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ABSTRACT

The perception and understanding of human motion and action is an important

area of research in computer vision that plays a crucial role in various applications such

as surveillance, HCI, ergonomics, etc. In this thesis, we focus on the recognition of

actions in the case of varying viewpoints and different and unknown camera intrinsic

parameters. The challenges to be addressed include perspective distortions, differences

in viewpoints, anthropometric variations, and the large degrees of freedom of articulated

bodies. In addition, we are interested in methods that require little or no training. The

current solutions to action recognition usually assume that there is a huge dataset of

actions available so that a classifier can be trained. However, this means that in order to

define a new action, the user has to record a number of videos from different viewpoints

with varying camera intrinsic parameters and then retrain the classifier, which is not

very practical from a development point of view. We propose algorithms that overcome

these challenges and require just a few instances of the action from any viewpoint with

any intrinsic camera parameters. Our first algorithm is based on the rank constraint on

the family of planar homographies associated with triplets of body points. We represent

action as a sequence of poses, and decompose the pose into triplets. Therefore, the pose

transition is broken down into a set of movement of body point planes. In this way,

we transform the non-rigid motion of the body points into a rigid motion of body point
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planes. We use the fact that the family of homographies associated with two identical

poses would have rank 4 to gauge similarity of the pose between two subjects, observed

by different perspective cameras and from different viewpoints. This method requires

only one instance of the action. We then show that it is possible to extend the concept

of triplets to line segments. In particular, we establish that if we look at the movement

of line segments instead of triplets, we have more redundancy in data thus leading to

better results. We demonstrate this concept on “fundamental ratios.” We decompose a

human body pose into line segments instead of triplets and look at set of movement of

line segments. This method needs only three instances of the action. If a larger dataset

is available, we can also apply weighting on line segments for better accuracy. The last

method is based on the concept of “Projective Depth”. Given a plane, we can find the

relative depth of a point relative to the given plane. We propose three different ways of

using “projective depth:” (i) Triplets - the three points of a triplet along with the epipole

defines the plane and the movement of points relative to these body planes can be used

to recognize actions; (ii) Ground plane - if we are able to extract the ground plane, we

can find the “projective depth” of the body points with respect to it. Therefore, the

problem of action recognition would translate to curve matching; and (iii) Mirror person

- We can use the mirror view of the person to extract mirror symmetric planes. This

method also needs only one instance of the action. Extensive experiments are reported

on testing view invariance, robustness to noisy localization and occlusions of body points,

and action recognition. The experimental results are very promising and demonstrate

the efficiency of our proposed invariants.
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CHAPTER 1: INTRODUCTION

The perception and understanding of human motion and action is an important

area of research in computer vision that plays a crucial role in various applications such as

surveillance, human computer interaction, ergonomics, kinesiology, video communication,

animation etc. All these applications have deep impact on a number of aspects in our daily

lives. For instance, surveillance systems have become a necessity for public safety in high

risk areas such as airports, train stations, banks, etc. In human computer interaction, the

basic idea is that the machine be able to recognize the gestures made by the human user

and respond appropriately. In recent years, we have seen a boom in gaming industries in

coming up with new camera equipped gaming consoles such as Microsoft Kinect. These

have become immensely popular owing to more realistic interactive effects and users

having to use their whole body. In the case of kinesiology, human joints are tracked

for use in medical diagnostics and analysing performance. With regards to multimedia

retrieval and animation, large motion capture datasets have become commonplace owing

to their importance in realistic animation of human motion and it has become increasingly

important to develop methods for an animator to search for similar motions from a given

dataset.

Analysing human action can be divided into a set of problems including human

detection, tracking of body parts / joints, and finally action recognition. In this thesis,

we focus mainly on action recognition. Since the image sequence is acquired from a
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camera, we lose the depth information and it is projectively distorted. Therefore, the

same object can appear very different from another view-point. This is the focus of this

thesis: the recognition of actions in the case of varying viewpoints and different and

unknown camera intrinsic parameters.

1.1 Background

The problem has been the subject of extensive studies in the past, summarized in

excellent surveys such as [18, 36, 37, 60, 46]. Action can be regarded as a collection of

4D space-time data observed by a perspective video camera. Due to image projection,

the 3D Euclidean information is lost and projectively distorted, which makes action

recognition rather challenging, especially for varying viewpoints and different camera

parameters. Another source of challenge is the irregularities of human actions due to

a variety of factors such as age, gender, circumstances, etc. The timeline of action is

another important issue in action recognition. The execution rates of the same action

in different videos may vary for different actors or due to different camera frame rates.

Therefore, the mapping between same actions in different videos is usually highly non-

linear.

To tackle these issues, often simplifying assumptions are made by researchers on

one or more of the following aspects: (1) camera model, such as scaled orthographic [51] or

calibrated perspective camera [65]; (2) camera pose, i.e. little or no viewpoint variations;

(3) anatomy, such as isometry [39], coplanarity of a subset of body points [39], etc. How-

ever, in practical applications such as surveillance, actions may be viewed from different
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angles by different perspective cameras. Therefore, a reliable action recognition system

has to be invariant to the camera parameters or viewpoint changes. View-invariance is,

thus, of great importance in action recognition, and has received relatively more attention

in recent literature.

One approach to tackle view-invariant action recognition has been based on using

multiple cameras: Campbell et al. [10] use stereo images to recover a 3D Euclidean model

of the human subject, and extract view invariance for 3D gesture recognition; Weinland

et al. [65] use multiple calibrated and background-subtracted cameras, and they obtain a

visual hull for each pose from multi-view silhouettes, and stack them as a motion history

volume, based on which Fourier descriptors are computed to represent actions. Ahmad et

al. [2] build HMMs on optical flow and human body shape features from multiple views,

and feed a test video sequence to all learned HMMs. These methods require the setup

of multiple cameras, which is quite expensive and restricted in many situations such as

online video broadcast or monocular surveillance.

A second line of research is based on a single camera and is motivated by the idea of

exploiting the invariants associated with a given camera model, e.g. affine, or projective.

For instance, Rao et al. [42] assume an affine camera model, and use dynamic instant,

i.e. the maxima in the space-time curvature of the hand trajectory, to characterize hand

actions. The limit with this representation is that dynamic instants may not always exist

or may not be always preserved from 3D to 2D due to perspective effects. Moreover

the affine camera model is restrictive in most practical scenarios. A more recent work

reported by Parameswaran et al. [39] relaxes the restrictions on the camera model.
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They propose a quasi-view-invariant 2D approach for human action representation and

recognition, which relies on the number of invariants in a given configuration of body

points. Thus a set of projective invariants are extracted from the frames and used as

action representation. However, in order to make the problem tractable under variable

dynamics of actions they introduced heuristics, and make simplifying assumptions such

as isometry about human body parts. Moreover, they require that at least five body

points form a 3D plane or the limbs trace planar area during the course of an action.

Ali et al. [4] introduced chaotic invariants and analyze nonlinear dynamics of human

actions. Trajectories of reference joints are used as the representation of the non-linear

dynamical system that is generating the action. Lv et al. [33] search for the appropriate

input sequence for a given sequence.

Another promising approach is based on exploiting the multi-view geometry. Two

subjects in the same exact body posture viewed by two different cameras at different view-

ing angles can be regarded as related by the epipolar geometry. Therefore, corresponding

poses in two videos of actions are constrained by the associated fundamental matrices,

providing thus a way to match poses and actions in different views. The use of funda-

mental matrix in view invariant action recognition is first reported by Syeda-Mahmood

et al. [56] and later by Yilmaz et al. [67, 68]. They stack silhouettes of input videos

into space-time objects, and extract features in different ways, which are then used to

compute a matching score based on the fundamental matrices. A similar work is also

presented in [19], which is based on body points instead of silhouettes.
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Space-time features are essentially the primitives that are used for recognizing

actions, e.g. photometric features such as the optical flow [13, 71, 59] and the local

space-time features [48, 27]. These photometric features can be affected by luminance

variations due to, for instance, camera zoom or pose changes, and often work better when

the motion is small or incremental. On the other hand, salient geometric features such

as silhouettes [7, 61, 8, 62, 67] and point sets [39, 68] are less sensitive to photometric

variations, but require reliable tracking. Silhouettes are usually stacked in time as 2D [8]

or 3D object [7, 67], while point sets are tracked in time to form space-time curves. Ali

and Shah [5] derive a number of features from the optical flow such as gradient tensor

features, divergence, etc. and apply Principal Component Analysis (PCA) to determine

the dominant kinematic modes. Fathi and Mori [15] introduced a method for human

action recognition based on patterns of motion by constructing mid-level motion features

which are built from low-level optical flow information.

Some existing approaches are also more holistic and rely on machine learning

techniques, e.g. HMM [2, 66, 16, 41, 3], SVM [48, 29, 23], Boosting [15, 28, 38] etc. As in

most exemplar-based methods, they rely on the completeness of the learning data, and

to achieve view-invariance are usually expensive as it would be required to learn a model

from a large dataset.

Recently there has been an interest in investigating how soon an action can be

recognized given its applications in human computer interfaces. Schindler and van Gool

[47] present a method that can recognize action from very short sequences. Similarly

Masood et al. [34] investigate reducing latency in recognizing actions.
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1.2 Projective Invariants

The literature on projective invariants is quite rich and its history dates back to

well before the invention of computer vision. In the vision community projective in-

variants gained popularity for object recognition in the 1990’s. For instance, [30] used

perspective invariants to recognize polygonal planar objects. [6, 26, 35] used affine invari-

ants to recognize planar objects in 3D space. This discussion is excellently summarized

in [11]. Formally, geometric invariants refer to the study of the invariant properties under

action of a group G on an algebraic variety V . In computer vision by the very nature of

the problems, in the most general case, we deal with the general linear projective group

GL(3). Given a configuration of points or of other geometric primitives (e.g. lines or

planes), the number of invariants is given by the dimension of the configuration minus the

dimension of the transformation group that acts upon the configuration. For instance,

for a set of primitives (e.g. points) in general positions in P2, the number of invariants

would be the total degrees of freedom of the configuration minus the 8 degrees of freedom

of a general homography in 2D.

Invariants are often expressed by linear combinations of products of the determi-

nants of matrices, whose columns are the homogeneous coordinates of the points in a rigid

structure. This is in fact the approach Parameswaran et al. [39] used for the formulation

of their framework for a given human body pose. The most commonly studied projective

invariant is of course the cross-ratio of a set four collinear points (also extendable to other

geometric primitives, such as pencil of lines or planes). Many invariants used for action

recognition are in fact derived directly from cross ratio [39].
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In Computer Vision, many invariants are derived from epipolar geometry. Epipo-

lar geometry relates image points across different camera views. A given 3D point’s

image in one camera view is related to the epipolar line in the other camera view. All

the epipolar lines intersect at the epipole, which is the image of the other camera center.

Epipolar geometry has been used in a variety of applications such as [12, 17, 43, 9, 67, 51]

because it is independent of camera internal parameters and view-point. In this thesis,

we also employ epipolar geometry to derive new invariants for action recogntion.

1.3 Organization of the Dissertation

In Chapter 2, we discuss our first method for view-invariant action recognition

which is based on the rank constraint on the family of planar homographies associated

with triplets of body points. We represent action as a sequence of poses and we use the

fact that the family of homographies associated with two identical poses would have rank

4 to gauge similarity of the pose between two subjects, observed by different perspective

cameras and from different viewpoints. Chapter 3 extends the idea of looking at the

motion of triplets to that of line segments. We demonstrate this concept on fundamental

ratios and show that we get better results due to more redundancy in data. We also

apply weighting on the line segments to improve our results. In Chapter 4, we propose to

to use “projective depth” for use in action recognition. There are several ways in which

we can use projective depth for action recognition and we analyze each of these options.

Finally, we conclude in chapter 5, we present the computational complexity of each of

the methods, and discuss the significance of this work, and future work.
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CHAPTER 2: ACTION RECOGNITION USING RANK
CONSTRAINT

2.1 Representation of Human Action

In this work, we use the same model as [69]. We represent a human body pose P

by M body points: P = {mi=1...M}. These points can be obtained by using articulated

object tracking techniques such as [45]. For our experiments, we used 11 body points as

show in Figure 3.3. Further discussions on articulated object tracking can be found in

[37, 60]. We assume that tracking has already been performed on the data, and that we

have the set of labeled points for each image.

An action sequence A consists of T frames: {PA
1 , . . . ,PA

T }. With this represen-

tation, comparison of two action sequences reduces to examining the similarities of the

poses, as described in the following sections.

2.1.1 Matching Poses

Suppose we are given two poses P1 and P2. Using point representation, a pose

is characterized by a set of body points. Each triplet of non-collinear points specifies a

scene plane. Therefore, a non-rigid pose can be decomposed into scene planes determined

by all non-collinear triplets.
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Now assume the case that P1 corresponds to P2. P1 and P2 can then be regarded

as the images of same subject viewed by two different cameras. Suppose that P1 are

observed by camera P1 and P2 by camera P2. P1 and P2 may have different intrinsic

and extrinsic parameters. These point correspondences induce an epipolar geometry

via the fundamental matrix F[22]. The computation of F has been well studied in the

communitiy, e.g, [32]. Note that F does not correlate the entire scene, but only the body

points of the subjects.

2.1.1.1 Homographies Induced by Body-Point Triplets.

Let us now consider an arbitrary triplet of 3D body points, ∆ = {X1,X2,X3},

which corresponds to ∆1 = ⟨x1,x2,x3⟩ in P1 and ∆2 = ⟨y1,y2,y3⟩ in P2. ∆ determines

a scene plane π1 in the 3D space, which induces a homography H1 between P1 and P2.

These plane-induced homographies can be computed given four point correspondences,

i.e. the image point correspondences xi ↔ yi and the epipoles e1 ↔ e2.

A degenerate case occurs when three of the four points are collinear but we can

simply discard these degenerate cases. The number of non-degenerate triplets exceeds by

far the degenerate triplets, since the total number of available triplets is
(
n
3

)
for n body

points.

A special case is when the epipole is at or close to infinity, all triplets then may

be regarded as degenerate since the distance between three image points is negligible

compared with their distances to the epipole. We solve this problem by transforming

the image points in projective space, which is similar to [70]. The idea is to find the
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projective transformation P and P′ for each image, such that after transformation the

epipoles and image points are finite.

As described above, each triplet in a pose induces a homography. If we have some

constraint on the family of homographies induced by all the triplets in a given pose, we

can exploit it for recognizing the pose and ultimately for action recognition. One such

constraint can be imposed by using the following result [50]:

Theorem 1 (Rank Constraint)

The space of all homography matrices between two views is spanned by a 4 dimensional

linear subspace of P8

The proof follows from the fact that given two views I and J, each plane induces a

homography; and that given a homography matrix H of some plane, defined by πTX = 0

with π = (nT , 1)T , all other homographies can be described by:

λH + e′nT (2.1)

where e′ is the epipole (the projection of the first camera center onto view J).
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Consider the homography matrices H1, H2, ..., Hk each as a column vector stacked

in a 9 × k matrix. Let Hi = λH + v′nT . The following can be easily ascertained:[ ]
9×k

=

[
λ1H...λkH

]
9×k

+


e′ 0 0

0 e′ 0

0 0 e′


9×3

 n1...nk


3×k

=


e′ 0 0

H 0 e′ 0

0 0 e′


9×4


λ1...λk

n1...nk


4×k

Therefore a 4 dimensional linear subspace of P8 can be used to express any ho-

mography, thus proving theorem 1.

In practice, all the homographies obtained by all the triplets can be stacked in a

n×9 matrix, Q. From the above result, if two poses are identical, then the homographies

associated with all body point triplets will span a rank 4 subspace of P8. Essentially,

what this implies is that from this matrix, we can obtain the 9 × 9 matrix, P = QTQ.

We can then perform singular value decomposition on P, to obtain the eigenvectors and

eigenvalues of P. We thus define our similarity measure as:

S(P) = 1 −
∑

i=5,...,9

āi (2.2)

where āi = ai/
∑

i=1,...,5 ai, where ai for i = 1, ..., 9 represent the eigenvalues of P in

descending order. S(P) is maximal for similar pose transitions, and is invariant to camera

calibration matrix and viewpoint variations.
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2.1.2 Action Recognition

Previously, we discussed how we can measure similarity between two poses. For

action recognition, we want to match two sequences A = {I1...n} and B = {J1...m};

in other words, we need the optimal mapping ψ : A → B such that the cumulative

similarity score
∑n

i=1 S(i, ψ(i)) is maximized, where S(.) is the similarity of two poses as

defined above. This can be solved by dynamic programming, which has proved effective

in sequence alignment (its application in action recognition can also be found in [40,

69]. In our formulation matching score of A and B can be defined by S (A,B) =

max
ψ

∑n
i=1 S(i, ψ(i)). In practice, we need a reference sequence for each known action; we

maintain an action database of K actions, DB = {J1
t }, {J2

t }, . . . , {JKt }. Given a test

sequence {It}, we match {It} against each reference sequence in DB, and classify {It}

as the action of best-match, say {Jkt }, if S ({It}, {Jkt }) is above a threshold T . Our

solution is invariant to camera intrinsic parameters and viewpoint because we use the

view-invariant distance in equation 2.2.

2.2 Experimental Results

In this section we present results on both semi-synthetic data and real data.

2.2.1 Results on MoCap Data

To test our approach on semi-synthetic data, we used the CMU Motion Capture

database (MoCap - http://mocap.cs.cmu.edu/), which contains sequences of various real
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human actions in 3D. We used synthetic cameras to generate the images of the 3D body

points.

2.2.1.1 Testing View-invariance and Noise Resilience

We selected two poses P1,2 from KICK-BALL sequence and a pose Q1 from the

GOLF-SWING sequence. Two synthesized cameras were used to observe the 3D poses;

the first camera has focal length f1 = 1000 and looks at the origin of the world coordinate

from a fixed location (marked by red color in Figure 2.3 (a)); camera 2 is obtained by

rotating camera 1 around x and y axes of the world coordinates in increments of 10◦,

and changing the focal length randomly in the range of 1000± 300. Figure 2.3 (a) shows

all locations of camera 2 as blue points. Camera 1 observes P1,2 as I1,2 and camera 2

observes P1,2 and Q1 as Jk1,2, k = 1, 2. We then added Gaussian noise to the image points,

with σ increasing in steps of 0.25 from 0 to 7. Two score functions S(k), k = 1, 2 were

computed. 100 independent trials were repeated for each noise level and the mean and

the standard deviation of both error functions were calculated. The error surfaces and

confusion areas with σ = 0, 2, 4 are shown in Figure 2.1 (a)-(c). We observe that same

and different pose transitions can be identified up until σ = 5.5, which amounts up to

possibly 16.5 pixel errors.

We compared our results with the baseline method [22, 67]. These plots are shown

in Figure 2.2. To compare the results in Figure 2.2 (a) and (b), we computed confusion

margin for each method [69]. The curves for both methods are plotted in Figure 2.2 (c).
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Figure 2.1: Error surfaces for each noise levels for same and different noise levels. The
corresponding grid plots show the confusion between the same and different pose transi-
tions. We see that there was no confusion for σ = 0, and some confusion for σ = 2, and
σ = 4.
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Figure 2.2: Comparing Performance: (a) and (b) Plots of matching scores of same and
different pose transitions with increasing Gaussian noise for our likelihood function and
the Sampson error, respectively. Plot (c) Confusion margin in (a) and (b).

2.2.1.2 Testing Action Recognition

We selected 4 actions from CMU’s MoCap data set consisting of “jump,” “golf-

swing,” “run,” and “climb.” Each action is performed by 3 actors, and each instance of

3D action is observed by 17 cameras. The distribution of the cameras is shown in Figure

2.3 (b). As shown, the first camera was placed on (x0, 0, 0), looking at the origin of the

world coordinate system, while the remaining 16 cameras were generated by rotating

around the y-axis by β and around the x-axis by α, where β = iπ
4
, i = 0, . . . , 7 and

α = j π
4
, j = 0, 1, 2. The focal lengths were also changed randomly in the range 1000±300.

We then added Gaussian noise with σ = 3 to the image points.
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(a) (b)

Figure 2.3: (a) Distribution of two cameras: camera 1 is fixed (red point); camera 2 is
distributed on a sphere around the subject. (b) Distribution of cameras used to evaluate
view-invariance and camera parameter changes.

Table 2.1: Our method: Overall accuracy about 87%.

Ground-truth
Recognized as

Jump Run Climb Golf Swing

Jump 46 3 2

Run 2 45 2 2

Climb 2 2 46 1

Golf Swing 5 6 40

Our dataset contains 204 video sequences, 4 of which are taken out to act as the

reference dataset from viewpoint 1. Each sequence was matched against all actions in

the database and classified as the one with highest score. For each sequence matching, 10

random initialization are tested. The classification results are shown in Table 2.1. The

overall classification accuracy for our method is 86.7%.
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Table 2.2: Recognition rate for IXMAS data.

Action Check Watch Scratch Head Cross Arms Sit down Stand up

Accuracy % 94 90 92 88 93

2.2.2 Results on Real Data

We evaluated our method on IXMAS data set [65]. This data set contains a

number of actions performed by 11 actors. Each actor performs the action 3 times and

5 camera views of each action have been provided. We tested our method on 5 actions

consisting of “watch time,” “cross arms,” “scratch head,” “sit down,” “stand up.” The

classification results are shown in Table 2.2. The average recognition rate is 91.4%, which

is comparable to MHV [65] given that we do not use multiple images and rely only on

one view.
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CHAPTER 3: IMPROVING ACTION RECOGNITION USING
MOTION OF LINE SEGMENTS AND WEIGHTING

In this chapter, we propose that instead of looking at the motion of triplets, we

can improve performance by looking at the motion of line segments. We demonstrate this

by extending the concept of fundamental ratios, and explore the importance of different

body parts in action recognition.

A moving plane observed by a fixed camera induces a fundamental matrix F be-

tween two frames, where the ratios among the elements in the upper left 2×2 submatrix

are herein referred to as the fundamental ratios. We show that fundamental ratios are in-

variant to camera internal parameters and orientation, and hence can be used to identify

similar motions of line segments from varying viewpoints. By representing the human

body as a set of points, we decompose a body posture into a set of line segments. The

similarity between two actions is therefore measured by the motion of line segments and

hence by their associated fundamental ratios. We further investigate to what extent a

body part plays a role in recognition of different actions and propose a generic method of

assigning weights to different body points. Experiments are performed on three categories

of data: the controlled CMU MoCap dataset, the partially controlled IXMAS data, and

the more challenging uncontrolled UCF-CIL dataset collected on the internet. Extensive

experiments are reported on testing (i) view-invariance, (ii) robustness to noisy local-

ization of body points, (iii) effect of assigning different weights to different body points,
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(iv) effect of partial occlusion on recognition accuracy, and (v) determining how soon our

method recognizes an action correctly from the starting point of the query video. This

work is an extension of [52], which introduced the concept of fundamental ratios that are

invariant to rigid transformations of camera, and were applied to action recognition. We

make the following main extensions: (i) Instead of looking at fundamental ratios induced

by triplets of points, we look at fundamental ratios induced by line segments. (ii) It

has been long argued in the applied perception community [49] that humans focus only

on the most significant aspects of an event or action for recognition, and do not give

equal importance to every observed data point. We propose a new generic method of

learning how to assign different weights to different body points in order to improve the

recognition accuracy by using a similar focusing strategy as humans; (iii) We study how

this focusing strategy can be used in practice when there is partial but significant occlu-

sion; (iv) We investigate how soon after the query video starts our method is capable of

recognizing the action - an important issue never investigated by others in the literature;

and (v) our experiments are more extensive than [52] and include larger set of data with

various levels of difficulty.

Proposition 1 Given two cameras Pi ∼ Ki[Ri|ti], Pj ∼ Kj[Rj|tj] with zero skew and

unit aspect ratio, denote the relative translation and rotation from Pi to Pj as t and R

respectively, then the upper 2× 2 submatrix of the fundamental matrix between two views

is of the form

F2×2 ∼

 ϵ1stt
srt1 ϵ1stt

srt2

ϵ2stt
srt1 ϵ2stt

srt2

 , (3.1)
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where rk is the k-th column of R, the superscripts s, t = 1, . . . , 3 indicate the element in

the vector, and ϵrst, r = 1, 2 is a permutation tensor 1.

Remark 1 The ratios among elements of F2×2 are invariant to camera calibration ma-

trices Ki and Kj.

The upper 2×2 sub-matrices F2×2 for two moving cameras can be used to measure

the similarity of camera motions. That is, if two cameras perform the same motion (same

relative translation and rotation during the motion), and F1 and F2 are the fundamental

matrices between any pair of corresponding frames, then F2×2
1 ∼ F2×2

2 . This also holds for

the dual problem when the two cameras are fixed, but the scene objects in both cameras

perform the same motion. A special case of this problem is when the scene objects are

planar surfaces, which is discussed below.

Proposition 2 Suppose two fixed cameras are looking at two moving planar surfaces,

respectively. Let F1 and F2 be the two fundamental matrices induced by the two moving

planar surfaces. If the motion of the two planar surfaces is similar (differ at most by a

similarity transformation), then

F2×2
1 ∼ F2×2

2 (3.2)

where the projective equality, denoted by ∼, is invariant to camera orientation.

Here similar motion implies that plane normals undergo same motion up to a

similarity transformation. The projective nature of the view-invariant equation in (3.2)

1The use of tensor notation is explained in details in [22], p563.
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implies that the elements in the sub-matrices on the both sides of (3.2) are equal up to an

arbitrary non-zero scale factor, and hence only the ratios among them matter. We call

these ratios the fundamental ratios, and as propositions 1 and 2 state, these fundamental

ratios are invariant to camera intrinsic parameters and viewpoints. To eliminate the scale

factor, we can normalize both sides using F̂i = |F2×2
i |/∥F2×2

i ∥F , i = 1, 2, where | · | refers

to absolute value operator and ∥ · ∥F stands for the Frobenius norm. We then have

F̂1 = F̂2 (3.3)

In practice, F̂1 and F̂2 may not be exactly equal due to noise, computational errors or

subjects’ different ways of performing same actions. We, therefore, define the following

function to measure the residual error:

E(F̂1, F̂2) = ∥F̂1 − F̂2∥F . (3.4)

3.1 Action Recognition Using Fundamental Ratios

3.1.1 Representation of Pose

Using a set of body points for representing human pose has been used frequently

in action recognition primarily because a human body can be modeled as an articulate

object, and secondly, body points capture sufficient information to achieve the task of

action recognition [19, 24, 39, 68]. Other representations of pose include subject silhouette

[7, 8, 56], optical flow [13, 59, 71], and local space time features [27, 48].

20



3.1.2 Pose Transitions

We are given a video sequence {It} and a database of reference sequences corre-

sponding to K different known actions, DB = {J1
t }, {J2

t }, . . . , {JKt }, where It and Jkt

are labeled body points in frame t. Our goal is to identify the sequence {Jkt } from DB

such that the subject in {It} performs the closest action to that observed in {Jkt }.

Existing methods for action recognition such as [8, 67] consider an action as a

whole, which usually requires known start and end frames and is limited when action

execution rate varies. Some other approaches such as [19] regard an action as a sequence of

individual poses, and rely on pose-to-pose similarity measures. Since an action consists of

spatio-temporal data, the temporal information plays a crucial role in recognizing action,

which is ignored in a pose-to-pose approach. We thus propose using pose transition. One

can thus compare actions by comparing their pose transitions.

3.1.3 Matching Pose Transition

The structure of a human can be divided into lines of body points using 2 body

points. The problem of comparing articulated motions of human body thus transforms

to comparing rigid motions of body line segments. According to proposition 2, the mo-

tion of a plane induces a fundamental matrix, which can be identified by its associated

fundamental ratios. If two pose transitions are identical, their corresponding body point

segments would induce the same fundamental ratios, which provide a measure for match-

ing two pose transitions.
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3.1.3.1 Fundamental matrix induced by a moving line segment

Assume that we are given an observed pose transition Ii → Ij from sequence {It},

and Jkm → Jkn from sequence {Jkt } from an action dataset containing k actions.

When Ii → Ij corresponds to J1
m → J1

n, and J2
m → J2

n one can regard them as

observations of the same 3D pose transition by three different cameras P1, P2, and P3,

respectively.

There are two instances of epipolar geometry associated with this scenario:

1. The mapping between the image pair ⟨Ii, Ij⟩ and the image pairs ⟨J1
m, J

1
n⟩, ⟨J2

m, J
2
n⟩

is determined by the fundamental matrices F12 and F13 [22] related to P1, P2, and

P3. Also, the mapping between image pair ⟨J1
m, J

1
n⟩ and ⟨J2

m, J
2
n⟩ is determined by the

fundamental matrices F23. The projection of the camera center of P2 in Ii or Ij is given

by the epipole e21, which is found as the right null vector of F12. Similarly the image

of the camera center of P1 in J1
m or J1

n is the epipole e12 given by the right null vector

of F12
T . Similarly, the projection of the camera center of P3 in Ii or Ij is given by the

epipole e31, which is found as the right null vector of F13. Similarly the image of the

camera center of P1 in J1
m or J1

n is the epipole e13 given by the right null vector of F13
T .

Similarly the image of the camera center of P3 in J1
m or J1

n is the epipole e32 given by

the right null vector of F23
T . Note that e31 and e32 are corresponding points in Ii or Ij

and J1
m or J1

n, respectively. This fact would be used later on.

2. The other instance of epipolar geometry is between transitioned poses of a line

segments of body points in two frames of the same camera, i.e. the fundamental matrix

induced by a moving body line segment, which we denote as F . We call this fundamental
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matrix the inter-pose fundamental matrix, as it is induced by the transition of body point

poses viewed by a stationary camera.

Let  L be a line of 3D points, whose motion lead to different image projections on

Ii, Ij, J
1
m, J1

n, J2
m and J2

n as  Li,  Lj,  L
1
m,  L1

n,  L2
m and  L2

n, respectively:

 Li = ⟨x1,x2⟩,  Lj = ⟨x′
1,x

′
2⟩,

 L1
m = ⟨y1,y2⟩,  L1

n = ⟨y′
1,y

′
2⟩.

 L2
m = ⟨z1, z2⟩,  L2

n = ⟨z′1, z′2⟩.

 Li and  Lj can be regarded as projections of a stationary 3D line ⟨X1,X2⟩ on two

virtual cameras P′
i and P′

j. Assume that the epipoles in P′
i and P′

j are known and let

us denote these as e′i = (α1, β1,−1)T and e′j = (α′
1, β

′
1,−1)T , and e′m = (α2, β2,−1)T and

e′n = (α′
2, β

′
2,−1)T .

We can use the epipoles as parameters for the fundamental matrices induced by

 Li and  Lj and  L1
m,  L1

n [21]:

F1 =



a1 b1 α1a1 + β1b1

c1 d1 α1c1 + β1d1

α′
1a1 + β1c1 α′

1b1 + β′
1d1 α1α

′
1a1 + α′

1β1b1+

β′
1α1c1 + β1β

′
1d1


(3.5)
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F2 =



a2 b2 α2a2 + β2b2

c2 d2 α2c2 + β2d2

α′
2a2 + β2c2 α′

2b2 + β′
2d2 α2α

′
2a2 + α′

2β2b2+

β′
2α2c2 + β2β

′
2d2


(3.6)

To solve for the 4 parameters, we have the following equations:

xT
1F1x1 = 0 (3.7)

xT
2F1x2 = 0 (3.8)

Similarly, F2 induced by  L1
m and  L1

n can be computed from:

yT
1 F2y1 = 0 (3.9)

yT
2 F2y2 = 0 (3.10)

However, as we can see, this is an underdetermined system. Since we have more

examples of an action in our dataset, we can use them. Given mth example of the same

action, we can denote eTm1 and eTm2 as the projection of the mth camera center on the

first and second camera center, respectively. Hence we have:

eTm1F1em1 = 0 (3.11)

eTm2F2em2 = 0 (3.12)

With m > 1, we have an overdetermined system, which can be easily solved by

re-arranging the above equations in the form of Ax = 0 and solving for the right null

space of A to solve for the ratios.
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The difficulty with Eq. 3.5 and 3.6 is that the epipoles e′i, e′j, e′m and e′n are

unknown. Fortunately, however, the epipoles can be closely approximated as described

below.

Proposition 3 If the exterior orientation of P1 is related to that of P2 by a transla-

tion, or by a rotation around an axis that lies on the axis planes of P1, then under the

assumption:

e′i = e′j = e1, e′m = e′n = e2, (3.13)

we have:

E(F̂1, F̂2) = 0. (3.14)

Under more general motion, the equalities in (3.13) become only approximate.

However, we shall see in section 3.3 that this approximation is inconsequential in action

recognition for a wide range of practical rotation angles. As described shortly, using equa-

tion (3.4) and the fundamental matrices F1 and F2 computed for every non-degenerate

line segment, we can define a similarity measure for matching pose transitions Ii → Ij

and Jkm → Jkn .

Degenerate Configurations: If the mth camera projection is collinear with the

2 points in the line-segment, the problem becomes ill-conditioned. We can either ignore

this camera center in favor of other camera centers (when m > 1) or we can simply ignore

the line-segment altogether. This does not produce any difficulty in practice, since with

11 body point representation used in this research, we obtain 55 possible line segments,

the vast majority of which are in practice non-degenerate.
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A special case is when the epipole is close to or at infinity, for which all line-

segments would degenerate. We solve this problem by transforming the image points in

projective space in a manner similar to Zhang et al. [70]. The idea is to find a pair of

projective transformations Q and Q′, such that after transformation the epipoles and

transformed image points are not at infinity. Note that these transformations do not

affect the projective equality in Proposition 2.

3.1.3.2 Algorithm for Matching Pose Transitions

The algorithm for matching two pose transitions Ii → Ij and Jkm → Jkn is as

follows:

1. Compute F, e1, e2 between image pair ⟨Ii, Ij⟩ and ⟨Jkm, Jkn⟩ using the method pro-

posed in [20].

2. For each non-degenerate line segment  Lℓ that projects onto  Li,  Lj,  L
k
m and  Lkn in

Ii, Ij, J
k
m and Jkn , respectively, compute F̂1, F̂2 as described above, and compute

eℓ = E(F̂1, F̂2) from equation (3.4).

3. Compute the average error over all non-degenerate line segments using

E(Ii → Ij, J
k
m → Jkn) =

1

L

∑
ℓ=1...L

eℓ, (3.15)

where L is the total number of non-degenerate line segments.

4. If E(Ii → Ij, J
k
m → Jkn) < E0, where E0 is some threshold, then the two pose

transitions are matched. Otherwise, the two pose transitions are classified as mis-

matched.
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3.1.4 Sequence Alignment

We represent an action A = {I1,...,n} as a sequence of pose transitions, P(A, r) =

{I1→r, . . . , I(r−1)→r, Ir→(r+1), . . . , Ir→n}2, where Ir is an arbitrarily selected reference pose.

If two sequences A = {I1...n} and B = {J1...m} contain the same action, then there exists

an alignment between P(A, r1) and P(B, r2), where Ir1 and Jr2 are two corresponding

poses. To align the two sequences of pose transitions, we used dynamic programming.

Therefore, our method to match two action sequences A and B can be described as

follows:

1. Initialization: select a pose transition Ii0 → Ii1 from A so that two poses are

distinguishable. Then find its best matched pose transition Jj0 → Jj1 in B, by

checking all pose transitions in the sequence as described in section 3.1.3.

2. For all i = 1 . . . n, j = 1 . . .m, compute

Si,j =



τ − E(Ii0 → Ii, Jj0 → Jj) i ̸= i0, j ̸= j0

τ − E(Ii0 → Ii1 , Jj0 → Jj1) i = i0, j = j0

0 otherwise

where τ is a threshold, e.g., τ = 0.3. S is the matching score matrix of {I1,...,n} and

{J1,...,m}.

2For brevity of notation, we denote pose transition Ii → Ij as Ii→j .
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3. Initialize the n×m accumulated score matrix M as

Mi,j =


Si,j i = 1 or j = 1

0 otherwise

4. Update matrix M from top to bottom, left to right (i, j ≥ 2), using

Mi,j = Si,j + max{Mi,j−1,Mi−1,j,Mi−1,j−1}.

5. Find (i∗, j∗) such that

(i∗, j∗) = arg max
i,j

Mi,j.

Then back trace M from (i∗, j∗), and record the path P until it reaches a non-

positive element.

The matching score of sequences A and B is then defined as S (A,B) = Mi∗,j∗ .

The back-traced path P provides an alignment between two video sequences. Note that

this may not be a one-to-one mapping, since there may exist horizontal or vertical lines

in the path, which means that a frame may have multiple candidate matches in the other

video. In addition, due to noise and computational error, different selections of Ii0 → Ii1

may lead to different valid alignment results.

3.1.5 Action Recognition

To solve the action recognition problem, we need a reference sequence (a sequence

of 2D poses) for each known action, and maintain an action database of K actions,

DB = {J1
t }, {J2

t }, . . . , {JKt }. To classify a given test sequence {It}, we match {It}
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against each reference sequence in DB, and classify {It} as the action of best-match,

say {Jkt }, if S ({It}, {Jkt }) is above a threshold T . Due to the use of view-invariant

fundamental ratios vector, our solution is invariant to camera intrinsic parameters and

viewpoint changes, when the approximation of epipoles is valid. One major feature of

the proposed method is that there is no training involved and we can recognize an action

from a single example. This is experimentally verified in section 3.3.

3.2 Weighting-based Human Action Recognition

In the previous section, we saw how fundamental ratios can be used for action

recognition. However, we assumed that all bodily joints have equal share in determining

the action. This goes againts common logic. For instance, in tennis, the feet movement

will not be very discriminative of the action, whereas the upper body movement would be

critical. There is evidence in applied perception literature [49] supporting the intuitive

notion that different body parts have different contributions in determining the action.

With the line segment representation of human body pose, a similar assertion

can be made on body line segments. Some line segments are more critical to recognizing

action. Therefore, it would be reasonable to assume that by assigning appropriate weights

to the similarity errors of body point line segments, the performance of pose and action

recognition could be improved.

To test our idea, we selected two different sequences of walking action WA =

{I1...l} and WB = {J1...m}, and a sequence of running action R = {K1...n}. We aligned

sequence WB and R to WA, using the alignment method described in section 3.1.4, and
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obtained the corresponding alignment/mapping ψ : WA → WB and ψ′ : WA → R.

As discussed in section 3.1.3, the similarity of two poses is based on error scores of all

body-point line segments motion. For each pair of matched poses
⟨
Ii, Jψ(i)

⟩
, we stacked

the error scores of all line segments as a vector Ve(i):

Ve(i) =



E( L1)

E( L2)

:

E( LT )


, (3.16)

We then built an error score matrix Me for alignment ψWA→WB:

Me =

[
Ve(1) Ve(2) . . . Ve(l)

]
. (3.17)

where each row i of Me indicates the dissimilarity scores of line segment i across the

sequence, and the expected value of each column j of Me is the dissimilarity score of

pose Ij and JψWA→WB(j). Similarly we built an error score matrix M′
e for alignment

ψWA→R.

To analyze the role of a line segment i in differentiating between walking and

running, we can compare the i-th row of Me and M′
e, as shown in Figure 3.1 (a) - (f).

We found that some line segments such as line segments 1, 2 and 11 have similar error

scores in both cases, which means the motion of these line segments are similar in walking

and running. Other line segments 19, 46 and 49 have high error scores in M′
e and low

error scores in Me. This means that the motion of these line segments in a running

sequence is different from their motion in a walking sequence. Line segments 55, 94 and

116 reflect the variation in actions of walking and running, thus are more informative than
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line segments 1, 21 and 90 for the task of differentiating between walking and running

actions.
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(a) Line segment 1 (b) Line segment 2 (c) Line segment 11
Examples of insignificant line segments which are similar in both walking and running.
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(d) Line segment 19 (e) Line segment 46 (f) Line segment 49
Examples of significant line segments for distinguishing between walking and running.

Figure 3.1: Roles of line segments in action recognition: (a) - (f) are the plots of dis-
similarity scores of some line segments across frames in the walk-walk and walk-run
alignments. As can be observed, line segments 1, 21 and 90 have similar error scores
in both cases, which essentially means the motion of these line segments is similar in
walking and running. But line segments 55, 94 and 116 have high error scores in M′

e

and low error scores in Me, which means that the motion of these line segments in a
running sequence is different from their motion in a walking sequence. Therefore, these
line segments reflect the variation in actions of walking and running and are much more
useful for distinguishing between walking and running actions.

We analyzed sequences of different individuals performing the same action in order

to gauge the relative importance of line segments in recognizing them as the same action.

We selected four sequences G0, G1, G2, and G3 of golf-swing action, and aligned G1,

G2, and G3 to G0 using the alignment method described in section 3.1.4, and then built

error score matrices M1
e, M

2
e, M

3
e as described above. From the illustrations of M1

e, M
2
e,

M3
e in Figure 3.2 (a), (b) and (c), the dissimilarity scores of some line segments, such

as line segments 53 (see Figure 3.2 (f)) , is very consistent across individuals. Some

other line segments such as line segments 6 (Figure 3.2 (d)) and 50 (Figure 3.2 (e)) have
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various error score patterns across individuals, that is, these line segments represent the

variations in individuals performing the same action.
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(d) Line segment 6 (e) Line segment 50 (f) Line segment 53

Figure 3.2: Roles of different line segments in action recognition. We selected four
sequences G0, G1, G2, and G3 of golf-swing action, and align G1, G2, and G3 to G0
using the alignment method described in Section 2, and then build error score matrix M1

e,
M2

e, M
3
e correspondingly as in above experiments. As can be observed, the dissimilarity

scores of some line segments, such as line segments 53 is very consistent across individuals.
Some other line segments such as line segments 6 and 50 have various error score patterns
across individuals, that is, these line segments represent the variations of individuals
performing the same action.

Definition 1 We call a line segment a significant line segments of an action R if it is

able to differentiate between R and other actions. Line segments which are unable to

distinguish between R and other actions are referred to as trivial line segments of action

A.

A typical significant line segments should be able to convey the variations be-

tween actions while tolerating the variations of the same action performed by different

individuals. Line segments 19, 46 and 49 are significant line segments for walking action,

while line segment 53 is a significant line segment for the golf-swing action.
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Therefore, we should place more emphasis on the significant line segments while

reducing the negative impact of trivial line segments. This means that we should be

assigning appropriate weights to the body-point line segments. In our approach to action

recognition, this can be achieved by assigning appropriate weights to the similarity errors

of body point line segments in equation (3.15). That is, equation (3.15) can be rewritten

as:

E(Ii → Ij, J
k
m → Jkn) =

∑
ℓ=1...L

ωℓeℓ, (3.18)

where L is the total number of non-degenerate line segments and ω1 +ω2 + . . .+ωL = 1.

But how do we determine the optimal set of weights ωi for different actions. We

need an automatic assignment of weight values for a robust and efficient action recognition

system. To achieve this, we use a fixed size dataset of training sequences to learn weight

values. Our method works as follows: suppose we are given a training dataset T which

consists of K × J action sequences for J different actions, performed by K different

individuals. Let ωℓ be the weight value of body joint with label ℓ (ℓ = 1 . . . L) for a given

action. We need to find the optimal weights ωℓ that maximize the similarity error between

sequences of different actions and minimize those of same actions. Since the size of the

dataset and the alignments of sequences are fixed, this turns out to be an optimization

problem over ωℓ. So we need to define a good objective function f(ω1, . . . , ωL) for this

purpose, and use optimization.
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3.2.1 Weights on line segments versus Weights on Body Points

Given a human body model of n points, we have at most
(
n
2

)
line segments, and

need to solve a
(
n
2

)
dimensional optimization problem for weight assignment. Using a

human body model of 11 points, this yields an extremely high dimensional (
(
11
2

)
= 55

dimensions) problem. We also know that the body point line segments are not inde-

pendent of each other. In fact, adjacent line segments are correlated by their common

body point, and the importance of a line segments is also determined by the importance

of its two body points. Therefore, instead of using
(
n
2

)
variables for weights of

(
n
2

)
line

segments, we assign n weights ω1...n to the body points P1...n, where:

ω1 + ω2 + . . .+ ωn = 1. (3.19)

The weight of a line segments  L = ⟨Pi, Pj⟩ can then be computed as:

λ L =
ωi + ωj
n

(3.20)

Note that the definition of λ in (3.20) ensures that λ1 + λ2 + . . .+ λT = 1. Using (3.20),

equation (3.18) is rewritten as:

E(I1 → I2, Ji → Jj) =
1

n

Median
1≤i<j≤n

((ωi + ωj) · E( Li,j)), (3.21)

By introducing weights {ω1...n} to body points, we reduce the high dimensional

optimization problem to a lower dimensional, and more tractable problem.
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3.2.2 Automatic Adjustment of Weights

Given two sequences A = {I1...N}, B = {J1...M}, and the known alignment ψ :

A→ B, the similarity of A and B is:

S (A,B) =
N∑
l=1

S(l, ψ(l)) = Nτ − (3.22)

N
N∑
l=1

E(Il→r1 , Jψ(l)→r2), (3.23)

where r1 and r2 are computed reference poses, and τ is a threshold, which we set as

suggested in [53, 54]. Therefore, the approximate similarity score of A and B is:

S̄ (A,B) = Nτ − 1

N

N∑
l=1

∑
1≤i<j≤n

(ωi + ωj) · El,ψ(l)( Li,j). (3.24)

Considering that N , τ , n and El,ψ(l)( Li,j) are constants given the alignment ψ, equation

(3.24) can be further rewritten into a simpler form:

S̄ (A,B) = a0 −
n−1∑
i=1

ai · ωi, (3.25)

where {ai} are constants computed from (3.24).

A good objective function would give a higher weighting to significant line seg-

ments while trivial line segments would be assigned lower weights. Suppose we have a

training dataset T which consists of K × J action sequences for J different actions, each

of which with K pre-aligned sequences performed by various individuals. T j
k is the k-th

sequence in the group of action j, and Rj is the reference sequence of action j. To find

the optimal weight assignment for action j, we define the objective function as:

f j(ω1, ω2, . . . , ωn−1) = Q1 + αQ2 − βQ3, (3.26)
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where α and β are non-negative constants and

Q1 =
1

K

K∑
k=1

S̄ (Rj, T j
k ), (3.27)

Q2 =
1

K

K∑
k=1

S̄ (Rj, T j
k )2 −Q2

1, (3.28)

Q3 =
1

K(J − 1)

∑
1≤i≤J,i ̸=j

K∑
k=1

S̄ (Rj, T i
k ). (3.29)

The optimal weights for action j are then computed using:

⟨ω1, . . . , ωn−1⟩ = argmax
ω1,ω2,...,ωn−1

f j(ω1, . . . , ωn−1, α, β). (3.30)

In this objective function, we use T j
1 as the reference sequence for action j, and

the term Q1 and Q2 are the mean and variance of similarity scores between T j
1 and other

sequences in the same action. Q3 is the mean of similarity scores between T j
1 and all

sequences in other different actions. Hence f j(ω1, ω2, . . . , ωn−1) achieves high similarity

scores for all sequences of same action j, and low similarity scores for sequences of different

actions. The second term Q2 may be interpreted as a regularization term to ensure the

consistency of sequences in the same group.

Since Q1 and Q3 are linear functions, and Q2 is quadratic polynomial, our objec-

tive function f j(ω1, ω2, . . . , ωn−1) is quadratic polynomial function, and the optimization

problem becomes a quadratic programming (QP) problem. There are a number of meth-

ods for solving the QP problem, including interior point, active set, conjugate gradient,

etc. In our problem, we adopted the conjugate gradient method, with the initial weight

values set to
⟨
1
n
, 1
n
, ..., 1

n

⟩
.
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Degenerate line segments: As before, degenerate line segments are ignored.

As explained earlier, with 11 body points, we obtain a total of 55 possible triplets, the

vast majority of which are in practice non-degenerate.

3.3 Experimental Results and Discussion

We first examine our method on semi-synthetic data. In particular, we first

demonstrate that our method is resilient to viewpoint changes and noise. We then present

our results for action recognition and demonstrate that weighting considerably improves

our results. We then present our results on two sets of real video data: the IXMAS mul-

tiple view data set [65], and our own data set consisting of a total of 56 video sequences

of 8 actions (available at http://cil.cs.ucf.edu/actionrecognition.html).

3.3.1 Analysis based on motion capture data

We generated our data based on the CMU Motion Capture Database, which

consists of 3D motion data for a large number of human actions. We generated the

semi-synthetic data by projecting 3D points onto images through synthesized cameras.

In other words, our test data consist of video sequences of true persons, but the cameras

are synthetic, resulting in semi-synthetic data to which various levels of noise were added.

Instead of using all body points provided in CMU’s database, we employed a body model

that consists of only eleven points, including head, shoulders, elbows, hands, knees and

feet (see Figure 3.3).
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Figure 3.3: Left: Our body model. Right: Experiment on view-invariance. Two different
pose transitions P1 → P2 and P3 → P4 from a golf swing action are used.

3.3.1.1 Testing View Invariance
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Figure 3.4: Analysis of view invariance: (a) Camera 1 is marked in red, and all positions of
camera 2 are marked in blue and green. (b) Errors for same and different pose transitions
when camera 2 is located at viewpoints colored as green in (a). (c) Errors of same and
different pose transitions when camera 2 is located at viewpoints colored as blue in (a).
(d) General camera motion: Camera 1 is marked as red, and camera 2 is distributed on
a sphere. (e) Error surface of same pose transitions for all distributions of camera 2 in
(d). (f) Error surface of different pose transitions for all distribution of camera 2 in (d).
(g) The regions of confusion for (d) marked in black (see text).

We selected four different poses P1, P2, P3, P4 from a golf swinging sequence (see

Figure 3.3). We then generated two cameras as shown in Figure 3.4 (a): camera 1 was

placed at an arbitrary viewpoint (marked by red color), with focal length f1 = 1000;

camera 2 was obtained by rotating camera 1 around an axis on x-z plane of camera 1
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Figure 3.5: Robustness to noise: I1 and I2 are the images in camera 1, and I3, I4, I5 and I6
are the images in camera 2. Same and different actions are distinguished unambiguously
for σ < 4

(colored as green), and a second axis on y-z plane of camera 1 (colored as blue), and

changing focal length as f2 = 1200. Let I1 and I2 be the images of poses P1 and P2

on camera 1 and I3, I4, I5 and I6 the images of poses P1, P2, P3 and P4 on camera 2,

respectively. Two sets of pose similarity errors were computed at all camera positions

shown in Figure 3.4 (a): E(I1 → I2, I3 → I4) and E(I1 → I2, I5 → I6). The results are

plotted in Figure 3.4 (b) and (c), which show that, when two cameras are observing the

same pose transitions, the error is zero regardless of their different viewpoints, confirming

proposition 3.

Similarly, we fixed camera 1 and moved camera 2 on a sphere as shown in Fig-

ure 3.4 (d). The errors E(I1 → I2, I3 → I4) and E(I1 → I2, I5 → I6) are shown in

Figure 3.4 (e) and (f). Under this more general camera motion, the pose similarity

score of corresponding poses is not always zero, since the epipoles in equations (3.5) and

(3.6) are approximated. However, this approximation is inconsequential in most situa-

tions, because the error surface of different pose transitions is in general above that of

corresponding pose transitions. Figure 3.4 (h) shows the regions (black colored) where

approximation is invalid. These regions correspond to the situation that the angles be-
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tween camera orientations around 90 degrees, which usually implies severe self-occlusion

and lack of corresponding points in practice. The experiments on real data in section

3.3.2 also show the validity of this approximation under practical camera viewing angles.

3.3.1.2 Testing Robustness to Noise

Without loss of generality, we used the four poses in Figure 3.3 to analyze the

robustness of our method to noise. Two cameras with different focal lengths and view-

points were examined. As shown in Figure 3.5, I1 and I2 are the images of poses P1

and P2 on camera 1 and I3, I4, I5 and I6 are the images of P1,P2,P3 and P4 on camera

2. We then added Gaussian noise to the image points, with σ increasing from 0 to 8

pixels. The errors E(I1 → I2, I3 → I4) and E(I1 → I2, I5 → I6) were computed. For

each noise level, the experiment was repeated for 100 independent trials, and the mean

and standard deviation of both errors were calculated (see Figure 3.5). As shown in the

results, the two cases are distinguished unambiguously until σ increases to 4.0, i.e., up to

possibly 12 pixels. Note that the image sizes of the subject were about 200× 300, which

implies that our method performs remarkably well under high noise.

3.3.1.3 Performance in Action Recognition

We selected 5 classes of actions from CMU’s MoCap dataset: walk, jump, golf

swing, run, and climb. Each action class is performed by 3 actors, and each instance of

3D action is observed by 17 cameras, as shown in Figure 2.3. The focal lengths were

changed randomly in the range of 1000 ± 300.
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Our dataset consists of totally 255 video sequences, from which we generated a

reference action Database (DB) of 5 video sequences, i.e. one video sequence for each

action class. The rest of the dataset was used as test data, and each sequence was

matched against all actions in the DB and classified as the one with the highest score.

For each sequence matching, 10 random initializations were tested and the best score was

used. Classification results without weighting are summarized in Table 3.1. The overall

recognition rate is 85.60%.

For weighting, we build a MoCap training dataset which consists of total of 2 ×

17 × 5 = 170 sequences for 5 actions (walk, jump, golf swing, run, and climb): each

action is performed by 2 subjects, and each instance of action is observed by 17 cameras

at different random locations. We use the same set of reference sequences for the 5 actions

as the unweighted case, and align the sequences in the training set against the reference

sequences. To obtain optimal weighting for each action j, we first aligned all sequences

against the reference sequence Rj, and stored the similarity scores of line segments for

each pair of matched poses. The objective function f j(ω1, ω2, . . . , ω10) is then built based

on equation (3.26), and the computed similarity scores of line segments in the alignments.

f j(·) is a 10-dimensional function, and the weights ωi are constrained by
0 ≤ ωi ≤ 1, i = 1 . . . 10,

∑10
i=1 ωi ≤ 1.

(3.31)

The optimal weights ⟨ω1, ω2, . . . , ω10⟩ are then searched to maximize f j(·), with

the initialization at
⟨

1
11
, 1
11
, . . . , 1

11

⟩
. The conjugate gradient method is then applied to

solve this optimization problem. After performing the above steps for all the actions, we
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Table 3.1: Confusion matrix before applying weighting: Large values on the diagonal

entries indicate accuracy. The overall recognition rate is 85.60%.

Ground-truth
Recognized as

Walk Jump Golf Swing Run Climb

Walk 42 2 1 3 2

Jump 2 46 1 1

Golf Swing 1 1 45 2 1

Run 4 3 41 2

Climb 4 3 1 2 40

Table 3.2: Confusion matrix after applying weighting: Large values on the diagonal

entries indicate accuracy. The overall recognition rate is 92.40%, which is an improvement

of 6.8% compared to the nonweighted case.

Ground-truth
Recognized as

Walk Jump Golf Swing Run Climb

Walk 45 1 1 2 1

Jump 2 47 1

Golf Swing 1 47 1 1

Run 2 1 46 1

Climb 1 1 2 46
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obtained a set of weights Wj for each action j in our database. Classification results are

summarized in Table 3.2. The overall recognition rate is 92.4%, which is an improvement

of 6.8% compared to the unweighted case.

3.3.2 Results on real data

3.3.2.1 UCF-CIL Dataset

The UCF-CIL dataset consists of video sequences of 8 classes of actions collected

on the internet (see Figure 3.6): ballet fouette, ballet spin, push-up exercise, golf swing,

one-handed tennis backhand stroke, two-handed tennis backhand stroke, tennis forehand

stroke, and tennis serve. Each action is performed by different subjects, and the videos

are taken by different unknown cameras from various viewpoints. In addition, videos in

the same class of action may have different starting and ending points, thus may be only

partially overlapped. The execution speeds also vary in the sequences of each action.

Self-occlusion also exists in many of the sequences, e.g., golf, tennis, etc.

We built an action database DB by selecting one sequence for each action; the rest

were used as test data, and were matched against all actions in the DB. The action was

recognized as the one with the highest matching score for each sequence. The confusion

matrix is shown in Table 3.3, which indicates an overall 95.83% classification accuracy

for real data. As shown by these results, our method provides a successful recognition

of various actions by different subjects, regardless of camera intrinsic parameters and

viewpoints.
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Table 3.3: Confusion matrix before applying weighting: Large values on the diagonal

entries indicate accuracy. The overall recognition rate is 95.83%. The actions are denoted

by numbers: 1 - ballet fouette, 2 - ballet spin, 3 - pushup, 4 - golf swing, 5 - one handed

tennis backhand, 6 - two handed tennis backhand, 7 - tennis forehand, 8 - tennis serve.

Ground-true Recognized as action

actions #1 #2 #3 #4 #5 #6 #7 #8

#1 3

#2 1 10

#3 5

#4 7

#5 3

#6 1 6

#7 3

#8 9

Table 3.4: Confusion matrix after applying weighting: The overall recognition rate is

100%, which is an improvement of 4.17% compared to the nonweighted case. The actions

are the same as in Table 3.3.

Ground-true Recognized as action

actions #1 #2 #3 #4 #5 #6 #7 #8

#1 3

#2 11

#3 5

#4 7

#5 3

#6 7

#7 3

#8 9

We test each sequence using the take-one-out strategy. With weighting, the classi-

fication results are summarized in Table 3.4. The overall recognition rate is 100%, which

is an improvement of 4.17% compared to the nonweighted case.
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3.3.2.2 IXMAS data set

We also evaluated our method on IXMAS data set [65], which has 5 different

views of 13 different actions, each performed 3 times by 11 different actors. We tested

on actions, {1, 2, 3, 4, 5, 8, 9, 10, 11, 12}. Similar to [65], we applied our method on all

actors except for “Pao” and “Srikumar,” and used “Andreas 1” under “cam1” as the

reference for all actions similar to [54]. The rest of the sequences were used to test our

method. The recognition results are shown in Table 3.6 for non-weighted case. The

average recognition rate is 87.3%. For weighting, we tested each sequence by randomly

generating a reference dataset of 2 × 5 × 10 = 100 sequences for 10 actions performed

by 2 people observed from 5 different viewpoints. The results are shown in Table 3.7.

The average recognition rate is 92.1%, which boosts 4.8% over the non-weighted case. In

addition, we compare our method to others in Table 3.5. As can be seen, our method

improves on each camera view.

3.3.2.3 Testing Occlusion

As discussed earlier, we handle occlusions by ignoring the line segments involving

the occluded points. Since there are a total of 11 points in our body model, there are a

total of 55 line segments. If, let’s assume, 3 points are occluded, there are still 28 line

segments. While the non-weighted method would be expected to degenerate when lesser

line segments are used, weighting the line segments would still be able to differentiate

between actions, which are dependent on the non-occluded points. While our previous

experiments implicitly involve self-occlusion, in this section, we want to rigorously test
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Table 3.5: Recognition rates in % on IXMAS dataset

Method all cam1 cam2 cam3 cam4 cam5

fundamental ratios 87.3 92.0 89.6 86.6 82.0 78.0

without weighting

fundamental ratios 92.1 94.2 93.5 94.4 92.6 82.2

with weighting

Weinland [64] 83.5 87.0 88.3 85.6 87.0 69.7

Weinland [63] 57.9 65.4 70.0 54.3 66.0 33.6

Reddy [44] 72.6 69.6 69.2 62.0 65.1 -

Tran [57] 80.2 - - - - -

Junejo [25] 72.7 74.8 74.5 74.8 70.6 61.2

Liu [31] - 76.7 73.3 72.0 73.0 -

Farhadi [14] 58.1 - - - - -

Shen [54] 90.2 - - - - -

our method when occlusion is present. In particular, we test for these different scenarios:

(i) Upper body is occluded including the head and shoulder points. (ii) The right side of

the body is occluded including the shoulder, arm, hand, and knee points. (iii) The left

side of the body is occluded including the shoulder, arm, hand, and knee points. (iv)

Lower body is occluded including the knee and feet points. Therefore (i) has 3 occluded

points and the rest of the test cases have 4 occluded points. The results are shown in

Table 3.8, Table 3.9, Table 3.10, and Table 3.11.
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Table 3.6: Confusion matrix for IXMAS dataset before applying weighting. The actions

are denoted by numbers: 1 = Check Watch, 2 = Cross Arms, 3 = Scratch Head, 4 = Sit

Down, 5 = Get up, 8 = Wave, 9 = Punch, 10 = Kick, 11 = Point, and 12 = Pick Up

Action 1 2 3 4 5

Recognition rate % 87.2 89.6 85.1 83.1 89.6

Action 8 9 10 11 12

Recognition rate % 90.4 89.6 82.1 91.1 85.3

Table 3.7: Confusion matrix for IXMAS dataset after applying weighting: The overall

recognition rate is 92.1%, which is an improvement of 4.8% compared to the nonweighted

case. The actions are the same as in Table 3.6.

Action 1 2 3 4 5

Recognition rate % 93.4 94.6 89.1 87.2 94.8

Action 8 9 10 11 12

Recognition rate % 95.6 93.3 87.1 95.6 90.1

As can be seen from these results, our method is able to recognize actions even

when such drastic occlusions are present. The few low percentages in the tables corre-

spond to actions that are more or less dependent on the occluded part. For instance,

“kick” action has a percentage of only 5.5% when lower body is occluded. But this ac-

tion is solely based on the lower part of the body. Therefore, it is not surprising that the

recognition rate is low. In general, the recognition rates are low since we are using lesser

number of line segments, and more importantly, we are using lesser number of points to

compute the fundamental matrix (when 4 points are occluded, we are forced to use the

7 point algorithm [21]).
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Table 3.8: Confusion matrix when head and two shoulder points are occluded. The

actions are the same as in Table 3.6.

Action 1 2 3 4 5

Recognition rate % 85.5 91.1 83.3 81.1 91.1

Action 8 9 10 11 12

Recognition rate % 92.3 90.3 83.3 90.4 83.3

Table 3.9: Confusion matrix when the right side of the body is occluded including the

right shoulder, arm, hand, and knee point.

Action 1 2 3 4 5

Recognition rate % 83.3 54.5 5.5 58.8 61.3

Action 8 9 10 11 12

Recognition rate % 3.3 10.3 79.1 5.6 16.1

Table 3.10: Confusion matrix when the left side of the body is occluded including the

left shoulder, arm, hand, and knee point.

Action 1 2 3 4 5

Recognition rate % 3.3 47.5 75.5 57.7 66.7

Action 8 9 10 11 12

Recognition rate % 83.3 73.3 76.7 77.1 66.7

Table 3.11: Confusion matrix when the lower body is occluded including the two knee

and feet points.

Action 1 2 3 4 5

Recognition rate % 86.6 83.3 78.1 45.2 54.8

Action 8 9 10 11 12

Recognition rate % 81.1 79.3 5.5 78.1 36.6
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3.3.3 How soon can we recognize the action?

We also experimented with how soon our method is able to distinguish between

different actions. This is helpful to gauge whether our method would be able to perform

real-time or not. To do this, we looked at all the correctly classified sequences and the

results are summarized in Table 3.12. So, for instance, for action 1, on average we can

detect the action after 60% of the sequence. The best case and the worst case are also

provided.

Table 3.12: This table shows how soon we can recognize an action for IXMAS dataset.

% of Sequence used:

Action 1 2 3 4 5 8 9 10 11 12

Best case 30 33 56 35 40 56 48 45 60 37

Worst case 88 77 91 67 77 88 81 89 92 79

Average case 60 50 77 56 66 69 63 77 78 55
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Figure 3.6: A set of 56 sequences in 8 categories (actions) used to test the proposed
method. Ballet fouettes: (1)-(4); ballet spin: (5)-(16); push-up: (17)-(22); golf swing:
(23)-(30); one-handed tennis backhand stroke: (31)-(34); two-handed tennis backhand
stroke: (35)-(42); tennis forehand stroke: (43)-(46); tennis serve: (47)-(56).
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CHAPTER 4: ACTION RECOGNITION USING PROJECTIVE
DEPTH

We propose to use the concept of the “Projective Depth” for use in action recogni-

tion. Since the image sequence is acquired from a camera, we lose the depth information.

However, given a 3D plane viewed by two camera, it is possible to find the “projec-

tive depth” of a given point relative to this plane. Let us first look at the concept of

“projective depth:”

4.1 Projective Depth

A world point X = (xT , ρ)T is imaged at x in the first image and at

x′ = (1 − ρ)Hx+ ρe′ (4.1)

in the second image. This world point introduces a parallax relative to the plane as

illustrated in Figure 4.1. Since x′, e′, and Hx are collinear, the scalar ρ is the parallax

relative to the plane π, which can be expressed as:

ρ =
x′ −Hx

e′ −Hx
(4.2)

ρ is 0 implies the point is on the plane. Otherwise the sign of ρ indicates which side of

the plane π the point X is. However, in the absence of oriented projective geometry the

sign of a homogenous object, and the side of a plane have no meaning. To solve this,
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Figure 4.1: A point x in one image is transferred via the plane π to a matching point x′

in the second image.

(a) (b)

Figure 4.2: These figures explain the significance of the characteristic vector. As soon as
the person moves one of his arms, there is notable change in the characteristic vector for
the points that moved.

instead of using the projective depth directly, we use the scaled absolute value of the

difference of depths as our invariant:

Definition 2 (Canonical pose)

We shall call the image points pi=1,...,k of a set of fixed points in a stationary camera P,

a canonical pose of the k points.
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Note that the definition does not impose constraints such as points in general

position or non-coplanarity.

Definition 3 Let mi=1,...,k be a set of image points in a camera P1 that are in one-to-

one correspondence with the points in the canonical pose and a homography H2 that is

consistent with the fundamental matrix F between the set of points and the points in

the canonical pose. Let also m′
i=1,...,k be the images of these points after moving to new

locations and a homography H2 that is consistent with the fundamental matrix F between

the set of moved points and the points in the canonical pose we define the “characteristic

vector” of the k moving points as

t =


b1

...

bk

 (4.3)

where

bi =
(mi −H1pi)x
(e′ −H2pi)x

− (m′
i −H2pi)x

(e′ −Hpi)x
(4.4)

=
(mi −H1pi)y
(e′ −H1pi)y

−
(m′

i −H2pi)y
(e′ −H2pi)y

, (4.5)

(·)x and (·)y denote the x and y coordinates of the argument vector, and e′ is the

epipole in the second image.

Proposition 4 (Invariance of Characteristic Vector)

Assume two sets of freely moving points that are in one-to-one correspondence with the

points in the canonical pose are observed by two distinct cameras P1 and P2. If the
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motion of the two sets of points differ up to similarity, then the associated characteristic

vectors would differ up to scale.

An important constraint in the definition of the characteristic vector is the con-

sistency of H with the fundamental matrix F. This was established by Viéville et al.

[58] as the condition that HTF has to be skew symmetric. The latter implies that

HTF + FTH = 0.

4.2 Using Projective Depth

A key issue is thus, how can one find a set of 4 or more point correspondences

that yield a homography H that satisfies this condition. This issue is of practical interest

in our problem, because in practice it would be impossible to find corresponding planes

between two actions performed by two different subjects at totally different locations

viewed by two different cameras.

There can be multiple ways of using Projective Depth including using triplets,

ground plane, and planes based on movement. Let us analyze these options:

4.2.1 Using Triplets

As described earlier in 2, The 3D body structure of a human can be divided

into triplets of body points, each of which determines a plane in the 3D space when

the points are not collinear. The problem of comparing articulated motions of human

body thus transforms to comparing rigid motions of body planes (triplets). According
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to proposition 4, the motion of a plane induces a fundamental matrix, which can be

identified by its associated fundamental ratios. If two pose transitions are identical, their

corresponding body point triplets have the same fundamental ratios, which provide a

measure for matching two pose transitions.

We can divide the body points into a set of triplets. The 3 points of each triplet

along with the epipole define a plane. We can use these planes to calculate the “projective

depth” of every other point. To match two poses, it would be necessary to match their

projective depths.

Given a body model with 11 body points, we have
(
11
3

)
= 165 triplets and for

every triplet, we have 11 − 3 = 8 projective depths. The total projective depths would

equal the number of triplets times the number of projective depths for each triplet or

165 × 8 = 1320 in our case. This is a lot of data to work with and would ensure noise is

filtered out.

Degenerate triplets: A homography cannot be computed from four correspon-

dences if three points are collinear. Even when three image points are close to collinear

the problem becomes ill-conditioned. We call such triplets as degenerate, and simply ig-

nore them in matching pose transitions. This does not produce any difficulty in practice,

since with 11 body point representation used in our experiments, we obtain 165 possible

triplets, the vast majority of which are in practice non-degenerate.

A special case is when the epipole is close to or at infinity, for which all triplets

would degenerate. We solve this problem by transforming the image points in projective

space in a manner similar to Zhang et al. [70]. The idea is to find a pair of projective
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transformations Q and Q′, such that after transformation the epipoles and transformed

image points are not at infinity. Note that these transformations do not affect the pro-

jective equality in Proposition 4.

4.2.2 Ground Plane

We can use the ground plane to estimate the depth of each body point. Then

we would have exactly 11 projective depths corresponding to a 11 point body model per

frame. With the exception of the foot points, the ground plane is always relatively far

away from the body points and hence, we can be sure that the projective depths are

large enough to be meaningful. The problem of action recognition would then translate

to matching curves, as we would have 11 curves corresponding to each action. However,

in this case, we have a much smaller set to work with (Only 11 projective depths per

frame).

4.2.2.1 Estimating ground plane homography

Let m1 and m2 be two arbitrary points in a camera P1 and in correspondence

with p1 and p2 in the canonical pose. Let also m3 be any arbitrary point in P1. Then

the corresponding point p3 in the canonical camera must satisfy the epipolar constraint

p3
TFm3 = 0. This provides a one parameter family of solutions in the form of p3(α)

for p3. Taking the epipoles as the fourth corresponding points, defines a one-parameter

family of homographies H(α) that map the four points m1 ,m2 ,m3 and e to p1, p2, p3

and e′. The optimal parameter α that would impose the consistency condition is then
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found using

α∗ ∼ arg min trace(H(α)TFFTH(α))

subject to ∥HT (α∗)F + FTHT (α∗)∥ is minimized (4.6)

This is a constraint minimization of a polynomial cost function, for which there is a

closed form solution.

4.2.2.2 Action Alignment

For a given test sequence, we first calculate the characteristic vectors with respect

to a canonical pose of a human subject over all frames in the sequence. This basically

yields a time series of characteristic vectors. The canonical pose may be for instance a

person simply standing right up. If we regard the characteristic vector t as a random,

scaled vector, then given a set R = {r1, ..., rM} of M different series of reference char-

acteristic vectors corresponding to M different actions, our goal is to find rm that best

matches the test sequence. For the time being assume that the test sequence and all

reference sequences are of the same length of K and are aligned. Assuming a normal

distribution of noise and errors with variance σ2, the probability of the characteristic

vector of an unknown action t to match rm is given by:

p(t̄|r̄m) ∼ exp

(
−∥t̄− r̄m∥2

2σ2

)
(4.7)

where t̄ = |t|
∥t∥ and r̄m = |rm|

∥rm∥ .
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Assuming conditional independency over time, we can solve the problem by min-

imizing the following log-likelihood function:

m∗ ∼ arg min
m=1,...,M

∑
K=1,...,K

∥t̄k − r̄km∥2 (4.8)

where m∗ is the estimated optimal index for the matched sequence in the database. In

practice one may attempt to improve upon this formulation by constraining the fact that

the motion of a given point in time must be smooth. However, as seen in the experimental

section this maximum likelihood solution is sufficient for providing good results.

4.2.2.3 Degeneracy

We consider a component with a value of zero as a degenerate case. In fact, a

value of zero would indicate that the point moves inside a plane parallel to the plane of

eigenvectors of the matrix H, or is motionless. Although, this may happen in practice,

it is highly unlikely that in an action all points remain motionless or all have a coplanar

motion parallel to the plane of eigenvectors of H.

4.2.3 Planes in time

Another option is to use the planes in time. As the person moves in time, we

have more points to use. However, this leads to a an extreme amount of data since we

are effectively choosing 3 points from the number of body points times the number of

frames. Assuming the number of body points is 11 and the length of the video is 60,

then this amounts to a total of
(
60×11

3

)
= 47698420, which is huge and is not practical to

work with. For this reason, we did not pursue this course of research.
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4.2.4 Using Mirror Symmetry

This work builds on the work of [1], which analyzed the idea of 3D reconstruction

from a single perspective view of a mmirror symmetric scene. The work demonstrated

that the mirror view is equivalent to the observing the same scene with two cameras.

Let’s first quickly review their work since we are going to build on that. In particular,

we would be looking into Lemma 1:

Lemma 1 The image of a scene that is symmetric with respect to an unknown plane,

formed by an arbitrary projective camera, is identical to the image of the scene formed by

the (virtual) projective camera symmetric of the first one with respect to the scenes 3-D

(unknown) symmetry plane.

Assume we have an image of a symmetric shape. We can place the origin O of

the world on the symmetry plane. Let X denote a world point represented by the vector

[x y z 1]T and let x denote the corresponding homogenous 3-vector [U V W ]. Let the

camera be defined by the 3 × 4 matrix P = M[I| − C̃], where M = KR where K is the

3 × 3 calibration matrix, and R is the 3 × 3 rotation matrix from the world coordinate

system to the camera coordinate system; and C̃ is the inhomogenous 3 × 1 vector of the

camera center coordinates in the world coordinate system. A world point X is mapped

to the x by this relation:

x = PX = M[I| − C̃]X (4.9)
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The world point symmetric to X with respect to the symmetry plane is X̄ = ZX,

where:

Z =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(4.10)

and we note:

Z̃ =


−1 0 0

0 1 0

0 0 1

 (4.11)

The image point x̄ of the world point X̄ seen by the camera at center C is:

x̄ = M[I| − C̃]ZX (4.12)

Now consider a virtual camera, which is symmetric to camera at center C with

respect to the object’s symmetric plane. Hence its center would be C̄ = ZC, and it

would project a world point X according to this relation:

x′ = M̄[I| − ˜̄C]X (4.13)

where M̄ = MZ̃. Substituting symmetric elements by their expression:

x′ = MZ̃[I| − Z̃C̃]X = M[I| − C̃]ZX = x̄ (4.14)

Similarly:

x̄′ = MZ̃[I| − Z̃C̃]ZX = M[I| − C̃]ZZX = x (4.15)
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This means that the image of a pair of symmetric points viewed by a real camera

is equivalent to the case of a virtual camera viewing the same symmetric points being

reversed in the real and virtual view.

4.2.4.1 Using Mirror-view symmetry in Pose Recognition

Our goal can be stated as follows: Given a 3D pose viewed by two cameras C1 and

C2, we want to extract planes from the scene to estimate the projective depths of body

points relative to the plane. This information can then be used for pose-recognition and

extended to action recognition.

Applying mirror view symmetry would relate C1 and its mirror view, and C2 and

its mirror view only. Furthermore, this would assume that the action is symmetric, which

is not the case with most of the actions.

But recall that we already know the epipolar geometry between C1 and C2 and

therefore, we can use this information. Furthermore, we are interested in a mirror view

of the person, which can be used to extract co-planar points.

Let us refer to an example to illustrate this concept: Consider the case of an

asymmetric pose and the hand points Xlefthand and Xrighthand are viewed by the two

cameras C1 and C2 and the corresponding image points are: xlefthand, and xrighthand and

x′
lefthand, and x′

righthand, respectively. Let us first consider camera C1: If the pose is

symmetric, in the mirror view, x̄lefthand = xrighthand and x̄righthand = xlefthand. However,

if the pose is not symmetric, this would not be true. But we can think of the virtual body

point that would have been there had it been a symmetric pose: x̄lefthand = Z′
1xrighthand,
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where

Z′
1 =


−1 0 t1

0 1 0

0 0 1

 (4.16)

where t1 corresponds to some translation. Similarly, x̄righthand = Z′
1xlefthand. We can

think of camera C2, where x̄′
lefthand = Z′

2x
′
righthand and x̄′

righthand = Z′
2x

′
lefthand, where

Z′
2 =


−1 0 t2

0 1 0

0 0 1

 (4.17)

So we have two unknowns t1 and t2, which are the unknown translations. Now

consider another 3 point, let’s say the left shoulder point, Xleftshoulder, which is viewed

in camera C1 and C2 as xleftshoulder and x′
leftshoulder, respectively.

The virtual mirror symmetric points would be x̄leftshoulder = Z′
1xleftshoulder and

x̄′
leftshoulderZ

′
2x

′
leftshoulder. Both xleftshoulder and x̄leftshoulder would have the same ’depth’

relative to the plane defined by the points, xlefthand, xrighthand, x̄lefthand, and x̄righthand

in camera C1 and x′
lefthand, x

′
righthand, x̄′

lefthand, and x̄′
righthand in camera C2 (Refer to

Figure 4.3).

Let H be the homography relating the points, xlefthand, xrighthand, x̄lefthand, and

x̄righthand in camera C1 and x′
lefthand, x

′
righthand, x̄′

lefthand, and x̄′
righthand in camera C2,

we have:
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Figure 4.3: The depth of left shoulder and its mirror view would be equidistant from the
plane consisting of left hand, and right hand, and their mirror views.

ρ1 =
x′
leftshoulder −Hxleftshoulder

x′
leftshoulder − e′

=

x̄′
leftshoulder −Hx̄leftshoulder

x̄′
leftshoulder − e′

=
Z2x

′
leftshoulder −HZ1xleftshoulder

Z2x′
leftshoulder − e′

(4.18)

Similarly, in the other direction we have:

ρ2 =
xleftshoulder −H−1x′

leftshoulder

xleftshoulder − e
=

x̄leftshoulder −H−1x̄′
leftshoulder

x̄leftshoulder − e
=

Z1xleftshoulder −H−1Z2x
′
leftshoulder

Z1xleftshoulder − e

(4.19)

So we have two equations to solve for the two unknowns, t1 and t2. Solving these

equations, we get t1 = −2ex and t2 = −2e′x.

4.3 Action Recognition Using Projective Depth

For action recognition, instead of estimating the depths and aligning the two se-

quences each time we need to test a new motion sequence, we store the depths in a volume.

Thus, when we are using ground plane, we have a 3D volume of 4×numberofbodypoints×

numberofframes × numberofframes. Here the first 4 × numberofbodypoints is the
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characteristic vector (we use both x and y coordinates and the characteristic vector in

both dimensions), and the characteristic vector is calculated for every frame in the se-

quence. Similarly, when we use triplets, the volume has dimensions of 4×numberofbodypoints×

numberofframes×
(
numberofbodypoints

3

)
×numberofframes. This is because in each frame,

we get a set of
(
numberofbodypoints

3

)
planes, and we calculate the characteristic vector for

each of these frames for the entire sequence. Similarly, using mirror symmetry, we have

a 4×numberofbodypoints×numberofframes×
(
numberofbodypoints

2

)
×numberofframes

dimensional volume.

The idea is that this volume is characteristic of the action. Our objective is

to approximate this volume into compact vectors for use in action recognition. We

use rank-1 decomposition described in [55] to generate compact representations of the

volume, which is then used for action recognition. Given two motion sequences mi and

mj, we can obtain the corresponding discriminant vectors, vi = {Di
T,D

i
F,D

i
R} and

vj = {Dj
T,D

j
F,D

j
R}. Then the similarity of the two motion sequences can be calculated

using ||vi − vj||.

4.3.1 Experimental Results and Discussion

In this section we present results on both CMU MoCap data and IXMAS dataset

[65].
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Table 4.1: Using ground plane: Overall accuracy about 95%.

Ground-truth
Recognized as

Walk Jump Golf Swing Run Climb

Walk 49 1

Jump 1 49

Golf Swing 49 1

Run 5 42 3

Climb 2 48

Table 4.2: Using triplets: Overall accuracy about 90%

Ground-truth
Recognized as

Walk Jump Golf Swing Run Climb

Walk 44 1 3 2

Jump 2 45 1 2

Golf Swing 1 47 2

Run 2 2 1 44 1

Climb 3 0 1 2 44

Table 4.3: Using mirror symmetric planes: Overall accuracy about 96%

Ground-truth
Recognized as

Walk Jump Golf Swing Run Climb

Walk 49

Jump 1 49

Golf Swing 49 1

Run 2 45 3

Climb 3 47
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4.3.1.1 Results on MoCap Data

To test Action Recognition, we used the same setup as 3.3.1.3. The first frame was

chosen as the canonical pose (our method is not sensitive to the choice of the canonical

pose, and using a different pose does not make a difference). We used leave one out cross

validation. The classification results are shown in Table 4.1, Table 4.2, and Table 4.6.The

overall classification accuracy for our method is 95%, 90%, and 96%, using ground plane,

triplets, and mirror symmetry, respectively. The results are remarkably good despite the

extreme viewpoint changes and variations in camera intrinsic parameters.

4.3.1.2 Results on Real Data

We evaluated our method on IXMAS data set [65]. We tested our method on

10 actions consisting of “watch time,” “cross arms,” “scratch head,” “sit down,” “stand

up,” wave,” “punch,” “kick,” “point,” and “pick up.” This would correspond to testing

on 10× 3× 5× 10 = 1500 different videos. We used leave one out cross validation to test

our results.

In our experiments, we chose the first frame of “watch time” in “cam0” view of

“Amel” as our canonical pose (our method is not sensitive to the choice of the canonical

pose, therefore using a different pose of a different person from another viewpoint does

not make a difference). The results are shown in Table 4.4, Table 4.5, and Table 4.6.

The overall recognition rates are 81.4%, 87.3%, and 90.5% using ground plane, triplets,

and mirror symmetry, respectively.
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Table 4.4: Recognition rate for IXMAS data using ground plane. Overall accuracy:

81.4%

Action Check Watch Cross Arms Scratch Head Sit down Stand up

Accuracy % 77.8 84.8 88.6 88.6 77.8

Action Wave Punch Kick Point Pick up

Accuracy % 67.8 77.8 88.6 77.8 84.8

Table 4.5: Recognition rate for IXMAS data using triplets. Overall accuracy: 87.3%

Action Check Watch Cross Arms Scratch Head Sit down Stand up

Accuracy % 80.4 87.0 89.1 87.0 95.7

Action Wave Punch Kick Point Pick up

Accuracy % 80.0 95.5 95.5 84.1 79.5

Table 4.6: Recognition rate for IXMAS data using mirror symmetric planes. Overall

accuracy: 90.5%

Action Check Watch Cross Arms Scratch Head Sit down Stand up

Accuracy % 84.8 91.3 91.3 91.3 100

Action Wave Punch Kick Point Pick up

Accuracy % 77.8 95.5 100 84.1 88.6

Using mirror symmetry outperforms ground plane and triplets. Ground plane can

be thought of as the subset of mirror symmetry since the two feet points and their mirror

views give us the roughly the ground plane (unless in the first frame, the feet are not

on the ground but even then that plane can be thought of as the ground plane). Hence,

the lower recognition rate using ground plane with respect to using mirror symmetry

is understandable. For the triplets, the accuracy seems to be low compared to mirror

symmetry because the planes extracted from triplets are always very close to the body

points. In fact, for useful information to be extracted, it is essential that some of the
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body points move really far away from the body. Otherwise, all the projective depths

map to zero. Mirror symmetry has none of these issues, and therefore, it is not surprising

that mirror symmetry gives the best performance.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In this dissertation we study geometric invariants in human motion and their

application to view-invariant action recognition. Geometric invariants are important in

computer vision because with perspective projection, it is very hard to relate objects

across different views. Therefore, it is very useful if we can find geometric properties

of objects, which are invariant to the intrinsic parameters of the camera and viewpoint

changes. In this dissertation, we study three different geometric invariants for pose

recognition, which can be extended to action recognition.

To study poses, we propose decomposing the body points into a set of triplets

or line segments. This has several advantages: (i) The matching of non-rigid motion of

human body points is transformed to matching the rigid motion of body point triplets

or line segments; (ii) We get an highly over-determined formulation of the problem as

with N body points, we have
(
N
3

)
triplets and

(
N
2

)
line segments. This allows us to

achieve robustness to noise and occlusion; and (iii) Anthropometric restrictions, such as

coplanarity of some body points, can be relaxed.

The first geometric invariant we propose is the Rank 4 constraint. We exploit the

fact that the family of homography matrices span a 4 dimensional linear subspace of P 8

and hence can be used to identify similar poses. If the poses match, then the rank of the

family of homography matrices stacked as column vectors would be 4. If, however, the
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poses are not similar, then the rank would be higher than 4. This observation is used to

measure the similarity of two poses and is extended to action recognition using dynamic

programming.

Secondly, we extend the fundamental ratios invariant. The fundamental ratios

invariant is motivated by the observation that if camera calibration matrix has zero skew

and unit aspect ratio, the upper left 2× 2 sub-matrix is solely dependent on the rotation

and translation of the cameras, and is independent of camera internal parameters. The

ratios among the elements in the upper left 2 × 2 sub-matrix are referred to as the

Fundamental Ratios. This was used to measure the similarity of two pose transition by

estimating the fundamental matrix induced by a moving triplet of body points. In this

dissertation, we ask whether it is possible to obtain the fundamental matrix induced by

a moving line segment. This introduces more redundancy and is experimentally shown

to perform better than point triplets.

We also present a weighting strategy to further improve our results. This is

motivated by the fact that not all line segments play the same role in determining the

correct action. For instance, the upper body plays a more critical role in boxing, whereas

the lower body has more significance in cycling. Therefore, we want to be able to assign

different weights to line segments for various actions to improve the accuracy. We present

our weighting strategy and present experimental results, which demonstrate that using

weighting considerably improves the overall recognition rate. This is a general scheme

that can be applied to other methods as well such as Rank 4 constraint.
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We also introduced the projective depth invariant which uses the projective depth

relative to planes for finding the similarity between two poses. The challenge is finding

planes in the scene. We propose three different strategies for extracting planes between

two frames: (i) Ground Plane: We assume that the two feet points are on the ground

plane and we use the fact that the homography matrix corresponding to the plane must

be consistent with the epipolar geometry to estimate the ground plane homography. (ii)

Triplets: We use body point triplet planes ; and (iii) Mirror Person: We present a novel

method of using the mirror view of a person so that any line segment and its mirror

counterpart can be used as a plane. Using the ground plane can be roughly thought

of a subset of using the mirror person because the two feet points and their mirror

counterparts are very closely related to the ground plane. The difference between using

triplets and mirror person is easier to analyze when we consider their counterparts for

3D points. The triplets correspond to the plane formed by the triplet while the mirror

person is equivalent to taking the mirror view of the person and using each line segment

and its mirror view. The difference essentially lies in the planes extracted.

We present extensive experimental results, which show that our method can ac-

curately identify human poses from video sequences when they are observed from totally

different viewpoints with different camera parameters. We used semi-synthetic data to

test view invariance and noise resilience. We present results on action recognition on 4

different datasets including CMU MoCap dataset, IXMAS dataset, UCF-CIL dataset,

and Kinect dataset. For fundamental ratios using line segments, extensive experiments

are reported on testing (i) view-invariance, (ii) robustness to noisy localization of body
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points, (iii) effect of assigning different weights to different body points, (iv) effect of

partial occlusion on recognition accuracy, and (v) determining how soon our method

recognizes an action correctly from the starting point of the query video.

5.1 Computational Complexity

Let us analyze the number of computations for each of our methods:

If the number of body points are N for a given frame, and the total number of

frames for two sequences are f1 and f2.

5.1.1 Rank-4 constraint

Since dynamic programming is used to align the two sequences, we need to pop-

ulate the f1 × f2 accumulated DP path matrix. To do this, all the homography matrices

between the two views have to be calculated for each entry in the matrix. There are

a total of at most
(
N
3

)
triplets. Therefore, the total number of calculations would be

f1f2(c1 +
(
N
3

)
c2), where c1 is a constant time for calculating the rank of the matrix con-

sisting of all the homography matrices stacked as column vectors and calculating the

error, and c2 is a constant time used for calculating the homography. This gives us

O(f1f2(c1 +
(
N
3

)
c2).

A typical sequence is around 50 frames long and we use 11 body points in our

experiments, therefore, the number of floating point operations can be estimated to be

around 50 × 50 ×
(
11
3

)
= 412500.
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5.1.2 Fundamental Ratios constraint

Again, dynamic programming is used to align the two sequence. The total number

of calculations would be f1f2(c1 +
(
N
3

)
c2), where c1 is constant time for calculating the

error between all line segments and if weighting is used, applying the weights on the

individual line segments, and c2 is constant time for calculating the induced fundamental

matrix using the line segment. This gives us O(f1f2
(
N
3

)
) for this method.

Typical number of floating point operations for this method are 50 × 50 ×
(
11
2

)
=

137500.

5.1.3 Projective Depth Invariant

In projective depth, all the depths are stored in a volume. Let’s analyze the

different computations needed to obtain this volume:

5.1.3.1 Using Ground Plane

Total number of calculations = 4Nf1f1, which gives us O(Nf1f2). The typical

number of floating point operations is 4 × 11 × 50 × 50 = 110000.

5.1.3.2 Using Triplets

Total number of calculations = 4Nf1f1
(
N
3

)
, which gives us O(Nf1f2

(
N
3

)
). Typical

number of floating point operations = 4 × 11 × 50 × 50 ×
(
11
3

)
= 18150000.

5.1.3.3 Using Mirror Person

Total number of calculations = 4Nf1f1
(
N
2

)
, which gives us O(Nf1f2

(
N
3

)
).
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This is because both the x and y-coordinate of the projective depth in both di-

rections are used as the feature (which gives us 4) and the projective depth is calcu-

lated for every point in the body for every frame. Every frame contributes a plane

for ground depth; for triplets, each frame contributes
(
11
3

)
planes; and each frame gives(

11
2

)
planes when using mirror person. Typical number of floating point operations =

4 × 11 × 50 × 50 ×
(
11
2

)
= 6050000.

Please note that since estimating the depth volume is only dependent on the

original sequence, we can find the depth volume for the database of actions and decompose

them offline to find the characteristic vectors and store them. For a query action, we

need to find its depth volume and decompose it, which gives us its characteristic vectors,

and compare these to vectors from the database of actions.

5.2 Significance of this work

One may ask the significance of this work given that many other methods are

able to give comparable or better results. We are tackling a very hard problem and there

are two facets of this problem: (i) View invariance: We assume that the test action and

the examples in the dataset may be from very different viewpoints; and (ii) the number

of examples are very limited. Both of these factors are very important in that usually

the methods in the literature, which address view-invariance, assume they have a huge

set of actions from different view points so that they are able to train a classifier, which

is able to give good results for different view points. But what would happen if these

methods had a handful of videos? We on the other hand, are tackling a much harder
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problem, which is what if only a few instances of the action were given. And therefore,

in our experiments on Rank 4 and fundamental ratios, we use just one instance of each

action as our database. For Rank 4 constraint, on the moCap dataset, when we test on

4 actions, we have just 4 videos in the dataset, one for each action. Similarly, when we

test for 5 actions in IXMAS dataset, there are only 5 videos in our dataset, one for each

action. For fundamental ratios using line segments, if we are testing on N actions, we

only need 3N examples in the dataset.

The end goal is that a user or animator may be able to define a new action simply

by capturing a single video. In this context, our findings are that geometric invariants

are indispensable in that they provide us with geometric properties of the object, which

are invariant to different viewpoints and intrinsic parameters of the camera.

The idea of estimating projective depth, stacking them in a volume and decom-

posing them is directed more towards motion retrieval. Large motion capture datasets

have become commonplace owing to their importance in realistic animation of human

motion. With this development, it has become increasingly important to develop meth-

ods for an animator to search for similar motions from a given dataset. Since, the depth

vector is only dependent on the sequence, we can find the volumes for the database of

actions and decompose them offline and store the characteristic vectors. Hence, given a

query action, we need to decompose it and compare its characteristic vector with a set

of other vectors, which is very fast.
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5.3 Future Work

Currently these methods are not real-time and the aim should be to make these

methods real time for use in human computer interface (HCI) applications. Each of

the methods lends itself to a parallel implementation very well. For rank-4 constraints,

each homography can be calculated in parallel since they are independent of each other.

Similarly, when using fundamental rations, each fundamental ratio induced by different

line segments can be estimated separately. This is true of projective depth as well.

Therefore, these methods can be implemented very well using parallel programming for

GPUs and this is an open problem to be explored.

Furthermore, each of the methods can potentially use less number of frames. In

fact, we demonstrated this concept for fundamental ratios. The same ideas can be applied

to projective depth as well. Naturally, our depth volume would be smaller if less frames

are used. Reducing the latency needs to be explored for rank 4 constraint and projective

depth.

It would also be interesting to apply weighting on rank 4 constraint, fundamental

ratios using triplets, and projective depth. It would also be interesting to see whether

the weights are substantially different depending on which constraint was used. This is

an open problem, which needs to be explored in more detail.

One of the things we did not pursue in more detail is trying to make the action

symmetric and this would be interesting to pursue in more detail to determine if the

planes yielded by this approach are the same planes as the mirror person planes.
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Another promising extension could be using the different projective depth ap-

proaches in unison. For a given frame, we have the ground planes, triplet planes, and

mirror person planes, and we selected only one of these to calculate the projective depths.

It would be interesting to use these different strategies together. This is motivated by

the fact that one technique performs better on one set of actions, while another performs

better on others. Therefore, it could be very useful if we could work out a method for

using these together.

It would also be interesting to see how these methods can differentiate between

different styles in a given category. For instance, different tennis players have variations

in their shots and the question is whether these methods can detect these.
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