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ABSTRACT

Traditionally, radio spectrum has been statically allocated to wireless service providers

(WSPs). Regulators, like FCC, give wireless service providers exclusive long term licenses

for using specific range of frequencies in particular geographic areas. Moreover, restrictions

are imposed on the technologies to be used and the services to be provided. The lack of flex-

ibility in static spectrum allocation constrains the ability to make use of new technologies

and the ability to redeploy the spectrum to higher valued uses, thereby resulting in inefficient

spectrum utilization [23, 38, 42, 62, 67]. These limitations have motivated a paradigm shift

from static spectrum allocation towards a more ‘liberalized’ notion of spectrum management

in which secondary users can borrow idle spectrum from primary spectrum licensees, without

causing harmful interference to the latter- a notion commonly referred to as dynamic spec-

trum access (DSA) or open spectrum access [3], [82]. Cognitive radio [30, 47], empowered

by Software Defined Radio (SDR) [81], is poised to promote the efficient use of spectrum by

adopting this open spectrum approach.

In this dissertation, we first address the problem of dynamic channel (spectrum) access

by a set of cognitive radio enabled nodes, where each node acting in a selfish manner tries

to access and use as many channels as possible, subject to the interference constraints. We

model the dynamic channel access problem as a modified Rubinstein-St̊ahl bargaining game.
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In our model, each node negotiates with the other nodes to obtain an agreeable sharing rule

of the available channels, such that, no two interfering nodes use the same channel. We solve

the bargaining game by finding Subgame Perfect Nash Equilibrium (SPNE) strategies of the

nodes. First, we consider finite horizon version of the bargaining game and investigate its

SPNE strategies that allow each node to maximize its utility against the other nodes (oppo-

nents). We then extend these results to the infinite horizon bargaining game. Furthermore,

we identify Pareto optimal equilibria of the game for improving spectrum utilization. The

bargaining solution ensures that no node is starved of channels.

The spectrum that a secondary node acquires comes to it at a cost. Thus it becomes

important to study the ‘end system’ perspective of such a cost, by focusing on its implications.

Specifically, we consider the problem of incentivizing nodes to provide the service of routing

using the acquired spectrum. In this problem, each secondary node having a certain capacity

incurs a cost for routing traffic through it. Secondary nodes will not have an incentive to relay

traffic unless they are compensated for the costs they incur in forwarding traffic. We propose

a path auction scheme in which each secondary node announces its cost and capacity to the

routing mechanism, both of which are considered as private information known only to the

node. We design a route selection mechanism and a pricing function that can induce nodes to

reveal their cost and capacity honestly (making our auction truthful), while minimizing the

payment that needs to be given to the nodes (making our auction optimal). By considering

capacity constraint of the nodes, we explicitly support multiple path routing. For deploying

our path auction based routing mechanism in DSA networks, we provide polynomial time
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algorithms to find the optimal route over which traffic should be routed and to compute the

payment that each node should receive.

All our proposed algorithms have been evaluated via extensive simulation experiments.

These results help to validate our design philosophy and also illustrate the effectiveness of

our solution approach.
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CHAPTER 1

INTRODUCTION

“Any sufficiently advanced technology is indistinguishable from magic.”[16]– Sir Arthur C.

Clarke. Wireless communications today indeed portray characteristics of magic– people

from far corners of the world can communicate with each other without any apparent link

between them; remote devices can be controlled without the need of any physical connection.

There are plethora of examples today that would astound someone not familiar with wireless

communication technology.

Wireless communications is enabled by the use of electromagnetic spectrum, which has

arguably become one of the most precious resources of the modern era. Mobile commu-

nications, satellite television, public safety systems, wireless local area networks (WLAN),

global positioning system (GPS)– all substantiate the dependency of modern society on this

resource.

Similar to any natural resource, like oil and natural gas, land, the usage of spectrum

also needs to be managed. This is usually done by a government subsidized agency in vari-

ous countries. For example, in 1934, the US Congress created the Federal Communications

Commission (FCC) to oversee telecommunications. Its responsibilities include management

of electromagnetic spectrum within the United States. Traditionally, radio spectrum man-

1



agement has followed a ‘command-and-control’ approach– regulators like FCC give wireless

service providers exclusive rights of using a particular range of frequencies in a particular

geographic area. Moreover, restrictions are imposed on the technologies to be used and the

services to be provided. Portions of the spectrum managed in this manner are termed as

licensed spectrum. The ‘command-and-control’ approach results in a static spectrum al-

location that is managed manually– geographic areas have to be surveyed and frequency

and bandwidth parameters chosen appropriately for each license holder to minimize overall

interference.

Broadcast radio and television services, for example, operate using licensed spectrum in

most countries, thereby following the command-and-control approach. They were among

the first commercially deployed applications using electromagnetic spectrum. Radio and

television services are primarily characterized as one-way communication systems. Cellular

telephony networks, introduced in 1980s, marked the first widespread use of two-way com-

munication devices. Much of the spectrum used by cellular telephony networks also fall into

the category of licensed spectrum usage. Another example of an application that operates

using licensed spectrum is the GPS.

Undoubtedly, services provisioned using licensed spectrum have had far reaching impacts

on all walks of human lives. However, the ‘static’ nature of the ‘command-and-control’

approach has resulted in inefficient spectrum utilization over the years. While the entire

radio spectrum from 6 kHz to 300 GHz is allocated, at any given point in space and time,

much of the spectrum remains unused [23, 38, 42, 43, 62, 67], resulting in the existence of
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Figure 1.1: White spaces in spectrum usage (Courtesy: Shared Spectrum Company)

‘spectrum holes’ (also called white spaces) in the allocated spectrum. A snapshot of spectrum

usage and existence of white spaces is shown in Figure 1.1. The problem of static spectrum

allocation also worsens due to the modification of old technologies and adoption of new ones.

For example, the allocation of 6 MHz per TV channel in the United States was based on

the old analog NTSC system even though better quality video can be now broadcasted with

almost 50% less spectrum per channel [9]. After completion of the analog to digital TV

transition in the US, most of the spectrum from 54 MHz–698 MHz (channels 2 to 51), which

was used for analog TV broadcast, remains unused. These limitations of static spectrum

allocation motivated regulatory bodies like FCC to rethink the way in which spectrum is

managed and seek a more dynamic means of allocating spectrum leading to the concept of

unlicensed spectrum usage, which we discuss next.
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1.1 Unlicensed Spectrum and Dynamic Spectrum Access (DSA)

Intuitively, spectrum utilization can be significantly improved by making it possible for

a user to access spectrum unoccupied by its license holder at a given location and time.

This is essentially the concept of unlicensed spectrum access. In contrast to static spectrum

allocation, for successful sharing of unlicensed spectrum, a dynamic and distributed approach

is required. Such a wireless ecosystem would be habited by primarily two classes of spectrum

users. The first are the primary users who already possess FCC licenses to use particular

frequencies. The second class comprises of the unlicensed users, denoted as the secondary

users. Primary users would always have full access to their spectrum at their discretion.

Secondary users can use the spectrum owned by the primary spectrum licensees, without

causing harmful interference to the latter, i.e., in an opportunistic manner. This is known as

dynamic spectrum access (DSA) or open spectrum access [3], [82]. Cognitive radio [30, 47],

empowered by Software Defined Radio (SDR) [81], is poised to promote the efficient use of

spectrum by adopting this open spectrum approach.

The first step in the paradigm shift from licensed spectrum management towards allowing

unlicensed usage was taken in 1985, when the FCC allowed use of direct sequence spread

spectrum (DSSS) technology for communications in the Industrial, Scientific, and Medical

(ISM) bands at 900 MHz, 2.4 GHz, and 5.8 GHz in the US. The ISM bands have played a key

role in facilitating development of various wireless communication systems, including wireless

local area networks and cordless phones. More recently, in November 2008, FCC issued a
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decision that made the TV white spaces left behind after the analog to DTV transition to be

available for unlicensed use. Unlicensed radio transmitters would be able to operate in these

white spaces without interfering with other devices. These steps taken by FCC mark the

beginning of an era in which devices using unlicensed spectrum will far outnumber devices

using licensed spectrum.

Cognitive Radio: Cognitive radio [46], [47], inclusive of software-defined radio, has been

proposed as the means to promote the efficient use of the spectrum by exploiting the exis-

tence of spectrum holes. Software-defined radio, is a multi-band radio that supports mul-

tiple air interfaces and protocols and is reconfigurable through software or general purpose

microprocessors[45]. Cognitive radio, built on a software radio platform, is capable of au-

tonomous reconfiguration by learning from and adapting to the communication environment.

1.2 Unlicensed Spectrum Sharing problem

We consider spectrum to be divided into channels. Here we use the term ‘channel’ broadly.

A channel can be a frequency band with certain bandwidth, a collection of spreading codes

in a code division multiple access (CDMA) network, or a set of tones in an orthogonal

frequency division multiplexing (OFDM) system. We assume that cross-channel interference

is negligible. Thus, a secondary user transmitting over an available channel does not interfere

with primary users using other channels.
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If a secondary user (node) uses spectrum without coordinating with the others, then it

may cause harmful interference and degrade overall spectrum usage. Nodes in close prox-

imity interfere with each other and cannot use the same channel concurrently, while well

separated nodes can reuse the same channel. Each node therefore has to use channels that

are orthogonal from its interferers. Such orthogonal channel assignment can be done with

either of the following two objectives.

1. Optimizing System Utility: Nodes share channels, such that, system wide utility

is maximized based on some predefined utility function (e.g., [13, 58, 63]), regardless

of individual benefits. This type of optimization techniques primarily corresponds

to collaborative schemes among nodes usually deployed by the same network service

provider.

2. Optimizing Individual Benefits: Nodes share channels, such that, individual bene-

fits are maximized (e.g., [34] [54]). Nodes are considered as rational entities competing

with each other to maximize self-gain in a non-collaborative manner. The nodes, for

example, can correspond to broadcast access points deployed by competing wireless

service providers. By using more channels each provider may intend to support more

customers for maximizing its revenue.

When the nodes accessing spectrum are self-gain-motivated rational entities, each would

try to to maximize its utility by accessing and using as many channels as possible from

the set of orthogonal channels not being used by any of the primary incumbents. The
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channels that a node selects is, however, subject to the following constraint– nodes within

the interference range of each other have to use orthogonal channels to minimize interference.

Thus, the nodes will have to agree upon a sharing rule of the channels among themselves.

The fundamental question that needs to be answered is- how many and which channels each

node should access to maximize its gain, given that all nodes are selfish. Clearly, from the

above discussion, it is important to study the competition for spectrum among nodes in an

interference aware context and investigate self-enforcing spectrum sharing strategies of the

nodes, which have not been addressed in previous works.

1.3 The Incentive based Routing Problem

Primary owners of spectrum licenses are mostly numerous, independent self-interested par-

ties. Thus, to motivate such entities to allow usage of their idle spectrum for secondary

use, an incentive, generally in the form of monetary benefit, has to given to them. Such

economic considerations have been reflected in recent research [37, 79, 80], which proposes

various pricing schemes.

1.3.1 The Routing Problem– from an Economic Perspective

Since secondary users acquire spectrum from the primaries by paying for the same, the former

can also be considered as self-gain-motivated independent entities, introducing characteristics

of an economy to the secondary user regime. In other words, incentives have to be given

7



to the secondary users to provide services, such as routing, to outside entities. To forward

traffic, each secondary node would incur a cost because of using the spectrum it has acquired

by paying a price. Moreover, using the acquired spectrum, each node can sustain a certain

capacity. Clearly, secondary nodes will not have an incentive to relay traffic unless they are

compensated for the costs they incur in forwarding traffic. Also, for a routing mechanism to

be stable, the amount of traffic that a node forwards should not exceed its capacity.

The routing problem: For a flow from a source s to a destination d in a DSA network, the

routing problem (from an economic perspective) is to find a path (or a set of paths) from s

to d, that has sufficient capacity to route the given flow, and using which the total payment

that needs to be made to relaying nodes is minimized.

1.3.2 Difficulty in Solving the Problem

The complexity in solving the routing problem lies in the fact that the routing mechanism

is not aware of the actual cost and capacity of a node. Both cost and capacity of a node

are considered as its private information, which the node is responsible for revealing to

the routing mechanism. This gives the nodes an opportunity to lie about its cost and/or

capacity hoping for an extra profit. For example, a node might understate its cost hoping to

attract sufficient additional traffic that countervails its lower than truthful cost announced,

or exaggerate its cost that might increase the payment made to the node sufficiently to

compensate for any resulting decrease in traffic. Moreover, a node might exaggerate its
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capacity hoping to receive additional traffic, which the node may not have sufficient capacity

to route, but results in increase in payment made to the node. As will become evident

later, there are situations where a node might even expect an extra profit by understating

its capacity.

1.3.3 Limitations of Past Work

Most past works have focused on the cost perspective alone and does not consider capacity

constraint in their framework [25, 31, 55]. These works consider finding a least cost path

(LCP) from s to d with each agent (a node or an edge) having a per packet cost for relaying

traffic. To induce the agents to reveal their costs truthfully, the pricing schemes in these

works are based on the Vickrey-Clarke-Groves (VCG) class of mechanisms [17, 29, 69]. It is

worth emphasizing here that the focus of these works is find a path with the least cost, which

need not be the path that requires the least payment. Minimization of the payment to be

made is more attractive to an end user, because price is the actual out-of-pocket expense the

end user has to pay. The authors in [39] consider the capacity constraint but do not enforce

the nodes to report their capacity truthfully. In [64], the authors also consider the capacity

constraint of the nodes. However, to enforce truthful capacity reporting their scheme requires

tamper-proof hardware or cryptographic-receipt-based software to be installed in the nodes.
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1.4 Solution Approach and Contributions

We first address the question of how many and which channels each selfish secondary node

should access in order to maximize its gain. In order to answer this question, we model the

channel access problem as a bargaining game, where nodes ‘haggle’ with each other over

their share of channels. The solution to the bargaining game corresponds to self–enforcing

equilibrium strategies of the nodes in ‘demanding’ and ‘accepting’ their share of channels

which optimizes the utility of each node against all other nodes.

Since the channels that each secondary node acquires comes to it at a cost, these nodes

will have to be provided with incentives to provide services such as routing to outside entities.

Thus, after investigating the equilibrium share of channels of the nodes, we will delve into

economic considerations of providing incentives to nodes to use the channels acquired by

them in providing the service of routing to outside entities.

1.4.1 The Spectrum Bargaining Game

We model the competition for spectrum among the nodes using non-cooperative game theory.

Specifically, we model the problem of agreeing upon a sharing rule of the channels among the

nodes as a Rubinstein-St̊ahl [60] [66] bargaining game. In our model, each node “bargains”

with the other nodes (opponents) in the network regarding its “share” (how many and which)

of the channels. In the finite horizon version of the game, nodes bargain at most for a given
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time. If the nodes can decide upon a sharing rule of the channels within the given time,

each gets its respective share of the channels as per the sharing rule. Otherwise, each node

gets zero channels. In the infinite horizon game, bargaining among the nodes go on until

the nodes can agree upon a distribution of the channels. Notice that, until the nodes agree

upon the sharing rule, none of the nodes can start data communication. Thus, “waiting” for

the bargaining outcome also costs the nodes. We consider this cost by discounting future

payoff of the nodes. This discounting represents the patience of the nodes in waiting for the

bargaining outcome.

We solve the bargaining game by finding Subgame Perfect Nash equilibrium (SPNE)

strategies of the nodes. The SPNE strategies that we derive comprise a set of strategies

such that, no node in no subgame can deviate from its strategy and thereby gain from the

deviation. Formally, the key contribution of our work on spectrum sharing can considered

as follows.

• We model the problem of dynamic spectrum access, in which the nodes have to agree

upon a sharing rule of the channels among themselves, as a Rubinstein-St̊ahl [60, 66]

bargaining game.

• We investigate finite horizon version of the game and identify SPNE strategies of the

nodes, such that, using their SPNE strategies each node can optimize its utility against

all its opponents in any subgame of the bargaining game1. In other words, considering

nodes to be rational, each node can play its SPNE strategy in the very first period

1Note that, the original game can also be considered a subgame of itself.
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of the game to decide on the sharing rule and start data communication. The finite

horizon game represents situations when an outside entity limits the time for which

the nodes can bargain.

• We also study the infinite horizon bargaining game and derive SPNE strategies of the

nodes in this game. The infinite horizon version of the game models situations when

there is no outside entity to limit the time for which the nodes bargain, so that, nodes

can go on bargaining until they can agree upon a sharing rule.

• We identify Pareto optimal equilibrium strategies of the nodes to maximize spectrum

utilization. In other words, the spectrum sharing rule that the nodes obtain using their

equilibrium strategies is efficient, in the sense that, the channel allocation of a node

cannot be improved without hurting the share of another.

• The bargaining solution that we derive is such that no node gets starved of channels

when the nodes play their equilibrium strategies. This is an important criteria when

analyzing any competition model.

• We conduct simulations to study how the ‘self-gain’ maximizing strategy of the players

affect system wide performance. This study reveals how competition for spectrum

among nodes influences spectrum usage from a global perspective. We also study how

the relative utility of the nodes is affected by their patience factors.
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• In our model, each node negotiates with its opponents to agree upon the sharing rule,

without requiring any centralized controller. Our algorithm thus works in a distributed

manner making the system scalable.

Deriving SPNE strategies of the spectrum bargaining game is fundamentally different and

much more difficult than solving the conventional Rubinstein-St̊ahl bargaining game. This

is because of two primary reasons– (i) spectrum can be spatially reused concurrently; two

interfering players must not use the same channels simultaneously yet well-separated players

can, and, (ii) players can only use whole channels, not fractional channels. We consider both

constraints while analyzing the spectrum bargaining game.

1.4.2 Path Auction based Routing Mechanism

As mentioned before, to forward traffic, each secondary node incurs a cost because of using

the spectrum it has acquired by paying a price. Moreover, using the acquired spectrum, each

node can sustain a certain capacity. Clearly, secondary nodes will not have an incentive to

relay traffic unless they are compensated for the costs they incur in forwarding traffic.

In this dissertation, we adopt the approach of Bayesian based algorithmic mechanism

design for designing an optimal routing mechanism that minimizes the payment to be made

to the nodes while theoretically ensuring that no node has any incentive to dishonestly

declare its cost and/or capacity. This is in sharp contrast to previous works that either

do not consider the capacity constraint of the nodes, or consider the capacity constraint
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but do not enforce truthful capacity reporting, or require special hardware/software to be

installed in the nodes for truthful revelation of a node’s private information. To the best of

our knowledge, ours is the first work that enforces truthfulness on multiple parameters of a

node, without requiring any tamper proof software/hardware.

Our routing mechanism is comprised of two components– a) route selection function,

which determines the route(s) that requires the least expected payment. We refer to such

a route as the the Expected Least Paid Route (ELPR), and, b) pricing function, which

determines the payment to be made to each node. The focus of our work is to design these

two functions. Formally, the key contributions of our work can be considered as follows.

• We propose a path auction based routing mechanism in which nodes announce their cost

and capacity, based on which a multi-path route is chosen and payments are made to the

nodes. The route selection mechanism and the payment function ensure that all nodes can

maximize their profit by truthfully reporting their cost and capacity, while the payment

that needs to be made to the nodes is minimized.

• In addition to theoretically deriving the functions that determine the route selection and

the payments to be made, we provide polynomial time algorithms for deploying the routing

mechanism in DSA networks.

• We model cost of a node and its capacity as random variables. This serves a two-fold

purpose– a) it helps tame the uncertainty regarding the actual cost and capacity of a
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node; and, b) it helps reflect the heterogenous nature of the nodes in a DSA network in

terms of both space and time variation of the cost and capacity of nodes.

In our work on routing, we assume that the interference issue has been taken care of by the

spectrum allocation mechanism (such as the bargaining solution), so that interfering nodes

have been allocated different channels. Thus, interference is not an issue at the routing layer.

In addition, even though a node is only allowed to transmit over channels it has acquired, it

can tune to any channel for reception.

Our work is partly based on the optimal auction theory by Myerson [48]. There are

however two major differences with Myerson’s work that makes our problem significantly

more difficult to tame. First, in Myerson’s work, each bidder is associated with only his

valuation (cost) of the object for sale, while in our scenario, each bidder (node) is associated

with a cost and a capacity. This increases the dimensionality of the problem. Secondly, in

Myerson’s theory, the bidders submit their bids independently, and a single bidder emerges

as the winner to whom the object is allocated. On the other hand, in our work, though

the nodes bid, the winner(s) corresponds to path(s). The nodes are then allocated traffic in

the context of the paths they belong to. Based on the above discussion, clearly, the results

in Myerson’s work cannot be directly applied to our problem. Thus, our work can also be

considered to be expanding the scope of optimal auction design in specific and of mechanism

design in general.
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1.5 Structure of this Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses important game

theoretic concepts used in this dissertation. In Chapter 3, we discuss related research in the

area of spectrum sharing and also in the area providing incentives to nodes for stimulating

cooperation in routing traffic. Chapter 4 first models the channel access problem as a

bargaining game, assuming that all nodes are within the interference range of each other.

Such a scenario often occurs in urban areas where the distribution of the secondary users is

very dense. Chapter 5 extends the bargaining model developed in Chapter 4 by relaxing the

assumption on interference constraint. The bargaining solution in Chapters 4 and 5 derive

equilibrium strategies of the nodes in ‘demanding’ and ‘accepting’ their share of channels,

which primarily answers the question of how many and which channels each node should

access in order to maximize its gain. However, each channel that a node acquires comes

at a cost and the node has to pay a price for acquiring it. In Chapter 6 we study the

‘end system’ perspective of such a cost by specifically focussing on the problem of providing

incentives to nodes for routing traffic in DSA networks. This chapter presents a route

selection mechanism and a pricing function that can induce nodes to reveal their cost and

capacity honestly (making our auction truthful), while minimizing the payment that needs

to be given to the nodes (making our auction optimal). Chapter 7 evaluates the performance

of all our proposed algorithms via extensive simulations. Finally, Chapter 8 concludes this

dissertation.
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CHAPTER 2

A GAME THEORY PRIMER

Game theory is a field of applied mathematics that aims to model situations in which multiple

participants interact or affect each other’s outcomes. The concepts of game theory provide a

language to formulate, analyze, and understand strategic scenarios, and furthermore, predict

the outcome of complex interactions among rational entities.

Game theory has been used to analyze problems in economics, political science, sociology,

biology and more recently in Computer Science. In this chapter, we formally review some

of the fundamental definitions and concepts in game theory [27, 55, 56, 57] that have been

used in our analysis.

2.1 Games, Strategies and Payoffs

A game consists of a set N of players, {1, 2, · · · , n}. Each player i ∈ N has his own set of

possible strategies, Si. To play the game, each player i selects a strategy si ∈ Si. The vector

of strategies selected by the players comprises the strategy profile, s = (s1, · · · , sn). Also,

S = ×i∈NSi denotes the set of all possible ways in which players can pick strategies. The

vector of strategies s ∈ S selected by the players determine the outcome for each player. To

formulate the game, a preference ordering on the possible outcomes needs to be specified for
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each player. This is accomplished by defining, for each player i, a payoff function ui : S → R.

Next, we formally define a game.

Definition 2.1. A game in strategic or normal form is denoted by the triple (N , S, u), where,

• N = {1, 2, ..., n} denotes the set of players.

• S = ×i∈NSi denotes the set of all possible ways in which players can pick strategies. It
is the Cartesian product of the strategy spaces Si of all players.

• u(s) = (u1(s), · · · , un(s)) is the n-tuple of payoff functions. ui(s) is the payoff func-
tion of player i that gives his von Neumann-Morgenstern utility for each profile s =
(s1, · · · , sn).

The most fundamental assumption in game theory is that all players in the game are

rational. A rational player chooses actions to maximize his payoff. In case the game is

not deterministic, a player chooses to maximize his expected utility (payoffs). The idea

of maximizing the expected payoff was justified by the seminal work of von Neumann and

Morgenstern in 1944 [53]. Since rational players tend to maximize their payoff, they can be

regarded as being selfish. It worth emphasizing that being selfish does not necessarily mean

“hurting” other players.

2.1.1 Dominant Strategy Solution

After a game is formulated, it is interesting to study whether it is possible to predict how the

game can be played. Predicting the strategy of the players (and consequently the outcome

of the game), is referred to as solving the game. This leads us to the notion of a dominant

strategy solution.

18



Let us denote the tuple (s1, · · · , si−1, si+1. · · · , sn) by s−i, and the tuple (s1, · · · , sn) by

(si, s−i). We can then define the following two important concepts.

Definition 2.2. Strategy si ∈ Si is a dominant strategy for player i if for every alternate
strategy s′i ∈ Si, it holds that,

ui(si, s−i) ≥ ui(s
′
i, s−i), ∀s−i ∈ S−i (2.1)

Strategy si is the unique dominant strategy for player i if the inequality holds strictly.

Definition 2.3. A strategy vector s ∈ S is a dominant strategy solution, if for each
player i, and each alternate strategy vector s′ ∈ S, it holds that,

ui(si, s
′
−i) ≥ ui(s

′
i, s

′
−i) (2.2)

Strategy profile s is the unique dominant strategy solution of the game if the inequality holds
strictly.

In other words, if each player has a best strategy, independent of the strategies played

by the other players then we say that the game has a dominant strategy solution. Having

a dominant strategy for each player is a stringent requirement for a game and only few

games satisfy it. One game which has a (unique) dominant strategy solution is the famous

“Prisoner’s Dilemma” game. We will discuss it next to illustrate the concept of finding a

dominant strategy solution.

Prisoner’s Dilemma: In this game, two people (A and B) have been arrested for

a crime. However, the police lack sufficient evidence to convict either suspect and thus

need them to testify against each other. They have been put in different cells and cannot

communicate with each other. The police have asked each to testify against the other. If

one testifies (i.e., defects) and the other does not (i.e., cooperates), then the one that defects

will be released and given a reward for testifying, while the one that cooperates will go to
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Table 2.1: Payoff matrix: Prisoner’s Dilemma
HHHHHHA

B
Cooperate Defect

Cooperate (1, 1) (−1, 2)
Defect (2,−1) (0, 0)

jail. If neither testifies, both prisoners will be released and no rewards will be given. If

both testifies against the other, both will go to prison, but will however collect rewards for

testifying. Also, in this game, both players will have to simultaneously choose between the

two options. The payoff of the players for the different strategy profiles have been tabulated

in Figure 2.1.

If both players cooperate, they get 1 each. If both defects, each gets 0. If one cooperates

while the other does not, the former is punished and gets a payoff of -1, while the latter

is rewarded resulting in a payoff of 2. Notice that, each prisoner will do strictly better

by defecting, regardless of what the other one does. Thus, the unique dominant strategy

solution of this game is for both prisoners to defect. It can also be noted that cooperation

would actually lead to a better payoff of both players (1 each). However, self-gain-motivated

behavior of the players leads to the inefficient outcome with payoffs 0.

2.1.2 Pure Strategy Nash Equilibrium

As noted earlier, only few games possess dominant strategy solutions. Thus, it is desirable

to find a less stringent and more widely applicable solution concept. This leads us to the
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discussion of a Nash equilibrium, which was proposed by John Nash in his seminal work [50]

in 1950.

Definition 2.4. A strategy profile s ∈ S is said to be a Nash equilibrium, if for all players
i, and each alternate strategy vector s′i ∈ Si, we have that

ui(si, s−i) ≥ ui(s
′
i, s−i) (2.3)

A Nash equilibrium is strict if each player has a unique best response to his opponents’
strategies, i.e., the above inequality is strict for all i and all s′i 6= si.

Thus, a Nash equilibrium is a strategy profile, such that, each player’s strategy is an op-

timal response to all the other players’ strategies. In other words, no player i can unilaterally

change his chosen strategy from si to s′i and thereby improve his payoff. Such a solution

can also be said to be self-enforcing and stable, in the sense that, given that the players are

playing such a solution, it is in every player’s best interest not to change his strategy. Notice

that, definition (2.4) essentially defines a pure strategy equilibrium, since it considers that

each player deterministically plays a strategy. Furthermore, it can also be observed that a

strict Nash equilibrium has to be a pure strategy equilibrium.

Clearly, from definitions (2.3) and (2.4), we can say that a dominant strategy solution is

a Nash equilibrium. For example, the (unique) Nash equilibrium in the Prisoner’s dilemma

game corresponds to both players choosing to defect, since in this case neither player can

unilaterally change his strategy to improve his payoff. However, in general, Nash equilibria

need not be unique. Coordination games, such as Battle of the Sexes, can have multiple

Nash equilibria.

Battle of the Sexes: In this game, a couple needs to decide how to spend their evening.

Each player considers two possibilities– going to a soccer game or a ballet. The husband (H)
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Table 2.2: Payoff matrix: Battle of the sexes
HHHHHHH

W
Soccer Ballet

Soccer (2, 1) (0, 0)
Ballet (0, 0) (1, 2)

prefers soccer while the wife (W) prefers ballet. However, both prefers spending the evening

together rather than separately. The payoff matrix of the game is shown in Table (2.2).

This game has three Nash equilibria– two using pure strategies and one using mixed

strategy. We will discuss the mixed strategy equilibrium in Section (2.1.3). If both choose

to go to the same event, neither can improve his or her utility by unilaterally changing his or

her strategy. Thus, the two pure strategy equilibria correspond to both attending the same

event, with payoffs (2, 1) or (1, 2), depending on whether they both go to the soccer game

or the ballet.

2.1.3 Mixed Strategy Nash Equilibrium

Though a pure strategy equilibrium defines a stable solution of a game, all games need not

possess one. This leads us to study mixed strategy equilibria. A mixed strategy for player

i, say σi, is a probability distribution over the set of his pure strategies Si. We will denote

the space of probability distributions over Si by Σi. Each player’s distribution is assumed

to be statistically independent from those of his opponents. The payoffs in a mixed strategy

profile are the expected values over the corresponding pure strategy payoffs. When dealing
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with mixed strategy equilibria, it is considered that the players are risk neutral and each

player seeks to maximize his expected payoff. Formally, a mixed strategy Nash equilibrium

can be defined as follows.

Definition 2.5. A mixed strategy profile σ∗ is said to be a Nash equilibrium, if for all
players i,

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i), ∀si ∈ Si (2.4)

In 1951, Nash proved the following important result when the strategies of the players

are extended by incorporating randomization [51].

Theorem 2.1. If a game has a finite set of players and a finite set of strategies, then it
necessarily possesses a Nash equilibrium of mixed strategies.

It is easy to see that if a player uses a mixed strategy in a Nash equilibrium, then he must

be indifferent between choosing all pure strategies to which he assigns a positive probability.

Let us now consider a game which has no pure strategy equilibrium and find a mixed strategy

solution to the game.

Matching Pennies: Two players, 1 and 2, have a penny each, and has to simultaneously

announce heads (H) or tails (T). If the announcement matches, player 1 wins and player 2

loses. However, if the announcement differs, player 2 wins and player 1 loses. The payoff

matrix is shown in Table (2.3), where 1 indicates win and -1 indicates loss.

Clearly, the game does not have a pure strategy equilibrium, since for all 4 strategy

profiles, one player can always improve his payoff by deviating unilaterally. Let us find a

mixed strategy equilibrium of the game. Let p1 and p2 be the probability of player 1 and 2
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Table 2.3: Payoff matrix: Matching Pennies
HHHHHH1

2
H T

H (1,−1) (−1, 1)
T (−1, 1) (1,−1)

playing H respectively. Now, player 1’s indifference between choosing H and T implies that,

(1) · p2 + (−1) · (1− p2) = (−1) · p2 + (1) · (1− p2)

Solving, we get p2 = 1/2. Similarly, for player 2 to be indifferent between choosing H and

T, we must have,

(−1) · p1 + (1) · (1− p1) = (1) · p1 + (−1) · (1− p1)

Solving, we get p1 = 1/2. Thus, the mixed strategy Nash equilibrium in this game is for

each player to play each strategy with probability 1/2.

In a similar fashion, it can be shown that the mixed strategy equilibrium of the battle

of the sexes game is for H to choose the soccer game with probability 2/3 and choose the

ballet with probability 1/3, while the strategy of W is to choose the ballet with probability

2/3 and choose the soccer game with probability 1/3.

2.2 Repeated Games

In many cases, games are played repeatedly rather than just one time. Repeated games

provide a formal framework to study why self-interested players manage to cooperate in a
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long term relationship. In such games, the same set of players repeatedly play the same

game, usually referred to as the “stage game”, for a finite or infinite number of times.

The progress of time in repeated games is measured in terms of time periods. The game

begins in period 0. Let st = (st
1, · · · , st

n) be the strategies that are played in period t. It is

assumed that the game begins with the null history h0. For t ≥ 1, ht = (s0, · · · , st−1) is the

vector of strategy profiles realized at all periods before t. H t = (A)t denotes the space of

all possible period t histories. All players observe history ht based on which each player can

condition his strategy in period t. Thus, a pure strategy si for player i in the repeated game

can be defined as a sequence of maps st
i, one for each period t, that map possible period t

histories ht ∈ H t to strategies in Si. Similarly, a mixed strategy σi is a sequence of maps σt
i

from H t to the mixed strategy space Σi. Note that, the game starting at each play period

can be considered as a game in its own right, and is referred to as a subgame of the original

game.

The concept of a Nash equilibrium can be refined to describe an equilibrium of a repeated

game, known as the Subgame Perfect Nash Equilibrium (SPNE).

Definition 2.6. A repeated game strategy s∗ is a Subgame-Perfect Nash Equilibrium
if at each subgame, for all players i

s∗i ∈ arg max
si∈Si

ui(si, s
∗
−i). (2.5)

Also, if h∗ is the history generated by s∗, then h∗ is the associated equilibrium path.

In other words, a SPNE is an equilibrium such that players’ strategies constitute a Nash

equilibrium in every subgame of the original game. In order to verify whether a strategy

profile of a repeated game (both finite and infinite horizon) with observed actions constitutes

25



a SPNE, it is sufficient to check if there exists any history ht where some player i can gain

by deviating from the strategy specified by si if ht occurs and conforming to si thereafter.

This is known as the one stage deviation principle.

Theorem 2.2. One Stage Deviation Principle: A strategy profile s is constitutes a
SPNE if and only if there is no player i and no strategy s′i that tallies with si except at a
single period t and ht and such that s′i is a better response to s−i than si, conditional on ht

being reached.

For games with a finite horizon, the set of subgame perfect Nash equilibria can be de-

termined by backward induction. However, for infinite horizon games, SPNEs cannot be

found using backward induction. Infinite horizon games are more appropriate for modeling

situations where players always believe the game can extend one more period with some

probability, while the finite horizon game more aptly models situations where the terminal

date is well foreseen.

Next, we consider a repeated game that involves bargaining between two players to share

a piece of pie and discuss its SPNE.

2.2.1 The Rubinstein-St̊ahl Bargaining Model

In Rubinstein’s model two players must decide how to share a pie of size 1. In periods

0, 2, 4, · · · (i.e., in periods 2k, where k = 0, 1, 2, · · · ) player 1 proposes a sharing rule (x, 1−x)

that player 2 can accept or reject. If player 2 accepts any offer the game ends. If player 2

rejects player 1’s offer in period 2k, then in period 2k + 1 player 2 can propose a sharing

rule (x, 1− x) that player 1 can accept or reject. If player 1 accepts one of player 2’s offers,
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the game ends. Otherwise, if player 1 rejects players 2’s offer then the former player can

make an offer in the subsequent period and so on. This is clearly an infinite horizon game of

perfect information. Note that each period of the game comprises of two stages– in the first

stage, one of the players propose a sharing rule, while in the second stage the other player

announces his approval or refusal of the sharing rule.

The model specifies that, if (x, 1−x) is accepted in period t, then the payoff of the players

are (δt
1x, δt

2(1 − x)), where x is player 1’s share of the pie, and δ1 and δ2 are the discount

factor of the two players.

The Subgame Perfect Nash Equilibrium (SPNE) in this model is – “Player i always

demands a share of
1−δj

1−δiδj
when making an offer and accepts any share equal to or greater

than
δi(1−δj)

1−δiδj
”. Note that player i’s demand of:

1− δj

1− δiδj

= 1− δj(1− δi)

1− δiδj

is the highest share for player i that is accepted by j. Player i cannot gain by making a

lower offer, for it too will be accepted. Making a higher (and rejected) offer and waiting to

accept his opponent’s offer next period hurts player i as:

δi

(
1− 1− δi

1− δiδj

)
= δ2

i

1− δj

1− δiδj

<
1− δj

1− δiδj

(2.6)

Similarly, player i cannot gain by rejecting any offer of atleast
δi(1−δj)

1−δiδj
, since if he rejects he

receives the share
1−δj

1−δiδj
next period, which is equivalent to

δi(1−δj)

1−δiδj
in the current period.

Rubinstein extended the work of Stahl who considered a finite horizon version of the

game. With a finite horizon game, the game can be easily solved by backward induction.
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The unique SPNE is the last period is for the player who makes the offer (say player 1)

to demand the whole pie, and for his opponent to accept this demand. In the second last

period, the last offerer (player 1) will refuse all offers that give him less than δ1 since he can

get δ1 · 1 by refusing and so on.

2.3 Mechanism Design

“The field of mechanism design aims to study how privately known preferences of many

people can be aggregated towards a “social choice”. The main motivation of this field

is microeconomic, and the tools are game-theoretic.”– Nisan and Ronen [55]. Mechanism

design aims to design games that have a dominant strategy solution such that the solution

leads to a desirable outcome.

In a distributed environment, such as the internet, participants cannot be assumed to

follow an algorithm or a protocol, but rather their own self-interest. Since computers on the

internet belong to different institutions or persons, they will likely act in a manner that is

beneficial to their owner and can potentially manipulate algorithms to this end. It is thus

important to design algorithms or protocols considering this kind of behavior in advance.

Studying algorithms from such a perspective is the focus of algorithmic mechanism design.
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2.3.1 Mechanism Design Problem

A mechanism design problem comprises of two components– a) the algorithmic output spec-

ification, and, b) descriptions of what the participating agents want, defined as utility func-

tions over the set of possible outputs. Consider n agents. Each agent i ∈ {1, · · · , n} has

some private information which is referred to as his type ti ∈ Ti. An output specification

maps each type vector t = (t1, · · · , tn) to a set of allowed outputs. Depending on his private

information, each agent has his own preferences over the possible outputs. The preferences

of agent i are given by a valuation function vi that assigns a real number vi(ti, q) to each

possible output q.

A mechanism defines for each agent i a set of strategies Si. Each agent i chooses a strategy

si ∈ Si. The mechanism takes as input the vector of strategies s = (s1, · · · , sn). Based the

vector of announced strategies, s, the mechanism computes an output q(s) and a payment

pi(s) to each of the agents. The payment pi(s) is used to incentivize agent i to behave in

accordance with the mechanism’s overall goals. The utility of agent i is pi(s) + vi(ti, q(s)).

This is what each agent wants to optimize.

Mechanism Design Optimization Problem: This is a mechanism design problem

where the output specification is given by a positive real valued objective function g(q, t) and

a set of feasible outputs Q. The mechanism should be such that the output q ∈ Q optimizes

g.
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2.3.2 Properties of the Mechanism

A mechanism is said to solve a given problem if it can guarantee that the required output

occurs when each agent chooses his strategy in a selfish manner for maximizing his own

utility. A mechanism thus needs to ensure that the agents’ utilities are compatible with the

algorithm. The mechanism can influence the utilities of the agents by handing out payments.

2.3.2.1 Dominant Strategy Implementation

Let us denote the tuple (s1, · · · , si−1, si+1. · · · , sn) by s−i, and the tuple (s1, · · · , sn) by

(si, s−i). A mechanism is said to be an implementation with dominant strategies if,

1. For each agent i and each ti ∈ Ti, there exists a strategy si ∈ Si such that for all

possible strategies of the other agents s−i, si maximizes agent i’s utility. Strategy si is

said to be a dominant strategy for agent i. In other words, for every possible strategy

ŝi ∈ Si and ŝi 6= si, we must have,

vi(ti, q(si, s−i)) + pi(si, s−i) ≥ vi(ti, q(ŝi, s−i)) + pi(ŝi, s−i) (2.7)

2. For every possible tuple of dominant strategies s = (s1, · · · , sn), the output q(s) satis-

fies the output specification.

A mechanism is said to be polynomial time computable if the output and payment

functions are computable in polynomial time.
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2.3.2.2 Truthful Implementation

In a lot of mechanism design problems, such as the shortest path problem and the task

scheduling problem, agents’ strategies simply involve reporting their types, i.e., Si = Ti. For

such problems, the following two properties should be exhibited by the mechanism.

• Incentive Compatibility: Each agent should be able to maximize his utility by

reporting his true type ti to the mechanism regardless of what other agents do so that

the mechanism is truthful or strategy-proof. In other words,

vi(ti, q(ti, t−i)) + pi(ti, t−i) ≥ vi(ti, q(t̂i, t−i)) + pi(t̂i, t−i) (2.8)

where, ti ∈ Ti is the true type of agent i and t̂i is any other type.

• Individual Rationality: The utility of an agent should be non-negative, so that it

is rational for him to participate in the game.

2.3.3 Vickrey-Clarke-Groves Mechanisms (VCG)

The Vickrey-Clarke-Groves (VCG) mechanism applies to maximization problems in mecha-

nism design where the objective function is the sum of all agents’ valuations, i.e., g(q, t) =

∑
i vi(ti, q). The set of possible outputs is assumed to be finite. In general, we can define

the class of VCG based mechanisms as follows.

Definition 2.7. A direct revelation mechanism (p(t), q(t)) belongs to the VCG family if

1. q(t) ∈ arg maxQ

∑n
i=1 vi(ti, q(t))
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2. pi(t) =
∑

j 6=i vj(tj, q(t)) + hi(t
−i), where hi() is some function of t−i

It has been proven in [29] that a VCG mechanism is truthful. In short, a VCG mechanism

provides a solution to maximization based mechanism design problems.

2.3.3.1 An Example– The Least Cost Path (LCP) Problem

Let us now provide an example of a mechanism design problem that can be solved using VCG

mechanism. Consider a communication network represented by a directed graph G = (E, V ).

For simplicity, assume that the graph is bi-connected. Each edge e in the graph is considered

as an agent who has private information regarding the cost of sending a packet along the

edge. The cost associated with each agent is considered as its type, te ≥ 0. The objective of

the problem is to find the cheapest path for sending a single packet from a given node s to

a given node d in the graph G. This is known as the Least Cost Path (LCP) problem.

In this problem, clearly, the set of feasible outputs are all paths from s to d. The objective

function is the path’s total cost. The valuation of an agent e is 0, if its edge is not included

on the chosen path, and −te, if its edge is included. The following mechanism ensures that

the dominant strategy for each agent is to truthfully report its type te to the mechanism.

1. Based on the reported cost of each agent, find the LCP from s to d. With the cost of

each agent used as its weight in G, the LCP simply corresponds to the shortest path

from s to d with respect to the weights of the agents.

32



2. The payment pe given to an agent e is 0 if e is not in the LCP and pe = dG|e=∞−dG|e=0

if it is. Here, dG|e=∞ is the cost of the least cost path that does not contain e, and

dG|e=0 is the cost of the least cost path when the cost of e is assumed to be zero.

It is easy to see that the shortest path indeed minimizes the total path cost. It can also

be verified that the above mentioned mechanism is a VCG mechanism. Here, dG|e=∞ corre-

sponds to hi(t
−i) and dG|e=0 corresponds to

∑
j 6=i vj(tj, q(t)).

What is the time complexity of finding all the payments? Since all agent (edge) weights

are non-negative, Dijkstra’s algorithm [19] can be used to find the shortest paths. Using

Dijkstra’s, a single shortest path can be found in O(|E|+ |V |log|V |) time. Thus, finding all

payments would take O(|E|2 + |E||V |log|V |) time.

2.4 Auction Theory

An auction can be considered as a mechanism to allocate resources among a group of bidders.

Auctions are the one of the oldest surviving classes of economic institutions. The first

historical record of an auction is usually attributed to Herodotus, who reported a custom in

Babylonia where men bid for women to wed.

Auction theory seeks to study how people act in an auction market and explores de-

signing auction formats for various market scenarios. There is substantial agreement among

economists that auctions are the best way to assign resources, such as spectrum [44]. Auc-
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tions seek an answer to the question “Who should get the item(s) for sell and at what

prices?”. Precisely, an auction can be said to accomplish the following tasks.

• Price discovery: In many cases, seller(s) (and even buyers) are not aware of how

much an item or service is worth and how much they should sell or buy it for. An

auction serves as a “market test” to ascertain the price tag that should be associated

with the item or service for sell.

• Winner determination: The auction process determines who the object (item, con-

tract etc.) should be allocated to, or who “wins” the auction. An advantage of auction

is its tendency to assign the object to the bidder that values it most. This is important

in many situations, such as when the government auctions public assets like spectrum,

since the buyer that values the object most is usually the one that can use it best.

• Payment computation: The process can be used to determine how much the par-

ticipants should pay.

2.4.1 Common Types of Auction

Traditionally there are four primary types of auction mechanisms that are used for the

allocation of a single item.

34



• First price sealed-bid auction: In this auction, bidders submit their bids in sealed

envelopes to the auctioneer simultaneously. The envelopes are opened and the person

submitting the highest bid wins the object and pays the amount that he or she bid.

• Second price sealed-bid auctions: This is also known as the Vickrey auction. The

bidders submit their bids in sealed envelopes to the auctioneer simultaneously. The

envelopes are opened and the person submitting the highest bid wins the object but

pays an amount equal to the second highest bid.

• Open ascending-bid auction: This is also known as the English auction [24]. In

this auction, the price is steadily raised by the auctioneer, usually in small increments,

with bidders dropping out once the price becomes too high for them. The process

continues until only one bidder remains who wins the auction at the current price.

• Open descending-bid auction: This is also called the Dutch auction. The auction-

eer begins by calling out a sufficiently high price that can presumably deter all bidders

from buying at that price. The price is progressively lowered until a bidder indicates

that he is prepared to buy at the current price. He or she wins the auction and pays

the price at which they bid.

Designing auctions involve designing games with dominant strategy solutions. We will

illustrate this using the example of Vickrey auction.
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2.4.2 An Example: The Vickrey Auction

A seller has one indivisible object for sale. There are n potential buyers (bidders). The

valuation of bidder i for the object is vi. The strategy of each player i is to submit his bid

si ∈ [0,∞). Let us consider designing an auction to sell the object, i.e., determine which

bidder should get the object and what price he should pay.

A straightforward auction would be to award the painting to the highest bidder and

charge him his bid (first price sealed-bid auction). It is easy to see that this game does not

have a dominant strategy solution, i.e., a bidder may improve his utility by submitting a bid

si 6= vi. Vickrey’s second price auction, however, can be used to allocate the object so that

bidding one’s true valuation is a dominant strategy for each bidder. In this case, the highest

bidder would win the object and pay a price equal to the second highest bid. Precisely, if i

is the highest bidder, i.e., si > maxj 6=isj, his utility would be vi −maxj 6=isj, while the other

bidders would pay nothing and have an utility of 0.

Clearly, in this auction, for each player i, bidding his true valuation weakly dominates all

other strategies. To see why, let s∗i = maxj 6=isj. Now suppose first that si > vi. If s∗i ≥ si,

then his utility would be 0, which is the same utility he gets by bidding vi. If s∗i ≤ vi, i

would obtain utility vi−s∗i regardless of bidding si or vi. If vi < s∗i < si, then i has an utility

of 0 by bidding vi which dominates his strategy of bidding si to get an utility of vi− s∗i < 0.

Now consider si < vi. In this case, for both s∗i ≤ si and s∗i ≥ vi, i’s utility would remain

unchanged regardless of bidding si or vi. However, if si < s∗i < vi, then i would have an
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utility of vi− s∗i by bidding vi which dominates his strategy of bidding si to get an utility of

0.

From the above discussion, clearly, no player can gain by not bidding his true valuation.

Moreover, notice that, since bidding one’s true valuation is a dominant strategy, it does not

matter whether a bidder knows the valuations of other bidders.

37



CHAPTER 3

RELATED RESEARCH

In this chapter, we review related research on spectrum allocation in DSA networks and on

provisioning incentives to stimulate cooperation among nodes in wireless ad-hoc networks to

route traffic.

3.1 Related Research on Spectrum Allocation

Coexistence of wireless systems that have to thrive by competing for spectrum has been

studied in [34, 54]. Such a competitive scenario typically corresponds to wireless service

providers competing for spectrum to maximize their revenue by supporting more customers.

In [54], the authors use game theory to analyze strategies of cognitive radio nodes for ac-

cessing channels. Their solution approach is based on regret minimization of the nodes and

propose an iterative learning algorithm using which nodes, that interact in a repeated game,

can determine the channels to use. In contrast, we model the competition for spectrum

among the nodes by considering the fact that each node will try to maximize its own bene-

fit. Such modeling more aptly reflects non-cooperative interactions. Moreover, they assume

nodes in their model to be homogenous. However, we study a heterogenous environment and

allow nodes to compete for spectrum in a differential manner. In [34], the authors model the
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competition among network operators who compete for spectrum. However, their framework

is limited to a scenario where only two operators exist.

Spectrum sharing in wireless systems with an objective of maximizing overall system

utility has been studied in [9, 10, 13, 58, 59, 63, 76]. These works however do not study power

control. Techniques based on optimizing system utility primarily corresponds to collaborative

schemes among nodes usually deployed by the same wireless service provider. Buddhikot

et al. in [9, 10], propose a spectrum access architecture via a regional spectrum broker.

In [13], the authors propose a local bargaining approach for mobile ad-hoc networks where

users affected by mobility can form bargaining groups and adapt their spectrum assignment

to approximate a new optimal assignment, instead of recomputing spectrum assignments

for all users after each change in topology due to mobility. Their bargaining approach

takes as input a previous spectrum assignment, and performs computations to adapt to

recent topology changes. Nodes in their framework bargain to optimize a predefined system

utility in contrast to ours where nodes bargain to maximize individual benefits. The authors

in [58] formulate the problem of channel assignment, based on optimizing system utility,

as a variant of the graph coloring problem by mapping channels into colors, and assigning

them to users (nodes in the conflict graph of the network). They propose both a centralized

allocation scheme, where a central server calculates an allocation assignment based on global

knowledge, and a distributed approach, where devices negotiate local channel assignments

towards a global optimization. In [59], the authors propose using a spectrum server to

schedule the transmissions of a group of links sharing a common spectrum with an objective
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of optimizing network throughput. They assume that the spectrum server knows the link

gains in the network. Using a linear programming approach, the server then finds an optimal

schedule that maximizes the average sum rate subject to a minimum average rate constraint

for each link. To utilize the bandwidth left unused in cellular systems (considered as the

primary system), the authors in [63] propose the design of a secondary system in an overlay

mode over the primary system. The secondary system operates in a non intrusive manner

and does not interact with the primary cellular system. They design a Medium Access

Control protocol that enables inter-operation of the primary-secondary systems. The work

in [76] proposes a device-centric spectrum management scheme to maximize system utility

based on assigning orthogonal channels to interfering nodes. In their scheme, nodes observe

local interference patterns and act according to a set of predefined spectrum rules.

Spectrum sharing by making nodes transmit at different power levels for minimizing

interference has been studied in [18, 32, 33]. In [18], the authors consider power allocation

strategies for radios operating in unlicensed bands. They model radio interaction as a two-

player reputation based repeated game and use genetic algorithms to explore the space of

possible power allocation strategies. The authors in [32] design auction mechanisms for

allocating power among a group of spread spectrum users who share the bandwidth with a

licensed user. In these auctions, the spectrum owner charges for SINR and received power.

The work in [33] considers a spectrum sharing problem in which each wireless transmitter can

select a single channel from a set of available channels, along with the transmission power.

In their scheme, users exchange price signals, that indicate the negative effect of interference
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at the receivers. Given this set of prices, each transmitter chooses a channel and power level

to maximize its net benefit.

3.2 Related Research on Incentive Based Routing

The problem of cooperation in wireless networks has been an area of active research in recent

years. Since forwarding a packet will incur a cost to a node, a selfish node will need incentive

in order to forward others’ packets. One possibility to provide incentive is to use a credit

based system for paying nodes that forward traffic.

Buttyan and Hubaux proposed the first credit-based system [11, 12] for wireless ad-

hoc networks. In their scheme, they propose the usage of nuglets, a virtual currency, to

pay nodes to forward others’ packets. Such payments are deducted from the sender or the

destination. However, both proposals require a tamper-proof hardware at each node to

ensure correct payment. This requirement limits the applicability of their work. Motivated

by the nuglet, several other credit-based systems were proposed to stimulate cooperation

in packet forwarding. In [77], Zhong et al. proposed Sprite, a credit based system for

mobile ad-hoc networks, which provides incentives to selfish nodes for cooperating, without

requiring tamper-proof hardware at any node. Their scheme uses a central authority to

collect receipts from forwarding nodes based on which charges and rewards are made. They

devise a mechanism to make nodes honestly forward packets and report receipts. However,

they do not consider capacity constraint of the nodes in their framework. In [61], Salem et
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al. proposed a charging and rewarding scheme based on symmetric cryptography to make

collaboration rational for selfish nodes.

Nisan and Ronen first introduced the concept of algorithmic mechanism design in their

seminal work in [55]. In that work, they proposed using an incentive compatibility based

approach in conjunction with the more traditional protocol design approach. They also

applied the concept of mechanism design to the problem of finding the LCP from s to d

in a network with each edge (agent) having a cost of relaying a packet. With the cost of

each agent used as its weight in the underlying topology graph of the network, the LCP

corresponds to the shortest path from s to d with respect to the weight of the agents. To

induce each agent to truthfully report its cost they devise their pricing scheme according to

the VCG mechanism. In this scheme, the payment pe given to an agent e is 0 if e is not in

the LCP and pe = dG|e=∞ − dG|e=0 if it is. Here, dG|e=∞ is the cost of the least cost path

that does not contain e, and dG|e=0 is the cost of the least cost path when the cost of e is

assumed to be zero.

Several other works extended the model developed in [55], based on the VCG mechanism,

into different networking environments. For example, the authors in [25] tailored the LCP

based approach to work with the Border Gateway Protocol (BGP), considering Autonomous

Systems (ASs) as the agents. In [1], the authors propose Ad hoc-VCG, which is an adaptation

of the basic VCG algorithm to routing in mobile ad hoc networks. VCG has also been

extended to work with multicast routing in [72]. A VCG based payment mechanism has

also been used for LCP routing in ad-hoc networks in [71]. The work in [31] focusses on
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complexity issues of computing VCG payments. In [39], the authors formulated the LCP

problem in a multi-path routing scenario, but did not provide a solution to the problem.

The authors of [78] proposed Corsac, which integrates VCG and cryptographic techniques

to stimulate cooperation among wireless nodes.

As noted earlier, LCP need not be the path that minimizes the total payment that needs

to be made to agents for incentivizing them to report their true costs honestly. In fact, VCG

based mechanisms in general and LCP in specific suffer from the issue of high overpayment,

which was first pointed out by Archer and Tardos [2]. They investigate the “frugal path”

problem, which focusses on designing a mechanism that selects a path and induces truthful

cost revelation without paying a high premium. Their paper contributes negative results

on the frugal path problem and further proves that no reasonable mechanism can always

avoid paying a high premium to induce truthtelling. The work in [21] focuses on finding the

bounds for the price of truthful shortest path auction based routing mechanisms. In contrast

to studying bounds, we focus on explicitly minimizing the payment that needs to be given

to the nodes for routing traffic, while ensuring that no node has any incentive to dishonestly

report its cost and/or capacity to the routing mechanism.

The authors in [22] studied the minimization of the expected payment that needs to be

made to the relaying nodes to maintain truthfulness of their reported costs. But they did not

consider the capacity constraint of the nodes, thereby restricting their framework to be appli-

cable only to the single path routing scenario. The authors in [64] extended their framework

by considering the capacity constraint of the nodes. However, to enforce the nodes to reveal
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their capacity truthfully, they rely on tamper-proof hardware or crytographic-receipt-based

software to be present in the nodes. This is counter intuitive since the very nodes that may

have an incentive to lie about their capacity has to install the special software/hardware

that will discourage them from lying.

The authors in [68] studies auctions in the context of multi-path routing, but restrict

their framework to the special case where the paths are node disjoint. Moreover, instead

of investigating strategy-proof solutions (i.e., dominant strategy solutions), they design a

mechanism in which there are Nash equilibria for all nodes to honestly bid their true cost.

In [70], the authors also relax the dominant strategy criteria of strategy proof solutions to

investigate Nash equilibria of honest cost revelation in the context of unicast routing in non-

cooperative wireless networks. In general, as noted by the authors in [68, 70], mechanisms

that result in Nash equilibria rather than dominant strategy solutions, require less payment

that VCG, however at the cost of degenerating strategyproofness. Also, notice that [68, 70]

only consider truthful revelation of the cost of a node disregarding capacity constraints. Wu

et al. in [74], studies incentive compatibility in the context of opportunistic routing [5, 14]

in wireless networks. In opportunistic routing, any node that overhears the transmission

of a packet can participate in forwarding the packet. These protocols uses link loss rates

to make forwarding decisions. The authors in [74] design a mechanism to prevent cheating

in reporting and measuring these loss rates. Feldman et al. in [26] investigates designing

contracts to induce cooperation when intermediate nodes can choose to forward or drop
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packets, as well as when the nodes can choose to forward packets with different levels of

quality of service.

The works we have discussed till now are credit based systems, in the sense that they

provide payment as an incentive to nodes for cooperating and forwarding traffic. Another

possibility to provide incentive is to use a reputation based system [7, 8, 40]. In general,

reputation based systems are usually modeled as a repeated game whose objective is to stim-

ulate cooperation. In [40], Marti et al. proposed a reputation system for ad hoc networks,

in which a node monitors the transmission of a neighbor to observe whether the neighbor

forwards others’ traffic. If the neighbor does not forward others’ traffic, it is considered

as uncooperative, and this reputation is propagated throughout the network. The authors

in [7, 8] proposes and evaluates the CONFIDENT protocol, which detects and isolates misbe-

having nodes. A drawback of reputation based systems is that many of them depend on the

broadcast nature of wireless networks in order to monitor other nodes. However, such mon-

itoring may not always be accurate due to asymmetric links when nodes use power control.

Furthermore, use of directional antennas [65, 73] also increase difficulty in monitoring.
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CHAPTER 4

SPECTRUM BARGAINING IN COMPLETE

CONFLICT GRAPHS

In this chapter, we model the competition for spectrum among the nodes using non-cooperative

game theory. Specifically, we model the problem of agreeing upon a sharing rule of the chan-

nels among the nodes as a Rubinstein-St̊ahl [60] [66] bargaining game. In our model, each

node “bargains” with the other nodes (opponents) in the network regarding its “share” (how

many and which) of the channels. In the finite horizon version of the game, nodes bargain

at most for a given number of periods. If the nodes can decide upon a sharing rule of the

channels within the given number of periods, each gets its respective share of the channels

as per the sharing rule. Otherwise, each node gets zero channels. In the infinite horizon

game, bargaining among the nodes go on until the nodes can agree upon a distribution of

the channels. Notice that, until the nodes agree upon the sharing rule, none of the nodes

can start data communication. Thus, “waiting” for the bargaining outcome also costs the

nodes. We consider this cost by discounting future payoff of the nodes. This discounting

represents the patience of the nodes in waiting for the bargaining outcome. We argue that it

is the relative patience of the nodes that influence the degree of fairness in the sharing rule.

As will become evident later, more patient nodes tend to get a larger fraction of available

channels.
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We solve the bargaining game depicted above by finding Subgame Perfect Nash equilib-

rium (SPNE) strategies of the nodes. The SPNE strategies that we derive comprise a set of

strategies such that, no node in no subgame can deviate from its strategy and thereby gain

from the deviation. In this chapter, we restrict ourselves to a scenario where all secondary

nodes are within the interference range of each other. In other words, the conflict graph

of the secondary users is a complete graph. Such a scenario often occurs in urban areas

where the distribution of the secondary users is very dense. In Chapter 5 we will relax the

constraint of all nodes to be in the interference range of each other and extend our work

to arbitrary conflict graphs. Formally, the key points of this chapter can be considered as

follows.

• We model the problem of dynamic spectrum access, in which the nodes have to

agree upon a sharing rule of the channels among themselves, as an infinite horizon

Rubinstein-St̊ahl [60, 66] bargaining game.

• We derive SPNE strategies of the nodes, such that, using their SPNE strategies each

node can optimize its utility against all its opponents in any subgame of the bargaining

game1. In other words, considering nodes to be rational, each node can play its SPNE

strategy in the very first period of the game to decide on the sharing rule and start

data communication.

• We theoretically study how the discount factor of the nodes impact their relative utility.

1Note that, the original game can also be considered a subgame of itself.
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• In our model, each node negotiates with its neighbors to agree upon the sharing rule,

without requiring any centralized controller. Our algorithm thus works in a distributed

manner making the system scalable.

The rest of the chapter is organized as follows. Section 4.1 describes the system model

considered and also illustrates our solution concept using an example. In Section 4.2, we

study the bargaining game considering only two nodes for ease of exposition. The N node

bargaining game and the proposed spectrum access algorithm is described in Section 4.3.

Finally, Section 4.4 concludes the chapter.

4.1 System Model and Solution Concept

4.1.1 System Model

We assume that N nodes (players) in a region are competing for a subset of M separate

orthogonal spectrum bands not used by primary incumbents. The nodes are indexed from 1

to N and the spectrum bands (channels) are indexed from 1 to M . The nodes, for example,

can correspond to IEEE 802.22 base stations accessing spectrum to connect their subscribers

units, cognitive radio based 802.11 network, etc. Each node is equipped with cognitive radio

and can communicate using multiple non-contiguous channels. The objective of each node is

to acquire the maximum possible number of channels that are orthogonal from its interferers.

We assume that each node can successfully detect the presence of primary users on a

channel and maintains a set of channels that it can use without affecting the operations of
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any primary user. Interference among the nodes has been modeled using the pair wise binary

matrix model [36]. This model basically states that– two nodes either conflict and has to

use orthogonal channels, or, they do not conflict and can reuse the same channel. We use

the following notations to represent the two system parameters.

• Interference constraint: Let I = {In,k|In,k ∈ {0, 1}}N×N , be a N by N matrix,

representing the interference constraint among nodes,

In,k =





1 if node n and k conflict;

0 if node n and k do not conflict

(4.1)

Note that, I is the adjacency matrix representing the conflict graph of the network.

• Channel throughput: Let C = {Cm : 1 ≤ m ≤ M} be a M element array where Cm

represents channel m. Thus, C represents the set of available channels. We consider

a static interference environment without considering the impact of fast-scale channel

fading, since all the nodes are static. Further, we assume that all channels are homo-

geneous, i.e., all channels offer the same bandwidth and also have similar interference

characteristics.

4.1.2 Solution Concept– The Ultimatum Game

As mentioned earlier, we model the problem of spectrum sharing by a set of cognitive radio

enabled nodes as a bargaining game. Let us illustrate the concept of solving such a game,

i.e., finding its SPNE using an example. Specifically, let us consider a repeated version of the
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ultimatum game, in which two (hungry) players (P1 and P2) interact to decide how to divide

a sum of money (say $10) that is given to them (say for the purpose of buying food). The

players can meet at most 3 times in a day (finite horizon with T = 3 periods)– First in the

morning when P1 makes an offer to P2 regarding how to divide the sum. If P2 accepts the

offer then the two players buy breakfast using their respective share of the money. However,

if P2 rejects the share, both players stay hungry and meet in the afternoon when P2 makes

an offer to P1. If P1 accepts the offer, the players have lunch using their money. Otherwise,

the players do not eat anything and meet in the evening when P1 makes a final offer to P2. If

P2 accepts this offer, the players go for dinner. However, if P2 rejects P1’s offer, then neither

player gets any money and remains hungry for the night.

Notice that, if the players fail to agree upon a sharing rule in a bargaining period, they

have to stay hungry till the next period. Thus, the players discount their future payoffs. For

example, a player expecting to acquire $10 in the next period, can be satisfied with only $7

in the current period, considering a discount factor of 0.7. Also note that, the more hungry

a player is, lesser is his discount factor, since he would want to eat something as soon as

possible. In this example, we take δ1 = 0.6 and δ2 = 0.8. We also assume that the smallest

division of the goods available (money) is 1 cent. Let us reason backward from time t = 2

to find the SPNE of the 3-period game,

• Dinner: At time t = 2, the payoff maximizing equilibrium strategy for P1 is to offer

P2 the smallest amount possible that the latter will accept, which is 1 cent. P2 will

not reject this offer, since then he would get nothing.
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Table 4.1: Ultimatum Game: The SPNE strategy for the 3-period game is for P1 to demand
$6.79 and for P2 to accept any offer that gives him at least $3.21.

Period P1’s share P2’share
0 6.79 3.21
1 5.99 4.01
2 9.99 0.01

• Lunch: At time t = 1, the SPNE of the 2-period game is for P2 to offer P1 the

minimum amount more than which the latter cannot gain by rejecting the offer and

for P1 to accept this offer. Since at t = 2, P1 can acquire at most $9.99, which is worth

$9.99× δ1 =$5.99 now, P2 should offer P1 $5.99 and keep the rest for himself.

• Breakfast: At time t = 0, the SPNE of the 3-period game is for P1 to offer P2 the

minimum amount more than which P2 cannot gain in any subgame by rejecting the

offer. Thus, P1 offers P2 $4.01 × δ2 = $3.21 and keeps the rest of $6.79 for himself.

Clearly, P2 cannot gain by rejecting this offer.

Table 4.1 shows the SPNE share of the two players in the various subgames. In each row,

the underlined player denotes the offerer in that period. Some observations,

• Discount factor: Notice that, instead of bargaining over breakfast, lunch and dinner,

had the players been bargaining to divide the money in 3 consecutive back-to-back

periods for breakfast, the players would become more patient while playing the game.

In other words, δ1 and δ2 will start tending to 1, as the time between two bargaining

periods tends to zero. It can be shown that as the discount factors tend to 1 and as

T →∞ (infinite horizon) the players get an equal share [60].
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• First mover advantage: The finite horizon bargaining game we discussed has a first

mover advantage, since P1 does better than P2. This first mover advantage disappears

as T increases and as we take the length of the time periods to be arbitrarily short.

This has been discussed in [4].

Conclusion: Before breakfast, if P1 offers P2 $3.21 and keeps the rest ($6.79) for himself,

then neither will P2 have an incentive to reject the offer nor will P1 have an incentive to

demand a larger share (and both players will be able to enjoy their breakfast). In this chapter

we seek to find the SPNE strategy of the players in the bargaining game of sharing spectrum

which will allow the player making the offer in the first period to propose a sharing rule such

that no player receiving the offer will have an incentive to reject their respective share and

neither will the player making the offer have an incentive to demand a larger share. Thus,

assuming players to be rational, all nodes will be able to acquire channels in the very first

period and can start communication.

4.2 2 Player Bargaining Game

We first study the channel allocation problem from a game theoretic perspective considering

only two nodes (players) for ease of exposition. We model the spectrum allocation problem as

an infinite horizon Rubinstein-St̊ahl bargaining game. In our model two players must agree

on how to share the M available channels among them. The bargaining game proceeds in

“time periods” in which one player proposes a sharing rule to the other player who can
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either ‘accept’ or ‘reject’ the offer. The bargaining continues until a sharing rule is accepted

by both players. In periods 0, 2, 4, · · · (i.e., in periods 2k, where k = 0, 1, 2, · · · ) player 1

proposes a sharing rule (x,M −x) that player 2 can accept or reject. If player 2 accepts any

offer the game ends. If player 2 rejects player 1’s offer in period 2k, then in period 2k + 1

player 2 can propose a sharing rule (x,M − x) that player 1 can accept or reject. If player

1 accepts one of player 2’s offers, the game ends. Otherwise, if player 1 rejects players 2’s

offer then the former player can make an offer in the subsequent period and so on. This is

clearly an infinite horizon game of perfect information.

Payoffs: We specify that if (x,M − x) is accepted in period t, then, the payoffs of players 1

and 2 are δtx and δt(M−x) respectively, where δ ∈ [0, 1] is the discount factor of the players.

The discount factor δ represents the delay cost in achieving the bargaining outcome. Until

the players agree upon a sharing rule, none of the players can start communication. Thus, a

player values a channel more now than it values the same channel in a future period. This

decrease in value of the channels represents the dissatisfaction of the players in being unable

to start communication immediately. Note that, as the time delay between two bargaining

periods decreases, the players become more patient, i.e., δ increases.

Nash Equilibria: Note that there are a great many Nash equilibria (NE) in this game.

For example, the strategy profile “player 1 always demands x = M − 1 channels and refuses

all smaller shares; player 2 always offers x = M − 1 channels and accepts any offer giving

him atleast 1 channel” is a Nash equilibrium. In general, any partition of the M channels

between the two players corresponds to a NE strategy profile. However, not all of these
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profiles are subgame perfect. For example, in the aforementioned profile if player 2 rejects

player 1’s first offer, and offers player 1 a share x > (M − 1)δ in the next period, then player

1 should accept, because the best possible outcome for him if he rejects is to receive M − 1

channels in the next period, which is worth only (M − 1)δ.

We next investigate the subgame perfect Nash equilibrium of the bargaining game out-

lined above. First, we study the finite horizon version of the game and then extend the

results to obtain the perfect equilibrium for the infinite horizon version.

4.2.1 Finite Horizon Bargaining Game

The finite horizon bargaining game can be solved by backward induction. The unique

subgame-perfect Nash equilibrium in the last period is for the player who makes the of-

fer (let’s assume it is player 1) to demand M − 1 channels and for his opponent to accept

this demand2. In the period before that, the offerer in the last period (player 1) will refuse

all offers that give him less than (M − 1)δ, because he can ensure this amount by refusing.

Thus, the perfect equilibrium in the second last period is for the offerer (player 2) to demand

M−(M−1)δ channels and for player 1 to accept this demand. This reasoning can be applied

backwards to obtain the unique SPNE in the first period.

Table 4.2 shows the SPNE of games (or subgames) with different number of periods.

Row i in the table shows the subgame perfect equilibria in the first period of a game with i

2Note that, we assume for a player to accept an offer he has to be given atleast one channel. If a player is
offered 0 channels, he may not accept the offer deterministically even though such a sharing also corresponds
to a NE strategy profile.
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Table 4.2: Subgame Perfect Nash Equilibria.
Periods Offerer Receiver

1 M − 1 1
2 M −Mδ + δ Mδ − δ
3 M −Mδ + Mδ2 − δ2 Mδ −Mδ2 + δ2

4 M −Mδ + Mδ2 −Mδ3 + δ3 Mδ −Mδ2 + Mδ3 − δ3

· · ·
· · ·

periods. For example, row 3 shows the SPNE of a game with 3 periods. The SPNE in this

case is “Player i always demands a share of M −Mδ +Mδ2− δ2 channels when it is his turn

to make an offer. He accepts any share equal to or greater than Mδ −Mδ2 + δ2 channels

and refuses any smaller share”.

It is evident from the table that the SPNE shares demanded by the two players in

increasingly larger period games form a pattern. Based on this pattern we find the SPNE

shares demanded by the two player in any arbitrary k period game. Depending on whether

k is even or odd, we have two cases:

• k is even: The SPNE share demanded by player i when it is his turn to make an offer

in a k period game is

{M −Mδ + Mδ2 −Mδ3 + · · · −Mδk−1}+ {δk−1} =
M(1− δk)

1 + δ
+ δk−1 (4.2)

Also, player i accepts any share equal to or greater than

M −
[
M(1− δk)

1 + δ
+ δk−1

]
=

Mδ(1 + δk−1)

1 + δ
− δk−1 (4.3)
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• k is odd: The SPNE share demanded by player i when it is his turn to make an offer

in a k period game is

{M −Mδ + Mδ2 −Mδ3 + · · ·+ Mδk−1} − {δk−1} =
M(1 + δk)

1 + δ
− δk−1 (4.4)

Also, player i accepts any share equal to or greater than

M −
[
M(1 + δk)

1 + δ
− δk−1

]
=

Mδ(1− δk−1)

1 + δ
+ δk−1 (4.5)

Thus, the unique SPNE of a finite horizon bargaining game with k periods is– “Player

i always demands a share of M{1−(−δ)k}
1+δ

− (−δ)k−1 channels when it is his turn to make an

offer. He accepts any share greater than or equal to Mδ{1−(−δ)k−1}
1+δ

+ (−δ)k−1 and refuses any

smaller share.”

4.2.2 Infinite Horizon Bargaining Game

To obtain the SPNE of the infinite horizon game, we make k tends to infinity in the SPNE

of the finite horizon game with k periods. Thus, the SPNE share demanded by player i,

when it is his turn to make an offer in the infinite horizon game is

limk→∞
[

M{1−(−δ)k}
1+δ

− (−δ)k−1
]

=
M

1 + δ
(4.6)

Similarly, player i accepts any share equal to or greater than

limk→∞
[

Mδ{1−(−δ)k−1}
1+δ

+ (−δ)k−1
]

=
Mδ

1 + δ
(4.7)

Thus, the SPNE in this model is – “Player i always demands a share of M
1+δ

channels when

making an offer and accepts any share equal to or greater than Mδ
1+δ

channels”. Note that
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player i’s demand of:

M

1 + δ
= M − Mδ

1 + δ

is the highest share for player i that is accepted by his opponent. Player i cannot gain by

making a lower offer, for it too will be accepted. Making a higher (and rejected) offer and

waiting to accept his opponent’s offer next period hurts player i as:

δ
Mδ

1 + δ
= δ2 M

1 + δ
<

M

1 + δ
(4.8)

Similarly, player i cannot gain by rejecting any offer of atleast Mδ
1+δ

channels since if he rejects

he receives the share M
1+δ

next period, which is equivalent to Mδ
1+δ

in the current period.

Note that in equations (4.6) and (4.7) as δ → 1, the players SPNE shares approaches

M/2. Based on this we make the following important observation.

The more patient players are, higher is the degree of fairness among them, i.e., the

channels tend to get equally divided between the players. In other words, lesser the time

delay between two consecutive bargaining periods, the channels get more and more equally

split between the players.

The SPNE share can be computed from their closed form from equations (4.6) and (4.7)

by the player making the offer in the very first period of the game. Thus the solution of the

bargaining game of apportioning the channels is computationally efficient.
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4.2.3 Uniqueness of the Infinite-Horizon Equilibrium

Let us now demonstrate that the subgame perfect equilibrium given in Section 4.2.2 is unique.

Continuation payoffs of a strategy profile in a subgame starting at period t is defined to be the

payoff in time t units of the outcome induced by that profile. For example, the continuation

payoff of player 1 at period 2 of a profile that leads to player 1 getting m channels in period

3 is mδ, whereas this outcome has a payoff of mδ3 in period 0.

Let v1 and V1 be player 1’s lowest and highest continuation payoffs in any perfect equi-

librium of any subgame that begins with player 1 making an offer. Similarly, let w1 and W1

be player 1’s lowest and highest perfect equilibrium payoffs in any subgame that begins with

an offer by player 2. Also, let v2 and V2 be player 2’s lowest and highest perfect equilibrium

continuation payoffs in any subgames beginning with an offer by player 2, and let w2 and

W2 be player 2’s lowest and highest perfect equilibrium continuation payoffs in any subgame

beginning with an offer by player 1.

When player 1 makes an offer, player 2 will accept any x such that player 2’s share of

M − x exceeds δV2, since player 2 cannot expect more than V2 in the continuation game

following his refusal. Thus, we have,

v1 ≥ M − δV2 (4.9)

Similarly, player 1 will accept any share more than δV1. Thus,

v2 ≥ M − δV1 (4.10)
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Now, player 2 will never offer a share greater than δV1. Thus, player 1’s continued payoff

when player 2 makes an offer is

W1 ≤ δV1 (4.11)

Also, since player 1 can obtain at least v1 in the continuation game by rejecting player 2’s

offer, player 1 will reject any x (offered by player 2), such that x < δv1. Thus, we have,

w1 ≥ δv1 (4.12)

Since player 2 can obtain at least v2 in the continuation game by rejecting player 1’s offer,

player 2 will reject any x (demanded by player 1), such that, M − x < δv2. Hence, player

1’s maximum equilibrium payoff when making an offer V1, satisfies,

V1 ≤ max(M − δv2, δW1)

Using inequality (4.11), we can say,

V1 ≤ max(M − δv2, δ
2V1) (4.13)

Next, we will prove that,

max(M − δv2, δ
2V1) = M − δv2 (4.14)

We prove this by contradiction. Let us assume that max(M − δv2, δ
2V1) = δ2V1. Thus, we

have, V1 ≤ δ2V1. For this to be true, it must be the case that, V1 ≤ 0 (since δ cannot exceed

1). However, this implies that, M−δv2 > δ2V1, since δ ∈ [0, 1] and v2 ≤ M . This contradicts

our assumption. Thus, we can write,

V1 ≤ M − δv2 (4.15)
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Similarly, by symmetry,

V2 ≤ M − δv1 (4.16)

Now, combining inequalities (4.9) and (4.16), we can write,

v1 ≥ M − δV2 = M − δ(M − δv1)

⇒ v1 ≥ M

1 + δ
(4.17)

Also, combining inequalities (4.10) and (4.15), we can write,

V1 ≤ M − δv2 = M − δ(M − δV1)

⇒ V1 ≤ M

1 + δ
(4.18)

Thus, v1 ≤ V1. This implies that v1 = V1. Similarly, we can show that,

v2 = V2 =
M

1 + δ
(4.19)

Now, since v1 = V1, from inequality (4.11) and (4.12) we have, W1 ≤ δv1 and w1 ≥ δv1. This

implies that,

w1 = W1 = δ
M

1 + δ
(4.20)

Similarly, we can show that,

w2 = W2 = δ
M

1 + δ
(4.21)

Thus, the perfect equilibrium continuation payoffs are unique. Now we will show that the

perfect equilibrium strategy profile is also unique. Let us consider a subgame that begins
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with an offer by player 1. We have already shown that player 1 must demand exactly x = v1.

Note that player 2 is indifferent between accepting and rejecting this offer, since even if he

rejects the offer, he can acquire the same amount (δ M
1+δ

) in the next period (but cannot

gain more than this). However, perfect equilibrium requires that player 2 accept player 1’s

demand of x = v1 with probability 1. If player 2 accepts all x < v1 with probability 1, but

accepts v1 with probability less that 1, then player 1 does not have any best response. Thus,

this randomization by player 2 does not lead to an equilibrium. A similar argument can be

applied to subgames that begins with an offer by player 2.

4.3 N Player Bargaining Game

We now investigate the game considering N players, i.e, N nodes, each within the interference

range of the others. In this game, N players must decide how to share the M available

channels among them. Let Pi (i ∈ [1, N ]) denote the player making the offer and let P−i =

{R1, R2, R3, · · · , RN−1} be the set of players receiving the offer. The subscripts of the players

in P−i follows the order in which they will make an offer next, if Pi’s offer is rejected. In

periods kN (k = 0, 1, 2, · · · ), player 1 (P1) proposes a sharing rule (x1, x2, · · · , xN) that

players 2 through N (P−1) can accept or reject. If all players in P−1 accept their respective

offers, the game ends. However, if at least one player in P−1 rejects player 1’s offer in

period kN , then in period kN + 1 (k = 0, 1, 2, · · · ), player 2 (P2) can propose a sharing rule

(x1, x2, x3, · · · , xN) that players in P−2 can accept or reject. And so on. In general player
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i ∈ [1, N ] makes an offer in periods kN + (i − 1). The game outlined above is clearly an

infinite horizon game of perfect information.

Next, we define the payoff of the players. If {xi|1 ≤ i ≤ N} is accepted in period t, then

the payoff of player i is δtxi, where δ ∈ [0, 1] is the discount factor of the players. Like in the

two player case, δ represents the delay cost in achieving the bargaining outcome or in other

words reflects the patience of the players. Higher the patience of the players, larger is δ.

4.3.1 Subgame Perfection

As mentioned before, let Pi be the player making the offer and P−i = {R1, R2, R3, · · · , RN−1}

be the set of players receiving the offer. Recall that, the subscripts of the players in P−i

follows the order in which they will propose a sharing rule, if the offer proposed by Pi is

rejected. Following is the subgame perfect equilibrium of this game– “Pi always demands a

share of

M∑N−1
n=0 δn

(4.22)

channels and offers player Rk ∈ P−i a share of

δk M∑N−1
n=0 δn

channels. When player Rk ∈ P−i receives an offer, he accepts any share equal to or greater

than,

δk M∑N−1
n=0 δn

(4.23)
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channels and rejects all smaller shares”. We will now prove that this is indeed a subgame

perfect equilibrium of the game. Note that Pi’s demand of,

M∑N−1
n=0 δn

= M −
[

N−1∑

k=1

δk M∑N−1
n=0 δn

]

is the highest share for player i that is accepted by his opponents. Player i cannot gain

by making a lower offer, for it too will be accepted. If player i makes a higher offer, then

at least one player in P−i (say Rk) has to be offered a share lesser than δk M∑N−1
n=0 δn

. Thus,

Pi’s offer will be rejected. After rejection, each of the following offerers in P−i, i.e., Rk for

k ∈ [1, N − 1], will offer player i a share of,

δk

(
δN−k M∑N−1

n=0 δn

)
= δN M∑N−1

n=0 δn
<

M∑N−1
n=0 δn

Thus, Pi will end up with a smaller share by demanding a share greater than M∑N−1
n=0 δn

channels.

Also, it is optimal for Rk ∈ P−i to accept any share greater than equal to δk M∑N−1
n=0 δn

channels.

This is because even if he rejects, Rk cannot gain more than this share in any subsequent

period3.

4.3.2 Discussion

Note that, in equations (4.22) and (4.23), as δ → 1, the SPNE shares of the players approach

M/N . This corroborates with the observation we made in the two player case. Furthermore,

we assert that δ will be close to 1 in our model. This is because, the delay between two bar-

gaining periods is almost negligible. If an offer is rejected, the next bargaining period begins

3For example, if R1 rejects his share of δ M∑N−1
n=0 δn

in any period, in the next period R1 can demand at

most M∑N−1
n=0 δn

, which is worth only δ M∑N−1
n=0 δn

. And so on.
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almost immediately. In general, as the delay between two bargaining periods become longer,

the players become more impatient (δ decreases). This is because following a rejection, they

will have to refrain from communicating over a longer period, until the next opportunity to

bargain.

It is also intuitive to think that an impatient player gets a lesser fraction of channels

against a more patient player. Since, in our game, all the players will be patient, nobody

can outlast the other(s) by waiting to get a larger share. Thus, in equilibrium, the players

will tend towards equally dividing the channels among themselves, as suggested by equa-

tions (4.22) and (4.23) when δ → 1.

Equations (4.22) and (4.23) give the closed form expression of the SPNE share of the

players. Thus, even in the N player case, solution of the bargaining problem can be found

efficiently without the need of any iterative process.

One might suspect that the bargaining game we discussed might have a “first mover

advantage”, i.e., a player making an offer earlier may have an advantage over a player who

gets to make an offer latter. This happens only in the finite horizon version of the game.

In the infinite horizon game, when we take the length of the time periods to be very short,

the “first mover advantage” disappears. This is shown in [4]. Since we model the spectrum

access problem as an infinite horizon bargaining game where the length of each bargaining

period will be very short (time taken to exchange messages or packets among nodes), our

solution does not suffer from the “first mover advantage” problem. Thus, ordering of the

players will not matter in our solution.
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4.3.3 Spectrum Allocation Algorithm

Notice that the SPNE strategy discussed in Section 4.3.1 may allocate “fractional” channels

to the nodes. However, since we consider each channel as an indivisible unit, such allocation

is not possible. Thus, to get the final solution, the SPNE shares of the players has to be

rounded to the nearest integer value. More precisely, the revised strategy of the players are–

“Pi always demands a share of round(M/
∑N−1

n=0 δn) channels and offers player Rk ∈ P−i a

share of round(δkM/
∑N−1

n=0 δn) channels. When player Rk ∈ P−i receives an offer, he accepts

any share equal to or greater than round(δkM/
∑N−1

n=0 δn) channels and rejects all smaller

shares”. Based on this strategy of the players, Algorithm 1 presents the spectrum allocation

procedure that player Pi will invoke when making an offer. In the algorithm, L(Pi) is the set

of channels that Pi should demand and L(Rk) is the set of channels that should be offered

to Rk ∈ P−i.

Algorithm 1 Allocate Spectrum
Require: Number of players, N ; Set of available channels, C = {C1, · · · , CM}; patience factor, δ
1: Channels Allocated, A = {∅}
2: L(Pi) = {any round

(
M∑N−1

n=0 δn

)
channels from C −A}

3: A = A ∪ L(Pi)
4: for k = 1 to N-1 do

5: L(Rk) = {any round

(
δk M∑N−1

n=0 δn

)
channels from C −A}

6: A = A ∪ L(Rk)
7: end for

4.4 Summary

This chapter models the problem of dynamic spectrum access by a network of N cogni-

tive radio enabled nodes as a perfect information infinite horizon bargaining game. In the
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bargaining game, nodes “haggle” among themselves to agree upon a sharing rule of the

channels. The objective of each node is to acquire as many channels as possible from among

M orthogonal spectrum bands not in use by any primary incumbents, subject to the inter-

ference constraints. The nodes are associated with a discount factor which represents the

patience of the nodes in waiting for the bargaining outcome. We derive SPNE strategies of

the bargaining game, using which each node can optimize its utility against all its opponents

(interfering neighbors) in any subgame of the bargaining game. A closed form expression

of the SPNE share of the nodes has been derived, which makes finding of the bargaining

solution computationally efficient. Furthermore, the chapter also investigates the impact of

discount factor, δ, on fairness. Also, our approach is distributed in nature, obviating the

need of a centralized control.
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CHAPTER 5

SPECTRUM BARGAINING IN ARBITRARY

CONFLICT GRAPHS

In the previous chapter we assumed all secondary nodes to be within the interference range of

each other. This scenario mostly reflects the situation in urban areas. To expand the scope

of applicability of our bargaining framework, in this chapter we relax the assumption on

interference constraint taken in Chapter 4 and extend our work to arbitrary conflict graphs.

Similar to Chapter 4, we also model the competition for spectrum among nodes in an

arbitrary conflict graph as a Rubinstein-St̊ahl [60] [66] bargaining game. In this game, each

node “bargains” with the other nodes (opponents) in the network regarding its “share” (how

many and which) of the channels. Each node is associated with a discount factor which

represents the patience of the nodes in waiting for the bargaining outcome. The patience of

the nodes, for example, can depend on the loss in revenue that a wireless service provider

suffers due to delay in being able to provide service.

We solve the bargaining game by deriving Subgame Perfect Nash Equilbrium (SPNE)

strategies of the nodes (players) in the game. Specifically, the contributions of this chapter

can be considered as follows. a) We model the problem of dynamic spectrum access, in

which the nodes in an arbitrary conflict graph have to agree upon a sharing rule of the
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channels among themselves, as a Rubinstein-St̊ahl bargaining game. b) First, we investigate

finite horizon version of the game and identify its SPNE strategies using backward induction.

c) We then extend the results to the infinite horizon bargaining game. d) We identify Pareto

optimal equilibria of the game for improving spectrum utilization. e) We propose polynomial

time algorithms to find the SPNE strategies of both the finite and infinite horizon versions

of the game.

The rest of the chapter is organized as follows. Section 5.1 formally defines the finite

horizon spectrum bargaining game. Section 5.2 derives SPNE strategies of the finite horizon

version of the game. These results are extended to the infinite horizon game in Section 5.3.

Finally, Section 5.4 concludes the chapter.

5.1 Finite Horizon Game Formulation

We first model the channel access problem as a finite horizon Rubinstein-St̊ahl bargaining

game. In this model, the game is played at most for a fixed number of periods. In Section 5.3

we will relax the finite horizon criteria and extend the concept to infinite horizon games.

The system model considered in this chapter is same as the one discussed in Section 4.1.1.
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5.1.1 Game Formulation

Given the conflict graph of a network, we now model the problem of channel access by the

nodes (players) as a finite horizon bargaining game. In this game, N players must decide

how to share the M available channels among them. The bargaining game proceeds in “time

periods” in which one player proposes a sharing rule to the other players. Each of the other

players can then either ‘accept’ or ‘reject’ the shares they have been respectively offered.

The bargaining continues until a sharing rule has been accepted by all players or until the

maximum number of allowable periods, T , has been reached (finite horizon game).

Let Pi (1 ≤ i ≤ N) denote the player making the offer in any arbitrary period and let

P−i = {Pj : 1 ≤ j ≤ N, j 6= i} be the set of players receiving the offer. Pi makes an offer in

the following periods,





kN + (i− 1) i ≤ T, k ∈ [0, b(T − i)/Nc]

None i > T

(5.1)

Thus, the players make their offer in a round robin fashion. When making an offer in period

t, Pi’s strategy is denoted by (xt
i, x

t
−i), where xt

i ⊂ C is the set of channels demanded by Pi

in period t. Also, xt
−i = {xt

j ⊂ C|1 ≤ j ≤ N, j 6= i} where xt
j is the set of channels offered

to Pj ∈ P−i in period t. Also, each player Pj ∈ P−i chooses some function f t
j : [0, |C|] →

{‘accept’,‘reject’} in period t, i.e, each Pj chooses which offers to accept and which to reject

depending on the number of channels he received, |xt
j|.
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To illustrate the game, let us consider that N ≤ T 1. In periods kN (for k ∈ [0, b(T −

1)/Nc]), player 1 (P1) proposes a sharing rule (xkN
1 , xkN

−1 ) to all players (including himself).

After inspecting the offer, each player Pj ∈ P−1 can either accept or reject the respective

shares they have been offered. If all players in P−1 accept their respective shares, the game

ends. However, if at least one player in P−1 rejects the share he has been offered by P1 in

period kN , then in period kN +1 (for k ∈ [0, b(T −2)/Nc]), player P2 can propose a sharing

rule (xkN+1
2 , xkN+1

−2 ) that players in P−2 can accept or reject. If all players in P−2 accept their

respective shares, the game ends. And so on until an offer made by Pi is accepted by all

players in P−i or until the maximum number of allowable periods, T , has been reached. The

game outlined above is clearly a finite horizon game of perfect information.

Payoff: The outcome of the game can correspond to two different cases– all players agree

upon a sharing rule of the channels within T periods or they fail to do so within the allocated

time. Thus, to define the payoff of the players we need to study the following two cases.

• An agreeable sharing rule is obtained within T periods: If {xt
i|1 ≤ i ≤ N} is accepted

in period t, then the payoff of Pi is Ri = δt
i |xt

i|2, where δi ∈ [0, 1] is the discount

factor of Pi. The discount factor represents the delay cost in achieving the bargaining

outcome. Until the players agree upon a sharing rule, none of the players can start

communication. Thus, a player values a channel more today than he values the same

channel in a future period. This decrease in value of the channels represents the

dissatisfaction of the players in being unable to start communication until the agreeable

1Assuming N ≤ T is for illustrating the game now. Our analysis holds for all N and T
2Note that δt

i is δi raised to the power of t.
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sharing rule is achieved. Also, note that, as the time delay between two bargaining

periods decreases, the players become more patient, i.e., the discount factor of the

players increases.

• An agreeable sharing rule is not obtained within T periods: This corresponds to the

disagreement outcome of the game. Clearly, if the players are unable to agree upon a

sharing rule, the payoff of each player would be zero.

5.1.2 Some Definitions

Let us define a few terms in game theory that has been used for the analysis of the bargaining

game in this chapter.

• Pareto Optimality: Pareto optimality is a measure of efficiency. An outcome of a

game is Pareto optimal if there is no other outcome that makes every player at least as

well off and at least one player strictly better off. That is, a Pareto optimal outcome

cannot be improved upon without hurting at least one player.

• Backward Induction: Backward induction is an iterative process for solving finite

sequential games. First, one determines the optimal strategy of the player who makes

the last move of the game. Then, the optimal action of the next-to-last moving player is

determined taking the last player’s action as given. This process continues backwards
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in time until all players’ actions have been determined. Effectively, one determines the

Nash equilibrium of each subgame of the original game.

5.1.3 Equilibrium Analysis

We will represent the strategy profile in period t as {(xt
i, x

t
−i), f

t
−i}, where (xt

i, x
t
−i) is the the

sharing rule as proposed by Pi and f t
−i = {f t

j |1 ≤ j ≤ N, j 6= i}, where f t
j is the function

used by Pj ∈ P−i. If f t
j (|xt

j|) = ‘accept’ ∀j 6= i, then each player gets his respective share as

proposed in (xt
i, x

t
−i). Otherwise all players get zero channels.

The strategy profile {(xT−1
i , xT−1

−i ), fT−1
−i } is a Nash Equilibrium in period T − 1 (last

period) if fT−1
j (|xT−1

j |) = ‘accept’ ∀j 6= i and there is no set |yT−1
j | < |xT−1

j | such that

fT−1
j (|yT−1

j |) = ‘accept’ ∀j 6= i that leads to the existence of a set |yT−1
i | > |xT−1

i |. Here,

Pi does not have an incentive to unilaterally increase his demand, because that would be

rejected by some Pj ∈ P−i. Also, no Pj ∈ P−i would want to reject the share offered to him

by Pi, since then he would get zero channels.

However, note that all NE’s in the last period of the game need not be pareto optimal.

Our solution approach identifies and uses those NE’s that are pareto optimal to find the

SPNE strategy of the players in the first period of the game using backward induction.

In the next section we will first study SPNE of the finite horizon spectrum bargaining

game. We will then extend these results for the infinite horizon version of the game in

Section 5.3.
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5.2 Finite Horizon Bargaining Game

We will now investigate the SPNE of the finite horizon bargaining game (of T periods), where

each players bargains with the other players to agree upon a sharing rule of the channels.

Finding SPNE involves two main steps – (1) finding equilibrium of the last period of the

game and (2) finding equilibrium of the previous periods using backward induction.

5.2.1 Finding Last Period Equilibrium Strategies of the Players

According to the definition of NE in Section 5.1.3, following is a NE strategy for the players

in the last period of the game– “Pi offers a sharing rule (xT−1
i , xT−1

−i ), such that |xT−1
i | is

maximized over all possible interference free allocations that assign at least 1 channel to all

players in P−i and the players in P−i accept all offers that give them at least 1 channel”.

This is a NE because, no Pj ∈ P−i will have an incentive to reject their respective shares,

since doing so will get them zero channels. Also, since Pi’s share has been maximized, Pi

will not have an incentive to demand a larger share of channels.

Let us now see when Pi’s share of channels gets maximized. Let us consider players in

P−i who are one hop away from Pi, i.e., neighbors of Pi in the conflict graph. Let they be

denoted by PNbr
−i , where PNbr

−i = {Pj|Pj ∈ P−i and Ii,j = 1}. Pi will obviously demand all

channels not allocated to any of his neighbors. Thus, we can write Pi’s share of channels,
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xT−1
i , as,

|xT−1
i | = M − |

⋃

Pj∈P Nbr
−i

xT−1
j | (5.2)

Clearly, |xT−1
i | will get maximized when | ∪Pj∈P Nbr

−i
xT−1

j | has its minimum value over all

possible interference free allocations given that each player in PNbr
−i has to be given at least

one non-interfering channel. In other words, Pi’s share of channels is maximized in all those

sharing rules where the number of distinct channels allocated to the players in PNbr
−i taken

together has the least value over all possible allocations.

Let PNbr
−i = P−i\PNbr

−i denote the players in P−i who are more than one hop away from

Pi. Since spectrum can be reused concurrently by players more than one hop away from

each other, the channel allocation of the players in PNbr
−i do not directly influence xT−1

i . All

that is required for Pi is to offer the players in PNbr
−i at least one non-interfering channel so

that his offer is accepted.

From the above discussion, it can be said that Pi’s strategy, (xT−1
i , xT−1

−i ), corresponds to

a NE when the following two conditions hold,

1. |⋃Pj∈P Nbr
−i

xT−1
j | is minimized over all possible interference free allocations, and,

2. Each player in P−i gets at least one non-interfering channel. This condition is to ensure

that the sharing rule offered by Pi is accepted, otherwise Pi’s payoff will become zero.

Notice that there can be several NE strategy profiles, (xT−1
i , xT−1

−i ), for Pi that maximizes

|xT−1
i |. However, not all of those will be Pareto optimal. It may be possible to improve the
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share of a player, xT−1
j ∈ xT−1

−i without hurting any xT−1
k , k ∈ [1, N ] and k 6= j. We need to

find those NE’s that are pareto efficient to maximize spectrum utilization.

Algorithm 2 Find Last Period SPNE

Require: Number of Players, N ; Interference Constraint, I; Set of Available Channels, C;
Number of Periods, T

1: i ← findLastOfferer(N ,T )
2: Sort the players in PNbr

−i in non-increasing order according to their degree in gNbr
−i .

3: for all Pj ∈ PNbr
−i do

4: xT−1
j = {Cm|Cm /∈ ⋃

Ij,q=1 xT−1
q and Ck ∈

⋃
Ij,q=1 xT−1

q ∀k < m}
5: end for
6: xT−1

i ← {C\⋃
Pj∈P Nbr

−i
xT−1

j }
7: Sort the players in PNbr

−i in non-increasing order according to their degree in g−i.

8: for all Pj ∈ PNbr
−i do

9: xT−1
j = {Cm|Cm /∈ ⋃

Ij,q=1 xT−1
q and Ck ∈

⋃
Ij,q=1 xT−1

q ∀k < m}
10: end for
11: while true do
12: assigned ← false
13: for all Pj ∈ P−i do
14: if ∃Cm : Cm /∈ ⋃

Ij,q=1 xT−1
q and Ck ∈

⋃
Ij,q=1 xT−1

q ∀k < m then

15: xT−1
j = {xT−1

j

⋃
Cm}

16: assigned ← true
17: end if
18: end for
19: if !assigned then
20: break
21: end if
22: end while
23: return (xT−1

i , xT−1
−i )

Algorithm 2 finds the pareto efficient NE strategy (xT−1
i , xT−1

−i ) of the player Pi making

the offer in the last period of the game. The algorithm does three primary tasks.

1. Find the last offerer: First we need to find the player, Pi, who will make the offer

in the last period. Algorithm 3 does this. It takes as input N and T and returns the

ID of the player making the last offer.
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Algorithm 3 findLastOfferer(N ,T )

Require: Number of players, N ; Number of Periods, T ≥ 1
1: if T ≤ N then
2: i ← T
3: else
4: if T%N == 0 then
5: i ← N
6: else
7: i ← T%N
8: end if
9: end if

10: return i

2. Find equilibrium strategy of Pi: In order to find pareto optimal NE strategy

(xT−1
i , xT−1

−i ) of Pi, where |xT−1
i | is maximized, our algorithm minimizes |∪Pj∈P Nbr

−i
xT−1

j |

such that each Pj ∈ P−i receives at least one channel and no xT−1
j ∈ xT−1

−i can be

improved without hurting any xT−1
k , k ∈ [1, N ] and k 6= j.

First we will describe how the algorithm finds a NE (xT−1
i , xT−1

−i ) that need not be

pareto efficient. Minimizing |⋃Pj∈P Nbr
−i

xT−1
j | is equivalent to the problem of coloring

the subgraph induced by the players in PNbr
−i with the minimum number of colors.

We will use degree ordered graph coloring for this purpose. Let the subgraph of the

conflict graph induced by the players in PNbr
−i be gNbr

−i (need not be connected) and

the subgraph induced by the players in P−i be g−i. gNbr
−i is also a subgraph of g−i.

To maximize |xT−1
i |, gNbr

−i has to be colored with the least possible number of colors.

Note that this is different from coloring g−i, because a minimum color assignment of

g−i does not necessarily minimize the color assignment of gNbr
−i .
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In line 2, the algorithm sorts the players in PNbr
−i in non-increasing order based on

their degree in gNbr
−i . In lines 3 to 5, the algorithm considers each player Pj ∈ PNbr

−i

in non-increasing order of their degree, and assigns Pj the first channel in C that

has not been assigned to any of Pj’s neighbors. This process essentially intends to

minimize |⋃Pj∈P Nbr
−i

xT−1
j |. After the for loop in lines 3 to 5 ends, we can thus assign

Pi his maximizing share of M −|⋃Pj∈P Nbr
−i

xT−1
j | channels. This is done is line 6, which

assigns,

xT−1
i = {C\

⋃

Pj∈P Nbr
−i

xT−1
j } (5.3)

Next, we are left with assigning a single channel to each player in PNbr
−i to find Pi’s NE

strategy (xT−1
i , xT−1

−i ) that need not be pareto optimal. To do this, the algorithm first

sorts the players in PNbr
−i in non-increasing order according to their degree in g−i. Then

in lines 8 to 10, each player Pj ∈ PNbr
−i is considered in non-increasing order of their

degree and assigned a channel that has not been assigned to any of Pj’s neighbors.

(xT−1
i , xT−1

−i ) obtained after the for loop in lines 8 to 10 ends is a NE strategy3 for

Pi even though it may not be pareto optimal. Since each Pj ∈ P−i receives only

one channel it may be possible to improve the share of some players in P−i without

decreasing the share of any other player. Notice that the share of Pi cannot possibly

be improved further since it has already been optimized.

3|xT−1
i | has been maximized, and all players in P−i receives a channel each – so no Pj ∈ P−i has an

incentive to reject his share and also Pi does not have an incentive to demand more channels
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3. Find pareto optimal NE strategy of Pi: Improvement of Pi’s NE strategy (xT−1
i , xT−1

−i )

obtained so far to get a pareto optimal NE strategy is called pareto improvement. This

pareto improvement is done by the while loop in lines 11 through 22. At each iteration

of the while loop, the algorithm checks each player Pj ∈ P−i to see if a channel can

be added to xT−1
j . The while loop iterates till no more channels can be assigned to

any player in P−i. Clearly, after the while loop terminates, (xT−1
i , xT−1

−i ) produced will

correspond to a pareto optimal NE strategy of Pi. Also note that the pareto improve-

ments are done by trying to assign a single channel to a player Pj ∈ P−i at a time,

instead of assigning all C\{{⋃Ij,q=1 xT−1
q }⋃

xT−1
j } channels to Pj at the same time.

This has been done to improve fairness.

5.2.2 Finding Equilibrium of the Previous Periods using Back-
ward Induction

Let Pi be the offerer in period t and Pl (l 6= i) be the offerer in period t + 1. Given the

SPNE strategy of Pl in period t + 1, SPNE strategy of Pi in period t can be found based on

the following fact– if a player Pj ∈ P−i gets |xt+1
j | channels in period t + 1, then in period

t, Pj will accept any offer that gives him greater than equal to dδj|xt+1
j |e channels. This is

because xt+1
j channels in period t + 1 is worth only δj|xt+1

j | in period t to Pj. Thus Pj can

be “satisfied” with only δj|xt+1
j | channels in period t. However, since a player cannot get

fractional channels, hence dδj|xt+1
j |e channels has to be offered to Pj in period t. Formally,

following is the SPNE strategy in period t.
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• SPNE strategy of Pi: For each Pj ∈ PNbr
−i , Pi chooses a set of channels cj ⊂ xt+1

j

such that |cj| ≤ (|xt+1
j | − dδj|xt+1

j |e) and for Cs ∈
⋃

Pj∈P Nbr
−i

cj it holds that Cs /∈
⋃

Pj∈P Nbr
−i

xt+1
j \cj, ∀Cs ∈

⋃
Pj∈P Nbr

−i
cj. Also, |⋃Pj∈P Nbr

−i
cj| should be the largest such set

possible so that xt
i = {xt+1

i

⋃{⋃Pj∈P Nbr
−i

cj}} is maximized. Each Pj ∈ PNbr
−i is offered

the set of channels xt
j = xt+1

j \cj. In other words, Pi offers at least dδj|xt+1
j |e channels

to each Pj ∈ PNbr
−i , taking at most |xt+1

j | − dδj|xt+1
j |e channels from each Pj ∈ PNbr

−i

such that xt
i is maximized over all possible interference free allocations that allows Pi

to take at most |xt+1
j | − dδj|xt+1

j |e from each Pj ∈ PNbr
−i .

• SPNE strategy of Pj ∈ P−i: Each Pj ∈ P−i accepts all offers in which they get at

least dδj|xt+1
j |e channels.

Clearly, no player will have an incentive to unilaterally deviate from his strategy. If Pi

makes a larger demand of channels than xt
i defined above, then some Pj ∈ PNbr

−i has to

be given a smaller share of channels than dδjx
t+1
j e in period t, and thus Pi’s offer will be

rejected. If rejected, in no subsequent period can Pi hope to get a share of channels which

in period t is worth more than |xt
i|4. Also, no player Pj ∈ P−i in period t can hope to get a

share of channels in any subsequent period which in period t is worth more than dδj|xt+1
j |e.

Thus, the above mentioned strategy of the players comprises a SPNE in period t. In other

words, no player can deviate from his above mentioned strategy in period t and subsequently

gain from his deviation in any sub-game starting from period t.

4Recall that if a player Pj , j ∈ [1, N ] gets the set of channels xt+2
j in period t + 2, then in period t it is

worth only δ2
j |xt+2

j | to Pj .
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Algorithm 4 Find SPNE by backward induction
Require: Number of Players, N ; Interference Constraint, I; Set of Available Channels, C; Number of

Periods, T
1: (xT−1

l , xT−1
−l ) ← Find Last Period SPNE(N ,I,C,T )

2: for t = T − 2 to 0 do
3: if l = 1 then
4: i ← N
5: else
6: i ← l − 1
7: end if
8: P̂Nbr

−i ← {φ}
9: for all Pj ∈ PNbr

−i do
10: s ← |xt+1

j | − dδj |xt+1
j |e

11: if s > 0 then
12: Qj ← Ps(xt+1

j )\Ps−1(xt+1
j )

13: P̂Nbr
−i ← P̂Nbr

−i

⋃
Pj

14: end if
15: end for
16: if P̂Nbr

−i is null then
17: xt

i ← xt+1
i

18: xt
j ← xt+1

j ,∀Pj ∈ P−i

19: l ← i
20: continue
21: else
22: Q ← ∏N

j=1 Qj : Pj ∈ P̂Nbr
−i

23: end if
24: for r = 1 to r = |Q| do
25: index ← 1
26: S ← {⋃Pj∈P Nbr

−i \P̂ Nbr
−i

xt+1
j }

27: for all j = 1 to j = N : Pj ∈ P̂Nbr
−i do

28: s ← |xt+1
j | − dδj |xt+1

j |e
29: cr

j ←index+s−1
index qr {Elements index to index + s− 1 of set qr}

30: S ← S
⋃{xt+1

j \cr
j}

31: index ← index + s
32: end for
33: profit(qr) ← {qr\S}
34: end for
35: Select qm ∈ Q : |profit(qm)| = maxqr∈Q;1≤r≤|Q|(|profit(qr)|)
36: xt

i ← xt+1
i

⋃
profit(qm)

37: xt
j ← xt+1

j \profit(qm), ∀Pj ∈ P̂Nbr
−i

38: xt
j ← xt+1

j , ∀Pj ∈ P−i\P̂Nbr
−i

39: while true do
40: assigned ← false
41: for all Pj ∈ P−i do
42: if ∃Cm ∈ C : Cm /∈ ⋃

Ij,q=1 xq and Ck ∈
⋃

Ij,q=1 xq∀k < m then
43: xt

j = {xt
j

⋃
Cm}

44: assigned ← true
45: end if
46: end for
47: if !assigned then
48: break
49: end if
50: end while
51: l ← i
52: end for
53: return (x0

1, x
0
−1)
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Algorithm 4 finds the SPNE strategy of the offerer Pi, i ∈ [1, N ] in period t given the

equilibrium strategy of the offerer Pl, l ∈ [1, N ], l 6= i in period t + 1 to finally find the

SPNE strategy (x0
1, x

0
−1) of P1 in the first period of the game. The algorithm first invokes

algorithm 2 to find the equilibrium strategy, (xT−1
l , xT−1

−l ), of offerer Pl in period T − 1 (last

period) and works in iterations of decreasing period number, using backward induction to

find the SPNE strategy of the offerer in the respective period at each iteration. The algorithm

finally outputs the SPNE strategy (x0
1, x

0
−1) of offerer P1 in the first period of the game. As

discussed earlier, this is such a strategy that no Pj ∈ P−1 can gain in any sub-game by

rejecting his respective share in x0
−1. Also P1’s share, x0

1, is maximized so that P1 does not

have an incentive to demand a larger share of channels.

Let us now delve into the details of algorithm 4. We will explain how the algorithm finds

the equilibrium strategy (xt
i, x

t
−i) of offerer Pi in period t given the equilibrium strategy

(xt+1
l , xt+1

−l ) of offerer Pl (l 6= i) in period t + 1. Algorithm 4 does the following tasks:

1. Find offerer Pi in period t: First the algorithm finds the offerer Pi in period t. This

is done in lines 3 to 7.

2. Find SPNE strategy of Pi in period t: Pi’s SPNE strategy in period t will cor-

respond to Pi taking the maximum possible number of channels from his neighbors in

order to maximize his share of channels in period t. In order to maximize the number

of channels that Pi can acquire from his neighbors in PNbr
−i , Pi will have to consider all

interference free allocations that allow him to take at most |xt+1
j | − dδj|xt+1

j |e channels
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from Pj ∈ PNbr
−i and use the one that allows Pi to take the maximum number of chan-

nels from his neighbors. Steps 8 to 38 basically does this. Let us look at these steps

in more detail.

Note that, Pi can potentially take channels only from those Pj ∈ PNbr
−i for whom

|xt+1
j | − dδj|xt+1

j |e > 0. Let P̂Nbr
−i ⊂ PNbr

−i be the set of neighbors of Pi satisfying

this criteria. The for loop in lines 9 to 15 finds the set P̂Nbr
−i and also generates the

set Qj for each Pj ∈ P̂Nbr
−i where Qj is the set of all subsets of xt+1

j with cardinality

|xt+1
j | − dδj|xt+1

j |e. Note that, it is possible that the set P̂Nbr
−i is null. In this case Pi

cannot take channels from any of his neighbors. Thus, the SPNE strategy for Pi will

be to demand the set of channels, xt
i = xt+1

i , and offer each Pj ∈ P−i the set of channels

xt
j = xt+1

j . The case of P̂Nbr
−i being null is taken care of in lines 16 to 20 at the end of

which the algorithm continues onto the next iteration to find the strategy of the offerer

in period t− 1.

For the case when P̂Nbr
−i is not null, we define set Q as the cartesian product of all

Qj for Pj ∈ P̂Nbr
−i . Thus, element qr ∈ Q, r ∈ [1, |Q|], is a set of channels that

Pi can acquire from his neighbors in P̂Nbr
−i taken together, taking |xt+1

j | − dδj|xt+1
j |e

channels from neighbor Pj ∈ P̂Nbr
−i . Set Q has all such combination of channels that

Pi can take from his neighbors in P̂Nbr
−i . Notice that in line 22, the cartesian product

of all Qj for Pj ∈ P̂Nbr
−i considers the Qj’s in ascending order of their subscripts.

According to our definition of Q and rules of cartesian product, if Pj is the lowest
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numbered player in P̂Nbr
−i

5, then the first |xt+1
j | − dδj|xt+1

j |e channels of qr ∈ Q belong

to Pj ∈ P̂Nbr
−i . Likewise, if Pk is the second lowest numbered player in P̂Nbr

−i then the

next |xt+1
k | − dδk|xt+1

k |e channels belong to Pk ∈ P̂Nbr
−i . And so on. Let cr

j ⊂ qr be the

set of channels belonging to Pj ∈ P̂Nbr
−i . Notice that Pi can use a channel Ck ∈ qr,

iff Ck /∈ {⋃Pj∈P̂ Nbr
−i
{xt+1

j \cr
j}}

⋃{⋃Pj∈P Nbr
−i \P̂ Nbr

−i
xt+1

j }. In other words, Pi can use a

channel Ck ∈ qr if and only if no Pj ∈ P̂Nbr
−i has Ck after the set of channels cr

j has

been taken from Pj and neither does any Pj ∈ PNbr
−i \P̂Nbr

−i have the channel Ck. Let

profit(qr) ⊂ qr be the set of channels that Pi can use from among the channels in qr.

Thus,

profit(qr) = qr\{{
⋃

Pj∈P̂ Nbr
−i

{xt+1
j \cr

j}}
⋃
{
⋃

Pj∈P Nbr
−i \P̂ Nbr

−i

xt+1
j }} (5.4)

where, cr
j ⊂ qr is the set of channels belonging to Pj ∈ P̂Nbr

−i . The for loop in lines 24 to

34 finds the set profit(qr) ⊂ qr for qr ∈ Q, ∀r ∈ [1, |Q|]. Trying to maximize the number

of channels Pi can acquire from his neighbors, Pi will choose set qm ∈ Q,m ∈ [1, |Q|]

such that,

|profit(qm)| = maxqr∈Q;1≤r≤|Q|(|profit(qr)|) (5.5)

and take the set of channels profit(qm) from his neighbors. Thus, in period t, Pi’s share

of channels will be (line 36),

xt
i ← xt+1

i

⋃
profit(qm) (5.6)

5Let Q1 = {{C1, C2}, {C3, C4}} and Q2 = {{C3, C5}, {C6, C7}}. Then Q = Q1 × Q2 =
{{C1, C2, C3, C5}, {C1, C2, C6, C7}, {C3, C4, C3, C5}, {C3, C4, C6, C7}}. For any q ∈ Q, the first two elements
of q belong to Q1 and the next two elements belong to Q2. Also we define Q to be Q1×Q2 and not Q2×Q1
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Also, clearly in period t, each Pj ∈ P̂Nbr
−i will be left with the set of channels {xt+1

j \profit(qm)}.

Since each Pj ∈ P̂Nbr
−i will have at least dδj|xt+1

j |e channels6 in period t, no Pj will have

an incentive to reject his share of (line 37),

xt
j ← xt+1

j \profit(qm), ∀Pj ∈ P̂Nbr
−i (5.7)

All other players, i.e., Pj ∈ P−i\P̂Nbr
−i

7, can have the same share of channels in period

t as they had in period t + 1, and thus no Pj will not have an incentive to reject their

share of (line 38),

xt
j ← xt+1

j ;∀Pj ∈ P−i\P̂Nbr
−i (5.8)

The strategy (xt
i, x

t
−i) obtained for Pi is a SPNE strategy for Pi in period t. Clearly, no

Pj ∈ P−i can gain in any sub-game (play after period t) by rejecting their respective

shares in xt
−i. Also, Pi cannot make a “successful” demand of a larger share of channels

than xt
i, since the number of channels that Pi can take from his neighbors has been

optimized over all possible interference free allocations that allows Pi to take at most

|xt+1
j |−dδj|xt+1

j |e channels from Pj ∈ PNbr
−i . However, (xt

i, x
t
−i) strategy for Pi obtained

so far may not be pareto optimal. It may be possible to improve the share of some

players in P−i without decreasing the share of any player. We deal with this next.

3. Find pareto optimal SPNE strategy of Pi: Pareto improvement of Pi’s SPNE

strategy, (xt
i, x

t
−i), obtained so far to obtain a pareto optimal strategy for Pi is done

6qr ∈ Q has been computed taking |xt+1
j | − dδj |xt+1

j |e from Pj ∈ P̂Nbr
−i . Thus, each Pj ∈ P̂Nbr

−i will have
at least dδj |xt+1

j |e channels in the share offered to them in period t.
7Note that this includes neighbors of Pi from whom Pi could not take any channels (PNbr

−i \P̂Nbr
−i ), as well

as players who are more than a hop away from Pi (PNbr
−i )
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by the while loop in steps 39 through 50. At each iteration of the while loop, the

algorithm checks each player Pj ∈ P−i to see if a channel can be added to xt
j. The

while loop iterates till no more channels can be assigned to any player in P−i. Clearly,

after the while loop terminates, (xt
i, x

t
−i) produced will correspond to a pareto optimal

SPNE strategy for Pi in period t.

When algorithm (4) terminates, it finds a SPNE strategy, (x0
1, x

0
−1), for P1 in the first period,

such that P1 cannot make a larger demand of channels than x0
1 that will be accepted by all

players in P−1. If rejected, P1 cannot hope to get a share of channels in any subsequent period

which in period 0 is worth more than |x0
1|. Also, no player in P−1 can hope to get a share of

channels in any subsequent period which in period 0 is worth more than his respective share

in x0
−1. Thus, the players in P−1 does not have an incentive to reject their share in x0

−1.

5.2.2.1 A more efficient implementation

Though algorithm 4 lays down the basic idea of finding SPNE strategies of the spectrum

bargaining game using backward induction, it checks all combinations of channels that allow

an offerer Pi in period t to take |xt+1
j | − dδj|xt+1

j |e channels from neighbor Pj ∈ P̂Nbr
−i . To

do away with checking all such combinations, algorithm 5 presents a more computationally

efficient procedure for finding the SPNE strategy of offerer Pi in period t (that need not be

Pareto optimal).
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Algorithm 5 Find SPNE strategy of offerer Pi in period t

1: S ← {φ}
2: for all Cm ∈ C : Cm /∈ ∪Pj∈P Nbr

−i \P̂ Nbr
−i

xt+1
j do

3: s ← ∑
Pj∈P̂ Nbr

−i
|Cm ∩ xt+1

j |
4: if s > 0 then
5: S ← S ∪ Cs

m

6: end if
7: end for
8: Sort the channels in S in non-decreasing order according to their superscripts in S.
9: Mark all Pj ∈ P̂Nbr

−i as available.

10: rj ← |xt+1
j | − dδj|xt+1

j |e ∀Pj ∈ P̂Nbr
−i

11: xt
j ← {xt+1

j } ∀j ∈ [1, N ]
12: for all Cm ∈ S do
13: if all Pj ∈ P̂Nbr

−i for which |xt
j ∩ Cm| = 1 is marked available then

14: rj ← rj − 1 ∀Pj ∈ P̂Nbr
−i : |xt

j ∩ Cm| = 1

15: xt
j ← xt

j\Cm ∀Pj ∈ P̂Nbr
−i : |xt

j ∩ Cm| = 1
16: xt

i ← xt
i ∪ Cm

17: Mark all Pj ∈ P̂Nbr
−i as unavailable for which rj = 0.

18: end if
19: end for

The critical task is to find the maximum set of channels that offerer Pi can acquire

in period t. Recall that, Pi can potentially take channels only from those Pj ∈ PNbr
−i for

whom |xt+1
j | − dδj|xt+1

j |e > 0 (denoted as P̂Nbr
−i ). Keeping this in mind, algorithm 5 finds

the maximum set of channels that Pi can take from this neighbors. The basic idea of the

algorithm is to sort the channels that the players in P̂Nbr
−i has (in period t + 1) in ascending

order based on the number of players that possess each channel. The algorithm then considers

taking each channel in this ascending order, ensuring that no more than |xt+1
j | − dδj|xt+1

j |e

channels is taken from each Pj ∈ P̂Nbr
−i .

Notice that the strategy (xt
i, x

t
−i) found by algorithm 5 for offerer Pi in period t need not

yield a Pareto optimal equilibrium. It may be possible to improve the share of some players
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in P−i without decreasing the share of any player. The Pareto optimal SPNE strategy of Pi

can be found by a while loop similar to the one in lines 39 to 50 of algorithm 4.

It can be easily verified that the worst case complexity of finding the SPNE strategy of

offerer Pi in period t is O(M2D), where D is the highest degree of a node in the conflict

graph.

5.2.3 An Illustrative Example

Figure 5.1 shows an example of how to find the SPNE strategy (x0
1, x

0
−1) of P1 in the first

period of the game. We consider a network of 6 nodes. The graphs in Figure 5.1 depict the

conflict graph of the network. The number of channels available, M , has been assumed to be

5. Each node has a discount factor of 0.5. The game is played for 6 periods. The channels

assigned to the nodes in each period has been shown in brackets beside the node.

Figure 5.1(a) shows the pareto optimal NE strategy of P6 in the last period of the game

as obtained by using algorithm 2. The offerer in this period is P6. First, a NE strategy

of P6 in the last period (which need not be pareto optimal) is found using lines 2 to 10 of

the algorithm. In lines 2 to 6, P6 colors his neighbors (P2 and P3) with the least possible

number of colors (channels) and keeps rest of the channels for himself (thereby maximizing

his share). In lines 7 to 10, the players in (PNbr
−6 ) (i.e, P1, P4 and P5) are given a channel each

by graph coloring them. This is done by considering P1, P4 and P5 in non-increasing order of
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Figure 5.1: Pareto optimal SPNE of the respective offerer in different periods.

88



their degree in the subgraph induced by P1, P2, P3, P4 and P5. Thus, P1 is considered first8

and gets C2, next P5 gets C3 and finally P4 gets channel C1. Clearly, the channel assignment

obtained so far corresponds to a NE strategy of P1 in the last period, but one that may not

be pareto optimal, since the shares of some players (P1, P4 and P5) can be improved without

hurting the share of any other player.

The pareto optimal NE strategy of P6 is obtained using lines 11 to 22 of algorithm 2.

This is done by considering the players in P−6 and checking to see if more channels can be

assigned to the player. In the first iteration of the while loop, P1 receives C4, P2 and P3 does

not get any more channels, P4 gets C3 and P5 gets C5. In the second iteration of the while

loop only P4 gets C5. The channel assignment obtained now is shown in Figure 5.1(a), and

corresponds to the pareto optimal NE strategy of P6 in the last period of the game.

We will exemplify the concept of finding the SPNE strategy of an offerer Pi in period t

from the SPNE strategy of offerer Pl (l 6= i) in period t + 1 (refer algorithm (5)) by showing

how to find the SPNE strategy of the offerer P3 in period 2 from the SPNE strategy of P4

in period 3. Note that PNbr
−3 = {P1, P5, P6}. The four channels that P6 has in period 3 is

equivalent to having d4 × 0.5e = 2 channels in period 2. Thus, P3 can potentially take 2

channels from P6. Similarly, the 3 channels that P5 has in period 3 is equivalent to having

d3×0.5e = 2 channels in period 2. Thus, P3 can potentially take 1 channel from P5. However,

P3 will not be able to take any channel from P1, since the latter has only one channel in the

previous period. In fact, this also implies that P3 will not be able to take channel 4 (due to

8If two nodes have the same degree then the lower numbered node is considered first
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interference constraints). Thus P̂Nbr
−3 = {P6, P5}. Now, algorithm (5) will sort the channels

that P3 can potentially take from this neighbors in P̂Nbr
−3 in ascending order based on the

number of players in P̂Nbr
−3 that possess each channel (line 8 algorithm (5)). This yields the

set S = {C2, C3, C5}. First, C2 is considered. Since the channel is possessed by both players

P5 and P6 and a channel can be taken from both the players, P3 takes channel C2 from P5

and P6. Next, channel C3 is considered, which is also possessed by both players P5 and P6.

However, since no more channels can now be taken from P5, P3 cannot take C3. Similarly,

C5 cannot be taken also. Thus, P3 only takes C2 from both P5 and P6, making x2
3 = {1, 2}.

It can be easily seen that the maximum number of channels that P3 can acquire from his

neighbors is indeed 1.

The channel assignment obtained so far is a SPNE strategy for P3 in period 2. However,

it may not be pareto optimal. To obtain the pareto optimal SPNE strategy of P3, a while

loop of the form discussed earlier can be used which would assign C2 to P2. The channel

assignment obtained subsequently would correspond to the pareto optimal SPNE strategy

of P3 in period 2 of the game. This is shown in Figure 5.1(d).

Following the same line of reasoning, we finally obtain the SPNE strategy (x0
1, x

0
−1) of P1

in the first period of the game. This strategy of P1 is shown in Figure 5.1(f).
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5.3 Infinite Horizon Bargaining Game

Until now we have studied the bargaining game for accessing channels as a finite horizon

game of T periods. In this game, if the players can agree upon a sharing rule within T

periods then each player gets his respective share of channels. However, if the players fail to

agree on a sharing rule within T periods, then the outcome of the game corresponds to the

disagreement outcome, and all player gets zero channels. We have studied SPNE strategies

in this game and and have also presented an algorithm to find the SPNE strategy of the

player (P1) making the offer in the first period.

However, it is more realistic to consider that players will go on bargaining until all

players can agree on a sharing rule of the channels. Such a bargaining game is called an

infinite horizon bargaining game. To study the infinite horizon game, we will first extend the

definition of the finite horizon game defined in Section 5.1. Specifically, in the infinite horizon

game, each Pi for i ∈ [1, N ] makes an offer in periods kN + (i− 1) where k ∈ {0, 1, 2, · · · }.

We will denote the SPNE strategy of P1 in the first period of a T period finite horizon game

as (x0
1, x

0
−1)

T . Also, let (x0
1, x

0
−1)

T
j denote set x0

j in (x0
1, x

0
−1)

T for j ∈ [1, N ]9.

Our solution of the infinite horizon game is based on the following fact– for the finite

horizon game, there exists a T such that the number of channels each player receives in the

SPNE strategy of P1, (x0
1, x

0
−1)

T , of a T period game, is equal to the number of channels each

player receives in the SPNE strategy of P1, (x0
1, x

0
−1)

T ′ , in a T ′ period game, for all T ′ > T .

9Recall that (x0
1, x

0
−1) = (x0

1, {x0
2, x

0
3, · · · , x0

N})
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92



In other words, ∃T such that for all T ′ > T we have |(x0
1, x

0
−1)

T ′
j | = |(x0

1, x
0
−1)

T
j |,∀j ∈ [1, N ].

We will show this via simulation. Figure 5.2 shows the SPNE strategy (x0
1, x

0
−1)

T of a 6

player finite horizon game with varying number of periods, T . The conflict graph has been

randomly generated. The number of channels available, M , has been taken to be 8 and

the discount factor of all players is 0.7. As can be clearly seen from the figure, for T > 6,

|(x0
1, x

0
−1)

T
j | = |(x0

1, x
0
−1)

6
j |,∀j ∈ [1, N ]. Thus, to find the SPNE strategy, (x0

1, x
0
−1)

∞, of the

infinite horizon game, we simply need to find the SPNE strategy, (x0
1, x

0
−1)

T , of a finite horizon

game of T periods, such that for all T ′ > T we have |(x0
1, x

0
−1)

T ′
j | = |(x0

1, x
0
−1)

T
j |, ∀j ∈ [1, N ].

Based on this, algorithm 6, gives the procedure that P1 will invoke to find his SPNE strategy,

(x0
1, x

0
−1)

∞, in the infinite horizon game.

Algorithm 6 Find Infinite Horizon SPNE

Require: Number of players, N ; Interference Constraint, I; Set of Available Channels, C;
Number of Periods, T ;

1: (x0
1, x

0
−1)

T−1
j ← {φ},∀j ∈ [1, N ]

2: while true do
3: (x0

1, x
0
−1)

T ← Find SPNE by B.I(N ,I,C,T )
4: if |(x0

1, x
0
−1)

T
j | = |(x0

1, x
0
−1)

T−1
j |, ∀j ∈ [1, N ] then

5: break
6: else
7: T ← T + 1
8: end if
9: end while

10: return (x0
1, x

0
−1)

T
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5.3.1 Discussion

• Value of T , the starting period: Algorithm 6 finds the SPNE of P1 in the first

period, starting from a T period game, until it finds a T ′ period game, such that,

|(x0
1, x

0
−1)

T ′
j | = |(x0

1, x
0
−1)

T ′−1
j |, ∀j ∈ [1, N ]. The algorithm then outputs the SPNE of P1

in the infinite horizon game as (x0
1, x

0
−1)

T ′ . The period T ′ at which the SPNE strategy

of P1 converges depends on several factors– the number of players, N ; the number of

available channels, M ; and the average discount factor of the players, δ. More precisely,

we have,

T ′ ∝ N

M · (1− δ)
(5.9)

Thus, T ′ – (i) increases as the number of player increases, (ii) decreases as more channels

become available and (iii) increases as the discount factor of the players increases,

i.e., as the players become more patient in waiting for the bargaining outcome. To

minimize the number of iterations required by algorithm 6 to find T ′, T should be

made proportional to N
M ·(1−δ)

.

• First (last) Mover Advantage: One might suspect that the bargaining game we

discussed suffers from the “first (last) mover advantage” problem, i.e., a player making

an offer earlier (later) may have an advantage over a player who gets to make an offer

later (earlier). This happens only in the finite horizon version of the game. In the

infinite horizon game, when we take the length of the time periods to be very short,

the “first (last) mover advantage” disappears [4]. Since we model the spectrum access
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problem as an infinite horizon bargaining game where the length of each bargaining

period will be very short (in the order of time taken to exchange messages or packets

among nodes), our solution does not suffer from the “first (last) mover advantage”

problem. Thus, ordering of the players will also not matter in our solution.

• Building the conflict graph: In our solution, we consider that each player knows the

interference constraint, I, i.e., is aware of the conflict graph of the network. Players

can know the conflict graph of the network over time by periodically sharing their

perceived conflict graph with their interferers (neighbors) using control channel. Let

us assume time is divided into slots. Initially, at time t = 0, the players only know of

themselves. At t = 1, the players exchange their conflict graph with their neighbors to

know their 1-hop away interferers. At t = 2, the players again exchange their conflict

graph with their neighbors to know of nodes that are 2-hop away. And so on. For a

conflict graph of N vertices, following this procedure, a player can know the conflict

graph of the network in at most N − 1 time steps.

5.4 Summary

This chapter models the problem of dynamic spectrum access by a set of cognitive radio

enabled nodes as an infinite horizon bargaining game where the nodes bargain among them-

selves to agree upon a sharing rule of the channels. First, the chapter explores the finite

horizon version of the bargaining game and presents polynomial time algorithms to find the
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Pareto optimal SPNE strategy of the player making the offer in the first period of the game.

This is a strategy, such that, neither can the player making the offer increase his utility by

making any other offer, nor can the players receiving the offer gain in any subsequent period

by rejecting this offer. Next, we extend the results from the finite horizon game to find the

Pareto optimal SPNE strategies of the infinite horizon game. Using their SPNE strategies,

no player gets starved of channels. Finally, since in the bargaining model nodes negotiate

among themselves, no centralized controller is needed.
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CHAPTER 6

INCENTIVE BASED ROUTING

The channels that a secondary node acquires come to it at a price. Thus, to forward traffic,

each secondary node would incur a cost because of using the spectrum it has acquired by

making a payment. Moreover, using the acquired spectrum, each node can sustain a certain

capacity. Clearly, secondary nodes will not have an incentive to relay traffic unless they are

compensated for the costs they incur in forwarding traffic. Also, for a routing mechanism to

be stable, the amount of traffic that a node forwards should not exceed its capacity.

In this chapter, we adopt the approach of Bayesian based algorithmic mechanism design

for designing an optimal routing mechanism that minimizes the payment to be made to the

nodes while theoretically ensuring that no node has any incentive to dishonestly declare its

cost and/or capacity. Our routing mechanism is comprised of two components– a) route

selection function, which determines the route(s) that requires the least expected payment.

We refer to such a route as the the Expected Least Paid Route (ELPR), and, b) pricing

function, which determines the payment to be made to each node. The focus of this chapter

is to design these two functions. Formally, the key contributions of this chapter can be

considered as follows.
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• Optimal Routing Mechanism Design: We propose a path auction based routing

mechanism in which nodes announce their cost and capacity, based on which a multi-path

route is chosen and payments are made to the nodes. The route selection mechanism

and the payment function ensure that all nodes can maximize their profit by truthfully

reporting their cost and capacity, while the payment that needs to be made to the nodes

is minimized.

• Polynomial Time Implementation: In addition to theoretically deriving the functions

that determine the route selection and the payments to be made, we provide polynomial

time algorithms for deploying the routing mechanism in DSA networks.

• Modeling Uncertainty in DSA Networks: We model cost of a node and its capacity

as random variables. This serves a two-fold purpose– a) it helps tame the uncertainty

regarding the actual cost and capacity of a node; and, b) it helps reflect the heterogenous

nature of the nodes in a DSA network in terms of both space and time variation of the

cost and capacity of nodes.

The remainder of the chapter in organized as follows. Section 6.1 defines the system

model and also formally presents the path auction problem. Section 6.2 develops the theory

of optimal path auction design. For simplicity and clarity of exposition, first Section 6.3

considers how to deploy such a path auction mechanism in the case of single-path routing,

by assuming that each node in the network has sufficient capacity to route the sender’s
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traffic. Next, Section 6.4 discusses algorithms to deploy the path auction mechanism in the

multi-path routing scenario. Finally, Section 6.5 concludes the chapter.

6.1 Network Model and Problem Formulation

6.1.1 Network Model

We consider a DSA network whose topology is depicted by the graph G = (V, E). Here V

is the set of secondary nodes and E is the set of links between the secondary nodes. Each

node j ∈ V has the following two private information, that comprises its type.

• Capacity cj: Each node j acquires a certain amount of spectrum which can sustain

a capacity cj, measured in packets per unit time.

• Cost mj: Each node j pays a cost mj per unit time, for the time it uses the spectrum,

to the primary owner.

Thus, the type of node j ∈ V is defined by the 2-tuple,

tj = {mj, cj} (6.1)

We refer to the parameters of cost and capacity of a node as the dimensions of its type. It is

worth emphasizing that, even though we consider a packet to be the smallest granularity of

data transfer, our analysis would also hold true even if we consider other granularities such

as bits.
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Consider a traffic flow that originates from source node s and terminates at destination

node d. Let N represent the set of candidate secondary nodes available for routing the flow.

Thus,

N = V \{s, d} (6.2)

We label the nodes in N from 1 to n, i.e., N = {1 · · ·n}. Before the flow begins, each node

j ∈ N reports its type to the routing mechanism as the 2-tuple,

t̂j = {m̂j, ĉj} (6.3)

A truthful mechanism has to guarantee that no node j ∈ N has any incentive to lie about

its type, i.e., no node can earn an extra profit by falsely reporting its type. In other words,

the mechanism has to ensure that the reported type t̂j = tj,∀j ∈ N (m̂j = mj and ĉj = cj).

6.1.2 Bayesian based Modeling and Assumptions

The routing mechanism, however, is not aware of the true type of an intermediate node

j ∈ N willing to route the sender’s traffic. To this end, we will tackle the problem using

the conventional economics approach of Bayesian mechanism design, modeling mj and cj as

random variables. We assume that the uncertainty about the type of node j ∈ N can be

described by two continuous probability density functions (p.d.f)– one for the cost, mj and

another for the capacity, cj– each defined over some finite interval and that the functions are

known to the mechanism.
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• p.d.f of mj: We let aj and bj represent the lowest and highest possible cost respectively

that node j might incur per unit time for transmitting packets over its spectrum. We

let fM
j : [aj, bj] → R+ be the p.d.f for j′s cost mj and assume that: −∞ < aj < bj < ∞;

fM
j (mj) > 0, ∀mj ∈ [aj, bj]; and fM

j (.) is a continuous function on [aj, bj].

• p.d.f of cj: We let vj and wj represent the lowest and highest possible capacity

respectively that node j can sustain. We let fC
j : [vj, wj] → R+ be the p.d.f for j′s

capacity cj and assume that: −∞ < vj < wj < ∞; fC
j (cj) > 0, ∀cj ∈ [vj, wj]; and

fC
j (.) is a continuous function on [vj, wj].

The two density functions and their corresponding domains can be constructed in practise

based on historical reports of the cost mj and the capacity cj. Now, cost, mj, as well as the

capacity, cj, depend on the supply demand dynamics of spectrum availability in the vicinity

of node j. Thus, we consider mj and cj to be dependent random variables. Let fMC
j be their

continuous joint probability density function defined over the domain, Tj. Thus,

Tj = [aj, bj]× [vj, wj] (6.4)

Let T denote the set of all possible combinations of types of the nodes in N . Thus,

T = T1 × · · · × Tn (6.5)

Now, if tj = {mj, cj} is the type of j, then the price that j pays to the primary spectrum

owner for transmitting a packet over its spectrum is mj/cj. We denote this price associated

with the type of j as tpj . Let fP
j be the probability density function of the continuous random
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variable tpj over the domain,

T p
j =

[
aj

wj

,
bj

vj

]
(6.6)

Let T p denote the set of all possible combinations of the per packet prices that can be

associated with the types of the nodes in N . Thus,

T p = T p
1 × · · · × T p

n (6.7)

Also, for node j ∈ N , let T p
−j denote the set of all possible combinations of the per packet

prices that can be associated with the types of the nodes in N other than j, so that

T p
−j = ×i∈N

i6=j
T p

i (6.8)

We assume that the types of the nodes in N are stochastically independent from each other.

Thus, the joint density function on T p for the vector tp = (tp1, · · · , tpn) of individual per packet

prices associated with the vector t = (t1, · · · , tn) of individual types is,

fP (tp) =
∏
j∈N

fP
j (tpj) =

∏
j∈N

fP
j (mj/cj) (6.9)

Also, we assume that a node j ∈ N assesses the uncertainty about the types of the

other nodes in N in the same way as the routing mechanism does. Consequently, both

the mechanism and node j assess the joint density function on T p
−j for the vector tp−j =

(tp1, · · · , tpj−1, t
p
j+1, · · · , tpn) associated with the vector t−j = (t1, · · · , tj−1, tj+1, · · · , tn) of indi-

vidual types of all nodes in N except j as,

fP
−j(t

p
−j) =

∏
i∈N
i6=j

fP
i (tpi ) (6.10)
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6.1.3 Problem Formulation

The optimal routing mechanism design problem is to devise a path auction mechanism

such that the expected payment made by the end-user to the nodes in N to have its traffic

routed from s to d is minimized, while enforcing nodes to reveal their type to the mechanism

truthfully. The end-user can correspond to either s or d. We consider the direct revelation

mechanism class, where the nodes in N simultaneously and confidentially announce their

respective type tj = {mj, cj}, j ∈ N , to the routing mechanism. The mechanism then

determines on which path(s) to route the traffic from s to d and how much each node in

N should be paid, as some functions of the vector of per packet prices tp = (tp1, · · · , tpn)

associated with the vector of announced types t = (t1, · · · , tn). Next, we formally define

these functions.

6.1.3.1 The outcome functions– p(·) and q(·)

Let P s→d denote the set of all paths from s to d, with each path consisting of nodes defined in

G, and let K = |P s→d| with the paths in P s→d labeled from 1 to K. The routing mechanism

can then be described by a pair of outcome functions (p, q) such that, pj(t
p) (j ∈ [1, n]) is

the amount of money paid to node j for each packet delivered to d by the nodes in N (or,

routes in P s→d) and qi(t
p), (i ∈ [1, K]), is the fraction of traffic routed over path i. The

function q(·) is thus the route selection function and p(·) is the pricing function. Two points

to be observed are,
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• In our definitions we allow for the possibility that a node might receive payment without

routing any traffic, though later we will show that this will never be the case.

• We allow multiple path routing.

6.1.3.2 Expected Utility functions

We consider expected utility of the end-user in terms of the price that the end-user needs

to pay for each packet from s that is routed by the underlying network and delivered to d.

In Section (6.4.3) we will discuss who actually makes the payments. The expected utility of

the end-user from the routing mechanism described by (p, q) is,

Ue(p, q) =

∫

T p

(∑
j∈N

pj(t
p)

)
fP (tp)dtp. (6.11)

where, dtp = dtp1 · · · dtpn and dtpj = d(
mj

cj
), j ∈ [1, n]. Similarly, we consider the expected

utility of node j ∈ N in terms of its profit per packet delivered to d by the routes in P s→d.

If the type of j is tj = {mj, cj}, then its expected utility from the auction mechanism is,

Uj(p, q, t
p
j) =

∫

T p
−j


pj(t

p)− tpj
∑

i∈P s
j→d

qi(t
p)


 fP

−j(t
p
−j)dtp−j (6.12)

where, P s
j→d is the subset of paths in P s→d that pass via node j.
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6.1.3.3 The Optimization problem

The objective of the path auction design problem is to shape the pair of outcome functions

(p, q), such that, the expected utility of the end-user as defined by equation (6.11) is mini-

mized. However, there are certain constraints that must be imposed on (p, q) to be able to

describe a feasible auction mechanism. We describe these constraints below.

1. Individual Rationality Constraint: No node in N can be forced to participate in the

auction if its utility from routing traffic is negative. If a node does not participate in the

auction, then clearly its utility would be zero. Thus, to ensure that all nodes in N participate

in the auction, the following individual rationality constraint must hold.

Uj(p, q, t
p
j) ≥ 0, ∀j ∈ N, ∀tpj ∈ T p

j (6.13)

2. Incentive Compatibility Constraint: The type announced by a node j ∈ N to the

mechanism is always susceptible to have been dishonestly reported if j expected to gain

from lying. Thus, to make the nodes in N reveal their respective type truthfully, no node

should be able to expect an extra profit from lying about its type. In other words, honestly

revealing its own type should form a dominant strategy for every node in N in the auction

game. If node j ∈ N reports its type as t̂j = {m̂j, ĉj} while its true type is tj = {mj, cj},

then its expected utility is given by,

∫

T p
−j


pj(t̂

p
j , t

p
−j)− tpj

∑

i∈P s
j→d

qi(t̂
p
j , t

p
−j)


 fP

−j(t
p
−j)dtp−j (6.14)
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where, (t̂pj , t
p
−j) = (tp1, · · · , tpj−1, t̂

p
j , t

p
j+1, · · · , tpn) Thus, to ensure that no node in N has an

incentive to lie about its type, the following incentive compatibility condition must hold,

Uj(p, q, t
p
j) ≥

∫

T p
−j


pj(t̂

p
j , t

p
−j)− tpj

∑

i∈P s
j→d

qi(t̂
p
j , t

p
−j)


 fP

−j(t
p
−j)dtp−j,

∀j ∈ N, ∀tpj ∈ T p
j , ∀t̂pj ∈ T p

j (6.15)

Notice that if t̂pj = tpj , i.e.,
m̂j

ĉj
=

mj

cj
, then the expected utility of j by reporting type t̂j is

equal to Uj(p, q, t
p
j). So node j cannot expect to gain by falsely reporting a type t̂j if t̂pj = tpj .

3. Traffic Allocation Constraint: Clearly, sum of the fraction of traffic allocated over all

paths is 1. Thus,

K∑
i=1

qi(t
p) = 1 and qi(t

p) ≥ 0, ∀i ∈ [1, K], ∀tp ∈ T p (6.16)

4. Node Capacity Constraint: The total traffic rate that a node routes cannot exceed

its capacity. Thus, the following constraint must hold on the aggregate traffic rate that

traversers a node,

R
∑

i∈P s
j→d

qi(t
p) ≤ cj, ∀j ∈ N, ∀tp ∈ T p (6.17)

where, R is the rate at which s injects its traffic into the network.

6.2 Optimal Path Auction Design

Let Qj(q, t
p
j) denote the expected fraction of traffic that node j ∈ N will be made responsible

for forwarding due to a path auction mechanism (p, q), given that j’s type is tj = {mj, cj}.
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Thus, we can define,

Qj(q, t
p
j) =

∫

T p
−j




∑

i∈P s
j→d

qi(t
p)


 fP

−j(t
p
−j)dtp−j (6.18)

Based on the above definition, we first present a simplified incentive compatibility constraint.

Lemma 6.1. The incentive compatibility constraint presented in (6.15) holds if the following
two conditions holds for ∀j ∈ N, ∀mj, nj ∈ [aj, bj], ∀cj, dj ∈ [vj, wj].

1. if mj ≤ nj and cj ≤ dj, then,

Qj

(
q,

nj

cj

) ≤ Qj

(
q,

mj

dj

)
(6.19)

2. Uj

(
p, q,

mj

cj

)
=

bj/vj∫

mj/cj

Qj(q, ψj)dψj + Uj

(
p, q,

bj

vj

)
(6.20)

Proof. To simplify the incentive compatibility constraint we need to consider all the ways in
which a node can lie about its type. A node can do so by increasing or decreasing the value
of one or both the dimensions of its type. Thus, we need to consider four cases– a node can
either (i) exaggerate its cost but understate its capacity, or, (ii) exaggerate its capacity but
understate its cost, or, (iii) exaggerate both its cost and capacity, or, (iv) understate both
its cost and capacity.

Case (i) and (ii): The value of one of the dimensions is exaggerated while the other one is
understated.
Let us first assume that mj is the true cost and dj is the true capacity of j (tj = {mj, dj}),
while the node dishonestly announces nj and cj as its cost and capacity respectively (t̂j =
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{nj, cj}). The expected utility of j because of adopting this strategy is,

∫

T p
−j


pj

(nj

cj

, tp−j

)− mj

dj

∑

i∈P s
j→d

qi

(nj

cj

, tp−j

)

 fP

−j(t
p
−j)dtp−j

=

∫

T p
−j


pj

(nj

cj

, tp−j

)− nj

cj

∑

i∈P s
j→d

qi

(nj

cj

, tp−j

)

 fP

−j(t
p
−j)dtp−j+

∫

T p
−j




(
nj

cj

− mj

dj

) ∑

i∈P s
j→d

qi

(nj

cj

, tp−j

)

 fP

−j(t
p
−j)dtp−j

=Uj

(
p, q,

nj

cj

)
+

(
nj

cj

− mj

dj

)
Qj

(
q,

nj

cj

)
(6.21)

The incentive compatibility constraint (6.15) states that, for any node in N , the expected
utility obtained by reporting its true type must be greater than or equal to the expected
utility obtained by lying about its type. Thus, we have,

Uj

(
p, q,

mj

dj

) ≥ Uj

(
p, q,

nj

cj

)
+

(
nj

cj

− mj

dj

)
Qj

(
q,

nj

cj

)
(6.22)

Similarly, considering nj as the true cost and cj as the true capacity of j (tj = {nj, cj}),
while the node reports mj and dj as its cost and capacity respectively (t̂j = {mj, dj}), we
get,

Uj

(
p, q,

nj

cj

) ≥ Uj

(
p, q,

mj

dj

)
+

(
mj

dj

− nj

cj

)
Qj

(
q,

mj

dj

)
(6.23)

From inequalities (6.22) and (6.23), we have,

(
nj

cj

− mj

dj

)
Qj

(
q,

nj

cj

) ≤ Uj

(
p, q,

mj

dj

)− Uj

(
p, q,

nj

cj

) ≤
(

nj

cj

− mj

dj

)
Qj

(
q,

mj

dj

)
(6.24)

Since, we know
nj

cj
>

mj

dj
, condition (1) of lemma (6.1) follows.

Case (iii) and (iv): The value of both the dimensions is either exaggerated or understated.
Next, let us consider that mj is the true cost and cj is the true capacity of j (tj = {mj, cj}),
while the node announces nj and dj as its cost and capacity respectively (t̂j = {nj, dj}). The
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expected utility of j because of adopting this strategy is,

∫

T p
−j


pj

(nj

dj

, tp−j

)− mj

cj

∑

i∈P s
j→d

qi

(nj

dj

, tp−j

)

 fP

−j(t
p
−j)dtp−j

=Uj

(
p, q,

nj

dj

)
+

(
nj

dj

− mj

cj

)
Qj

(
q,

nj

dj

)
(6.25)

Because of incentive compatibility constraint (6.15), we have,

Uj

(
p, q,

mj

cj

) ≥ Uj

(
p, q,

nj

dj

)
+

(
nj

dj

− mj

cj

)
Qj

(
q,

nj

dj

)
(6.26)

Again, considering nj as the true cost and dj as the true capacity of j (tj = {nj, dj}), while
the node reports mj and cj as its cost and capacity respectively (t̂j = {mj, cj}), we get,

Uj

(
p, q,

nj

dj

) ≥ Uj

(
p, q,

mj

cj

)
+

(
mj

cj

− nj

dj

)
Qj

(
q,

mj

cj

)
(6.27)

From inequalities (6.26) and (6.27), we have,
(

nj

dj

− mj

cj

)
Qj

(
q,

nj

dj

) ≤ Uj

(
p, q,

mj

cj

)− Uj

(
p, q,

nj

dj

) ≤
(

nj

dj

− mj

cj

)
Qj

(
q,

mj

cj

)
(6.28)

In inequality (6.28) we can distinguish two cases– if
nj

dj
>

mj

cj
, then we can say that Qj(q,

nj

dj
) ≤

Qj(q,
mj

cj
). Otherwise, we have Qj(q,

mj

cj
) ≤ Qj(q,

nj

dj
).

Notice that, essentially both inequalities (6.24) and (6.28) imply the same fact– the
fraction of traffic that a node expects to forward follows a non-increasing trend as the per
packet cost associated with the reported type increases. Also, for any node j ∈ N , if we
consider {nj, cj} and {mj, dj} as two points (types) in the domain Tj, instead of considering
{mj, cj} and {nj, dj} as two points, then we know definitively that the fraction of traffic
that j expects to forward by reporting type {nj, cj} is less than or equal to that expected
by reporting type {mj, dj}. Thus, to shape the expected utility function of a node, for
conforming it to the incentive compatibility constraint, we can consider only inequality (6.24).

Now, let
nj

cj
− mj

dj
= δj. Then, we can rewrite inequality (6.24) as,

δjQj(q,
nj

cj

) ≤ Uj

(
p, q,

nj

cj

− δj

)− Uj

(
p, q,

nj

cj

) ≤ δjQj(q,
nj

cj

− δj)

Since Qj(·) decreases as the per packet cost associated with the type of a node increases, we
can write Qj(·) as a Riemann integral,

bj/vj∫

nj/cj

Qj(q, ψj)dψj = Uj

(
p, q,

nj

cj

)− Uj

(
p, q,

bj

vj

)
(6.29)
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which holds for all type tj ∈ Tj for any node j ∈ N . Thus, condition (2) of lemma (6.1)
follows.

Thus, (p, q) can be said to describe an optimal path auction if and only if it minimizes

Ue(p, q) subject to the incentive compatibility constraints (6.19)-(6.20), individual rationality

constraint (6.13), traffic allocation constraint (6.16), and node capacity constraint (6.17).

Next, we simplify the optimization problem presented in Section (6.1.3.3).

Lemma 6.2. (p, q) represents an optimal path auction mechanism if q minimizes

∫

T p




∑
j∈N

(
tpj +

F P
j (tpj)

fP
j (tpj)

) ∑

i∈P s
j→d

qi(t
p)


 fP (tp)dtp (6.30)

subject to constraints (6.16) and (6.17), and,

pj(t
p) =

mj

cj

∑

i∈P s
j→d

qi(t
p) +

bj/vj∫

mj/cj

∑

i∈P s
j→d

qi(ψj, t
p
−j)dψj,

∀j ∈ N, ∀tp ∈ T p (6.31)

Proof. We can write the end-user’s utility function (6.11) as,

Ue(p, q) =
∑
j∈N

∫

T p

tpj
∑

i∈P s
j→d

qi(t
p)fP (tp)dtp +

∑
j∈N

∫

T p


pj(t

p)− tpj
∑

i∈P s
j→d

qi(t
p)


 fP (tp)dtp

(6.32)

110



Also, we know that,

∫

T p


pj(t

p)− tpj
∑

i∈P s
j→d

qi(t
p)


 fP (tp)dtp

=

bj/vj∫

aj/wj

Uj

(
p, q,

mj

cj

)
fP

j (tpj)dtpj

=

bj/vj∫

aj/wj




bj/vj∫

mj/cj

Qj(q, ψj)dψj + Uj

(
p, q,

bj

vj

)

 fP

j (tpj)dtpj

=

bj/vj∫

aj/wj

ψj∫

aj/wj

fP
j (tpj)Qj(q, ψj)dtpjdψj + Uj

(
p, q,

bj

vj

)

=

bj/vj∫

aj/wj

F P
j (ψj)Qj(q, ψj)dψj + Uj

(
p, q,

bj

vj

)

=

bj/vj∫

aj/wj

F P
j (tpj)

∫

T p
−j

∑

i∈P s
j→d

qi(t
p)fP

−j(t
p
−j)dtp−jdtpj + Uj

(
p, q,

bj

vj

)

=

∫

T p

F P
j (tpj)

fP
j (tpj)

∑

i∈P s
j→d

qi(t
p)fP (tp)dtp + Uj

(
p, q,

bj

vj

)
(6.33)

Substituting (6.33) into (6.32), we get,

Ue(p, q) =

∫

T p




∑
j∈N

(
tpj +

F P
j (tpj)

fP
j (tpj)

) ∑

i∈P s
j→d

qi(t
p)


 fP (tp)dtp +

∑
j∈N

Uj

(
p, q,

bj

vj

)
(6.34)

Notice that, we have accounted for the incentive compatibility constraint while simplifying
the utility function of the end-user. So the routing mechanism should be such that the
end-user’s utility as formulated in (6.34) is minimized subject to the individual rationality
constraint (6.13), traffic allocation constraint (6.16), and node capacity constraint (6.17). In

the formulation of (6.34), notice that p appears only in the last term (
∑

j∈N Uj(p, q,
bj

vj
)) of
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the objective function. Now, rewriting (6.20) we get,

Uj(p, q,
bj

vj

) =

∫

T p
−j


pj(t

p)− mj

cj

∑

i∈P s
j→d

qi(t
p)−

bj/vj∫

mj/cj

∑

i∈P s
j→d

qi(ψj, t
p
−j)dψj


 fP

−j(t
p
−j)dtp−j

Thus, if the end-user pays a node j ∈ N according to equation (6.31), then the individual
rationality constraint (6.13) is satisfied, as well as the best possible value of the last term
in (6.34) is obtained, which is zero. The individual rationality constraint is satisfied since
the payment made to a node j, pj(t

p) ≥ mj

cj

∑
i∈P s

j→d
qi(t

p). Intuitively, this can also be

understood as follows. The per packet price associated with the type of a node j is highest
if its type is {bj, vj}. The incentive compatibility constraint dictates that as the per packet
cost associated with the type of a node decreases, the fraction of traffic that a node expects
to route follows a non-decreasing trend. Thus, if the mechanism sets the expected utility of
node j because of type {bj, vj} to zero, then the expected utility corresponding to any type
tj ∈ Tj will be greater than or equal to zero.

So we can simplify the objective function of our optimization problem to (6.30) subject
to the traffic allocation constraint and the node capacity constraint, which are the only two
constraints left to be satisfied. Thus, lemma (6.2) follows.

Next, we will formulate lemma (6.2) in a deterministic manner.

Lemma 6.3. For any given t in T , the optimal traffic allocation over different routes in
P s→d is obtained if q minimizes the following function for the corresponding tp,

Φ(tp) =
K∑

i=1


 ∑

j∈P s→d
i

(
tpj +

F P
j (tpj)

fP
j (tpj)

)
 qi(t

p) (6.35)

subject to constraints (6.16) and (6.17). Here, P s→d
i denotes the set of nodes on the ith path

in P s→d. Also, the payment made to a node j ∈ N is given by,

pj(t
p) =

mj

cj

∑

i∈P s
j→d

qi(t
p) +

bj/vj∫

mj/cj

∑

i∈P s
j→d

qi(ψj, t
p
−j)dψj, ∀j ∈ N (6.36)

Proof. Clearly, for the minimization of the expected objective function given by (6.30), q
should be such that the following function gets minimized for all tp in T p (subject to (6.16)
and (6.17)),

∑
j∈N

(
tpj +

F P
j (tpj)

fP
j (tpj)

) ∑

i∈P s
j→d

qi(t
p) (6.37)
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Now, (6.37) has been expressed as a summation over the candidate nodes available for
routing a session’s traffic, i.e., over the nodes in N . However, q has to assign traffic to the
nodes in the context of the paths in P s→d; not by considering the nodes individually. So it
is more appropriate to express (6.37) as a summation over the paths in P s→d as has been
formulated in (6.35). Thus, lemma (6.3) follows.

6.3 Single Path Routing

Based on the theory of truthful optimal path auction design developed in the last section, we

will now devise algorithms to deploy such an auction mechanism in a network. For simplicity

of exposition we first consider a special case of the auction design problem in which each node

j ∈ N has sufficient capacity to route the sender’s traffic, i.e., we consider cj ≥ R, ∀j ∈ N ,

so that the traffic from s to d can always be routed over a single path. In Section 6.4 we

will explore implementation of the path auction mechanism in the generalized case, where

a node j ∈ N can have any arbitrary capacity, with s sending data at any arbitrary rate,

which would result in multi-path routing. Let us first define the following function,

ζj(t
p
j) = tpj +

F P
j (tpj)

fP
j (tpj)

, ∀j ∈ N (6.38)

For any given t ∈ T , notice that ζj(t
p
j) is a constant for each j ∈ N . We refer to ζj(t

p
j) as the

competence factor of node j. Also, the competence factor of path i ∈ P s→d can be defined

as,

∑

j∈P s→d
i

ζj(t
p
j) (6.39)
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Based on the above definitions and lemma (6.3), q should be such that the following function

is minimized,

Φ(tp) =
K∑

i=1


 ∑

j∈P s→d
i

ζj(t
p
j)


 qi(t

p) (6.40)

for all tp in T p, subject to constraint (6.16)1.

The function q(·): Clearly, (6.40) would get minimized for any tp ∈ T p while satisfying

constraint (6.16) if q assigns all traffic to the path in P s→d having the least competence

factor, which we consider as the most competent path. In essence, the path with the

least competence factor is a path that minimizes the expected payment that the end-user has

to make to have a packet routed from s to d. We refer to such a path as the ELPR

(Expected Least Paid Route).

Formally, q should assign all traffic to path k in P s→d, such that,

∑

j∈P s→d
k

ζj(t
p
j) = min1≤i≤K

∑

j∈P s→d
i

ζj(t
p
j)

One can find the path to which all traffic should be assigned by using the competence factor

ζj(t
p
j) as the weight of node j ∈ N in the graph G and using Dijkstra’s algorithm to find the

path from s to d having the minimum competence factor, which is the shortest path w.r.t

node weights.

The function p(·): As suggested by the payment formula (6.36), a node that does not route

any traffic, i.e., is not included in the most competent path, does not receive any payment.

1Note that constraint (6.17) need not be considered in this section since it will be always satisfied because
of the assumption on node capacity.
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This is because if tj = {mj, cj} is the type of node j not on the most competent path, then

we have
∑

i∈P s
j→d

qi(ψj, t
p
−j) = 0, ∀ψj ∈ [

mj

cj
,

bj

vj
].

On the other hand, (6.36) dictates that node j on the most competent path has to be

paid an amount equal to the cost that j would have incurred for forwarding a packet from s

if the type of j had been associated with the highest possible per packet cost that allowed j

to be included on the most competent path. Specifically, let tj be the type of node j on the

most competent path. Also, let the difference between the competence factor of the most

competent path in the graph G and that of graph G\j be ε. To be included on the most

competent path in the graph G, j’s type could have corresponded to all those types in Tj for

which its competence factor did not become more than or equal to ζj(t
p
j) + ε. Clearly, the

highest possible per packet price that can be associated with these types is ζ−1(ζj(t
p
j) + ε).

Thus, j has to be paid the minimum of ζ−1(ζj(t
p
j) + ε) and

bj

vj
.

Based on the above argument, algorithm (7) presents the procedure for computing the

most competent path (ELPR) in G on which all traffic should be routed and the payment

to be made to each node in N .

Algorithm (7) requires finding the shortest path from s to d w.r.t node weights. This can

be done using Dijkstra’s algorithm in O(|E| + |V |log|V |) time. Clearly, the overall running

time of the algorithm is O(|E||V |+ |V |2log|V |).
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Algorithm 7 Single Path Routing– Computing Optimal Path and Payments

Require: G = (V, E); source s; destination d; t = (t1, · · · , tn)
Ensure: Most competent path P (ELPR); Pay pj, ∀j ∈ N
1: for all j ∈ N do
2: tpj ← mj

cj

3: ζj(t
p
j) ← tpj +

F P
j (tpj )

fP
j (tpj )

4: end for
5: Using ζj(t

p
j) as the weight of node j ∈ N , find a path in G from s to d that has the least

competence factor. Denote the set of nodes in the selected path as P .
6: pj ← 0, ∀j ∈ {N\P}.
7: for all j ∈ P do
8: Using ζk(t

p
k) as the weight of node k ∈ N\j, find a path in G\j from s to d with the

least competence factor. Denote the set of nodes in the selected path as S.
9: ε ← ∑

j∈S ζj(t
p
j)−

∑
j∈P ζj(t

p
j)

10: pj ← min(ζ−1(ζj(t
p
j) + ε),

bj

vj
)

11: end for

s

1 2

3

4 5

{0.45,0.75}{0.3,0.7}

{0.4,0.5} {0.35,0.65}

{0.25,0.4} d

(a)

1 2

3

4 5

ds

0.85 (0.62) 1.20 (0.91) 

1.25 (0)

1.60 (0) 1.07 (0)

(b)

Figure 6.1: Single path routing example.
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6.3.1 An Illustrative Example

Let us look at an example to gain insight into the working of algorithm (7). The graph of

the network is shown in Figure (6.1). For the example we assume that the cost and capacity

of a node are uniformly distributed over [0, 1]. Also, we consider that they are independent

random variables, so that fMC
j (mj, cj) = fM

j (mj) · fC
j (cj). The sender is assumed to be

sending data at 0.2 pkts/sec.

Given two random variables X and Y , the ratio distribution of Z = X/Y can be obtained

by integration of the following form [20],

fZ(z) =

+∞∫

−∞

|y|fXY (zy, y)dy (6.41)

where fXY (x, y) is the joint distribution of X and Y . Based on (6.41), it can be shown that

the distribution of tpj in our example is,

fP
j (tpj) =





1/2 0 < tpj < 1

1
2(tpj )2

tpj ≥ 1

0 otherwise

(6.42)

In Figure (6.1(a)) the cost and capacity reported by each node is shown in brackets beside

it. The values next to a node in Figure (6.1(b)) show the competence factor (weight) of

the node (outside the bracket) and the payment received by it (inside the bracket) for each

packet served by the network. For example, the weight of node 1 is,

tp1 +
F P

1 (tp1)

fP
1 (tP1 )

=
0.3

0.7
+

0.3/0.7∫
0

1/2 dψj

1/2
= 0.85
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Likewise, the weights of the other nodes has been calculated. Clearly, the ELPR comprises

of the route, s → 1 → 2 → d, since it is the path with the least competence factor in the

graph.

As noted earlier, nodes not on the ELPR does not receive any payment. The payment of

node 1 can be found as follows. With node 1 removed, the path with the lowest competence

factor in the graph is s → 3 → 2 → d, with a competence factor of 2.45. So node 1 can

report all types that does not increase its weight by more than 2.45 − 2.05 = 0.4. Now,

min(ζ−1(0.85 + 0.4),∞) = 0.62, which is the payment received by node 1. The payment of

node 2 can be similarly calculated.

6.4 Multiple Path Routing

We will now study the deployment of the path auction mechanism by relaxing the assumption

on node capacity. In this generalized case, based on lemma (6.3) and the definition of node

competence factor, q should be such that the following function is minimized,

Φ(tp) =
K∑

i=1


 ∑

j∈P s→d
i

ζj(t
p
j)


 qi(t

p) (6.43)

for all tp in T p subject to constraints (6.16) and (6.17).

118



6.4.1 The Function q(·):

For any given tp ∈ T p, to find a feasible traffic allocation (one that satisfies constraint (6.16)

and (6.17)) over the paths in P s→d that minimizes (6.43) we resort to a modified version

of the Edmonds-Karp algorithm [19]. In our modified version of the algorithm we use the

competence factor of each node as its weight to find the path with the least competence

factor while searching for the augmenting path.

Algorithm 8 Multiple Path Routing– Computing Paths

Require: G = (V, E); source s; destination d; traffic rate R, t = (t1, · · · , tn)
Ensure: Optimal traffic allocation over the paths in G (ELPR)
1: f ← 0
2: i ← 1
3: for all j ∈ N do
4: tpj ← mj

cj

5: ζj(t
p
j) ← tpj +

F P
j (tpj )

fP
j (tpj )

6: end for
7: while f < R AND ∃ a path from s to d in Gf do
8: Using ζj(t

p
j) as the weight of node j ∈ N , find a path in Gf from s to d that has the

least competence factor. Denote the set of nodes in the selected path as Ps→d
i .

9: Find node k ∈ Ps→d
i , such that,

cf
k = minj∈Ps→d

i
cf
j

10: r ← min(cf
k , R− f)

11: q̃i ← r/R
12: cf+r

j ← cf
j − r, ∀j ∈ Ps→d

i

13: cf+r
j ← cf

j , ∀j ∈ N\Ps→d
i

14: f ← f + r
15: i ← i + 1
16: end while
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Algorithm (8) is our modified Edmonds-Karp algorithm that computes the optimal traffic

allocation over the paths in G. Before we delve into the details of algorithm (8) let us go

over some definitions. Given a DSA network represented by the graph G = (V,E) with

sender s and destination d and a flow f from s to d, we define the residual capacity cf
j of

a node j ∈ N as the amount of additional flow that can pass via node j before exceeding

its capacity cj. Based on this we can define the residual network of G induced by f as

Gf = {V f , Ef}, where

V f = {v ∈ V : cf
v > 0}

Ef = {(u, v) ∈ V × V : cf
u > 0 and cf

v > 0}

The working of algorithm (8) can be explained as follows,

1. Compute node weight: Compute the weight of each node j in N as its competence

factor ζj(t
p), based on the vector of individual types t announced by the nodes. Also,

initialize flow f from s to d to 0 and path i to 1.

2. Find an augmenting path in Gf : Find an augmenting path from s to d in Gf that

has the least competence factor and denote the set of nodes in the selected path as

Ps→d
i . This path can be computed by using Dijkstra’s algorithm starting from node

s. If no path can be found, then there is no feasible traffic allocation that satisfies

constraints (6.16) and (6.17) and the algorithm exits.

3. Allocate traffic to the selected path i: Find node k in Ps→d
i that has the least

residual capacity because of flow f from s to d. Node k is said to be the bottleneck node
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of the selected path. Clearly, min(cf
k , R−f)2 is the amount of flow that can be assigned

to path i and thus the fraction of traffic allocated to path i is, q̃i = min(cf
k , R− f)/R.

4. Compute new residual capacities: Update the residual capacity of each node

j ∈ Ps→d
i by subtracting min(cf

k , R − f) from its residual capacity cf
j in Gf . The

residual capacity of all nodes not on path i is same as their residual capacity in Gf .

Then increment f by the amount of flow assigned to path i.

5. Flow allocation: If f = R, i.e., there is a flow rate R from s to d, then the optimal

traffic allocation that minimizes (6.43) satisfying constraints (6.16) and (6.17) has been

found. The optimal allocation is over the set of paths, Ps→d = {Ps→d
1 , · · · ,Ps→d

i }, with

q̃1 to q̃i being the respective fraction of traffic over the paths. Otherwise, if f < R,

then increment i by 1 and go to STEP 2.

The augmenting paths in algorithm (8) can be found using Dijkstra’s algorithm in O(|E|+

|V |log|V |) time. Since, in every iteration of the while loop in lines 7-16 at least one node

becomes saturated, the overall running time of the algorithm is ¯(|E||V |+ |V |2log|V |).

Notice that, (6.43) can be minimized by using linear programming. However for such

a technique to navigate through the space of feasible solutions requires enumeration of all

paths from s to d, which may be computationally infeasible in practise. To reduce the

complexity of finding the optimal traffic allocation, algorithm (8) essentially progresses by

minimizing subproblems of the original optimization problem, that can be solved in polyno-

2Note that, if min(cf
k , R − f) = R − f , then i is necessarily the last augmenting path needed to allocate

the flow rate R from s to d.
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mial time using Dijkstras, and finally combines the individual solutions to obtain the feasible

traffic allocation that minimizes (6.43). We will next state and prove the following theorem

regarding the optimality of the allocation provided by algorithm (8).

Theorem 6.1. Given the existence of feasible traffic allocations, the solution provided by
algorithm (8) minimizes (6.43) among all such feasible allocations.

Proof. Without loss of generality let us assume that the set of paths P s→d = {P s→d
1 , · · · , P s→d

K }
is indexed in non-decreasing order of their competence factors. Then, for a given t ∈ T , let
the traffic allocation over the K paths in P s→d as computed by algorithm (8) be represented
by the vector q = (q1, · · · , qK)3. Also, let q′ = (q′1, · · · , q′K) denote any feasible traffic alloca-
tion over the set of K paths in P s→d for the same vector of individual types t. Further, let k
be the highest index of a path in P s→d which has a non-zero fraction of traffic assigned to it
in q and let k′ be the highest index of a path in P s→d which has a non-zero fraction of traffic
assigned to it in q′. Notice that, in the representation of algorithm (8)’s traffic allocation as
the vector q, we consider the case of algorithm (8) not encountering a path while assigning
traffic, due to the path’s bottleneck capacity being zero, by considering that the algorithm
assigns 0 traffic to it.

To show that q minimizes (6.43) we will show that the value of the function Φ(·) obtained
using q′ cannot be less than that obtained using q. Clearly, for q′ to provide a lower value of
the function Φ(·), k′ has to be less than or equal to k. Given that q is a feasible allocation,
we will first prove that k′ can never be less than k. Next, we will show that, when k′ = k,
even then q′ cannot yield a lower value of the function Φ(·) than q.

Case 1- k′ < k: We will prove that k′ < k is not possible by contradiction. For the sake
of argument assume that k′ < k. This implies that there has to be at least one path, say w,
in [2, k′] such that q′w > qw ≥ 0. Since q′w > qw, it has to be the case that both the following
are true,

• Path w intersects at some node(s) with at least one path in [1, w − 1].

• The bottleneck node(s) on path w, after algorithm (8) assigned traffic to path w − 1,
must correspond to one (or some) of the nodes that w has in common with the paths
in [1, w − 1].

Based on the above arguments, clearly, the residual capacity of at least one node that w
has in common with the path(s) in [1, w− 1] must be 0 after algorithm (8) assigns traffic to
w4. Let us consider one such node and denote it as j∗. Also, let W be the set of paths in

3For clarity, if path x in Ps→d corresponds to path x′ in P s→d, i.e., Ps→d
x = P s→d

x′ then qx′ = q̃x
4It is worth emphasizing here that the residual capacity of a node on path w, that is not in common with

any path in [1, w − 1], cannot be zero after algorithm (8) assigns traffic to w.
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[1, w− 1] that traverse via node j∗ and let q′w− qw = ε. For q′ to be a feasible allocation, the
following constraint must hold, ∑

i∈W

qi −
∑
i∈W

q′i ≥ ε (6.44)

Next we claim that,
∑w

i=1 qi ≥
∑w

i=1 q′i. We will prove this by mathematical induction.

Base Case: Let w′ be the lowest indexed path in [1, k′] such that q′w′ > qw′ (note that w′

cannot be 1). Let q′w′ − qw′ = ε′. Because of constraint (6.44) we can state that,

w′−1∑
i=1

qi ≥
w′−1∑
i=1

q′i + ε′

=⇒
w′∑
i=1

qi ≥
w′∑
i=1

q′i

This proves the base case.

Inductive Step: Let w′ be the index of a path in [1, k′] such that q′w′ > qw′ . Also, let w′′ in
[1, k′] be the index of the first path after w′ such that q′w′′ > qw′′ and let q′w′′ − qw′′ = ε′′. Let

the hypothesis hold for w′, i.e., assume that
∑w′

i=1 qi ≥
∑w′

i=1 q′i. Then, we have,

w′∑
i=1

qi +
w′′−1∑

w′+1

qi ≥
w′∑
i=1

q′i +
w′′−1∑

w′+1

q′i + ε′′ (6.45)

The validity of (6.45) can be explained as follows. The first term on the LHS in greater than
or equal to the first term on the RHS since we have assumed that the hypothesis holds for
w′. The second term on the LHS is greater than or equal to the second term on the RHS
since q′i ≤ qi, ∀i ∈ [w′ + 1, w′′ − 1]. Also, (6.44) dictates that there has to be a set of paths,
say W ′′, which is a subset of the paths in [1, w′′ − 1], for which the total fraction of traffic
allocated to the paths in W ′′ in q′ is at least ε′′ less than that allocated to the paths in W ′′

in q. Thus inequality (6.45) holds. Adding qw′′ to both sides of (6.45) yields,

w′′∑
i=1

qi ≥
w′′∑
i=1

q′i (6.46)

This completes the induction step and proves our hypothesis. Notice that, (6.46) implies

that
∑k′

i=1 qi ≥
∑k′

i=1 q′i. However, this is clearly a contradiction. Thus, k′ can never be less
than k.

Case 2 - k′ = k: Notice that, when k′ = k it is not possible that every q′i < qi, ∀i ∈ [1, k] or
every q′i > qi, ∀i ∈ [1, k]. Thus only two cases are possible– either every q′i = qi, ∀i ∈ [1, k]
or q′i > qi for some (not all) i ∈ [1, k]. For the latter case, if there is a path w in [1, k] for
which q′w > qw, then because of (6.44) the value of function (6.43) yielded by q′ will be clearly
greater than or equal to that yielded by q. Thus, we can say that q minimizes (6.43).
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6.4.2 The Function p(·)

According to (6.36), a node that does not route any traffic does not receive any payment. In

computing the payment for node j that forwards a non-zero fraction of traffic, the difficulty

lies in evaluating the integral term of (6.36). To compute this integration we will make

use of the fact that, given t−j, the fraction of traffic forwarded by j is a (decreasing) step

function of per packet cost associated with its type domain. Thus, to compute the integral,

the fraction of traffic that j forwards has to be evaluated only at the points of discontinuity

of the step function.

For a given t−j, algorithm (9) computes the payment to be received by node j in an

iterative manner by finding a partial payment to be received by the node in each iteration

and summing the partial payments progressively to finally compute the total payment to be

received by j. Let Zi denote the competence factor of path i in G. Let us consider a node j

that routes traffic. To compute j’s payment the algorithm iterates on the while loop in lines

6-16. Before the iterations start, the algorithm initializes j’s payment, pj, to tpj ·
∑

i∈Ps
j→d

q̃i,

which corresponds to the first term of (6.36). Also, the set P ′s→d is initialized to Ps→d and

the set q̃′ to q̃. Let us now consider how the algorithm computes the partial payment of j in

an iteration. Let,

ε ← min
i∈P′s

j→d
(Zi∗ − Zi),

where i∗ is the first path in G having a competence factor greater than that of i and that

does not pass via j. Clearly, j will receive
∑

i∈P ′s
j→d

q̃′i fraction of traffic as long as it does
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not report a type that increases its competence factor, ζj(t
p
j), by ε or more. Since j does not

report a type whose per packet cost is more than bj/vj, thus, the highest per packet cost

that can be associated with the type of j so that j still receives the same fraction of traffic

is,

t̂pj ← min(ζ−1(ζj(t
p
j) + ε),

bj

vj

)

Thus, the partial payment of j computed in the iteration is,

(t̂pj − tpj)
∑

i∈P ′s
j→d

q̃′i

Notice that, t̂pj and tpj are essentially two consecutive points of discontinuity of the step

function mentioned before. The algorithm then updates the payment of j by adding the

partial payment calculated to the previously computed payment for j. Now, if t̂pj =
bj

vj
, then

we have completed computing the integral term of (6.36) and the algorithm breaks from the

iterative loop for calculating j’s payment. Otherwise, tpj is updated to t̂pj and algorithm (8)

is invoked with the type vector (t̂j, t−j), such that the per packet price associated with t̂j is

t̂pj (computed above), to find the new set of optimal paths as P ′s→d and its corresponding

traffic allocation vector as q̃′. The iterations continue until the highest possible per packet

price (less than equal to bj/vj) that can be associated with the type of j for j to receive a

non-zero fraction of traffic is found.

For each node j that routes traffic, if the fraction of traffic function of j has d points of

discontinuity, then algorithm (8) has to be invoked d times for computing the payment of j.
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Algorithm 9 Multiple Path Routing– Computing Payments

Require: Optimal set of paths Ps→d over which traffic should be routed; vector q̃ of traffic
fraction over the paths in Ps→d.

Ensure: pj, ∀j ∈ N
1: pj ← 0, ∀j ∈ {N\⋃

i∈Ps→d Ps→d
i }

2: for all j ∈ ⋃
i∈Ps→d Ps→d

i do
3: pj ← tpj ·

∑
i∈Ps

j→d
qi

4: P ′s→d ← Ps→d

5: q̃′ ← q̃
6: while

∑
i∈P ′s

j→d
q̃′i > 0 do

7: ε ← min
i∈P ′s

j→d
(Zi∗ −Zi), where i∗ is the first path in G having a competence factor

greater than or equal to that of i and that does not pass via j.
8: t̂pj ← min(ζ−1(ζj(t

p
j) + ε),

bj

vj
)

9: pj ← pj + (t̂pj − tpj)
∑

i∈P′s
j→d

q̃′i

10: if t̂pj =
bj

vj
then

11: break;
12: else
13: tpj = t̂pj
14: Invoke algorithm (8), with tpj as the per packet cost associated with the type of

node j, to find the optimal set of paths as P ′s→d and the corresponding fraction
of traffic as the vector q̃′.

15: end if
16: end while
17: end for
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Thus, the time complexity of finding j’s payment is O(d|E||V |+d|V |2log|V |). Consequently,

the payment of all nodes that route traffic can be found in O(d|E||V |2 + d|V |3log|V |) time.

6.4.3 Who Pays the Nodes?

We have established that in our path auction mechanism no node has an incentive to dis-

honestly report its cost or capacity. However, there still exists the following loophole in

the mechanism if it is the sender who pays the nodes– node j honestly announces its type,

receives payment for the fraction of traffic it has been made responsible for forwarding but

simply drops the packets instead of forwarding them. To discourage nodes from exhibiting

such dropping behavior we make the destination node make the payment to each intermedi-

ate node for every packet it receives. In this case, if a node drops a packet the destination

will not receive the packet and the node will consequently not receive payment for it. Thus,

no node will have an unilateral incentive to drop any fraction of traffic.

6.4.4 An Illustrative Example

To gain insight into how algorithm (8) and (9) finds the optimal set of paths over which to

route traffic and calculates payment of the nodes that route traffic, let us study an example.

Figure (6.2) shows the graph of the network. We again assume that cost and capacity of

the nodes are independent random variables, with each being uniformly distributed over
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Figure 6.2: Multi-path routing example.

[0,1]. The sender inputs data at 0.7 pkts/sec. The distribution of tpj for each node j is given

by (6.42).

The cost and capacity of a node has been shown beside it in Figure 6.2(a). Figure 6.2(b)

shows the competence factor (weight) of a node (outside bracket) and the payment received

by it (inside bracket) for each packet served by the network. The weights of the nodes

have been found similar to the example in Section 6.3.1 and we will not discuss it here.

After the weight calculations, algorithm 8 finds the path with the least competence factor

(shortest path w.r.t node weights) in the network and saturates the path. This path is

s → 1 → 2 → d, which is allocated 0.45/0.7=0.64 fraction of traffic. Notice that, node

2 saturates in the process. Next, node 2 is disconnected from the network and the path

with the least competence factor is found in the residual network. This yields the path

s → 4 → 5 → d, which is allocated 0.25/0.7=0.36 fraction of traffic.
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Next, let us consider node 2 and see how its payment is calculated. Notice that, node 2

will receive 0.64 fraction of traffic until it reports a type which makes the competence factor

of path s → 1 → 2 → d (1.68) greater than or equal to that of path s → 4 → 5 → d

(2.34), in which case it will get 0 traffic. Now, the maximum per packet price that can

be associated with the reported type of node 2 for it to receive 0.64 fraction of traffic is

min(ζ−1(0.88 + 0.66),∞) = 0.77. So the payment received by node 2 is, 0.2
0.45

· 0.64 + (0.77−
0.2
0.45

) · 0.64 + 0 = 0.49. The payment of the other nodes is similarly calculated.

6.5 Summary

The problem of routing in DSA networks, where each secondary node has a privately known

cost and capacity, is complicated by the fact that each node can potentially improve its utility

by dishonestly reporting its type to the routing mechanism. In the absence of techniques

to induce nodes for truthfully reporting their cost and capacity to the routing mechanism,

there may be an unnecessary overpayment of incentives provided to the nodes for routing

traffic. We design a path auction based routing scheme for DSA networks that can enforce

honest revealing of cost and capacity to be a dominant strategy for every node in the path

auction game. Furthermore, our mechanism also minimizes the payment that needs to be

given to the nodes that forward traffic, making our scheme attractive to the end-user. By

considering capacity constraint of the nodes we explicitly support multiple path routing. For

deploying our routing mechanism in DSA networks, we present polynomial time algorithms
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for computing the optimal route over which to route traffic and the payment to be received

by each node.
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CHAPTER 7

SIMULATION RESULTS

In this chapter, we conduct simulations to validate the design philosophy and study the

effectiveness of all our proposed algorithms.

7.1 Spectrum Bargaining in Complete Conflict Graphs

In this section, we will analyze the results obtained in Chapter 4 using numerical analysis

to get a better insight into the equilibrium channel share of the players.

7.1.1 Channel Share Convergence

We will show numerically that the SPNE shares of a 2-player finite horizon bargaining

game indeed converges when the game is played with a large horizon (refer Section 4.2).

Figure 7.1 shows the SPNE shares of a 2-player finite horizon game with varying number

of game periods. The number of available channels M have been taken to be 25, while the

discount factor of the players δ has been set at 0.95. The SPNE share of the players have

been computed using the perfect equilibrium strategies derived in Section 4.2.1 for a finite

horizon game. As can be seen from the figure, as the number of period increases, each player
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Figure 7.1: SPE shares of a 2 player game against varying number of game periods. Here
M = 25 and δ = 0.95.

starts getting a more fair share of the channels. For example, when the game is played for

only one period, one of the players (the one making the offer) gets 24 channels while the

other one gets only 1 channel. In the 2 period game, however, one player gets 23 channels

(the player receiving the offer in the first period) and the other one gets 2 channels. And so

on. Finally, beyond period 70, the SPNE shares of the two players converges to an equal split

of the channel between the players. This validates the observation we made in Section 4.3.2,

that for δ close to one, each player tends to get an equal share of the channels in the infinite

horizon game. Note that, when channel share of the players converge, one of the players gets

13 channels, while the other one gets 12 channels. This is because the number of channels

available in this case (M = 25) is not equally divisible between the 2 players. However, if

M/N is an integer, then each player gets an exactly equal share as the others in the infinite
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Figure 7.2: SPE shares of a 2 player game against varying number of game periods. Here
M = 24 and δ = 0.95.

horizon game. This is shown in Figure (7.2), which considers that there are 24 available

channels.

It is worth mentioning here that, as noted earlier, the 2 players do not have to play

all the periods to find what the SPNE share of the players converges to. It can be found

from their closed from expressions in equations (4.22) and (4.23). Knowing their infinite

horizon equilibrium shares in the very first period, rational players will play their equilibrium

strategies and play will also end in the very first period.
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7.1.2 Variation of Fairness

Fairness is concerned with the relative utility of the nodes competing for the M channels.

To study the relative utility the players get as a result of the competition process, from a

system wide perspective, we use Jain’s fairness index [35]. Recall that, in the infinite horizon

game, if {xi|1 ≤ i ≤ N} is accepted in period t, then the utility (payoff) of player i is δtxi,

where δ ∈ [0, 1] is the discount factor of the players1. Thus, if {xt
i|1 ≤ i ≤ N} is accepted

in period t, then we can define fairness in terms of the utilities (payoffs) of the players as

follows.

F =
(
∑N

i=1 δtxi)
2

N ·∑N
i=1(δ

txi)2
(7.1)

Now, recall that we derive the infinite horizon SPNE strategy of the players (refer Sec-

tion 4.3), which all rational players will play in the first period (t = 0) of the game. Thus,

the payoff of Pi (i ∈ [1, N ]) will be δ0xi = xi. Based on this we simplify (7.1) as follows.

F =
(
∑N

i=1 δ0xi)
2

N ·∑N
i=1(δ

0xi)2
=

(
∑N

i=1 xi)
2

N ·∑N
i=1(xi)2

(7.2)

The fairness index defined above is bounded between 0 and 1. More the players tend to

equally distribute the channels among themselves, fairness approaches 1. Also, if one node

acquires all the channels, fairness becomes 1/N , which is 0 in the limit N →∞.

Figure 7.3 shows how fairness varies with the discount factor, δ. The number of nodes

N have been taken to be 30, while M is set at 55. Fairness has been calculated using the

index defined in (7.2). As can be seen from the figure, as δ increases, i.e, as the players

1Note that, here xi denotes the number of channels that Pi gets in the sharing rule.
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become more patient, system level fairness increases. This is because, as the players become

increasingly more patient, no player can outlast the other players by waiting to get a larger

share. Thus, the channels start getting more and more fairly apportioned among the players.

Figure 7.4 shows the variation of fairness with number of channels. The number of nodes

N have been taken to be 30, while the discount factor of the players δ is set at 0.95. Notice

that, at values of M where M/N is an integer value (i.e, at M = xN , where x = 1, 2, 3, · · ·

etc), fairness becomes very close to 1. This is because all players being patient in the infinite

horizon game (δ = 0.95), the players’ SPNE strategies tend to equally divide the available

channels among them. At values of M where M/N is not an integer, fairness falls below

1, since all players cannot possibly get an equal share. Between xN and (x + 1)N fairness

falls to a local minimum and then again starts approaching 1 as M approaches (x + 1)N .

Moreover, note that, as M increases, the local minimum of fairness between xN and (x+1)N

starts increasing. This is because as more channels get available, the relative discrepancy

among the channel allocation of different nodes start decreasing.

7.2 Spectrum Bargaining in Arbitrary Conflict Graphs

In this section, we conduct simulations to study how the “self-gain” maximizing strategy

of the players impact system wide performance. For simulations, we assume a noiseless,

immobile radio network. The conflict graph of the network has been generated randomly

for a given graph density. Note that, conflict graph density depends on the transmission
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power (and hence interference range) of the secondary users. Higher the transmit power of

nodes, larger will be their interference range. Hence, graph density of the conflict graph will

increase. Also, in our simulations we assume that all players have an equal discount factor.

7.2.1 System Utility

If {xt
i|1 ≤ i ≤ N} is accepted in period t, then we can define system utilities in terms of the

payoffs of the players as follows.

• Sum Utility: This considers the total system utility regardless of fairness.

Usum =
N∑

i=1

Ri =
N∑

i=1

δt
i |xt

i| (7.3)

• Minimum Utility: This considers the utility of the player with the least payoff.

Umin = min1≤i≤NRi = min1≤i≤Nδt
i |xt

i| (7.4)

• Proportional Fairness based Utility [49]:

Ufair =
N∑

i=1

log(Ri) =
N∑

i=1

log(δt
i |xt

i|) (7.5)

To make it comparable to Umin and Usum, we modify the fairness utility to:

Ufair =

(
N∏

i=1

Ri

)1/N

=

(
N∏

i=1

δt
i |xt

i|
)1/N

(7.6)

Now, Algorithm 6 finds the infinite horizon SPNE strategy of P1 in the first period (t = 0)

of the game, which all rational players in P−1 will accept. Thus, the payoff of Pi (i ∈ [1, N ])

will be Ri = δ0
i |x0

i | = |x0
i |. Based on this we simplify the metrics defined above as follows.
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• Ufair : We use proportional fairness based system utility as defined in (7.6). Based on

the above argument Ufair becomes,

Ufair = 1/N

√√√√
N∏

i=1

δ0
i |x0

i | = 1/N

√√√√
N∏

i=1

|x0
i | (7.7)

Notice that, Ufair = 0 if there is any |x0
i | = 0, i ∈ [1, N ]. Thus, this metric will also

help capture whether any node gets starved of channels.

• Umean : We use mean utility instead of sum utility (7.3) in our simulations, so that all

three utilities are within the same scale,

Umean =
1

N

N∑
i=1

Ri =
1

N

N∑
i=1

δ0
i |x0

i | =
1

N

N∑
i=1

|x0
i | (7.8)

• Umin : We use minimum utility as defined in equation (7.4). Umin becomes,

Umin = min1≤i≤NRi = min1≤i≤N |xt
i| (7.9)

7.2.2 Impact of the Number of Channels (M)

Figures 7.5, 7.6 and 7.7 show how the three utilities vary with the number of available

channels, M . We consider a 8 node (player) network, with each player having a discount

factor of 0.7. Figure 7.5 shows how Ufair varies with M . As can be seen from the figure,

proportional fairness increases with the number of available channels. The graph also shows

the impact of graph density on Ufair. For a given M (and N), Ufair decreases as graph

density increases. Increasing graph density creates additional interference constraints. Thus,

138



5 6 7 8 9 10 11 12 13 14
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of Channels (M)

U
fa

ir

 

 

Graph Density = 0.3
Graph Density = 0.5
Graph Density = 0.8

Figure 7.5: Fairness with varying number of available channels.
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Figure 7.6: Mean utility with varying number of available channels.
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Figure 7.7: Minimum utility with varying number of available channels.

the average vertex degree in the conflict graph increases and each node tends to get lesser

number of channels. Therefore, Ufair scales inversely with graph density.

Figure 7.6 shows the average number of channels received by the nodes. As M increases,

Umean increases. Also, as graph density increases, for a given M and N , Umean decreases due

to the increase in average vertex degree. Figure 7.10 shows the minimum number of channels

received by a node (Umin) as M increases. Umin increases as more channels become available.

Since, Umin never falls below 1, no node is ever “starved” in the solution produced by our

bargaining approach. This can also be noted from Figure (7.5). Moreover, the minimum

value of Umin is 1 because we have considered that a player has to be offered at least 1

channel to make him accept an offer in the last period (Section 5.2). Generally speaking,
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Figure 7.8: Fairness with varying number of Secondary Users.

our bargaining framework can be tailored to provide application specific minimum level of

QoS.

7.2.3 Impact of the Number of Secondary users (N)

Figures 7.8, 7.9 and 7.10 show how the three utilities degrade with increasing number of

secondary nodes, N . The conflict graphs has been randomly generated with a graph density

of 0.5. The discount factor of all players is 0.8. Figure 7.8 shows how proportional fairness

based system utility, Ufair, vary with N . As N increases, Ufair decreases. This is because, as

N increases (for a given graph density), more interference constraints are produced, thereby
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Figure 7.9: Mean utility with varying number of Secondary Users.
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Figure 7.10: Minimum utility with varying number of Secondary Users.
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increasing average vertex degree in the conflict graph. As average vertex degree increases,

and M remains fixed, each node tends to get lesser number of channels. Thus, Ufair is

inversely proportional to the number of secondary users, N . As expected, for a given N and

graph density, when more channels become available, Ufair increases.

Figure 7.9 plots the mean number of channels received by a node, Umean, with varying

number of secondary users, N . Umean degrades with increasing N , due to the increase in

average vertex degree in the conflict graph. As M increases, for a given N and graph density,

each node on an average gets more channels. Note that, the rate of decrease of Umean reduces

with increasing N , i.e., Umean tends to saturate around a minimum value for large N . This

behavior can be more pronouncedly seen when the number of channels available is 10.

Figure 7.10 shows how the minimum number of channels received by any node, Umin,

degrades with increasing N . As can be seen, Umin never falls below 1 (because of reasons

explained for Figure 7.7) for any number of secondary users.

7.2.4 Impact of Graph Density

As noted earlier, conflict graph density depends on the transmission power (and hence in-

terference range) of the secondary users. Higher the transmit power of nodes, larger will be

their interference range and thus larger will be the number of interference constraints. Hence,

graph density of the conflict graph will increase. Higher transmit power leads to improved

spectrum utilization for secondary users who are distant from primary users. However, this
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Figure 7.11: Fairness with varying conflict graph density.

also leads to additional interference constraints and reduced possibility of spectrum sharing.

Hence, there exists a tradeoff between improving spectrum utilization and degrading spec-

trum sharing. We will see how conflict graph density (or in effect the transmission power of

nodes) affect spectrum sharing by the secondary users by studying the three system utilities.

Figures 7.11, 7.12 and 7.13 show how the three utilities degrade as conflict graph density

increases. The number of channels available, M , was set to 15 and the discount factor of all

players in 0.8. From Figure 7.11 it can be clearly seen that Ufair degrades with increasing

graph density for a fixed number of secondary users, N . This is again because the average

vertex degree of the conflict graph increases with increasing graph density. For a given graph

density, as N decreases, average vertex degree decreases, and thus Ufair increases for fixed
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Figure 7.12: Mean utility with varying conflict graph density.
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Figure 7.13: Minimum utility with varying conflict graph density.
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M . Note that, when graph density is 1, we have a complete graph on N vertices, i.e, all

nodes are within the interference range of each other. In this case, when N is 15, all nodes

get a channel each (recall M = 15) and thus Ufair becomes 1.

Figure 7.12 plots Umean with varying graph density. As can be seen, Umean decreases with

increasing graph density due to the increase in average vertex degree. Again, when N is 15

with a graph density of 1, Umean becomes 1. Figure 7.13 shows the degradation of Umin with

increasing graph density.

Note that the spectrum reusing capability of the network deteriorates more rapidly with

increasing graph density (transmit power) for a fixed number of secondaries than it degrades

with increasing number of secondary users for a fixed graph density. This can be seen by

comparing the graphs showing the variation of Ufair and Umean with graph density with their

respective counterparts in Section 7.2.3.

7.2.5 Impact of Discount Factor

In Figure 7.14, the y-axis corresponds to the number of periods, T , of a finite horizon

bargaining game of N players at which algorithm 6 finds |(x0
1, x

0
−1)

T
j | = |(x0

1, x
0
−1)

T−1
j |,∀j ∈

[1, N ], i.e., the period T at which the SPNE strategy of P1 converges, thus corresponding

to his strategy in the infinite horizon game, (x0
1, x

0
−1)

∞. The x-axis corresponds to varying

discount factor, δ, of the players. Conflict graph density has been taken to be 0.6 and the

number of channels available, M , is 14. As can be seen from the figure, T scales inversely
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Figure 7.14: Convergence period T of first period offerer’s SPNE strategy with varying
discount factor of players.

with 1 − δ. This is because, as the discount factor of the players increases, the players

become more patient in waiting for the bargaining outcome. When δ is 1, the players can

wait infinitely long for the bargaining outcome. Moreover, it can also be noted that T

increases as the ratio of N : M increases. This can be clearly seen, since, T for any given

discount factor is least for N
M

= 10
14

, increases when N
M

= 20
14

and highest when N
M

= 40
14

. These

observations corroborate (5.9).
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7.3 Incentive Based Routing

We will now evaluate the performance of the incentive based routing mechanism proposed

in Chapter 6 via simulations. We will primarily focus on the effectiveness of our proposed

algorithms in saving payment, since it is the central design criteria of our path auction

mechanism. For the purpose of simulations, nodes (in N) have been randomly placed in a

1000 × 1000 m2 area, with the source s and destination d being placed near two opposite

corners of the square. In the simulations we assume that mj and cj are independent random

variables, i.e., fMC
j = fM

j · fC
j . For each node j ∈ N , its cost mj has been assumed to

be uniformly distributed over [1, 4] and its capacity cj has been assumed to be uniformly

distributed over [2, 7]. All results have been averaged over 1000 independent runs.

We will first compare the performance of our algorithm with LCP routing (refer Sec-

tion 2.3.3.1). However, since LCP routing has been developed only for the single path

routing scenario, we will use our algorithms for the same from Section 6.3 for the purpose

of comparison. Moreover, in LCP the type of a node corresponds to the per packet cost it

owes to its primary spectrum holder for transmitting a packet over its spectrum. Thus, we

consider that in LCP routing a node declares its type to the routing mechanism as tpj . In

Section 7.3.2 we will delve into the dynamics of the generalized (multi-path) routing scenario.
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7.3.1 Single Path Routing

In the single path routing scenario, it has been assumed that s injects data at 2 pkts/sec for

all the experiments.

7.3.1.1 Varying Transmission Radius
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Figure 7.15: Variation of cost and payment with transmission radius of the nodes.

For Figures 7.15, 7.16 and 7.17, the number of nodes have been taken to be 200. Fig-

ure 7.15 shows how the cost of ELPR and LCP route and their corresponding payment

decreases with increasing transmission radius of the nodes. The cost of a route refers to the

summation of the costs incurred by the nodes on the route for each packet routed by the
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Figure 7.16: Percentage of routes for which ELPR and LCP are different.

network. Similarly, the payment of a route is the summation of the payments received by

the nodes on the route (for each packet routed by the network). As the transmission radius

of the nodes increase, the path length (hop count) tends to decrease, thereby resulting in

paths of lower cost to which lesser payments has to be made. Note that, the cost of ELPR

is only slightly larger than that of LCP. This implies that, as expected, ELPR is a route of

relatively low cost, but not necessarily the route with the lowest cost. Further, the payment

needed for ELPR is slightly less than that needed for LCP. This shows that ELPR can en-

force truthfulness on both cost and capacity reporting of a node while requiring a payment

that is less than that required by LCP, which only ensures truthful cost reporting. Note that

the saving in payment by ELPR against LCP is more pronounced at lower transmission

150



radius. This is because the total savings over the intermediate hops become more and more

significant as the number of hops increases.

Figure 7.16 shows the percentage of cases (in the 1000 independent runs) in which ELPR

and LCP were different routes, with varying transmission radius of the nodes. As can

be seen from the figure, the percentage of cases in which ELPR and LCP were different

routes decrease with increasing transmission radius of the nodes. This implies that, as the

transmission radius increases, or in other words as the path length decreases, the chances of

the path with the minimum cost being also the path that minimizes the expected payment

to be made per packet increases.
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Figure 7.17: Variation of cost, weight and payment of ELPR with average path length.
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In Figure 7.17 we plot how the cost, weight and payment of ELPR varies with average

number of hops. The number of hops has been affected by varying the transmission radius

of the nodes. Here, the weight of ELPR refers to its competence factor. As expected, all

three factors increase with the number of hops.
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Figure 7.18: Variation of cost and payment with number of nodes in the network.

7.3.1.2 Varying number of nodes

Figure 7.18 shows how the cost of ELPR and LCP route and their corresponding payments

decrease as the total number of nodes is increased. The transmission radius of a node was

set at 250 m. As the number of nodes is increased, the number of alternative paths between

sender and destination increases and thus both ELPR and LCP starts corresponding to
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lower and lower cost routes. Accordingly, the payment needed for the routes also follows a

decreasing trend. It can again be noted that the cost of ELPR is slightly larger than that of

LCP, while the payment required for ELPR is slightly lower than that required by LCP. This

fact indicates that there is a tradeoff between achieving social efficiency and minimizing the

payment required for a route to maintain truthfulness. LCP attains the socially desirable

solution by corresponding to the path having the minimum cost, while ELPR sacrifices a

little social efficiency in order to minimize the payment to be made by the end-user. Note

that the saving in payment by ELPR is more significant when the number of nodes is less.

This is because of fewer alternative paths at lower number of nodes. When the number of

alternative paths is less, the difference of cost (competence factor) between the best and the

second best path for LCP (ELPR) tends to be higher than when the number of alternative

paths is more. Now, since VCG does not have an upper limit for payment to a node,

LCP requires a more higher payment than ELPR, when the number of alternative paths is

relatively lesser.

7.3.2 Multi-path Routing

We now consider our path auctions in a generalized setting, i.e., s can inject data at any ar-

bitrary rate, which would result in multiple path routing. To gain insight into the advantage

of using ELPR we will again weigh it again LCP. However, as noted earlier, LCP routing can

only be used in a network where every node has sufficient capacity to forward the sender’s
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Figure 7.19: Variation of cost and payment with input rate R.

traffic. Thus, to use LCP routing we will disconnect each node j from the network at hand

for which cj < R. For completeness, we will also use ELPR routing is such a scenario (nodes

with insufficient capacity removed). To distinguish between the cases of single path and

multi-path routing for ELPR, we will refer to the former as ELPRS and to the latter as

ELPRM.

7.3.2.1 Varying input rate R

Figure 7.19 shows how the cost of ELPRM, ELPRS and LCP route and their corresponding

payments increase with increasing data input rate R. The number of nodes was taken to be
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Figure 7.20: Average number of paths used for different input rates.

150 and the transmission radius of the nodes was set at 250 m. As can be clearly seen from

the figure, the cost and the payment of ELPRM is considerably lesser than the other two.

Also, note that, after disconnecting nodes with insufficient capacity, the network was unable

to accommodate flows demanding a rate greater than 6 pkts/sec. This emphasizes the fact

that ELPRM can support higher data rate applications by distributing the input load over

multiple paths. It is also worth noting that the increase in cost and payment of ELPRM

with R is much more gradual than those of ELPRS and LCP.

Intuitively, as the input rate R is increased, ELPRM would start distributing the load

over more number of paths. This is shown in Figure 7.20, which plots the average number
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Figure 7.21: Variation of cost and payment with number of nodes in the network.

of paths used by ELPRM (over the 1000 runs) with varying R. As can can seen from the

figure, the number of paths used by ELPRM increases with the input rate.

7.3.2.2 Varying number of nodes

Figure 7.21 shows how the cost of ELPRM, ELPRS and LCP route and their corresponding

payments decrease with increasing number of nodes. The transmission radius of the nodes

was set at 250 m with s sending data at 5 pkts/sec. The decrease in cost of the three different

types of routes and their corresponding payment can be attributed to the increase in number

of alternative paths as the number of nodes increases. Clearly, the figure suggests that the
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Figure 7.22: Variation of cost and payment with transmission radius of nodes.

cost and payment of ELPRM fare best among the three. Also, the saving in payment by

ELPRM is more pronounced at lower number of nodes which is in line with our observation

and reasoning for Figure 7.18. Note that, the decreasing nature of the cost of the three

different types of routes and their associated payments tend to saturate when the number

of nodes becomes high, or in other words as the number of alternative paths become large.

Thus, though increase in competition (with increase in number of alternative paths) tends to

bring down both the cost and required payment (for all three type of routes) the net utility

of the end-user tends to level off when the number of competitors is considerably large– a

phenomenon typically seen in a market with perfect competition.
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7.3.2.3 Varying transmission radius

Figure 7.22 shows how the cost of ELPRM, ELPRS and LCP route and their corresponding

payments decrease with increasing transmission radius of the nodes. The number of nodes

was taken to be 150 with the source sending data at 5 pkts/sec. As can be noted from the

figure, ELPRM again fares best among the three. The saving in payment by ELPR (for

both single and multi path cases) is more pronounced at lower transmission radius, which

corroborates our observation in Figure 7.15.
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CHAPTER 8

CONCLUSIONS

In this dissertation, we first addressed the problem of dynamic channel access by a set of

cognitive radio enabled nodes, where each node acting in a selfish manner tries to access and

use as many channels as possible, subject to the interference constraints. We modeled this

problem as an infinite horizon bargaining game where the nodes bargain among themselves

regarding their share of channels. First, we explored the finite horizon version of the bar-

gaining game and presented polynomial time algorithms to find the Pareto optimal SPNE

strategy of the player making the offer in the first period of the game. This is a strategy,

such that, neither can the player making the offer increase his utility by making any other

offer, nor can the players receiving the offer gain in any subsequent period by rejecting this

offer. Next, we extended the results from the finite horizon game to find the Pareto opti-

mal SPNE strategies of the infinite horizon game. Using simulations we studied how the

selfish strategies of the players affect spectrum usage from a system wide perspective. As

suggested by theory as well as simulations, in our bargaining solution, no player gets starved

of channels. Furthermore, since in the bargaining model nodes negotiate among themselves,

no centralized controller is needed.
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Secondly, in this dissertation, we also studied the implications of the price the secondary

nodes have to pay to primary spectrum owners for acquiring channels. To forward traffic,

each secondary node would incur a cost because of using the spectrum it has acquired by

paying a price. Moreover, using the acquired spectrum, each node can sustain a certain

capacity. Clearly, secondary nodes will not have an incentive to relay traffic unless they are

compensated for the costs they incur in forwarding traffic. Also, for a routing mechanism

to be stable, the amount of traffic that a node forwards should not exceed its capacity. The

problem of routing is further complicated by the fact that each node can potentially improve

its utility by dishonestly reporting its type to the routing mechanism. In the absence of

techniques to induce nodes for truthfully reporting their cost and capacity to the routing

mechanism, there may be an unnecessary overpayment of incentives provided to the nodes

for routing traffic. We designed a path auction based routing scheme for DSA networks

that can enforce honest revealing of cost and capacity to be a dominant strategy for every

node in the path auction game. Furthermore, our mechanism also minimizes the payment

that needs to be given to the nodes that forward traffic, making our scheme attractive to

the end-user. By considering capacity constraint of the nodes we explicitly support multiple

path routing. For deploying our routing mechanism in DSA networks, we present polynomial

time algorithms for computing the optimal route over which to route traffic and the payment

to be received by each node. Simulation results suggest that our path auction mechanism

can ensure truthfulness on both cost and capacity while making a payment less than that

required for VCG based LCP routing.
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