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ABSTRACT

In this thesis, we study two types of reaction-diffusion systems which have direct applications in

understanding wide range of phenomena in chemical reaction, biological pattern formation and theo-

retical ecology.

The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems

which model isothermal autocatalytic chemical reactions as well as microbial growth and competition

in a flow reactor. In the context of isothermal autocatalytic systems, two different cases will be studied.

The first is autocatalytic chemical reaction of order m without decay. The second is chemical reaction

of order m with a decay of order l, where m and l are positive integers and m > l ≥ 1. A typical

system is A + 2B → 3B and B → C involving three chemical species, a reactant A and an auto-

catalyst B and C an inert chemical species.

We use numerical computation to give more accurate estimates on minimum speed of traveling waves

for autocatalytic reaction without decay, providing useful insight in the study of stability of traveling

waves. For autocatalytic reaction of order m = 2 with linear decay l = 1, which has a particular im-

portant role in biological pattern formation, it is shown numerically that there exist multiple traveling

waves with 1, 2 and 3 peaks with certain choices of parameters.

The second part of this thesis is on the global stability of diffusive predator-prey system of Leslie

Type and Holling-Tanner Type in a bounded domain Ω ⊂ RN with no-flux boundary condition. By

using a new approach, we establish much improved global asymptotic stability of a unique positive

equilibrium solution. We also show the result can be extended to more general type of systems with

heterogeneous environment and/or other kind of kinetic terms.
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CHAPTER 1: INTRODUCTION

In this thesis, we study two types of reaction-diffusion systems which have direct applications in

understanding wide range of phenomena in chemical reaction, biological pattern formation and theo-

retical ecology.

In the first part, we study two reaction-diffusion systems. The first is isothermal autocatalytic chemical

reaction between two chemical species A and B taking the form:

A+mB −→ (m+ 1)B with rate k[A][B]m (1.1)

where m ≥ 1 is an integer and k > 0 is a rate constant. We say (1.1) is an isothemal autocatalytic

chemical reaction of (m+1)-order. The autocatalytic step has been used successfully in models of

real-world chemical reactions [46] and [60]. For example in [60], the cubic autocatalytic step is an

useful model for the iodate-arsenous acid reaction. The resulting reaction-diffusion system is

(I)


∂u
∂t

= DA
∂2u
∂x2
− kuvm,

∂v
∂t

= DB
∂2v
∂x2

+ kuvm.
(1.2)

It is well known that (I) has propagating traveling waves, see [31] and [64]. One important issue is to

find minimum traveling wave speed since the corresponding traveling wave is most stable and plays

a significant role in determining the global dynamics of general solutions, see [14]. The theoretical

results show there exist bounds for the traveling wave speed and the existence and non-existence

of the traveling wave under certain conditions. To fill in the gap of the theoretical study, we use

computational methods to give more accurate estimates on minimum speed of traveling waves for

autocatalytic reaction.
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The second system is chemical reaction of order m with a decay of order l, where m and l are positive

integers and m > l ≥ 1. A typical system in autocatalysis is A + 2B → 3B and B → C involving

three chemical species, a reactant A and an auto-catalyst B and C an inert chemical species. The

corresponding system is

(II)


∂u
∂t

= ∂2u
∂x2
− uvm,

∂v
∂t

= D ∂2v
∂x2

+ uvm − kvl.
(1.3)

The case of autocatalytic reaction of order m = 2 with linear decay l = 1, is the famous Gray-Scott

model and has a particular important role in chemical waves and pattern formation. We use numerical

methods to show that there exist multiple traveling waves with 1, 2 and 3 peaks with certain choices

of parameters. The existence of multiple traveling waves which have distinctive number of local

maxima is also proved. Our computational result shows a new and very distinctive feature of Gray-

Scott type of models in generating rich and structurally different traveling pulses than related models

in literature. Our numerical result on (I) is published in a journal paper and that on (II) is under

revision, see [55, 58]. We present our results on (I) in chapter two and those of (II) in chapter three.

In the second part, we study global stability of two predator-prey models

(III)



ut = d14u+ u(λ− αu− βv), (x, t) ∈ Ω× (0,∞)

vt = d24v + µv
(
1− v

u

)
, (x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω̄.
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and

(IV )



ut = d14u+ au− u2 − uv
m+u

, (x, t) ∈ Ω× (0,∞)

vt = d24v + bv − v2

γu
(x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(6≡ 0) x ∈ Ω̄.

Here the quantities u and v represent prey and predator populations respectively. The two diffusion

coefficients d1 and d2 are positive constants.

In chapter four and chapter five, we study the global stability of diffusive predator-prey systems of

Leslie type and Holling-Tanner type in a bounded domain Ω ⊂ RN with no-flux boundary condition.

These systems are used in modeling a wide range of ecological phenomena. And the question of

global stability in predator-prey systems is a very important problem in ecology. Several well-known

methods have been used to prove global stability of the unique positive equilibrium of a predator-prey

system. For example, in [29], the author constructed a Liapunov function for the predator-prey system

to prove the global stability. In [35], the author used a combination of Dulac criterion, the method of

comparison and the Poincare-Bendixson theorem to prove the global stability. Also in [9] and [10],

the authors proved the global stability of the positive equilibrium by using the comparison method and

iteration. In this thesis, we study the predator-prey systems by using a new approach. We establish

much improved global asymptotic stability of a unique positive equilibrium solution. We also show

the result can be extended to more general type of systems with heterogeneous environment and/or

other kind of kinetic terms. Our new results on (III) and (IV) have been published in two journal

papers and can be found in Qi and Zhu [56, 57].
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1.1 Traveling Wave of Auto-catalytic Systems

In this section, we give a brief description of our result on system

(I)


∂u
∂t

= DA
∂2u
∂x2
− kuvm,

∂v
∂t

= DB
∂2v
∂x2

+ kuvm.
(1.4)

We study the system in R1 with the initial conditions:

u(x, 0) = a0, v(x, 0) = g(x), ∀ x ∈ R,

where a0 represents the uniform distribution for the reactant and g(x) is a nonnegative function with

compact support.

By standard non-dimensional transformation, we have


ut = uxx − uvm, x ∈ R, t > 0

vt = dvxx + uvm, x ∈ R, t > 0

u(x, 0) = 1, v(x, 0) = g(x), ∀x ∈ R, t = 0.

(1.5)

The normalized traveling wave problem is as follows. GivenC > 0, let (u(x, t), v(x, t)) = (α(z), β(z)),

4



where z = x− Ct. The traveling wave problem to (1.5) is to solve



αzz + Cαz = αβm, α > 0 ∀ z ∈ R,

dβzz + Cβz = −αβm, β > 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(1.6)

Here C > 0 is the constant traveling speed. The detailed analysis of this ODE system (1.6) will be

shown in chapter two. The primary concern of the computational studies in the thesis is based on the

following results of Chen and Qi [11]:

Theorem 1. Let the boundary condition of traveling wave at −∞ be fixed as (0, 1).

(i) Suppose d < 1 and m > 2. A unique (up to translation) traveling wave solution exists for (1.6)

if C ≥ C1(d) ≡ 4d/
√

1 + 4d. On the other hand, there exists no solution for if C ≤ C2(d) ≡

d/
√
K(m), where K(m) is a constant, which increases with m. In particular, K(1) = 1/4,

K(2) = 2.

(ii) Suppose d > 1 and m > 1. There exists a positive constant Cmin such that (1.6) admits a

traveling wave if and only if C > Cmin. In addition, Cmin is bounded by

√
d

K(m)
6 Cmin 6

√
d

K(m)

1√
1− (1− 1

d
)

√
4K(m)+1−1√
4K(m)+1+1

.

Apparently, there is a gap between the two bounds C1(d) and C2(d). So we ask:

What is the minimum speed for the system (1.5)?

The importance of this question is that for mono-stable type of problems, the experience of a single

5



equation tells us it is the minimum speed traveling wave which is most relevant for the study of

stability. In this thesis, we use numerical analysis to fill in the gap for Cmin for different cases of

d using Matlab and verified the results by Mathematica. We also did Regression Analysis to catch

the dependence of Cmin on d in an analytic formulation. The detailed computational results will be

shown in Chapter 2.

1.2 Traveling Wave of Auto-catalytic Systems with Decay

The traveling wave problem with decay is far more complex. For example, the system

 ut = uxx − uvm

vt = dvxx + uvm − kvm,
(1.7)

where m ≥ 1 and k > 0 is a rate constant, was first studied in [64] for a special case and later in [31]

for a general case when m = 1. Other related results appeared in [26], [27]. Whereas m > 1 case has

been studied in [25] and [66]. The results again are in the classical mono-stable category for existence

of traveling waves. But, for the system

 ut = uxx − uvm

vt = dvxx + uvm − kv,
(1.8)

where m > 1 and k > 0, the situation is totally different.

The main result on traveling wave of system (1.8) that we use in numerical analysis is proved by Chen

et. al. [14] as following:

Theorem 2. Let m > 1 and D > 0 be given constants.
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1. There exist positive constants M1, M2, and M3 that depend only on m and D such that for each

ε > 0, (3.6) admits no solution if c > max{
√
M1/ε,M2} or if c 6 γ −M3ε.

2. For each sufficiently small positive ε and each integer L satisfying 1 6 L 6 ε−1/4, there exists

a constant cL = Lγ[1 +O(ε+ [L− 1]2ε| ln ε|)] such that when c = cL, the system (3.6) admits

a solution, unique up to a translation. The solution is an L-hump solution in the sense that

w := [1+εu]vm−1 admits exactly L local maxima and L−1 interior local minima. In addition,

if denote the interior points of local minima of w by {ai}L−1
i=2 and points of local maxima by

{bi}Li=1 with −∞ = a1 < b1 < a2 < b2 < · · · < bL < aL+1 =∞, then

w(bi) = M +O(i[L+ 1− i]ε), G(w(ai+1)) = i(L− i)σγε+O(i2L2ε2| ln ε|) ∀ i = 1, · · · , L.

Furthermore, ‖w′2 −G(w)‖L∞(R) = O(L2ε) and

lim
ε↘0

w(bi + z) = lim
ε↘0

v(bi + z) = W (z)

uniformly in i = 1, · · · , L and locally uniformly in z ∈ R, where W is the unique solution of

W ′′ = W −Wm in R, W (0) = M, W ′(0) = 0, (1.9)

where

G(s) = s2 − 2sm+1
+

m+ 1
, α =

1

m−1
, M =

(m+1

2

)α
, σ = 4

∫ M

0

√
G(s)ds, γ =

2α

D

∫ M

0

smds√
G(s)

,(1.10)

s+ = max{s, 0}.

In spite of deep theoretical results obtained so far, intuitively, we would like to ask:
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What is the traveling wave solution structure for the system (1.8)?

The main purpose of the computational study for the system with decay is to study the dependence

of traveling wave solution structure for (1.7) on the boundary value at −∞. And the numerical com-

putation for (1.7) catches the corresponding traveling wave with one, two and three peaks of w,

respectively. The result not only verifies the mathematical proof, but also provides more detailed in-

formation about the solutions and help us to gain insight into the complex interaction of diffusion and

nonlinear reaction terms. But, the difficulty is that we need to integrate the solutions with high order

nonlinearities over an extended interval. We use numerical analysis to verify theoretical results for

various cases of cL using Matlab, which implements explicit fourth-order Runge-Kutta method for

the computation. To make sure the computation is accurate, we check the results by using the double

precision build-in solver NDsolve from Mathematica. Our numerical results show very interesting

features of the system and can be found in [55] and [58].

1.3 Leslie-type and Holling-Tanner type Predator-prey Models

In chapter four, we study the diffusive Leslie-type predator-prey model

(III)



ut = d14u+ u(λ− αu− βv), (x, t) ∈ Ω× (0,∞)

vt = d24v + µv
(
1− v

u

)
, (x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω̄.

Here u(x, t) and v(x, t) are the density of prey and predator, respectively, Ω is a bounded domain

with smooth boundary ∂Ω, λ, µ, α, and β are positive constants. We assume throughout this thesis

that the two diffusion coefficients d1 and d2 are positive and equal. The no-flux boundary condition

is imposed to guarantee that the ecosystem is not disturbed by exterior factors which may influence
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population densities through flow cross the boundary.

The system is a well established population model and is widely studied in literature, see [19, 29]. In

particular, the following result was proved in [19] by construction of Lyapunov function.

Theorem. Suppose d1, d2 are positive constants, and α > β or α/β > s0 ∈ (1/5, 1/4), then the

unique positive equilibrium point

(u∗, v∗) =

(
λ

α + β
,

λ

α + β

)

is globally asymptotically stable in the sense that every solution to (III) satisfies

lim
t→∞

(u, v) = (u∗, v∗) uniformly in Ω.

It is interesting to ask whether (u∗, v∗) is a global attractor under all combination of the parameters

(α, β, λ, µ). As a matter of fact, the following open question was proposed in [29]:

Open Question: Is (u∗, v∗) asymptotically stable for all combination of α and β?

But, it seems to us that the above result and the open problem should not ignore the role of µ in their

statements, which definitely plays an important part in the dynamics of solutions.

In this thesis, we prove a new global stability result for the positive equilibrium by using a novel

comparison argument, which is different from the one used in literature such as [9]. Our main result

[57] is:

Theorem 3. Suppose the two diffusion coefficients are constants and d1 = d2 > 0, and (α, β, λ, µ)

are positive constants. Then, (u∗, v∗) is globally asymptotically stable if µ > βλ/α.
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In chapter five, the work is concerned with the study of the diffusive Holling-Tanner-type predator-

prey system (IV) in a bounded domain Ω ⊂ RN with no-flux boundary condition.

(IV )



ut = d14u+ au− u2 − uv
m+u

, (x, t) ∈ Ω× (0,∞)

vt = d24v + bv − v2

γu
(x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(6≡ 0) x ∈ Ω̄.

Here u(x, t) and v(x, t) are the density of prey and predator, respectively, Ω is a bounded domain with

smooth boundary ∂Ω, λ, µ, α, and β are positive constants. We assume throughout this thesis that the

two diffusion coefficients d1 and d2 are positive and equal, but not necessarily constants. From now

on, we shall use d to represent the common value. They may depend on both spatial and time variable

but strictly positive in Ω̄. The no-flux boundary condition is imposed to guarantee that the ecosystem

is not disturbed by exterior factors which may influence population flow cross the boundary, and

therefore internal forces are the sole reason to generate dynamical behavior of the system.

It is easy to verify that system (IV) has a unique positive equilibrium (u∗, v∗), where

u∗ =
1

2
(a−m− bγ +

√
(a−m− bγ)2 + 4am), v∗ = bγu∗.

The model is a well established one to describe real ecological interactions of various populations

such as lynx and hare, sparrow and sparrow hawk, see [43, 65, 67] and is widely studied in literature

in recent years, see [9], [10], [19], [29], [39], [50] and [62] and the reference therein. In particular,

the following result was proved by Peng and Wang in [50] by the construction of a Lyapunov function

and linear analysis.

Theorem (PW). Assume that the parameters m, a, b, γ, d1, d2 are all positive. Then for system (IV):
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1. The positive equilibrium (u∗, v∗) is locally asymptotically stable if

m2 + 2(a+ b)m+ a2 − 2abγ > 0.

2. The positive equilibrium (u∗, v∗) is globally asymptotically stable if

m > bγ, and (m+K)[bγ + 2(m+ u∗ +Ka)] > (a+m)bγ,

where

K =
1

2

(
a−m+

√
(a−m)2 + 4a(m− bγ)

)
.

Our main result [56] for the Holling-Tanner type system is:

Theorem 4. Suppose d1 = d2 = d = d(x, t) is strictly positive, bounded and continuous in Ω̄×[0,∞),

a, b, γ and m are positive constants, γ−1 > a/(m+ a), then the positive equilibrium solution (u∗, v∗)

is globally asymptotically stable in the sense that every solution to (IV) satisfies

lim
t→∞

(u, v) = (u∗, v∗) uniformly in Ω.

The organization of the paper is that we introduce the autocatalytic system without decay in chapter

two which contains the background, the theoretical results, numerical analysis and the detailed com-

putational approach of the system (I). In chapter three, we will discuss the autocatalytic system with

decay on (II). Chapter four and five cover the results we get for the global stability of Leslie type and

Holling-Tanner type predator-prey models, respectively.
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CHAPTER 2: THE AUTOCATALYTIC SYSTEMS WITHOUT DECAY

In this chapter, we study the system

(I)


ut = uxx − uvm, x ∈ R, t > 0

vt = dvxx + uvm, x ∈ R, t > 0

u(x, 0) = 1, v(x, 0) = g(x) ∀x ∈ R, t = 0.

(2.1)

We will start by reviewing theoretical results obtained by other authors, in particular my supervisor

Dr. Qi and his collaborators on the existence and non-existence of a traveling wave solution. Then,

we describe the formulation of the system in a format which is more convenient in performing com-

putation. Finally, we present our computational results.

2.1 The Literature Review

For quadratic autocatalysis, i.e. whenm = 1, a traveling wave solution exists if and only if C ≥ 2
√
d,

as was proved by Billingham and Needham [5]. In this case, the minimum speed is exactly 2
√
d. For

the case of m > 1, there was a great improvement of the bounds obtained in [5] by Chen and Qi [11].

The main results of [11] are:

Theorem 5. (i) Suppose d < 1 and m > 2. A unique (up to translation) traveling wave solution

exists for (I) if C ≥ 4d/
√

1 + 4d. On the other hand, there exists no solution for if C ≤

d/
√
K(m), where K(m) is a constant, which increases with m. In particular, K(1) = 1/4,

K(2) = 2.

(ii) Suppose d > 1 andm > 1. There exists a positive constant Cmin such that (I) admits a traveling
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wave if and only if C > Cmin. In addition, Cmin is bounded by

√
d

K(m)
6 Cmin 6

√
d

K(m)

1√
1− (1− 1

d
)

√
4K(m)+1−1√
4K(m)+1+1

.

Remark. The above result was obtained using comparison with d = 1 case for d > 1 and therefore it

is a sharp bound when 0 < d − 1 � 1. But, for d < 1, the result is shown by a direct proof and it

deviates from the single equation case of d = 1 even for d close to 1.

2.2 Preliminary Analysis

We provide some details in the analysis of (I). Given C > 0, let (u(x, t), v(x, t)) = (α(z), β(z)),

where z = x− Ct. The traveling wave solution (α, β) ∈ [C2(R)]2 satisfies



αzz + Cαz = αβm, α > 0 ∀ z ∈ R,

dβzz + Cβz = −αβm, β > 0 ∀ z ∈ R,

limz→∞( α(z), β(z) ) = (1, 0),

limz→−∞( α(z), β(z) ) = (0, 1).

(2.2)

First, by adding the two equations, we get

[αz + Cα + dβz + Cβ]z = 0.

Then, an integration yields a conservation law

αz + dβz + C(α + β) = 1,
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which justifies the boundary condition at x =∞ and enables us to reduce the order of traveling wave

problem from four to three. Moreover, if d = 1, the conservation law above gives α = 1 − β. The

system is reduced to a classical mono-stable scalar equation

βzz + Cβz + βm(1− β) = 0.

Introducing ω = βz, the system (2.2) is equivalent to:



αz = C(1− α− β)− dω,

βz = ω,

ωz = −d−1(αβm + Cω),

limz→∞( α(z), β(z), ω(z) ) = (1, 0, 0),

limz→−∞( α(z), β(z), ω(z) ) = (0, 1, 0).

(2.3)

The following properties of traveling wave solutions are give by Chen and Qi [11]:

Proposition 1. The systems (2.2) and (2.3) are equivalent. Any solution (α, β) to (2.2) or (α, β, ω) to

(2.3) has the following properties:

(1) αz > 0 > βz, on R

(2) (a) α + β < 1 on R if d < 1, (b) α + β ≡ 1 if d = 1, and (c) α + β > 1 if d > 1

(3) C =
∫∞
−∞ α(z)βm(z)dz > 0

(4) The equilibrium point (0, 1, 0) of (2.3) is a saddle with a two-dimensional stable manifold and

a one-dimensional unstable manifold. The eigenvalues and associated eigenvectors are:

λ1 = −Cd−1, eλ1 = (0,−1,−λ1)T
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λ2 = −1

2
(
√
C2 + 4 + C), eλ2 = [λ2(dλ2 + C),−1,−λ2]T

λ3 =
1

2
(
√
C2 + 4− C), eλ3 = [λ3(dλ3 + C),−1,−λ3]T

(5) When m > 1, the equilibrium point (1, 0, 0) of (2.3) is degenerate; it has a two-dimensional

stable manifold and a one-dimensional center manifold. The eigenvalues and associated eigen-

vectors are:

µ1 = −C, eµ1 = (1, 0, 0)T

µ2 = −Cd−1, eµ2 = (0, 1,−Cd−1)T

µ3 = 0, eµ3 = (1,−1, 0)T

By first making the following change of variables, we transform the third order system (2.3) to a

second order system:

y = Cz/d, A(y) = dα(y)/C2, κ = d/C and s = 1− β

with s as independent variable, we get: α = C2

d
A⇒ αz = C2

d
Az. then

ω = βz =
dβ

dz
=
dβ

ds

ds

dz
=
dβ

dx

ds

dy

dy

dz
= −ds

dy

C

d
= −C

d
sy.

Using the change of variables for α, β, αz, and ω, we get the following:

C3

d2
Ay = C[1− C2

d
A− (1− s)]− d(−C

d
sy)

implies

Ay = −dA+
d2

C2
(s+ sy) = κ(s+ sy)− dA.
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Also since,

ωz = βzz =
d

dz
(
dβ

dz
) =

d

dz
(−C

d
sy) = −C

d
(
d

dz
(
ds

dy
)) = −C

d
(
d2s

dy2

dy

dz
) = −C

2

d2
syy,

we will have

−C
2

d2
syy = −d−1

[
C2

d
A(1− s)m − C2

d
sy

]
,

which implies

syy + sy = A(1− s)m on R.

Now, we use s as independent variable. Let P (s) = sy, then

syy =
dP

ds

ds

dy
= P ′P and Ay = A(s)y =

dA

ds

ds

dy
= PA′.

Hence we get the system



PP ′ = A[1− s]m − P ∀s ∈ [0, 1],

PA′ = κ2[P + s]− dA ∀s ∈ [0, 1],

P (s) > 0, A(s) > 0 ∀ s ∈ (0, 1),

P (0) = 0, A(0) = 0.

(2.4)

It is clear that (A,P ) is a traveling wave of (2.4) if and only if P (s)↘ 0 as s↗ 1.

The formulation in (2.4) of traveling wave problem as a second order ODE system in phase plane

gives us an alternative way to design numerical schemes. Let

P (s) = λs+ a1s
2 +O(s3), A(s) = λ(1 + λ)s+ b1s

2 +O(s3) for 0 < s� 1,
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after simple computation, we can get that

λ =

√
4κ2 + d2 − d

2
, a1 =

b1(d+ 2λ)

λ(d− 1)
, b1 = − mλ2(1 + λ)

6λ2 + 2λd+ 3λ+ d
.

To derive P (s) = λs+ a1s
2 +O(s3) and A(s) = λ(1 + λ)s+ b1s

2 +O(s3), first let

P (s) ≈ c1s+O(s2) and A(s) ≈ c2s+O(s2),

such that

P ′(s) ≈ c1 and A′(s) ≈ c2.

We substitute P , P ′ and A into the first equation of (2.4), we get

c2
1s ≈ c2s(1− s)m − c1s,

which implies

c2
1 + c1 − c2 = 0.

This gives us that

c1 = −1

2
± 1

2

√
1 + 4c2 or c2 = c2

1 + c1.

Again, we substitute P , P ′ and A into the second equation of (2.4), we get

c1c2s = κ2(c1s+ s)− dc2s

such that

c2(c1 + d) = κ2(c1 + 1).
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Since c2 = c2
1 + c1 from the previous step, we will have

(c2
1 + c1)(c1 + d) = κ2(c1 + 1),

which implies that

c1 =
−d±

√
d2 + 4κ2

2
.

We know that P (s) > 0 for all s ∈ (0, 1) and P (s) ≈ c1s, then we have

λ = c1 =
1

2
(
√
d2 + 4κ2 − d),

and

c2 = λ(λ+ 1) for A(s) = λ(λ+ 1)s+O(s2).

No we have

P (s) = λs+ a1s
2, A(s) = λ(1 + λ)s+ b1s

2 for 0 < s� 1, λ =

√
4κ2 + d2 − d

2
,

we can use the similar process to calculate a1 and b1, such that we get

a1 =
b1(d+ 2λ)

λ(d− 1)
, b1 = − mλ2(1 + λ)

6λ2 + 2λd+ 3λ+ d
.

The primary concern for our numerical analysis is: what is the minimum speed for the system? In

next section, we will use numerical analysis to find the specific minimum speed for different cases

of systems. The importance of the minimum speed is that for mono-stable type of problems, the

minimum speed of traveling wave which is most relevant for the study of stability.
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2.2 Numerical Analysis

The theoretical results show there exist bounds for the traveling wave speed and the existence and non-

existence of the traveling wave under certain conditions. In this section, we use numerical analysis to

find the minimum speeds for different cases of d andm for the system without decay. To fill in the gap

of the theoretical study, we use computational methods to gives more accurate estimates on minimum

speed of traveling waves for autocatalytic reaction without decay, also providing useful insight in the

study of stability of traveling waves. We have done extensive computation on two cases, m = 2 and

m = 2.5 to determine Cmin for various values of d. The method works well for wide range of d value

from d fairly small such as d = 0.1 to rather big value of d = 5. Then we also use regression analysis

try to catch the dependence of Cmin on d analytically. By using a unique traveling wave solution

(P,A) in (2.4), from the previous section we have that

P (s) = λs+ a1s
2, A(s) = λ(1 + λ)s+ b1s

2 for 0 < s� 1,

with

λ =

√
4κ2 + d2 − d

2
, a1 =

b1(d+ 2λ)

λ(d− 1)
, b1 = − mλ2(1 + λ)

6λ2 + 2λd+ 3λ+ d
.

Our numerical scheme has the following key ingredients:

(i) It uses the above asymptotic expansion at s = 0 as initial input for 0 < s � 1 and then use

Matlab to compute the solution up to s = 1.

(ii) The algorithm in Matlab is the explicit fourth-order Runge-Kutta method. The criterion to judge

whether the resulting solution is a traveling wave is to check whether P (s) > 0 on (0, 1) and

|P (1)| is less than a preset upper bound of the order 10−6.

(iii) All results were checked and confirmed by using double-precision Mathematica.
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Figure 2.1: The results for traveling wave solutions (A,P ) with Cmin = 0.0989, m = 2 and d = 0.1.

Figure 2.2: The results for traveling wave solutions (A,P ) with Cmin = 0.7749, m = 2 and d = 1.2.
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Figure 2.3: The results for traveling wave solutions (A,P ) withCmin = 0.6345,m = 2.5 and d = 1.2.
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Figure 2.4: We compare the numerically computed Cmin with the lower bound, shown as blue line
and upper bound, shown as blue “–“ from Theorem 1 for d > 1 and d < 1, respectively. It is clear
that for d > 1, it demonstrates a good match of theoretical result with numerical computation. But,
for 0 < d < 1, the numerical results shows the minimum speed is far below that of theoretical result
pointing out further refinement is needed to improve the estimate theoretically.
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Figure 2.5: We also did Regression Analysis trying to catch the dependence of Cmin on d analytically.
By using a curve of the form C1

√
d + C2 + C3

d
+ C4

d2
. The best fitting curve when m = 2.5 is

1
2

√
d− 1

5
+ 1

2d
− 1

20d2
. The best fitting curve when m = 2 is 2.5

3

√
d.
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Also, we will present some computational results on (2.1) with two special cases m = 1 and m = 2.

The purpose is two folds. On one hand, computation can verify and confirm analytical results, in

particular, whether the spreading of local disturbance of v is of order O(
√
d) when d > 1. On the

other hand, it can help us to gain insight into the complex interaction of diffusion and nonlinear

reaction terms and how their interaction determines the behavior of solutions.

In all examples of computation, the initial conditions are u(x, 0) = 1 and v(x, 0) has a compact

support. We take the spatial domain to be a large interval centered at zero and use periodic boundary

conditions.

Figure 2.6 is the result of computation of m = 1, d = 2 with initial condition of v to be v(x, 0) = 1

in [−1, 1], and zero otherwise. The spatial domain is [−40, 40]. The reaction starts from the central

region and spreads out with the speed C, which is approximately 2
√
d, the minimum speed, before v

becomes very flat, approaching 1. This is in agreement with the theoretical result of [12].

Figure 2.7 is the result of computation of m = 2 with the other conditions same as the above case.

The reaction again starts from the central region and spread out with the estimated speed of 2.5
√
d/3,

before v becomes very flat, approaching 1 as time t� 1.

Figure 2.8 is the result of computation of m = 2 and d = 4 with other conditions same as the above

case. The reaction again starts from the central region and spread out with the estimated speed of

2.5
√
d/3, before v becomes very flat, approaching 1 as time t� 1.

Figure 2.9 is the result of computation of m = 1 and d = 3 with initial condition of u to be

u(x, 0) =
π

2
sin
( π

100
(50 + x)

)
, −50 < x < 50

and the spatial domain is [−50, 50]. The reaction again starts from the central region and spread out
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with the estimated speed of in the range of 7
√
d/12 < C < 3

√
d/4, (with other values of d > 1 also

computed to confirm the range). But instead of converging to 1, v converges to a fixed bell-shaped

profile as time t� 1. In addition, u becomes two-hump from the initial one-hump and keep the same

profile with diminished height as t increases before eventually tending to zero.

Figure 2.10 is the result of computation of m = 2 and d = 3 with other conditions same as the above

case. The solutions demonstrate the same kind of qualitative behavior as the above case except the

speed range is in 7
√
d/12 < C < 5

√
d/6.
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Figure 2.6: System (2.1) with m = 1 and d = 2
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Figure 2.7: System (2.1) with m = 2 and d = 2
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Figure 2.8: System (2.1) with m = 2 and d = 4
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Figure 2.9: System (2.1) with m = 1 and d = 3
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Figure 2.10: System (2.1) with m = 2 and d = 3
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2.3 Summary and Algorithms

Numerical computation is a powerful tool in understanding complex solution structure of traveling

wave problems. The result is giving good insight into the problem which provides good lead in

our further analysis. It can help us to get some idea about the complex interaction of diffusion and

nonlinear reaction terms and how their interaction determines the behavior of solutions. There are

many methods to solve an ordinary differential equations system, such as the forward Euler method

toward higher-order methods, linear multistep methods (MS) and Runge-Kutta methods (RK). The

method we applied here is the explicit fourth-order Runge-Kutta Method and the reason is that RK

methods maintain the structure of one-step methods, and increase their accuracy at the price of an

increase of functional evaluations at each time level. A consequence is that RK methods are more

suitable than MS methods at adapting the stepsize, provided that an efficient estimator of the local

error is available.

31



CHAPTER 3: THE AUTOCATALYTIC SYSTEMS WITH DECAY

In this chapter, we consider 
∂u

∂t
=
∂2u

∂x2
− uvm,

∂v

∂t
= D

∂2v

∂x2
+ uvm − kvl.

(3.1)

It models chemical reaction of the form

A+mB → (m+ 1)B with rate uvm and

B → C with rate kvl

with C an inert chemical species. Here, D, a positive constant, is the ratio of diffusion coefficients of

chemical species B to that of A, m ≥ 1 is a positive constant not necessarily an integer, k and l ≥ 1

are both positive constants. We assume throughout that 1 ≤ l < m.

First, we will review the previous theoretical results obtained by other authors and discuss the exis-

tence and non-existence of a traveling wave solution. Then, we will show how to use computational

method to reveal the complex solution structure of traveling wave solution to system (3.1).

3.1 The Literature Review

Many models in mathematical biology take the form of system (3.1), see [23, 49, 63]. In particular,

m = 2 and l = 1 is the famous Gray-Scott model in biological pattern formation, one of the popular

models proposed for replicating experimental results in early 1990’s, see [42, 49]. The most exciting

feature of the diffusive Gray-Scott system with feeding is self-replicating traveling pulse (traveling
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wave). It has been extensively studied, see [16, 17, 34], but the phenomenon and underlying mecha-

nism is not completely understood.

Our main concern is using computational method to show the existence and stability of traveling

wave to (3.1). A traveling wave solution for (3.1) links one equilibrium point to another. Since any

equilibrium point of the system is of the form (a, 0), a ∈ R. Hence, any traveling wave u(x, t) =

u(x − Ct), v(x, t) = v(x − Ct), with C > 0 as the speed, must link one equilibrium point (a0, 0)

at x = −∞ to another one (a1, 0) at x = ∞ with a1 > a0 > 0. Thus, we consider traveling wave

problem


u′′ + Cu′ = uvm, u′ > 0 in R,

Dv′′ + Cv′ = kvl − uvm, v > 0 in R,

u(−∞) = u0, v(−∞) = 0, v(∞) = 0, u(∞) <∞.

(3.2)

The important implications of such a setting are (i) v has no monotonicity which is a strong contrast

to the auto-catalytic chemical reaction without decay, (ii) any equilibrium point (a, 0) with a > 0 is

a saddle point, and (iii) there is no corresponding single equation to compare with. Indeed, it is not

too hard to show that v is increasing coming out of x = −∞ and reaches its 1st local maximum value

and then it starts to decrease and may oscillate a few times. Whereas u′ > 0 in R for a traveling wave.

In addition, define

x1(C) := sup{z ∈ R | v′ > 0 in (−∞, z)}, x2(C) := sup{z ∈ R | v > 0 in (−∞, z)}. (3.3)
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For each constant C > 0, we consider the initial value problem, for (u, v) = (u(x,C), v(x,C)),


u′′ + Cu′ = uvm+ in R,

Dv′′ + Cv′ − v = −uvm+ in R,

[u, v] = [h, eλx] +O(1)emλx as x→ −∞,

(3.4)

where λ is the positive root of λ2d+ Cλ = 1 and v+ := max{v, 0}. We denote

A := {C > 0 | x2(C) <∞},

B := {C > 0 | x2(C) =∞, lim
x→∞

u(x,C) =∞}, (3.5)

C := {C > 0 | x2(C) =∞, lim
x→∞

u(x,C) <∞}.

The approach in [14] is to use speed C as a shooting parameter. In fact, the following is a summary

of key technical results in [14].

Lemma 1. Suppose d, h > 0 are fixed. For each c > 0, problem (3.4), with λ = (
√
C2 + 4d−C)/2d

and v+ := max{v, 0}, admits a unique solution. The solution depends onC continuously and satisfies

u′ > 0 in R. In addition, x1(C) < ∞, v′(x1(C), C) = 0 > v′′(x1(C), C), and one and only one of

the following holds:

(1) x2(C) <∞ and v(x2(C), C) = 0;

(2) x2(C) =∞ and limx→∞ u(x,C) =∞;

(3) x2(C) = ∞ and limx→∞ u(x,C) < ∞. In this case, limx→∞ v(x,C) = 0, so (C, u, v) solves

(3.2).

Moreover, A and B are open, 0 ∈ A, and [M,∞) ⊂ B for some M � 1. Thus, C is non-empty and

problem (3.2) admits a solution for some C > 0.
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The work in [15] is on the case of h� 1. By make the following change of scale and variables:

ε = h−
m
m−1 , u = [1 + εa]h, v = h−

1
m−1 b, C = cε,

(3.4) is transformed and the existence of traveling wave is equivalent to finding (a, b, c) ∈ C2(R) ×

C2(R)× (0,∞) which satisfy


a′′ + cεa′ = [1 + εa]bm, a′ > 0 in R,

db′′ + cεb′ = b− [1 + εa]bm, b > 0 in R,

a(−∞) = 0, b(−∞) = 0, a(∞) = 0, b(∞) <∞.

(3.6)

Our computational results are based on the following Theorem proved by Chen, Qi and Zhang [14]

for the system (3.1).

Theorem 6. Let m > 1 and D > 0 be given constants.

1. There exist positive constants M1, M2, and M3 that depend only on m and D such that for each

ε > 0, (3.6) admits no solution if c > max{
√
M1/ε,M2} or if c 6 γ −M3ε.

2. For each sufficiently small positive ε and each integer L satisfying 1 6 L 6 ε−1/4, there exists

a constant cL = Lγ[1 +O(ε+ [L− 1]2ε| ln ε|)] such that when c = cL, the system (3.6) admits

a solution, unique up to a translation. The solution is an L-hump solution in the sense that

w := [1+εu]vm−1 admits exactly L local maxima and L−1 interior local minima. In addition,

if denote the interior points of local minima of w by {ai}L−1
i=2 and points of local maxima by

{bi}Li=1 with −∞ = a1 < b1 < a2 < b2 < · · · < bL < aL+1 =∞, then

w(bi) = M +O(i[L+ 1− i]ε), G(w(ai+1)) = i(L− i)σγε+O(i2L2ε2| ln ε|) ∀ i = 1, · · · , L.
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Furthermore, ‖w′2 −G(w)‖L∞(R) = O(L2ε) and

lim
ε↘0

w(bi + z) = lim
ε↘0

v(bi + z) = W (z)

uniformly in i = 1, · · · , L and locally uniformly in z ∈ R, where W is the unique solution of

W ′′ = W −Wm in R, W (0) = M, W ′(0) = 0, (3.7)

where

G(s) = s2 − 2sm+1
+

m+ 1
, α =

1

m−1
, M =

(m+1

2

)α
, σ = 4

∫ M

0

√
G(s)ds, γ =

2α

D

∫ M

0

smds√
G(s)

, (3.8)

s+ = max{s, 0}.
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3.2 The Computational Approach

The numerical computation for (3.2) is to catch the corresponding traveling wave with one, two and

three peaks of w, respectively. We also did some computation for (3.1). In all Figures 3.6-3.8, the

initial conditions are u(x, 0) = 1 and v(x, 0) has a compact support with v to be v(x, 0) = 1 in

[−1, 1] and zero otherwise. We take the spatial domain to be a large interval centered at zero and use

periodic boundary conditions. The result not only verifies the mathematical proof, but also provides

more detailed information about the solutions. But, the difficulty is that we need to integrate the

solutions with high order nonlinearities over an extended interval. We use numerical analysis to

verify theoretical results for various cases of cL using Matlab, which implements explicit fourth-order

Runge-Kutta method for the computation. To make sure the computation is accurate, we check the

results by using the double precision build-in solver NDsolve from Mathematica.
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Figure 3.1: This represents the numerical result for (3.6) for 1-peak solution w = (1 + εa)b where
ε = 0.00025, c = c1 = γ = 6 and the integration interval is [0, 28]. As shown in the figure, the
solutions only have one peak on the b− b′ phase plane.
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Figure 3.2: This is the results for (3.6) for 2-peak solution w = (1 + εa)b, where ε = 0.00025,
c = c2 = 2γ = 12 and the integration interval is [0, 39]
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Figure 3.3: This is the results for (3.6) for 3-peak solution w = (1 + εa)b, where ε = 0.00025,
c = c3 = 3γ = 18 and the integration interval is [0, 50]. The three-peak solutions are as expected on
the b− b′ phase plane.
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Figure 3.4: This shows the computation with ε = 0.00038, c = c3 = 3γ = 18 on the finite interval
[0, 58].
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Figure 3.5: ε = 0.0023, c = 12 on the interval [0, 55]. A small change of ε from the setting of figure
3.1 results in 4-peak solution with the same speed. Moreover, this shows in b − b′ phase plane that
small change in ε with same speed C gives different types of solutions.
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In Figures 3.6 to 3.8, we present some computational results on (3.1) with m = 2, l = 1, D = 4

and the same initial conditions where u(x, 0) = 1 and v(x, 0) has a compact support with v to be

v(x, 0) = 1 in [−1, 1] and zero otherwise. They show that when k = 1 and k = 0.2, the decay is

very strong and v tends to zero very fast before any pattern to form effectively. But, for k = 0.05, v

undergoes some very interesting evolution before decaying to zero eventually.

43



Figure 3.6: System (3.1) with m = 2, l = 1, D = 4 and k = 1
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Figure 3.7: System (3.1) with m = 2, l = 1, D = 4 and k = 0.2
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Figure 3.8: System (3.1) with m = 2, l = 1, D = 4 and k = 0.05
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CHAPTER 4: GLOBAL STABILITY OF LESLIE-TYPE PREDATOR-PREY

MODEL

The global stability of equilibrium states is an important and interesting problem to be studied in

predator-prey model. The spatially homogeneous Leslie-type predator-prey model is the the ODE

system

 ut = u(λ− αu)− βuv,

vt = µv(1− v
u
).

where u is the population of the prey and v is the population of the predator, t is time, λ, α, β

and µ are positive parameters. The predator consumes the prey at a rate according to the functional

response, which is of Holling type I, i.e., βu. The ODE Leslie-Gower model has the unique positive

equilibrium and several well-known approaches have been used to prove global stability of the positive

equilibrium, see [19, 29].

We will add diffusive terms to the ODE system which takes into account the random movement of the

predator and prey, with non-negative diffusion coefficients d1 and d2. The system is:

(III)



ut = d1∆u+ u(λ− αu− βv), (x, t) ∈ Ω× (0,∞)

vt = d2∆v + µv
(
1− v

u

)
, (x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(6≡ 0), x ∈ Ω̄.

(4.1)

Here u(x, t) and v(x, t) are the density of prey and predator, respectively, Ω is a bounded domain with

smooth boundary ∂Ω, λ, µ, α and β are positive constants. We assume the two diffusion coefficients

d1 and d2 are positive and equal, but not necessarily constants. The no-flux boundary condition is
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imposed to guarantee that the ecosystem is not disturbed by exterior factors which may influence

population flow cross the boundary. The system is a well established population model and is widely

studied in literatures such as in [19, 29] by the construction of a Lyapunov function.

Equilibria. Equilibria of the ODE system and PDE system (4.1) are given by the solutions of the

following system:

u(λ− αu− βv) = 0, µv
(

1− v

u

)
= 0

It is easy to see that the equilibrium points are ( λ
α+β

, λ
α+β

) and (λ
α
, 0). We are only interested in the

the positive equilibrium point ( λ
α+β

, λ
α+β

), because this describes the coexistence of the predator and

prey.

In this chapter, we will study the global stability of diffusive predator-prey system of Leslie-type in a

bounded domain Ω ⊂ RN with no-flux boundary condition. The world’s leading mathematicians Du

and Hsu gave a conjecture about the combination of α and β, see [19]. By using our new approach,

we, in a way answer the open question and establish much improved global asymptotic stability of

the unique positive equilibrium point. We shall prove the main results in next section. Also, we shall

discuss results on the more general setting where Laplace operator is replaced by a spatial differential

operator which is a uniform elliptic operator with variable coefficients, natural generalization of the

one given in (III).

4.1 Main Results

Theorem 7. Suppose the two diffusion coefficients are constants and d1 = d2 > 0, and (α, β, λ, µ)

are positive constants. Then, (u∗, v∗) is globally asymptotically stable if µ > βλ/α.

Remark. Given any α and β, (u∗, v∗) is globally asymptotically stable if µ and λ are chosen suitably.
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Remark. The above result can be interpreted as saying that if µ is suitably large, in relation to (α, β, λ),

then the evolution of v in time will be adjusted sufficiently fast to any change in u so that both converge

to the same equilibrium value as t → ∞. It reveals more intimate relation of the various parameters

to determine the large time behavior of solution than previous works.

Remark. It will be clear from our proof that a simplified version of our approach can yield (u∗, v∗) is

globally asymptotically stable if α > β, without the restriction to d1 = d2 > 0, which recovers the

previous result of [29].

Remark. The method we use here is more flexible than the Lyapunov function method and the re-

sults cover more general settings such as when the Laplace operator is replaced by a uniform elliptic

operator. In particular, the diffusion coefficients can depend on x. It means that the environment is

non-homogeneous.

Let

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj

be a uniform elliptic operator in Ω with continuous coefficients aij(x), i, j = 1, · · · , N. Then, we

can show a result similar to Theorem 7 for the following initial-boundary value problem:

(V )



ut = Lu+ u(λ− αu− βv), (x, t) ∈ Ω× (0,∞)

vt = Lv + µv
(
1− v

u

)
(x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω̄.

Theorem 8. Suppose (α, β, λ, µ) are positive constants. Then, the unique positive equilibrium (u∗, v∗)

of (V ) is globally asymptotically stable if µ > βλ/α.
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Then, we study the following system where a more general type of reaction-terms is considered.

(V I)



ut = d1∆u+ u(λ− αuσ − βv), (x, t) ∈ Ω× (0,∞)

vt = d2∆v + µv
(
1− v

uσ

)
(x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(6≡ 0), x ∈ Ω̄.

Here 0 < σ < 1 and d1, d2 and (α, β, λ, µ) are as in Theorem 7.

Theorem 9. Suppose d1 = d2 > 0, 0 < σ < 1 and (α, β, λ, µ) are positive constants. Then, the

unique positive equilibrium

(u∗σ, v
∗
σ) =

((
λ

α + β

)1/σ

,

(
λ

α + β

)1/σ
)

of (V I) is globally asymptotically stable if µ > βλσ/α.

4.1.1 Proof of Theorem 7

Let w = v
u

. It’s easy to compute

wt =
vt
u
− utv

u2
, ∇w =

∇v
u
− ∇u

u2
v,

∆w =
∆v

u
− v∆u

u2
− 2∇u · ∇v

u2
+

2|∇u|2

u3
v.

The equation satisfied by w is

wt − d∆w = µ
v

u
(1− v

u
)− v

u
(λ− αu− βv) +

2d

u
∇u · ∇w

= w(µ− λ+ αu− w(µ− βu)) +
2d

u
∇u · ∇w

(4.2)
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Lemma 2. Suppose µ > β
α
λ and ε1 > 0 small. There exists T sufficiently large such that when t ≥ T ,

u ≤ ū2(ε1) ≡ λ

α

[
1− β(µ− βū1)

(α + β)µ− βλ

]
+O(ε1), in Ω,

where ū1 ≡ λ
α
.

Proof. Since v ≥ 0, it’s clear that u satisfies

ut − d1∆u ≤ u(λ− αu) in Ω× (0, ∞).

It is a well established fact that any positive solution of

 ut − d1∆u = u(λ− αu), in Ω× (0,∞)

∂u
∂ν

= 0, on ∂Ω× (0,∞)

converges uniformly to λ
α

as t→∞. Therefore, ∃ t1 > 0 such that

u(x, t) < ū1(ε1) ≡ λ

α
+
ε1

5
in Ω× [t1, ∞).

Then,

wt − d∆w ≤ w[(µ− λ+ αū1(ε1))− w(µ− βū1(ε1))] +
2d

u
∇u · ∇w.

We assume ε1 is sufficiently small so that µ > βū1(ε1). Hence, w(x, t + t1) ≤ W (t), where W (t) is

a solution of  Wt = W [(µ− λ+ αū1(ε1))−W (µ− βū1(ε1))]

W (0) = maxΩ̄ W (x, t1).
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It is clear that ∃ t2 > t1 such that

w(x, t) ≤ w̄1(ε1) ≡ µ− λ+ αū1(ε1)

µ− βū1(ε1)
+
ε1

5
in Ω× [t2, ∞).

Substitute the above inequality into the first equation in (III), we have

ut − d∆u ≥ u[λ− αu− βw̄1(ε1)u] in Ω× [t2, ∞).

This, in turn, implies there exists t3 > t2 such that

u ≥ u1(ε1) ≡ λ

α + βw̄1(ε1)
− ε1

5
in Ω× [t3, ∞).

By using the above inequality in the second equation, one obtains, there exists t4 > t3 such that

v ≥ v1(ε1) =
λ

α + βw̄1(ε1)
− ε1

4
in Ω× [t4, ∞).

Subsequently, when the above lower bound of v is used in the first equation of (III), we obtain

ut − d∆u ≤ u[λ− αu− βv1(ε1)] in Ω× [t4, ∞).

This yields there exists t5 > t4 such that

u ≤ ū2(ε1) ≡
λ− βv1(ε1)

α
+
ε1

5
in Ω× [t5, ∞).
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Simple computation shows

ū2(ε1) =
λ− βv1(ε1)

α
+
ε1

5

=
λ

α

[
1− β

α + βw̄1(ε)

]
+O(ε1)

=
λ

α

1− β

α + β
[
µ−λ+αū1
µ−βū1

]
+O(ε1)

=
λ

α

[
1− β(µ− βū1)

(α + β)µ− βλ

]
+O(ε1).

(4.3)

This proves the lemma.

By repeating the above procedure, for any positive integer n, there exists t sufficiently large such that

u ≤ ūn+1(ε1) ≡
λ− βun(ε1)

α
+O(ε1),

u ≥ un(ε1) ≡ λ(µ− βūn)

(α + β)µ− λβ
+O(ε1),

uniformly in Ω. Let ε1 = 0, we have

ūn+1 =
λ− βun

α
, un =

λ[µ− βūn]

(α + β)µ− λβ
, n = 1, 2, . . .

with ū1 > ū2 > u∗, u1 < u∗. It’s easy to see that {ūn} is a decreasing sequence with ūn > u∗,

∀n ≥ 1 and {un} is an increasing sequence with with un < u∗, ∀n ≥ 1. Suppose

lim
n→∞

ūn = ū∗ and lim
n→∞

un = u∗,

then

ū∗ =
λ− βu∗

α
,
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u∗ =
λ[µ− βū∗]

(α + β)µ− λβ
=

λ

α + β
+

λβ

(α + β)µ− λβ

(
λ

α + β
− ū∗

)
.

The combination of the two yields

u∗ =
λ

α + β
+

λβ

(α + β)µ− λβ

(
λ

α + β
− λ

α
+
βu∗

α

)
,

which has a unique solution u∗ = u∗. Consequently, ū∗ = u∗. This shows

lim
n→∞

ūn = lim
n→∞

un = u∗.

Simply,

v̄n(ε1) = ūn(ε1)w̄n(ε1) +O(ε1)

vn(ε1) = un(ε1) +O(ε1)

with

w̄n(ε1) =
µ− λ+ αūn(ε1)

µ− βūn(ε1)
+O(ε1).

Setting ε1 = 0, we have

w̄n =
µ− λ+ αūn
µ− βūn

, v̄n = ūnw̄n, vn = un.

lim
n→∞

w̄n = 1 and lim
n→∞

vn = v∗.

Now, we show limt→∞(u, v) = (u∗, v∗) uniformly in Ω.

Proof of Theorem 7: ∀ε > 0, there exists n0 > 1 such that when n ≥ n0,

|ūn − u∗|+ |un − u∗| <
ε

4
. (4.4)
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Choose ε1 > 0 sufficiently small such that

|ūn0(ε1)− ūn0|+ |un0
(ε1)− un0

| < ε

4
(4.5)

and the same to vn(ε1), vn, v̄n(ε1), v̄n and v∗.

Furthermore, there exists tM � 1 such that when t� tM ,

un0
(ε1) ≤ u(x, t) ≤ ūn0(ε1) in Ω.

Hence, by (4.4) and ( 4.5), when t� tM ,

|u(x, t)− u∗| < ε in Ω.

This proves limt→∞ u(x, t) = u∗ uniformly in Ω. Similarly, limt→∞ v(x, t) = v∗ uniformly in Ω.

Remark. It is clear from the proof of Lemma 2 that if β < α, using u ≤ ũ1 = λ/α in the second

equation of (III) we get, ignoring ε1, v ≤ ṽ1 = λ/α, which in turn, when used in the first equation

gives

u ≥ u1
∼

=
λ

α
− β

a
ũ1.

This will enable us to obtain, from the second equation, v ≥ u1
∼

and subsequently, from the first

equation,

u ≤ ũ2 =
λ

α
− β

α
u1
∼
.
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An iteration of the above procedure resulted in two sequences

ũn+1 =
λ

α
− β

a
un
∼
, un

∼
=
λ

α
− β

α
ũn

with ũn > u∗, un
∼
< u∗ and both converge to u∗. This recovers the result of [19] when α > β, but

without the restriction that d1, d2 > 0 must be constants.

4.2 More General Settings

Let w = v
uσ

. It’s easy to compute

wt =
vt
uσ
− σutv

uσ+1
, ∇w =

∇v
uσ
− σ∇u
uσ+1

v,

∆w =
∆v

uσ
− σv∆u

uσ+1
− 2σ∇u · ∇v

uσ+1
+
σ(σ + 1)|∇u|2

uσ+2
v.

The equation satisfied by w is

wt − d∆w = w[(µ− σλ+ σαuσ)− w(µ− βuσ)] +
2dσ∇u · ∇w

u
+
dσ(σ − 1)|∇u|2w

u2

Lemma 3. Suppose µ > βσλ
α

where 0 < σ < 1 and ε1 > 0 small. There exists T sufficiently large

such that when t ≥ T ,

uσ ≤ ūσ2 (ε1) ≡ λ

α

(
1− β(µ− βσūσ1 )

αµ+ βµ− βσλ

)
+O(ε1), in Ω,

where ūσ1 ≡ λ
α
.
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Proof. Since v ≥ 0, it’s clear that u satisfies

ut − d1∆u ≤ u(λ− αuσ) in Ω× (0, ∞),

from which we derive that ∃ t1 > 0 such that

uσ(x, t) < ūσ1 (ε1) ≡ λ

α
+
ε1

5
in Ω× [t1, ∞).

It is a well established fact that any positive solution of

 ut − d1∆u = u(λ− αuσ), in Ω× (0,∞)

∂u
∂ν

= 0, on ∂Ω× (0,∞)

converges uniformly to (λ
α

)1/σ as t→∞. Then,

wt − d∆w ≤ w[(µ− λσ + ασūσ1 (ε1))− w(µ− βσūσ1 (ε1))] +
2dσ∇u · ∇w

u
.

We assume ε1 is sufficiently small so that µ > βūσ1 (ε1). Hence, w(x, t + t1) ≤ W (t), where W (t) is

a solution of  Wt = W [(µ− λσ + ασūσ1 (ε1))−W (µ− βσūσ1 (ε1))]

W (0) = maxΩ̄W (x, t1).

It is clear that ∃ t2 > t1 such that

w(x, t) ≤ w̄1(ε1) ≡ µ− σλ+ ασūσ1 (ε1)

µ− βσūσ1 (ε1)
+
ε1

5
in Ω× [t2, ∞).
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Substitute the above inequality into the first equation in (VI), we have

ut − d∆u ≥ u[λ− αuσ − βw̄1(ε1)uσ] in Ω× [t2, ∞).

This, in turn, implies there exists t3 > t2 such that

uσ ≥ uσ1 (ε1) ≡ λ

α + βw̄1(ε1)
− ε1

5
in Ω× [t3, ∞).

By using the above inequality in the second equation, one obtains, there exists t4 > t3 such that

v ≥ v1(ε1) =
λ

α + βw1(ε1)
− ε1

4
in Ω× [t4, ∞).

Subsequently, when the above lower bound of v is used in the first equation of (VI), we obtain

ut − d∆u ≤ u[λ− αuσ − βv1(ε1)] in Ω× [t4, ∞).

This yields there exists t5 > t4 such that

uσ ≤ ūσ2 (ε1) ≡
λ− βv1(ε1)

α
+
ε1

5
in Ω× [t5, ∞).

Simple computation shows

ūσ2 (ε1) =
λ− βv1(ε1)

α
+
ε1

5

=
λ

α

(
1− β

α + βw̄1(ε1)

)
+O(ε1)

=
λ

α

(
1− β(µ− βσūσ1 )

αµ+ βµ− βσλ

)
+O(ε1).

(4.6)
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By repeating the above procedure, for any positive integer n, there exists t sufficiently large such that

uσ ≤ ūσn+1(ε1) ≡
λ− βuσn(ε1)

α
+O(ε1),

uσ ≥ uσn(ε1) ≡ λ(µ− βσūσn)

(α + β)µ− λβσ
+O(ε1),

uniformly in Ω. Let ε1 = 0, we have

ūσn+1 =
λ− βσuσn

α
, uσn =

λ[µ− βσūσn]

(α + β)µ− λβσ
, n = 1, 2, . . .

with ūσ1 > ūσ2 > (u∗)σ, uσ1 < (u∗)σ. It’s easy to see that {ūσn} is a decreasing sequence and {uσn} is

an increasing sequence with

lim
n→∞

ūσn = lim
n→∞

uσn = (u∗σ)σ.

Simply,

v̄n(ε1) = ūσn(ε1)w̄n(ε1) +O(ε1)

vn(ε1) = uσn(ε1) +O(ε1)

with

w̄n(ε1) =
µ− σλ+ ασūσn(ε1)

µ− βσūσn(ε1)
+O(ε1).

Setting ε1 = 0, we have

w̄n =
µ− λσ + ασūσn
µ− βσūσn

, v̄n = ūσnw̄n, vn = uσn.

lim
n→∞

w̄n = 1 and lim
n→∞

vn = v∗σ.

Now, we show limt→∞(u, v) = (u∗σ, v
∗
σ) uniformly in Ω. The proof of Theorem 8 and 9 are the same
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as in the proof of Theorem 7.

It is clear that we can combine the features of (V ) and (V I) to get a more complex model and

still the same result as in Theorem 7. The model we develop here is new and can be applied to many

interesting reaction-diffusion type models where the stability of a unique positive equilibrium solution

is a key issue to be studied, such as the Holling-Tanner predator-prey model which will be discussed

in Chapter 5.
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CHAPTER 5: GLOBAL STABILITY OF A DIFFUSIVE

HOLLING-TANNER PREDATOR-PREY MODEL

We will study the global stability in a diffusive version of the Holling-Tanner predator-prey model,

which takes into account the random movement of the predator and prey. First, let’s review the

spatially homogeneous Holling-Tanner predator-prey model of the the ODE system

 ut = u(a− u)− uv
m+u

,

vt = v(b− v
γu

).

where u is the population of the prey and v is the population of the predator, t is time, a, b, m and γ

are positive parameters. The predator consumes the prey according to the functional response, which

is of Holling type II, i.e., u
m+u

. The ODE Holling-Tanner model has a unique positive equilibrium and

several well-known approaches have been used to prove global stability of the positive equilibrium,

see [50].

We will consider the random movement of the predator and prey by adding diffusive term to the ODE

system, with non-negative diffusion coefficients d1 and d2:

(IV )



ut = d1∆u+ u(a− u)− uv
m+u

, (x, t) ∈ Ω× (0,∞)

ut = d2∆v + v(b− v
γu

)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0( 6≡ 0), x ∈ Ω̄.

(5.1)

Equilibria. Equilibria of the ODE system and PDE system (5.1) are given by the solutions of the

following system:

u(a− u)− uv

m+ u
= 0, v(b− v

γu
) = 0
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It is easy to see that the equilibrium points are (a, 0) and

u∗ =
1

2
(a−m− bγ +

√
(a−m− bγ)2 + 4am), v∗ = bγu∗.

We are only interested in (u∗, v∗), because that is the states when the predator and prey are coexistence.

In this chapter we study the global stability of equilibrium states of diffusive predator-prey system of

Holling-Tanner type in a bounded domain Ω ⊂ RN with no-flux boundary condition. By using a novel

approach, we establish much improved global asymptotic stability of the unique positive equilibrium

solution than works in the literature. We also show that the result can be extended to more general

type of systems with heterogeneous environment and/or other kind of kinetic terms.

5.1 Main Results

Theorem 10. Suppose d1 = d2 = d = d(x, t) is strictly positive, bounded and continuous in Ω̄ ×

[0,∞), a, b, γ and m are positive constants, γ−1 > a/(m+ a), then the positive equilibrium solution

(u∗, v∗) is globally asymptotically stable in the sense that every solution to (IV) satisfies

lim
t→∞

(u, v) = (u∗, v∗) uniformly in Ω.

Remark. The above result covers more ground than the result of [50] or [9]. In particular, if γ ≤ 1, for

all choices of a, b, m we have global asymptotic stability, or when b ≥ (γ − 1)a/γ, our assumption is

weaker than m > bγ.

Remark. The method we use here is more flexible than the Lyapunov function method and more

powerful than those one used in [9], and the results covers more general settings such as when the

Laplace operator is replaced by a uniform elliptic operator. It means that we can cover cases with
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heterogeneous environment.

Let

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj

be a uniform elliptic operator in Ω with continuous coefficients aij(x), i, j = 1, · · · , N. Then, we

can show a result similar to Theorem 10 for the following initial-boundary value problem:

(V II)



ut = Lu+ au− u2 − uv
m+u

, (x, t) ∈ Ω× (0,∞)

vt = Lv + bv − v2

γu
(x, t) ∈ Ω× (0,∞)

∂u
∂ν

= ∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0(6≡ 0) x ∈ Ω̄.

Theorem 11. Suppose a, b, γ,m are positive constants satisfying the assumption in Theorem 10 and

L a uniform elliptic operator in Ω with continuous coefficients . Then, the unique positive equilibrium

(u∗, v∗) of (VII) is globally asymptotically stable.

5.1.1 Proof of Theorem 10

Proposition 2. Suppose d1 = d2 > 0 are constants.

(1) u∗ > a− bγ.

(2) (u∗, v∗) is locally asymptotically stable if γ−1 > a/(m+ a).

(3) γ−1 > a/(m+ a) implies u∗ > a− b.

63



Proof. It is easy to verify that

(a−m− bγ)2 + 4am = (a+m− bγ)2 + 4mbγ > (a+m− bγ)2

and therefore,

u∗ >
a−m− bγ + a+m− bγ

2
= a− bγ.

This proves the first statement.

For (2), from the proof of Theorem 2.1 in [50] it follows, when d1 = d2, that (u∗, v∗) is locally

asymptotically stable if and only if

2(u∗)− (a−m− bγ) > 0 (5.2)

and

2(u∗)2 − (a−m− bγ)u∗ + bm > 0 (5.3)

If γ ≤ 1, both are trivially true by (1) and then expression of u∗.

If γ > 1, we only need to show that u∗ is larger than the largest positive root of the quadratic function

in (5.3) under the condition that a > m + b, which is only possible if γ < 2 by the condition

γ−1 > a/(m+ a). Using the assumption that γ−1 > a/(m+ a), it is easy to verify that

u∗ > a− bγ ≥ a−m− b
2

if γa ≥ (2γ − 1)b. The only case we need to consider is γa < (2γ − 1)b. But, it contradicts

a > m+ b > (γ − 1)a+ b. Hence, (2) holds.

The last statement follows from simple computation which shows that the inequality, under the as-
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sumption a > b, and γ > 1 is equivalent to m > (γ − 1)(a − b). This completes the proof of the

proposition.

Let w = v
u

. It’s easy to compute

wt =
vt
u
− utv

u2
, ∇w =

∇v
u
− ∇u

u2
v,

∆w =
∆v

u
− v∆u

u2
− 2∇u · ∇v

u2
+

2|∇u|2

u3
v.

The equation satisfied by w is

wt − d∆w = µ
v

u

(
b− v

γu
)− v

u
(a− u− v

m+ u

)
+

2d

u
∇u · ∇w

= w

(
b− a+ u+ w

(
−γ−1 +

u

m+ u

))
+

2d

u
∇u · ∇w

(5.4)

Lemma 4. Suppose γ−1 > a/(m + a) and ε1 > 0 small. There exists T sufficiently large such that

when t ≥ T ,

u ≤ ū2(ε1) ≡
a−m+

√
(a+m)2 − 4bγu1

2
+O(ε1), in Ω,

where

u1 ≡
a−m− w̄1 +

√
(a−m− w̄1)2 + 4am

2
, w̄1 =

(b− a+ ū1)(m+ ū1)

γ−1(m+ ū1)− ū1

,

ū1 ≡ a.

Proof. Since v ≥ 0, it’s clear that u satisfies

ut − d∆u ≤ u(a− u) in Ω× (0, ∞).
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By a simple comparison argument and the well established fact that any positive solution of

 ut − d∆u = u(a− u), in Ω× (0,∞)

∂u
∂ν

= 0, on ∂Ω× (0,∞)

converges to a uniformly as t→∞, we obtain that ∀ε1 > 0, ∃ t1 > 0 such that if t ≥ t1

u(x, t) < ū1(ε1) ≡ a+
ε1

5
in Ω. (5.5)

Then, for t ≥ t1,

wt − d1∆w ≤ w

(
b− a+ ū1(ε1) + w

(
−γ−1 +

ū1(ε1)

m+ ū1(ε1)

))
+

2d

u
∇u · ∇w.

We assume ε1 is sufficiently small so that γ−1(m + ū1(ε1)) > ū1(ε1). Since any positive solution

W (t) of the ODE

Wt = W

(
b− a+ ū1(ε1) +W

(
−γ−1 +

ū1(ε1)

m+ ū1(ε1)

))

converges to the stable equilibrium point

W0 =
(b− a+ ū1(ε1))(m+ ū1(ε1))

γ−1(m+ ū1(ε1))− ū1(ε1)
, (5.6)

a simple comparison argument yields that ∃ t2 > t1 such that if t ≥ t2,

w(x, t) ≤ w̄1(ε1) ≡ W0 +
ε1

5
in Ω. (5.7)
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Consequently, v ≤ w̄1(ε1)u in Ω when t ≥ t2, and

ut − d∆u ≥ u(a− u)− w̄1(ε1)

m+ u
u2

=
u

m+ u
((a− u)(m+ u)− w̄1(ε1)u) .

The quadratic equation

(a− u)(m+ u)− w̄1(ε1)u = 0

has only one positive root,

R =
a−m− w̄1(ε1) +

√
(a−m− w̄1(ε1))2 + 4am

2
,

which is a stable equilibrium point of corresponding ODE

ut =
u

m+ u
((a− u)(m+ u)− w̄1(ε1)u)

and it attracts every positive solution. This, in turn, by comparison, implies there exists t3 > t2 such

that if t ≥ t3,

u ≥ u1(ε1) ≡
a−m− w̄1(ε1) +

√
(a−m− w̄1(ε1))2 + 4am

2
− ε1

5
in Ω. (5.8)

The above inequality, when used in the v equation, gives

vt − d∆v ≥ bv − v2

γu1(ε1)
in Ω× [t3, ∞).

Hence, there exists t4 > t3 such that if t ≥ t4,

v ≥ v1(ε1) = bγu1(ε1)− ε1

5
in Ω. (5.9)
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Substitute v ≥ v1(ε1) into the u euqtion, we obtain

ut − d∆u ≤ au− u2 − uv1(ε1)

m+ u
in Ω× [t4, ∞).

A direct application of comparison principle then yields there exists t5 > t4 such that if t ≥ t5,

u ≤ ū2(ε1) ≡
a−m+

√
(a+m)2 − 4v1(ε1)

2
+
ε1

5
in Ω. (5.10)

Simple computation using (5.5)-(5.10) shows the experssion of ū2(ε1) and that of u1(ε1) and w̄1(ε1)

are valid. This proves the lemma.

By repeating the above procedure, for any positive integer n, there exists T sufficiently large such that

when t ≥ T ,

u ≤ ūn+1(ε1) ≡
a−m+

√
(a+m)2 − 4vn(ε1)

2
+
ε1

5
, and

u ≥ un(ε1) ≡
a−m− w̄n +

√
(a−m− w̄n)2 + 4am

2
+
ε1

5

uniformly in Ω, where

vn(ε1) = bγun −
ε1

5
, w̄n =

(b− a+ ūn(ε1))(m+ ūn(ε1))

γ−1(m+ ūn(ε1))− ūn(ε1)
+
ε1

5
.

It is clear that when ε1 = 0, we have

ūn+1 =
a−m+

√
(a+m)2 − 4bγun

2
, un =

a−m− w̄n +
√

(a−m− w̄n)2 + 4am

2

and

vn = bγun, w̄n =
(b− a+ ūn)(m+ ūn
γ−1(m+ ūn(ε1))− ūn

, v̄n = ūnw̄n, n = 1, 2, . . . .
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with ū1 = a > u∗, w̄1 > bγ and u1 < u∗. It’s easy to see that u∗ < ū2 < ū1, w̄n is an increasing

function of ūn as long as (m + ūn)γ−1 − ūn > 0. This, together with ū2 < ū1, implies u2 > u1.

A simple induction then shows, under the assumption of Theorem 10, {ūn} is a decreasing sequence

and {un} is an increasing sequence with

lim
n→∞

ūn = lim
n→∞

un = u∗.

Consequently,

lim
n→∞

v̄n = lim
n→∞

vn = v∗

Now, we show limt→∞(u, v) = (u∗, v∗) uniformly in Ω.

Remark. The above procedure depends critically on two inequalities, (i) γ−1 > a/(m + a) and (ii)

u∗ > a− b. It is shown the second condition follow from the first in Proposition 2.

Proof of Theorem 10: ∀ε > 0, there exists n0 > 1 such that when n ≥ n0,

|ūn − u∗|+ |un − u∗| <
ε

4
. (5.11)

Choose ε1 > 0 sufficiently small such that

|ūn0(ε1)− ūn0|+ |un0
(ε1)− un0

| < ε

4
(5.12)

and the same to vn(ε1), vn, v̄n(ε1), v̄n and v∗. Furthermore, there exists tM � 1 such that when

t ≥ tM ,

un0
(ε1) ≤ u(x, t) ≤ ūn0(ε1) in Ω.
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Hence, by (5.11) and ( 5.12), when t ≥ tM ,

|u(x, t)− u∗| < ε in Ω.

This proves limt→∞ u(x, t) = u∗ uniformly in Ω. Similarly, limt→∞ v(x, t) = v∗ uniformly in Ω.

Remark. It is clear from the proof of Lemma 4 that if β < α, using u ≤ ũ1 = λ/α in the second

equation of (IV) we get, ignoring ε1, v ≤ ṽ1 = λ/α, which in turn, when used in the first equation

gives

u ≥ u1
∼

=
λ

α
− β

a
ũ1.

This will enable us to obtain, from the second equation, v ≥ u1
∼

and subsequently, from the first

equation,

u ≤ ũ2 =
λ

α
− β

α
u1
∼
.

An iteration of the above procedure resulted in two sequences

ũn+1 =
λ

α
− β

a
un
∼
, un

∼
=
λ

α
− β

α
ũn

with ũn > u∗, un
∼
< u∗ and both converge to u∗. This recovers the result of [19] when α > β but

without the restriction that d1, d2 > 0 must be constants.

5.2 More General Settings

It is easy to see that the proof of Theorem 11 follows exactly the same line of argument as in Theorem

10 and we omit the details. The method that we develop in this work is new and can be applied to many
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interesting reaction- diffusion type models where the stability of a unique positive equilibrium solution

is a key issue to be studied. For example, the famous Geierer-Menhardt system is an interesting model

worth of looking into.
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CHAPTER 6: CONCLUSION

In this thesis, we first analyzed the behavior of the traveling wave solutions in auto-catalytic with/without

decay. We determine the minimum speed for different cases of the traveling wave problems and verify

the boundaries from the theoretical results and showed the existence of the traveling wave solutions

under certain conditions. Even though the two systems are different by one linear decay term, both

the theoretical results and numerical results show a big differences. From our study, we realized that

the numerical computation is a powerful tool in understanding complex solution structure of traveling

wave problem in systems shown in Chapter two and three. This is our first endeavor in this direction.

The result is yielding good insight into the problem which provides good lead in our further analysis.

We shall do more computation in future and use more sophisticated algorithms to try to overcome a

particular challenge which we did not elaborate in details, which is (1.8) has positive solutions (u, v)

with v decaying to zero algebraically as x−1/2 and u growing to∞ also algebraically as x1/2. They are

not traveling waves. How to distinguish traveling wave from such solutions proves to be a challenge

for us right now. Another direction we shall do computation is to study the bouyant instability when a

fluid is involved in system (III) as in the famous iodate-arsenous-acid (IAA) reaction. When the fluid

strength is increased, the original planar wave is destabilized, resulting cellular fingering. We shall use

Hele-Shaw cell in two dimensional setting to approximate the full three dimensional Navies-Stokes

equation.

In chapter four and chapter five, we developed a scheme to prove the global stability of the diffusive

predator-prey system of Holling-Tanner type and Leslie type in a bounded domain Ω ∈ RN with

no-flux boundary condition. The method we develop in this thesis is new and can be applied to many

interesting reaction-diffusion type models where the stability of a unique positive equilibrium solution

is a key issue to be studied. For example, the famous Geierer-Menhardt system is an interesting model
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worth of looking into. It will be interesting to see how can we corporate other interesting features such

as time delay into our scheme.
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APPENDIX A: RUNGE-KUTTA (RK) METHODS
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In this section, we use the results from [59]. Runge-Kutta methods maintain the structure of one-step

methods, and increase their accuracy at the price of an increase of functional evaluations at each time

level, thus scarifying linearity. RK methods is suitable at adapting the stepsize. In its most general

form, an RK method can be written as

un+1 = un + hF (tu, un, h; f), n ≥ 0,

where F is the increment function defined as follows:

F (tn, un, h; f) =
s∑
i=1

biKi,

Ki = f(tn + cih, uu + h
s∑
j=1

aijKj), i = 1, 2, . . . , s

and s denotes the number of stages of the method. The coefficients aij , ci and bi fully characterize

and RK method and are usually collected in the so-called butcher array

c A

bT

where A = (aij) ∈ Rs×s, b = (b1, . . . ,bs)
T ∈ Rs and c = (c1, . . . , cs)

T ∈ Rs. We shall assume

that the following condition holds

ci =
s∑
j=1

aij, i = 1, . . . , s. (A.1)

If the coefficients aij in A are equal to zero for j ≥ i, with i = 1, 2, . . . , s, then each Ki can be

explicitly computed in terms of the i− 1 coefficients K, . . . ,Ki−1 that have already been determined.

In such a case the RK method is explicit. Otherwise, it is implicit and solving a nonlinear system of
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size s is necessary for computing the coefficients Ki.

The way to derive an explicit RK method consists of enforcing that the highest number of terms

in Taylor’s expansion of the exact solution yn+1 about tn coincide with those of the approximate

solution un+1, assuming that we take one step of the RK method starting from the exact solution yn.

For example, if consider a 2-stage explicit RK method and assume to dispose at the n-th step of the

exact solution yn. Than

un+1 = yn + hF (tn, yn, h; f)yn + h(b1K1 + b2K2),

K1 = f(tn, yn), K2 = f(tn + hc2, yn + hc2K1),

having assumed that (A.1) is satisfied. Expanding K2 in a Taylor series in a neighborhood of tn and

truncating the expansion at the second order, we get

K2 = fn + hc2(fn,t +K1fn,y) + O(h2).

We have denoted by fn,z (for z = t or z = y) the partial derivative of f with respect to z evaluated at

(tn, yn). Then

un+1 = yn + hfn(b1 + b2) + h2c2b2(fn,t + fnfn,y) + O(h3).

If we perform the same expansion on the exact solution, we find

yn+1 = yn + hy′n +
h2

2
y′′n + +O(h3) = yn + hfn +

h2

2
(fn,t + fnfn,y) + +O(h3).

Forcing the coefficients in the two expansions above to agree, we obtain that the coefficients of the

RK method must satisfy b1 + b2 = 1, c2b2 = 1
2
. Thus, there are infinitely many 2-stage explicit RK

methods with second-order accuracy.
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APPENDIX B: SOME BACKGROUND
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In this section, we will introduce Sobolev Spaces from [6] and the Maximum Principle from [24].

Let Ω ⊂ RN be an open set and let p ∈ R with 1 ≤ p ≤ ∞.

Definition. The Sobolev space [6] W 1,p(Ω) is defined by

W 1,p(Ω) =

{
u ⊂ Lp(Ω), ∃g1, . . . , gN ⊂ Lp(Ω), s.t.

∫
Ω

u
∂φ

∂xi
= −

∫
Ω

giφ ∀φ ⊂ C∞c (Ω), ∀i = 1, . . . , N

}
.

We set

H1(Ω) = W 1,2(Ω).

For u ⊂ W 1,p(Ω) we define ∂u
∂xi

= gi, and we write

∇u = grad u = (
∂u

∂x1

, . . . ,
∂u

∂xN
).

The space W 1,p(Ω) is equipped with the norm

||u||W 1,p(Ω) = ||u||p +
N∑
i=1

|| ∂u
∂xi
||p

or sometimes with the equivalent norm (||u||pp +
∑N

i=1 ||
∂u
∂xi
||pp)1/p if 1 ≤ p <∞.

The space H1(Ω) is equipped with the scalar product

(u, v)H1 = (u, v)L2 +
N∑
i=1

(
∂u

∂xi
,
∂v

∂xi
)L2 =

∫
Ω

uv +
N∑
i=1

∂u

∂xi

∂v

∂xi
.

The associated norm

||u||H1 = (||u||22 +
N∑
i=1

|| ∂u
∂xi
||22)1/2

is equivalent to the W 1,2 norm.
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Theorem (The maximum principle) [24]

Let a ≥ 0. Suppose that u(x, t) is continuous on 0 ≤ x ≤ L, 0 ≤ t ≤ T and satisfies

ut − auxx ≤ 0, for 0 < x < L, 0 < t ≤ T,

u(0, t) ≤ 0, u(L, t) ≤ 0 on 0 ≤ t ≤ T,

u(x, t) ≤ 0 on 0 ≤ x ≤ L.

Then u(x, t) ≤ 0 for 0 ≤ x ≤ L and 0 ≤ t ≤ T .

Corollary 1 [24] Let a ≥ 0. Suppose that u(x, t) is continuous on 0 ≤ x ≤ L, 0 ≤ t ≤ T and

satisfies

ut − auxx ≥ 0, for 0 < x < L, 0 < t ≤ T,

u(0, t) ≥ 0, u(L, t) ≥ 0 for 0 ≤ t ≤ T,

u(x, t) ≥ 0 for 0 ≤ x ≤ L.

Then u(x, t) ≥ 0 for 0 ≤ x ≤ L and 0 ≤ t ≤ T .

Corollary 2 [24] Let a ≥ 0. Suppose that u(x, t) is defined and continuous on 0 ≤ x ≤ L, 0 ≤ t ≤ T

and satisfies

ut = auxx in 0 < x < L, 0 < t ≤ T,

Let

M = max{ max
0≤x≤L

u(x, 0), max
0≤t≤T

u(0, t), max
0≤t≤T

u(L, t)}

m = min{ min
0≤x≤L

u(x, 0), min
0≤t≤T

u(0, t), min
0≤t≤T

u(L, t)}
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Then

m ≤ u(x, t) ≤M

for all 0 ≤ x ≤ L, 0 ≤ t ≤ T .
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