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ABSTRACT 

 

The current research is directed at providing validated guidelines to direct the integration 

of audio into human-system interfaces.  This work first discusses the utility of integrating audio 

to support multimodal human-information processing.  Next, an auditory interactive computing 

paradigm utilizing Speech, Earcons, Auditory icons, and Spatial audio (SEAS) cues is proposed 

and guidelines for the integration of SEAS cues into multimodal systems are presented.  Finally, 

the results of two studies are presented that evaluate the utility of using SEAS cues, developed 

following the proposed guidelines, in relieving perceptual and attention processing bottlenecks 

when conducting Unmanned Air Vehicle (UAV) control tasks. The results demonstrate that 

SEAS cues significantly enhance human performance on UAV control tasks, particularly 

response accuracy and reaction time on a secondary monitoring task.  The results suggest that 

SEAS cues may be effective in overcoming perceptual and attentional bottlenecks, with the 

advantages being most revealing during high workload conditions.  The theories and principles 

provided in this paper should be of interest to audio system designers and anyone involved in the 

design of multimodal human-computer systems. 
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CHAPTER ONE: GENERAL INTRODUCTION 

As technology advances, computer systems are able to present increasing amounts of 

information to operators at ever faster rates.   Although providing more information to operators 

does have the potential to allow them to make better decisions, if not presented correctly it can 

overwhelm operators and have adverse effects.  Thus, it is the designer’s job to balance the 

amount of information provided to system users and the presentation method for that data to 

maximize the amount of information that can effectively be presented. 

Visual interfaces, utilizing the common visuo-spatial interaction paradigm of Windows, 

Icons, Menus, and Pointers (WIMP) to interact with users, generally prove effective when fairly 

simple tasks are performed, yet they quickly fail when multiple complex tasks are required of 

users.  The primary reason for this failure may be that the visuo-spatial only interaction 

technique of WIMP interfaces does not take into account the human’s ability to time-share 

human information processing (HIP) resources across multiple modalities (Wickens, 1984), 

which can lead to users becoming visually overwhelmed.  To alleviate such shortcomings, a 

paradigm shift is required.  The current study suggests that the unimodal WIMP design paradigm 

be extended to a multimodal paradigm that includes Speech, Auditory Icons, Earcons, and 

Spatial Audio (SEAS) cues.   

Support is provided for such a shift in interface design focus by Multiple Resource 

Theory (MRT; Wickens, 1984).  This theory suggests that individuals utilize a multidimensional 

system of independent resources consisting of distinct stages of processing (encoding, central 

processing, and responding), which involve various sensory modalities (visual, auditory), 

working memory (WM) processing codes (spatial, verbal), and response modalities (manual, 
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vocal).  At each stage, resources are thought to be independent (e.g., verbal versus spatial WM 

resources), it is thus suggested that if tasks are designed to use separate and compatible 

resources, parallel processing can be preformed and tasks can ultimately be time-shared 

(Wickens, 1984).  For example, individuals find it easier to attend to information when it is 

presented using multiple modalities (Parkes & Coleman, 1990; Penney, 1989; Rollins & 

Hendricks, 1980; Seagull et al., 2001; Wickens, Sandry, & Vidulich, 1983).  Likewise, 

individuals perform better when they are required to respond to multiple tasks using separate 

modalities (Wickens, 1976; Wickens & Liu; 1988).   

In light of MRT, it becomes apparent that the integration of audio to offload the visual 

demands of current interfaces has great potential. It is essential that such bimodal systems be 

designed around the capabilities and limitations of system users.  For example, given audio’s 

transient nature, designers should avoid using audio to present information that is not acted upon 

quickly, as it has the potential to increase WM demands of users.  Instead, audio can be used to 

present information that requires a fast response, due to its capability to decrease reaction time 

when compared to visual systems (Bly, 1982; Dix, 1998).  To ensure that audio is designed 

correctly and integrated into systems where it can provide the greatest utility, it is important that 

human-centered design guidelines be devised and validated.  This work is directed at evaluating 

the utility of audio interaction and compiling such a set of guidelines.   

The two studies presented herein provide insight into audio interaction techniques and 

present SEAS guidelines that can be used to direct the creation and integration of audio into 

multimodal systems.  Specifically, chapter two (Jones, Samman, Stanney, & Graeber, 2005) 

discusses the results of a pilot study aimed at evaluating the utility of integrating SEAS cues into 

a primarily unimodal visuo-spatial interface to reduce perceptual and attentional bottlenecks.  
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Overall, the results of the pilot study showed some utility in the integration of audio, although 

many of the results were borderline significant.  A power analysis performed on the results 

suggested that the lack of significance in the results may have been due to low observed power 

of the tests (p between 0.05 and 0.45).  The power analysis also suggested that significance could 

potentially be found if the sample size was increased by a modest amount (14 participants).  

Based on this analysis the study was extended and the results are presented in chapter three. 

In addition to presenting further case study evidence of the utility of integrating audio per 

the SEAS guidelines, chapter three (Jones, Stanney, & Graeber, submitted) also provides more 

detail about multimodal HIP and presents a list of theoretically derived SEAS guidelines.  

Together, these two chapters present scientific support for the integration of audio cues into 

human-computer systems, guidelines to follow when developing audio interfaces, and the results 

of two case studies that demonstrate the utility of the guidelines in directing audio system design.  

The theories and principles provided in this paper should be of interest to audio system designers 

and anyone involved in the design of multimodal human-computer systems. 
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CHAPTER TWO: STUDY ONE: SPEECH, EARCONS, AUDITROY 
SPATIAL SIGNALS (SEAS): AN AUDITROY MULTIMODAL 

APPROACH 

Abstract 

The present study examined how visual displays can be augmented with auditory cues to 

enhance performance. An auditory interactive computing paradigm was proposed utilizing 

Speech, Earcons, and Spatial signals (SEAS).  SEAS cues were suggested to increase human 

information management capacity by leveraging multiple processing systems.  This study 

focused on the ability of SEAS cues to overcome perceptual and attention processing bottlenecks 

when conducting Unmanned Air Vehicle (UAV) control tasks. The results demonstrated that 

SEAS cues enhanced human performance on UAV control tasks, particularly the response 

accuracy and reaction time on a secondary monitoring task (i.e., vehicle health task).  The results 

suggest that SEAS may be effective in overcoming perceptual and attentional bottlenecks, with 

the advantages being most revealing during high workload conditions.  The results of this study 

may be of interest to those designing information displays for multitasking environments. 

Introduction 

Since the 1980’s and the instantiation of Graphical User Interfaces (GUI’s), a paradigm 

of using spatial and visual information to influence how users interact with systems has extended 

across all types of interfaces.  The most common interfaces in today’s systems fall under a 

relatively standard set of interaction paradigms, which are collectively referred to as WIMP’s 
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after their basic components of Windows, Icons, Menus, and Pointing Devices.  Although this 

primarily visual interaction style does leverage the human visual system’s exceptional ability to 

aid in the comprehension and understanding of the spatial information presented, restrictions 

may arise when the visual system is overloaded with information.  As technology advances and 

systems are able to present more information to users at faster rates, this barrage effect is 

becoming more common. 

One of the main goals of designers is to create interfaces that allow individuals to process 

an optimal amount of essential data while avoiding mental overload.  To reach this goal, a 

paradigm shift from current primarily visual WIMP interactions to the addition of Speech, 

Earcons, and Auditory Spatial signals (SEAS) may be required.  The addition of these auditory 

cues may serve to improve the information management capacity of the individual by enhancing 

perception, augmenting sensory processing, and speeding reaction time (Stanney, et al., 2003).  

In effect, SEAS may help to overcome human information processing (i.e., perceptual, attention, 

working memory, executive functioning) bottlenecks. The current study serves to evaluate the 

effectiveness of the SEAS paradigm on overcoming perceptual and attentional bottlenecks.   

To reduce cognitive overload, Wickens’ (1984) Multiple Resource Theory (MRT) 

suggests that tasks are more efficiently time-shared when multiple resources are used in terms of 

sensory/perceptual modalities. It has been found that individuals find it easier to recognize 

information displayed using multiple modalities (e.g., visual and auditory) than using one 

modality (Seagull et al., 2001). For instance, Wickens (1980) reviewed several studies and found 

greater advantages to cross-modal (e.g., visual and auditory) over intra-modal displays (e.g., 

visual and visual). Furthermore, research has suggested that attention processing is relatively 

easy when objects are physically distinct from distracters (Proctor & Van Zandt, 1994). 
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Exploiting an individual’s capacity to attend to a wide variety of different sound dimensions in 

terms of location, pitch, and intensity is suggested to assist in directing attention while enhancing 

human information processing (Samman, Jones, Stanney, & Graeber, 2004).    

Method 

An experiment was designed to examine the effectiveness of the SEAS auditory 

paradigm to offload visual cues in an Unmanned Air Vehicle (UAV) operational setting. 

Workload was intensified by manipulating the number of UAV groups that were controlled; 

specifically, the number of vehicles that operators were required to control increased from four 

to eight to twelve vehicles in each scenario. The challenge of controlling multiple groups in a 

UAV system (4, 8, and 12 vehicles) was suggested to dramatically increase the mental workload 

for operators. By adding second and third groups, task conflicts can grow enormously.   

Participants 

Sixteen university students (3 females and 13 males) were recruited to participate in this 

study.  Participants had a mean age of 19.53 years (SD= 2.17) with a range of 17-25 years.  

Fourteen participants were right-handed and two were left-handed.  The average number of hours 

playing video games equaled 12.47 hours per week (SD= 9.19) while the average time spent 

using computers equaled 22.37 hours per week (SD= 19.85).   
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Apparatus 

Tasks were performed on a 3.0 GHz Dell Inspiron 9100 computer with a 128 Mb Radeon 

9600 video card.  The interface was presented on two 17” NEC Multisync LCD displays at 

1280x1024 screen resolution.  Audio was presented through a set of Plantronics DSP 500 noise-

cancelling headphones, which allowed for spatialized sound presentation.  User input was made 

with a standard 2-button mouse. 

Tasks 

Main Task 

Each participant performed a series of simulated UAV control tasks under various 

workload conditions. The primary task was to set up sorties on pre-planned items of interest 

throughout the flight path.  For each group of 4 UAVs that were being controlled, twenty pre-

planned items of interest were laid out within the environment.  To successfully complete a 

sortie, each UAV had to be paired with an item of interest. Participants were required to search 

for the type of asset each item of interest needed, denoted by the letters S, M, and H (small, 

medium, and heavy assets) that appeared in a text box near the items of interest when the mouse 

was rolled over them. Participants were then required to locate an available UAV carrying the 

same type of asset and pair UAV to item of interest. The asset type and number of assets carried 

by each UAV was denoted by a number paired with an S, M, or H that appeared under each 

UAV (see Figure 1). This search task was performed on a map display that presented all 

controlled UAVs and items of interest to participants at all times.  
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Figure 1: UAV control display 

 

Once a match was found participants were then required to use a context menu selection 

to take a radar image and to initiate the sortie. Once paired, a line appeared to connect the item of 

interest with the UAV completing the sortie (Figure 2a). When a UAV was sufficiently close to 

the item of interest, a radar image was captured. An icon resembling a satellite image replaced 

the background of the current item of interest icon (Figure 2a). Once the image was available, 

participants were required to view it by clicking on the icon. An asset allocation window 

appeared on the right display presenting a detailed radar image of the item of interest. 

Participants were required to pinpoint the location of the asset drop point on the radar image. 

Once asset allocation was performed, the item of interest’s icon displayed a red triangle 

depicting the number of assets that were to be dispensed on the item of interest (see Figure 2b). 

After the precise asset allocation point was selected, the UAV automatically performed the sortie 

and the participant was not required to monitor it until the asset drop was complete. Following 
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the release of assets, a visual icon was presented to symbolize the asset drop (see Figure 2c).  

This icon represented the completion of the sortie and the availability of the UAV to pair with 

another item of interest. Once asset release was completed, the line connecting UAV to item of 

interest disappeared, further indicating that the UAV was free to pair with additional items of 

interest. Upon asset release, the participant was tasked with reallocating the UAV to another item 

of interest. The subtasks of viewing the radar image and perceiving that a UAV is available for 

pairing with an item of interest were used to evaluate the usefulness of SEAS cues to increase 

perception rate and decrease time required to perceive events in the environment.   

 

 

Figure 2: A) Radar image available Icon B) Number of assets dispensed icon C) Asset release 

icon 

Secondary Tasks 

Throughout each mission, two Time Critical Items of Interest (TCIs) appeared suddenly 

on the map display for each set of 4 UAVs. Participants were required to attend to and 
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immediately react to these items of interest in the same fashion as the pre-planned items of 

interest. Time critical icons looked similar to normal item of interest icons but were encircled in 

red to denote their importance. Participants were required to pair UAVs with TCIs and perform a 

sortie on them within 10 seconds after they appeared.   

In addition, participants were required to detect Vehicle Health Tasks (VHTs) which 

arose throughout each mission and respond to health questions that were asked after highlighting 

the VHT issue. This task also required immediate attention. When health problems occurred, the 

UAV was outlined in red. Once perceived, participants were required to double-click on the 

UAV that needed attention. This brought up a health text box that displayed a health question 

that participants were required to respond to.  Since both of these tasks required participants to 

selectively attend to the TCIs and VHTs directly after appearance, they were used to evaluate the 

effectiveness of SEAS cues to increase the percentage of cues that are attended to and decrease 

the time required to attend to them.  

Mitigations 

During UAV task analysis, several perceptual bottlenecks were identified. When 

participants performed the main task (pair UAV to item of interest, capture radar image, perform 

sortie on item of interest), visual overload hindered them in perceiving that a radar image was 

ready for viewing. SEAS auditory cues were used to augment the visual display to prevent this 

overload. A spatialized auditory icon (camera shot sound) was played to denote the presence and 

location of the available radar image. The auditory icon was spatialized left, center, or right to 

guide the user to where they should look within the display.  The integration of this spatialized 
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auditory icon was proposed to offload the visual-spatial load traditionally associated with radar 

images to an auditory-spatial load.  Furthermore, participants were required to monitor the status 

of UAVs (completion of sortie) to reassign them to new items of interest. Participants were 

visually saturated with cues and were unable to efficiently perceive when a UAV was free. SEAS 

auditory cues were augmented to the visual display to alleviate this problem. Spatialized earcons 

were integrated to denote the location and type of UAV (type denoted by asset carried) that was 

available. The four UAVs were mapped with distinctly different timbres. The lead vehicle 

carrying heavy assets was paired with a brass instrument playing a note at two octaves below 

middle C. The middle UAVs in the diamond shaped formation (see Figure 1), carrying small 

assets were paired with a vibraphone (left vehicle) and a pan flute (right vehicle). Both played 

two octaves above middle C. The rear UAV, carrying medium assets was paired with a piano 

note playing at middle C. Different timbres with various octaves denoted asset size (high octave 

= small asset, medium octave = medium asset, low octave = heavy asset) and differentiated each 

UAV in the formation. These earcons were spatialized to originate from the onscreen position of 

the group that they were in (left, right, center). The integration of spatialized auditory icons and 

earcons were proposed to transform the task from one of a purely visually scanning search to a 

tonal cue detection task (cues symbolize that radar image is available and that the UAV is free to 

pair with additional items of interest).  

Attentional bottlenecks were also identified within the secondary tasks. Due to the 

urgency of TCIs, participants were required to attend to them immediately. Therefore, SEAS 

augmented display accompanied each TCI with a concise speech message spoken in a natural 

voice, stating “critical target”.  The message was spatialized in accordance with the location of 

the TCI (left, right, center). In addition, the message was played in different voices depending on 
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the location of TCI on the display.  A male voice was presented if the TCI was included in the 

set of items of interest closest to the left side of the display. A female voice was played for the 

center, and a different male voice was used for the right side. These mitigations were expected to 

transform the purely visual search task to an auditorily guided search task.   

Participants were also required to monitor UAVs for health problems while performing 

the primary task. The SEAS augmented auditory display integrated a spatialized speech cue 

played to alert participants of health problems. The spatial location of the message coincided 

with the location of the vehicle (left, right, center). A short concise message stating “Health 

alert” was played to correspond with the occurrence of health difficulties. The same voice 

assignments used for the SEAS TCI alert described above were also employed in the VHT task 

alerts. These mitigations were proposed to transform the task from continuous visual scanning of 

health alerts to an auditorily directed search of health alerts.   

Procedure 

Prior to beginning, participants completed an informed consent and demographics 

questionnaire.  Each participant then performed a training session familiarizing them with UAV 

control tasks. Participants were trained on how to properly pair UAVs to items of interest, how to 

control UAVs to perform sorties, where to place asset allocation points for each item of interest, 

and how to recognize and handle TCIs and VHTs.  Following training, rules of engagement 

procedures and strategies were explained to participants. Participants were seated in front of two 

monitor displays.  The monitor situated in front of the participant presented an updating map 

display to select and pair items of interest and receive information about TCIs and VHTs. The 
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monitor on the right of the participant was only used to present an asset allocation window that 

was used to determine the precise asset drop points for each item of interest. 

Prior to testing, participants performed a practice trial operating four UAVs at a speed 

slower than testing speed (700 knots). Participants were then required to perform an additional 

practice trail at a speed of 800 knots operating four UAVs. Before testing, participants were 

required to successfully complete 65% of the sorties at a low workload level (four UAVs). This 

guaranteed that all participants were at the same baseline performance level. Each test session 

consisted of three test trials evaluating four, eight, and twelve UAVs flying at speed of 800 

knots. The number of operated vehicles was used to manipulate participant’s workload. 

Participants were required to perform tasks on two interface conditions (Baseline- visual display, 

SEAS-augmenting auditory cues to visual display). To reduce order and practice effects, the 

order of interface presentation was counterbalanced. Prior to performing tasks on the SEAS 

interface, participants were trained on each sound employed (i.e., camera shot sound, earcons). 

Accuracy and reaction time were used to assess performance. In addition, following the 

completion of each UAV interface evaluation (Baseline, SEAS), a workload and situational 

awareness questionnaire was completed by each participant.   

Experimental Design 

In order to evaluate the effectiveness of the Baseline and SEAS interfaces at various 

workloads levels, a 2x3 (interface type x workload) within-subject design was implemented. The 

two interface types that were compared consisted of the Baseline visual interface and the SEAS 

augmented auditory interface. The three levels of workload that each interface operated at were 
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with the control of 4, 8, and 12 UAVs. A one-way repeated measure ANOVA was performed to 

test for significance on each performance measure.  There were both perceptual and selective 

attention performance measures recorded.  Perceptual performance measures included: 1) the 

effectiveness of SEAS spatialized auditory icon cues to present an update in radar imaging 

status, which was assessed in terms of the percentage of radar images that were viewed and the 

time required to view radar images; and 2) the effectiveness of SEAS spatialized earcons to 

present UAV status updates (when a sortie was completed), which was assessed in terms of the 

time required to reassign UAVs to new items of interest after becoming available.  In order to 

evaluate the extent that the integrated SEAS cues helped to alleviate potential attentional 

bottlenecks, performance measures of two attention tasks were compared between the two 

interfaces and across workload levels. First, to evaluate the effectiveness of SEAS spatialized 

speech cues to facilitate TCI detection, reaction time and the number of TCIs detected were 

compared. Second, to evaluate the effectiveness of using SEAS spatialized speech cues to 

facilitate VHT detection tasks, the number of VHTs detected and time required to detect them 

were analyzed.  In addition, to evaluate overall performance of the UAV/item of interest pairing 

task, metrics including the percentages of radar images taken, assets used, and items of interest 

hit were analyzed.  Items of interest hit represented the number of items of interest successfully 

dealt with via UAV sortie. 
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Results 

Perception Evaluation Measures 

The percentage of radar images viewed showed no significant main effects and no 

interaction effects for workload and interface factors between the Baseline and SEAS conditions. 

Although there was no significant main effect found for the interface type used, the percentage of 

radar images viewed demonstrated a trend that approached significance (F(1, 14) = 3.507, p = 

.082).  The percentage of radar images viewed was slightly higher in the SEAS augmented 

display than the Baseline display, particularly at higher levels of workload (see Table 1).  The 

non-significant results may have been largely due to the low observed power of the test (p = 

0.415).  

The analysis of reaction time to radar images demonstrated a significant main effect of 

workload level (F(2, 28) = 14.4, p < .05).  A Least Significance Difference (LSD) post-hoc 

analysis showed that as workload increased, the time required to view radar icons also increased 

(p < .05 for all workload main effect comparisons).  No significant main effect based on interface 

type was found (F(1, 14) = 0.06, p = .81).  As demonstrated in Table 1, the average reaction time 

to view radar icons was 14.9% lower when using the SEAS interface than the Baseline interface 

under the highest level of workload. These results support the SEAS principle of using 

spatialized earcons to reduce perceptual bottlenecks in primarily visual systems. 
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Table 1: Radar icon detection performance for Baseline and SEAS displays 

Workload 
level 

Baseline Performance SEAS Performance 

 Radar Image 
Viewed (%) 

Radar Image Reaction 
Time (seconds) 

Radar Image 
Viewed (%) 

Radar Image Reaction 
Time (seconds) 

1 97.73 3.57 98.94 4.01 
2 98.26 5.67 99.52 5.73 
3 91.82 8.47 96.52 7.21 

Average 95.94 5.9 98.33 5.65 
 

Results regarding the effectiveness of SEAS spatialized earcons to cue UAV status 

updates demonstrated a significant main effect for workload (F(2, 28) = 45.91, p < .05).  An 

LSD post-hoc comparison showed that as workload increased, the time required to reassign an 

available UAV to items of interest also increased. As demonstrated in Table 2, increases in 

workload led to increases in vehicle reassignment times (p < .05 for all workload comparisons).  

There was no significant main effect found based on interface type (F(1, 14) = 0.935, p = .35).  

Again, a trend was found toward lower vehicle status detection times while using the SEAS 

display when compared to the Baseline display. The non-significant results may have been 

largely due to the low observed power of the test (p = 0.147). This trend also shows that as 

workload increased, the performance advantages of using the SEAS interface became more 

apparent for the vehicle status detection task. These results suggest the potential of SEAS but 

clearly indicate more research is needed to demonstrate its effectiveness in reducing the 

perceptual bottlenecks in primarily visual systems. 
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Table 2: Vehicle status detection for Baseline and SEAS displays 

Workload 
level 

Baseline – Vehicle status  
detection (seconds) 

SEAS – Vehicle status  
detection (seconds) 

1 30.65 29.5 
2 37.68 35.49 
3 54.92 50.59 

Average 41.08 38.53 

Attention Evaluation Measures 

The number of TCIs detected and time required to detect TCIs both demonstrated 

significant main effects for workload level (F(2, 28) = 16.16, p < .05, F(2, 28) = 5.16, p < .05, 

respectively).  LSD post-hoc comparisons showed that as workload increased, the number of 

TCIs detected significantly decreased (p < .05) and the time required to detect TCIs increased (p 

< .05). Trends arose again with regards to the SEAS versus Baseline comparison.  The average 

percentage of TCIs detected was slightly higher and the time required to detect TCIs was slightly 

lower while using the SEAS display as compared to the Baseline display. In addition, a trend of 

increased performance differences as workload is increased is also present. The non-significant 

results may have been largely due to the observed power of the test for TCI reaction time and 

accuracy (p = 0.063; p = 0.072 respectively). These results demonstrate the potential of SEAS 

principles for enhancing attention, but more research is needed.
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Table 3: TCI detection in Baseline and SEAS displays 

Workload 
level 

Baseline Performance SEAS Performance 

 TCI detected 
(%) 

TCI detected 
(seconds) 

TCI detected 
(%) 

TCI detected 
(seconds) 

1 100 8.77 100 10.43 
2 75 16.94 74.467 15.16 
3 67.6 17.33 72.93 14.97 

Average 80.87 14.35 82.47 13.52 
 

Analysis of the number of VHTs detected showed significant differences between the 

performance on the Baseline and SEAS interfaces (F(1, 14) = 13.01, p < .05), and workload 

levels (F(2, 28) = 4.12, p < .05). Furthermore, a significant interaction effect was found between 

workload level and interface used (F(2, 28) = 4.476, p < .05). A LSD post-hoc analysis 

demonstrated that when participants used the SEAS augmented display, more VHTs were 

handled (p < .05) and the performance increases due to the display used increased at higher 

workload levels. When evaluating the time required to react to VHTs, a significant main effect 

between interfaces used was found (F(1, 14) = 18.22, p < .05).  As demonstrated in Table 4, the 

average number of VHT tasks detected was 36.9% higher, on average, and reaction time was 

47.1% faster with the SEAS as compared to the Baseline.  It is important to note that the 

performance increases accredited to the use of the SEAS interface are more apparent as workload 

is increased.  A significant difference was also found between subjective perceived mental 

workload while performing the VHT tasks (t(14) = 3.51, p < .05) when using the two interfaces. 

Participants considered the VHT task more demanding in the Baseline condition than in the 

SEAS condition. These results support the SEAS principle of using concise spatialized speech 

messages to conveying warning information. 
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Table 4: VHT detection performance in Baseline and SEAS displays 

Workload 
level 

Baseline Performance SEAS Performance 

 VHT detected 
(%) 

VHT detected  
(seconds) 

VHT detected 
(%) 

VHT detected 
(seconds) 

1 70 6.38 81.67 3.527 
2 43.33 8.06 93.33 4.26 
3 43.07 9.07 73 4.64 

Average 52.13 7.83 82.67 4.14 

Other Performance Measures 

The percentage of radar images taken showed a significant main effect of workload level 

(F(2, 28) = 40.331, p < .05).  An LSD post-hoc analysis demonstrated that as workload increased 

(4 to 12 UAVs), the percentage of radar images taken decreased (p < .05 for all comparisons).  

Although there was not a significant main effect of interface used between Baseline and SEAS 

(F(1, 14) = 2.688, p = .123), Table 5 demonstrates a trend, showing that the percentage of radar 

images taken slightly increased with the use of the SEAS augmented interface and performance 

differences between the interfaces were slightly more apparent as workload increased. The non-

significant results may have been largely due to the low observed power of the test (p = 0.333).  

Analysis of the percentages of weapons used by participants showed a significant main 

effect for workload level (F(2, 28) = 37.673, p < .05).  An LSD post-hoc analysis showed a 

significant decreasing trend in the percentage of weapons used as workload was increased (p < 

.005 for all comparisons). Although there was not a significant main effect for interface used 

(F(1, 14) = 1.266, p = .279), a pattern is demonstrated of participants using slightly more 

weapons in the SEAS augmented interface than in the Baseline. 
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The percentage of items of interest hit demonstrated a significant main effect of workload 

level (F(2, 28) = 23.98, p < .05).  An LSD post-hoc analysis of the effect of workload levels on 

the number of items of interest hit showed that as workload was increased, the percentage of 

items of interest hit significantly decreased (p < .05 for all comparisons). Although the number 

of items of interest hit did not show a significant main effect based on the interface used, as can 

be seen in Table 5, on average the number of items of interest hit while using the SEAS 

augmented display was slightly higher than that found using Baseline displays, thus approaching 

significance (F(1, 14) = 2.899, p = .111).   

 

Table 5: Results for Baseline and SEAS TSD performance 

Workload 
level 

Baseline Percentage  
Performance (%) 

SEAS Percentage 
Performance (%) 

 Radar 
Images 
Taken 

Items of 
Interest 

Hit 

Assets 
Used  

Radar 
Images 
Taken 

Items of 
Interest 

Hit 

Assets 
Used  

1 93.67 88.67 86.4 96.33 91 91.93 
2 85.5 72.73 73.6 87.17 80.13 73.53 
3 69.87 66.93 61.07 76.31 68.6 62.93 

Average 83.01 76.11 73.69 86.6 79.91 76.13 
 

When assessing response accuracy of vehicle health tasks, significant main effects for the 

interface used (F(1, 14) = 13.01, p < .05) and workload levels (F(2, 28) = 4.12, p < .05)  were 

found. A LSD post-hoc comparison showed that when participants used the SEAS augmented 

display, on average, 37.5% more health tasks were answered correctly (p < .05). Average 

response accuracy for different workload conditions in Baseline and SEAS are presented in 

Table 6. 
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Table 6: VHT response accuracy in Baseline and SEAS displays 

Workload 
level 

Baseline – VHT response 
accuracy (%)  

  SEAS – VHT response 
accuracy (%) 

1 63.33 90.13 
2 40 71.67 
3 34.27 58.47 

Average 45.87 73.42 
 

Subjective Workload and Situational Awareness Measures 

Cooper-Harper subjective workload ratings demonstrated that the use of SEAS 

augmented interface led to a lower perceived mental workload level of the entire task when 

compared to the use of the Baseline interface (t(14) = 2.79, p < 0.05). With similar trends, a 

NASA-TLX subjective workload rating demonstrated that participants considered the SEAS 

display as less demanding than the Baseline (t(14) = 1.97, p = .065). As Table 7 demonstrates the 

NASA-TLX workload factors including mental, temporal, performance, effort, and frustration 

were perceived as slightly less demanding while using the SEAS display as compared to 

Baseline display.  

 

Table 7: NASA-TLX subjective perceived mental workload 

Interface Mental Temporal Performance Effort Frustration Average
Baseline 16.06 15.88 10.50 16.38 13.56 13.14 
SEAS  14.50 14.31 7.50 14.56 12.38 11.74 
Difference 1.56 1.57 3 1.82 1.18 1.4 
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Furthermore, as can be seen in Table 8, Cooper-Harper workload assessment 

demonstrates that several tasks including radar image detection, vehicle status detection, and 

VHT detection and response, are perceived as less demanding when using the SEAS interface.   

 

Table 8: Cooper-Harper subjective perceived mental workload levels 

Interface VHT 
Detection 

SAR 
Detection

Vehicle 
Status 

Detection

VHT 
Response

Overall 
Task Average 

Baseline 5.31 4.63 4.50 6.13 7.19 5.04 
SEAS  3.13 3.44 4.44 5.94 5.40 4.72 
Difference 2.18 1.19 0.06 0.19 1.79 0.32 

 

Discussion 

The general pattern of results for all of the performance metrics recorded support the 

concept of integrating SEAS guidelines into visual displays.  The objective of SEAS auditory 

cues in this study is to reduce attentional and visual modality perceptual bottlenecks in an 

applied system. It was hypothesized that the integration of SEAS cues would reduce perceptual 

bottlenecks present in the experimental testbed and as a result operators would perform 

perceptual tasks faster and more consistently.  The results of the radar image detection and 

vehicle status change detection tasks did not support this hypothesis at a significant level.  It is 

expected that this is due to the limited sample size that was evaluated and power analyses 

suggest that if this sample size was increased, significance would be obtained.  The general 

pattern of the results suggest that as radar images became available to participants, they viewed 

more of them and viewed them at faster rates when there was a spatial auditory icon used to 
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direct them to the icons presence and position.  Likewise, as UAVs became free to use again, 

participants utilized them at a faster rate when there was a spatial earcon present to guide them to 

the location and type of aircraft that was available. Furthermore, as workload was increased, 

performance gains accredited to the integration of SEAS cues became more apparent, suggesting 

that the use of such cues may lead to better perceptual gains as workload is increased.  

It was also hypothesized that the integration of SEAS cues would lead to increased 

performance on attention tasks.  The results based on the vehicle health tasks support this 

hypothesis.  Evaluation of the VHT task demonstrates that operators were able to attend to more 

health problems at a faster rate when visual cues were augmented with spatialized voice alerts. 

Redundant multimodal signal effects may have increased parallel processing while perceiving a 

health problem, attending to the vehicle, and in responding to the problem. Attending to the 

vehicle health tasks was quicker in the SEAS condition than in the Baseline condition since 

operators were able to aurally perceive the vehicle that required attention.  Although the 

efficiency of responding to TCIs and VHTs decreased as workload increased for both displays, 

this falloff was not as substantial with the use of the SEAS display, leading to larger performance 

differences between the display types in high workload conditions. This suggests that the 

integration of SEAS cues will be more effective at supporting selective attention tasks as 

workload levels are increased.  Interestingly, a significant difference was also found for the 

accuracy of vehicle health task. Operators were able to resolve the health problem more 

accurately in SEAS condition than in Baseline condition. This may be attributed to improved 

alertness level of operators and the opportunity to process the health alerts and formulate an 

answer in parallel with other tasks when performing with SEAS interface.   
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The integration of SEAS cues into the interface also had positive effects for tasks that 

were not explicitly hypothesized to be affected by the display changes.  Although not 

significantly different, patterns were present showing that when the SEAS interface was used, on 

average, the number of radar images taken, assets used, and items of interest hit all increased at a 

level approaching significance.  This lack of significance in the results may be due to the small 

sample size evaluated in this study, causing low power.  It is expected that the low power can be 

increased by increasing the number of participants. During the UAV/item of interest pairing task, 

operators were required to pair vehicles with items of interest, capture radar images, and perform 

sorties. In the Baseline condition, operators who were engaged in these tasks were required to 

divert their gaze continuously, thereby degrading their performance on this primary task. Such 

diversion did not need to occur when auditory cues denoting when radar images were complete, 

UAVs were available, TCIs appeared, or VHTs needed attention were integrated. Based on the 

multimodal resource modal, employing multiple sensory modalities (visual, auditory) increased 

dual task performance and efficiency. Given the availability of separate visual and auditory 

perceptual resources, information was better time-shared and that is what led to the performance 

increases on these tasks while using the SEAS interface.   

Subjective workload was also perceived as lower with the use of the SEAS system than 

with the Baseline system. Operators perceived SEAS as less demanding in terms of mental, 

temporal, effort, frustration, and overall performance. These findings are comparable to the 

objective results discussed above. 
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Conclusions and Future Research 

The results of this study suggest that the integration of SEAS cues has the potential to 

reduce attentional and perceptual bottlenecks when integrated into a primarily visual display.  

Future research should examine the effects of auditory cues on working memory and executive 

functioning bottlenecks.  In addition, due to increased performance advantages in high workload 

conditions, the integration of SEAS cues should be studied at increased workload conditions.  
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CHAPTER THREE: STUDY TWO: AUDIO INTERACTION PARADIGMS: 
GUIDELINES FOR SPEECH, EARCONS, AUDITORY ICONS, AND 

SPATIAL AUDIO 

Abstract 

Most human-computer systems designed today utilize visual widgets such as windows, 

icons, menus, and pointers to interact with system users.  This interaction paradigm proves to be 

effective when single tasks are being performed in low-workload conditions; however, it can 

quickly lead to visual overload under high workload or multitasking conditions.  To alleviate the 

visual overload problem, the results of this study suggest that designers should consider using the 

Speech, Earcons, Auditor icons, and Spatial audio (SEAS) paradigm to augment visual-only 

interfaces.  The introduction of this interaction paradigm takes advantage of the human’s ability 

to effectively time-share tasks that utilize multiple sensory and perceptual resources.  As a first 

step to realizing this goal, a number of theoretically derived guidelines for the design of SEAS 

cues and a case study evaluating their utility are presented.  The results suggest that integration 

of the SEAS paradigm into a formerly visual-only interface can reduce perceptual and attentional 

overload.  The results of this research and the guidelines presented herein should be of interest to 

developers of UAV control interfaces, in particular, and interactive system designers, in general.    

Introduction 

The Windows, Icons, Menus, and Pointers (WIMP) interaction paradigm has become the 

most pervasive interface technique used today.  By leveraging the human visual system’s ability 
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to aid in the comprehension and understanding of visuo-spatial information, WIMP interfaces 

allow users to interact with systems though recognition of graphical widgets instead of requiring 

users to remember complex interaction commands.  Yet, interface systems that restrict 

interaction to visuo-spatial techniques alone have the potential to quickly overload users’ visual 

perceptual and attentional resources and fail to take into account the human’s ability to time-

share human information processing (HIP) resources across multiple modalities (Wickens, 

1984).  In an effort to move toward interactions that leverage multiple human sensory systems, 

the current work suggests the use of audio interaction and introduces the Speech, Earcons, 

Auditory icons, and Spatial signals (SEAS) design paradigm.   

This article focuses on explaining the utility of, and providing guidelines for the 

integration of SEAS cues into human-computer systems.  The theory behind the utility of the 

SEAS interaction paradigm is framed in multimodal HIP and is followed by theoretical design 

guidelines for each aspect of the SEAS paradigm.  Finally, the results of a case study in applying 

a subset of SEAS design guidelines are presented.  The theories and principles provided in this 

article should be of interest to audio system designers and anyone involved in the design of 

multimodal human-computer systems. 

Human Information Processing  

Stage theory models of human information processing provide a representation of how 

humans interact with their environment by processing information in a serial, discontinuous 

manner (Atkinson & Shriffin, 1968).  At a high level, three basic stages are serially performed 

under stage-theory HIP models.  The process generally begins when an individual senses a 
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stimulus in the environment.  Stimulus sensation can occur through multiple sensory processors 

and requires that the stimulus is of the correct intensity and format to be sensed by the organ that 

encounters it.  Once a stimulus is sensed, it is perceptually encoded and used to make a decision, 

which is then executed to provide a response back to the environment (Proctor & Van Zandt, 

1994).  The perception and decision making processes of HIP are supported by a working 

memory subsystem that exploits long-term memory (Wickens, 1992).  During the perception 

stage of HIP, working memory is utilized to guide bottom-up processing or to pull from long-

term memory to guide top-down processing of perceived cues (Woodman, Verca, & Luck, 

2003).  The decision making stage then requires that working memory pull from long-term 

memory and actively rehearse information in order to make a decision based on perceived cues.   

Due to its central roles in HIP, working memory has been referred to as a functional 

multiple-component of cognition “that allows humans to comprehend and mentally represent 

their immediate environment, to retain information about their immediate past experience, to 

support the acquisition of new knowledge, to solve problems, and to formulate, relate, and act on 

current goals” (Baddeley & Logie, 1999, p. 29).  Many working memory models have been 

postulated and, in general, they all suggest the existence of different codes or representations 

(e.g., separate storage buffers) based on sensory modalities (Miyake & Shah, 1999).  Thus, from 

an HIP perspective “multimodal interaction has promise because the WM subsystems are 

somewhat independent and tend to act cooperatively rather than competitively (i.e., do not 

entirely compete for the same processing resources)” (Stanney et al., 2004, p. 233).  Human-

systems interaction designs that take advantage of these multiple HIP resources should yield 

substantial human performance benefits.  Before this can be done, it is important to first develop 

theories to guide the design of such multimodal systems. 
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Multiple Research Theory 

One of the few theories supporting and guiding the design of systems that support divided 

attention among multiple modalities is Multiple Resource Theory (MRT), which was originally 

proposed by Kantowitz and Knight (1976) and extended by Wickens (1980; 1984; 1992).  

Building from stage-theory HIP models, MRT suggests a multidimensional system of resources 

consisting of distinct stages of processing (encoding, central processing, and responding), which 

involve various sensory modalities (visual, auditory), WM processing codes (spatial, verbal), and 

response modalities (manual, vocal).  Each stage’s resources are thought to be independent and 

thus allow parallel processing and time-sharing of tasks with little interference if tasks are 

designed to use separate and compatible resources (Wickens, 1984).  Neuroimaging research 

(Smith & Jonides, 1998) and neuropsychological studies of brain-damaged patients (Carlesimo, 

Perri, Turriziani, Tomaiuolo, & Caltagirone, 2001; Mendez, 2001; Pickering, 2001) support this 

theory, suggesting that separate portions of the brain are activated based on the resources that are 

being pulled from.   

Numerous empirical studies also support the MRT model.  In general, these studies 

suggest that the utilization of the separate resources outlined in MRT leads to individuals being 

able to process and recall more information as compared to single modality presentation 

(Baddeley, 1990; Cowan, 2000; Klapp & Netick, 1988; Penney, 1989; Sulzen, 2001).  In 

addition, research also suggests that system users find it easier to attend to information displayed 

using multiple modalities when compared to unimodal systems (Parkes & Coleman, 1990; 

Penney, 1989; Rollins & Hendricks, 1980; Seagull et al., 2001; Wickens, Sandry, & Vidulich, 

1983).  For example, in regards to the sensory stage of the model, Wickens (1980) performed a 
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review of several studies and found greater utility in the use of cross-modal (e.g. visual and 

auditory) over intra-modal displays (e.g. visual and visual).  In regards to the response stage, 

Wickens and Liu (1988) have shown that when individuals are required to perform a manual 

tracking task while simultaneously verbally responding to a tone identification task, they perform 

better than when a manual response is required on the secondary task.  In the same regard, 

Wickens (1976) has shown that individuals perform better when task responses are distributed 

across manual and auditory inputs as opposed to requiring two manual responses when 

simultaneous tasks are performed.  Similar results have been found in the design of Unmanned 

Aerial Vehicle (UAV) interfaces, which are of particular interest to this study.  Specifically, 

Draper, Calhoun, Williamson, Ruff, and Barry (2003) found that by offloading manual response 

tasks to speech input to take advantage of multiple resources, response time was reduced on 

average by 40%.     

Research has been directed at evaluating the utility of integrating additional modalities 

and utilizing multiple HIP resources to increase situational awareness (SA) and increase 

monitoring task detection rates during UAV tasks.  For example, Draper and Ruff (2000) have 

shown that by augmenting a simulated aircraft landing task with haptic cues to indicate 

turbulence, an increase in controller SA of such events can be obtained.  Likewise, Wickens and 

Dixon (2002) found that by offloading visual UAV control displays to auditory interfaces, 

increases in detection rates and reductions in response times can be achieved.  In an attempt to 

directly compare the utility of using tactile and auditory alerts in directing attention to visual 

tasks, Calhoun, Ruff, Draper, and Guilfoos (2005) found that even in high auditory workload 

conditions, addition of either modality shows potential to direct controllers’ attention to activities 

occurring on a visual display.  The performance gains found in each of these UAV interface 
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studies can generally be attributed to an increase in parallel processing among visual and 

auditory/haptics sensory and response channels.  More rigorous design principles are needed to 

guide the design of such multimodal interfaces for complex systems. 

Each of the studies described in this section provide support for MRT, which strongly 

advocates the use of multiple modalities to reduce bottlenecks in all stages of human information 

processing.  While MRT provides a solid foundation from which to design bimodal visual-

auditory systems, the current study aims to provide guidelines for how to fully exploit the 

auditory modality in bimodal designs.  The following section provides an introduction to the 

SEAS interaction design paradigm, preceded by an exploration of the general benefits of audio 

interaction.  

SEAS Interaction Design Paradigm 

Audio has the potential to enhance HIP and, system interaction in general, because of its 

omni-directional characteristics, ability to direct attention, and acute temporal resolution.  One of 

the most evident of these advantages is audio’s omni-directional characteristics.  The human 

visual field of view (FOV) is restricted to 80º lateral by 60º vertical (Perrott, Sadralobadi, Saberi 

& Strybel, 1991), with the area of best acuity limited to 2º around the point of fixation (Rayner & 

Pollatsek, 1989).  The auditory system is not restricted by such limitations and can be used to 

receive cues from 360º around an individual.  When coupled with the visual modality, audio can 

be useful to direct system users’ attention to important visual cues in the environment that are 

both within and outside of their current FOV or area of focus.  For example, Perrott, et, al. 

(1991) demonstrated that using audio to guide visual search led to a reduction in the amount of 
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time required to detect a target both when a substantial gaze shift was required as well as when 

the target was in the viewers’ initial area of gaze.   

Another advantage of audio is its acute temporal resolution (Kramer, 1994).  When this is 

combined with audio’s apparent obligatory access to processing (as opposed to written text 

which must first enter the subvocal rehearsal loop to be recoded; Baddeley, 1986), additional 

advantages of audio develop.  For example, Bly (1982) has shown that reactions to audio are 

generally faster than reactions to visual cues.  More precisely, Dix (1998) suggests that 

individuals react to visual cues in 200 ms while it only requires 150 ms to react to auditory cues. 

In addition to audio being omni-directional and the potential for it to lead to faster 

reaction times, sound is simply a more natural way to represent some types of information.  For 

example, using a method known as data aurilisation, complex multidimensional data can be 

presented quickly in a combined form using audio (Gaver, 1997).  By mapping data parameters 

to different parameters of sound, sounds can be created to present patterns and variations within 

complex data sets.  Mansur, Blattner, and Joy (1985) showed the effectiveness of this approach 

by mapping two-dimensional graphs to audio parameters; although the true utility of data 

aurilisation becomes evident when more than two dimensions of data must be mapped.  For 

example, Bly (1982) demonstrated that four variables could be mapped to separate sound 

characteristics to guide the efficient classification of data.   

While audio interaction holds great promise, designers must take care when integrating 

audio into their designs.  Many parameters of audio do not allow for the presentation of high-

resolution information (Brewster, 1994). For example, only a very limited number of spatial 

positions of audio can be differentiated by the human listener.  Specifically, individuals have a 

spatial resolution of one degree when audio is presented in front of them but can only 
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differentiate spatial audio positions separated by 10-15 degrees if presented to the side (Wenzel, 

1992).  Another issue that must be taken into account when designing audio is that attributes of 

audio are not orthogonal.  For example, changing the pitch of a cue may affect its perceived 

loudness and vice-versa (Brewster, 1994).  Two additional concerns with audio are the potential 

for it to be annoying and its transient nature (e.g., sound disappears directly after presentation; 

Jones, 1989).  The use of the SEAS audio interaction paradigm promises great utility if these 

limitations of audio are taken into account during design.   

In the following section, audio has been separated into the three categories that make up 

the SEAS paradigm: speech, earcons/auditory icons, and spatial audio.  Each section will explain 

the utility of these categories of audio and present a number of theoretically derived guidelines 

for the design and integration of audio into human-systems interaction design.  Following the 

presentation of the guidelines, a case study will be presented that evaluates the utility of applying 

a subset of these theoretical guidelines.  

Speech 

Speech is a natural interaction mode.  The intuitive nature of speech stems from the fact 

that humans use speech in their day to day lives to communicate with each other.  Thus, 

integrating speech audio into interfaces pulls from the vast experience that users already have 

with this interaction technique (c.f. the anthropomorphic approach, Eberts, 1994).  Speech shows 

great potential to be used in warnings, to direct a reaction to a change in system status, and to 

provide detailed information about a system.  Yet, speech has the potential to add to operator 
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workload and pulls from the limited attentional resources of the human operator (Badeley, 1990); 

so effective design of speech cues is essential.     

One of the first questions that speech system designers must resolve when creating 

speech output systems is whether to use natural, synthetic, or mixed speech.  A number of 

studies advise against the use of mixed speech systems as both purely natural and synthetic 

speech systems lead to better performance and a higher level of user trust (Gong & Lai, 2003; 

Gong, Nass, Simard, & Takhteyev, 2001).  Although it is more costly and difficult to implement, 

research has also shown that the use of human speech is generally liked more, requires less time 

to become accustomed to (Francis & Nusbaum, 1999), and leads to higher comprehension levels 

(Tsimhoni, Green, & Lai, 2001) than synthetic speech.  Taken together, this research suggests 

that optimal speech output systems should integrate natural human speech whenever possible and 

avoid the use of mixed (human/synthetic) speech systems.  

Other decisions that have to be made by speech system designers are what volume level, 

pitch, and speech rate output should be set at.  A study by Scherz (2003) examined the effects of 

varying each of these aspects on the intelligibility of speech output and found that increasing the 

pitch of messages led to the highest intelligibility levels while increasing the speech rate led to 

the lowest.  These results fall in line with other research that has been performed in the field 

suggesting that time compressing speech messages places a higher processing load on listeners 

and leads to negative user opinions of the system (Schwab & DeGroot, 1993).  To overcome 

such issues it is suggested that shorter speech messages be integrated into audio output systems 

instead of compressing longer messages (Stanton & Edworthy, 1999; Tsimhoni, Green, & Lai, 

2001). 
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It is often the case in complex systems that operators will be required to monitor and 

listen to multiple speech messages simultaneously.  Effective audio system design can facilitate a 

user in attending to multiple target messages by varying audio characteristics.  For example, 

research supports the technique of spatially separating messages using both 3D audio (Brungart , 

Ericson, & Simpson, 2002; Drullman & Bronkhorst, 2000) and binaural audio systems (Bolia, 

Nelson, & Morley, 2001) to increase message intelligibility.  In addition, Brungart et al. (2002) 

have suggested that by presenting multiple messages in voices with different genders associated 

with them or by increasing the intensity of a target message, intelligibility can be increased in 

multi-talker displays.  It is important to note that if the gender of the voice used is selected to 

differentiate messages, users will change their interpretations of messages based on gender-based 

stereotypes and paralinguistic personality cues that are present in the message presented (Nass & 

Lee, 2000; Nass, Moon, & Green, 1997), and thus such differences should be taken into account 

when designing speech output systems. 

The following table presents a number of theoretically derived design guidelines that can 

be followed to support the development of speech output systems. 

 

Table 9: SEAS speech presentation guidelines 

Speech Guideline(s) Reference 

SP1 Use speech output and alarms to present detailed information to 
listeners and when situation can map one-alarm to one-event and 
fault management is serial in nature. 

Stanton and 
Edworthy (1999)

SP2 Use natural speech interface whenever possible (as opposed to 
synthetic) as it is more comprehensible.  

Tsimhoni et al. 
(2001) 
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Speech Guideline(s) Reference 

SP3 Use a consistent speech output system (voice or synthetic) 
instead of one that uses a mixture of multiple voice forms. 

Nass et al. 
(2000) 

SP4 While performing simple, manual, primarily visual tasks, the 
type of voice (natural or synthetic) or the complexity of the 
message should not have an effect on the manual task. 

Tsimhoni et al. 
(2001) 

SP5 Use different voices for different interface elements. ETSI (2001) 

SP6 Conform to gender stereotypes when designing speech output 
since users will apply them to such systems. 

Nass et al. 
(1997) 

SP7 When speech is presented dichotically via headphones over 
single channel, the number of same gender talkers should be 
kept to a minimum as performance in such systems degrades as 
each new voice is added across the first three competing voices. 

Brungart et al. 
(2002) 

SP8 When providing evaluative information through speech, use a 
male voice to have a greater influence on users. 

Nass et al. 
(1997) 

SP9 Limit human speech to a short message containing a minimum 
of 5 syllables. 

Stanton and 
Edworthy (1999)

SP9a Although shorter messages are more accurately comprehended, 
and are thus preferred, there is not a linear degradation in 
comprehension of spoken messages. 

Tsimhoni et al. 
(2001) 

SP10 Speech output speed should be set at about 160 words per 
minute and should not exceed 210 words per minute. 

ETSI (2001) 

SP10a Do not set speech output at high rates of output (> 210 words per 
minute) whenever possible. 

Scherz (2003) 

SP10b 

 

When possible, slow speech messages down below that of 
normal adult speech output (200 syllables per minute). 

• Consider making this rate variable as some users may 
become disinterested in consistently slow messages. 

Venkatagiri 
(1991) 
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Speech Guideline(s) Reference 

SP11 Avoid time compressed messages whenever possible as users 
will perceive them as being too fast and perceived workload may 
increase.   

• They provide no advantage when immediate real-time 
responses are required (as the time saved by compression 
may lead to longer processing times by users). 

Schwab and 
DeGroot(1993) 

SP12 Design multitalker speech displays with a SNR (signal to noise 
ratio) of +20 dB in the frequency range from 200 Hz to 6100 Hz. 

Brungart et al. 
(2002) 

SP13 If binaural speech is used, present the most important (target 
voice) in one ear and competing voices in the opposite ear as this 
should have little or no effect on the intelligibility of the target 
voice.  

Drullman  and 
Bronkhorst 

(2000) 

SP13a If there is only one competing talker, a binaural system can be 
used, as 3D audio systems provide minimal gains in 
intelligibility in such cases. 

Drullman  and 
Bronkhorst 

(2000) 

SP14 If more than one competing voice is expected, use a 3D audio 
system, as there are significant increases in intelligibility over 
binaural and monaural systems in such cases. 

Drullman  and 
Bronkhorst 

(2000) 

SP14a On average, 3D audio systems allow for 1 additional competing 
talker over binaural systems and 2 additional competing talkers 
over monaural systems. 

Drullman  and 
Bronkhorst 

(2000) 

SP15 Do not require users to make absolute localizations of voices as 
users perform poorly on such tasks and degrade in performance 
as additional talkers are added. 

Drullman  and 
Bronkhorst 

(2000) 

SP16 Design voice systems to match the expected users of a system in 
terms of extroversion and introversion, as such systems are 
typically perceived as being credible and trustworthy. 

Nass et al. 
(2000) 

SP16a If possible, design two systems, one for use by introverts and 
one for extroverts. 

Nass et al. 
(2000) 

37 



Speech Guideline(s) Reference 

SP16b The following aspects should be focused on when designing for 
introverts or extroverts: 

• Speech Rate: Extroverts speak more rapidly than introverts  
• Volume: Extroverts speak more loudly than introverts 
• Pitch: Extroverts speak with higher pitch than introverts 
• Pitch Range: Extroverts speak with more pitch variation 

than introverts   

Nass and Lee 
(2000); Pittman 

(1994); Hall 
(1980) 

SP17 If there is a limited vocabulary size in use, a SNR (signal to 
noise ratio) of 0dB is acceptable. 

Brungart et al. 
(2002) 

SP18 Present speech output systems at high pitch levels since 
increases in pitch increase intelligibility. 

Scherz (2003);  

SP19 Avoid the use of preceding earcons if users are expecting 
auditory cues (aural speech), because they do not have an effect 
on message comprehension. 

Tsimhoni et al. 
(2001) 

SP20 Use speech-based alarms when an immediate response is 
required. 

Stanton and 
Edworthy (1999)

SP21 Combine speech tasks with non-speech tasks instead of 
combining them with additional speech tasks because having an 
additional talker instead of noise (at the same level) is more 
difficult for intelligibility. 

Festen & Plomp 
(1990); Zatorre 

(2001) 

 

Earcons and Auditory Icons 

The use of non-speech sound has shown utility to present coded information to system 

users.  Currently, such non-speech sounds are grouped into one of two categories, earcons or 

auditory icons.  Each of these types of cues code information in a slightly different manner and 

thus have associated advantages and disadvantages for presenting various types of data.   
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Auditory icons are non-speech audio cues that semantically map naturally occurring 

sounds to objects and events in an interface (Gaver, 1986).  The representational mapping allows 

the cues to be intuitively understood and does not place a demand on the auditory system’s 

cognitive processing resources to understand them.  Instead, auditory icons require listeners to 

draw a connection between the sound that is heard and past experiences.  This connection of 

information to past events is thought to take place in a component of Baddeley’s (2000) revised 

HIP model, specifically placing a memory load on the episodic buffer.   

The intuitive nature of auditory icons has led to them being utilized in many software 

applications today (e.g. the sound of a door opening or closing when someone enters a chat 

room, America Online, 2004).  The use of auditory icons has also shown utility in increasing 

collaboration in everyday environments.  In a study to test the utility of auditory icons, Gaver, 

Smith, and O’Shea (1991) required teams of users to work together to efficiently ship bottles in a 

modeled soft drink factory that was augmented with 14 auditory icons to represent machines and 

events (e.g., bottle dispenser made a clinking bottles sound, smashing bottles sounded to 

symbolize wasted bottles).  Results of this study provided strong support for the use of auditory 

icons to aid in the secondary task of monitoring background operations without interfering with 

primary tasks (Gaver, 1991; Gaver et al., 1991). 

Earcons use metaphoric or symbolic mappings to relate sounds to objects and events in 

an interface (Blattner, Sumikawa, & Greenberg, 1989).  Although not as intuitive to novice users 

as auditory icons, the nature of earcons give them the potential to provide structured information 

to system users.  To accomplish this, earcons use parameters such as rhythm, pitch, timbre, 

register, and other characteristics of sound to differentiate musical messages and to create a 

hierarchical structure of information that is mapped to audio (e.g., mapping file size to the pitch 
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of a cue [higher pitch = larger file]) (Brewster, 1994; Brewster, 2003; Brewster, Wright, & 

Edwards, 1994).  These audio parameters can be used to map multiple data dimensions (Blattner 

et al., 1989; Brewster, 1994; Brewster, 2003; Brewster et al., 1994) or can be combined with 

visual widgets in graphical user interfaces (e.g., scrollbars, Beaudouin-Lafon & Conversey, 

1996; dropdown menus, Brewster, 1994; Maury, Athens, & Chatty, 1999; sonically enhanced 

buttons, Brewster, 1998; progress bars, Crease & Brewster, 1998). 

Due to their symbolic nature, earcons require some training to learn their meanings; 

however, research has demonstrated that with minimum rehearsal listeners can generally 

remember earcons, even after performing tasks with additional similar earcons (Brewster, 

Wright, & Edwards,1993; Brewster, 1994).  For example, Brewster, et al. (1993) found that 

individuals were able to recall over 80% of earcons correctly a week after learning them (without 

rehearsal).  In addition, it has been shown that multiple earcons can be played in parallel with no 

significant decrement in recall performance (Brewster, 1994) and the recognition of earcons does 

not require musical ability (Brewster, 1994).     

The following table presents a number of theoretically derived design guidelines that can 

be followed to support the integration of earcons into human-computer systems. 
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Table 10: SEAS earcon presentation guidelines 

Earcons Guideline(s) Reference 

E1 Use earcons to present structured information that can be 
mapped systematically mapped to various characteristics of 
audio. 

Brewster (1994) 

E2 Earcons can be integrated into intermittently used systems since 
individuals can remember their meanings even after time has 
passed and after learning similar sounding earcons for other 
tasks. 

Brewster (1994) 

E3 Earcons can effectively be integrated into systems used by non-
musicians.  

Brewster (1994) 

E4 Limit the number of tone-based earcon sounds used in a display 
to seven. 

Stanton and 
Edworthy (1999) 

E5 If earcon sounds used are simple, for example just indicating 
events, then durations can be short (e.g., very simple earcons 
can be as short as .03 seconds). 

Brewster (1994) 

E6 When designing serial earcons insert an inter-stimulus interval 
duration of 0.1 between them so that users can tell where one 
finishes and the other starts. 

Brewster (1994) 

E6a Use spatial location as a method of differentiating earcons, 
especially when designing serial earcons. 

Brewster (1994) 

E7 Make earcons demanding (attention grabbing) by using high 
pitch, wide pitch range, rapid onset and offset times, irregular 
harmonics and atonal or arrhythmic sounds. 

Brewster (1994) 

E8 Use timbre to relate high-level organizational earcon concepts, 
rhythm and tempo to convey relative levels/quantities earcons, 
and pitch to represent subcomponents of an earcon concept.  

Brewster et al. 
(1993) 

E9 Musical instrument timbres should be selected for earcons over 
simple tones. 

Brewster (1994) 

E9a Timbres should be used that are subjectively easy to tell apart. Brewster (1994) 

E9b Where possible use timbres with multiple harmonics as this 
helps perception and can avoid masking. 

Brewster (1994) 
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Earcons Guideline(s) Reference 

E9c Multi-timbre earcons should be used when long-term memory 
of earcons is important.  

• Using multiple timbres per earcon may confer 
advantages when integrating compound earcons. 

Brewster (1994) 

E9d When earcons are expected to be presented in parallel, timbres 
of earcons that represent similar events should remain the same. 

Brewster (1994) 

E10 To capture the attention of a listener, consider using changes in 
the rhythm or pitch of an earcon. 

ETSI 

(2001) 

E10a Make rhythms as different as possible by putting different 
numbers of notes in each rhythm. 

Brewster (1994) 

E10b Do not use notes less than the length of sixteenth notes since 
small note lengths might not be noticed.  

Brewster (1994) 

E11 Contain the pitch and register of earcons to: Maximum: 5kHz 
(four octaves above C3 ) and Minimum:125Hz - 150Hz (the 
octave of C4 ). 

Brewster (1994) 

E12 Earcons can be combined (more than 2) to create compound 
parallel earcons with no expected decreases in performance. 

Brewster (1994) 

E13 Pitch/register changes should only be used alone when relative 
judgments are to be made among earcons. 

Brewster (1994) 

E14 When absolute judgment of earcons is required, use a 
combination of pitch and another parameter to differentiate 
earcons. 

Brewster (1994) 

E15 Use large intra-earcon pitch changes in combination with 
varying the number of notes and rhythm between earcons to 
enhance user’s abilities to differentiate and remember them. 

• Secondary parameters, such as intensity, stereo position, 
chords and effects (such as echo or chorus) can be used 
to help differentiate earcons from each other. 

Brewster (1994) 
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Earcons Guideline(s) Reference 

E15a 

 

If pitch is used to differentiate earcons, large differences should 
be used.  

• More subtle changes in pitch can be utilized if the 
system is being designed for trained musicians. 

Brewster (1994); 
Scharf & Buus 

(1986) 

E15b Use wide register ranges to aid in differentiation of earcons. Brewster (1994) 

E15c If register alone is used for absolute judgments among earcons, 
then there should be large differences (e.g., 2 or 3 octaves) 
between each register.  

• This is not a problem if relative judgments are to be 
made. 

Brewster (1994) 

E15d Earcons should all be kept within a close range according to 
register when not used as the sole means to differentiate of 
earcons. 

Brewster (1994) 

E16 Contain earcon intensity ranges to: Maximum: 20dB above 
threshold and Minimum: 10dB above threshold. 

Patterson (1982) 

E16a The overall sound level should be under the control of the user 
of a system. 

Brewster (1994) 

E16b Earcons should all be kept within a close intensity range so that 
if the user changes the volume of a system no sound will be lost. 

Brewster (1994) 

E16c Intensity should not be used on its own for differentiating 
earcons. 

Patterson (1982) 

 

Spatial Signals 

The utility of speech and non-speech audio can be extended by spatializing the cues 

presented.  Research has demonstrated that spatialized audio can serve as a source of localization 

(Blauert, 1996) to communicate direction, location, movement, and aid in navigation (Mulgund, 
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Stokes, Turieo, & Devine, 2002).  One of the most evident and effective uses of spatialized audio 

is in the guidance of attention to a target spatial location.  Perrott et al. (1991) suggest that audio 

can be used to guide attention to target locations when targets are both inside and outside of a 

user’s visual FOV.  In addition to enhancing situational awareness by guiding users to critical 

information when visual attention is directed elsewhere (Strybel, Manligas, & Perrott, 1992), 

spatialized audio can be used to direct visual attention within the area of current visual focus.  

Spatialized audio is also effective at aiding the differentiation of speech messages in multi-talker 

displays, as it leads to lower workload levels and increased intelligibility of messages (Bolia, et 

al., 2001; Brungart et al., 2002; Drullman and Bronkhorst, 2000). 

Since distance is generally overestimated when audio is used alone and front-back 

direction reversals are common (Caelli & Porter, 1980; Kramer, 1994), designers must be 

cautious when using localized sound for absolute judgment of position and avoid requiring 

listeners to differentiate between audio positions directly in front of and behind them.  In 

addition, system designers must take note that the audio system has an area of highest acuity, 

directly in front of individuals, that falls off as sounds are located directly to the right or left of a 

listener’s head (Stevens & Newman, 1936).  Areas of low acuity should be avoided when 

absolute judgment of location is required or supernormal auditory localization can be used to 

exaggerate normal auditory cues so listeners are better able to localize sounds (Shinn-

Cunningham, Durlach, & Held, 1998a; 1998b).   

Table 3 presents a number of theoretically derived design guidelines that should be taken 

into account when designing spatialized audio. 
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Table 11: SEAS spatial audio presentation guidelines 

Spatial 
Audio 

Guideline(s) Reference 

SA1 Auditory cues can be spatialized to indicate direction, location, and 
movement.  

ETSI (2002) 

SA2 Spatialized auditory cues can be used to identify approximately 7 
directions. 

Bushara et al. 
(1999) 

SA3 If using a head related transfer function (HRTF), use a general 
HRTF as opposed to an individualized HRTF, as there may be little 
gain from using individualized HRTFs and they take longer to set 
up. 

Drullman & 
Bronkhorst 

(2000) 

SA4 Position the source of sounds within about 5 deg in elevation and 
azimuth to aid in accurate identification of localized cues.  

Brungart 
(1998) 

SA5 When localization accuracy is important, locate sources within 1 m 
of the head. 

Brungart 
(1998) 

SA6 Locate sources away from the medium plane and within 1 m of the 
listener to increase localization performance. 

Kandel et al. 
(1995) 

SA7 When dynamic localization of sounds is expected, avoid presenting 
sounds at extreme azimuths (> 40°) and elevations (> 80° off the 
horizontal plane). 

Strybel et al. 
(1992) 

SA8 When using ITD to localize sounds, they should fall in the range of 
10 µsec to 50 µsec. 

Blauert 
(1996) 

SA9 If using spatialized audio cues to communicate movement, position 
source in front of the listener (i.e., 0° azimuth; do not exceed ± 40°). 

Strybel et al.  
(1992) 

SA10 Add spatialized audio to visual target detection tasks, as it results in 
decreased search times and lower workload while being just as 
effective as visual cuing. 

Bolia et al. 
(1999); 

Flanagan et 
al. (1998); 
Nelson et 
al.(1998)
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Spatial 
Audio 

Guideline(s) Reference 

SA11 Use supernormal auditory localization to exaggerate the positions of 
normal auditory cues. 

Shinn-
Cunningham, 
et al. (1998a; 

1998b) 

SA12 Integrate updating spatial audio cues to represent visual target 
locations when possible to reduce visual search time and reduce the 
effect of front-back and up-down reversals. 

Flanagan et 
al. (1998)

SA13 Integrate 2D audio when target detection is on a frontal plane, as 
there are no advantages in this case of using 3D over 2D audio.  

Nelson et 
al.(1998)

SA14 Use spatialized audio to aid identification of auditory messages in 
noisy environments. 

Mulgund et 
al. (2002) 

SA15 As talkers are added to a system, position them symmetrically 
around users, especially as the number of talkers increases above 2. 

Bolia et al. 
(2001) 

SA16 For tasks that require users to integrate and understand speech input 
from multiple speakers, separate speakers’ spatial positions along 
the horizontal plane in order to increase identification and 
comprehension of messages.   

Baldis (2001) 

 

The theoretical design guidelines in Tables 1-3 provide designers with a framework to 

create audio presentation systems around.  Following such guidance is expected to lead to 

interactive systems that distribute information demands across spatial and auditory processing 

resources such that they reduce the traditionally high visuo-spatial demands placed on users.  It is 

important to note that the guidelines listed in Tables 1-3 are theoretically derived and thus need 

empirical validation.  The case study presented below provides an initial source of validation.  

This study was carried out to evaluate the utility of the SEAS interaction paradigm described 

above in reducing perceptual and attentional overloads in a primarily visual interface.    
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Case Study 

Method 

A case study was conducted to evaluate the utility of applying a subset of SEAS 

guidelines to the design of a UAV control interface.  Operating multiple UAVs requires 

consideration of many factors, including air traffic separation, target monitoring and 

identification, weapons deconfliction and release, and battle management integration (Dixon & 

Wickens, 2003).  In such multitasking environments, the allocation of resources to only one task 

may lead to loss of SA on other potentially important tasks (Riley & Endsley, 2005).  For this 

reason, such control interfaces place a high HIP demand on operators and thus could potentially 

benefit from offloading of demands from visual displays to auditory displays through the 

application of SEAS guidelines.  To evaluate this supposition, SEAS guidelines were applied to 

the design of a UAV control interface, specifically, to examine if this would lead to a decrease in 

attentional and perceptual bottlenecks while individuals operated a UAV flight control interface 

across various workload levels.   

Participants 

Thirty students (8 females and 28 males) were recruited from the University of Central 

Florida to participate in this study.  Participants had a mean age of 20.07 years (S.D. = 3.45), 

with a range of 17-34 years.  26 participants were right-handed and four were left-handed.  The 

average number of hours playing games equaled 7.4 hours (S.D. = 8.62) per week while the 
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average time spent using a computer outside of game play equaled 17.9 hours (S.D. = 15.51) per 

week.   

Apparatus 

UAV control tasks were performed on a 3.0 GHz Dell Inspiron 9100 computer with a 128 

Mb Radeon 9600 video card.  Two forms of the UAV control interface were developed for this 

study, one without SEAS cues and one with SEAS cues.  The interface was presented on two 

side-by-side 17” NEC Multisync LCD displays at 1280x1024 screen resolution.  Both the 

Baseline visual control interface and the SEAS enhanced visual-auditory interface presented one 

window on each display.  The display on the left presented a map interface that was used to plan 

and initiate attacks and the display on the right was used to present radar images of items of 

interest when they were available, which controllers used to designate points of impact to 

finalize sorties.  Audio was presented through a set of Plantronics DSP 500 noise-canceling 

headphones which allowed for spatialized sound presentation.  All input was made with a 

standard 2-button mouse. 

Three questionnaires were used in this study.  Modified versions of the Cooper-Harper 

questionnaire (Wierwille & Casali, 1983) and NASA-TLX (NASA Human Performance 

Research Group, 1987) were used to assess workload, while the Situational Awareness Rating 

Technique questionnaire (SART; Taylor, 1990) was used to assess situational awareness. 
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Tasks 

Participants were required to perform three tasks while interacting with the UAV control 

system: (1) set up sorties (i.e., operational flights) on preplanned targets; (2) set up sorties on 

unplanned targets; and (3) detect and resolve vehicle health tasks.  For all tasks, UAVs were 

presented in distinct groups of four arranged in a diamond formation (see Figure 3).  The lead 

UAV carried heavy assets that were used to attack heavy targets.  The middle two UAVs carried 

small assets that were used to attack small targets.  The rear UAV carried medium assets that 

were used to attack medium targets. Workload was increased by increasing the number of UAVs 

that were controlled by participants from four to eight to twelve UAVs controlled.   

The primary task required participants to plan and direct sorties on preplanned items of 

interest (IOIs) using an updating map display (presented on the left display), which displayed 20 

IOIs for each set of four UAVs controlled (see Figure 3).  To carry out this task, controllers were 

required to match a UAV carrying the correct ordnance to the ordnance requirements of the IOIs.  

Letters located below each IOI indicated the ordnance requirement ([S]mall, [M]edium, or 

[H]eavy), and the same letters were located below UAVs to designate the ordnance that each 

carried (see Figure 3).   
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Figure 3: UAV control interface 

 

After IOIs and UAVs were paired, a line appeared connecting them (see Figure 4a) and 

when close enough, the UAV took a radar image of the IOI.  Once the image was available, an 

icon denoting this was presented under the IOI icon (see Figure 4a), which the controller could 

click to view the image and finalize the sortie.  After clicking the icon, the associated radar 

image appeared in the display on the right and the controller selected the precise weapon 

allocation points from this image.  Once the allocation points were selected the icon over the IOI 

changed to depict the number of ordnances allocated to that IOI (see Figure 4b).  At this point, 

the UAV would carry out the sortie without any more guidance from the controller; however, the 

controller was required to check the status of the UAV to determine when it had completed the 

sortie to reassign it, an event that was communicated with another change to the icon over the 

IOI’s location (see Figure 4c).  This task was performed for every IOI that was presented on the 

display as the UAVs progressed forward (and were restricted from moving back).  The number 
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of icon changes (task status updates) detected and time required to perceive these changes were 

recorded.  

 

Figure 4: a) Radar image available icon b) Number of assets dispensed icon c) Asset released 

icon 

While performing this primary task, two secondary tasks were also performed.  The first 

required participants to detect and set up sorties on unplanned time critical items of interest 

(TCIs).  Such TCIs appeared throughout each trial and although sorties were set up in the same 

fashion as any other IOI, these items required participants to quickly identify them and set up a 

sortie within 10 sec after appearance. 

Another secondary task required participants to detect and resolve vehicle health tasks 

(VHTs) as they occurred throughout scenarios.  VHT occurrences were symbolized by 

presenting a red outline around the UAV that required attention.  After detecting this cue, the 

controllers were required to double-click on the affected UAV and answer questions that were 

presented in a text box that appeared onscreen.   

Since both secondary tasks required participants to selectively attend to the TCIs and 

VHTs directly after appearance, and thus imposed HIP resource demands during primary task 
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performance, they were used to evaluate the effectiveness of SEAS cues to increase the 

percentage of cues that were attended to and decrease the time required to attend to them.  

SEAS Cue Design Process 

In order to integrate audio cues that had the greatest utility in reducing the perceptual and 

attentional bottlenecks of the task, a four stage process was followed.  First, a task analysis was 

performed to determine where audio cues should be integrated.  Based on the results of the task 

analysis, portions of the task that placed high demands on perceptual and attentional resources 

and thus had the potential to lead to perceptual and attentional bottlenecks were determined.  

Following the SEAS guidelines presented herein (see Tables 9-11), audio cues were then 

designed to alleviate each of the potential perceptual and attentional bottlenecks.  When creating 

the cues, care was taken to integrate speech, earcons, and auditory icons separately for different 

tasks in order to make each of them distinct from one another (e.g. speech was used to direct 

attention while nonspeech cues were used to guide perception).   Finally, after all cues were 

integrated into the display, the augmented interface was evaluated by two pilot participants to 

determine the usability of the audio cues prior to experimentation.  Based on feedback from the 

pilot, the cues were modified (e.g. volumes changed, earcon timbre selections changed to make 

them more distinct), and then the new cues were integrated into the display as described below.   

SEAS Cues Employed 

The task analysis revealed that while performing the primary task of setting up sorties on 

preplanned targets, visual overload could hinder participants from perceiving that radar images 
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were ready to be viewed and that UAVs were complete with a sortie and could be applied to 

another IOI.  To reduce these potential perceptual bottlenecks, spatialized auditory icons and 

earcons were integrated into the UAV control display to aid in the perception of these events.  

Whenever a radar image was available, a spatialized auditory icon (camera click sound) was 

played from the position of left, right, or center, depending on the position of the newly available 

radar image.  When UAVs completed sorties, a spatialized earcon was played to denote which 

UAV was free to be reassigned.  The earcons were spatialized left, right, or center to guide the 

controller to the group of UAVs that the newly available aircraft was in.  The structure of the 

earcon guided the controller to precisely which UAV was available.  To do so each group of four 

UAVs was mapped with distinctly different timbres.  The lead vehicle carrying heavy assets was 

paired with a brass instrument playing a note at two octaves below middle C.  The middle UAVs 

in the diamond shaped formation (see Figure 3), carrying small assets were paired with a 

vibraphone (left vehicle) and a pan flute (right vehicle) playing two octaves above middle C.  

The rear UAV, carrying medium assets was paired with a piano note playing at middle C.  These 

cues were expected to reduce perceptual bottlenecks due to visual overload, thereby increasing 

the number of cues that could be responded to and reducing response time. 

In analyzing the secondary tasks, potential attentional bottleneck were identified because 

both TCIs and VHTs required immediate attention while other tasks were being attended to.  To 

overcome these potential attentional bottlenecks, in the SEAS interface when TCIs or VHTs 

occurred speech messages were played in a natural voice stating “Critical Target” or “Health 

Alert” (respectively).  The message was spatialized in accordance with the location of the TCI or 

VHT (left, right, center).  In addition, the message was played in different gender voices 

depending on the location of TCI or VHT.  A male voice was presented if the TCI or VHT 
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occurred on the left side of the display, a female voice was played for the center, and a different 

male voice was used for the right side. These mitigations were expected to transform the purely 

visual secondary tasks to auditorily guided search tasks, thereby reducing attentional bottlenecks 

associated with periodically scanning for the presence of VHTs and TCIs.   

Procedure 

Prior to beginning, participants completed an informed consent and demographics 

questionnaire.  Each participant then performed a training session familiarizing them with the 

UAV control tasks, including how to properly pair UAVs to items of interest, how to control 

UAVs to perform sorties, where to place asset allocation points for each item of interest, and 

how to recognize and handle TCIs and VHTs.  Following training, rules of engagement, 

procedures, and strategies were explained to participants and they were seated in front of the two 

monitor displays; the display on the left presented an updating map display to select and pair 

IOIs and receive information about TCIs and VHTs; the display on the right presented the radar 

images that were used to determine the precise asset drop points for each item of interest. 

Prior to testing, participants performed two practice trials operating four UAVs.  During 

these trials, participants were required to successfully complete 65% of the sorties at a low 

workload level (four UAVs) before testing.  During testing, participants were required to 

perform tasks on two interface conditions (Baseline- visual display, SEAS- visual display 

augmented with SEAS cues) under each workload level (four, eight, and twelve UAVs).  To 

reduce order and practice effects, the order of interface presentation was counterbalanced.  Prior 

to performing tasks on the SEAS interface, participants were trained on each sound employed 
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(i.e., camera shot sound, earcons).  Accuracy and reaction time were used to assess performance.  

In addition, following the completion of each UAV interface evaluation (Baseline, SEAS), 

workload and situational awareness questionnaires were completed by each participant.  

Experimental Design 

To evaluate the effectiveness of the Baseline and SEAS interfaces at the three workloads 

levels observed, a 2x3 (interface type x workload) within-subjects design was implemented. 

Each participant performed with both the Baseline visual interface and the SEAS augmented 

interface.  Each interface was used to perform the tasks at three levels of workload consisting of 

the control of four, eight, and twelve vehicles.  Several performance measures were recorded and 

compared using this approach.  Perceptual measures included 1) the effectiveness of SEAS 

spatialized auditory icon cues to present an update in radar imaging status, which was assessed in 

terms of the percentage of radar images that were viewed and the time required to view radar 

images; and 2) the effectiveness of SEAS spatialized earcons to present UAV status updates 

(when a sortie was completed), which was assessed in terms of the time required to reassign 

UAVs to new items of interest after becoming available.  Attentional measures included 1) the 

effectiveness of SEAS spatialized speech cues to facilitate TCI detection, measured using 

reaction time and the number of TCIs detected and 2) the effectiveness of using SEAS 

spatialized speech cues to facilitate VHT detection tasks, measured using the number of VHTs 

detected and time required to detect them.  In addition, the percentage of VHTs correctly 

answered was also recorded.  A repeated measure GLM was performed to test for significant 

differences across workload and interface types for all performance measures except for the time 
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to react to VHTs.  For the VHT reaction time measure, eight data points were dropped due to 

missing data (no VHTs detected) and thus this variable was independently evaluated using a 

separate repeated measures GLM.  Least Significant Difference (LSD) post-hoc analyses were 

then performed on the significant variables.  Due to the limited number of responses available for 

the workload questionnaires (unweighted NASA TLX- 20 point scale; modified Cooper-Harper- 

10 point scale), separate Wilcoxon matched pairs signed-rank tests were performed on the 

answers to each question to compare results reported when using the Baseline to the use of the 

SEAS interface.  The average scores of all questions on each of the tests were then compared 

using paired-sample T-tests. 

Results 

Perceptual Evaluation Measures 

The percentage of radar images viewed showed significant main effects of interface used (F(1, 

29) = 6.62, p = .015) and workload (F(2, 58) = 4.866, p < .011).  An LSD post-hoc analysis 

showed that as workload increased, the percentage of radar images viewed decreased (p < .05 for 

all workload main effect comparisons).  As can be seen in Table 12, when the SEAS interface 

was used, on average, 1.9% more SARS were viewed and these differences were more 

prominent as workload increased.   

The analysis of reaction time to radar images demonstrated significant main effects of 

interface used (F(1, 29) = 9.87, p = .004) and workload level (F(2, 29) = 50.09, p < .001).  An 

LSD post-hoc analysis showed that as workload increased, the time required to view radar icons 
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also increased (p < .05 for all workload main effect comparisons).  As demonstrated in Table 12, 

the reaction time to view radar icons was 23.8% lower, on average, when using the SEAS 

interface than the Baseline interface under the highest level of workload.  These results support 

the SEAS principle of using spatialized auditory icons to reduce perceptual bottlenecks in 

primarily visual systems. 

 

Table 12: Radar icon detection performance for Baseline and SEAS displays 

Workload 
level 

Baseline Performance SEAS Performance 

 Radar Image 
Viewed (%) 

Radar Image Reaction 
Time (seconds) 

Radar Image 
Viewed (%) 

Radar Image Reaction 
Time (seconds) 

1 98.66 (2.92) 3.9 (2.69) 99.29 (1.85) 2.30 (0.98) 
2 97.99 (3.49) 6.33 (2.75) 99.37 (1.31) 5.21 (2.92) 
3 93.99 (12.2) 8.54 (3.88) 97.61 (3.69) 6.81 (2.06) 

Average 96.88 6.26 98.76 4.77 
SD in parentheses 

 

Results regarding the effectiveness of SEAS spatialized earcons to cue UAV status 

updates demonstrated a significant main effect for workload (F(2, 29) = 90.936, p < .001).  An 

LSD post-hoc comparison showed that as workload increased, the time required to reassign an 

available UAV to items of interest also increased.  As demonstrated in Table 13, increases in 

workload led to increases in vehicle reassignment times (p < .05 for all workload comparisons).  

There was no significant main effect found based on interface type (F(1, 29) = 1.564, p = .221), 

although a trend is present suggesting lower reassignment times while using the SEAS display 

when compared to the Baseline display.  These results suggest the potential of spatialized 

earcons but clearly indicate more research is needed to demonstrate their effectiveness in 
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reducing perceptual bottlenecks in primarily visual systems.  In particular, when compared to the 

effectiveness of auditory icons presented above, it is important to evaluate whether the increased 

complexity of earcons reduces their capability to alleviate perceptual bottlenecks. 

 

Table 13: Vehicle status detection for Baseline and SEAS displays  

Workload 
level 

Baseline – Vehicle status  
detection (seconds) 

SEAS – Vehicle status  
detection (seconds) 

1 33.6 (11.89) 30.44 (14.54) 
2 39.07 (10.29) 38.81 (13.24) 
3 60.85 (16.37) 57.33 (14.99) 

Average 44.51 42.19 
SD in parentheses 

Attentional Evaluation Measures 

The number of TCIs detected and time required to detect TCIs both demonstrated significant 

main effects for workload level (F(2, 58) = 19.65, p < .001, F(2, 58) = 8.43, p = .001, 

respectively) and interface type (F(1, 29) = 5.07, p = .032), F(1, 29) = 4.71, p = .038, 

respectively).  LSD post-hoc comparisons showed that as workload increased, the number of 

TCIs detected significantly decreased (p < .05) and the time required to detect TCIs increased (p 

< .05).  In addition, as can be seen in Table 14, the percentage of TCIs detected was on average, 

12.5% higher and the time required to detect TCIs was on average 20.2% lower while using the 

SEAS display as compared to the Baseline display in the high workload condition.  These results 

support the use of spatialized speech messages for enhancing attention.   
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Table 14: TCI detection in Baseline and SEAS displays  

Workload 
level 

Baseline Performance SEAS Performance 

 TCI detected (%) TCI detected 
(seconds) 

TCI detected (%) TCI detected 
(seconds) 

1 91.67 (18.95) 11.4 (7.65) 98.33 (9.13) 10.12 (5.17) 
2 69.17 (32.62) 17.4 (9.22) 77.23 (20.88) 14.63 (9.82) 
3 70.9 (27.35) 16.6 (6.83) 79.73 (21.32) 13.25 (4.64) 

Average 77.24 15.13 85.09 12.67 
SD in parentheses 

 

Analysis of the number of VHTs detected showed significant differences between the 

performance on the Baseline and SEAS interfaces (F(1, 29) = 32.29, p < .001), and workload 

levels (F(2, 58) = 9.01, p < .001).  A significant interaction effect was also found between 

workload level and interface used (F(2, 58) = 8.12, p = .001).  An LSD post-hoc analysis 

demonstrated that when workload increased from the low to medium to high levels, fewer VHTs 

were detected (p < .05 for both comparisons). When evaluating the time required to react to 

VHTs, a significant main effect between interfaces was found (F(1, 18) = 16.25, p < .05).  As 

demonstrated in Table 15, the use of SEAS cues increased detection rates by 76.13%, on 

average, and reaction time was 42.11% faster, on average, when compared to the use of the 

Baseline display.  Table 15 also shows that as workload increased to medium and high levels, the 

performance differences accredited to the use of SEAS cues became more apparent.   

A significant difference was also found between subjectively perceived mental workload 

while performing the VHT tasks (p < .001) when using the two interfaces.  Participants 

considered the VHT task, on average, 41.3% less demanding when SEAS cues were integrated 

into the display.  These results support the SEAS principle of using concise spatialized speech 

messages to conveying warning information to reduce visual attentional bottlenecks. 
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Table 15: VHT detection performance in baseline and SEAS displays 

Workload 
level 

Baseline Performance SEAS Performance 

 VHT detected (%) VHT detected  
(seconds) 

VHT detected (%) VHT detected 
(seconds) 

1 61.67 (42.91) 6.18 (5.72) 74.17 (35.04) 4.11 (3.75) 
2 36.67 (39.79) 7.1  (4.64) 83.33 (32.87) 4.05 (2.87) 
3 33.53 (31.64) 9.16 (3.57) 71.4 (31.96) 4.77 (2.87) 

Average 43.32 7.48 76.3 4.33 
SD in parentheses 

 

When assessing response accuracy of VHTs, significant main effects for interface type 

(F(1, 29) = 18.28, p < .001) and workload levels (F(2, 58) = 4.36, p < .017)  were found.  An 

LSD post-hoc analysis demonstrated that when participants used the SEAS augmented display, 

more VHTs were handled correctly (p < .05).  The percentage of VHTs handled correctly 

decreased in the highest workload level when compared to the low and medium workload levels 

(p < .05 for both comparisons).  As can be seen in Table 16, when participants used the SEAS 

augmented display, in higher workload conditions, on average 109% more health tasks were 

answered correctly. In addition, a significant interaction effect (F(2, 56) = 4.12, p < .05) suggests 

that as workload increased the utility of SEAS cues to lead to higher VHT response accuracy 

became more apparent.  This is evident when the response accuracy increase of 3.04%, on 

average, associated with the integration of audio in the low workload condition is compared to 

the average increase of 109% that was found in the high workload condition. 
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Table 16: VHT response accuracy in Baseline and SEAS displays 

Workload 
level 

Baseline – VHT response accuracy 
(%)  

  SEAS – VHT response accuracy 
(%) 

1 55.0 (44.23) 56.67 (40.97) 
2 34.17 (36.24) 65.83 (32.49) 
3 27.5 (25.54) 57.5 (27.88) 

Average 38.89 60 
SD in parentheses 

Subjective workload and situational awareness 

Averaged modified Cooper-Harper subjective workload ratings demonstrated that the use 

of the  SEAS augmented interface led to a lower perceived mental workload when the SEAS 

interface was used (t(29) = 2.29, p = 0.01).  In particular, the perceived workload level for the 

entire task was lower when using the SEAS interface (p = 0.002). Table 17 shows that 

individuals found it significantly less demanding to detect VHTs (p < 0.001) and perform the 

overall task (p = 0.002) when using the SEAS as compared to the Baseline UAV control 

interface..   

 

Table 17: Cooper-Harper subjective perceived mental workload levels  

Interface VHT 
Detection 

SAR 
Detection 

Target 
Pairing 

Vehicle Status 
Detection Overall Task Average 

Baseline 5.23 (2.25) 4.23 (2.18) 5.17 (2.39) 4.9 (2.35) 7.17 (1.76) 5.00 (0.74)
SEAS  3.07 (1.98) 3.73 (2.18) 5.03 (2.25) 5.27 (2.40) 5.93 (2.06) 4.59 (1.16)
Difference 2.16* 0.5 0.14 -0.37 1.24* 0.41* 

SD in parentheses; * denotes significant difference 
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Average unweighted NASA-TLX subjective workload ratings demonstrated that 

participants found the use of the SEAS interface less demanding than the use of the Baseline 

interface (t(29) = 1.81, p < 0.01).  In particular, participants considered the SEAS display as less 

mentally demanding than the Baseline (p = .010). As Table 18 demonstrates, the other NASA-

TLX workload factors including temporal, performance, effort, and frustration, though not 

significant, showed this same pattern of being perceived as slightly less demanding while using 

the SEAS display as compared to the Baseline display. 

 

Table 18: NASA-TLX subjective workload 

Interface Mental Temporal Performance Effort Frustration Average 

Baseline 15.5 (3.69) 14.9 (4.57) 10.03 (4.36) 14.93 (3.95) 12.27 (5.26) 12.37 (2.92)
SEAS  13.53 (5.03) 14.2 (4.5) 9.23 (4.45) 13.7 (4.68) 11.2 (5.1) 11.44 (3.4)
Difference 1.97* 0.7 0.8 1.23 1.07 0.93 

SD in parentheses; * denotes significant difference 

 

Comparisons of SART Situational awareness ratings show that there were no significant 

differences found on any subcomponent of this scale although there was a general pattern of 

increased SA associated with the integration of SEAS cues. 

Discussion 

A great deal of emphasis has been placed on research regarding HSI issues related to 

controlling UAVs due to the unacceptably high percentage  (50%) of UAV accident rates 

attributed to human factors issues (Ferguson, 1999).  To aid in reducing UAV accident rates, 

Draper and Ruff (2000) have developed a research plan to evaluate the utility of using multi-

62 



sensory displays (such as the one described herein) to interface with UAV controllers.  They 

have demonstrated that response times to UAV tasking can be decreased 40% if speech input is 

used to interact with systems (Draper et al., 2003) and that both tactile and auditory alerts can be 

used to effectively direct attention to visual UAV warnings (Calhoun et al., 2005).  In addition, 

Draper and Ruff (2000) have shown that the integration of haptics into UAV control interfaces 

can be used to increase controller SA of turbulence events, though they propose that the use of 

spatialized audio may lead to the same types of operational benefits.  The results of the current 

study support this proposition by demonstrating that the integration of spatialized audio cues can 

effectively reduce perceptual and attentional bottlenecks associated with performing UAV 

control tasks.  

Specifically, primary task performance results suggest that spatialized audio icons and 

spatialized earcons developed in accordance with SEAS guidelines can be integrated into 

systems to reduce perceptual bottlenecks.  The integration of audio icons, and to a lesser extent 

earcons, led to more effective and faster performance in the perception of visual cues.  As radar 

images became available, participants viewed on average 1.9% more of them and viewed them 

on average 23.8% faster when spatialized auditory icons guided them to the presence and 

location of newly available radar images in the highest workload conditions.  As workload levels 

increased, the utility of integrating SEAS cues became more apparent, suggesting that the ability 

of such cues to lead to perceptual gains is higher as workload is increased.   

In terms of attentional bottlenecks, participants attended to, on average, 12.5% more TCIs 

and attended to them 20.2% faster when guided by spatialized speech messages under high 

workload conditions.  Participants guided by spatialized speech messages also attended to, on 

average, 76.13% more vehicle health tasks and attended to them, on average, 42.11% faster. 
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  In addition to attending to more secondary tasks at faster rates, participants were on 

average 109% more accurate at answering vehicle health questions when they were guided to the 

presence of them by SEAS cues.  This may be attributed to an improved alertness level of 

operators and the opportunity to process the health alerts and formulate an answer in parallel 

with other tasks when performing with the SEAS interface. Conversely, these performance gains 

could be a side-effect of decreased response time. Specifically, the SEAS interface allowed 

participants to attend to VHTs faster, and thus allowed more time to formulate an answer, thus 

potentially reducing the time pressure of that task.  

Taken together, the performance increases in both the perceptual and attentional aspects 

of the UAV tasks suggest that the use of multiple modalities to guide interaction yields 

considerable benefits over visual-only interaction.  These results fall in line with previous MRT 

studies that suggest that information displayed using multiple modalities leads to better 

performance when perceiving and attending to information (Parkes & Coleman, 1990; Penney, 

1989; Rollins & Hendricks, 1980; Seagull et al., 2001; Wickens et al., 1983).  According to 

MRT, the benefits of SEAS are likely associated with increased dual task (i.e., visual and 

auditory) performance efficiency. Specifically, given the availability of separate visual and 

auditory perceptual and attentional resources, information may have been better time-shared 

using the SEAS interface.   

Although it is apparent that the utilization of multiple resources while using multimodal 

systems has the potential to lead to performance gains when compared to the use of unimodal 

systems, a closer look into the audio augmentations made in this study and other UAV studies 

makes it more evident where these gains may stem from.  Wickens, Dixon, and Chang (2003) 

performed a study much like the one described herein and found the same results; that the 
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integration of audio (specifically speech output) into primarily visual displays leads to increases 

in task performance on the task augmented with audio, as well as other tasks concurrently being 

carried out.  Their study required participants to perform three tasks which were very comparable 

to the tasks performed in the current study.  Participants were required to perform a primary task 

of navigating a UAV to a particular location (comparable to the primary sortie task in this study), 

while simultaneously scanning for targets of opportunity (comparable to the TCI task), and 

monitoring a set of gauges for system failures (comparable to the VHT task).  Wickens, Dixon, 

and Chang (2003) augmented the gauge monitoring task with speech output that provided 

guidance to controllers on what to do whenever a system failure was detected.  The primary 

difference between the study performed by Wickens, Dixon, and Chang (2003) and the current 

study lie in the number of UAVs controlled and performance gains that were found.  The former 

study demonstrated performance increases due to the integration of non-spatial speech audio 

when the number of UAVs controlled varied between one and two.  The current study 

demonstrated performance increases due to the integration of spatialized speech as well as 

spatialized earcons and spatialized auditory icons when the number of UAVs controlled was 

increased from four to 12.  Taken together, the results of these studies suggest that if systems are 

designed to support multimodal HIP, the capabilities and performance levels of UAV controllers 

could be increased dramatically.  This result is of utmost importance, given the military’s 

reduced manning and minimum-crew multitasking objectives.   

Table 19 compares the results that were found in this study to three other UAV studies 

that were discussed.  The results presented in this table are based on the highest workload 

conditions in each study.  The presented results are based on the integration of audio as an output 

source to guide controllers for all studies presented except for Draper et al.’s (2003) study which 
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compared the utility of using speech input to manual input systems.  The general conclusion that 

can be drawn from these studies is that the integration of both audio output and speech input 

systems have great potential when used to augment visual interface systems.   

 

Table 19: UAV study results comparison 

Study Min/Max 
UAVs 

Controlled

Response Time 
Decrease Due 

to Audio* 

Detection Rate 
Increase Due to 

Audio* 

Workload Decrease 
Attributed to Audio 

Current study 4/12 42% 76% 42% 
Wickens & Dixon 1/2 60% 33% N/A 

Calhoun et. al (2005) 1 17% N/A 62% 
Draper et. al (2003) 1 40%* N/A Significant but 

unspecified 
 

 

More detailed analysis of the augmentations made in the present study and the study 

performed by Wickens and Dixon (2002) makes it apparent that the true utility of audio may lie 

in its ability to eliminate secondary visual monitoring tasks.  By augmenting visual displays with 

auditory alarms, the task of periodically visually scanning areas of a display for secondary task 

updates while monitoring information and searching for changes is totally removed.  Instead, this 

task is replaced by the task of monitoring an auditory channel for discrete, readily detectable 

changes.  This may be why subjective workload was perceived as lower with the use of the 

SEAS as compared to the Baseline system.  Each periodic scan of the environment that was 

required in the Baseline interface required visuo-spatial resources that were already in use by the 

primary UAV-IOI pairing task.  By transferring the resource requirements of the monitoring task 
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to the audio channel, thus splitting the resource requirements, this associated workload may have 

been reduced. 

Given that individuals perform better on both primary and secondary tasks when multiple 

response modalities are used during dual-task performance (Wickens, 1976; Wickens and Liu, 

1988), it could be assumed that even greater advantages would be seen in the current study and 

in the study performed by Wickens, Dixon, and Chang (2003) if speech input was used as the 

response modality for the secondary task, thus allowing for total parallel performance of the 

tasks from perception to response.  Research by Draper et al. (2003) supports this supposition, 

suggesting that the integration of speech input systems has the potential to lead to substantial 

time savings when compared to using manual input for secondary UAV control tasks.  

Each of the studies discussed herein and the results of the current study support the 

integration of audio to create multi-sensory interfaces.  In particular, by following guidelines 

such as the ones presented in this article, audio can be designed and integrated into primarily 

visual interfaces to alleviate critical perceptual and attentional bottlenecks and allow for 

multitasking by utilizing multiple HIP resources.  In turn decreases in workload can be achieved 

while allowing operators to perform additional operations at higher performance levels.  It is 

imperative that system designers expand the WIMP interaction paradigm to include SEAS cues 

to support this end.  This is especially true for military system designers to meet the military’s 

reduced manning and minimum-crew multitasking objectives. 
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Conclusions and Future Research 

The results of this case study support the use of the SEAS guidelines to reduce attentional 

and perceptual bottleneck caused by visual overload.  In general, this case study supports the 

idea of integrating additional modalities into system designs to take advantage of multimodal 

HIP capabilities.  

In regards to UAV control system interface design, this study demonstrated that audio 

designed using SEAS guidelines can be used to alleviate the demands of secondary tasks that are 

typically performed using a visual interface.  These results show strong support for the research 

plan proposed by Draper and Ruff (2000) that is focused on the integration of multi-sensory 

displays for UAV workstations.  To aid such a research plan, guidelines such as the ones 

presented in this study for audio should be developed for all modalities.  

Future research should also examine the effects of auditory cues designed using the 

SEAS guidelines on working memory and executive functioning bottlenecks.  In addition, given 

that the use of auditory icons led to performance increases when compared to the no audio 

conditions, while the integration of earcons did not, future research should focus on determining 

what causes such differences in the utility between the two types of audio cues and what types of 

tasks (e.g. decision making, working memory) earcons are better suited to guide.  Due to 

increased performance advantages in high workload conditions, the integration of SEAS cues 

should be studied at increased workload conditions.  
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CHAPTER FOUR: GENERAL CONCLUSIONS AND FUTURE 
DIRECTION 

MRT (Wickens, 1984) suggests that individuals utilize a multidimensional system of 

independent resources consisting of distinct stages of processing (encoding, central processing, 

and responding), which involve various sensory modalities (visual, auditory), working memory 

(WM) processing codes (spatial, verbal), and response modalities (manual, vocal).  It is further 

suggested that if tasks are designed to utilize separate resources that they can be successfully 

performed in parallel (Wickens, 1984).  In light of this theory, the two studies presented herein 

focused on evaluating the utility of adding audio in alleviating perceptual and attentional 

bottlenecks associated with the use of unimodal visuo-spatial interfaces. 

The results of the pilot study presented in chapter two provides only borderline support 

for the integration of spatialized earcons and auditory icons to direct perception and spatialized 

speech to direct attention.  Further analysis suggested that the lack of significance in the data 

may have been due to low power, which suggested a need to extend the study to determine the 

true utility of integrating audio cues to relieve perceptual and attentional demands.  As was 

expected, when the pilot study was extended in study two (presented in chapter 3), the borderline 

results became significant, suggesting that the integration of audio designed using the SEAS 

guidelines presented herein has the potential to decrease both perceptual and attentional 

bottlenecks associated with the use of unimodal visuo-spatial interferences.  The performance 

increases found are likely due to the use of separate modalities that take advantage of human’s 

abilities to time-share tasks when separate MRT resources are used.   

Overall this research effort provides four overarching guidelines for the integration of 

audio into primarily visual interfaces.  First, although spatialized auditory icons can be used to 
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aid in the perception of visual cues, earcons may not be effective at doing so.  Second, 

spatialized speech messages are effective at guiding visual attention.  Third, SEAS audio cues 

are effective at guiding interactions with visuo-spatial displays, particularly for secondary tasks.  

Finally, the utility of integrating spatial audio into primarily visual interfaces increases with 

workload. 

Although this effort does provide evidence that audio can be used to reduce perceptual 

and attentional bottlenecks and provides a source of validation for a subset of the audio design 

guidelines presented herein, it does not validate all of them or provide insight on the utility of 

audio or other modalities to reduce working memory or executive function bottlenecks.  For this 

reason, there are a number of areas of future research that are essential in achieving a multimodal 

design science. 

First, there is a need to validate the remainder of the SEAS audio design guidelines 

presented in this work.  Such an effort would assure that each of the guidelines provides utility to 

audio designers and helps to support the second area of essential future research, the evaluation 

of audio cues to reduce working and executive function bottlenecks.  The current work focuses 

on attentional and perceptual overloads and ignores the other stages of HIP.  To determine where 

the integration of audio is most useful, research must be focused on the integration of audio to 

support working memory and executive function bottlenecks. 

Given that this study and others (Lemmens, Bussemakers & de Haan, 2001) have shown 

that there is greater utility to using auditory icons over earcons to guide performance, future 

research needs to be directed at determining precisely what causes the differences in utility 

between the two types of audio cues and what types of tasks (e.g. decision making, working 

memory, high complexity) earcons are better suited to guide.  In addition, before earcons and 
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auditory icons can be effectively integrated into systems that are used by diverse cultures, it is 

important to determine what are the cultural limitations each type of cue.  For example, given 

that people learn the natural mappings of auditory icons from past interactions with the world 

(Gaver, 1986), it is likely that if cues are heard by people who have not experienced a similar 

audio cue in the past, the meaning will be lost and the audio cue will lose its utility and may 

ultimately add to the complexity of a task.  Likewise, given that most earcons are created using 

Western tonal scales (Blattner, Sumikawa, & Greenberg, 1989), the utility of using such cues 

could be diminished or lost if they are heard by someone unfamiliar with Western music.  In 

order to assure that audio cues are designed to be useful to all users, cultural differences such as 

these need to be taken into account and further studied.  

To establish a comprehensive multimodal design science, research efforts should also be 

extended to additional modalities.  Although high level guidelines do exist for the integration of 

multiple modalities (Stanney et al., 2004), detailed design guidelines need to be created for 

haptics, olfaction, and gustatory information.  Such guidelines then need to be validated and 

combined with current visual and auditory guidelines to build a set of optimum multimodal 

interface design guidelines. 

Finally, the utility of each modality in reducing HIP bottlenecks needs to be evaluated 

across various workload conditions to determine if benefits change based on operator load.  

Given that the current studies suggested that the integration of audio was more useful at 

alleviating perceptual and attentional bottlenecks under high workload conditions, it is likely that 

the utility of other modalities to affect these and other stages of HIP may also vary with the 

conditions that the interface is operated under (e.g., operator workload, stress).
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INFORMED CONSENT TO PARTICIPATE 
 

Study Introduction 
You are being asked to voluntarily participate in a research study titled, “SEAS Audio Interface 
Evaluation”. In this study, you will participate in an Unmanned Combat Air Vehicle (UCAV) 
interface evaluation. The task will require you to direct a set of 4, 8, and 12 UCAVs through a series 
of bombing missions.  During each mission you will be required to pair each UCAV with a number of 
targets, take an image of the target, evaluate the image, and attack the target. Throughout each 
scenario these tasks will be performed multiple times on each UCAV that you are operating. You will 
be required to perform these tasks on two different system interfaces. The study will consist of 
approximately two hours. You will be asked to complete an informed consent form, a demographic 
questionnaire, and a training session to help in familiarizing you with the scenarios.  The 
experimental session will require you to perform six missions using two different interfaces, followed 
by several questionnaires. You must be 18 years of age or older to participate. 

 
Risks and Benefits 

This experiment poses no risks or discomforts to you as a participant other than those associated with 
the following: working on any desktop computer application with a mouse/keyboard, audio headset, 
or; playing an interactive video game. If you do experience any discomfort, you may stop the research 
at any time.   
 
As a research participant you will not benefit directly from this research, besides learning more about 
how research is conducted.   

 
Compensation 

Class extra credit or a monetary compensation of $20 will be given to each participant after 
completion of the experiment.  Participants from the psychology department, signed up through 
experimetrack will be compensated with extra credit through that system and all other participants 
will be compensated monetarily. 
 

If you believe you have been injured during participation in this research project, you may file a claim 
with UCF Environmental Health & Safety, Risk and Insurance Office, P.O. Box 163500, Orlando, FL 
32816-3500 (407) 823-6300.  The University of Central Florida is an agency of the State of Florida for 
purposes of sovereign immunity and the university’s and the state’s liability for personal injury or 
property damage is extremely limited under Florida law.  Accordingly, the university’s and the state’s 
ability to compensate you for any personal injury or property damage suffered during this research project 
is very limited. 
 
Information regarding your rights as a research volunteer may be obtained from: 
Barbara Ward 
Institutional Review Board (IRB) 
University of Central Florida (UCF) 
12443 Research Parkway, Suite 302 
Orlando, FL  32826-3252 
Telephone: (407) 823-2901 
 
(Continued on next page)

73 



Confidentiality of Personal Data: 
All data you contribute to this study will be held in strict confidentiality by the researchers and 
your individual data will not be revealed to anyone other than the researchers and their 
immediate assistants. 
   
To insure confidentiality, the following steps will be taken: (a) only researchers will have access 
to the data;  (b) data will be stored in locked facilities; (c) all electronically stored data will be 
held on secure unnetworked computers in locked facilities (d) the actual forms will not contain 
names or other personal information. Instead, the forms will be matched to each participant by a 
number assigned by and only known to the experimenters; and (e) only group means scores and 
standard deviations, but not individual scores, will be published or reported. 
 
YOUR PARTICIPATION IN THIS RESEARCH IS COMPLETELY VOLUNTARY.  YOU 
MAY WITHDRAW FROM PARTICIPATION AT ANY TIME WITHOUT PENALTY - THIS 
INCLUDES REMOVAL/DELETION OF ANY DATA YOU MAY HAVE CONTRIBUTED.  
SHOULD YOU DECIDE NOT TO COMPLETE THE STUDY, YOU WILL RECEIVE FULL 
REMUNERATION. 
 
You will be given a copy of the informed consent form to take with you.   
 
 
____________________________   ____________________________ 
Experimenter    Date   Participant   Date 
 
 
 
 
 
 
 
 
Please direct any questions about this study to: 
 
David Jones (c/o Kay Stanney)   Kay Stanney 
Research Assistant     Professor (Supervisor) 
University of Central Florida   University of Central Florida 
Industrial Engineering    Industrial Engineering    
4000 Central Florida Blvd.    4000 Central Florida Blvd. 
Orlando, FL 32816      Orlando, FL 32816 
david@mail.ucf.edu     stanney@mail.ucf.edu 
(407) 823-4689     (407) 823-5582 
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Demographics Questionnaire

 

Participant #__________ 
 
Please take a few moments to complete the following. 
 

1. Gender: 
____ Female 
____ Male 
 
2. Age: _________ 
 
 
3. Education: 
Major:__________________ 
___ Freshman 
___ Sophomore 
___ Junior 
___ Senior 
___ Graduate 
 
4. Vision: 
___ Normal/Corrected Vision 
___ Vision problems (please describe) ________________ 
 
5. Hearing: 
___ Normal/Corrected Hearing 
___ Hearing Problems (please describe) _______________ 
 
6. Handedness: 
___ Right-handed 
___ Left-handed 
___ Ambidextrous 
 
7. Computer Experience: 
___ Low (used 1 to 2 software applications) 
___ Medium (used 3 to 10 software applications) 
___ High (programming skills) 
 
8. Music Experience: 
___ None (never played a musical instrument) 
___ Somewhat (took some lessons) 
___ Experienced (can play an instrument) 
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9. Hobbies: 
____ Art 
____ Music 
____ Sports 
____ Reading 
____ Other (please describe) _______________________________ 
 
10. Do you play video games? 
____ No 
____ I have tried it, but I do not play regularly 
____ Yes, I play regularly 
 
If you answered “yes, I play regularly” go to question 11. If not, go to question 12. 
 
11. How much do you play? 
 
Days per week (please mark appropriate response) 
____ 1-2 days 
____ 3-4 days 
____ 5 or more days 
 
Hours each day of play (please mark appropriate response) 
____ Less than 2 hours 
____ 2-4 hours 
____ More than 4 hours 
 
Please estimate hours per week ____ 
 
How long have you been playing regularly? (please answer in months and/or years) 
_______________ 
 
12. Did you play video games as a child? 
____ No 
____ Yes 
 
What was the amount of play? 
____ Occasionally 
____ Regularly 
 
At what age did you play? ______ 
 
13. How many hours a week do you spend on the computer, aside from playing video 

games? 
________ 
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14. List the six games tat you currently play the most. 

 
 
__________________________ 
 
 
__________________________ 
 
 
__________________________ 
 
 
__________________________ 
 
 
__________________________ 
 
 
__________________________ 
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Measure of Perceived Mental Workload 
Modified Cooper-Harper (1969) Scale 

 
Instructions:  To Answer the following questionnaire refer to the definition of Mental Demand 
given. 
 
 

1.  Place an "A1" on the scale below where you feel the overall Mental Demands of 
detecting a Time Critical Target exists 
 
2. Place an "A2" on the scale below where you feel the overall Mental Demands of 
detecting a Vehicle Health Task exists. 
 
3. Place an "A3" on the scale below where you feel the overall Mental Demands of the 
Target pairing task exist.  
     
4. Place an "A4" on the scale below where you feel the overall Mental Demands of 
detecting a SAR image exists. 
 
5. Place an "A5" on the scale below where you feel the overall Mental Demands of 
detecting the weapons release icon exists. 
 
6. Place an "A6" on the scale below where you feel the overall Mental Demands of 
recognizing the status of the vehicle (free, busy) exists 
 
7. Place an "A7" on the scale below where you feel the overall Mental Demands of the 
Target selection task (selecting the target off of the SAR image) exists. 
 
8. Place an "A8" on the scale below where you feel the overall Mental Demands of 
responding to the Vehicle Health Task question exist. 
 
9. Place an "A9" on the scale below where you feel the overall Mental Demands of the 
whole task exist. 
  
 
 
 
 

________________________________________________________________________ 
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