156

7.2.2.1 GEAMForm Object ...157
7.2.2.2 GraphForm Object ...158
7.2.2.3 ENode Object...158
7.2.2.4 PtrnNode Object...159
7.2.2.5 Chrom Object...159
7.2.2.6 Cat Object ..159
7.2.2.7 AddCatForm Object...160

7.3 GGAM User Interface..160
7.3.1 GGAM Controls..161
7.3.2 GGAM UI Abstract Design ..166

7.3.2.1 GGAMForm Object ...167
7.3.2.2 GraphForm Object ...167
7.3.2.3 GNode Object ..167
7.3.2.4 PtrnNode Object...168
7.3.2.5 Chrom Object...168
7.3.2.6 Cat Object ..169
7.3.2.7 AddCatForm Object...169

7.4 UART User Interface...169
7.4.1 UART Controls...171
7.4.2 UART UI Abstract Design..177

7.4.2.1 UARTForm Object ..178

 ix

7.4.2.2 GraphForm Object ...181
7.4.2.3 FNode, ENode and PtrnNode Objects ...182
7.4.2.4 Chrom Object...182
7.4.2.5 Cat Object ..183
7.4.2.6 AddCatForm Object...183

8. SUMMARY/CONTRIBUTIONS, AND FUTURE WORK ...184
8.1 Summary/Contributions...184
8.2 Future Work ...185

APPENDIX A: TERMINOLOGY ..186
APPENDIX B: FAM STEP-BY-STEP TRAINING & TESTING191
APPENDIX C: EAM STEP-BY-STEP TRAINING & TESTING196
APPENDIX D: GAM STEP-BY-STEP TRAINING & TESTING202
APPENDIX E: USER MANUAL ...209
REFERENCES ..212

 x

LIST OF FIGURES

Figure 2-1: Simple FAM Architecture...13
Figure 2-2: A rectangle representation of a FAM category that learned seven input patterns 15
Figure 2-3: The distance of an input pattern a from the rectangle a

jR is the minimum distance

of the pattern a from the border of the rectangle a
jR ...16

Figure 2-4: FAM Learning, a. A category with 0 size; b. Introducing a new pattern a2; c. The
category expands to include a2; d. Since a3 is inside the category, it doesn’t change its size;
e. Pattern a4 is presented; f. Since a4 is outside the category, the category is expanded to
include a4, within its boundaries. ..19
Figure 2-5: Simple EAM Architecture ..20
Figure 2-6: An EAM category that encodes 3 patterns..22
Figure 2-7: Creation and expansion of an EAM category ...26
Figure 2-8: A 2D GAM category that encodes 5 patterns within 2 standard deviations28
Figure 2-9: One-point crossover ..33
Figure 2-10: Two-point crossover ...33
Figure 2-11: Uniform crossover...34
Figure 3-1: GFAM chromosome structure ..38
Figure 3-2: Crossover implementation ..40
Figure3-3a: 3D plot of log(fit(p)) ..43
Figure 3-4: a: Problem 1 (Four squares in a square problem), b: (Asymmetric squares within a
square problem), c: Problem 3 (Two circles in a square problem)..47
Figure 3-5: Average Fitness value of the Best FAM produced by GFAM for Problem 1. The
average is computed over the 50 runs. The average fitness values are shown with respect to
all pairs of category add and category delete probabilities. The different colored curves
correspond to the three different values of the mutation probability.......................................49
Figure 3-6: Average Fitness value of the Best FAM produced by GFAM for Problem 2. The
average is computed over the 50 runs. The average fitness values are shown with respect to
all pairs of category add and category delete probabilities. The different colored curves
correspond to the three different values of the mutation probability.......................................50
Figure 3-7: Average Fitness value of the Best FAM produced by GFAM for Problem 2. The
average is computed over the 50 runs. The average fitness values are shown for all pairs of
category add and category delete probabilities. The different colored curves correspond to the
three different values of the mutation probability..50
Figure 3-8: Average Fitness value of the Best FAM produced by GFAM for Problems 1, 2
and 3. The average is computed over the 50 runs. The average fitness values are shown for all
pairs of category add and category delete probabilities. The different colored curves
correspond to the two different non-zero values of the mutation probability..........................51
Figure 3-9: Gaussian Databases (2-dimensional, 2, 4 or 6 class, 5, 15, 25 and 40 % of
overlap) ..56
Figure 3-10: Structures within Structure Databases ..56
Figure 3-11a: Performance and Size comparison of GFAM vs ssFAM..................................61
Figure 3-11b: Performance and Size comparison of GFAM vs ssEAM61
Figure 3-11b: Performance and Size comparison of GFAM vs ssGAM.................................62
Figure 3-11d: Performance and Size comparison of GFAM vs microARTMAP62
Figure 4-1: GEAM chromosome structure ..69
Figure 4-2a: Performance and Size comparison of GEAM vs ssFAM....................................76
Figure 4-2b: Performance and Size comparison of GEAM vs ssEAM76
Figure 4-2c: Performance and Size comparison of GEAM vs ssGAM...................................77

 xi

Figure 4-2d: Performance and Size comparison of GEAM vs microARTMAP77
Figure 4-3: GGAM Chromosome Structure ..82
Figure 4-4a: Performance and Size comparison of GGAM vs ssFAM90
Figure 4-4b: Performance and Size comparison of GGAM vs ssEAM...................................90
Figure 4-4c: Performance and Size comparison of GGAM vs ssGAM...................................91
Figure 4-4d: Performance and Size comparison of GGAM vs microARTMAP.....................91
Figure 5-1: These figures show what happens when using unsuitable classifiers for a certain
problem. ...94
Figure 5-2: a classification problem where the boundaries can’t be optimally covered by
FAM, GAM or EAM’s categories. ..94
Figure 5-3: Using UART to solve the problem in figure 5-2, notice that parts of the problem
space are not covered, but because UART encourages smaller size, it might sacrifice little
accuracy to get optimal size...95
Figure 5-4: A simple UART structural diagram during the training phase98
Figure 5-5: A simple UART structural diagram during the performance phase99
Figure 5-6: GFAM chromosome structure ..101
Figure 5-7: Crossover implementation ..103
Figure 5-8a: Performance and Size comparison of UART vs ssFAM...................................110
Figure 5-8b: Performance and Size comparison of UART vs ssEAM110
Figure 5-8c: Performance and Size comparison of UART vs ssGAM..................................111
Figure 5-8d: Performance and Size comparison of UART vs microARTMAP111
Figure 5-9a: Performance and Size comparison of UART vs GFAM...................................114
Figure 5-9b: Performance and Size comparison of UART vs GEAM114
Figure 5-9c: Performance and Size comparison of UART vs GGAM115
Figure 6-1: Case # 1, a pattern inside both a FAM category and an EAM category.............118
Figure 6-2: Case # 2, a pattern inside a FAM category but outside an EAM category119
Figure 6-3: Case # 3, a pattern inside an EAM category but outside a FAM category121
Figure 6-4: Case # 4, a pattern outside both FAM and EAM categories...............................123
Figure 7-1: GFAM User interface..134
Figure 7-2: An open dialogue window, allows the user to select the training, validating and
testing files ...135
Figure 7-3: A dialogue box that displays the results after an interruption of the process137
Figure 7-4: A 2D Graph that displays the data points as well as the categories....................138
Figure 7-5: Same graph as in figure 7-4 but displaying the categories only138
Figure 7-6: A 2D graph displaying the classification borders of this GFAM as well as the
categories ...139
Figure 7-7: After pushing the “Del All” button, the GFAM does not have any more categories
..140
Figure 7-8: This figure shows figure 7-7, but only displaying the categories (none in this
case) ...141
Figure 7-9: An add category dialogue box ..141
Figure 7-10: This figure is the same as figure 7-9 but after filling in some values141
Figure 7-11: This figure shows the manually added category...142
Figure 7-12: This figure shows the classification borders of the manually added category..142
Figure 7-13: This figure shows the values of the endpoints of the second manually added
category..143
Figure 7-14: This figure shows the two manually added categories143
Figure 7-15: This figure shows the classification borders of the manually added categories143
Figure 7-16: GEAM user interface ..150

 xii

Figure 7-17: a 2D graph displaying a GEAM network; note here ellipsoids are represented by
circles ...151
Figure 7 -18: A 2D graph showing the classification borders of the GEAM network152
Figure 7 -19: This figure shows the GEAM network after pushing the “Del All” button.....153
Figure 7-20: An add GEAM category dialogue box...153
Figure 7-21: Manually filling in values for the first category ...154
Figure 7-22: GEAM network after manually adding a category ...154
Figure 7-23: Classification borders of the manually added category155
Figure 7-24: Manually adding a new category ..155
Figure 7-25: GEAM network after adding the second category..156
Figure 1-26: Classification borders of the GEAM network...156
Figure 7-27: GGAM user interface..161
Figure 7-28: A 2D graph showing a GGAM network; note here a GGAM category is
represented by a large dot ..162
Figure 7-29: A 2D graph showing the classification boundaries of the GGAM network162
Figure 7-30: After deleting all the categories ..163
Figure 7-31: An add GGAM category dialogue box ...163
Figure 7-32: Add category dialogue box with numbers in the available boxes.....................164
Figure 7-33: A figure showing the manually added category..164
Figure 7-34: The classification boundaries corresponding to the manually added category.165
Figure 7-35: Filling in numbers for the second category...165
Figure 7-36: The GGAM network after adding the second category165
Figure 7-37: The classification boundaries of the GGAM after adding two categories........166
Figure 7-38: UART user interface ...170
Figure 7-39: A UART network after randomly mixing FAM categories with EAM categories
..172
Figure 7-40: A 2D graph showing only the categories ..172
Figure 7-41: The classification borders of the UART network after the random mixing173
Figure 7-42: After deleting all the categories of UART..174
Figure 7-43: An add category dialogue box ..174
Figure 7-44: Filling in data for an EAM category ...175
Figure 7-45: UART after manually adding an EAM category ..175
Figure 7-46: The classification boundaries of UART after addition176
Figure 7-47: Filling in data for a FAM category ...176
Figure 7-48: UART after manually adding an EAM and a FAM category177
Figure 7-49: UART classification boundaries after the manual addition177
Figure e-1: Error message..210

 xiii

LIST OF TABLES

Table 3-1: The values of the probabilities for mutation, category add, and category delete
used in the experiments to determine good values for the GA parameters46
Table 3-2: For each problem (database) we ran 3 experiments. For each experiment we used
the depicted combinations of number of generations, and population size (3 combinations).
We evolved the trained Fuzzy ARTMAPs 50 different times (50 random seeds), and for each
time we used the combinations of probability values, shown in Table 3-1. Hence, the FAMs
were evolved 1350 times for each problem, or a total of 4050 times for all the problems.46
Table 3-3: Databases used in the Genetic ARTMAP experiments..55
Table 3-4: Accuracy and size results achieved by GFAM and other ART networks. Note
that:Safe uAM: Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP;
GAM: Gaussian ARTMAP; ss*: semi-supervised version..63
Table 3-5: Accuracy and size results achieved by GFAM and other ART networks. Note:
dFAM: Distributed Fuzzy ARTMAP, FasART, dFasART : Distributed FasART, GFAM :
Genetic Fuzzy ARTMAP...65
Table 4-1: Accuracy and size results achieved by GEAM and other ART networks. Note
that:Safe uAM: Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP;
GAM: Gaussian ARTMAP; ss*: semi-supervised version..78
Table 4-2: Accuracy and size results achieved by GGAM and other ART networks. Note
that:Safe uAM: Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP;
GAM: Gaussian ARTMAP; ss*: semi-supervised version..89
Table 5-1: UART performance and size compared to other ART architectures109
Table 5-2: UART performance and size compared to other genetic ART architectures.......113

 xiv

LIST OF ACRONYMS/ABBREVIATIONS

 NN: Neural Network

 ART: Adaptive Resonance Theory

 FAM: Fuzzy ARTMAP

 Category Proliferation: An ART limitation that causes it to create more categories

when confronted with noisy/overlapping data

 GA: Genetic Algorithm

 GFAM: Genetic Fuzzy ARTMAP

 EAM: Ellipsoidal ARTMAP

 GEAM: Genetic Ellipsoidal ARTMAP

 GAM: Gaussian ARTMAP

 GGAM: Genetic Gaussian ARTMAP

 UART: Universal ART

 stability plasticity Dilemma: Creating a stable neural network that can learn new

inputs without relearning

 MLP: Multi-Layer Perceptron

 BP: Back Propagation

 RBF : Radial Basis Function

 UI: User Interface

 Committed node: A node that has established a connection to an output node (class)

 CCF: Category Choice Function

 CMF: Category Match Function

 PCC: Percent Correct Classification

 1

1. INTRODUCTION

The main focus of this dissertation is to present a methodology of how to use genetic

algorithms (GA) to construct optimal or sub-optimal ART networks that solve deficiencies

existing in current ART models, such as category proliferation, poor coverage of the

problem’s input space, and large dependency on parameters. This task is accomplished while

at the same time producing genetically engineered ART architectures that improve

generalization at a reduced computational cost. The various sections in this introduction give

the reader a better understanding of the main components of this dissertation along with some

related literature.

 1.1 ART, Features and Limitations
The Adaptive Resonance Theory (ART) was developed by (Grossberg, 1976) as a

solution to the stability plasticity dilemma. One of the most celebrated ART architectures is

FAM (short for Fuzzy ARTMAP) (Carpenter et al, 1992), which has been successfully used

in the literature for solving a variety of classification problems. Some of the advantages that

Fuzzy ARTMAP possesses is that it can solve arbitrarily complex classification problems, it

converges quickly to a solution (within a few presentations of the list of the input/output

patterns belonging to the training set), it has the ability to recognize novelty in the input

patterns presented to it, it can operate in an on-line fashion (new input/output patterns can be

learned by the system without re-training with the old input/output patterns), and it produces

answers that can be explained with relative ease.

Despite all the great features that Fuzzy ARTMAP possesses, it suffers from the

category proliferation problem, especially when it is confronted with data that are of noisy

and/or overlapping nature. Quite often the category proliferation problem, observed in Fuzzy

ARTMAP architectures, is connected with the issue of overtraining in Fuzzy ARTMAP.

Over-training happens when Fuzzy ARTMAP is trying to learn the training data perfectly at

 2

the expense of degraded generalization performance (i.e., classification accuracy on unseen

data) and also at the expense of creating many categories to represent the training data

(leading to the category proliferation problem). Another reason for the category proliferation

problem is that ART architectures rely on a single category structure (hyper-rectangles) to

represent the data in the input space. Genetically engineered ART architectures that combine

more than one category structure (such as hyper-rectangles and ellipsoids) address this

problem.

A number of authors have tried to address the category proliferation problem in Fuzzy

ARTMAP by tackling either the training method or the geometrical representation that FAM

architectures use. Amongst them we refer to the work by Marriott (Marriott and Harrisson,

1995), where the authors eliminate the match tracking mechanism of Fuzzy ARTMAP when

dealing with noisy data, the work by Charalampidis (Charalampidis, et al., 2001), where the

Fuzzy ARTMAP equations are appropriately modified to compensate for noisy data, the

work by Verzi (Verzi, et al., 2001), (Anagnostopoulos, et al., 2003 & 2001a), and (Gomez-

Sanchez, et al., 2002 & 2001) , where different ways are introduced of allowing the Fuzzy

ARTMAP categories to encode patterns that are not necessarily mapped to the same label, the

work by Koufakou (Koufakou, et al., 2001), where cross-validation is employed to avoid the

overtraining/category proliferation problem in Fuzzy ARTMAP, and the work by Carpenter

(Carpenter, 1998), Williamson (Williamson, 1997), Parrado-Hernandez (Parrado-Hernandez,

et al., 2003), where the ART structure is changed from a winner-take-all to a distributed

version and simultaneously slow learning is employed with the intent of creating fewer ART

categories and reducing the effects of noisy patterns.

 Another limitation with ART architectures is that their performance depends on a

number of network parameters, and sometimes it becomes computationally expensive to

discover a set of network parameters that produces a network with good generalization and

 3

small size. What makes this issue more difficult is that the best network parameters are

problem dependent. As it will be seen later, genetically engineered ART architectures solve

this problem as well.

1.2 Genetic Algorithms and Neural Networks Combination
Genetic algorithms are a class of population-based stochastic search algorithms that

are developed from ideas and principles of natural evolution. An important feature of these

algorithms is their population based search strategy. Individual chromosomes in a population

compete, exchange and modify information with each other in order to perform certain tasks.

Genetic algorithms have been widely used to evolve artificial neural networks. For a

thorough exposition of the available research literature in evolving neural networks the

interested reader is advised to consult (Yao, 1999). In (Yao, 1999) the author distinguishes

three different strategies in evolving neural networks. The first strategy is the one used to

search for the weights of the neural network, the second one is the one used to design the

structure of the network, and the third one is the one where the learning rules of the neural

network are evolved. Examples of the first strategy are ones where the weights found by the

genetic algorithm are used in the neural network without further refinement (Whitley, et al.,

1989 and 1990). An alternative to this strategy is to use the pertinent neural network learning

to further refine the weights that the GA algorithm produces (Belew, et al., 1991 and Lee,

1996). Beside searching for weights, GAs may also be used to select the features that are

input to the neural network. Since the pioneering work by Siedlecki and Sklanski (Siedleck

and Sklansky, 1989), genetic algorithms have been used for many selection problems using

neural networks (Brotherton, Simpson, 1994, Yang and Honavar, 1998), and other classifiers,

such as decision trees (Bala, et al., 1996), k-nearest neighbors (Kelly and Davis, 1991, Punch,

et al., 1993), and naïve Bayes classifiers (Inza, et al., 1999, Cantu-Paz, 2002). As it has been

 4

verified in the literature the topology of the neural network is crucial to its performance. If a

network has too few nodes it might not be able to learn the required task. On the other hand,

if the network has too many nodes it may overfit the training data and thus exhibit poor

generalization. Miller, Todd and Hedge (Miller, et al., 1989) defined two major approaches to

use GAs to design the topology of the neural networks: use of direct encoding to specify

every connection of the network, or to evolve an indirect specification of the connectivity.

The direct encoding GA approach implies that every connection between every node be

directly represented in a chromosomal string. Direct encoding has been used effectively to

prune neural networks with good results (Whitley, et al., 1990, Hancock, 1992). On the other

hand, a simple indirect encoding method is to commit to a particular topology (e.g., feed-

forward or recurrent NN) and a learning algorithm (e.g. back-prop learning algorithm), and

then use a GA to find the parameter values that complete the network specification. For

example, the GA in the feed-forward neural network approach can search for the number of

layers and the number of units (nodes) per layer. The indirect encoding scheme is far more

sophisticated while being theoretically capable of representing complicated topologies with

finesse. It encodes the most important parameters and leaves the remainder to be determined

elsewhere. Harp, et al. (see Harp, et al., 1989) used segments of two parts in an encoding

scheme entitled blueprints. The first segment held parameter specifications including address,

organization and number of nodes, and learning parameters associated with the nodes. The

second segment described the connections between themselves by specifying the density

between the current area and the target area, the target’s area address, organization of the

connections, and parameters of learning associated with the connection weights.

1.2.1 Using GA with MLP NN

A thorough study of the literature shows that most of the articles that involved GA

and NN used a Multi-Layer Perceptron (MLP) NN. For instance, Hruschka (Hruschka, et al.,

 5

2000) used GA to extract classification rules from a MLP NN (specifically, they used the

activation functions of the hidden nodes to extract the rules). The genetic algorithm was

utilized to cluster the activation functions and hence to extract the rules. Krasniewicz

(Krasniewicz, et al., 2000) investigated different methods in constructing a GA/MLP NN in a

distributed environment. It is a known fact that training a NN could take a long time, and as

such combining NNs with GAs amplifies this problem (since many NNs are needed to be

trained when GAs are involved). This problem triggered the idea of using distributed

(parallel) system, in Karsniewicz, et al., 2000). Santos (Santos, et al., 2000) used GAs to

extract comprehensible rules (IF-Then Statements) from MLP NN’s. In his work the GA was

used to find the NN that provides us with the best rules. Yen (Yen, et al., 2000) used a

hierarchical GA to construct an MLP NN. This method, as Yen claimed, solved the Network

Feasibility problem, as well as the problem of mapping multiple phenotypes by genotypes,

that appears when using GAs to construct NNs. Fieldsend (Fieldsend, et al., 2005) proposed a

new method called Pareto ENN (evolutionary Neural Network) to construct multi-objective

optimized NN that is capable of time series forecasting. The idea of his approach was to keep

a set of F of chromosomes (NNs) at each generation, each one of which is the best performer

regarding a specific measure. In the next generation if some chromosomes are better than

their counter parts in F then we replace the chromosomes in F. This process continues until a

maximum number of generations has passed. Manic (Manic, et al., 2002) used a combination

of GAs with gradient descent to find the best set of weights. In his approach the GA is used to

find a sub-optimal set of weights, and then the gradient descent method is used to fine tune

this set. Leung (Leung, et al., 2003) proposed a modified GA and a modified BP-NN and

used the new GA method to tune the parameters and the structure of the NN. The GA

generates four off-springs from each couple of parents, while the MLP NN uses switches for

its links.

 6

1.2.2 Using GAs with Other NN Models (other than MLP-NNs)

Various authors used other NN models with GAs. Xiuju (Xiuju,et al., 2002) proposed

a new RBF NN (Radial Basis Function) that uses GA to select class-dependent features (i.e.

different hidden nodes are connected to different features based on the output of the GA).

Liang-Hsuan (Liang-Hsuan, et al., 2002) proposed a new Intelligent Control System ICS,

based on a multi-objective genetic algorithm. The idea is to use the GAs to find optimal or

suboptimal actions when needed. Based on the principle of the nearest neighbor algorithm

and NN, Ishibuchi (Ishibuchi, et al., 1997) proposed a method to construct a rule-based

classification system using GA. His goal was to generate a set of fuzzy rules that minimize

the error, rejection ratio and the number of rules. To create a set of rules every training

pattern is used as separate rule. In the case were the training patterns are many, the designers

usually use other means to compact the number of training patterns (rule’s centers). Ghosh

(Ghosh, et al., 2002) presented a new method to construct Error BackProp Neural Networks

EBP NN. The idea is to use a mix of Genetic Algorithm and the Least Square Method to tune

the weights and the number of hidden nodes of the network. Rovithakis (Rovithakis, et al.,

2004) presented a procedural method to construct a HONN (High-Order Neural Network)

using GAs. This method was then used to construct HONN for function approximation

purposes. Chia-Feng (Chia-Feng, et al. 2004) used a new evolution method to train a

recurrent neural network, a mixture of GA and PSO (practical swarming theory) was used to

evolve the weights of the NN. The idea is to have the GA search for optimal solution through

its crossover and mutation operators and then to use the PSO enhancement of the generation

to create an even better generation of solutions.

1.2.3 Using GAs with ART NNs

There are only a handful of articles that used ART NNs with GAs. One of the

methods of combining NNs with GAs is to use the NN as a fitness function evaluator for the

 7

GA, Burton (Burton, et al., 1997) used an Adaptive Resonance Theory (ART) NN as a

fitness evaluator. The authors used a GA to compose new musical rhythms, to see how

similar these newly created ones are to the existing ones the authors used an ART network to

classify the new rhythms.

It is a well known fact that the larger the number of features in a specific problem, the

more complex and time consuming the classification process becomes. Quite often a large

number of features compromises the accuracy of the classifier, as well. Palaniappan

(Palaniappan, et al., 2002) developed a new method that uses Genetic Algorithms to select

features that are then used as an input to a Fuzzy ARTMAP classifier. This method was

applied on a real world problem.

Hui (Hui, tl al., 2003) claimed in their paper that the effect of different features is

different from one to another and hence multiplying some features by a certain factor

(impulsive force) could improve the generalization of the network. Hence, Hui proposed a

new ART architecture called Impulsive Fuzzy ART (IFART), and used a GA to find the right

impulsive forces.

In all the articles presented above (section 1.2.1 to 1.2.3), there is one common fact.

Using GAs to evolve NNs yields optimal or sub-optimal neural network structures. It was

also common that the results of using GAs with MLP-NNs were very successful, and when

compared to the original network the genetic model always gave better results.

1.3 Motivation
After a careful study of the literature presented above and in the next chapter, it is

very evident that ARTMAP architectures suffer from the category proliferation, problem. It

is also evident that using GAs to evolve NNs has been a very successful approach to find

 8

optimal topologies and weight sets. For the above reasons, we decided to investigate the use

of GA’s to evolve ART architectures.

1.4 Research Overview
In this dissertation the work was divided into five major efforts, presented in the

following five sections.

1.4.1 Using GAs to Evolve ART Architectures

In this project, GAs were successfully used to simultaneously evolve the weights, as

well as the topology of three ART neural networks, namely: FAM, EAM and GAM. But in

contrast to the feed-forward neural networks that have been extensively evolved, ART neural

networks have a number of topological constraints, such as (a) they consist of one hidden

layer of nodes, and (b) every interconnection weight value from every node of the input layer

to a node in the hidden layer is important (representing the minimum or the maximum of the

values of input patterns across every dimension that were encoded by this node).

Consequently, the only element of an ART topology that can be evolved is the number of

nodes in the hidden layer. Furthermore, although we could start from an initial population of

randomly chosen number and values of the weights, in our application we start with a

population of trained ART networks, whose number of nodes in the hidden layer and the

values of the interconnection weights converging to these nodes are fully determined (at the

beginning of the evolution) by the specific ART training rules. To this initial population of

networks, GA’s are applied to modify these trained network’s architectures (number of nodes

in the hidden layer, and values of the interconnection weights) in a way that encourages better

generalization and smaller size architectures.

It is worth reminding the reader that as with many neural network architectures, the

knowledge in ART networks is stored in their interconnection weights that have a very

 9

interesting geometrical interpretation (see Anagnostopoulos, et al., 2001). For example, the

interconnection weights in FAM (converging to the nodes in the hidden layer) represent the

lower and upper end-points of hyper-rectangles (referred to as categories) that enclose within

their boundaries clusters of data that are mapped to the same label.

Eventually, the evolution of these trained networks produces an ART architecture,

referred to as GFAM, GEAM or GGAM , and extracted from the last generation as the

network that attained the highest fitness value. The GFAM, GEAM or GGAM network

attained better generalization performance and smaller size than the networks that we started

with in the initial GA population.

It is apparent that in evolving neural network architectures one has to decide on the

genotype representation scheme for the neural network architecture under consideration, on

the genetic operators used to evolve these neural network architectures and on the fitness

function used to guide this evolution. In this dissertation we address these issues in a manner

that fits the characteristics of the ART neural networks and our ultimate objective of reducing

category proliferation in ART, while we preserve a good (sometimes optimal) generalization

performance.

1.4.2 Universal ART (UART)

In the first section of this introduction, we related the category proliferation problem

in part to the fact that any ART or ARTMAP module, introduced into the literature, uses only

one category representation to cover the input space of the problem. In this effort a new

ARTMAP architecture is proposed. Universal ART (UART) is a new architecture that has the

potential of combining multiple category representations in one network. The current version

combined both EAM and FAM to create a network that covers the input space with hyper-

rectangles and/or hyper-ellipsoids when needed. This architecture benefits from the use of

GAs to select the best categories for a specific problem.

 10

UART trains half the of the GA population as FAM networks and the other half as

EAM networks. Through a process called shuffling, the categories of all the networks are

then redistributed amongst the chromosomes to ensure fair fitness evaluation of the initial

population. UART then uses standard GA steps to find an optimal or sub-optimal network,

that consists from FAM categories only, EAM categories only or possibly a combination of

both types. The selected categories rely heavily on the nature of the problem at hand and on

the random seeds used during the GA search.

1.4.3 Experiments and Comparisons

Extensive experimentation was conducted with GFAM, GEAM, GGAM and UART.

The goal of this experimentation was to show the superiority of these models versus their

existing ART counterpart architectures. The comparison was based on the accuracy of the

architectures and size of the architectures produced by these techniques, as well as the

computational effort involved in producing these architectures. Another goal of the

experimentation was to discover a good, default set of GA parameter values to evolve the

ART neural networks with.

1.4.4 Analysis

This effort is actually divided into two separate sub-efforts: a. An order of search

analysis of the UART architecture, and b. A time complexity analysis of the genetic

approach in finding an optimal network and the traditional approach of finding the best

network which we refer to as exhaustive search.

In effort a, we proved four theorems that explain the order according to which a FAM

versus an EAM category are searched. These theorems explain which category will represent

an input pattern if the input pattern was 1. Inside both categories, 2. Inside the FAM category

but outside the EAM category, 3. Inside the EAM category but outside the FAM category, 4.

Outside both categories. Then we drew twelve results based on these theorems.

 11

In effort b, we present the pseudo code for the genetic approach and then analyze its

time complexity. Then we present the exhaustive search pseudo code and analyze its time

complexity. From this comparison it is discovered that the genetic approach time complexity

of)4(NO is much better than that of the exhaustive search of)(7NO .

1.4.5 User Interface Development

A major effort through out this research was devoted to the design, implementation

and testing of the user interface (UI). In fact, four different programs were developed namely

GFAM UI, GEAM UI, GGAM UI and UART UI. The following are few of the many

requirements these programs had to have:

 Capable of creating a variable number of ARTMAP networks (chromosomes).

 Capable of coding ARTMAP networks to chromosomes and vice versa.

 Capable applying genetic algorithms on the created chromosomes.

 Can run one or multiple generations at a time (user defined).

 Can display a 2D graphs of the categories and the input patterns (2D problems only).

 Can display a 2D graph of the classification borders for a specific network (2D

problems only).

 Allows the user to insert and delete specific categories from a network.

 Can log different levels of details to log files.

The above requirements and others were successfully designed, implemented and tested for

all of the four architectures.

The organization of this dissertation is as follows: In chapter 2 we present

background information related to FAM, EAM and GAM architectures, and we also present

the evolutionary computation (EC) concept, its variations and applicability. In chapter 3, we

describe all the necessary elements of evolving FAM architectures, as well as the experiments

 12

and results. In chapter 4, we introduce GEAM and GGAM, along with their results and

associated comparisons. In chapter 5, we propose the new architecture UART. In chapter 6,

we present the time complexity and the order of search analysis. In chapter 7, we go through

the details of developing the UI programs used to evolve the different ART architectures. In

chapter 8, we summarize our contributions, and we provide directions for future research.

 13

2. BACKGROUND

In this chapter the main building blocks of this research are presented in detail. In

particular, the following sections give the reader a thorough understanding of FAM, EAM,

GAM and EA. It is worth mentioning, that there are semi-supervised versions of the above

ART modules namely: ssFAM, ssEAM and ssGAM. ssFAM, ssEAM and ssGAM

performance was compared with the performance of genetically engineered ART networks.

The only difference between the two versions FAM and ssFAM, or EAM and ssEAM, or

GAM and ssGAM is that the semi-supervised versions allow the categories to encode

patterns that go to a mixture of labels, provided that the majority label is above a certain

threshold. This semi-supervised feature reduced the size of the ART network and increased

its generalization accuracy (see Anagnostopoulos, et al, 2003). In our comparisons of the

evolved ART models, we used semi-supervised models ART to compare to.

2.1 Fuzzy ARTMAP (FAM)
The Fuzzy ARTMAP architecture consists of three layers or fields of nodes (see

Figure 2-1).

Category Nodes

Output Labels

),(caaI =aF1

aF2

bF2

a

a
jw

ab
jW

Match Tracking

Figure 2-1: Simple FAM Architecture

 14

These layers are input layer (aF1), the category representation layer (aF2), and the

output layer (bF2). The input layer of FAM is the layer where inputs are applied. An input

applied to aF1 is a vector I of dimensionality aM2 of the following form,

ai
c
i

c
M

cc
M

c Miaaaaaaa
aa

≤≤−=== 1,1);,...,,...,,,...,(),(111aaI 2-1

where a is a vector whose components lie in the interval]1,0[. Thus, layer aF1 is a layer that

contains aM2 nodes, one node for each component of the input pattern I. The index i

)21(aMi ≤≤ designates a generic node in layer aF1 . The layer aF2 of FAM is referred to as

the category representation layer, because this is where categories (or groups) of input

patterns are formed. Finally, the output layer (layer bF2) is the layer that produces the

outputs of the network. Every node in the output layer of FAM represents one of the labels

of the pattern recognition task. The index k)1(bNk ≤≤ designates a generic node

in bF2 ; bN represents the highest index needed to represent all the labels of the pattern

classification task at hand.

FAM stores the learned knowledge in its interconnections weights. There are two

vectors of FAM weights that are worth mentioning: (a) The vector of weights

),...,,(2,21
a

Mj
a
j

a
j

a
j a

www=w , called a template, whose components emanate from node j in aF2

and converge to all the nodes in aF1 ; a
jw represents the group of input patterns that chose

node j in the category representation layer of FAM as their representative node and this

node encoded them, and (b) the vector of weights, denoted by),...,,(,21
a

Nj
a
j

a
j

ab
j b

WWW=W ,

emanating from every node j in the aF2 layer of FAM and converging , to all the nodes in bF2 .

In FAM, if all the components of ab
jW are equal to 0, except component ab

jkW , this is an

indication that node j in aF2 is mapped to label k in bF2 .

 15

2.1.1 FAM Category Geometrical Representation

It is very important to point out that the templates in FAM (i.e., the a
jw ’s) have an

interesting geometrical interpretation. That is every template in FAM can be thought of as a

hyper-rectangle, whose boundaries enclose all the input patterns that were encoded by the

template during FAM’s training phase. For instance, in Figure 2-2, the 2D hyper-rectangle

a
jR of template a

jw is shown as including within its boundaries 7 input patterns encoded by

it. As it can be seen from Figure 2-2, a
jR is completely defined by its two endpoints

(i.e. a
j

a
j vu ,), and it can be shown that))(,(ca

j
a
j

a
j vuw = .

a
ju

a
jva

jR

Figure 2-2: A rectangle representation of a FAM category that learned seven input patterns

To geometrically describe the FAM equations we need the concepts of the “size of a

hyper-rectangle”, and the distance of an input pattern I from the hyper-rectangle a
jR . The size

of the hyper-rectangle a
jR (denoted by)(a

js w) is equal to the 1L norm of the vector a
j

a
j uv −

(or in other words the sum of the lengths of all its sides). The distance of an input pattern

),(caaI = from a rectangle a
jR (denoted by),(a

jdis wI) is equal to the minimum 1L distance

of a from any point of the rectangle a
jR . Please refer to Figure 2-3 for an illustration of the

size of a rectangle and the distance of an input pattern from this rectangle in the case where

2=aM .

 16

a
jR),(a

jdis wI
a
jR

),(a
jdis wI

Figure 2-3: The distance of an input pattern a from the rectangle a
jR is the minimum distance of the

pattern a from the border of the rectangle a
jR

2.1.2 FAM Operations and Parameters

FAM can operate in two distinct phases: the training phase and the performance

phase. In the training phase of FAM a list of input patterns/output labels, for example,

))}(,()),...,(,()),...,(,{(11 PTPTrr OOO IIIIII , is repeatedly presented to FAM until FAM learns

the required mapping. The task is considered accomplished (i.e. learning is complete) when

the weights do not change during a list presentation or when a maximum number of list

presentations is reached. The performance phase of FAM works as follows: Given a list of

input patterns, such as PSIII ~,...,~,~ 21 , we want to find the FAM output produced when each

one of the aforementioned test patterns is presented at its aF1 layer. In order to achieve the

aforementioned goal we present the test list to the trained FAM architecture and we observe

the network’s output (i.e., label). (Appendix B gives a step-by-step procedure for FAM

training and performance)

The operation of FAM is affected by two user defined network parameters, the choice

parameter aβ , and the baseline vigilance parameter aρ . The choice parameter aβ takes

values in the interval),0(∞ , while the baseline vigilance parameter aρ assumes values in the

interval]1,0[. Both of these parameters affect the number of nodes created in the category

 17

representation layer of FAM. The parameter aβ controls the order according to which nodes

will be accessed in Fuzzy ARTMAP. At the same time the parameter aβ has an effect on how

many nodes will be created in the category representation layer of Fuzzy ARTMAP during

FAM’s training phase (larger values of aβ tend to produce larger number of category nodes

in FAM). The parameter aρ also has an effect on the number of nodes created in the category

representation layer of Fuzzy ARTMAP (larger values of aρ produce larger number of nodes

in the category representation layer). There are two other network parameter values in FAM

that are controlled by the algorithm, namely, the vigilance parameter aρ , and the number of

nodes aN in the category representation layer of FAM. The vigilance parameter aρ takes

value in the interval]1,[aρ and its initial value is set to be equal to aρ . The number of nodes

aN in the category representation layer of FAM corresponds to the number of committed

nodes (nodes that have established a connection with nodes in the bF2 layer) in FAM plus one

uncommitted node. Prior to initiating the training phase of FAM, the top-down weights (the

a
jiw ’s) are chosen equal to 1, and the inter-ART weights (the ab

jkW ’s) are chosen equal to 0.

There are three major operations that take place during the presentation of a training

input/output pair (e.g.,),(rr OI) to Fuzzy ARTMAP.

Operation 1: Calculating the Category Choice Function (CCF) value

In this operation FAM calculates the category choice function (CCF) value (i.e.

)|(IjT) for every category j in its category representation layer aF2 , as follows:

)(
),()(

)|(a
jaa

a
j

a
ja

sM
dissM

jT
w

wIw
I

−+

−−
=

β
 2-2

After calculating the choice function values, the node J with the maximum choice function value

proceeds to operation 2.

 18

Operation 2: Calculating the Category Match Function (CMF) Value

The node J with the largest CCF value is examined to determine whether it passes the

vigilance criterion. A node J (category) passes the vigilance criterion if its category (node)

match function value (i.e., ()|(IJρ) exceeds the vigilance parameter value aρ , that is if

a
a

a
j

a
Ja

M
dissM

J ρρ ≥
−−

=
),()(

)|(
wIw

I 2-3

If the vigilance criterion is passed we proceed with operation 3. Otherwise, node J is disqualified and

we find the next in sequence node in aF2 that maximizes the CCF value. Eventually we will end up

with a node J that maximizes the CCF value and satisfies the vigilance criterion (notice that this

could be an uncommitted node, and hence aN (number of committed nodes in FAM) get

increased by 1).

Operation 3: Match Tracking Mechanism/Change of the Weights

This operation is implemented only after we have found a node J that maximizes the

CCF value of the remaining (in the competition) aF2 nodes and passes the vigilance criterion.

Operation 3 determines whether this node J passes the prediction test. The prediction test

checks if the inter-ART weight vector emanating from node J

(i.e.),...,,(,21
a

NJ
a

J
a

J
ab
J b

WWW=W) matches exactly the desired output vector O (note that O is

the output pattern that the input pattern I is supposed to be mapped to). If the prediction is

satisfied then we say that the node “passed the prediction test”. If the node does not pass the

prediction test, the vigilance parameter aρ is increased to the level of
a

a
Ja

M
sM)(w−

, node J is

disqualified, and the next in sequence node J that maximizes the CCF value and passes the

vigilance is chosen (this action is referred to as the match tracking mechanism). If node J

though passes the prediction test, the weights a
Jw in FAM are modified as Figure 2-4

demonstrates, and according to the following equation:

 19

Iww ∧= olda
j

newa
j

,, 2-4

where ∧ is the fuzzy min operator, which outputs a vector whose components are equal to

the minimum of the corresponding components of its arguments. And OW =ab
jmax

.

1a

1a

2a

1a

2a

1a

2a

1a

2a
3a

4a

1a
2a

3a

4a

a b c d e f

3a

Figure 2-4: FAM Learning, a. A category with 0 size; b. Introducing a new pattern a2; c. The category
expands to include a2; d. Since a3 is inside the category, it doesn’t change its size; e. Pattern a4 is

presented; f. Since a4 is outside the category, the category is expanded to include a4, within its
boundaries.

Figure 2-4 covers all the possible learning scenarios in FAM, that is when a category

learns the first input pattern, then as it learns a second input pattern, and then as it learns a

third input pattern for the case where the third pattern is inside the rectangle and for the case

where the third input pattern is outside the rectangle that the category defines.

FAM training is considered complete if and only if after repeated presentations of all

training input/output pairs to FAM, where Operations 1-3 are recursively applied for every

input/output pair, we find ourselves in a situation where a complete cycle through all the

input/output pairs produced no weight changes, or if we reached a maximum number of list

presentation, through out all experiments we used 10 for this number. In the performance

phase of FAM only Operations 1 and 2 are implemented for every input pattern presented to

FAM. By registering the network output to every test input presented to FAM, and by

comparing it to the desired output we can calculate the network’s performance (i.e. Percent

Correct Classification or PCC)

 20

2.2 Ellipsoidal ARTMAP (EAM)
Ellipsoidal ARTMAP (EAM) architecture is very similar to that of FAM. The major

difference between EAM and FAM is that EAM covers the space of the input patterns with

ellipsoids instead of rectangles (hyper-ellipsoids in problems with more than two

dimensions). The EAM architecture, like the FAM architecture, consists of three layers or

fields of nodes (Figure 2-5).

aI =aF1

aF2

bF2

a
jw

ab
jW

Figure 2-5: Simple EAM Architecture

These are the input layer (aF1), the category representation layer (aF2), and the

output layer (bF2). The input layer of EAM is the layer where inputs are applied. An input

applied to aF1 is a vector I of dimensionality aM of the following form,

aMi Miaaa
a

≤≤== 1);.,,..(1aI 2-5

where a is a vector whose components lie in the interval),(+∞−∞ . Thus, layer aF1 is a layer

that contains aM nodes, one node for each component of the input pattern I. The index i

)1(aMi ≤≤ designates a generic node in layer aF1 . The layer aF2 of EAM is referred to as

the category representation layer, this layer contains all the categories (or groups) of input

 21

patterns in the network. Finally, the output layer (layer bF2) is the layer where the outputs of

the network can be found. Nodes in the output layer of EAM represent labels or classes of the

pattern recognition task. The index k)1(bNk ≤≤ designates a generic node in bF2 ; bN is the

number of all classes in the problem domain and so is the highest index in this classification

task.

EAM as in FAM, stores the learned knowledge in its interconnection weights: (a) The

vector of weights),,(jjj
a
j rdmw = , called a template, where rjj ,, dm represent the center,

direction, and radius of the major axis of the ellipsoid that node j creates, whose components

emanate from node j in aF2 and converge to all the nodes in aF1 ; a
jw encompasses the group

of input patterns that were selected by this node j in the category representation layer of

EAM, and (b) the vector of weights, denoted by),...,,(,21
a

Nj
a
j

a
j

ab
j b

WWW=W , emanating from

every node j in the aF2 layer of EAM and converging to all the nodes in bF2 . In EAM, if all

the components of ab
jW are equal to 0, except component ab

jkW , it is an indication that node

j in aF2 is mapped to label k in bF2 .

2.2.1 EAM Category Geometrical Representation

As it was pointed out earlier, the major difference between FAM and EAM lies in the

shape of their categories (FAM uses hyper-rectangles, while EAM uses hyper-ellipsoids). In

both cases though the structure created that corresponds to a category (in FAM or EAM),

encloses within its boundaries all the input patterns that used and were encoded by this

category. In figure 2-6 a 2D hyper-ellipsoid category is shown as including within its

boundaries 3 input patterns that it had encoded already. It is very obvious that the ellipsoid

grows to include the patterns that it encodes.

 22

2I

1I

3I

jm

jd

jr

jrµ

Figure 2-6: An EAM category that encodes 3 patterns

The size of an EAM category is defined as the maximum Mahalanobis distance

between two patterns inside the representation region of the category, since this distance

equals jr2 , then the size of category j is jj rs 2)(=w . The distance in EAM is defined as the

minimum distance between the pattern I and the boundaries of the category if the pattern is

outside the category, otherwise the distance equals zero, and hence, the distance of an input

pattern I from a category j represented by a
jw is

jjj
a
j rrdis

j
−−= },||max{||),(CmIwI 2-6

and []222
2)()1(||||1|||| j

T
jjj j

mIdmImI C −−−−=− µ
µ

 2-7

where jC is the shape matrix of an EAM category j, µ is the ratio of the minor axis of the

hyper-ellipsoid to its major axis and 2||.|| is the Euclidian)(2L norm of its argument vector.

2.2.2 EAM Operations and Parameters

EAM can operate in two distinct phases: the training phase and the performance

phase. In the training phase of EAM/EAM a list of input patterns/output labels, for example,

))}(,()),...,(,()),...,(,{(11 PTPTrr OOO IIIIII , is repeatedly presented to EAM until EAM

learns the required mapping. The task is considered accomplished (i.e., the learning is

 23

complete) when the weights do not change during a list presentation or a user defined

maximum number of list presentations is reached. The performance phase of EAM works as

follows: Given a list of input patterns, such as PSIII ~,...,~,~ 21 , we would like to find the EAM

output produced when each one of the aforementioned test patterns is presented at its

aF1 layer. By presenting the test list to the trained EAM architecture and observing the

network’s output (i.e., label) the aforementioned goal could be reached.

Few parameters affect the operation of EAM. Among these parameters are

(aβ (choice parameter) and aρ (baseline vigilance parameter)) that affect the performance of

FAM as well. The other two are: µ , which is the minor-to-major axis length ratio (common

for every EAM category), and D which corresponds to FAM's aM variable and it should be

greater than zero. The choice and vigilance parameters affect the number of nodes created in

the category representation layer of FAM. The parameter aβ controls the order according to

which nodes will be accessed in EAM. At the same time the parameter aβ has an effect on

how many nodes will be created in the category representation layer of EAM during EAM’s

training phase (larger values of aβ tend to produce larger number of category nodes in

EAM). The parameter aρ also has an effect on the number of nodes created in the category

representation layer of Ellipsoidal (larger values of aρ produce larger number of nodes in the

category representation layer). The parameter µ ranges from 0 to 1, and finally D is chosen

equal to
µ

aM
. Note, that the parameter D also affects the number of nodes created in the

category representation layer of EAM (smaller values of D tend to produce more nodes in the

category representation layer of EAM, and consequently result in less compression of the

input patterns presented in EAM). There are two other network parameters in EAM that the

networking uses internally, these are the vigilance parameter aρ , and the number of nodes

 24

aN in the category representation layer of EAM. The vigilance parameter aρ takes value in

the interval]1,[aρ and its initial value is set to be equal to aρ . The number of nodes aN in

the category representation layer of EAM corresponds to the number of committed nodes in

EAM plus one uncommitted node. Prior to initiating the training phase of EAM, jjj r,, dm

are chosen equal to 0, and the inter-ART weights (the ab
jkW ’s) are chosen equal to 0 too.

There are three major operations that take place during the training phase of Ellipsoid

ARTMAP.

Operation 1: Calculating the Category Choice Function (CCF) value

To select the wining category the network should calculate the category (node) choice

function (CCF) value (i.e.,)|(IjT) for every node (category) j in aF2 , which is performed

as follows:

)(
),()(

)|(a
ja

a
j

a
j

sD
dissD

jT
w

wIw
I

−+

−−
=

β
 2-8

After calculating the choice function values for every node j in the category representation

layer of EAM, the node J with the maximum choice function value is chosen, and EAM

proceeds with operation 2.

Operation 2: Calculating the Category Match Function (CMF) Value

After finding the node J with the largest CCF value, this node is examined to

determine whether it passes the vigilance criterion. A node J (category) passes the vigilance

criterion if its category (node) match function value (i.e., ()|(IJρ) exceeds the vigilance

parameter value aρ , that is if

a

a
j

a
J

D
dissD

j ρρ >
−−

=
),()(

)|(
wIw

I 2-9

 25

If the node passes the vigilance criterion the third operation starts. Otherwise, node J is

disqualified and we find the next in sequence node in aF2 that maximizes the CCF value.

Eventually we will end up with a node J that maximizes the CCF value and satisfies the

vigilance criterion, which could be an uncommitted node.

Operation 3: Match Tracking Mechanism/Change of the Weights

Operation 3 determines whether the chosen node J passes the prediction test. The

prediction test is simply a comparison between the inter-ART weight vector emanating from

node J (i.e.),...,,(,21
a

NJ
a

J
a

J
ab
J b

WWW=W) and the desired output vector O . If they are equal,

this is referred to as the node “passing the prediction test”. If the node does not pass the

prediction test, the vigilance parameter aρ is increased to the level of
D
sD a

J)(w−
, node J is

disqualified, a new search for the next node J that maximizes the CCF value and passes the

vigilance starts (this action is referred to as the match tracking mechanism). If node J passes

the prediction test, the weights a
Jw in EAM are modified according to the following

equations and explained pictorially in figure 2-7.

{ }
)(

||||

||||,min
1

2
old
j

C
old
j

C
old
j

old
jold

j
new
j

old
j

old
j

r
mI

mI

mI
mm −⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−+=

γ 2-10

and

{ }()old
jC

old
j

old
j

old
j

new
j rrrr old

j
−−+= ||||,max

2
mIγ 2-11

Where γ is the learning factor, in our experiments we used, fast learning (i.e. γ =1).

 26

jm jd

1Im =j

4I

3I

1I

2I

1I jm jd

2I

1I

3I

jm jd

2I

1I

4I

3I
jm

jd
2I

1I

Figure 2-7: Creation and expansion of an EAM category

Figure 2-7 covers all the possible scenarios when node J first learns the first input pattern,

then as it learns a second input pattern, and then as it learns a third input pattern, for the case

where the third pattern is inside the ellipsoid, the ellipsoid does not get updated and hence

stays the same.

EAM training is considered complete if and only if after repeated presentations of all

training input/output pairs to EAM, where Operations 1-3 are recursively applied for every

input/output pair, we find ourselves in a situation where a complete cycle through all the

input/output pairs produced no weight changes. As in FAM, in the performance phase of

EAM only Operations 1 and 2 are implemented for every input pattern presented to EAM.

By registering the network output to every test input presented to EAM, and by comparing it

to the desired output we can calculate the network’s performance (i.e. Percent Correct

Classification or PCC)

2.3 Gaussian ARTMAP (GAM)
Similar to FAM and EAM, the GAM architecture consists of three layers or fields of

nodes (see Figure 2-5), The input layer (aF1), the category representation layer (aF2), and

the output layer (bF2). The input layer of GAM is the layer where inputs are applied. An

input pattern applied to aF1 is a vector I (of dimensionality aM) of the following form,

aMi Miaaa
a

≤≤== 1);.,,..(1aI 2-12

 27

Where a is a vector whose components lie in the interval),(+∞−∞ . Thus, layer aF1 is a layer

that contains aM nodes, one node for each component of the input pattern I. The index i

)1(aMi ≤≤ designates a generic node in layer aF1 . The layer aF2 of GAM is referred to as

the category representation layer, because this is where categories (or groups) of input

patterns are formed. Finally, the output layer (layer bF2) is the layer that produces the

outputs of the network. Every node in the output layer of GAM represents one of the labels

of the pattern recognition task. The index k)1(bNk ≤≤ designates a generic node

in bF2 ; bN represents the number of the different classes in the problem, and is the highest

index needed to represent all the labels of the pattern classification task at hand.

Using its interconnections weights, GAM stores the learned knowledge. There are two

types of GAM weights: (a) The vector of weights),,(jjj
a
j nσµw = , called a template, whose

components emanate from node j in aF2 and converge to all the nodes in aF1 . The vector jµ

is an aM -dimensional vector, with components equal to the average values of the

components of the input patterns that accessed and were encoded by category j. The vector

jσ is an aM -dimensional vector, with components equal to the standard deviation of the

components of the input patterns that accessed and were encoded by category j. Finally, jn is

a scalar that is equal to the number of input patterns that accessed and were encoded by

category j in GAM, and (b) the vector of weights, denoted by),...,,(,21
a

Nj
a
j

a
j

ab
j b

WWW=W ,

emanating from every node j in the aF2 layer of GAM and converging , to all the nodes in

bF2 . In GAM, if all the components of ab
jW are equal to 0, except component ab

jkW , it is an

indication that node j in aF2 is mapped to label k in bF2 .

Contrary to FAM and EAM, GAM does not create enclosed structures (such as hyper-

rectangles or hyper-ellipsoids) that contain within their boundaries all the input patterns that

 28

were encoded by these structures. In GAM a category is represented by a Gaussian (bell-

shaped) curve, whose mean vector and the standard deviation vector corresponds to the mean

and standard deviation vector of all the input patterns that chose and were encoded by this

category in GAM’s training phase. Furthermore, every GAM category has another parameter

jn , associated with it, that is equal to the number of patterns that were encoded by this

category, and as such defines how important this bell-shaped curve is in representing the

input patterns that are presented to GAM. For instance, see Figure 2-8, where a few input

patterns are shown (in one dimension) and the Gaussian curve that they define is depicted.

Figure 2-8: A 2D GAM category that encodes 5 patterns within 2 standard deviations

2.3.1 GAM Operations and Parameters

In the training phase of GAM a list of input patterns/output labels, for example,

))}(,()),...,(,()),...,(,{(11 PTPTrr OOO IIIIII , is repeatedly presented to GAM until GAM

learns the required mapping. The task is considered done (i.e., the learning is complete) when

a user defined maximum number of presentations is reached. The performance phase of

GAM works as follows: We have a list of input patterns, such as PSIII ~,...,~,~ 21 , and we want

to find the GAM output produced when each one of the aforementioned test patterns is

presented at its aF1 layer of GAM. To attain the aforementioned goal we present the test list

to the trained GAM architecture and we observe the network’s output (i.e., label).

The operation of GAM is affected by two network parameters, the initial standard

deviation parameterγ , and the baseline vigilance parameter aρ . When a GAM category

 29

encodes an input pattern for the first time its standard deviation vector of the Gaussian curve

that it defines has components that are all equal to the initial standard deviation parameterγ .

Both parameters γ and the baseline vigilance parameter aρ assume values in the interval [0,

1]. Both of these parameters affect the number of nodes created in the category

representation layer of GAM. Higher values of aρ create more nodes in the category

representation layer of Gaussian ARTMAP, and consequently produce less compression of

the input patterns. There are two other network parameter values in GAM that are worth

mentioning, such as the vigilance parameter aρ , and the number of nodes aN in the category

representation layer of GAM. The vigilance parameter aρ takes value in the interval]1,[aρ

and its initial value is set to be equal to aρ . The number of nodes aN in the category

representation layer of GAM corresponds to the number of committed nodes in GAM plus

one uncommitted node. Prior to initiating the training phase of GAM jµ is set to 0's and jσ

is chosen equal to γ , and the inter-ART weights (the ab
jkW ’s) are chosen equal to 0. There are

three major operations that take place during the presentation of a training input/output pair

(e.g.,),(rr OI) to Gaussian ARTMAP.

Operation 1: Calculating the Category Choice Function (CCF) value

Calculation of the category (node) choice function value (i.e.,)|(IJT) for every node

(category) j in aF2 , is as follows:

)(
)()/()|(

IP
jPjIPIjP = 2-13

where P(I|j) is the conditional density of I given j equals

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

∏
= ∑

==

M

i ji

iji

ji
M
t

M

I
jIP

1

2

1
2/ 2

1exp
)2(

1)|(
σ

µ
σπ

 2-14

and the priori probability of j is

 30

∑
=

= N

j
j

j

n

n
jP

1

)(2-15

where N is the number of categories in the system. Since P(I) is the same for all categories it

is ignored and hence the equation of)|(IjT is

()() ∑ ∏
= =

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−==

M

i

M

i
ji

ji

ijiM jP
I

jPjIPjT
1 1

2

2/))(log(log
2
1)()|(2log)|(σ

σ
µ

πI 2-16

After calculation of the choice commitment function values the node J with the maximum

choice commitment function value is chosen.

Operation 2: Calculating the Category Match Function (CMF) Value

The node J with the largest CCF value is examined to determine whether it passes the

vigilance criterion. A node J (category) passes the vigilance criterion if its category (node)

match function value (i.e., ()|(IJρ) exceeds the vigilance parameter value aρ , that is if

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

=

)|(2log)|(
1

2/ jIPj
M

i
ji

M σπρ I > aρ 2-17

If the vigilance criterion is passed we proceed with operation 3. Otherwise, node J is

disqualified and we find the next in sequence node in aF2 that maximizes the CCF value.

Eventually we will end up with a node J that maximizes the CCF value and satisfies the

vigilance criterion.

Operation 3: Match Tracking Mechanism/Change of the Weights

This operation is implemented only after we have found a node J that maximizes the

CCF value of the remaining (in the competition) aF2 nodes and passes the vigilance criterion.

Operation 3 determines whether this node J passes the prediction test. The prediction test

checks if the inter-ART weight vector emanating from node J (i.e.,

),...,,(,21
a

NJ
a

J
a

J
ab
J b

WWW=W) matches exactly the desired output vector O (if it does, this is

 31

referred to as the node “passing the prediction test”). If the node does not pass the prediction

test, the vigilance parameter aρ is increased to the level of)(' IgJ , node J is disqualified, and

the next in sequence node J that maximizes the CCF value and passes the vigilance is chosen

(this action is referred to as match tracking mechanism). If node J though passes the

prediction test, the weights a
Jw in GAM are modified in a way that includes this pattern in

the category. The algebraic equations that define the learning that a
Jw undergoes are as

follows:

1: += JJ nn 2-18

Inn JJJJ
11)1(: −− +−= µµ 2-19

⎪⎩

⎪
⎨
⎧ >−+−

=
−−

otherwise
nifInn JiJiJJiJ

Ji
γ

µσσ 1)()1(:
2121

 2-20

GAM training is considered complete if and only if after repeated presentations of all

training input/output pairs to GAM, where Operations 1-3 are recursively applied for every

input/output pair, we reach the maximum number of list presentations defined by the user. In

the performance phase of GAM only Operations 1 and 2 are implemented for every input

pattern presented to GAM. By registering the network output to every test input presented to

GAM, and by comparing it to the desired output we can calculate the network’s performance

(i.e. Percent Correct Classification or PCC)

2.4 Genetic Algorithms
One of the most widely used EA’s techniques is the Genetic Algorithm. Experiments

have showed that GAs are very powerful searching techniques. They were used successfully

in many areas, such as optimization (Annie S. Wu, et al., 2004), scheduling (Annie Wu, Han

Yu, et al., 2004), pattern recognition (Auwatanamongkol, S., 2000), robot control (Davidor

 32

Y., 1990), and many others. The implementation of a GA follows the same steps of the

general framework for EA’s. A GA has the following components:

 Population of Chromosomes: Chromosomes represent solutions to the problem at

hand. Chromosomes can be encoded in many different ways the most famous of

which is the binary encoding.

 Fitness Function: Used to evaluate the chromosomes, where each chromosome’s

evaluation determines how close or far this solution is from the optimal.

 Selection Function: Used to select parent chromosomes (exploit partial solutions).

 Genetic Operators: Exchange and modify knowledge amongst the selected parent

chromosomes to create new offspring (explores the search space).

2.4.1 Chromosome Representation

Many different chromosome representation approaches have been introduced in the

literature, of which the following are the most common (Mitchell T., 1997):

 Binary: Uses a string of bits to represent the solution, each gene is represented by its

equivalent binary code and all genes are then arranged in one string of bits.

 Location Independent: a. Messy: uses a string of cells, each cell consists of the

location and the value of the bit. b. Floating Representation: uses building blocks that

consist of a tag and a body where the tag is a building block identifier and the body is

the actual building block (a group of bits adjacent to the tag).

 Redundant: Every building block is repeated many times in the chromosome.

 Non-Coding: In this scheme a chromosome consists of building blocks along with a

set of non-coding blocks.

 Integer: Uses integer instead of binary numbers.

 Floating Point: Uses real numbers instead of binary numbers.

 33

 Problem Specific: Uses structures that are problem dependent, and it could use any of

the above representations or it might use a mixture of any of them.

All of the above representations have advantages and disadvantages (the interested reader

could refer to (Mitchell T., 1997) to get more information about the pros and cons of each

representation method).

2.4.2 Genetic Operators

 The purpose of genetic operators is to explore new regions in the solution

space by discovering new solutions that preserve some of the current knowledge. Two well

known operators are used in GA:

a. Crossover: A method to exchange information among two (or more) parent

chromosomes. In order to produce an offspring (or more) from the parents, it uses

random numbers to select crossing points. Three different types of crossover are

common:

 One-point: Selects a crossing point at random from each parent and

exchanges the subsections of both chromosomes after the crossover point.

011 0001
111 0011

0110011
1110001

Parent a

Parent b

Figure 2-9: One-point crossover

 Two-point/multi-point: Selects two/more random crossover points and

exchanges subsections of both chromosomes (see Example in Figure 2-10). If more

than two crossover points are chosen the same principle applies.

011 000 0
111 001 1

0110010
1110001

Parent a

Parent b

Figure 2-10: Two-point crossover

 34

 Uniform: This method uses a pre-specified probability that each bit will be

swapped, which is similar to using a mask of bits where 0 means no swap and 1

means swap or vice versa.

Parent a

Parent b

1000010Mask

0110101
1110011

1110111
0110001

Figure 2-11: Uniform crossover

Each of the above types has advantages and disadvantages (for more information see Mitchell

T., 1997).

b. Mutation: Mutation is a method of creating new offspring by modifying the parent.

Binary mutation is quite simple, it is done by flipping a bit from 0 to 1, or the other

way around, according to a specific probability. Floating point mutation can be

accomplished in more ways than one, one of them is to add a randomly selected

number (could be from a Gaussian Distribution) to a randomly selected gene. It is

important to mention that low mutation rate results in less exploration, while high

mutation rate could be disruptive.

The crossover and mutation operators have many variations reported in the literature

(see T.Ba¨ck, et al., 1997, and T. Mitchell, 1997). Also it is important to mention that some

other genetic operators, beyond crossover and mutation, were used in the GA literature (for

an example see Liang-Hsuan, et al., 2002).

2.4.3 Selection

 Selection is the process of choosing parents to create new offspring from. This

process directs the search toward the promising areas of the solution surface and is usually

based on the fitness of the individual chromosomes. Many selection methods were introduced

in the literature, some of which are reported below:

 35

 Fitness Proportional Selection: every individual gets a probability of being selected

based on the ratio of its fitness to the average fitness of all individuals.

 Stochastic Universal Sampling: divides a wheel spin into N equally spaced markers,

and then uses only one randomly generated number to select the parent.

 Sigma Scaling: The value of the fitness is modified according to the following

equation)*(' σcfff −−=
−

 (where f is the original fitness value,
−

f is the mean,

σ is the standard deviation and c is a constant) to either eliminate a large difference

in the fitness values or to show an un clear difference in the fitness values, and hence,

maintains selection pressure over the length of a run, thus minimizing the affects of

convergence on reproductive selection.

 Rank Selection: Ranks the individuals according to their fitness and then calculate the

number of offspring based on the rank rather than the fitness.

 Tournament Selection: Selects at random two individuals, and then generates another

random number. If this random number is greater than a specific value choose the

individual with higher fitness, otherwise choose the individual with less fitness. In this

approach more than two individuals could be selected.

 Elitism: Preserve the best performers from the current generation, and then uses

another selection method to generate the rest of the individuals.

The interested reader can find more information in J. H. Holland, 1975, Baker, J., 1987 and

(Mitchell T., 1997 about these and other selection strategies.

 36

3. GENETIC FUZZY ARTMAP (GFAM)

GFAM (Genetic Fuzzy ARTMAP) is an evolved FAM network that is produced by

applying, repeatedly, genetic operators on an initial population of trained FAM networks.

GFAM uses tournament selection with elitism, as well as genetic operators, including

crossover and mutation. In addition, GFAM uses two special operators, addCat and delCat .

To better understand how GFAM is designed we resort to a step-by-step description

of this design. It is instructive though to first introduce some terminology that is included in

Appendix A. The design of GFAM can be articulated through a sequence of steps, defined

succinctly below, and explained in detail later.

Step 1: Initialize sizePop number of FAM networks, each one of them operating with a

different value for the baseline vigilance parameter aρ , and different orders of training

pattern presentation.

Step 2: Train each one of the sizePop initialized FAM networks, using the training set for a

maximum number of iterations.

Step 3: Convert the sizePop trained FAM networks into chromosomes. Crop all chromosomes

so that no one-point categories exist.

Step 4: Evolve the chromosomes of the current generation by executing the following sub-

steps:

Sub-Step 4a: Calculate the fitness for all chromosomes of the current generation.

Sub-Step 4b: Initialize an empty generation (referred to as temporary generation).

Sub-Step 4c: Move the bestNC best chromosomes from the current generation to the

temporary generation.

Sub-Step 4d: Select chromosomes for crossover from the current generation to populate the

remainder of the temporary generation.

 37

Sub-Step 4e: With a probability)(addCatP apply the addCat operator to every individual

generated in sub-step 4d.

Sub-Step 4f: With a probability)(delCatP apply the delCat operator to every individual

generated in sub-step 4e.

Sub-Step 4g: With a probability)(MutP apply the mutation operator to every individual

generated in sub-step 4f.

Sub-Step 4h: Replace the current generation with the members of the temporary generation

Step 5: If evolution has reached the maximum number of iterations, maxGen , then calculate

the performance of the best-fitness FAM network on the test set and report classification

accuracy and number of categories that this best-fitness FAM network possesses. If the

maximum number of iterations has not been reached yet, go to step 4 to evolve one more

population of chromosomes

Each one of the aforementioned steps of the algorithm is now described in more

detail, as needed.

Step 1 (More Details): The algorithm starts by training sizePop FAM networks, each one of

them trained with a different value of the baseline vigilance parameter aρ . In particular, we

first define
1

minmax

−
−

=
size

aainc
a Pop

ρρ
ρ , and then the baseline vigilance parameter of every network is

determined by the equation inc
aa i ρρ *min + , where }1...,,1,0{ −∈ sizePopi . In our experiments

with GFAM we chose 1.0min =aρ , and 95.0max =aρ . Meanwhile, GFAM allows the user to

change the order of pattern presentation automatically and randomly.

Step 2 (More Details): We assume that the reader is familiar with how training of FAM

networks is accomplished, and thus the details here are omitted.

 38

Step 3 (More Details): Once the sizePop networks are trained, they need to be converted to

chromosomes so that they can be manipulated by the genetic operators. GFAM uses a real

number representation to encode the networks. Each FAM chromosome consists of two

levels, level 1 containing all the categories of the FAM network, and level 2 containing the

lower and upper endpoints of every category in level 1, as well as the label of that category

(see Figure 3-1). We denote the category of a trained FAM network with index p

)1(sizePopp ≤≤ by)(pa
jw , where))((),(()(ca

j
a
j

a
j ppp vuw = and the label of this category

by)(pl j for)(1 pNj a≤≤ .

)(1 paw)(2 paw)(pa
jw)(pa

N a
w

Chromosome p

)(pa
ju)(pa

jv)(pl j

Level 1

Level 2

Figure 3-1: GFAM chromosome structure

In this step, we eliminate all single-point categories in the trained FAM networks,

referred to as cropping the chromosomes. Since our ultimate objective is to design a FAM

network that reduces the network size and improves generalization we discourage at this

stage the creation of single-point categories. Our experiments have shown that cropping

single-point categories is beneficial because it speeds-up the convergence of the GA.

Step 4 (More Details): In this step the GFAM applies a GA to the population of trained

FAMs.

Sub-step 4a (More Details): Calculate the fitness of each chromosome (trained FAM). This

is accomplished by feeding into each trained FAM the validation set and by calculating the

percentage of correct classification exhibited by each one of these trained FAM networks. In

particular, if)(pPCC designates the percentage of correct classification, exhibited by the p-th

 39

FAM, and this FAM network possesses)(pNa nodes in its category representation layer,

then its fitness function value is defined by:

ε+−

⋅−
=

)(
)(100

)())(()(

min

2
max

pN
pPCC

Cat

pPCCpNCatpFit

a

a 3-1

where, minCat and maxCat are the minimum and maximum number of categories that a FAM

network is allowed to have during the evolutionary process (minCat is chosen equal to 1, or

equal to the number of classes in the classification problem under consideration, while

maxCat is chosen to be a relatively large number for the classification problem at hand). The

constant ε in the denominator of the above equation is a small positive constant and it is

needed to make sure that the denominator would not be zero in the case when

min)(CatpNa = and .100)(=pPCC

Sub-step 4b (More Details): Obvious, no further explanations are needed.

Sub-step 4c (More Details): The algorithm searches for the best bestNC chromosomes from

the current generation and copies them to the temporary generation.

Sub-step 4d (More Details): The remaining bestsize NCPop − chromosomes in the temporary

generation are created by crossing over pairs of parents from the current generation. The

parents are chosen using a deterministic tournament selection, as follows: Randomly select

two groups of four chromosomes each from the current generation, and use as a parent, from

each group, the chromosome with the best fitness value in the group. If it happens that from

both groups the same chromosome is chosen then we choose from one of the groups the

chromosome with the second best fitness value. If two parents with indices pp ′, are crossed

over two random numbers nn ′, are generated from the index sets

)}(...,,2,1{ pNa and)}(...,,2,1{ pNa ′ , respectively. Then, all the categories with index

greater than index n′ in the chromosome with index p′ and all the categories with index less

 40

than index n in the chromosome with index p are moved into an empty chromosome within

the temporary generation. Notice that crossover is done on level 1 of the chromosome. This

operation is pictorially illustrated in Figure 3-2.

)(1 paw)(2 paw)(3 paw)(4 paw)(5 paw

)'(1 paw)'(2 paw)'(3 paw)'(4 paw)'(5 paw

n

n'

p′

p

)(1 paw)(2 paw)'(4 paw)'(5 paw

Figure 3-2: Crossover implementation

Sub-step 4e (More Details): The operator addCat adds a new category to every chromosome

created in step 4d with probability)(addCatP . The new category has lower and upper

endpoints vu, that are randomly generated as follows: For every dimension of the input

feature space (aM dimensions total) we generate two random numbers uniformly distributed

in the interval [0, 1]; the smallest of the two random numbers is associated with the u

coordinate along this dimension., while the largest of these numbers is associated with the v

coordinate along this dimension. The label of this newly created category is chosen randomly

amongst the bN categories of the pattern classification task under consideration. A

chromosome does not add a category if the addition of this category causes the number of

categories for this chromosome that exceed the designated maximum number of

categories, maxCat .

Sub-step 4f (More Details): The operator delCat deletes one of the categories of every

chromosome created in step 4e with probability)(delCatP . A chromosome does not delete a

 41

category if the deletion of this category results in the number of categories for this

chromosome to fall below the designated minimum number of categories minCat .

Sub-Step 4g (More Details): In GFAM, every chromosome created by step 4f gets mutated

as follows: with probability)(mutP every category is mutated. If a category is chosen to be

mutated, either its u or v endpoints is selected randomly (50% probability) and then every

component of this selected vector gets mutated by adding to it a small number. This number

is drawn from a Gaussian distribution with mean 0 and standard deviation 0.01. If the

component of the chosen vector becomes smaller than 0 or greater than 1 (after mutation), it

is set back to 0 or 1, respectively. Notice that mutation is applied to level 2 of the

chromosome structure. The label of the chromosome is not mutated because our initial GA

population consists of trained FAMs, and consequently we have a lot of confidence in the

labels of the categories that these trained FAMs have discovered through the FAM training

process.

Sub-Step 4h (More Details): Obvious, no more details are needed.

Step 5 (More Details): Obvious, no more details are needed.

3.1 Justification of the Evolutionary Choices for GFAM

3.1.1 Justification of the Fitness Function Choice for GFAM

We have chosen to use a fitness function that is provided by equation 3-1:

ε+−

⋅−
=

)(
)(100

)())((
)(

min

2
max

pN
pPCC

Cat

pPCCpNCat
pFit

a

a

As a reminder, maxCat is the maximum number of categories that an evolved FAM can have,

and minCat is the minimum number of categories that an evolved FAM can have. The

parameter minCat is chosen to be equal to 1. It seems that a more natural choice would have

been to choose minCat equal to the number of different classes in the problem at hand;

 42

however this choice, although it makes GFAM converge faster to a solution, it occasionally

compromises the generalization. The parameter)(pPCC is the percentage of correct

classification of an evolved FAM on the validation set, and)(pNa is the actual number of

categories of the evolved FAM. Finally, ε is a small positive number.

The chosen fitness function has a number of good properties. First, it depends on both

measures of performance, size of the FAM network and accuracy on the validation set. It

depends on the accuracy in a way that higher accuracy leads us to larger fitness values, as

figures 3-3a and 3-3b to 3-3e demonstrate. It depends on size in a way that small size leads us

to larger fitness values, everything else kept fixed, as figures 3-3a and 3-3f to 3-3i

demonstrate. Note that if the size decreases the numerator of the fitness increases and the

denominator decreases, provided that everything else is kept fixed. Similarly, if the accuracy

increases the numerator increases and the denominator decreases, provided that everything

else is kept fixed. It is also worth noting that when the size is equal to the minimum size and

the accuracy is equal to the highest accuracy the denominator of the fitness function

practically approaches zero and the fitness function assumes a very high value as plots 3-3b

through 3-3e illustrate. Hence, the fitness function shows a strong preference towards the

creation of minimum size and highest accuracy networks, as it should. Finally, in addition to

the 2-d plots in figures 3-3f to 3-3i (plots of fitness versus accuracy for different size

networks), and the 2-d plots in figures 3-3f to 3-3i (plots of fitness versus size for different

accuracy networks), a 3-d plot that shows the fitness values as both size and accuracy are

changing is provided in Figure 3-3a.

 43

Figure3-3a: 3D plot of log(fit(p))

20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

18

20

22

PCC(p)

lo
g(

Fi
t(P

))

Na = 2
Na = 8
Na = 20
Na = 40
Na = 100

20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

18

20

22

PCC(p)

lo
g(

Fi
t(P

))

Na = 4
Na = 16
Na = 40
Na = 80
Na = 200

Figure 3-3b: CATmin = 2 Figure 3-3c: CATmin = 4

 44

20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

22

PCC(p)

lo
g(

Fi
t(P

))
Na = 6
Na = 24
Na = 60
Na = 120
Na = 299

20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

22

PCC(p)

lo
g(

Fi
t(P

))

Na = 10
Na = 40
Na = 100
Na = 200
Na = 299

Figure 3-3d: CATmin = 6 Figure 3-3e: CATmin = 10

10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

13

14

Na(p)

lo
g(

Fi
t(P

))

PCC = 95
PCC = 85
PCC = 75
PCC = 55
PCC = 35

10 20 30 40 50 60 70 80 90 100
9

10

11

12

13

14

15

Na(p)

lo
g(

Fi
t(P

))

PCC = 95
PCC = 85
PCC = 75
PCC = 55
PCC = 35

Figure 3-3f: CATmin = 2 Figure 3-3g: CATmin = 4

10 20 30 40 50 60 70 80 90 100
9

10

11

12

13

14

15

16

Na(p)

lo
g(

Fi
t(P

))

PCC = 95
PCC = 85
PCC = 75
PCC = 55
PCC = 35

10 20 30 40 50 60 70 80 90 100
10

11

12

13

14

15

16

Na(p)

lo
g(

Fi
t(P

))

PCC = 95
PCC = 85
PCC = 75
PCC = 55
PCC = 35

Figure 3-3h: CATmin = 8 Figure 3-3i: CATmin = 10

3.1.2 Justification of the Genetic Operators Choices for GFAM

In the previous section, we have introduced a number of typical genetic operators,

such as mutation and crossover. We have also introduced two genetic operators, addCat and

delCat , that are more pertinent to the type of problem on which we focusing (co-optimize the

 45

number of categories and generalization performance of the GFAM network that the

evolution of the trained FAM architectures produces). These operators were explained in the

previous section. In this section, we are focusing on the justification of why these special

genetic operators (addCat and delCat) are needed for the evolution of FAM architectures. We

also provide good default values for the)Pr(),Pr(),Pr(mutCatCat deladd probabilities.

Our approach can be summarized as follows. We have chosen three classification

problems to work with that are described below (we refer to these problems as Problems 1, 2,

and 3). For each one of these problems we generated a number of trained FAM architectures

and we evolved these architectures for a number of generations. In particular, we generated

20 trained FAMs and evolved them for 500 generations (Experiment 1), we also generated 40

trained FAMs and we evolved them for 250 generations (Experiment 2), and we finally

generated 100 trained FAMs and we evolved them for 100 generations (Experiment 3).

Hence in all of these experiments the product of trained FAMs and number of generations

that these trained FAMs were evolved was a constant (i.e., =⋅ maxGenPopsize constant =

10,000). Note that each one of the experiments 1, 2, and 3 was run 50 times with a different

random seed each time, and the average fitness value of the best FAM trained network over

these 50 runs was reported. For each one of these (problem, experiment) pair, we used three

different values for each of the probabilities)(mutP ,)(addCatP and)(delCatP . More

specifically, for the mutation probability, we used the following three

values:)1,/5min(,/1,0 aa NN , where aN represents the number of categories that the FAM

network possesses. The mutation probability of aN/5 seems to be large, especially when aN

is small, but the mutation effect on the categories is fairly small. This is due to the fact that

95% of the random numbers, indicating how much a category should be mutated, lie within

an interval whose endpoints are 0.01 away from zero. For)(addCatP , we used the following

 46

three values: 0, 0.1 and 0.3. For the)(delCatP , we used the following three values: 0, 0.1, and

0.3, It is obvious that if 0)(=delCatP then the delCat operator is not used in the evolution of

FAMs. Similarly, if 0)(=addCatP then the addCat operator is not used in the evolution of

FAMs. The values used for the mutation probability, category add probability and category

delete probability are depicted in Table 3-1. In Table 3-2, we are depicting (in a tabular form)

the number of simulation runs, the number of generations per simulation run, the number of

FAMs in the initial population of each of the simulation runs, and the number of

combinations of probabilities for mutation, delete category and add category that were tested

for each one of the simulation runs. Note that for each set of)(mutP ,)(addCatP and

)(delCatP values, we performed 50 simulation runs for (a) 20,500max == sizePopGen , (b)

40,250max == sizePopGen , and (c) 100,100max == sizePopGen . Hence, we evolved the

trained FAM networks a total of 1, 350 (=50 x 27) times for each one of the experiments

mentioned above, and 4,050 for each one of the problems mentioned below.

Table 3-1: The values of the probabilities for mutation, category add, and category delete used in the
experiments to determine good values for the GA parameters

Value)(mutP)(addCatP)(delCatP
Not Selected 0 0 0
Low Level 1/Na 0.1 0.1
High Level 5/Na 0.3 0.3
Note: these best values are based on previous experiments

Table 3-2: For each problem (database) we ran 3 experiments. For each experiment we used the depicted
combinations of number of generations, and population size (3 combinations). We evolved the trained
Fuzzy ARTMAPs 50 different times (50 random seeds), and for each time we used the combinations of

probability values, shown in Table 3-1. Hence, the FAMs were evolved 4050 times for each problem, or a
total of 12150 times for all the problems.

 maxGen sizePop # Random Seeds ()(delCatP ,)(mutP ,

)(addCatP) combinations
of Runs

Experiment1 500 20 50 27 27 * 50
Experiment2 250 40 50 27 27 * 50
Experiment3 100 100 50 27 27 * 50

 47

The three problems that we chose to experiment with are: Problem 1 (Four squares

in a square problem): In this problem we have four squares (smaller squares) symmetrically

located within a square (larger square), as Figure 3-4a demonstrates. The probability that a

data-point falls inside each one of the smaller squares or inside the larger square but outside

the smaller squares is equal to 0.2. Once a point is chosen to lie within a region, its location

within the region is chosen according to a uniform distribution. Problem 2 (Varying size

squares within a square problem): In this problem we have seven squares, all enclosed

within the square ([0, 1]x[0,1]), as Figure 3-4b demonstrates. Some of the smaller squares are

completely or partially overlapping with the bigger squares. The probability that a point falls

in any of the smaller squares is 1/7. The probability that a point falls in any of the bigger

squares but not in the region defined by the overlapping smaller squares is also 1/7. Once a

point is chosen to lie within a region, its location within the region is chosen according to a

uniform distribution. Problem 3 (Two circles in a square problem): In this problem we have

two circles (of different size) within a square ([0, 1]x[0, 1]), as Figure 3-4c demonstrates. The

probability that a data-point falls inside the small circle, inside the large circle, or inside the

square but outside the circles is equal to 0.2, 0.3, and 0.5, respectively. Once a point is chosen

to lie within a region, its location within the region is chosen according to a uniform

distribution.

a b c
Figure 3-4: a: Problem 1 (Four squares in a square problem), b: (Asymmetric squares within a square

problem), c: Problem 3 (Two circles in a square problem)

 48

These problems without necessarily being representative of the type of classification

problems that we encounter in real-world applications have the advantage that they deal with

2-D data (for which visualization of the results is easy); they are multi-class classification

problems where the number of classes ranges from 3 (Problem 3) to 5 (Problem 1) to 7

(Problem 2); they correspond to problems that have symmetry (Problem 1), or not (Problems

2, 3); they are problems for which the class boundaries have different structures (Problems 1

and 2 has classes with rectangular boundaries, while Problem 3 has classes with circular

boundaries); they are problems where one class’s boundary is completely or partially

included within another class’s boundary (thus making the problems non-trivial); and finally

they correspond to problems whose optimal decision boundaries and classification accuracy

is known.

In Figure 3-5, we show the average fitness value (average over the 50 runs) of the best

FAM network produced by GFAM for Problem 1. The vertical axis in Figure 3-5 is showing

the average fitness value, while the horizontal axis has discrete ticks that correspond to all

possible combinations of the)(addCatP and)(delCatP probabilities that we chose to

experiment with (e.g., one of the ticks is 0.0, 0.1 indicating)(delCatP and

)(addCatP probabilities equal to 0.0 and 0.1, respectively). Furthermore, there are three

curves depicted in Figure 3-5 (with different colors (markers)) that correspond to the three

different values of the mutation probability ()(mutP . In a similar fashion, in Figure 3-6, we

depict the average fitness value (averaged over 50 runs) of the best FAM network produced

by GFAM for Problem 2. The philosophy of presenting the results in Figure 3-6 is the same

as the philosophy adopted for Figure 3-5. Finally, in Figure 3-7 we are showing the average

fitness value (average over the 50 runs) of the best FAM network produced by GFAM for

Problem 3. The philosophy of presenting the results in Figure 3-7 is the same as the

philosophy adopted for Figure 3-5 and 3-6.

 49

Two obvious observations that can be extracted from the three figures (Figures 3-5, 3-

6 and 3-7) are: (a) a zero value of)(mutP is a non-optimal choice, (b) zero values for both

)(addCatP and)(delCatP , is also a non-optimal choice. If we exclude the value of zero

mutation probability and compute the average of the fitness values for the remaining two

competing mutation probabilities (mutation probabilities of aN/1 and aN/5) we end up with

the curves depicted in Figure 3-8. From Figure 3-8, it is obvious that)(mutP of aN/5 gave

better results for the following combinations of)(addCatP and)(delCatP : (0, 0) (0, 0.1) (0,

0.3) (0.1, 0) (0.1, 0.1). On the other hand it is also obvious that))((mutP of aN/1 gave better

results for the following combinations of)(addCatP and)(delCatP : (0.1, 0.3) (0.3, 0) (0.3,

0.1) (0.3, 0.3). However, both of these values of mutation probabilities produced good results

when)(addCatP and)(delCatP were equal to 0.1 and 0.1, respectively. Hence, for our future

experiments with GFAM we chose to experiment only with values of)(mutP ,)(addCatP and

)(delCatP equal to aN/5 , 0.1 and 0.1, respectively.

Figure 3-5: Average Fitness value of the Best FAM produced by GFAM for Problem 1. The average is
computed over the 50 runs. The average fitness values are shown with respect to all pairs of category add
and category delete probabilities. The different colored curves correspond to the three different values of

the mutation probability.

 50

Figure 3-6: Average Fitness value of the Best FAM produced by GFAM for Problem 2. The average is
computed over the 50 runs. The average fitness values are shown with respect to all pairs of category add
and category delete probabilities. The different colored curves correspond to the three different values of

the mutation probability.

Figure 3-7: Average Fitness value of the Best FAM produced by GFAM for Problem 2. The average is
computed over the 50 runs. The average fitness values are shown for all pairs of category add and

category delete probabilities. The different colored curves correspond to the three different values of the
mutation probability

 51

Figure 3-8: Average Fitness value of the Best FAM produced by GFAM for Problems 1, 2 and 3. The
average is computed over the 50 runs. The average fitness values are shown for all pairs of category add
and category delete probabilities. The different colored curves correspond to the two different non-zero

values of the mutation probability

3.2 Experiments with GFAM
We have performed a number of experiments with GFAM. The purpose of these

experiments was two-fold: First to examine the performance of GFAM on a variety of

classification problems (some of them simulated, some of them real) with respect to the

resulting network accuracy (generalization performance) and with respect to resulting

network size. Secondly, to compare the performance of GFAM with other ART network

classifiers that have been proposed in the literature with the intent of addressing the category

proliferation problem in FAM. We undertake the first task (performance of GFAM) in this

section and the second task (comparisons of GFAM and other ART classifiers) in the

following section.

3.2.1 Databases

We experimented with both artificial and real databases. The specifics of these

databases are given in Table 3-3.

 52

1. Gaussian Databases: These are artificial databases, where we created 2-dimensional data

sets, Gaussianly distributed, belonging to 2-class, 4-class, and 6-class problems. In each

one of these databases we varied the amount of overlap of data belonging to different

classes. In particular, we considered 5%, 15%, 25%, and 40% overlap. Note that 5%

overlap means the optimal Bayesian Classifier would have 5% misclassification rate on

the Gaussianly distributed data. There are a total of 3×4=12 Gaussian databases. We

name the databases as “G#c-##” where the first number is the number of classes and the

second number is the class overlap. For example, G2c-05 means the Gaussian database is

a 2-class and 5% overlap database.

2. Structures within a Structure databases: These are artificial databases that were inspired

by the circle (structure) – in the – square (structure) problem. This problem has been

extensively examined in the ART, and other than ART neural network literature. Eight

different datasets were generated by changing the structures (type, number and

probability) that we were dealing with. The data-points within each structure of these

artificial datasets are either uniformly distributed within the structure. The number of

points within each structure is chosen in a way that the probability of finding a point

within this structure is equal to a pre-specified number.

 4Ci/Sq: This is a 4 circle in a square problem, obviously a five class classification

problem. The probability of finding a data point within a circle or inside the square

and outside the circles is equal to 1/5.

 4Sq/Sq: This is a 4 square (inside squares) in a square (outside square) problem,

obviously a five class classification problem. The probability of finding a data point

within an inside square or outside the inside squares and inside the outside square is

equal to 1/5.

 53

 7Sq: This is a seven class problem, with four squares and 3 rectangle-like shapes. The

probability of finding a data point within any of the seven squares is equal to 1/7.

 1Ci/Sq: This is a 1 circle in a square problem, obviously a two class classification

problem. The probability of finding a data point within a circle or inside the square

and outside the circle is equal to 1/2. The sizes of the areas in the circle and outside

the circle and inside the square are the same. This is the benchmark circle in the

square problem.

 1Ci/Sq/0.3:0.7: This is a 1 circle in a square problem, obviously a two class

classification problem. The probability of finding a data point within a circle or inside

the square and outside the circle is equal to 0.3 and 0.7, respectively. The sizes of the

areas in the circle and outside the circle and inside the square are 0.3 and 0.7

respectively.

 5Ci/Sq: This is 5 concentric circles in a square problem, obviously a six class

classification problem. The probability of finding a data point within each one of the

co-centric circles, or inside the square and outside the circles is equal to 1/6.

 2Ci/Sq/5:25:70: This is two circles in a square problem, obviously a three class

classification problem. One of the circles is smaller than the other. The probability of

finding a data point within the small circle, the large circle, and outside the circles and

inside the square is 0.05, 0.25, and 0.7, respectively.

 2Ci/Sq/20:30:50: This is two circles in a square problem, obviously a three class

classification problem. One of the circles is smaller than the other. The probability of

finding a data point within the small circle, the large circle, and outside the circles and

inside the square is 0.2, 0.3, and 0.5, respectively.

In Figure 3-9 and 3-10 we show plots of the simulated databases.

 54

3. Modified Iris Database (MOD-IRIS): In this database we started from the IRIS dataset

(Hettich et al. [16]) of the 150 3-class problem. We eliminated the data corresponding to

the class that is linearly separable from the others. Thus, we ended up with 100 data-

points. From the four input attributes of this IRIS dataset we focused on only two

attributes (attribute 3 and 4) because they seem to have enough discriminatory power to

separate the 2-class data. Finally, in order to create a reasonable size dataset from these

100 points (so we can reliably perform cross-validation to identify the optimal ART,

GFAM networks) we created noisy data around each one of these 100 data-points (the

noise was Gaussian of zero mean and small variance) to end up with approximately

10,000 points. We named this database Modified Iris.

4. Modified Abalone Database (ABALONE): This database is originally used for prediction

of the age of an abalone (Hettich et al. [16]). It contains 4177 instances, each with 7

numerical attributes, 1 categorical attribute, and 1 numerical target output (age). We

discarded the categorical attribute in our experiments, and grouped the target output

values into 3 classes: 8 and lower (class 1), 9-10 (class 2), 11 and greater (class 3). This

grouping of output values has been reported in the literature before.

5. Page Blocks Database (PAGE): This database represents the problem of classifying the

blocks of the page layout in a document (Hettich et al. [16]). It contains 5473 examples

coming from 54 distinct documents. Each example has 10 numerical attributes (e.g.,

height of the block, length of the block, eccentricity of the block, etc.,) and one target

(output) attribute, representing the type of the block (text, horizontal line, graphic, vertical

line, and picture). One of the noteworthy points about this database is that its major class

(text) has a high probability of occurring (above 80%). This dataset has five classes, four

of them make only 9% of the total instances.

 55

The data in each one of the above databases was split into a training set, a validation

set, and a test set. The percentage of classes in each one of these subsets resembled the

percentage of classes in the original dataset. The summarized specifics of each one of these

databases are depicted in Table 3-3. The training set was used to train the FAM networks that

were used to initialize the population in GFAM, the validation test was used to assess the

performance of the FAM networks during their evolution, and the test set was used to report

the performance of the best FAM network (called GFAM) at the completion of the

evolutionary process.

Table 3-3: Databases used in the Genetic ARTMAP experiments

Database Name # Training

Instances
Validation

Instances
Test

Instances
Numerical
Attributes

Classes
(bN)

% Major
Class (0A)

1 G2c-05 500 5000 5000 2 2 1/2
2 G2c-15 500 5000 5000 2 2 1/2
3 G2c-25 500 5000 5000 2 2 1/2
4 G2c-40 500 5000 5000 2 2 1/2
5 G4c-05 500 5000 5000 2 4 1/4
6 G4c-15 500 5000 5000 2 4 1/4
7 G4c-25 500 5000 5000 2 4 1/4
8 G4c-40 500 5000 5000 2 4 1/4
9 G6c-05 504 5004 5004 2 6 1/6

10 G6c-15 504 5004 5004 2 6 1/6
11 G6c-25 504 5004 5004 2 6 1/6
12 G6c-40 504 5004 5004 2 6 1/6
13 4Ci/Sq 2000 5000 3000 2 5 0.2
14 4Sq/Sq 2000 5000 3000 2 5 0.2
15 7Sq 2000 5000 3000 2 7 1/7
16 1Ci/Sq 2000 5000 3000 2 2 0.5
17 1Ci/Sq/0.3:0.7 2000 5000 3000 2 2 0.7
18 5Ci/Sq 2000 5000 3000 2 6 1/6
19 2Ci/Sq/5:25:70 2000 5000 3000 2 3 0.7
20 2Ci/Sq/20:30:50 2000 5000 3000 2 3 0.5
20 7SqWN 504 5004 5004 2 6 1/7
21 5Ci/SqWN 504 5004 5004 2 6 1//6
22 MOD-IRIS 500 4800 4800 2 2 1/2
23 ABALONE 501 1838 1838 7 3 1/3
24 PAGE 500 2486 2487 10 5 0.832

 56

G2c_5 G2c_15 G2c_25 G2c_40

G4c_5 G4c_15 G4c_25 G4c_40

G6c_5 G6c_15 G6c_25 G6c_40
Figure 3-9: Gaussian Databases (2-dimensional, 2, 4 or 6 class, 5, 15, 25 and 40 % of overlap)

4Ci/Sq 4Sq/Sq 7Sq 1Ci/Sq

1Ci/Sq/0.3:0.7 5Ci/Sq 2Ci/Sq/20:30:50

Figure 3-10: Structures within Structure Databases

 57

3.2.2 Experimental Procedure – Experimental Results

In section 3.1.1.2, we have experimented extensively with GFAM to identify a good

initialization of the GA process and to specify a good set of parameters for the evolution of

trained FAMs. From this point on, the GFAM is produced by first initializing a population of

20 trained FAM networks (they were trained with different values of the baseline vigilance

parameter and different orders of training pattern presentations), and by evolving them for

500 generations. In particular, the GA parameters used for the creation of GFAM were:

min
aρ = 0.1, max

aρ = 0.95, aβ =0.1, sizePop = 20, maxGen = 500, bestNC = 3, minCat = 1, maxCat =

300,)(addCatP =0.1,)(delCatP =0.1,)(mutP = 5/Na. GFAM is the FAM network that attains

the highest value of the fitness function at generation 500 of the evolutionary process.

3.3 GFAM Performance
In this section we are reporting the performance of GFAM on each one of the

database problems, described in Section 3.2.1. The performance of GFAM is assessed by

reporting the size of GFAM and the accuracy attained by GFAM on the test set. The results

are reported in Table 3-4. In Table 3-4, the first column is the index of the database that we

are experimenting with. The second column is the actual database name, as reported in

section 3.2.1. Columns 3 and 4 contain the accuracy and size of the GFAM network for the

designated database. The performance of GFAM, as it is evidenced by the results in Table 3-

4, is verified by some obvious observations. For instance, GFAM’s performance on databases

1-12 (Gaussian datasets of known amount of overlap) is nearly optimal; for example the best

performance on the G6c-15 problem (6 class Gaussian dataset of 15% overlap) is a classifier

with 6 categories and 85% correct classification, and GFAM is a classifier with 6 categories

and 84.71% of correct classification. Similarly, in the 7Square problem the optimal classifier

would require 7 categories and attain a 100% correct classification; GFAM is a 7 category

classifier exhibiting a 97.2% of correct classification. Finally, two of the real problems

 58

reported here, MOD-IRIS and PAGE, also gave very good results almost 95% percentage of

correct classification, by creating only two categories. Notice how GFAM ignored one class

in the abalone dataset (abalone is a 3 class problem), since the number of samples from this

class is very small compared to the number of samples pertaining to the other two classes.

Hence, GFAM’s fitness function was higher for a network with 2 categories and 58.73%

generalization accuracy than for a network with 3 categories and a slightly higher

generalization accuracy.

3.3.1 Performance Comparisons of GFAM and other ART Networks

We compared GFAM’s performance with the performance of the following networks:

ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP. We chose these networks for a reason.

Each one of these ART networks at the time of their introduction into the literature

emphasized that they were addressing the category proliferation problem in ART. More

details about the specifics of each one of these networks can be found in their associated

references (provide references here). For the purposes of this thesis it suffices to know that

ssEAM covers the space of the input patterns with ellipsoids, while ssGAM covers the space

of the input patterns with bell-shaped curves. Furthermore ssFAM, ssEAM, and ssGAM

allow a category (hyper-rectangle or ellipsoid or hyper-dimensional bell shaped curve) to

encode patterns of different labels provided that the plurality label of a category exceeds a

certain, user-specified, threshold. Finally, micro-ARTMAP allows the encoding of patterns of

different labels by a single category, provided that the entropy of the category does not

exceed a certain, user-defined threshold.

The comparisons of GFAM and the aforementioned ART networks are depicted in

Table 3-4 where the first column is the index of the database that we are experimenting with.

The second column is the actual database name, as reported in earlier sections. Columns 3-10

of Table 3-4 contain the performance of the designated ART networks. The performance

 59

reported includes the accuracy of the “best” ART network on the test set. The performance

also includes the number of categories created of the designated ART network. The reported

numbers of accuracy and size of the “best” network correspond to the ART network that

attained the highest value of the fitness function (this value was computed based on the

accuracy of the ART network on the cross-validation set, and on the size of the ART

network). Note, that for networks, other than GFAM, the “best” ART network was

determined after extensive experimentation with the ART network’s parameter values (e.g.,

in ssFAM the best network was determined after training ssFAM networks with different

values of the choice parameter, vigilance parameter, order of pattern presentation, and

amount of mixture of labels allowed within a category; a total of 20,000 ssFAM networks

were trained and their performance was examined). On the other hand, the performance of the

GFAM is the one calculated after the evolution of 20 FAM trained networks for 500

generations with GA values as indicated in Section 5.3.

According to the results in Table 3-4, in all instances (except minor exceptions) the

accuracy of GFAM (generalization performance) is higher than the accuracy of the other

ART network (where ART is ssFAM, ssEAM, ssGAM or safe micro-ARTMAP). According

to the results in Table 3-4, in all instances (with no exceptions) the size of GFAM is smaller

than the size of the other ART network (where ART is ssFAM, ssEAM, ssGAM or safe

micro-ARTMAP), sometimes even by a factor of 15. For example, the generalization

performance of GFAM can be as 13% better than the generalization performance of ssFAM,

while its size can be by a factor of 4 times smaller than the size of ssFAM. Also, the

generalization performance of GFAM can be as 13% better than the generalization

performance of ssEAM, while its size can be by a factor of 4.5 times smaller than the size of

ssEAM. Furthermore, the generalization performance of GFAM can be as 6% better than the

generalization performance of ssGAM, while its size can be by a factor of 15 times smaller

 60

than the size of ssGAM. Finally, the generalization performance of GFAM can be as 10%

better than the generalization performance of safe micro-ARTMAP, while its size can be by a

factor of 3 times smaller than the size of safe micro-ARTMAP.

The comparison results between GFAM and the other ART networks are also

pictorially depicted in figures 3-11a to 3-11d. In each one of these figures we are showing the

accuracy of GFAM, and that of one other network (e.g., ssFAM). In the same figure we are

also showing the size of the GFAM and that of one other ART network. This way the one-to-

one comparison of the GFAM and the other ART network can be quickly assessed.

What is most worth pointing out is that the better performance of GFAM is attained

with reduced computations compared with the computations needed by the alternate methods

(ssFAM, ssEAM, ssGAM, safe micro-ARTMAP). Specifically, the performance attained by

ssFAM, ssEAM, ssGAM and the safe micro-ARTMAP required training these networks for a

large number of network parameter settings (at least 20,000 experiments) and then choosing

the network that achieved the higher value for the fitness function that we introduced earlier

in Section 4a. Of course, one can argue that such an extensive experimentation with these

networks might not be needed, especially if one is familiar with the functionality of these

networks and chooses to experiment only with a limited set of network parameter values.

However, the practitioner in the field might lack the expertise to carefully choose the network

parameters to experiment with, and consequently might need to experiment extensively to

come up with a good network. In Appendix B, we show, in more detail, how more

computationally efficient GFAM is compared to ssFAM, ssEAM, ssGAM and safe micro-

ARTMAP. The comparison is based under the assumption that extensive parameter

experimentation with the network parameters of ssFAM, ssEAM, ssGAM or safe micro-

ARTMAP is needed to obtain a good performing ssFAM, ssEAM, ssGAM or safe micro-

ARTMAP network, respectively.

 61

Figure 3-11a: Performance and Size comparison of GFAM vs ssFAM

Figure 3-11b: Performance and Size comparison of GFAM vs ssEAM

 62

Figure 3-11b: Performance and Size comparison of GFAM vs ssGAM

Figure 3-11d: Performance and Size comparison of GFAM vs microARTMAP

 63

Table 3-4: Accuracy and size results achieved by GFAM and other ART networks. Note that:Safe uAM:
Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP;

ss*: semi-supervised version

 Database Name

GFAM

Safe µAM ssFAM ssEAM ssGAM

1 G2c-05 95.36 2 95.22 2 94.90 2 94.94 2 94.48 4

2 G2c-15 85.30 2 85.00 2 84.80 3 85.20 2 85.04 2

3 G2c-25 75.08 2 74.98 2 74.60 2 74.50 2 75.10 2

4 G2c-40 61.38 2 61.40 3 61.34 3 60.98 2 61.30 3

5 G4c-05 95.02 4 95.04 4 94.10 7 94.14 4 94.80 4

6 G4c-15 84.46 4 83.28 4 81.40 11 83.20 4 84.24 9

7 G4c-25 75.20 4 74.50 4 70.80 9 72.72 4 72.32 21

8 G4c-40 60.60 4 59.76 5 58.48 14 55.62 13 59.10 14

9 G6c-05 94.68 6 93.57 9 91.42 11 93.80 7 94.40 8

10 G6c-15 84.71 6 80.92 6 81.11 7 81.80 6 84.35 13

11 G6c-25 73.90 6 70.74 13 69.62 15 71.10 7 72.86 20

12 G6c-40 59.19 6 58.03 11 56.35 17 54.21 17 55.65 13

13 4Ci/Sq 96.32 8 95.42 8 87.23 18 94.68 5 93.4 12

14 4Sq/Sq 97.12 9 99.12 9 97.24 13 88.89 5 91.78 16

15 7Sq 97.2 7 97.22 16 97.26 16 88.5 19 95.83 93

16 1Ci/Sq 97.2 8 94.76 8 92.97 8 97.02 8 91.02 8

17 1Ci/Sq/0.3:0.7 97.8 8 96.82 8 93.21 8 97.13 8 92.33 8

18 5Ci/Sq 92 50 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/20:30:50 97.87 3 97.22 6 90.24 12 97.01 3 95.6 9

20 7SqWN 87.3 7 86.67 20 80.15 24 75.23 32 83.11 123

21 5Ci/SqWN 81.97 50 71.72 52 68.39 57 69.2 136 81.3 145

22 MOD-IRIS 95.31 2 94.92 2 93.41 8 94.54 2 94.54 2

23 ABALONE 58.73 2 57.18 4 59.52 6 56.80 7 55.10 3

24 PAGE 95.59 3 88.82 6 90.63 3 89.54 3 89.34 5

3.3.2 Performance Comparisons of GFAM and Other Neural Networks

The comparison of GFAM, and ssFAM, ssEAM, ssGAM, provided in the previous

section is fair because it used the same databases and datasets/per database for training,

 64

validation and testing of these architectures, and the same criterion for finding the best of

these ART architectures (the criterion was to maximize the fitness function, defined in

Section 3.1.1). However, some of the structures/in/a structure artificial databases, extensively

examined above, have also been utilized to assess the performance of other ART

architectures, such as the distributed Fuzzy ARTMAP (dFAM), FasART, and distributed

FasART (see Parado-Hernandez, et al., 2003). Distributed Fuzzy ARTMAP differs by Fuzzy

ARTMAP in the sense that more than one category is activated to represent an input pattern

in ART’s training phase. FasART uses a different activation function compared to the one

used by Fuzzy ARTMAP. Finally, distributed FasART is the distributed version of FasART,

in a similar manner as distributed Fuzzy ARTMAP is the distributed version of Fuzzy

ARTMAP. More details about the functionality of these ART networks can be found in

Parado-Hernandez, et al., 2003 and they are beyond the scope of this paper. We avoided the

extensive comparison of GFAM with dFAM, FasART, and dFasART for a reason. Although

some of the databases used to assess the performance of dFAM, FasART, and dFasART, in

Parado-Hernandez, et al., 2003, are the same as the databases used to assess the performance

of GFAM, the actual data used for training, and testing of GFAM are not the same used for

the training and testing of dFAM, FasART, and dFasART. Furthermore, parameter network

optimization with a validation set, such as to optimize a fitness function, was not conducted

for FasART, dFAM, and dFasART. Actually, the results reported in Parado-Hernandez, et al.,

are averages of the performances of the dFAM, FasART, and dFASART on a test set of

5,000 points for a specific set of network parameter values (we tend to think that it was a

good set of network parameter values). The averages correspond to the average performance

attained by 100 different choices of training sets of size equal 2,000 points. The comparison

between GFAM performance and dFAM, FasART, and dFasART performances can be

deduced from the summarized numbers of Table 3-5. Based on this table, we can state that

 65

the GFAM performance is better than the averages of the performances attained by dFAM,

FasART and dFasART, at least for the databases contained in Table 3-5.

Table 3-5: Accuracy and size results achieved by GFAM and other ART networks. Note: dFAM:
Distributed Fuzzy ARTMAP, FasART, dFasART : Distributed FasART, GFAM : Genetic Fuzzy

ARTMAP

Database
Index

Database
Name dFAM FasART dFasART

GFAM

13 4Ci/Sq 87.19 33.38 92.76 22.30 87.95 22.38 96.32 8
14 4Sq/Sq 95.68 30.72 91.82 139.26 91.29 69.32 97.12 9
16 1Ci/Sq 88.90 12.34 96.30 63.42 92.78 30.50 97.2 8
17 1Ci/Sq/0.3:0.7 75.79 6.96 97.00 56.12 96.28 12.24 97.8 8
18 5Ci/Sq 80.85 125.14 95.95 278.7 73.39 179.74 92 50
19 2Ci/Sq/20:30:50 95.23 12.96 96.27 57.68 94.91 24.32 97.87 3

3.4 GFAM Summary and Conclusions
Adaptive Resonance Theory (ART) neural networks have been introduced into the

literature by Carpenter, Grossberg and their colleagues at Boston University, as well as other

researchers in the field. The consensus with ART networks is that they converge fast to a

solution for arbitrary classification problems they can provide explanations for the answers

that they produce, they can function in an on-line training mode, and they solve effectively a

variety of classification problems. However, all these benefits sometimes come at the expense

of unnecessarily creating too many categories to solve the problem at hand, referred to as the

category proliferation problem in ART. This problem is more acute when ART is confronted

with classification problems that deal with noisy or highly overlapping data. To alleviate this

problem a number of researchers have proposed solutions, such as ssFAM, ssEAM, ssGAM

(see Anagnostopoulos, et al., 2003, Verzi, et al., 2001), and safe micro-ARTMAP (see

Gomez, et al., 2002), to mention only a few.

In this thesis, we have introduced, yet another, method of solving the category

proliferation problem in ART. This method relies on evolving a population of trained ART

 66

networks, and more specifically Fuzzy ARTMAP (FAM) neural networks. The evolution of

trained FAMs creates an ART network, referred to as GFAM.

We have experimented with a number of databases that helped us identify good

default parameter settings for the evolution of FAM. We defined a fitness function that gave

emphasis to the creation of a small size FAM networks which exhibited good generalization.

In the evolution of FAM trained networks we also defined and justified the usage of unique

operators, such as the delete category and add category operators. The GFAM network

identified at the end of the evolutionary process (last generation) was the FAM network that

attained the highest fitness value. Our method for creating GFAM resulted in a FAM network

that performed well on a number of classification problems.

In particular, GFAM was found superior to a number of other ART techniques

(ssFAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced into the literature

to address the category proliferation problem in FAM. More specifically, GFAM gave a

better generalization performance (in almost all problems tested) and a smaller size network

(in all problems tested), compared to these other ART techniques. What is also worth

mentioning is that GFAM outperformed these other ART techniques by requiring only a

fraction of the computations needed by these other networks.

Obviously, the introduced method to evolve trained FAMs can be extended to other

ART architectures, such as EAM, and GAM, amongst others, without any significant changes

in the approach followed, and that is the issue that we tackle in Sections 4 and 5 of this thesis.

 67

4. GEAM AND GGAM

4.1 Genetic Ellipsoidal ARTMAP (GEAM)
GFAM (Genetic Ellipsoidal) is an evolved EAM network that is produced by

applying, repeatedly, genetic operators on an initial population of trained EAM networks.

GEAM uses tournament selection with elitism, as well as genetic operators, including

crossover and mutation. In addition, GEAM uses two special operators, addCat and delCat .

To better understand how GEAM is designed we resort to a step-by-step description

of this design. Please refer to the terminology introduced in Appendix A before you dwell in

the ste-by-step description of EAM. The design of GEAM can be articulated through a

sequence of steps, defined succinctly below, and explained in detail later.

Step 1: Initialize sizePop number of EAM networks, each one of them operating with a

different value for the baseline vigilance parameter aρ , and possibly different orders of

pattern presentation.

Step 2: Train each one of the sizePop initialized EAM networks, using the training set for a

maximum number of iterations (maxGen).

Step 3: Convert the sizePop trained EAM networks into chromosomes. Crop all

chromosomes so that no one-point categories exist.

Step 4: Evolve the chromosomes of the current generation by executing the following sub-

steps:

Sub-Step 4a: Calculate fitness for all chromosomes of the current generation.

Sub-Step 4b: Initialize an empty generation (referred to as temporary generation).

Sub-Step 4c: Move the best (bestNC) chromosomes from the current generation to the

temporary generation.

 68

Sub-Step 4d: Select chromosomes for crossover from the current generation and thus further

populate the temporary generation.

Sub-Step 4e: With a probability)(addCatP apply the addCat operator on every individual

generated in sub-step 4d.

Sub-Step 4f: With a probability)(delCatP apply the delCat operator on every individual

generated in sub-step 4e.

Sub-Step 4g: With a probability)(MutP apply the mutation operator on every individual

generated in sub-step 4f.

Sub-Step 4h: Replace the current generation with the members of the temporary generation

Step 5: If evolution has reached the maximum number maxGen of iterations, then calculate the

performance of the best-Fitness EAM network on the test set and report classification

accuracy and number of categories that this Best-Fitness EAM network possesses. If the

maximum number of iterations has not been reached yet, go to step 4 to evolve one more

population of chromosomes

Each one of the aforementioned steps of the algorithm is now described in more

detail, as needed.

Step 1 (More Details): The algorithm starts by training sizePop EAM networks, each one of

them trained with a different value of the baseline vigilance parameter aρ . In particular, we

first define
1

minmax

−
−

=
size

aainc
a Pop

ρρ
ρ , and then the baseline vigilance parameter of every network is

determined by the equation inc
aa i ρρ *min + , where }1...,,1,0{ −∈ sizePopi . In our experiments

with GFAM we chose 1.0min =aρ , and 95.0max =aρ . Meanwhile, GEAM allows the user to

change the order of pattern presentation automatically and randomly.

 69

Step 2 (More Details): We assume that the reader is familiar of how training of EAM

networks is accomplished, and thus the details here are omitted.

Step 3 (More Details): Once the sizePop networks are trained they need to be converted to

chromosomes, so that they can be manipulated by the genetic operators. GEAM uses a mix of

real numbers representation to encode the networks. Each EAM chromosome consists of two

levels, level 1 containing all the categories of the EAM network, and level 2 containing the

center, the direction, the radius and the axis ratio, as well as the label of that category (see

Figure 4-1). We denote the category of a trained EAM network with index p)1(sizePopp ≤≤

by)(pa
jw , where),,()(a

j
a
j

a
j

a
j rp dmw = , the axis ratio by)(pa

jµ , and the label of this

category by)(pl j for)(1 pNj a≤≤ . In this step we are also eliminating single-point

categories in the trained EAM networks, referred to as cropping the chromosomes. Since our

ultimate objective is to design an EAM network that reduces the network size and improves

generalization we are discouraging at this stage the creation of single-point categories.

)(1 paw)(2 paw)(pa
jw)(pa

Na
w

)(pa
jm)(pa

jd)(pra
j)(pa

jµ)(pl j

Figure 4-1: GEAM chromosome structure

Step 4 (More Details): In this step the GFAM applies a GA to the population of trained

EAMs.

Sub-step 4a (More Details): Calculate the fitness of each chromosome (trained EAM). This

is accomplished by feeding into each trained EAM the validation set and by calculating the

percentage of correct classification exhibited by each one of these trained EAM networks. In

 70

particular, if)(pPCC designates the percentage of correct classification, exhibited by the p-th

EAM, and this EAM network possesses)(pNa nodes in its category representation layer,

then its fitness function value is defined by:

ε+−

⋅−
=

)(
)(100

)())(()(

min

2
max

pN
pPCC

Cat

pPCCpNCatpFit

a

a 4-1

where, minCat and maxCat are the minimum and maximum number of categories that a FAM

network is allowed to have during the evolutionary process (minCat is chosen equal to 1, or

equal to the number of classes in the classification problem under consideration, while

maxCat is chosen to be a relatively large number for the classification problem at hand). The

constant ε in the denominator of the above equation is a small positive constant and it is

needed to make sure that the denominator would not be zero in the case when

min)(CatpNa = and .100)(=pPCC

Sub-step 4b (More Details): Obvious, no further explanations are needed.

Sub-step 4c (More Details): The algorithm searches for the best bestNC chromosomes from

the current generation and copies them to the temporary generation.

Sub-step 4d (More Details): The remaining bestsize NCPop − chromosomes in the temporary

generation are created by crossing over pairs of parents from the current generation. The

parents are chosen using a deterministic tournament selection, as follows: Randomly select

two groups of four chromosomes each from the current generation, and use as a parent, from

each group, the chromosome with the best fitness value in the group. If it happens that from

both groups the same chromosome is chosen then we choose from one of the groups the

chromosome with the second best fitness value. If two parents with indices pp ′, are crossed

over two random numbers nn ′, are generated from the index sets

)}(...,,2,1{ pNa and)}(...,,2,1{ pNa ′ , respectively. Then, all the categories with index

 71

greater than index n′ in the chromosome with index p′ and all the categories with index less

than index n in the chromosome with index p are moved into an empty chromosome within

the temporary generation. Notice that crossover is done on level 1 of the chromosome. This

operation is pictorially illustrated in Figure 3-2.

Sub-step 4e (More Details): The operator addCat adds a new category to every chromosome

created in step 4d with probability)(addCatP . The new category has a center m , a direction

vector d , a radius r , an axis ratio µ , and label l that are partially randomly generated as

follows: For every dimension of the input feature space (aM dimensions total) we generate a

random number uniformly distributed in the interval [0, 1]; we assign m these values, the

direction vector d is assigned zeros (i.e. it will act as if it is a circle, although µ could be

mutated to a value other than 1 in the next generations), the axis ratio µ is assigned 1, the

radius r is given a random numbers in the interval [0, 1], and the label of this newly created

category is chosen randomly amongst the bN categories of the pattern classification task

under consideration. A chromosome does not add a category if the addition of this category

results in number of categories for this chromosome that exceeds the designated maximum

number of categories maxCat .

Sub-step 4f (More Details): The operator delCat deletes one of the categories of every

chromosome created in step 4e with probability)(delCatP . A chromosome does not delete a

category if the deletion of this category results in the number of categories for this

chromosome to fall below the designated minimum number of categories minCat .

Sub-Step 4g (More Details): In GEAM, every chromosome created by step 4f gets mutated

as follows: with probability)(mutP every category is mutated. If a category is chosen, then

every component of m gets mutated by adding to it a small number. This number is drawn

from a Gaussian distribution with mean 0 and standard deviation 0.01. If the component of

 72

the chosen vector becomes smaller than 0 or greater than 1 (after mutation), it is set back to 0

or 1, respectively. Furthermore, the category’s axis ratio µ or radius r is selected (50%

probability); we then add a small number drawn from a Gaussian distribution to the selected

item with the same rules as above, here though, if µ gets greater than 1 we set it to one,

otherwise, if it becomes zero or less we set its value to 0.0001, also, if the radius r becomes

zero or less wet it back to 0.0001. Notice that mutation is applied on level 2 of the

chromosome structure, but the label of the chromosome is not mutated (the reason being that

our initial GA population consists of trained EAMs, and consequently we have a lot of

confidence in the labels of the categories that these trained EAMs have discovered through

the EAM training process).

Step 5 (More Details): Obvious, no more details are needed.

4.1.1 GEAM Experiments and Results

We used the same default set of parameters used for GFAM to run all the experiments

of GEAM and the results were very good. Hence, in GEAM’s case we avoided the

experimentation (applied to GFAM) to choose good default values for the GA parameters.

Hence, GEAM is produced by first initializing a population of 20 trained EAM networks

(they were trained with different values of the baseline vigilance parameter and different

orders of training pattern presentations), and by evolving them for 500 generations. In

particular, the GA parameters used for the creation of GEAM were: min
aρ = 0.1, max

aρ = 0.95,

aβ =0.1, sizePop = 20, maxGen = 500, bestNC = 3, minCat = 1, maxCat = 300,)(addCatP

=0.1,)(delCatP =0.1,)(mutP = 5/Na. GEAM is the EAM network that attains the highest

value of the fitness function at generation 500 of the evolutionary process.

4.1.1.1 GEAM Performance
In this section we are reporting the performance of GEAM on each one of the

database problems, described in Section 3.1.2.1. Similar to that of GFAM, the performance of

 73

GEAM is assessed by reporting the size of GEAM and the accuracy attained by GEAM on

the test set. The results are reported in Table 4-1. In Table 4-1, the first column is the index of

the database that we are experimenting with. The second column is the actual database name,

as reported in section 3.1.2., and summarized in Table 3-3. Columns 3 and 4 contain the size

and accuracy of the GEAM network for the designated database. The performance of GEAM,

as it is evidenced by the results in Table 4-1, is verified by some obvious observations. For

instance, GEAM’s performance on databases 1-12 (Gaussian datasets of known amount of

overlap) is nearly optimal; for example the best performance on the G6c-40 problem (6 class

Gaussian dataset of 40% overlap) is a classifier with 6 categories and 60% correct

classification, and GEAM is a classifier with 6 categories and 59.35% of correct

classification. Similarly, in the CINS problem the optimal classifier would require 2

categories and attain a 100% correct classification; GEAM is a 2 category classifier

exhibiting a 99.9% of correct classification. Finally, two of the real problems reported here,

MOD-IRIS and PAGE, also gave very good results attaining 94.8% and 94.12% of correct

classification, while creating only two and three categories, respectively.

4.1.1.2 Performance Comparisons of GEAM and other ART Networks
We compared GEAM’s performance with the performance of other ART networks,

such as ssEAM, ssEAM, ssGAM, and safe micro-ARTMAP. The comparisons of GEAM

and the aforementioned ART networks are depicted in Table 4-1, where the first column is

the index of the database that we are experimenting with. The second column is the actual

database name, as reported in earlier sections. Columns 3-10 of Table 4-1 contain the

performance of the designated ART networks. The performance reported includes the

accuracy of the “best” ART network on the test set. The performance also includes the

number of categories created of the designated ART network. The reported numbers of

accuracy and size of the “best” network correspond to the ART network that attained the

 74

highest value of the fitness function (this value was computed based on the accuracy of the

ART network on the cross-validation set, and on the size of the ART network). Note, that for

networks, other than GEAM, the “best” ART network was determined after extensive

experimentation with the ART network’s parameter values (e.g., in ssEAM the best network

was determined after training ssEAM networks with different values of the choice parameter,

vigilance parameter, order of pattern presentation, and amount of mixture of labels allowed

within a category; a total of more than 20,000 ssEAM networks were trained and their

performance was examined). On the other hand, the performance of the GEAM is the one

calculated after the evolution of 20 EAM trained networks for 500 generations with GA

values as indicated in Section 3.2.2.

According to the results in Table 4-1, in all instances (except minor exceptions) the

accuracy of GEAM (generalization performance) is higher than the accuracy of the other

ART network (where ART is ssEAM, ssEAM, ssGAM or safe micro-ARTMAP). According

to the results in Table 4-1, in all instances (with no exceptions) the size of GEAM is smaller

than the size of the other ART network (where ART is ssEAM, ssEAM, ssGAM or safe

micro-ARTMAP), sometimes even by a factor of 12. For example, the generalization

performance of GEAM can be as 13% better than the generalization performance of ssFAM,

while its size can be by a factor of 4 times smaller than the size of ssFAM. Also, the

generalization performance of GEAM can be as 15% better than the generalization

performance of ssEAM, while its size can be by a factor of 6.5 times smaller than the size of

ssEAM. Furthermore, the generalization performance of GEAM can be as 9% better than the

generalization performance of ssGAM, while its size can be by a factor of 12 times smaller

than the size of ssGAM. Finally, the generalization performance of GEAM can be as 10%

better than the generalization performance of safe micro-ARTMAP, while its size can be by a

factor of 4 times smaller than the size of safe micro-ARTMAP.

 75

The comparison results between GEAM and the other ART networks are also

pictorially depicted in figures 4-2a to 4-2d. In each one of these figures we are showing the

accuracy of GEAM, and that of one other network (e.g., ssEAM). In the same figure we are

also showing the size of the GEAM and that of one other ART network. This way the one-to-

one comparison of the GEAM and the other ART network can be quickly assessed.

What is most worth pointing out is that the better performance of GEAM is attained

with reduced computations compared with the computations needed by the alternate methods

(ssEAM, ssEAM, ssGAM, safe micro-ARTMAP). Specifically, the performance attained by

ssEAM, ssEAM, ssGAM and the safe micro-ARTMAP required training these networks for a

large number of network parameter settings (at least 20,000 experiments) and then choosing

the network that achieved the higher value for the fitness function that we introduced earlier

in Section 3.2.2. Of course, one can argue that such an extensive experimentation with these

networks might not be needed, especially if one is familiar with the functionality of these

networks and chooses to experiment only with a limited set of network parameter values.

However, the practitioner in the field might lack the expertise to carefully choose the network

parameters to experiment with, and consequently might need to experiment extensively to

come up with a good network. In Appendix B, we show, in more detail, how more

computationally efficient GFAM is compared to ssEAM, ssEAM, ssGAM and safe micro-

ARTMAP. The computational complexity of GEAM is given by similar equations as the

GFAM computational complexity, calculated in Appendix B. The comparison between

GFAM (and GEAM) and the rest of the ART networks is based under the assumption that

extensive parameter experimentation with the network parameters of ssEAM, ssEAM,

ssGAM or safe micro-ARTMAP is needed to obtain a good performing ssEAM, ssEAM,

ssGAM or safe micro-ARTMAP network, respectively.

 76

Figure 4-2a: Performance and Size comparison of GEAM vs ssFAM

Figure 4-2b: Performance and Size comparison of GEAM vs ssEAM

 77

Figure 4-2c: Performance and Size comparison of GEAM vs ssGAM

Figure 4-2d: Performance and Size comparison of GEAM vs microARTMAP

 78

Table 4-1: Accuracy and size results achieved by GEAM and other ART networks. Note that:Safe uAM:
Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP;

ss*: semi-supervised version

 Database Name

GEAM

Safe µAM ssFAM ssEAM ssGAM

1 G2c-05 95 2 95.22 2 94.90 2 94.94 2 94.48 4

2 G2c-15 85.12 2 85.00 2 84.80 3 85.20 2 85.04 2

3 G2c-25 74.74 2 74.98 2 74.60 2 74.50 2 75.10 2

4 G2c-40 61.6 2 61.40 3 61.34 3 60.98 2 61.30 3

5 G4c-05 94.8 4 95.04 4 94.10 7 94.14 4 94.80 4

6 G4c-15 84.22 4 83.28 4 81.40 11 83.20 4 84.24 9

7 G4c-25 73.7 4 74.50 4 70.80 9 72.72 4 72.32 21

8 G4c-40 59.5 4 59.76 5 58.48 14 55.62 13 59.10 14

9 G6c-05 94.1247 6 93.57 9 91.42 11 93.80 7 94.40 8

10 G6c-15 84.0328 6 80.92 6 81.11 7 81.80 6 84.35 13

11 G6c-25 73.0416 6 70.74 13 69.62 15 71.10 7 72.86 20

12 G6c-40 59.3525 6 58.03 11 56.35 17 54.21 17 55.65 13

13 4Ci/Sq 97.4 7 95.42 8 87.23 18 94.68 5 93.4 12

14 4Sq/Sq 92.7667 6 99.12 9 97.24 13 88.89 5 91.78 16

15 7Sq 93.46 13 97.22 16 97.26 16 88.5 19 95.83 93

16 1Ci/Sq 99.9 2 94.76 8 92.97 8 97.02 8 91.02 8

17 1Ci/Sq/0.3:0.7 99.9 2 96.82 8 93.21 8 97.13 8 92.33 8

18 5Ci/Sq 83.0333 13 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/20:30:50 96.8667 3 97.22 6 90.24 12 97.01 3 95.6 9

20 7SqWN 90.8273 10 86.67 20 80.15 24 75.23 32 83.11 123

21 5Ci/SqWN 81 50 71.72 52 68.39 57 69.2 136 81.3 145

22 MOD-IRIS 94.8125 2 94.92 2 93.41 8 94.54 2 94.54 2

23 ABALONE 61.0018 3 57.18 4 59.52 6 56.80 7 55.10 3

24 PAGE 94.1219 3 88.82 6 90.63 3 89.54 3 89.34 5

4.1.2 Summary/Conclusions

In this section, we have introduced, yet another, method of solving the category

proliferation problem in ART. This method relies on evolving a population of trained ART

 79

networks, and more specifically Ellipsoidal ARTMAP (EAM) neural networks. The

evolution of trained EAMs creates an ART network, referred to as GEAM.

In chapter 3 we defined a methodology of evolving trained FAM networks, resulting

in GFAM. This methodology was also applied successfully for the evolution of EAM

networks, resulting in GEAM. In chapter 3 we experimented with a number of databases that

helped us identify good default parameter settings for the evolution of FAM The same

parameters and settings used in chapter 3 for the evolution of FAM networks (GFAM) were

also used for the evolution of EAM networks (GEAM).

Our experiments with GEAM indicate that GEAM is superior to a number of other

ART techniques (ssEAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced

into the literature to address the category proliferation problem in EAM. More specifically,

GEAM gave a better generalization performance (in almost all problems tested) and a smaller

size network (in all problems tested), compared to these other ART techniques. What is also

worth mentioning is that GEAM outperformed these other ART techniques by requiring only

a fraction of the computations needed by these other networks.

4.2 Genetic Gaussian ARTMAP (GGAM)
GGAM (Genetic Gaussian ARTMAP) is an evolved GAM network that is produced

by applying, repeatedly, genetic operators on an initial population of trained GAM networks.

GGAM uses tournament selection with elitism, as well as genetic operators, including

crossover and mutation. In addition, GGAM uses two special operators, addCat and delCat .

To better understand how GGAM is designed we resort to a step-by-step description

of this design. Please refer to the terminology introduced in Appendix A before you dwell in

the ste-by-step description of EAM. The design of GGAM can be articulated through a

sequence of steps, defined succinctly below, and explained in detail later.

 80

Step 1: Initialize sizePop number of GAM networks, each one of them operating with a

different value for the baseline vigilance parameter aρ , and possibly different orders of

pattern presentation.

Step 2: Train each one of the sizePop initialized GAM networks, using the training set for a

maximum number of iterations (maxGen).

Step 3: Convert the sizePop trained GAM networks into chromosomes. Crop all

chromosomes so that no one-point categories exist.

Step 4: Evolve the chromosomes of the current generation by executing the following sub-

steps:

Sub-Step 4a: Calculate fitness for all chromosomes of the current generation.

Sub-Step 4b: Initialize an empty generation (referred to as temporary generation).

Sub-Step 4c: Move the best (bestNC) chromosomes from the current generation to the

temporary generation.

Sub-Step 4d: Select chromosomes for crossover from the current generation and thus further

populate the temporary generation.

Sub-Step 4e: With a probability)(addCatP apply the addCat operator on every individual

generated in sub-step 4d.

Sub-Step 4f: With a probability)(delCatP apply the delCat operator on every individual

generated in sub-step 4e.

Sub-Step 4g: With a probability)(MutP apply the mutation operator on every individual

generated in sub-step 4f.

Sub-Step 4h: Replace the current generation with the members of the temporary generation

Step 5: If evolution has reached the maximum number maxGen of iterations, then calculate the

performance of the best-Fitness GAM network on the test set and report classification

 81

accuracy and number of categories that this Best-Fitness GAM network possesses. If the

maximum number of iterations has not been reached yet, go to step 4 to evolve one more

population of chromosomes

Each one of the aforementioned steps of the algorithm is now described in more

detail, as needed.

Step 1 (More Details): The algorithm starts by training sizePop GAM networks, each one of

them trained with a different value of the baseline vigilance parameter aρ . In particular, we

first define
1

minmax

−
−

=
size

aainc
a Pop

ρρ
ρ , and then the baseline vigilance parameter of every network is

determined by the equation inc
aa i ρρ *min + , where }1...,,1,0{ −∈ sizePopi . In our experiments

with GFAM we chose 1.0min =aρ , and 95.0max =aρ . Meanwhile, GGAM allows the user to

change the order of pattern presentation automatically and randomly.

Step 2 (More Details): We assume that the reader is familiar of how training GAM networks

is accomplished, and thus the details here are omitted.

Step 3 (More Details): Once the sizePop networks are trained they need to be converted to

chromosomes, so that they can be manipulated by the genetic operators. GGAM uses a mix

of real numbers representation to encode the networks. Each GAM chromosome consists of

two levels, level 1 containing all the categories of the GAM network, and level 2 containing

the mean, the standard deviation and the number of encoded nodes (during training), as well

as the label of that category (see Figure 4-3). We denote the category of a trained GAM

network with index p)1(sizePopp ≤≤ by)(pa
jw , where),,(jjj

a
j nσµw = , and the label of

this category by)(pl j for)(1 pNj a≤≤ . In this step we are also eliminating single-point

categories in the trained GAM networks, referred to as cropping the chromosomes. Since our

 82

ultimate objective is to design a GAM network that reduces the network size and improves

generalization we are discouraging at this stage the creation of single-point categories.

)(1 paw)(2 paw)(pa
jw)(pa

Na
w

)(pa
jµ)(pa

jσ)(pna
j)(pl j

Figure 4-3: GGAM Chromosome Structure

Step 4 (More Details): In this step the GFAM applies a GA to the population of trained

FAMs.

Sub-step 4a (More Details): Calculate the fitness of each chromosome (trained GAM). This

is accomplished by feeding into each trained GAM the validation set and by calculating the

percentage of correct classification exhibited by each one of these trained GAM networks. In

particular, if)(pPCC designates the percentage of correct classification, exhibited by the p-th

GAM, and this GAM network possesses)(pNa nodes in its category representation layer,

then its fitness function value is defined by:

ε+−

⋅−
=

)(
)(100

)())(()(

min

2
max

pN
pPCC

Cat

pPCCpNCatpFit

a

a 4-2

where, minCat and maxCat are the minimum and maximum number of categories that a FAM

network is allowed to have during the evolutionary process (minCat is chosen equal to 1, or

equal to the number of classes in the classification problem under consideration, while

maxCat is chosen to be a relatively large number for the classification problem at hand). The

constant ε in the denominator of the above equation is a small positive constant and it is

needed to make sure that the denominator would not be zero in the case when

min)(CatpNa = and .100)(=pPCC

Sub-step 4b (More Details): Obvious, no further explanations are needed.

 83

Sub-step 4c (More Details): The algorithm searches for the best bestNC chromosomes from

the current generation and copies them to the temporary generation.

Sub-step 4d (More Details): The remaining bestsize NCPop − chromosomes in the temporary

generation are created by crossing over two parents from the current generation. The parents

are chosen using the deterministic tournament selection method, as follows: Randomly select

two groups of four chromosomes each from the current generation, and use as a parent from

each group the chromosome with the best fitness value in the group. If it happens that from

both groups the same chromosome is chosen then we choose from one of the groups the

chromosome with the second best fitness value. If two parents with indices pp ′, are crossed

over two random numbers nn ′, are generated from the index sets)}(...,,2,1{ pNa and

)}(...,,2,1{ pNa ′ , respectively. Then, all the categories with index greater than index n′ in

chromosome with index p′ and all the categories with index less than index n in the category

with index p are moved into an empty chromosome within the temporary generation. Notice

that crossover is done on level 1 of the chromosome. This operation is pictorially illustrated

in the Figure 3-2.

Sub-step 4e (More Details): The operator addCat adds a new category to every chromosome

created in step 4d with probability)(addCatP . The new category has a mean vector µ , a

standard deviation vector σ , a probability (number of encoded patterns) n , and label l that

are randomly generated as follows: For every dimension of the input feature space

(aM dimensions total) we generate a random number uniformly distributed in the interval [0,

1]; each one of these numbers is chosen to be one of the components of µ . In a similar

fashion, we choose the components of the standard deviation vectorσ , whoever σ ’s values

are chosen in the interval [0.1,0.9]. Furthermore, n is chosen to be a positive real random

number, uniformly distributed, while the label of this newly created category is chosen

 84

randomly amongst the bN categories of the pattern classification task under consideration. A

chromosome does not add a category if the addition of this category results in number of

categories for this chromosome that exceeds the designated maximum number of

categories maxCat .

Sub-step 4f (More Details): The operator delCat deletes one of the categories of every

chromosome created in step 4e with probability)(delCatP . A chromosome does not delete a

category if the deletion of this category results in the number of categories for this

chromosome to fall below the designated minimum number of categories minCat .

Sub-Step 4g (More Details): In GGAM, every chromosome created by step 4f gets mutated

as follows: with probability)(mutP every category is mutated. If a category is chosen, its

mean vector µ or standard deviation vectorσ is selected randomly (50% probability). Then

every component of this selected vector gets mutated by adding to it a small number. This

number is drawn from a Gaussian distribution with mean 0 and standard deviation 0.01. If the

component of the chosen vector becomes smaller than 0 or greater than 1 (after mutation), it

is set back to 0 or 1, respectively. Also the probability of the category n gets mutated by

adding a small number drawn from a Gaussian distribution to the selected item with the same

rules as above. Notice that mutation is applied on level 2 of the chromosome structure, but

the label of the chromosome is not mutated (the reason being that our initial GA population

consists of trained GAMs, and consequently we have a lot of confidence in the labels of the

categories that these trained GAMs have discovered through the GAM training process).

Step 5 (More Details): Obvious, no more details are needed.

4.2.1 GGAM Experiments and Results

We used the same default set of parameters used for GFAM to run all the experiments

of GGAM and the results were very good. Hence, in GGAM’s case we avoided the

 85

experimentation (applied to GFAM) to choose good default values for the GA parameters.

Hence, GGAM is produced by first initializing a population of 20 trained GAM networks

(they were trained with different values of the baseline vigilance parameter and different

orders of training pattern presentations), and by evolving them for 500 generations. In

particular, the GA parameters used for the creation of GGAM were: min
aρ = 0.1, max

aρ = 0.75,

aβ =0.1, sizePop = 20, maxGen = 500, bestNC = 3, minCat = 1, maxCat = 300,)(addCatP

=0.1,)(delCatP =0.1,)(mutP = 5/Na. GGAM is the GAM network that attains the highest

value of the fitness function at generation 500 of the evolutionary process.

4.2.1.1 GGAM Performance
In this section we are reporting the performance of GGAM on each one of the

database problems, described in Section 3.1.2.1. Similar to that of GFAM, the performance of

GGAM is assessed by reporting the size of GGAM and the accuracy attained by GGAM on

the test set. The results are reported in Table 4-2. In Table 4-2, the first column is the index of

the database that we are experimenting with. The second column is the actual database name,

as reported in section 3.1.2. and summarized in Table 3-3. Columns 3 and 4 contain the size

and accuracy of the GGAM network for the designated database. The performance of

GGAM, as it is evidenced by the results in Table 4-2, is verified by some obvious

observations. For instance, GGAM’s performance on databases 1-12 (Gaussian datasets of

known amount of overlap) is nearly optimal; for example the best performance on the G6c-40

problem (6 class Gaussian dataset of 40% overlap) is a classifier with 6 categories and 60%

correct classification, and GGAM is a classifier with 6 categories and 59.43% of correct

classification. Similarly, in the CINS problem the optimal classifier would require 2

categories and attain a 100% correct classification; GGAM is a 2 category classifier

exhibiting a 99.77% of correct classification. Finally, two of the real problems reported here,

 86

MOD-IRIS and PAGE, also gave very good results 94.83% and 95.02% of correct

classification respectively, by creating two categories only.

4.2.1.2 Performance Comparisons of GGAM and other ART Networks
As it was the case with GFAM, we compared GGAM’s performance with the

performance of the following networks: ssEAM, ssEAM, ssGAM, and safe micro-

ARTMAP. The comparisons of GGAM and the aforementioned ART networks are depicted

in Table 4-2, where the first column is the index of the database that we are experimenting

with. The second column is the actual database name, as reported in earlier sections. Columns

3-10 of Table 4-2 contain the performance of the designated ART networks. The performance

reported includes the accuracy of the “best” ART network on the test set. The performance

also includes the number of categories created of the designated ART network. The reported

numbers of accuracy and size of the “best” network correspond to the ART network that

attained the highest value of the fitness function (this value was computed based on the

accuracy of the ART network on the cross-validation set, and on the size of the ART

network). Note, that for networks, other than GGAM, the “best” ART network was

determined after extensive experimentation with the ART network’s parameter values (e.g.,

in ssFAM the best network was determined after training ssFAM networks with different

values of the choice parameter, vigilance parameter, order of pattern presentation, and

amount of mixture of labels allowed within a category; a total of 20,000 ssFAM networks

were trained and their performance was examined). On the other hand, the performance of the

GGAM is the one calculated after the evolution of 20 GAM trained networks for 500

generations with GA values as indicated in Section 3.2.2.

According to the results in Table 4-2, in all instances (except minor exceptions) the

accuracy of GGAM (generalization performance) is higher than the accuracy of the other

ART network (where ART is ssEAM, ssEAM, ssGAM or safe micro-ARTMAP). According

 87

to the results in Table 4-2, in all instances (with no exceptions) the size of GGAM is smaller

than the size of the other ART network (where ART is ssEAM, ssEAM, ssGAM or safe

micro-ARTMAP), sometimes even by a factor of 12. For example, the generalization

performance of GGAM can be as 15% better than the generalization performance of ssFAM,

while its size can be by a factor of 4 times smaller than the size of ssFAM. Also, the

generalization performance of GGAM can be as 14% better than the generalization

performance of ssEAM, while its size can be by a factor of 4 times smaller than the size of

ssEAM. Furthermore, the generalization performance of GGAM can be as 8% better than the

generalization performance of ssGAM, while its size can be by a factor of 12 times smaller

than the size of ssGAM. Finally, the generalization performance of GGAM can be as 10%

better than the generalization performance of safe micro-ARTMAP, while its size can be by a

factor of 4 times smaller than the size of safe micro-ARTMAP.

The comparison results between GGAM and the other ART networks are also

pictorially depicted in figures 4-4a to 4-4d. In each one of these figures we are showing the

accuracy of GGAM, and that of one other network (e.g., ssEAM). In the same figure we are

also showing the size of the GGAM and that of one other ART network. This way the one-to-

one comparison of the GGAM and the other ART networks can be quickly assessed.

What is most worth pointing out is that the better performance of GGAM is attained

with reduced computations compared with the computations needed by the alternate methods

(ssEAM, ssEAM, ssGAM, safe micro-ARTMAP). Specifically, the performance attained by

ssEAM, ssEAM, ssGAM and the safe micro-ARTMAP required training these networks for a

large number of network parameter settings (at least 20,000 experiments) and then choosing

the network that achieved the higher value for the fitness function that we introduced earlier

in Section 3.2.2. Of course, one can argue that such an extensive experimentation with these

networks might not be needed, especially if one is familiar with the functionality of these

 88

networks and chooses to experiment only with a limited set of network parameter values.

However, the practitioner in the field might lack the expertise to carefully choose the network

parameters to experiment with, and consequently might need to experiment extensively to

come up with a good network. The computational complexity of GGAM is given by similar

equations as the GFAM computational complexity, calculated in Appendix B. The

comparison between the computational complexity GFAM (and GGAM) and the rest of the

ART networks is based under the assumption that extensive parameter experimentation with

the network parameters of ssEAM, ssEAM, ssGAM or safe micro-ARTMAP is needed to

obtain a good performing ssEAM, ssEAM, ssGAM or safe micro-ARTMAP network,

respectively.

 89

Table 4-2: Accuracy and size results achieved by GGAM and other ART networks. Note that:Safe uAM:
Safe microARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP;

ss*: semi-supervised version

 Database Name

GGAM

Safe µAM ssFAM ssEAM ssGAM

1 G2c-05 95.2 2 95.22 2 94.90 2 94.94 2 94.48 4

2 G2c-15 85.2 2 85.00 2 84.80 3 85.20 2 85.04 2

3 G2c-25 75.06 2 74.98 2 74.60 2 74.50 2 75.10 2

4 G2c-40 61.64 2 61.40 3 61.34 3 60.98 2 61.30 3

5 G4c-05 94.82 4 95.04 4 94.10 7 94.14 4 94.80 4

6 G4c-15 84.28 4 83.28 4 81.40 11 83.20 4 84.24 9

7 G4c-25 74.74 4 74.50 4 70.80 9 72.72 4 72.32 21

8 G4c-40 59.82 4 59.76 5 58.48 14 55.62 13 59.10 14

9 G6c-05 94.4644 6 93.57 9 91.42 11 93.80 7 94.40 8

10 G6c-15 84.8122 6 80.92 6 81.11 7 81.80 6 84.35 13

11 G6c-25 74.0008 6 70.74 13 69.62 15 71.10 7 72.86 20

12 G6c-40 59.4325 6 58.03 11 56.35 17 54.21 17 55.65 13

13 4Ci/Sq 97.2 5 95.42 8 87.23 18 94.68 5 93.4 12

14 4Sq/Sq 93.0667 5 99.12 9 97.24 13 88.89 5 91.78 16

15 7Sq 95.1333 10 97.22 16 97.26 16 88.5 19 95.83 93

16 1Ci/Sq 99.7667 2 94.76 8 92.97 8 97.02 8 91.02 8

17 1Ci/Sq/0.3:0.7 99.9 2 96.82 8 93.21 8 97.13 8 92.33 8

18 5Ci/Sq 87.7667 39 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/20:30:50 98.9333 3 97.22 6 90.24 12 97.01 3 95.6 9

20 7SqWN 89.83 10 86.67 20 80.15 24 75.23 32 83.11 123

21 5Ci/SqWN 81.34 42 71.72 52 68.39 57 69.2 136 81.3 145

22 MOD-IRIS 94.8333 2 94.92 2 93.41 8 94.54 2 94.54 2

23 ABALONE 61.5385 3 57.18 4 59.52 6 56.80 7 55.10 3

24 PAGE 95.0179 2 88.82 6 90.63 3 89.54 3 89.34 5

 90

Figure 4-4a: Performance and Size comparison of GGAM vs ssFAM

Figure 4-4b: Performance and Size comparison of GGAM vs ssEAM

 91

Figure 4-4c: Performance and Size comparison of GGAM vs ssGAM

Figure 4-4d: Performance and Size comparison of GGAM vs microARTMAP

 92

4.2.2 Summary/Conclusions

In this section, we have introduced, yet another, method of solving the category

proliferation problem in ART. This method relies on evolving a population of trained ART

networks, and more specifically Gaussian ARTMAP (GAM) neural networks. The evolution

of trained GAMs creates an ART network, referred to as GGAM.

In chapter 3 we defined a methodology of evolving trained FAM networks, resulting

in GFAM. This methodology was also applied successfully for the evolution of GAM

networks, resulting in GGAM. In chapter 3 we experimented with a number of databases that

helped us identify good default parameter settings for the evolution of FAM The same

parameters and settings used in chapter x for the evolution of FAM networks (GFAM) were

also used for the evolution of GAM networks (GGAM).

Our experiments with GGAM indicate that GGAM is superior to a number of other

ART techniques (ssEAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced

into the literature to address the category proliferation problem in GAM. More specifically,

GGAM gave a better generalization performance (in almost all problems tested) and a

smaller size network (in all problems tested), compared to these other ART techniques. What

is also worth mentioning is that GGAM outperformed these other ART techniques by

requiring only a fraction of the computations needed by these other networks.

 93

5. UNIVERSAL ART (UART)

In all our previous genetically engineered ART architectures we only evolved one

type of ART architectures, such as FAM, or EAM or GAM. It will be advantageous for some

classification problem to be able to evolve a mixture of ART architectures, such as FAM and

EAM, EAM and GAM, FAM and GAM, or FAM, EAM and GAM. The evolution of a

mixture of ART architectures leads us to a genetically designed ART network that we call

Universal ART (UART).

The motivation behind the creation of UART could be presented by a number of

examples. For some datasets one of the FAM, EAM, GAM architectures will produce the

best results, while for another dataset another architecture will do the best. Furthermore, it

could also be the case that GAM is better at describing the input patterns in a portion of the

input space, while FAM might be able to do a better job at another portion of the input space

(and the same dataset). These observations gave birth to the idea of UART that does not a-

priori determine which of is the best category structure (hyper-rectangle, hyper-ellisoid,

Gaussian) that could best represent the data in various portions of the input pattern space.

It is reasonable to think that a problem space would not be suitable to be covered by

only one of the geometrical shapes mentioned above, and this could explain the extra nodes

created and the lack of accuracy attained by a specific ART architecture. The figure below

supports our claim. In figure 5-1, there are three different classification problems represented

in 2-dimentional space.

 94

Figure 5-1: These figures show what happens when using unsuitable classifiers for a certain problem.

In figure 5-1 (a), we see a 2-class problem that is represented by two rectangles, for which the

geometrical shapes created by FAM would be the best to solve, and would be wasteful to use

EAM to solve it. In the other hand, figure 5-1 (b) shows an example of a 2-class problem for

which the geometrical shapes created by EAM would be the best to solve, and it would be

wasteful to use FAM to solve it, figure 5-1 (c) shows a similar scenario when using GAM to

classify the two rectangle problem, (GAM categories are not really circles, but depicted here

as such to show the point). Furthermore, there might be classification examples where one of

the ART classifies will not be the best choices to use in every portion of the input space (see

Figure 5-2).

class 1

class 2

class3c4

Figure 5-2: a classification problem where the boundaries can’t be optimally covered by FAM, GAM or
EAM’s categories.

For this problem a genetically engineered ART architecture, such as UART, might

perform well because it has the ability to create three different geometrical structures in the

input space (see Figure 5-3). It is expected that if the input space is covered by the minimum

 95

possible number of correct structures by an ART neural network the generalization

performance of the network on unseen data might be improved too.

class 1

class 2

class3c4

Figure 5-3: Using UART to solve the problem in figure 5-2, notice that parts of the problem space are not
covered, but because UART encourages smaller size, it might sacrifice little accuracy to get optimal size.

5.1 UART Design
UART can operate in three distinct phases: the training phase, the geometry selection

phase (or Genetic Phase) and the performance phase. In the training phase of UART, the

user defines the number of the networks the system should generate, referred to as sizePop .

The system then creates sizePop trained ART networks, half of them FAM and the other half

EAM networks. These FAM and EAM networks are generated by using different values of

the baseline vigilance parameter and orders of training pattern presentations, as we did for

GFAM and GEAM. For the training of this initial population of sizePop ART networks a list

of input patterns/output labels pairs, (i.e.))}(,()),...,(,()),...,(,{(11 PTPTrr OOO IIIIII), is

repeatedly presented to the FAM/EAM network until it learns the required mapping. Training

is over when a user defined maximum list presentation number is reached. After creating a FAM or

EAM trained network UART converts it into a chromosome and saves it in the FAM/EAM network

container of the UART architecture. A pictorial illustration of the UART architecture in its training

phase, consisting of two independently operating FAM and EAM architectures and the associated

FAM/EAM chromosome container is shown in Figure 5-4.

 96

In the geometry selection phase, the goal is to find an ART network (UART network) which

contains the best types and smallest number of ART categories (rectangles or ellipsoids, or a

combination of the two) that achieves good generalization. This UART network is found by starting

from an initial population of sizePop UART networks and by applying the GA algorithm to this initial

population, in the same way that we applied to produce GFAM and GEAM (see earlier sections). The

distinct and important difference between the initial population of FAMs, and EAMs, that we started

with then and the initial population of UARTs that we start with here is that the initial population of

FAMs and EAMs consisted of chromosomes, each one of which contained categories of the same

geometrical structure, such as rectangles or ellipsoids. Now, each chromosome in the initial

population of UART starts form an initial population of ART networks, whose chromosome contains

a mixture of rectangles and ellipsoids. Each member of this initial population chose the rectangles and

categories contained in its chromosome randomly from the population of rectangles and categories

included in the UART container from UART’s training phase. It is important, to also mention that in

the geometry selection phase (or genetic phase) UART is called upon to calculate its output for each

input pattern in the validation data, i.e., UART is called upon to operate in the performance mode.

The steps that UART is going through to produce an output label for an input pattern presented at its

input during UART’ performance mode are included below. The UART architecture, when it operates

in the performance mode, is different than the UART architecture when it operates in the training

mode (see Figure 5-5).

The UART architecture, in its performance phase, consists of three main layers. These

are: the input layer (aU1), the category representation layer (aU 2), and the output layer (bU 2).

The input layer of UART has aM2 nodes, nodes numbered 1 through aM are connected to

all the nodes in aU 2 layer that represent a FAM category, while only the nodes 1 to aM) are

connected to those categories in the aU 2 layer that represent an EAM category (remember

that EAM does not require complement encoding).

 97

During the performance phase, a is fed to aU1 , so that a occupies the first aM nodes

of aU1 and its complement coded version, I , occupies the aM2 nodes of aU1 . Layer aU 2 in

UART represents all the categories that the UART network possesses, and hence the name

category representation layer. This layer could have all the nodes as FAM categories, as

EAM categories or as a mixture of both (these nodes represent categories that were randomly

chosen from the mixture of FAM/EAM categories stored in the FAM/EAM container of

UART’s architecture, at the end of its training phase). The nodes in the category

representation layer are connected to the nodes in the aU1 layer as shown in Figure 5-5.

Finally, the output layer (layer bU 2) is the layer that produces the outputs of the network.

Every node in the output layer of UART represents one of the labels of the pattern

recognition task. The index k ()1 bNk ≤≤ designates a generic node in bU 2 ; bN represents the

highest index needed to represent all the labels of the pattern classification task at hand.

The UART’s performance steps are delineated (below) and then the genetic phase of UART

is emphasized in more detail, as it was done for GFAM and GEAM.

5.1.1 Performance Phase of UART

This phase is similar to those of a FAM or an EAM. The process can be summarized

in the following steps:

1. Present an input pattern (from the validation or test set) to the UART network

2. Calculate the CCF function, corresponding to this input pattern, for all the nodes in the

aU 2 layer according to the following equations:

a. For a FAM category:
)(

),()(
)|(a

jaa

a
j

a
ja

sM
dissM

jT
w

wIw
I

−+
−−

=
β

 5-1

b. For an EAM category :
)(

),()(
)|(a

ja

a
j

a
j

sD
dissD

jT
w

wIw
I

−+
−−

=
β

 5-2

 Find the node J that has the maximum CCF

 98

3. Check the label of this node J. This will be the predicted label of the UART network for

this input pattern.

4. If more patterns are still in the list (validation or test set) present the next input pattern to

the UART network. Otherwise, the performance phase is completed.

Through this sequence of four steps UART is able to produce predictions for all the

input patterns of the validation set (during UART’s genetic phase) or for all the input patterns

of the test set (during UART’s performance phase for the UART chosen as having the best

fitness value at the last generation of the genetic phase).

),(caaI =

a
jw

ab
jW

aM2aM 1+aM

aN

aI =

a
jw

ab
jW

aM

aN

aF1

aF2

bF2

Figure 5-4: A simple UART structural diagram during the training phase

 99

),(caaI =

aU1

aU 2

bU 2

a
jw

ab
jW

aM2aM 1+aM

aN

Figure 5-5: A simple UART structural diagram during the performance phase

5.1.2 Geometry Selection Phase (Genetic Phase) of UART

As it was the case for GFAM and GEAM we start with an initial population of sizePop

UARTs that we evolve. The GA parameters used for the evolution of FAM and EAM

networks are also used for UART networks. This process follows the following steps:

Step 1: A chromosome in the initial population of UARTs contains FAM and EAM

categories randomly chosen from the list of FAM and EAM categories, created during the

training phase of UART and contained in the FAM/EAM container mixture module. At this

stage all one-point categories are cropped.

Step 2: Evolve the chromosomes of the current generation by executing the following sub-

steps:

Sub-Step 2a: Calculate fitness for all chromosomes of the current generation.

Sub-Step 2b: Initialize an empty generation (referred to as temporary generation).

 100

Sub-Step 2c: Move the best (bestNC) chromosomes from the current generation to the

temporary generation.

Sub-Step 2d: Select chromosomes for crossover from the current generation and thus further

populate the temporary generation.

Sub-Step 2e: With a probability)(addCatP apply the addCat operator on every individual

generated in sub-step 2d.

Sub-Step 4f: With a probability)(delCatP apply the delCat operator on every individual

generated in sub-step 2e.

Sub-Step 4g: With a probability)(MutP apply the mutation operator on every individual

generated in sub-step 2f.

Sub-Step 2h: Replace the current generation with the members of the temporary generation

Step 3: If evolution has reached the maximum number maxGen of iterations, then calculate the

performance of the best-Fitness UART network on the test set and report classification

accuracy and number of categories that this Best-Fitness FAM network possesses. If the

maximum number of iterations has not been reached yet, go to step 2 to evolve one more

population of chromosomes

Each one of the aforementioned steps of the algorithm is now described in more

detail, as needed.

Step 1 (More Details): We use a real number representation to encode the UART networks.

Each UART chromosome consists of two levels, level 1 containing all the categories of the

UART network, and level 2 containing the following components: two generic vectors u and

v , an integer l for the label, a double µ for the axis ratio, and a double r for the radius and

an integer t for the type of the category. In the case of a FAM category, the generic vectors

are equal to vectors u and v are used to represent the end points of the hyper-rectangle, l

 101

represent the label, r and µ are not used and t is equal to 1, otherwise (i.e. an EAM category)

the generic vectors are equal to center m and the direction d , l represent the label, r encodes

the radius, µ encodes the axis ratio and t is equal to 0. (see Figure 5-6). We denote the

category of a trained UART network with index p)1(sizePopp ≤≤ by)(pa
jw , where

))((),(()()(, c
jj

FAMa
j

a
j pppp vuww == or),,()()(,

jjj
EAMa

j
a
j rpp dmww == and the label of

this category by)(pl j for)(1 pNj a≤≤ . In this step we are also eliminating single-point

categories in the trained FAM networks, referred to as cropping the chromosomes, this is

done by deleting FAM categories with size zero and EAM categories with radius equals to

zero. Since our ultimate objective is to design a FAM network that reduces the network size

and improves generalization we are discouraging at this stage the creation of single-point

categories. We also randomly redistribute the categories amongst the chromosomes, this step

is necessary to eliminate any advantages of a FAM network over an EAM network or vice

versa. This is done by putting all the categories of all chromosomes in one group and then

reassigning each chromosome a randomly chosen set of categories.

)(1 paw)(2 paw)(pa
jw)(pa

Na
w

Chromosome p

Level 1

Level 2
)(pjmu =)(pjdv =)(prr j=)(pjµµ =)(pll j= 0=t

OR
)(pjuu =)(pjvv = NAr = NA=µ)(pll j= 1=t

Figure 5-6: GFAM chromosome structure

Step 2 (More Details): In this step the UART applies the GA algorithm on the population of

UARTs.

Sub-step 4a (More Details): Use the steps described in the performance phase below,

calculate the fitness of each chromosome. This is accomplished by converting each

chromosome into a UART network and then feeding into it the validation set and by

 102

calculating the percentage of correct classification exhibited by each one of these UART

networks. In particular, if)(pPCC designates the percentage of correct classification,

exhibited by the p-th UART, and this UART network possesses)(pNa nodes in its category

representation layer, then its fitness function value is defined by:

ε+−

⋅−
=

)(
)(100

)())(()(

min

2
max

pN
pPCC

Cat

pPCCpNCatpFit

a

a 5-3

where, minCat and maxCat are the minimum and maximum number of categories that a FAM

network is allowed to have during the evolutionary process (minCat is chosen equal to 1, or

equal to the number of classes in the classification problem under consideration, while

maxCat is chosen to be a relatively large number for the classification problem at hand). The

constant ε in the denominator of the above equation is a small positive constant and it is

needed to make sure that the denominator would not be zero in the case when

min)(CatpNa = and .100)(=pPCC

Sub-step 4b (More Details): Obvious, no further explanations are needed.

Sub-step 4c (More Details): The algorithm searches for the best bestNC chromosomes from

the current generation and copies them to the temporary generation.

Sub-step 4d (More Details): The remaining bestsize NCPop − chromosomes in the temporary

generation are created by crossing over two parents from the current generation. The parents

are chosen using the deterministic tournament selection method, as follows: Randomly select

two groups of four chromosomes each from the current generation, and use as a parent from

each group the chromosome with the best fitness value in the group. If it happens that from

both groups the same chromosome is chosen then we choose from one of the groups the

chromosome with the second best fitness value. If two parents with indices pp ′, are crossed

over two random numbers nn ′, are generated from the index sets)}(...,,2,1{ pNa and

 103

)}(...,,2,1{ pNa ′ , respectively. Then, all the categories with index greater than index n′ in

chromosome with index p′ and all the categories with index less than index n in the category

with index p are moved into an empty chromosome within the temporary generation. Notice

that crossover is done on level 1 of the chromosome. This operation is pictorially illustrated

in the Figure 5-7.

)(1 paw)(2 paw)(3 paw)(4 paw)(5 paw

)'(1 paw)'(2 paw)'(3 paw)'(4 paw)'(5 paw

n

n'

p′

p

)(1 paw)(2 paw)'(4 paw)'(5 paw

 Figure 5-7: Crossover implementation

Sub-step 4e (More Details): The operator addCat adds a new category to every chromosome

created in step 4d with probability)(addCatP . With a 0.5 probability the new category is

chosen to be a FAM or an EAM category. If the chosen category is a FAM category, the

category gets lower and upper endpoints vu, that are randomly generated as follows: For

every dimension of the input feature space (aM dimensions total) we generate two random

numbers uniformly distributed in the interval [0, 1]; the largest of these numbers is associated

with the v coordinate along this dimension, while the smallest of the two random numbers is

associated with the u coordinate along this dimension. If the chosen category is an EAM

category then the category has a center m , a direction vector d , a radius r , and an axis

ration µ , that are randomly generated as follows: For every dimension of the input feature

space (aM dimensions total) we generate a random number uniformly distributed in the

interval [0, 1]; we assign these values to the individual components of m , the direction

vector d is assigned zeros, the axis ratio µ and the radius r are given a positive real random

 104

numbers in the interval [0,1]. The label of this newly created category is chosen randomly

amongst the bN categories of the pattern classification task under consideration. A

chromosome does not add a category if the addition of this category results in number of

categories for this chromosome that exceeds the designated maximum number of

categories maxCat .

Sub-step 4f (More Details): The operator delCat deletes one of the categories of every

chromosome created in step 4e with probability)(delCatP . A chromosome does not delete a

category if the deletion of this category results in the number of categories for this

chromosome to fall below the designated minimum number of categories minCat .

Sub-Step 4g (More Details): In UART, every chromosome created by step 4f gets mutated

as follows: with probability)(mutP every category is mutated. If a FAM category is chosen,

its u or v endpoints is selected randomly (50% probability), and then every component of

this selected vector gets mutated by adding to it a small number. This number is drawn from a

Gaussian distribution with mean 0 and standard deviation 0.01. If the component of the

chosen vector becomes smaller than 0 or greater than 1 (after mutation), it is set back to 0 or

1 respectively. If an EAM category is chosen its center m or direction d is selected

randomly (50% probability), then every component of this selected vector gets mutated by

adding to it a small number. This number is drawn from a Gaussian distribution with mean 0

and standard deviation 0.01. If the component of the chosen vector becomes smaller than 0 or

greater than 1 (after mutation), it is set back to 0 or 1, respectively. Furthermore, its axis ratio

µ or radius r is selected (50% probability), we also add a small number drawn from a

Gaussian distribution to the selected item with the same rules as above. Notice that mutation

is applied on level 2 of the chromosome structure, but the label of the chromosome is not

mutated (the reason being that our initial GA population consists of trained FAMs and

 105

EAMs, and consequently we have a lot of confidence in the labels of the categories that these

trained EAMs have discovered through the EAM training process).

Step 5 (More Details): Obvious, no more details are needed.

5.2 Results of UART
We used the same default set of parameters used for GFAM to run all the experiments

of UART with one modification, and the results were excellent. Hence, in UART‘s case we

avoided the experimentation (applied to GFAM) to choose good default values for the GA

parameters. Hence, UART is produced by first initializing a population of 20 trained FAM

and EAM networks (they were trained with different values of the baseline vigilance

parameter and different orders of training pattern presentations), and by evolving them for

500 generations. In particular, the GA parameters used for the creation of UART were: min
aρ =

0.1, max
aρ = 0.75, aβ =0.1, sizePop = 20, maxGen = 500, bestNC = 3, minCat = 1, maxCat = 300,

)(addCatP =0.1,)(delCatP =0.1,)(mutP = 1/Na. UART is the network that attains the highest

value of the fitness function at generation 500 of the evolutionary process.

5.2.1 UART Performance

In this section we are reporting the performance of UART on each one of the database

problems, described in Section 3.1.2.1. Similar to that of GFAM, the performance of UART

is assessed by reporting the size and the accuracy attained by UART on the test set. The

results are reported in Table 5-1. In Table 5-1, the first column is the index of the database

that we are experimenting with. The second column is the actual database name, as reported

in section 3.1.2. and summarized in Table 3-3. Columns 3 and 4 contain the size and accuracy

of the UART network for the designated database. The performance of UART, as it is

evidenced by the results in Table 5-1, is verified by some obvious observations. For instance,

UART’s performance on databases 1-12 (Gaussian datasets of known amount of overlap) is

 106

nearly optimal; for example the best performance on the G6c-40 problem (6 class Gaussian

dataset of 40% overlap) is a classifier with 6 categories and 60% correct classification, and

UART is a classifier with 6 categories and 59.83% of correct classification. Similarly, in the

CINS problem the optimal classifier would require 2 categories and attain a 100% correct

classification; UART is a 2 category classifier exhibiting a 99.37% of correct classification.

Finally, all of the real problems reported here, MOD-IRIS, ABALONE and PAGE, also gave

very good results 94.88%, 64.1% and 95.73% of correct classification respectively, by

creating 2,3 and 3 categories respectively only.

5.2.2 Performance Comparisons of UART and other ART Networks

As it was the case with GFAM, we compared UART’s performance with the

performance of the following networks: ssEAM, ssEAM, ssGAM, and safe micro-

ARTMAP.

The comparisons of UART and the aforementioned ART networks are depicted in

Table 5-1, where the first column is the index of the database that we are experimenting with.

The second column is the actual database name, as reported in earlier sections. Columns 3-10

of Table 5-1 contain the performance of the designated ART networks. The performance

reported includes the accuracy of the “best” ART network on the test set. The performance

also includes the number of categories created of the designated ART network. The reported

numbers of accuracy and size of the “best” network correspond to the ART network that

attained the highest value of the fitness function (this value was computed based on the

accuracy of the ART network on the cross-validation set, and on the size of the ART

network). Note, that for networks, other than UART, the “best” ART network was

determined after extensive experimentation with the ART network’s parameter values (e.g.,

in ssFAM the best network was determined after training ssFAM networks with different

values of the choice parameter, vigilance parameter, order of pattern presentation, and

 107

amount of mixture of labels allowed within a category; a total of 20,000 ssFAM networks

were trained and their performance was examined). On the other hand, the performance of the

UART is the one calculated after the evolution of 20 trained FAM and EAM networks for

500 generations with GA parameters as indicated in Section 5.4.

According to the results in Table 5-1, in all instances (except minor exceptions) the

accuracy of GGAM (generalization performance) is higher than the accuracy of the other

ART network (where ART is ssEAM, ssEAM, ssGAM or safe micro-ARTMAP). According

to the results in Table 5-1, in all instances (with no exceptions) the size of GGAM is smaller

than the size of the other ART networks (where ART is ssEAM, ssEAM, ssGAM or safe

micro-ARTMAP), sometimes even by a factor of 15. For example, the generalization

performance of UART can be as 12% better than the generalization performance of ssFAM,

while its size can be by a factor of 4 times smaller than the size of ssFAM. Also, the

generalization performance of UART can be as 14% better than the generalization

performance of ssEAM, while its size can be by a factor of 4 times smaller than the size of

ssEAM. Furthermore, the generalization performance of UART can be as 9% better than the

generalization performance of ssGAM, while its size can be by a factor of 17 times smaller

than the size of ssGAM. Finally, the generalization performance of UART can be as 9%

better than the generalization performance of safe micro-ARTMAP, while its size can be by a

factor of 4 times smaller than the size of safe micro-ARTMAP.

The comparison results between UART and the other ART networks are also

pictorially depicted in figures 5-8a to 5-8d. In each one of these figures we are showing the

accuracy of UART, and that of one other network (e.g., ssEAM). In the same figure we are

also showing the size of the UART and that of one other ART network. This way the one-to-

one comparison of the UART and the other ART networks can be quickly assessed.

 108

What is most worth pointing out is that the better performance of UART is attained

with reduced computations compared with the computations needed by the alternate methods

(ssEAM, ssEAM, ssGAM, safe micro-ARTMAP). Specifically, the performance attained by

ssEAM, ssEAM, ssGAM and the safe micro-ARTMAP required training these networks for a

large number of network parameter settings (at least 20,000 experiments) and then choosing

the network that achieved the higher value for the fitness function that we introduced earlier

in Section 3.2.2. Of course, one can argue that such an extensive experimentation with these

networks might not be needed, especially if one is familiar with the functionality of these

networks and chooses to experiment only with a limited set of network parameter values.

However, the practitioner in the field might lack the expertise to carefully choose the network

parameters to experiment with, and consequently might need to experiment extensively to

come up with a good network. The computational complexity of UART is given by similar

equations as the GFAM computational complexity, calculated in Appendix B. The

comparison between the computational complexity GFAM (and UART) and the rest of the

ART networks is based under the assumption that extensive parameter experimentation with

the network parameters of ssEAM, ssEAM, ssGAM or safe micro-ARTMAP is needed to

obtain a good performing ssEAM, ssEAM, ssGAM or safe micro-ARTMAP network,

respectively.

 109

Table 5-1: UART performance and size compared to other ART architectures

 Database Name

UART

Safe µAM ssFAM ssEAM ssGAM

1 G2c-05 95.2 2 95.22 2 94.90 2 94.94 2 94.48 4

2 G2c-15 85.22 2 85.00 2 84.80 3 85.20 2 85.04 2

3 G2c-25 75.16 2 74.98 2 74.60 2 74.50 2 75.10 2

4 G2c-40 61.24 2 61.40 3 61.34 3 60.98 2 61.30 3

5 G4c-05 94.9 4 95.04 4 94.10 7 94.14 4 94.80 4

6 G4c-15 84.6 4 83.28 4 81.40 11 83.20 4 84.24 9

7 G4c-25 75.18 4 74.50 4 70.80 9 72.72 4 72.32 21

8 G4c-40 59.96 4 59.76 5 58.48 14 55.62 13 59.10 14

9 G6c-05 94.7 6 93.57 9 91.42 11 93.80 7 94.40 8

10 G6c-15 84.85 6 80.92 6 81.11 7 81.80 6 84.35 13

11 G6c-25 73.90 6 70.74 13 69.62 15 71.10 7 72.86 20

12 G6c-40 59.83 6 58.03 11 56.35 17 54.21 17 55.65 13

13 4Ci/Sq 98.16 7 95.42 8 87.23 18 94.68 5 93.4 12

14 4Sq/Sq 97.9 8 99.12 9 97.24 13 88.89 5 91.78 16

15 7Sq 98.5 7 97.22 16 97.26 16 88.5 19 95.83 93

16 1Ci/Sq 99.37 2 94.76 8 92.97 8 97.02 8 91.02 8

17 1Ci/Sq/0.3:0.7 99.3 2 96.82 8 93.21 8 97.13 8 92.33 8

18 5Ci/Sq 88.87 30 83.83 52 81.95 52 78.68 87 90.02 111

19 2Ci/Sq/20:30:50 99.2 3 97.22 6 90.24 12 97.01 3 95.6 9

20 7SqWN 89.3 7 86.67 20 80.15 24 75.23 32 83.11 123

21 5Ci/SqWN 80.67 30 71.72 52 68.39 57 69.2 136 81.3 145

22 MOD-IRIS 94.88 2 94.92 2 93.41 8 94.54 2 94.54 2

23 ABALONE 64.1 3 57.18 4 59.52 6 56.80 7 55.10 3

24 PAGE 95.73 3 88.82 6 90.63 3 89.54 3 89.34 5

 110

Figure 5-8a: Performance and Size comparison of UART vs ssFAM

Figure 5-8b: Performance and Size comparison of UART vs ssEAM

 111

Figure 5-8c: Performance and Size comparison of UART vs ssGAM

Figure 5-8d: Performance and Size comparison of UART vs microARTMAP

 112

5.2.3 Performance Comparisons of UART and other Genetic ART Networks

In this section we are comparing the size and accuracy of UART with the other three

genetic ART modules namely: GFAM, GEAM and GGAM. Table 5-2 shows the results of all

of the genetic modules on all the databases presented in section 3.1.2.1, (a one to one

comparison figures are also dippected in figures 5-9a to 5-9c). It is clear that we used the

same method to choose the best genetic ART in all of the genetic modules. From a quick

look at table 5-2, it is clear that in the Gaussian databases all of the genetic ART modules

performed very well with minor differences. On the structure within structure databases

however, the performance was different. Table 5-2 shows that GFAM gave better accuracy

on databases 14, 15, 18 and 21 while GEAM and GGAM gave better accuracy on databases

13, 16, 17, 19 and 20. If we investigate further, we find that GFAM gave better accuracy

when the problem didn’t have a circle in it, on the other hand, GEAM and GGAM gave better

results on those problems that have circles in them, this was the reason behind the

development of UART.

UART performance compares very well to the best of the three on all problems, for

example, UART gave 99.37% and 99.3% for databases 16 and 17 respectively with only 2

categories in each case, this performance is very close to that of GEAM and GGAM on the

same databases of 99.99% with 2 categories, on the other hand, UART gave 98.5% accuracy

on database 15 with only 7 categories, while GFAM gave 97.2% with 7 categories. the

bottom line is UART performed very well all the databases described in 3.1.2.1.

 113

Table 5-2: UART performance and size compared to other genetic ART architectures

 Database Name

UART

GFAM GEAM GGAM

1 G2c-05 95.2 2 95.36 2 95 2 95.2 2

2 G2c-15 85.22 2 85.30 2 85.12 2 85.2 2

3 G2c-25 75.16 2 75.08 2 74.74 2 75.06 2

4 G2c-40 61.24 2 61.38 2 61.6 2 61.64 2

5 G4c-05 94.9 4 95.02 4 94.8 4 94.82 4

6 G4c-15 84.6 4 84.46 4 84.22 4 84.28 4

7 G4c-25 75.18 4 75.20 4 73.7 4 74.74 4

8 G4c-40 59.96 4 60.60 4 59.5 4 59.82 4

9 G6c-05 94.7 6 94.68 6 94.12 6 94.46 6

10 G6c-15 84.85 6 84.71 6 84.03 6 84.81 6

11 G6c-25 73.90 6 73.90 6 73.04 6 74.00 6

12 G6c-40 59.83 6 59.19 6 59.35 6 59.43 6

13 4Ci/Sq 98.16 7 96.32 8 97.4 7 97.2 5

14 4Sq/Sq 97.9 8 97.12 9 92.76 6 93.06 5

15 7Sq 98.5 7 97.2 7 93.46 13 95.13 10

16 1Ci/Sq 99.37 2 97.2 8 99.9 2 99.76 2

17 1Ci/Sq/0.3:0.7 99.3 2 97.8 8 99.9 2 99.9 2

18 5Ci/Sq 88.87 30 92 50 83.03 13 87.76 39

19 2Ci/Sq/20:30:50 99.2 3 97.87 3 96.86 3 98.93 3

20 7SqWN 89.3 7 87.3 7 90.82 10 89.83 10

21 5Ci/SqWN 80.67 30 81.97 50 81 50 81.34 42

22 MOD-IRIS 94.88 2 95.31 2 94.81 2 94.83 2

23 ABALONE 64.1 3 58.73 2 61.00 3 61.53 3

24 PAGE 95.73 3 95.59 3 94.12 3 95.01 2

 114

Figure 5-9a: Performance and Size comparison of UART vs GFAM

Figure 5-9b: Performance and Size comparison of UART vs GEAM

 115

Figure 5-9c: Performance and Size comparison of UART vs GGAM

5.3 UART Summary
UART is a novel approach of mixing different types of ART categories to obtain

better coverage of the input space. UART used two types of categories, namely: FAM

categories and EAM categories to enhance its performance.

UART used genetic algorithms to solve the category proliferation problem in ART.

This method relies on evolving a population of trained ART networks, and more specifically

Ellipsoidal ARTMAP (EAM) and Fuzzy ARTMAP (FAM) neural networks. The evolution of

trained FAM’s and EAM’s creates an ART network, referred to as UART.

In chapter 3 we defined a methodology of evolving trained FAM networks, resulting

in GFAM. This methodology was also applied successfully for the evolution of GAM

networks, resulting in UART. In chapter 3 we experimented with a number of databases that

 116

helped us identify good default parameter settings for the evolution of FAM The same

parameters and settings used in chapter 3 for the evolution of FAM networks (GFAM) were

also used for the evolution of FAM and EAM networks (UART).

Our experiments with UART indicate that UART is superior to a number of other

ART techniques (ssEAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced

into the literature to address the category proliferation problem in ART. More specifically,

UART gave a better generalization performance (in almost all problems tested) and a smaller

size network (in all problems tested), compared to these other ART techniques. What is also

worth mentioning is that UART outperformed these other ART techniques by requiring only

a fraction of the computations needed by these other networks.

Based on a simple comparison, UART also outperformed the other genetic ART

modules we introduced in chapter 3 and 4 on many databases and gave almost as good results

on the rest of the databases.

 117

6. ANALYSIS

In UART we have two types of categories that are competing for the attention of an

input pattern. In Georgiopoulos, et al., a very comprehensive analysis was presented that

explained the order according to which categories are chosen in Fuzzy ARTMAP. We repeat

the analysis here for the case when the category in the category representation layer of UART

is either an ellipsoid (EAM category) or a rectangle (FAM category). Actually, to simplify

the analysis we assume that the ellipsoid is a circle (special case of an ellipsoid).

We also compare the computational complexity associated with GFAM and the

computational complexity associated with the other ART algorithms that we have

experimented with in the previous sections. This comparisons allows one to see analytically

that the superior performance of GFAM is attained by reduced computations compared with

the computations needed for the other ART architectures.

6.1 UART Order of Search Analysis
During the training phase of UART, the order according to which categories are

accessed in UART depends on the type of categories considered, the closeness of an input

pattern to the categories, the size of the categories, and the value of the choice parameter β .

Before we present a number of theorems that explain the order according to which categories

are accessed we present a few assumptions and definitions, included below.

Assumptions:

 Only circles are considered here which are a special case of an ellipsoid.

 The D parameter of EAM is equal to M (dimensionality of the input pattens).

Definitions

 The size of a FAM category aR is size(aR) = | aR | = | aa uv − |. 6-1

 The size of an EAM category aE is size (aE) = r2 . 6-2

where r is the radius of aE

 118

Theorem 1: if an input pattern I is presented to a FAM category aR and an EAM category

aE and I lies inside both categories, then I will be represented by aE iff size(aE) < size

(aR) and will be represented by aR iff size(aE) > size (aR) (i.e. the category with the

smaller size).

Figure 6-1: Case # 1, a pattern inside both a FAM category and an EAM category

Theorem 1 Proof: Let us consider the first case where I will be represented by aE iff

size(aE) < size (aR), this implies that r2 < | aR |

Let’s start by calculating the CCF function of both categories where

β+−
−−−

=
rD
rrDT ca

E 2
}||||,max{ mI , 6-3

where c|||| mI − here is the distance between two points (since we are dealing with circles)

(i.e. c|||| mI − = 2||||1 mI −
µ

), 1=µ and β is a small positive number.

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI 6-4

Since the pattern is inside both categories then }||||,max{ cr mI − = r

and || ,oldawI ∧ = || ,oldaw

 119

And so

β+−
−−−

=
rD
rrDT ca

E 2
}||||,max{ mI =

β+−
−
rM

rM
2

2 6-5

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI =
ββ +−

−
=

+ ||
||

||
||

,

,

a

a

olda

olda

RM
RM

w
w 6-7

If aE is to be chosen before aR , then a
ET should be greater than a

FT . But,

β+−
−
rM

rM
2

2 >
β+−

−
||

||
a

a

RM
RM because rM 2− > || aRM − and the function

β+x
x 6-8

is an increasing function of its argument x; hence the result is proven.

The proof of the reverse scenario is straight forward, and it is omitted.

Theorem 2: if an input pattern I is presented to a FAM category aR and an EAM category

aE , and I lies inside aR but outside aE , then I will be represented by aE

iff)(βgdE < , where Ed =),(aEdis I ,
β
ββ

+
+

−=
a
babg)()(, =a || aRM − , and =b rM 2− .

Figure 6-2: Case # 2, a pattern inside a FAM category but outside an EAM category

 120

Theorem 2 Proof: Let’s start by calculating the CCF function of both categories as in 6-3

and 6-4 respectively

β+−
−−−

=
rD
rrDT ca

E 2
}||||,max{ mI

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI .

Since the pattern is inside aR and outside aE , then }||||,max{ cr mI − = c|||| mI − , and

|| ,oldawI ∧ = || ,oldaw

Consequently,

β+−
−−−

=
rD

rDT ca
E 2

|||| mI =
β+−
−−−

rD
rD

2
|||| 2mI =

β+−
−−

rM
drM E

2
2 6-9

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI =
ββ +−

−
=

+ ||
||

||
||

,

,

a

a

olda

olda

RM
RM

w
w 6-10

By substituting a and b with their corresponding equals, in the above equations we get

a
ET =

β+
−

b
db E 6-11

and

a
FT =

β+a
a 6-12

If aE is to represent the input pattern then a
ET should be greater than a

FT , hence,

β+
−

b
db E >

β+a
a 6-13

which implies that

β
β

+
+

−<
a
babdE

)(6-14

 121

Theorem 3: if an input pattern I is presented to a FAM category aR and an EAM category

aE , and I lies inside aE but outside aR , then I will be represented by aR

iff)(βkdF < , where Fd =),(aRdis I ,
β
ββ

+
+

−=
b
abak)()(, =a || aRM − , and =b rM 2− .

Figure 6-3: Case # 3, a pattern inside an EAM category but outside a FAM category

Theorem 3 Proof:

Let’s start by calculating the CCF function of both categories in 6-3 and 6-4

respectively

β+−
−−−

=
rD
rrDT ca

E 2
}||||,max{ mI

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI .

Since the pattern is inside aE then }||||,max{ cr mI − = r . Furthermore, since the pattern is

outside aR ,

|| ,oldawI ∧ = || ,newaRM − = −− || aRM Fd 6-15

Consequently,

 122

β+−
−−−

=
rD

rDT ca
E 2

|||| mI =
β+−

−
rM

rM
2

2 6-16

and

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI =
ββ +−

−−
=

+ ||
||

||
||

,

,

a
F

a

olda

olda

RM
dRM

w
w 6-17

By substituting a and b for their values in the 6-16 and 6-17 we get

a
ET =

β+b
b 6-18

and

a
FT =

β+
−

a
da F 6-19

If aR is to represent the pattern then a
FT should be greater than a

ET , hence,

β+
−

a
da F >

β+b
b which implies that

β
β

+
+

−<
b
abadF

)(6-20

Theorem 4: if an input pattern I is presented to a FAM category aR and an EAM category

aE , and I lies outside both aR and aE , then I will be represented by aE

iff)(βhdE < , and will be represented by aR iff)(βldF < , where Ed =),(aEdis I ,

),(a
F Rdisd I= ,

β
ββ

+
+−

−=
a

bdabh F))(()(,
β

ββ
+

+−
−=

b
adbal E))(()(, =a || aRM − ,

and =b rM 2− .

 123

Figure 6-4: Case # 4, a pattern outside both FAM and EAM categories

Theorem 4 Proof:

Let’s start by calculating the CCF function of both categories in 6-3 and 6-4

respectively

β+−
−−−

=
rD
rrDT ca

E 2
}||||,max{ mI

and

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI .

Since the pattern is outside both categories, then }||||,max{ cr mI − = c|||| mI − , and

|| ,oldawI ∧ = || ,newaRM − = −− || aRM Fd

Consequently,

β+−
−−−

=
rD

rDT ca
E 2

|||| mI =
β+−
−−−

rD
rD

2
|||| 2mI =

β+−
−−

rM
drM E

2
2 6-21

And

β+
∧

=
||

||
,

,

olda

olda
a

FT
w

wI =
ββ +−

−−
=

+ ||
||

||
||

,

,

a
F

a

olda

olda

RM
dRM

w
w 6-22

By substituting a and b with their values in 6-21 and 6-22 we get

 124

a
ET =

β+
−

b
db E 6-23

and

a
FT =

β+
−

a
da F 6-24

If aE is to represent the input pattern then a
ET should be greater than a

FT , hence,

β+
−

b
db E >

β+
−

a
da F which implies that

β
β

+
+−

−<
a

bdabd F
E

))((6-25

The second case is obvious.

 Now we present the three results for three general values of β namely: very small

value of β (close to zero), very large value of β (close to infinite) and intermediate values

of β (any value between 0 and infinite). To produce these results we rely on the three

theorems we have proven above.

Result 1: If an input pattern is presented to a UART architecture, with a very small β (close

to zero), then between a FAM category aR and an EAM category aE , the input pattern will

make the following choices:

a. If the pattern is inside both categories the pattern will be represented by the category

with the smaller size.

b. If the pattern is inside the FAM category aR and outside the EAM category aE , the

pattern will be represented by aR .

c. If the pattern is inside the EAM category aE and outside the FAM category aR , the

pattern will be represented by aE .

 125

d. If the pattern is outside both categories then, it will be represented by aE iff

Ed <
a

bd F , as a special case, if the size of aR is equal to the size of aE then the

pattern will be represented by the category that is closer to the pattern (i.e. the

category whose distance to the pattern is smallest)

Proof:

 Result 1a: Theorem1 states that if the pattern is inside both categories it will be

represented by the category with the smallest size regardless of the value of β .

 Result 1b: Theorem 2 states that the pattern will be represented by aE iff

)(βgdE < , but 0)(0lim =→ββg , and since Ed can never be less than zero then it is

obvious that aR will represent the pattern

 Result 1c: Theorem 3 states that the pattern will be represented by aR iff)(βkdF < ,

but 0)(0lim =→ββk , and since Fd can never be less than zero then it is obvious that

aE will represent the pattern

 Result 1d: Theorem 4 states that the pattern will be represented by aE iff

)(βhdE < , but
||

)2()(0lim a
FF

RM
drM

a
bdh

−
−

==→ββ . Furthermore, if ||2 aRr = then

0lim)(→ββh becomes Fd .

Result 2: If an input pattern is presented to a UART architecture, with a very large β (close

to infinity), then between a FAM category aR and an EAM category aE , the input pattern

will make the following choices:

a. If the pattern is inside both categories the pattern will be represented by the category

with the smaller size.

 126

b. If the pattern is inside the FAM category aR and outside the EAM category aE , the

pattern will be represented by aE iff rRabd a
E 2|| −=−< or ||2 a

E Rrd <+ .

c. If the pattern is inside the EAM category aE and outside the FAM category aR , the

pattern will be represented by aR iff ||2 a
F Rrbad −=−< or rRd a

F 2|| <+ .

d. If the pattern is outside both categories then, it will be represented by aE iff

Ed < Fdab +− , or equivalently if ||2 a
FE Rdrd +<+ . As a special case, if the size

of aR is equal to the size of aE then the pattern will be represented by the category

that is closer to the pattern (i.e. the category whose distance to the pattern is smallest)

Proof:

 Result 2a: Theorem1 states that the pattern if inside both categories will be

represented by the one with smaller size regardless of the value of β .

 Result 2b: Theorem 2 states that the pattern will be represented by aE iff

)(βgdE < , but abg −=∞→ββ lim)(. Equivalently this rule says that the pattern will

be represented by aE iff ||2 a
E Rrd <+ . This rule reinforces the well-known fact

with ART architectures that structures of smaller size are preferred by ART.

 Result 2c: Theorem 3 states that the pattern will be represented by aR iff)(βkdF < ,

but bak −=∞→ββ lim)(. Equivalently this rule says that the pattern will be represented

by aR iff rRd a
F 2|| <+ . This rule reinforces the well-known fact with ART

architectures that structures of smaller size are preferred by ART.

 Result 2d: Theorem 4 states that the pattern will be represented by aE iff)(βhdE < ,

but Fdabh +−=∞→ββ lim)(. Equivalently, this rule says that the pattern will be

represented by aE iff ||2 a
FE Rdrd +<+ . This rule reinforces the well-known

 127

fact with ART architectures that structures of smaller size are preferred by ART. Note

that if the size of aR is equal to the size of aR , then ||2 aRr = , and consequently,

aE will be chosen over aR , if and only if the distance of the pattern from aE is

smaller than the distance of the pattern from aR . This statement also reinforces the

common knowledge that in ART distances of input patterns from the ART structures

matter (and the smaller the distance of a pattern from a structure the more likely it is

for this structure to represent the input pattern).

Result 3: If an input pattern is presented to a UART architecture, with intermediate β values

(i.e. ∞<< β0), then between a FAM category aR and an EAM category aE , the input

pattern will make the following choices:

a. If the pattern is inside both categories the pattern will be represented by the category

with the smaller size.

b. If the pattern is inside the FAM category aR and outside the EAM category aE , the

pattern will be represented by aE iff Ed <
β
ββ

+
+

−=
a
babg)()(. Where)(βg is a

non-decreasing function of β and abg −<<)(0 β (assuming that size(aE) <

size(aR)).

c. If the pattern is inside the EAM category aE and outside the FAM category aR , the

pattern will be represented by aR iff
β
ββ

+
+

−=
b
abak)()(. Where)(βk is a non-

decreasing function of β and bak −<<)(0 β (assuming that size(aE) > size(aR)).

 128

d. If the pattern is outside both categories then, it will be represented by aE iff

Ed <
β

ββ
+

+−
−=

a
bdabh F))(()(, where)(βh is a non-decreasing function of β

and F
F dabh
a

bd
+−<<)(β (assuming that size(aE) < size(aR).

Proof:

 Result 3a:Theorem1 states that the pattern if inside both categories will be

represented by the one with smaller size regardless of the value ofβ .

 Result 3b: Theorem 2 states that the pattern will be represented by aE iff

)(βgdE < . To prove that)(βg is non-decreasing function we take the derivative of

)(βg as follows: 2)(
)()(

ββ
β

+
−

=
a

aba
d

dg , which is clearly always positive based on the

assumption size(aE) < size(aR) => ab > , and knowing the fact that 0≥a and

0≥b . Since 0)(0lim =→ββg and abg −=∞→ββ lim)(, it follows that

abg −<<)(0 β .

 Result 3c: Theorem 3 states that the pattern will be represented by aR iff)(βkdF < .

To prove that)(βk is non-decreasing function we take the derivative of)(βk as

follows: 2)(
)()(

ββ
β

+
−

=
b

bab
d

dk , which is clearly always positive based on the assumption

size(aE) > size(aR) => ab < . Since 0)(0lim =→ββk and bak −=∞→ββ lim)(, it

follows that bak −<<)(0 β .

 Result 3d: Theorem 4 states that the pattern will be represented by aE iff)(βhd E < .

To prove that)(βh is non-decreasing function we take the derivative of)(βh as

 129

follows: 2)(
))(()(

ββ
β

+
−−

=
a

daab
d

dh F , which is clearly always positive based on the

assumption size(aE) < size(aR) => ab > , and knowing the fact that Fda ≥ . Since

a
bdh F=→0lim)(ββ and Fdabh +−=∞→ββ lim)(, it follows that

F
F dabh
a

bd
+−<<)(β .

6.2 Time Complexity Analysis
The process of finding an optimal or even suboptimal solution could be very lengthy

and complicated, in this research we used GA to get this solution in previous research we

used simpler method, we trained the network a large number of times, starting by an initial

value for all the parameters of the network and then incrementing these parameters by

specific increments, in an effort to exhaust all the combination based on the specific

increments. Both approaches gave good results although GFAM approach has better solutions

in most cases.

Let’s assume that trainT of a FAM network is)3(NO , and testT is)2(NO , where N is the

number of nodes. GFAM simply works as follows

For 1 to sizePop // # of chromosomes in a population

 Adjust parameters

Train a FAM network

For 1 to maxGen // # generations in a run

 For 1 to sizePop

 Apply GA Operators // TOperator and is O(N)

 Decode Chromosome to FAM //TDecode and is O(N)

 130

 Test FAM //Ttest

 Encode FAM to Chromosome //TEncode and is O(N)

And hence, the time complexity of GFAM is roughly

)(
*** max

TencodeTtestTdecodeToperator
PopGenTtrainPop sizesize

+++
+

Since sizePop and maxGen are variables we also assume that they are factors of N as follows

NcPopszie *8= and NcGen *9max = by substituting values of individual complexities we

get GFAM time as
)(**8**9

89**8
NTtestNNNcNc

TtrainNcNcTtrainNc
++++

+
 6-26

If we substitute the values from trainT and testT

)2*7(

893*4**8

NNcNN

NcNcNcNc

+++

+ which could be simplified as

434 *12*11*10 NcNcNc ++ 6-27

which is clearly)4(NO

For the Exhaustive Search (Linear increment of parameters) approach the algorithm is

roughly like this

For 1 to P1 // P1 # number of increments of parmaeter1

 Increment parameter1

 For 1 to P2 // P2 # number of increments of parmaeter2

 Increment parameter2

 :

 For 1 to Pn // Pn # number of increments of parametern (n is

 //the number of parameters for a specific classifier)

 Increment parametern

 131

 Train FAM

 Test FAM

In case of ssFAM we have four parameters (epsilon, order, rho and alpha) so we have

four FOR statements and hence the exhaustive search time is

)(*4*3*2*1 TtestTtrainPPPP + 6-28

Since P1 .. P4 are all variables dependent on the number of increments we will assume them

as factors of N, and so 3 becomes

)(*4*)(

43**2**1

TtestTtrainNcpTtestTtrain

NcpNcpNcpNcp

+⇒+
 6-29

where cp, cp1 … cp4 are all constants

If we substitute values from trainT and testT in 4 we get

67234 *14*13)*7*4(** NcNcNcNcNcp +⇒+ 6-30

which is)(7NO

6-27 and 6-30 show us that there is a big difference between the time complexity of

GFAM and the linear increment of properties approach.

Notice that the above analysis is a rough estimate and is only meant to show the

difference between the two approaches. Also notice that here we only considered ssFAM

which happened to have only four parameter to change, other networks could have five or

more parameters and so their time complexity will be even worse than that of ssFAM while

GFAM’ frame work does not get affected by the number of parameters.

We also assumed that the number of nodes N is constant which absolutely not the

case, however it is important to mention that in the training process N grows from 1 to a large

number, while in the testing process N is constant. It is also important to know that in the

GFAM approach the N tends to get smaller and smaller as the generations is incremented

 132

(since we optimize on it) , until it converges to a very small number, this leads to even shorter

time when testing the chromosome (FAM networks).

It is arguable that the number of increments for each parameter in the linear approach

could be chosen to be a small number, this is true, but this defeats the purpose of this

approach, because it was meant to try as many parameter combinations as possible to get the

best performing network. And so the larger the number of increments of every parameter the

better is the chance to find an optimal or suboptimal solution.

 133

7. USER INTERFACE

It would have been difficult to achieve any of the results in this dissertation without

the use of a custom built, easy to use, flexible and scalable user interface. In this chapter we

present four similar in concept, but different in functionality user interface programs that

were used to achieve the goals of this work.

GFAM UI, GEAM UI, GGAM UI and UART UI were developed and tested to find

the best GFAM, GEAM, GGAM, and UART networks respectively. All four programs were

developed using the C++ language and using the Borland CBuilder 6 software development

kit. The user manual is presented in appendix E.

7.1 GFAM User Interface
The GFAM UI is a windows program that allows the user to build a generation of

trained FAM networks of any number of individuals, select the training, validation and

testing files, use different parameters to train the networks, define the genetic parameters, run

the genetic operators, display the categories of any of the chromosomes along with the

testing or validation patterns, display the classification borders of any chromosome, manually

delete one or all the categories of a specific chromosome, and manually add categories to any

chromosome. The program also allows the user to run the GA for a specific number of

generations without stopping, or the user could define a number of generations at which the

program stops and the then could continue per user command, or to step one generation at a

time. The program shows the results of the best network whenever it stops, and also shows

the results of individuals when they are displayed. The program logs a variable amount of

information to an automatically named file, as follows. In the directory where the program

resides it looks for a file called GFAM0.csv, if it finds it, it then looks for GFAM1.csv and so

on, until it looks for a file called GFAMn.csv (n is a positive number) and it does not find it,

 134

it creates this file and logs the data to it. The logged data can be customized by the user.

Figure 7-1 shows the GFAM interface program.

Figure 7-1: GFAM User interface

Now we define the controls on the window of Figure 7-1,

7.1.1 GFAM Controls

 # Features: The user inserts here the number of features in the problem at hand.

 Training File: The user inserts here the path of the file that contains the training data.

 Validation File: The user inserts here the path of the file that contains the validation

data.

 Testing File: The user inserts here the path of the file that contains the testing data.

 Browse: These three buttons are used to open an Open File dialogue that allows the

user to select the file from its location.

 135

Figure 7-2: An open dialogue window, allows the user to select the training, validating and testing files

 Min RHO: Is used to train the first FAM network in a generation, and also used to

determine the RHO’ increment for the following networks. The default is 0.1.

 Max RHO: Is used to train the last FAM network in a generation, and also used to

determine the RHO’ increment for the following networks. The default is 0.97.

 Beta : Is used to set the FAM network β parameter. The default is 0.1.

 RHO: Displays the ρ parameter of the current network or chromosome.

 PopSize: Determine the number of chromosomes in a single generation. The default is

set to 20.

 CatMin: The minimum number of categories a chromosome is allowed to have, used

in the fitness function calculations. The default is set to 1.

 CatMax: The maximum number of categories a chromosome is allowed to have, used

in the fitness function calculations. The default is set to 300.

 GenMax: The maximum number of generation the program has to process before it

stops. The default is set to 500.

 Mutate (check box): If checked tells the program to use mutation in its calculations.

Checked by default.

 136

 AddCat (check box): If checked tells the program to use CatAdd operator in its

calculations. Checked by default.

 DelCat (check box): If checked tells the program to use CatDell in its calculations.

Checked by default.

 Random Ptrns Order (check box): If checked tells the program to randomly present

the patterns when training the networks of the initial generation. Checked by default.

 Cat Mut Prob (x/ # of Cat’s): This number (a positive integer) is used to calculate the

probability of category mutation. This number divided by the number of categories in

the chromosome is the probability of mutation. The default number is set to 5. The

probability of mutation is never allowed to increase beyond the value of 1.0.

 Add Cat Prob: The probability of adding a category to a specific chromosome.

Defaults to 0.1.

 Del Cat Prob: The probability of deleting a category from a specific chromosome. The

default value is set to 0.1.

 # of Elites: Is the number of chromosomes that should transfer from one generation to

the next one, without any modification. Usually the best chromosomes in a

generation. The default value is set to 3.

 Interrupt Every (check box): If checked tells the program to stop after running a

specific number of generations. The edit box that goes with it used to allow the user to

insert any number of generations. Checked by default, the number of generations to

interrupt after is set to 50.

 Current Generation: Displays the number of the current generation.

 Log Number of Categories (check box): If checked tells the program to log the

number of categories of every chromosome in every generation. Not Checked by

default.

 137

 Log Individual PCC (check box): If checked tells the program to log the accuracy (on

the validation set) of every chromosome in every generation. Not Checked by default.

 Log Individual Fitness (check box): If checked tells the program to log the value of

the fitness function of every chromosome in every generation. Not Checked by

default.

 Create Init Pop (Button): When clicked the program trains sizePop FAM networks.

 Optimize (Button): When clicked the program starts the genetic optimization process,

it goes on until the number maxGen is reached, if the interrupt every check box is not

checked. If the interrupt every check box is checked the program will stop every 50

generations and would display the results of the best chromosome (see e.g, Figure 7-

3) .

Figure 7-3: A dialogue box that displays the results after an interruption of the process

If the user clicks the No button the program resumes its execution, otherwise the

program stops at the current generation. If the optimize button is clicked again the

program resumes its execution until it reaches maxGen or until it is interrupted again.

 Next Gen (Button): Allows the user to run the optimization process one generation at

a time.

 Finish (Button): Does some cleaning and finishes logging some information in the

file.

 138

 Draw Chroms (Button): This button allows the user to see the categories that every

chromosome has so far, and hence, it could be used to monitor the progress of the

process and to see how well every chromosome is doing. Figure 7-4 shows the

outcome when this button is clicked. This button displays categories only in 2D. If a

problem has more than 2 features only the first 2 components of each vector will be

displayed. Also, the graph window that appears when the user clicks this button has

additional functionality that will be explained later.

Figure 7-4: A 2D Graph that displays the data points as well as the categories

Figure 7-5: Same graph as in figure 7-4 but displaying the categories only

 139

 Get Boundaries (Button): This feature allows the user to visually see how the network

is classifying the input space. This feature works only for 2D problems. Figure 7-6

shows the outcome when this button is clicked. To achieve this goal, the program

generates a list of 10000 patterns as a matrix with (0.01) increment on both x and y

axis, and then feeds this list to the network and displays the way the network has

classified these patterns by coloring them differently (in the figure two different

colors were needed since this was a two class problem).

Figure 7-6: A 2D graph displaying the classification borders of this GFAM as well as the categories

 Run on Testing File (Button): Allows the user to run the performance phase on the

selected testing file.

 Clear GFAM (Button): Clears the memory so that another problem can be checked.

All of the above were controls and their functionality on the main window. The graphing

window (Figure 7-4) has some interesting functionality, as shown below.

 Draw Cats Only (Check Box): If checked the window will only graph the categories

but not the patterns, otherwise, the categories as well as patterns (of the validation set)

are displayed.

 140

 Previous GFAM (Chromosome) (Button): Displays the content of the previous

network.

 Next GFAM (Chromosome) (Button): Displays the content of the next network

 Status Bar: at the bottom of the window, the chromosome’ accuracy and number of

categories are shown.

 Del All (Button): This feature allows the user to delete all the categories of the current

chromosome. (this feature is used to manually add categories and see how that affect

the classification accuracy and boundaries).

 Del Cat: Deletes only one category from the current chromosome.

 Add Cat: Brings up a dialogue box that has few controls to allow the user to manually

add a category to the current chromosome. Figure 7-9, explains this feature. After

clicking the Del All button.

Figure 7-7: After pushing the “Del All” button, the GFAM does not have any more categories

 141

Figure 7-8: This figure shows figure 7-7, but only displaying the categories (none in this case)

 after clicking the Add Cat button

Figure 7-9: An add category dialogue box

Where: point 1 is the u vector, point 2 is the v vector. The Ok button adds the

category to the chromosome:

Figure 7-10: This figure is the same as figure 7-9 but after filling in some values

 142

After clicking the ok button:

Figure 7-11: This figure shows the manually added category

 Here is how the boundaries look now

Figure 7-12: This figure shows the classification borders of the manually added category

The accuracy here was 50% because we only had two classes, and the number of

patterns is divided 50-50 between them. After adding another category

 143

Figure 7-13: This figure shows the values of the endpoints of the second manually added category

Figure 7-14: This figure shows the two manually added categories

Figure 7-15: This figure shows the classification borders of the manually added categories

 144

7.1.2 GFAM UI Abstract Design

GFAM UI consists of 7 main objects. These are:

 GFAMForm object: The main window object that shows most of the controls and

allows for most of the user interaction.

 GraphForm object: The graph window, displays categories and classification

boundaries, and allows manual deletion and addition of categories to any

chromosome.

 FNode object: Represent a category in FAM network.

 PtrnNode object: Represent an input pattern.

 Chrom object: represent a chromosome, a collection of categories encoded in a

special format.

 Cat object: Represent a FAM category after encoding.

 AddCatForm object: The Form that allows the user to insert the categories properties.

Now we present these seven objects in more details:

7.1.2.1 GFAMForm Object
This is the main window object and has most of the controls listed in 7.1.1. Its

functionally is briefly described below.

 Validates the inputs.

 Creates the trained FAMs and stores them.

 Optimizes the generation of chromosomes to get the best GFAM.

 Displays the results and prepare the data for the graphing object.

The following is a list of the most important methods this object has:

 openFile: This method opens the files and reads the data creates PtrnNode objects and

stores them into vectors.

 initPopClick: Creates FAM parameters and start the loop of creating FAMs.

 buildFam: Trains a FAM network.

 145

 crop: Deletes all the categories that encoded one pattern only.

 decode: Takes a chromosome as an input and converts it to a FAM network.

 optimize: Optimizes the initial generation of trained FAMs.

 crossover: This function does the crossover process as described above.

 addCat: Adds a category to a given chromosome.

 delCat: Deletes a category from a given chromosome.

 mutation: This function mutates a given chromosome as described earlier.

 PrepBoundaries: Creates a list of 10000 patterns as a grid in 2D, their values are as

follows (0,0),(0,0.01)…(0,1),(0.01,0)…(0.01,1)…(1,1). It also initialize some other

variables for the graphForm object to use.

 drawCats: Initializes some variables and calls the graphForm object.

 showBoundaries: Initializes some variables and calls the graphForm object.

 ~GFAMForm: Destructor function.

This object also has many properties (Variables) and below is a list of the most important

ones:

 A vector of FNode objects: Stores FNode objects as a FAM network.

 A vector of strings: Stores the names of the classes in a problem.

 A vector of PtrnNode objects: Stores the training patterns.

 A vector of PtrnNode objects: Stores the testing patterns.

 A vector of Chrom object pointers: Stores pointers to all the created chromosomes in

specific generation.

 A vector of Chrom object pointers: Stores pointers to all the chromosomes in temp

generation.

 A vector of integers: Stores the predicted labels after running the performance phase.

 An integer: Stores the number of created categories for a specific network.

 146

These variables and many others are used in this object. However, since a detailed design of

this UI is not the purpose of this dissertation, the details are not shown here.

7.1.2.2 GraphForm Object
This object is much simpler than the GFAMForm object, it is responsible for showing

the categories, the validation patterns, and the classification boundaries of a specific

chromosome. It is also responsible of allowing the user to manually add and delete categories

from the chromosome. The following is a list of the main methods and variables of this

object:

 pbPaint: This function displays the categories along with the validation patterns or the

grid of automatically generated patterns along with the categories (classification

boundaries). This function is one of the most difficult functions in this UI, since one

has to manually convert the origin of the graphing object such that the (0,0) point is

the bottom left corner.

 nextClick: This functions displays the graph of the next chromosome.

 previousClick: This function displays the graphs of the previous chromosome.

 addcClick: This function calls the AddCatForm object so that the user can insert the

information of the new category.

 delAllCat: This functions invokes the del function of the Chrom object which deletes

all the categories from that chromosome.

 ~GraphForm: Destructor function.

Few variables exist in this object and the following is a list of the main ones:

 An Integer c: Is the index of the current chromosome.

 An array of Point object pointers: Stores the points that are displayed in the graphing

area.

 147

 A pointer to GFAMForm object: This object gives the GraphForm object access to

many functions and variables from the main window.

 A boolean bounds: Tells the object if the categories are to be displayed or the

classification boundaries.

7.1.2.3 FNode Object
This object represents a FAM category, A list of the main methods and variables in

this object is listed below.

 FNode: This is the constructor. It creates a new FNode object and initializes it either

as a new category (single point), or as a template where the information of the

template is passed as an argument to this function.

 calc_scaled_CMF: This function calculates the CMF value of this category.

 calc_CCF: This function calculates the CCF value of this category.

 update: This function updates the category during the training session.

 ~FNode: Destructor function.

The main variables are:

 Integer M: The number of features.

 Double Beta: This is the β parameter.

 Double learning_rate: This is set to 1, fast learning scenario.

 Array of Doubles U: Represents the u vector in FAM.

 Array of Doubles V: Represents the v vector in FAM.

 Integer Label: represents the category label.

7.1.2.4 PtrnNode Object
This is a very simple object that represent an input pattern. Here is a list of its

functions and variables:

 148

 PtrnNode: This is the constructor. It initializes the object from the input arguments it

gets.

 ~PtrnNode: Destructor function.

This object has the following variables:

 An array of doubles w: This array holds the value of the features of an input pattern.

 Integer classIndex: This integer holds the label of the pattern.

 Integer wc: It represents the number of features this pattern has.

7.1.2.5 Chrom Object
This object represents a chromosome, which is a collection of categories as shown in

Figure 4-1. A chromosome object has the following functions:

 Chrom: It is the constructor of this object, and it has a very important functionality

that is converting the FNode object (FAM categories) into Cat objects that are suitable

for genetic manipulation. There is another version of this function that creates an

empty Chrom object.

 Del: This function deletes all the categories the Chrom object has. This operation is

used when manual addition and deletion of the categories is invoked.

 ~Chrom: Destructor function.

A Chrom object has the following variables:

 A vector of Cat object pointers: This vector holds pointers to all Cat object this

chromosome has.

 Double fit: This variable holds the fitness value of this chromosome.

 Double rho: This holds the vigilance parameter of the FAM network represented by

this chromosome.

 Integer size: This is the number of categories in this chromosome.

 Double accuracy: This variable holds the accuracy of this network.

 149

7.1.2.6 Cat Object
This is an object that resembles an encoded category. This category is ready for

genetic manipulations, and here is a list of its functions:

 Cat: This is the constructor, and it takes as an input an FNode object and extracts the

data from it and saves it in its internal variables. Another version of it takes as an

input a Cat object pointer, and this one copies all the information of the original object

to the newly created one.

 pointCat: Returns a Boolean indicating whether or not this category is a point

category.

 ~Cat: Destructor function.

The following variables exist in this object:

 Array of Doubles v: obvious.

 Array of Doubles u: obvious.

 Integer l: class label.

 Integer s: number of features.

7.1.2.7 AddCatForm Object
This object is a small form that has six controls to all the user to insert values for

manually added categories. It has one function other than constructor that returns a one if a

some values where inserted.

In the following sections, the user interface of GEAM, GGAM and UART will be discussed

very briefly, since they are very similar to the UI of GFAM. We will only focus on the

differences between the two UI’s.

7.2 GEAM User Interface
 GEAM UI is a windows program that allows the user to build a generation of trained

EAM networks of any number of individuals, select the training, validation and testing files,

 150

use different parameters to train the networks, define the genetic parameters, run the genetic

operators, display the categories of any of the chromosomes along with the testing or

validation patterns, display the classification borders of any chromosome, manually delete

one or all the categories of a specific chromosome, and manually add categories to any

chromosome. The program also allows the user to run a specific number of generations

without stop, or run a specific number of generations at which the program stops and then

continue per user command, or finally to run one generation at a time. The program shows

the results of the best network whenever it stops, and also shows the results of individuals

when they are displayed. The program logs a variable amount of information to an

automatically named file, as follows. In the directory where the program resides it looks for a

file called GEAM0.csv, if it finds it looks for a file called GEAM1.csv, and so on, until it

looks for a file called GEAMn.csv (n is a positive number) and if it does not find it, it creates

it and logs the data to it. The logged data can be customized by the user. Figure 7-16 shows

the GEAM interface program.

Figure 7-16: GEAM user interface

 151

7.2.1 GEAM Controls

 Here we only define the controls on the window of Figure 7-16, that are different

from those found in GFAM UI.

 Mu: This parameter is the axis ratio of EAM. The default is set to 1, meaning that the

ellipsoids in EAM are actually circles.

 Beta : This parameter is used to set the EAM network β parameter. The default is set

to 0.1.

 Create Init Pop (Button): When clicked the program trains sizePop EAM networks.

 Draw Chroms (Button): This button allows the user to see the categories that every

chromosome has so far, and hence, it could be used to monitor the progress of the GA

process and to see how well every chromosome is doing. Figure 7-17 shows the

outcome when this button is clicked (this button displays categories only in 2D; if a

problem has more than 2 feature, the first 2 components of each vector will be

displayed. Also, the graph window that appear when the user clicks this button has

significant functionality that will be explained later).

Figure 7-17: a 2D graph displaying a GEAM network; note here ellipsoids are represented by circles

 Get Boundaries (Button): This feature allows the user to visually see how the network

is classifying the input space. This feature works only for 2D problems. Figure 7-18

 152

shows the outcome when this button is clicked. To achieve this goal, the program

generates a list of 10000 patterns as a matrix with (0.01) increment on both x and y,

and then feeds this list to the network and displays the way the network has classified

these patterns by coloring them differently (in the fugure two different colors were

needed since this was a two class problem).

Figure 7 -18: A 2D graph showing the classification borders of the GEAM network

 Clear GEAM (Button): Clears the memory so that another problem can be checked.

The graphing window of GEAM UI (Figure 7-17) has similar functionality to that of a

GFAM UI. The differences are discussed below.

 Previous GEAM (Chromosome) (Button): Displays the content of the previous

network.

 Next GEAM (Chromosome) (Button): Displays the content of the next network.

 Add Cat: Brings up a dialogue box that has some controls to allow the user to

manually add a category to the current chromosome. Figure 7-20 explains this feature.

After clicking the Del All button.

 153

Figure 7 -19: This figure shows the GEAM network after pushing the “Del All” button

 After clicking the Add Cat button, we get the following screen:

Figure 7-20: An add GEAM category dialogue box

Where, Center is the m vector, Direction is the d vector, Class edit box is the label

of the category, Mu edit box is the axis ratio and the Rad edit box is the radius. The

Ok button adds the category to the chromosome:

 154

Figure 7-21: Manually filling in values for the first category

After clicking the ok button, we get the following screen:

Figure 7-22: GEAM network after manually adding a category

 Now, the network classification boundaries look as follows:

 155

Figure 7-23: Classification borders of the manually added category

The accuracy here was 50% because we only have two classes here, and the number

of patterns is divided 50-50 between them.

Figure 7-24: Manually adding a new category

After adding another category we obtain the information depicted in the following

 screen

 156

Figure 7-25: GEAM network after adding the second category

Figure 1-26: Classification borders of the GEAM network

7.2.2 GEAM UI Abstract Design

GEAM UI consists of 7 main objects. These objects are:

 GEAMForm object: The main window object that shows most of the controls and

allows for most of the user interaction.

 GraphForm object: This is the graph window that displays categories and

classification boundaries, and allows manual deletion and addition of categories to

any chromosome.

 ENode object: Represents a category in an EAM network.

 157

 PtrnNode object: Represents an input pattern.

 Chrom object: Represents a chromosome, a collection of categories encoded in a

special format.

 Cat object: Represents a EAM category after encoding.

 AddCatForm object: This is the Form that allows the user to insert the categories

properties.

Now we present these seven objects in more detail:

7.2.2.1 GEAMForm Object
This is the main window object and it has most of the controls listed in 7.2.1. It

employs a number of methods and possesses capabilities that allow for its functionality. This

functionality is briefly described in the following points:

 Validates the inputs.

 Creates the trained EAMs and stores them.

 Optimizes the generation of chromosomes to get the best GEAM.

 Displays the results and prepare the data for the graphing object.

The following is a list of the most important methods this objects has that are different from

those described in the GFAM UI:

 initPopClick: Creates EAM parameters and start the loop of creating EAMs.

 buildEAM: Trains an EAM network.

 decode: Takes a chromosome as an input and converts it to an EAM network.

 optimize: Optimizes the initial generation of trained EAMs.

 mutation: This function mutates a given chromosome as described earlier in this

manuscript.

 ~GEAMForm: Destructor function.

This object has one variable that is not listed in those described in GFAM UI:

 158

 A vector of ENode objects: Stores ENode objects as an EAM network.

7.2.2.2 GraphForm Object
This object is very similar to the GraphForm Object in GFAM UI. However this

object displays ellipsoids rather than rectangles for any category.

7.2.2.3 ENode Object
This object represents an EAM category. In the following we describe a list of the

main methods and variables this object uses:

 ENode: This is the constructor, it creates a new ENode object and initializes it either

as a new category (single point), or as a template where the information of the

template is passed as an argument to this function.

 calc_scaled_CMF: This function calculates the CMF value of this category.

 calc_CCF: This function calculates the CCF value of this category.

 update: This function updates the category during the training session.

 ~GNode: Destructor function.

The main variables are:

 Integer M: The number of features.

 Double Beta: This is the β parameter.

 Double learning_rate: This is set to 1, corresponding to fast learning.

 Array of Doubles m: Represents the m vector in EAM.

 Array of Doubles d: Represents the d vector in EAM.

 A double r: Represents the radius.

 A double mu: Represents the axis ratio.

 Integer Label: Represents the category label.

 159

7.2.2.4 PtrnNode Object
This object is copy of the PtrnNode object used in GFAM UI.

7.2.2.5 Chrom Object
This object represents a chromosome, which is a collection of categories as shown in

figure 4-1. The only function that is different from those in the Chrom Object in GFAM UI

is:

 Chrom: This is the constructor of this object. It has a very important functionality that

is converting the FNode object (EAM categories) into Cat objects that are suitable for

genetic manipulation. There is another version of this function that creates an empty

Chrom object.

This object has the same variables as those of Chrom Object in GFAM UI.

7.2.2.6 Cat Object
This is an object that resembles an encoded category. This category is ready for

genetic manipulations. Here is a list of its functions:

 Cat: This is the constructor, it takes as an input a ENode object and extracts the data

from it and save in its internal variables. Another version of it takes as an input a Cat

object pointer; this one copies all the information of the original object to the newly

created one.

 pointCat: Returns a Boolean indicating whether or not this category is a point

category.

 ~Cat: Destructor function.

The following variables exist in this object:

 Array of Doubles m: Obvious.

 Array of Doubles d: Obvious.

 Double r: This is the radius of the EAM category.

 Double mu: This is the axis ratio of the EAM category.

 160

 Integer l: This is the class label of the EAM category.

 Integer s: Represents the number of features (i.e. the problem dimensionality).

7.2.2.7 AddCatForm Object
This object is a small form that has eight controls to allow the user to insert values for

manually added categories. It has one function other than the constructor that returns a one if

some values were inserted.

7.3 GGAM User Interface
 GGAM UI is a windows program that allows the user to build a generation of trained

GAM networks of any number of individuals, select the training, validation and testing files,

use different parameters to train the networks, define the genetic parameters, run the genetic

operators, display the categories of any of the chromosomes along with the testing or

validation patterns, display the classification borders of any chromosome, manually delete

one or all the categories of a specific chromosome, and manually add categories to any

chromosome. The program also allows the user to run a specific number of generations

without stop, or the user could define a number of generation at which the program stops and

the then could continue per user command, or to step one generation at a time. The program

shows the results of the best network whenever it stops, and also shows the results of

individuals when they are displayed. The program logs a variable amount of information to

an automatically named file, as follows. In the directory where the program resides, it looks

for a file called GGAM0.csv, if it finds it looks for a file called GGAM1.csv, and so on, until

the time comes to look for a file called GGAMn.csv (n is a positive number); if it does not

find the file, the program creates it, and logs the data to it. The logged data can be customized

by the user. Figure 7-27 shows the GGAM interface program.

 161

Figure 7-27: GGAM user interface

7.3.1 GGAM Controls

 Here we define the controls on the window of Figure 7-27, that are different from

those found in GFAM UI.

 Create Init Pop (Button): When clicked the program trains sizePop GAM networks.

 Draw Chroms (Button): This button allows the user to see the categories that every

chromosome has so far, and hence, it could be used to monitor the progress of the

process and observe how well every chromosome is doing. Figure 7-28 shows the

outcome when this button is clicked (this button displays categories only in 2D, if a

problem has more than 2 features and the button is clicked the first 2 components of

each vector will be displayed. Also, the graph window that appears when the user

clicks this button has significant functionality that will be explained later). Since a

bell-shaped normal distribution is hard to graph, we show the center of each category

as a big dot.

 162

Figure 7-28: A 2D graph showing a GGAM network; note here a GGAM category is represented by a
large dot

 Get Boundaries (Button): This feature allows the user to visually see how the network

is classifying the input space. This feature works only for 2D problems. Figure 7-29

shows the outcome when this button is clicked. To achieve this goal, the program

generates a list of 10000 patterns as a matrix with (0.01) increment on both x and y,

and then feeds this list to the network and displays the way the network has classified

these patterns by coloring them differently (in the figure two different colors were

needed since this was a two class problem).

Figure 7-29: A 2D graph showing the classification boundaries of the GGAM network

 Clear GGAM (Button): Clears the memory so that another problem can be checked

 163

The graphing window of GGAM UI (Figure 7-28) has similar functionality to that of a

GFAM UI also, here are the differences

 Previous GGAM (Chromosome) (Button): Displays the content of the previous

network.

 Next GGAM (Chromosome) (Button): Displays the content of the next network.

 Add Cat: Brings up a dialogue box that has controls to allow the user to manually add

a category to the current chromosome. Figure 7-30, explains this feature: after

clicking the Del All button.

Figure 7-30: After deleting all the categories

 after clicking the Add Cat button

Figure 7-31: An add GGAM category dialogue box

 164

where, Mean is the µ vector, Direction is the σ vector, Class edit box is the label of

the category, Prob edit box is the probability of the category. The Ok button adds the

category to the chromosome:

Figure 7-32: Add category dialogue box with numbers in the available boxes

after clicking the ok button:

Figure 7-33: A figure showing the manually added category

 and here is how the boundaries look now with the added category

 165

Figure 7-34: The classification boundaries corresponding to the manually added category

The accuracy of the network is 50% because we have two classes, and the number of

patterns is divided equally amongst them. After adding another category

Figure 7-35: Filling in numbers for the second category

Figure 7-36: The GGAM network after adding the second category

 166

Figure 7-37: The classification boundaries of the GGAM after adding two categories

7.3.2 GGAM UI Abstract Design

GGAM UI consists of 7 main objects that are listed below.

 GGAMForm object: The main window object that shows most of the controls and

has most of the user interaction.

 GraphForm object: This is the graph window that displays categories and

classification boundaries, and allows manual deletion and addition of categories to

any chromosome.

 GNode object: Represents a category in an GAM network.

 PtrnNode object: Represents an input pattern.

 Chrom object: Represents a chromosome, that is a collection of categories encoded in

a special format.

 Cat object: Represents a GAM category after encoding.

 AddCatForm object: This is the Form that allows the user to insert the categories’

properties.

Now we discuss these seven objects in more detail:

 167

7.3.2.1 GGAMForm Object
This is the main window object that has most of the controls listed in 7.2.1. It has a

number of features and employs a number of methods that allows it to accomplish its

functionality. This functionality is briefly described in the following:

 Validates the inputs.

 Creates the trained GAMs and stores them.

 Optimizes the generation of chromosomes to get the best GGAM.

 Displays the results and prepares the data for the graphing object.

The following is a list of the most important methods that this object employs that are

different from those described in the GFAM UI.

 initPopClick: Creates GAM parameters and start the loop of creating GAMs.

 buildGAM: Trains a GAM network.

 decode: Takes a chromosome as an input and converts it to a GAM network.

 optimize: Optimizes the initial generation of trained GAMs.

 mutation: This function mutates a given chromosome as described earlier.

 ~GGAMForm: Destructor function.

The main different variable from those described in GFAM UI that this object has is:

 A vector of GNode objects: Stores GNode objects as a GAM network.

7.3.2.2 GraphForm Object
The GraphForm Object is very similar to the GraphForm Object in GFAM UI,

however this one displays big dots at the center of the category, rather than rectangles.

7.3.2.3 GNode Object
This object represents a GAM category. Here is a list of the main methods that this

object employs and variables that it uses:

 168

 GNode: This is the constructor, it creates a new GNode object and initializes it either

as a new category (single point), or as a template where the information about this

template is passed as an argument to this function.

 calc_scaled_CMF: This function calculates the CMF value of this category.

 calc_CCF: This function calculates the CCF value of this category.

 update: This function updates the category during the training session.

 ~GNode: Destructor function.

here are the main variables:

 Integer M: The number of features.

 Array of Doubles micro: Represents the µ vector in GAM.

 Array of Doubles sigma: Represents the σ vector in GAM.

 A double prob: Represents the probability of a category in GAM.

 Integer Label: Represents the category label.

7.3.2.4 PtrnNode Object
This object is a clone of the PtrnNode object of a GFAM UI, and no further

discussion is needed.

7.3.2.5 Chrom Object
This object represents a chromosome, which is a collection of categories as shown in

Figure 4-3, the only function that is different from those in the Chrom Object in GFAM UI is:

 Chrom: This is the constructor of this object. It has a very important functionality,

which is converting the GNode object (GAM categories) into Cat objects that are

suitable for genetic manipulation. There is another version of this function that creates

an empty Chrom object.

This object has the same variables as those of the Chrom Object in GFAM UI.

 169

7.3.2.6 Cat Object
This is an object that resembles an encoded category. This category is ready for

genetic manipulations, and in the following we present a list of its functions:

 Cat: This is the constructor that takes as an input a GNode object and extracts the

data from it, and saves this data in its internal variables. Another version of it takes as

an input a Cat object pointer; this version copies all the information of the original

object to the newly created one.

 pointCat: Returns a Boolean indicating whether or not this category is a point

category.

 ~Cat: Destructor function.

The following variables exist in this object:

 Array of Doubles micro: Obvious.

 Array of Doubles sigma: Obvious.

 Double prob: This is the probability of this category (i.e. number of encoded patterns

over the total number of training patterns).

 Integer l: This is the class label.

 Integer s: This integer represents the number of features (i.e. problem’s input

dimensionality).

7.3.2.7 AddCatForm Object
This object is a small form that has eight controls. It allows the user to insert values

for manually added categories. It has one function other than the constructor, that returns a

one if some values were inserted.

7.4 UART User Interface
 UART UI is a windows program that allows the user to build a generation of trained

FAM networks and trained EAM networks of any even number of individuals, select the

training, validation and testing files, use different parameters to train the networks, define the

 170

genetic parameters, run the genetic operators, display the categories of any of the

chromosomes along with the testing or validation patterns, display the classification

boundaries of any chromosome, manually delete one or all the categories of a specific

chromosome, and manually add categories to any chromosome. The program also allows the

user to run a specific number of generations without stop, or the user could define a number

of generations at which the program stops and then could continue per user command, or to

step one generation at a time. The program shows the results of the best network whenever it

stops, and also shows the results of individuals when they are displayed. The program logs a

variable amount of information to an automatically named file, as follows: In the directory

where the program resides it looks for a file called UART0.csv, if it finds it looks for a file

named UART1.csv, and so on, until the time comes to look for a file called UARTn.csv (n is

a positive number); if it does not find it creates it and logs the data to it. The logged data can

be customized by the user. Figure 7-38 shows the UART interface program.

Figure 7-38: UART user interface

Although the look and feel of the UI is similar to that of GFAM and GEAM, UART UI

operations and design are very different. Now we define the controls on the window of Figure

7-38 that are different from those in GEAM UI.

 171

7.4.1 UART Controls

 # Features: This is the number of features, used by both EAM and FAM networks.

 Training File: The user inserts here the path of the file that contains the training

patterns, used by both EAM and FAM networks.

 Validation File: The user inserts here the path of the file that contains the validation

patterns, used by both EAM and FAM networks.

 Beta : This is used to set the FAM and EAM β parameter. The defaults is equal to

0.1.

 RHO: This field displays the ρ parameter of the current network or chromosome.

 PopSize: This control determines the number of chromosomes in a single generation.

The defaults is set to 20, 10 FAM and 10 EAM networks.

 Create Init Pop (Button): When this button is clicked the program trains 2/sizePop

FAM networks and 2/sizePop EAM networks.

 Draw Chroms (Button): This button allows the user to see the categories that every

chromosome has so far, and hence, it could be used to monitor the progress of the

process and to see how well every chromosome is doing. Figure 7-39 shows the

outcome when this button is clicked. This button displays categories only in 2D, and

if a problem has more than 2 features and this button is clicked, the first 2 components

of each vector will be displayed. Also, the graph window that appears when the user

clicks this button has a great functionality that will be explained later).

 172

Figure 7-39: A UART network after randomly mixing FAM categories with EAM categories

Figure 7-40: A 2D graph showing only the categories

 Get Boundaries (Button): This feature allows the user to visually see how the network

is classifying input data. This feature works only for 2D problems (Figure 7-41 shows

the outcome when this button is clicked). To achieve this goal, the program generates

a list of 10000 patterns as a matrix with (0.01) increment on both x and y, and then

feeds this list to the network and displays the way the network has classified these

patterns by coloring them differently.

 173

Figure 7-41: The classification borders of the UART network after the random mixing

 Clear UART (Button): Clicking this button clears the memory so that another problem

can be checked.

All of the above were controls and their functionality on the main window. The graphing

window (Figure 7-39) have some very interesting functionality, discussed below.

 Previous UART (Chromosome) (Button): Displays the contents of the previous

network.

 Next UART (Chromosome) (Button): Displays the content of the next network.

 Add Cat: Brings up a dialogue box that has controls to allow the user to manually add

a category to the current chromosome. This form uses the same controls to add a

FAM category or an EAM category, based on the radio button at the bottom right

corner of the form. Figure 7-43, explains this feature: after clicking the Del All

button.

 174

Figure 7-42: After deleting all the categories of UART

 after clicking the Add Cat button

Figure 7-43: An add category dialogue box

where. U/Direction is the u vector of FAM and the direction vector of an EAM

category, V/Center is the v vector of a FAM and the center vector of an EAM

category. The Ok button adds the category to the chromosome:

 175

Figure 7-44: Filling in data for an EAM category

after clicking the ok button:

Figure 7-45: UART after manually adding an EAM category

 After adding the above category, the classification boundaries look as shown in

figure 7-46

 176

Figure 7-46: The classification boundaries of UART after addition

The accuracy here was 20% because we have five classes here, and the number of

patterns is divided equally amongst them. After adding another category

Figure 7-47: Filling in data for a FAM category

 177

Figure 7-48: UART after manually adding an EAM and a FAM category

Figure 7-49: UART classification boundaries after the manual addition

7.4.2 UART UI Abstract Design

UART UI consists of 8 main objects, which are:

 UARTForm object: This is the main window object that shows most of the controls

and has most of the user interaction.

 178

 GraphForm object: This is the graph window, displays categories and classification

boundaries, and allows manual deletion and addition of categories to any

chromosome.

 FNode object: This object represents a category in FAM network.

 ENode object: This object represents a category in an EAM network.

 PtrnNode object: This object represents an input pattern.

 Chrom object: This object represents a chromosome, a collection of categories

encoded in a special format.

 Cat object: This object represents a FAM category after encoding.

 AddCatForm object: This is the form that allows the user to insert the categories’

properties.

Now we present these seven objects in more detail:

7.4.2.1 UARTForm Object
This is the main window object that has most of the controls listed in 7.1.1. It has

many features and employs methods that allow it to do its functionality. This functionality is ,

briefly described in the following:

 Validates the inputs.

 Creates the trained FAMs and EAMs and stores them.

 Optimizes the generation of chromosomes to get the best UART.

 Displays the results and prepares the data for the graphing object.

The following is a list of the most important methods this object has:

 openFile: This method opens the files and reads the data, creates PtrnNode objects

and stores them into vectors.

 179

 initPopClick: This method creates FAM and EAM parameters and starts the loop of

creating 2/sizePop FAMs, then loops one more time to create 2/sizePop EAM

networks.

 buildFam: This method trains a FAM network.

 buildEam: This method trains an EAM network.

 crop: This method deletes all the categories that encoded one pattern only.

 redistributeCats: This function copies all the categories generated in the initial

generation and stores them in a container, then, it deletes all the categories of all the

chromosomes, shuffles the categories, and redistributes them to the chromosome as

follows: If the total number of all categories is allN then each chromosome gets

size

all

Pop
N categories, the first chromosome gets the first set of

size

all

Pop
N categories, the

second chromosome gets the second set of
size

all

Pop
N categories, and so on. The last

chromosome however, gets size
all

size

all

PopN
Pop

N mod+ categories.

 decode: This method takes a chromosome as an input and converts it to a UART

network.

 optimize: This method optimizes a generation of trained UART networks.

 crossover: This function does the crossover process as described above.

 addCat: This method adds a category to a given chromosome, if a chromosome is

chosen the added category have 50% probability of being a FAM category and 50%

probability of being an EAM category.

 delCat: This method deletes a category from a given chromosome.

 mutation: This function mutates a given chromosome. If a chromosome is selected,

every category in it will be mutated, if the category is a FAM category, the FAM

 180

mutation procedure (described earlier) is applied, otherwise the EAM mutation

procedure is applied.

 PrepBoundaries: This method creates a list of 10000 patterns as a grid in 2D. Their

values are as follows: (0,0),(0,0.01)…(0,1),(0.01,0)…(0.01,1)…(1,1). It also

initializes some other variables for the graphForm object to use.

 drawCats: This method initializes some variables and calls the graphForm object.

 showBoundaries: This method initializes some variables and calls the graphForm

object.

 ~UARTForm: This is the destructor function.

this object also has many properties (Variables), here is a list of the most important ones:

 A vector of Node objects: This variable stores FNode and ENode objects as a UART

network. Node object is the base class of both FNode and ENode objects.

 A vector of strings: This variable stores the names of the classes in a problem.

 A vector of PtrnNode objects: This variable stores the training patterns.

 A vector of PtrnNode objects: This variable stores the testing patterns.

 A vector of Chrom object pointers: This variable stores pointers to all the created

chromosomes in specific generation.

 A vector of Chrom object pointers: This variable stores pointers to all the

chromosomes in temp generation .

 A vector of integers: This variable stores the predicted labels after running the

performance phase.

 An integer: This variable stores the number of created categories for a specific

network.

These variables and many others are used in this object. However, since a detailed design of

this UI is not the purpose of this dissertation, the details are omitted.

 181

7.4.2.2 GraphForm Object
This object is much simpler than the UARTForm object. It is responsible for showing

the categories, the validation patterns, and the classification boundaries of a specific

chromosome. It is also responsible of allowing the user to manually add and delete categories

from the chromosome. The following is a list of the main methods that this object employs

and the variables that this object uses:

 pbPaint: This function displays the categories along with the validation patterns or the

grid of automatically generated patterns along with the categories (classification

boundaries). This function is one of the most difficult functions in this UI. Since we

have to manually convert the origin of the graphing object such that the (0,0) point is

the bottom left corner. This method has to differentiate between a FAM cat (displays

it as a rectangle), and an EAM cat (displays it as an ellipsoid).

 nextClick: This functions displays the graph of the next chromosome.

 previousClick: This function displays the graph of the previous chromosome.

 addcClick: This function calls the AddCatForm object so that the user can insert the

information of the new category.

 delAllCat: This functions invokes the del function of the Chrom object which deletes

all the categories from that chromosome.

 ~GraphForm: This is the destructor function.

A few variables are used in this object. The following is a list of the main ones:

 An Integer c: This is the index of the current chromosome.

 An array of Point object pointers: This variable stores the points that are displayed in

the graphing area.

 A pointer to UARTForm object: This object gives the GraphForm object access to

many functions and variables from the main window.

 182

 A boolean bounds: This variable tells the object if the categories are to be displayed

or the classification boundaries are to be displayed.

7.4.2.3 FNode, ENode and PtrnNode Objects
FNode and PtrnNode objects are identical to those found in GFAM, while, ENode is

identical to that of GEAM.

7.4.2.4 Chrom Object
This object represents a chromosome that is a collection of categories as shown in

Figure 5-6. A chromosome object has the following functions:

 Chrom: This is the constructor of this object. It has a very important functionality that

is converting the FNode object (FAM categories) and FNode objects into Cat objects

that are suitable for genetic manipulation. There is another version of this function

that creates an empty Chrom object.

 Del: This function deletes all the categories that it has. This operation is used when

manual addition and deletion of the categories is invoked.

 ~Chrom: This is the destructor function.

And it has the following variables:

 A vector of Cat object pointers: This vector holds pointers to all Cat object this

chromosome has.

 Double fit: This variable holds the fitness value of this chromosome.

 Double rho: This variable holds the vigilance parameter of the FAM network

represented by this chromosome.

 Integer size: This is the number of categories in this chromosome.

 Double accuracy: This variable holds the accuracy of this network.

 183

7.4.2.5 Cat Object
This is an object that resembles an encoded category. The category could be a FAM

or an EAM category. This category is ready for genetic manipulations, and below is a list of

its functions:

 Cat: This is the constructor. It takes as an input a FNode object or an ENode object

and extracts the data from it, and saves it in its internal variables. Another version of it

takes as an input a Cat object pointer; this version copies all the information of the

original object to the newly created one. It also sets the ntype variable to 1, if the

input category was an FNode, otherwise it sets it to 2.

 pointCat: This function returns a Boolean indicating whether or not this category is a

point category.

 ~Cat: This is the destructor function.

The following variables exist in this object:

 Array of Doubles v: obvious.

 Array of Doubles u: obvious.

 Integer l: This is the class label.

 Integer ntype: This variable represents the type of the category (i.e. FAM or EAM, 1

for a FAM category, 2 for an EAM category).

 Integer s: This integer represents the number of features (problem dimensionality).

 Double mu: This variable is the axis ratio of an EAM category.

 Double r: This is the radius of an EAM category.

7.4.2.6 AddCatForm Object
This object is a small form that has ten controls to allow the user to insert values for

manually added categories. It has one function other than constructor, that is, it returns a one

if some values were inserted.

 184

8. SUMMARY/CONTRIBUTIONS, AND FUTURE WORK

 8.1 Summary/Contributions
In this dissertation we accomplished the following:

 Designed a methodology to create genetically engineered ART networks. We used

this methodology to create genetically engineered FAMs, EAMs and GAMs, called

GFAM, GEAM, GGAM.

 Experimented extensively with GFAM, GEAM, GGAM, and managed to create ART

architectures that occasionally were optimal classifiers (achieved highest possible

classification accuracy, while using the minimum possible number of categories).

GFAM, GEAM, and GGAM compared favorably with other ART approaches that

were introduced into the literature to solve the ART category proliferation problem.

 Extended the methodology to design genetically engineered FAMs, EAMs, and

GAMs to the case where we created a genetically engineered combined FAM and

EAM architecture, called UART. Once more UART’s performance was compared

with other ART architectures and it was also compared with GFAM and GEAM. The

conclusion from this comparison was that UART has merit and should be investigated

further.

 Produced analytical results that explained the order of search of FAM versus EAM

categories in UART. This analysis helped us better understand how UART makes

category choices.

 Calculated analytically the computational complexity of GFAM, GEAM, GGAM and

UART. This analytical calculation demonstrated that the computational complexity of

genetically engineered ART architectures compares very favorably compared to the

complexity of other ART architectures introduced into the literature.

 185

 Tested the genetic ART modules on a set of database that consists of real and artificial

databases.

 In the process of running extensive experiments with the genetically engineered ART

architectures we created four user-friendly interfaces UI GFAM, UI GEAM, UI

GGAM, and finally UI UART. These interfaces not only allowed us to conduct this

extensive experimentation effort in a timely manner, but it also allowed us to visualize

the results, a feat that helps one to better understand the network’s functionality.

8.2 Future Work
We see a number of directions that this research can be extended to, and they are

briefly being discussed below.

 Choose the GA parameters in GEAM, and GGAM, and UART through

experimentation. At this dissertation only the GFAM parameters were chosen through

experimentation. The GEAM, GGAM and UART use as GA parameters the ones

found from the GFAM experimentation with the GA parameters.

 Compare GFAM, and other genetically engineered ART networks with some of the

state-of-the ART classifiers, such as support vector machines (SVMs). Preliminary

results have shown that GFAM is very competitive, compared to the SVM approach.

 Extend the ideas presented in UART to other combinations of ART networks, such as

FAM, GAM, or EAM, GAM, and finally FAM, EAM, GAM.

 Extend the analysis of the order of search of FAM versus EAM categories to orders of

search of FAM versus GAM categories, EAM versus GAM categories, and finally

FAM, versus EAM, versus GAM categories.

 Conduct a study to uncover the effect of using genetic algorithms on the size of the

training and validation sets needed for the accurate training of ART architectures.

 186

APPENDIX A: TERMINOLOGY

 187

 FAM: Fuzzy ARTMAP.

 EAM: Ellipsoidal ARTMAP.

 GAM: Gaussian ARTMAP.

 ssFAM, ssEAM, ssGAM: Semi-suprvised Fuzzy ARTMAP, Semi-supervised

Ellipsoidal ARTMAP, Semi-supervised Gaussian ARTMAP.

 aM : The dimensionality of the input patterns in the training, validation and test sets

provided to us by the classification problem under consideration.

 Training Set: The collection of input/output pairs used in the training of FAMs that

constitute the initial FAM population in GFAM.

 Validation Set: The collection of input/output pairs used to validate the performance

of the FAM networks during the evolution of FAMs from generation to generation.

 Test Set: The collection of input/output pairs used to assess the performance of the

chosen FAM network, after the evolution of FAMs is completed.

 PT : Number of points in the training set.

 PV : Number of points in the validation set.

 :min
aρ This is the lower limit of the baseline vigilance parameter used in the training

of the FAM networks that comprise the initial population of the FAM networks.

 :max
aρ This is the upper limit of the baseline vigilance parameter used in the training

of the FAM networks that comprise the initial population of the FAM networks.

 aβ : The choice parameter used in the training of the FAM networks that comprise the

initial population of the FAM networks. This parameter is fixed, and chosen equal to

1.0.

 sizePop : The number of chromosomes (FAM trained networks) in each generation.

 188

)(pNa : The number of categories in the thp FAM network from the sizePop trained

FAM networks in a generation.

)))((),(()(ca
j

a
j

a
j ppp vuw = : the weight vector corresponding to category j of the

thp FAM network from the sizePop trained FAM networks in a generation;

)(pa
ju corresponds to the lower endpoint of the hyperbox that the weight vector

)(pa
jw defines and)(pa

jv corresponds to the upper endpoint of this hyperbox.

)(pl j : The label of category j of the thp FAM network from the sizePop trained FAM

networks in a generation.

)(pPCC : The percentage of correct classification on the validation set exhibited by

the thp FAM network from the sizePop trained FAM networks in a generation.

 maxGen : The maximum number of generations allowed for the FAM networks to

evolve. When this maximum number is reached evolution stops and the FAM with the

best fitness value on the validation set is reported.

 bestNC : Number of best chromosomes that the GFAM transfers from the old

generation to the new generation (elitism).

 maxmin , CatCat : The minimum and the maximum number of categories that a

chromosome is allowed to have during the evolutionary process that GFAM

undergoes.

 deladd CatCat , : New genetic operators that add and delete a category from a

chromosome.

)(),(deladd CatPCatP ,)(MutP : The probabilities of adding, deleting and mutating a

category.

 PT : Number of points in the training set.

 189

 PV : Number of data-points in the validation set.

 PTes : Number of points in the test set.

 PS : Number of network parameter settings to produce the best ART network (ART

is ssFAM, ssEAM, ssGAM and safe micro-ARTMAP).

 rI : Input pattern from your training or test collection.

 rO : Output pattern of your training or test collection. Output pattern rO corresponds

to input pattern rI .

)(rS I : The set of committed nodes in the aF2 layer of GAM during the presentation of

the input/output pair),(rr OI .

)(r
CS I : The set of committed nodes in the aF2 layer of GAM during the presentation

of the input/output pair),(rr OI that are still competing to represent the input pattern

rI . The set)(r
CS I is a subset of)(rS I consisting of nodes that pass the vigilance

threshold and they have not been deactivated during to match-tracking.

 aρ : Baseline vigilance parameter value. This value determines of how high the level

of match between input pattern and aF2 node template should be for this template to

be an acceptable candidate of encoding the input pattern.

 aρ : Vigilance parameter. It starts at the value of aρ and then as training of an

input/output pair progresses it might change (maybe increase) its value due to match-

tracking.

 Epsilon: A small positive constant that designates of how much the vigilance

parameter value will increase beyond the weighted vigilance value of the deactivated

nodes after match tracking is enforced.

 190

 jw : Template of node j in the aF2 layer of dFAM. A template jw is a vector

comprised of two vectors: (a) the vector jµ that is the mean of all the input patterns

that chose node j as their representative node, and were coded by this node, and (b)

the vector jσ that is the standard deviation vector corresponding to of all the input

patterns that chose node j as their representative node, and were coded by this node.

)|(j
r wIρ : Match function value of input pattern rI and node j with template jw .

)|(j
r

jT wI : Choice function (bottom-up input) value of node j when the dFAM input

is input pattern rI .

 ab
jW : The inter-ART weight vector from node j in aF2 to all the nodes in bF2 . When

node j is first committed by (say) input pattern rI , this vector becomes equal to rO ,

and its value does not change any more during training. In essence, only one of the

components of ab
jW is 1, and the rest of the its components are 0. The component of

ab
jW that is 1 identifies for us the label (output pattern) that node j is mapped to.

 jv : A vector whose components correspond to the second moment of the components

of the input patterns that chose node j as their representative node and were encoded

by node j.

 γ : The initial value of the standard deviation that jσ is equal to at the time that node

j has encoded a single input pattern.

 jn : This parameter is equal to the number of times that node j was activated by an

input pattern, and node j coded this input pattern.

 191

APPENDIX B: FAM STEP-BY-STEP TRAINING & TESTING

 192

Training Phase of FAM

The step-by-step implementation of the off-line training in FAM is presented below:

Step 1: Set the baseline vigilance parameter aρ to a value from the interval [0, 1]. Also,

initialize the parameter α . The weight values corresponding to a node j in aF2 are: jw (a

weight vector equal to))(,(c
jj vu , where ju corresponds to the vector of the minima of the

components of patterns that chose this node as their representative while jv corresponds to the

vector of the maxima of the components of patterns that chose this node as their

representative node, and the inter-ART weights ab
jW (with components

ba
ab
jk NkNjW ,...,1,,...,1; ==). As training progresses every vector ab

jW that has been

committed has one of its components equal to 1 and the other components equal to zero. The

component of ab
jW that is equal to 1 designates the label that node j is mapped to. The

number of nodes in the aF1 layer is denoted by aM . The number of committed nodes in the

aF2 layer is denoted by aN . The number of nodes in the bF2 layer (denoted by bN)

corresponds to the number of output classes. If there are 4 output classes the number of nodes

in the bF2 output layer is 4. The index r of the input/output pairs is set to 1. The set

)(rS I represents the set of committed nodes in FAM, and is initially set to be equal to the

empty set.

Step 2: Present the rth input pattern),(rr OI to FAM. That is, the input pattern rI is

presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3:)(rS I designates the set of all the committed nodes in aF2 . If the set)(rS I is the

empty set (i.e., there are no committed nodes) go to Step 7a to do learning of the input/output

 193

pair by an uncommitted node. Otherwise, calculate the match function for all the committed

nodes j in)(rS I . The match function)|(j
r wIρ is calculated as follows:

a

j
r

r
j

r

j
r

M
||

||
||

)|(
wI

I
wI

wI
∧

=
∧

=ρ

Step 4: Find from the set)(rS I , a subset of nodes, designated as)(r
CS I , which represents the

subset of nodes in the set)(rS I whose match function exceeds the vigilance aρ . If the set

)(r
CS I is the empty set you go to Step 7a to do learning of the input/output pair by an

uncommitted node. Otherwise, for every node)(r
CSj I∈ we calculate the choice function (if

it has not been calculated before), as follows:

||
||

)(
j

j
r

r
jT

w
wI

I
+

∧
=
α

Step 5: Find the node J that has the maximum choice function (bottom-up input) value. That

is, find

)}({max r
jj

TJ I=

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

Step 6: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

 We now distinguish two cases.

If the label K is the correct label, then we move to Step 7b to do learning.

If label K is the incorrect label

epsilonJ
r

a +=)|(wIρρ

where epsilon is a very small positive value and we also redefine the set)(rS I , as follows:

 194

JSS rr −=)()(II

and then we go back to Step 4.

Step 7: We now distinguish two cases.

An uncommitted node (say node J; J is always one index higher than the highest index of a

committed node) is chosen to learn the input/output pair. Then,

r
J Iw =

rab
J OW =

)(1+rS I = set of all committed nodes in aF2

(Note: if r is the last index r+1 is the first index) Go to Step 8.

A committed node J is chosen to learn the input/output pair; then for this node J we have

J
r

J wIw ∧=

)(1+rS I = set of all committed nodes in aF2

(Note: if r is the last index r+1 is the first index) Go to Step 8.

Step 8: If we are not at the end of an epoch (i.e., one complete presentation of all the

input/output pairs in the training set), r is incremented to r+1 and we go back to Step 2 to

present the r+1th input/output pair. If we are at the end of an epoch (i.e., all input/output

pairs in the training set have been presented once) then two cases can be distinguished.

In the previous list presentation at least one component of the top-down weights or the

inter-ART weights has been changed and we have not reached the maximum number of list

presentations allowed. In this case we go back to Step 2 and present the first input/output pair

in the set of input/output pairs, by setting r to 1.

In the previous list presentation no weight changes occurred in the top-down weights

and the inter-ART weights or we have reached the maximum number of list presentations

 195

allowed. Hence training is considered to be complete and the network is considered to have

learnt the training patterns perfectly.

Performance Phase of FAM

The step-by-step implementation of FAM’s performance phase is described below:

Step 1: Initialize the weights aj Nj ,...1; =w , ba
ab
jk NkNjW ,...,1,,...,1; == , to the values

that they had at the end of the training phase of FAM.

Step 2: Present the rth input pattern),(rr OI to FAM. That is, the input pattern rI is

presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3: For every node j we calculate the choice function, as follows:

||
||

)(
j

j
r

r
jT

w
wI

I
+

∧
=
α

Step 4: Find the node J that has the maximum choice function (bottom-up input) value. That

is find

)}({max r
jj

TJ I=

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

Step 5: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

Step 6: If all the test patterns in the test set have not been applied to the network then go back

to Step 2 and present the next input/output test pair in the sequence. If we have presented all

the input/output test pairs then the results can be analyzed to find the misclassification error

and other such statistics.

 196

APPENDIX C: EAM STEP-BY-STEP TRAINING & TESTING

 197

Training Phase of EAM

The step-by-step implementation of the off-line training in EAM is presented below:

Step 1: The weight values corresponding to a node j in aF2 are: jm (the center of the

ellipsoid corresponding to node j), jd (the direction vector of the major axis of the ellipsoid

corresponding to node j) , and jR (half of the length of the major axis of the ellipsoid

corresponding to the node j); all these weight values are represented by the generic vector

jw . We also have inter-ART weights ab
jW (with components

ba
ab
jk NkNjW ,...,1,,...,1; ==). As training progresses every vector ab

jW that has been

committed has one of its components equal to 1 and the other components equal to zero. The

component of ab
jW that is equal to 1 designates the label that node j is mapped to. The

number of nodes in the aF1 layer is denoted by aM . The number of committed nodes in the

aF2 layer is denoted by aN . The number of nodes in the bF2 layer (denoted by bN)

corresponds to the number of output classes. If there are 4 output classes the number of nodes

in the bF2 output layer is 4. The index r of the input/output pairs is set to 1. The set

)(rS I represents the set of committed nodes in FAM, and is initially set to be equal to the

empty set. Set the baseline vigilance parameter aρ to a value from the interval [0, 1]. Set the

parameter µ to a value from the interval (0, 1]. Actually use a default value for µ equal to

0.5. Set the parameter value α to a value between),0(∞ ; typical values for α are small

positive constants. Also, set the parameter
µ

aM
D = (in UART aMD =). You need to

normalize your data so that they all have component values in the interval [0, 1]. For EAM

you do no need to complement encode your inputs.

 198

Step 2: Present the rth input pattern),(rr OI to EAM. That is, the input pattern rI is

presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3:)(rS I designates the set of all the committed nodes in aF2 . If the set)(rS I is the

empty set (i.e., there are no committed nodes) go to Step 7a to do learning of the input/output

pair by an uncommitted node. Otherwise, calculate the match function for all the committed

nodes j in)(rS I . The match function)|(j
r wIρ is calculated as follows:

D

RRD
jj

r
jj

j
r

}||||,max{
)|(CmI

wI
−−−

=ρ

where

222
2))(()1(||||1|||| j

rT
jj

r
jj

r mIdmImI C −−−−=− µ
µ

and 2
2|||| j

r mI − stands for the square of the Euclidean distance of rI and jm .

Step 4: Find from the set)(rS I , a subset of nodes, designated as)(r
CS I , which represents the

subset of nodes in the set)(rS I whose match function exceeds the vigilance aρ . If the set

)(r
CS I is the empty set you go to Step 7a to do learning of the input/output pair by an

uncommitted node. Otherwise, for every node)(r
CSj I∈ we calculate the choice function (if

it has not been calculated before), as follows:

α+−

−−−
=

j

j
r

jjr
j RD

RRD
T j

2

}||||,max{
)(CmI

I

Step 5: Find the node J that has the maximum choice function (bottom-up input) value. That

is find

)({max r
jj

TJ I=

 199

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

Step 6: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

We now distinguish two cases.

If the label K is the correct label, then we move to Step 7b to do learning.

If label K is the incorrect label

epsilonJ
r

a +=)|(wIρρ

where epsilon is a very small positive value and we also redefine the set)(rS I , as follows:

JSS rr −=)()(II

and then we go back to Step 4.

Step 7: We now distinguish two cases.

An uncommitted node (say node J; J is always one index higher than the highest index of a

committed node) is chosen to learn the input/output pair. Then,

r
J Im =

0d =J

0=Jr

rab
J OW =

)(1+rS I = set of all committed nodes in aF2

 (Note: if r is the last index r+1 is the first index) Go to Step 8.

A committed node J is chosen to learn the input/output pair; then the network

weights are updated as follows :

)(
||||

}||max{||
2
1 old

J
r

old
J

old
J

r

old
J

old
J

old
J

old
J

r
old
JJ

RR
mI

mI
mI

mm
C

C −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−−−
+=

 200

and for the case where rI is not the second pattern encoded by node J we have:

JJ dd =

()old
J

old
JC

old
J

rold
JJ RRRR old

J
−−+= },||max{||

2
1 mI

while for the case where rI is the second pattern encoded by node J we have:

|||| old
J

r

old
J

r

J mI
mI

d
−
−

=

2
|||| old

J
r

JR
mI −

=

)(1+rS I = set of all committed nodes in aF2

(Note: if r is the last index r+1 is the first index) Go to Step 8.

Step 8: If we are not at the end of an epoch (i.e., one complete presentation of all the

input/output pairs in the training set), r is incremented to r+1 and we go back to Step 2 to

present the r+1th input/output pair. If we are at the end of an epoch (i.e., all input/output pairs

in the training set have been presented once) then two cases can be distinguished.

In the previous list presentation at least one component of the top-down weights or the

inter-ART weights has been changed and we have not reached the maximum number of list

presentations allowed. In this case we go back to Step 2 and present the first input/output pair

in the set of input/output pairs, by setting r to 1.

In the previous list presentation no weight changes occurred in the top-down weights

and the inter-ART weights or we have reached the maximum number of list presentations

allowed. Hence training is considered to be complete and the network is considered to have

learnt the training patterns perfectly.

 201

Performance Phase of EAM

The step-by-step implementation of EAM’s performance phase is described below:

Step 1: Initialize the weights jm , jd , jR , ab
jkW , to the values that they had at the end of the

training phase of EAM. Initialize also all the other EAM parameters (baseline vigilance,

choice parameter, µ , etc…)

Step 2: Present the rth input pattern),(rr OI to EAM. That is, the input pattern rI is

presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3: For every node j we calculate the choice function, as follows:

α+−

−−−
=

j

j
r

jjr
j RD

RRD
T j

2

}||||,max{
)(CmI

I

Step 4: Find the node J that has the maximum choice function (bottom-up input) value. That

is find

)}({max r
jj

TJ I=

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

Step 5: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

Step 6: If all the test patterns in the test set have not been applied to the network then go back

to Step 2 and present the next input/output test pair in the sequence. If we have presented all

the input/output test pairs then the results can be analyzed to find the misclassification error

and other such statistics.

 202

APPENDIX D: GAM STEP-BY-STEP TRAINING & TESTING

 203

Training Phase of GAM

The step-by-step implementation of the off-line training in GAM is presented below:

Step 1: Set the baseline vigilance parameter aρ to a value from the interval [0, 1]. Also,

initialize the parameter γ . The weight values corresponding to a node j in aF2 are: jµ (mean

of the data that have activated and were encoded by node j), jσ (the standard deviation

vector of the data that have activated and were encoded by node j), jn (the number of

training input patterns that were encoded by node j in aF2), and the inter-ART weights ab
jW

(with components ba
ab
jk NkNjW ,...,1,,...,1; ==). As training progresses every vector

ab
jW that has been committed has one of its components equal to 1 and the other components

equal to zero. The component of ab
jW that is equal to 1 designates the label that node j is

mapped to. The number of nodes in the aF1 layer is denoted by aM . The number of

committed nodes in the aF2 layer is denoted by aN . The number of nodes in the bF2 layer

(denoted by bN) corresponds to the number of output classes. If there are 4 output classes the

number of nodes in the bF2 output layer is 4. The index r of the input/output pairs is set to 1.

The set)(rS I represents the set of committed nodes in GAM, and is initially set to be equal to

the empty set.

Note: There is another parameter vector jv for every committed node j in aF2 that we need to

keep track of. The vector jv is the vector with components the experimental mean of the

squared values of the input patterns that choose node j as their representative node. The

relationships are:

 204

2
jijiji v µσ −= and 22

jijijiv µσ += for every component i of vectors jjj µσv ,,

Step 2: Present the rth input pattern),(rr OI to GAM or GAM. That is, the input pattern rI

is presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3:)(rS I designates the set of all the committed nodes in aF2 . If the set)(rS I is the

empty set (i.e., there are no committed nodes) go to Step 7a to do learning of the input/output

pair by an uncommitted node. Otherwise, calculate the match function for all the committed

nodes j in)(rS I . The match function)|(j
r wIρ is calculated as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−== ∑

=

aM

i ji

ji
r
ir

j
r I

jG
1

2

2
1exp)|()|(

σ
µ

ρ IwI

Note: It might be more computationally attractive to calculate the logarithm of the match

function, as follows:

2

12
1))|((log)|((log ∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−==

aM

i ji

ji
r
ir

ej
r

e

I
jG

σ
µ

ρ IwI

When we use the logarithm of the match function, we need to be comparing

)|((log j
r

e wIρ of every node with)(log ae ρ to determine if a node’s match function value

exceeds the vigilance threshold (see beginning of Step 4).

Step 4: Find from the set)(rS I , a subset of nodes, designated as)(r
CS I , which represents the

subset of nodes in the set)(rS I whose match function exceeds the vigilance aρ . If the set

)(r
CS I is the empty set you go to Step 7a to do learning of the input/output pair by an

uncommitted node. Otherwise, for every node)(r
CSj I∈ we calculate the choice function (if

it has not been calculated before), as follows:

 205

)|(
)/(

)|()|(
1

1 r

ji
M
i

N

l
lj

r
j

r
j jG

nn
jgT

a

a

IIwI
σ=

=

Π
==

∑

Note: In the calculation of)|(j
r

jT wI we have omitted a term in the denominator. This term

is equal to 2/)2(aMπ . So the correct expression for the calculation of)|(j
r

jT wI is as follows:

)|(
)2(

1
)/(

)|()|(
21

1 r
M

ji
M
i

N

l
lj

r
j

r
j jG

nn
jgT

aa

a

IIwI
π

σ=

=

Π
==

∑

In the expression above, the terms

)|(
)2(

11

21

r
M

ji
M
i

jG
aa

I
π

σ=Π
 and

∑
=

aN

l
l

j

n

n

1

,

represent the class conditional probabilities of the input pattern belonging to class j , and the

a-priori estimate of the probability that a pattern belongs to class j, respectively. But note that

since we are using the T (or g) values in order to calculate normalized activations, the

common terms in the evaluation of T (or g) can be ignored. These terms are: 2/)2(aMπ and

∑
=

aN

l
ln

1

. In our calculation of T (or g) we have ignored the term 2/)2(aMπ , but we have

included the term ∑
=

aN

l
ln

1

.

Step 5: Find the node J that has the maximum choice function (bottom-up input) value. That

is find

)({max r
jj

TJ I=

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

 206

Step 6: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

We now distinguish two cases.

If the label K is the correct label, then we move to Step 7b to do learning.

If label K is the incorrect label

epsilonJ
r

a +=)|(wIρρ

where epsilon is a very small positive value and we also redefine the set)(rS I , as follows:

JSS rr −=)()(II

and then we go back to Step 4.

Step 7: We now distinguish two cases.

An uncommitted node (say node J; J is always one index higher than the highest index of a

committed node) is chosen to learn the input/output pair. Then,

1=Jn

r
J Iµ =

22)(γ+= r
J Iv

γ=Jσ

rab
J OW =

)(1+rS I = set of all committed nodes in aF2

(Note: if r is the last index r+1 is the first index) Go to Step 8.

A committed node J is chosen to learn the input/output pair; then for this node J we have

1+= JJ nn

 207

r

J
J

J
J nn

Iµµ 111 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

211)()())(1(r
iJJijJi Invnv −− +−=

2
JiJiJi v µσ −=

)(1+rS I = set of all committed nodes in aF2

(Note: if r is the last index r+1 is the first index) Go to Step 8.

Step 8: If we are not at the end of an epoch (i.e., one complete presentation of all the

input/output pairs in the training set), r is incremented to r+1 and we go back to Step 2 to

present the r+1th input/output pair. If we are at the end of an epoch (i.e., all input/output pairs

in the training set have been presented once) then two cases can be distinguished.

In the previous list presentation at least one component of the top-down weights or the

inter-ART weights has been changed and we have not reached the maximum number of list

presentations allowed. In this case we go back to Step 2 and present the first input/output pair

in the set of input/output pairs, by setting r to 1.

In the previous list presentation no weight changes occurred in the top-down weights

and the inter-ART weights or we have reached the maximum number of list presentations

allowed. Hence training is considered to be complete and the network is considered to have

learnt the training patterns perfectly.

Performance Phase of GAM

The step-by-step implementation of GAM’s performance phase is described below:

Step 1: Initialize the weights ajjj Njn ,...1;,, =σµ , ba
ab
jk NkNjW ,...,1,,...,1; == , to the

values that they had at the end of the training phase of Gaussian ARTMAP.

 208

Step 2: Present the rth input pattern),(rr OI to GAM. That is, the input pattern rI is

presented at the input layer aF1 and the output rO is presented at the output layer bF2 . The

vigilance parameter aρ is set to the baseline vigilance value aρ .

Step 3: For every node j we calculate the choice function, as follows:

)|(
)/(

)|()|(
1

1 r

ji
M
i

N

l
lj

r
j

r
j jG

nn
jgT

a

a

IIwI
σ=

=

Π
==

∑

Step 4: Find the node J that has the maximum choice function (bottom-up input) value. That

is find

)}({max r
jj

TJ I=

Note: If there are more than one node indices that maximize the choice function choose the

lowest index.

Step 5: Find the prediction of the activated node J. The prediction K of the input pattern rI ,

is the node K for which 1=ab
JKW .

Step 6: If all the test patterns in the test set have not been applied to the network then go back

to Step 2 and present the next input/output test pair in the sequence. If we have presented all

the input/output test pairs then the results can be analyzed to find the misclassification error

and other such statistics.

 209

APPENDIX E: USER MANUAL

 210

It is very important to mention that all the programs developed in this research have

similar user interfaces, and hence, one user manual should be sufficient to represent all four

of them. The manual is presented as a series of steps as follow:

Locate one of the following executable files (GFAM.exe, GEAM.exe, GGAM.exe or

UART.exe) and double click it. When The selected program runs it expect that the user will

supply values to at least the number of features, the training file, the validation file , and

testing file, if any of the above is not supplied the program complains by popping up a

message box to warn the user as in Figure e-1,

Figure e-1: Error message

 All four programs give default values to all of the other parameters; the user though

may change some of the default values. The user needs to click the “Create Init Pop” button,

which prompts the program to take the following actions:

 Reads the files and extract the pattern information into objects called PtrnNode’s.

 Stores the PtrnNode objects into vectors.

 Goes into this loop (as long as chromosomes counter is less than sizePop):

o Calculate the value of aρ . In particular, we first define
1

minmax

−
−

=
size

aainc
a Pop

ρρ
ρ ,

and then the vigilance parameter of every network is determined by the

equation inc
aa i ρρ *min + , where }1,0{ −∈ sizePopi

o Invokes the network specific training algorithm (not discussed here), upon

finishing, the specific network is created, this network is basically a group of

Category objects along with its properties.

 211

o The program encodes the network into a chromosome and stores the

chromosome into a vector.

At this point we have a vector that contains all the sizePop chromosomes. The program

changes the display of the current aρ on the main window, signaling the user, that the

training process is over. If the user clicks the optimize or the Next Gen button, the genetic

optimization process starts, when the program stops, the user could use the draw networks

button to see the categories of every chromosome, or could use the get boundaries button to

see the classification boundaries of each chromosome. The user also can run the test file, buy

clicking the Run on Test File button. The user can clear the internal memory of the program

by clicking the clear button, this way the program is ready for another problem. The use of

the manual add and delete category is explained earlier in sections 7.1.1, 7.2.1, 7.31, and

7.4.1

 212

REFERENCES

1. Anagnostopoulos, G.C. & Georgiopoulos, M. (2001). Ellipsoid ART and ARTMAP for

incremental clustering and classification, in Proc. of the IEEE-INNS International

Joint Conference on Neural Networks, pp. 1221-1226, Washington, DC, July 14-19.

2. Anagnostopoulos, G.C. (2001). Novel Approaches in Adaptive Resonance Theory for

Machine Learning, Doctoral Thesis, University of Central Florida, Orlando, Florida.

3. Anagnostopoulos, G.C., Bharadwaj, M., Georgiopoulos, M., Verzi, S.J. & Heileman, G.L.

(2003). "Exemplar-based Pattern Recognition via Semi-Supervised Learning", to

appear in the Proceedings of the IEEE-INNS-ENNS International Joint Conference on

Neural Networks (IJCNN ’03), Portland, Oregon: IEEE, INNS, ENNS

4. Anagnostopoulos, G.C., Bharadwaj, M., Georgiopoulos, M., Verzi, S.J., & Heileman, G.

L. (2003). Exemplar-based pattern recognition via semi-supervised learning, in Proc.

of the International Joint Conference on Neural Networks, Vol. 4, pp. 2782-2787,

Portland, Oregon, July 20-24.

5. Anagnostopoulos, G.C., Georgiopoulos, M., Verzi, S.J., & Heileman, G.L. (2002).

Reducing generalization error and category proliferation in ellipsoid ARTMAP via

tunable misclassification error tolerance: Boosted Ellipsoid ARTMAP, in Proc. of the

International Joint Conference on Neural Networks, Honolulu, Hawaii, May 12

6. Andon V. Topalov, Kwang-Choon Kim, Jong-Hwan Kim, Bong-Kuk Lee: Fast Genetic

On-Line Learning Algorithm for Neural Network and Its Application to Temperature

Control. International Conference on Evolutionary Computation 1996: 649-654

7. Auwatanamongkol, S., Pattern recognition using genetic algorithm. Evolutionary

Computation, 2000. Proceedings of the 2000 Congress on Volume 1, 16-19 July

2000 Page(s):822 - 828 vol.1

 213

8. Baker, J., “Adaptive selection methods for genetic algorithms”, Proc. Of 2ndICGA. 1987,

pp.100-111

9. Bala, J., De Jong K., Huang, J., Vafaie, H., and Wechsler, H., “Using learning to facilitate

the evolution of features for recognizing visual concepts,” Evolutionary Computation,

Vol. 4, No. 3, pp. 297-311, 1996.

10. Belew, R. K., J. McInerney, and N. N. Schraudolph, “Evolving networks: Using genetic

algorithm with connectionist learning,” Comput. Sci. Eng. Dep. (C-014), , Univ. of

California, San Diego, Tech. Rep. CS90-174 (revised), Feb. 1991.

11. Brotherton, T. W., and Simpson, P. K., “Dynamic feature set training of neural nets for

classification,” in Evolutionary Programming IV, J. R. McDonnel, R. G. Reynolds,

and D. B. Fogel, Eds., Cambridge, MA, pp. 83-94, MIT Press, 1995.

12. Burton, A.R, Vladimirova, T., “Utilisation of an adaptive resonance theory neural

network as a genetic algorithm fitness evaluator”, Proceedings of the 1997 IEEE

International Symposium on Information Theory, June 29 - July 4, 1997, pages 209.

13. Burton, A.R.; Vladimirova, T.; Utilisation of an adaptive resonance theory neural network

as a genetic algorithm fitness evaluator, Information Theory. 1997. Proceedings.,

1997 IEEE International Symposium on 29 June-4 July 1997 Page(s):209

14. Cantu-Paz, E., “Feature sub-set selection by estimation of distribution algorithms,” in

GECCO 2002: Proceedings of the Genetic and Evolutionary Computation

Conference.

15. Carpenter, G.A. & Milenova, B. (1998). Distributed ARTMAP: A neural network for fast

distributed supervised learning, Neural Networks, 11 (2), 323-336.

16. Carpenter, G.A., Grossberg, S., Markuzon, N., & Reynolds, J.H. (1992). Fuzzy

ARTMAP: A neural network architecture for incremental supervised learning of

analog multi-dimensional maps, IEEE Trans. Neural Networks, 3 (5), 698-713.

 214

17. Charalampidis, D., Kasparis, T., & Georgiopoulos, M. (2001). Classification of noisy

signals using Fuzzy ARTMAP neural networks, IEEE Trans. Neural Networks, 12

(5), 1023-1036.

18. Davidor, Y.; CompEuro '90. Robot programming with a genetic algorithm, Proceedings

of the 1990 IEEE International Conference on Computer Systems and Software

Engineering 8-10 May 1990 Page(s):186 – 191

19. Fieldsend, J.E.; Singh, S.; Pareto evolutionary neural networks, Neural Networks, IEEE

Transactions on Volume 16, Issue 2, March 2005 Page(s):338 - 354

20. Ghosh, R.; Verma, B.; Finding optimal architecture and weights using evolutionary least

square based learning, in Neural Information Processing, 2002. ICONIP '02.

Proceedings of the 9th International Conference on Volume 1, 18-22 Nov. 2002

Page(s):528 - 532 vol.1

21. Gomez-Sanchez, E., Dimitriadis, Y.A., Cano-Izquierdo, J.M., & Lopez-Coronado, J.

(2001). Safe-µARTMAP: a new solution for reducing category proliferation in Fuzzy

ARTMAP, in Proc. of the IEEE International Joint Conference on Neural Networks,

Vol. 2, pp. 1197-1202, July 15-19.

22. Gomez-Sanchez, E., Dimitriadis, Y.A., Cano-Izquierdo, J.M., & Lopez-Coronado, J.

(2002). µARTMAP: use of mutual information for category reduction in Fuzzy

ARTMAP, IEEE Trans. Neural Networks, 13 (1), 58-69.

23. Grossberg, S. (1976). Adaptive pattern recognition and universal recoding II: Feedback,

expectation, olfaction, and illusions, Biological Cybernetics, 23, 187-202.

24. Han, Seung-Soo, Gary S. May: Optimization of Neural Network Structure and Learning

Parameters Using Genetic Algorithms. ICTAI 1996: 200-206

 215

25. Hancock, P. J. B., “Pruning neural networks by genetic algorithm,” In Proceedings of the

1992 International Conference on Neural Networks, I. Aleksander and J. Taylor, Eds.,

Amsterdam, Netherlands, Vol. 2, pp. 991-994, Elsevier Science, 1992.

26. Harp, S. A., T. Samad and A. Guha. Towards the genetic synthesis of neural networks.

Proceedings of the third international conference on genetic algorithms. Morgan

Kaufmann, 1989

27. Hettich, S., Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning

databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and Computer Science.

28. Holland, J. H., Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of

Michigan Press, 1975

29. Hruschka, E.R.; Ebecken, N.F.F.; Applying a clustering genetic algorithm for extracting

rules from a supervised neural network, in Neural Networks, 2000. IJCNN 2000,

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Volume 3,

24-27 July 2000 Page(s):407 - 412 vol.3

30. Hui Liu; Yue Liu; Jian Liu; Bofeng Zhang; Gengfeng Wu; Impulse force based ART

network with GA optimization, Neural Networks and Signal Processing, 2003.

Proceedings of the 2003 International Conference on Volume 1, 14-17 Dec. 2003

Page(s):499 - 502 Vol.1

31. Inza, I., Larranaga, P., Etxeberria, R., and Sierra, B., “Feature sub-set selection by

Bayesian networks based optimization,” Artificial Intelligence, Vol. 123, No. 1-2, pp.

157-184, 1999.

32. Ishibuchi, H.; Nakashima, T.; Evolution of fuzzy nearest neighbor neural networks, in

Evolutionary Computation, 1997., IEEE International Conference on 13-16 April

1997 Page(s):673 – 678

 216

33. James D. Kelly Jr., Lawrence Davis: Hybridizing the Genetic Algorithm and the K

Nearest Neighbors Classification Algorithm. ICGA 1991: 377-383

34. Juang Chia-Feng; Yuan-Chang Liou; On the hybrid of genetic algorithm and particle

swarm optimization for evolving recurrent neural network, Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on Volume 3, 25-29 July

2004 Page(s):2285 - 2289 vol.3

35. Kasuba, T. (1993). Simplified Fuzzy ARTMAP, AI Expert, 18-25.

36. Konstantinos P. Ferentinos: Biological engineering applications of feedforward neural

networks designed and parameterized by genetic algorithms. Neural Networks 18 (7):

934-950 (2005)

37. Koufakou, A., Georgiopoulos, M., Anagnostopoulos, G.C., & Kasparis, T. (2001). Cross-

validation in Fuzzy ARTMAP for large databases, Neural Networks, (14), 1279-1291.

38. Krasniewicz, J.; Winfield, M.J.; Green, P.; Design of a distributed neuro-genetic learning

architecture, in Knowledge-Based Intelligent Engineering Systems and Allied

Technologies, 2000. Proceedings. Fourth International Conference on Volume 2, 30

Aug.-1 Sept. 2000 Page(s):612 - 615 vol.2

39. Langdon, W. B., E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishna, V.

Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,

E. Burke, and N. Jonoska, Eds., San Francisco, CA, 2002, pp. 302-310, Morgan

Kaufmann Publishers, 2002.

40. Lee, S.-W., “Off-line recognition of totally unconstrained handwritten numerals using

multilayer cluster neural network,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18,

pp. 648–652, June 1996.

 217

41. Leung, F.H.F.; Lam, H.K.; Ling, S.H.; Tam, P.K.S.; Tuning of the structure and

parameters of a neural network using an improved genetic algorithm, Neural

Networks, IEEE Transactions on Volume 14, Issue 1, Jan. 2003 Page(s):79 - 88

42. Liang-Hsuan Chen; Cheng-Hsiung Chiang; An intelligent control system based on

multiobjective genetic algorithms and fuzzy neural network, in Systems, Man and

Cybernetics, 2002 IEEE International Conference on Volume 3, 6-9 Oct. 2002

Page(s):6 pp. vol.3

43. Liu, H., Liu, Y., Liu, J., Zhang, B., Wu, G., “Impulse force based ART network with GA

optimization, Neural Networks and Signal Processing”, Proceedings of the 2003

International Conference on Neural Networks and Signal Processing, Volume 1,

Dec. 14-17, 2003, pages 499 – 502.

44. Manic, M.; Wilamowski, B.; Robust algorithm for neural network training, Neural

Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference

on Volume 2, 12-17 May 2002 Page(s):1528 - 1533

45. Marriott, S., & Harrison, R.F. (1995). A modified Fuzzy ARTMAP architecture for the

approximation of noisy mappings, Neural Networks, 8 (4), 619-641.

46. Miller, G. F., Todd, P. M., Hedge, S. U., “Designing neural networks using genetic

algorithms,” In Proceedings of the Third International Conference on Genetic

Algorithms, San Mateo, CA, J.D. Scaffer, Ed., Morgan Kaufmann, 1989.

47. Mitchell, Tom, machine learning. McGraw-Hill, 1997, ISBN:0-07-042807-7

48. Palaniappan, R.; Raveendran, P.; Genetic algorithm to select features for fuzzy ARTMAP

classification of evoked EEG, in Circuits and Systems, 2002. APCCAS '02. 2002

Asia-Pacific Conference on Volume 2, 28-31 Oct. 2002 Page(s):53 - 56 vol.2

 218

49. Palaniappan, R.; Raveendran, P.; Omatu, S.; VEP optimal channel selection using genetic

algorithm for neural network classification of alcoholics, in Neural Networks, IEEE

Transactions on Volume 13, Issue 2, March 2002 Page(s):486 – 491

50. Palmes, P., T. Hayasaka, and S. Usui. Mutation-based genetic neural network. IEEE

Transactions on Neural Network, 2004.

51. Parrado-Hernandez E., Gomez-Sanchez, E., & Dimitriadis, Y.A. (2003). Study of

distributed learning as a solution to category proliferation in Fuzzy ARTMAP-based

neural systems, Neural Networks, (16), 1039-1057.

52. Punch, W. F., E. D. Goodman, M. Pei, L. ChiaShun, P. Hovland, and R. Enbody, Further

Research on Feature Selection and Classification Using Genetic Algorithms,

International Conference on Genetic Algorithms 93, pp. 557-564, 1993

53. Rovithakis, G.A.; Chalkiadakis, I.; Zervakis, M.E.; High-order neural network structure

selection for function approximation applications using genetic algorithms, in

Systems, Man and Cybernetics, Part B, IEEE Transactions on Volume 34, Issue 1,

Feb. 2004 Page(s):150 - 158

54. Santos, R.T.; Nievola, J.C.; Freitas, A.A.; Extracting comprehensible rules from neural

networks via genetic algorithms, in Combinations of Evolutionary Computation and

Neural Networks, 2000 IEEE Symposium on 11-13 May 2000 Page(s):130 – 139

55. Siedlecki, W., and Sklansky, J., “A note on genetic algorithms for large-scale feature

selection,” Pattern Recognition Letters, Vol. 10, pp. 335-347, 1989.

56. T.Ba¨ck, U.Hammel, and H.-P.Schwefel, “Evolutionary computation: Comments on the

history and current state,” IEEE Trans. Evolutionary Computation, vol. 1, pp. 3-17,

Apr. 1997.

57. Taghi, M., Bagmisheh, V., & Pavesic, N. (2003). A Fast Simplified Fuzzy ARTMAP

network, Neural Processing Letters, 17(3), 273-316.

 219

58. Tang, K. S., C. Y. Chan, K. F. Man, and S. Kwong, “Genetic structure for NN topology

and weights optimization,” in Proceedings of the 1st IEE/IEEE International

Conference on Genetic Algorithms in Engineering Systems: Innovations and

Applications (GALE-SIA’95), (Stevenage, England), pp. 250-255, IEE Conference

Publication 414, 1995.

59. Verzi, S.J., Georgiopoulos, M., Heileman, G.L., & Healy, M. (2001). Rademacher

penalization applied to Fuzzy ARTMAP and Boosted ARTMAP, in Proc. of the

IEEE-INNS International Joint Conference on Neural Network, pp. 1191-1196,

Washington, DC, July 14-19.

60. Whitley, D., “The GENITOR algorithm and selective pressure: Why rank-based

allocation of reproductive trials is best,” in Proc. 3rd Int. Conf. Genetic Algorithms

and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, 1989,

pp. 116–121.

61. Whitley, D., Starkweather, T., and Bogart, C., “Genetic algorithms and neural networks:

Optimizing connections and connectivity,” Parallel Computing, Vol. 14, pp. 347-361,

1990.

62. Whitley, D., T. Starkweather, and C. Bogart, “Genetic algorithms and neural networks:

Optimizing connections and connectivity,” Parallel Comput., vol. 14, no. 3, pp. 347–

361,1990.

63. Williamson, J.R. (1996). Gaussian ARTMAP: A Neural Network for Fast Incremental

Learning of Noisy Multi-Dimensional Maps, Neural Networks, 9(5), 881-897.

64. Williamson, J.R. (1997). A constructive, incremental-learning network for mixture

modeling and classification, Neural Computation, (9), 1517-1543.

 220

65. Wu, Annie S., Han Yu, Shiyuan Jin, Kuo-Chi Lin, and Guy Schiavone (2004). An

incremental genetic algorithm approach to multiprocessor scheduling. IEEE

Transactions on Parallel and Distributed Systems , 15:9.

66. Wu, Annie S., Ivan I. Garibay (2004). Genetic algorithm optimization of life support

system control. IEEE Transactions on Systems, Man, and Cybernetics, Part B , 34:3,

1423-1434

67. Xin Yao; Evolving artificial neural networks, in Proceedings of the IEEE, Volume 87,

Issue 9, Sept. 1999 Page(s):1423 - 1447

68. Xiuju Fu; Lipo Wang; A GA-based RBF classifier with class-dependent features, in

Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on

Volume 2, 12-17 May 2002 Page(s):1890 – 1894

69. Yang, J., and Honavar, V., “Feature subset selection using genetic algorithms,” IEEE

Intelligent Systems, Vol. 13, pp. 44-49, 1998.

70. Yen, G.G.; Haiming Lu; Hierarchical genetic algorithm based neural network design, in

Combinations of Evolutionary Computation and Neural Networks, 2000 IEEE

Symposium on 11-13 May 2000 Page(s):168 - 175

	Genetically Engineered Adaptive Resonance Theory (art) Neural Network Architectures
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	1. INTRODUCTION
	1.1 ART, Features and Limitations
	1.2 Genetic Algorithms and Neural Networks Combination
	1.2.1 Using GA with MLP NN
	1.2.2 Using GAs with Other NN Models (other than MLP-NNs)
	1.2.3 Using GAs with ART NNs

	1.3 Motivation
	1.4 Research Overview
	1.4.1 Using GAs to Evolve ART Architectures
	1.4.2 Universal ART (UART)
	1.4.3 Experiments and Comparisons
	1.4.4 Analysis
	1.4.5 User Interface Development

	2. BACKGROUND
	2.1 Fuzzy ARTMAP (FAM)
	2.1.1 FAM Category Geometrical Representation
	2.1.2 FAM Operations and Parameters

	2.2 Ellipsoidal ARTMAP (EAM)
	2.2.1 EAM Category Geometrical Representation
	2.2.2 EAM Operations and Parameters

	2.3 Gaussian ARTMAP (GAM)
	2.3.1 GAM Operations and Parameters

	2.4 Genetic Algorithms
	2.4.1 Chromosome Representation
	2.4.2 Genetic Operators
	2.4.3 Selection

	3. GENETIC FUZZY ARTMAP (GFAM)
	3.1 Justification of the Evolutionary Choices for GFAM
	3.1.1 Justification of the Fitness Function Choice for GFAM
	3.1.2 Justification of the Genetic Operators Choices for GFA

	3.2 Experiments with GFAM
	3.2.1 Databases
	3.2.2 Experimental Procedure – Experimental Results

	3.3 GFAM Performance
	3.3.1 Performance Comparisons of GFAM and other ART Networks
	3.3.2 Performance Comparisons of GFAM and Other Neural Netwo

	3.4 GFAM Summary and Conclusions

	4. GEAM AND GGAM
	4.1 Genetic Ellipsoidal ARTMAP (GEAM)
	4.1.1 GEAM Experiments and Results
	4.1.1.1 GEAM Performance
	4.1.1.2 Performance Comparisons of GEAM and other ART Networ

	4.1.2 Summary/Conclusions

	4.2 Genetic Gaussian ARTMAP (GGAM)
	4.2.1 GGAM Experiments and Results
	4.2.1.1 GGAM Performance
	4.2.1.2 Performance Comparisons of GGAM and other ART Networ

	4.2.2 Summary/Conclusions

	5. UNIVERSAL ART (UART)
	5.1 UART Design
	5.1.1 Performance Phase of UART
	5.1.2 Geometry Selection Phase (Genetic Phase) of UART

	5.2 Results of UART
	5.2.1 UART Performance
	5.2.2 Performance Comparisons of UART and other ART Networks
	5.2.3 Performance Comparisons of UART and other Genetic ART

	5.3 UART Summary

	6. ANALYSIS
	6.1 UART Order of Search Analysis
	6.2 Time Complexity Analysis

	7. USER INTERFACE
	7.1 GFAM User Interface
	7.1.1 GFAM Controls
	7.1.2 GFAM UI Abstract Design
	7.1.2.1 GFAMForm Object
	7.1.2.2 GraphForm Object
	7.1.2.3 FNode Object
	7.1.2.4 PtrnNode Object
	7.1.2.5 Chrom Object
	7.1.2.6 Cat Object
	7.1.2.7 AddCatForm Object

	7.2 GEAM User Interface
	7.2.1 GEAM Controls
	7.2.2 GEAM UI Abstract Design
	7.2.2.1 GEAMForm Object
	7.2.2.2 GraphForm Object
	7.2.2.3 ENode Object
	7.2.2.4 PtrnNode Object
	7.2.2.5 Chrom Object
	7.2.2.6 Cat Object
	7.2.2.7 AddCatForm Object

	7.3 GGAM User Interface
	7.3.1 GGAM Controls
	7.3.2 GGAM UI Abstract Design
	7.3.2.1 GGAMForm Object
	7.3.2.2 GraphForm Object
	7.3.2.3 GNode Object
	7.3.2.4 PtrnNode Object
	7.3.2.5 Chrom Object
	7.3.2.6 Cat Object
	7.3.2.7 AddCatForm Object

	7.4 UART User Interface
	7.4.1 UART Controls
	7.4.2 UART UI Abstract Design
	7.4.2.1 UARTForm Object
	7.4.2.2 GraphForm Object
	7.4.2.3 FNode, ENode and PtrnNode Objects
	7.4.2.4 Chrom Object
	7.4.2.5 Cat Object
	7.4.2.6 AddCatForm Object

	8. SUMMARY/CONTRIBUTIONS, AND FUTURE WORK
	8.1 Summary/Contributions
	8.2 Future Work

	APPENDIX A: TERMINOLOGY
	APPENDIX B: FAM STEP-BY-STEP TRAINING & TESTING
	APPENDIX C: EAM STEP-BY-STEP TRAINING & TESTING
	APPENDIX D: GAM STEP-BY-STEP TRAINING & TESTING
	APPENDIX E: USER MANUAL
	REFERENCES

