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ABSTRACT 

Two-photon absorbing (2PA) materials has been widely studied for their highly localized 

excitation and nonlinear excitation efficiency. Application of 2PA materials includes 

fluorescence imaging, microfabrication, 3D data storage, photodynamic therapy, etc. Many 

materials have good 2PA photophysical properties, among which, the fluorenyl structure and its 

derivatives have attracted attention with their high 2PA cross-section and high fluorescence 

quantum yield. 

 Herein, several compounds with 2PA properties are discussed. All of these compounds 

contain one or two fluorenyl core units as part of the conjugated system. The aim of this 

dissertation is to discuss the application of these compounds according to their photophysical 

properties. In chapters 2 to 4, compounds were investigated for cell imaging and tissue imaging. 

In chapter 5, compounds were evaluated for photodynamic therapy effects on cancer cells. 

Chapters 2 and 3 detail compounds with quinolizinium and pyran as core structures, 

respectively. Fluorene was introduced into structures as substituents. Quinolizinium structures 

exhibited a large increase in fluorescence when binding with Bovine Serum Albumin (BSA). 

Further experiments in cell imaging demonstrated a fluorescence turn-on effect in cell 

membranes, indicating the possibility for these novel compounds to be promising membrane 

probes. Pyran structures were conjugated with arginylglycylaspartic acid peptide (RGD) to 

recognize integrin and introduced in cells and an animal model with tumors. Both probes showed 

specific targeting of tumor vasculature. Imaging reached penetration as deep as 350 μm in solid 

tumors and exhibited good resolution. These results suggest the RGD-conjugated pyran structure 

should be a good candidate probe for live tissue imaging. 
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Chapter 4 applied a fluorene core structure conjugated with RGD as well. Application of 

this fluorenyl probe compound is in wound healing animal models. Fluorescence was collected 

from vasculature and fibroblasts up to ≈ 1600 μm within wound tissue in lesions made on the 

skin of mice. The resolution of images is also high enough to recognize cell types by 

immunohistochemical staining. This technology can be applied for reliable quantification and 

illustration of key biological processes taking place during tissue regeneration in the skin. 

Chapter 5 describes three fluorenyl core structures with photoacid generation properties. 

One of the structures showed excellent photo-induced toxicity. Cancer cells underwent necrotic 

cell death due to pH decrease in lysosomes and endosomes, suggesting a new mechanism for 

photodynamic therapy. 
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CHAPTER 1. BACKGROUND 

 

1.1 Two-Photon Absorption Mechanism 

Molecules can be excited to a higher energy electronic state from the ground state by 

absorption of photons. One molecule can usually be excited by one photon that has similar 

energy with its energy gap between the highest occupied molecular orbital and the lowest 

unoccupied molecular orbital. However, molecules exposed to high intensity light can also 

undergo near simultaneous absorption of two photons. The combined energy of the two photons 

can also access a stable excited state of the molecule.
1
 This process is referred to as two-photon 

absorption (2PA). 

Because of the demands of both a spatial and temporal overlap of two incident photons to 

undergo a 2PA, it can generate precisely localized photoexcitation. Therefore, 2PA has attracted 

significant attention for different applications, including bioimaging
2-4

, photodynamic therapy 
5-7

, 

3D data storage
8-10

, etc.  

 

1.2 Two-Photon Fluorescence Microscopy 

1.2.1 Two-Photon Fluorescence Microscopy Introduction 

Two-photon fluorescence microscopy (2PFM) has been widely used in bioimaging of 

cells and tissues. In traditional one-photon microscopy, incident light is absorbed predominantly 

at the surface following an exponential absorption profile. On the other hand, the extreme 

localized two-photon excitation allows for direct optical excitation below the surface at the focus 
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(Figure 1-1).
11

 The precise localization can eliminate additional background excitation, and also 

prevent photobleaching and photodamage of surroundings. These advantages can help produce 

images with better contrast and higher resolution. 

 

 

Figure 1-1. One-photon and two-photon microscopy excitation. 

 

Besides, 2PFM applies longer wavelength, in the near infrared (NIR) region for 

excitation, relative to conventional confocal microscopy. Compared with visible light, biological 

materials undergo less absorption in the NIR region, resulting in higher penetration in tissues. As 

a result, 2PFM is also suitable for deep tissue penetration 3D bioimaging. 

1.2.2 Two-Photon Fluorescence Compounds 

A good candidate for 2PFM should have good photophysical properties. The parameter 

figure of merit (FM) is applied to evaluate these properties. FM is calculated by equation: FM = 

Φfδ/Φd, where Φf is the fluorescent quantum yield, δ is the 2PA cross-section, and Φd is the 

photodecomposition quantum yield. Structures with higher fluorescence quantum yield and 2PA 

1PA 
excitation	

2PA 
excitation	

Focal Plane	

Tissue	 Tissue	
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absorption cross-section, and lower photodecomposition quantum yield will have a higher FM, 

indicating good photophysical properties. 

The fluorescent quantum yield measures the efficiency of a material to transfer absorbed 

energy into fluorescence. A rigid molecule usually leads to a higher fluorescence quantum yield 

due to better conjugation and less rotational energy loss. In addition, substituents such as NO2 

and heavy atoms often lead to low fluorescence quantum yields via intersystem crossing to a 

triplet state. 
1
 

The 2PA cross-section relects the amount of photons the molecules can absorb under 

two-photon excitation. It is generally related to a molecule’s polarizability, its π-electron 

conjugation length, and the donor/acceptor strength of the fluorophore’s substituents.
12, 13

  

The photodecomposition quantum yield indicates the efficiency at which a material is 

decomposed upon excitation. It relates to the reactivity of material. High photostability (low 

photodecomposition quantum yield) is of great importance to generate high quality images. 

Water solubility is also important when applying a compound into biological systems. 

Good water solubility can be realized by either editing the molecule or applying drug delivery 

systems. Adding polyethyleneglycol (PEG) moieties or introducing acid groups in the structures 

can increase their solubility in polar solvents such as water.
14, 15

 Liposome, micelle, and silica 

nanoparticles are widely used as drug delivery systems in bioimaging due to their good 

biocompatibility and capability to be functionalized with targeting structures.
16-18

 This strategy 

may facilitate use of hydrophobic probes. 
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 Other properties such as low cytotoxicity, efficient cell uptake, and long 

excitation/emission wavelength should also be added to the list of parameters in consideration 

for a good dye candidate. 

1.2.3 Two-Photon Fluorescence Microscopy System 

 For the microscopy system, a special light source and detector are required. When the 

first photon passed through a molecule, the virtual state may form, but only persisting for a very 

short duration. Only when the second photon arrives before the decay of this virtual state, which 

is on the order of a few femtoseconds, two-photon excitation would occur. Therefore, an ultrafast 

laser source, such as a femtosecond laser, is typically required for two-photon excitation.  

 Additionally, instead of a descanned confocal detector that is employed in traditional 

one-photon microscopy, a non-descanned detector can be used to collect fluorescence for high 

signal sensitivity. (Figure 1-2) Under descanned detection, the fluorescence emission is 

collected by the objective; returns all the way back along the excitation beam path to the dichroic 

mirror, and then focused to an internal photomutiplier (PMT) through a confocal pinhole. The 

long travel path and many optical elements that the emission light goes through can all reduce 

the signal actually detected by PMT. While the confocal detection system is important to reduce 

scattering and out of focus emission in conventional microscopy, it becomes unnecessary in 

2PFM. Therefore, it is possible to collect all the emitted light of the required wavelengths. A 

non-descanned detection path has a dichroic mirror directly after objective lens. It provides the 

shortest possible light path, fewer optical elements, and no pinhole in the light path. 
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Figure 1-2. Descanned and non-descanned detection path in one-photon and two-photon 

microscopy. 

 

1.3 Two-Photon Photodynamic Therapy 

1.3.1 Photodynamic Therapy 

 Photodynamic therapy (PDT) is a treatment that uses a photosensitizer in the presence of 

light to produce a cytotoxic effect on cancer cells.
6
 Conventional PDT involves three elements: a 

photosensitizer, oxygen, and light, resulting in generation of singlet oxygen to induce cell death. 

Currently, many photosensitizers, such as porphyrin, texaphyrin, and chlorin
19

, have been used 

Tissue	

PMT	

PMT	

A Set of Optical 
Elements 	

Femtosecond 
Laser 	

Descanned	

Non-descanned	
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clinically to treat skin cancer
20, 21

, bladder cancer
22

, lung cancer
23

, rectum and anus tumors
24

, etc.  

Promising results were also shown in the treatment of brain tumors
5, 25

. 

  Unlike organic compounds, oxygen in the air and tissue exists in the ground state as a 

triplet, which is non-reactive. However, when a photosensitizer absorbs light at certain 

wavelength, it can be promoted to an excited state and transfer to a triplet state by intersystem 

crossing. The photosensitizer can then transfer its energy to oxygen and excite it into a reactive 

singlet state. (Figure 1-3, left). 

 

 

Figure 1-3. Conventional 
1
O2 based PDT (left) and two-photon absorption photoacid generator 

based PDT.
7
 

 

1.3.2 Two-Photon Photodynamic Therapy 

 Compared with other technologies, PDT possesses a number of advantages, such as 

minimally invasive, low systemic toxicity, rapid effect, and low cost. In addition, treatment can 

be repeated without inducing significant resistance or hypersensitivity, which is a big problem in 

chemotherapy. However, there are still challenges limiting its broader application. First of all, 
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limited light penetration in tissues prevents its application to systemic disease. Intense light 

incidence can also cause tissue damage. Furthermore, since the treatment is oxygen dependent, 

the efficiency would be difficult to increase in the hypoxia tumor system.
26-28

 

 A 2PA photosensitizer, on the other hand, can be excited with longer wavelength in NIR 

region, which provides deeper penetration and less damage by incident light. Additionally, 2PA 

has a quadratic dependence on the intensity of the incident light, affording high spatial 

localization.
29-31

 This advantage can be equally exploited in PDT applications and achieve higher 

treatment efficiency with lower incident power. At the same time, the strict spatial selectivity is 

also helpful in many treatments for precision, such as treatment of brain tumors, reducing 

collateral damage. 

 The limitation of oxygen-dependent efficiency can be overcome by applying a new type 

of PDT, photoacid generator-based PDT. The concept of this new PDT paradigm is to induce 

cell death by causing a pH imbalance in the cell. Specifically, the photoacid generator can be 

excited by 2PA, resulting in generation of strong acid. It is hypothesized that this can cause a fast 

drop of cell pH and induce cell apoptosis or necrosis.
7
 (Figure 1-3) 

1.3.3 Two-Photon Absorption Photosensitizer (2PA PS) 

 Higher light absorption efficiency can generate more triplet state to induce singlet 

oxygen. Therefore, similar as 2PA dyes, 2PA photosensitizers are also preferred to have high 

2PA cross-sections. Longer wavelength absorption is also favorable for deeper penetration and 

lower thermal damage by incident light. This is especially important for treatment of lesions 

under skin while keeping the top healthy tissue intact. 
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 The efficiency of a photosensitizer can be determined by measuring its singlet oxygen 

quantum yield. This shows the efficiency of an excited photosensitizer to generate singlet 

oxygen. 

 Some photosensitizers also undergo fluorescence after excitaton. This could be clinically 

useful as fluorescence can help define and adjust treatment fields
32

. Sometimes the fluorescence 

spectra of a photosensitizer are different between benign and malignant regions, which can help 

prevent therapy to normal, healthy tissues
33

. Theoretically, the sum of fluorescence and PDT is 

fixed and limited by the 2PA cross-section of the photosensitizer. Therefore, the photosensitizer 

with a higher fluorescence quantum yield will have a lower singlet oxygen quantum yield. Thus, 

a balance needs to be maintained between fluorescence and singlet oxygen generation for a good 

photosensitizer. 

 In addition, a qualified photosensitizer should have low cytotoxicity in dark; otherwise 

the healthy tissue without PDT treatment will undergo cell death as well. Water solubility is 

another consideration since the photosensitizer needs to function in biological systems. For 

clinical use, a water-soluble agent can easily travel through the body.
19

 Delivery systems can be 

applied to help carry photosensitizer into water. However, for PDT treatment, drug release would 

be another concern. A delivery system for PDT should be either biodegradable or responsive to 

pH, temperature, or other stimuli after being endocytosed.
34
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1.4 Fluorene Structure and Properties 

1.4.1 Structure-Property Relations 

 Fluorescent chromophores can be classified based on its substitution pattern
35

 (Figure 1-

4). Different structures lead to different photophysical properties. Thus, desirable properties, 

such as high 2PA cross-section, high fluorescence quantum yield, and long excitation 

wavelength, can be achieved by structural design. 

 

 

Figure 1-4. Schematics of various linear chromophores classified based on the substitution 

pattern. (D = donor group; π = π-conjugated bridge; A = acceptor group)
35

 

 

 Molecules with electron-rich groups at the termini of the conjugated bridge (Figure 1-4, 

I) often exhibit an increase in the 2PA cross-section compared with those without substitution, 

with possibility that the 2PA band can also shifts to a longer wavelength.
36, 37

 When electron 

withdrawing groups are in the center of the π conjugated bridge (Figure 1-4, III), the 2PA cross-
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section can be even larger.
36

 In addition, extending the π-conjugated bridge can also lead to an 

increase in 2PA cross-section, as well as a red shift of the 2PA maximum.
37

 

 When electron-rich and –poor groups are substituted at the opposite termini of a π-

conjugated bridge (Figure 1-4, V), a dipolar chromophore is formed. Dipolar chromophores 

always have the lowest energy 2PA band at the wavelength two times that of the one-photon 

absorption band. 
35

 The 2PA cross-section of dipolar molecules can also increase with the length 

of conjugation.
38

 The strength of substituents can also influence the 2PA cross-section. A 

stronger electron donor group is expected to yield a higher cross-section than a weaker 

substituent.
38, 39

 

 The influence of the π-conjugated bridge has more complicated effects other than the 

length. Large 2PA cross-sections are sometimes achieved when chromophores containing triple 

bonds are employed compared with double bonds.
40, 41

 The type of π-conjugated bridge can also 

determine the position of the 2PA band. However, changes in the 2PA cross-section and position 

due to a π-conjugated bridge are hard to predict in most cases. 
35

 

1.4.2 Fluorene and Fluorene Derivatives 

 Fluorene derivatives are characterized by their high fluorescence quantum yield.
1
 The 

fluorene core has been largely applied in both quadrupolar (Figure 1-4, I-IV) and dipolar 

(Figure 1-4, V) systems, resulting in large 2PA cross-sections, due to its rigid, planar system 

(Figure 1-5), which induces large electron delocalization and serves as a stable π-conjugated 

bridge system.
1, 42
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Figure 1-5. Structure of the fluorene core. 

 

 The fluorene core structure can be readily functionalized in position 2, 4, 7 and/ or 9 

(Figure 1-5). Substitution at positions 2, 4 and 7 can extend the conjugation length; hence result 

in high 2PA cross-sections.
1
 Electron withdrawing or electron donating groups can be substituted 

on these positions to obtain D-π-D, A-π-A or D-π-A structures.
3, 7

 Two fluorenes can also be 

applied symmetrically in one structure, resulting in D-π-A-π-D or A-π-D-π-A structures.
2
 

Functionalization at position 9 can introduce alkyl chains or hydrophilic groups, to achieve 

solubility in organic solvent or water, respectively. The substitution at position 9 does not affect 

the photophysical properties of the conjugation system.
1
 As a result, for biological applications, 

targeting groups can be introduced at position 9 for selective delivery.
38
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CHAPTER 2. APPLICATION OF FLUORENE-SUBSTITUTED 

QUINOLIZINIUM CATIONS IN PROTEIN LABELING 

 

 New symmetrical fluorene-containing quinolizinium derivatives, 2,8-bis((E)-2-(7-

(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)vinyl)quinolizinium hexafluorophosphate (QF 1) 

and 2,8-bis((E)-2-(7-((7(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)ethynyl)-9,9-dihexyl-9H-

fluoren-2yl)vinyl)quinolizinium hexafluorophosphate (QF 2), were synthesized and 

characterized. Though the new dyes were highly fluorescent in nonpolar solvents, they were 

essentially non-fluorescent in polar media.  However, they exhibited fluorescence turn-on 

behavior upon binding to bovine serum album (BSA) protein, exhibiting over four-fold 

fluorescence enhancement. BSA binding constants were 1.1 × 10
5
 M

-1
 and 3.1 × 10

5
 M

-1
 for QF 

1 and 2, respectively. The high binding affinity to proteins appeared to assist the probes to attach 

to cells and show bright fluorescence. 

 

2.1 Introduction 

 Heteroatomic cations are widely employed in a number of areas of practical applications, 

including chemical synthesis,
43, 44

 metal ion detection,
45, 46

 photodynamic therapy,
47-49

 optical 

power limiting,
50-52

 and one- and two-photon fluorescence bioimaging microscopy.
53-55

 The use 

of cationic structures as a fluorescent probe, in turn, is concerned with various biomedical 

techniques, such as fluorimetric detection of DNA and proteins
56-58

 and efficient staining agents 

of organelles in the cytoplasm
59, 60

 Such applications are based on fundamental investigations of 

the linear photophysical and nonlinear optical properties of the charged organic molecules, 
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including fast dynamic processes in the ground and excited electronic states.
61-63

 One of the most 

intriguing types of cationic structures is a quinolizinium derivative with general D-π-A
+ 

and D-π-

A
+
-π-D structures,

53, 64
 where A

+
 is a charged cationic electron deficient core and D represents 

electron-donating substituents. A new V-shaped quinolizinium derivative of this type, (E,E)-2,8-

bis(4-N,N-dimethylaminophenylvinyl) quinolizinium hexafluorophosphate (V-DMA2), was 

shown as a promising marker for fluorescence microscopy of live cells, exhibiting a large two-

photon absorption (2PA) cross section and dramatic increase in fluorescence intensity upon 

binding to DNA.
53

 

 Linear spectroscopic and excited-state deactivation processes of a series of 

benzo[b]quinolizinium derivatives were reported as highly sensitive “light-up” fluorescence 

probes for DNA and protein detection.
46, 57, 58, 65

 The nature of ultrafast relaxations in the excited 

state of naphto[1,2-b]quinolizinium bromide and its interaction with DNA were probed by 

femtosecond transient absorption spectroscopy.
66

 It is worth mentioning that fast relaxations in 

the excited state of quinolizinium derivatives are scarcely addressed in the scientific literature; 

therefore, this is a subject of keen interest as is increasing their 2PA efficiency, a challenging 

task. 

 Membrane proteins are of great importance in cell function. They are at the interface 

between cytoplasm and extracellular space. Most membrane proteins function in transport or 

signaling or provide the structural framework that shapes cellular compartments.
67

 Among these 

membrane proteins, vinculin, a membrane-cytoskeletal protein, is located in focal adhesions as 

well as cell-adherence junctions, and plays important role in cell adhesion and migration.
68, 69
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 In this chapter, the synthesis and comprehensive investigation of linear spectroscopic is 

reported and potential uses of the new probes were explored, resulting in turn-on fluorescence 

behavior upon binding to BSA in an aqueous medium. Based on this propensity, one of the 

probes was applied for cell imaging. Upon incubation, bright fluorescence was observeed in cell 

membranes, exhibiting large colocalization with vinculin. 

 

2.2 Materials and Methods 

2.2.1 Synthetic Strategy 

 The syntheses of quinolizinium dyes are shown in Schemes 1 and 2. 

 

 

Scheme 2-1. Synthesis of bis-fluorenyl quinolizinium QF 1. 

 

 

N PhLi/Ether

O

OO

N

OH

O
O

1) H2SO4, AcOH

2) NH4PF6, H2O

N+

PF-
6

a b c

Br Br

C6H13 C6H13
n-BuLi, DMF, HCl

THF,-78 oC
Br

C6H13 C6H13
O

H

N

C6H13 C6H13
O

H

N
H

Pd(OAc)2, P(t-Bu)3

  Cs2CO3, 100 oC
d e f

N+

PF-
6

      piperidine,

acetonitrile, 110 oC

N+

PF-
6

N N

C6H13

C6H13

C6H13

C6H13

1



 

 

15 

 

Scheme 2-2. Synthesis of tetra-fluorenyl quinolizinium QF 2. 

 

2.2.2 BSA Binding Experiment 

 Quinolizinium in 1:1 H2O/DMSO mixture (3 mL) was placed in a quartz cell while 

increasing concentrations of BSA were added. The final concentration of quinolizinium was kept 

constant at 2.5 μM while the concentration of BSA was varied from 0 – 1.5 equivalents. 

Fluorescence emission spectra of the quinolizinium were recorded (excitation 480 nm for 1, and 

450 nm for 2). 

2.2.3 BSA Binding Constant 

 BSA solution (3 mL) was placed in a quartz cuvette with increasing concentration of 
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concentration of quinolizinium was varied from 10-80 μM. Fluorescence emission spectra of 

BSA were recorded at the same conditions in the range 300–400 nm, with excitation at 280 nm. 

The maximum emission intensity at 340 nm of each sample was recorded. Binding constant Ka 

was determined with the Scatchard equation r/c = nKa – rKa, where r is the ratio of the 

concentration of bound ligand to total available binding sites, which can be calculated from the 

quenching of maximum emission intensity,
70, 71

 c is the concentration of free drug, and n is the 

number of binding sites for every BSA molecule. The value of Ka was obtained by plotting r/c 

against r. 

2.2.4 Cell Imaging 

 For cell membrane imaging, HeLa cells (ATCC
®

) were seeded on poly-D-lysine coated 

coverslips at a concentration of 5∙10
4
 cells/mL and incubated for 48 h. A stock solution of 1 in 

DMSO was then diluted to 10 μM with MEM medium (Corning, Cellgro
®
) and added to the 

cells. Cells were co-incubated with dilute solution of 1 together with Alexa Fluor
®
 488 

Conjugated Wheat Germ Agglutinin (AF-WGA, Life Technologies) for 15 min and then fixed 

with 4% formaldehyde. NaBH4 was added twice at 1 mg/ mL for 5 min to reduce auto-

fluorescence. Coverslips were mounted on slides with ProLong Gold
®
 antifade reagent. Cell 

slides were imaged with a Leica SP5II microscope equipped with a Coherent Chameleon Vision 

S laser source (prechirped compensated, 70 fs, 80 MHz). Probe 1 and AF-WGA were exited at 

458 nm and 488, respectively. Fluorescence was collected with a pinhole for confocal images in 

the range 700-800 nm for 1, and 600-700 nm for AF-WGA. Images were scanned every 250 nm 

in z direction then processed with Amira software for 3D visualization. 
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 For other colocalized imaging, HeLa cells were seeded on poly-D-lysine coated 

coverslips at a concentration of 5 × 10
4
 cells/mL and incubated for 48 h. A stock solution of 1 in 

DMSO was then diluted to 10 μM with MEM medium (Corning, Cellgro
®
) and added to the 

cells. After 45 min, cells were fixed with 4% formaldehyde. NaBH4 was added twice at 1 mg/ 

mL for 5 min to reduce auto-fluorescence. Cells were then penetrated with 0.1 % Triton-X for 10 

min. Nonspecific binding was blocked with 1% BSA. For microtubule colocalization, mouse 

anti-α-tubulin (bovine) monoclonal antibody (Invitrogen) was added at 0.2 μg/well for 1 h, 

followed by FITC-anti-mouse IgG (Sigma-Aldrich) 2 μg/well for another 1 h. For actin filaments 

colocalization, Alexa Fluor 532 conjugated phalloidin (Invitrogen) was added at 1 unit/well. For 

vinculin colocalization, mouse anti-vinculin monoclonal antibody (Calbiochem) was added at 0.2 

μg/well for 1 h, followed by FITC-anti-mouse IgG (Sigma-Aldrich) 2 μg/well for another 1 h. 

Coverslips were then mounted on slides with ProLong Gold
®
 antifade reagent. Microtubule and 

vinculin colocalization slides were imaged with an Olympus IX70 DSU microscope. Actin 

filament colocalization slides were imaged with a Leica SP5II microscope equipped with a 

Coherent Chameleon Vision S laser source. 

 

2.3 Results 

2.3.1 Spectra of QFs 

 Linear absorption and emission of QF 1 and 2 were investigated in cyclohexane (CHX), 

toluene (TOL), tetrahydrofuran (THF), dichloromethane (DCM) and acetonitrile (ACN). The 
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steady-state 1PA spectra of QF 1 and 2 (Figure 2-1, curves 1-5) exhibit two (a) and three (b) 

well-defined absorption maxima, respectively.  

 

 

Figure 2-1. Normalized linear absorption (1-5) and fluorescence (1′-2′) spectra of 1 (a) and 2 (b) 

in different solvents. Fluorescence spectra in CHX (1′) and TOL (2′). 

 

 The long-wavelength absorption bands with maxima at
 

max

ab  ≈ 463 - 525 nm (Tables 1, 

2) can be related to π-π
*
 electronic transitions concerned with the positively charged 

quinolizinium core. These long-wavelength bands exhibited a weak solvatochromic effect and 

complicated dependence on solvent polarity (Δƒ). No monotonic dependence of max

ab  on f  was 

detected. It is worth mentioning that the value of max

ab  decreases with the increase in π-

conjugation length from QF 1 to 2, which reflects a weak intramolecular electronic interaction 

between fluorene and quinolizinium parts and an unusual hypsochromic effect via the extension 

of conjugation.
72

 In this case, the fluorene moieties only play a role of quinolizinium end 

substituents with a certain electron donating strength. The short-wavelength absorption bands at 
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≈ 310 nm and ≈ 380 nm (Figure 2-1), which assumedly correspond to the fluorene fragments of 

QF 1 and 2, were nearly independent of solvent polarity and nicely correlated with the number of 

fluorene units.  

Table 2-1. Linear photophysical and photochemical parameters of QF 1 in solvents with 

different polarity Δƒ. 

 

Compound 1 

Solvent CHX TOL THF DCM ACN 

f
 0.000248 0.0135 0.209 0.217 0.305 

max

ab , nm 495  1 510  1 493  1 525  1 484  1 

max

fl , nm 636  1 673  1 - - - 

Stokes shift, 

nm (cm
-1

) 

141  2 

( 4480) 

163  2 

( 4750) 
- - - 

max 10
-3

, 

M
-1
cm

-1
 

42  3 43  3 48  3 43  3 49  3 

fl , %
 46  5 17  5 - - - 

ph 10
4

 0.5  0.1 1  0.2 0.06  0.03 0.04  0.02 2  0.5 

fl ,
*
 ns (Ai) 3.3  0.1 

0.4  0.1 (0.75) 

1.9  0.1 (0.25) 
- - - 

*
Excitation wavelength, ex  ≈ 400 nm. 

 

Table 2-2. Linear photophysical and photochemical parameters of QF 2 in solvents with 

different polarity Δƒ. 

 

Compound 2 

Solvent CHX TOL THF DCM ACN 

f
 0.000248 0.0135 0.209 0.217 0.305 

max

ab , nm 466  1 474  1 469  1 486  1 463  1 

max

fl , nm 574  1 604  1 ≈ 502 (S
2
) - - 

Stokes shift, 

nm (cm
-1

) 

108  2 

( 4040) 

130  2 

( 4540) 
- - - 

max 10
-3

, 

M
-1
cm

-1
 

80  3 74  3 93  3 83  3 77  3 

fl , %
 65  5 26  5 3  0.5  0.5 - 
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ph 10
4

 3  1 2.7  1 0.1  0.03 0.035  0.01 0.86  0.3 

fl ,
*
 ns (Ai) 2.8  0.1 1.5  0.1 - - - 

*
Excitation wavelength, ex  ≈ 400 nm. 

 

 Degenerate 2PA spectra of symmetrical fluorene-containing quinolizinium structures QF 

1 and 2 were obtained in a broad spectral range by an open-aperture Z-scan technique
73

 and are 

shown in Figure 2-2. At least three well-defined 2PA maxima were observed for the simpler 

compound QF 1 (Figure 2-2, a), and the most intensive one with PA2  ≈ 500 GM is sufficiently 

close to the main 1PA contour. In the case of the more complicated compound 2, a broad 2PA 

spectrum with PA2  ≈ 400 - 600 GM was observed (Figure 2-2, b), and the same nature of two-

photon transitions can be assumed.  

 

 

Figure 2-2. Normalized 1PA (1) and degenerate 2PA (2) spectra of 1 (a) and 2 (b) in TOL. 
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2.3.2 Increase of Fluorescence Emission of QFs with BSA Binding 

 It was reported that quinolizinium derivatives can bind with biomacromolecules such 

DNA and proteins, exhibiting a fluorescence turn-on effect.
58, 74

 Therefore, binding of QF 1 and 

2 was investigated. Increase of fluorescence emission was observed for both quinoliziniums 

(Figure  2-2). 

 

 

Figure 2-3. Fluorescence emission of quinolizinium dyes was increased dramatically with 

increase of BSA concentration. 

 

 Combining BSA with each of the quinolizinium salts also resulted in a severe decrease of 

fluorescence emission from BSA at 340 nm (Figure 2-3), indicative of the binding of 

quinolizinium to BSA. A Scatchard plot was performed to calculate BSA binding constants; 

values of 1.1 × 10
5
 M

-1
 and 3.1 × 10

5
 M

-1
 were obtained for QF 1 and 2, respectively. According 

to the binding constants, QF 2 exhibited a higher binding efficiency than 1. However, poor 

solubility in DMSO prohibited further study of QF 2 in cell imaging. 
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Figure 2-4. Quenching curves of BSA ( ex : 280 nm, em : 340 nm) by binding with QF 1 (1) and 

2 (2) at different ratios. F and F0 are the intensities of BSA fluorescence emission with and 

without binding, respectively. 

 

2.3.3 Cell Imaging 

 Cells exhibited bright fluorescence at the wavelength range corresponding to emission of 

QF 1 (Figure 2-4). 3D visualization suggested that the observed fluorescence of 1 was localized 

on cell membranes. Fluorescently-labeled wheat germ agglutinin (WGA) is used to detect 

glycoconjugates on cell membranes by selectively binding to N‑ acetylglucosamine and 

N‑ acetylneuraminic acid residues (Figure 2-4, C).
75

 Hence, a co-incubation experiment was 

performed to assess if QF 1 was localizing on cell membranes.  Overlay of two dyes (Alexa 

Fluor® 488-WGA and QF 1, Figure 2-4, D) indicates that QF 1 may localize on the cell 

membrane but bind with different membrane components than WGA. Considering the low 

emission efficiency of 1 as a free dye in DMSO-H2O mixture (Figure 2-2), bright fluorescence 
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from QF 1 (Figure 14, B) supports that QF 1 enhanced its fluorescence upon binding with cell 

membrane proteins. 

 

 

Figure 2-5. DIC (A) and Fluorescent (B, C) images of HeLa cells co-incubated with 1 (B) and 

Alexa Fluor® 488-WGA (C). Fluorescent images were scanned every 250 nm at z direction and 

then processed with Amira software. D shows the overlay image of B and C. Scale bar indicates 

50 μ. 

 

 Co-incubation of QF 1 with anti-α-tubulin antibody, phalloidin, or anti-vinculin shows 

different degrees of overlay overlap (Figure 2-5). Among the three proteins examined, the 

distribution of 1 appears to be more associated to vinculins (Figure 2-5, I). 
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Figure 2-6. Colocalization of 1 (A, D, G) with microtubule (B), actin filaments (E) and vinculin 

(H) in HeLa cells. Different degrees of overlay (C, F, I) were observed between 1 and three 

proteins. Distribution of 1 appears to be more associated to vinculins (arrows in I), indicating 

possible binding between 1 and vinculins. Scale bars are 20 μm. 

 

2.4 Discussion 

 Linear and non-linear photophysical properties of new fluorene-containing symmetrical 

quinolizinium derivatives QF 1 and 2 were investigated. The electronic structures of the new 

quinolizinium fluorene-containing derivatives can be presented as D--A
+
--D type molecules 

with different π-conjugation lengths (Schemes 2-1, 2-2). The steady-state fluorescence, 
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excitation, spectra revealed the nature of the dual-band fluorescence emission of QF 2 and the 

complex electronic structure of the main long-wavelength absorption band. The short-

wavelength fluorescence band of QF 2, with maximum at ≈ 425 nm, was attributed to emission 

from a higher excited electronic state Sn, which is evidence of Kasha’s rule violation for this 

molecular type.  

 Symmetrical cations QF 1 and 2 exhibited different contours of degenerate 2PA spectra 

with maximal cross sections PA2  ≈ 400 - 600 GM and an extended full width at half maximum 

of the more complicated compound 2. In contrast to the previously reported quinolizinium 

derivative V-DMA2,
53

 fluorene-containing QF 1 and 2 exhibited a totally different shape of 2PA 

spectra. New molecules QF 1 and 2 are not centrosymmetric and exhibit relatively large 2PA 

cross-sections, PA2 , in the spectral range of the main long-wavelength linear absorption bands. 

 Linear absorption spectra of QFs exhibited a weak and rather complicated dependence on 

solvent polarity. However, the fluorescence of QF 1 and 2 showed great dependence on solvent 

polarity. With quantum yield as high as 46% and 65% in nonpolar solvent CHX, the 

fluorescence of QF 1 and 2 was not detectable in polar solvent ACN. This is not a favorable 

property for fluorescence microscopy application. 

 It was reported that quinolizinium derivatives can bind with biomacromolecules such 

DNA and proteins, exhibiting a fluorescence turn-on effect, because of a restricted conformation 

flexibility 
58, 74

 Similar effects were observed with QF 1 and 2. Though not fluorescent in polar 

media, the dyes exhibited noticeable fluorescence turn-on behavior upon binding BSA, 

exhibiting over four-fold fluorescence enhancement. The fluorescence stopped increasing after 

ratio of dye to BSA reached around 0.4 - 0.5. When plotted for quenching of BSA florescence 
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with Stern-Volmer curves (F0/F ~ c), both QFs gave a nonlinear relation (data not shown). These 

results indicate the binding of QFs and BSA is not in a 1:1 ratio. It could be assumed, according 

to the binding results, that one QF molecule may bind with more than one BSA molecule. A 

similar BSA quenching pattern was reported with other quinolizinium structures,
58

 however, a 

detailed binding mechanism has not been yet elucidated. Further studies are necessary to 

determine the binding sties and binding pattern of these new quinoliziniums. Since Stern-Volmer 

plots are applied for linear stoichiometric binding,
58, 76, 77

 a different method, Scatchard plot 

analysis, was employed to determine the BSA binding constant.
70, 71

 Both QFs showed strong 

affinity to BSA and sufficient fluorescent increase upon binding. This solved the problem of low 

fluorescence in polar solvents and supported their further application in bioimaging. 

 Taking into account the relatively high fluorescence quantum yield of QF 2 (≈ 0.65), 

large 2PA cross sections, and nice overlap of its 2PA spectrum with the tuning range of 

Ti:sapphire lasers, it was expected that this compound will have high potential in fluorescence 

microscopy applications. However, the low solubility of QF 2 in DMSO led to difficulty in 

getting a sufficient concentration in the cell culture system. Additionally, although QF 2 showed 

greater fluorescence increase with BSA binding (Figure 2-3), the final fluorescence intensity it 

could reach was still low compared with QF 1 at the same concentration. QF 1, on the other 

hand, presented good solubility in DMSO, and efficient increase of fluorescence intensity with 

BSA binding. Hence, QF 1 was selected for further investigation in cell imaging. 

 Fluorescence was detected on cell membranes (Figure 2-5). Considering the low 

fluorescence intensity of QF 1 in polar solvents (Table 2-1) and DMSO-H2O mixtures (Figure 

2-3), the bright fluorescence exhibited on cell membrane indicates the turn-on effect of QF 1 by 
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a restriction of conformation flexibility upon binding with certain biomacromolecules on cell 

membrane (likely cell membrane proteins. Co-incubation of QF 1 with a membrane probe, Alexa 

Fluor
®
 488 conjugated WGA, which can bind to N‑ acetylglucosamine and N‑ acetylneuraminic 

acid residues on cell membrane, showed that fluorescence of QF 1 located generally in the same 

regions as WGA, but in somewhat different positions. Therefore, QF 1 was possibly bound to 

some biomacromolecules other than N‑ acetylglucosamine and N‑ acetylneuraminic acid 

residues on the cell membrane. Considering the high binding affinity of QF 1 with BSA and 

existence of large amount of proteins on cell membranes, it can be assumed that QF 1 bound to 

certain proteins on the cell membrane.  Thus, additional proteins were examined aa described 

below. 

 Vinculin is a membrane-cytoskeletal protein located in focal adhesions as well as cell-

adherence junctions. It plays important role in cell adhesion and migration
.68, 69

 As an important 

link between actin cytoskeleton and the transmembrane receptors, integrin was surrounded by 

multiple proteins such as talin and F-actin
78

, with a very complex binding pattern.
79

 Activation of 

this protein leads to the exposure of several binding sites, which interacts with surrounding 

proteins and transfers signals related to cell adhesion and migration.
79

 Probe QF 1 exhibited a 

certain degree of overlay with vinculin, indicating that QF 1 was likely to bound to vinculin or its 

surrounding proteins. Co-incubation of QF 1 with microtubule and actin filament probes showed 

little overlap, which excludes the possibility that QF 1 bound to these two proteins. It is difficult 

to conclude whether the association of QF 1 and vinculin suggests a specific binding 

relationship. However, highly specific distribution in the membrane adjacent vinculin suggests 



 

 

28 

the promising application of QF 1 in cell membrane imaging. Further studies would be necessary 

to better take advantage of this probe. 

2.5  Conclusion 

 Advantageous linear photophysical and photochemical properties, reasonable 2PA cross 

sections, and nice overlap of the 2PA spectra with the tuning range of commercial ultrafast 

lasers, suggested the potential of the new quinolizinium derivatives for laser scanning 

fluorescence microscopy applications. High BSA binding and bright membrane-localized 

fluorescence images of HeLa cells confirmed this and may be the subject of future studies.  
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CHAPTER 3. APPLICATION OF INTEGRIN TARGETING FLUORENE-

SUBSTITUTED PYRAN DYES IN TUMOR VASCULATURE IMAGING  

 

 Application of targeting peptides in tissue imaging can afford better selectivity and 

deeper penetration. RGD, a small peptide that contains adjacent L-arginine (R), glycine (G) and 

L-aspartic acid (D), is widely applied for targeting vessels. Herein, the enhancement of tissue 

image quality with RGD conjugates was investigated with two new pyran dyes. The dyes 

employed were 2-(2-methane-6-(2-(7-(diphenylamino)-9-propanoic acid-9-ethyl 

polyethyleneglycol-9H -fluoren-2-yl)vinyl)-4H -pyran-4-ylidene)malononitrile (PF 1) and 2-

(2,6-Bis((E)-2-(7-(diphenylamino)-9-propanoic acid-9-ethyl polyethylene glycol-9H-9’,9’-

methyl polyethylene glycol-9’H-fluoren-2-yl)vinyl)-4H -pyran-4-ylidene)malononitrile (PF 2). 

Linear and nonlinear photophysical properties were comprehensively characterized. Cell and 

tissue images were then taken and examined. Deep penetration and high contrast were observed 

with the pyranyl RGD-conjugates. 

 

3.1 Introduction 

 Intravital imaging techniques have provided unprecedented insight into tumor 

microcirculation and microenvironment, allowing quantitative evaluation of tumor blood 

vasculature, functional lymphatics, and other microenviroment characterization.
80

 These 

techniques are supported by different new imaging methods, such as two-photon fluorescence 

microscopy (2PFM). 2PFM is able to achieve high resolution, deep penetration images by using 
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near infrared (NIR) short-pulsed light. Therefore, 2PFM has been applied in many areas, 

including cancer research.
80-83

  

 The RGD motif is found in many extracellular matrix proteins and able to recognize 

integrin expressed on cell membranes. Among these integrins, αvβ3 is restrictively expressed on 

the angiogenic vasculature. As a result, linear and cyclic RGD-peptides, selective for αvβ3 

integrins, have been used for various purposes such as targeting drugs specifically to tumor 

vasculature. 
84, 85

 

 The 4H-pyran-4-ylidene structures have attracted a fair amount of attention because of 

their interesting optical properties. This moiety can function as an electron acceptor group with 

good photochemical stability. Substitution can take place at positions 2 and 6, generating a D--

A or D--A--D structure. 4H-Pyran-4-ylidene derivatives are widely used in organic light-

emitting diodes
86, 87

, fluorescence bioimaging
2, 88, 89

, and pH sensors
90

. A fluorene di-substituted 

4H-pyran-4-ylidene derivative was reported with good properties in organic solvents. Although 

it exhibited poor solubility in polar solvents, it still enabled creating high quality images in 

biological systems, by encapsulation in silica nanoparticles.
2
  

 In this chapter, two similar pyranyl structures (PF 1, 2) were synthesized, with better 

water solubility to facilitate their application in biological system. Since they have fluorenyl 

substitutions at position 2 and 6, it is easy to increase hydrophilicity by introducing PEG groups 

at position 9 of the fluorene ring system. Their application in 2PFM was evaluated in Lewis lung 

carcinoma tumor models. 
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3.2 Materials and Methods 

3.2.1 Structures of RGD Conjugated Pyran dyes with Fluorene Substitution (PFs) 

 The synthesis of pyran dyes PF 1 and PF 2, as well as their RGD conjugates, PF 1-RGD 

and PF 2-RGD, are shown in Scheme 3-1. 

 

Scheme 3-1. Synthesis of PF 1, PF 1-RGD, PF 2, and PF 2-RGD. 
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3.2.2 Ethics Statement 

 All animal procedures were performed in accordance with the Office of Laboratory 

Animal Welfare regulations and were approved by the Sanford-Burnham Animal Care and Use 

Committee prior to execution. 

3.2.3 Animal Model  

 0.5 × 10
6
 Lewis lung carcinoma (LLC) cells were injected into the flank of C57B6 

mice. After 13 days, PF 1-RGD and 2-RGD was injected intravenously at 4× 10
-8 

mol/mouse. 

Two hours later, PBS was perfused, followed by paraformaldehyde perfusion. Tumors were then 

dissected from mice and fixed overnight in paraformaldehyde. 

3.2.4 Cytotoxicity Assay 

 U87MG cells were seeded in 96-well plates (Corning, USA) at a concentration of 5 × 

10
3
 cells/well and incubated for 48 h. PF 1-RGD and 2-RGD stock solutions were prepared in 

DMSO and PBS, respectively. PFs were diluted into 1.56 μM, 3.12 μM, 6.25 μM, 12.5 μM, 25 

μM, and 50 μM from stock solutions. Cells were then incubated with diluted PFs for an 

additional 24 h. Viability was then determined with the CellTiter 96® AQueous One Solution 

Reagent (Promega, USA).  

3.2.5 Cell Imaging 

 To investigate the efficiency of RGD-conjugated dye, three negative control groups 

were included. The MCF-7 cell line was seeded at the same concentration for the first negative 

control as it does not express high levels of integrin. U87MG cells pre-incubated with free RGD 

peptide were applied for the second negative control (saturation experiment). U87MG cells 
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incubated with PF 1 or 2 (unconjugated to RGD) were the third negative control. All cells were 

seeded on poly-D-lysin coated coverslips at the concentration of 4 × 10
4
 cells/well and incubated 

for 48 h. PF 1, 2, 1-RGD, and 2-RGD were diluted to 10 μM from stock solutions and added to 

cells. One hour later, cells were washed with PBS and fixed with 4% formaldehyde solution. 

NaBH4 solution was then applied twice at 1 mg/mL to eliminate autofluorescence. Coverslips 

were then mounted with ProLong
®
 Gold antifade reagent (Invitrogen, USA). Images were taken 

with an Olympus IX-81 DSU microscope. 

3.2.6 Tissue Imaging 

 Small sections of tumor tissue were cut at the edge of tumors. Images were obtained 

with a Leica SP5 II microscope equipped with a Coherent Chameleon Vision S laser source 

(prechirped compensated, 70 fs, 80 MHz). Tissues were scanned at 900 nm for two-photon 

imaging, starting from the cutting surface, until no more fluorescence could be observed. An 

external non-descanned detector (NDD) was employed to collect fluorescence emission. Scanned 

images were process with Amira software for 3D visualization. Quantitative analysis of images 

was performed with Image J software. 

 

3.3 Results 

3.3.1 Fluorescence Spectra 

 The one-photon absorption spectra of PF 1 and 2 exhibit two and three well defined 

absorption maxima, respectively. (Figure 3-1) The absorption spectra of PF 1 in different 

solvents shows similar maxima at around 330 and 450 nm. Emission of PF 1 exhibited a red shift 
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with increased solvent polarity. The emission maxima were at 570, 680, and 740 nm in 

cyclohexene (CHX), dichloromethane (DCM) and dimethyl sulfoxide (DMSO), respectively. PF 

2 had poor solubility in non-polar solvents; hence photophysical properties were only measured 

in DMSO. The absorption spectra of PF 2 had three maxima at 310, 360, and 480 nm in DMSO. 

The emission maximum was at 650 nm. The short-wavelength absorption bands at ≈ 330 nm for 

PF 1 and ≈ 310 and 380 nm for PF 2 (Figure 3-1), correspond to the fluorene fragments of PF 1 

and 2, and nicely correlated with the number of fluorene units. 2PA spectra of PF 1 in DCM and 

2 in DMSO exhibited well defined maxima at about 1000 nm, with maximum 2PA cross-

sections reaching 200 GM and 150 GM for PF1 and PF2, respectively. 

 

 

Figure 3-1. One-photon absorption, emission of PF 1 in CHX, DCM and DMSO, two-photon 

absorption of PF 1 in DCM and anisotropy in silicon oil (Si oil) are shown in the left spectrum 

(A). One-photon absorption (Abs), emission (Em), two-photon absorption (2PA) and anisotropy 

(R) of PF 2 in DMSO are shown in the right spectrum (B). 
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3.3.2 Cytotoxicity of PFs-RGD 

 Both RGD-conjugated PFs showed low toxicity below 12.5 μM. More than 80% viability 

of U87MG cells was observed at 12.5 μM. (Figure 3-2) Therefore, a concentration of 10 μM 

was applied for both dyes in further cell experiments. 

 

 

Figure 3-2. Viability of U87MG cells after 24 h incubation with RGD-conjugated PFs. 
 

3.3.3 Integrin Targeted Cell Endocytosis 

 U87MG cells displayed bright fluorescence after 1 h incubation with PF 1-RGD 

(Figure 3-3, E). The fluorescence mainly appeared adjacent to nucleus (Figure 3-3, F), 

indicating somewhat selective endocytosis. Multiple negative controls were performed to 

demonstrate integrin-targeting specificity. MCF-7 cells, which were reported as αvβ3 negative,
91

 

exhibited no noticeable fluorescence after incubation with either RGD-conjugated PFs (Figure 

3-3, A). U87MG cells incubated with free RGD before incubation with the RGD-conjugated PFs 



 

 

36 

also exhibited low fluorescence (Figure 3-3, C), indicating blocking (saturation) of αvβ3 binding 

sites by free RGD prevented the uptake of the RGD conjugates. PFs without RGD conjugation 

were also employed to confirm the role of RGD. Although U87MG cells displayed bright 

fluorescence after incubation with PF 1, the fluorescence signal exhibited a non-specific 

distribution (Figure 2-4, D). 

 

 

Figure 3-3. Fluorescence  (A-E) and DIC overlay (F) images of MCF-7 (A) and U87MG cells 

(B-F) after 1 h incubation with PF 1 (D) or PF 1-RGD (A, C, E and F). B shows U87MG cells 

control. Scale bars show 10 μm. 

 

 For PF 2-RGD incubated cells, bright fluorescence was also observed around the nucleus 

(Figure 3-4, E, F), indicating selective endocytosis. Both MCF-7 cells and U87MG cells that 

were incubated with free RGD in advance exhibited little fluorescence (negative signal) as well 

(Figure 3-4, A, C), indicating the uptake of PF 2-RGD requires free integrin αvβ3 receptors. 
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When unconjugated PF 2 was applied, no obvious signal was detected from cells (Figure 3-4, 

D), demonstrating the difficulty of PF 2 uptake without RGD-induced endocytosis. 

 

 

Figure 3-4. Fluorescence  (A-E) and DIC overlay (F) images of MCF-7 (A) and U87MG cells 

(B-F) after 1 h incubation with PF 2 (D) or PF 2-RGD (A, C, E and F). B shows U87MG cells 

control. Scale bars show 10 μm. 

 

3.3.4 Integrin Targeted Tumor Imaging 

 Tumor tissues from mice injected with unconjugated PF 1 exhibited a certain degree of 

fluorescence (Figure 3-5, A). However, when compared with PF 2-RGD (Figure 3-5, B), 

fluorescence intensity of PF 1 appeared to be much lower. The selectivity of PF 2 was also very 

weak, with many cells other than vessel endothelium lighting up in the background (Figure 3-5, 

A). On the other hand, fluorescence from PF 2-RGD was well distributed only on vessels. This 

is consistent with cell imaging results of PF 1, indicating more specific endocytosis and better 
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targeting with the RGD-conjugated dye. Fluorescence penetration of PF 1-RGD (350 μm) 

appeared much deeper than PF 1 (200 μm). Additional  evidence were shown in the cross-section 

images (Figure 3-5, C and E). Little fluorescence could be observed for PF 1 at 200 μm depth. 

However, PF 2-RGD still showed bright, well defined fluorescence. Quantitative analysis of the 

cross-sections gave distinguished differences in both signal area and intensity. 

 

 

Figure 3-5. 3D reconstruction images (A, B) show the vasculature in tumor tissues from mice 

injected with PF 1 (A) or PF 1-RGD.  Cross-section fluorescence at 200 μm depth (C, E) were 

analyzed (D). Scale bars show 50 μm. 

 

 Tumor tissues from mice injected with unconjugated PF 2 exhibited very low 

fluorescence (Figure 3-6, A), while for tumors from PF 2-RGD injected mice, the fluorescence 

intensity was much higher (Figure 3-6, B), indicating unconjugated PF 2 could not be efficiently 

endocytosed by the endothelium cells on vessels, consistent with results of cell imaging with PF 
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2. In addition, the fluorescence penetration of PF 2-RGD was much deeper than PF 2. The 

angles on the surface make the image look deeper than they actually are. Therefore, samples with 

similar surface angles were selected for comparison. The actual depths of observed fluorescence 

were 150 μm for PF 2 and 250 μm for PF 2-RGD. Cross-sections at 200 μm are shown in Figure 

3-6, C and E. The fluorescence from PF 2 was nearly invisible at this depth. However, PF 2-

RGD still showed bright, well defined fluorescence. Quantitative analysis of the cross-sections 

also support the conclusion, showing great difference in both signal area and intensity. 

 

Figure 3-6. 3D reconstruction images (A, B) show the vasculature in tumor tissues from mice 

injected with PF 2 (A) or PF 2-RGD.  Cross-section fluorescence at 200 μm depth (C, E) were 

analyzed (D). Scale bars show 50 μm. 

 

 Overall, PF 1 displayed better imaging efficacy than PF 2 for both unconjugated and the 

RGD-conjugates. Images of PF 1-RGD exhibited the deepest penetration (350 μm) and better 

selectivity to vessels. 
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3.4 Discussion 

 The two new fluorene-containing 4H-pyran-4-ylidene derivatives PF 1 and 2 represent 

D--A
 

and D--A--D archetypes, respectively (Scheme 3-1). Linear and nonlinear 

photophysical properties were investigated. The 1PA absorption maxima of PF 1 didn’t show a 

dependence on the polarity of solvent while the emission maximum underwent a red shift with 

increasing of solvent polarity (Figure 3-1, A). However, due to longer PEG chain substitution, 

PF 2 exhibited poor solubility in organic solvents other than DMSO. Therefore, the properties of 

PF 2 were only measured in DMSO. With a longer conjugated system, PF 2 had longer 

wavelength 1PA and 2PA bands (Figure 3-1, B). 

 The fluorene and pyran rings in PFs are able to rotate upon the axes of the olefinic double 

bonds, resulting in conformational flexibility. This flexibility may cause a decrease in 

fluorescence intensity (quantum yield). Restriction of intramolecular rotations may stiffen the 

molecular conformation, leading to aggregation induced emission activity. This effect can be 

larger with two olefinic double bonds substituted at both sides,
2, 92

 affording an advantage when 

applying hydrophobic structures in aqueous solution. However, for hydrophilic structures PF 1 

and 2, the flexibility becomes unfavorable. Due to the hindering the long PEG chain at both 

fluorene substitutents, it would be hard for PF 2 to maintain a planar conformation. As a result, 

PF 2 shows a comparable lower 2PA cross-section than PF 1. 

 Nevertheless, hydrophilic structures have their advantages for biological imaging, 

especially for in vivo imaging. In most condition, organic probes are hydrophobic and difficult to 

dissolve in water or other polar solvent like DMSO. To solve this problem, different delivery 
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systems were applied in the encapsulation of probes, such as micelles, silica nanoparticles and 

polymer nanoparticles.
2, 34, 88, 93

 Although there are many advantages of these delivery systems, it 

can sometimes cause inconstancy, like size distribution. Stability is also an important issue.
94

 

Thus, extra quality measurements to control particle size, zeta potential, stability, etc. are 

necessary. Compared with these technologies, structures with hydrophilic properties are much 

easier in their application. In this study, PF 1 had good solubility in DMSO and PF 2 can directly 

dissolve in water, because of the substitution of long PEG chains.  A mixture of DMSO and 

water was employed to mediate probes into mice circulation. Because of the toxicity of DMSO, 

the percentage of it should be kept at 1% or less. Thanks to high solubility in DMSO, PF 1 was 

able to get an adequate concentration for imaging in the final DMSO-water mixture. PF 2 was 

applied directly in PBS buffer. Both methods are easy to apply.  

 Bright fluorescence in both cell and tissue images demonstrated adequate emission 

intensity of both dyes in one-photon and two-photon fluorescence microscopy. Both PFs 

possessed decent 2PA cross-section (200 GM for PF 1 and 150 GM for PF 2, Figure 3-1) and 

fluorescence quantum yield (2% in DMSO). RGD-targeted cell uptake appeared to increase the 

fluorescence intensity. The PFs also show increased fluorescence in the presence of BSA (data 

not shown). Thus, it is possible that proteins in cells bound to PFs resulted in the restriction of 

conformation or providing a more hydrophilic local environment,, increasing the fluorescence of 

the PFs. 

 Angiogenesis, the formation of new vessels from existing microcapillaries, is an 

important factor in the progression of cancer. It is stimulated when tumor tissues require 

nutrients and oxygen and triggered by chemical signals from tumor cells, causing tumor growth 
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and metastasis.
95

 Therefore, it is of great importance to observe the activation and inhibition of 

angiogenesis processes. It was reported that angiogenesis is regulated by integrins, which are 

member of a family of cell surface receptors.
96

 Among these integrins, αvβ3 integrin plays a key 

role in endothelial cell survival and migration and is expressed in response to angiogenic growth 

factors in tumor progression,
97, 98

 indicating αvβ3 integrin can be a target for tumor angiogenesis. 

Cyclic RGDfK (c-RGDfK) peptides bind very specifically to αvβ3 integrin.
99

 As a result, this 

peptide was introduced into the 2PA probe structures for tumor vasculature targeted imaging. 

Compared with structures applied without RGD, structures with RGD shows obvious advantage 

in tumor vasculature imaging, showing brighter fluorescence and deeper penetration (Figure 3-5, 

Figure 3-6). 

 Observation of living tissues is hard to achieve with conventional (confocal) fluorescence 

microscopy, because short excitation wavelengths undergo scattering and absortpion in tissues, 

increasing background noise. Besides, the excessive excitation energy outside the focal plane 

may bleach surrounding chromophores or cause photodamage.
82

 2PFM technologies make living 

tissue imaging possible by using longer wavelengths and extremely localized focal plane.  

In this study, tumors were dissected 2 h after probe injection. Small sections were cut from the 

edge of the tumor, where angiogenesis occurred, for 2PFM imaging. Sections were scanned from 

top to bottom, where thetop was the cutting cross section, in order to get a flat surface for depth 

measurement. The results showed fluorescence collected at the depth of 350 μm by 2PFM. 

(Figure 3-5, B) Vasculature structures were still well defined even at as deep as 350 μm inside 

solid tumor tissue.  
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3.5 Conclusion 

 In conclusion, fluorene-substituted pyran derivatives PF 1 and PF 2 were designed as 

hydrophilic structures, showing good photophysical properties in DMSO. After conjugation with 

an αvβ3 integrin targeting cyclic RGDfK peptide, both structures exhibited significant vasculature 

targeting. Penetration of fluorescence emission was observed as deep as 350 μm, with good 

resolution of vasculature structures. As a result, RGD-conjugated PF structures may be 

promising probes for living tissue imaging in the future. 
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CHAPTER 4. APPLICATION OF INTEGRIN TARGETING FLUORENE 

DYE IN WOUND VASCULATURE IMAGING 

 

Reproduced with permission from Ciceron O. Yanez, Alma R. Morales, Xiling Yue, Takeo 

Urakami, Masanobu Komatsu, Tero A. H. Jarvinen, and Kevin D. Belfield, Deep Vascular 

Imaging in Wounds by Two-Photon Fluorescence Microscopy. PLOS ONE 2013, 8 (7), e67559. 

 

 Deep imaging within tissue (over 300 μm) at micrometer resolution has become 

possible with the advent of two-photon fluorescence microscopy (2PFM). The advantages of 

2PFM have been used to interrogate endogenous and exogenous fluorophores in the skin. Herein, 

we employed the integrin (cell-adhesion proteins expressed by invading angiogenic blood 

vessels) targeting characteristics of a two-photon absorbing fluorescent probe to image new 

vasculature and fibroblasts up to ≈ 1600 μm within wound (neodermis)/granulation tissue in 

lesions made on the skin of mice. Reconstruction revealed three-dimensional (3D) architecture of 

the vascular plexus forming at the regenerating wound tissue and the presence of a fibroblast bed 

surrounding the capillaries. Biologically crucial events, such as angiogenesis for wound healing, 

may be illustrated and analyzed in 3D on the whole organ level, providing novel tools for 

biomedical applications. 

 

4.1 Introduction 

 Microscopy of biological specimens deep within the tissue was limited to several 

hundred microns for several decades because visible light is severely scattered in biological 
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tissue, leaving to histology the analysis of many relevant physiological events that occur deep 

within tissues of living organisms. Imaging within tissue (over 300 μm) at micrometer resolution 

has been achieved by two-photon fluorescence microscopy (2PFM).
100, 101

 This technique has 

been useful in exciting endogenous and exogenous fluorophores in the skin.
4, 102, 103

 A good 

example of the penetration capabilities of 2PFM was recently published, where an impressive 1.6 

mm penetration depth was reported by 2PFM, in the cortex of a mouse brain.
104

 

 The advantages of 2PFM have been exploited in imaging the skin and used in 

conjunction with one-photon reflection microscopy.
105

 The skin, besides being the largest organ 

in the body, is a protective barrier that keeps other organs from being exposed to external 

harmful agents. As soon as an injury takes place on the skin, a clot is formed (fibrin clot) that 

acts as a temporary plug to seal it quickly. Within several hours following the insult, 

inflammatory cells invade the clot to fight against infection and to phagocytose necrotic cell 

debris. Several days later, the invasion of inflammatory cells is followed by capillaries and 

fibroblasts. Throughout the invasive neoangiogenesis that takes place during the wound healing 

process, endothelial cells up-regulate integrin αvβ3, a specific adhesion receptor for migrating 

cells on their cell surface, but this integrin disappears from the blood vessels/wound once the 

revascularization is completed.
84, 105, 106

 Furthermore, during the early stages of wound healing, 

residing cells of the dermis that are in the immediate vicinity of the wound edges, which are 

otherwise relatively sedentary, become activated and invasive to form a matrix for what will 

become the repaired tissue (Figure 4-1, d). 
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Figure 4-1. 2PFM of the ‘‘whole-mounted’’ wounds was performed and reconstructed for 3D 

visualization (a). RGD-containing probe 1 (e) was employed to target integrins. Integrin-

expressing cells (b) and capillaries (c) in optical section are shown separately. d explains the 

depiction of a wound during the granulation tissue formation. 
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 Many integrins, such as αvβ1, αvβ3 and α5β1, are recognized by the Arg-Gly-Asp (RGD) 

motif found in many extracellular matrix proteins, i.e., expressed by their natural ligands.
106

 Due 

to the restricted expression of αvβ3 integrins on the angiogenic vasculature, linear and cyclic 

RGD-peptides specific for αvβ3 integrins have been used for various purposes such as targeting 

drugs specifically to tumor vasculature.
84, 85

  

 In this chapter, a custom-made 2PA-absorbing fluorescent probe was used to image 

invading, angiogenic capillaries within the wound. The integrin (cell-adhesion proteins expressed 

by invading cells) targeting characteristics of this fluorescent probe revealed new vasculature and 

fibroblasts up to ≈ 1600 μm within wound (neodermis)/granulation tissue in lesions made on the 

skin of mice. Reconstruction exposed the three dimensional (3D) architecture of the vascular 

plexus and the presence of a fibroblast bed surrounding the capillaries. 

 

4.2 Materials and Methods 

4.2.1 Probe 1 Structure 

 Synthesis, purification, along with structural and photophysical characterization of 

probe 1 was already published.
107

  (Scheme 4-1) 
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Scheme 4-1. Synthesis of RGD conjugated probe 1. 
107
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4.2.2 Ethics Statement 

 All animal experiments were reviewed and approved by the institutional anim825al 

care and use committees of Department of Orthopedic Surgery, Medical School, University of 

Tampere, Finland. 

4.2.3 Wound Healing Model and Administration of Probe 1  

 Eight-week-old male BALB/c mice (weighing 23–25 g) were anesthetized with 4% 

isoflurane and 1.5 L/min of oxygen, and the anesthesia was maintained at ≈1.5% isoflurane at 1 

L/min of oxygen. Skin was shaved, cleaned, and disinfected with betadine and 70% alcohol. 

Treatment trials were conducted on mice that had circular, 6-mm diameter, full thickness 

(including panniculus carnosus muscle) excision wounds in the dorsal skin. The wounds were 

first marked by a biopsy punch and then cut with scissors. All skin wounds were left uncovered 

without a dressing. 

 After 7 days post-wounding, the mice were injected with 200 μL of a 600 μM solution 

of probe 1 in PBS, and this was allowed to circulate for 2 h, then perfused first with 1 x PBS + 

1% BSA and then with 4 % paraformaldehyde (PFA) for fixation. Excision of a rectangular 

section of skin containing all wounds as well as underlying skeletal muscle was performed to 

ensure the uninterrupted wound architecture (Figure 4-2). The “whole-mounted” sections were 

immobilized on filter paper, immersed in 4 % PFA for additional O/N fixation, washed with 

physiological saline, and imaged from the internal and external faces of the wound. 
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Figure 4-2. Excised wound healing sample was whole-mounted and imaged by 2PFM. 

 

4.2.4 Microscopy  

 2PFM with probe 1 was performed on a Leica SP5 II equipped with a Coherent 

Chameleon Vision S laser source (prechirped compensated, 70 fs, 80 MHz). Micrographs of the 

whole-mounted fixed tissues were taken under the following conditions: excitation at 825 nm, 

emission external non-descanned PMT detectors (NDD). A 665 nm shortpass filter was 

incorporated into the scanhead of the microscope, to avoid excitation laser bleedthrough, and a 

bandpass barrier filter 457/50 was placed before the NDD. A 20x, 1.0 N. A. water immersion 

objective was used for ex vivo imaging. Segmentation analysis and 3D rendering was performed 

with Amira. 

 Segmentation analysis involved establishing a threshold for the pixels to be counted in 

each optical section; in all cases the pixels with lowest 5% and the highest 5% counts per second 

were discarded for the final volume tally. The volume, conformed by fluorescent pixels, was 

determined and divided by the total scanned volume to determine the vascular density.  
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4.2.5 Immunohistochemistry 

 Formalin-fixed, paraffin-embedded tissue sections (5 µm thickness) were prepared 

from the skin wound model after whole mount two-photon excitation fluorescence imaging. 

Briefly, the skin was cut longitudinally at the middle of the wounds, mounted and paraffin 

embedded. Tissue sections were deparaffinized and antigen retrieved by Diva Decloacker 

(Biocare Medical, Concord,CA) at 120 ˚C for 4 min, blocked for unspecific binding by a species-

matched 10 % serum, and then stained with primary antibodies. Following primary antibodies 

were used: anti-CD34 (clone MEC14. 1:100, BioLegend (San Diego, CA), anti-alpha smooth 

muscle actin (ab5694, 1:500) and Fibroblast activation protein, alpha (ab53066, 1:200, both from 

Abcam Cambridge, MA), anti-Mouse Mac-3 (clone M3/84, 1:100, BD Pharmingen, San Jose, 

CA). Alkaline phosphatase-conjugated with streptavidin (Vector Laboratories, Burlingame, CA) 

were used to detect primary antibodies in the combination with biotin-labeled species-specific 

secondary antibody (Invitrogen, Grand Island, NY) and visualized with alkaline phosphatase 

substrate kit I (Vector Laboratories). 

 

4.3 Results 

4.3.1 Fluorescence Spectra 

 One- and two-photon absorption, emission and anisotropy spectra are shown in Figure 

4-3.
107

 



 

 

52 

 

Figure 4-3. (A) One-photon absorption (1, 2), emission (1’, 2’) of probe 1 in water-chloroform 

mixture; (B) two-photon (1, 2, 3) and one photon (1’, 2’, 3’) absorption in chloroform, 

acetonitrile and water. 

 

4.3.2 Two-Photon Microscopy 

 Excitation from the external face of the wound resulted in poor penetration (not shown) 

due to absorption by the scabs formed at the surface of the lesion, and the presence of fur also 

interfered with imaging the neovasculature. From the internal side, it was necessary to overcome 

collagen/elastin autofluorescence; yet the images were much clearer overall (Figure 3-1, A-C). 

Imaging with shorter wavelengths (690 - 720 nm), where the δ2PA ≈ 1000 GM, was also 

explored but the contrast was significantly diminished compared with the 800 - 825 nm 

excitation range. The loss of contrast was primarily due to the excitation of collagen and/or 

elastin autofluorescence in muscle fibers. Even though cross sections at 825 nm were roughly an 

order of magnitude lower than at 690 nm, penetration and contrast were significantly enhanced at 

this wavelength. 
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 3D reconstruction of invading capillaries shows roughly 1600 μm penetration. Vascular 

plexus extends from 0 to approximately 1100 μm (Figure 4-1, c) and integrin-expressing cells 

from 1100 to 1600 μm (Figure 4-1, b). 

4.3.3 Segmentation Analysis 

 Segmentation analysis of the sample was performed throughout sections of the scanned 

volume to determine vascular densities (Figure 4-4). Vascular densities varied significantly 

throughout the specimen, progressively becoming smaller as one approached the leading end of 

the capillaries where it reached its smallest value of ≈ 3500 μm
3
 of vessels per cubic millimeter 

of tissue. 

 

 

Figure 4-4. Segmentation analysis from 2PFM images. Fluorescent pixels were used to account 

for the vasculature. 
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4.3.4 Immunohistochemistry 

 After the whole-mount two-photon excitation fluorescence imaging of the excised 

wounds, immunofluorescence staining of horizontal tissue sections of the wounds were carried 

out to identify different populations of the wound bed; macrophages, integrin-expressing 

endothelial cells, granulocytes and fibroblasts in the granulation tissue (Figure 4-5). The 

fluorescence resulting from two-photon excitation of probe 1 is shown in green and the one-

photon fluorescence of each cell type marker is shown in red.  

 

 

Figure 4-5. Immunohistochemistry staining of tissue sections of wound healing specimen. 
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 Macrophages were stained with a Mac-3 antibody conjugate; the Mac-3 antigen is 

upregulated by monocytes during their differentiation to macrophages. Colocalization of the 

Mac-3 conjugate with probe 1 was largely absent in this analysis. As expected, the entire fibrin 

clot was invaded by macrophages, whereas integrin positive cells had different cell distributions 

throughout the wound. A CD31 antibody conjugate was used to stain endothelial cells, partial co-

localization with the signal from our probe confirmed that endothelial cells were successfully 

targeted. Furthermore, CD34 antibody, used to stain endothelial cells and endothelial cell 

precursors, showed partial colocalization with probe 1. 

 

4.4 Discussion 

 Understanding the complex dynamics of the wound healing process has traditionally 

relied on optical microscopy techniques of cells and tissue. Optical microscopy has been 

instrumental in understanding the process of wound healing, primarily via the staining (H&E) of 

tissue sections and fluorescence confocal microscopy analysis.
108-110

 The limitation of 

penetration depths in conventional (one-photon absorption, 1PA) fluorescence microscopy has 

made tissue sectioning mandatory in the analyses of the wound healing process. However, both 

the fibrin clot and the early granulation tissue have “jelly-like” consistencies and are easily 

ruptured during the processing of the tissue, leading to the disrupted tissue architecture while the 

dense “scab” tissue (dead tissue) formed on top of the wounded area (on the top of the immature 

early granulation) makes it impossible to visualize the actual healing process from the top of the 

skin. Furthermore, the scab tissue also compromises the quality of the histological sections; vast 

areas of the wound are lost during the histological processing of the skin wounds.  
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 The wound architecture was maintained virtually intact by keeping the surrounding 

tissue (primarily muscle) to support the sample during collection. The samples were “whole-

mounted” (mounted without further sectioning) and analyzed by 2PFM once it was excised from 

the mouse (Figure 4-2). The autofluorescence emanating from connective tissue of the muscle 

did not affect the analyses due to the high efficiency of the probe (high two-photon action cross 

section, δ.ΦF), which provided a high enough signal-to-noise ratio to reveal individual integrin-

expressing fibroblasts and endothelial cells beyond 1000 μm. 

 Just as for linear absorption, the efficiency of 2PA can vary significantly from molecule 

to molecule. In order to take complete advantage of the virtues of 2PFM, fluorophores should 

have a very particular set of values that include high 2PA cross section, high fluorescence 

quantum yield, and low photo-decomposition quantum yields.
111

 We recently reported the 

development of an efficient 2PA RGD-containing fluorescent probe 1 that has proven to be 

useful in imaging integrin sites in cells and tumor vasculature.
107

 The probe consisted of two 

units: 1) a two-photon absorbing component that was designed to exhibit a high 2PA cross 

section and high fluorescence quantum yield; and 2) a cyclic-RGD peptide that targeted the 

probe toward αvβ3 integrin expressed on the sprouting capillaries within the wound. The core of 

the 2PA chromophore was a fluorene molecule flanked by two benzothiazolyl styryl groups in 

positions 2- and 7-, constructing an A-π-π-π-A system, where A represents an electron-accepting 

moiety. An olygo-(ethylene glycol) (OEG) chain was incorporated to each styryl phenyl ring to 

improve the hydrophilicity of the probe. Cyclic RGDfK (c-RGDfK) peptide binds very 

specifically to αvβ3 integrin.
99

 Detailed linear and nonlinear photophysical characterization was 

previously reported for this probe.
107

 The fluorescence quantum yields were 1.0, 1.0, and 0.5 
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when measured in chloroform, acetonitrile, and water, respectively. Although probe 1 is not 

symmetrical, its behavior was akin to that of compounds with C2V symmetry, in the sense that 

the efficiency of its 2PA transition S0 S1 is greatly reduced by the dipole selection rules.
112

 

Nonetheless, the 2PA cross-section values were quite adequate for 2PFM, ranging from δ2PA ≈ 

100-1000 GM (between λ ≈ 690-825 nm). These values were crucial in obtaining the maximum 

possible contrast in the micrographs, particularly in this system where the fluorescence signal of 

the chromophore had to overcome the autofluorescence noise from the connective tissue in 

muscle that surrounded the fibrin clot.  

 Two of the main indicators of the proliferative phase in the granulation tissue during the 

wound healing process are the invasion of fibroblasts and the capillaries in fibrin clot.
108, 113

 

Within 2 to 3 days, when inflammation is receding, fibroblasts start to appear in the fibrin clot 

and are the predominating cells in the wound site after a week (Figure 4-1 d). They rely on a 

fibrin/fibronectin scaffold to migrate into the wound. The main role of fibroblasts at this stage is 

to layout the collagen monomers. This early, loose granulation tissue, upon cross-linking of 

collagen, will form the firm collagen network at the later stages. This network is key for 

establishing the mechanical integrity for the disrupted tissue in later phases of the wound healing 

process. Angiogenesis is a concomitant event, or even precedes, the fibroblast invasion, 

providing both oxygen and nutrients the fibroblasts need in building the granulation tissue. 

Figure 3 (A, C, and D) illustrates new capillaries that have invaded the wound. Endothelial cells 

of new capillaries up-regulate αvβ3 integrin, which is transiently expressed only at the tips of 

sprouting capillaries.
108

 Thus, the peptide binding to αvβ3 integrin is very specific for newly 
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formed angiogenic blood vessels and can be used to illustrate the progress and extend of the 

angiogenesis as the tip of the sprouting capillaries are illuminated.   

 The results of immunohistochemistry staining (Figure 4-5) suggest that not all 

capillaries were perfused and that probe 1 only labeled endothelial cells of perfused capillaries. 

This is, in turn, in agreement with the known fact that not all angiogenic blood vessels are 

perfused during angiogenesis. 

 Probe 1 colocalized positively with some granulocytes that were costained with Gr-1 

antibody. Fibroblasts were stained with anti-fibroblast activation protein (FAP) antibody. Many 

fibroblasts within the fibrin clot colocalized with RGD probe-positive cells. Thus, the RGDfK 

moiety on probe 1 targeted endothelial cells and endothelial cell precursors.  The probe then 

extravasated to the extracellular matrix to accumulate within the fibroblast-rich stroma. This 

observation is consistent with that fact that αvβ3 integrin is expressed exclusively by the 

endothelial cells in the wound.  Our results also suggest that the sprouting end of the new 

capillaries are quite leaky and that the probe binds to stromal cells that express other integrin 

receptors for RGD. 

 Reconstruction of the specimen in 3D (Figure 4-1, a-c) showed the architecture of the 

intact capillary network and the relative position of surrounding stromal cells with respect to the 

invading capillaries. Our probe provides the possibility of carrying out analyses on the whole 

tissue-level in a 3D-format, i.e. the intact wound tissue architecture can be visualized by this 

method. Such imaging ability was previously unattainable with this level of detail in intact tissue.  

Furthermore, the probe effectively extravasated from the capillaries to the surrounding 

granulation tissue. The ability to extravasate and accumulate in the granulation tissue provides an 
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unprecedented potential to identify tissue sequesters that are not perfused properly and could 

hamper tissue regeneration. 

4.5 Conclusion 

 In conclusion, probe 1 was useful in revealing RGD-positive, integrin-expressing cells 

and endothelial cells up to approximately 1600 μm deep within the specimen. In silico 

reconstruction showed high resolution 3D images of the intact structure of the vascular plexus in 

healing wounds. The RGD peptide-targeted 2PFM imaging overcame problems associated with 

histological preparation of fibrin clot for analyses of wounds. This technique offers the 

possibility of a novel method for cell tracking and monitoring of angiogenesis during the 

proliferative phase of wound healing, providing an attractive path forward towards in vivo 

wound healing studies, as we were able to analyze the skin as a whole organ. Intravital 2PFM 

studies with custom-made imaging windows are currently being performed in our laboratory to 

image the wound healing process in real-time. This technology may not only be of substantial 

improvement for the reliable quantification and illustration of key biological processes taking 

place during the tissue regeneration in the skin, but also forge revolutionary opportunities to 

assess healing process in situations such as skin crafting and diabetes, where the re-

vascularization of the craft/ischemic skin is the rate limiting step for regeneration to take place. 
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CHAPTER 5. APPLICATION OF SULFONIUM SALTS WITH A 

FLUORINE CORE TO INDUCE SELECTIVE CELL DEATH 

 

Reproduced with permission from Xiling Yue, Ciceron O. Yanez, Sheng Yao, and Kevin D. 

Belfield, Selective Cell Death by Photochemically Induced pH Imbalance in Cancer Cells. 

Journal of the American Chemical Society 2013, 135 (6), 2112-2115. Copyright (2014) American 

Chemical Society. 

 

 Singlet oxygen sensitized photodynamic therapy (PDT) relies on the concentration of 

oxygen in the tissue to be treated. Most cancer lesions, however, have poor vasculature and, as a 

result, are hypoxic, significantly hindering PDT efficacies. An oxygen-independent PDT method 

may circumvent this limitation.  To address this, three sulfonium salts were applied to produce a 

pH drop within HCT 116 cells via the generation of photoacid within the cytosol. This process 

was driven by one- or two-photon absorption (1PA or 2PA) of the endocytosed photoacid 

generators (PAGs). One of the fluorine PAGs, which had a significantly lower dark cytotoxicity 

and was more efficient in generating photoacid, effectively induced necrotic cell death in the 

HCT 116 cells. The data suggests that PAGs may be an attractive alternative PDT modality to 

selectively induce cell death in oxygen-deprived tissue such as tumors. 

 

5.1 Introduction 

 The success of photodynamic therapy (PDT) requires the careful balance of three 

conditions that must be present in the targeted cells at the time of therapy: 1) oxygen saturation 
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of the tissue, 2) sufficient photosensitizer concentration throughout the lesion, and 3) sufficient 

intensity of the sensitizing light. Even in a single gland like the prostate, all three of these agents 

are present in quite heterogeneous concentrations and doses.
114, 115

 This has significantly 

complicated and compromised the reproducibility of singlet oxygen photosensitized PDT (
1
O2-

PS PDT).  

 For over 100 years photodynamic oncotherapy has sought to produce singlet oxygen in 

an oxygen-depleted environment. Vasculature in healthy tissue is very well structured; the inner 

walls of healthy vessels are conformed by well differentiated endothelial cells. In contrast, tumor 

vessels have very poor morphology and are conformed by immature cells in a mesh-like 

architecture that confers a leaky property to the vessel. The leaky character of these vessels 

generates a hypoxic and acidic microenvironment that induces the production of positive or 

negative regulators of angiogenesis.
116

 

 This hypoxic environment within a tumor often leads to poor outcomes in 
1
O2-PS PDT 

because frequently there is a limited amount of oxygen to excite. The minimal concentrations of 

oxygen are quickly depleted upon 
1
O2-PS PDT, making it extremely easy to saturate the 

irradiation dose upon treatment. Furthermore, these extreme hypoxic events are often followed 

by ischemia, which not only further compromises the flow of oxygen to the tumor but also 

hinders the delivery of complementary chemotherapeutic agents that are delivered via the blood 

stream.
115

  

 Herein, an oxygen-independent means of inducing cell death via PDT is shown. Instead 

of inducing singlet oxygen by photosensitization, a pH imbalance was induced within the cytosol 

of the cells that were targeted by a PAG, affording oxygen-independent PDT. 
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5.2 Materials and Methods  

5.2.1 PAGs Structures 

 Three sulfonium salt PAGs were previously synthesized and reported.
117

 Structures 

were shown in Figure 5-1. Both PAG1 and 2 have fluorine core, while PAG 3 has squaraine 

core. 

 

 

Figure 5-1. Sulfonium salt 2PA PAGs structures.  

 

5.2.2 Encapsulation of PAGs 

 A solution containing 25 mg of Pluronic® F-127 in 10 mL of PBS buffer (pH= 7.4) 

was mixed with solutions containing PAGs in CH2Cl2 (10 mL), respectively. The organic solvent 

was allowed to evaporate at room temperature overnight. The mixtures were filtered through 2 
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μm pore size disposable filters and used as stock solutions. Concentrations of stock solutions 

(PL-PAG) were determined by molar absorption coefficient. 

5.2.3 Cell Culture 

 HCT 116 cells (ATCC, USA) were cultured in RPMI-1640, supplemented with 10% 

FBS, 1% penicillin-streptomycin, at 37°C in a 95% humidified atmosphere containing 5% CO2. 

5.2.4 Photocytotoxicity Assay 

 HCT 116 cells were seeded in 96-well black wall clear bottom plates (Corning, USA) at 

the concentration of 5 × 10
3
 cells/well and incubated for 48 hours. For dark experiments, PL-

PAGs were diluted into 0.5 μM, 1 μM, 5 μM, 10 μM and 15 μM from stock solutions. Cells were 

then incubated with diluted PL-PAGs for additional 24 hours. Viability was then determined 

with CellTiter 96® AQueous One Solution Reagent (Promega, USA). For photocytotoxicity 

experiments, PL-PAGs were diluted to 10 μM solutions and added into cells. For PL-PAG 1 and 

2, plates were then placed on an inverted microscope (Olympus IX70) coupled with a 100W 

mercury lamp. The distance between the bottoms of plates and objective was 1cm to make sure 

the whole well can be irradiated by the UV light. A customized filter cube (Ex 377/50, DM 409, 

Em 525/40) was used to match the excitation wavelength of PAGs. The final power reached the 

plates was 7.4 mW/cm
2
. For PL-PAG 3, plates were placed on an inverted microscope (Olympus 

Fluoview FV300) coupled with Coherent Mira 900F Ti:Sapphire laser. Cells were irradiated at 

700 nm at the CW mode. The final power reached the plates was 5.3 mW/cm
2
. Different 

irradiation times were used to reach the power of 0.03 J/ cm
2
, 0.08 J/ cm

2
, 0.24 J/ cm

2
, 0.72 J/ 
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cm
2
, and 2.16 J/ cm

2
. After irradiation, cells were incubated for another 24 hours before 

measuring the viability. 

5.2.5 Lysosome Colocalization 

 Cells were cultured on 12 mm poly-D-lysine functionalized coverslips for 48 hours. 

PL-PAG 1 was then added into cells at a concentration of 10 μM together with LysoTracker 

Green at 1 μM for 1 h. Coverslips were then washed with PBS three times and mounted onto 

slides with ProLong® Gold antifade reagent. Slides were imaged with Olympus IX-81 confocal 

microscope. A customized filter cube (377/50, 409, 460/50) was used for PAG 1 and the FITC 

filter cube (477/50, 507, 536/40) was used for LysoTracker Green. 

5.2.6 Live Cell Imaging of PL-PAG 1 

 Cells were cultured on 40 mm poly-D-lysine functionalized coverslips for 48 hours. 

PL-PAG 1 was then added into cells at a concentration of 10 μM. After 24 hours, coverslips were 

washed with PBS three times and mounted onto a bioptics live cell imaging chamber. After 

irradiated with UV lamp for 100s (0.72 J/ cm
2
), cells were imaged with Olympus IX-81 DSU 

microscope at 1 min intervals for 3 hours in DIC channel. 

 For in vivo pH indicator, cells were co-incubated with 10 μM PL-PAG 1 (24 hours 

incubation) and 1 μM LysoSensor Green (Invitrogen, USA) for additional 2 hours. After 

irradiation, cells were imaged at 1 min intervals for 30 min with FITC channel. Fluorescence 

intensities at different time points were calculated with SlideBook. 

5.2.7 Two-Photon Irradiation and Determination of the Type of Cell Death 

 Cells were cultured on 12 mm poly-D-lysine functionalized coverslips for 48 hours. 
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PL-PAG 1 was then added into cells at a concentration of 10 μM. After 24 hours, cells were 

irradiated with a Coherence two-photon laser at 710 nm for 13 min (70 fs pulses, 80 MHz 

repetition rate, 2.0 mW/cm
2
). Cells were incubated for additional 4 hours before stained with 

Propidium Iodide (PI, BD Biosciences, USA) and fixed with 4% Formaldehyde. The coverslips 

were washed with PBS three times and mounted with ProLong® Gold antifade reagent 

(Invitrogen, USA). Images were taken with Olympus IX-81 DSU microscope. 

5.2.8 Measurement of Lysosomal pH Drop 

 Cells were cultured on 40 mm poly-D-lysine functionalized coverslips for 48 hours. 

PL-PAG 1 was then added into cells at a concentration of 10 μM together with LysoSensor 

Green at 1 μM for 2 h. Coverslips were then washed with PBS three times and mounted onto a 

bioptics live cell imaging chamber. After irradiated with UV lamp for 100s (0.72 J/ cm
2
), cells 

were imaged with Olympus IX-81confocal microscope at 1 min intervals for 30 min with FITC 

channel. Fluorescence intensities at different time points were then calculated with SlideBook. 

 To estimate pH drop quantitatively, a solution of PL-PAG 1 (10 μM) and Rh B (100 

μM) was placed in a cuvette and the absorption of RhB was recorded. The mixture solution was 

then exposed at UV lamp and absorption was recorded every 5 s. The absorbance at 555 nm was 

plotted to make a dose dependent calibration curve. H
+
 generation was estimated from the curve 

and pH drop was calculated. 
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5.3 Results 

5.3.1 Photophysical Properties of PAGs 

 The photophysical properties of PAGs were previously measured and published.
117

 

PAG 1 exhibited an increased photoacid quantum yield (Table 5-1). The 2PA cross-sections, 

however, were found to be up to 5 times higher for PAG 2 than for PAG 1 (Table 5-1). This 

disparity in 2PA cross-section values vs. photoacid quantum yield values makes it difficult to 

rank these PAGs by their overall efficiencies. Using only one of these two photophysical 

properties would be incomplete and could lead to erroneous interpretations.  

 

Table 5-1. Photophysical properties of PAGs 

 

PAG ΦF ΦH+ δ710 (GM) 
ΦH+.δ 

(GM) 

1 0.10±0.01 0.40±0.04 240±24 96±10 

2 0.80±0.06 0.03±0.003 1275±130 38±4 

3 0.27±0.02 0.01±0.005 - - 

δ: two-photon absorption cross-sections at 710 nm; ΦH+.δ: two-photon action cross-section of 

photoacid generation at 710 nm.  

 

 A more useful value to compare the PAGs is the 2PA action cross-section of photoacid 

generation, given by the product of photoacid generation quantum yield and the 2PA cross-

section at a specific wavelength. On the basis of the 2PA action cross-section, the overall 

efficiency of PAG 1 was higher than that of PAG 2.  

 In a constant effort to improve the properties of these molecules, other PAGs are 

currently being synthesized in the lab that absorb at longer wavelengths and possess higher 2PA 

cross-sections. An example of this type of molecule is PAG 3 (Figure 5-2). The squarane core 
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has the advantage of having a linear absorption λmax in the NIR and has been associated with 

high 2PA absorption. (Figure 5-2) 

 

 

Figure 5-2. One-photon absorption spectra of PAGs in PBS following Pluornic-127 

encapsulation.  

 

5.3.2 Dark Toxicity and Post-Irradiation Toxicity of PL-PAGs in HCT 116 Cells 

 PL-PAG 1 and 3 showed minor toxicity to HCT 116 cells until 10 μM (Figure 5-3). At 

this concentration, both groups still presented 80% viability. PL-PAG 2, however, gave a high 

toxicity in dark, which eliminated its further application in cells. 
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Figure 5-3. Dark toxicity of PL-PAGs in HCT 116 cells.  

 

 In the exposure experiment, both exposure source for PL-PAG 1 and 3 exhibited no 

toxicity to cells by themself. (Figure 5-4) PL-PAG 3 didn’t induce noticeble cell death in 900 s. 

This propbably due to its low photoacid quantum yield. PL-PAG 1, on the other hand, with 

lowest dark toxicty, exhibited highest post-exposure toxicty. The IC50 dose of PL-PAG 1 was 

about 100 s. And the viability further dropped to less than 20% at 900 s exposures. The viability 

change also fitted well to the dose-dependence curve. These results indicated that PL-PAG 1 

could be a promising candidate for irradiation induced cell death. 
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Figure 5-4. Post-exposure toxicity of HCT 116 cells incubated with PL-PAG 1 and 3. 

 

5.3.3 Colocalization of PL-PAG 1 and LysoTracker Red 

 To investigate where PL-PAG 1 travels to inside HCT 116 cells, cells were coincubated 

with PL-PAG 1 and LysoTracker Red, which is a commercial dye that known to stay in 

Lysosome after uptake by cells. Fluorescence of PAG 1 was collected inside cells (Figure 5-5, 

b), showing a good uptake efficiency of PL-PAG 1. Overlay image (Figure 5-5, d) exhibited 

good colocalization between PL-PAG 1 and LysoTracker Green, which indicated PL-PAG 1 

mainly built up in lysosomes. 
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Figure 5-5. DIC (a) and confocal fluorescence images of HCT 116 cells coincubated with PL-

PAG 1 (b) and LysoTracker green (c). Overlay image (d) shows PL-PAG 1 mainly built up in 

lysosomes. Scale bar shows 50 μm. 

 

 Pluronic® F-127 has been widely used in drug delivery applications to enhance the 

solubility of hydrophobic substances such as anticancer drugs.
118, 119

 Pluronic® micelles are 

known to be endocytosed by MDCK cells by means of clathrin-mediated endocytosis when 

present above the critical micelle concentration.
120-122

 The hydrophobic character PAGs 4-3 

facilitated their encapsulation in Pluronic® F-127.
14, 123, 124

  

5.3.4 Live Cell Imaging After Irradiation with PL-PAG 1 

 Time-lapse images were taken to show the process of cell death by light irradiation 

with -1. (Figure 5-6) Widefield fluorescence image showed uptake of PL-PAG 1 in cells (green). 
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Colocalization with LysoTracker Red (red) showed PL-PAG 1 mainly built up in lysosomes. 

DIC images show the changes of cell morphology during death process. Green arrows indicate 

loss of cell adhesion, yellow arrows “blebbing”-like activity (shown in enlargement, lower 

frame), and blue arrows cell swelling. All cells in the observing area died after 4 h (shown in 

bottom right). 

 

 

Figure 5-6. DIC and confocal fluorescence images of HCT 116 cells after irradiation with PL-

PAG 1. Scale bar shows 50 μm. 
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5.3.5 Type of Cell Death 

 Cell death could also be induced by two-photon photoacid generation. Cells were 

exposed to two-photon irradiation after incubated with PL-PAG 1 for 24 h. After irradiation, 

propidium iodide (PI) was employed to assess the proportion of cells that underwent necrotic cell 

death. 

 A control sample to determine the effect of the irradiation conditions on the cell was 

performed by irradiating cells that had not been incubated with the PAG. The micrographs 

showed excellent cell morphology (DIC) and high viability (low fluorescence intensity of the PI 

channel) of the cells for up to 24 h following irradiation. A second control, in which cells were 

incubated with PL-PAG 1 but were not irradiated, showed adequate cell uptake (fluorescence in 

PAG-1 channel) and no detectable cell death via the necrotic pathway. Irradiated cells showed 

significant cell swelling and loss of membrane potential as indicated by the uptake of the PI. The 

abnormal cell morphology and bright PI staining indicates cells underwent necrosis death. 

(Figure 5-7) 
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Figure 5-7. PI staining of HCT 116 cells after incubated with PL-PAG 1 and irradiated at 710 

nm. Scale bar shows 50 μm. 

 

5.3.6 Lysosomal pH Drop 

 LysoSensor Green has been reported to monitor acidic pH within cells.
125

 This dye is 

known to increase its fluorescence quantum yields when in acidic compartments. Cell images 

show an increase in brightness for cells irradiated with PL-PAG 1, while almost no change for 

the control cells. (Figure 5-8, left) Calculated fluorescence intensities at different time points 

also show the same trend. The drop in fluorescence intensities as a function of irradiation dose in 

control cells can be attributed to the photobleaching of the LysoSensor Green. On contrast, 

fluorescence intensity for PL-PAG 1 with irradiation group kept increasing at the beginning until 
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it reached the highest intensity at 17 min. (Figure 5-8, right) The increase of fluorescent intensity 

indicates a pH drop in lysosomes in HCT 116 cells after irradiated with PL-PAG 1. 

 

 

Figure 5-8. Increase of acidic content in cell lysosomes after cells irradiated with PL-PAG 1. 

LysoSensor Green was employed as a pH indicator. 

 

 To quantitatively estimate the pH drop inside cell lysosomes, Rhodamine B was applied 

and its absorption was recorded. By means of this method the number of acid molecules 

generated was assumed to be the same as the number of Rhodamine B Base molecules converted 

to Rhodamine B+, causing a increase in absorption around 555 nm. H
+
 generation was estimated 

to be 2.11 × 10
-6

 M via extrapolation of the calibration curve. (Figure 5-9) Considering the 

original pH of lysosome, the lysosomal pH would at least be reduced in 0.2. 

 

 

 

 

 



 

 

75 

 

Figure 5-9. Absorbance changes of Rhodamine B at 555 nm. Calibration curve was calculated to 

estimate H
+
 generation. 

 

5.4 Discussion 

 Most commercially available PAGs have an absorption λmax in the UV or deep-UV 

because their applications in lithography requires them to absorb at the shortest possible 

wavelengths. Recently, a series of more conjugated, longer-wavelength-absorbing PAGs were 

synthesized in our lab that were designed to be efficient two-photon absorbing molecules.
117

 The 

generation of photoacid was induced by one- and two-photon absorption of PAGs 1-3 (Figure 5-

1). To our knowledge, this is the first example the use of PAGs to cause cell death by generating 

a pH imbalance in the cell. 

 The emergence of nonlinear (2PA) techniques has taken advantage of the quadratic 

dependence that 2PA has on the intensity of the incident light.
29-31

 This advantage can equally be 
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exploited in PDT applications and require that the molecules employed for therapy be efficient 

two-photon absorbers, i.e., the molecules need to have high two-photon-absorbing cross-

sections. The possibility of using such agents in cancer lesions that are buried under sensitive, 

healthy tissue (i.e. gliomas) makes these 2PA PAGs especially important. Undoubtedly, the 

simplicity associated with generating photoacid by 1PA is also an advantage. One-photon 

photoacid generation is a more efficient process, where the excitation source needed is cheaper 

and easier to use. In exchange for tissue penetration, a larger amount of targeted surface mass 

within tissue can be covered at a faster rate.  

 Two-photon photoacid generation is a lower probability process, because it is energy 

dependent, and relies on more elaborate pulsed lasers as energy sources. However, it has a 

tremendous tissue penetration advantage and the process is confined to a smaller volume. Ideally, 

both methods can be used simultaneously to maximize the possibility of success of the OI-PDT 

process.  

 Originally the synthesis of triarylsulfonium salts was reported by Crivello and Lam, 

where the thermolysis of a diphenyliodonium in the presence of a diphenylsulfide formed the 

desired sulfonium salt.
126-128

 Recently, a more efficient, microwave assisted-based, synthetic 

strategy of triarylsulfonium salt PAGs was reported.
117

 PAGs 1-3 were designed to exhibit high 

2PA cross-sections. Fluorene was chosen as the core structure of PAGs 1 and 2 because of its 

high thermal and photochemical stability.
129

 Quite advantageously, fluorene lends itself to ready 

substitution in its 2-, 7-, and 9-positions. In PAGs 1 and 2, stilbenyl motifs were introduced (2- 

and 7-positions) to extend the π-conjugation. Ultimately, two acceptor groups (triarylsulfonium 

and nitro) were introduced for net structures of A-π-π-A (PAG 1) and A- π-π-π-A (PAG 2).  
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 To enhance the photoacid quantum yield per molecule, the first approach was to 

incorporate two sulfonium salt motifs onto the fluorenyl scaffold, such as in PAG 2 (Figure 5-1). 

However, this molecule exhibited very low photoacid quantum yields (0.03). The high 

fluorescence quantum yield of this PAG (0.80) indicated the molecule was undergoing radiative 

decay (fluorescence) before it had a chance to form photoacid.  

 The direct photolysis of triarylsulfonium salts has been reported to occur primarily 

from the first excited singlet state. However, sensitization studies have shown that triplet 

triarylsulfonium salts are also labile.
130

 Consequently, to increase the probability of spin orbit 

coupling to induce intersystem crossing, a nitro group was incorporated into the fluorene 

backbone. As a result, the fluorescence quantum yield of the sulfonium salt (PAG 1) was 

significantly decreased (Table 1), thereby reducing the radiative decay pathway.  

 A comparable figure of merit for one of the most widely used PDT agents photofrin 

(singlet oxygen quantum yield x 2PA cross section) illustrates the efficiency of the PAGs. In the 

literature photofrin oxygen quantum yields values are approximately 0.2, and its 2PA cross 

sections range from 10 – 15 GM.
131, 132

 Based on these values, the action cross sections for 

photofrin would range from 2-3 GM. This value is significantly lower than that of PAG 1. 

 The PL-PAGs were tracked through the vesicle maturation process of endocytosis. 

After the micelles undergo endocytosis, they can either reach full endosomal maturation, 

reaching the lysosomes, follow exocytosis before attaining the endo-lysosomal stage, or buildup 

in other regions like the mitochondria. We mainly observed the accumulation of the PL-PAGs in 

the endosomes-lysosomes (even after 24 h of incubation, Figure 5-5) in HCT 116 cells.  
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 An ideal PAG for phototherapy would exhibit low cytotoxicity when unexposed and 

induce a high percentage of cell death upon irradiation. To assess the intrinsic toxicity of the 

PAGs, cell viability assays were initially carried out in the dark (dark viability) to avoid the 

production of photoacid. The results indicated PL-PAG 1 had the lowest dark cytotoxicity 

throughout this concentration range, followed by PL-PAG 3 and PL-PAG 2, respectively (Figure 

5-3).  

 Based on these results, exposure experiments were performed at 1, 5, and 10 μM for all 

PL-PAGs. The most appreciable changes in viability (from dark viability to post-exposure 

viability) were observed at 10 μM (Figure 5-4). PAG 1 showed the best results, promoting a 

drop from 90% viability to 20% viability after 3 seconds of exposure. Even at these relatively 

high concentrations, PAG 2 and 3 failed to induce a significant drop in cell viability. This is 

consistent with their photoacid quantum yields (Table 5-1), which are much less efficient in 

producing photoacid than PAG 1, i.e., the induction of cell death was proportional to the amount 

of acid generated.  

 A correlation of irradiation and increase in lysosomal pH was demonstrated by the aid 

of LysoSensor Green. This indicates a drop in intralysosomal pH (of the already acidic 

compartments) followed irradiation in HCT 116 cells previously incubated with PL-PAG 1 (10 

μM). The measurement of lysosomal pH, however, is rather complex and controversial, although 

there are reports of measuring lysosomal pH via ratiometric analysis (i.e. LysoSensor Green, 

FITC conjugates, Oregon Green 488 conjugates). Haggie and Verkman
133

 reported difficulties in 

using commercial LysoSensor probes to quantitatively measure lysosomal pH, concluding 

previous reports using these dyes for pH measurement were either invalid or semi-quantitative at 
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best. Our situation is further complicated due to the presence of another absorbing molecule 

(e.g., PAG-1) with overlapping absorption and/or emission spectra with the pH probe. Thus, to 

provide an estimate of pH change, we used an approach previously found to quantify the 

concentration of photoacid molecules generated/photons absorbed by PAG-1 has consisted using 

Rhodamine B base as an indicator.
117

 It was estimated that a 10 μM concentration of PAG 1 

would, at least, generate 2.11 x 10
-6

 M at the irradiation doses used 80% cell death (3min). This 

would lead to a drop of intralysosomal pH to about pH = 4.5 (Figure 5-9). 

 Cell death induced by two-photon photoacid generation was demonstrated in an 

experiment where HCT 116 cells were incubated with PL-PAG 1 for 24 h, followed by two-

photon irradiation. All the cells in the exposed area appeared to die by necrosis (Figure 5-7), 

which is expected when such a grave physiological imbalance takes place. Time-lapsed 

micrographs show this progressive change in cell morphology following the generation of 

photoacid (Figure 5-6). Loss of cell adhesion (green arrows) is followed by a “blebbing”-like 

activity (yellow arrows). The integrity of the nuclei in these cells is a sign that chromatin 

condensation is not occurring and hence the process is not apoptotic. What followed was 

significant cell swelling that is characteristic of necrosis (blue arrows). Despite the low 

fluorescence quantum yield, PAG 1 was fluorescent enough to allow visualization of its uptake 

and co-localization with LysoTracker Red (Figures 5-5 and Figure 5-6). The high degree of co-

localization suggests that it was mainly localized in the lysosomes.  

5.5 Conclusion 

 The use of photoacid generators to induce cell death by creating a grave pH imbalance 

in cells has not been reported prior to this work. We demonstrated that sulfonium-based PAGs 
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could be used to selectively induce cell death upon photoexcitation. This opens the possibility of 

photochemically inducing cell death in an oxygen-independent manner. More specifically, PL 

PAGs have induced necrotic cell death via generation of photoacid in the lysosomes in HCT 116 

cells. Photoacid was generated by both 1PA and 2PA, which means cell death, can be induced by 

either method. In order to achieve deep tissue penetration, two-photon excitation is particularly 

attractive. Thus, the ability to induce two-photon photoacid generation of PAGs is significant and 

a particular priority. PL-PAG 1 is a versatile compound that can be used to exploit the advantages 

of one- or two-photon photoacid-based PDT. These results lay the foundations for the use of 

PAGs in OI-PDT. 
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CHAPTER 6. FUTURE WORK 

 Future applications of 2PA materials can be focused on live animal experiments. Due to 

the deep penetration of 2PA excitation, it is possible to conduct therapy or imaging tumor models 

with ultrafast laser system without sacrificing the animals. Besides, by applying functionalized 

nanoparticles, the therapeutic agents and imaging probes can be specifically delivered to the 

targeted area, which will increase the efficiency of therapy and resolution of imaging.
2, 134, 135

 

Furthermore, these two materials can be combined together, so that the therapeutic agents can be 

tracked by the imaging probes.
136, 137

 As a result, silica nanoparticles that encapsulate 2PA 

fluorescent probes and PDT agents and are functionalized with, e.g., an RGD peptide are 

proposed for live animal experiment for the future work. 

6.1 2PA Fluorescent Probes and PDT Agents Encapsulated in Silica Nanoparticles 

 Werner Stober and his coworkers discovered the physical chemistry process of making 

monodisperse silica nanoparticles (SiNPs) in 1968, by adding silane structures in water 

containing alcohol and ammonia.
138

 This method was widely investigated and modified for 

different sizes, colors, and architectures. To function as a drug delivery system, SiNPs should be 

selective, nontoxic, and exhibit good clearance rates. One of the SiNPs platforms, Cornell dots 

(C dots), meet all these criteria and has been approved by the FDA for human clinical trials, 

suggesting SiNPs are promising deliver system for live animals. 

 All the 2PA fluorescence structures in this dissertation can be encapsulated into silica 

nanoparticles for tumor imaging. To best eliminate quenching effects of probes, different SiNPs 

architectures should be explored and the one with best performance can be selected. (Figure 6-
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1). It was reported that for tetramethylrhodamine isothiocyanate (TRITC), expanded core-shell 

particles showed highest fluorescence intensity and longest lifetime.
139

 

 

Figure 6-1. Three different silica nanoparticle architectures, designated from right as the 

compact core-shell particle, the expanded core-shell particle, and the homogeneous particle. 
139

 

 

 PDT agents can be introduced in to SiNPs by encapsulating or covalent bonding.
140-142

 

The PAG agents in this dissertation can also be encapsulated inside or attached outside SiNPs. 

Considering that PAGs works by release acid in to cells, attaching them to the periphery would 

be more preferable. 

 Before further modification and application, properties of encapsulated SiNPs, such as 

size distribution, spectrum, and viability need to be characterized. Sizes around 20 nm would be 

ideal for good cell uptake efficiency.
143

 Meanwhile, sizes between 10-20 nm will permit longer 

distribution times in the circulatory system, with efficient clearance by the kidneys and liver.
144

 

6.2 RGD Peptide Functionalized Silica Nanoparticles 

 Functionalization at the surface of nanoparticles has been widely applied for targeting. 

Tumor selective targeting has been demonstrated by applying functionalized SiNPs in mice.
2, 134

 

RGD peptides have been well demonstrated for its selective binding properties with tumor 

vasculatures. RGD can be introduced into a SiNP system by applying bifunctional PEG groups, 

with the maleimide ending bind to the thiol group on the SiNP surface and use N-

hydroxysuccinimide to react with the primary amine group of RGD (a lysine residue). 
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6.3 Live Animal Treatment and Imaging 

 The advantage of deeper penetration of 2PA excitation can be exhibited in the live animal 

experiments. By studying the tumor environment without sacrificing the animal model, it can 

reduce the number of models used in experiments. In addition, use of a window chamber leads to 

better comparison by tracking the cancer progression on the individual model. For imaging in 

live animals, such as mice, the window chamber can be applied
145, 146

 (Figure 6-2). After tumor 

cells are injected under skin, a window chamber will be implanted on the same area days after. 

(Figure 6-3) Skin at one side of the chamber is open, so the tumor is exposed and can be imaged 

through a coverslip window. 

 

Figure 6-2. Window chamber applied for live mouse imaging. (a) Photograph from coverslip 

side and (b) photograph (mirror image) from skin side. The window chamber had a diameter of 

12 mm.
145

 

 



 

 

84 

Figure 6-3. Implantation of the window chamber on the skin of a mouse.
146

 

 

 Functionalized SiNPs encapsulated with 2PA probes will then be injected into mice 

through the tail vein every day. Vasculature growth during tumor progression can be detected by 

2PA fluorescence imaging using an upright microscope. 

 For PDT therapy, SiNPs containing both 2PA probes and PAGs will be injected into mice 

through the tail vein. Fluorescence from 2PA probes can employed to demonstrate the 

distribution of SiNPs in the tumor area. PDT treatment can then be performed by exposure of the 

tumor area with near-IR light also by 2PA, just tuned to a difference wavelength than used for 

imaging. Treatment efficiency can be evaluated by measuring the tumor sizes in the window 

chamber. Change of tumor vasculature during PDT can also be tracked by fluorescence imaging 

of 2PA probes. 
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APPENDIX: LIST OF PUBLICATIONS DURING PH.D. DISSERTATION 
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