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ABSTRACT

My research has been focused on two main areas. First, electronic transports in chiral carbon

nanotubes in the presence of charged adatoms. To study such systems we employed recursive

Greens function technique to evaluate the conductance using the Landauer formula. Comparing

with the experimental data, we determined the effective amplitude and the range of scattering

potentials. In addition, using a similar approach we explained qualitatively an unusual conductance

feature in a metallic carbon nanotube. The second part of my study was concerned to the dynamical

spin injection and spin currents in low-dimensional materials. We have developed an atomistic

model to express the injected spin current in terms of the systems Greens function. The new

formulation provides a framework to study the spin injection and relaxation of a system with an

arbitrary structure.
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CHAPTER 1: INTRODUCTION

Among the greatest discoveries of twentieth century two stand out: the theory of relativity and

quantum mechanics. Even though both give us better understanding of the world, the theory of

relativity barely touches our day-to-day life, except for the precision that is needed for GPS navi-

gation systems. On the other hand, applications of quantum mechanics are more ubiquiotous and

are powering the advance of the modern way-of-life further. The CPU of a smartphone that fits in

our pocket can beat the speed, price, and size of vacuum-tube-era computer, thanks to exploitation

of quantum phenomena in materials used in the computing elements.

Since the invention of the transistor at Bell Laboratories, the search for new materials for faster

and cheaper computing units, and increasing memory reliability and capacity, has never stopped.

Among the different elements of periodic table, carbon, the building block of life on Earth, shows

fascinating electronic properties. Different forms and structures of carbon such as diamond, graphite,

fullerene, and, most recently, carbon nanotubes and graphene, always captured scientists’ attention

in their quest to advance our understanding of solid-state physics. Although the quantum mechan-

ical features are already manifest in confined electronic system fabricated with a thin layer of Si

on SiO2 [2], the first truly two-dimensional (2D) and one-dimensional (1D) systems were realized

after the discovery of graphene [3] and carbon nanotubes [4].

This dissertation focuses on electronic and spin transport in low-dimensional materials. Although

carbon nanotubes (CNTs) have been around and well studied for more than two decades [5], there

is still more to understand due to their fascinating atomic and electronic structure. Besides their

unique chemical, mechanical, and optical properties, they can behave as a metal or a semiconductor

with different band gaps, depending on their chirality and diameter. One interesting aspect of CNTs

is that their conductance changes in the presence of different adatoms [6]. This discovery provides
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a new application of CNTs as a high-precision sensor device for detecting chemical elements.

The first part of my dissertation is devoted to the electronic properties of semiconductor and metal-

lic CNTs in the presence of charged adatoms. The main idea behind these studies was to measure

and quantify the scattering strength of positive and negative carriers of a single-wall CNT in the

presence of charged adatoms [1]. In Chapter 2, I start with a brief description of the measurements

and experimental results, then present the model that I chose for studying the problem. For a full

quantum mechanical calculation I use the Landauer-Büttiker formula to evaluate the conductance.

The relation between the conductance and the system’s Green’s function is presented in Sec. 2.

To be able to compute the Green’s function of a large system efficiently, I introduce the recursive

Green’s function (RGF) technique in Sec. (2). To explore a wide range of impurities’ amplitude

and range, I performed many calculations for short segments of a CNT with a single impurity.

Long segments were simulated as well and the results of these simulations compared to experi-

mental data obtained by the Ishigami group at UCF. Based on these calculations we were able to

determine the effective amplitude and range of the impurities present in the experimental device.

In Chapter 3, an novel study of metallic CNT is presented. An unusual conductance behavior

has been observed experimentally in quasi-metallic CNTs (22,4) by the Ishigami group. I believe

that this feature is related to the Dirac nature of the charge carriers around the neutrality point of a

metallic CNT. For this studies, I employed the same numerical approach that was used in Chapter 2.

I examined the effect of long- and short-range impurities on the conductivity of a metallic CNT.

Short- and long-range impurities affect the first and higher conduction bands differently due to

the linear dispersion of the first band. I show that the unusual shape of the conductance versus

gate voltage curve in metallic CNT is related to the presence of impurities and defects. I end this

Chapter by presenting a toy model for the scattering of a massless carrier through a barrier to better

understanding the underlying physics.
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The second part of my dissertation is a formulation of dynamical spin injection in a low dimen-

sional system. By shrinking the size of Si MOSFET transistors we are approaching Moore’s law

limit. Yet, the energy consumption of today CPUs is still much higher than the minimum energy

that was proposed by Landauer [7]. Thus, there is plenty of space for developing more efficient

and faster technologies. Spintronics seems to be the next stages of evolution in computing.

A reliable source of spin current is the most important building block of spintronics. Among

different techniques such as nonlocal spin injection, spin Hall effect, and ferromagnet filtering,

dynamical spin pumping by means of magnetization precession has attracted a lot of attention [8,

9, 10, 11, 12, 13]. A series of measurements and experimental realizations have proved the plausi-

bility and efficiency of this technique. In ferromagnet/nonmagnet (FM/NM) materials, the injected

current can be detected indirectly via the broadening of ferromagnetic resonance (FMR) or directly

via the conversion of spin currents into lateral electric potentials by the inverse spin Hall effect.

In 2012, the dynamical spin injection in a hybrid 2D system of combining a ferromagnet and

graphene was proposed and observed experimentally [14]. The unique electronic properties of a

graphene sheet, such as high mobility, tunable carrier density with applied gate voltage, and local

the enhancement of spin-orbit coupling by defects and adatoms, encouraged extending dynamical

spin injection to such a 2D system.

The standard theory developed to describe the spin injection in metals by a resonant ferromagnet

was developed by Tserkovnyak and Brataas [15, 16, 8]. In this theory, the amount of spin cur-

rents injected into the NM metal is quantified in terms of a parameter called mixing conductance.

The mixing conductance is a sum of the opposite-spin reflection coefficients between different

conducting channels.

As reported in Ref. [17], the mixing conductance extracted from the Py/graphene experiments was

comparable to the value that found for Py/Pt and Py/Pd samples (here Py stands for permalloy).
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However, following the theory of Tserkovnyak and Brataas, the mixing conductance is roughly

proportional to the number of conducting channels at the interface; since the interface between the

FM and the graphene protuding away from the FM is one-dimensional, the mixing conductance

found in the experiments is orders of magnitude higher than expected. The spin-scattering rate

in a graphene layer is expected to be rather low, lower than the spin injection rate. Based on an

argument presented in Ref. [15], this should causes a spin density to build up near the NM layer;

the difference of chemical potentials for spin up and down then generates a backflow spin current

that decrease the effective mixing conductance. The backflow that was estimated theoretically for

a graphene layer was large enough to make the effective mixing conductance negative! Thus, it

was difficult to reconcile an analysis based on the scattering theory with the experimental data.

To address these problems I developed an atomistic formulation of the injected current in terms

of the Green’s function of the NM region. The atomic structure of the NM region, its geometry,

as well as the presence of adatoms or any other mechanism that can induce spin-orbit interaction

can be readily taken into account in this formalism. The spin current relaxation and injection can

be evaluated at the same time. Another advantage of this Green’s function-based approach is the

possiblity to use recursive methods to achieve fast and efficient computations of large systems.

In Chapter 4, I present this novel formulation of dynamical spin injection due to the proximity of a

2D system to a FM with precessing magnetization. In Sec. 4, I introduce a 1D chain of sites with

a time-dependent boundary condition to model the spin injection. The equations of motion for this

system are presented in Sec. 4. Then I discuss an appropriate definition of spin current in Sec. 4

and develop an expression for the spin current in terms of the system Green’s function. The simple

example of a zero-length chain is presented to provide some insight into the formalism. In Sec. 4

the spin current for a finite-length chain in the presence of spin scattering processes is given in

Sec. 4. Some simulation are presented in Sec. 4 to illustrate the analytical results. Finally, in Sec. 4

we extend the formalism to 2D systems. Some long derivations of Chapter 4 are presented in the

4



appendices. In Appendix A, the decoupled reservoir Green’s function is given. Appendix A is de-

voted to the derivation of the correlation between particle operators of the reservoir. Appendices A,

and A contain the details of the derivation of the spin current in 1D chain and 2D systems.
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CHAPTER 2: AD-ATOM SCATTERING STRENGTH

Motivation

A better understanding of electronic transport properties of CNTs in the the presence of charged

adatoms can pave the way toward CNT-based sensing technology. While previous studies have

mainly focused on the effect of charged impurities on the width of Schottky barrier on and screen-

ing effects [18, 19], the interaction of carriers with the adatoms has been usually neglected. The

initial motivation for our study came after a series of measurements performed on single-wall car-

bon nanotube (SWCNT) [1].
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Figure 2.1: The experimental conductance as a function of gate voltage for a 6µm (7,6) carbon
nanotube segment in ultra high vacuum. (left) Hole conductance at 9 K and (right) electron con-
ductance at 16 K before and after dosing with potassium. Data first presented in Ref. [1].

In these experiments, a few charged potassium adatoms were placed on a CNT of known chirality.

The type and density of carriers were controlled by an applied gate voltage; see Fig. 2.1 for a plot of

their conductance versus gate voltage before and after dosing with potassium. Then, by evaluating
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the resistivity from the experimental data, the scattering strength per adatom was estimated. The

known chirality of the CNT, which was determined using Rayleigh scattering spectroscopy [20]

allowed one to determine the actual band structure and conducting channels, thus guiding the

theoretical calculations. The scattering strength that was obtained from the measurements was 37

times stronger for holes than for electron carriers [1].
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Figure 2.2: The experimental length dependence of the resistance for multiple devices (left) at
Vg − Vonset = −60 V and (right) at Vg − Vonset = 60 V before and after dosing with potassium.
Data first presented in Ref. [1].

In this Chapter, we start by briefly introducing the Landauer formulation used to evaluate the dc

conductance. Next, the relation between system’s full Green’s function and its transmission matrix

is provided. A decimation technique is employed to emulate the metallic lead and a recursive algo-

rithm is implemented to calculate the full Green’s function. The code is tested and benchmarched

against analytical results before being used to the problem in hand. At the end of the Chapter, we

compare the results from simulations to those from the measurements. From this comparison, we

determine the amplitude and range of the scattering potential in semiconductor (7, 6) CNT.
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Approach and Formulation

A single-band tight-binding model is chosen to describe the electronic transport in SWCNTs, with

the Hamiltonian defined as

H = −
∑
〈ij〉

[tij|i〉〈j|+ H.c.] +
∑
i

Vi|i〉〈i|, (2.1)

where tij is the hopping amplitude between the nearest neighbor sites i and j, and Vi is the on-site

energy modulated by the presence of impurities or an applied gate voltage. The CNT is placed

between two metallic leads which can be modeled using two semi-infinite lattices with the same

structure of the CNT to eliminate any extra scattering at the lead interface due to channel mismatch

[21].

To evaluate the electronic transport across the system in the presence of a small applied bias (i.e,

in the linear regime), we use the Landauer-Bütiker formulation [22, 23] which describes the con-

ductance in terms of the transmission probability of the device,

G =
2e2

h
Trc
[
t†t
]
, (2.2)

where the subscript c indicates a sum over conducting channels and t(t′) is the transmission matrix

across the system from left to right (right to left). Combining with the reflection matrices r (r′), a

S-matrix can be constructed,

S =

r t′

t r′

 . (2.3)

The elements of the S matrix in the tight-binding basis are given in terms of the system’s full
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retarded Green’s function [24],

Sab(E) = −δab + ih̄

√
vavb
a0

∑
i∈p

∑
j∈q

χ∗a(i)G
r
qp(i, j)χb(j), (2.4)

where vc is the longitudinal propagation velocity and χc(i) is the transverse wavefunction of the

leads in channel c. Here, the sums run over all sites at the contacts p and q where the propagating

channels a and b are defined, respectively. For, such a systems, the conductance can also be

expressed as

Trc
[
t†t
]

= Trs [ΓLG
r
LRΓRG

a
RL] , (2.5)

where the level width matrices Γ are given by

ΓL,R = i
[
Σr
L,R(E)− Σr†,

L,R(E)
]

(2.6)

which involves retarded surface self-energies,

Σr
L,R(E) = uL g

r
L(E)u†L. (2.7)

Here, uL is the connection matrix between the left lead and the device region, and grL(E) is the

retarded Green’s function of the decoupled lead.

Based on this formulation, the calculation of the dc conductance of the system is reduced to deter-

mining the system’s full Green’s function across the conducting channel, GLR.

The Lead Green’s Function and Decimation Technique

The system under study is connected to metallic leads. A metallic lead provides conducting chan-

nels with a high density of states. To simulate the contact, the lead can be viewed as an infinite,
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translational invariant extension of the actual lattice to eliminate any mismatch between conduct-

ing channel of the lead and the device. In few simple structures such as square lattice or a zigzag

graphene strip, it is possible to derive analytical expressions for the semi-infinite chain’s Green’s

function [25, 21]. However, in the case of a general chiral CNT, we have chosen a decimation

algorithm to derive the lead’s Green’s function. This technique is discussed in details in Ref. [26].

In this approach, four recursive matrices are initialized as

α0 = u, (2.8)

β0 = u†, (2.9)

εs0 = h, (2.10)

and

ε0 = h, (2.11)

where u is the connection matrix between two neighboring unit cells and h is the Hamiltonian of

a single unit cell. Then, a recursion is used to determine new matrices; the kth recursive step is

given in terms of the previous k − 1 step by the relations

εsk = εsk−1 + αk−1(E − εk−1)−1βk−1, (2.12)

εk = εk−1 + αk−1(E − εk−1)−1βk−1 + βk−1(E − εk−1)−1αk−1, (2.13)

αk = αk−1(E − εk−1)−1αk−1, (2.14)

and

βk = βk−1(E − εk−1)−1βk−1. (2.15)
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When ||αk|| and ||βk|| are sufficiently small, the solution converges with exponential accuracy and

the lead Green’s function can be approximated by

glead(E) ≈ (E − εsk)−1. (2.16)

Recursive Algorithm

In theory, one can evaluate the full Green’s function simply by calculating

G = (E −HD − ΣL − ΣR)−1, (2.17)

where HD is the Hamiltonian of the device under study, ΣL,R are the self-energies of the left and

right leads that can be calculated via τ †gLτ , and τ is the connection matrix between the left lead and

the device. However, since the number of operations for a matrix inversion problem is proportional

to N3, where N is the size of matrix (i.e., proportional to the number of sites inside the device), for

the calculation of a realistic mesoscopic system, the time of calculation would be huge, as welll as

the amount of RAM memory required, and thus impossible to implement in practice. An efficient

way to evaluate the system’s Green’s function can be achieved via a recursive implementation.

j

Reservoir

N + 1N10

Reservoir

τL τR

Figure 2.3: By slicing the device region between two leads, the full Green’s function can be calcu-
lated efficiently. The computation cost scales linearly with the length of device.
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This technique is presented in details in Ref. [27]. In this technique the device is broken up into the

smallest possible transverse slices. In the most general cases, the slices can have different number

of sites or shape; see Fig. 2.3. The basic idea is to transfer the Green’s function of the previous

slice, starting from the left lead, to the next one as a self energy, and continue this procedure from

left to right, sweeping the conducting region until a desired location is reached. This results in

the left-to-right Green’s function. Following the same procedure, one can start from the right lead

and continue to sweep from right to left until the desired location, resulting in a second Green’s

function, from right to left. With the combination of left Green’s function GL and right Green’s

function GR, one can derived the full Green’s function at any lattice point. To transfer the Green’s

function from one slice to the next, the Dyson’s formulas [28]

G = G(0) +G(0) V G (2.18)

G = G(0) +GV G(0) (2.19)

can be used, whereG(0) is the unperturbed Green’s function (corresponding to a decoupled segment

in the absence of the rest of the system), G is the full Green’s function, and V is the perturbative

potential (i.e., the coupling between previous slice and the next). Let assume that we want to

calculate the left Green’s function at site j, that means the site j − 1’s left Green’s function is

already calculated. The unperturbed Green’s function is

G(0) = GL
j−1,j−1 + gj (2.20)

where gj is the Green’s function of the jth slice in isolation gj = (E − hj)−1, and GL is the left

Green’s function evaluated up to slice j−1. The perturbation is the connection between slice j−1

and j,

V = |j − 1〉τj〈j|+ |j〉τ †j 〈j − 1|. (2.21)

12



Therefore, we can write

GL
jj = gj + gjτ

†
jG

L
j−1,j, (2.22)

GL
j−1,j = GL

j−1,j−1τjG
L
jj, (2.23)

and solve the equations for GL
jj to get

GL
jj = [I − gjτ †jGL

j−1,j−1τj]
−1gj, (2.24)

GL
j−1,j = GL

j−1,j−1τjG
L
jj. (2.25)

This procedure starts from the first slice on the left and sweeps over the whole system up to the last

slice on the right incorporating the self-energy due to the right lead. Combining that with the right

Green’s function, the whole Green’s function can be calculated. By doing that, the computational

cost scales withO(M × (N/M)3) instead ofO(N3) for direct calculation, where M is the number

of slices. It is clear that a smart choice of the slicing can speed up the calculation tremendously.

The algorithm is pictured in Fig. 2.4.
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Start

Left-Lead gL, Σ0 = τ †gLτ

GL
n = (E − hn − Σn−1)−1

Last slice n = N Σn = τ †GL
nτ

GNN = (E − hN − ΣN−1 − ΣR)−1

ΓL(R) = −i[ΣL(R) − Σ†L(R)]

Tr [ΓLGLRΓRGRL]

no

yes

Figure 2.4: The flowchart of the recursive Green’s function algorithm.

Implementation

Based on the recursive Green’s function algorithm, I developed a generic computational code to

evaluate the whole Green’s function by providing the unit cell structure of the lead and the system.

In the case of SWCNT, the coordinates of all carbon atoms in a translational unit cell for a given

chirality vector C = ma1 + na2 (m, n are integers and a1, a2 are lattice vectors) are generated

using the recipe provided in Ref. [29]. To determine the hopping parameter tij of the unit cell,

the following procedure was adopted. The distance between carbon-carbon sites on the lattice is

computed and if it matches the bond length, the hoping between two sites in the Hamiltonian is
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permitted. The big advantage of this approach is that it makes the rest of the code generic and ap-

plicable to other types of lattices when the atomic structure is provided. In addition, following the

same procedure, one can go beyond the nearest-neighbor approximation. To build the connection

matrix between two sequential unit cells, a translational vector is applied to a unit cell to generate

the second unit cell; comparing these two unit cells gives us the connection matrix. To simulate the

curvature effect, the angle of a carbon-carbon bond is calculated with respect to the principal axis

of the CNT. A bond parallel to the principal axis is not affected but one with a component along

the circumference undergoes maximum alteration.

The next step is to calculate the Green’s function of an isolated lead using the decimation technique

that was outlined in Sec. 2. Since the size of the unit cell can be quite large for chiral CNTs (e.g.,

the translational unit cell of a (7, 6) CNT has 508 sites per cell), it is often efficient to save the

lead’s Green’s function for a large set of energy values once and read it from disk memory upon

demand.

To introduce impurities and adatoms to the device, sites are randomly chosen according to a uni-

form distribution of a given density. The electrostatic potential that is felt on the other sites due

to the adatoms is calculated by knowing the real-space coordinates of the sites. Different electro-

static potential profiles such as Gaussian, Lorentzian, and Coulomb have been considered in the

simulations that we discuss later. The reason for considering profiles other than resulting from a

bare Coulomb’s interaction is the screening effect. A local accumulation of carrier density around

the charged adatoms changes the potential profiles and their effect on carriers around them.

Finally, the constructed Hamiltonian in the presence of adatoms and an applied gate voltage is

inserted into the recursive Green’s function algorithm calculation the dc conductance.

We note that an applied magnetic or electric field can also be implemented very easily in this

approach, although they were not required for the simulation of the experiments.
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Testing the Code

To test the code, we compare the quantum conductance and the density of states evaluated numer-

ically with analytical expressions derived from the band structure. One can derive the bands of a

chiral CNT by applying the chiral vector C = ma1 + na2 as a periodic boundary condition to the

dispersion relation of an infinite graphene sheet to get [30]

Ej(k) = ±t
√

1 + 4 cos

(
2jπ

m+ n
+
m− n
m+ n

ka

2

)
cos

(
ka

2

)
+ 4 cos2

(
ka

2

)
, (2.26)

where j is the band index and −π
2
≤ k < π

2
is the longitudinal Bloch momentum. The band

structure for a (7, 6) carbon CNT is presented in Fig. 2.5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
ka

3

2

1

0

1

2

3

E
/t

Figure 2.5: The band structure of a semiconductor (7, 6) CNT. The minimum main band gap
appears at ka

2
= π

3
.

According to the Landauer formula, Eq. (2.2), for a ballistic system without any scattering pro-

cesses, one expects the addition of a quantum of conductance for each opening of a new conducting

channel. In Fig. 2.5 the band structure of the (7, 6) CNT is plotted based on the analytical expres-
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sion (2.26). We can obtain the position of the steps in energy where new conducting channels open

by sweeping over the energy axis with a straight line parallel to the momentum axis.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
E
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]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
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0.6

0.8

1.0

1.2

D
O

S

Figure 2.6: (a) The quantum conductance of a pristine (7, 6) CNT as a function of energy evaluated
by the recursive Green’s function technique. One quantum of conductance is added at every open-
ing of a nw channel. (b) The DOS of the same CNT. The positions of the van Hove singularities
exactly coincide with the opening of conducting channels in Fig 2.5.

The density of state can be derived from the band structure using the relation

ρ(ε) =
2

∆k

∑
j

∣∣∣∣∂Ej(k)

∂k

∣∣∣∣−1

, (2.27)

where ∆k is the volume of the Brilouin zone. Alternatively, by evaluating the full Green’s function

for all sites, one can find the local density of state (LDOS) at each site through the expression

ρi(ε) = − 1

π
= [Gr

ii(ε)] . (2.28)

By summing over all sites Tr [Gr(ε)], the total density of states (DOS) at energy ε can be calculated.

The plotted DOS is shown in Fig. 2.6. The peaks at the opening of the channels are van Hove
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singularities due to the zeros of
∣∣∣∂Ej∂k

∣∣∣−1

and are characteristic of such a system [20]. The positions

of the van Hove singularities match the band structure and the DOS.

Where is the Fermi Level?

The experimental results are in terms of applied gate voltage. However, it is the Fermi energy that

determines the number of carriers and conducting channels in the system. Therefore, a convertion

between the gate voltage to Fermi level is needed for the a comparison between simulations and

experiments. In three-dimensional, extende metal, the conduction bands are close together, result-

ing in a high density of state that makes them a continuous reservoir of electrons. Extra charge

on a metal increases the electrostatic potential due to the geometrical capacitance. However, for

a low-dimensional system such as a carbon nanotube, an extra effect must be considered due to

the finite DOS and the gap between the filled band and the next one. To find the chemical poten-

tial for a given gate voltage, these two contributions have to be taken into account, one from the

geometrical capacitance and the other from a shift in the chemical potential, namely,

Vg =
Q

Cg
+
µ

e
, (2.29)

where Cg is the geometrical capacitance of an infinite metallic cylinder in the vinicity of an infinite

metal plate,

Cg =
2πεL

ln(4h/d)
, (2.30)

L is the length of tube, h is the distance between the center of tube and plate, and d is the diameter

of the tube. On the other hand, the total charge on the CNT can be written as

Q = n(µ)Le = Le

∫ ∞
−∞

ρ(ε) dε [fT,µ(ε)− fT,0(ε)] , (2.31)
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where n(µ) is the charge density at chemical potential µ, fT,µ(ε) is the Fermi-Dirac distribution

function, and ρ(ε) is the density of state.

A numerical integration of the DOS over energy at a given temperature must be performed to

establish a conversion function, as shown in Fig. 2.7.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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∫ µ

0

ρ(ε)dε

µ

Figure 2.7: By integrating over the DOS from the neutrality point to the Fermi level, one can find
the number of carriers for a given gate voltage.

We found that the experimental measurements at gate voltages of±60 V are equivalent to±1.5 eV

in energy, and thus adopted the latter in the simulations.
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Impurity Potential

The strength of the scattering potential imposed by potassium was determined by a direct compar-

ison of the numerical calculation with the experimental data. We started from a pristine CNT and

added Gaussian potential scatterers of the form

Vi(R) = V0 exp
(
−|R−Ri|/ξ2

)
(2.32)

uniformly distributed along the nanotube. Here, Ri denotes the lattice location of the scatterer,

V0 its (positive) strength, and ξ represents the scattering potential range. As expected, we found

that the resistance of the nanotube varies considerably with V0 and ξ. We adopted the following

procedure in order to find values for these parameters.

First, we evaluated the change in the average resistance when a single scatterer was added to a

short nanotube segment at random locations.

When the length of nanotube was just three translation unit cells, a single adatom was added ran-

domly in the central unit cell and the extra left and right cells kept the adatom far from contacts.

For every simulation we kept the effective range of impurity fixed and varied the impurity’s am-

plitude. The result was averaged over 200 samples with random locations of the impurity. The

effective range was varied from 8.0 Å to 30.0 Å for both positive and negative carriers. We fit an

parabolic curve to the resistance versus effective amplitude of the impurity and the intersection

with experimental data was recorded. The analysis from single impurity simulations is presented

in Figs. 2.8, and 2.9. We notice that even after averaging over 200 random locations of the adatom,

the data are oscillating around the parabolic curve for negative carriers. The fluctuations are at-

tributed to the strong quantum interference due to weak scattering and the short length of CNT

segments. The fluctuation is damped in the case of positive carriers due to strong scattering rate
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(see Fig. 2.9. Such simplified model enables a rapid exploration of a wide range of values for V0

and ξ.

Second, for a fixed value of ξ, we varied V0 until the change in average resistance at E = ±1.5 eV

matched the corresponding experimental value within its numerical uncertainty. The result is

shown in Fig. 2.10. The data points for electrons and holes differ substantially for short scat-

tering ranges, indicating an inconsistency with the experimental data. The data points eventually

begin to converge at increasing values of the scattering range before starting to separate again. As

such, our analysis indicates that ξ = 18 ∼ 28 Å and V0 = 1.0 ∼ 1.1 eV are the choice of pa-

rameter values producing the most consistent results with the experimental data at E = ±1.5eV.

Using the ranges of values identified for ξ and V0 by this method, we performed more in-depth

calculations that yielded results that closely matched the experiments.

Results

We evaluated the linear conductance for a wide range of nanotube lengths and scatterer concen-

trations, averaging each case over 600 random samples to wash away fluctuations due to phase-

coherent interference. The scatterer concentration was varied within a range that kept transport

diffusive (ohmic) and avoided Anderson localization of carriers. For this reason, the variation

ranges for electrons and holes were different. The nanotube resistivity was obtained numerically

following a procedure similar to that adopted in the experiments, namely, by varying the nanotube

length, see Fig. 2.11.

The scatterer resistance was then determined by considering the change of the average resistiv-

ity with scatterer density. We find that the values of ξ = 20 Å and V0 = 1.1 eV for the spa-

tial extent and the amplitude parameters of the impurity potential produce the closest results to
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the experimental values at the reference energies E = ±1.5 eV, yielding a scattering strength of

6.71 ± 0.13 kΩ/scatterer for holes and 0.357 ± 0.003 kΩ/scatterer for electrons, close to the ex-

perimentally observed values. A finer match might be possible by employing numerical techniques

that systematically avoid Anderson localization. However, we circumvent the localization problem

by keeping the simulations away from high density of adatoms. The values of ξ and V0 identified

by our theoretical analysis are significantly larger than those calculated for doped graphene where

screening is expected to be stronger. Such weak screening even in the second subband, attested by

the long scattering potential range, defies expectations from previous calculations [18, 19] of the

electron-electron screening. In Ref. [19], the screening effect was calculated for a metallic CNT

in the first-band approximation. The long-range Coulomb interaction was applied to the electrons

due to the fixed-position external charge and the distribution of electrons was calculated. The

result was a screening length about the diameter of a CNT. Two assumptions in that study may

be the origin of discrepancy between their results and ours: (i) The limitation to low excitation

energy in a metallic CNT, which constrains the current along the tube axis because the higher de-

grees of freedom are frozen by a wide energy gap. In contrast, the CNT that we simulated is a

semiconductor and in the second band. (ii) A cutoff energy is proposed to evade the divergence

of the Coulomb energy when two charges are at zero distance, and this cutoff energy is set to the

diameter of the tube, which seems a plausible assumption for a low-energy system. However, in a

chiral semiconductor the contribution of the circumference degree of freedom to the current is not

negligible, therefore carriers can interact with the potential of adatoms at very close distance.

Summary

We simulated the electronic transport of a semiconductor (7, 6) chiral carbon nanotube. The simu-

lation was done using the recursive Green’s function algorithm. To study the system, a general For-
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tran code was developed to calculate the conductivity and density of state for an arbitrary atomic

structure within the tight-binding approximation. The effect of charged adatoms on a CNT was

studied by modeling the charged impurity as a Gaussian potential that is randomly placed on the

CNT’s lattice. Using a single impurity in a short segment, we explored a wide range of effective

potential range and amplitude of charged impurity to find parameters that can fit both negative and

positive carrier transport and match the experimental data. Using the single impurity analysis, we

simulated large CNTs of up to length 1.5µm. We found a charged impurity range of ξ = 20 Å and

an amplitude of 1.1 eV that matched the experimental data for different scattering rates for positive

and negative carrier in presence of charged impurities.

23



0.25 0.35 0.45 0.55
V0/t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
[k

Ω
]

ξ= 8. 0 Å

0.44

0.25 0.35 0.45 0.55
V0/t

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
[k

Ω
]

ξ= 10. 0 Å

0.40

0.25 0.35 0.45 0.55
V0/t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
[k

Ω
]

ξ= 12. 0 Å

0.45

0.25 0.35 0.45 0.55
V0/t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
[k

Ω
]

ξ= 14. 0 Å

0.41

0.25 0.35 0.45 0.55
V0/t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
[k

Ω
]

ξ= 16. 0 Å

0.39

0.25 0.35 0.45 0.55
V0/t

0.0

0.2

0.4

0.6

0.8

1.0

R
[k

Ω
]

ξ= 18. 0 Å

0.39

0.25 0.35 0.45 0.55
V0/t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
[k

Ω
]

ξ= 20. 0 Å

0.41

0.25 0.35 0.45 0.55
V0/t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
[k

Ω
]

ξ= 22. 0 Å

0.36

0.25 0.35 0.45 0.55
V0/t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
[k

Ω
]

ξ= 24. 0 Å

0.38

0.25 0.35 0.45 0.55
V0/t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
[k

Ω
]

ξ= 26. 0 Å

0.38

0.25 0.35 0.45 0.55
V0/t

0.0

0.5

1.0

1.5

2.0

R
[k

Ω
]

ξ= 28. 0 Å

0.35

0.25 0.35 0.45 0.55
V0/t

0.0

0.5

1.0

1.5

2.0

2.5

R
[k

Ω
]

ξ= 30. 0 Å

0.37

Figure 2.8: The single impurity analysis for negative carriers.

24



0.250.350.450.55
V0/t

0

1

2

3

4

5

6

7

8

9

R
[k

Ω
]

ξ= 8. 0 Å

0.88

0.25 0.35 0.45 0.55
V0/t

0

1

2

3

4

5

6

7

8

9

R
[k

Ω
]

ξ= 10. 0 Å

0.69

0.25 0.35 0.45 0.55
V0/t

1

2

3

4

5

6

7

8

9

R
[k

Ω
]

ξ= 12. 0 Å

0.62

0.25 0.35 0.45 0.55
V0/t

0

2

4

6

8

10

12

R
[k

Ω
]

ξ= 14. 0 Å

0.51

0.25 0.35 0.45 0.55
V0/t

0

5

10

15

20

25

R
[k

Ω
]

ξ= 16. 0 Å

0.45

0.25 0.35 0.45 0.55
V0/t

0

5

10

15

20

25

R
[k

Ω
]

ξ= 18. 0 Å

0.42

0.25 0.35 0.45 0.55
V0/t

0

5

10

15

20

25

30

35

40

R
[k

Ω
]

ξ= 20. 0 Å

0.43

0.25 0.35 0.45 0.55
V0/t

10

0

10

20

30

40

50

60

70

80

R
[k

Ω
]

ξ= 22. 0 Å

0.42

0.25 0.35 0.45 0.55
V0/t

0

10

20

30

40

50

60

70

80

R
[k

Ω
]

ξ= 24. 0 Å

0.39

0.25 0.35 0.45 0.55
V0/t

0

10

20

30

40

50

60

70

R
[k

Ω
]

ξ= 26. 0 Å

0.38

0.25 0.35 0.45 0.55
V0/t

50

0

50

100

150

200

250

R
[k

Ω
]

ξ= 28. 0 Å

0.31

0.25 0.35 0.45 0.55
V0/t

50

0

50

100

150

200

250

300

350

400

R
[k

Ω
]

ξ= 30. 0 Å

0.42

Figure 2.9: The single impurity analysis for positive carriers.

25



5 10 15 20 25 30

ξ[Å]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
0
[t
]

n-side

p-side

Figure 2.10: To explore possible ranges and amplitudes for the simulation of adatoms, we per-
formed a series of calculations for a single impurity placed on a CNT segment. The data points
are the comparison of the calculation with the experimental data at energy E = ±1.5 eV. At
short range, the data point for electrons and holes are inconsistent, but starting around ξ = 18 Å
convergence indicates possible range and amplitude, which are then used to for further simulations.
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Figure 2.11: The resistance of electrons and holes in a (7, 6) chiral CNT in the presence of charged
impurities. The scattering strength of positively charged adatoms is 7.32 ± 0.42 kΩ for holes and
0.31± 0.01 kΩ for electrons.
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CHAPTER 3: UNUSUAL CONDUCTANCE OF METALLIC CNT

Motiviation

Metallic CNTs are formed when the chiral indices (m,n) satisfy the relation m − n = 3l, where

l is an integer number. The dispersion relation of a chiral CNT has a zero gap at ka
2

= π
3
, where

k is the Bloch momentum along the CNT symmetry axis and a is the carbon-carbon bond length.

However, in reality, all non-armchair metallic CNTs are quasi-metallic due to a curvature-induced

gap [31]. The gap in quasi-metallic CNTs comes from the fact that the carbon-carbon bond along

the tube circumference has a different length and hybridization than along the CNT’s principal

axis. In experimental measurements, a conductance suppression is expected around the Dirac

point due to the curvature-induced gap. However, measurements on metallic (22,4) CNT show

another suppression away from the Dirac point. The conductance increases from the minimum

conductance point but begins to decrease as the gate voltage increases, as shown in Fig. 3.1.

Notice that the minimum conductance associated with the Dirac point is located around Vg = 13 V

for all segment lengths. The conductance starts to decrease around Vg = 2 V, forming a hump-

like feature. This shape is present regardless of the segment length, indicating that this anomalous

suppression is not arising from the contact resistance. To produce Fig. 3.1(right), the conductance

of different segments in Fig. 3.1(left) are shifted by Vmin to align the minima, then the conductivity

was calculated at every points of gate voltage Vg using liner fit. The unusual shape still remains,

implying the intrinsic nature of this feature.
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Figure 3.1: The experimental data for a quasi-metallic CNT (22, 4) show an unusual conductance
versus gate voltage behavior. (left) A suppression around the Dirac point is expected due to the
curvature-induced gap. However, by increasing the gate voltage, another suppression appears.
(right) The unusual form of conductivity confirms that the feature is intrinsic, indepedent of length
and contacts.

To understand the nature of this unusual behavior in the conductance, we have performed a series of

simulations on quasi-metallic (22, 4) SWCNTs. The theoretical approach to the problem is based

on single particle tight-binding Hamiltonian, as described in Chapter 2. The electronic transport

was calculated using the Ladauer-Büttiker formula. The transmission amplitude was calculated

in terms of the system’s Green’s function which was implemented using the recursive Green’s

function (RGF) algorithm. The technical details of this approach are similar to those presented in

Chapter 2. The effect of short-range and long-range impurities are examined.

At the end of this Chapter, we present a toy model for the scattering of a massless carrier through

a potential barrier. The scattering amplitudes for positive and negative carriers and the difference

of scattering for a carrier on the first band of metallic CNT and on the higher conduction bands are

discussed.
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Metallic CNT, Test and Simulations

The band structure of the quasi-metallic (22, 4) CNT is shown in Fig. 3.2. The Dirac point is

located at ka
2

= π
3

where the bands cross the zero-energy Fermi level. By introducing curvature

into the calculation of the bands, a small gap opens at the Dirac point and transforms the CNT into

a quasi-metallic system. The translational unit cell of (22, 4) CNT contains 392 carbon atoms and

its length is 3.44 nm. The radius of the (22, 4) CNT is 9.49 Å.

π/6 π/3 π/2

ka/2

1.0

0.5

0.0

0.5

1.0

E
/t

Dirac Point

Figure 3.2: The band structure of a metallic (22, 4) CNT.

The main difference in electronic transport between metallic and semiconductor CNTs comes from

the shape of the first conduction and valence bands. We notice that the minimum of the first band in

a semiconductor CNT can be approximated by a parabola with a non-zero effective mass, with the

carrier Hamiltonian taking the form p2

2m
. In contrast, the band around the Fermi level in a metallic

carbon nanotube is linear, with a zero effective mass (i.e., it describes “massless fermions”). In the

latter case, electronic transport is governed by a Dirac equation, which will be employed later in

this Chapter.
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The same computational code developed for Chapter 2 can be applied to this problem. Using

the xyz coordinates of the carbon atoms in one translational unit cell, the Hamiltonian h and the

connection matrices τ are constructed and fed into the RGF code. First, we performed a few tests

on pristine (22, 4) CNT and compared the results to known features that can be derived analytically

to make sure that the code performed correctly. As we did in Chapter 2, we compared the energies

where a new quantum of conductance is added to the opening of the channels that we obtain from

the analytical band structure. The conductance and the density of state of a pristine (22, 4) CNT

are presented in Fig. 3.3. As we can see, an additional quantum of conductance is added exactly

at the opening of a new conducting band. The van Hove singularities that are characteristic of

low-dimension systems can be seen at the opening of each band due to the zero derivative of ∂ε
∂k

at

the minima of the bands.
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Figure 3.3: The quantized conductance and the density of state of a pristine quasi-metallic (22, 4)
CNT.

In this series of simulations the role of the CNT curvature on the conductance was also investigated.

The hopping amplitude an C–C bonds was determined by

teff = t0 + δ sin θ, (3.1)
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where θ is the angle of the bond with respect to the CNT’s principal axis. The next crucial infor-

mation that was needed to study this problem was a good estimate of the chemical energy due to

applied gate voltage. As we will explain later, the scattering amplitude shows different behavior in

the first channel compare to the higher channels. To determine the chemical potential, we follow

the same recipe that was developed in the Chapter 2. The density of state can be evaluated using

the imaginary part of the total Green’s function

ρi(E) = − 1

π
= [Gr

ii(E)] , (3.2)

where ρi is the LDOS at site i and Gr
ii is the retarded total Green’s function at site i. By summing

over all sites in one unit cell, the total DOS as a function of energy is determined. The conversion

between applied gate voltage and chemical potential can be performed by integrating over the

DOS to the point that the contribution due to the geometrical capacitance and the shift in the band

is equivalent to the applied gate voltage.
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Figure 3.4: The conductance of a metallic (22, 4) CNT in the presence of adatoms with scattering
range ξ = 9 Å (left) and ξ = 18 Å (right). The results were produced by averaging over 400
samples.
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First, we performed a number of simulations in the presence of Gaussian impurities with different

amplitudes and ranges. In Fig. 3.4, the results for impurities with the effective ranges of ξ = 9 Å

and ξ = 18 Å are presented. A few features deserve attention:

• The asymmetry between positive and negative energies (i.e., electrons and holes carriers)

due to the sign of charged impurities.

• The robustness of the first channel compare to the higher channels in the presence of impu-

rities.

• The dramatic decrease in conductance with increasing effective range of impurities, which

can be seen by comparing left and right panels, showing that the positive region of the first

band is more affected.

• Finally, the shift toward negative energies of the conductance minimum for positive impuri-

ties.

The resistivity that was extracted from the experimental measurements shows the same hump

shape, implying that the feature is intrinsic to the device, independent of the quality of the contacts.

To test this observation, we calculated the conductance for different length of the nanotube in the

presence of same impurity profile and density. As one can see in Fig. 3.5(left), the minima of the

conductance are located at the two ends of the first band, independently of the CNT length.

We note that the experimental measurement shows the same hump shape even below 10 K, when

phonons are virtually suppressed. The scattering due to defects or extrinsic charged impurities is

still effective at low temperature. We thus believe that the hump is caused by elastic scattering

of carriers along the nanotube. The measured carbon nanotube device shows relatively higher

resistance than defect-free, ultra-clean nanotubes. It implies that the nanotube has some atomic

defects or extrinsic charged impurities that cause the anomalous suppression.

32



0.4 0.2 0.0 0.2 0.4
E/t

0

1

2

3

4

5

G
[2
e

2
/h

]

l= 0. 35µm

0. 71

1. 07

1. 43

1. 78

0.4 0.2 0.0 0.2 0.4
E/t

0.0

0.5

1.0

1.5

2.0

G
[2
e

2
/
h
]

ξ= 9Å
12Å
15Å
18Å

Figure 3.5: (left) The conductance for different length of a metallic (22, 4) CNT in the presence
of positive impurities. Here the amplitude and the range of impurities are V0 = 0.4t and ξ =
8 Å. (right) The conductance of a metallic (22, 4) CNT in the presence of adatoms with different
scattering range.

Results for fixed length and impurity density for several impurity ranges are presented in Fig. 3.5(right).

The interesting feature in this plot is that the negative edge of the first band is very robust to the

impurities; and the sharp edge of the conductance does not shift, only the amplitude decreases.

Finally to understand the effect of defects, we performed some calculations in the presence of very

short range impurities with high amplitudes. In contrast to a long range impurity, the first band

is affected by short range impurities dramatically. The effect is symmetric between electrons and

holes. The result of simulations are shown in Fig. 3.6. The right panel shows the conductance in

presence of both short and long range impurities. The short range impurities suppress the conduc-

tance at the Dirac point, while the long range impurities affect the transport in the higher bands.

In Fig. 3.6(right) the conductivity versus applied gate voltage in the presence of mixture of short

range and long range impurities is plotted. The result is qualitatively close to the experimental

observations.
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Figure 3.6: (left)The effect of defects on the conductance of a metallic (22, 4) CNT. In contrast to
long-range impurities, defects affect the electronic transport in the first band and it is symmetric
between electrons and holes. (right)The resistivity of a metallic CNT in the presence of both long
range impurities and defects.

Physical Interpretation: Robustness of the First Band

To gain some insight about the scattering behavior in the first band, it is worth looking at the

electronic transport around the Dirac point. The conductance of the first conducting channel in

the presence of charged impurities remains almost intact. We believe that this characteristic comes

from the massless nature of carriers around the Dirac points. Let us start with the band structure

of pristine graphene layer,

ε(k) = ±t

√√√√1 + 4 cos

(
a
√

3

2
kx

)
cos
(a

2
ky

)
+ 4 cos2

(a
2
ky

)
. (3.3)

Using a Taylor expansion around the Dirac point, the Hamiltonian can be approximately written

as

H = vF σ · k, (3.4)
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where σ contains Pauli matrices describing the pseudo-spin and vF is the Fermi velocity of the

carriers in graphene. By solving the Dirac equation

−ivF

 0 ∂x − i∂y
∂x + i∂y 0


φ1(x, y)

φ2(x, y)

 = ε

φ1(x, y)

φ2(x, y)

 , (3.5)

the eigenstates are found to be

ψ =
1√
2

 1

±eiφ

 ei(kxx+kyy), (3.6)

where φ = tan−1
(
ky
kx

)
and ε

vF
= k =

√
k2
x + k2

y . Now, let us find the transmission probability of

a massless carrier through a rectangular barrier around the Dirac points, as shown in Fig. 3.7. The

wave function can be written in the form

ψi =
1√
2

 1

seiφ

 ei(kxx+kyy) +
r√
2

 1

−se−iφ

 ei(kxx+kyy), (3.7)

on the left of the barrier; inside the barrier region we have

ψii =
a√
2

 1

s′eiθ

 ei(qxx+kyy) +
b√
2

 1

−s′e−iθ

 ei(qxx+kyy), (3.8)

where s = sign(E), s′ = sgn(E − V0), θ = tan−1
(
ky
qx

)
and qx =

√
(V0 − ε)2/v2

F − k2
y . Notice

that during the scattering process ky is conserved. Finally, in the third region we have

ψiii =
t√
2

 1

seiφ

 ei(kxx+kyy). (3.9)
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Figure 3.7: (left) A massless particle encounters a rectangular barrier or well in analogy of the
scattering of positive and negative carriers in presence of a positive charged adatom. (right) The
transmission probability for positive and negative carriers are presented as a function of the effec-
tive range ξ of impurities.

The transmission and reflection coefficients are determined by imposing continuity of the wave

function at boundaries,

ψi(x = 0, y) = ψii(x = 0, y) (3.10)

ψii(x = ξ, y) = ψiii(x = ξ, y) (3.11)

where ξ is the width of barrier which can be considered as the range of the impurities. The four

following equations give us the transmission coefficient:

1 + r = a+ b, (3.12)

eiφ − re−iφ = aeiθ − be−iθ, (3.13)

aeiqxξ + be−iqxξ = teikxξ, (3.14)
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and,

aeiθeiqxξ − be−iθe−iqxξ = teiφeikxξ. (3.15)

The easiest way to find T = tt∗ is to find a and b from the first two and the last two equations

separately. Then, the reflection coefficient can be derived in terms of the transmission coefficient

from both equations as

r(eiθ + e−iφ) = (eiθ − eiφ)
[
tei(kx+qx)ξ − 1

]
, (3.16)

r(e−iθ − e−iφ) = (e−iθ + eiφ)
[
tei(kx−qx)ξ − 1

]
. (3.17)

By canceling r between these two equations we get

t =
2 cos θ cosφe−ikxξ

[1 + cos θ + cosφ)]e−iqxξ − [1− cos(θ − φ)]eiqxξ
. (3.18)

Finally, the transmission probability is found to be

T = |t|2 =
cos2 θ cos2 φ

(cos θ cosφ cos qxξ)2 + [1− ss′ sin θ sinφ]2 sin2 qxξ
. (3.19)

In the case of a CNT, we consider the x direction as the direction along the CNT’s symmetry axis

and y as the direction of the circumference, yielding

C = ma1 + na2. (3.20)

Close to the Dirac points, E = 0 implies ky = 0. As a result, both phase angles θ and φ are zero.

It is easy to see that the transmission probability approaches T = 1 and it is independent of the

energy as far as the dispersion relation can be considered linear.
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This picture explains the asymmetry between scattering strength of electrons and holes in the

presence of charged adatoms at the first band. Also it confirms that the carriers in the first band

can experience a transparent scattering with T = 1.

Summary

In this Chapter we presented a study of the unusual behavior in the electronic transports of a

metallic CNT. The importance of this study comes from the fact that it reveals the manisfestation

of the nature of charge carriers around the neutrality point. We have shown that a conductance

suppression far away from the neutrality point is due to the fact that carriers obey a massless Dirac

equation. The applied gate voltage determines the conducting band where carriers come from.

The transport of carriers from higher bands is affected heavily by the presence of impurities and

defects. On the contrary, the carriers from the first conducting band experience less scattering. As

a result we see an extra suppression at the opening of the second channel. Our results are backed

by experimental observations on the quasi-metallic CNT (22, 4).
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CHAPTER 4: DYNAMICAL SPIN INJECTION IN LOW-DIMENSIONAL

MATERIALS

Introduction

One of the key elements in any implementation of spintronics is an efficient source of spin cur-

rent [32]. Among the different methods available, dynamical spin injection from a ferromagnet

metal (FM) into an adjacent nonmagnetic metal (NM) has been theoretically proposed [8] and

experimentally observed [9, 10, 11, 12, 13]. In this method, in addition to a longitudinal static

magnetic field, an oscillating transverse magnetic field is applied, inducing a magnetization pre-

cession in the FM. Most of the angular momentum transferred to the FM by the oscillating field

is dissipated through by spin-relaxation processes in the bulk, but a small part survives as a spin

current injected into the NM.

The exotic electronic properties of graphene have captured the attentions of the physics com-

munity since the first experiments with this material [33, 34]. High mobility and a long spin-

relaxation length are features that make graphene a promising passive element for spintronics [35].

In addition, the enhancement of spin-scattering processes in graphene by adatoms or defects [36],

which also yield the spin Hall effect [37] and the inverse spin Hall effect, have led to proposals of

graphene-based spin-pumping transistors [38, 39].

Recent experimental studies [17, 14] show an increase in the ferromagnetic resonance (FMR)

damping when a graphene sheet is placed in contact with a FM subject to an oscillating magnetic

field, see Fig. 4.1. One interpretation of the phenomenon is that part of the precessing magnetiza-

tion leaks into the graphene sheet as a spin current, effectively leading to an additional channel of

magnetization damping.
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Figure 4.1: (left)A schematic structure of dynamical spin injection in FM/Gr setup. A part of
graphene sheet is covered by a FM. A time-dependent magnetic field compensates the damping
of the precession of the magnetization in FM. (right) The FMR measurements on three setups Py,
Py/Gr, and Py/Gr(extended) confirms that an extra damping of magnetization precession in FM is
induced by pumped spin current into the graphene layer.

While time-dependent scattering theory [15, 8] based on the general theory of adiabatic quantum

pumping [40] relates the increase in the FMR damping to the interface mixing conductance, further

effort is necessary to describe microscopically spin pumping into two-dimensional (2D) materials.

A recent study [41] applied the time-dependent scattering theory to spin pumping in a insulating

ferromagnet laid on top of a 2D metal. While insightful, this approach is not suitable for includ-

ing disorder and spatial inhomogeneities such as adatoms; and when applied to graphene, it was

confined to the vicinity of the neutrality point.

Another aspect that can be addressed with this formulation is the distinction between the angular

momentum that relaxes at the interface and the part that flows into the NM. As it was shown in the

first experiment by Singh et. al,[14] even without graphene protruding away from the FM (when no

spin current injection is possible), the enhancement of damping is significant. This enhancement

has been associated to two-magnnon scattering at the interface [42]. However, in systems where
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graphene protrudes away from the FM, an extra damping has been measured due to the flow of

spin current into graphene. An atomistic study of such phenomenon is needed to discriminate the

contribution of spin current and the surface relaxation in enhancement of damping.

Here, we develop a microscopical formulation of spin pumping from a FM into a NM material.

Both the atomic structure of the materials and the particular geometry of the system can be taken

into account exactly in this formulation. The spin current expression is written in terms of the

Green’s function of the NM portion, allowing one to apply efficient recursive numerical methods

for the computation of spin currents [27]. Another advantage of the formulation we present is the

possibility to include accurate, microscopic models of spin-orbit coupling in the NM portion, as it

relies on a spatial tight-binding representation of the system.

This chapter is organized as follows. We start this chapter with a brief review of the FM/Gr

dynamical spin injection experiment, then we discussion the standard theory that was developed by

Brataas and Tserkovnyak [16] which is widely accepted in the spintronics community to describe

the dynamical spin current. Then the failure of the theory when it is applied to a FM/Gr device

is discussed. In Sec. 4, we use a one-dimensional, tight-binding chain coupled to a magnetic site

to introduce the time-dependent boundary condition problem and to derive an expression for the

spin current based on an equation-of-motion formulation. The definition of charge and spin current

appropriate to the problem in hand are discussed in Sec. 4. We apply the formulation to a zero-

length system in Sec. 4 and a finite-length chain in Sec. 4. In Sec. 4 the general expression for the

spin current in 2D system, including spin-orbit mechanisms is derived. In Sec. 4 we summarize

the results and point to future some work. Details of the formulation and some derivations are

presented in the Appendices.
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FM/Gr FMR Measurements and Standard Theory of Dynamical Spin Injection

A dynamical spin injection setup consists of two materials, a ferromagnet and a non-magnetic

medium. A time-dependent magnetic field is applied to the FM to induce magnetization precession

and to compensate the damping of the precession. Electrons from the NM region come to the

FM/NM interface and their spin states are scattered by FM layer depends on the magnetization

direction to return to the NM region with altered spin states. The result would be a spin current

with zero net charge current. There are two indirect mechanisms to detect the spin current in such

devices, one is FMR measurement to determine the enhancement of the damping. Second, Inverse

Spin Hall Effect (ISHE) that converts the spin current into a lateral electric voltage in NM region

in the presence of strong spin-orbit interactions.

When the dynamical spin injection in FM/Gr was reported for the first time [14], it was not clear

what is the origin of an extra damping in FMR experiments. The damping could be because of

the enhancement of spin relaxation at the FM surface in the proximity of graphene layer, or spin

currents were actually pumped into the graphene and responsible for an extra damping. In an

upgraded version of measurements [17], different samples were prepared to identify the source

of damping. When a layer of copper was placed on FM, no enhancement were detected as it

was expected due to the small spin relaxation of Cu. However, when a buffer layer of Cu was

sandwiched between Py and graphene the enhancement was significant. In this measurement, the

area of graphene covered just the Py interface which eliminates any possibility of the spin current

pumping. In the last setup, the graphene was protruded out of the FM interface. The extra damping

compared to the previous experiments confirmed the spin current pumping in graphene.

The theory of dynamical spin injection is an extension of the adiabatic pumping of charge in

mesoscopic systems [43]. Since the precession of magnetization is very slow compared to the

other electronic dynamics of the system, the adiabatic approximation was applied to the problem
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from the beginning. In this theory the amount of pumped spin current is expressed in term of a

parameter called mixing conductance g↑↓ and it is defined

g↑↓ =
∑
m,n

(
δm,n − r↑mnr↓mn

)
. (4.1)

where rsmn is the spin-s reflection amplitude between m and n conducting channels at the inter-

face. This theory has been successful to quantify the dynamical spin injection in bulk FM/NM

systems. However, when we applied the formalism to the FM/Gr measurements, the value of mix-

ing conductance g↑↓ = 6.68×1018 m−2 was comparable to those found in Py/Pt or Py/Pd samples.

From the definition, one expects that the mixing conductance to be proportional to the number of

conducting channels at the interface. In a one dimensional interface between graphene underneath

and the extended part, the mixing conductance is expected to be orders of magnitude smaller. The

second difficulty that we encountered is to explain a large backflow of spin current that is expected

in a system with a long spin relaxation length, see Fig. 4.2. When the spin current injection is faster

than the spin relaxation rate in the NM, a spin-dependent chemical potential builds up in NM and

diffuses back a spin backflow current into the FM that decrease the effective mixing conductance

1

g↑↓eff

=
1

g↑↓
− β, (4.2)

The value of β ≈ 4× 10−12 m2 that was calculated for the graphene sample is orders of magnitude

larger than the measured mixing conductance. That leads to a negative value for the effective

mixing conductance.

These two problems motivated us to look for an atomistic model of dynamical spin injection prob-

lem to quantify the amount of spin current and expected enhancement of damping in such systems.

In the next section, we introduce our model and proceed to derive an expression for spin currents

in such systems.
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Figure 4.2: An schematic presentation of the theory of dynamical spin injection into NM. In this
theory the FM region is act as an dynamical scatterer between two metallic reservoirs. If the spin
relaxation rate is smaller than the spin injection rate in NM, a backflow spin current decrease the
damping of magnetization precession.

One-Dimensional Model

Here, we address the problem of spin pumping in low-dimensional materials in contact with a

FM where a precessing magnetization is induced. In such systems, itinerant electrons travel from

the NM portion into the FM with a random spin orientation and back. The magnetization of FM

changes the orientation of the spin of the returning electrons, and angular momentum leaks out of

the FM and into the NM region as a spin current. To model such hybrid FM/NM system, the FM

region can be viewed as a time-dependent boundary condition to the NM region.

We begin by considering the idealized situation of a one-dimensional system, see Fig. 4.3. We

adopt the transport formulation developed by Dhar and Shastry [44] as the starting point and extend

it to include spin-dependent and time-dependent boundary conditions in the special case of a single

reservoir attached to the nonmagnetic metal region.

Consider a one-dimensional chain where the site at j = 1 is connected to a magnetic site at j = 0

as shown in Fig. 4.3. At the magnetic site, itinerant electrons interact with the time-dependent

magnetization of the FM,

M(t) = M‖ẑ +M⊥ (x̂ cos Ωt− ŷ sin Ωt) . (4.3)
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Figure 4.3: Scheme of the one-dimensional model of spin pumping from a magnetic site repre-
senting a ferromagnet (FM) to a nommagnetic (NM) chain connected to a reservoir.

The dynamics of the magnetization is determined by the Landau-Lifshitz-Gilbert equation, where a

damping term is introduced phenomenologically to account for magnetization loses.[45] Here, we

assume that Eq. (4.3) describes the stationary state of the magnetization and includes any damping.

The opposite end of the chain, at the site j = N , is connected to a reservoir via a site α. A hopping

term describes the itinerant electronic motion along the chain, where no spin-orbit mechanism is

present at this point. The Hamiltonian of each segment reads

Hmag = −J
2
M(t) ·

∑
s,s′

a†s σss′ as′ , (4.4)

Hchain = −
N−1∑
j=1

∑
s,s′

(
c†j+1,s τj;s,s′ cj,s′ + c†j,s τ

∗
j;s′,s cj+1,s′

)
+

N∑
j=1

∑
s

Vj,s c
†
j,s cj,s, (4.5)

and

Hres = −
∑
λ,η

∑
s

Tλη d
†
λ,sdη,s, (4.6)

where s, s′ =↑, ↓. The fermionic operators as, cj,s, and dλ,s act on the magnetic, chain, and reser-

voir sites, respectively and obey the standard anticommutation relations. σ = (σx, σy, σz) are
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Pauli matrices. The parameters τj;s,s′ = τ ∗j;s′,s describe the hopping amplitude between neigh-

boring sites j and j + 1 in the chain and could be spin dependent; in the absence of spin-orbit

coupling, τj;s,s′ = δs,s′ τj . The on-site potential Vj,s is included to account for inhomogeneities in

the chain. Finally, the matrix elements Tλη describe the site connectivity in the reservoir, which

can be complex.

The coupling between the magnetic site and the chain and between the chain and the reservoir are

assumed spin independent and are given by the Hamiltonians

Hmag−chain = −γ0

(
a†s c1,s + c†1,s as

)
(4.7)

and

Hchain−res = −γα
(
c†N,s dα,s + d†α,s cN,s

)
, (4.8)

respectively.

Equations of Motion

Equations of motion for the fermionic particle operators are obtained using the standard Heisenberg

equation of motion, e.g., ċj,s = i[H, cj,s], where

H = Hmag +Hchain +Hres +Hmag−chain +Hchain−res (4.9)

(we assume h̄ = 1). To simplify the notation, the time-dependent and time-independent amplitudes

in Eq. (4.4) resulting after the insertion of Eq. (4.3) can be cast as frequency parameters Ω‖ =
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−J
2
M‖ and Ω⊥ = −JM⊥. We then obtain

ȧ(t) = −iΩ‖σza(t)− iΩ⊥
(
σ+eiΩt + σ−e−iΩt

)
a(t) + iγ0 c1(t) (4.10)

for the magnetic site and

ċ1(t) = −iV1 c1(t) + iγ0 a(t) + iτ 1 c2(t), (4.11)

ċj(t) = −iVj cj(t) + iτ j−1 cj−1(t) + iτ j cj+1(t), (4.12)

with 1 < j < N , and

ċN(t) = −iVN cN(t) + iτN−1 cN−1(t) + iγα dα(t) (4.13)

for the chain sites. In the expressions above, we introduced the spinor particle operators a =a↑
a↓

, cj =

cj,↑
cj,↓

, and dα =

dα,↑
dα,↓

 and the matrices

τ =

τ↑,↑ τ↑,↓

τ↓,↑ τ↓,↓

 (4.14)

and

Vj =

Vj,↑ 0

0 Vj,↓

 . (4.15)

For the equations of motion of the reservoir operators, we get homogeneous equations for the bulk
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and an equation containing an inhomogeneous term due to the coupling to the chain,

ḋη(t) = i
∑
ν

Tην dν(t), η 6= α, (4.16)

and

ḋα(t) = iγα cN(t) + i
∑
ν

Tαν dν(t). (4.17)

Combining Eqs. (4.16) and (4.17), we can express the general solution for the operator of the site

α with spin state s in the integral form

dα,s(t) = i
∑
η

grαη(t− t0) dη,s(t0)− γα

∫ ∞
t0

grαα(t− t′) cN,s(t′) dt′, (4.18)

where the homogeneous part of the solution,

hs(t) = i
∑
η

grαη(t− t0) dη,s(t0), (4.19)

plays the role of a noise-like term and the inhomogeneous part in Eq. (4.18) is dissipative in

nature.[44] In Eqs. (4.18) and (4.19), grλη denotes the retarded Green’s function of the decoupled

reservoir and reads

grλη(t− t′) = −iθ(t− t′)
∑
n

φ∗n(λ)φn(η) e−iEn(t−t′), (4.20)

where {φn} are the single-particle eigenfunctions of the reservoir with eigenenergy {En} (see

Appendix A).

In the following, we assume that at a time t = t0 the reservoir is in thermal equilibrium, such that

〈
d†n,s(t0) dn′,s′(t0)

〉
= δn,n′ δs,s′ f(En), (4.21)
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where dn,s(t) =
∑

λ dλ,sφn(λ), f(ε) = 1/[e(ε−µ)/T + 1] is the Fermi-Dirac distribution, and T and

µ and the reservoir’s temperature and chemical potential, respectively (we assume kB = 1).

Fourier Transform of the Equations of Motion

It is useful to express the equations of motion in frequency domain. For that purpose, let us use the

following convention for the Fourier transform of the particle operators and other time-dependent

terms:

as(t) =

∫
dω

2π
as(ω) e−iωt, (4.22)

cj,s(t) =

∫
dω

2π
cj,s(ω) e−iωt, (4.23)

dλ,s(t) =

∫
dω

2π
dλ,s(ω) e−iωt, (4.24)

hs(t) =

∫
dω

2π
hs(ω) e−iωt, (4.25)

and

grλη(t) =

∫
dω

2π
grλη(ω) e−iωt. (4.26)

Inserting these definitions into Eqs. (4.10) to (4.19), we obtain

(ω − Ω‖σz) a(ω)−
∫
dω′H1(ω, ω′) a(ω′) = − γ0 c1(ω), (4.27)

ω c1(ω) = V1 c1(ω)− γ0 a(ω)− τ1 c2(ω), (4.28)
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ω cj(ω) = Vj cj(ω)− τ j−1 cj−1(ω)− τ j cj+1(ω), (4.29)

with 1 < j < N ,

ω cN(ω) = VN cN(ω)− τN−1 cN−1(ω)− γα dα(ω), (4.30)

and

dα(ω) = h(ω)− γα grαα(ω) cN(ω), (4.31)

where the Fourier transform of time-dependent part of the Hamiltonian is given by the expression

H1(ω, ω′) = Ω⊥[σ+δ(ω′ − ω + Ω) + σ−δ(ω′ − ω − Ω)], (4.32)

with σ± = (σx ± iσy)/2, and h =

h↑
h↓

. Notice thatH1 is a 2× 2 matrix in spin space.

Charge and Spin Currents

The expression for the charge current follows from the continuity equation in a discrete one-

dimensional lattice,
∂ρj
∂t

+
(
J cj+1 − J cj

)
= 0, (4.33)

where ρj = c†jcj is the charge density operator at the site j (both the electron charge and the lattice

constant are assumed to be unity). Using the equation of motion for cj , the particle current operator
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between sites j − 1 and j can be cast as

J cj (t) = i
[
c†j(t) τ j−1 cj−1(t)− c†j−1(t) τ j−1 cj(t)

]
. (4.34)

One advantage of dynamical spin injection compared to other technique is that the net charge

current is zero, see Fig. 4.4.

v

−v

Figure 4.4: Two electrons with opposite spin states travel in opposite direction. The net charge
current is zero, but two units of angular momentum are transferred to the right.

The zero charge current in this technique lift the large impedance between FM and NM and makes

this technique very efficient for the spin current generation.

To define the spin current, we start first with the case when no spin-orbit coupling is present in

the chain, namely, when τ is diagonal. Equation (4.34) gives us the total charge current as a sum

of spin up and down currents at the site j. However, to obtain the local spin current we need to

keep in mind that when an electron with spin up is moving to left, it produces an effect equivalent

to an electron with spin down moving to the right as far as the transfer of angular momentum

is concerned. In both cases, up spin angular momentum is transferred to the right. A general

expression for spin continuity can be introduced by using the rate of change of magnetization and
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the conservation of angular momentum,[45]

∂sj
∂t

+ (Jj+1 − Jj) = 0, (4.35)

where the spin density at the site j is defined as sj = 1
2
c†j σ cj(t) and Jj is the spin current operator

between sites j − 1 and j,

Jj(t) =
i

2

[
c†j(t)σ τ j−1 cj−1(t)− c†j−1(t) τ j−1 σ cj(t)

]
, (4.36)

which is Hermitian: [Jj(t)]
† = Jj(t).

Now let us consider the case when there is spin-orbit coupling in the chain. In general, an external

torque acting on the spin density at each site has to be included. The source torque can be due to

on-site spin scattering process or to spin-orbit terms that cannot be reduced to the divergence of a

current. Equation (4.36) still holds for a system with spin-orbit interactions, but an extra source

torque term due to on-site spin scattering processes is needed in the continuity equation (4.35),

which must be replaced by
∂sj
∂t

+ (Jj+1 − Jj) = Tj, (4.37)

where the torque at site j is defined as

Tj =
i

2
c†j [σ,Vj] cj. (4.38)

In Ref. [46] it was pointed out that the proper definition of spin current at the macroscopic level

requires adding a contribution from the local external torque, such that Eq. (4.35) is restored.

In other words, the external torque must be absorbed into the current expression. However, the

microscopic nature of our model enables us to distinguish between the transfer of angular mo-

mentum either as spin currents or as a conversion to the other degrees of freedom. Therefore, we
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will adopt Eq. (4.36) even when spin-orbit coupling is present. In fact, the proper definition of

the spin current in the presence of spin-dependent processes has been a source of debate in the

literature [47, 48, 49, 50]. One aspect that makes the definition nontrivial is the existence of in-

trinsic nondissipative background currents. In such systems, even without any dynamical source

of current or spin chemical potential difference, a spin current can flow. As Sonin [49, 50] pointed

out, regardless of the definition of the spin current, a source torque term is needed to compensate

for the tranfer of spin angular to orbital angular momentum. In this paper we adopt Eq. (4.36) as

the spin current expression. We return to discuss this definition in Sec. 4 when we deriving an

expression for the current in presence of spin-orbit interaction.

The Fourier transform of the spin current between sites j − 1 and j of the chain takes the form

Jj(ω) =
i

2

∫
dω′

2π

[
c†j(ω

′)σ τ j−1 cj−1(ω′ + ω)− c†j−1(ω′ − ω) τ j−1 σ cj(ω
′)
]
. (4.39)

Notice that, in Fourier space, the current is no longer Hermitian; instead, it satisfies [Jj(ω)]† =

Jj(−ω). In particular, the z components of the current can be written as

Jzj (ω) = Jj,↑(ω)− Jj,↓(ω), (4.40)

where

Jj,s(ω) =
i

2

∑
s′

τj−1;s,s′

∫
dω′

2π

[
c†j,s(ω

′) cj−1,s′(ω
′ + ω)

− ηsηs′ c†j−1,s(ω
′ − ω) cj,s′(ω

′)
]
, (4.41)

and η↑,↓ = ±1.

Because of the harmonic nature of the precessing magnetization at the j = 0 site, the expecta-
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tion value of the Fourier transform of the spin current can be cast as a sum over multiples of the

oscillation frequency Ω, namely,

〈Jj(ω)〉 = 2π
∑
k

Ij(ωk) δ(ω − ωk), (4.42)

where ωk = kΩ and k is an integer. The stationary (dc) spin current can then be directly related to

the zeroth harmonic component,

〈Jj(t)〉 ≡ lim
T→∞

1

T

∫ t+T

t

dt′ 〈Jj(t′)〉 (4.43)

=
∑
k

Ij(ωk) lim
T→∞

e−iωk(t+T/2) sin
(
ωkT

2

)
ωkT/2

(4.44)

= Ij(0). (4.45)

Spin Pumping in the Absence of a Chain

For the sake of simplicity, we first evaluate the spin current for the case N = 0, when the reservoir

is directly connected to the magnetic site. The study of the zero-length chain gives us some insight

into the behavior of spin pumping currents and serves to guide us in derivations involving finite-

length chains. Following Eq. (4.41), the spin-s component of current in Fourier space reads (the

site index can be dropped)

Js(ω) =
iγ

4π

∫
dω′
[
d†α,s(ω

′) as(ω
′ + ω)− a†s(ω

′ − ω) dα,s(ω
′)
]
, (4.46)
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where γ = γ0 = γα. The equations of motion for the chainless case can be obtained from Eqs.

(4.27) and (4.31),

(ω − Ω‖σ
z) a(ω)−

∫
dω′H1(ω, ω′) a(ω′) = − γ dα(ω), (4.47)

and

dα(ω) = h(ω)− γ grαα(ω) a(ω). (4.48)

We can use Eq. (4.48) to eliminate dα,s from the expression of the spin-s component of the current,

Js(ω) = Jj,s(ω), by replacing cj+1,s with dα,s and cj,s with as in Eq. (4.41),

Js(ω) =
iγ

2

∫
dω′

[
h†s(ω

′) as(ω
′ + ω)− a†s(ω′ − ω)hs(ω

′)
]

− iγ2

∫
dω′ a†s(ω

′) as(ω
′ + ω)× {gaαα(ω′)− grαα(ω′ + ω)} , (4.49)

recalling that [gαα(ω)]∗ = gaαα(ω). We can also substitute Eq. (4.48) into the the right-hand side of

Eq. (4.47) to get

∫
dω′
{
ω σ0 δ(ω − ω′)− [H0 +H1 + Σr] (ω, ω′)

}
a(ω′) = −γ h(ω), (4.50)

where the static and the dynamic parts of Hamiltonian are

H0(ω, ω′) = Ω‖σ
z δ(ω − ω′) (4.51)

and

H1(ω, ω′) = Ω⊥[σ+ δ(ω − ω′ − Ω) + σ− δ(ω − ω′ + Ω)], (4.52)
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respectively. The self energy due to the reservoir is given by

Σr(ω, ω′) = γ2grαα(ω)σ0 δ(ω − ω′) (4.53)

and σ0 denotes the identity operator in spin space. Further simplification is possible by treating the

right-hand side of Eq. (4.50) as a nonhomogeneous term and by writing the magnetic-site particle

operator in terms of the fully-dressed Green’s function of that site,

as(ω) = −γ
∑
s′

∫
dω′Gr

ss′(ω, ω
′)hs′(ω

′), (4.54)

where

∫
dω′′

{
ω σ0 δ(ω − ω′′)− [H0 +H1 + Σr] (ω, ω′′)

}
Gr(ω′′, ω′) = σ0 δ(ω − ω′). (4.55)

Thus, we can express the magnetic-site operator c0,s entirely in terms of the noise-like operator hs.

In the limit of t0 → −∞, it is possible to show that the correlation function for hs(ω) is diagonal

in spin and frequency (see Appendix A),

〈h†s(ω)hs′(ω
′)〉 = δs,s′ δ(ω

′ − ω) Iα(ω), (4.56)

where Iα(ω) = ρα(ω)f(ω) and ρα(ω) is the reservoir’s density of states at the site α,

ρα(ω) = − 1

π
= [grαα(ω)] (4.57)

=
∑
n

|φn(α)|2δ(ω − En). (4.58)

Using Eqs. (4.56) and (4.54), one arrives at the following expression for the expectation value of
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the spin-s component of the current:

〈Js(ω)〉 =
iγ2

2

∫
dω′ {Fs(ω, ω′) + Is(ω, ω′) [grαα(ω′ + ω)− gaαα(ω′)]} , (4.59)

where F and I are functions of the magnetic-site Green’s functions Gr,a, with Ga = (Gr)†,

Fs(ω, ω′) = [Ga
ss(ω

′, ω′ − ω)−Gr
ss(ω

′ + ω, ω′)] Iα(ω′) (4.60)

and

Is(ω, ω′) = γ2

∫
dω′′

∑
s′

Ga
ss′(ω

′′, ω′)Gr
ss′(ω

′ + ω, ω′′)Iα(ω′′). (4.61)

As we argue in Sec. 4, from the perturbative expansion of the Green’s function in powers Ω⊥, we

know that even terms are diagonal in both spin and frequency, while odd terms are only nonzero

when they involve opposite spin indices. Therefore, in general, one can write

Gss(ω, ω
′) = δ(ω − ω′)Ds(ω), (4.62)

leading to

Fs(ω, ω′) = δ(ω)= [Dr
s(ω

′)] Iα(ω′). (4.63)

It is then useful to rewrite Is in terms of same-spin-state and opposite-spin-state Green’s functions,

namely,

Is(ω, ω′) = γ2

∫
dω′′ [Ga

ss(ω
′′, ω′)Gr

ss(ω
′ + ω, ω′′)

+Ga
ss̄(ω

′′, ω′)Gr
ss̄(ω

′ + ω, ω′′)] Iα(ω′′). (4.64)
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Using the Green’s function relation

Gr −Ga = Gr [Σr − Σa] Ga, (4.65)

it is possible to show that the first term in the integrand on the right-hand side of Eq. (4.64) cancels

Fs exactly, leading to

〈Js(ω)〉 = −iγ
4

2

∫
dω′
∫
dω′′Ga

s̄s(ω
′′, ω′)Gr

ss̄(ω
′ + ω, ω′′)

× Iα(ω′′) [gaαα(ω′)− grαα(ω′ + ω)] , (4.66)

which is the central result of this Section.

Following similar steps, one can derive expressions for the other spin components of the current.

The results can be combined into a single expression that generalizes Eq. (4.59), namely,

〈J(ω)〉 =
iγ2

2

∫
dω′

2π
{F(ω, ω′) + I(ω, ω′) [grαα(ω′ + ω)− gaαα(ω′)]} , (4.67)

where

F(ω, ω′) =
∑
s,s′

σss′ [Ga
s′s(ω

′, ω′ − ω)−Gr
s′s(ω

′ + ω, ω′)] Iα(ω′) (4.68)

and

I(ω, ω′) = γ2

∫
dω′′

∑
s,s′,s1

Ga
s1s

(ω′′, ω′)σss′G
r
s′s1(ω

′ + ω, ω′′) Iα(ω′′). (4.69)
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Perturbative Expansion in Ω⊥

In most situations of experimental relevance,[51, 52] the transverse amplitude of time-dependent

field driving the magnetization precession in the FM is much smaller than the longitudinal static

component, resulting in Ω⊥ � Ω‖. We consider this regime and expand the magnetic-site Green’s

function in powers of Ω⊥, namely, in powers of the time-dependent Hamiltonian termH1:

G = G(0) +G(0)H1G
(0) +G(0)H1G

(0)H1G
(0) + . . . . (4.70)

The zeroth-order (static) magnetic-site Green’s function G(0) is obtained by solving Eq. (4.55)

whenH1 is absent, yielding

G
(0)
ss′(ω, ω

′) = δs,s′ δ(ω − ω′)Gs(ω), (4.71)

where

Gs(ω) =
1

ω − ηsΩ‖ − γ2gαα(ω)
(4.72)

and η↑,↓ = ±1. Thus, the zeroth-order Green’s function is diagonal in spin space.

The first-order Green’s function has only off-diagonal spin terms,

G
(1)
↑↑ (ω, ω′) = 0, (4.73)

G
(1)
↑↓ (ω, ω′) = Ω⊥δ(ω

′ − ω − Ω)G
(0)
↑ (ω)G

(0)
↓ (ω + Ω), (4.74)

G
(1)
↓↑ (ω, ω′) = Ω⊥δ(ω

′ − ω + Ω)G
(0)
↓ (ω)G

(0)
↑ (ω − Ω), (4.75)

G
(1)
↓↓ (ω, ω′) = 0, (4.76)

while the second-order Green’s function recovers the spin-diagonal structure of the zeroth-order
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case,

G
(2)
↑↑ (ω, ω′) = Ω2

⊥δ(ω
′ − ω)G

(0)
↑ (ω)G

(0)
↑ (ω)G

(0)
↓ (ω + Ω), (4.77)

G
(2)
↑↓ (ω, ω′) = 0, (4.78)

G
(2)
↓↑ (ω, ω′) = 0, (4.79)

G
(2)
↓↓ (ω, ω′) = Ω2

⊥δ(ω
′ − ω)G

(0)
↓ (ω)G

(0)
↓ (ω)G

(0)
↑ (ω − Ω). (4.80)

The spin dependence of higher order contributions to the Green’s function repeats this pattern:

diagonal for even orders and off-diagonal for odd orders. In addition, even orders are also diagonal

in the frequency variables.

Spin Current Components

From the final expression for the spin-s state component of the current, Eq. (4.66), and the expan-

sion of the Green’s function up to second order in Ω⊥, one finds the following expression for the

z-component of the spin current:

〈Jz(ω)〉 = δ(ω) πγ4 Ω2
⊥

∫
dω′ρα(ω′)

×
[∣∣Gr↑(ω′)∣∣2 ∣∣Gr↓(ω′ + Ω)

∣∣2 Iα(ω′ + Ω)−
∣∣Gr↓(ω′)∣∣2 ∣∣Gr↑(ω′ − Ω)

∣∣2 Iα(ω′ − Ω)
]

+ O(Ω4
⊥). (4.81)
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Since only the zero-frequency component is nonzero, upon returning to the time representation and

utilizing Eq. (4.45), this relation yields a nonzero dc current, namely,

〈Jz(t)〉 =
γ4 Ω2

⊥
2

∫
dω ρα (ω − Ω/2) ρα (ω + Ω/2)

×
∣∣Gr↑ (ω − Ω/2)

∣∣2 ∣∣Gr↓ (ω + Ω/2)
∣∣2 [f (ω + Ω/2)− f (ω − Ω/2)]

+ O(Ω4
⊥), (4.82)

where we have symmetrized the frequency integrand for convenience.

We notice that inverting the static magnetic field and the direction of precession (e.g., Ω→ −Ω and

Ω‖ → −Ω‖) flips the spin of the zeroth-order Green’s function G↑(ω) → G↓(ω). As a result, the

spin current reverses its direction. This is expect on the basis of time-reversal symmetry. Moreover,

at zero precession or zero transverse magnetic field, the spin current vanishes.

Considering now the x component of the integral F in Eq. (4.68), we obtain

F x = −γ
[
Ga
↓↑(ω

′, ω′ − ω)−Gr
↓↑(ω

′ + ω, ω′) + Ga
↑↓(ω

′, ω′ − ω)−Gr
↑↓(ω

′ + ω, ω′)
]
Iα(ω′).

(4.83)

Notice that all terms contain opposite-spin-state Green’s functions, thus vanish in even powers in

Ω⊥ but are Ω-dependent in odd powers of Ω⊥. As a result, in the time domain, F x oscillates and,

upon averaging over one precession period, it vanishes. A similar argument can be used to show

that Ix vanishes as well. Therefore, all transverse components of the spin current vanish when

averaged over time.
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Interface Parameters

The dynamics of the FM magnetization in the adiabatic approximation is governed by the Landau-

Lifshitz-Gilbert (LLG) equation,

dm

dt
= γm×Heff + αm× dm

dt
, (4.84)

where m is the magnetization unit vector, γ is the gyromagnetic ratio, Heff is the effective magnetic

field (including the external magnetic field and the local demagnetization field), and α is the Gilbert

damping parameter. In the absence of any contact between the FM and a NM, the relaxation of the

magnetization ocurrs entirely through processes internal to the FM, which are phenomenologically

acounted for by the parameter α. When a NM is brought in contact with the FM, the magnetization

relaxation can also happen through angular momemtum leaking into the NM as a spin current. To

account for this contribution, consider that the effective magnetic field applied to the FM to be of

the form

Heff = hx(t) x̂ + hy(t) ŷ +H‖ ẑ, (4.85)

where H‖ is the static component of the field while hx and hy are the time-dependent components.

Following the scattering theory of spin pumping,[8] the spin current can be expressed as

Ispin =
1

4π
g↑↓m×

dm

dt
, (4.86)

where the mixing conductance g↑↓ is defined in terms of reflection matrices as

g↑↓ =
∑
m,n

(
δm,n − r↑mnr↓mn

)
, (4.87)
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with the sum taken over transverse conducting channels. Notice the similarity of the right-hand

side of Eq. (4.86) with the The Gilbert damping term in Eq. (4.84). One can absorb the an-

gular momentum leakage contribution on the magnetization relaxation due to the spin current by

substituting α with α′ in Eq. (4.84), where

α′ = α +
gLAr
4πM

. (4.88)

Here, gL is the Landé factor, M is the total (bulk) magnetization of the FM, and Ar = <g↑↓ (in

most practical situations, the imaginary component of the mixing conductance can be neglected).

In the small precessing field approximation, h⊥ =
√
h2
x + h2

y � |H‖|, one can solve the LLG

equation for the stationary solution of the dynamics of magnetization to get

m⊥(t) = |m⊥| e−i(Ωt+δ), (4.89)

where

|m⊥| =
γMh⊥√

(α′MΩ)2 + (γH‖ + Ω)2
(4.90)

and

tan δ =
α′MΩ

γH‖ + Ω
. (4.91)

After substituting m⊥(t) in Eq. (4.86), we arrive at

Izspin =
1

4π
Ω |m⊥|2g↑↓. (4.92)

We can combine this expression with that obtained in Sec. 4 for the spin current in terms of the

system’s Green’s function, Eq. (4.82) to obtain an expression for the mixing conductance in terms

63



of Green’s functions,

g↑↓ =
πJ2γ4

2h̄

∫
dωρ2

α(ω)
∣∣Gr↑(ω)

∣∣2 ∣∣Gr↓(ω)
∣∣2 df(ω)

dω
. (4.93)

In experiments, there are two standard approaches to quantify the spin pummping current and

both are indirect. The first and most common consists of measuring the broadening of the FMR

spectrum and utilizing Eqs. (4.88) and (4.92).[53, 52, 54] The second is to infer the current magni-

tude through the observation of the inverse spin Hall effect (ISHE) in the NM when a sufficiently

strong spin-orbit coupling is present.[55, 56, 57] Although, the latter seems more direct, the rela-

tion between the measured ISHE voltage and the actual spin current depends on various materials

parameters which are often not accurately known.[58] Equation (4.93) provides a useful relation

between the physical properties of medium where the spin current is generated propagates to the

enhanced broadening of FMR due to the angular momentum leakage.

Spin Pumping with a Finite Chain

The formulation developed for the N = 0 chain in Sec. 4 can be extended to a finite-length chain.

The equivalent to the equation of motion (4.50) for the particle operators in the chain can be written

as
N∑
j′=0

∑
s′

∫
dω′Zrj,s;j′,s′(ω, ω′) cj′,s′(ω′) = −γα δj,Nhs(ω), (4.94)

where 0 ≤ j ≤ N and we introduced c0,s ≡ as. The matrix Zr can be split into two contributions,

Zr = Zr0 + Zr1 , (4.95)
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where

[Zr0 ]j,s;j′,s′ (ω, ω′) = δs,s′ δ(ω − ω′)
{
δj,j′ δj,0

[
(ω − Ω‖) δs,↑ + (ω + Ω‖) δs,↓

]
+ (ω − Vj,s) δj,j′ − δj,j′ δj,N γ2

α g
r
αα(ω)

}
+ δ(ω − ω′) (δj,j′+1 τj−1;s,s′ + δj,j′−1 τj;s,s′) . (4.96)

and

[Zr1 ]j;j′ (ω, ω′) = δj,0 δj′,0 Ω⊥
[
σ+δ(ω′ − ω − Ω) + σ−δ(ω′ − ω + Ω)

]
. (4.97)

Let us define the retarded Green’s function of the finite chain as Gr ≡ (Zr)−1. We can then solve

Eq. (4.94) for the particle operator and write

cj,s(ω) = −γα
∑
s′

∫
dω′Gr

j,s;N,s′(ω, ω
′)hs′(ω

′), (4.98)

where 0 ≤ j ≤ N . The Green’s function can be expanded in powers of Ω⊥ similarly to Eq. (4.70).

Since Z(0) is diagonal in frequency, one can write the zeroth order term as

G
(0)
j,s;j′;s′(ω, ω

′) = δ(ω − ω′)Gj,s;j′,s′(ω). (4.99)

Using this expression, the first-order contribution is found to be

G
(1)
j,s;j′,s′(ω, ω

′) = Ω⊥ [Gj,s;0,↑(ω)G0,↓;j′,s′(ω + Ω) δ(ω′ − ω − Ω)

+ Gj,s;0,↓(ω)G0,↑;j′,s′(ω − Ω) δ(ω′ − ω + Ω)] . (4.100)
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Similarly, for the second-order contribution we have

G
(2)
j,s;j′,s′(ω, ω

′) = Ω2
⊥ [δ(ω′ − ω − 2Ω)Gj,s;0,↑(ω)G0,↓;0,↑(ω + Ω)G0,↓;j′s′(ω

′)

+ δ(ω′ − ω + 2Ω)Gj,s;0,↓(ω)G0,↑;↓,0(ω − Ω)G0,↑;j′s′(ω
′)

+ δ(ω′ − ω)Gj,s;0,↑(ω)G0,↓;0,↓(ω + Ω)G0,↑;j′s′(ω
′)

+ δ(ω′ − ω)Gj,s;0,↓(ω)G0,↑;0,↑(ω − Ω)G0,↓;j′s′(ω
′)] . (4.101)

Notice that in the absence of spin-orbit coupling in the chain, G0,↓;↑,0 = G0,↑;↓,0 = 0 and the inelastic

(off diagonal in frequency) contribution to the second-order Green’s function vanishes.

Current in the Presence of Spin-Orbit Coupling

If electrons experience no spin scattering in the chain, the spin s-state current flows homogeneously

from the magnetic site, along the chain, and into the reservoir without spin-orbit coupling. Thus,

It can be shown that the spin current will remain the same as Eq. (4.82).

When spin-orbit is present, the spin current will vary along the chain. In this case, one is required

to use Eq. (4.39) to compute the three components of the spin current at a given site j. Let us

focus on the z component. Substituting Eq. (4.98) and its Hermitian conjugate into Eq. (4.39), we

obtain

Jzj (ω) =
iγ2
α

4π

∫
dω′
∫
dω′′

∫
dω′′′

× h†(ω′′)
[
Ga
N ;j(ω

′′, ω′)σzτ j−1G
r
j−1;N(ω′ + ω, ω′′′)

− Ga
N ;j−1(ω′′, ω′ − ω) τ j−1 σ

zGr
j;N(ω′, ω′′′)

]
h(ω′′′), (4.102)

where 0 ≤ j ≤ N and Gr(a)
j;j′ denotes the 2 × 2 retarded (advanced) Green’s function connecting
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sites j and j′. Using the correlation function introduced in Eq. (4.56), we can take the expectation

value of Eq. (4.102) to obtain

〈
Jzj (ω)

〉
=
iγ2
α

4π

∫
dω′
∫
dω′′Iα(ω′′)

× tr
[
Ga
N ;j(ω

′′, ω′)σzτ j−1G
r
j−1;N(ω′ + ω, ω′′)

− Ga
N ;j−1(ω′′, ω′ − ω) τ j−1 σ

zGr
j;N(ω′, ω′′)

]
. (4.103)

where the trace is over spin variables. Equation (4.103) is one of the main results of this paper.

It provides a framework for computing the z component of the spin current at any site within the

chain that connects the magnetic site and the reservoir. Unfortunately, any further simplification

of this expression is daunting. Similarly to the case where the reservoir is connected directly to the

magnetic site, Sec. 4, we can use the perturbative expansion of the Green’s function in powers of

Ω⊥. The result is still rather involved if the spin-dependent hopping amplitude τ is kept general

and is not presented here.

A more compact expression can be obtained for the spin current between the last site of the chain

and the reservoir, even in the presence of a general spin-orbit hopping amplitude. For that purpose,

we take a step back, set j = α in Eq. (4.39), and consider the z component of the spin current

operator,

Jzα(ω) =
iγα
4π

∫
dω′
∑
s

ηs

[
d†s(ω

′) cN,s(ω
′ + ω) c†N,s(ω

′ − ω) ds(ω
′)
]
.

Using Eqs. (4.31) and (4.98), taking the expectation value, and using Eq. (4.56), we can rewrite
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Eq. (4.104) as

〈Jzα(ω)〉 = −iγ
2
α

4π

∫
dω′
∑
s

ηs

{
Iα(ω′)

[
Gr
N,s;N,s(ω

′ + ω, ω′)−Ga
N,s;N,s(ω

′, ω′ − ω)
]

(4.104)

− γ2
α

∫
dω′′

∑
s′

Iα(ω′′) [grαα(ω′)− gaαα(ω′ + ω)]Ga
N,s′;N,s(ω

′′, ω′)Gr
N,s;N,s′(ω

′ + ω, ω′′)
}
.

The absence of a spin-dependent hopping amplitude in Eq. (4.104) makes it more amenable to an

analytical treatment. Focusing on the dc component of the spin current, as shown in Eqs. (4.42)

and (4.45), we expand the Green’s function harmonics of the precessing frequency Ω, namely,

G(ω, ω′) = δ(ω′ − ω)D0(ω) +
∑
k 6=0

δ(ω′ − ω − kΩ)Dk(ω). (4.105)

Inserting this expansion into Eq. (4.104) and keeping only the terms corresponding to the dc limit,

we obtain

〈Jzα(ω)〉dc = −iγ
2
α

4π
δ(ω)

∫
dω′
∑
s

ηs

{
Iα(ω′)

[
Dr

0;N,s;N,s(ω
′)−Da

0;N,s;N,s(ω
′)
]

− γ2
α [grαα(ω′)− gaαα(ω′)] Iα(ω′)

∑
s′

Dr
0;N,s;N,s′(ω

′)Da
0;N,s′;N,s(ω

′)

− γ2
α [grαα(ω′)− gaαα(ω′)]

∑
k 6=0

Iα(ω′ + kΩ)
∑
s′

Dr
k;N,s;N,s′(ω

′)Da
−k;N,s′;N,s(ω

′ + kΩ)
}
.

(4.106)

We can now use the relations

Gr −Ga = [Zr]−1 − [Za]−1 = Gr (Za − Zr)Ga, (4.107)
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where

[Za − Zr]j,s;j′,s′ (ω, ω′) = −γ2
α δj,j δj,N δs,s′ δ(ω − ω′) [gaαα(ω)− grαα(ω)] , (4.108)

to find

Dr
0;N,s;N,s(ω)−Da

0;N,s;N,s(ω) = γ2
α [grαα(ω)− gaαα(ω)]

∑
s′

Dr
0;N,s;N,s′(ω)Da

0;N,s′,N,s(ω)

+ γ2
α

∑
k 6=0

[grαα(ω + kΩ)− gaαα(ω + kΩ)]

×
∑
s′

Dr
k;N,s;N,s′(ω)Da

−k;N,s′,N,s(ω + kΩ). (4.109)

Combing Eqs. (4.106) and (4.109), recalling that grαα(ω)−gaαα = −2πiρα(ω) and using Eq. (4.57),

we arrive at

〈Jzα(ω)〉dc =− γ4
α

2
δ(ω)

∫
dω′
∑
k 6=0

ρα(ω′) ρα(ω′ + kΩ) [f(ω′)− f(ω′ + kΩ)]

×
∑
s,s′

ηsD
r
k;N,s;N,s′(ω

′)Da
−k;N,s′,N,s(ω

′ + kΩ). (4.110)

Symmetrizing the frequency integration, we finally obtain the following expression for the dc spin

current at the interface with the reservoir:

〈Jzα(t)〉 =
γ4
α

2

∫
dω
∑
k>0

ρα(ω + kΩ/2) ρα(ω − kΩ/2) [f(ω + kΩ/2)− f(ω − kΩ/2)]

× tr
{
σz
[
Dr
k;N ;N(ω − kΩ/2)Da

−k;N ;N(ω + kΩ/2)

− Dr
−k;N ;N(ω + kΩ/2)Da

k;N ;N(ω − kΩ/2)
]}
, (4.111)

where the trace is over spin indices. Notice that in the limit of zero pumping frequency (Ω → 0),

the spin current goes to zero.
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At this point, we can go back to the perturbative expansion of the Green’s functions in powers of

Ω⊥ and notice the following:

D−1;j,s;j′,s′(ω) = Ω⊥ Gj,s;0,↓(ω)G0,↑;j′,s′(ω − Ω) + O(Ω3
⊥), (4.112)

and

D1;j,s;j′,s′(ω) = Ω⊥ Gj,s;0,↑(ω)G0,↓;j′,s′(ω + Ω) + O(Ω3
⊥). (4.113)

Since Dk ∼ O(Ωk
⊥), by keeping only the leading term in powers of Ω⊥ we obtain

〈Jzα(t)〉 =
γ4
α Ω2
⊥

2

∫
dω ρα(ω + Ω/2) ρα(ω − Ω/2) [f(ω + Ω/2)− f(ω − Ω/2)]

×
∑
s,s′

ηs

[∣∣GrN,s;0,↑(ω − Ω/2)
∣∣2 ∣∣Gr0,↓;N,s′(ω + Ω/2)

∣∣2
−
∣∣GrN,s;0,↓(ω + Ω/2)

∣∣2 ∣∣Gr0,↑;N,s′(ω − Ω/2)
∣∣2]+ O(Ω4

⊥). (4.114)

It is straightforward to verify that setting N = 0 in Eq. (4.114) leads to Eq. (4.82). Notice that for

Ω� T, µ, the current is proportional to Ω,

〈Jzα(t)〉 ≈ γ4
α Ω2
⊥Ω

2

∫
dω [ρα(ω)]2

[
df(ω)

dω

]
∑
s,s′

ηs

[∣∣GrN,s;0,↑(ω)
∣∣2 ∣∣Gr0,↓;N,s′(ω)

∣∣2 − ∣∣GrN,s;0,↓(ω)
∣∣2 ∣∣Gr0,↑;N,s′(ω)

∣∣2] . (4.115)

To illustrate the results obtained so far, we performed numerical calculations of the chain Green’s

function for chains of various lengths in the presence and absence of spin-dependent on-site po-

tentials.
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Figure 4.5: (upper panel) Spin-diagonal components of the Green’s function across the chain,
GN,s;0,s, in a clean (translation invariant) chain in the absence of spin-orbit coupling as a function
of energy. (lower pannel) The dependence of the z-component of the spin current on the reservoir’s
Fermi energy. Both plots were obtained using parameters value such that γ2

αΩ2
⊥Ω = 2.

In Fig. 4.5, the spin-diagonal components of the Green’s function across the chain, G(0)
N,s;0,s(E),

and the total spin pumping current, 〈Jzα(E)〉, are plotted as functions of energy. A constant spin

current over energy confirms that, in the absence of spin-scattering centers, the chain is a spin-

degenerate ballistic propagating channel so long as the energy E is within the energy band. In this

case, the spin current is independent of the length of the chain.
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Figure 4.6: (left)Diagonal spin component of the Green’s function across the chain, GN,↑;0,↑, as a
function of energy, in the presence of a random spin-dependent site potential. The chain lenght is
300 sites and the Green’s function is averaged over 10 and 50 realizations of the random potential.
(right) The off-diagonal spin component of the Green’s function, GN,↑;0,↓.

Figures 4.6 show the energy dependence of the spin components of the chain’s average Green’s

function when spin-polarized impurities are introduced but no spin-dependent hopping is present.

In these simulation,N = 200 and Vj = axjσ
x+azjσ

z , where the amplitudes axj and azj are randomly

and uniformly chosen in the intervals [0, 0.01t] and [0, 0.05t], respectively. Here t denotes the

hopping amplitude in the lattice.

The dependence of the average dc spin pumping current on the length of the chain is shown in Fig.

4.7 for the same random spin-dependent potential. Even after averaging over 300 samples, oscil-

lations over the length due to interference remains. However, a clear exponential decay emerges,

with a decay length of 4.5, 2.7, and 2.4 lattice units for the three increasing disorder ranges of ax

shown in the plot.
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Figure 4.7: Average dc spin current current injected into the reservoir as a function of chain length
in the presence of spin-dependent, random on-site potential. The data points are obtained after
averaging over 300 samples to minimize quantum interference fluctuations. The solid lines are
fittings to the data. The field az varied within the range [0, 0.1t] while the ax field range changed
for each data set, as indicated in the legend. The simulations are performed at E = 0 (middle of
the band).

Extension to Two-Dimensional Systems

The spin pumping formulation developed in Secs. 4, 4, and 4 can be extended to 2D systems.

To do so, we imagine the magnetic region as a column of magnetic sites whose magnetizations

precess in synchronized way, corresponding to a single magnetic domain. The two-dimensional

nonmagnetic region is sliced into N columns and connected to a reservoir, see Fig. 4.8. We keep

the same notation used for the one-dimensional finite-chain case and write the Hamiltonians of the

different regions as

Hmag = −J
2
M(t)a† (σ ⊗ IM) a (4.116)
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for the magnetic region,

Hsheet = −
N−1∑
j=1

(
c†j+1 τ j cj + c†j τ

†
j cj+1

)
+

N∑
j=1

c†j Vj cj (4.117)

for the nonmagnetic region, and

Hres = −
∑
λ,η

∑
s

Tλη d
†
λ,s dη,s (4.118)

for the reservoir. The Hamiltonians describing the coupling between magnetic and nonmagnetic

regions (hereafter referred as sheet), and between the nonmagnetic region and the reservoir are

given by

Hmag−sheet = −
(
a† γ0 c1 + c†1 γ

†
0 a
)

(4.119)

and

Hsheet−res = −
(
c†N γα dα + d†α γ

†
α cN

)
, (4.120)

respectively, where a† =

(
a1 a2 . . . aM

)
is the particle operator at the column containing the

magnetic region (j = 0), γ0 is a 2L× 2L matrix that describes the coupling between the magnetic

region and the sheet, c†j =

(
cj,1 cj,2 . . . cj,dj

)
is the particle operator at the jth sheet slice,

which is connected to the neighboring j + 1-th slice by the matrix τ i, dj is the number of sites

in jth slice, and γα is coupling matrix between the N th sheet slice and the reservoir. Finally, the

particle operator acting on the sites in reservoir that are connected directly to the sheet is given by

d†α =

(
dα,1 dα,2 . . . dα,dα

)
.
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Figure 4.8: The two-dimensional FM/NM/reservoir system. The magnetic region comprises a
column of sites whose magnetizations are synchronized. The nonmagnetic sheet is decomposed in
N slices.

The equations of motion read

ȧ(t) = iΩ‖(σz ⊗ IM)a(t) + iΩ⊥
[
(σ+ ⊗ IM) eiΩt + (σ− ⊗ IM) e−iΩt

]
a(t) + iγ0 c1(t),(4.121)

ċ1(t) = −iV1 + iγ†0 a+ iτ 1 c2(t), (4.122)

...

ċj(t) = −iVj + iτ †j−1 cj−1 + iτ j cj+1(t), (4.123)

...

ċN(t) = −iVN + iτ †N cN−1(t) + iγα dα(t), (4.124)

and

ḋα(t) = iγα cN(t) + i
∑
ν

Tαν dν(t). (4.125)

The Fourier transforms of the equations of motion result in expressions similar those obtained in
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Sec. 4, namely,

[
(ωσ0 − Ω‖σz)⊗ IM

]
a(ω)−

∫
H1(ω, ω′)a(ω) = −τM c1(ω), (4.126)

ω c1(ω) = V1 − γ†0 a− τ1 c2(ω), (4.127)

...

ω cj(ω) = Vj − τ †j−1 cj−1 − τ j cj+1, (4.128)

...

ω cN(ω) = VN − τ †N−1 cN−1 − γα dα, (4.129)

and

dα(ω) = h(ω)− grααγ†α(ω) cN(ω), (4.130)

where h is a vector with dimension of the surface sites α in the reservoir and the Green’s function

of the decoupled reservoir for slice α reads

[grαα]i,i′ (t− t′) = −iθ(t− t′)
∑
n

φ∗n(αi)φn(αi′) e
−iEn(t−t′). (4.131)

In order to expand the Green’s function in powers of Ω⊥, we notice that, in spin space,

H′j,j′ = δj,j′ δj,0 Ω⊥

 0 δ(ω′ − ω − Ω)

δ(ω′ − ω + Ω) 0

 , (4.132)

which leads us to analogous relations to those derived in Sec. 4 for the finite chain.

In order to calculate the spin current along the sheet, we can use an expression identical to that

76



introduced in Sec. 4, namely,

Jzj (ω) =
i

2

∫
dω′

2π

[
c†j(ω

′)
(
σz ⊗ Idj

)
τ †j−1 cj−1(ω′ + ω)

− c†j−1(ω′ − ω) τ †j−1

(
σz ⊗ Idj

)
cj(ω

′)
]
. (4.133)

The only difference between this relation and Eq. (4.39) is that here there is an implicit sum over

transverse sites. Using the orthogonality relation of h(ω) one can derive an expression for the

expectation value of the total spin current between the (j − 1)th and jth slices as

〈
Jzj (ω)

〉
=

i

4π

∫
dω′
∫
dω′′Tr [Mss′(ω, ω

′, ω′′)] (4.134)

where the trace is over spin and transvese site variables,

Mss′(ω, ω
′, ω′′) =

[
γ†αG

a
N ;j(ω

′′, ω)(σz ⊗ Idj)τ †j−1G
r
j−1;N(ω + ω′, ω′′)γαI(ω′′)

− γ†αGa
N ;j−1(ω′′, ω)τ j−1(σz ⊗ Idj)Gr

j−1;N(ω + ω′, ω′′)γαI(ω′′)
]

(4.135)

and Gr(a)
j,j′ denotes the 2dj × 2dj′ retarded (advanced) Green’s function connecting the j and j′

slices. A detailed derivation of Eq. (4.134) is provided in Appendix A. Equations (4.134) and

(4.135) are also main results of this paper.

Similar to the 1D chain, we can go further to calculate the current at the chain-reservoir interface

and expand the Green’s function harmonics of the precessing frequency Ω,

G(ω, ω′) = δ(ω′ − ω)D0(ω) +
∑
k 6=0

δ(ω′ − ω − kΩ)Dk(ω), (4.136)
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to derive

〈Jzα(t)〉 =
1

2

∫
dω
∑
k 6=0

[f(ω + kΩ)− f(ω)]

× Tr
[
ρα(ω + kΩ)γαD

r
k;N ;N(ω′)γ†α(σz ⊗ IL)ρα(ω)γαD

a
−k;N ;N(ω′ + kΩ)γ†α

]
(4.137)

The formalism developed in this section has several advantages over the scattering formulation:

(i) The detailed geometry of the FM/NM systems and physical properties of the NM can be taken

into account by computing the appropriate Green’s function. (ii) Since the final expression for the

spin current is written in terms of the surface Green’s functions, the recursive Green’s function

technique [27] can be utilized for an efficient computational approach to the problem. (iii) Further-

more, since a spatial representation of the system is used in this formalism, systems with higher

dimension and arbitrary geometry can be readily simulated.

Summary and Discussion

In this Chapter we developed an atomistic model of spin pumping in hybrid ferromagnetic het-

erostructures. The spin current expression is given in terms of the Green’s function of the nonmag-

netic portion. Motivated by the fact that, in experimental settings, the time-dependent component

of the driving magnetic field is small and slow, we use a pertubative expansion to obtain a relation

between the mixing conductance and the physical properties of spin-carrying medium. Among the

advantages of this formalism are: (i) it provides a framework for including the atomic structure and

geometry of the heterostructure, as well as local disorder and spin-orbit coupling mechanism; (ii)

it yields an expression for the spin current in terms of Green’s function, which can be computed

using efficient recursive computational methods; (iii) it allows to model spin relaxation and the

ferromagnet-nonmagnetic metal interface; and (iv) when applied to graphene, it is not limited to
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high doping.

In a future work we plan to apply this new computational tool to study dynamical spin injec-

tion in realistic ferromagnet-graphene heterostructures, and to extend the calculations to include

a determination of the spin-Hall voltage across the graphene channel when spin-orbit coupling is

included.
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APPENDIX A: SUPPLEMENTARY MATERIALS

80



Reservoir Green’s Function

The retarded Green’s function of the decoupled reservoir is defined as

grλη(t, t
′) = −iθ(t− t′)〈{d†λ(t), dη(t′)}〉. (A.1)

Expanding the field operators in terms of single-particle energy eigenfunctions

dλ(t) =
∑
n

φn(λ) dn(t) =
∑
n

φn(λ) e−iEnt dn(0), (A.2)

the retarded Green’s function of reservoir can be written as

grλη(t, t
′) = −iθ(t− t′)

∑
n

φ∗m(λ)φn(η) eiEn(t−t′). (A.3)

Noise-Like Correlator

We can rewrite the correlation function of the noise-like term in frequency space in terms of the

fermionic operators in time using Eq (4.19),

〈
h†s(ω)hs′(ω

′)
〉

=

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ e−i(ωt−ω
′t′)
〈
h†α(t)hα′(t′)

〉
(A.4)

=
∑
η,η′

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ e−i(ωt−ω
′t′)
[
grαη(t− t0)

]∗
grαη′(t

′ − t0)

×
〈
d†η,s(t0) dη′,s′(t0)

〉
. (A.5)
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After substituting the expansion of decoupled reservoir’s Green’s function in term of the reservoir’s

eigenfunction, Eq. (4.20), we get

〈
h†s(ω)hs′(ω

′)
〉

=
∑
η,λ

∑
n,m

φn(α)φ∗n(η)φ∗m(α)φm(η′)
〈
d†η,s(t0) dη′,s′(t0)

〉
×
∫ ∞
t0

dt e−i(ω−En)t

∫ ∞
t0

dt′ e−i(Em−ω
′)t′ . (A.6)

Using the reservoir’s eigenfunction basis,

dη,s(t0) =
∑
n

φn(η) dn,s(t0), (A.7)

and the orthogonality of the reservoir’s eigenfunctions, we obtain

〈
h†s(ω)hs′(ω

′)
〉

=
∑
n,m

φn(α)φ∗m(α)
〈
d†n,s(t0) dm,s′(t0)

〉
×
∫ ∞
t0

dt e−i(ω−En)t

∫ ∞
t0

dt′ e−i(Em−ω
′)t′ . (A.8)

Using Eq. (4.21) and taking the limit t0 → −∞ we arrive at Eq. (4.56).

For 2D systems, the correlation function 〈h†s1(ω1)hs2(ω2)〉 can be obtained in the same way:

〈h†s1,i1(ω1)hs2,i2(ω2)〉 =

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 e
−i(ω1t1−ω2t2) 〈h†s1,i1(t1)hs2,i2(t2)〉 (A.9)

=
∑
η1,η2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 e
−i(ω1t1−ω2t2)

[
grαi1η1(t1 − t0)

]∗
grαi2η2(t2 − t0)

×〈d†η1,s1(t0) dη2,s2(t0)〉 (A.10)

=
∑
η1,η2

∑
n1,n2

φn(αi1)φ
∗
n1

(η1)φ∗n2
(αi2)φ

∗
n2

(η2) 〈d†η1,s1(t0) dη2,s2(t0)〉

×
∫ ∞
t0

dt1 e
−i(ω1−En1 )t1

∫ ∞
t0

dt2 e
−i(En2−ω2)t2 . (A.11)
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Using the orthonormal set of eigenfunctions of the reservoir,

dη,s(t0) =
∑
n

φn(η) dn,s(t0), (A.12)

we can write

〈h†s1,i1(ω1)hs2,i2(ω2)〉 =
∑
n1,n2

φn1(αi1)φ
∗
n2

(αi2)〈d†n1,s1
(t0) dn2,s2(t0)〉

×
∫ ∞
t0

dt1 e
−i(ω1−En1 )t1

∫ ∞
t0

dt2 e
−i(En2−ω2)t2 (A.13)

= δ(ω1 − ω2) δs1,s2
∑
n1

φn1(αi1)φ
∗
n1

(αi2) δ(ω1 − En1) (A.14)

when we set t0 →∞. We finally arrive at

〈h†s1(ω1)hs2(ω2)〉 = δs1,s2 δ(ω1 − ω2) Iα(ω1), (A.15)

where Iα(ω) = ρα(ω)f(ω) and ρα(ω) is the density of states matrix at the α slice,

[ρα]i1,i2 =
∑
n1

∑
n1

φn1(αi1)φ
∗
n1

(αi2) δ(ω1 − En1). (A.16)
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s-Component of the Spin Current

Substituting Eq. (4.48) into Eq. (4.46), we obtain

〈Js(ω)〉 =
iγ

2

∫
dω′

2π

〈{
h†s(ω

′)− γ [grαα(ω′)]
∗
a†s(ω

′)
}
as(ω

′ + ω)

− a†s(ω
′) [hs(ω

′ + ω)− γgrαα(ω′ + ω)as(ω
′ + ω)]

〉
=

iγ

2

∫
dω′

2π

([〈
h†s(ω

′)as(ω
′ + ω)

〉
− 〈a†s(ω′)hs(ω′ + ω)〉

]
− γ〈a†s(ω′)as(ω′ + ω)〉

{
[grαα(ω′)]

∗ − grαα(ω′ + ω)
})
. (A.17)

Employing Eq. (4.54), we can derive the following relations:

〈h†s(ω′) as(ω)〉 = −γ Gr
ss(ω, ω

′) Iα(ω′), (A.18)

〈a†s(ω′)hs(ω′ + ω)〉 = −γ Gr
ss(ω

′, ω′ + ω) I(ω′ + ω), (A.19)

and

〈a†s(ω′) as(ω)〉 = γ2
∑
s′

∫
dω′′[Gr

ss′(ω
′, ω′′)]∗Gr

ss′(ω, ω
′′) Iα(ω′′). (A.20)

Putting these relations together with Eq. (A.17) one arrives at Eq. (4.59).
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Spin Current for 2D Systems

The fermionic particle operator in terms of the system Green’s function reads

c†js(ω) = −
∑
s′;m,n

dω′h†ns′(ω1) γ∗n,m

×
[
GN,m,s′;j,1,s(ω1, ω) GN,m,s′;j,2,s(ω1, ω) . . . GN,m,s′;j,dj ,s(ω1, ω),

]
(A.21)

where dj is the number of sites in the slice j. After substituting it into the current expression

Jzj (ω) =
i

2

∫
dω′

2π

[
c†j(ω

′)
(
σz ⊗ Idj

)
τ †j−1 cj−1(ω′ + ω)− c†j−1(ω′) τ j−1

(
σz ⊗ Idj

)
cj(ω

′ + ω)
]
,

(A.22)

the expectation value of the first term in Eq. (A.22) becomes

i

2

∫
dω′

2π

∑
s1,s2

∑
n,n′;m,m′

∫
dω1γ

∗
m′,m

[
GaN,m,s1;j,1(ω1, ω) GaN,m,s1;j,2(ω1, ω) . . . GaN,m,s1;j,dj

(ω1, ω)

]

×
[
(σz ⊗ Idj )τ †j−1

] ∫
dω2



Grj−1,1;N,n,s2
(ω′ + ω, ω2)

Grj−1,2;N,n,s2
(ω′ + ω, ω2)

...

Grj−1,dj ;N,n,s2
(ω′ + ω, ω2)


γn,n′〈h†m′,s1

(ω1)hn′,s2(ω2)〉. (A.23)

By applying the hm,s(ω) correlator we find

〈Jzj (ω〉 =
i

2

∫
dω′

2π

∫
dω1Tr

[
γ†αG

a
N ;j(ω1, ω)(σz ⊗ Idj )τ †j−1G

r
j−1;N (ω + ω′, ω1)γαI(ω1)

]
− i

2

∫
dω′

2π

∫
dω1Tr

[
γ†αG

a
N ;j−1(ω1, ω)τ j−1(σz ⊗ Idj )Gr

j−1;N (ω + ω′, ω1)γαI(ω1)
]
.

(A.24)

85



We can follow the same approach to calculate the current at the chain-reservoir interface:

Jzα(ω) =
i

2

∫
dω′

2π

[
d†(ω′)(σz ⊗ IL)γαcN (ω′ + ω)− c†N (ω′)γ†α(σz ⊗ IL)ds(ω

′ + ω)
]
. (A.25)

The current expression can be written as

Jzα(ω) =
i

2

∫
dω′

2π

{[
h†(ω′)− c†N (ω′)γ†αg

a
αα(ω′)

]
(σz ⊗ IL)γαcN (ω′ + ω)

− c†N (ω′)γ†α(σz ⊗ IL)
[
h(ω′ + ω)− grαα(ω′ + ω)γαcN (ω + ω′)

]}
, (A.26)

which can be simplified to

Jzα(ω) =
i

2

∫
dω′

2π

[
h†(ω′)(σz ⊗ IL)γαcN (ω′ + ω)− c†N (ω′)γ†α(σz ⊗ IL)h(ω′ + ω)

]
− i

2

∫
dω′

2π
c†N (ω′)γ†α

[
gaαα(ω′)− grαα(ω′ + ω)

]
(σz ⊗ IL)γαcN (ω + ω′). (A.27)

After substituting the fermionic operator in terms of the system’s Green’s function, the expectation value of

the spin current becomes

〈Jzα(ω)〉 =
i

2

∫
dω′

2π

{
Tr
[
Iα(ω′ + ω)γα(σz ⊗ IL)Ga

N ;N (ω′, ω′ + ω)γ†α

]
− Tr

[
Iα(ω′)γα(σz ⊗ IL)Gr

N ;N (ω′ + ω, ω′)γ†α

]}
+

i

2

∫
dω′

2π
Tr
{
Iα(ω′′)γαG

a
N ;N (ω′, ω′′)γ†α

[
grαα(ω′ + ω)− gaαα(ω′)

]
× (σz ⊗ IL)γαG

r
N ;N (ω′ + ω, ω′′)γ†α

}
(A.28)

Similar to the 1D case, we expand the Green’s function in terms of the frequency difference,

G(ω, ω′) = δ(ω′ − ω)D0(ω) +
∑
k 6=0

δ(ω′ − ω − kΩ)Dk(ω), (A.29)
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and following the same approach used in the 1D case, we get

〈Jzα〉 =
i

2
δ(ω)

∫
dω′

2π
Tr
{
Iα(ω′)γα(σz ⊗ IL)

[
Da

0;N ;N (ω′)−Dr
0;N ;N (ω′)

]
γ†α

}
+
i

2
δ(ω)

∫
dω′

2π
Tr
{
Iα(ω′)γαD

a
0;N ;N (ω′)γ†α

[
grαα(ω′)− gaαα(ω′)

]
(σz ⊗ IL)γαD

r
0;N ;N (ω′)γ†α

}
+
i

2
δ(ω)

∫
dω′

2π

∑
k 6=0

Tr
{
Iα(ω′ − kΩ)γαD

a
k;N ;N (ω′ − kΩ)γ†α

[
grαα(ω′)− gaαα(ω′)

]
× (σz ⊗ IL)γαD

r
−k;N ;N (ω′)γ†α

}
(A.30)

which leads to

〈Jzα〉 = − i
2
δ(ω)

∫
dω′

2π

∑
k 6=0

Tr
{
Iα(ω′)γαD

r
k;N ;N (ω′)γ†α

[
grαα(ω′ + kΩ)− gaαα(ω′ + kΩ)

]
× (σz ⊗ IL)γαD

a
−k;N ;N (ω′ + kΩ)γ†α

}
+
i

2
δ(ω)

∫
dω′

2π

∑
k 6=0

Tr
{
Iα(ω′ + kΩ)γαD

r
k;N ;N (ω′)γ†α

[
grαα(ω′)− gaαα(ω′)

]
× (σz ⊗ IL)γαD

a
−k;N ;N (ω′ + kΩ)γ†α

}
,

(A.31)

leading to

〈Jzα(t)〉 =
1

2

∫
dω
∑
k 6=0

[f(ω + kΩ)− f(ω)]

×Tr
[
ρα(ω + kΩ)γαD

r
k;N ;N (ω′)γ†α(σz ⊗ IL)ρα(ω)

γαD
a
−k;N ;N (ω′ + kΩ)γ†α

]
. (A.32)
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