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ABSTRACT 

When testing for the equality of regression slopes based on ordinary least squares (OLS) 

estimation, extant research has shown that the standard F performs poorly when the critical 

assumption of homoscedasticity is violated, resulting in increased Type I error rates and reduced 

statistical power (Box, 1954; DeShon & Alexander, 1996; Wilcox, 1997). Overton (2001) 

recommended weighted least squares estimation, demonstrating that it outperformed OLS and 

performed comparably to various statistical approximations. However, Overton’s method was 

limited to two groups. In this study, a generalization of Overton’s method is described. Then, 

using a Monte Carlo simulation, its performance was compared to three alternative weight 

estimators and three other methods. The results suggest that the generalization provides power 

levels comparable to the other methods without sacrificing control of Type I error rates. 

Moreover, in contrast to the statistical approximations, the generalization (a) is computationally 

simple, (b) can be conducted in commonly available statistical software, and (c) permits post hoc 

analyses. Various unique findings are discussed. In addition, implications for theory and practice 

in psychology and future research directions are discussed. 
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CHAPTER ONE: INTRODUCTION 

Testing for the equality of regression slopes is frequently conducted in a variety of 

psychological research settings. Evidence of this can be found in research on aptitude by 

treatment interactions (Cronbach & Snow, 1977; Smith & Sechrest, 1991), differential prediction 

(Cleary, 1968; Linn, 1978; Saad & Sackett, 2002), and analysis of covariance (Huitema, 1980; 

Rutherford, 1992). Parameters in a linear model are typically estimated using ordinary least 

squares (OLS). Then, testing for the equality of regression slopes is conducted using an F test. 

As described below, research has shown that this test performs poorly when the critical 

assumption of homoscedasticity is violated (Aguinis & Pierce, 1998; Alexander & DeShon, 

1994; Box, 1954; DeShon & Alexander, 1996; Wilcox, 1997). In this paper, I proffer an 

alternative data-analytic solution which extends an approach described by Overton (2001). Thus, 

the main purpose of this paper is to describe the extension and compare its performance to 

alternative procedures. First, however, the OLS-based approach for testing the equality of 

regression slopes is reviewed. 

Testing for the Equality of Regression Slopes Using OLS 

When testing for the equality of regression slopes using OLS, a continuous response (y) 

is modeled as a function of a continuous predictor (x), a categorical predictor (z) with k levels 

(indexed by k – 1 regressors, i.e., z1, z2, . . . , zk – 1), and the two-way interaction between x and z 

(indexed by k – 1 product terms between x and the regressors). It deserves mentioning that 

population parameters are denoted by Greek letters such as $ and 2σ  for example, to differentiate 

them from sample estimates indicated with a diacritic such as β̂  and 2σ̂ , respectively. 

For k = 2, the full linear model for the ith observed response can be expressed as: 

    yi = $0 + $1xi + $2z1i + $3xiz1i + ei         (1) 
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for i = 1, 2, . . . , N, where N = total sample size; $0, $1, $2, and $3 are unstandardized regression 

coefficients; and ei is the ith residual, an estimate of εi (an unknown error). A statistically 

significant t for the test of the null hypothesis 3β 0=  indicates that the two population regression 

slopes are unequal. Stated differently, x and z interact in estimating E(yi).1 

More generally, for k ≥ 2, the full linear model for the N observations (with the number 

of terms p = 2k – 1) can be compactly expressed in matrix form as: 

      = +y Xβ e      (2) 

where y is an N × 1 response vector, X is an N × (p + 1) model matrix, β  is a (p + 1) × 1 vector 

of unstandardized regression coefficients, and e is an N × 1 residual vector. In addition, it is 

assumed that the first-order and second-order moments of e have E(e) = 0 and cov(e) = 2σ IN, 

respectively (where 0 = a null vector, 2σ  = the common variance, and IN = an identity matrix of 

order N) (Schott, 1997). These assumptions state that the model is linear, all relevant terms are 

included in the model, and εis are constant and uncorrelated. Note that normally distributed εis 

are neither required nor assumed for the above-noted model to be valid (Rencher, 2000). 

However, when the normality assumption is invoked, for hypothesis testing, this implies that the 

yis (and εis) are independent. 

The best linear unbiased estimator (BLUE) of the parameters in Equation 2 is: 

      1ˆ  = ( )−′ ′β X X X y     (3) 

Although X, in Equation 3, can be partitioned differently, for convenience: 

      X = [j x Dz Dxz]    (4) 

where j is an N × 1 vector of 1s, x is an N × 1 vector of the continuous predictor, Dz is an N × (k 

– 1) matrix of regressors, and Dxz is an N × (k – 1) matrix of product terms between x and the 
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regressors in Dz. Based on Equation 3 and the constant variance assumption, an unbiased 

estimator of 2σ  can be expressed as: 

     2
ˆ ˆ( ) ( )σ̂

1 1
SSE

N p N p
′− −

= =
− − − −

y Xβ y Xβ     (5) 

where SSE = sum of squared errors. Moreover, when e is normally distributed, maximum 

likelihood estimators of β  and 2σ  are given by Equation 3 and /SSE N , respectively (Rencher, 

2000). 

Although X in Equation 4 represents the full model matrix, a full-and-reduced linear 

model approach can be used to construct the test of whether the k population regression slopes 

are equal (Rencher, 2000). The reduced model matrix (XReduced) excludes Dxz. Then, Reducedβ  

becomes a (k + 1) × 1 vector of regression coefficients. 

Assuming that e is normally distributed, the test for the equality of regression slopes is 

conducted using an F ratio. It assesses whether the decrease in the SSE from a reduced 

(SSEReduced) to a full (SSEFull) model is statistically significant. The F random variable can be 

expressed as: 

         Reduced Full

Full

( ) O

E

SSE SSE dfF
SSE df

−
=      (6) 

where dfO = the number of terms omitted from the full model and dfE = the error degrees of 

freedom for the full model. An equivalent general linear hypothesis test can be conducted using 

the full model (see Equation 8.27 in Rencher, 2000). If (1 α, ,  )O EF F df df> −  (where " = Type I 

error rate), then the hypothesis of equality of regression slopes is rejected; stated differently, x 

and z interact in estimating E(yi). Otherwise, the null hypothesis of equal regression slopes 

cannot be rejected. These procedures are described in greater detail in numerous texts (see 
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Cohen, Cohen, West, & Aiken, 2003; Draper & Smith, 1966; Maxwell & Delaney, 2000; Neter, 

Kutner, Nachtsheim, & Wasserman, 1996). Hereinafter, the F test based on OLS estimation is 

denoted by FOLS. 

As mentioned above, when the important assumption of homoscedasticity is violated, the 

FOLS test of the interaction between x and z no longer performs accurately. In particular, Monte 

Carlo studies indicate that Type I error rates are biased and statistical power is reduced 

(Alexander & DeShon, 1994; DeShon & Alexander, 1996). Moreover, this assumption is not 

uncommon to violate (Aguinis, 2004; Alexander & DeShon, 1994; DeShon & Alexander, 1996; 

Luh & Guo, 2002; Overton, 2001; Wilcox, 1997). For example, based on a review of three 

journals (Academy of Management Journal, Journal of Applied Psychology, and Personnel 

Psychology) from 1987 to 1999, Aguinis, Peterson, and Pierce (1999) identified 87 articles that 

reported at least one test for the equality of regression slopes. Out of 117 tests, Aguinis and his 

colleagues found that at least 39% of these violated the assumption. The implication of this 

finding is that researchers might have wrongly concluded that an interaction exists in the 

population when it does not (Type I error) or that an interaction does not exist in the population 

when it does (Type II error). In either case, “substantive research conclusions can be erroneous, 

theory development can be hindered, and incorrect decisions can be made…” (Aguinis et al., p. 

319). 

In the following sections, three main issues are discussed: (a) homoscedasticity in linear 

models when testing for the equality of regression slopes, (b) proposed remedies when 

homoscedasticity is violated in such models, and (c) weighted least squares regression as an 

alternative solution. 
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Homoscedasticity in Linear Models 

A number of psychological disciplines, such as clinical psychology, educational 

psychology, and industrial and organizational psychology, use general linear models to analyze 

data (e.g., analysis of variance [ANOVA] and OLS regression). Hypothesis tests in such models 

require that the conditional variance of y remain constant about the fitted surface. This 

homoscedasticity assumption can be denoted by var( ie ) = 2σ  for all i. In linear models with all 

categorical predictors (viz., ANOVA), this assumption is also referred to as homogeneity of 

variance (Wilcox, 1996). In the following paragraphs, I first provide a clarification of the 

homoscedasticity assumption, along with the form of nonconstant variance (i.e., 

heteroscedasticity) addressed in this paper. Then, the effects of heteroscedasticity in OLS 

multiple regression, when testing for the equality of regression slopes, are discussed. 

A Clarification of Homoscedasticity 

When defining homoscedasticity, and depending on the type of predictors in a model, 

some researchers employ different terminology claiming that these terms are distinctly different 

concepts. For example, it has been asserted that homogeneity of error variance applies to linear 

models testing for the equality of regression slopes and that homoscedasticity applies more 

generally to all OLS regression models (Aguinis & Pierce, 1998). However, the variation of the 

response should be the same around the fitted surface whether dealing with a single line or 

multiple higher dimensional hyperplanes. If the conditional variance of y in the fitted model 

differs depending on (a) the value of a continuous predictor, (b) the level of a categorical 

predictor, (c) the fitted values, or (d) a linear combination of the predictors in the model, these all 

represent nonconstant variance, namely, heterogeneity of variance or heteroscedasticity (Carroll 

& Ruppert, 1988; Casella & Berger, 2002; Cook & Weisberg, 1983, 1999; Fox, 1997; Neter et 
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al., 1996; Rencher, 2000). However, in fitting any model, specifying the correct features of the 

error structure is left to the researcher to identify accurately. Are errors normally distributed? Are 

errors constant or nonconstant? Do errors increase in variability as a function of a continuous 

predictor and/or a categorical predictor? Do errors vary as a function of an omitted predictor? 

Two examples are next described to illustrate heteroscedasticity in linear models. 

The first example is a one-way ANOVA with k = 3. Using two regressors, the ith 

observed response can be parameterized as 0 1 1 2 2β β βi i i iy z z e= + + + . This model is assumed to 

have a diagonal covariance matrix for the error term denoted by: 

      

2

2

2

σ
cov( ) σ

σ
N

⎛ ⎞
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

0
e I

0

K

M O M

L

    (7) 

Namely, errors are homoscedastic. However, heteroscedasticity can occur such that:  

    

2

2

2

σ
cov( ) σ

σ

1

i N

N

⎛ ⎞
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

0
e I

0

K

M O M

L

    (8) 

where 2 2σ σi i′≠  for some i and i'. For convenience, however, assume the data are ordered such 

that the first n1 observations are from Group 1 (where nj denotes the jth sample size for j = 1, 2, . 

. . , k). Assume further that the next n2 observations are from Group 2 and the remaining 

observations are from Group 3. Heteroscedasticity could result such that ( 2σ1  = . . . = 2σ
1n ) ≠  

( 2
1σ

1n +  = . . . = 2σ
1 2n n+ ) ≠  ( 2

1σ
1 2n n+ +  = . . . = 2σN ). Therefore, the N diagonal elements of Equation 8 

would assume three different values—one for each group. Thus, the error variance changes 

depending on the level of the categorical predictor. 
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The second example is the model in Equation 1 which fits an intercept and slope for each 

of two groups. Again, Equation 7 is assumed to be true and the data are ordered such that the 

first n1 observations are from Group 1 and the remaining n2 observations are from Group 2. 

Heteroscedasticity might exist in the population as a function of the categorical predictor only. 

Namely, the diagonal elements of Equation 8 could have the form ( 2σ1  = . . . = 2σ
1n ) ≠  ( 2

1σ
1n +  = . 

. . = 2σN ), assuming two different values—one for each group. This also represents 

heteroscedasticity because the error variance changes depending on the level of the categorical 

predictor. 

Note that both examples were linear models which assumed homoscedasticity. When this 

was violated, the result was heteroscedasticity. For pedagogical purposes, it is averred that any 

form of nonconstant variance is heteroscedasticity and, therefore, the exclusivity of terminology, 

such as (a) heteroscedasticity for models with continuous predictors or (b) heterogeneity of error 

variance for models with continuous and categorical predictors, is not used in the present paper. 

Instead, consistent with many research literatures (Breusch & Pagan, 1979; Carroll & Ruppert, 

1988; Casella & Berger, 2002; Cohen et al., 2003; Cook & Weisberg, 1983; Fry, 1994; Greene, 

2003, Jolicoeur, 1999; Neter et al., 1996; Pinheiro & Bates, 2000; Rencher, 2000; White, 1980; 

Wilcox, 1996), nonconstant variance, heteroscedasticity, and heterogeneity of error variance are 

used interchangeably because these terms are synonymous. However, different forms of 

heteroscedasticity can occur and researchers should identify the form detected in the fitted 

model. For example, based on the model in Equation 1, Wilcox (1997) distinguished between 

Type I heteroscedasticity (i.e., nonconstant variance across the values of x within groups), Type 

II heteroscedasticity (i.e., nonconstant variance between groups), and complete 

heteroscedasticity (i.e., where both Type I and Type II exist). 
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The present investigation focuses on Type II heteroscedasticity. As research by Aguinis 

et al. (1999) suggests, this form is likely to occur because bivariate data (i.e., y and x) collected 

across independent groups (e.g., female versus male, ethnic group, etc.) may exhibit different 

error variances because differential validity tends to increase the likelihood of heteroscedasticity. 

Because this paper addresses only this form of heteroscedasticity, for convenience, the modifier 

“Type II” hereinafter was omitted. 

Effects of Heteroscedasticity When Testing for the Equality of Regression Slopes 

The biasing effects of heteroscedasticity on statistical inferences (i.e., hypothesis tests, 

confidence intervals, joint confidence regions, etc.) in OLS multiple regression analyses are 

nontrivial. These effects and their implications for both theory and practice in psychology are 

next discussed. 

The error variance in the jth group can be expressed as: 

     2 2 2σ σ (1 ρ )
j j j je y y x= −      (9) 

where 2σ
jy  and ρ

j jy x , respectively, are the variance of y and correlation coefficient between y 

and x in the jth group (Cook & Weisberg, 1999). Homoscedasticity obtains when 2σ
1e  = . . . = 

2σ
ke . 

As noted above, research suggests that the statistical assumption of homoscedasticity is 

likely to be violated. Inspection of Equation 9 shows that if  2σ
jy  (or ρ

j jy x ) is constant across the 

k groups, then any difference in ρ
j jy x  (or 2σ

jy ) across the k groups will result in 

heteroscedasticity, unless values for 2σ
jy  and ρ

j jy x are such that they “balance out” so as to 

satisfy the homoscedasticity assumption. Moreover, when population regression slopes actually 
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differ, the assumption is likely to be violated (Overton, 2001). This is evident in the following 

expression, after substituting .ρ β (σ σ )
j j j j j jy x y x x y=  into Equation 9: 

     2 2 2 2
.σ σ (β ) σ

j j j j je y y x x= −      (10) 

where .β
j jy x  and 2σ

jx , respectively, are the regression coefficient and variance of x in the jth 

group. Thus, when slopes are unequal, 2σ
jy  and 2σ

jx  in each group must have values that offset 

one another so as to allow 2σ
1e  = . . . = 2σ

ke . In short, when testing for the equality of regression 

slopes, violating the homoscedasticity assumption is not uncommon (Aguinis, 2004; Aguinis et 

al., 1999; Alexander & DeShon, 1994; DeShon & Alexander, 1996; Luh & Guo, 2002; Overton, 

2001; Wilcox, 1997). 

Violating the homoscedasticity assumption has biasing effects on Type I error rates and 

statistical power in OLS regression analyses when njs are equal and unequal. Although with 

equal njs and equal 2σ
jx  across groups, some argue that Type I error rates perform “acceptably 

well” (Dretzke, Levin, & Serlin, 1982, p. 376), when equal 2σ
jx  across groups is untenable, Type 

I error rates become conservative which can reduce the power of FOLS (DeShon & Alexander, 

1996). However, power does not suffer greatly when njs are equal and error variances do not 

differ considerably (Alexander & DeShon, 1994). 

With heteroscedasticity and unequal njs, however, the effects are much more severe. 

Type I error rates and statistical power “can be either gross underestimates or severe 

overestimates depending on the pattern of sample sizes relative to the pattern of error variances” 

(DeShon & Alexander, 1996, p. 270). More precisely, when the larger 2σ
je  is paired with the 

larger nj (direct pairing), FOLS tests become conservative. This results in actual Type I error rates 



 10

less than the nominal level and, ceteris paribus, power is decreased. Conversely, when the larger 

2σ
je  is paired with the smaller nj (indirect pairing), FOLS tests become liberal. This results in 

actual Type I error rates greater than the nominal level and, ceteris paribus, power is increased 

(albeit illegitimately) (see e.g., DeShon & Alexander, 1996, p. 265; Overton, 2001, p. 227). 

Consistent with the above-described simulation results, Box (1954) demonstrated 

mathematically that with unequal njs and unequal variances, under the null hypothesis, the FOLS 

test is unstable. Recall that a central F random variable is the ratio of two independent central 2χ  

variables each divided by their respective means or, equivalently, the ratio of two independent 

mean squares, each estimating 2σ . Box showed that with large variances paired with large njs, 

the expectation of the numerator mean squares will be less than the expectation of the 

denominator mean squares, resulting in the approximate expected F ratio being shifted to < 1. 

Therefore, actual Type I error rates would be less than the nominal level (see e.g., rows 5, 9, and 

13 of Table 4 in Box, 1954). Conversely, with large variances paired with small njs, the 

expectation of the numerator mean squares will be greater than the expectation of the 

denominator mean squares, resulting in the approximate expected F ratio being shifted to > 1. 

Therefore, actual Type I error rates would be greater than the nominal level (see e.g., rows 4, 8, 

and 12 of Table 4 in Box, 1954). Stated differently, with heteroscedasticity, the diagonal 

elements of the (p + 1) × (p + 1) covariance matrix among the regression coefficients, i.e., 

( ) 12ˆcov( ) = σ −′β X X , will generally be too large or too small (viz., inefficient). Thus, hypothesis 

tests will be based on biased standard errors, and the estimate of 2σ  in Equation 5 will be 

incorrect due to the different error variances. Hence, previous simulation and mathematical 

results, together, provide cogent evidence to show that FOLS performs poorly when the 

homoscedasticity assumption is violated, especially with unequal njs. 
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To exacerbate matters, unequal njs are quite common in psychological research for a 

number of reasons, particularly in nonexperimental and quasi-experimental studies. One reason 

is that attrition may result in unbalanced data (Shadish, Cook, & Campbell, 2002), for example 

in clinical studies comparing alternative interventions (Vanable, Carey, Carey, & Maisto, 2002). 

Another reason is that the population from which a researcher purposively samples could be 

disproportionate across subpopulations of the characteristic of interest (e.g., race) (Shadish et 

al.). This commonly occurs in the validation of personnel selection instruments (see e.g., Hattrup 

& Schmitt, 1990; Hunter, Schmidt, & Hunter, 1979). In addition, in longitudinal studies or in the 

analysis of archival data, missing values can lead to unequal njs across variables of interest 

(Schafer & Graham, 2002). 

This can have considerable implications on both theory development and practice in 

psychology. For example, consider a model with various causal links and interaction effects 

among variables. When Type II error rates are inflated due to the influence of heteroscedasticity 

in empirical studies that test for interactions, the inferences derived from the results of OLS 

regression analyses would lead researchers to conclude that the interaction effects in the model 

are untenable. However, the failure to detect such effects in the model would be illusory, that is, 

due to the influence of heteroscedasticity. This situation seems plausible considering that, for 

decades, researchers have underscored the problem of failing to detect hypothesized interactions 

using OLS regression (Aiken & West, 1991; McClelland & Judd, 1993; Stone-Romero & 

Liakhovitski, 2002; Zedeck, 1971). 

On the other hand, tests of interactions in the just-noted model could lead to contradictory 

findings. Although, across studies, such findings could be due to a number of factors, including 

the unreliability of measures or heterogeneity of units (Shadish et al., 2002). However, ceteris 
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paribus, tests of the model could provide support for it in some instances (due to inflated Type I 

error rates) and lack of support for it in other instances (due to inflated Type II error rates). 

Moreover, the model could spawn additional flawed theoretical frameworks or cause 

practitioners to render erroneous decisions based on the model. This would have serious 

implications in such settings as assessing (a) the effectiveness of alternative therapies, or (b) 

whether a personnel selection instrument adversely affects an ethnic minority group. 

To provide an illustration, Aguinis et al. (1999) demonstrated how substantive 

conclusions from two independent studies published in the Journal of Applied Psychology 

changed (likely due to the biasing effects of heteroscedasticity). Specifically, Aguinis et al. 

recognized that the homoscedasticity assumption was violated in these studies and reanalyzed the 

data using two statistical approximations (to be discussed below). From one study, the published 

finding which reported a statistically significant interaction was, in fact, not statistically 

significant when the more appropriate statistical approximations were used. Aguinis et al. 

concluded that the reported interaction was likely a Type I error because an inspection of the 

subgroup descriptive statistics indicated that the larger 2σ̂
je  was paired with the smaller nj. From 

another study, the published finding which reported no statistically significant interaction was, in 

fact, statistically significant when the more appropriate statistical approximations were used. 

Aguinis et al. concluded that the researchers likely failed to detect the hypothesized interaction 

because of low statistical power. That is, an inspection of the subgroup descriptive statistics 

indicated that the larger 2σ̂
je  was paired with the larger nj. 

Hence, substantive conclusions can change when the homoscedasticity assumption is 

violated. Clearly, research in psychology and the accumulation of knowledge can be negatively 

affected by studies that violate this assumption. 
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Proposed Remedies When Homoscedasticity Is Violated 

In an effort to mitigate the problems caused by heteroscedasticity in models that test for 

the equality of regression slopes, numerous data-analytic strategies have been investigated. 

Although some nonparametric and distribution-free alternatives are available, they tend to still 

perform sub-optimally relative to parametric approaches (DeShon & Alexander, 1996). Thus, 

these techniques are not discussed here. Alternatively, some examples of parametric approaches 

include the Welch-Aspin F approximation (F*; Aspin, 1948; Welch, 1938), a generalization of 

James’ (1951) second-order approximation (J; DeShon & Alexander, 1994), and the normalized t 

approximation (A; Alexander & Govern, 1994). In addition, Luh and Guo (2002) recently 

applied Johnson’s (1978) transformations to the A approximation and Welch’s (1951) 

approximation. Researchers have also advocated that statistical tests and confidence intervals be 

based on a heteroscedasticity consistent covariance matrix (HCCM; Long & Ervin, 2000; White, 

1980). As another alternative, many statistical packages can fit linear (or nonlinear) mixed 

models which allow for the modeling of correlated and/or nonconstant errors (Littell, Milliken, 

Stroup, & Wolfinger, 1996; Pinheiro & Bates, 2000). Finally, Overton (2001) recommended 

weighted least squares (WLS) regression. 

Of the above-noted procedures, the F*, J, and A approximations and those recommended 

by Luh and Guo (2002) do not permit post hoc probing of statistically significant interactions. In 

contrast, HCCMs, mixed models, and WLS regression do permit post hoc analyses. These 

procedures are next discussed. 

General Findings on Remedial Procedures: Post Hoc Analyses Not Permitted 

Simulation research on the utility of the various approximation procedures has led to a 

number of conclusions. As expected, across various manipulated conditions, the F*, J, and A 
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approximations result in more stable performance than the standard FOLS (DeShon & Alexander, 

1994, 1996). For small Ns, the J approximation slightly outperforms the F* and A 

approximations. However, because the Type I and Type II error rates of the J and A 

approximations are nearly identical and the A approximation is easier to compute, DeShon and 

Alexander (1996) recommended the A approximation for general use. Finally, when Luh and 

Guo (2002) applied Johnson’s (1978) transformations in conjunction with two approximate 

methods, the approximations were more robust than without the transformations. 

These alternative procedures are computationally intensive and are not incorporated into 

standard statistical software (Overton, 2001).2 Furthermore, as Overton noted, if the F*, J, or A 

approximations indicate that the k population regression slopes are not all equal, further probing 

of a significant interaction is precluded. Stated differently, these procedures do not permit post 

hoc analyses (e.g., tests of simple slopes, joint confidence regions). This is unfortunate because 

such analyses play an important role in understanding the nature of an interaction (Aiken & 

West, 1991; Bauer & Curran, 2005). 

General Findings on Remedial Procedures: Post Hoc Analyses Permitted 

In the following sections, HCCMs, mixed models, and WLS regression are discussed. 

HCCM. Four HCCMs have been recommended and, in the statistics and econometrics 

literature, they are referred to as HC0, HC1, HC2, and HC3 (Long & Ervin, 2000; MacKinnon & 

White, 1985). It has been argued that a “HCCM allows a researcher to easily avoid the adverse 

effects of heteroscedasticity even when nothing is known about the form of heteroscedasticity” 

(Long & Ervin, 2000, p. 217). Because the OLS parameter estimates are unbiased, these would 

still be used in hypothesis testing and when computing confidence intervals. However, the 
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HCCM would provide the appropriate squared standard errors and covariances among the 

estimated regression coefficients. 

Eicker (1963), Huber (1967), and White (1980) provided evidence suggesting that a 

HCCM provides asymptotically correct statistical inference on regression coefficients. However, 

HC0 (White, 1980) has been shown to perform very poorly when N is small (Long & Ervin, 

2000; Mackinnon & White, 1985). When N is large (e.g., ≥ 500), there is little difference in the 

performance among the four HCCMs (Long & Ervin, 2000). Compared to other HCCMs, 

however, HC3 performed well even when N was small (e.g., 25) and when testing coefficients 

that were greatly affected by heteroscedasticity. Consequently, it was recommended for general 

use (Long & Ervin, 2000). HC3 can be denoted by: 

   ( )
( )

( )
2

1 1
2HC3 = diag

1
i

ii

e
h

− −⎡ ⎤
′ ′ ′⎢ ⎥

−⎢ ⎥⎣ ⎦
X X X X X X     (11) 

where hii is the ith leverage value found on the diagonal of the projection matrix 

( ) 1−′ ′=H X X X X  (Neter et al., 1996). Thus, with the estimated squared standard errors and 

covariances among the regression coefficients, respectively, on the diagonal and off-diagonal of 

HC3, testing regression coefficients, constructing confidence intervals, and performing post hoc 

analyses can be conducted as usual. 

It deserves stressing that research has found some conditions where HC3 did not perform 

well (e.g., when p = 1 and small N, Wilcox, 2001). Although previous research has evaluated the 

performance of HC3 using different forms of heteroscedasticity, only the main effects of 

continuous predictors were part of the model (Long & Ervin, 2000). The inclusion of HC3 in the 

present paper is unique because (a) the model considered here includes a categorical predictor 

and the interaction between it and a continuous predictor, and (b) it appears that the effect of 
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unbalanced data on the performance of HC3 has never been investigated. Therefore, it would be 

useful to compare the performance of the F test for the equality of regression slopes based on 

HC3 (hereinafter, referred to as FHC3) to other procedures. 

Mixed Models. Linear mixed models provide another data-analytic alternative when 

heteroscedasticity exists (Snijders & Bosker, 1999). Such models are referred to as mixed when 

both fixed and random effects are included in the model (see McCulloch & Searle, 2001; 

Pinheiro & Bates, 2000; Searle, Casella, & McCulloch, 1992). With no random effects (u) and 

no corresponding random effects model matrix (Z), the linear mixed model ( = + +y Xβ Zu e ) 

reduces to Equation 2 (Searle et al., 1992, pp. 138-139). Examples of applications of mixed 

models include multilevel modeling (Raudenbush & Bryk, 2002; Singer, 1998; Snijders & 

Bosker, 1999), growth curve modeling (Singer, 1998; Singer & Willett, 2003), estimation of 

intraclass correlation coefficients (Bliese, 2000; Shrout & Fleiss, 1979), and generalizability 

theory (Brennan, 2001; Cronbach, 1972; DeShon, 2002). 

As noted above, with heteroscedasticity, cov(e) no longer has the form shown in 

Equation 7. Rather, the diagonal elements differ depending on the level of the categorical 

predictor. Mixed models can be used in such instances. That is, in fitting a mixed model, 

researchers can specify that the error structure has different variances for each level of a 

categorical variable (Littell et al., 1996; Pinheiro & Bates, 2000). 

Although several parameter estimation methods have been suggested (e.g., ANOVA), 

maximum likelihood (ML) and restricted maximum likelihood (RML) (a) are used in many 

mixed modeling procedures (e.g., S-PLUS, SAS, SPSS), (b) have asymptotically optimal 

properties (Casella & Berger, 2002), (c) in contrast to ANOVA estimators, result in estimated 

variance components (e.g., 2σ̂ ) that can never be negative (Searle et al., 1992), and (d) in 
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contrast to ANOVA estimators, can be used with unbalanced data. ML estimation does not 

account for the df used in estimating fixed effects (Searle et al., 1992). “By failing to allocate 

some degrees of freedom to the estimation of fixed effects, . . . [ML] overstates the degrees of 

freedom left for estimating variance components and underestimates the variance components 

themselves, leading to biased estimates when samples are small” (Singer & Willett, 2003, p. 88). 

In contrast, RML estimation accounts for the df used in estimating fixed effects and, when the 

data are balanced, RML “solutions are identical to ANOVA estimators” (Searle et al., 1992, p. 

255). According to Kreft and de Leeuw (1998), it is unclear which estimation method is 

preferred. 

ML and RML estimation, unlike OLS (or WLS), require that the underlying probability 

distribution for the data follow a normal distribution (Searle et al., 1992). Stated differently, 

although ML and RML estimators are derived assuming normality, the OLS estimator in 

Equation 3 is derived without the normality assumption (Searle et al., 1992). As noted above, 

however, for statistical inference (e.g., hypothesis tests, confidence intervals), the normality 

assumption is invoked. 

In mixed models, statistical inference involving fixed effects can be performed using 

likelihood ratio tests or F tests (Searle et al., 1992). However, because likelihood ratio tests 

based on nested models with different fixed effects terms can only be defined when fitted by ML 

estimation (Snijders & Bosker, 1999) and because simulations suggest that such tests perform 

poorly for fixed effects (Pinheiro & Bates, 2000, pp. 88-91), it has been recommended that 

statistical tests and estimated confidence intervals involving fixed effects be based on the F test 

(Pinheiro & Bates, 2000). Moreover, the F test is defined regardless of ML (hereinafter, referred 

to as FML) or RML (hereinafter, referred to as FRML) estimation. 
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WLS Regression. For heteroscedasticity in models like that of Equation 1 (viz., k = 2), 

Overton (2001) recommended WLS regression as another practical solution for a number of 

reasons. First, it performed comparably to the F*, J, and A approximations in terms of Type I 

error and power. Second, it was computationally simple. Third, it can be readily conducted in 

commonly available statistical software. Fourth, post hoc analyses (see e.g., Aiken & West, 

1991; Rogosa, 1980) can be conducted as usual. Hereinafter, the F test based on Overton’s 

approach is referred to as FWLS(O). 

In summary, when heteroscedasticity exists, there are several important reasons for 

considering HCCMs, mixed models (using ML or RML), and WLS regression. First, compared 

to statistical approximations (e.g., A or J), HCCMs and WLS regression are relatively easy to 

compute (cf. Alexander & Govern, 1994, pp. 93-94; DeShon & Alexander, 1994, pp. 330-331). 

Second, compared to statistical approximations, HCCMs, mixed models, and WLS regression 

are available in many major statistical programs (either by default or as part of an add-on library, 

e.g., S-PLUS, SAS, SYSTAT). Third, perhaps most importantly, researchers can perform post 

hoc analyses with these procedures. However, it is very important to note that Overton (2001) 

cautioned against the use of the WLS approach for k > 2 because Type I error rates were 

inflated. 

In the following section, WLS regression is described and I explicate how Overton’s 

(2001) method can be extended to k ≥ 2 based on an approach I developed. 

WLS Regression as an Alternative Solution 

In linear models with heteroscedasticity and when no variance-stabilizing transformation 

can be found, WLS regression is an often-recommended data-analytic technique (Carroll & 

Ruppert, 1988; Cohen et al., 2003; Cook & Weisberg, 1982, 1999; Draper & Smith, 1966; Fox, 
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1997; Greene, 2003; Mak, 1992; Neter et al., 1996).3 According to Cohen et al. (2003), it “is the 

most commonly used remedial procedure for heteroscedasticity” (p. 146). The following 

paragraphs describe (a) WLS regression, (b) the WLS approach for testing the equality of two 

regression slopes, (c) a generalization of WLS regression for testing the equality of k ≥ 2 

regression slopes, and (d) alternative weight estimators in WLS regression. 

WLS Regression 

OLS and WLS regression minimize a similar function. Parameter estimation by OLS 

minimizes the following objective function (Q): 

    Q = ( )2

0 1 1
1

β β β
N

i i p pi
i

y x x
=
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with the OLS normal equations denoted by ′ ′=X Xβ X y . Solving the OLS normal equations for 

β  results in the estimator in Equation 3. To estimate parameters using WLS, the following 

objective function is minimized: 

    Q* = ( )2
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where wi is a weight associated with the ith observation. The weights are rarely known and must 

be estimated (Neter et al., 1996). Note that when all weights are equal to unity, Q* reduces to Q. 

That is, OLS is a special case of WLS (Greene, 2003; Neter et al., 1996; Rencher, 2000). The 

WLS normal equations are denoted by 1 1− −′ ′=X V Xβ X V y , where V is an N × N diagonal matrix 

with vii > 0. 

When heteroscedasticity exists, OLS regression still results in a linear unbiased estimator, 

i.e., ˆ( ) = E β β . However, the estimator is no longer the best; viz., it will not have minimum 

variance (see Gauss-Markov Theorem, Greene, 2003; Neter et al., 1996; Rencher, 2000; Schott, 
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1997). Stated another way, the OLS-based parameter estimates will no longer have the smallest 

standard errors among the class of methods that can be used to estimate the same parameters. 

Alternatively, WLS regression is a transformation of the model matrix (X) and response 

vector (y) that not only accounts for heteroscedasticity, but also restores the minimum variance 

property of the parameter estimates (Cook & Weisberg, 1999; Draper & Smith, 1966; Greene, 

2003; Neter et al., 1996; Rencher, 2000). Solving the WLS normal equations results in a WLS 

estimator for the parameters expressed as: 

 * 1 1 1ˆ  = ( )− − −′ ′β X V X X V y     (12) 

with 2σi  (or more commonly, 2σ̂i ) on the diagonal of V (Schott, 1997). Note that when errors 

are normally distributed, *β̂  is also the maximum likelihood estimator (Rencher, 2000). With 

Equation 12, homoscedasticity obtains and *β̂  has the optimal property of minimum variance. In 

other words, they are the most efficient unbiased estimators among all unbiased estimators that 

are linear functions of y (i.e., BLUE) (Rencher, 2000). 

Statistical inferences (e.g., significance tests, confidence intervals) involving *β̂  will 

provide more accurate Type I error rates and greater statistical power, compared to OLS 

regression. Noteworthy, estimates of population regression coefficients based on OLS or WLS 

will be identical.4 However, when heteroscedasticity exists, WLS regression results in accurate 

standard errors compared to OLS regression. That is, by restoring homoscedasticity, WLS 

regression has smaller unbiased variances on the diagonal of * 2 1 1ˆcov( ) = σ ( )− −′β X V X  (Greene, 

2003; Draper & Smith, 1966; Neter et al., 1996; Rencher, 2000). Consistent with this, the F test 

based on WLS can be viewed as a corrected F (see Moser & Lin, 1992). 
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The Two-Group WLS Approach 

When heteroscedasticity exists, Overton (2001) recommended WLS regression for k = 2 

and detailed how to estimate the weights for each group. One weight applied to each observation 

in Group 1; the second weight, to each observation in Group 2. 

Initially, the residual variances for the jth group were computed as follows: (a) calculate 

jSSE  based on the OLS simple regression of yj on xj, and (b) divide jSSE  by dfj = (nj – 2). 

However, Overton (2001) found that the reciprocals of these estimated variances were biased and 

should not be used for weight estimation, arguing that they were biased by 2 df. Thus, it was 

concluded that the error variances ( 2
wlsσ je ) should be estimated by dividing jSSE  by an adjusted 

dfj
* to account for the bias, namely, dfj

* = (nj – 2 – 2) = (nj – 4). Using dfj
* in the estimation of 

2
wlsσ 1e  and 2

wlsσ 2e  and taking their reciprocals, the weights in the two-group case were unbiased 

(Overton, 2001). 

In summary, the two-group WLS approach is simple to conduct. The weights described 

by Overton (2001) ( O jw ) can be calculated by the following expression: 

    2 1
O wls

4
ˆ= ( σ )

j

j
j e

j

n
w

SSE
− −
=       (13) 

where each observation in the jth group is assigned O jw . Specifically, the n1 and n2 weights 

equal O 1w  and O 2w , respectively. These N weights can be entered into a statistical software 

package and specified as a weight variable when fitting a general linear model. Equivalently, in 

terms of 1−V  in Equation 12 and assuming the observations are ordered by group membership, 

the first n1 diagonal elements would equal O 1w  and the remaining n2 diagonal elements would 

equal O 2w . Based on Overton’s research using O jw  in WLS, FWLS(O) performed well with " at 
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the nominal level and statistical power was comparable to more computationally intensive 

alternatives. 

Overton’s (2001) weight estimator in Equation 13 was limited to k = 2. In the following 

section, a generalization is delineated. 

A Generalization of WLS Regression for k ≥ 2 

As with any linear model, an estimate of 2σ  is required for hypothesis testing and for 

constructing confidence intervals. Note that Equation 5 provides an unbiased estimator of 2σ  if 

homoscedasticity is satisfied. That is, 2σ̂ / ESSE df= , where dfE = (number of observations – 

number of estimated model parameters) (Maxwell & Delaney, 2000; Neter et al., 1996). For 

example, in the one-way ANOVA described above in the section titled A Clarification of 

Homoscedasticity, the dfE = (N – 3) because there were three estimated model parameters. 

Note that Overton (2001) fitted the linear model in Equation 1. Because four parameters 

were estimated in the full model (viz., $0, $1, $2, and $3), this indicates that dfE necessarily equals 

(N – 4). For the purposes of the two-group WLS approach with nj replications in group j, the 

degrees of freedom for the jth group (
jEdf ) equaled (nj – 4) which led to 2

wls σ̂ /( 4)
1e 1 1SSE n= −  

and 2
wls σ̂ /( 4)

2e 2 2SSE n= −  whose reciprocals follow Equation 13. However, a more general 

approach for estimating weights can be used. 

Instead of estimating errors separately within each group, they can be estimated using the 

model. For example, in a fitted model, the estimated errors from it are used in estimating the 

weights (see e.g., Cohen et al., 2003; Greene, 2003; Neter et al., 1996). Note that “the 

magnitudes of 2σi . . . often vary in a regular fashion with one or several predictor variables” 

(Neter et al., 1996, p. 403). When heteroscedasticity exists across groups, the residuals for 
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observations within a group provide the best estimates of error for that group. Therefore, by 

computing the variances of the residuals within groups and taking the reciprocal, these serve as 

reasonable weights for each group. Specifically, the sum of the squared residuals in the jth group 

is the jSSE . 

With nj observations in each group, a nontrivial issue is that of how to reasonably 

estimate the variances of the residuals within each group whose reciprocals can serve as weights. 

Some researchers use the average of the jSSE  in the jth group and take the reciprocal to serve as 

the weight for observations in the respective group. However, research has demonstrated that 

using nj performs poorly even in instances where the average is taken at each unique x (Carroll & 

Cline, 1988). It has also been recommended that jSSE  be divided by (nj – 1) and use the 

reciprocal as the weight for observations in the jth group (Carroll & Cline, 1988). This seems 

reasonable considering that an unbiased estimate of the variance of a single variable uses (N – 1) 

as the denominator because only one parameter (i.e., $0) is estimated. However, it merits noting 

that to estimate the errors, q = (p + 1) parameters were estimated in the model (i.e., $0, $1, . . . , 

$p), using up q df. Therefore, an unbiased estimate of the error variance in the jth group should 

reduce the denominator of the estimated variance. Namely, the variance in each of the k groups 

can be estimated using the following expression: 

        2
wls σ̂ j

j
e

j

SSE
n q

=
−

     (14) 

For example, in the full linear model when testing for the equality of regression slopes with one 

continuous predictor and k = 4, there is an intercept and slope estimated for each group. 

Therefore, the denominator in Equation 14 would be 
jEdf  = (nj – 8). Note that when k = 2 with 
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an intercept and slope estimated for each group, this equation reduces to Overton’s (2001) 

variance estimator for the two-group WLS approach. 

In summary, with estimates of 2
wlsσ je  for each of the k groups, the weights are the 

reciprocals of the variances in Equation 14. In the general WLS regression model for testing the 

equality of regression slopes, the weights ( *
jw ) are: 

     * 2 1
wls ˆ = ( σ )

j

j
j e

j

n q
w

SSE
− −
=      (15) 

where each observation in the jth group is assigned *
jw . Using commonly available statistical 

software packages, the N weights can be specified as a weighting variable in a general linear 

model procedure. Using *
jw  in WLS, the F test can be conducted as usual (hereinafter, referred to 

as FWLS*). 

Note that OLS regression will result in a larger estimated 2σ  compared to WLS 

regression. Stated differently, using WLS regression results in a smaller residual variance 

(approximately unity due to the transformation of the N observations) than OLS regression 

(Cook & Weisberg, 1999, p. 208; Neter et al., 1996, p. 409). This is mathematically expected 

because when heteroscedasticity exists, WLS restores the optimality property of the least squares 

estimator. Recall that with heteroscedasticity in OLS regression, the test statistic in Equation 6, 

under the null hypothesis, is no longer distributed as a central F random variable with a ratio of 

expectations equal to 1. As a consequence, with heteroscedasticity, the FOLS test performs poorly 

(Box, 1954; DeShon & Alexander, 1996; Overton, 2001). Using WLS regression with estimated 

weights, on the other hand, results in a test statistic that is asymptotically distributed as a central 

F random variable with a ratio of expectations approximately equal to 1 when the null is true, 

providing a more robust test for the equality of regression slopes when heteroscedasticity exists. 
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Alternative Weighting Methods 

Researchers have recommended other weighting methods. As noted above, the reciprocal 

of the average of the estimated errors ( j jn SSE ) is known to perform poorly (Carroll & Cline, 

1988). Therefore, it is not considered further. Another is based on sample-variances of estimated 

errors which can be expressed as (Carroll & Cline, 1988): 

      1

1j
j

j

n
w

SSE
−

=      (16) 

Hereinafter, the F test for the equality of regression slopes using 1 jw  in WLS is referred to as 

FWLS(1). Because the groups are independent and there is an intercept and slope estimated for each 

group, it would seem reasonable that 
jEdf  = (nj – 2) which can be expressed as (see e.g., 

Overton, 2001, p. 221): 

      2

2j
j

j

n
w

SSE
−

=      (17) 

Hereinafter, the F test for the equality of regression slopes using 2 jw  in WLS is referred to as 

FWLS(2). It is important to note that Equations 16 and 17 fail to consider that q parameters were 

estimated to compute the fitted values. These estimated fitted values were then used to calculate 

the squared estimated errors ( )2

0 1 1
ˆ ˆ ˆβ β βi i p piy x x− − − −K  on which the weighting methods rely. 

Furthermore, it is important to realize that weight estimators may not perform optimally as 

sample size decreases. As is well known in the literature on linear regression, it is preferable to 

have small q and large N. Consistent with this, Bement and Williams (1969) stated that “the most 

practical conclusion drawn from the results . . . [of their study] . . . is that each estimated weight 

should be based on at least 10 df” (p. 1369). 
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The Present Study 

As noted above, the main purpose of the present study was to describe a proposed 

extension of Overton’s (2001) method and compare its performance (specifically, Type I error 

rates and statistical power) to alternative procedures under various conditions (including that of 

heteroscedasticity). These alternatives are computationally simple, available in many common 

statistical software packages, and permit post hoc analyses of an interaction. To compare the 

performance of the various methods, a Monte Carlo simulation was conducted. Overall, I 

expected: 

(a) FRML to control Type I error rates better than FML and FOLS; 

(b) the WLS methods to control Type I error rates better than FOLS. More specifically, I expected 

FWLS* to maintain control of Type I error rates better than FWLS(1), FWLS(2), and FWLS(O); 

(c) all methods to be more powerful than FOLS. 

Note that I did not have any specific prediction of how FHC3 would perform because it has not 

been investigated under the simulated conditions considered below. 
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CHAPTER TWO: METHOD 

Description of Simulation 

Overview 

Using the S language in S-PLUS (Chambers, 1998; S-PLUS, 2002), a Monte Carlo 

simulation was conducted to compare the Type I error rates and statistical power of FOLS, FHC3, 

FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS*. In addition to manipulating the degree of 

heteroscedasticity (using Equations 9 and 10), the performance of these procedures was 

compared at different values of k, N, and nj/N. The nominal " was set at .05. 

Manipulated Parameters 

Number of groups. To demonstrate that WLS can be accurately applied to tests for 

equality of regression slopes for more than two independent groups, k was equal to 3 and 4. 

Total sample size. Seven Ns were used in the present study, ranging from 48 to 336. This 

range overlaps with Ns considered by previous research on two groups (60 and 300, Aguinis & 

Stone-Romero, 1997; 140 to 430, DeShon & Alexander, 1996; 30 to 200, Dretzke et al., 1982; 40 

to 360, Overton, 2001). In addition, this range brackets Ns typically found in validation studies 

(Lent, Aurbach, & Levin, 1971; Salgado, 1998). 

Proportion within groups. The proportion of observations within groups (kPj = nj/N) 

assumed three levels—equal, moderately unequal (i.e., for k = 3, 3Pj s = .50, .25, .25; for k = 4, 

4Pj s = .375, .2083 , .2083 , .2083 ), and very unequal (i.e., for k = 3, 3Pj s = .6 , .16 , .16 ; for k 

= 4, 4Pj s = .50, .16 , .16 , .16 ). Based on the manipulated ks, Ns, and kPjs, this resulted in the 

subgroup sample sizes shown in Table 1. (Text continues on p. 29.)
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Table 1 

Subgroup Sample Sizes When k = 3 and 4 

 
    k = 3     k = 4 

      ________________________  ________________________________ 

 N n1 n2 n3 n1 n2 n3 n4 

48 16 16 16 12 12 12 12 

48 24 12 12 18 10 10 10 

48 32 8 8 24 8 8 8 

96 32 32 32 24 24 24 24 

96 48 24 24 36 20 20 20 

96 64 16 16 48 16 16 16 

144 48 48 48 36 36 36 36 

144 72 36 36 54 30 30 30 

144 96 24 24 72 24 24 24 

192 64 64 64 48 48 48 48 

192 96 48 48 72 40 40 40 

192 128 32 32 96 32 32 32 

240 80 80 80 60 60 60 60 

240 120 60 60 90 50 50 50 

240 160 40 40 120 40 40 40 

288 96 96 96 72 72 72 72 

288 144 72 72 108 60 60 60 

288 192 48 48 144 48 48 48 
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336 112 112 112 84 84 84 84 

336 168 84 84 126 70 70 70 

336 224 56 56 168 56 56 56 

 

Note. N = total sample size. k = number of groups. n1, n2, n3, and n4 = subgroup sample sizes. 

 

Heteroscedasticity. When k = 3 (k = 4), the ratio of error variances included 

homoscedasticity, 1:1:1 (1:1:1:1), and three levels of heteroscedasticity, 4:1:1 (4:1:1:1), 16:1:1 

(16:1:1:1), and 64:1:1 (64:1:1:1). Consistent with Overton’s (2001) argument, “this wide range 

from homogeneity . . . to extreme heterogeneity . . . was chosen because if [these procedures 

perform] . . . well under these conditions, . . . [they] . . . would be expected to perform well in 

most research settings” (p. 223). Note that the manipulated conditions included pairing the larger 

2σ
je  with the (a) larger nj (direct pairing), and (b) smaller nj (indirect pairing). 

Type I error and statistical power. For the conditions that assessed the empirical Type I 

error rates, the null hypothesis of equal population slopes across the k groups was true. 

Noteworthy, in Overton’s (2001) simulation, σ
jy  was set equal to σ

jx , so necessarily 

σ σ 1
j jy x = . Consequently, in Overton’s study, the test for the equality of regression slopes was 

equivalent to the test for the equality of correlation coefficients. However, because these tests are 

not equivalent when the ratios of σ
jy  and σ

jx  are not the same across groups (Alexander & 

DeShon, 1994), in the present study, I also simulated conditions where the k population 

correlation coefficients differ yet population slopes were equal.1 Bradley’s (1978) liberal 

criterion [0.025, 0.075] for robustness was used. 
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Numerous alternative hypotheses can be tested, such as the population slopes for two 

groups are steeper than that of the remaining population slopes or all pairwise population 

differences between slopes are ≠ 0. For simplicity and without loss of generality, five different 

values of effect size were selected such that the population slope of a focal group (hereinafter, 

Group 2) was allowed to differ from the remaining groups (which assumed a common slope). 

As noted by Aguinis, Beaty, Boik, and Pierce (2005), the effect size metric (f 2) to 

describe the strength of an interaction effect in multiple regression (Aiken & West, 1991; Cohen, 

1988) is not appropriate when heteroscedasticity exists. Therefore, I used the modified f 2 

(hereinafter, referred to as f 2) derived by Aguinis et al. (2005, p. 105). Because the calculations 

are complex, Aguinis and Pierce (in press) provide a computer program available at 

http://carbon.cudenver.edu/~haguinis/mmr/ which performs the required computations online. 

The five levels of non-zero effect sizes were 0.002, 0.01, 0.02, 0.05, and 0.08. Although 

0.002 is markedly lower than Cohen’s (1988) convention for small interactions, a 30-year review 

of literature in applied psychology and management found 0.002 to be the median effect size in 

tests for the equality of regression slopes (Aguinis et al., 2005). I did not include effect sizes 

greater than 0.08 because, based on initial testing of the S code on a subset of simulated 

conditions, the statistical power of FOLS and FWLS* was near unity at f 2 = 0.08. Beyond this, there 

would be little opportunity to compare techniques. 

Research Design Summary 

Based on the manipulated parameters, overall, there were 1,764 conditions (i.e., 2 (k) × 7 

(N) × 3 (kPj) × 7 (heteroscedasticity) × 6 (f 2)). However, 252 conditions were excluded because 

they cannot occur. To clarify, Table 2 provides a layout of a subset of the study’s design. In it, 

the rows are the three levels of kPjs, labeled Equal, Moderately Unequal, and Very Unequal. At 
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the top of the same table is the heading Heteroscedasticity with various levels beneath it. For 

example, the heading Absent represents conditions where heteroscedasticity does not exist (i.e., 

homoscedasticity). All remaining columns fall under the heading Present; that is, conditions 

where some form of heteroscedasticity existed. The three columns under the heading No Pairing 

have the numbers 4, 16, and 64. These represent conditions of increasing heteroscedasticity (i.e., 

2σ
je ) when no pairing exists which can occur only when kPjs are equal. Thus, in the 

corresponding cells, there is a symbol “●” indicating that such a condition exists. 

 

Table 2 

Research Design Sub-table for the kPj × Heteroscedasticity Conditions 

 
      Heteroscedasticity 

 

Absent Present 
 

 No Pairing Pairing 

     Direct Indirect 

kPj  4 16 64 4 16 64 4 16 64 

Equal ● ● ● ●     
  

Moderately 
Unequal ●    ● ● ● ● ● ● 

Very 
Unequal ●    ● ● ● ● ● ● 

 

Note. kPj = degree of disproportionate subgroup sample sizes. 
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For example, when k = 3 and 3Pjs are equal, the condition where the larger 2σ
je  is in Group 1 

(i.e., 16, 1, 1) is equivalent to the condition where the larger 2σ
je  is in Group 3 (i.e., 1, 1, 16). 

Therefore, when kPjs are equal, pairing is not an issue. The remaining columns are under the 

heading termed Pairing which has two levels (i.e., Direct and Indirect). For both, they also 

include increasing degrees of heteroscedasticity (i.e., 4, 16, and 64). It is very important to note, 

however, that direct and indirect pairing exist only when kPjs are unequal. For example, when a 

larger error variance is paired with a larger subgroup sample size, this is direct pairing. In the 

same table, there are 18 cells indicating conditions that can be simulated. With 18 × 2 (k) × 7 (N) 

× 6 (f 2) cells, in the present study, there were 1,512 simulated conditions. 

Data Generation 

For the jth group, nj pairs (y and x) of independent normal random numbers were 

generated from populations with means of zero and standard deviations of σ
jy  and σ

jx , 

respectively. The nj observations of bivariate normal data were generated using the S-PLUS 

function rmvnorm which permits either user-specified population covariances or correlation 

coefficients among variables. Using this functionality, ρ
j jy x  was set between y and x. The same 

procedure was used to generate the data for the remaining groups. The values of the manipulated 

variables were selected so as to result in various degrees of heteroscedasticity and f 2s in the 

population.2 

On each simulated dataset, the equality of regression slopes was tested using eight F 

tests. These were FOLS, FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS*.3 For each condition, 

there were 1,000 replications. The proportion of times the null hypothesis was rejected within a 

condition was recorded for all tests. 
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Analyses 

The results of the Monte Carlo simulation produced 1,512 (conditions) × 8 (tests) = 

12,096 proportions. The dependent variables were Type I error rates and statistical power. To 

provide a summary of the Type I error rates, OLS multiple regression was used. For these 

analyses, α = .05. Note that continuous predictors (e.g., N) were standardized prior to computing 

interaction terms and dummy regressors were used to index categorical predictors (e.g., kPj) (see 

Aguinis, 2004; Cohen et al., 2003). Note that, for each of the eight tests, the functional form of 

how each of the predictors was related to power was not known nor would it be reasonable to 

assume that the same linear and interactive terms could be used to model the relations between 

power (of each test) and each of the predictors (or functions of them, e.g., ln (f 2), power terms). 

If separate analyses were conducted, this would have resulted in different regression analyses 

with potentially different predictors and functions of predictors in each equation. Because this 

would have detracted from the purpose of understanding which test was the most powerful and 

yet provided control of Type I error rates across various conditions, regression analyses were not 

conducted. However, various power tables and figures with power curves from numerous study 

conditions are presented. 

Because a completely crossed design could not be used, resulting in 252 empty cells, 

some effects cannot be unambiguously computed (see e.g., the literature on aliased effects in 

confounded factorial designs and fractional factorial designs, Dean & Voss, 1999; Kirk, 1995). 

To simplify the analyses and interpretation, conditions involving homoscedasticity were not 

included in the regression analyses. Because it is not suggested that FOLS be supplanted when the 

homoscedasticity assumption is met, I focused on understanding how the various procedures 

performed when heteroscedasticity exists. 
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When using Type I error rates as a dependent variable, the interpretation of the multiple 

regression analyses deserve note. Type I error rates across conditions should be controlled (i.e., a 

constant) at α (viz., .05 in the present study). If a particular method is effective at controlling 

Type I error rates, only an intercept would be needed in the regression equation (i.e., 0
ˆˆ  = βy ), 

with 0β̂  approximately equal to .05. In other words, the regression equation cannot explain any 

variance beyond that explained by the mean of the Type I error rates. Specifically, the MSE 

would simply be the variance of the Type I error rates and R2 would be a function of the usual 

one-sample t-test and its associated df. Therefore, if a method is ineffective at controlling Type I 

error rates, variability in the rejection rates increase and more terms beyond 0β̂  are needed in the 

regression equation, thus, explaining additional (albeit, undesirable) variance. 

Because Type I error rates should be controlled at the nominal α regardless of the 

manipulated variables (e.g., kPj, heteroscedasticity) the marginal distributions of the Type I error 

rates for each of the tests should be symmetric about their mean (ideally, .05). Therefore, for 

Type I error rates, in addition to standard descriptive statistics, I present skewness statistics. 

Values with an absolute magnitude near zero are indicative of symmetry. 
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CHAPTER THREE: RESULTS 

The eight F tests are next compared in terms of their empirical Type I error rates and 

statistical power.1 Note that in presenting the study’s findings, I refer to Tables 3 – 23 and 

Figures 1 – 20. 

Type I Error Rates 

In the following sections, the overall robustness of the tests under the null hypothesis is 

compared. Then, their performance with heteroscedasticity and equal and unequal kPjs is 

considered. 

Overall Robustness 

In evaluating the ability of the eight tests to control Type I error rates at the nominal α, 

Bradley’s (1978) liberal criterion was used. Table 3 presents the results of applying this criterion 

to each of the tests across various conditions. Note that the column labeled ALL contains all 

conditions (i.e., both homoscedasticity and heteroscedasticity). The column labeled HO contains 

only conditions where homoscedasticity existed. These are provided for descriptive purposes. 

For example, with homoscedasticity, not surprisingly, 100% of the Type I error rates using FOLS 

met the criterion. However, the WLS methods also performed well. For example, FWLS(O) and 

FWLS*, respectively, had 100% and 97.56% of their Type I error rates satisfy the robustness 

criterion. 

The last four columns, in the same table, are of particular importance. Across all the 

heteroscedasticity conditions (denoted by H), FOLS had 17.62% of its Type I error rates satisfy 

the robustness criterion. FHC3 did very poorly; only 5.71% of its Type I error rates met the 

criterion. FWLS(O) and FWLS* performed well with values of 95.24% and 98.53%, respectively. 

(Text continues on p. 37.)
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Table 3 

Percentage of Empirical Type I Error Rates Satisfying Bradley’s (1978) Liberal Criterion for 

Robustness Across Various Conditions 

 

Test ALL HO H H(E) H(D) H(I) 

FOLS 31.35% 100.00% 17.62% 38.10% 22.62% 2.38%

FHC3 6.35% 9.52% 5.71% 9.52% 4.76% 4.76%

FML 88.49% 90.48% 88.10% 95.24% 90.48% 82.14%

FRML 91.67% 92.86% 91.43% 95.24% 95.24% 85.71%

FWLS(1) 89.68% 90.48% 89.52% 95.24% 91.67% 84.52%

FWLS(2) 91.67% 92.86% 91.43% 95.24% 95.24% 85.71%

FWLS(O) 96.03% 100.00% 95.24% 95.24% 96.43% 94.04%

FWLS* 98.37% 97.56% 98.53% 95.24% 98.77% 100.00%

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). ALL = all 

homoscedasticity and heteroscedasticity conditions. HO = homoscedasticity conditions only. H = 

all heteroscedasticity conditions only. H(E) = heteroscedasticity conditions with equal subgroup 

sample sizes only. H(D) = heteroscedasticity conditions with direct pairing only. H(I) = 

heteroscedasticity conditions with indirect pairing only. For all tests, the number of conditions on 

which the percentages were based for ALL, HO, H, H(E), H(D), and H(I) were 252, 42, 210, 42, 
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84, and 84, respectively, except for FWLS* which was based on 245, 41, 204, 42, 81, and 81, 

respectively. 

 

For heteroscedasticity conditions where kPjs were equal (denoted by H(E)), FML, FRML, FWLS(1), 

FWLS(2), FWLS(O), and FWLS* performed identically. Overall, when heteroscedasticity existed, FWLS* 

tended to outperform all the methods in controlling Type I error rates. For example, with direct 

pairing (denoted by H(D)), FHC3 had a value of 4.76%. In comparison, FRML performed well with 

95.24% of its Type I error rates satisfying the criterion. However, FWLS* performed better with a 

value of 98.77%. 

In the following sections, Tables 4 and 5 present the results of multiple regression 

analyses for Type I error rates with equal and unequal kPjs, respectively.2 In these, main effects, 

two-way interactions, and a single three-way interaction term are presented because all 

remaining higher-order terms explained very little additional variance in the dependent variable. 

Instead of referencing each statistically significant term in each of the regression analyses below, 

common relations across the tests are described as well as key differences among them. 

Heteroscedasticity and Equal kPjs 

In Table 4, for equal kPjs, it is quite clear that FOLS (R2 = .73, p < .01) and FHC3 (R2 = .85, 

p < .01) were most affected by the manipulated variables. For example, FOLS was affected by k 

( β̂  = 0.007) and heteroscedasticity ( β̂  = 0.011). That is, as k or heteroscedasticity increased, 

Type I error rates increased. Most notably, it was the only method with Type I error rates that 

were affected by heteroscedasticity. Not surprisingly, N did not predict Type I error rates. Most 

of the alternative methods performed similarly with one exception—FHC3. 

(Text continues on p. 43.) 



 38

Table 4 

Multiple Regression Analysis of Empirical Type I Error Rates when Testing for the Equality of 

Regression Slopes with Equal kPjs and Heteroscedasticity Exists 

Predictor / R2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

K    0.007**    0.150**    0.003**    0.003**    0.003**    0.003**    0.003**    0.003**

 (4.692) (4.703) (2.913) (2.872) (2.913) (2.913) (2.913) (2.913) 

N   -0.001   -0.396**   -0.004**   -0.004**   -0.004**   -0.004**   -0.004**   -0.004**

 (-0.852) (-12.395) (-3.428) (-3.395) (-3.428) (-3.428) (-3.428) (-3.428)

2σ
je     0.011** -0.001    0.000    0.000    0.000    0.000    0.000    0.000 

 (7.638) (-0.034) (0.120) (0.129) (0.120) (0.120) (0.120) (0.120) 

k × N    -0.000   -0.073*   -0.003*   -0.003**  -0.003**  -0.003**   -0.003**  -0.003**

 (-0.280) (-2.269) (-2.440) (-2.413) (-2.440) (-2.440) (-2.440) (-2.440)

k × 2σ
je      0.003*     0.001    0.000    0.000    0.000    0.000    0.000    0.000 

 (2.328) (0.038) (0.219) (0.228) (0.219) (0.219) (0.219) (0.219) 

N × 2σ
je    -0.001    0.005    0.000    0.000    0.000    0.000    0.000    0.000 

 (-0.626) (0.153) (0.374) (0.367) (0.374) (0.374) (0.374) (0.374) 

k × N × 2σ
je    -0.000    0.005    0.000    0.000    0.000    0.000    0.000    0.000 

 (-0.100) (0.147) (0.055) (0.050) (0.055) (0.055) (0.055) (0.055) 

R2 .73 .85 .44 .44 .44 .44 .44 .44 

F (7, 34)  13.13**  26.52**   3.85**   3.76**   3.85**   3.85**   3.85**   3.85**

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 
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weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). k = number of 

groups. N = total sample size. kPj = degree of disproportionate subgroup sample sizes. 2σ
je  = 

degree of heteroscedasticity. The values for each row of predictors are estimated regression 

coefficients with associated t-statistics in parentheses. To facilitate the interpretation of the eight 

analyses, statistically significant regression coefficients are boldfaced. 

* p < .05. ** p < .01. 
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Table 5 

Multiple Regression Analysis of Empirical Type I Error Rates when Testing for the Equality of 

Regression Slopes with Unequal kPjs and Heteroscedasticity Exists 

Predictor / R2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

K    0.011**    0.164**    0.004*    0.003**    0.003**    0.003**    0.003**    0.001 

 (4.519) (6.418) (2.599) (2.763) (2.625) (2.635) (2.864) (1.316) 

N    0.002   -0.419**  -0.003*   -0.003*   -0.003*   -0.003*   -0.003**   -0.001 

 (0.931) (-16.398) (-2.410) (-2.238) (-2.296) (-2.406) (-2.917) (-1.154)

kPj (D1)   -0.019**    0.162**    0.007**     0.005*    0.006**    0.005*    0.001   -0.004* 

 (-4.781) (3.860) (3.302) (2.304) (2.785) (2.292) (0.792) (-2.071)

Pairing (D2)    0.099**    0.061    0.004    0.003    0.003    0.003    0.002   -0.002 

 (25.722) (1.447) (1.706) (1.425) (1.535) (1.405) (1.129) (-1.262)

2σ
je      -0.000   -0.021    0.000   -0.000   -0.000   -0.000   -0.000    0.001 

 (-0.037) (-0.733) (-0.014) (-0.170) (-0.074) (-0.170) (-0.194) (0.727) 

k × N    0.001   -0.038*   -0.001   -0.002**   -0.002*   -0.002*   -0.002**   -0.001 

 (0.584) (-2.572) (-1.825) (-2.871) (-2.030) (-2.578) (-3.622) (-1.930)

k × D1   -0.012**   -0.045   -0.003   -0.002   -0.002   -0.002   -0.001    0.000 

 (-4.511) (-1.539) (-1.619) (-1.569) (-1.449) (-1.335) (-0.933) (0.335) 

k × D2   -0.020**   -0.038   -0.003*   -0.002   -0.003   -0.002   -0.001   -0.002 

 (-7.442) (-1.299) (-2.123) (-1.587) (-1.674) (-1.370) (-1.017) (-1.354)

k × 2σ
je    -0.001    0.006    0.000    0.000   -0.000    -0.000    0.000   -0.000 

 (-0.400) (0.374) (0.247) (0.118) (-0.082) (-0.040) (-0.034) (-0.123)
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N × D1   -0.004   -0.036   -0.008**   -0.005**  -0.007**   -0.005**   -0.001    0.003**

 (-1.395) (-1.216) (-4.979) (-3.818) (-4.376) (-3.494) (-0.613) (2.666) 

N × D2   -0.006*   -0.033   -0.007**  -0.006**  -0.006**  -0.005**   -0.004**    0.001 

 (-2.054) (-1.136) (-4.375) (-4.134) (-4.056) (-3.834) (-3.077) (0.833) 

N × 2σ
je    -0.001   -0.002   -0.000   -0.000   -0.000   -0.000    -0.000   -0.000 

 (-0.972) (-0.145) (-0.110) (-0.162) (-0.156) (-0.321) (-0.070) (-0.583)

D1 × D2    0.081**    0.099    0.005*    0.004    0.006*    0.005    0.002    0.002 

 (14.809) (1.658) (1.672) (1.610) (2.026) (1.854) (0.893) (0.585) 

D1 × 2σ
je    -0.001    0.004   -0.001   -0.000   -0.001   -0.000   -0.001   -0.001 

 (-0.215) (0.091) (-0.455) (-0.184) (-0.367) (-0.183) (-0.446) (-0.523)

D2 × 2σ
je     0.025**    0.041    0.001    0.001    0.001    0.001    0.001 -0.000 

 (6.640) (0.998) (0.355) (0.597) (0.419) (0.600) (0.487) (-0.456)

D1 × D2 × 2σ
je     0.017**   -0.020    0.001    0.000    0.000   -0.000    0.001    0.001 

 (3.158) (-0.336) (0.339) (0.028) (0.104) (-0.137) (0.393) (0.288) 

R2 .96 .88 .67 .60 .63 .59 .45 .16 

F (16, 151)a 229.80** 69.47** 18.90** 14.44** 16.36** 13.82** 7.81** 1.71 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). k = number of 

groups. N = total sample size. kPj = degree of disproportionate subgroup sample sizes. D1 = 

dummy variable indexing conditions with very unequal subgroup sample sizes. D2 = dummy 
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variable indexing conditions with indirect pairing. 2σ
je  = degree of heteroscedasticity. The 

values for each row of predictors are estimated regression coefficients with associated t-statistics 

in parentheses. To facilitate the interpretation of the eight analyses, statistically significant 

regression coefficients are boldfaced. 

* p < .05. ** p < .01. 

a F (16, 145) for the model predicting the Type I error rates based on FWLS*. 

 



 43

Its Type I error rates were greatly affected by N ( β̂  = -0.396). More precisely, as N increased, 

Type I error rates decreased. 

The performance of all the alternative methods had Type I error rates that were affected 

by the two-way interaction between k and N. That is, although Type I error rates decreased as N 

increased, this depended on the value of k. Holding N constant, as k increases, the alternative 

methods may not perform well. For example, in Figure 1, k = 3 and 2σ
je  = 4, 1, 1 (see Figure 

1A), 2σ
je  = 16, 1, 1 (see Figure 1B), and 2σ

je  = 64, 1, 1 (see Figure 1C). Type I error rates for 

FOLS were inflated, which increased with heteroscedasticity. In addition, consistent with the 

results from the regression analysis, FHC3 had greatly inflated Type I error rates which tended to 

converge towards the nominal " as N increased. Overall, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and 

FWLS* performed identically with empirical Type I error rates within Bradley’s (1978) liberal 

criterion. Now consider similar conditions in Figure 2, but when k = 4 and 2σ
je  = 4, 1, 1, 1 (see 

Figure 2A), 2σ
je  = 16, 1, 1, 1 (see Figure 2B), and 2σ

je  = 64, 1, 1, 1 (see Figure 2C). Type I 

error rates for FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS* were slightly more inflated compared 

to when k = 3. However, these Type I error rates are still closer to the nominal " than those of 

FOLS or FHC3. (Text continues on p. 50.) 
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Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 

 

Figure 1. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with three groups, equal subgroup sample sizes, and (A) 2σ
je s = 4, 1, 1, (B) 2σ

je s = 16, 1, 1, and 

(C) 2σ
je s = 64, 1, 1. 
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Panel B 
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Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 
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Panel C 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400

Sample Size

Ty
pe

 I 
Er

ro
r R

at
e

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 
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Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 

 

Figure 2. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with four groups, equal subgroup sample sizes, and (A) 2σ
je s = 4, 1, 1, 1, (B) 2σ

je s = 16, 1, 1, 1, 

and (C) 2σ
je s = 64, 1, 1, 1. 
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Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 
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Panel C 
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Note. The Type I error rates for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), 

FWLS(O) (WLS(O)), and FWLS* (WLS*) coincide. 

 



 50

Table 6 presents descriptive statistics for the eight tests across various conditions which 

deserve noting. With heteroscedasticity and equal kPjs (denoted by H(E)), the average Type I 

error rate for FOLS and FHC3 were inflated with values of .0799 and .1464, respectively. FHC3 had 

a very positively skewed distribution (2.1573). The other six methods performed identically with 

an average Type I error rate of .0563. 

In the same table, across all of the conditions where heteroscedasticity existed (denoted 

by H), FOLS and FHC3 had an average Type I error rate of .0848 and .1716, respectively. Most 

notably, for FHC3 only, the distribution of its Type I error rates did not include the value of .05! 

Its minimum and maximum were .061 and .587, respectively. The other six methods had average 

Type I error rates ranging from .0509 for FWLS* to .0608 for FML. Note that FWLS* not only had an 

average Type I error rate closer to the nominal α than all the other methods, but it also had a (a) 

small standard deviation (i.e., .0006), and (b) symmetric distribution (i.e., -0.1665). 

Heteroscedasticity and Unequal kPjs 

As can be seen in Table 5, FOLS had Type I error rates that were greatly affected by the 

main and interactive effects of the study variables (R2 = .96, p < .01). The same was true for the 

other methods with R2 values ranging from .45 to .88 (ps < .01). Notably, the Type I error rates 

based on FWLS* appeared to be less affected by the manipulated variables (R2 = .16, p > .05). 

Because main effects should be interpreted tentatively in the presence of interactions 

which indicate relations that are conditional on the values or levels of other variables, I focus 

primarily on the interactions. For FOLS, k interacted with kPj ( β̂  = -0.012) and pairing ( β̂  = -0.02). 

The two-way interaction that applied to most of the methods but not FOLS or FHC3 was that 

between N and kPj. (Text continues on p. 54.) 



 51

Table 6 

Descriptive Statistics for Empirical Type I Error Rates (at α = .05) when Testing for the Equality 

of Regression Slopes Across Conditions of Heteroscedasticity 

Conditions Test Mean (S.E.) SD Min Max Skewness (S.E.) 

ALL FOLS .0788 (.0044) .0697 .000 .305 1.0478 (.1534) 

ALL FHC3 .1709 (.0074) .1179 .061 .587 1.8264 (.1534) 

ALL FML .0606 (.0010) .0154 .032 .131 1.8593 (.1534) 

ALL FRML .0582 (.0008) .0123 .032 .108 1.3441 (.1534) 

ALL FWLS(1) .0595 (.0009) .0140 .032 .120 1.7515 (.1534) 

ALL FWLS(2) .0583 (.0008) .0122 .032 .108 1.3570 (.1534) 

ALL FWLS(O) .0555 (.0006) .0091 .032 .082 0.4363 (.1534) 

ALL FWLS* .0507 (.0006) .0088 .020 .077 -0.2749 (.1555) 

H FOLS .0848 (.0052) .0749 .000 .305 0.7890 (.1678) 

H FHC3 .1716 (.0081) .1180 .061 .587 1.8416 (.1678) 

H FML .0608 (.0011) .0155 .032 .131 1.8412 (.1678) 

H FRML .0583 (.0009) .0126 .032 .108 1.3598 (.1678) 

H FWLS(1) .0597 (.0010) .0142 .032 .120 1.7496 (.1678) 

H FWLS(2) .0585 (.0009) .0125 .032 .108 1.3768 (.1678) 

H FWLS(O) .0558 (.0006) .0093 .032 .082 0.4799 (.1678) 

H FWLS* .0509 (.0006) .0087 .024 .077 -0.1665 (.1703) 

H(E) FOLS .0799 (.0024) .0157 .055 .119 0.4016 (.3654) 

H(E) FHC3 .1464 (.0150) .0975 .068 .459 2.1573 (.3654) 
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H(E) FML .0563 (.0013) .0087 .040 .077 0.5254 (.3654) 

H(E) FRML .0563 (.0013) .0087 .040 .077 0.5289 (.3654) 

H(E) FWLS(1) .0563 (.0013) .0087 .040 .077 0.5254 (.3654) 

H(E) FWLS(2) .0563 (.0013) .0087 .040 .077 0.5254 (.3654) 

H(E) FWLS(O) .0563 (.0013) .0087 .040 .077 0.5254 (.3654) 

H(E) FWLS* .0563 (.0013) .0087 .040 .077 0.5254 (.3654) 

H(D) FOLS .0133 (.0012) .0108 .000 .033 0.4991 (.2627) 

H(D) FHC3 .1661 (.0123) .1132 .069 .535 1.8482 (.2627) 

H(D) FML .0586 (.0014) .0127 .040 .106 1.4166 (.2627) 

H(D) FRML .0563 (.0011) .0105 .038 .091 0.8411 (.2627) 

H(D) FWLS(1) .0573 (.0013) .0117 .040 .104 1.2726 (.2627) 

H(D) FWLS(2) .0563 (.0011) .0105 .039 .091 0.8547 (.2627) 

H(D) FWLS(O) .0541 (.0009) .0086 .040 .078 0.6153 (.2627) 

H(D) FWLS* .0502 (.0009) .0078 .024 .066 -0.4077 (.2673) 

H(I) FOLS .1588 (.0061) .0563 .071 .305 0.6403 (.2627) 

H(I) FHC3 .1898 (.0142) .1299 .061 .587 1.7026 (.2627) 

H(I) FML .0653 (.0021) .0194 .032 .131 1.5211 (.2627) 

H(I) FRML .0615 (.0017) .0153 .032 .108 1.2460 (.2627) 

H(I) FWLS(1) .0638 (.0019) .0174 .032 .120 1.5345 (.2627) 

H(I) FWLS(2) .0617 (.0016) .0150 .032 .108 1.2823 (.2627) 

H(I) FWLS(O) .0572 (.0011) .0100 .032 .082 0.3070 (.2627) 

H(I) FWLS* .0488 (.0009) .0084 .026 .067 -0.6688 (.2673) 
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Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). ALL = all 

homoscedasticity and heteroscedasticity conditions. H = all heteroscedasticity conditions only. 

H(E) = heteroscedasticity conditions with equal subgroup sample sizes only. H(D) = 

heteroscedasticity conditions with direct pairing only. H(I) = heteroscedasticity conditions with 

indirect pairing only. Min = minimum. Max = maximum. For all tests, the number of conditions 

on which the descriptive statistics were based for ALL, H, H(E), H(D), and H(I) were 252, 210, 

42, 84, and 84, respectively, except for FWLS* which was based on 245, 204, 42, 81, and 81, 

respectively.
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In addition, only for FOLS, there was a three-way interaction among kPj, pairing, and 

heteroscedasticity ( β̂  = 0.017). To explore these relations further, the following sections consider 

direct and indirect pairing by referring to Figures 3 – 10 and Table 6. 

Direct pairing. In Figures 3 and 4, k = 3 and direct pairing exists. In Figure 3, 2σ
je  = 4, 1, 

1. Consistent with previous research, with direct pairing, FOLS had conservative Type I error rates 

which became increasingly conservative as 3Pjs became very unequal as shown in Figure 3A (3Pj 

= .50, .25, .25) and Figure 3B (3Pj = .6 , .16 , .16 ). In contrast, FHC3 had inflated Type I error 

rates which became more inflated as 3Pjs became very unequal. Overall, compared to FOLS and 

FHC3, the other six methods performed well. However, they were slightly affected by N, 

particularly when it was small and when 3Pjs were very unequal (see Figure 3B). In Figure 4, 

2σ
je  = 64, 1, 1. That is, heteroscedasticity was increased. FOLS became increasingly conservative 

and, not surprisingly, performed worse when coupled with very unequal 3Pjs (see Figure 4B). In 

the same figure, FWLS(O) and FWLS* appeared to perform well at controlling Type I error rates. 

This is consistent with the descriptive statistics in Table 6 where heteroscedasticity existed with 

direct pairing (denoted by H(D)). FWLS(O) and FWLS*  had average Type I error rates of .0541 and 

.0502, respectively. Their distributions were also approximately symmetric. Note the average 

Type I error rates of FOLS and FHC3 were .0133 and .1661, respectively. For FOLS, its conservative 

Type I error rates were as low as .0. For FHC3, its inflated Type I error rates were as high as .535. 

Note that Figures 5 and 6 are analogous to Figures 3 and 4, respectively, but when k = 4. In 

these, the trends are similar. However, the Type I error rates for FHC3 are more inflated compared 

to when k = 3. Notably, the performance of FML, FRML, FWLS(1), and FWLS(2),  was generally similar 

across Figures 3 – 6. (Text continues on p. 63.) 
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Figure 3. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with three groups, 2σ
je s = 4, 1, 1 (direct pairing), and proportion within groups equal to (A) .50, 

.25, .25, and (B) .6 , .16 , .16 . 
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Figure 4. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with three groups, 2σ
je s = 64, 1, 1 (direct pairing), and proportion within groups equal to (A) 

.50, .25, .25, and (B) .6 , .16 , .16 . 
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Figure 5. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with four groups, 2σ
je s = 4, 1, 1, 1 (direct pairing), and proportion within groups equal to (A) 

.375, .2083 , .2083 , .2083 , and (B) .50, .16 , .16 , .16 . 
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Figure 6. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with four groups, 2σ
je s = 64, 1, 1, 1 (direct pairing), and proportion within groups equal to (A) 

.375, .2083 , .2083 , .2083 , and (B) .50, .16 , .16 , .16 . 
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 Indirect pairing. In Figures 7 and 8, k = 3 and indirect pairing exists. In Figure 7, 2σ
je  = 

1, 1, 4. Consistent with previous research, with indirect pairing, FOLS had inflated Type I error 

rates which became increasingly inflated as 3Pjs became more unequal as shown in Figure 7A 

(3Pj = .50, .25, .25) and Figure 7B (3Pj = .6 , .16 , .16 ). For FHC3, it continued to have inflated 

Type I error rates which became increasingly inflated as 3Pjs became more unequal. 

Interestingly, for the same amount of heteroscedasticity, Figure 7 (i.e., indirect pairing) 

compared to Figure 3 (i.e., direct pairing) suggests that FHC3 may produce Type I error rates that 

are more inflated in the indirect pairing than the direct pairing condition. This is consistent with 

the descriptive statistics in Table 6 for heteroscedasticity with indirect pairing (denoted by H(I)). 

More specifically, across all indirect pairing conditions, the average Type I error rate for FHC3 

was .1898 which is greater than that obtained for the direct pairing condition. 

Of the remaining six methods, FWLS(O) and FWLS*  continued to maintain control of Type I 

error rates across conditions. For example, in Figure 7, their Type I error rates appeared to be 

closer to the nominal α than the other methods. The same was true in Figure 8 as 

heteroscedasticity increased to 2σ
je  = 1, 1, 64. In contrast, FOLS had extremely inflated Type I 

error rates which became increasingly inflated as 3Pjs became more unequal as shown in Figure 

8A (3Pj = .50, .25, .25) and Figure 8B (3Pj = .6 , .16 , .16 ). FHC3 continued to demonstrate 

inflated Type I error rates but with a slower rate of convergence to the nominal α when 3Pjs were 

greatly unequal. An inspection of the descriptive statistics in the rows denoted by H(I) in Table 6 

show that the average Type I error rates for FWLS(O) and FWLS*  are closer to the nominal level 

(i.e., .0572, and .0488, respectively) than the other methods and have distributions that are 

approximately symmetric. (Text continues on p. 68.) 
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Figure 7. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with three groups, 2σ
je s = 1, 1, 4 (indirect pairing), and proportion within groups equal to (A) 

.50, .25, .25, and (B) .6 , .16 , .16 . 
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Figure 8. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with three groups, 2σ
je s = 1, 1, 64 (indirect pairing), and proportion within groups equal to (A) 

.50, .25, .25, and (B) .6 , .16 , .16 . 
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In the same table, with indirect pairing, of the alternative methods, FHC3, FML, and FWLS(1) had 

Type I error rates as high as .587, .131, and .12, respectively. Note that the effects of indirect 

pairing when k = 4 were similar. In Figure 9, 2σ
je  = 1, 1, 1, 4. In Figure 10, 2σ

je  = 1, 1, 1, 64. 

The Type I error rates for FML, FRML, FWLS(1), and FWLS(2) increased at smaller Ns and very 

unequal kPjs (see e.g., Figures 9B and 10B). 

Comment. To complement the analyses, average Type I error rates are also presented as a 

function of (a) k and pairing in Table 7, and (b) kPjs, pairing, and degree of heteroscedasticity in 

Table 8. In these, it appears that FOLS and FHC3 are unable to control Type I error rates across 

conditions. In addition, FML also demonstrates inflated average Type I error rates with indirect 

pairing and when kPjs are very unequal (see Table 8). 

Statistical Power 

As a general summary, Table 9 presents the average power of the eight tests as a function 

of f 2 and kPjs when heteroscedasticity existed. Five trends deserve noting. First, as f 2 increased, 

power increased. Second, across conditions, FOLS had the lowest average power compared to the 

alternative methods. For example, with moderately unequal kPjs, FOLS had an average power of 

.09 to detect an f 2 = .002. FHC3 had an average power of .4261 and the other methods ranged 

between .2709 and .2844. When f 2 increased to .02, FOLS had an average power of .3299 to 

detect it. FHC3 had an average power of .8726 and the other methods ranged between .7679 and 

.7853. Third, on average, FHC3 was the most powerful test. Fourth, when kPjs were equal, FML, 

FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had the same power. Fifth, differences in relative 

power among the tests diminished at very large f 2s. For example, with very unequal kPjs and f 2 

= .002, FHC3 was (.4678/.2731) = 1.71 times more powerful than FWLS* which decreased to 1.06 

when f 2 = .05; their relative power became virtually indistinguishable. (Text continues on p. 78.) 
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Figure 9. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with four groups, 2σ
je s = 1, 1, 1, 4 (indirect pairing), and proportion within groups equal to (A) 

.375, .2083 , .2083 , .2083 , and (B) .50, .16 , .16 , .16 . 
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Figure 10. Type I error rates as a function of total sample size for FOLS (OLS), FHC3 (HC3), FML 

(ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) 

with four groups, 2σ
je s = 1, 1, 1, 64 (indirect pairing), and proportion within groups equal to (A) 

.375, .2083 , .2083 , .2083 , and (B) .50, .16 , .16 , .16 . 
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Table 7 

Average Type I Error Rate (at α = .05) as a Function of k and Pairing when Testing for the 

Equality of Regression Slopes when Heteroscedasticity Exists 

K Pairing FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

3 Direct .0089 .1373 .0563 .0540 .0550 .0540 .0518 .0485 

3 Indirect .1744 .1669 .0663 .0614 .0640 .0614 .0560 .0487 

4 Direct .0177 .1949 .0609 .0585 .0596 .0585 .0564 .0520 

4 Indirect .1432 .2127 .0643 .0615 .0636 .0621 .0583 .0488 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). k = number of 

groups. For all tests, averages were based on 42 conditions except for FWLS* when k = 4 which 

was based on 39 conditions. 
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Table 8 

Average Type I Error Rate (at α = .05) as a Function of kPjs, Pairing, and Amount of 

Heteroscedasticity when Testing for the Equality of Regression Slopes 

Pairing 2σ
je  FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

  Moderately Unequal kPjs 

Direct 4 .0221 .1514 .0541 .0534 .0535 .0534 .0524 .0498 

Direct 16 .0234 .1527 .0561 .0553 .0557 .0553 .0553 .0535 

Direct 64 .0223 .1466 .0547 .0535 .0540 .0535 .0529 .0529 

Indirect 4 .0880 .1581 .0577 .0550 .0561 .0550 .0534 .0487 

Indirect 16 .1333 .1674 .0592 .0581 .0588 .0580 .0572 .0509 

Indirect 64 .1574 .1663 .0599 .0580 .0586 .0580 .0559 .0496 

  Very Unequal kPjs 

Direct 4 .0054 .1859 .0632 .0589 .0614 .0589 .0555 .0476 

Direct 16 .0036 .1814 .0626 .0589 .0602 .0589 .0551 .0490 

Direct 64 .0029 .1786 .0608 .0576 .0591 .0576 .0534 .0479 

Indirect 4 .1259 .2116 .0710 .0656 .0694 .0664 .0572 .0458 

Indirect 16 .2064 .2191 .0711 .0653 .0698 .0664 .0597 .0502 
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Indirect 64 .2420 .2164 .0728 .0669 .0702 .0668 .0596 .0470 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). kPj = degree of 

disproportionate subgroup sample sizes. 2σ
je  = degree of heteroscedasticity.  For all tests, 

averages were based on 14 conditions except for FWLS* when kPjs were Very Unequal which was 

based on 13 conditions. 
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Table 9 

Average Empirical Power (at α = .05) as a Function of f 2 and kPjs when Testing for the Equality 

of Regression Slopes and Heteroscedasticity Exists 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 Equal kPjs 

.002 .0985 .3928 .2653 .2653 .2653 .2653 .2653 .2653 

.01 .1814 .7250 .6130 .6130 .6130 .6130 .6130 .6130 

.02 .3359 .8565 .7679 .7679 .7679 .7679 .7679 .7679 

.05 .6955 .9598 .9123 .9123 .9123 .9123 .9123 .9123 

.08 .8237 .9838 .9544 .9544 .9544 .9544 .9544 .9544 

 Moderately Unequal kPjs 

.002 .0900 .4261 .2844 .2816 .2829 .2827 .2783 .2709 

.01 .1699 .7514 .6340 .6307 .6324 .6307 .6268 .6158 

.02 .3299 .8726 .7853 .7825 .7840 .7825 .7792 .7679 

.05 .6929 .9668 .9217 .9196 .9208 .9196 .9175 .9078 

.08 .8176 .9864 .9598 .9583 .9591 .9583 .9567 .9484 

 Very Unequal kPjs 

.002 .1108 .4678 .2982 .2888 .2938 .2887 .2774 .2731 

.01 .1864 .7759 .6416 .6320 .6373 .6320 .6181 .6237 

.02 .3382 .8900 .7888 .7800 .7849 .7800 .7677 .7765 

.05 .6953 .9729 .9234 .9176 .9208 .9176 .9087 .9169 
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.08 .8188 .9894 .9598 .9555 .9578 .9555 .9490 .9547 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). f 2 = modified 

effect size (Aguinis et al., 2005). kPj = degree of disproportionate subgroup sample sizes. When 

kPjs were Equal, for all tests, the means were based on 42 conditions. When kPjs were 

Moderately Unequal and Very Unequal, for all tests, the means were based on 84 conditions 

except for FWLS* when kPjs were Very Unequal which was based on 78 conditions. 
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A Critical Note Regarding FHC3 

Recall from the previous section that the Type I error rates for FHC3 were greatly affected 

by N and it had a positively skewed distribution that did not overlap with the nominal α. This is a 

very important issue because this has implications for power. That is, power functions should 

have their minimum at α and this should not vary with N (Casella & Berger, 2002; Gentle, 2002) 

However, FHC3 will not have a power function with a minimum at α. Instead, it will be inflated 

and the degree of inflation will vary with N (i.e., the degree of inflation decreases as N 

increases). Of course, power should increase monotonically as f 2 increases. Overall, comparing 

any method against FHC3 must be viewed in light of N and the degree to which its Type I error 

rate is inflated for a given N. 

Heteroscedasticity With Equal kPjs 

For heteroscedasticity with equal kPjs, Table 10 presents power of the eight tests when N 

= 48 and k = 3 and 4. In it, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had the same power. 

For example, when k = 3, 2σ
1e  = 16, and f 2 = .02, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*)  

had power equal to .36 and FOLS had power equal .108. In contrast, FHC3 had power equal to .681. 

Note that for a fixed k, as heteroscedasticity increased, power increased for all tests. For 

example, when k = 4, 2σ
1e  = 4, and f 2 = .05, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*)  had 

power equal to .298 and FOLS had power equal .159. For a similar condition, but with 2σ
1e  = 64, 

FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had power equal to .92 and FOLS had power equal 

.191. Although this phenomenon is predictable for FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*)   

because they explicitly account for heteroscedasticity, it is less intuitive for FOLS. Recall that FOLS 

had inflated Type I error rates when kPjs were equal and heteroscedasticity exists. (Text 

continues on p. 82) 
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Table 10 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes with Equal kPjs 

and Heteroscedasticity Exists (N = 48, k = 3 and 4) 

k f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

  nj = 16; 2σ
1e  = 4 

3 .002 .066 .271 .067 .067 .067 .067 .067 .067 

3 .01 .083 .357 .116 .116 .116 .116 .116 .116 

3 .02 .125 .465 .181 .181 .181 .181 .181 .181 

3 .05 .215 .651 .345 .345 .345 .345 .345 .345 

3 .08 .319 .767 .492 .492 .492 .492 .492 .492 

  nj = 16; 2σ
1e  = 16 

3 .002 .080 .299 .084 .084 .084 .084 .084 .084 

3 .01 .090 .508 .223 .223 .223 .223 .223 .223 

3 .02 .108 .681 .360 .360 .360 .360 .360 .360 

3 .05 .212 .912 .712 .712 .712 .712 .712 .712 

3 .08 .331 .980 .898 .898 .898 .898 .898 .898 

  nj = 16; 2σ
1e  = 64 

3 .002 .091 .443 .160 .160 .160 .160 .160 .160 

3 .01 .096 .840 .584 .584 .584 .584 .584 .584 

3 .02 .110 .962 .853 .853 .853 .853 .853 .853 

3 .05 .216 1.000 .991 .991 .991 .991 .991 .991 
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3 .08 .337 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 12; 2σ
1e  = 4 

4 .002 .075 .441 .077 .077 .077 .077 .077 .077 

4 .01 .088 .495 .115 .115 .115 .115 .115 .115 

4 .02 .108 .551 .162 .162 .162 .162 .162 .162 

4 .05 .159 .703 .298 .298 .298 .298 .298 .298 

4 .08 .261 .834 .438 .438 .438 .438 .438 .438 

  nj = 12; 2σ
1e  = 16 

4 .002 .104 .485 .100 .100 .100 .100 .100 .100 

4 .01 .119 .620 .201 .201 .201 .201 .201 .201 

4 .02 .130 .751 .309 .309 .309 .309 .309 .309 

4 .05 .201 .910 .627 .627 .627 .627 .627 .627 

4 .08 .269 .964 .802 .802 .802 .802 .802 .802 

  nj = 12; 2σ
1e  = 64 

4 .002 .120 .554 .144 .144 .144 .144 .144 .144 

4 .01 .129 .837 .473 .473 .473 .473 .473 .473 

4 .02 .149 .949 .680 .680 .680 .680 .680 .680 

4 .05 .191 .998 .920 .920 .920 .920 .920 .920 

4 .08 .262 1.000 .989 .989 .989 .989 .989 .989 

 

Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 
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restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). kPj = degree of disproportionate subgroup sample sizes. For all 

conditions, population standard deviations on x equal 1.5. N denotes total sample size and, in 

each of the k groups, nj denotes the subgroup sample size. 2σ
1e  denotes population error variance 

in Group 1; error variance in each of the remaining groups equals 1.0. When k = 3, the 

population correlation coefficient and standard deviation on y equal .6 and 1.25, respectively, in 

Group 3. When k = 4, the population correlation coefficient and standard deviation on y equal .6 

and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 16, and 2σ
1e  = 64, respectively, 

the population correlation coefficient in Group 1 equals .351123, .184288, and .09334. For these 

values and a given effect size (f 2), the slope in Group 2 was computed. 
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As heteroscedasticity increased, Type I error rates increased. Thus, the minimum of its power 

function is shifting upwards (i.e., illusory gains in power) as heteroscedasticity increases. 

Similar to Table 10, Tables 11, 12, and 13 present power for the eights tests when N = 96, 

144, and 192, respectively. The just-noted trends are evident in these tables. However, it 

deserves stressing an important trend regarding the power of FHC3. Note that for a fixed k, 2σ
1e , 

and f 2, as N increases, power increases for all tests. However, for FHC3, because the minimum of 

its power function is shifting downwards as N increases, at very small f 2s, its power may be 

greater when N is small (e.g., 48) than when N is large (e.g., 96). For example, in Table 10 when 

k = 3, 2σ
1e  = 4, and f 2 = .002, FHC3 had power equal to .271. Note that its Type I error rate for the 

analogous condition (i.e., under the null hypothesis) was .248. Therefore, under the alternative 

hypothesis, power increased monotonically as f 2 increased, with .248 as the minimum of the 

power function. Interestingly, when N doubled to 96, for the same conditions but in Table 11, 

FHC3 had power equal to .158; a decrease in power. Note that its Type I error rate for the 

analogous condition (i.e., under the null hypothesis) was .122; the Type I error rate decreased 

because N increased. In Table 13, for the analogous condition, but with N now equal to 192, FHC3 

had power equal to .182; a modest increase in power. However, its Type I error rate for the 

analogous condition (i.e., under the null hypothesis) was .1; that is, its Type I error rate is 

converging towards α. 

To further investigate the power of the tests, I plotted the rejection rates for various 

conditions. Note that in all curves, the estimated Type I error rates were included in the plots, 

allowing for power to be depicted from f 2 = 0 to .08. Note also that although straight lines were 

used to connect all points this does not suggest that the actual power curve will follow such a 

pattern. (Text continues on p. 92.) 
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Table 11 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes with Equal kPjs 

and Heteroscedasticity Exists (N = 96, k = 3 and 4) 

k f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

  nj = 32; 2σ
1e  = 4 

3 .002 .064 .158 .075 .075 .075 .075 .075 .075 

3 .01 .106 .342 .194 .194 .194 .194 .194 .194 

3 .02 .163 .495 .335 .335 .335 .335 .335 .335 

3 .05 .427 .787 .651 .651 .651 .651 .651 .651 

3 .08 .654 .932 .847 .847 .847 .847 .847 .847 

  nj = 32; 2σ
1e  = 16 

3 .002 .089 .260 .125 .125 .125 .125 .125 .125 

3 .01 .111 .617 .418 .418 .418 .418 .418 .418 

3 .02 .177 .851 .728 .728 .728 .728 .728 .728 

3 .05 .401 .991 .970 .970 .970 .970 .970 .970 

3 .08 .690 1.000 .998 .998 .998 .998 .998 .998 

  nj = 32; 2σ
1e  = 64 

3 .002 .091 .472 .298 .298 .298 .298 .298 .298 

3 .01 .120 .960 .921 .921 .921 .921 .921 .921 

3 .02 .172 .993 .992 .992 .992 .992 .992 .992 
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3 .05 .371 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 .08 .713 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 24; 2σ
1e  = 4 

4 .002 .077 .263 .088 .088 .088 .088 .088 .088 

4 .01 .109 .371 .151 .151 .151 .151 .151 .151 

4 .02 .157 .517 .262 .262 .262 .262 .262 .262 

4 .05 .365 .787 .573 .573 .573 .573 .573 .573 

4 .08 .562 .903 .754 .754 .754 .754 .754 .754 

  nj = 24; 2σ
1e  = 16 

4 .002 .099 .329 .128 .128 .128 .128 .128 .128 

4 .01 .127 .599 .347 .347 .347 .347 .347 .347 

4 .02 .158 .825 .591 .591 .591 .591 .591 .591 

4 .05 .357 .986 .939 .939 .939 .939 .939 .939 

4 .08 .564 .996 .994 .994 .994 .994 .994 .994 

  nj = 24; 2σ
1e  = 64 

4 .002 .107 .530 .268 .268 .268 .268 .268 .268 

4 .01 .127 .952 .825 .825 .825 .825 .825 .825 

4 .02 .174 .993 .981 .981 .981 .981 .981 .981 

4 .05 .325 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 .08 .564 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). kPj = degree of disproportionate subgroup sample sizes. For all 

conditions, population standard deviations on x equal 1.5. N denotes total sample size and, in 

each of the k groups, nj denotes the subgroup sample size. 2σ
1e  denotes population error variance 

in Group 1; error variance in each of the remaining groups equals 1.0. When k = 3, the 

population correlation coefficient and standard deviation on y equal .6 and 1.25, respectively, in 

Group 3. When k = 4, the population correlation coefficient and standard deviation on y equal .6 

and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 16, and 2σ
1e  = 64, respectively, 

the population correlation coefficient in Group 1 equals .351123, .184288, and .09334. For these 

values and a given effect size (f 2), the slope in Group 2 was computed. 
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Table 12 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes with Equal kPjs 

and Heteroscedasticity Exists (N = 144, k = 3 and 4) 

k f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

  nj = 48; 2σ
1e  = 4 

3 .002 .072 .161 .081 .081 .081 .081 .081 .081 

3 .01 .153 .351 .232 .232 .232 .232 .232 .232 

3 .02 .275 .560 .431 .431 .431 .431 .431 .431 

3 .05 .654 .875 .811 .811 .811 .811 .811 .811 

3 .08 .877 .984 .968 .968 .968 .968 .968 .968 

  nj = 48; 2σ
1e  = 16 

3 .002 .098 .239 .150 .150 .150 .150 .150 .150 

3 .01 .141 .716 .609 .609 .609 .609 .609 .609 

3 .02 .244 .943 .898 .898 .898 .898 .898 .898 

3 .05 .668 .998 .997 .997 .997 .997 .997 .997 

3 .08 .933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 48; 2σ
1e  = 64 

3 .002 .102 .585 .473 .473 .473 .473 .473 .473 

3 .01 .150 .996 .991 .991 .991 .991 .991 .991 

3 .02 .229 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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3 .05 .655 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 .08 .951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 36; 2σ
1e  = 4 

4 .002 .076 .200 .085 .085 .085 .085 .085 .085 

4 .01 .134 .385 .213 .213 .213 .213 .213 .213 

4 .02 .221 .566 .391 .390 .390 .390 .390 .390 

4 .05 .567 .895 .772 .772 .772 .772 .772 .772 

4 .08 .801 .973 .929 .929 .929 .929 .929 .929 

  nj = 36; 2σ
1e  = 16 

4 .002 .106 .287 .135 .135 .135 .135 .135 .135 

4 .01 .161 .673 .495 .495 .495 .495 .495 .495 

4 .02 .223 .911 .820 .820 .820 .820 .820 .820 

4 .05 .545 .999 .995 .995 .995 .995 .995 .995 

4 .08 .832 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 36; 2σ
1e  = 64 

4 .002 .114 .540 .358 .358 .358 .358 .358 .358 

4 .01 .156 .977 .955 .955 .955 .955 .955 .955 

4 .02 .214 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 .05 .559 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 .08 .879 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). kPj = degree of disproportionate subgroup sample sizes. For all 

conditions, population standard deviations on x equal 1.5. N denotes total sample size and, in 

each of the k groups, nj denotes the subgroup sample size. 2σ
1e  denotes population error variance 

in Group 1; error variance in each of the remaining groups equals 1.0. When k = 3, the 

population correlation coefficient and standard deviation on y equal .6 and 1.25, respectively, in 

Group 3. When k = 4, the population correlation coefficient and standard deviation on y equal .6 

and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 16, and 2σ
1e  = 64, respectively, 

the population correlation coefficient in Group 1 equals .351123, .184288, and .09334. For these 

values and a given effect size (f 2), the slope in Group 2 was computed. 
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Table 13 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes with Equal kPjs 

and Heteroscedasticity Exists (N = 192, k = 3 and 4) 

k f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

  nj = 64; 2σ
1e  = 4 

3 .002 .085 .182 .113 .113 .113 .113 .113 .113 

3 .01 .187 .401 .317 .317 .317 .317 .317 .317 

3 .02 .378 .666 .588 .588 .588 .588 .588 .588 

3 .05 .794 .951 .934 .934 .934 .934 .934 .934 

3 .08 .961 .995 .994 .994 .994 .994 .994 .994 

  nj = 64; 2σ
1e  = 16 

3 .002 .097 .301 .202 .202 .202 .202 .202 .202 

3 .01 .189 .796 .728 .728 .728 .728 .728 .728 

3 .02 .337 .966 .954 .954 .954 .954 .954 .954 

3 .05 .865 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 .08 .991 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 64; 2σ
1e  = 64 

3 .002 .107 .705 .631 .631 .631 .631 .631 .631 

3 .01 .179 1.000 .997 .997 .997 .997 .997 .997 

3 .02 .326 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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3 .05 .877 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3 .08 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 48; 2σ
1e  = 4 

4 .002 .072 .178 .091 .091 .091 .091 .091 .091 

4 .01 .156 .409 .273 .273 .273 .273 .273 .273 

4 .02 .295 .658 .490 .490 .490 .490 .490 .490 

4 .05 .746 .944 .895 .895 .895 .895 .895 .895 

4 .08 .939 .998 .990 .990 .990 .990 .990 .990 

  nj = 48; 2σ
1e  = 16 

4 .002 .114 .267 .152 .152 .152 .152 .152 .152 

4 .01 .164 .732 .619 .620 .619 .619 .619 .619 

4 .02 .286 .951 .916 .916 .916 .916 .916 .916 

4 .05 .757 1.000 .999 .999 .999 .999 .999 .999 

4 .08 .969 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  nj = 48; 2σ
1e  = 64 

4 .002 .110 .613 .474 .474 .474 .474 .474 .474 

4 .01 .188 .995 .986 .986 .986 .986 .986 .986 

4 .02 .274 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 .05 .787 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 .08 .987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). kPj = degree of disproportionate subgroup sample sizes. For all 

conditions, population standard deviations on x equal 1.5. N denotes total sample size and, in 

each of the k groups, nj denotes the subgroup sample size. 2σ
1e  denotes population error variance 

in Group 1; error variance in each of the remaining groups equals 1.0. When k = 3, the 

population correlation coefficient and standard deviation on y equal .6 and 1.25, respectively, in 

Group 3. When k = 4, the population correlation coefficient and standard deviation on y equal .6 

and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 16, and 2σ
1e  = 64, respectively, 

the population correlation coefficient in Group 1 equals .351123, .184288, and .09334. For these 

values and a given effect size (f 2), the slope in Group 2 was computed. 
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There could be smooth curves between any two f 2s considered in this study. The lines were 

included to facilitate interpretation. In addition, because FML, FRML, FWLS(1), FWLS(2), FWLS(O), and 

FWLS(*) performed identically when kPjs were equal, there power curves coincide. 

Figure 11 shows the power of the eight tests when k = 3 and 2σ
je  = 4, 1, 1. In Figure 

11A, N = 48 (see also Table 10). Although FHC3 clearly has the greatest power among the tests, 

as noted above, it had the most inflated Type I error rate, resulting in a marked upward shift in its 

power function. Note that the remaining tests have power levels that increase monotonically but 

their power curves begin much closer to α than that of FHC3. In Figure 11B, N = 192 (see also 

Table 13). All power curves are much steeper. Note that the power of FHC3 is much more closely 

aligned with the other tests than when N = 48 and the minimum of its curve is closer to α, but is 

still inflated (i.e., .1), resulting in a specious power advantage. Although the Type I error rate for 

FOLS does not differ markedly from α, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had higher 

power levels. Finally, in Figure 11C, N = 336. In it, the power of FHC3 virtually mirrors that of 

FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*). Importantly, the Type I error rate for FHC3 was 

.068. Therefore, as N increases, it appears that FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and 

FWLS(*) may be asymptotically equivalent when kPjs are equal. 

Figure 12 shows the power of the eight tests when k = 3 and 2σ
je  = 16, 1, 1. In Figure 

12A, N = 48 (see also Table 10). Note that, due to increased heteroscedasticity, the power of FOLS 

increased slightly compared to Figure 11A. However, the power levels of FML, FRML, FWLS(1), 

FWLS(2), FWLS(O), and FWLS(*), again, are still considerably higher than that of FOLS without 

sacrificing control of Type I error rates. Due to its inability to control Type I error rates, FHC3 

was the most powerful test. These trends can also be seen in Figure 12B where N = 192 (see also 

Table 13). (Text continues on p. 99.) 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 

 

Figure 11. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, equal subgroup sample sizes, 2σ
je s = 4, 1, 1, and (A) N = 48, (B) N = 192, and (C) 

N = 336. 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 

 

Figure 12. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, equal subgroup sample sizes, 2σ
je s = 16, 1, 1, and (A) N = 48, (B) N = 192, and (C) 

N = 336. 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 
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Note. Power for FML (ML), FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), 

and FWLS* (WLS*) coincide. 
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Note that the power functions of FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) appear to 

coincide more quickly when heteroscedasticity increases along with N. This can be seen by 

comparing (a) Figure 11B with 12B, and (b) Figure 11C with 12C. 

Table 14 shows the average power of the tests as a function of k and f 2. On average, for 

FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*), increasing k tends to lower power. On average, 

for FHC3, increasing k tends to increase power. For FOLS, because increasing k tends to result in 

increases in Type error rates, average power increases which is noticeable at smaller f 2s. 

Heteroscedasticity With Unequal kPjs 

Table 15 presents the average power of the eight tests as a function of kPjs and pairing. In 

it, FOLS had less power with direct pairing than indirect pairing and it was lowest when direct 

pairing was combined with very unequal kPjs (.3419). The opposite was true for the remaining 

seven tests. Specifically, they had greater power with direct pairing than indirect pairing and it 

was greatest when direct pairing was combined with very unequal kPjs. FML, FRML, FWLS(1), 

FWLS(2), FWLS(O), and FWLS(*) had very similar average power levels. FHC3 had the highest average 

power. 

Because inspecting averages across various conditions may not reveal unique and 

interesting trends, for a subset of representative conditions, I present the power of the eight tests 

when k = 3 in (a) Tables 16 – 19 for direct pairing, and (b) Tables 20 – 23 for indirect pairing. 

Direct pairing. For FOLS, the results were consistent with previous research. Namely, 

power levels were generally low for FOLS. For example, in Table 16 (N = 48), FOLS had power 

equal to .023 to detect an f 2 = .002 when 2σ
je  = 4, 1, 1 and njs = 24, 12, 12. Recall that its Type I 

error rates were very conservative with direct pairing, particularly with very unequal kPjs. For 

example, consider a similar condition in the same table, but with njs = 32, 8, 8. The power of 
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FOLS decreased to .007. For all the alternative methods, power was generally much greater than 

that of FOLS. Although FHC3 always had the greatest power, FML, FRML, FWLS(1), FWLS(2), FWLS(O), 

and FWLS(*) had power levels that became very similar to that of FHC3 when f 2 increased, kPjs 

were moderately unequal, and as N increased. This can be seen by inspecting Table 17 when N = 

96, Table 18 when N = 144, and Table 19 when N =192. 

Figures 13 – 16 depict the power curves for the eight tests across various conditions with 

direct pairing when k = 3. In Figure 13A, N = 48, kPjs are moderately unequal, and 2σ
je  = 4, 1, 1 

(see also Table 16). Consistent with the previous results, FHC3 had the greatest power. FML, FRML, 

FWLS(1), FWLS(2), FWLS(O), and FWLS(*) performed similarly with FML having the greatest power 

among them. FOLS, with its conservative Type I error rates, had the lowest power. For this 

condition but as N increased to 192 (Figure 13B) and 336 (Figure 13C), FHC3, FML, FRML, FWLS(1), 

FWLS(2), FWLS(O), and FWLS(*) had nearly identical power levels. Note however that FHC3 had 

inflated Type I error rates and FOLS had conservative Type I error rates. 

Figure 14 is like that of Figure 13, however, with increased heteroscedasticity (i.e., 2σ
je  = 

16, 1, 1). Comparing Figure 14A to Figure 13A, it is evident that increased heteroscedasticity 

resulted in (a) increased power for FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*), and (b) 

decreased power for FOLS. In addition, although power increased for all the methods as N 

increased to 192 (Figure 14B) and 336 (Figure 14C), FHC3 had inflated Type I error rates and 

FOLS had conservative Type I error rates. 

Figure 15 depicts the power of the tests when kPjs were very unequal and 2σ
je  = 4, 1, 1. (Text 

continues on p. 127.) 
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Table 14 

Average Empirical Power (at α = .05) as a Function of k and f 2 When Testing for the Equality of 

Regression Slopes With Equal Subgroup Sample Sizes and Heteroscedasticity Exists 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 k = 3 

.002 .0930 .3856 .2880 .2880 .2880 .2880 .2880 .2880 

.01 .1870 .7263 .6380 .6380 .6380 .6380 .6380 .6380 

.02 .3620 .8586 .7931 .7931 .7931 .7931 .7931 .7931 

.05 .7206 .9590 .9227 .9227 .9227 .9227 .9227 .9227 

.08 .8450 .9836 .9616 .9616 .9616 .9616 .9616 .9616 

 k = 4 

.002 .1040 .3999 .2425 .2425 .2425 .2425 .2425 .2425 

.01 .1758 .7237 .5880 .5881 .5880 .5880 .5880 .5880 

.02 .3098 .8543 .7427 .7427 .7426 .7426 .7426 .7426 

.05 .6705 .9607 .9019 .9019 .9019 .9019 .9019 .9019 

.08 .8025 .9840 .9472 .9472 .9472 .9472 .9472 .9472 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). k = number of 
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groups. f 2 = modified effect size (Aguinis et al., 2005). For all tests, the means were based on 21 

conditions. 

 

 

Table 15 

Average Empirical Power (at α = .05) as a Function of kPj and Pairing when Testing for the 

Equality of Regression Slopes when Heteroscedasticity Exists 

kPjs Pairing FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

Moderately 
Unequal Direct .3722 .8204 .7429 .7403 .7417 .7407 .7376 .7286 

Moderately 
Unequal Indirect .4679 .7809 .6912 .6888 .6900 .6888 .6858 .6757 

Very 
Unequal Direct .3419 .8531 .7733 .7669 .7704 .7669 .7577 .7631 

Very 
Unequal Indirect .5179 .7853 .6714 .6626 .6674 .6626 .6507 .6549 

 

Note. An F statistic was used to test for the equality of regression slopes with ordinary least 

squares (FOLS), HC3 (FHC3), maximum likelihood (FML), restricted maximum likelihood (FRML), 

weighted least squares with 1 jw  (FWLS(1)), weighted least squares with 2 jw  (FWLS(2)), weighted 

least squares with O jw  (FWLS(O)), and weighted least squares with *
jw  (FWLS*). kPj = degree of 

disproportionate subgroup sample sizes. For all tests, averages were based on 210 conditions 

except for FWLS* when kPjs were Very Unequal which was based on 195 conditions. 
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Table 16 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Direct Pairing (N = 48, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 24, 12, 12; 2σ
1e  = 4 

.002 .023 .281 .070 .067 .070 .067 .059 .050 

.01 .034 .378 .116 .114 .115 .114 .110 .099 

.02 .049 .480 .192 .181 .187 .181 .172 .159 

.05 .145 .726 .415 .410 .413 .410 .392 .368 

.08 .251 .855 .608 .588 .597 .588 .567 .538 

 nj = 32, 8, 8; 2σ
1e  = 4 

.002 .007 .391 .093 .081 .085 .081 .062 .035 

.01 .014 .518 .196 .171 .186 .171 .135 .070 

.02 .026 .621 .294 .260 .280 .259 .210 .107 

.05 .110 .830 .555 .517 .537 .517 .439 .261 

.08 .215 .926 .718 .672 .697 .672 .606 .412 

 nj = 24, 12, 12; 2σ
1e  = 16 

.002 .018 .389 .104 .095 .098 .095 .091 .086 

.01 .024 .591 .289 .277 .280 .277 .263 .244 

.02 .034 .765 .459 .435 .446 .435 .412 .392 
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.05 .110 .946 .831 .810 .816 .810 .806 .771 

.08 .215 .987 .951 .942 .943 .942 .931 .927 

 nj = 32, 8, 8; 2σ
1e  = 16 

.002 .003 .446 .148 .132 .141 .132 .103 .055 

.01 .006 .710 .345 .310 .338 .310 .252 .160 

.02 .011 .850 .584 .543 .563 .543 .475 .310 

.05 .065 .976 .879 .861 .872 .861 .820 .681 

.08 .158 .995 .969 .958 .965 .958 .940 .882 

 nj = 24, 12, 12; 2σ
1e  = 64 

.002 .020 .554 .196 .188 .192 .188 .175 .159 

.01 .028 .932 .715 .689 .702 .689 .668 .642 

.02 .059 .987 .938 .932 .936 .932 .922 .902 

.05 .111 .998 .997 .997 .997 .997 .996 .995 

.08 .192 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 32, 8, 8; 2σ
1e  = 64 

.002 .003 .637 .289 .253 .275 .253 .190 .108 

.01 .004 .943 .795 .752 .776 .752 .676 .516 

.02 .016 .987 .954 .940 .945 .940 .912 .813 

.05 .060 1.000 .998 .997 .998 .997 .992 .981 

.08 .152 1.000 1.000 1.000 1.000 1.000 .999 .995 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 17 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Direct Pairing (N = 96, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 48, 24, 24; 2σ
1e  = 4 

.002 .026 .198 .078 .077 .077 .077 .074 .070 

.01 .060 .385 .254 .247 .252 .247 .239 .236 

.02 .123 .576 .365 .362 .364 .362 .361 .350 

.05 .385 .879 .739 .727 .734 .727 .721 .711 

.08 .628 .963 .896 .895 .895 .895 .892 .886 

 nj = 64, 16, 16; 2σ
1e  = 4 

.002 .009 .281 .115 .105 .109 .105 .094 .087 

.01 .035 .494 .255 .241 .250 .241 .220 .201 

.02 .082 .707 .462 .442 .456 .442 .417 .395 

.05 .352 .919 .819 .806 .813 .806 .785 .758 

.08 .625 .981 .945 .932 .941 .932 .925 .907 

 nj = 48, 24, 24; 2σ
1e  = 16 

.002 .024 .306 .156 .154 .155 .154 .150 .145 

.01 .045 .718 .515 .510 .510 .510 .501 .498 

.02 .100 .925 .835 .832 .833 .832 .826 .821 
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.05 .338 .997 .992 .992 .992 .992 .992 .991 

.08 .618 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 64, 16, 16; 2σ
1e  =16 

.002 .001 .381 .180 .163 .168 .163 .146 .134 

.01 .011 .796 .615 .584 .597 .584 .558 .528 

.02 .042 .945 .866 .855 .861 .855 .837 .815 

.05 .289 1.000 .998 .998 .998 .998 .995 .994 

.08 .612 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 48, 24, 24; 2σ
1e  = 64 

.002 .019 .593 .398 .384 .389 .384 .376 .368 

.01 .046 .991 .977 .973 .977 .973 .968 .966 

.02 .087 1.000 .998 .998 .998 .998 .998 .998 

.05 .320 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .635 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 64, 16, 16; 2σ
1e  = 64 

.002 .002 .707 .477 .448 .465 .448 .422 .368 

.01 .009 .995 .973 .972 .973 .972 .966 .955 

.02 .034 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .262 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .607 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 18 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Direct Pairing (N = 144, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 72, 36, 36; 2σ
1e  = 4 

.002 .033 .183 .109 .110 .109 .110 .107 .107 

.01 .089 .461 .304 .301 .301 .301 .297 .294 

.02 .215 .640 .534 .531 .534 .531 .527 .520 

.05 .628 .939 .900 .898 .900 .898 .895 .895 

.08 .881 .992 .988 .988 .988 .988 .987 .987 

 nj = 96, 24, 24; 2σ
1e  = 4 

.002 .007 .227 .109 .101 .105 .101 .098 .091 

.01 .063 .519 .368 .357 .363 .357 .344 .332 

.02 .165 .757 .638 .622 .630 .622 .612 .587 

.05 .620 .980 .944 .935 .940 .935 .931 .925 

.08 .869 .996 .993 .992 .992 .992 .992 .991 

 nj = 72, 36, 36; 2σ
1e  = 16 

.002 .025 .326 .192 .187 .189 .187 .183 .181 

.01 .052 .811 .685 .683 .683 .683 .680 .674 

.02 .145 .976 .944 .943 .943 .943 .941 .940 
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.05 .638 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .902 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 24, 24; 2σ
1e  = 16 

.002 .003 .394 .242 .235 .235 .235 .233 .209 

.01 .024 .885 .788 .784 .785 .784 .765 .747 

.02 .102 .985 .975 .973 .974 .973 .965 .959 

.05 .604 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .917 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 72, 36, 36; 2σ
1e  = 64 

.002 .022 .693 .573 .568 .572 .568 .560 .549 

.01 .063 .998 .996 .996 .996 .996 .995 .994 

.02 .151 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .587 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .944 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 24, 24; 2σ
1e  = 64 

.002 .003 .796 .658 .651 .657 .651 .635 .620 

.01 .023 1.000 .999 .999 .999 .999 .999 .998 

.02 .088 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .596 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .927 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 19 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Direct Pairing (N = 192, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 96, 48, 48; 2σ
1e  = 4 

.002 .024 .178 .101 .100 .101 .100 .099 .094 

.01 .117 .488 .384 .381 .383 .381 .376 .371 

.02 .326 .760 .689 .686 .688 .685 .681 .679 

.05 .816 .979 .965 .965 .965 .965 .964 .964 

.08 .963 .998 .997 .997 .997 .997 .997 .997 

 nj = 128, 32, 32; 2σ
1e  = 4 

.002 .013 .210 .126 .124 .124 .124 .120 .118 

.01 .098 .590 .465 .457 .458 .457 .440 .423 

.02 .274 .851 .760 .752 .760 .752 .740 .722 

.05 .804 .993 .982 .981 .981 .981 .981 .980 

.08 .961 1.000 .998 .998 .998 .998 .998 .998 

 nj = 96, 48, 48; 2σ
1e  = 16 

.002 .023 .337 .245 .244 .244 .244 .241 .240 

.01 .103 .895 .850 .849 .850 .849 .849 .848 

.02 .260 .990 .982 .982 .982 .982 .982 .982 
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.05 .848 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 128, 32, 32; 2σ
1e  = 16 

.002 .007 .423 .285 .278 .283 .278 .268 .256 

.01 .050 .940 .895 .889 .892 .888 .879 .875 

.02 .197 .996 .994 .994 .994 .994 .994 .994 

.05 .850 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .987 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 48, 48; 2σ
1e  = 64 

.002 .013 .788 .696 .695 .696 .695 .692 .688 

.01 .071 .999 .999 .999 .999 .999 .999 .999 

.02 .217 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .871 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 128, 132, 32; 2σ
1e  = 64 

.002 .003 .878 .803 .796 .800 .796 .790 .780 

.01 .042 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.02 .169 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .846 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Figure 13. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, direct pairing, 2σ
je s = 4, 1, 1, moderately unequal proportions, and (A) N = 48, (B) 

N = 192, and (C) N = 336. 



 116

Panel B 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Effect Size

Po
w

er

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

 



 117

Panel C 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Effect Size

Po
w

er

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

 



 118

Panel A 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Effect Size

Po
w

er

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

Figure 14. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, direct pairing, 2σ
je s = 16, 1, 1, moderately unequal proportions, and (A) N = 48, 

(B) N = 192, and (C) N = 336. 
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Figure 15. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, direct pairing, 2σ
je s = 4, 1, 1, very unequal proportions, and (A) N = 48, (B) N = 

192, and (C) N = 336. 
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Figure 16. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, direct pairing, 2σ
je s = 16, 1, 1, very unequal proportions, and (A) N = 48, (B) N = 

192, and (C) N = 336. 
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In Figure 15A, when N = 48, it is apparent that FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) do 

not have similar power levels as they did with moderately unequal kPjs (see Figure 13A). Note 

that FWLS(O) and FWLS(*) had power levels lower than that of FML, FRML, FWLS(1), and FWLS(2). 

However, as N increased to 192 (Figure 15B) and 336 (Figure 15C), FML, FRML, FWLS(1), FWLS(2), 

FWLS(O), and FWLS(*) had very similar power levels again with FWLS(O) and FWLS(*) having Type I 

error rates closer to the nominal level than the other methods. The Type I error rates continued to 

be inflated for FHC3 and conservative for FOLS. 

Figure 16 is like that of Figure 15, however, with increased heteroscedasticity (i.e., 2σ
je  = 

16, 1, 1). It seems that the very dissimilar power levels of FML, FRML, FWLS(1), FWLS(2), FWLS(O), and 

FWLS(*) that were evident when kPjs were very unequal but with mild heteroscedasticity (i.e., N = 

48, 2σ
je  = 4, 1, 1 in Figure 15A) are less noticeable in Figure 16A. In addition, the power of FOLS 

decreased. Note that when N increased to 192 (Figure 16B) and 336 (Figure 16C), FML, FRML, 

FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had very similar power levels again with FWLS(O) and FWLS(*) 

having Type I error rates closer to the nominal level than the other methods. The Type I error 

rates continued to be inflated for FHC3 and conservative for FOLS. 

Indirect pairing. For FOLS., the results were consistent with previous research. Namely, 

power levels were somewhat greater for FOLS. For example, in Table 20 (N = 48), FOLS had 

power equal to .111 to detect an f 2 = .002 when 2σ
je  = 1, 1, 4, and njs = 24, 12, 12. Recall that 

its Type I error rates were very liberal with indirect pairing, particularly with very unequal kPjs. 

For example, consider a similar condition in the same table, but with njs = 32, 8, 8. The power of 

FOLS increased to .161. For all the alternative methods, power was not always greater than that of 

FOLS. Because of its inflated Type I error rates, the trends are more complex and will be 

described using figures below. Although FHC3 had the greatest power in most instances with 
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indirect pairing, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS(*) had power levels that became 

very similar to that of FHC3 when f 2 increased, kPjs were moderately unequal, and as N increased. 

This can be seen by inspecting Table 21 when N = 96, Table 22 when N = 144, and Table 23 

when N =192. 

Figures 17 – 23 depict the power curves for the eight tests across various conditions with 

indirect pairing. In Figure 17A, N = 48, kPjs are moderately unequal, and 2σ
je  = 1, 1, 4 (see also 

Table 20). A very interesting finding can be discerned from this plot that is less apparent in the 

above-mentioned tables. More precisely, although FOLS had inflated Type I error rates, giving it 

an illusory power advantage, note that as f 2 increases, this power advantage diminishes. Its 

power function crosses that of all the other methods until it is again the lowest in rank order. All 

the other methods performed similar to previous figures with FWLS(O) and FWLS(*)  having Type I 

error rates near the nominal level. These trends also occurred as N increased to 192 (Figure 17B) 

and 336 (Figure 17C). Note however, in Figure 17C, the Type I error rate for FHC3 decreased to 

.062 and the Type I error rate for FOLS was .082. 

The same trends are evident in Figure 18 which is like that of Figure 17, but with 

increased heteroscedasticity (i.e., 2σ
je  = 1, 1, 16). Note that the Type I error rates of FOLS became 

more inflated (i.e., > .1). Regardless of N = 48 (Figure 18A), 192 (Figure 18B), or 336 (Figure 

18C), the power function of FOLS always crossed that of the other methods. This was also true for 

FHC3 because the leftmost side of its power function decreased as N increased. 

Figure 19 depicts the power of the tests when kPjs were very unequal and 2σ
je  = 1, 1, 4. 

Consistent with previous figures, with small Ns (i.e., 48) when kPjs were very unequal and with 

moderate levels of heteroscedasticity, the power levels for FML, FRML, FWLS(1), FWLS(2), FWLS(O), 

and FWLS(*) differed noticeably (see Figure 19A). Noteworthy, the Type I error rate for FOLS was 
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greatly inflated (i.e., .152) as was that for FHC3 (.432). Again, the power function for FOLS 

crossed that of the other methods. As N increased to 192 (Figure 19B) and 336 (Figure 19C), 

FOLS had greater power than some of the methods at small f 2s. 

Figure 20 is like that of Figure 19, however, with increased heteroscedasticity (i.e., 2σ
je  = 

1, 1, 16). The trends are similar across N = 48 (Figure 20A), 192 (Figure 20B), and 336 (Figure 

20C). Notably, an inspection of Figure 20A shows that the Type I error rate for FOLS was greatly 

inflated (i.e., .268) as was that for FHC3 (.495). Increasing N to 336 (see Figure 20C) results in a 

Type I error rate for FOLS and FHC3 equal to .218 and .112, respectively. Again, FOLS had greater 

power than some of the methods at small f 2s. 

Comment. Similar relations occurred when k = 4, with the tests ordered in the same 

manner in terms of power. Additional tables and figures can be obtained from the author. (Text 

continues on p. 154.) 
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Table 20 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Indirect Pairing (N = 48, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 24, 12, 12; 2σ
3e  = 4 

.002 .111 .335 .081 .076 .079 .076 .068 .059 

.01 .132 .398 .124 .118 .122 .118 .104 .095 

.02 .161 .477 .192 .182 .187 .182 .172 .148 

.05 .235 .652 .342 .327 .335 .327 .311 .287 

.08 .349 .792 .493 .483 .490 .483 .473 .448 

 nj = 32, 8, 8; 2σ
3e  = 4 

.002 .161 .468 .125 .098 .117 .100 .072 .029 

.01 .184 .532 .162 .140 .158 .140 .104 .044 

.02 .226 .602 .230 .194 .215 .194 .152 .070 

.05 .311 .762 .380 .332 .360 .332 .266 .138 

.08 .409 .848 .528 .459 .482 .459 .382 .230 

 nj = 24, 12, 12; 2σ
3e  = 16 

.002 .160 .353 .109 .106 .108 .106 .098 .081 

.01 .167 .531 .226 .217 .224 .217 .199 .179 

.02 .189 .659 .360 .357 .360 .357 .342 .318 
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.05 .292 .907 .699 .695 .699 .695 .683 .665 

.08 .370 .961 .851 .846 .847 .846 .840 .829 

 nj = 32, 8, 8; 2σ
3e  = 16 

.002 .274 .520 .142 .120 .135 .120 .086 .035 

.01 .296 .634 .229 .206 .220 .206 .165 .082 

.02 .315 .730 .354 .313 .328 .313 .235 .137 

.05 .404 .877 .616 .573 .602 .573 .496 .313 

.08 .501 .946 .778 .740 .761 .740 .671 .472 

 nj = 24, 12, 12; 2σ
3e  = 64 

.002 .174 .465 .181 .168 .171 .168 .156 .142 

.01 .189 .823 .546 .532 .538 .532 .514 .490 

.02 .212 .946 .822 .817 .819 .817 .806 .783 

.05 .294 .997 .987 .987 .987 .987 .984 .980 

.08 .388 .998 .998 .998 .998 .998 .997 .996 

 nj = 32, 8, 8; 2σ
3e  = 64 

.002 .310 .605 .192 .166 .181 .166 .115 .052 

.01 .324 .802 .469 .431 .446 .431 .348 .191 

.02 .362 .921 .727 .664 .706 .664 .595 .389 

.05 .437 .987 .927 .905 .912 .905 .878 .758 

.08 .547 .998 .976 .968 .975 .968 .948 .885 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 21 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Indirect Pairing (N = 96, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 48, 24, 24; 2σ
3e  = 4 

.002 .105 .211 .083 .078 .080 .078 .074 .071 

.01 .158 .352 .186 .178 .183 .178 .174 .166 

.02 .236 .521 .304 .296 .299 .296 .289 .286 

.05 .489 .797 .634 .630 .632 .630 .625 .617 

.08 .706 .914 .858 .857 .858 .857 .851 .848 

 nj = 64, 16, 16; 2σ
3e  = 4 

.002 .166 .293 .101 .089 .096 .089 .078 .061 

.01 .205 .405 .185 .172 .182 .172 .158 .138 

.02 .295 .534 .292 .270 .283 .270 .260 .239 

.05 .518 .806 .608 .586 .598 .586 .552 .514 

.08 .725 .925 .806 .785 .796 .785 .772 .742 

 nj = 48, 24, 24; 2σ
3e  = 16 

.002 .154 .286 .120 .118 .119 .118 .113 .109 

.01 .182 .540 .381 .374 .377 .374 .367 .361 

.02 .262 .808 .668 .665 .665 .665 .661 .651 



 134

.05 .481 .981 .962 .959 .961 .959 .955 .952 

.08 .731 1.000 .994 .992 .992 .992 .992 .991 

 nj = 64, 16, 16; 2σ
3e  = 16 

.002 .258 .338 .146 .130 .138 .130 .113 .092 

.01 .302 .567 .338 .321 .328 .321 .282 .264 

.02 .353 .766 .528 .510 .515 .510 .478 .461 

.05 .581 .967 .866 .851 .861 .851 .840 .831 

.08 .795 .992 .975 .972 .975 .972 .967 .960 

 nj = 48, 24, 24; 2σ
3e  = 64 

.002 .179 .482 .288 .281 .282 .280 .276 .272 

.01 .193 .938 .873 .872 .873 .872 .868 .861 

.02 .254 .996 .989 .989 .989 .989 .988 .988 

.05 .483 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .758 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 64, 16, 16; 2σ
3e  = 64 

.002 .289 .499 .263 .237 .251 .237 .213 .187 

.01 .324 .892 .755 .732 .746 .732 .712 .691 

.02 .382 .983 .941 .937 .941 .937 .928 .912 

.05 .602 1.000 .997 .996 .996 .996 .996 .995 

.08 .831 1.000 1.000 1.000 1.000 1.000 1.000 .998 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
1e  

denotes population error variance in Group 1; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 22 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Indirect Pairing (N = 144, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 72, 36, 36; 2σ
3e  = 4 

.002 .112 .172 .099 .096 .097 .096 .094 .083 

.01 .195 .356 .229 .226 .227 .226 .224 .218 

.02 .318 .571 .437 .435 .435 .435 .431 .425 

.05 .667 .885 .830 .826 .828 .826 .825 .822 

.08 .882 .978 .956 .956 .956 .956 .956 .954 

 nj = 96, 24, 24; 2σ
3e  = 4 

.002 .164 .211 .092 .085 .091 .085 .080 .072 

.01 .258 .421 .256 .242 .250 .242 .229 .214 

.02 .379 .622 .452 .437 .446 .437 .399 .381 

.05 .689 .885 .780 .768 .775 .768 .757 .742 

.08 .875 .964 .923 .922 .923 .922 .916 .910 

 nj = 72, 36, 36; 2σ
3e  = 16 

.002 .155 .258 .152 .151 .152 .151 .150 .147 

.01 .227 .679 .529 .524 .527 .524 .521 .515 

.02 .331 .920 .874 .871 .871 .871 .866 .866 



 137

.05 .720 1.000 .996 .996 .996 .996 .996 .996 

.08 .955 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 24, 24; 2σ
3e  = 16 

.002 .246 .272 .139 .124 .134 .124 .116 .112 

.01 .312 .639 .466 .450 .461 .450 .427 .409 

.02 .439 .876 .766 .748 .760 .748 .730 .718 

.05 .789 .990 .975 .973 .973 .973 .972 .969 

.08 .936 .998 .998 .997 .998 .997 .997 .996 

 nj = 72, 36, 36; 2σ
3e  = 64 

.002 .164 .537 .396 .395 .396 .395 .393 .389 

.01 .218 .982 .973 .973 .973 .973 .971 .971 

.02 .327 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .764 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 24, 24; 2σ
3e  = 64 

.002 .281 .492 .322 .315 .320 .314 .300 .274 

.01 .341 .962 .907 .896 .900 .896 .892 .879 

.02 .448 .995 .994 .993 .994 .993 .992 .991 

.05 .812 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .951 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
3e  

denotes population error variance in Group 3; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Table 23 

Empirical Power (at α = .05) when Testing for the Equality of Regression Slopes when 

Heteroscedasticity Exists with Indirect Pairing (N = 192, k = 3) 

f 2 FOLS FHC3 FML FRML FWLS(1) FWLS(2) FWLS(O) FWLS* 

 nj = 96, 48, 48; 2σ
3e  = 4 

.002 .116 .165 .100 .097 .099 .097 .095 .095 

.01 .220 .409 .301 .296 .297 .296 .294 .291 

.02 .447 .644 .589 .580 .585 .580 .579 .576 

.05 .841 .952 .930 .928 .930 .928 .926 .925 

.08 .974 1.000 .997 .997 .997 .997 .995 .995 

 nj = 128, 32, 32; 2σ
3e  = 4 

.002 .180 .215 .110 .105 .108 .105 .096 .086 

.01 .329 .468 .327 .318 .323 .318 .302 .291 

.02 .479 .669 .533 .522 .527 .522 .511 .492 

.05 .840 .944 .895 .888 .892 .888 .882 .872 

.08 .954 .988 .980 .980 .980 .980 .977 .973 

 nj = 96, 48, 48; 2σ
3e  = 16 

.002 .165 .277 .187 .186 .187 .186 .184 .178 

.01 .261 .779 .704 .701 .704 .701 .689 .687 

.02 .432 .968 .933 .931 .933 .931 .929 .929 
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.05 .895 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 128, 32, 32; 2σ
3e  = 16 

.002 .261 .316 .194 .182 .187 .182 .173 .164 

.01 .361 .737 .597 .589 .593 .589 .578 .565 

.02 .515 .929 .878 .868 .873 .868 .863 .856 

.05 .896 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 nj = 96, 48, 48; 2σ
3e  = 64 

.002 .187 .654 .552 .548 .550 .548 .544 .187 

.01 .242 .998 .997 .997 .997 .997 .997 .242 

.02 .405 1.000 1.000 1.000 1.000 1.000 1.000 .405 

.05 .932 1.000 1.000 1.000 1.000 1.000 1.000 .932 

.08 .998 1.000 1.000 1.000 1.000 1.000 1.000 .998 

 nj = 128, 32, 32; 2σ
3e  = 64 

.002 .286 .592 .441 .431 .435 .431 .413 .401 

.01 .384 .985 .971 .967 .970 .967 .966 .964 

.02 .542 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.05 .938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.08 .994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Note. Rejection rates based on 1,000 replications per condition using an F to test for the equality 

of regression slopes with ordinary least squares (FOLS), HC3 (FHC3), maximum likelihood (FML), 

restricted maximum likelihood (FRML), weighted least squares with 1 jw  (FWLS(1)), weighted least 

squares with 2 jw  (FWLS(2)), weighted least squares with O jw  (FWLS(O)), and weighted least 

squares with *
jw  (FWLS*). For all conditions, population standard deviations on x equal 1.5. N 

denotes total sample size and, in each of the k groups, nj denotes the subgroup sample size. 2σ
3e  

denotes population error variance in Group 3; error variance in each of the remaining groups 

equals 1.0. When k = 3, the population correlation coefficient and standard deviation on y equal 

.6 and 1.25, respectively, in Group 3. When k = 4, the population correlation coefficient and 

standard deviation on y equal .6 and 1.25, respectively, in Group 3 and 4. When 2σ
1e  = 4, 2σ

1e  = 

16, and 2σ
1e  = 64, respectively, the population correlation coefficient in Group 1 equals .351123, 

.184288, and .09334. For these values and a given effect size (f 2), the slope in Group 2 was 

computed. 
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Figure 17. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, indirect pairing, 2σ
je s = 1, 1, 4, moderately unequal proportions, and (A) N = 48, 

(B) N = 192, and (C) N = 336. 
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Figure 18. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, indirect pairing, 2σ
je s = 1, 1, 16, moderately unequal proportions, and (A) N = 48, 

(B) N = 192, and (C) N = 336. 
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Figure 19. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, indirect pairing, 2σ
je s = 1, 1, 4, very unequal proportions, and (A) N = 48, (B) N = 

192, and (C) N = 336. 
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Figure 20. Statistical power as a function of effect size for FOLS (OLS), FHC3 (HC3), FML (ML), 

FRML (RML), FWLS(1) (WLS(1)), FWLS(2) (WLS(2)), FWLS(O) (WLS(O)), and FWLS* (WLS*) with 

three groups, indirect pairing, 2σ
je s = 1, 1, 16, very unequal proportions, and (A) N = 48, (B) N = 

192, and (C) N = 336. 

 



 152

Panel B 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Effect Size

Po
w

er

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

 



 153

Panel C 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Effect Size

Po
w

er

OLS HC3 ML RML WLS(1) WLS(2) WLS(O) WLS*

 

 



 154

CHAPTER FOUR: DISCUSSION 

Contributions of the Present Study 

The present study makes a number of unique contributions to extant research on testing 

for the equality of regression slopes. 

First, although statistical approximations exist which have been shown to perform well 

when the homoscedasticity assumption is violated (DeShon & Alexander, 1996), this study 

considered seven alternatives to FOLS that have never been previously compared. That is, in 

contrast to the statistical approximations, this study compared those methods that (a) are simpler 

to compute, (b) are available in standard statistical software, and (c) permit post hoc analyses of 

a statistically significant interaction. 

Second, to the author’s knowledge, the performance of an HCCM when testing for the 

equality of regression slopes has never been investigated. Although using an HC3 has been 

described by Long and Ervin (2000) as an effective alternative to ˆcov( )β  even when the form of 

heteroscedasticity is unknown, they considered the following model: yi = 1 + 1x1i + 1x2i + 1x3i + 

0x4i + τεi (with various forms of heteroscedasticity for the error term) which did not vary 

heteroscedasticity as a function of a categorical predictor. The present study did. 

Third, this study described a proposed extension (i.e., *
jw ) of Overton’s (2001) WLS 

method for testing the equality of regression slopes and compared its performance to alternative 

approaches for estimating weights. More precisely, Overton (2001) stated that the WLS method 

should not be applied to k > 2 because Type I error rates were inflated. However, to the contrary, 

this study showed that WLS can be effectively applied to ameliorate the biasing effects of 

heteroscedasticity even for k = 4, and using *
jw  controlled Type I error rates at the nominal level 

better than the alternative approaches for estimating weights. 
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Fourth, the results of the present study have very important implications for researchers 

in psychology and other behavioral sciences. Because, in such areas, low power is argued as 

being a key reason for the failure to detect hypothesized effects (Cohen, 1988) including 

interactions (Aguinis & Stone-Romero, 1997; McClelland & Judd, 1993; Stone-Romero & 

Liakhovitski, 2002; Zedeck, 1971) and OLS-based parameter estimates are known to be 

inefficient when heteroscedasticity exists, thus, affecting statistical inferences (i.e., hypothesis 

tests, confidence intervals, joint confidence bands; Cook & Weisberg, 1999; Draper & Smith, 

1966; Greene, 2003; Neter et al., 1996; Rencher, 2000), it would be beneficial for researchers to 

utilize those methods that can help address these issues. That is, when heteroscedasticity is 

suspected, a researcher should utilize more appropriate methods, specifically, those which 

provide the greatest statistical power without sacrificing control of Type I error rates. A number 

of more appropriate methods were discussed above (e.g., A and J approximations). In addition to 

these, the present study identified other methods that outperform FOLS in (a) controlling Type I 

error rates, and (b) providing increased statistical power. In short, when heteroscedasticity exists, 

the use of WLS (specifically, *
jw ) when testing for the equality of regression slopes is 

recommended, particularly because this study showed that it can increase the likelihood of 

detecting hypothesized interactions and still control Type I error rates at the nominal level. 

 As noted above, OLS is a special case of WLS regression. Both are special cases of 

generalized least squares (Fox, 1997; Greene, 2003; Neter et al. 1996; Rencher, 2000). Although 

WLS regression is often recommended as a remedy for heteroscedasticity in other fields (e.g., 

agriculture, econometrics, engineering, statistics), it has generally received less attention and 

application in psychology. However, there are exceptions (Overton, 2001; Steel & Kammeyer-



 156

Mueller, 2002). In the following paragraphs, I consider some positions against WLS regression 

and further delineate reasons that warrant its use. 

Consider the following statement: “In WLS the measures of standardized effect size, such 

as R2 . . . do not have a straightforward meaning as they do in OLS” (Cohen et al., 2003, p. 147). 

Because it is argued that effect size measures typically employed in psychology and other 

behavioral sciences (Cohen, 1988) cannot be easily interpreted in WLS, some view it as 

generally less desirable than OLS regression. However, with respect to effect size, Willett and 

Singer (1988) presented a pseudo-R2 for WLS regression. In an example of its application, the 

pseudo-R2 was nearly equal to the OLS-based R2. These researchers argue that the pseudo-R2 is 

not likely to differ much from the OLS-based R2 (Willett & Singer, 1988). They suggest that 

researchers should “refocus attention on other aspects of the analysis, particularly the increased 

precision of the estimates of β” (Willett & Singer, 1988, p. 238). That is, using OLS in the 

presence of heteroscedasticity results in inaccurate and often inflated standard errors for the 

estimated regression coefficients, precluding the detection of hypothesized effects. However, as 

discussed above, WLS regression results in accurate, smaller standard errors. More recently, 

Aguinis and colleagues (2005) have shown that the standard effect size for interactions among 

categorical and continuous predictors (Aiken & West, 1991; Cohen, 1988) is inappropriate when 

heteroscedasticity exists and they have derived a more appropriate measure which was used in 

the present study. Taken together, the issue of effect size as a reason not to use WLS regression 

seems tenuous, particularly in light of the next matter. 

Consider the following statement: “Because of the imprecision in estimating weights, 

OLS regression will often perform nearly as well as (or sometimes even better than) WLS 

regression when the sample size is small . . .  suggest[ing] that OLS regression will be preferable 
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to WLS regression except in cases where the sample size is large or there is a very serious 

problem of nonconstant variance” (Cohen et al., 2003, p.147). Note that there were no references 

to bolster this claim. Based on the findings of the present simulation, the results of Overton’s 

(2001) study, and literature in econometrics (Greene, 2003) and statistics (Carroll & Ruppert, 

1988; Mak, 1992; Rencher, 2000), this statement cannot be supported when testing for the 

equality of regression slopes. Namely, WLS was virtually always more powerful than OLS even 

with N = 48, 96, and 144 and when the number of estimated regression coefficients was 6 and 8. 

In addition, because the instances where OLS outperformed WLS regression in this study were 

with indirect pairing, OLS had inflated Type I error rates. Therefore, the power advantage was 

illusory, i.e., at the expense of too many Type I error rates. However, recall that this advantage 

diminished as f 2 increased, to the point that OLS had the lowest power of every method in this 

investigation. Notably, the superior performance of the WLS methods was evident even with 

mild levels of heteroscedasticity. Moreover, with slight deviations from non-zero f 2s, the WLS 

methods had more rapid increases in power than OLS regression. Therefore, it appears that WLS 

regression would be a very desirable alternative when testing for the equality of regression slopes 

when heteroscedasticity exists, particularly because the WLS methods were quite sensitive to 

detecting non-zero f 2s with considerable power gains in the range of f 2s typical in applied 

psychology (e.g., .002 and .009, Aguinis et al., 2005). In short, WLS regression (specifically, 

*
jw )  can be used in studies where heteroscedasticity exists, potentially detecting hypothesized 

effects that would have otherwise gone undetected. 

In the following sections, the overall effects of the manipulated variables on the 

performance of the various methods are discussed. 
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Effects of Manipulated Variables on FOLS 

The effects of the manipulated variables on FOLS were consistent with previous research 

findings in virtually every respect. When kPjs were unequal, with direct pairing, Type I error 

rates were conservative and became increasingly conservative when (a) kPjs were very unequal, 

or (b) heteroscedasticity increased. When extreme heteroscedasticity was combined with very 

unequal kPjs, Type I error rates were dramatically conservative. In contrast, with indirect pairing, 

Type I error rates were inflated and became extremely inflated when (a) kPjs were very unequal, 

or (b) heteroscedasticity increased. When extreme heteroscedasticity was combined with very 

unequal kPjs, Type I error rates were inflated markedly. This has implications for power. More 

precisely, depending on the type of pairing, the minimum of the power function (i.e., β0) will 

either (a) shift downwards away from α (direct pairing), overall, causing power to decrease, or 

(b) shift upwards away from α (indirect pairing), overall, causing power to increase 

illegitimately, particularly at smaller f 2s. According to Aguinis and Pierce (1998), the former is 

most likely in organizational settings where the majority group (e.g., White) have the larger nj, 

but the smaller validity coefficient (and therefore the larger 2σ
je ) than that of the minority group 

(e.g., African-American) (Hattrup & Schmitt, 1990). Note that, in the latter, because the 

minimum of the power function is shifted upwards, FOLS has an “apparent power advantage” 

(DeShon & Alexander, 1996, p. 265) acquired at the expense of inflated Type I error rates 

(Alexander & DeShon, 1994; Overton, 2001). With indirect pairing, a very interesting and 

unique finding is that, ceteris paribus, as f 2 increases, the power function of FOLS crosses that of 

all the other methods (even FHC3 in some instances) and eventually has lower power than every 

method compared in this study. 
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When kPjs were equal, the results of the study also produced unique findings. Namely, 

when heteroscedasticity exists, Dretzke et al. (1982) suggested that FOLS was robust when kPjs 

were equal. In their study, note that k = 2 and σ
jx  was equal across groups. However, DeShon 

and Alexander (1996) later showed that FOLS was not robust when kPjs were equal; Type I error 

rates became conservative. In their study, note that k = 2 and σ
jx  was unequal across groups. 

That is, across the two groups, although σ
jx  varied, the ratios of σ

jx  to σ
jy  were constant (viz., 

.7071). Therefore, in their study, the test for the equality of correlation coefficients and 

regression slopes was equivalent. In the present investigation, when kPjs were equal, I found 

further evidence demonstrating that FOLS was not robust. Specifically, Type I error rates became 

inflated! The reason for this was that k was manipulated as well as heteroscedasticity. That is, 

although σ
jx  was equal across groups (like Dretzke et al., 1982), for a fixed degree of 

heteroscedasticity, as k increased, Type I error rates increased. Further, for a fixed k, as 

heteroscedasticity increased, Type I error rates increased. Note that this does not negate the very 

valuable findings that Dretzke et al. (1982) reported. Because they did not manipulate k nor did 

they manipulate more than two levels of heteroscedasticity (i.e., 2σ
je  = 3.75, 0.194 ; 2σ

je  = 0.4 , 

0.194 ), the present study found that FOLS was not robust even when kPjs were equal. Therefore, 

consistent with DeShon and Alexander (1996), FOLS is not immune from the biasing effects of 

heteroscedasticity when kPjs are equal. Type I error rates can be (a) conservative when, across 

groups, σ
jx  is unequal, but the ratios of σ

jx  to σ
jy  are equal (DeShon & Alexander, 1996), or (b) 

inflated when, across groups, σ
jx  is equal, but the ratios of σ

jx  to σ
jy  are unequal (the present 

study). 
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The very serious implication of the foregoing is that when the homoscedasticity 

assumption is violated, the actual Type I error rates of FOLS will be biased, affecting power. In 

any given study, if researchers do not assess whether the homoscedasticity assumption was 

violated, then how can sample-based conclusions be trusted? That is, with heteroscedasticity, a 

substantive conclusion can change as Aguinis et al. (1999) illustrated. 

Effects of Manipulated Variables on FHC3 

When testing for the equality of regression slopes and heteroscedasticity exists, FHC3 was 

clearly the most powerful test. Even when Ns and f 2s were small, its power was many times 

greater than that of all the other methods. Concurrently, it had the most inflated Type I error 

rates. Therefore, with power functions which have a minimum at a value far greater than α, it had 

an illusory power advantage over all tests in nearly every condition. However, there were some 

exceptions. For example, there were some conditions where the Type I error rate of FOLS was 

more inflated than that of all the other methods including FHC3. But, as f 2 increased, the illusory 

power advantage of FOLS diminished until its power function was below that of all the other 

methods including FHC3. In general, for FHC3, its power advantage became more pronounced as 

heteroscedasticity increased. In addition, it was more powerful with direct pairing than indirect 

pairing especially with very unequal kPjs. In contrast to all the other methods, increasing k tended 

to result in greater power. 

Of the manipulated variables, N greatly affected the Type I error rates of FHC3. 

Specifically, the inflated Type I error rates decreased as N increased. Although as f 2 increased, 

power increased, ceteris paribus, the minimum of its power function shifted downwards as N 

increased. Therefore, ceteris paribus, computing the average power of this test as a function of N 

is nonsensical because the leftmost segment of the power function (i.e., at smaller f 2s, including 
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zero) is shifting downwards as N increases. It deserves stressing that HCCMs like HC3 provide 

asymptotically correct statistical inferences (White, 1980). As Greene (2003) noted with respect 

to HC0, the estimator upon which HC3 is based, “The asymptotic properties of the estimator are 

unambiguous, but its usefulness in small samples is open to question” (p. 220). Because Long 

and Ervin (2000) suggested it performs well even with small Ns and when the form of 

heteroscedasticity is unknown, the HC3 was included in the present study. It is likely that at very 

large Ns, outside the range considered in the present study, FHC3 will have more desirable 

properties. However, based on this investigation and considering the Ns typically used in 

psychology and other behavioral sciences, FHC3 cannot be recommended for testing the equality 

of regression slopes. If it were used, a researcher would have a very high likelihood of rejecting 

the null hypothesis of equal slopes even if the null were true in the population. With a nominal α 

= .05, the actual Type I error rates were as high as .587. If aspects of a psychological theory were 

tested using FHC3, any inferences drawn from such a test could misdirect future research. 

Furthermore, if subsequent tests were also conducted using FHC3, then this would provide 

additional specious support for the theory. Clearly, this would have serious implications for 

theoreticians and the practitioners who attempt to apply a theory (say, in an organizational 

setting) that is supported by compounded Type I error rates. This does not diminish the overall 

value of using HC3 because its asymptotic properties are inarguable, but its application in the 

social and behavioral sciences would be limited to very large samples such as those obtained for 

large-scale survey research. 

Effects of Manipulated Variables on FML and FRML 

The effects of the manipulated variables on FML and FRML were very similar. When using 

ML and RML for estimation and heteroscedasticity is a function of the categorical predictor (i.e., 
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z), the tests generally performed much better compared to FOLS and FHC3. Although the Type I 

error rates for FML and FRML were inflated (especially at small Ns), FRML tended to control them 

slightly better than FML. Although as f 2 (or heteroscedasticity) increased power increased, the 

gains in power were larger when there was extreme heteroscedasticity with direct pairing. In 

addition, FML was slightly more powerful than FRML. In the present context, the power functions 

for FML and FRML can be viewed as being near parallel to one another where the power function 

for FML is higher than that of FRML. 

Because RML adjusts the estimated variances for the number of fixed effects, as k 

increases, the power functions of FML and FRML will likely diverge. Specifically, as k increases, 

the power of FRML will increase less rapidly than FML. Overall, compared to FML, FRML is more 

preferable because its Type I error rates were less inflated and provided similar levels of power. 

Note that the performance of FRML was virtually identical to that of FWLS(2). This may not be true 

in all situations. Recall that estimation of parameters based on likelihood functions requires 

numerical methods and depending on the algorithm used by a statistical software package, these 

may not perform exactly the same. However, because their performance was so similar either 

could be used. It deserves stressing however that FRML was less able to control Type I error rates 

compared to other methods to be discussed next. 

Effects of Manipulated Variables on FWLS(1), FWLS(2), FWLS(O), and FWLS* 

The effects of the manipulated variables on FWLS(1), FWLS(2), FWLS(O), and FWLS* were very 

similar. In terms of ability to control Type I error rates, the methods can be ranked from least 

able to most able as follows: FWLS(1), FWLS(2), FWLS(O), and FWLS*. That is, across the various 

conditions, the Type I error rates for FWLS* were closest to the nominal level. The others, 

particularly FWLS(1), tended to have more inflated Type I error rates. This was most noticeable at 
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smaller Ns or as k increased. Not surprisingly, in terms of statistical power, the methods can be 

ranked from least powerful to most powerful as follows: FWLS*, FWLS(O), FWLS(2), and FWLS(1). In 

other words, their power functions are generally parallel to one another and in the rank order 

noted above. Note that inspection of the power tables and figures will show that their relative 

differences were small. Furthermore, as N, heteroscedasticity, or f 2 increased, the power 

functions for all four methods converged. However, when the kPjs were very unequal and Ns 

were small, the power function for FWLS* was generally lower than that of the other three WLS 

methods. It deserves mentioning that FWLS* provided greater control over Type I error rates and 

thus its power function was not shifted upwards away from α due to the biasing effects of 

heteroscedasticity like that of the other methods. 

In terms of the type of pairing, this had an affect on the WLS methods. Ceteris paribus, 

power was greater with direct pairing than indirect pairing. However, again, across conditions, 

regardless of the type of pairing, FWLS*  and FWLS(O) controlled Type I error rates at the nominal 

level better than the other WLS methods as well as FOLS, FHC3, FML, and FRML.  

In general, k had similar effects on all the WLS methods. As k increased, power 

decreased. This is because increasing k results in more parameters to estimate and, therefore, 

fewer df. Note also that, for the WLS methods, increasing k results in fewer df for estimating 

weights. For example, for a fixed N = 100 and equal kPjs, when k = 2, n1 = n2 = 50. If k increased 

to 4, then n1 = n2 = n3 = n4 = 25. Therefore, for a fixed N, researchers should be certain that k 

does not increase to the point where insufficient df are available for estimating weights. In other 

words, consistent with recommendations for a well-designed and executed experiment, a 

research study with more participants in a condition relative to the number of parameters to 

estimate will provide better estimates of weights. Furthermore, this is especially important for 
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FWLS* because it appears to be more affected by k than the other methods because *
jw  changes 

depending on the model. In contrast, 1 jw , 2 jw , and O jw remain the same regardless of the 

complexity of the model. 

Overall, FRML, FWLS(2), FWLS(O), and FWLS* demonstrated better performance than FOLS, 

FHC3, FML, and FWLS(1),. However, because the performance of statistical tests should be evaluated 

not only in terms of statistical power but also its ability to provide accurate Type I error rates, 

some practical recommendations are next discussed, including data-analytic ones. 

Some Practical Recommendations and Considerations 

Consistent with previous research (Aguinis, 2004; Aguinis et al., 1999; Alexander & 

DeShon, 1994; Box, 1954; DeShon & Alexander, 1996; Luh & Guo, 2002; Overton, 2001; 

Wilcox, 1997) and the findings from the present study, when heteroscedasticity exists, FOLS 

should not be used to test for the equality of regression slopes. Therefore, from a data analysis 

perspective, after fitting any regression model, residual diagnostics should be performed to 

assess whether any assumptions were violated, including homoscedasticity (Cook & Weisberg, 

1999; Fox, 1997; Neter et al., 1996). If heteroscedasticity is detected, researchers should use an 

alternative method. For example, statistical approximations are available (DeShon & Alexander, 

1996) and Aguinis (2004) provides a computer program that performs these. 

For alternatives which can be employed in most common statistical software, one of the 

following can be used for k ≤ 4: FRML, FWLS(2), FWLS(O), or FWLS*. However, because FWLS(2) is 

effectively identical to FRML, the recommendations simplify to FRML, FWLS(O), or FWLS*. Note, 

however, because FWLS* provides comparable power levels without sacrificing control of Type I 

error rates (e.g., at small Ns), it may be slightly preferable. 
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For WLS methods in general, it is important that there are enough 
jEdf  to estimate 

weights. Although FWLS* still performed well even with 
jEdf  = 2 in the smallest group (i.e., when 

N = 48 and njs = 32, 8, 8), this method could not be used in other instances (i.e., N = 48 and njs = 

24, 8, 8, 8). Therefore, njs should be > q, preferably with at least 
jEdf  = 10 in all groups to be 

consistent with the recommendation by Bement and Williams (1969). 

 Noteworthy, when kPjs are equal, it makes little difference whether a researcher uses 

FML, FRML, FWLS(1), FWLS(2), FWLS(O), or FWLS* because their performance was identical with Type I 

error rates near the nominal level. Note that the performance of FML and FRML may not be the 

same across different software packages depending on the numerical algorithm used to find the 

parameter estimates that maximize the likelihood function.1 When sample sizes are large, 

differences are normally minimal. 

It deserves stressing that residual diagnostics be conducted after fitting a model. This is 

consistent with ruling out one of the threats to statistical conclusion validity described by 

Shadish et al. (2002)—violated assumptions of statistical tests. That is, if a regression equation is 

computed and hypothesized effects are detected, a researcher should evaluate whether the effect 

was an artifact of heteroscedasticity. If diagnostics suggest that the homoscedasticity assumption 

was tenable, then the researcher can be more confident that the result was not due to inflated 

Type I error rates attributed to heteroscedasticity. Similarly, if a regression equation is computed 

and hypothesized effects are not detected, a researcher should assess whether the failure to detect 

such an effect was an artifact of heteroscedasticity. If diagnostics suggest that homoscedasticity 

was violated, then use an alternative method such as those mentioned above. If diagnostics 

suggest that the homoscedasticity assumption was tenable, then the researcher can be more 

confident that the result was not due to low power attributed to heteroscedasticity. In either case, 
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after fitting a model, an analysis of the residuals can help (a) detect potential problems in the 

model, and (b) avoid erroneous inferences stemming from violating the assumptions of statistical 

tests. 

In the sections that follow, I discuss a few standard graphical methods in addition to a 

variety of tests that can be used to detect heteroscedasticity. Then, the issue of functional form is 

briefly discussed. 

Graphical Methods for Detecting Heteroscedasticity 

A number of graphical methods exist for detecting heteroscedasticity (Cook, 1994; Cook 

& Weisberg, 1999; Fox, 1997; Neter et al., 1996). All of the approaches use the residuals (i.e., 

eis) or variants of them. As noted above, the N errors (i.e., εis) are unknown and each is assumed 

to follow a distribution with a zero expectation and (in OLS) common variance of 2σ  (i.e., 

homoscedasticity). Although we do not know the actual εis, they can be estimated by the eis. In 

the two general types of plots to be described below, it should be noted that either the eis or 

variants of them (e.g., studentized eis) can be employed. Numerous texts describe the variants in 

detail (Fox, 1997; Neter et al., 1996). Furthermore, the plots can be generated as part of the usual 

output in common statistical software (e.g. SAS, S-PLUS, SPSS). 

Fox (1997) describes the two typical plots succinctly. “Because the regression surface is . 

. . [p-dimensional] . . . and embedded in a space of . . . [q] . . . dimensions, it is generally 

impractical to assess the assumption of constant error variance by direct graphical examination 

of the data when . . . [p] . . . is larger than 1 or 2. Nevertheless, it is common for error variance to 

increase as the expectation of Y grows larger, or there may be a systematic relationship between 

error variance and a particular X [like that of the present study]. The former can often be 
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detected by plotting residuals against fitted values, and the latter by plotting residuals against 

each X” (Fox, 1997, p. 301). 

Using a scatterplot for the first, it is common to plot the eis on the vertical axis and the 

fitted values ( ˆ siy ) on the horizontal axis. Such a plot can provide evidence of whether the εis 

depend on the ˆ siy . If the scatterplot of points have no systematic pattern (i.e., not wedge-shaped, 

not curved, etc.), they will have an approximate rectangular form. This suggests that the εis do 

not depend on the ˆ siy . That is, homoscedasticity was not violated. 

For the second, using scatterplots (for continuous predictors) or boxplots (for categorical 

predictors), the eis can be plotted on the vertical axis and a predictor on the horizontal axis. For 

example, if the eis were plotted against a continuous predictor that was used in the regression 

analysis (e.g., x), this could provide evidence of whether the εis increase or decrease with the 

values of the predictor, a violation of the homoscedasticity assumption. Similarly, to address the 

form of heteroscedasticity in this study, the eis could be plotted against the categorical predictor 

used in the regression analysis (e.g., z). If the boxplots show that the eis have markedly different 

spread across the levels of the predictor, than there is evidence of heteroscedasticity. 

Furthermore, linear combinations of predictors can be used on the horizontal axis. No matter 

which type is used, these plots should not suggest markedly different variability across the values 

(or levels) of a predictor. Otherwise, this is an indicant of heteroscedasticity. 

Recognize that plots of eis are not without their problems (Cook, 1994). As will be 

discussed below, heteroscedasticity could signal that an incorrect functional form was specified 

or that an important predictor was omitted (Fox, 1997; Neter et al., 1996). However, the use of 

graphical methods is an important tool for understanding the data being analyzed. Stated another 

way, how can a researcher know whether an assumption was violated? The answer seems 
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apparent. Researchers should inspect the residual plots and conduct analyses such as those 

described below. Notably, this is consistent with Cohen’s (1994) recommendation that “even 

before we, as psychologists, seek to generalize from our data, we must seek to understand and 

improve them. A major breakthrough to the approach to data, emphasizing ‘detective work’ 

rather than ‘sanctification’ was heralded by John Tukey . . . [by applying] . . . simple, flexible, 

informal, and largely graphic techniques . . . for understanding the set of data in hand” (p. 1001). 

Considering the major advances in technology including processor speed and computer graphics, 

such analyses often require a minimal amount of time and effort in standard statistical software. 

Tests for Heteroscedasticity 

To further assist researchers in detecting heteroscedasticity, I briefly describe a general 

test, a number of specific tests, and a heuristic method. 

Breusch and Pagan (1979) and, independently, Cook and Weisberg (1983) developed a 

score test and it assumes that the 2σi s are independently and normally distributed. It can be used 

to detect various forms of heteroscedasticity. For example, it can be used to test whether the 2σi s 

are related to (a) one predictor (e.g., a categorical variable like ethnicity), (b) a combination of 

predictors (e.g., continuous and/or categorical), or (c) the ˆ siy . The test statistic is simple to 

compute and is based on two OLS regression analyses. In the first, the SSE from the regression 

equation of interest (e.g., Equation 1) is required. In a second regression, the squared eis from the 

first analysis (i.e., Equation 1) are regressed on the predictors believed to be the cause of the 

heteroscedasticity (i.e., in the present study, z). The regression sum of squares (SSR) is required 

from this analysis. The test statistic is (SSR / 2) ÷ (SSE / N)2 and is asymptotically distributed as 

χ2 with df equal to the number of variables used to predict the squared eis. If statistically 

significant at some predetermined α, this suggests that heteroscedasticity is a function of the 
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predictors used to predict the squared eis. An example with one predictor is given in Neter et al., 

(1996, p. 115). Note that this test and two others are discussed by Greene (2003, pp. 222-225). 

A specific test which can be used to detect the form of heteroscedasticity discussed in the 

present study is that described by Bartlett (1937). This test assumes the underlying distributions 

are normal. Although the test statistic is complex to compute, Aguinis et al. (1999) provide a 

computer program that performs the necessary calculations. This test is sensitive to non-

normality (Box, 1953; DeShon & Alexander, 1996; Kirk, 1995; Levene, 1960) as is the Breusch 

and Pagan (1979) test (Greene, 2003). Stated differently, a statistically significant test statistic 

could signal non-normality, heteroscedasticity, or both. Perhaps due to this lack of diagnosticity, 

various researchers have proposed robust methods. 

A robust method was described by Levene (1960). Although typically used in ANOVA, 

it can be easily adapted to detect the form of heteroscedasticity described here. Namely, it is a 

one-way ANOVA performed on the absolute value of the eis where the categorical predictor 

serves as the “factor.” If the F is statistically significant, at say, .10, then there may be evidence 

of heteroscedasticity. Brown and Forsythe (1974) extended Levene’s (1960) method by using the 

absolute value of the eis about their respective group medians (as well as using trimmed means). 

Conover, Johnson, and Johnson (1981) recommended the method by Brown and Forsythe 

(1974), along with two other more complex approaches, because of their robustness and power. 

More recently, Sarkar, Kim, and Basu (1999) recommended a robust method that modifies 

Levene’s (1960) test using weighted likelihood estimates, arguing that it outperforms the 

approach by Brown and Forsythe (1974). Note that the tests by Levene (1960) and Brown and 

Forsythe (1974) are available in such common statistics software as S-PLUS and SPSS. 
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Finally, DeShon and Alexander (1996) provide a useful heuristic for when to invoke a 

data-analytic alternative. Namely, when the variance of the eis in one group is approximately 1.5 

times greater than that of another group, the conventional FOLS should not be used. Because this 

heuristic was derived based on a variety of simulations when k = 2, it is unclear whether this 

generalizes to k > 2. For example, if k = 4 and the ratio of residual variances across groups is 

1:1:1:1.6, does the heuristic apply with equal force? Nevertheless, the heuristic provides a 

practical standard. 

Functional Form 

Failure to specify the correct functional form can introduce heteroscedasticity into the 

model (Fox, 1997; Long & Ervin, 2000; Neter et al., 1996). For example, a researcher may 

specify the following functional form of how two predictors are related to y: 

0 1 1 2 2 3 1 2β β β βi i i i i iy x x x x e= + + + + . This model results in a 2-dimensional regression surface 

(e.g., a sheet of paper) in 3-dimensional space which could be tilted (i.e., main effects), curved 

(i.e., interaction) or both (i.e., main effects and interaction). If the functional form was 

incorrectly specified, the eis would have a nonconstant spread about the regression surface (i.e., 

heteroscedasticity) (Neter et al., 1996). 

To continue with this example, after substituting sample-based estimates, the actual 

regression equation might take the following form: 2 2
0 1 1 2 2 3 1 2

ˆ ˆ ˆ ˆˆ β β β βi i i i iy x x x x= − − − . Namely, x1 

and x2 are related to y such that the actual regression surface is concave (e.g., like an umbrella) 

(Neter et al., 1996, p. 299). In this case, the eis might be evenly spread about the regression 

surface. Consider the following illustration. A researcher might hypothesize that team stress (x1) 

and the number of team members (x2, with values from 3 to 14) are related to team performance 

(y) in an interactive curvilinear manner similar to the just-noted regression equation. That is, the 
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marginal relation between stress/arousal and team performance is an inverted U-shape (see 

Yerkes & Dodson, 1908). The marginal relation between the number of team members and team 

performance is also an inverted U-shape. Namely, as the number of team members increases, 

team performance, generally, increases. However, beyond a particular number of team members, 

team performance tends to decline. Perhaps having too many team members (with very low 

stress and very high stress) or too few team members (with very low stress and very high stress) 

might result in the lowest levels of performance (e.g., like the bottom points of an umbrella). 

However, performance is maximized at moderate levels of stress and approximately eight team 

members (i.e., the maximum, the top of the umbrella). Naturally, the regression surface would 

not perfectly model the relations, but based on theory and previous research there may be 

instances where the functional form is posited to be complex. 

Complex functional forms have been used in industrial and organizational psychology 

and related fields (see e.g., Atkins & Wood, 2002) and have been discussed by various 

researchers (Edwards & Parry, 1993; Ganzach, 1997; MacCallum & Mar, 1995; Shadish et al., 

2002). In short, specifying an incorrect functional form can lead to heteroscedasticity, a threat to 

statistical conclusion validity, which could result in erroneous inferences. 

Summary. Because FOLS performs poorly when the homoscedasticity assumption is 

violated, one of the practical concerns is: How would a researcher know if it was violated? In 

this section, I provided basic recommendations describing how a researcher should proceed if 

heteroscedasticity exists. In addition, I (a) described basic graphical methods for detecting 

heteroscedasticity, (b) described a variety of tests for heteroscedasticity, and (c) underscored the 

importance of hypothesizing and modeling the correct functional form. 
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Limitations and Future Research 

Although the present study provided unique contributions to the literature, this study had 

a number of limitations. 

In this study, only 1,000 replications were used for each condition. This affects the 

standard errors associated with the estimated probabilities. If more replications were used, this 

would have provided more stable estimates of the Type I error rates and statistical power. Future 

research should utilize a larger number of replications per condition to obtain more stable 

estimates (e.g., 10,000 replications in Alexander & DeShon, 1994; 50,000 replications in 

DeShon & Alexander, 1996). Although increasing the number of replications would have 

resulted in more precise estimates of the probabilities, this would not materially change the 

study’s findings because the trends would be approximately the same. 

In this study, reliability of the variables was not manipulated. Therefore, this study 

provides no indication of how reliability affects FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and 

FWLS*. Because unreliability affects the power of FOLS (Bohrnstedt & Marwell, 1978; Dunlap & 

Kemery, 1988), reliability is an important factor to be considered in future studies. For example, 

it may be the case that even with very unreliable measures, certain methods are able to control 

Type I error rates and provide levels of power greater than that of FOLS. If so, this would provide 

researchers with useful methods to test for the equality of regression slopes. 

In this study, range restriction was not manipulated. Considering that range restriction is 

a topic of great importance in such areas as personnel selection (Gatewood & Feild, 2001; 

Guion, 1998) and range restriction on x is known to attenuate the power of FOLS particularly with 

large f 2s (Aguinis & Stone-Romero, 1997), future research should investigate how it affects 
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FHC3, FML, FRML, FWLS(1), FWLS(2), FWLS(O), and FWLS*. Such research may discover that certain 

methods are less influenced by the effects of range restriction. 

In this study, σ
jx  was fixed across groups. However, because DeShon and Alexander 

(1996) have shown that FOLS is still adversely affected by heteroscedasticity when k = 2 when 

σ
jx  differs across groups even with equal 2Pjs and the present study provides further evidence of 

its poor performance when σ
jx  is equal across groups, a future study should vary σ

jx  across 

groups as k increases to evaluate the performance of the alternative methods. 

In this study, statistical approximations were not included in the simulation. Specifically, 

because the A and J approximations have been shown to perform well (DeShon & Alexander, 

1996), these could have been compared with the methods used in this study. However, because 

the purpose of the study was to focus on those methods that are simpler to compute and permit 

post hoc analyses, they were not included. To minimize the number of empirical rejection rates 

to be computed per condition, a future study could compare the A and J approximations to FRML, 

FWLS(2), FWLS(O), and FWLS*. 

In this study, normally distributed variables were used. Considering that variables 

measured in psychology and related disciplines are not likely to follow a normal distribution 

(Micceri, 1989; Wilcox, 2005), this would be a very pragmatic issue to investigate. For example, 

previous research has shown that the A approximation tends to outperform the J and F* 

approximations at controlling Type I error rates across various patterns of non-normality and that 

the χ2 test for the equality of correlation coefficients performed even better than the 

approximations (DeShon & Alexander, 1996). Based on this, a future study could manipulate 

normality of x and y and compare various methods (e.g., A, χ2, FRML, FWLS(2), and FWLS*) to 

identify which is able to control Type I error rates and provide the highest levels of power. Note 
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however to include the χ2 test for the equality of correlation coefficients in such a study a 

researcher would have to ensure that the simulated conditions were equivalent to the test for the 

equality of regression slopes (see e.g., Alexander & DeShon, 1994; DeShon & Alexander, 1996). 

In this study, only one categorical predictor (i.e., z) was considered. Future research 

should consider more complex models such as those involving two completely crossed 

categorical predictors with two levels, e.g., sex and treatment (i.e., experimental versus control 

group). In such a design, a researcher might evaluate whether slopes differ across (a) sex only, 

(b) treatment only, or (c) all four cells. In addition, this is a standard procedure prior to 

interpreting adjusted means in a traditional factorial analysis of covariance, although not 

necessary if the model is formulated to permit different slopes (Maxwell & Delaney, 2000; 

Rogosa, 1980; Rutherford, 1992). If heteroscedasticity exists (e.g., across sex only, across 

treatment only, or all four cells), certain methods may be far superior to FOLS. Although some 

research has been conducted in this area (Jones, 1968; Liakhovitski, & Stone-Romero, 2000), 

future investigations may identify which methods perform optimally, say, assuming bivariate 

normality within cells when testing for the equality of correlation coefficients (e.g., Jones, 1968) 

or across a variety of other conditions. Such research could benefit various areas including 

personnel selection. 

In this study, k did not exceed 4. Future research could evaluate whether the various 

methods maintain control of Type I error rates and provide power levels greater than FOLS as k 

increases. Such research would be a very practical tool when using traditional analysis of 

covariance with k > 4. It is plausible that some WLS methods may be more adversely affected as 

k increases. Nevertheless, this study provided evidence that Overton’s (2001) method could be 

generalized to k > 2 using *
jw  without inflating Type I error rates. 
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Closing Comments 

As mentioned above, this study contributed to the literature on testing for the equality of 

regression slopes in important ways. Although there were limitations, the contributions were 

unique and this study provides other avenues of research. 

The study’s findings are consistent with previous research, showing that FOLS performs 

poorly in the presence of heteroscedasticity (Aguinis, 2004; Aguinis et al., 1999; Alexander & 

DeShon, 1994; Box, 1954; DeShon & Alexander, 1996; Luh & Guo, 2002; Overton, 2001; 

Wilcox, 1997). In addition, FHC3 was clearly the most powerful test, but its Type I error rates 

were greatly inflated. The findings also showed that when heteroscedasticity exists and k = 3 or 

4, Type I error rates can be controlled to some extent by FRML, FWLS(2), and FWLS(O), but FWLS*  

provided the most accurate Type I error rates across the study conditions. Furthermore, FWLS* had 

power levels which approached that of the other methods as N increased, f 2 increased, or 

heteroscedasticity increased, but without sacrificing control of Type I error rates. 

It deserves stressing that the purpose of this manuscript was not to suggest that FOLS be 

supplanted when its assumptions are met. Rather, this research hoped to provide some evidence 

on the utility of alternative methods which can be used when an important assumption of FOLS 

(i.e., homoscedasticity) is violated. If such assumptions as homoscedasticity are violated and a 

procedure is known to perform poorly (i.e., OLS), and more accurate, powerful methods exist 

(e.g., A approximation, WLS, mixed models), it would greatly benefit research and the 

cumulative advancement of knowledge if the more powerful alternatives were used. 

To this end, the present investigation drew upon extant research from various domains, 

including econometrics, education, management, mathematics, psychology, and statistics. 

Because heteroscedasticity is a problem that can adversely affect any discipline that uses FOLS, 
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important, relevant findings in one area can be used to inform research and practice in others, 

including industrial and organizational psychology, social psychology, and allied fields. Overall, 

this can improve upon the methods researchers use (as well as how they are used), affecting the 

validity of substantive sample-based conclusions. 

Considering that researchers frequently test for the equality of regression slopes in 

psychology and the social and behavioral sciences, in general (e.g., Cleary, 1968; Cronbach & 

Snow, 1977; Linn, 1978; Saad & Sackett, 2002; Smith & Sechrest, 1991), numerous fields can 

benefit by research that identifies those methods that not only control Type I error rates at the 

nominal level, but also provide high levels of power to detect hypothesized effects across various 

suboptimal conditions (e.g., heteroscedasticity). It is hoped that other studies similar to this one 

will be conducted so that the knowledge produced can be used to develop accurate, powerful 

methods for basic and applied researchers. 
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ENDNOTES 

Chapter One 

1 An interaction (say, x × z) is a symmetric concept. That is, the effect of x on y depends 

on z is equivalent to stating that the effect of z on y depends on x. Typically, however, one 

perspective is of theoretical interest. Consequently, the focal variable is sometimes assigned a 

distinct name, i.e., a moderator (e.g., Aguinis & Pierce, 1998; Saunders, 1956). In some 

instances, the continuous predictor is referred to as a moderator. In other instances, the 

categorical predictor is referred to as a moderator. For example, a child’s age (x) can be said to 

“moderate” the relation between low-high exposure to media violence (z) and antisocial behavior 

(y). An equivalent and often-utilized perspective (e.g., in differential prediction of selection tests 

due to unequal regression slopes) is to state that race (z) “moderates” the relation between 

cognitive ability (x) and job performance (y). However, due to its asymmetrical application, this 

terminology is not used. 

2 A computer program is available online at http://carbon.cudenver.edu/~haguinis/mmr/ 

which performs the computations for the F*, J, and A approximations based on user-supplied 

data (Aguinis, 2004). 

3 Note that OLS is a special case of WLS and that WLS is a special case of generalized 

least squares (GLS) (Greene, 2003; Neter et al., 1996; Rencher, 2000). GLS is “general” in the 

sense that it permits the modeling of heteroscedasticity as well as the modeling of different 

covariance/correlation structures among observations. 

4 When correcting for heteroscedasticity across groups, the estimated regression 

coefficients from OLS and WLS will be identical (Overton, 2001, p. 222). However, in other 

applications, differences may occur between OLS and WLS parameter estimates when correcting 
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for nonconstant variance. In such cases, it is recommended that WLS regression be conducted 

iteratively (Mak, 1992) until OLS and WLS estimates converge. Using this iteratively 

reweighted least squares approach, typically only one or two iterations are needed to arrive at 

similar estimated regression coefficients (Neter et al., 1996). 

Chapter Two 

1 Note that σ
jx  was equal for all groups. This allowed for an investigation of whether the 

Type I error rates of the various methods (including FOLS) were affected by k, heteroscedasticity, 

and kPjs, holding σ
jx  constant. Recall that Dretzke et al. (1982) also fixed σ

jx  to be equal across 

groups, but considered only k = 2. They concluded that FOLS was robust when njs are equal (see 

Table 3 in Dretzke et al., 1982). More recently, DeShon and Alexander (1996) performed a 

simulation with k = 2 where the test for the equality of regression slopes was equal to the test for 

the equality of correlation coefficients, allowing σ
jx  to differ. They showed that even with equal 

2Pjs the Type I error rates of FOLS were not robust; they became conservative when 

heteroscedasticity exists. By fixing σ
jx across groups, and manipulating k, heteroscedasticity, and 

including various tests, the present simulation can be viewed as an extension of the study by 

Dretzke et al. (1982). 

2 For the jth group, values for nj and 2σ
je  were those described above. σ

jx  = 1.5 for all 

groups. Under the null hypothesis, .β
j jy x  = 0.5 for all groups. Under the alternative hypothesis, 

this was also true except that .β
2 2y x  was allowed to differ so as to satisfy the requirement that f 2 

equal a specified non-zero value (i.e., .002, .01, .02, .05, or .08). Equation 10 was used to solve 

for 2σ
jy . Then, Equation 9 was used to solve for ρ

j jy x . To compute .β
2 2y x , the Solver function 

in MS Excel 2003 was used. It can be used to minimize or maximize a formula by changing 
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user-specified cells. Alternatively, it can be used to set a formula to a specified value (e.g., f 2 = 

.05) by changing user-specified cells. More precisely, given the just-noted parameters and 

equalities, Solver was used to find the value for .β
2 2y x  (referred to as the cell to be changed in 

MS Excel 2003) that would result in a specific f 2 (referred to as the target cell in MS Excel 

2003). The target cell contained the formula by Aguinis et al. (2005, p. 105). Note that all default 

options were used in the function. However, the precision option was set to 1 × 10-17. In some 

instances, the Solver function could not find a solution for .β
2 2y x  that results in an exact f 2 

equal to the required value, but the difference was miniscule (typically beyond the 12th decimal 

place) and therefore was retained. For example, for a given condition with parameters as 

specified above (i.e., nj, 2σ
je , σ

jx , σ
jy , etc.), where f 2 should equal .05, the Solver function 

found the value for .β
2 2y x  that results in an f 2 = .0499999999999997. 

Note that the random number generator in S-PLUS combines a linear congruential and a 

Tausworthe generator. Multivariate normal data with specified covariance (or correlation) 

structures are generated using the Cholesky decomposition (Kennedy & Gentle, 1980).  For 

comparability, the results of the data generation algorithm were checked against similar 

conditions considered by DeShon and Alexander (1996), Dretzke et al. (1982), and Overton 

(2001). 

3 To test for the equality of regression slopes using FHC3, the Anova function in the car 

library was used. This library is described in Fox (2002) and can be downloaded from 

http://www.socsi.mcmaster.ca/jfox/Books/companion/. 
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Chapter Three 

1 Note that Type I error rates and statistical power could not be computed using FWLS* for 

conditions where there were no df to estimate *
jw  (e.g., njs = 24, 8, 8, 8). For Type I error rates, 

this resulted in 245 observations instead of 252. For statistical power, this resulted in 1,225 

observations instead of 1,260. 

2 Based on the skewness statistics shown in Table 6 and an inspection of the marginal 

distributions of the eight F tests, the rejection rates for FHC3 showed considerable evidence of 

positive skew. Consequently, a ln transformation was applied to these rejection rates (where ln 

refers to the natural logarithm) (Cohen et al., 2003; Kirk, 1995). 

Chapter Four 

1 In the software used in the present study, S-PLUS, the primary function for fitting linear 

mixed effects models is lme. That is, it fits linear models with random and/or fixed effects. 

Similarly, the gls function can be used but it does not allow for random effects (Pinheiro & 

Bates, 2000). These functions can fit models with errors that are correlated, nonconstant (i.e., 

heteroscedasticity), or both. In these, a hybrid approach is used for evaluating likelihood 

functions. A very popular optimization method is the expectation-maximization (EM) algorithm 

which has numerous applications (e.g., missing data analysis, linear mixed effects models, 

Bayesion methods, and factor analysis) (Dempster, Laird, & Rubin, 1977). The EM algorithm is 

generally easy to compute and has been shown to quickly progress towards the region where 

parameters are optimum. However, once near the optimum, the EM algorithm tends to converge 

slowly. In contrast, another optimization method known as the Newton-Raphson algorithm 

(Kennedy & Gentle, 1980) is more computer-intensive and tends to be unstable when far from 

the optimum. However, near the optimum, the Newton-Raphson algorithm converges quickly. 
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The hybrid approach consists of EM iterations (25 by default) to refine the initial estimates and 

approach the optimum, then switches to Newton-Raphson iterations for convergence (Pinheiro & 

Bates, 2000). 
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