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ABSTRACT 

This research investigates through computational methods whether the physical 

properties of DNA contribute to its harmonic signature, the uniqueness of that signature if 

present, and motion of the DNA molecule in water.  When DNA is solvated in water at normal 

‘room temperature’, it experiences a natural vibration due to the Brownian motion of the 

particles in the water colliding with the DNA.  The null hypothesis is that there is no evidence to 

suggest a relationship between DNA’s motion and strand length, while the alternative hypothesis 

is that there is evidence to suggest a relationship between DNA’s vibrational motion and strand 

length.  In a similar vein to the first hypothesis, a second hypothesis posits that DNA’s 

vibrational motion may be dependent on strand content.  The nature of this relationship, whether 

linear, exponential, logarithmic or non-continuous is not hypothesized by this research but will 

be discovered by testing if there is evidence to suggest a relationship between DNA’s motion and 

strand length.  The research also aims to discover whether the motion of DNA, when it varies by 

strand length and/or content, is sufficiently unique to allow that DNA to be identified in the 

absence of foreknowledge of the type of DNA that is present in a manner similar to a signature.  

If there is evidence to suggest that there is a uniqueness in DNA’s vibrational motion under 

varying DNA strand content or length, then additional experimentation will be needed to 

determine whether these variances are unique across small changes as well as large changes, or 

large changes only.  Finally, the question of whether it might be possible to identify a strand of 

unique DNA by base pair configuration solely from its vibrational signature, or if not, whether it 

might be possible to identify changes existing inside of a known DNA strand (such as a 

corruption, transposition or mutational error) is explored.  Given the computational approach to 



iii 

this research, the NAMD simulation package (released by the Theoretical and Computational 

Biophysics Group at the University of Illinois at Urbana-Champaign) with the CHARMM force 

field would be the most appropriate set of tools for this investigation (Phillips et al., 2005), and 

will therefore be the toolset used in this research.  For visualization and manipulation of model 

data, the VMD (Visual Molecular Dynamics) package will be employed.  Further, these tools 

may be optimized and/or be aware of nucleic acid structures, and are free.  These tools appear to 

be sufficient for this task, with validated fidelity of the simulation to provide vibrational and 

pressure profile data that could be analyzed; sufficient capabilities to do what is being asked of 

it; speed, so that runs can be done in a reasonable period of time (weeks versus months); and 

parallelizability, so that the tool could be run over a clustered network of computers dedicated to 

the task to increase the speed and capacity of the simulations.  The computer cluster enabled 

analysis of 30,000 to 40,000 atom systems spending more than 410,000 CPU computational 

hours of hundreds of nano second duration, experimental runs each sampled 500,000 times with 

two-femtosecond “frames.” 

Using Fourier transforms of run pressure readings into frequencies, the simulation 

investigation could not reject the null hypotheses that the frequencies observed in the system 

runs are independent on the DNA strand length or content being studied.  To be clear, frequency 

variations were present in the in silicon replications of the DNA in ionized solutions, but we 

were unable to conclude that those variations were not due to other system factors.  There were 

several tests employed to determine alternative factors that caused these variations.  Chief among 

the factors is the possibility that the water box itself is the source of a large amount of vibrational 

noise that makes it difficult or impossible with the tools that we had at our disposal to isolate any 
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signals emitted by the DNA strands.  Assuming the water-box itself was a source of large 

amounts of vibrational noise, an emergent hypothesis was generated and additional post-hoc 

testing was undertaken to attempt to isolate and then filter the water box noise from the rest of 

the system frequencies.  With conclusive results we found that the water box is responsible for 

the majority of the signals being recorded, resulting in very low signal amplitudes from the DNA 

molecules themselves.  Using these low signal amplitudes being emitted by the DNA, we could 

not be conclusively uniquely associate either DNA length or content with the remaining 

observed frequencies. A brief look at a future possible isolation technique, wavelet analysis, was 

conducted.  Finally, because these results are dependent on the tools at our disposal and hence by 

no means conclusive, suggestions for future research to expand on and further test these 

hypothesis are made in the final chapter. 
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CHAPTER 1: INTRODUCTION 

Chapter 1 Abstract 

The development of DNA-focused scientific inquiry has been moving forward ever since 

Watson and Crick described the molecule more than a half-century ago.  Yet despite decades of 

concerted inquiry into this unique molecule, and while much progress has been made in 

understanding its secrets, science still cannot explain some basic questions of DNA: why does 

DNA ‘breathe’, why is DNA robust, yet fragile under certain circumstances, and why does error 

correction work sometimes, but not every time?  These questions, and many like them, are the 

subject of scrutiny, and in order to understand some of them, inquiry into DNA’s structure, and 

behavior at the molecular level will be necessary. 

This chapter presents the history of DNA research and makes a case for the significance 

of same.  It lays out an outline-view of the current scientific understanding of DNA, the current 

focus of understanding genomes, and presents a brief gap analysis of some of the gaps in the 

fundamental molecular-level understanding of DNA.  The proposed topic area of vibrational 

mechanics as one of those gaps is explored and the chapter concludes with a brief outline of 

possible explanations and the need for a systems-view of DNA. 

Chapter Overview and Motivation for DNA Research 

DNA (an abbreviation of deoxyribonucleic acid) has been regarded by biologists as one 

of the fundamental building blocks of carbon-based life, and yet, it remains shrouded in mystery.  

From the mystery of homologous pairing, to its resonant properties and vibrational signatures, 

there remain a large number of unexplained phenomena surrounding DNA.  We have only 

recently been able to sequence an entire genome, and yet the significance of so-called ‘junk 

DNA’, the ‘breathing dynamics’ of DNA (the transient opening and re-closing of the strands of 
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the double helix) (Englander, Kallenbach, Heeger, Krumhansl, & Litwin, 1980), and DNA’s 

apparent nonlinearity in the transmission of energy (Peyrard, 2004) all remain phenomena whose 

ultimate purpose in the function of DNA remains poorly understood. 

While DNA is extraordinarily robust and capable of extraordinarily precise operations 

such as error-correction (through DNA polymerases, or enzymes), self-repair, recombination, 

and replication; it is also seemingly delicate, capable of being broken by not only ionizing 

radiation, but possibly non-ionizing radiation like radio waves (Alexandrov, Gelev, Bishop, 

Usheva, & Rasmussen, 2010; Korenstein-Ilan et al., 2008).  It is suspected that the nonlinear 

nature of DNA’s transmission of energy contributes to this seemingly contradictory nature. 

In this chapter, we will discuss the history of DNA research, its molecular structure, and 

some of the underlying chemical physics that are relevant to this research.  It is hoped that 

through understanding these physical phenomena that occur within DNA, we may be able to 

advance the state of the art in genetic diagnostics, industrial health and safety, and other branches 

of genetic science.  Finally this chapter makes a case for the existence of vibrations occurring in 

DNA, the relative uniqueness of those vibrations, and concludes with possible explanations for 

those changes in vibration and what we may infer from those changes. 

History of DNA Research 

We would be remiss to discuss the history of DNA research without first discussing work 

of German scientist Fr. Gregor Mendel.  Mendel worked in the 19th century and showed that 

inheritance of what we now call genetic traits followed a pattern: the pattern of dominant and 

recessive alleles (an allele is a particular expression of a genetic trait).  Like 20th century German 

chemist Fritz Klatte (the accidental inventor of polyvinyl acetate), Mendel’s work was not 

thought of as significant until later.  He published a paper in 1865 titled “Experiments on Plant 
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Hybridization” with the findings of the two laws of inheritance, the Law of Segregation and the 

Law of Independent Assortment.  The paper was largely ignored until 1901, when it was 

rediscovered, re-published, and within 30 years became the cornerstone for the study of genetic 

inheritance. 

The first experiments into the chemical nature of DNA were done by a Swiss scientist, 

Friedrich Miescher.  In 1869, Miescher discovered that inside of every cell’s nucleus was a weak 

acid, which he called “nuclein”.  He published this discovery in 1871, and while it was not 

ignored, its significance was not well understood until a colleague of Miescher, German 

biochemist Albrecht Kossel, researched on the topic of nucleic acids from 1885 until 1901, and 

he discovered and gave the names to the five primary nucleotides: adenine, cytosine, guanine, 

thymine and uracil (substituted for thymine in single-stranded RNA).  Kossel’s work earned him 

a Nobel Prize in 1910 for these discoveries.   A student of his, a Russian-American named 

Phoebus Levene, extended his work and discovered the 2-deoxyribose molecule in 1929.  From 

this he was able to extrapolate that the phosphate-sugar groups that had previously been 

identified but whose use was not known, were used to build the ‘spine’ of DNA and allow the 

nucleotides to link together into a long chain.  He posited that DNA’s structure was 

tetranucleotide, meaning that DNA was based on four components, but that those components 

were all in equal amounts (and therefore could not encode any information).  Research at the 

time was looking towards proteins as the method of genetic inheritance, and Levene’s hypothesis 

was therefore largely accepted.  When the search shifted away from proteins after Levene’s 

death in 1940, work began on identifying the proposed “aperiodic crystal” that supposedly stored 

the material of genetic inheritance from Erwin Schrödinger’s 1944 book What Is Life?  

Schrödinger was ahead of his time—realizing that some form of information encoding chemical 
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structure containing the material of genetic inheritance would control how proteins were 

expressed rather than thinking that proteins were the material of genetic inheritance. 

 In parallel with this work in chemistry, physicists, biologists, and genetic scientists were 

examining a new inter-disciplinary research area: molecular biology.  The pioneers of this field 

sought to understand how, at a molecular level, processes within the cell and the cell’s functions 

worked.  Two developments, X-ray crystallography and the discovery that radiation can cause 

mutations, catalyzed what would become the field of molecular biology.  Hermann J. Muller, in 

a way, began the search for the underlying theories that led to the study of molecular biology as a 

field.  As a geneticist interested in the recently discovered X-rays, he bombarded fruit flies with 

X-ray radiation and studied what happened to them: they mutated, sometimes lethally so.  His 

1926 paper “The Problem of Genetic Mutation” was eagerly received by the scientific 

community, and within two years his results had not only been replicated, but also generalized to 

other living things: wasps and maize.  As a result, he became one of the first radiation safety 

proponents.  Muller’s work with X-rays foreshadowed a much more important development in 

molecular biology, one which had been invented a decade before his discovery, but not applied 

to biology until almost two decades later: X-ray crystallography.  This technique, first developed 

in 1914 by William Henry Bragg, used the diffraction of X-rays to map out the atomic structure 

of a crystal.  Long before the electron microscope, Bragg had developed a technique that could 

be used to determine how a particular crystal was structured.  In his work at the California 

Institute of Technology from 1925 to 1926, Linus Pauling applied this technique to chart out how 

molecules were put together.  This work included the structure of proteins.  Pauling determined 

that proteins were largely α-helical, that is, made up of a spiral structure with a right-hand twist.  

Two relative unknowns in the field, Rosalind Franklin and Maurice Wilkins developed a 
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technique to apply x-ray crystallographic techniques to samples that were not in crystal form, 

such as DNA, which does not crystallize easily.  Franklin and Raymond Gosling took what is 

likely the most famous X-ray diffraction image in history: Photo 51, which depicted a helix, 

made by DNA from a calf’s thymus in water solute showing DNA’s B-form.  It was Photo 51 

that inspired James Watson and Francis Crick to build their model of the double-helix structure 

of DNA in 1953.  For this, Watson, Crick, and Wilkins received a Nobel Prize in Physiology or 

Medicine in 1962.  Sadly, Franklin had passed away from ovarian cancer four years prior, and 

the Nobel Prize cannot be awarded posthumously.  Following Crick’s success in modeling the 

double-helix structure of DNA, he went on to publish his “central dogma of molecular biology” 

(Crick, 1958), which proposed that, in short, DNA would be used to make RNA, which was used 

to make proteins.  This work, republished in 1970 (Crick, 1970), laid the foundation for the 

understanding of DNA replication, DNA transcription (converting DNA to RNA), and RNA 

translation (using RNA to produce proteins).  His experiment conducted with Brenner, et al. 

(Crick, Barnett, Brenner, & Watts-Tobin, 1961) in 1961 demonstrated that in order to code for 

one amino acid, three base pairs were required.  These groups of three base pairs were then 

referred to as codons and to this day, codons are at the center of understanding how DNA 

encodes for proteins, and it is, in effect, the ‘instruction set’ for biological organisms that use 

DNA, much in the same way that there is a uniform instruction set for a computer processor. 

The instruction set of DNA is fairly simple to understand, while the implications were 

astounding.  In essence, with DNA arranged in blocks of three, and with each block allowing 4 

different nucleotides at the start, a total of 64 ‘instructions’ were available.  While some codons 

encode for starting a second, and others for stopping, most encode for the production of various 

amino acids: the building blocks of proteins, the building blocks of life.   
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With the chemistry of DNA largely resolved, recent developments into DNA research 

have primarily focused upon three things: finding faster/better methods of sequencing (for the 

aid of geneticists, medical users, and forensic experts), DNA replication/recombination (to better 

understand how errors occur in DNA coding, mutations, cancers, etc.), and genetic engineering 

(the changing of genes without using traditional Mendelian hybridization techniques).  While 

there have been other aspects researched, these three represent the bulk of what has been done 

from the 1960s through today.  The Human Genome Project completed the sequencing of nearly 

the entire human genome by 2003.  Having that sort of information available may enable 

researchers to find all manner of genetic mutations, differences and predispositions to certain 

medical conditions.  However, being able to use that information without resorting to costly 

and/or slow genetic sequencing for testing will be a key driver of future uses of genetic data 

(Energy, 2013). 

The DNA Molecule 

The DNA molecule is the primary data storage mechanism by which cellular organisms 

are able to produce proteins. Despite its extremely high density (1 gram of DNA could store as 

much as 455 exabytes, or 477 million terabytes (Church, Gao, & Kosuri, 2012) of data), it is 

relatively simple in its composition: DNA is a polymer, specifically a polynucleotide, and its 

components are nucleotides, which are molecules composed of a nitrogenous base, a five-carbon 

sugar, and at least one phosphate group.  There are only four base nucleotides used in the 

production of DNA: adenine, guanine, cytosine, and thymine.  These nucleotides are usually 

referred to in DNA sequences by their initial letters: A, G, C, and T, respectively.  Each 

nucleotide (or ‘base’) will only combine with its complimentary nucleotide in making DNA: 

adenine only with thymine, and cytosine only with guanine.  These can be linked in four ways: 
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A→T, T→A, G→C and C→G, encoding two ‘bits’ of information for every base pair.  The 

aforementioned phosphate groups in each nucleotide serve to interlink each ‘step’ of the DNA 

strand and produce the familiar double helix.  These interlinks, which form pairs between bases 

as well as the links in the helix between each base pair, are hydrogen bonds.  These are of 

particular interest due to their resonant and vibrational properties and will be discussed at length 

later in this document. 

The Physics of DNA 

Because of the research focus on DNA’s biological impacts, genes, gene sequencing, and 

correlating those sequenced genes with diseases, comparatively little research has been done on 

the chemical physics of DNA.  While we have sequenced the entire human genome, the cause 

and purpose of physical phenomena such as breathing (the temporary unzipping and spontaneous 

re-zipping of parts of the strand), how and why those breathing dynamics change in the presence 

of radio waves (Alexandrov et al., 2010; Bock et al., 2010), and the cause and purpose of 

harmonic vibrations (Chechetkin & Turygin, 1995), are not well understood.  However, 

understanding these effects is important; for example, it has been posited that terahertz radiation 

may be able to damage DNA despite being a form of non-ionizing radiation, previously not 

thought to be harmful (Alexandrov et al., 2011; Korenstein-Ilan et al., 2008).  Recent work on 

the chemical physics of DNA has focused on sequence-dependent changes in DNA, such as 

deformability/plasticity (Olson, Gorin, Lu, Hock, & Zhurkin, 1998) and flexibility (Kaukinen, 

Venalainen, Lonnberg, & Perakyla, 2003). 

DNA and Vibrations 

Of particular interest in this research are vibrations of DNA.  This is an area of chemical 

physics that has received scant attention, but that has the potential to make large impacts in the 
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field.  Understanding the features of intra- and intermolecular vibrations in DNA may be key to 

understanding how radio frequency energy can affect gene expression—a phenomena observed 

by the authors at least three papers (Alexandrov et al., 2011; Bock et al., 2010; Korenstein-Ilan et 

al., 2008)—as well as enable label-free methods of diagnosing genetic disorders (Miyamoto et 

al., 2005; Nagel et al., 2002; Woolard et al., 1997).  Understanding the properties of the 

vibrations could provide insights into ways to conduct genetic testing without cycling and 

sequencing, as well as having health and safety implications in understanding whether and how 

exposure to non-ionizing radiation might cause DNA mutations, cancer and disease.  

Mathematical equations have been developed to describe the movement of atoms within a 

molecule (Plazanet, Fukushima, & Johnson, 2002; Smith, 1996), mostly derived from Hooke’s 

law and classical Newtonian mechanics, but no larger systems-view of the movement of a DNA 

helix as a whole has emerged.  One group of researchers reported a temperature-dependence in 

the anharmonic vibrational spectra of base nucleotides, but this dependence was over a very wide 

temperature range (room temperature and 4 K), and while it does demonstrate a temperature-

dependent change in the vibrational spectra, how this discovery may impact future discoveries is 

unclear (Shen, Upadhya, Linfield, & Davies, 2003).  Therefore, several key questions in the area 

of DNA molecular vibrational motion remain unanswered: is the motion periodic?  Are the 

periodicities dependent on DNA strand content?  Are the periodicities dependent on strand 

length?  And, finally, is the motion unique? 

A strong argument in favor of base-pair dependent vibration comes from Olson, et al. 

(1998), whose research into the sequence-dependent deformability of DNA found that the 

changes in conformation of DNA vary depending on the sequences occurring within a given 

DNA section.  These changes are “…reminiscent of the normal modes of vibration of small 
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molecules.”   Furthermore, the authors found that “Some steps (CA, TA, AG), however, 

incorporate significant translational changes in the deformations whereas others (CG, AT, AC) 

involve essentially no base pair displacement”— showing that structural changes in the way the 

base pairs “stack” (or build steps) occur depending on sequence.  These changes in location, 

conformation, and displacement across the six degrees of freedom (twist, tilt, roll, shift, slide, 

and rise) vary depending on the step.  Because the displacement, location and conformation vary 

depending on the step, it is highly suggestive that the vibrational characteristics of each DNA 

strand will be unique, since, according to the authors, the set of steps that they gathered 

“complete the ‘fingerprint’ of each DNA dimer [base pair]” (Olson et al., 1998).   

DNA Dynamics 

In order for DNA to be replicated, repaired, transcribed, etc., it must be moved out of its 

double helix shape into various configurations, formally referred to as conformations.  Because 

of this, the chemical structure of nucleic acid permits it to be flexible, with strong phosphodiester 

bonds between each ‘rung’ of the DNA ladder, and weak hydrogen bonds between bases.  This 

flexibility means that both DNA and single-stranded RNA will behave like a complicated 

network of springs, which would likely be largely anharmonic.  However, because DNA has a 

regular chemical structure, certain harmonic modes should also be expected.  In 2003, Kaukinen, 

et al., conducted a molecular dynamics simulation investigation in nucleic acid chains where 

they found that the flexibility and energy levels between molecules varied and were “strongly 

dependent” upon the base sequence.  Crucially, this research showed that not only is there 

evidence that the dynamics of a nucleic acid chain are dependent upon base sequence, but also 

that, as a result, those changes in the dynamics were transmitted over relatively long distances, 

such that changes in the inter-strand energies were not only affected by “…the neighboring 
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nucleic acid bases, but also those further apart in the molecule, …” (Kaukinen et al., 2003).  Due 

to the nonlinearity of DNA’s energy transmission, it may be expected that not only may the 

energies vary uniquely based on each base pair, but possibly also over the entire strand. 

This nonlinearity of energy transmission was found to be sequence-dependent for single 

molecules by a group of German researchers.  In short, the energies required to cleave the 

hydrogen bonds between nucleotides in each dimer varies depending on the base pair sequence 

(Rief, Clausen-Schaumann, & Gaub, 1999).  This finding adds to the body of evidence that there 

are base-pair sequence-dependent changes that occur in DNA.  While it does not directly address 

vibrations and only the energy required to cleave the bonds, the application of Young’s modulus 

holds that the energy required is directly related to that material’s elasticity and therefore, 

according to Hooke’s law, the material’s ability to transmit energy. 

Potential Impacts and Motivation 

Understanding the relationship between DNA, DNA states, DNA sequences, and 

vibrational harmonics may enable a host of useful technologies and techniques.  It may be 

possible, if DNA vibrations are relatively unique, to diagnose genetic diseases more quickly 

without needing to label gene sequences or needing to sequence a genome outright to derive the 

desired information.  DNA sequencing may be made more efficient by understanding whether 

the harmonics that exist are unique to certain codons or strings of codons.  Such uniqueness 

could form a sort of ‘fingerprinting’ mechanism that enables the reading of sequences without 

requiring atomic-level resolution, leading to faster and more accurate genetic test results.  

Furthermore, understanding why such vibrations occur or how they can be elicited may grant 

insight into the molecular interactions between DNA and its functional enzymes such as 

helicases, polymerases, topoisomerases, ligases, etc. 
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The Case for a Systems-View of DNA Vibrations 

In summary, while the research has revealed various aspects of DNA vibration—e.g. they 

assist in homologous pairing, they vary based on temperature, they are nonlinear, etc.—there is 

no overarching or unifying theory as to the nature of these vibrations.  There is a strong case to 

be made that further research is required to identify whether there are larger themes at work in 

this area.  The answers to questions such as to whether these vibrations are periodic, unique, 

and/or sequence dependent could very well be key to advancing the state of the art in DNA and 

medical research.  Chapter 2 of this dissertation makes the case for developing further research 

towards what will hopefully become this systems view.  A brief gap analysis will be presented 

with some of the numerous gaps that remain in order for us to better understand the DNA 

molecule.  Particular attention will be paid to the gaps surrounding DNA vibration, dynamics, 

(an)harmonics, and phonon modes. 
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CHAPTER 2: FROM MOLECULAR MODELS TOWARD 

COMPUTATIONAL BIOLOGY 

Chapter 2 Abstract 

It is important to not underestimate the amount of thought that has gone into the creation 

and use of molecular models.  This chapter presents a treatment of the history of molecular 

modeling from ancient history through the modern era and into the computer era to provide 

context for the exploration of DNA’s vibrational mechanics as both a chemical and a modeling 

exercise.  A quantum mechanical explanation of chemical modeling is introduced as a precursor 

to the faster, more optimized empirical force field models that power the majority of today’s 

molecular dynamics models.  Over the course of this chapter, the changing understanding of 

biology from its own art, to a field with significant input from molecular chemistry to molecular 

chemistry being a field with significant input from physics and the resulting mathematical 

concepts that make such an understanding possible are introduced.  Finally, a gap analysis 

between the current models and the future goal of a systems view of biology is presented.  This 

gap analysis presents additional motivation for this research which will be presented in chapter 3. 

Molecular Modeling: Where We Came From 

History 

As far back as the 6th century BC, philosophers in India had a theoretical basis for the 

existence of the atom (from the Greek: “indivisible”), the fundamental particle upon which the 

universe was assembled.  In the 1600s, scientists were again interested in understanding the 

structure of the physical world, when one Johannes Kepler theorized that the symmetrical nature 

of snowflakes was related to some invisible framework we would later come to know as the 

crystal.  In that same century, Robert Boyle, the scientist that extended the work of Richard 
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Towneley and Henry Power to posit the ideal gas law, published The Sceptical Chymist in 1661 

containing his argument that all matter consisted of elementary particles called “corpuscles” 

rather than the classical elements of earth, fire, air and water.  This same theory was, a few years 

later, extended by Sir Isaac Newton to include light, and largely accepted for more than a 

century, though it was not known at the time that Christian Huygens’ wave theory of light was 

also, at the same time, correct.  Robert Hooke attempted to explain the structure of crystals as a 

sphere-packing problem.  However, none of these early models considered stereochemistry (3D 

chemistry), instead holding that molecules bonded in a flat plane. 

Enabling Works (Or: Biology is Basically Chemistry) 

Almost two centuries later, in the early 1800s, French mineralogist René Just Haüy 

proposed that crystals had a regular lattice structure of atoms, similar to the same regular lattice 

that could be seen on the macro level – simultaneously, crystallography and stereochemistry had 

been invented.  At the time, Haüy did not realize that they had planted the seeds for the discovery 

of stereochemistry, but a Dutch chemist, Jacobus Henricus van’t Hoff, Jr., did.  Van’t Hoff’s 

work included the discovery of the concept of osmotic pressure, the rules of chemical kinetics, 

and stereochemistry in 1874.  In 1894, William Barlow FRS published Über die Geometrischen 

Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the 

geometrical properties of homogeneous rigid structures and their application to crystals), which 

included, among other things, the structural models of NaCl (ordinary salt) and CsCl (cesium 

chloride) which would later be confirmed as accurate with x-ray crystallography.  These 

discoveries: chemical kinetics, stereochemistry and x-ray crystallography were three major 

enabling discoveries in the field of chemistry for scientists to begin to build accurate molecular 

models. 
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There was a fourth key discovery, but one from the realm of physics, not chemistry: 

spectroscopy.  Spectroscopy allowed scientists to determine which elements a particular 

substance was composed of, as each compound had a different spectral pattern, which appeared 

as lines along the color spectrum.  Joseph von Fraunhofer, in the 1800s, built more accurate 

spectrometers and invented the diffraction grating to quantify the spectral pattern of any 

observable substance, or even light from stars, or the sun.  These spectral lines, to this day, are 

known as Fraunhofer lines.  By the mid-1800s, Gustav Kirchhoff and Robert Bunsen (a physicist 

and a chemist) had embarked on a study to determine whether spectral patterns were unique for 

each chemical element.  In so doing, they invented analytical spectroscopy, and chemical trace 

analysis.  (Brand, 1995). 

But there were major limitations to this understanding, the biggest being that scientists 

were now theorizing about structures that could not be visualized with a microscope directly.  Up 

until the 1900s, scientists used rudimentary two-dimensional ‘ball and stick’ models to represent 

chemical structures, as first devised by August Wilhelm von Hofmann in the 1860s, with some 

three-dimensional changes as suggest by van’t Hoff and French chemist Joseph Achille Le Bel, 

but there was much missing: what did the bonds between atoms actually look like, and what 

energies were represented by the bond structure?  These questions and other related ones would 

start to be answered by the 1920s, as mathematical models of molecules began to be developed.  

Originally just an approximation of Hooke’s law (Plazanet et al., 2002; Smith, 1996), 

accomplished by treating the bonds as springs and the atoms as masses, these models were not 

very useful.  In 1946, a more accurate model was suggested by T. L. Hill which included steric 

effects (this is similar to the crystal structure studies in that each atom takes up a given amount of 

space), as well as Newtonian mechanics which included stretching, bending and torsional 
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vibrations (Hill, 1946).  Hill’s model of the force field that defines atomic interactions between 

the atoms in molecules began the study of computational chemistry and remains as the molecular 

mechanics model that modern models trace their roots to. 

Biology is Basically Chemistry 

At the same time as these discoveries were being produced in the chemistry community, 

there was a growing realization in the biology community, nearly 300 years in the making, that 

biological processes were, essentially, chemistry in motion.  The word metabolism comes from 

the Greek, a term later applied to the studies of an Italian physician named Sanctorius.  Although 

he did not realize it at the time, his empirical studies, published in his 1614 book Ars de static 

medecina, into the weight of his food, himself, and his excreta, his theory of ‘insensible 

perspiration’ and his studies into the temperature and pulse rate of humans were the foundational 

elements to understanding metabolism.  Fast forward to the early 1900s, and the divergent paths 

of medicine and chemistry came back together into a field so new, a term was coined to describe 

it: biochemistry. 

It was a known fact as early as the late 1700s that the stomach secreted acids to aid in 

digestion.  Similarly, the action of saliva breaking down starches into sugars was known.  But 

how those mechanisms worked, why they worked, and the processes that generated those 

secretions were all unknown.  (Williams & Williams, 1904).  It took almost a century, however, 

for the scientific community to begin to realize that other processes, such as fermentation and 

putrefaction were also part of these unknown processes.  Louis Pasteur theorized that yeast was 

alive, because fermentation could not be explained by simple chemical means.  He called the 

force within the yeast cells, in vogue with the vitalist thinking of the time, “ferments” 

(Manchester, 1995).  Wilhelm Kühne coined the term enzyme to apply to the yeast fermentation 
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process in 1878, while a few years later in 1897, Eduard Buchner used yeast extract (with no 

living yeast cells) to ferment sugar.  He named the enzyme responsible zymase, and received the 

Nobel Prize in Chemistry in 1907 for that discovery.  But many questions remained: how do 

these enzymes work?  What is their structure?  How can something nonliving accomplish these 

feats of chemistry?  The answers to those questions of biochemistry are still, to this day, being 

answered, and, more and more, those answers are coming from computational chemistry. 

Computational Chemistry: Where We Are 

Development of Molecular Dynamics Models (Or: Chemistry is Basically Math) 

Although Hill’s model represented the first molecular mechanical model with force fields 

that defined, as precisely as was possible at the time, the relationship between atoms in the 

various molecules, the models lacked both fidelity and usability.  The first algorithm that pointed 

the way towards computer-based study of molecular dynamics was first published in 1953, and it 

planted the seed that computers could be used to simulate molecular dynamics on a far finer 

scale than could hand-computation.  The Metropolis Monte Carlo algorithm simulated the 

movement of molecules on an atomic scale (Metropolis, Rosenbluth, Rosenbluth, Teller, & 

Teller, 1953).  But, being a Monte Carlo simulation, it did not actually simulate the dynamics of 

the molecular systems, rather it used a probabilistic approach with the Boltzmann distribution to 

determine the energy states of the particles.  While it still lacked fidelity, and while it treated 

molecules as simple spheres, it served as a powerful demonstration as to the potential use of 

computers in molecular dynamics simulation: after all, chemistry was now, essentially, physics, 

which is, essentially, mathematics. 

A few years later, a short letter by two theoretical physicists in the Journal of Chemical 

Physics changed the imprecise nature of molecular simulation, and brought with it the fidelity 
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that was needed if chemistry was to be reduced to a matter of mathematical precision.  Alder and 

Wainwright’s work on a UNIVAC computer provided precise information on about a hundred 

atoms by using Newtonian mechanics.  Though the molecular systems were small, this was the 

first time that anyone had accurately calculated the dynamics of a molecular system: 

computational chemistry was born. (Alder & Wainwright, 1957).  A few years later, 

Hendrickson reported in the Journal of the American Chemical Society doing molecular dynamic 

computations to study conformations of molecules with a force field model that he derived 

largely from previous works (Hendrickson, 1961).  From the 1960s to the late 1970s, the field 

exploded with mathematical models and simulations covering everything from proteins to 

plastic.  Most importantly, however, force field simulations began to appear in the 1970s, each 

one bringing with it greater fidelity.  Entering the age of the personal computer in the 1980s and 

the age of the graphical user interface (GUI) in the 1990s brought with it exponential increases in 

computing power as well as much more useful visualization options for using molecular 

dynamics simulation.  With every new model and refinement of the existing models, the ability 

of a model to accurately represent observed phenomena has improved and the existing models 

have met with wide acceptance in the chemistry and physics communities.  (Schlecht, 1997).  

However, no process-oriented simulations had yet appeared. 

The State of the Art 

Looking at the current state of molecular dynamics (MD) simulations, three major types 

exist: quantum mechanical (QM), molecular mechanics (MM, often called “force field” or 

“classical” models), and the hybrid models that use both QM and MM techniques to either 

increase fidelity or speed for particular applications.  The QM techniques yield precise 

information and spin and electron state of particles on the sub-atomic level, an incredibly high 
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level of fidelity.  However, this fidelity comes at a steep computational cost: QM simulations are 

essentially restricted to small problem domains, and/or massively parallel supercomputers.  MM 

techniques, on the other hand, provide reasonably high fidelity while being computationally 

parsimonious, and therefore even modest parallel computing setups can process reasonably 

complex systems in a reasonable amount of time. 

Quantum Mechanical Models 

To best understand molecular mechanics/force field (MM) models, one must begin with 

quantum mechanical (QM) models.  QM models are capable of modeling each sub-atomic 

particle (electronics, protons, and neutrons) very precisely ab initio (Latin: “from the beginning” 

or from first principles, without needing additional assumptions).  The amount of precision is 

essentially the same precision available to an electron microscope user: spin, electron state and 

charge density are all obtainable from these calculations.  This precision is possible because of 

two developments: Schrödinger’s equation, and wave-particle duality theory.  (Leach, 2001) 

QM is possible because of work that began with Christian Huygens and Sir Isaac Newton 

and that was completed many years later by Planck, Einstein, Heisenberg, de Broglie, and others.  

Essentially, at its most fundamental level, quantum mechanics is the understanding that all 

elementary matter has wave-like properties, and as a consequence, fundamental particles 

(electrons, protons, neutrons, quarks, gluons, bosons, muons, taus, etc.) may be treated 

mathematically as waves because they are one and the same.  What this implies is that the 

motion of those particles can be described by known wave functions (or, in some texts, state 

functions, because they describe the state of a particular wave-particle), which will describe the 

motion of the sub-atomic particles of an atomic system.  Erwin Schrödinger posited an equation 

that describes how these quantum systems change over time in an electric field (though not a 
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magnetic field, the Pauli equation provides the solution for particles in a magnetic field), much in 

the same way that Newton’s second law (that the net force acting on an object changes linearly 

the object’s momentum) describes change over time in classical mechanics.  The equation, which 

follows conservation of energy in its terms takes the following form when it is time-dependent 

(i.e. it shows changes over time rather than considering the standing wave case): 
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In this equation, m is the mass of the particle, r is a vector with the position in Cartesian 

coordinates, t is time, i is the imaginary number, ℏ is Planck’s constant divided by 2π (useful in 

cases like this when one is considering angular frequency), V(r,t) is the total potential energy 

imparted by an external field (electrostatic forces only, this equation does not consider 

magnetism), while Ψ is the wave function (the function that describes the motion of the 

particular particle being solved for). (Leach, 2001). 

The Schrödinger equation can accurately describe the motion of all the subatomic 

particles in the system under consideration.  Given this, why is it not used for simulation?  There 

are several limitations: Schrödinger’s equation works exactly only for very particular cases (none 

of which are applicable to the sorts of complex biological systems we are considering), and only 

for a very small number of particles (otherwise the problem space becomes too large to 

compute), and only for non-interacting particles.  For larger systems, heuristics and 

approximations must be used, the most common of which is the Born-Oppenheimer 

approximation.  The Born-Oppenheimer approximation takes advantage that the mass of the 

proton is 1836 times greater than the mass of the electron, which introduces a simplification: for 

multi-particle systems, we discard the electrons and only consider the protons and neutrons, 

because the electrons will move more-or-less instantly in response to changes of protons and 
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neutrons.  Because of this, it is possible to treat the electron terms separately from the nuclei 

terms, or in equation form: 

Ψtotal(nuclei, electrons) = Ψ(electrons) × Ψ(nuclei)     ( 2 ) 

Here, Ψ is the wave function, but the equation can just as easily be thought of as an energy 

equation thanks to classical conservation of energy, such that: 

𝐸𝐸total = 𝐸𝐸(electrons) + 𝐸𝐸(nuclei)        ( 3 ) 

This concept, combined with the fact that, in general, models can be applied to related molecules 

(as opposed to having to calculate new models for each molecule), means that these 

simplifications permit the force field family of MM models to function.  (Becker, MacKerell, 

Roux, & Watanabe, 2001; Leach, 2001) . 

The Born-Oppenheimer approximation makes solving large particle systems tractable, 

but it comes with several downsides, one of which makes it unsuitable for many biological 

systems simulations.  The first downside is that an assumption of the Born-Oppenheimer 

approximation breaks down (or becomes invalid) in the case where the gap between the energy 

states is smaller than the movement of the atomic system (in metals, for example, the gap is zero, 

and therefore the approximation is invalid).  The second is that the approximation breaks down 

in semiconductor and nanomaterial analysis (Pisana et al., 2007), which itself would not be a 

problem, save for the fact that evidence exists that DNA can exhibit properties of 

semiconductors and nanomaterials (Fink & Schonenberger, 1999; Meggers, Michel-Beyerle, & 

Giese, 1998).  Despite these limitations, it is important to note that without the underlying QM 

models, MM models would likely not exist.  
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Molecular Mechanics Models 

Molecular Mechanics (MM) models are simplified models compared to their Quantum 

Mechanical cousins, and dispense with quantum-level details such as spin, electron 

configuration, polarization, etc. in order to reduce the time required for a model to be processed.  

Essentially MM models take the atomic configuration of a system, ignore the elementary 

particles using heuristics for the various atoms, and produce the resulting energies of the system, 

just like a QM model does, minus electron-level detail.  Although MM models vary widely 

depending on the terms that are considered and their biases, they all share several characteristics: 

they are molecular, considering only the nuclear particles en masse as a single atom and not 

considering electrons at all; they are empirical, meaning that there is not necessarily one ‘correct’ 

model; they are heavily optimized (simplified) and drop many of the terms and features found in 

QM models; and finally, they all consider two main kinds of forces: those arising from bonds 

between atoms (stretching, angle bending, and torsion), and those arising from non-bonded 

interactions (such as electrostatic and van der Waals forces).  These simplifications result in a 

significant decrease in computation time for a given molecular system, but with some losses of 

fidelity: bonds are not considered to break or be made (because the terms dealing with bonds are 

treated harmonically, keeping the bond energy terms from exceeding an equilibrium value and 

therefore making or breaking); the temperatures are therefore restricted to an area around room 

temperature (although this suits biological processes just fine); and particle-level detail is 

unavailable.  Despite this, MM models can provide accurate, fast results for large atomic systems 

that would be intractable or impossible to compute with QM models.  (Becker et al., 2001; 

Leach, 2001).  It should be noted however that MM models have one drawback: no 

transferability between models.  The energy data that is produced by one model will generally 
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not be transferable to another model because of the different ways each model processes the 

energy outputs of a given system. 

All so-called “force field” molecular mechanics models work in a similar way: a potential 

energy function is solved to determine the energies of each individual atom in the system by 

evaluating two terms, internal energies and external energies.  Letting E represent the potential 

energy and R the three-dimensional structure of a molecule or entire system, Becker notes the 

equations as: 

E(𝑅𝑅)𝜕𝜕𝑡𝑡𝜕𝜕𝑡𝑡𝑡𝑡 = E(𝑅𝑅)𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 + E(𝑅𝑅)𝑖𝑖𝑥𝑥𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 + E(𝑅𝑅)𝑡𝑡𝜕𝜕ℎ𝑖𝑖𝑖𝑖 , where     ( 4 ) 
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(Becker et al., 2001; Guvench & MacKerell, 2008; Leach, 2001) 

Three major terms are considered: the internal terms, arising from bonded interactions 

between atoms, the external terms, which arise from interactions between atoms caused by 

electrostatic or van der Waals forces, and finally other forces, which are imposed on the model 

by the researcher’s parameterization setup when the model is initialized.  Equation 5, with the 

internal force terms accounting for bond stretching energy, angle bending energy and dihedral 

energy (torsional energy caused by the twisting of bonds), assumes that the system is in 

equilibrium.  As such, it is not possible to model bond breakage with this equation, but it has 

been shown to be as accurate as a quantum model for all other cases.  Examining the first term in 

equation 5 more closely, b is the interatomic bond length, b0 is the expected or natural bond 

length (such that there is no energy applied from this term if the bond does not deviate from the 

natural, free-state bond length), K is a term that describes the relative stiffness of the bond (such 
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that the stiffer the bond, the higher the energy any stretching or shrinkage imparts)—this is, 

essentially, an application of Hooke’s Law for springs.  In the second term of equation 5, this 

application of Hooke’s Law remains, but the equation concerns θ and θ0, the bond angle, and the 

natural bond angle, respectively.  A better approximation than the quadratic term for bond 

stretching is given by Morse (Morse, 1929), and the Morse equilibrium is used by many force 

field models.  In the third and final term, the equation differs from the other two terms because 

the torsional forces are not linear, they instead vary sinusoidally through 2π of rotation, and are 

therefore best expressed by a sinusoidal function. 

More interesting than the relatively straightforward internal energy components of the 

molecular mechanics force field are the external forces: electrostatics and van der Waals forces.  

The electrostatic term is the simpler term.  Decomposing equation 6, the electrostatic term is: 

𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

             ( 7 ) 

This is, quite simply, Coulomb’s Law, with qi and qj being the sum of the charges of the two 

atoms (i and j) and rij being, again, the distance between the atoms.  The other component is the 

van der Waals force, this force is actually a sum of all the non-interactive and non-electrostatic 

forces at work between two atoms.  This equation considers the attractive forces between dipoles 

(permanent and induced), as well as considering the Pauli Exclusion Principle—which states that 

two identical fermions (a class of particle that includes electrons) cannot have the same quantum 

number.  In short, as two atoms, or groups of atoms move towards each other, they become 

increasingly attracted to each other to a limit—the Pauli force acts at near distances to prevent 

the atoms coming into contact with each other.  While the two forces eventually cancel each 

other out, the Pauli force is modeled as being the square of the attractive force, this is a rough 

approximation, but it is more than able to properly account for the underlying quantum effects 
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and it is therefore used in Amber, CHARMM, GROMOS, and other force field codes.  (Becker 

et al., 2001; Guvench & MacKerell, 2008; Leach, 2001). 

The third major class of models are the hybrid Quantum Mechanical/Molecular 

Mechanics (QM/MM) models, which we will discuss briefly as they represent the future of 

molecular dynamics modeling.  These models attempt to meld the best characteristics of QM 

models (accuracy, electron-level precision, etc.) with the speed and simplifications that make 

very large problems tractable with MM models (Leach, 2001).  These models work by selecting 

part of the system to simulate in QM (generally a small subsection of particular interest) and the 

rest of the system to simulate in MM.  This approach yields fine detail about the desired area, 

such as a protein binding area, while modeling the entire system as well.  There are problems, 

such as the inability to handle electrons that are covalent with the QM region from the MM 

region, but novel codes like ONIOM have been developed to alleviate some of the inaccuracies 

caused by these limitations (Vreven et al., 2006).  These models have been regarded with 

renewed interest lately due to the desire to bring more accurate simulation models to areas such 

as automated drug screening.  Lately, new approximations called semi-empirical QM/MM 

models have been developed to extend these models and allow for high-precision calculations 

that are much faster than the ab initio Hartree-Fock model which precisely considers every 

electron.  Stewart (2009) reports a hybrid model using the MOZYME MD code to simulate a 

14,000 atom system of proteins using a semi-empirical QM/MM model, which produced much 

higher quality data than an MM model while taking similar time on commodity hardware.  For 

additional reading on emerging Quantum Mechanical approaches to molecular dynamics 

simulation, we refer the reader to the excellent review by Bryce and Hillier (2013). 
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Computational Biology: Where We Are Going 

Towards a Systems View (Or: Biology is Basically Math) 

One of the major shortcomings of molecular dynamics models as applied to biology is the 

lack of an overarching architecture describing the activity of biological systems on the molecular 

level in silico.  This field, called computational biology is, however, the future.  A direct 

framework to go from math to biological processes is needed to solve all kinds of biological 

problems, from cancer research to drug design, in less time than before.  Already this fledgling 

interdisciplinary field (with its roots, variously, in computer science, mathematics, chemistry, 

physics, medical, and many others) has spawned conferences and journals with the aim of 

informing and developing this growing field.  It has also helped launch the related field of 

bioinformatics, which the NIH (2000) defines as “Research, development, or application of 

computational tools and approaches for expanding the use of biological, medical, behavioral or 

health data, including those to acquire, store organize, archive, analyze or visualize such data.”  

Although computational biology has officially existed since the very late 90s, most of the 

field has been concerned with areas such as computational genomics, DNA processing, genome 

sequencing, and macro-level analyses as opposed to a systems-level view with computational 

biologic techniques as a way to get from mathematics, to chemistry, to biology in one framework 

(Pevzner, 2000).  Ouzounis editorialized that this might be because the field has grown in so 

many directions since its founding that it has become less focused on a systems view, and more 

focused on individual challenges within the field (Ouzounis, 2012).  Some have reported the 

existence of systems-view tools that have been developed to solve particular problems, such as 

predicting how proteins will behave given their sequence, though these views still lack roots 

back to empirical molecular mechanics or ab initio quantum mechanics views (Juncker et al., 
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2009).  However, as longer-run models are being enabled with faster computers and better 

approximations (Klepeis, Lindorff-Larsen, Dror, & Shaw, 2009), it is expected that the field of 

biology as a whole will begin moving towards a paradigm of viewing the functioning of 

biological systems as systems not only on the macro level, but also on the molecular level 

(Ouzounis, 2012; Pevzner, 2000). 

Interactions Are Key 

In understanding computational biology, the look to the future largely includes 

interactions of all kinds: between genes and proteins, between proteins and enzymes, and in all 

manner of chemical machinery that run organisms.  Noble describes this process as ‘linking’ in 

his review of the state of biological simulation: the linking of different levels of biological 

systems (such as chemical to genomic, or genomic to physiologic) represents a stepping stone on 

the way to a framework view some have termed “theoretical biology” (Noble, 2002), or a 

framework akin to theoretical physics.  The difficulty with expanding on this interactive view of 

biology is that “…frequently multifunctional, sets of elements interact selectively and 

nonlinearly…” and that “…functions in biological systems rely on a combination of the network 

and the specific elements involved” (Kitano, 2002).  To wit, to be able to properly get to a 

systems view, one must have an abstraction of the underlying biological molecular mechanics, 

and then the underlying macro-scale biological processes, such as protein interactions, an area 

where there has been concerted research effort (Shoemaker & Panchenko, 2007).  This is a 

problem domain with many fragmented solutions and still no clear systems view, but it is clear 

that understanding interactions will be key to synthesizing such a view.  Interactions between 

genes, between various levels of biological abstraction, proteins, pathways, and cells need to be 
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understood, mapped out, and, if we are to have effective models, solved with mathematical 

equations and not just numerical solutions. (Kitano, 2002; Noble, 2002). 

Please, Mind the Gap (Between the Present and the Future) 

Noble, in speaking about the gap between the current understanding of computational 

biology and a future shift to an integrated, systems view of biology such as theoretical biology, 

notes that “we have only tentative ideas on what this set of principles might be, but they would 

include evolution and the theory of complex systems”.  It is clear, however, that unless an 

individual or group of researchers posit a unifying theory of computational and/or mathematical 

biology, much like Einstein did with theoretical physics, it will be necessary to continue to work 

on individual pieces of the larger problem of developing a systems view of biology and, at some 

point in the future, begin to integrate them (Noble, 2002).  Somewhat unexpectedly, therefore, 

one of the major gaps in the field is the lack of a systems view of computational biology at all.  

However, within the areas of computational and mathematical biology, there are several 

individual gaps identified by the literature, one or two of which may be addressed by this 

research. 

At the time of writing, there has been little progress on identifying factors that may 

permit the construction of pattern recognition heuristics, algorithms, rules of thumb, etc. between 

a given observation and a given DNA pattern.  The current state of the art requires that DNA be 

PCR (Polymerase Chain Reaction) cycled, sequenced, and then that sequence compared with the 

known genome to determine whether a particular gene is present.  It may be possible to identify 

factors occurring within DNA or that interact with DNA to permit the quick recognition of 

certain patterns, sequences, or errors without sequencing the individual genome.  While 

researchers have posited that vibrational spectra (Miyamoto et al., 2005), harmonic vibration 
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(Plazanet et al., 2002; Shen et al., 2003; Tatiana et al., 2006), and direct reading of DNA binding 

states using very high-frequency radio waves (Nagel et al., 2002) may operate as recognition 

mechanisms, there is much fundamental research that remains to be conducted on which factors 

may be relevant in the recognition of such patterns, let alone which technologies are best for 

capturing that data.  Porcar et al. (2011) identified a need for unifying technological mechanisms 

for understanding cell mechanics as one of the ten “grand challenges” of synthetic biology. 

In the same vein as the identification of possible factors, a gap exists in understanding 

whether those factors or combinations of those factors are highly sensitive and specific.  In 

diagnostics, sensitivity is related to type 1 statistical error (false positive rate), while specificity is 

related to type 2 statistical error (false negative rate).  Determining whether these factors are 

either highly sensitive and specific, or even unique may enable a host of new applications, 

diagnostic tests and other enabling technologies that would make the process of analyzing DNA 

less arduous than it currently is.  For example, the determination of a unique signature for a 

certain genetic mutation could mean that cancer patients can receive the right kind of 

chemotherapy more quickly because a factor-based test could replace a genetic test that 

sequences a particular gene to determine whether that patient’s biology can tolerate a given 

chemotherapeutic agent. 

A possible factor that has been identified by the literature (Chechetkin & Turygin, 1995) 

is the periodicity of the base pairs that occur within DNA.  These periodicities vary in species 

and may also vary between different areas within a complex chromosome (Worning, Jensen, 

Nelson, Brunak, & Ussery, 2000).  Several gaps remain, specifically, questions of: whether those 

periodicities are unique (or usable as fingerprints), whether those periodicities form larger shifts 

in the vibrational spectra that could be captured using Fourier analysis of a spectroscopic 
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examination or other analysis technique of the DNA, and whether those periodicities had high 

sensitivity and specificity for particular characteristics such as transposition error, gene 

mutations, particular coding for a given protein, etc. 

Finally, there has been some work in the area of sequence-dependent DNA variations.  

One team of researchers has identified that the macroscopic motions occurring within DNA are 

sequence-dependent (Matsumoto & Olson, 2002).  This finding, combined with previous work 

(R. J. Calloway, 2011) point to a gap in understanding how these macroscopic motions vary.  

More importantly than the question of whether these motions vary depending on base-pair 

sequence is the question of whether these motions are unique or at least sufficiently unique to 

form a sort of signature that may be used to extend the goal of analyzing DNA without needing 

to resort to sequencing.  At this time, a paper is being prepared for submission in the Journal of 

Computational Chemistry, which contains work by our research group that included a 

preliminary study of sequence-based vibrational variation in double-stranded DNA (dsDNA) 

molecules (R. Calloway, Proctor, Boyer, & Napier, 2014).  That research inspired and informed 

this effort to more closely study the vibrational characteristics of DNA. 

Conclusions 

The area of DNA mechanics simulation has been considered with particular interest since 

the dawn of the personal computer age, when it became possible to do complex calculations 

relatively quickly on modern commodity computer hardware.  While the raw mechanics of these 

simulations come from a relatively settled area of physics, the implications of these simulations 

and the extension of these basic theories into the realms of mathematical and computational 

biology remain largely unresearched and undocumented.  It is hoped that this simulation research 
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will, in a small way, help to extend these basic principles to contribute to the developing systems 

view of biology in this field.  
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CHAPTER 3: RESEARCH HYPOTHESES, METHODOLOGY, AND 

MODEL SELECTION 

Chapter 3 Abstract 

In chapter 3, the hypotheses of this research are presented and the chosen experimental 

design(s) are presented.  The domain of available molecular mechanics model force fields is 

reviewed, and evaluated of appropriateness for application to the research hypotheses.  A 

rationale for the selection of the selected force field model is presented. 

Research Hypotheses 

In this research, several hypotheses have been posited and developed all with the 

common goal of better understanding the relationship between DNA’s physical characteristics 

and its motion.  These hypotheses were selected based on three criteria: the identification of 

potentially unique characteristics of DNA that vary according to the physical structure, the 

ability to simulate the tests required on a COTS nanomolecular dynamics simulation engine, and 

possible applicability to future research, particularly in the areas of label-free genetic diagnostics 

and industrial health and safety. 

The question of how this applies to the areas of Industrial Engineering practice such as 

health and safety, as well as ergonomics, is answered though the potential contribution of this 

research to the improved understanding of DNA’s characteristics.   While it has long been 

established that DNA is corrupted or damaged by ionizing radiation such as X-rays and gamma 

rays (Muller, 1927), it has been recently suspected that DNA may be damaged by non-ionizing 

radiation as well such as terahertz frequency radio waves (Alexandrov et al., 2010; Korenstein-

Ilan et al., 2008).  Cases of cataract development in radar operators and technicians were first 

believed to have been caused by the thermal effects of microwaves, though later research 
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demonstrated another, unknown, “nonthermal”, mode of damage (Zaret & Snyder, 1977).  

Because the mechanism of damage in the case of non-ionizing radiation is not clearly 

understood, there remains a gap in understanding for which contributions to the understanding of 

that mechanism, and in assisting the community with developing standards for safe exposure 

would be very valuable.  However, that cannot be done without first understanding the link 

between DNA’s vibrational frequencies and its composition.  It is through understanding that 

relationship that future research into the vulnerability of DNA to damage via non-ionizing 

radiation may be possible, and it will be necessary to have a clear understanding before we can 

begin to model the impact of non-ionizing radiation in an environment. 

Hypothesis 1: DNA’s vibrational motion is dependent on strand length 

When DNA is solvated in water at normal ‘room temperature’, it experiences a natural 

vibration due to the Brownian motion of the particles in the water colliding with the DNA.  

These vibrations produce pressure waves in the water much in the same way as a piano string, 

once plucked, produces vibrations in air.  (R. J. Calloway, 2011).  While spectroscopic data exist 

as to the normal vibrational spectra of individual nucleobases (Shen et al., 2003; Ten, Burova, & 

Baranov, 2009), the vibrational pressures that occur in the separating water between DNA 

molecules has not been investigated, likely due to the technical challenges presented when 

attempting to do so in vitro.  Basic physics would suggest that the vibrations of these DNA 

strands would vary depending on the length of the strand, much in the same way that varying 

length strings in a piano produce different fundamental vibrations (and different harmonic 

vibrations as well).  The null hypothesis is that there is no evidence to suggest a relationship 

between DNA’s motion and strand length, while the alternative hypothesis is that there is 

evidence to suggest a relationship between DNA’s motion and strand length.  The nature of this 
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relationship, whether linear, exponential, logarithmic or non-continuous is not hypothesized but 

will be discovered by testing if there is evidence to suggest a relationship between DNA’s 

motion and strand length. 

Hypothesis 2: DNA’s vibrational motion is dependent on strand content 

In a similar vein to the first hypothesis, this hypothesis posits that DNA’s vibrational 

motion may be dependent on strand content.  Specifically, the aim is to discover whether the 

particular sequences (A-T, G-C, etc.) cause the vibrational energy to vary in a manner dependent 

on the content of the strands.  There is evidence in the literature to suggest that a potential 

relationship exists—Rief, et al. (1999) used atomic force microscopy to stress DNA molecules 

and discovered that the forces required to convert B-DNA (a relatively uncoiled conformation 

[c.f. A-DNA, which is tightly coiled] with a right-hand spiral that is found in hydrated 

environments and inside most cells) to S-DNA (a stretched conformation) varied depending on 

the bond: A-T bonds required statistically significantly less energy than G-C bonds—while 

others Matsumoto and Olson (2002); Olson et al. (1998) have shown that DNA’s deformability 

also varies depending on its structure.  Therefore, it is reasonable to investigate whether the 

motion is dependent on the content of the strand—much in the same way that the stiffness of a 

string can change its fundamental and harmonic vibrational frequencies when plucked.  The null 

hypothesis is that there is no evidence to suggest a relationship between DNA vibrational motion 

and strand content.  The alternative hypothesis is that there is evidence to suggest a relationship 

between DNA vibrational motion and strand content.  Just like the relationship between DNA 

motion and strand length, the nature of this relationship is not hypothesized but rather will be 

discovered during experimentation if there exists evidence to suggest a relationship between 

strand content and DNA vibrational motion. 
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Hypothesis 3: DNA’s vibrational motion uniquely varies with strand length and/or content 

combinations 

The third hypothesis aims to discover whether the motion of DNA, when it varies by 

strand length and/or content, is sufficiently unique to allow it to be identified in the absence of 

knowledge of the type of DNA that is present (for example: if there is sufficient uniqueness it 

would be possible to discriminate between an A-T bond and a G-C pair simply by analyzing the 

vibrational output of that solvated DNA).  There is, in the literature, some research that has 

linked these vibrations to the spectroscopic properties of a given DNA base pair (Miyamoto et 

al., 2005), and that they are “practically superpositions of the spectra” (Ten et al., 2009).  These 

results from spectroscopy hold promise that there may be, in the naturally occurring DNA 

vibrations, some form of unique vibrational characteristics that could be ferreted out by future 

detection techniques (such as the developing terahertz-radiation detectors) and obviate the need 

for sequencing of DNA molecules in genetic testing.  Therefore, the null hypothesis is that there 

is insufficient evidence to find uniqueness in DNA’s vibrational motion when DNA content or 

length is varied.  The alternative hypothesis is that there is sufficient evidence to find that DNA’s 

vibrational motion differs in a statistically significant manner when DNA content or length 

varies.  If there is evidence to suggest that there is a uniqueness in DNA’s vibrational motion 

under varying DNA strand content or length, then additional experimentation will be needed to 

determine whether these variances are unique across small changes as well as large changes, or 

large changes only. 

Hypothesis 4: DNA’s vibrational motion forms a mathematical relationship 

Finally, it is necessary to investigate whether these vibrations, if dependent on strand 

length and/or content, and if sufficiently unique, add/subtract/divide/multiply into a composite 
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‘signature’.  In other words, might it be possible to identify a strand of unique DNA by base pair 

configuration solely from its vibrational signature, or if not, might it be possible to identify 

changes existing inside of a known DNA strand (such as a corruption, transposition or 

mutational error)?  While the sequence-dependent changes occurring to DNA’s mechanics have 

been established (Matsumoto & Olson, 2002; Olson et al., 1998; Rief et al., 1999), whether those 

sequence-dependent changes extend to the non-spectroscopic vibrational characteristics of DNA 

has yet to be investigated.  The null hypothesis is that there is no evidence to suggest that 

vibrational changes change the signature in a mathematically related fashion (whether linearly, 

multiplicatively, exponentially, logarithmically, etc.).  The alternative hypothesis is that there is 

evidence to suggest that vibrational changes change the signature in a mathematically related 

fashion.  These hypotheses will be tested by taking DNA segments of known signature, linking 

them, and seeing whether the vibrational outputs resulting from that linked DNA can be 

identified as the constituent parts of the two strands before they were joined. 

Simulation Tool Selection 

In order to best approach these research questions, it will be necessary to determine the 

appropriate simulation package to use.  Although there are dozens of options available, only a 

few contain the features required for this research, and of those, fewer support the desired force 

field models.  In short, the software should be either free or of low cost, well-supported, either by 

its authors and/or a community, be capable of handling DNA, and permit offloading of tasks to 

multiple CPU cores across a gigabit Ethernet network (in order to fully take advantage of the 

computational resources available in the Synthetic Environment Learning Laboratory or SELL 

Lab).  Quantum mechanical (QM) simulation is neither needed nor desired for this research (due 

to high CPU requirements and the resulting long simulation runtimes), so QM capabilities will 
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only be discussed briefly if the force field supports it.  This narrows the list to only a few force 

fields: CHARMM, GROMOS, and Amber, and therefore, a few simulation tool packages: 

NAMD, GROMACS, and Amber.  What follows is a brief review of these three force field 

models to determine their suitability for the research at hand.  This is not an exhaustive review, 

for that, the reader is referred to Guvench & MacKerell (2008) for an excellent review and 

comparison of these force field models. 

Before speaking about the differences between models, it is important to remember that, 

at their core, all Molecular Modeling (MM) force fields have many more things in common than 

they have differences.  All MM force fields use the same basic idea for calculating total energy, 

as was presented in equation 4, the total energy is the sum of the energy from: internal, external 

and other sources.  Where the total energy equals the internal energy (from bonded interactions: 

bonds, angles, and dihedrals), plus the external energy (from nonbonded interactions such as 

Lennard-Jones potentials, Pauli-exclusion principal potentials, van der Waals forces, electrostatic 

effects), plus model-specific energy quantities.  The main differences between models occur in 

the last two terms: nonbonded and other, model-specific energy quantities.  All force field 

models carry some important limitations simply by the fact that they are not quantum mechanical 

(QM) models, these include: limited support for reaction computations, limited, specialized 

support for conformational changes, limited support for phase change energy computations, 

limited transferability between models, and, owing to their structure, minimal to no support for 

metal ions.  In essence, force field models are ideal for steady-state modeling of well-

characterized and known molecules, but lack the ability to fully model a system undergoing 

chemical or state changes without first being “made aware” that such changes in chemical state 

are possible.  This is similar to the challenges faced in finite element analysis models whereby 
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the models are sufficient for computing stresses up to the material’s failure limit, but unsuitable 

to calculate results such as crumpling or tearing without first being optimized for such outcomes.  

In contrast, a QM model can simulate these conditions without difficulty—though at a cost of 

being hundreds to thousands of times slower than an empirical model, and that cost makes QM 

models unsuitable for this research. 

CHARMM 

Chemistry at HARvard Molecular Mechanics or CHARMM, is a well-known force field 

code used for molecular dynamics simulations.  First released in 1983, this force field code has 

proceeded over the years to incorporate an extremely rich feature set, including optimizations for 

proteins, nucleic acids, and lipids.  CHARMM is not a direct quantum mechanical (QM) model, 

and therefore operates using parameterization—a technique that ‘tunes’ its force field equation 

(the potential energy function computed for each atom) for given chemical structures.  There are 

benefits and constraints to this approach: the primary benefit of parameterization is the 

optimization of processing time given that each molecular parameterization has been prepared 

using spectroscopic and crystallographic data. This allows the model to neglect terms that are not 

required to reproduce the molecule’s behavior—while not every molecule is in the CHARMM 

force field’s extensive database of parameters, CHARMM is still able to provide a stable 

approximation of molecules that are not parameterized; however, this is rarely an issue today 

because of CHARMM’s wide ranging support for all common and many uncommon biological 

molecules.  Initially, the CHARMM force field was intended as a special-purpose tool highly 

optimized for a handful of particular biological molecules, but it has developed in time to permit 

simulation of almost any biological molecule.  Original releases of CHARMM were unable to 

cope with nucleic acids in a solvent such as water, but the CHARMM27 force field is capable of 
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doing so (MacKerell, Banavali, & Foloppe, 2000).  CHARMM27 ‘understands’ chirality of 

molecular structures and conformation of sugars, nucleic acids, and proteins, allowing it to 

accurately process complex biological molecules in varying conformations under varying 

conditions—such as shifting DNA molecules between B- and A-DNA forms depending on the 

presence of water (Foloppe & MacKerell, 2000)—and doing so efficiently.  CHARMM’s 

available optimizations include the ability for the user to specify the cutoff distance at which 

nonbonded interactions are no longer considered (to save CPU time and prevent the system from 

becoming a polynomial-time problem), numerous precompiler commands such as FASTer (to 

save time in computing energies of portions that are not critical to the research at hand), 

EXPAND (which expands the loops and removes as many IF statements as possible, easing the 

burden on the CPU’s branch predictors), and lookup tables (which determines solvent-solvent 

interactions without resorting to calculating them).  However, due to its fully parametric nature, 

studying bond breakage and formation, such as in reaction pathways, requires special attention.  

Because CHARMM assumes that bonds are harmonic unless explicitly told otherwise, in cases 

where bonds are expected to be made or broken, special preparation must be undertaken, namely 

that the Protein Structure File (which lists every bond, angle, angle type and other data required 

to produce the energy of the system) be updated so that the bond to be studied for 

breakage/formation be appropriately anharmonic with its energy parameters already provided.  

This is a significant limitation in that bond formation cannot be studied ab initio, but must be 

prepared earlier using known data sources, and that therefore, only known molecules can be 

studied for bond breakage/formation.  It must be noted however, that while CHARMM’s 

provisions for studying reactions is limited due to the nature of MM models, CHARMM does 

provide facilities to build hybrid MM/QM models to study these reactions ab initio with relative 
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ease.  Finally, CHARMM supports parallel tempering, a technique that applies Monte Carlo 

analysis to systems by simulating multiple runs of an identical system at the same time point at 

different temperatures, and then exchanging model components with each run to its neighbor 

(Swendsen & Wang, 1986).  This technique, known in MD simulation as REMD (Replica-

Exchange Molecular Dynamics) results in a much higher probability that the energy levels that 

will be found will be true global minima or maxima, something not necessarily true with 

standard MD simulations (Earl & Deem, 2005).  CHARMM supports doing REMD fully with all 

available features of the engine.  (Brooks et al., 2009). 

GROMOS 

The GROningen MOlecular Simulation program, GROMOS, was first released in 1980 

as a tool for investigating the structure and nature of polymers.  Since then, it has significantly 

grown to allow for the investigation of not only a wide range of polymers, but of glass, crystals 

and biological molecules.  Like many MD packages, GROMOS has a large library of native 

molecules, a wide range of supported hardware platforms, heavily optimized codes for 

simulation and a large number of output options for post processing simulation results.  

GROMOS is also aware of conformational changes in proteins, and how to solvate biological 

molecules.  However, GROMOS has some unique features that bear mentioning in this review.  

One of the most significant for this research is GROMOS’s ability to stop and resume a 

simulation run in a fully deterministic manner—GROMOS is a fully checkpointed simulation 

code which permits the simulation run to be stopped, all state data ‘lyophilized’ and the system 

‘reconstituted’ and restarted from that exact point later on (it should be noted that CHARMM is 

partially checkpointed, but not fully as GROMOS is).  This feature carries with it a significant 

advantage: GROMOS can be used, in combination with the GROMACS simulation engine 
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(Pronk et al., 2013), in classical multiple-run experimental designs.  So instead of doing one long 

2μs run, one might run 20x100ns runs and then be able to perform tests of statistical inference on 

the output data (Lange, van der Spoel, & de Groot, 2010).  Another feature of the newest 

GROMOS release that can be useful for biomolecular simulations is the ability to do model runs 

at levels higher than the atomic level.  GROMOS supports coarse-grained model components, 

for example treating a molecule as a single discrete large particle rather than its components.   

Besides the obvious negative side effect of losing atomic-level detail, there is a significant 

advantage: in complex systems, especially those in solvent, the computations can be orders of 

magnitude faster than with full atomic-level resolution—the authors report 103 to 105 times faster 

runs with complex molecules that can be simplified into coarse-grained molecules with accuracy 

losses that only number in the low percentages.  Finally, there is the matter of model thermostats.  

In a model environment, the temperature and pressure (which is simply the net energy in the 

system) can change over time in a way not consistent with actual biological molecules.  To cure 

this, MM force fields provide thermostats (and barostats) to ensure the system stays within 

experimental temperature range as a system would in the lab or in vivo.  Because of the function 

of a thermostat, it is important for them to follow a Boltzmann probability distribution 

(sometimes known as a Gibbs distribution), which is a probability function that describes the 

mechanics of a system that is in thermal equilibrium.  These are known as strongly coupled 

thermostats—other thermostats are weakly coupled, such as Berendsen, and they do not properly 

ensure that this distribution holds.  This can lead to experimental error if used in long-running 

simulations; but they can be useful during the warm-up stage because it will tend to dampen 

wide swings in temperature and pressure when starting up a simulation that is very far away from 

its equilibrium point (Guvench & MacKerell, 2008).  GROMOS supports several thermostat 
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models for constant-temperature and constant-temperature and pressure simulations, whereas 

CHARMM only supports the Langevin piston temperature/pressure model (conceptually similar 

to a Hoover thermostat), GROMOS supports several different models, including the strongly 

coupled Woodcock, Nosé-Hoover Langevin dynamics thermostats, and the weakly coupled 

Berendsen thermostat.  GROMOS also fully supports REMD, but has the added advantage of 

being resume-able at any point in the simulation due to its check-pointing ability.  In short, 

GROMOS provides a comprehensive, well-documented interface with a wide target audience 

and is useful for a wide range of molecular dynamics simulation needs.  (Christen et al., 2005). 

Amber 

The Amber force field model was first released in 1979, and its current release, version 

12, presents a strong MD package with many capabilities in biomolecular simulation.  It is 

impossible to write about the Amber force field model without some discussion of its tools. The 

Amber model is both a force field and a toolset (in contrast to CHARMM and GROMOS which 

are purely models that can run under different MM tools such as NAMD or GROMACS).  Like 

other molecular dynamics packages, Amber provides a wide range of parameters supporting 

most organic solvents, amino acids, carbohydrates, and lipids (Cornell et al., 1995).  The 

software is commercial, but inexpensive for non-commercial use, $400 USD at the time of 

writing.  Amber also provides, as free and open-source, a library known as AmberTools that 

creates the setup files compatible with the various Amber force fields (which are implemented in 

other tools such as NAMD and that are available for free).  Unlike the other MD simulation 

packages, Amber is actually three separate engines: Sander, pmemd, and pmemd.cuda.  Sander is 

the oldest engine and provides all features of Amber, while pmemd and pmemd.cuda provide a 

subset to focus on providing production-grade high-performance computing in multi-CPU 
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(pmemd) or multi-GPU (pmemd.cuda) situations.  There are some important limitations to 

pmemd and pmemd.cuda, the biggest for users investigating nucleic acids is that there is no 

support for the Langevin thermostat model within Amber’s implementation of REMD (Salomon-

Ferrer, Case, & Walker, 2013), nonetheless, this is a significant improvement over version 9, 

which only supported weakly coupled thermostats.  For users of Amber that aim to simulate 

biological processes, this could present issues due to the inability of a thermostat algorithm that 

is not strongly coupled to reproduce a Boltzmann distribution in the simulation run (Guvench & 

MacKerell, 2008); while one could use sander, its focus on being the development branch of 

Amber could mean having a slower-performing simulation (especially if using GPUs).  Unique 

to Amber is constant pH control, a valuable tool for anyone investigating the properties of acids 

or bases when the system under study could change its pH during the experimental runs.  As of 

version 12, pmemd supports controlling the pH of a system in solvent which can resolve issues 

with change in pKa (the acid dissociation constant) when there is a change in system 

conformation (Mongan, Case, & McCammon, 2004).  On the performance front, Amber’s novel 

method of dividing the Fast Fourier Transform (FFT) into blocks permits distributed computers 

with a large number of CPU cores to calculate portions of the FFT independently without 

resorting to a global FFT map, with attendant performance improvements.  Amber is therefore a 

comprehensive, widely-used and well-supported force field and simulation package for studying 

biological molecules.  (Duan et al., 2003). 

Selection Rationale 

The chosen simulation tool needed to have the following qualities: sufficient, validated 

fidelity of the simulation to provide vibrational and pressure profile data that could be analyzed; 

sufficient capabilities to do what is being asked of it; speed, so that runs can be done in a 
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reasonable period of time (weeks versus months); and parallelizability, so that the tool could be 

run over a clustered network of computers dedicated to the task to increase the speed and 

capacity of the simulations.  Further, it was desirable if the tool selected would have 

optimizations and/or be aware of nucleic acid structures (if not a QM model), and, ideally, it 

would be either free or low cost.  Based on these criteria and the review undertaken, the NAMD 

simulation package (released by the Theoretical and Computational Biophysics Group at the 

University of Illinois at Urbana-Champaign) with the CHARMM force field would be the most 

appropriate set of tools for this investigation (Phillips et al., 2005), and will therefore be the 

toolset used in this research.  For visualization and manipulation of model data, the VMD 

(Visual Molecular Dynamics) package will be employed.  Testing of the NAMD simulation 

package began in late 2013 and after optimizing both the computer equipment in use and the 

simulation parameters, the equipment setup in the SELL Lab (see appendix C for specifications) 

produced runs of a small parallel test system provided by Dr. Calloway (with two 5’ 

TATAAACGCCTATAAACGCC 3’ sequence DNA molecules in a 15 angstrom (Å) solvated 

water box) at a speed of nearly 1,900 2fs (femtosecond) frames per ‘wall clock’ second.  Each 

‘wall clock’ second amounted to 48 CPU-seconds, and about 525 billion floating point 

operations per second (GFLOPS). 

Research Methodology 

Because, essentially, all of these hypotheses are inter-related by one experimental 

variable—vibrational motion of DNA—it is proposed that the investigation take the form as four 

parallel-developed molecular dynamic simulation models.  However, it will be necessary to 

determine a priori which measurements will be significant for the input and output variables.  To 

begin with, a standardized timeslicing quantum of 2fs has been selected.  This selection is based 
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on the following rationale: biological molecules tend to have normal mode resonant vibrations in 

the low THz range (Norizawa, Herrmann, Tabata, & Kawai, 2005), and a 2fs timeslice equates to 

a maximum frequency-sampling rate of 250 THz according to Nyquist’s theorem.  The 

dependent variable is vibrational motion of DNA, which will be converted to frequency data via 

Fourier transform.  The content of the independent variables will be chosen per experiment, but 

will largely be sequence and strand length.  In order to permit this research to proceed in a 

reasonable time span, system size will be limited to 10 base pairs for hypothesis 1 

(approximately 30,000 atoms) and 20 base pairs for hypothesis two (approximately 50,000 

atoms), and the confidence interval desired will be 99.9%.  Larger systems sizes would 

significantly increase simulation time requirements by approximately the square of the system 

size.  Therefore, the run lengths selected below were done to ensure that all simulations could be 

completed within a 6-month timespan, while allowing time for the inevitable debugging of the 

simulation engine and simulation parameters.  The variables of temperature and pressure will be 

controlled with the simulation software’s Langevin piston thermostat/barostat capability, while 

the variable of solvent (water) density will be controlled by the software’s solvent routines.  No 

other variables besides sequence, strand length, strand position, and vibrational motion will be 

considered by this research. 

The variables of sequence and length will be controlled in this case.  Unlike simulations 

using biologic molecules based on naturally occurring DNA, the molecules to be studied will be 

constructed using the Nucleic Acid Builder (NAB).  Using NAB will permit complete control 

over DNA content, allowing for fewer aliasing effects when looking at the vibrational motion of 

DNA.  It will also permit the creation of random DNA strands that have the same number of 
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each nucleotide in different sequences to test for possible aliasing effects as well as widen the 

range of experimental data to be gathered. 

To analyze the frequency of DNA vibrational motion, it is anticipated that Fast Fourier 

Transform (FFT) analysis will allow for the determination of the sample’s frequency spectrum.  

From there, a signal to noise ratio will be computed and compared with the background 

frequency noise of the system.  Statistically significant points (which would show as peaks on an 

FFT graph) would indicate that there is evidence to reject the null hypothesis, while a lack of 

statistically significant points would therefore result in a failure to reject the null hypothesis.  

Further analysis may be undertaken for a particular hypothesis, which will be discussed in that 

specific hypothesis test section. 

Experimental Design to Test Hypothesis 1 

Hypothesis 1 proposes that DNA’s vibrational motion will change in a way related to 

strand length.  To test for this effect, two identical DNA strands will be placed next to each other 

in a solvated water box (System 1) and two identical DNA strands will be placed end-to-end 

linearly in a solvated water box (System 2).  These design choices are based on the results of R. 

J. Calloway (2011), where he reported that these two configurations have the highest signal to 

noise ratio of the four configurations tested.  The separation distance between molecules will be 

25 Å from edge to edge, this will ensure that there will not be confounding effects caused by 

electrostatic or van der Waals forces, while also ensuring that the systems do not become 

mirrored due to periodic boundary conditions.  The size of the water box will extend 

approximately 12Å from the last atom of the molecular system; this is because van der Waals 

and electrostatic forces are disregarded beyond a 10Å cutoff in molecular simulations due to 

their effect becoming negligible, and allowing 2Å to avoid molecules that move near the edge of 
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the box from having their charges wrapped around due to periodic boundary conditions 

(Guvench & MacKerell, 2008).  Both systems will be solvated, brought up to room temperature 

and allowed a short run to equilibrate into its most stable low energy state, a process known as 

minimization (the use of Langevin piston thermostatic dynamics should allow the system to 

equilibrate without excessive temperature excursions).  At that point, the simulation will be 

paused, and data collection for pressure profile (which NAMD supplies as a pressure tensor 3x3 

matrix) will be enabled, and the simulation restarted from that checkpoint to gather the pressure 

data for the analysis. 

A run length of 20 per configuration is being proposed.  This should, with the statistical 

methods to be used, provide adequate protection against type II error while being sensitive to 

relatively small changes in the pressure distribution.  Each of the two systems will be run 20 

times for 1 nanosecond to gather initial data.  After initial data gathering runs, the strands will 

have 15% more nucleotides added and 40 more runs (20 per configuration) will be run as 

described above.  Strands will again be made 30% longer than original and 40 additional runs 

will be collected.  This will, with two, 10 base-pair fragments of DNA, take approximately 3 

months of computing time.  While these length changes are somewhat arbitrary, Quake, 

Babcock, & Chu (1997) noted in their in vitro work with DNA molecules that the relationship 

between molecule length and their “normal mode” (or vibrational spectra) is roughly linear, and 

that therefore we can expect to see a roughly linear change between the base system and the 

additional runs; further, the odd percentage steps are to prevent potential negative effects from 

periodic boundary conditions (which are used to allow the system to ‘wrap around’ in the water 

box as previously discussed).  The resulting pressure profile data will be analyzed comparing 

each system configuration to itself (and therefore each configuration is its own control) using a 
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Fourier Transform to search the frequency space for statistically significant changes in frequency 

content coincident with strand length.  Further discussion of the statistical methods is found near 

the end of this chapter. 

Experimental Design to Test Hypothesis 2 

Hypothesis 2 proposes that DNA’s vibrational motion will change in a way related to 

strand content.  To test for this, a design similar to Hypothesis 1 is proposed.  Twenty (20) 

samples of randomly sequenced 20 base-pair dsDNA will be constructed with NAB that contains 

an identical number A/T bonds and C/G bonds (which will keep the strand charge-neutral).  The 

sizes and distances to the water box edges will remain the same as Hypothesis 1’s design for 

expediency.  Each system will be warmed up and equilibrated as in test 1, and then allowed to 

run in both the parallel (System 1) and linear (System 2) configuration 20 times, each run being a 

different unique DNA strand.  After pressure profile data is gathered from these 40 runs, the 

pressure profile data will be subjected to a Fourier transform, analyzed, this time searching for 

statistically significant differences in the vibrational spectra of each system’s separating water.  

This randomization should provide good contrast without the aliasing effects of electrostatic 

charge differences. 

Experimental Design to Test Hypothesis 3 

Hypothesis 3 proposes that DNA’s vibrational motion will partially or uniquely identify 

the underlying strand length or content.  Hypothesis 3 is therefore a meta-analysis of the data 

generated by the tests for Hypotheses 1 and 2.  It is proposed that the data collected from 

Hypothesis 1 and 2 will be further analyzed to determine whether the vibrational signature varies 

in such a manner as to serve as an identifiable parameter.  Fourier Transform analysis will be 

used to compare each system configuration and strand length/content to determine whether 
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changes cause statistically significant changes in the output pressure profile that are robust for 

the purposes of identification of such changes. 

Experimental Design to Test Hypothesis 4 

Hypothesis 4 proposes that DNA’s vibrational motion forms a mathematical relationship, 

whether additive, subtractive, multiplicative or divisive.  Hypothesis 4 is therefore a companion 

of Hypothesis 3’s meta-analysis.  Additional data analysis will be undertaken on the Fourier 

Transform frequency data to determine, via regression and other appropriate statistical methods 

to determine whether any statistically significant form of relationship exists between DNA’s 

vibrational motion and system changes. 

Statistical Methodology for Testing Hypotheses 1 and 2 

The statistical methodology for Hypotheses 1 and 2 are presented together due to both 

Hypotheses testing for the same output: the resulting pressure profiles of the systems.  While 

FFT coefficients are not, on the face of it, continuous, it must be remembered that FFT 

coefficients are merely the amplitude of the wave at a particular frequency, and the frequency 

spectrum is continuous (Blackford, Salomon, & Waller, 2009).  Furthermore FFT coefficients 

are only considered independent and identically distributed (IID) if their underlying distribution 

is also IID, and then only independent as far as the underlying data’s independence as FFTs 

transform time-series data, which may have natural dependent characteristics (Shumway & 

Stoffer, 2011).  Note that, inferring from the physical principles that underlie this process, the 

distribution of the pressures of the water media is likely to be independent (due to the Brownian 

motion of the water causing vibrations that are Gaussian-Markov in nature), it is unknown 

whether they are identically distributed.  While Shumway and Stoffer (2011) provide several 

statistical techniques for computing Fourier coefficient statistics, it is possible that a non-



49 

parametric statistical test for comparing samples might be desired.  A test such as the 

Multivariate Permutation Test or MPT (Blackford et al., 2009) is nonparametric and has a 

reasonably low set of requirements for replications at the desired 99.9% confidence interval.  

However, its requirement of exchangeability between observations may rule it out in this case 

due to insufficient knowledge about the underlying signal data.  Thankfully, extraordinary 

measures are not required in this case.  Due to the large number of frequencies to be sampled, the 

Central Limit Theorem (CLT) assures us that while the underlying distribution is unknown and 

possibly not normal, the sampling distribution would, if sufficiently large, be normal.  Peligrad 

and Wu (2010) published a proof showing that the CLT applies to Fourier transform functions.  

Therefore, in light of this proof, the Chi-Square test will be employed to compare frequency 

distributions. 

Statistical Methodology for Testing Hypotheses 3 and 4 

The expected relationship between strand length and frequency is linear due to Quake et 

al. (1997), but it is not known whether that means the frequencies observed will increase 

monotonically across the spectra, or whether the distribution of frequencies will shift linearly, or 

whether certain parts of the spectra will be positively linear or negatively linear.  To begin with, 

the computation of cross-spectral density will provide a measure of the ‘covariance’ (a 

simplification) of the Fourier spectra being compared.  If the signals show cross-spectral density, 

it can be expected that there is a relationship between them.  Therefore, the process of Fourier 

fitting will then be employed, and an F-statistic will be computed (Thibos, 2003) to test 

hypothesis 3 for the variable-length case.  Similarly, if a model can be fitted to the variable-

length DNA molecules, there is a mathematical relationship between length and pressure profile, 

and it would satisfy hypothesis 4 at the same time. 
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The variable-content case is more complex, however.  In this case, it is not a matter of the 

frequency distribution being expected to shift, but rather, the distribution will change in as-yet-

unpredictable ways.  It is likely that certain frequencies will be dominant with certain sequences 

and regress to the noise floor with others.  Therefore, it would be useful to determine whether 

there are rhythmic changes occurring.  It is proposed that the output data will be charted, the 

most prominent frequencies will be selected, and Chi-Square testing will be used to determine 

whether significant changes occurred in the selected frequencies.  To determine whether there is 

a mathematical relationship, the procedure of model fitting described above will be employed. 

Data Collection Methodology 

As stated prior, each of the four hypotheses will be tested with data collected from 

various runs of the NAMD simulation tool on the target molecular systems.  Data collection in 

molecular dynamics models is continuous, analogous to logging in a flight recorder, and the 

models will be run with full profile data enabled to ensure capture of all relevant data: molecular 

positions at each time step, vectors, and pressures.  The general technique to be used for each test 

is as follows: a system will be created, then permitted to ‘warm up’ to room temperature and 

stabilize before the simulation data collection begins.  Per Bhandarkar et al. (2012), two NAMD 

runs will be conducted for each system: the first (molecular dynamics) run will output all 

position and energy data as well as limited pressure profile information, the second (pressures 

only) run will output the full pressure profile for the system.  Those data will be merged using a 

custom program and the results of the pressure analyzed in MATLAB via Discrete Fast Fourier 

Transform.   The results of the Fourier transform will be analyzed using the statistical methods 

described above.  Finally, data summaries will be compiled into spreadsheet form using custom 

written Visual Basic for Applications (VBA) routines for comparison and visual analysis.  It is 
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anticipated that these custom applications will be released as a toolset to automate the analysis of 

pressure profile and DNA vibrational spectral data.  With these applications, future research 

(such as research involving DNA molecules and electromagnetic radiation, once the simulation 

engines allow for this) can benefit from having already-built custom tools to perform the 

analysis. 

Experimental Predictions 

In research as fundamental as this, it is difficult to even make an educated guess let alone 

a studied conjecture as to the probable outcomes of this work.  However, some general 

inferences can be drawn from the literature to provide a guess as to the outcomes.  For 

Hypothesis 1, it is difficult to draw any conjectures as it is a new investigation.  Classical physics 

would suggest that, as alluded to earlier in the piano string analogy, there is a significant change 

with strand length, and that, according to Quake (1997), the change will be linear in nature.  For 

Hypothesis 2, results from classical and NMR spectroscopy (Santamaria, Charro, Zacarías, & 

Castro, 1999) do suggest there is a relationship between vibrational pressure profile and base-

pair configuration, but this has yet to be demonstrated concretely, let alone simulated.  For the 

analyses in Hypotheses 3 and 4, it is unknown whether there will be a unique or mathematical 

relationship, and while arguments could be made from first principles that there is likely to be a 

relationship, it truly is unknown.  Regardless of any of the outcomes, this research is going to 

continue to examine some previously unknown areas of molecular dynamics models as they 

relate to the simulation of DNA molecules and the statistical challenges of analyzing the 

resulting data and is therefore significant. 
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CHAPTER 4: RESULTS 

Chapter 4 Abstract 

The testing of the four hypotheses by means of two experiments and four tests was 

accomplished using constructed DNA models with molecular dynamics simulations as proposed.  

Experiment 1 tested H(Length NULL), a hypothesis that proposed the idea of strand length being 

related to vibrational motion.  That experiment, with multiple repeated runs of the same 

simulation model in six different cases, failed to find significant effects with system dimension 

changes.  Furthermore, post-hoc tests on the matching significant variables between runs 

demonstrated an apparently random response pattern under repeated runs of the same system.  

Experiment 2 tested H(Sequence NULL), the hypothesis that strand sequence is related to significant 

frequency change.  This experiment yielded inconclusive results: although a very small number 

of coefficients were in fact significant, they were too few to test further.  Experiments 3 and 4 

were meta-analyses, using the data collected from experiments 1 and 2 to run further tests.  

Experiment 3 applied cross-spectral power density to attempt to find differences between system 

configurations that stood out as unique (the hypothesis known as H(Unique NULL)).  The results were 

not sufficient to reject H(Unique NULL).  The final experiment tested H(Relation NULL), the hypothesis 

that there is a mathematical relationship between DNA vibrations and its spectrum.  This was 

accomplished using doubled strands repeating the same sequence, which had been shown to 

potentially increase the amplitude of certain frequencies.  No difference was detected between 

the two cases, in part due to the high system noise, and thus failed to reject H(Relation NULL).  

Despite these results, this research answers previous research questions, identifies needed 

improvements to computational tools, points the way towards an alternative analysis approach, 

and identifies questions that may be answered by future researchers investigating this topic area. 
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The effort for these experiments expended an excess of 4,560 compute hours (or slightly 

more than a quarter-million CPU hours), and the effort for Experiment 2 consumed 1,680 

compute hours (100,800 CPU hours)—both of these represent a much larger expenditure of CPU 

time than has been possible in the past.  These figures do not include failed runs, of which there 

were several. 

Finally, a brief discussion of additional post-hoc analysis using wavelet analysis is 

presented.  Based on the scalograms obtained, it is likely that the underlying processes being 

studied in this research are either non-stationary or, at the very least, have a longer period than 

what could be studied in this research.  Evidence for those possibilities is presented, along with a 

wavelet analysis of the possibility that the output is solely noise. 

Experiment 1: Test of Hypothesis One: DNA’s Vibrational Motion is Dependent on Strand 

Length 

For this experiment, a molecular system with a randomly chosen nucleotide sequence 

was generated by the tool provided by Maduro (2003) for the 10-mer case, and additional 

random nucleotides were chosen to lengthen that strand to 12- and 16-mer in length.  The 

process to setup the molecular dynamics runs used for this experiment are the same in the 

following three experiments.  Once the randomly chosen nucleotide sequences were obtained, 

the DNA molecular sequence protein structure files were built using the excellent Nucleic Acid 

Builder tool (Stroud, 2006).  These molecules were imported into a new system in pairs.  The 

resulting molecules were placed apart in their respective configurations (linear and parallel) with 

25Å spacing between the ends (in linear) or sides (in parallel) of the molecules.  The systems 

were then solvated with water to a distance of 12Å past the position of the last atom of the system 

in all six directions.  These distances were deliberately chosen for two reasons: one, there is an 
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approximately 10Å cutoff for the electrostatic and van der Waals forces, and two, this avoids the 

system being an even length through the reflection of the periodic boundary conditions (Guvench & 

MacKerell, 2008).  Ionization to a level of 0.5 moles/liter (mol/L) with sodium chloride ions was 

undertaken to ensure that the system would be electrically neutral (a necessary condition for 

molecular dynamics simulation) and similar to the salt levels found in the human body. 

After the creation of an ionized system, three preparatory steps are required so that the 

system will be ready for the full simulation runs.  These steps are minimization, heating and 

equilibration.  Minimization is the process of permitting the molecules to find their lowest energy 

state in the bonds, essentially relaxing the molecules into their potential wells.  Heating is done after 

minimization, and the system is slowly heated to 310K (36.8C or 98.3F, approximately body 

temperature) with NAMD’s integrated ramping function.  This step is required because, when a 

system is first created, it is at 0K, and there is no energy.  Heating the system puts energy into the 

system, which, as it does in the real world, causes the molecules to vibrate.  Finally, equilibration is 

required.  Equilibration is a much longer process that is done to allow the newly heated system to get 

back to a normal lowest-energy state.  Guidance for finding the equilibration point of DNA 

molecular simulation was found in the NAMD tutorial (Isgro et al., 2012).  Given that there was 

good convergence (as indicated by the Root Mean Square Distribution) by 3,500 steps, 10,000 steps 

were chosen for the equilibration run.  This standard procedure was documented and used for the 

startup of every system in this research. 

After equilibration, the experimental runs began.  After equilibration, the experimental runs 

began.   For Experiment 1, the three systems were each run 20 times, one in online mode, and once in 

offline mode.  These double runs were necessary due to a quirk of the NAMD molecular dynamics 

simulation software package: it is not possible for NAMD to output all terms for pressure at the same 

time.  As one will recall from equation 4, there are three kinds of interactions that are considered: 

internal forces such as bonds, external forces such as electrostatics, and other forces considered by 
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the model.  NAMD can output internal forces and certain non-bonded interactions, but the 

electrostatic terms must be computed separately from the trajectory data using Particle-Mesh-Ewald 

(PME) sums.  This is what necessitates having two runs per system: the first time, the dynamics are 

run online and a trajectory file is output along with total pressure exclusive of electrostatic 

interactions; the second time, the trajectory file is used to inform the PME calculation and supply the 

electrostatic interaction term.  The two can then be summed, and a custom tool was written to 

automate that process. 

Statistical Analysis for Experiment #1 

In order to investigate the hypothesis proffered for experiment 1, that strand length causes 

significant changes in the noted vibrational motion (abbreviated H(Length NULL)), each of the 60 

pressure profiles will be subjected to Fast Fourier Transform (FFT) analysis.  The FFT is a 

specialized version of the discrete Fourier transform (DFT) that is optimized for rapid 

computation on high-speed data processing equipment.  The FFT works by decomposing the 

input signal into sinusoids (sines and cosines), with a given intensity and frequency offset.  The 

FFT will output an array of frequency coefficients, equally spaced, from the lowest frequency 

detectable given the time span it analyzes to the highest (which will be one half the highest 

frequency seen in the data due to Nyquist’s theorem).  It is essentially taking a time-domain 

signal and converting it into the frequency domain.  The FFT outputs a frequency spectrum, not 

dissimilar to the electromagnetic frequency spectrum, except because the FFTs in this research 

are derived from pressure, it is a vibrational frequency spectrum. 

At the time of writing, Fourier analysis of molecular dynamics has not been widely 

studied, though a recent paper in JACS demonstrates Fourier analysis for proteins in a molecular 

dynamics simulation (Lindorff-Larsen, Trbovic, Maragakis, Piana, & Shaw, 2012).  There are 

likely several reasons for this, chief among them being that Fourier analysis has long been the 
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domain of pure mathematics and largely applied through the disciplines of electrical and 

computer engineering, finding limited biological applications in magnetic resonance imaging, 

infrared spectroscopy, computed tomography, and recently in terahertz imaging.  Additionally, it 

has not been thought to be useful to apply Fourier analysis to characterizing the motion of 

biological systems—certainly not if the referee comments from prior submissions of (R. 

Calloway et al., 2014) are anything to go by—though attitudes towards its potential use appear to 

be changing.  Finally, studies of DNA vibrational spectra have been largely limited to spectra of 

its component parts and individual nucleobases, in both the traditional infrared (as in Raman 

spectroscopy) and THz ranges (Shen et al., 2003).  Using FFTs to analyze molecular model 

pressure profile data is new, but not without precedent (R. Calloway et al., 2014; Tamaoki, 

Yamauchi, & Nakai, 2005).  Finally, Lindorff-Larsen et al. (2012) report using FFT against MD 

data. Their validation against NMR shows good general agreement between MM models and 

proteins, and we can generalize to DNA from proteins. 

In crafting the analysis of H(Length NULL), it was noted that conventional descriptive 

statistics (which speak to mean and standard deviation) would not return usable information 

about the spectra of each run.  Because of the natural resonant properties of water (which 

resonates around 1012 Hz) and of the DNA molecules, it was likely that the mean and standard 

deviation of all runs would be similar.  There is one test that stood out in its ability to provide 

meaningful insight into the statistical significant of Fourier confidents: a version of H. O. 

Hartley’s F-Max test (Thibos, 2003).  Several “off the shelf” statistical tests were considered 

prior to Hartley’s test, including the relatively new Multivariate Permutation Test (Blackford et 

al., 2009), Hotelling’s T2 test (a generalization of Student’s t test capable of treating Fourier 

coefficients as vectors), and a relatively new version of the T2 test built for situations such as 
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those encountered in this research where this is a small first degree of freedom and a very large 

second degree of freedom (Wu, Genton, & Stefanski, 2006).  The MPT was rejected for two 

reasons.  First, it requires a priori knowledge of the exchangeability between observations in 

order to be valid—we could assume exchangeability, but could not prove it in this case.  Second, 

while the MPT may otherwise have been effective, it appears to be incapable of examining 

changes between multiple runs since it is a paired methodology, used to detect changes pre- and 

post-treatment.  Hotelling’s T2 test is unsuitable due to the large number of variables and small 

number of replications relative to the number of variables (at best it would return a negative test 

statistic—a meaningless result, at worst the covariance matrix would fail to be positive definite, 

so the test statistic could not be computed at all), and the test described in Wu is difficult to adapt 

to this particular test situation, one of repeated runs.  Therefore, Hartley’s test along with 

additional processing steps were incorporated to determine whether there was significant change 

in the power spectrum between each length setting. 

In this experiment, the molecular systems were arranged in two distinct patterns.  These 

two patterns were chosen because they would likely give the greatest frequency response, as 

reported in Calloway (2011).  In terms of the underlying natural processes, the forces of DNA 

strands when placed in the side-by-side and end-to-end cases present two standard cases for the 

biological processes of strand break repair, and replication, respectively.  As shown in the figures 

that follow, Figure 1 is the parallel side-by-side configuration, and Figure 2 is the linear end-to-

end configuration.  Each figure has been enhanced to show the DNA helix structure and the ions 

more clearly, with the water molecules being represented by the red and white sticks. 
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Figure 1: Parallel DNA Strand Arrangement 
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Figure 2: Linear DNA Strand Arrangement 

The analysis began with the creation of a custom Matlab program to facilitate the ingest 

of pressure profile data as output by the PressureParser tool (see appendices for a description of 

each program and source code), running of the Fast Fourier Transform (FFT), computing the 

power of each frequency band, inspecting the resulting power (using Hartley’s F-Max test for 

heteroscedasticity) for statistical significance, and then outputting the statistically significant 

power signatures from each run to a spreadsheet for further analysis via matching and a Chi-

Square test.  The Matlab program also output graphical data showing both the shape of the 

resulting power spectrum and that same power spectrum with only significant coefficients, as 

illustrated respectively in figures three and four below. 
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Figure 3: All Coefficient Power Output of Example System 

 

Figure 4: Significant Coefficient Power Output of Example System 
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The ingested pressure profile data was subjected to FFT, and then the resulting 

coefficients were converted to power.  Before we continue, it is important to understand the 

difference between raw Fourier coefficients and the power of that coefficient.  Fourier 

coefficients are composed of a real and an imaginary number.  The real number is the quantity of 

that particular frequency that is present, while the imaginary number is the phase shift of that 

particular frequency.  In this way a Fourier transform represents the incoming time-domain 

signal in the frequency domain.  This frequency domain decomposition enables identification of 

frequency content by energy levels even in the presence of extremely noisy signals.  The power 

is a positive number (unlike the Fourier results which could be negative or positive depending on 

phase angle) that represents the amount of energy being output by the process at that frequency.  

This number is obtained by normalizing the coefficients, a process informed by Parseval’s 

Theorem, that involves summing the squares of the Fourier coefficient amplitudes with the 

square of the average and dividing by two (Thibos, 2003).  As an equation, the power pk for the 

kth frequency is: 

𝑝𝑝k = �a�𝑘𝑘2 + b�𝑘𝑘2�/2          ( 8 ) 

Because this variable is, in the statistical sense, standardized, and because we know this to be a 

Gaussian variable (because it is Fourier transform of the standardized pressure profile output, 

which comes from a process that is at its root, Gaussian), we know that it has a mean of zero and 

a variance of one and will be distributed chi-square with a single degree of freedom. 

This fact is what enables the application of Hartley’s test in this situation.  Hartley’s test 

examines the null hypothesis that the amplitude of the k-th Fourier harmonic is zero.  It does so 

by generating a test statistic, often called the H statistic, and comparing that against an F 

distribution.  One will recall that an F distribution is essentially a chi-squared distribution after 
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normalization.  Thibos derives an equation from Hartley’s test that is easily applied to test 

whether the k-th Fourier harmonic is zero.  (Thibos, 2003). 

𝐻𝐻 = 𝑝𝑝k
1
𝑅𝑅
∑ 𝑝𝑝𝑖𝑖𝑖𝑖≠𝑘𝑘

~𝐹𝐹2,2𝑅𝑅          ( 9 ) 

The H-statistic is therefore the power of the k-th harmonic (pk) divided by the quantity (1/R), 

times the sum of all powers except pk, where R=(D-3)/2 and represents the total power of the 

residuals (that is, all power that is not accounted for in pk), and D is number of samples.  The 

values for F can be looked up in an F table for the desired α (or significance level).  In the case of 

these experiments, the objective of using Hartley’s test is to provide a list of candidate significant 

frequencies that can be examined by comparison of their coefficients to determine whether 

significance exists in between runs and in between system configuration (linear, parallel, length 

of DNA sequence, makeup of DNA sequence) changes. 

After calculating the statistically significant frequencies for each system, a set of Excel 

workbooks were created with a custom macro function that would sort the frequencies in each 

column and then output those that matched across each run.  There were only a few matching 

frequencies in each set of runs, a fact that was somewhat surprising given that each set of runs 

was that of an identical system configuration, only a different random seed was applied.  The 

summary tables below show those matching frequencies and notes any overlap (with 

highlighting) between the 10-, 12-, and 16-mer systems in the linear end-to-end and parallel 

cases, respectively. 
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Table 1: Linear System Matching Statistically Significant Frequencies 

10-mer 12-mer 16-mer 
2000080003 Hz 1000040002 Hz 6000240010 Hz 
15000600024 Hz 2000080003 Hz 11000440018 Hz 
27001080043 Hz 12000480019 Hz  
28001120045 Hz 20000800032 Hz  
39001560062 Hz   
1.42006E+11 Hz   
2.4001E+11 Hz   
9.82939E+12 Hz   
9.9554E+12 Hz   
1.07414E+13 Hz   

 

Table 2: Parallel System Matching Statistically Significant Frequencies 

10-mer 12-mer 16-mer 
6000240010 Hz 4000160006 Hz 4000160006 Hz 
10000400016 Hz 5000200008 Hz 8000320013 Hz 
22000880035 Hz 30001200048 Hz 13000520021 Hz 
26001040042 Hz 40001600064 Hz 14000560022 Hz 
37001480059 Hz 45001800072 Hz 28001120045 Hz 
45001800072 Hz 47001880075 Hz 38001520061 Hz 
71002840114 Hz 1.03004E+11 Hz 48001920077 Hz 
74002960118 Hz 1.10004E+11 Hz 57002280091 Hz 
83003320133 Hz 1.22005E+11 Hz 69002760110 Hz 
1.14005E+11 Hz 1.29005E+11 Hz 1.21005E+11 Hz 
1.15005E+11 Hz 1.73007E+11 Hz 1.26005E+11 Hz 
1.42006E+11 Hz  1.35005E+11 Hz 
2.86011E+11 Hz  1.62006E+11 Hz 
  1.97008E+11 Hz 

 

As can be seen from the above tables, there was only one overlapping frequency between 

the systems in the linear case, and two overlapping frequencies in the parallel case, which 

appeared to support rejecting the null hypothesis that there were no statistically significant 

differences between the various strand lengths and their pressure profile outputs.  However, one 

must consider carefully two questions: why were there so few significant frequencies that 

matched among all 20 runs (considering that there is a pool of 25,000 frequencies to choose 
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from, and nearly 700 significant frequencies from each run), and why were those frequencies at 

such low overall power from the rest of the system?  As can be seen in the table below, the 

percentage of power accounted for by these matching coefficients is exceedingly small. 

Table 3: Power in Matching Coefficients Comparison 

Case 
Total System 

Power 

Power in 
Significant 
Coefficients 

Power in 
Matching 

Coefficients 

% of Total 
System 
Power 

Linear 10 24990.411 11959.73 202.25 0.81% 
Linear 12 24955.292 11820.46 150.10 0.60% 
Linear 16 24810.643 11256.69 54.284 0.22% 
Parallel 10 24998.294 11489.34 335.611 1.34% 
Parallel 12 24998.132 11949.02 236.550 0.95% 
Parallel 16 24994.381 11763.03 182.23 0.73% 

 

The power in the few matching coefficients is less than the power in the significant coefficients 

by a factor of nearly 100 in most cases.  In the best case, the total percentage of power accounted 

for by the matching coefficients is slightly more than 1%.  At such a low power level, we cannot 

discount the possibility that the matching coefficients are themselves an error.  The other 

significant finding is that the power in significant coefficients is less than half the total system 

power.  This suggests that the underlying model implied by Hartley’s test (that the system is 

strongly not Gaussian) is in some way flawed for the purposes of analyzing this system. 

In order to help answer this emergent concern that the significant coefficients are actually 

noise, or that the underlying model used by Hartley’s test is flawed for this use case, it was 

decided to test the significant matching frequencies for randomness using the runs test.  The runs 

test for randomness, as described in Bradley (1968), is a nonparametric, distribution-free test that 

tests the null hypothesis that a run of data is random.  A rejection of the null at the desired 

significance level would indicate that the data is not likely to be random.  An example of this 

would be analyzing flips of a coin, if there were long ‘runs’ of heads or tails, then the test would 
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reject the null hypothesis, indicating that the process appears to be non-random.  For each 

matching significant frequency, all 20 runs of that frequency coefficient were fed into the runs 

test to provide a post-hoc assessment of randomness.  The results are summarized in the table 

that follows. 

Table 4: Results of Runs Test for Randomness 

System 
Configuration 

System 
Length Frequency p-value Reject null? 

Linear 10 2000080003 Hz 0.4768 No 
Linear 10 27001080043 Hz 0.3029 No 
Linear 10 28001120045 Hz 0.5980 No 
Linear 10 15000600024 Hz 0.2298 No 
Linear 10 39001560062 Hz 0.0898 No 
Linear 10 1.42006E+11 Hz 0.5099 No 
Linear 10 2.4001E+11 Hz 0.5932 No 
Linear 10 9.82939E+12 Hz 0.8599 No 
Linear 10 9.9554E+12 Hz 0.3182 No 
Linear 10 1.07414E+13 Hz 0.7570 No 
Linear 12 1000040002 Hz 0.1348 No 
Linear 12 2000080003 Hz 0.9600 No 
Linear 12 12000480019 Hz 0.4539 No 
Linear 12 20000800032 Hz 0.2298 No 
Linear 16 6000240010 Hz 0.2157 No 
Linear 16 11000440018 Hz 0.5980 No 
Parallel 10 6000240010 Hz 1.000 No 
Parallel 10 10000400016 Hz 1.000 No 
Parallel 10 22000880035 Hz 1.000 No 
Parallel 10 26001040042 Hz 0.2316 No 
Parallel 10 37001480059 Hz 1.000 No 
Parallel 10 45001800072 Hz 0.9600 No 
Parallel 10 71002840114 Hz 0.0898 No 
Parallel 10 74002960118 Hz 1.000 No 
Parallel 10 83003320133 Hz 0.5932 No 
Parallel 10 1.14005E+11 Hz 0.4539 No 
Parallel 10 1.15005E+11 Hz 0.9600 No 
Parallel 10 1.42006E+11 Hz 0.5980 No 
Parallel 10 2.86011E+11 Hz 0.0125 Yes 
Parallel 12 4000160006 Hz 0.2316 No 
Parallel 12 5000200008 Hz 0.7570 No 
Parallel 12 30001200048 Hz 1.000 No 
Parallel 12 40001600064 Hz 0.7570 No 
Parallel 12 45001800072 Hz 0.8599 No 
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System 
Configuration 

System 
Length Frequency p-value Reject null? 

Parallel 12 47001880075 Hz 0.8600 No 
Parallel 12 1.03004E+11 Hz 0.8599 No 
Parallel 12 1.10004E+11 Hz 0.0492 No 
Parallel 12 1.22005E+11 Hz 0.5980 No 
Parallel 12 1.29005E+11 Hz 0.5165 No 
Parallel 12 1.73007E+11 Hz 0.0702 No 
Parallel 16 4000160006 Hz 0.3652 No 
Parallel 16 8000320013 Hz 0.4768 No 
Parallel 16 13000520021 Hz 0.1894 No 
Parallel 16 14000560022 Hz 0.4164 No 
Parallel 16 28001120045 Hz 0.5444 No 
Parallel 16 38001520061 Hz 0.4164 No 
Parallel 16 48001920077 Hz 0.4539 No 
Parallel 16 57002280091 Hz 0.3029 No 
Parallel 16 69002760110 Hz 0.9600 No 
Parallel 16 1.21005E+11 Hz 0.1348 No 
Parallel 16 1.26005E+11 Hz 0.0204 Yes 
Parallel 16 1.35005E+11 Hz 0.8599 No 
Parallel 16 1.62006E+11 Hz 0.8599 No 
Parallel 16 1.97008E+11 Hz 0.7570 No 

 

Out of 54 matching significant coefficients, only two were nonrandom at the 95% confidence 

level.  This finding, coupled with the previous findings, strongly suggests that the significant 

matching coefficients are in fact “loud” noise rather than the signal this research is searching for. 

Because of these significant power spectrum shifts between repeated runs, the low total 

percentage of total system power accounted for by significant coefficients, and because of the 

low number of matching coefficients, it is highly likely that the underlying process is either non-

stationary or has a longer period than what was captured.  This was unexpected due to the 

relatively high frequencies (around 1012 Hz) of the resonant spectra of the component parts 

(water and DNA nucleotides) of the system.  Given this evidence, it is clear that the hypothesis 

H(Length NULL) cannot be rejected by this experiment. 
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Experiment 2: Test of Hypothesis 2: DNA’s Vibrational Motion is Dependent on Strand 

Content 

In a similar vein to the experiment for testing H(Length NULL), the setup for this experiment 

proceeded in an identical manner to that described previously with one exception: 20 runs of 

each system configuration were undertaken, each one having a randomly generated DNA 

sequence.  The goal was to determine whether changes in the DNA sequence caused significant 

changes in the power spectrum, and the null hypothesis is referred to as H(Sequence NULL), that is, 

that there are no significant differences between the power spectrums of differing strand 

sequences.  The alternative hypothesis is that there is evidence to support the conclusion that 

strand sequence affects the power spectrum.  Due to simulation runtime constraints, this 

experiment was not designed with multiple repeated runs as Experiment 1 was.  It was 

considered that Experiment 1 would shed sufficient light on the process’s properties in order to 

help make the determination of the further experiments being conclusive. 

An unexpected issue with this experiment was the large number of significant changes in 

the power spectrum between repeated runs in experiment 1.  These were runs that had no 

changes between them save for the random seed that initialized the simulation.  The high level of 

noise in the significant frequencies severely clouds any signal that might be present.  This means 

that we must temper any expectations of statistically significant results with the high likelihood 

that any changes seen between systems may be from random chance, rather than from actual 

changes in the power spectrum. 

Statistical Analysis for Experiment #2 

In comparing the inter-run frequencies, it was necessary to first verify that the significant 

frequencies found between each run were a statistically significant departure from error.  To that 
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end, a 2x2 chi-square table was constructed to test the number of significant coefficients (against 

the total) vs the number of coefficients we would expect to be error at a 99.9% confidence 

interval (or having less than 0.01% error).  The lowest number of significant coefficients 

returned in each case (linear and parallel) was used, since if it was significant, it would obviate 

the need to test the other 19 runs.  In both cases, the analysis code was initialized using a random 

Gaussian distribution with the same mean and variance as the linear or parallel system, 

respectively.  The number of significant coefficients were noted, and then 2x2 chi-square tests 

were run to check against the number of significant coefficients in the run with the fewest 

significant coefficients.  The results are shown graphically in the figures that follow. 

 

Figure 5: Power Spectrum Linear Case (Left) and Gaussian Data (Right) 
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Figure 6: Power Spectrum Parallel Case (Left) and Gaussian Data (Right) 

 

Figure 7: Linear Case Chi-Square Test Against Random System 
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Figure 8: Parallel Case Chi-Square Test Against Random System 

As can be seen, there is a clear difference between the Gaussian random data and the 

representative system output.  Both systems represented statistically significant departures from 

the random case.  In both cases, the number of matching variables in the random case (17 and 

23) closely matched the expected value if there had been 0.01% errors (25), and this therefore 

indirectly serves to validate the expected error rate of Hartley’s test. 

While there is a statistically significant difference between the quantity of significant 

coefficients in each system and randomness, the question is whether there are significant 

differences between those coefficients.  The most obvious method is to look at the sparse points 

of the overlapping systems diagrams and derive a confidence interval.  If there are other points 

present inside that envelope, then it is not unique.  To begin, each of the 20 systems are compiled 

into a graph charting power vs frequency on a semilog plot.  From there, the point cloud was 

studied for outliers, and it is then possible to compute the distance from those outlying points to 
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all other points and check to see if they are within the confidence interval or not.  For a 

frequency to be considered unique, it is necessary for it to not be anywhere closer than the 

confidence interval distance.  This was originally done manually, but was automated to check the 

entire range quickly. 

Just as it is possible to compute a confidence interval for real-valued statistical functions, 

it is also possible to compute a confidence interval for a vector.  This approach is used by 

Hartley’s test (to ensure that no part of the vector crosses the origin), which is a special case of 

comparing two vectors for significance.   (Thibos, 2003) derives the following equation for the 

confidence interval surrounding a vector point. 

𝜌𝜌2 =𝐹𝐹2,2𝑅𝑅

𝑅𝑅
∑ 𝑝𝑝𝑖𝑖𝑅𝑅
𝑖𝑖=1           ( 10 ) 

In equation 10, ρ2 is the diameter of the confidence interval, F2,2R is the F-distribution for the 

desired probability, 2 degrees of lesser freedom and 2R degrees of greater freedom (where 

R=(D-3)/2 and D is the number of coefficients returned), and where pj is the sum of powers on 

the positive side of the Fourier spectrum returned.  Taking the square root of this function returns 

the radius of the confidence bound around the point.  From this, we have a test we can employ: if 

any point of any sequence’s coefficient is within that confidence interval bounds, we cannot 

reject the null hypothesis that they are statistically the same point.  To do this, a simple 

subtraction calculation can be used to calculate the Euclidean distance between two points: once 

for the real value, and once for the complex value.  If any of the distances between the points 

falls within the confidence bound, we will fail to reject the null hypothesis for that point.  If none 

of the point test reject the null hypothesis, then we can say, within the confidence interval, there 

is insufficient evidence to support rejecting H(Sequence NULL).  The comparison itself is fairly 

straightforward.  Using Matlab, it is possible to automatically calculate the Euclidean distances 
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between every point in a given vector or matrix.  The custom code scans through each frequency, 

then each point, comparing each point to every other point.  If a point has zero distances that are 

less than the confidence interval distance, then that point is significantly different from all the 

others at that frequency.  For the purposes of this test, it was decided to output the results one 

frequency at a time, the reason for this being that, given that there are 20 sequence runs, that is 

20C2 (read: “twenty choose two”) combinations to test, or 190, per frequency—4.7 million 

comparisons in total.  To winnow the list quickly, the function runs the distance calculation, and 

writes out a variable and prints to the console if there were no coefficients that lay within the 

confidence bound at that point (source code is available in the appendix).  The next two figures 

illustrate this graphically, showing the significant coefficients from every system overlaid on the 

graph showing frequency versus power.  One can see a lot of overlap between these systems, 

with very few “outlier” points (where we would expect to find significance). 
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Figure 9: Linear System 20 Sequence Power Overlay Graph 

 

Figure 10: Parallel System 20 Sequence Power Overlay Graph 
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Indeed, upon automated comparison (output tables are in the appendix), there were found to be 

52 unique points in the linear system and 71 unique points in the parallel system.  While this is 

better than no unique points, and while it does suggest that some of these frequencies may be 

unique, the very small number of significant points (an average of just 3.6 unique frequencies per 

system, out of 25,000) means that fitting an equation to test the uniqueness theory will not work 

well—the amount of “error” excluded from the model would be significant—most of the signal.  

As such, though there is technically sufficient evidence to reject H(Sequence NULL) at the 99.9% 

confidence level, such rejection should be taken with the proviso that additional research is 

needed to confirm the nature of these changes—a much larger study, perhaps with hundreds of 

runs, could tease out the effect within the significant noise of this system.  In the meantime, it 

would be wise to regard the results of this experiment as inconclusive. 

 

Experiment 3: Test of Hypothesis 3: DNA’s Vibrational Motion Uniquely Varies with 

Strand Length and/or Content Combinations 

The data to test this experiment’s hypothesis comes from the first two experiments, as 

this experiment is a brief meta-analysis of the experimental data collected.  Null hypothesis 3, 

abbreviated H(Unique NULL), is that there is no evidence of a uniquely-identifiable difference 

between strand configurations.  The alternative hypothesis is that we find evidence of a 

characteristic in the frequency response that will permit unique identification of the different 

strand configurations.  Given the failure to reject H(Length NULL), and the inconclusive result of 

H(Sequence NULL), any rejection H(Unique NULL) should be interpreted as there being a potential for 

uniqueness, but in any case, further study is indicated. 
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In order to consider the question of whether the vibrational motion of the DNA being 

studied changes in a unique way, a special subtype of Fourier analysis, cross power spectral 

density (CPSD) analysis, was undertaken.  The CPSD of a signal is, in short, the power spectral 

density (as employed in experiment 1 and 2’s power analyses) compared with another signal 

using cross-correlation.  Signals will have a high coefficient of CPSD where they share 

frequencies, and a low coefficient where they do not.  By looking at peaks and valleys of the 

CPSD, one can determine what portions of the frequency response are shared, and what portions 

are different.  If there is uniqueness in the power spectrum of the various cases, we would expect 

to see valleys in the areas where those unique frequencies lie.  The particular method used for 

CPSD analysis here is Welch’s method, which, due to its overlapping function, helps reduce the 

effects of noise (Welch, 1967), and we have already seen that these datasets are extremely noisy.  

No special code was needed to output the comparison between systems, as Matlab implements 

the CPSD as a function call in the Signal Processing Toolbox. 

The CPSD was run among systems in each configuration to compare each to the other 

(10-mer to 12-mer, 10-mer to 16-mer and 12-mer to 16-mer).  The graphical results of those runs 

are shown in the figures below. 
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Figure 11: Cross Power Spectral Density Graphs (Linear Configuration) 
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Figure 12: Cross Power Spectral Density Graphs (Parallel Configuration) 

From these comparison graphs, several features become apparent.  First, as seen in the previous 

figures from experiment 1, the power spectrum starts off at a relatively high power and falls to a 

relatively low power by the end of the studied range.  Besides this obvious linearity, there are 

only a few small dips that indicate differences—in the linear systems, these occur around 12-13 

THz and around 20 THz; in the parallel systems, this occurs around 12-13 THz.  Besides these 

two small jogs downward, the trend lines of these CPSDs are very similar.  More importantly, 

those small dips were much smaller in amplitude change than the noise of the system as a whole.  

This is significant because it means that any model fit to these CPSDs will not easily capture the 

true nature of any underlying process.  While it may be possible to discern between the linear 

and the parallel cases by examining the CPSD charts and noting the difference in slope and 
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oscillation between cases, it is not possible to make any determinations between system 

configurations.  Due to the inability to clearly discern a trend in the CPSD analysis, we must 

consider the results of H(Unique NULL), to be inconclusive. 

Experiment 4: Test of Hypothesis 4: DNA’s Vibrational Motion Forms a Mathematical 

Relationship 

Finally, in this experiment, we sought to understand whether a mathematical relationship 

between the DNA molecules’ vibrations and their Fourier coefficients exists.  The null 

hypothesis, to be called H(Relation NULL)¸ is that there is no evidence to support a mathematical 

relationship, with the alternative hypothesis that there is evidence to support the conclusion that a 

mathematical relationship exists between the vibrations and their resulting Fourier coefficients.  

In order to determine whether a mathematical relationship exists between either strand length or 

strand sequence, the process of Fourier fitting was undertaken.  Fourier fitting is very much like 

linear or exponential model fitting, only with Fourier coefficients that describe how a system 

oscillates rather than with simple linear equations (Ramsay, Graves, & Hooker, 2009; Thibos, 

2003).  The output comprises pairs of terms which are used to drive alternating sine and cosine 

pairs (one pair per term).  Fourier fitting, much like other methods of generating a model, supply 

us with confidence intervals for the coefficients which can be examined to determine whether 

any of the parameters should be excluded due to not being statistically significant.  There are 

some limitations to Fourier fitting, generally the maximum number of coefficients is very low 

due to computation time required, and it tends to not work well in systems that are very noisy.  

Six comparisons were undertaken, with the known sequences TACGCCCAAA, 

TACGCCCAAACT, and TACGCCCAAACTAGCC (the 10-, 12-, and 16-mer strands), in both 

the parallel and linear configurations.  These known sequences were used because of the large 



79 

number of experimental runs available from which to draw inferences.  Each sequence was 

linked to itself (doubling its length) and simulated using the same procedure as experiment 1.  As 

such, six comparisons were possible; two for each case, looking at the original and the linked 

cases in both linear and parallel.  Each comparison outputs a list of coefficients (available in the 

appendix) and two graphs showing the fitted model and the original pressure data.  The figures 

are below. 

  

Figure 13: 10-mer Linear Fitted Fourier Models 

 

  

Figure 14: 12-mer Linear Fitted Fourier Models 
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Figure 15: 16-mer Linear Fitted Fourier Models 

 

  

Figure 16: 10-mer Parallel Fitted Fourier Models 
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Figure 17: 12-mer Parallel Fitted Fourier Models 

 

  

Figure 18: 16-mer Parallel Fitted Fourier Models 

 

An eight term model (the maximum available) was fitted to each sequence.  However, in every 

case, most if not all the coefficients’ confidence bounds crossed the zero value line.  That fact 

signifies that the coefficient is not statistically significant, because it intersected the origin.  Due 

to the lack of statistically significant coefficients, it is not necessary to run F-tests for fit, as the 

models were known not to fit within the confidence interval via the intervals provided for each 

coefficient.  Therefore, we can only fail to reject H(Relation NULL). 
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Because of this apparent lack of discernable mathematical relationship between the 

original and linked cases, a post-hoc evaluation using periodograms was employed.  

Periodograms are Fourier analysis graphs that show any significant periodicities in a system.  

They are a weighted (by the square of the power) graph that can aid in identifying any 

oscillations or periodicities in very noisy data. Additionally, periodograms, being a statistical 

computation, can show confidence interval bounds.  For that reason, they are employed here as a 

check on the above results; they are shown below. 

 

Figure 19: Periodogram 10-mer Linear System 
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Figure 20: Periodogram 12-mer Linear System 

 

Figure 21: Periodogram 16-mer Linear System 
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Figure 22: Periodogram 10-mer Parallel System 

 

Figure 23: Periodogram 12-mer Parallel System 
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Figure 24: Periodogram 16-mer Parallel System 

 

In these periodograms, the blue line represents the signal and the red lines represent the upper 

and lower confidence bounds.  The x-axis is frequency in Hz and the y-axis is intensity in dB or 

negative dB.  We note several things about each periodograms: general agreement between upper 

and lower CIs, no crossing of the CIs (which would indicate a significant coefficient), and good 

agreement without crossing of the CIs by the signal.  All of these observations about the 

periodograms are confirming what was suspected in the fitted models: that there is no significant 

departure by any coefficient that would be statistically significant if it were fitted to a model. 

An Emergent Hypothesis: Water Box as the Source of Noise 

The results of Experiments 1 through 4 indicate that while it remained a possibility that 

there were variations in the signal due to the DNA content, there was too much system noise to 

make a clear determination whether it was the size and content of the water box alone, or the 

DNA contents of that water box that were causing the variations.  In order to test the emergent 

hypothesis that the water box created the noise, as well as attempt a post-hoc experiment 
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whereby the water box noise might be removed or filtered out, a new experiment was devised.  

This experiment would create water boxes of the same size, configuration, ionization level, and 

temperature as those used in the previous experiments, but with one key difference: they would 

not have DNA molecules in them.  They would, in effect, be ‘control’ water boxes for the DNA-

carrying water boxes. 

In order to create these water boxes, the VMD tool was employed to create water solvent 

boxes of the exact same dimensions as each of the system configurations, six in total (10-, 12-, 

and 16-mer, in both parallel and linear configuration).  Those solvent boxes were then ionized, 

minimized, heated, and equilibrated through the exact same processes as used for the previous 

experiments.  Five random-seeded examples per system configuration were constructed, to 

provide randomized runs and sufficient sample size from which to draw inference from, without 

unduly extending the experimental time.  The random seeds for these examples was chosen to be 

the same as the original run (so that a water box in the same configuration as the 10-mer linear 

system would share the random seeds for runs one through five of that system), thus providing 

statistical pairing. The runs for these 30 new water boxes consumed 1,080 compute hours 

(64,800 CPU-hours) of time, not including failed runs. 

Analysis of these new water boxes was undertaken via statistical comparison as well as 

spectral comparison, with the goal of determining whether there were any significant differences 

between the original systems and these new water and ion-only boxes.  The results were 

intriguing.  In every case tested, the system output matched up nearly identically at the 95% 

confidence level, this despite the fact that the system was missing the DNA present in the 

original experiment—a difference of several thousand molecules.  This striking similarity 

between the DNA-containing water box systems and the water-only systems assisted in 
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explaining the nature of the experimental results: why there were no discernable differences 

allowing us to separate the effects of strand length and strand sequence. 

Initial attempts centered on using classical filtering techniques such as the LMS (least 

mean squares) filter (Widrow & Stearns, 1985).  This filter belongs to a class known as adaptive 

filters, which attempt to filter out noise by following a gradient estimate of the error.  The filter 

traverses the signal and attempts to smooth it by locating discontinuities and adjusting its weights 

adaptively.  This type of algorithm can provide insights into the noise of a system when the 

properties of that noise are not known (such as random Gaussian noise).  Applying the LMS 

filter to these data resulted in a dataset that was still very noisy with respect to any unique signal, 

and was therefore not usable for comparison purposes.  Although not useful for comparisons, 

filtering the resulting pressure profiles from Experiment 2 did reveal some slight convergences 

on some frequencies in both the linear and the parallel cases where there was previously no 

consensus (see Tables 8 and 9 in Appendix A).  This convergence suggests that with appropriate 

filtering, it should be possible to identify those frequency bands which are common in each water 

box size and subtract them from the signal, reducing the problem space. 

 

Figure 25: Example Pressure Signal 
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Figure 26: Example Pressure Signal After LMS Filter 

The use of the finite impulse response (FIR) Weiner filter (Benesty, Chen, Huang, & 

Doclo, 2005; Wiener, 1964) was also attempted.  This filter differs from the LMS filter in that it 

can be fed a known noise spectra in order to allow it to better generate an error estimate for the 

input signal it is attempting to filter.  Although often applied to two-dimensional data, such as 

images, it can also be applied to audio data, and therefore to the sort of pressure data found in 

these experiments.  To employ it, the filter was fed two pieces of data: the known noise signature 

from the water-only control, and the signal data from the matching water and DNA system.  The 

result, a cross-correlation between the two signals, is output. The results were ultimately 

unusable due to the input and output signals being sufficiently similar, causing a failure to 

compute the covariance matrix. 

Investigation into that similarity began with a simple spectral comparison between an 

example DNA-containing system and its water-only counterpart.  The spectrograms were 

strikingly similar, showing similar power density, similar spectral banding, and similar frequency 
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responses for both systems.

 

Figure 27: Pressure Output Spectrogram 10-mer Linear Water-Only 
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Figure 28: Pressure Output Spectrogram 10-mer Linear Water + DNA System 

It was, at that point, reasonably clear that the cause for the inconclusive nature of the four 

experiments was not due to any issue with motion or lack of motion of the DNA molecules, but 

rather the intense noise coming from the solvating water itself.  A total signal power estimation 

was carried out to determine what percentage of signal power (and therefore noise) was common 

between the water-only boxes and the DNA-containing water boxes.  The result of that 

estimation is that, on average, more than 99% of the signal carried over from the water-only 

boxes to the DNA-containing water boxes.  In one case, the water-only system had greater total 

power than the DNA-containing system, suggestive of other, currently unknown, possibly non-

stationary, processes at work in the production of pressures of these systems. 

 



91 

Table 5: Comparison of Water/DNA and Water-Only Power 

System Type 
Water + DNA 

Power 
Water-Only 

Power 
Water-Only 

Percentage of Power 
10-mer Linear 24995.5 24989.0 99.97% 
12-mer Linear 24986.9 24979.4 99.97% 
16-mer Linear 24986.4 24816.7 99.32% 
10-mer Parallel 24995.7 24991.9 99.98% 
12-mer Parallel 24986.9 24990.8 100.02% 
16-mer Parallel 24990.8 24986.9 99.98% 

 

From this, it became clear that another approach would be required to unravel this mystery as 

traditional Fourier-based filtering techniques would not provide sufficient filtering to separate 

the noise from the data.  The vibrational properties of water are, as noted by Lock and Bakker 

(2002), somewhat paradoxical, for water’s vibrational period increases with temperature, taking 

longer to stop vibrating than when it is cooler.  This is the opposite behavior compared to most 

molecules.  Because the vibrational spectra of water is not stable with temperature changes, there 

remains the possibility that it is also changed by other factors such as ionization and can 

therefore be considered to be unstable, non-stationary, or both.  Because the ultimate goal is to 

detect defective molecules within a group of other molecules, further study is warranted. 

A New Alternative: Wavelet Analysis 

During the course of this research, additional study into possible alternative methods for 

the analysis of these data was undertaken.  One promising alternative is the application of 

wavelet analysis to the problem.  Unlike a Fourier transform, which breaks down a periodic 

signal into its individual frequencies using only sines and cosines, a wavelet transform works by 

decomposing that signal into individual small waves (hence, “wavelet”) that are employed to 

derived from the full length of the input signal, nor is it required that they be a regular wave 

(such as a sine or cosine); they can be of any arbitrary shape.  These shapes can be anything from 
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a square wave (known as the “Harr wavelet”), to a self-similar diminishing wave (“Daubechies 

wavelet”).  This property portends three important advantages of wavelet analysis: short acting 

signals can be easily identified, signals that are self-similar (such as fractal signals) stand out, 

and signals that are below the power spectrum threshold of a Fourier analysis can be seen more 

easily.  There is also a disadvantage: current research into wavelets has not advanced the study 

far enough along to have strongly statistically validated methods.  Despite that limitation, they 

can be extremely useful for analyzing this class of problem.  (Newland, 2012). 

The graphical output of a wavelet is a scaleogram—the wavelet equivalent of a 

spectrogram.  This graph is a 3-axis graph of a 2-dimensional input signal (generally amplitude 

vs. time) that has been decomposed into wavelets.  The x-axis is time, the y-axis is scale (that is, 

how much of the input signal is being considered—the larger the scale, the larger the proportion 

of the signal is being considered for analysis), and the z-axis is the value of the resulting wavelet 

coefficient (or how much of the input signal that particular wavelet takes up).  In the examples 

below, we see four wavelet scaleograms for the linear and parallel case, and we will discuss 

some of their features. 
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Figure 29: Linear System Configuration Scaleogram, Run 1 

 

Figure 30: Linear System Configuration Scaleogram, Run 2 
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Figure 31: Parallel System Configuration Scaleogram, Run 1 

 

 

 

Figure 32: Parallel System Configuration Scaleogram, Run 2 

These figures have been annotated to show a few common features between the scaleograms.  In 

these figures, it is clear that similarities exist between the runs of each system, but that those 
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similarities are irregular, and, importantly, exist in different points in time for each run.  This is 

possibly due to the simulation run length being too short, or it could be due to the systems being 

non-stationary.  Stationarity is the property of a system being unchanging over time with respect 

to its probability distribution function, and therefore its mean and variance.  Fourier analysis may 

not provide complete information in the case of non-stationary systems, unless it is possible to 

capture one entire cycle of the system.  However, because we do not know when this system 

cycles, or whether it cycles or if the drift of its variance and mean are stochastic, Fourier 

transforms may not provide as much information about the system as an appropriately fitted 

wavelet transform could do. 
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CHAPTER 5: CONCLUSION 

Chapter 5 Abstract 

Chapter 5 begins with a summary of the introductory material relating to DNA research 

and the use of simulation as an emerging method of researching biological problems—the field 

of computational biology.  The conclusions are summarized along with a brief discussion of 

experimental limitations and lessons learned.  Finally, some parting thoughts are presented on 

the future direction research in this area could take in order to answer some of the questions 

raised in this research. 

Summary 

We began with a brief introduction to the structure and function of the DNA molecule 

and the history of DNA research.  This history revealed the depth and breadth of the current 

understanding of the molecular processes while also showing the current lack of understanding 

in several key areas: simulation of DNA processes, DNA’s resonant properties, and how those 

resonant properties may or may not react to external stimuli from electromagnetic radiation.  The 

question of vulnerability of DNA to electromagnetic energy was reviewed.  This discussion went 

through some of the enabling works and the history of molecular dynamics simulation, as well as 

introducing the concept of computational biology and some of its ultimate goals: understanding 

interactions between biological system components, understanding microscopic phenomena, and 

ultimately being able to synthesize biology and anomalies in biology from computational 

models.  Following that, a discussion of the physics behind DNA dynamics was presented in 

order to help bring additional context to this research. 

A review of the current molecular simulation literature revealed gaps in understanding 

regarding some of the properties of the vibrational spectrum of DNA.  There is limited 
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understanding of the mechanical forces created by DNA’s natural vibrations, the properties of 

those vibrations, and whether the resonant vibrations of the individual nucleobases noted by 

spectroscopy translate to any meaningful pattern when the nucleobases are assembled into DNA 

strands.  It is believed that simulation could help to answer some of these questions due to the 

ability of simulation software to capture the pressure data occurring inside the molecular system 

in a way currently unavailable in vitro. 

A tool review was undertaken to better understand what software tooling was available to 

address the research questions being formulated as well as to provide a survey of the state-of-the-

art and identify any gaps that might remain in the various tools’ ability to provide data for this 

research.  This review highlighted the difference between the molecular dynamics tools 

(notionally similar to the “front end” in a multi-tier computing system), and the underlying force 

fields (the “back end”).  We considered three major simulation models: CHARMM, GROMOS, 

and Amber.  CHARMM was selected based on its current support for nucleic acids, its ability to 

output pressure profiles on an arbitrary 3D volume, and its ability to parallelize on dissimilar 

hardware. 

A set of four hypotheses focusing on DNA’s vibrational characteristics were synthesized.  

These hypotheses were formulated keeping in mind experimental and data limitations, to avoid 

asking questions that could not readily be answered by the data likely to be generated.  There 

were two experimental investigations each with one hypothesis: one investigation into length-

dependent vibrational changes and one into sequence-dependent vibrational changes.  An 

additional two hypotheses involving unique variances and mathematical relationships between 

vibrational characteristics would use the data from the two experiments for meta-analyses. 
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Conclusions 

This research completed a four-part investigation into various aspects of DNA vibrational 

properties.  The first experiment investigated H(Length NULL), the hypothesis that the length of the 

DNA strand influenced the significant frequencies of its vibrational spectra.  A surprising 

outcome from this experiment was that the variation between each of the 20 identical-system 

runs was as significant as the variation occurring between each of the different lengths.  Due to 

that result, some post-hoc tests to assess randomness were undertaken, which resulted in a failure 

to reject the emergent null hypothesis that the runs were random.  Due to these results, H(Length 

NULL) failed to be rejected.  The second experiment tested H(Sequence NULL), a hypothesis that 

asserted a relationship between sequence and the vibrational spectra.   After a successful initial 

chi-square test to check for departure from randomness, testing using an overlay method with 

two-dimensional confidence intervals was used to determine which points were unlikely to be 

random.  There was an extremely small number of points, too small to fit a model to, and so the 

planned F-test was abandoned.  Due to the paucity of significant points, and an inability to test 

the resulting model, H(Sequence NULL) can only be regarded as inconclusive. 

The meta-analyses, experiments 3 and 4 proceeded along slightly divergent paths to 

investigate uniqueness in the strand frequencies, and whether a Fourier model could be fitted, 

respectively.  For experiment 3, the hypothesis H(Unique NULL) investigated whether we could 

discern uniqueness in the vibrational spectrum between runs using cross-power spectral density 

(CPSD) analysis.  CPSD charts were generated to compare each system case. While a case could 

be made that we can determine the difference between linear and parallel systems based on 

identification of features in their respective CPSD charts, there were not any significant features 

in the comparison between systems, save to a few small oscillations that were so much lower in 
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magnitude than the noise of the system that it is impossible to say whether they are signal or 

noise.  We therefore regarded H(Unique NULL) as inconclusive.  Finally, the fourth experiment’s 

investigation into H(Relation NULL), the hypothesis that there is a mathematical relationship between 

the various system configurations, used Fourier sequence fitting to test the hypothesis.  An 8-

term Fourier model was fit to six paired cases: one of the pair being the original sequence, the 

other being the doubled sequence.  It was not possible to consider the results significant because 

the overwhelming majority of the coefficients generated were not themselves statistically 

significant.  The only available conclusion was to fail to reject H(Relation NULL).  As a post-hoc test, 

periodograms with confidence intervals were employed, and found similar results. 

The emergent hypothesis of the water in the water box as the source of noise in the 

system was investigated with positive results.  It was shown that the water box itself is the source 

of the majority of the signal of the system, which, due to its amplitude, rendered standard 

filtering and noise fingerprinting techniques unable to separate the water box signal from the 

water box + DNA signal.  Further, it was shown that any signal signature from the DNA does not 

influence the pressures of the water box system sufficiently to be distinguished from the 

underlying water box noise.  This inability to remove the noise, along with the nature of the 

noise, places the experimental results in clearer focus while pointing the way towards future 

research in this area. 

The use of wavelet analysis as an alternative method to investigate these vibrational 

properties proved interesting.  Although only a very preliminary look at the use of wavelets for 

this type of analysis, the visual output easily identified several periodicities that eluded prior 

analyses.  The movement of those periodicities along the time axis reflect a process that may be 

non-stationary, or with longer, intermittent, periodicities. 
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In summary, due to the amount of noise, and the nature of the process underlying these 

vibrational signatures, this research did not yield any rejected null hypotheses, however it did 

yield quite a bit more information about the nature of these processes and what problems future 

research must overcome to continue study in this area.  In that light, it can be regarded as 

successful. 

Experimental Limitations 

There were several limitations to this research, and a brief discussion of them follows in 

order to help the reader understand some of the design decisions that were taken.  By its nature, 

molecular dynamics simulation is an incredibly time-consuming process.  Although 

computational time factor scales linearly as more CPUs are added to the cluster of computers 

working on the problem, the computational time factor is non-polynomial for the complexity/size 

of the molecular system.  Therefore, doubling the size of the molecular system being analyzed 

roughly quadruples the time required to complete the computations.  For that reason, simulation 

runs were limited to 500,000 two-femtosecond “frames.”  Simulations were also run on 

relatively small (30,000 to 40,000 atom) systems in order to keep computation time to a 

reasonable length.  The issue of time limitation was further felt because it was desired to run 

multiple replications of the same system in order to get a broad sampling, and because it was 

necessary to run each system simulation twice—once in online mode, and once in offline mode 

to generate the PME pressure terms.  Finally, there were analysis limitations.  The tools for 

multivariate Fourier analysis are not well suited to studies with a very large number of frequency 

parameters, such as this one, so more traditional and therefore likely less-powerful tools, derived 

from first-principles, had to be used.  Furthermore, while automated frequency analysis tools are 

certainly available, they lack statistical rigor at this time to be used with an investigation such as 
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this one, and they have not been designed to be applied to this class of problem; this would be an 

excellent area for the development of new statistical analysis tools and formulas. 

Lessons 

Although Fourier analysis of these pressure waves proved to be less informative than 

hoped and at best resulting in rejecting two hypotheses and being inconclusive on two others, it 

is worth noting some important conclusions that can be derived from these Fourier analysis 

outcomes.  As we saw in the results, the total power of the statistically significant portions of this 

system was less than half the overall power represented in the system.  This result indicates two 

likely facts: the process that causes DNA harmonic resonance (and therefore is partially 

responsible for closure) is seemingly a low-intensity process, and any effect is likely to occur in 

the non-significant range.  For these reasons, Fourier analysis is not the appropriate method to 

further these research questions. 

One clear indication from all of the data stood out: that the effects are highest at lower 

frequencies than anticipated, and that at frequencies near the gigahertz and millimeter-wave 

ranges.  This has potential industrial and commercial health and safety implications: these 

frequencies are common in our daily lives (e.g., from 2.4 and 5.8GHz WiFi, airport radars that 

function between 8 and 18GHz, new ‘5G’ communications applications using the 73GHz band, 

etc.), and because the solvated DNA molecules showed resonances in those ranges, care should 

be taken to ensure that newer, more powerful communications devices using these bands are 

tested for safety around mammals.  Further study, perhaps with external stimulation in those 

ranges would be instructive in probing the industrial hygiene implications of higher-energy RF 

emissions in the upper gigahertz range. 
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Parting Thoughts and Future Research 

This research helped to answer some of the questions raised in Calloway (2011), but it is 

by no means definitive.  Several questions remain to be sufficiently answered, including 

questions about the relationship between strand content/length and any signals that they may 

generate.  Although this research did not find significant effects, it by no means was capable of 

covering all of the spectrum or the additional experimental possibilities that remain.  In that 

regard, this research may be regarded as conclusive, but only for the narrow band between 1010 

and 1013 hertz, and for short periods not exceeding 1 nanosecond, and for solvated DNA.  It in no 

way speaks for frequencies above or below that band, nor does it speak to the processes’ longer 

term movements.  Furthermore, due to the noise of the solvating water, it will be necessary to 

develop better filtering mechanisms for dealing with this situation: a known noise signature 

which is the majority of the signal output of the experiment.  Because we are likely looking at 

longer-term and lower-intensity processes, Wavelet analysis is likely to be a promising way 

forward from here.  There also remains the possibility that the process is non-stationary, at which 

point, Wavelet analysis will be required to understand what relationships exist, if any, since 

traditional frequency analysis cannot capture non-stationarity under these experimental 

conditions. 

Keeping these conclusions and conjectures in mind, any future research wishing to 

expand on this subject should, at the very minimum, be capable of addressing the following 

questions.  What are the frequency impacts of these processes below 1010 Hz and above 1013 Hz?  

What is the nature of the lower-power frequency components, and how do they interact?  What is 

the nature of these processes from the perspective of stationarity?  Would Wavelet analysis be a 

more appropriate method of analyzing both the lower-power components and assessing 
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stationarity, or would more traditional tests such as Dickey-Fuller be appropriate?  Regardless, 

there remains much to be discovered in this field, and there are rich opportunities for future 

study. 
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APPENDIX A: EXPERIMENT 2 COMPARISON OUTPUT TABLES 
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Table 6: Linear Significant Frequency Points 

Sequence Frequency Index Frequency (Hz) 
13 3 2E+09 
16 6 5E+09 
12 8 7E+09 
15 11 1E+10 
16 11 1E+10 
14 12 1.1E+10 

8 14 1.3E+10 
3 26 2.5E+10 

10 28 2.7E+10 
16 32 3.1E+10 

3 40 3.9E+10 
13 43 4.2E+10 
10 48 4.7E+10 
19 53 5.2E+10 

5 56 5.5E+10 
10 57 5.6E+10 
18 73 7.2E+10 
12 90 8.9E+10 

1 97 9.6E+10 
13 99 9.8E+10 
18 106 1.05E+11 

5 153 1.52E+11 
17 200 1.99E+11 
16 224 2.23E+11 
10 289 2.88E+11 
17 303 3.02E+11 
17 412 4.11E+11 
10 505 5.04E+11 
19 540 5.39E+11 
10 566 5.65E+11 

9 652 6.51E+11 
9 658 6.57E+11 

11 802 8.01E+11 
7 871 8.7E+11 

14 1062 1.06E+12 
17 1196 1.2E+12 

4 1247 1.25E+12 
6 1282 1.28E+12 

17 1384 1.38E+12 
7 1479 1.48E+12 

16 1550 1.55E+12 
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18 1687 1.69E+12 
4 1718 1.72E+12 

17 1833 1.83E+12 
1 2306 2.31E+12 

10 2664 2.66E+12 
14 2721 2.72E+12 
19 2823 2.82E+12 

3 2846 2.85E+12 
10 3090 3.09E+12 
11 4524 4.52E+12 

 

Table 7: Parallel Significant Frequency Points 

Sequence Frequency Index Frequency (Hz) 
1 2 1000040002 

14 3 2000080003 
8 5 4000160006 

10 5 4000160006 
10 18 17000680027 
19 20 19000760030 
13 23 22000880035 
14 28 27001080043 

1 29 28001120045 
4 33 32001280051 

10 44 43001720069 
13 49 48001920077 

7 53 52002080083 
1 54 53002120085 

19 63 62002480099 
20 68 67002680107 

1 70 69002760110 
6 70 69002760110 
2 74 73002920117 
1 75 74002960118 
9 86 85003400136 

19 98 97003880155 
10 103 1.02004E+11 
18 110 1.09004E+11 
12 115 1.14005E+11 
20 119 1.18005E+11 

2 129 1.28005E+11 
5 145 1.44006E+11 
6 151 1.50006E+11 
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9 153 1.52006E+11 
14 159 1.58006E+11 
14 172 1.71007E+11 
12 190 1.89008E+11 

3 200 1.99008E+11 
7 203 2.02008E+11 

10 217 2.16009E+11 
12 231 2.30009E+11 

7 267 2.66011E+11 
10 269 2.68011E+11 

3 277 2.76011E+11 
5 284 2.83011E+11 

12 298 2.97012E+11 
4 304 3.03012E+11 

14 305 3.04012E+11 
17 305 3.04012E+11 
10 309 3.08012E+11 
18 326 3.25013E+11 

5 339 3.38014E+11 
7 354 3.53014E+11 

20 363 3.62014E+11 
4 365 3.64015E+11 

11 366 3.65015E+11 
11 411 4.10016E+11 

3 412 4.11016E+11 
2 506 5.0502E+11 
8 580 5.79023E+11 
6 583 5.82023E+11 

10 607 6.06024E+11 
3 623 6.22025E+11 
2 724 7.23029E+11 
9 731 7.30029E+11 

19 734 7.33029E+11 
11 933 9.32037E+11 
12 946 9.45038E+11 
10 1049 1.04804E+12 
11 2906 2.90512E+12 

5 3367 3.36613E+12 
13 4133 4.13217E+12 
14 5005 5.0042E+12 
14 5979 5.97824E+12 
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Table 8: LMS Filtered Linear Significant Frequency Points 

Sequence Frequency Index Frequency (Hz) 
7 1 0 
2 2 1E+09 

13 2 1E+09 
17 3 2E+09 
13 4 3E+09 
13 5 4E+09 

2 6 5E+09 
15 6 5E+09 
15 9 8E+09 
13 11 1E+10 

4 12 1.1E+10 
10 12 1.1E+10 
13 12 1.1E+10 
13 13 1.2E+10 
13 15 1.4E+10 
10 16 1.5E+10 
13 16 1.5E+10 
15 18 1.7E+10 
10 23 2.2E+10 
13 25 2.4E+10 

1 26 2.5E+10 
17 27 2.6E+10 

4 31 3E+10 
15 36 3.5E+10 

2 41 4E+10 
15 44 4.3E+10 
10 69 6.8E+10 

6 71 7E+10 
13 76 7.5E+10 

3 89 8.8E+10 
15 99 9.8E+10 
16 119 1.18E+11 
15 135 1.34E+11 

6 161 1.6E+11 
3 200 1.99E+11 

16 203 2.02E+11 
7 229 2.28E+11 
2 238 2.37E+11 

15 241 2.4E+11 
11 363 3.62E+11 
15 449 4.48E+11 
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17 519 5.18E+11 
3 553 5.52E+11 
2 586 5.85E+11 
9 723 7.22E+11 
3 874 8.73E+11 
7 914 9.13E+11 

19 982 9.81E+11 
9 1150 1.15E+12 

10 1155 1.15E+12 
10 1315 1.31E+12 
15 1441 1.44E+12 
17 1556 1.56E+12 
12 1606 1.61E+12 
19 2178 2.18E+12 
20 2332 2.33E+12 

7 2589 2.59E+12 
16 2857 2.86E+12 
14 3547 3.55E+12 
16 3582 3.58E+12 
16 3800 3.8E+12 
14 4841 4.84E+12 

5 5830 5.83E+12 
5 5991 5.99E+12 

 

Table 9: Parallel LMS Filtered Significant Frequency Points 

Sequence Frequency Index Frequency (Hz) 
11 1 0 

1 2 1000040002 
14 3 2000080003 

8 5 4000160006 
10 5 4000160006 
10 18 17000680027 
19 20 19000760030 
13 23 22000880035 
14 28 27001080043 

1 29 28001120045 
4 33 32001280051 

10 44 43001720069 
13 49 48001920077 

7 53 52002080083 
1 54 53002120085 

19 63 62002480099 



110 

20 68 67002680107 
1 70 69002760110 
6 70 69002760110 
2 74 73002920117 
1 75 74002960118 
9 86 85003400136 

19 98 97003880155 
10 103 1.02004E+11 
18 110 1.09004E+11 
12 115 1.14005E+11 
20 119 1.18005E+11 

2 129 1.28005E+11 
5 145 1.44006E+11 
6 151 1.50006E+11 
9 153 1.52006E+11 

14 159 1.58006E+11 
14 172 1.71007E+11 
12 190 1.89008E+11 

3 200 1.99008E+11 
7 203 2.02008E+11 

10 217 2.16009E+11 
12 231 2.30009E+11 

7 267 2.66011E+11 
10 269 2.68011E+11 

3 277 2.76011E+11 
5 284 2.83011E+11 

12 298 2.97012E+11 
4 304 3.03012E+11 

14 305 3.04012E+11 
17 305 3.04012E+11 
10 309 3.08012E+11 
18 326 3.25013E+11 

5 339 3.38014E+11 
7 354 3.53014E+11 

20 363 3.62014E+11 
4 365 3.64015E+11 

11 366 3.65015E+11 
11 411 4.10016E+11 

3 412 4.11016E+11 
2 506 5.0502E+11 
8 580 5.79023E+11 
6 583 5.82023E+11 

10 607 6.06024E+11 
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3 623 6.22025E+11 
2 724 7.23029E+11 
9 731 7.30029E+11 

19 734 7.33029E+11 
11 933 9.32037E+11 
12 946 9.45038E+11 
10 1049 1.04804E+12 
11 2906 2.90512E+12 

5 3367 3.36613E+12 
13 4133 4.13217E+12 
14 5005 5.0042E+12 
14 5979 5.97824E+12 
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APPENDIX B: EXPERIMENT 4 FOURIER FITTING EQUATIONS 
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10-mer Linear Run 1 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -46.08  (-53.83, -38.34) 
       a1 =       4.601  (-6.39, 15.59) 
       b1 =      -20.39  (-31.33, -9.449) 
       a2 =      -30.89  (-41.86, -19.92) 
       b2 =       -14.2  (-25.36, -3.048) 
       a3 =       8.822  (-2.205, 19.85) 
       b3 =        9.48  (-1.506, 20.47) 
       a4 =       48.14  (36.94, 59.35) 
       b4 =       16.71  (4.052, 29.37) 
       a5 =       63.16  (52.15, 74.17) 
       b5 =       7.184  (-7.717, 22.09) 
       a6 =      -33.62  (-44.99, -22.24) 
       b6 =      -15.38  (-27.86, -2.9) 
       a7 =       38.32  (23.68, 52.96) 
       b7 =      -43.33  (-57.05, -29.6) 
       a8 =       -13.8  (-24.8, -2.807) 
       b8 =      -2.332  (-13.83, 9.167) 
       w =   0.0001167  (0.0001165, 0.0001168) 
 
 

10-mer Linear Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -32.83  (-40.68, -24.97) 
       a1 =      -6.776  (-17.86, 4.31) 
       b1 =       5.214  (-5.92, 16.35) 
       a2 =        42.4  (31.22, 53.59) 
       b2 =      -22.02  (-33.52, -10.52) 
       a3 =       52.44  (40.97, 63.9) 
       b3 =       26.46  (14.1, 38.83) 
       a4 =       36.19  (24.22, 48.15) 
       b4 =        31.7  (19.5, 43.89) 
       a5 =      -10.93  (-23.61, 1.752) 
       b5 =       34.68  (23.44, 45.93) 
       a6 =       6.202  (-5.012, 17.42) 
       b6 =      -7.444  (-18.63, 3.744) 
       a7 =       53.46  (39.99, 66.93) 
       b7 =      -31.32  (-48.49, -14.15) 
       a8 =       4.918  (-6.336, 16.17) 
       b8 =      -6.636  (-17.82, 4.552) 
       w =   0.0001958  (0.0001957, 0.000196) 
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12-mer Linear Run 1 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =         -23  (-30.74, -15.27) 
       a1 =         2.5  (-8.612, 13.61) 
       b1 =        52.5  (41.42, 63.58) 
       a2 =       44.88  (33.83, 55.92) 
       b2 =       27.78  (15.52, 40.05) 
       a3 =       15.13  (1.886, 28.38) 
       b3 =      -31.22  (-43.23, -19.21) 
       a4 =      -2.385  (-16.4, 11.63) 
       b4 =      -31.92  (-42.83, -21.01) 
       a5 =      -7.702  (-20.35, 4.95) 
       b5 =      -14.13  (-26.82, -1.45) 
       a6 =      -47.58  (-59.96, -35.2) 
       b6 =       27.19  (6.987, 47.4) 
       a7 =      -31.32  (-43.22, -19.42) 
       b7 =       4.417  (-12.4, 21.24) 
       a8 =      -6.014  (-19.53, 7.505) 
       b8 =       15.16  (3.649, 26.68) 
       w =   1.502e-05  (1.482e-05, 1.522e-05) 
 
 

12-mer Linear Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =  -5.421e+06  (-3.713e+07, 2.629e+07) 
       a1 =   2.136e+06  (-1.549e+07, 1.976e+07) 
       b1 =   9.766e+06  (-4.608e+07, 6.562e+07) 
       a2 =   7.098e+06  (-3.058e+07, 4.478e+07) 
       b2 =   -3.27e+06  (-2.966e+07, 2.312e+07) 
       a3 =  -3.111e+06  (-2.725e+07, 2.103e+07) 
       b3 =  -4.089e+06  (-2.265e+07, 1.447e+07) 
       a4 =  -1.799e+06  (-7.614e+06, 4.017e+06) 
       b4 =    2.14e+06  (-1.35e+07, 1.778e+07) 
       a5 =    1.09e+06  (-6.207e+06, 8.386e+06) 
       b5 =   5.594e+05  (-3.407e+05, 1.46e+06) 
       a6 =   1.002e+05  (-6.718e+05, 8.722e+05) 
       b6 =  -3.986e+05  (-2.744e+06, 1.947e+06) 
       a7 =   -9.54e+04  (-5.551e+05, 3.643e+05) 
       b7 =       -1440  (-3.384e+05, 3.355e+05) 
       a8 =        2620  (-5.426e+04, 5.95e+04) 
       b8 =   1.139e+04  (-2.721e+04, 4.999e+04) 
       w =   5.843e-06  (3.859e-06, 7.827e-06) 
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16-mer Linear Run 1 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =  -4.929e+05  (-2.112e+06, 1.127e+06) 
       a1 =  -1.862e+05  (-4.962e+05, 1.237e+05) 
       b1 =   8.909e+05  (-2.077e+06, 3.859e+06) 
       a2 =   6.534e+05  (-1.621e+06, 2.928e+06) 
       b2 =   2.886e+05  (-2.01e+05, 7.782e+05) 
       a3 =   2.799e+05  (-2.114e+05, 7.712e+05) 
       b3 =    -3.8e+05  (-1.818e+06, 1.058e+06) 
       a4 =  -1.663e+05  (-8.951e+05, 5.626e+05) 
       b4 =  -1.971e+05  (-5.626e+05, 1.685e+05) 
       a5 =  -1.025e+05  (-3.097e+05, 1.047e+05) 
       b5 =   4.781e+04  (-2.328e+05, 3.285e+05) 
       a6 =        4486  (-6.814e+04, 7.712e+04) 
       b6 =    3.76e+04  (-5.005e+04, 1.253e+05) 
       a7 =        8496  (-1.757e+04, 3.457e+04) 
       b7 =        2723  (-5838, 1.128e+04) 
       a8 =        1043  (-188.1, 2275) 
       b8 =      -803.9  (-5382, 3775) 
       w =   6.825e-06  (5.06e-06, 8.59e-06) 
 

16-mer Linear Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      0.5306  (-6.446, 7.507) 
       a1 =        58.5  (48.74, 68.25) 
       b1 =      -82.85  (-92.45, -73.25) 
       a2 =     -0.5812  (-10.72, 9.555) 
       b2 =       22.08  (12.2, 31.96) 
       a3 =      0.4687  (-10.78, 11.71) 
       b3 =       46.78  (37.15, 56.41) 
       a4 =      -7.139  (-17.03, 2.751) 
       b4 =      -12.39  (-22.29, -2.49) 
       a5 =       11.28  (-3.628, 26.19) 
       b5 =       59.39  (49.75, 69.03) 
       a6 =       14.37  (4.262, 24.49) 
       b6 =       -7.57  (-17.47, 2.324) 
       a7 =       23.48  (9.502, 37.46) 
       b7 =       30.82  (20.63, 41.01) 
       a8 =       76.89  (65.76, 88.02) 
       b8 =       33.51  (12.55, 54.48) 
       w =    1.24e-05  (1.23e-05, 1.25e-05) 



116 

10-mer Parallel Run 1 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -46.08  (-53.83, -38.34) 
       a1 =       4.601  (-6.39, 15.59) 
       b1 =      -20.39  (-31.33, -9.449) 
       a2 =      -30.89  (-41.86, -19.92) 
       b2 =       -14.2  (-25.36, -3.048) 
       a3 =       8.822  (-2.205, 19.85) 
       b3 =        9.48  (-1.506, 20.47) 
       a4 =       48.14  (36.94, 59.35) 
       b4 =       16.71  (4.052, 29.37) 
       a5 =       63.16  (52.15, 74.17) 
       b5 =       7.184  (-7.717, 22.09) 
       a6 =      -33.62  (-44.99, -22.24) 
       b6 =      -15.38  (-27.86, -2.9) 
       a7 =       38.32  (23.68, 52.96) 
       b7 =      -43.33  (-57.05, -29.6) 
       a8 =       -13.8  (-24.8, -2.807) 
       b8 =      -2.332  (-13.83, 9.167) 
       w =   0.0001167  (0.0001165, 0.0001168) 
 
 

10-mer Parallel Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -32.83  (-40.68, -24.97) 
       a1 =      -6.776  (-17.86, 4.31) 
       b1 =       5.214  (-5.92, 16.35) 
       a2 =        42.4  (31.22, 53.59) 
       b2 =      -22.02  (-33.52, -10.52) 
       a3 =       52.44  (40.97, 63.9) 
       b3 =       26.46  (14.1, 38.83) 
       a4 =       36.19  (24.22, 48.15) 
       b4 =        31.7  (19.5, 43.89) 
       a5 =      -10.93  (-23.61, 1.752) 
       b5 =       34.68  (23.44, 45.93) 
       a6 =       6.202  (-5.012, 17.42) 
       b6 =      -7.444  (-18.63, 3.744) 
       a7 =       53.46  (39.99, 66.93) 
       b7 =      -31.32  (-48.49, -14.15) 
       a8 =       4.918  (-6.336, 16.17) 
       b8 =      -6.636  (-17.82, 4.552) 
       w =   0.0001958  (0.0001957, 0.000196) 
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12-mer Parallel Run 1 Fitted Model: 

 
     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -70.42  (-77.82, -63.02) 
       a1 =       19.59  (9.253, 29.92) 
       b1 =      -12.77  (-23.36, -2.174) 
       a2 =       25.86  (15.31, 36.4) 
       b2 =       26.45  (15.78, 37.11) 
       a3 =       55.49  (44.62, 66.37) 
       b3 =       35.49  (23.82, 47.16) 
       a4 =       9.457  (-1.04, 19.95) 
       b4 =      -11.28  (-21.83, -0.7287) 
       a5 =      -8.028  (-18.5, 2.442) 
       b5 =      -0.902  (-11.34, 9.534) 
       a6 =       31.61  (18.54, 44.68) 
       b6 =      -43.23  (-54.78, -31.68) 
       a7 =       44.49  (29.98, 59) 
       b7 =      -50.37  (-64.23, -36.51) 
       a8 =      -40.43  (-50.82, -30.04) 
       b8 =       5.099  (-9.341, 19.54) 
       w =   3.216e-05  (3.204e-05, 3.228e-05) 
 
 

12-mer Parallel Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -88.34  (-95.65, -81.03) 
       a1 =       45.06  (34.58, 55.53) 
       b1 =      -43.51  (-53.87, -33.16) 
       a2 =       11.68  (1.193, 22.16) 
       b2 =       23.81  (13.42, 34.21) 
       a3 =       38.16  (27.82, 48.5) 
       b3 =      -12.22  (-23.21, -1.232) 
       a4 =      -22.27  (-32.64, -11.89) 
       b4 =      -7.686  (-18.36, 2.983) 
       a5 =       63.18  (52.84, 73.53) 
       b5 =      -2.135  (-17.01, 12.74) 
       a6 =       36.77  (26.27, 47.26) 
       b6 =      -9.376  (-22.28, 3.524) 
       a7 =       9.422  (-2.524, 21.37) 
       b7 =      -24.24  (-34.81, -13.67) 
       a8 =     -0.9446  (-15.6, 13.71) 
       b8 =      -37.99  (-48.31, -27.67) 
       w =   6.745e-05  (6.732e-05, 6.759e-05) 
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16-mer Parallel Run 1 Fitted Model: 

 
     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -89.91  (-96.39, -83.43) 
       a1 =      -15.47  (-24.63, -6.304) 
       b1 =      -9.988  (-19.18, -0.7935) 
       a2 =      -21.77  (-30.96, -12.58) 
       b2 =       8.023  (-1.277, 17.32) 
       a3 =      -38.34  (-48.1, -28.58) 
       b3 =      -29.59  (-39.76, -19.43) 
       a4 =       3.292  (-6.384, 12.97) 
       b4 =      -20.33  (-29.51, -11.15) 
       a5 =      -29.16  (-38.39, -19.93) 
       b5 =      -5.491  (-16.26, 5.274) 
       a6 =       8.116  (-3.376, 19.61) 
       b6 =       30.32  (20.95, 39.7) 
       a7 =      -36.63  (-46.32, -26.93) 
       b7 =      -11.69  (-25.1, 1.719) 
       a8 =       11.46  (2.206, 20.72) 
       b8 =      -4.695  (-14.52, 5.13) 
       w =   0.0002475  (0.0002473, 0.0002476) 
 
 

16-mer Parallel Run 2 Fitted Model: 

     General model Fourier8: 
     f8(x) =  
               a0 + a1*cos(x*w) + b1*sin(x*w) +  
               a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +  
               a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +  
               a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w) +  
               a8*cos(8*x*w) + b8*sin(8*x*w) 
     Coefficients (with 95% confidence bounds): 
       a0 =      -69.26  (-75.75, -62.78) 
       a1 =       8.111  (-1.044, 17.27) 
       b1 =      -1.878  (-11.08, 7.32) 
       a2 =      -38.12  (-47.32, -28.93) 
       b2 =      -2.955  (-12.4, 6.492) 
       a3 =      -18.94  (-28.11, -9.779) 
       b3 =       4.681  (-4.708, 14.07) 
       a4 =       5.505  (-4.355, 15.37) 
       b4 =       28.14  (18.95, 37.34) 
       a5 =      -25.63  (-35.7, -15.55) 
       b5 =      -27.69  (-37.68, -17.71) 
       a6 =       8.069  (-1.113, 17.25) 
       b6 =      0.7376  (-8.493, 9.968) 
       a7 =       2.969  (-12.75, 18.68) 
       b7 =       60.44  (51.25, 69.63) 
       a8 =       12.57  (1.682, 23.46) 
       b8 =        25.9  (16.15, 35.66) 
       w =     7.2e-05  (7.187e-05, 7.212e-05) 
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APPENDIX C: CLUSTER SPECIFICATIONS 
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The SELL lab compute cluster consists of the following computers and CPUs for a total 

of nine computer workstations and 60 CPU cores: 

2x Dell Precision T7500 with 2x Intel® Xeon™ X5650 2.66GHz 6-core CPUs 

2x Dell Precision T3500 with Intel® Xeon™ W3565 3.20 GHz 4-core CPU 

3x Dell OptiPlex 980 with Intel® Core™ i7-860 2.8GHz 4-core CPU 

2x Dell XPS 730 with Intel® Core™ 2 Quad Q9650 3.0GHz 4-core CPU 
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APPENDIX D: MODEL CONSTRUCTION 
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In this appendix, a description of how the models were constructed is presented so that 

the initialization procedures can be the same for future research.  In general, the process begins 

with the generation of a random DNA string, which is then converted into an appropriate format 

using free and open-source tools.  From that point, the raw DNA strands are replicated, inserted 

into a water box, solvated and ionized. 

1. To begin, a random strand of DNA was generated.  For the purposes of this appendix, we will 

use the 10-mer sample, TACGCCCAAA.  This random strand was generated using the tool by 

Maduro (2003), though one could just as easily set up a random number generator to generate a 

10-digit number with values 1 through 4, assigning those values to A, C, G, or T.  From there, 

the strand needs to be turned into a PDB (Protein Database) and a PSF (Protein Structure File).  

This can be accomplished with the Nucleic Acid Builder (NAB) in the AMBER suite of tools 

(example script in the files portion of this appendix), or with the web-based generator tool known 

as the “make-na server” from Stroud (2006).  When using the make-na server, the parameters 

should be set as shown in the next figure. 

 

Figure 33: Options used for the Make-NA Server 
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2. Once the PDB is obtained, it should be opened in VMD 1.91 or later.  It is first necessary to 

generate the PSF.  AutoPSF is used by accessing the Extensions menu, then Modeling, then 

Automatic PSF Builder.  First, specify the output basename (the prefix 1 and 2 in front of the 

file name is helpful for later step to distinguish between chains), then load the input files.  Have 

AutoPSF guess and split chains.  You may be prompted for an original PDB file, respond No to 

the prompt.  You should have two segments identified.  For the first chain, simply click Create 

Chains to create the PSF and matching PDB for chain 1; for the second chain, set the segment 

names to N3 and N4 using the Edit Chain button, then click Create Chains.  Screenshots 

follow in the next figure to demonstrate how to setup AutoPSF. 

 

Figure 34: AutoPSF Dialog Boxes for Segments 1 and 2 

3. Now that both chains have been generated, it is necessary to prepare the file for ionization and 

solvation.  This requires two discrete steps: combining the molecules together, and rotating them.  
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These steps are accomplished using the TCL/TK console in VMD.  First, we combine the 

moecules (this script can be called combine_molecules.tcl): 

set pdb1 ./1tacgcccaaa.pdb 
set psf1 ./1tacgcccaaa.psf 
set pdb2 ./2tacgcccaaa.pdb 
set psf2 ./2tacgcccaaa.psf 
 
set outputPdb ./tacgcccaaa_combined.pdb 
set outputPsf ./tacgcccaaa_combined.psf 
 
package require psfgen 
resetpsf 
 
readpsf  $psf1 
coordpdb $pdb1 
readpsf  $psf2 
coordpdb $pdb2 
 
writepdb $outputPdb 
writepsf $outputPsf 

 

Second, we translate one of the moelcules 90 degrees, and then move it by a distance that will 

yield 12Å of separation (this script can be called rotate_parallel.tcl): 

set pdb0 ./tacgcccaaa_combined.pdb 
set psf0 ./tacgcccaaa_combined.psf 
 
mol load psf $psf0 pdb $pdb0 
 
set outputPdb ./tacgcccaaa_Parallel.pdb 
set outputPsf ./tacgcccaaa_Parallel.psf 
 
set sel [atomselect top "segname N1 N2 N3 N4"]  
set M [transvecinv {0 0 1}]  
$sel move $M  
set M [transaxis x -90]  
$sel move $M  
 
set sel [atomselect top "segname N3 N4"] 
$sel moveby {0 0 44.73} 
 
set all [atomselect top all] 
 
$all writepdb $outputPdb 
$all writepsf $outputPsf 
 
mol delete all 
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4. With the molecule moved, one should have a result that resembles this (for the parallel case): 

 

Now, the system must be solvated (placed into water) and then ionized.  Solvation is 

accomplished with the graphical solvation tool in VMD, available from the Extensions menu, 

under Modeling, and Add Solvation Box.  The system was solvated to a boundary 12Å from the 

water box edge.  The Solvate window is setup as shown: 
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Figure 35: Solvate Options Dialog Box 

The result of which will look like this (helices have been enhanced): 

 

Figure 36: Solvated Parallel System 
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5. Finally, the system must be ionized.  To do so, invoke the NAMD Autoionize tool from the 

Extensions menu, under Modeling, and Add Ions.  Set the tool to neutralize charges and ionize 

the system to 0.5 mol/L, as shown in the next figure. 

 

Figure 37: Autoionize Dialog Box 

Once ionized, the system will be ready for input into the NAMD engine for initial startup steps, 

minimization, heating and equilibration, before finally being run.  An ionized system will look 

like the following figure (helices and ions enhanced): 
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Figure 38: Solvated and Ionized System 

 

AMBER Nucleic Acid Builder script for creating the sequences in experiment 2 (named 

sequences.nab): 

// Program 1 - Average B-form DNA duplex 
molecule m; 
 
m = bdna( "gaccgaatgcggaatcatgc" ); 
putpdb( "1seq1_raw.pdb", m ); 
putpdb( "2seq1_raw.pdb", m ); 
 
m = bdna( "atcgttccactgtgtttgtc" ); 
putpdb( "1seq2_raw.pdb", m ); 
putpdb( "2seq2_raw.pdb", m ); 
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m = bdna( "tcatgtaggacgggcgcaaa" ); 
putpdb( "1seq3_raw.pdb", m ); 
putpdb( "2seq3_raw.pdb", m ); 
 
m = bdna( "gcatacttagttcaatcttg" ); 
putpdb( "1seq4_raw.pdb", m ); 
putpdb( "2seq4_raw.pdb", m ); 
 
m = bdna( "aataccttatattattgtac" ); 
putpdb( "1seq5_raw.pdb", m ); 
putpdb( "2seq5_raw.pdb", m ); 
 
m = bdna( "acctaccggtcaccagccaa" ); 
putpdb( "1seq6_raw.pdb", m ); 
putpdb( "2seq6_raw.pdb", m ); 
 
m = bdna( "caatgtgcggacggcgttgc" ); 
putpdb( "1seq7_raw.pdb", m ); 
putpdb( "2seq7_raw.pdb", m ); 
 
m = bdna( "aactttcagggcctaatctg" ); 
putpdb( "1seq8_raw.pdb", m ); 
putpdb( "2seq8_raw.pdb", m ); 
 
m = bdna( "accgttctagataccgcact" ); 
putpdb( "1seq9_raw.pdb", m ); 
putpdb( "2seq9_raw.pdb", m ); 
 
m = bdna( "ctgggcaatacgaggtaatg" ); 
putpdb( "1seq10_raw.pdb", m ); 
putpdb( "2seq10_raw.pdb", m ); 
 
m = bdna( "ccagtcacccagtgtcgaac" ); 
putpdb( "1seq11_raw.pdb", m ); 
putpdb( "2seq11_raw.pdb", m ); 
 
m = bdna( "aacacctgacctaacggtaa" ); 
putpdb( "1seq12_raw.pdb", m ); 
putpdb( "2seq12_raw.pdb", m ); 
 
m = bdna( "gaggctcacataatggctct" ); 
putpdb( "1seq13_raw.pdb", m ); 
putpdb( "2seq13_raw.pdb", m ); 
 
m = bdna( "gccggcgtgcccagggtata" ); 
putpdb( "1seq14_raw.pdb", m ); 
putpdb( "2seq14_raw.pdb", m ); 
 
m = bdna( "ttaggtcagcatcagatgga" ); 
putpdb( "1seq15_raw.pdb", m ); 
putpdb( "2seq15_raw.pdb", m ); 
 
m = bdna( "ctgacatgaatctttacacc" ); 
putpdb( "1seq16_raw.pdb", m ); 
putpdb( "2seq16_raw.pdb", m ); 
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m = bdna( "gaagcggaaacgggtgcgtg" ); 
putpdb( "1seq17_raw.pdb", m ); 
putpdb( "2seq17_raw.pdb", m ); 
 
m = bdna( "gactagcgaggagcaaacga" ); 
putpdb( "1seq18_raw.pdb", m ); 
putpdb( "2seq18_raw.pdb", m ); 
 
m = bdna( "aaattcctggcctgcttgat" ); 
putpdb( "1seq19_raw.pdb", m ); 
putpdb( "2seq19_raw.pdb", m ); 
 
m = bdna( "gtctcgtaatcttcttagag" ); 
putpdb( "1seq20_raw.pdb", m ); 
putpdb( "2seq20_raw.pdb", m ); 
 
exit( 0 ); 
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APPENDIX E: NAMD SIMULATION PARAMETER FILES 
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These are sample simulation parameter files showing, generally, how each portion of the 

simulation process was set up. 

 

Minimize.conf: 

############################################################# 
## JOB DESCRIPTION                                         ## 
############################################################# 
 
# Minimization step 1 
# tacgcccaaa_ionized_Linear with 2 Linear molecules matching sequence ensembles 
 
 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
 
structure          
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.psf 
coordinates        
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.pdb 
 
set temperature      0 
set outputname     
/home/cluster/NAMD/files/Length/10/Linear/Outputs/min/tacgcccaaa_Linear_min 
 
firsttimestep      0 
 
############################################################# 
## SIMULATION PARAMETERS                                   ## 
############################################################# 
# IMD settings for VMD interface 
if {1} { 
IMDon on 
IMDport 3001 
IMDfreq 1 
IMDwait no 
  } 
# Input 
paraTypeCharmm      on 
parameters            /home/cluster/NAMD/files/par_all27_na.prm  
temperature  $temperature 
 
# Force-Field Parameters 
exclude             scaled1-4 
1-4scaling          1.0 
cutoff              12. 
switching           on 
switchdist          10. 
pairlistdist        13.5 
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# Integrator Parameters 
timestep            1.0  # 1fs/step 
nonbondedFreq       1 
fullElectFrequency  2   
stepspercycle       10 
 
seed   41138351 #true random generated 8/15/2014 
 
# Periodic Boundary Conditions 
#measur center $everyone 
#0.03466781973838806 0.003386907512322068 73.63472747802734 
 
#measur minmax $everyone 
#{-21.802000045776367 -22.2549991607666 -15.27400016784668} {21.799999237060547 
22.285999298095703 162.52200317382813} 
 
cellBasisVector1     43.602   0.0    0.0 
cellBasisVector2     0.0    44.541   0.0 
cellBasisVector3     0.0     0.0     177.796 
cellOrigin           0.035   0.003  73.635 
 
wrapAll             on 
wrapNearest    yes 
COMmotion    no 
  
# PME (for full-system periodic electrostatics) 
PME                 yes 
PMEGridSpacing     1 
 
# Output 
outputName        $outputname 
dcdfreq             100 
xstFreq             100 
outputEnergies      100 
outputPressure      100  
 
 
############################################################# 
## EXECUTION SCRIPT                                        ## 
############################################################# 
 
# Minimization 
minimize          10000 
 
 

 

 

Heat.conf: 
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############################################################# 
## JOB DESCRIPTION                                         ## 
############################################################# 
 
# Heat system to to 310K 
# tacgcccaaa_Linear_min as input 
 
 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
 
structure          
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.psf 
coordinates        
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.pdb 
bincoordinates
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/min/tacgcccaaa_Linear_min.co
or 
extendedSystem
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/min/tacgcccaaa_Linear_min.xs
c 
 
set outputname
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/heat/tacgcccaaa_Linear_heat 
 
############################################################# 
## SIMULATION PARAMETERS                                   ## 
############################################################# 
 
# Input 
paraTypeCharmm      on 
parameters            /home/cluster/NAMD/files/par_all27_na.prm   
 
temperature 0 
reassignFreq 1 
reassignTemp 0 
reassignIncr 1 
reassignHold 310 
 
# Force-Field Parameters 
exclude             scaled1-4 
1-4scaling          1.0 
cutoff              12. 
switching           on 
switchdist          10. 
pairlistdist        13.5 
 
 
# Integrator Parameters 
timestep            1.0  # 1fs/step 
nonbondedFreq       1 
fullElectFrequency  2   
stepspercycle       10 
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seed  41138351 #true random generated 8/15/2014 
 
wrapAll   on 
wrapNearest  yes 
COMmotion  no 
  
# PME (for full-system periodic electrostatics) 
PME                 yes 
PMEGridSpacing     1 
 
# Output 
outputName        $outputname 
dcdfreq             100 
xstFreq             100 
outputEnergies      100 
outputPressure      100 
outputTiming   100 
 
 
############################################################# 
## EXECUTION SCRIPT                                        ## 
############################################################# 
 
# Heat over these many steps 
numsteps 500 
 
 
Equilibrate.conf: 

############################################################# 
## JOB DESCRIPTION                                         ## 
############################################################# 
 
# Equilibrate system 
# tacgcccaaa_Linear_heat as input 
 
 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
 
structure          
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.psf 
coordinates        
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.pdb 
bincoordinates
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/heat/tacgcccaaa_Linear_heat.
coor 
extendedSystem
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/heat/tacgcccaaa_Linear_heat.
xsc 
binvelocities
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/heat/tacgcccaaa_Linear_heat.
vel 
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set outputname
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib 
set temperature 310 
 
############################################################# 
## SIMULATION PARAMETERS                                   ## 
############################################################# 
#Margin setting 
margin   2.5 
# Input 
paraTypeCharmm      on 
parameters            /home/cluster/NAMD/files/par_all27_na.prm   
 
# Constant Pressure Control (variable volume) 
if {1} { 
useGroupPressure      yes ;# needed for 2fs steps 
useFlexibleCell       no  ;# no for water box, yes for membrane 
useConstantArea       no  ;# no for water box, yes for membrane 
 
langevinPiston        on 
langevinPistonTarget  1.01325 ;#  in bar -> 1 atm 
langevinPistonPeriod  100. 
langevinPistonDecay   50. 
langevinPistonTemp    $temperature 
} 
 
# Constant Temperature Control 
langevin            on    ;# do langevin dynamics 
langevinDamping     5     ;# damping coefficient (gamma) of 5/ps 
langevinTemp        $temperature 
langevinHydrogen    no    ;# don't couple langevin bath to hydrogens 
 
 
# Force-Field Parameters 
exclude             scaled1-4 
1-4scaling          1.0 
cutoff              12. 
switching           on 
switchdist          10. 
pairlistdist        13.5 
 
 
# Integrator Parameters 
timestep            2.0  # 1fs/step 
nonbondedFreq       1 
fullElectFrequency  2   
stepspercycle       10 
 
seed   41138351 #true random generated 8/15/2014 
 
wrapAll             on 
wrapNearest    yes 
COMmotion    no 
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# PME (for full-system periodic electrostatics) 
PME                 yes 
PMEGridSpacing     1 
 
# Output 
outputName        $outputname 
dcdfreq             100 
xstFreq             100 
outputEnergies      100 
outputPressure      100 
outputTiming   100 
 
 
############################################################# 
## EXECUTION SCRIPT                                        ## 
############################################################# 
 
# Basic equilibration 
numsteps 10000 
 
Linear_10_run1.conf 

############################################################# 
## JOB DESCRIPTION                                         ## 
############################################################# 
# Simulation Run 1 with 500,000 2fs time steps 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
 
structure          
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.psf 
 
coordinates        
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.pdb 
bincoordinates
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.coor 
 
extendedSystem
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.xsc 
 
binvelocities
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.vel 
firsttimestep 0 
 
set outputname 
/home/cluster/NAMD/files/Length/10/Linear/Outputs/full/run1/Linear_run1 
set temperature 310 
############################################################# 
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## SIMULATION PARAMETERS       ## 
############################################################# 
 
# IMD settings for VMD interface 
if {1} { 
 
IMDon on 
 
IMDport 3001 
IMDfreq 1 
IMDwait no 
 
} 
# Input  
 
paraTypeCharmm on 
parameters /home/cluster/NAMD/files/par_all27_na.prm 
 
# Constant Temperature Control 
if {1} { 
langevin on 
langevinDamping 5 
langevinTemp $temperature 
langevinHydrogen no 
} 
# Constant Pressure Control  
if {1} { 
useFlexibleCell  no 
useConstantArea  no 
langevinPiston  on 
langevinPistonTarget 1.01325 
langevinPistonPeriod 200. 
langevinPistonDecay 100. 
langevinPistonTemp $temperature 
} 
useGroupPressure no ; 
# Force-Field Parameters 
 
exclude  scaled1-4 
1-4scaling  1.0 
cutoff   12. 
switching  on 
switchdist  10. 
pairlistdist  13.5 
 
# Integrator Parameters 
 
timestep  2.0 # 1fs/step 
 
rigidBonds   none 
nonbondedFreq   1 
fullElectFrequency   2 
stepspercycle   10 
seed    41138351 #true random generated 8/15/2014 
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wrapAll   on 
wrapNearest   yes 
PME     yes 
 
PMEGridSpacing   1 
 
 
#Pressure Profile Output 
 
if {1} { 
pressureProfile  on 
pressureProfileSlabs  21 
pressureProfileFreq 10 
} 
# Output 
outputName  $outputname 
dcdfreq   10 
xstFreq   1000 
outputEnergies  1000 
outputPressure  1000 
outputTiming  100 
 
numsteps       499999 
 
 
Linear_10_run1_ewald.conf 

############################################################# 
## Second pass: Ewald Pressure Calculations                ## 
############################################################# 
 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
structure          
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.psf 
 
coordinates        
/home/cluster/NAMD/files/Length/10/Linear/PDBs/tacgcccaaa_ionized_Linear.pdb 
 
bincoordinates
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.coor 
 
extendedSystem
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.xsc 
 
binvelocities
 /home/cluster/NAMD/files/Length/10/Linear/Outputs/equilib/tacgcccaaa_Linear_eq
uilib.vel 
set outputname 
/home/cluster/NAMD/files/Length/10/Linear/Outputs/full/run1/Linear_run1_Ewald 
set temperature 310 
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############################################################# 
## SIMULATION PARAMETERS ## 
############################################################# 
# IMD settings for VMD interface 
# Input 
paraTypeCharmm on 
parameters /home/cluster/NAMD/files/par_all27_na.prm 
# Constant Temperature Control no 
if {1} { 
langevin on 
langevinDamping 5 
langevinTemp $temperature 
langevinHydrogen no 
} 
# Constant Pressure Control (variable volume) no pressure influence wanted 
if {1} { 
#useGroupPressure yes ;# needed for 2fs steps 
useFlexibleCell  no 
useConstantArea  no 
langevinPiston  on 
langevinPistonTarget 1.01325 
langevinPistonPeriod 200. 
langevinPistonDecay 100. 
langevinPistonTemp $temperature 
} 
useGroupPressure no ;# needed for 2fs steps # Force-Field Parameters 
exclude   scaled1-4 
1-4scaling  1.0 
cutoff   12. 
switching  on 
switchdist  10. 
pairlistdist  13.5 
# Integrator Parameters 
timestep  2.0 # 1fs/step 
rigidBonds  none # all needed for 2fs steps 
nonbondedFreq   1 
fullElectFrequency   2 
stepspercycle  10 
seed   41138351 #true random generated 8/15/2014 
wrapAll   on 
wrapNearest  yes 
# PME (for full-system periodic electrostatics) 
PME    yes 
PMEGridSpacing   1 
outputName  $outputname 
 
#Pressure Profile Output 
if {1} { 
pressureProfile  on 
pressureProfileSlabs  21 
pressureProfileFreq 10 
pressureProfileEwald  on 
pressureProfileEwaldX  20 
pressureProfileEwaldY  20 
pressureProfileEwaldZ  20 
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} 
 
set ts 0 
firstTimestep $ts 
 
coorfile open dcd 
/home/cluster/NAMD/files/Length/10/Linear/Outputs/full/run1/Linear_run1.dcd 
while { [coorfile read] != -1 } { 
  firstTimestep $ts 
  run 0 
  incr ts 10 
} 
coorfile close 
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APPENDIX F: PRESSUREPARSER TOOL 
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The PressureParser tool is a .NET Framework 4.5 tool written in Visual Basic.NET for 

the automatically summing pressure output files with the PME pressure output files into an Excel 

spreadsheet.  The tool will automatically adjust for the number of slices in a data set, can batch 

process entire directories, automatically matching runs and outputting summed Microsoft Excel 

files for easy importing into analysis software.  The tool has an Inputs tab for a single run, three 

tabs for viewing the tables (of pressures, PME, and summed data, respectively), and finally a 

Batch tab for automatic batch processing.  It requires a 64-bit version of Microsoft Windows, 

and a 64-bit version of Microsoft Office to run. 

 

Figure 39: PressureParser tool screen shot showing batch interface 

The source code for the tool is below, and the tool is divided into three code modules: the 

main module, the Parser.vb logic module, and the GlobalVariables module. 
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MainForm.vb 

(This is the main code module for the PressureParser tool) 

Imports Microsoft.Office.Interop 
Imports System.IO 
 
Public Class PressureForm 
    Dim LogFileArray() As String 
    Dim PMELogFileArray() As String 
 
    Public Function GetFileName(ByVal filepath As String) As String 
 
        'This Function Gets the name of a file without the path or extension. 
 
        'Input: 
        '   filepath - Full path/filename of file. 
        'Return: 
        '   GetFileName - Name of file without the extension. 
 
        'Get indices of characters directly before and after filename 
        Dim slashindex As Integer = filepath.LastIndexOf("\") 
        Dim dotindex As Integer = filepath.LastIndexOf(".") 
 
        GetFileName = filepath.Substring(slashindex + 1, dotindex - slashindex - 

1) 
    End Function 
 
    Private Sub BrowsePressureButton_Click(sender As Object, e As EventArgs) 

Handles BrowsePressureButton.Click 
        Dim fld As New OpenFileDialog 
        fld.Filter = "Log files (*.log)|*.log|All files (*.*)|*.*" 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            TextBoxPressure.Text = fld.FileName 
            If TextBoxOutput.Text = "" Then 
                Dim tempFilename As String 
                tempFilename = fld.FileName 
                tempFilename = Microsoft.VisualBasic.Left(tempFilename, 

tempFilename.Length - 4) & ".xlsx" 
                TextBoxOutput.Text = tempFilename 
            End If 
        End If 
    End Sub 
 
    Private Sub BrowsePMEButton_Click(sender As Object, e As EventArgs) Handles 

BrowsePMEButton.Click 
        Dim fld As New OpenFileDialog 
        fld.Filter = "Log files (*.log)|*.log|All files (*.*)|*.*" 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            TextBoxPME.Text = fld.FileName 
        End If 
 
        If TextBoxPME.Text <> "" Then 
            CheckBoxSum.Checked = True 
        End If 
    End Sub 
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    Private Sub BrowseOutputButton_Click(sender As Object, e As EventArgs) Handles 
BrowseOutputButton.Click 

        Dim fld As New SaveFileDialog 
        fld.Filter = "Excel XML files (*.xlsx)|*.xlsx|All files (*.*)|*.*" 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            TextBoxOutput.Text = fld.FileName 
        End If 
    End Sub 
 
    Private Sub ProcessButton_Click(sender As Object, e As EventArgs) Handles 

ProcessButton.Click 
        Dim numberOfSlices As Integer 
 
        If CheckBoxSum.Checked Then 
            If TextBoxPressure.Text = "" Or TextBoxPME.Text = "" Then 
                MsgBox("You must specify both a pressure log and a PME log to sum 

them.") 
                Exit Sub 
            End If 
        End If 
 
        'Clear the table 
        GlobalVariables.PressureTable.Clear() 
 
        'Get the number of slices 
 
        'MsgBox("Number of slices: " + 

Parser.GetSlicesFromFile(TextBoxPressure.Text).ToString) 
        numberOfSlices = Parser.GetSlicesFromFile(TextBoxPressure.Text) 
        If numberOfSlices = "-1" Then 
            MsgBox("Failed to detect number of slices from file.  Is this a NAMD 

log?") 
            Exit Sub 
        Else 
            'Initialize the tables 
            InitTables(numberOfSlices) 
        End If 
 
        'Parse the pressure file 
        Parser.ParsePressureFile(TextBoxPressure.Text, 

GlobalVariables.PressureTable) 
 
        'If there's a PME file, parse it 
        If TextBoxPME.Text = "" Then 
            'Do nothing, don't parse 
        Else 
            'Clear the table 
            GlobalVariables.EwaldTable.Clear() 
 
            'Parse the PME file 
            Parser.ParsePressureFile(TextBoxPME.Text, GlobalVariables.EwaldTable) 
            ExportPMEButton.Enabled = True 
        End If 
 
        If CheckBoxSum.Checked = True Then 
            'Sum the two 
            For r = 0 To (GlobalVariables.EwaldTable.Rows.Count - 1) 
                Dim newrow As DataRow = GlobalVariables.SummedTable.NewRow() 
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                newrow(0) = GlobalVariables.EwaldTable.Rows(r).Item(0) 
                For m = 1 To (numberOfSlices * 3) 
                    newrow(m) = GlobalVariables.EwaldTable.Rows(r).Item(m) + 

GlobalVariables.PressureTable.Rows(r).Item(m) 
                Next m 
                GlobalVariables.SummedTable.Rows.Add(newrow) 
            Next r 
        End If 
 
        If CheckBoxSum.Checked = True Then 
            'Save out the Summed sheet 
            Dim tempExcelfilename As String 
            tempExcelfilename = TextBoxOutput.Text 
            ExportToExcel(GlobalVariables.SummedTable, tempExcelfilename) 
            MsgBox("Excel sheet with sums saved.") 
        Else 
            'Save out the pressure sheet 
            Dim tempExcelfilename As String 
            tempExcelfilename = TextBoxOutput.Text 
            ExportToExcel(GlobalVariables.PressureTable, tempExcelfilename) 
        End If 
 
        ExportButton.Enabled = True 
    End Sub 
 
    Private Function InitTables(numSlices As Integer) 
        'Initialize the tables we're going to load the data into 
 
        'First, do some cleanup 
        GlobalVariables.PressureTable.Dispose() 
        GlobalVariables.EwaldTable.Dispose() 
        GlobalVariables.SummedTable.Dispose() 
 
        GlobalVariables.PressureTable.Columns.Add("Timestep", 

Type.GetType("System.Int32")) 
        For i = 1 To numSlices 
            GlobalVariables.PressureTable.Columns.Add("Pressure_" & i & "_X", 

Type.GetType("System.Decimal")) 
            GlobalVariables.PressureTable.Columns.Add("Pressure_" & i & "_Y", 

Type.GetType("System.Decimal")) 
            GlobalVariables.PressureTable.Columns.Add("Pressure_" & i & "_Z", 

Type.GetType("System.Decimal")) 
        Next i 
        DataGridView1.DataSource = GlobalVariables.PressureTable 
 
        GlobalVariables.EwaldTable.Columns.Add("Timestep", 

Type.GetType("System.Int32")) 
        For i = 1 To numSlices 
            GlobalVariables.EwaldTable.Columns.Add("Pressure_" & i & "_X", 

Type.GetType("System.Decimal")) 
            GlobalVariables.EwaldTable.Columns.Add("Pressure_" & i & "_Y", 

Type.GetType("System.Decimal")) 
            GlobalVariables.EwaldTable.Columns.Add("Pressure_" & i & "_Z", 

Type.GetType("System.Decimal")) 
        Next i 
        DataGridView2.DataSource = GlobalVariables.EwaldTable 
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        GlobalVariables.SummedTable.Columns.Add("Timestep", 
Type.GetType("System.Int32")) 

        For i = 1 To numSlices 
            GlobalVariables.SummedTable.Columns.Add("Pressure_" & i & "_X", 

Type.GetType("System.Decimal")) 
            GlobalVariables.SummedTable.Columns.Add("Pressure_" & i & "_Y", 

Type.GetType("System.Decimal")) 
            GlobalVariables.SummedTable.Columns.Add("Pressure_" & i & "_Z", 

Type.GetType("System.Decimal")) 
        Next i 
        DataGridView3.DataSource = GlobalVariables.SummedTable 
 
    End Function 
 
    Private Sub ExportToExcel(ByVal dtTemp As DataTable, ByVal filepath As String) 
        Dim strFileName As String = filepath 
        If System.IO.File.Exists(strFileName) Then 
            If (MessageBox.Show("Do you want to replace from the existing file?", 

"Export to Excel", MessageBoxButtons.YesNo, MessageBoxIcon.Question, 
MessageBoxDefaultButton.Button2) = System.Windows.Forms.DialogResult.Yes) Then 

                System.IO.File.Delete(strFileName) 
            Else 
                Return 
            End If 
 
        End If 
        Dim _excel As New Excel.Application 
        Dim wBook As Excel.Workbook 
        Dim wSheet As Excel.Worksheet 
 
        wBook = _excel.Workbooks.Add() 
        wSheet = wBook.ActiveSheet() 
 
        Dim dt As System.Data.DataTable = dtTemp 
        Dim dc As System.Data.DataColumn 
        Dim dr As System.Data.DataRow 
        Dim colIndex As Integer = 0 
        Dim rowIndex As Integer = 0 
        Dim arr As Object(,) = New Object(dt.Rows.Count + 1, dt.Columns.Count - 1)  
 
        'Column names 
        dr = dt.Rows(0) 
        For Each dc In dt.Columns 
            arr(0, colIndex) = dc.ColumnName 
            colIndex = colIndex + 1 
        Next 
 
        'Data, copied to an array which will we shove into a range with a single 

operation--must faster than cell-by-cell 
        For r As Integer = 0 To dt.Rows.Count - 1 
            Dim dra As DataRow = dt.Rows(r) 
            For c As Integer = 0 To dt.Columns.Count - 1 
                'r+1 because 0 is occupied by the row headers 
                arr(r + 1, c) = dra(c) 
            Next 
        Next 
 
        Dim c2 As Excel.Range = wSheet.Cells(dt.Rows.Count + 1, dt.Columns.Count) 
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        Dim range As Excel.Range = wSheet.Range("A1", c2) 
 
        range.Value = arr 
 
        wSheet.Columns.AutoFit() 
        wBook.SaveAs(strFileName) 
 
        ReleaseObject(wSheet) 
        wBook.Close(False) 
        ReleaseObject(wBook) 
        _excel.Quit() 
        ReleaseObject(_excel) 
        GC.Collect() 
 
        'MessageBox.Show("File Export Successfully!") 
    End Sub 
 
    Private Sub ReleaseObject(ByVal o As Object) 
        Try 
            While (System.Runtime.InteropServices.Marshal.ReleaseComObject(o) > 0) 
            End While 
        Catch 
        Finally 
            o = Nothing 
        End Try 
    End Sub 
 
    Private Sub ExportButton_Click(sender As Object, e As EventArgs) Handles 

ExportButton.Click 
        ExportToExcel(GlobalVariables.PressureTable, TextBoxOutput.Text.ToString) 
    End Sub 
 
    Private Sub ExportPMEButton_Click(sender As Object, e As EventArgs) Handles 

ExportPMEButton.Click 
        ExportToExcel(GlobalVariables.EwaldTable, TextBoxOutput.Text.ToString & 

"_ewald.xlsx") 
    End Sub 
 
    Private Sub ButtonSelectBatchLog_Click(sender As Object, e As EventArgs) 

Handles ButtonSelectBatchLog.Click 
        Dim fld As New OpenFileDialog 
        Dim i As Integer 
 
        fld.Multiselect = True 
        fld.Filter = "Log files (*.log)|*.log|All files (*.*)|*.*" 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            ReDim LogFileArray(fld.FileNames.Count - 1) 
            i = 0 
            For Each file In fld.FileNames 
                TextBoxBatchPressure.Text = TextBoxBatchPressure.Text + "|" + 

file.ToString 
                LogFileArray(i) = file.ToString 
                i = i + 1 
            Next file 
        End If 
    End Sub 
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    Private Sub ButtonSelectBatchPME_Click(sender As Object, e As EventArgs) 
Handles ButtonSelectBatchPME.Click 

        Dim fld As New FolderBrowserDialog 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            TextBoxBatchPME.Text = fld.SelectedPath 
            CheckBoxBatchSum.Checked = True 
        End If 
    End Sub 
 
    Private Sub ButtonSelectBatchOutput_Click(sender As Object, e As EventArgs) 

Handles ButtonSelectBatchOutput.Click 
        Dim fld As New FolderBrowserDialog 
        If fld.ShowDialog() = Windows.Forms.DialogResult.OK Then 
            TextBoxExcelOutput.Text = fld.SelectedPath 
            CheckBoxBatchSum.Checked = True 
        End If 
    End Sub 
 
    Private Sub ButtonBatchProcess_Click(sender As Object, e As EventArgs) Handles 

ButtonBatchProcess.Click 
        Dim tempFilename As String 
        Dim numberOfSlices As Integer 
 
        If CheckBoxBatchSum.Checked = True Then 
            If TextBoxBatchPME.Text = "" Then 
                MsgBox("You must select a PME directory.") 
                Exit Sub 
            End If 
 
            If TextBoxExcelOutput.Text = "" Then 
                MsgBox("You must select an Excel output directory.") 
                Exit Sub 
            End If 
 
            ReDim PMELogFileArray(LogFileArray.Length - 1) 
 
            For i = 0 To (LogFileArray.Length - 1) 
                If LogFileArray(i).Contains(".log") = True Then 
                    'Add the PME log file names to that array 
                    tempFilename = LogFileArray(i) 
                    PMELogFileArray(i) = TextBoxBatchPME.Text + "\" + 

GetFileName(tempFilename) + "_ewald.log" 
                Else 
                    MsgBox("File: " + LogFileArray(i).ToString + " is not a .log 

file.  Please change your log file selection and try again.") 
                    Exit Sub 
                End If 
            Next i 
 
            'Check to see if the Corresponding PME files exist 
            For j = 0 To (PMELogFileArray.Length - 1) 
                If File.Exists(PMELogFileArray(j)) Then 
                    ' File exists, do nothing 
                Else 
                    MsgBox("PME file: " + PMELogFileArray(j) + " does not exist.") 
                    Exit Sub 
                End If 
            Next j 
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        End If 
 
        'OK, file list built and existence of PME files is confirmed, let's start 

loading and calculating 
 
 
        'First, get the number of slices from the first file 
        numberOfSlices = Parser.GetSlicesFromFile(LogFileArray(0)) 
        If numberOfSlices = "-1" Then 
            MsgBox("Failed to detect number of slices from file.  Is this a NAMD 

log?") 
            Exit Sub 
        Else 
            'Initialize the tables 
            InitTables(numberOfSlices) 
        End If 
 
        For k = 0 To (LogFileArray.Length - 1) 
            'For k = 0 To 0 
            'Clear the table 
            GlobalVariables.PressureTable.Clear() 
 
            'Parse the pressure file 
            StatusLabel.Text = "Parsing pressure file #" + (k + 1).ToString 
            StatusLabel.Refresh() 
            Parser.ParsePressureFile(LogFileArray(k), 

GlobalVariables.PressureTable) 
 
            'If there's a PME file, parse it, then sum it 
            If CheckBoxBatchSum.Checked = True Then 
                'Clear the tables 
                GlobalVariables.EwaldTable.Clear() 
                GlobalVariables.SummedTable.Clear() 
 
                'Parse the PME file 
                StatusLabel.Text = "Parsing PME file #" + (k + 1).ToString 
                StatusLabel.Refresh() 
                Parser.ParsePressureFile(PMELogFileArray(k), 

GlobalVariables.EwaldTable) 
                ExportPMEButton.Enabled = True 
 
                'Sum the two 
                StatusLabel.Text = "Summing" 
                StatusLabel.Refresh() 
                For r = 0 To (GlobalVariables.EwaldTable.Rows.Count - 1) 
                    Dim newrow As DataRow = GlobalVariables.SummedTable.NewRow() 
                    newrow(0) = GlobalVariables.EwaldTable.Rows(r).Item(0) 
                    For m = 1 To (numberOfSlices * 3) 
                        newrow(m) = GlobalVariables.EwaldTable.Rows(r).Item(m) + 

GlobalVariables.PressureTable.Rows(r).Item(m) 
                    Next m 
                    GlobalVariables.SummedTable.Rows.Add(newrow) 
                Next r 
 
            End If 
 
            'Save it out 
            If CheckBoxBatchSum.Checked = True Then 
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                'Save out the Summed sheet 
                StatusLabel.Text = "Saving Excel file #" + (k + 1).ToString 
                StatusLabel.Refresh() 
                Dim tempExcelfilename As String 
                tempExcelfilename = TextBoxExcelOutput.Text + "\" + 

GetFileName(LogFileArray(k).ToString) + "_summed.xlsx" 
                ExportToExcel(GlobalVariables.SummedTable, tempExcelfilename) 
            Else 
                'Save out the pressure sheet 
                StatusLabel.Text = "Completed saving file #" + (k + 1).ToString 
                StatusLabel.Refresh() 
                Dim tempExcelfilename As String 
                tempExcelfilename = TextBoxExcelOutput.Text + "\" + 

GetFileName(LogFileArray(k).ToString) + ".xlsx" 
                ExportToExcel(GlobalVariables.PressureTable, tempExcelfilename) 
            End If 
        Next k 
        StatusLabel.Text = "Export Complete" 
    End Sub 
End Class 
 

Parser.vb 

(This is the parser module) 

Imports System.IO 
 
Public Class Parser 
    Public Shared Function GetSlicesFromFile(filename As String) As Integer 
        'Gets the number of slices from the log file, returns -1 if the number 

cannot be determined 
        Try 
            Using sr As New StreamReader(filename) 
                Dim line As String 
                Do While sr.Peek <> -1 
                    line = sr.ReadLine 
 
                    If line.Contains("Info:       NUMBER OF SLABS:") Then 
                        Dim words As String() = line.Split(New Char() {" "}) 
 
                        Dim word As String 
                        Dim numSlices As Integer 
 
                        For Each word In words 
                            If word = "Info:" Then 
                                'Do nothing, it's the beginning of the line 
                            ElseIf word = "NUMBER" Then 
                                'Do nothing, it's the beginning of the line 
                            ElseIf word = "OF" Then 
                                'Do nothing, it's the beginning of the line 
                            ElseIf word = "SLABS:" Then 
                                'Do nothing, it's the beginning of the line 
                            ElseIf word = "" Then 
                                'Do nothing, it's the end of the line 
                            Else 
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                                'Do something, it's the number 
                                numSlices = Integer.Parse(word) 
                                Return numSlices 
                            End If 
                        Next 
 
                    End If 
                Loop 
            End Using 
        Catch ex As Exception 
            Dim ExceptionString As String 
            ExceptionString = ex.Message.ToString 
            MsgBox("The file could not be read: " & ExceptionString) 
        End Try 
 
        'Couldn't read a number of slices, so return -1 
        Return -1 
    End Function 
 
    Public Shared Function ParsePressureFile(filename As String, table As 

DataTable) 
        'Open the pressure log for a streamreader and then search for the lines 

that begin with PRESSUREPROFILE: 
        'also must remember these are UNIX terminated strings (LF), not Windows 

(CRLF) 
        'Looking for a space-delimited block of 1 + (number of slices)*3 values (1 

being position, other being a 3x3 array of pressures from slab 1 to X as x,y,z tuples) 
 
        Try 
            Using sr As New StreamReader(filename) 
                Dim line As String 
                Do While sr.Peek <> -1 
                    line = sr.ReadLine 
 
                    If line.Contains("PRESSUREPROFILE:") Then 
                        Dim words As String() = line.Split(New Char() {" "}) 
 
                        Dim word As String 
                        Dim position As Integer 
                        Dim row As DataRow = table.NewRow() 
                        position = 0 'Tables are 0-centered 
                        For Each word In words 
                            If word = "PRESSUREPROFILE:" Then 
                                'Do nothing, it's the beginning of the line 
                            ElseIf word = "" Then 
                                'Do nothing, it's the end of the line 
                            Else 
                                'Do something, it's valid 
                                row(position) = Decimal.Parse(word, 

Globalization.NumberStyles.AllowDecimalPoint + 
Globalization.NumberStyles.AllowLeadingSign + Globalization.NumberStyles.AllowExponent) 

                                position = position + 1 
                            End If 
 
                        Next 
                        table.Rows.Add(row) 
                        'Exit Sub ' Let's just do this one for sanity checking 
                    End If 
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                Loop 
            End Using 
        Catch ex As Exception 
            Dim ExceptionString As String 
            ExceptionString = ex.Message.ToString 
            MsgBox("The file could not be read: " & ExceptionString) 
        End Try 
 
    End Function 
End Class 
 

GlobalVariables.vb 

Public Class GlobalVariables 
    Public Shared PressureTable As New DataTable("Pressures") 
    Public Shared EwaldTable As New DataTable("Ewald Pressures") 
    Public Shared SummedTable As New DataTable("Sum of Pressures") 
End Class 
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APPENDIX G: EXCEL PRESSURE MATCHING TOOL 
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The Excel pressure matching tool is used to find common frequencies between the 20 

simulation runs.  The statistically significant frequencies are compiled in columns “A” through 

“T”.  When executed, the macro runs through the data and outputs the common frequencies to 

column “Z” in detection order. 

 

Macro: 

Public Sub Main() 
 
Dim thisRange As Range, col1 As Range, col2 As Range, SigFreq As Integer, count As 

Integer 
Dim offsetCol As Integer, SigFreqArray() 
SigFreq = 0 
Set thisRange = Range(Range("A2"), Range("A" & Rows.count).End(xlUp)) 'Scan the 

sheet 
    For Each col1 In thisRange 'First column to compare 
        For offsetCol = 0 To 19 'Scan through the columns 
            For Each col2 In thisRange.Offset(, offsetCol) 
                If col1 = col2 Then 'Record a match by incrementing the counter 
                    count = count + 1 
                    Exit For 
                End If 
            Next col2 
        Next offsetCol 
  
 If count = 19 Then 'Frequency matched all columns, add it to the list 
    ReDim Preserve SigFreqArray(SigFreq) 
        SigFreqArray(SigFreq) = col1 
        SigFreq = SigFreq + 1 
 End If 
 count = 0 
  
Next col1 
 
'All done, log to Z1 
Range("Z1").Resize(SigFreq).Value = Application.Transpose(SigFreqArray) 
 
End Sub 
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APPENDIX H: MATLAB PROCESSOR FILES 
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ProcessLengths.m: 

%Read in the data file 
  
%data_file_template = 
'tacgcccaaa_Linear_10_21slab_run#_summed.xlsx'; %file name with 
the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Linear_12_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaactagcc_Linear_16_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
  
%data_file_template = 
'tacgcccaaa_Parallel_10_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Parallel_12_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Parallel_16_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
  
%data_file_template = 
'control_Parallel_10_21slab_run#_summed.xlsx'; %file name with 
the literal "run#" that will be replaced by the current run 
number 
data_file_template = 
'control_Linear_10_21slab_run#_summed.xlsx'; %file name with the 
literal "run#" that will be replaced by the current run number 
  
strand_length = 10; 
%strand_length = 12; 
%strand_length = 16; 
strand_length_string = num2str(strand_length); 
  
type = 'Linear'; 
%type = 'Parallel'; 
  
%Synthesize path according to length and type 
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%winpath = 
strcat('..\',strand_length_string,'\',type,'\Excel\'); 
%macpath = 
strcat('../',strand_length_string,'/',type,'/Excel/'); 
  
winpath = '..\..\Control\10\Linear\Excel\'; 
macpath = '../../Control/10/Linear/Excel/'; 
  
numfiles = 1; %number of data files 
%runnum = numfiles;%replace this with loop 
  
warning('off','MATLAB:xlswrite:AddSheet'); %suppress specious 
warnings on creating Excel sheets 
  
for runnum=1:numfiles 
  
    data_file = strrep(data_file_template, 'run#', 
strcat('run',num2str(runnum))); 
  
    if ismac 
        path = macpath; 
    else 
        path = winpath; 
    end 
  
    zdata1 = xlsread(strcat(path,data_file),1,'A:A'); %read in 
the step 
    zdata1(:,2) = xlsread(strcat(path,data_file),1,'AH:AH'); 
%read in the pressure in the X/Y-axis for the run from slice 11 
    pressure1=zdata1(:,2); 
    times1=zdata1(:,1); 
  
    %Begin processing/declaring constants 
    Fs = (0.5e+15)/10; % (1/2)e+15 simulation steps per second / 
10 (every 10 steps output) 
    T = 1/Fs;   % Take sampling frequency, convert to time 
    L= length(pressure1);   % will be 50000 measurements in the 
Excel sheet 
    t=times1*T;             % create time time vector from 
t=(0:L-1)*T (steps to time translation);   
    Zworking = fft(pressure1); 
    Zworking(1)=[]; 
    f = Fs/2*linspace(0,1,L/2+1); %generates a linearly spaced 
vector for frequency 
    f(1)=[]; 
    L=length(Zworking); 
    alpha=0.001; %99.9% CI 
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    alpha_str=num2str(alpha); 
     
    eval(['Z' num2str(runnum) '= Zworking']); 
  
    SampleTime = T*L; %time a single sample covers 
  
    %Get mean and standard deviation of the raw coefficients, 
then standardize them 
    mean_fft_coef=mean(Zworking); 
    Sz1=std(Zworking); 
    fft_coef_std=(Zworking-mean_fft_coef)/Sz1; 
  
    %We need to square the FFT coefficients to get power, this 
will give us  
    %coefficients with a Chi Square distribution that can be 
subjected 
    %to Hartley's Fmax test 
    poweroutput = abs(fft_coef_std).^2; 
    TotalPower=sum(poweroutput)-poweroutput(1); %Subtract DC 
offset from total power 
    Pos_TotalPower=TotalPower/2;        %Divide by 2 to get 
power of only [positive] side, recalling that the result of FFTs 
are symmetrical 
     
    eval(['power' num2str(runnum) '= poweroutput']); 
  
    %Calculate the Standardized Positive FFT Coefficients 
    y=1; 
    Pos_fft_coef_std=zeros(floor(L/2),1); %preallocate array 
    while (y<floor(L/2)+1) 
        Pos_fft_coef_std(y)=fft_coef_std(y); y=y+1; 
    end 
     
    eval(['Pos_fft_coef_std' num2str(runnum) '= 
Pos_fft_coef_std']); 
  
    freq = (0:(floor(L/2-1)))/(SampleTime); %find the 
corresponding frequency in Hz This assumes shifted coeficients 
    freq_no_offset = (1:(floor(L/2-1)))/(SampleTime); %find the 
corresponding frequency in Hz 
  
    power_zeroed_const=poweroutput; 
    power_zeroed_const(1)=0; %zero out the constant term of the 
power array, but leave it in, the offsets are needed to match up 
to frequencies 
    power_no_const=poweroutput(2:floor(L/2));%possibly an error? 
    power_pos=poweroutput(1:floor(L/2)); 
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    power_pos_no_const=poweroutput(2:floor(L/2)); 
    power_pos_zeroed_const=power_zeroed_const(1:floor(L/2)); 
  
    %to start Hartley's test, we have to come up with the 
quantities Pk, R, and 
    %the sum of residual for each variable (the sum of Pj, for 
all variables 
    %except j=k, and the constant term) 
    %we can then do Hartley's test for each harmonic 
  
    residuals=zeros((floor(L/2)),1); %preallocate array 
    for y=1:(floor(L/2)) 
        residuals(y)=(Pos_TotalPower-power_pos_zeroed_const(y)); 
    end 
  
    R=(L-3)/2; %total amount of relative power in these 
residuals is the sum of these # of random variables 
    Hstat=zeros((floor(L/2)),1); %preallocate array 
    for i=1:(floor(L/2)) %Compute H-statistic 
        Hstat(i)=power_pos_zeroed_const(i)/((1/R)*residuals(i)); 
    end 
  
    Htestresults=zeros((floor(L/2)),1); %preallocate the array 
for storing H test results 
    j=1; 
    while (j<(L/2)) 
        Htestresult = Hartley(Hstat(j),2,(L-3),alpha); 
        if (Htestresult==1) 
            %Got a positive (reject) value, record it; no need 
to record hits, the 
            %array is pre-zeroed 
            Htestresults(j)=1; 
        end 
    j=j+1; 
    end 
  
    %Now we have our H-test results, let's put togeher an 
ordered list with 
    %just the significant ones 
  
    k=1; 
    z=1; 
    Significant_Coefficients = 0; %zero the array 
    while (k<(L/2)) 
        if (Htestresults(k)==0) 
            %A good result, grab the resulting coefficients and 
save them 
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Significant_Coefficients(z,1)=power_pos_zeroed_const(k); 
%coefficient 
            Significant_Coefficients(z,2)=freq(k); %frequency 
            z=z+1; 
        end 
    k=k+1; 
    end 
  
    %sort the list, greatest power to least 
    
Significant_Coefficients_Sorted=sortrows(Significant_Coefficient
s,-1); 
  
    eval(['Significant_Coefficients' num2str(runnum) '= 
Significant_Coefficients']); 
  
    %Now, let's save out that ordered list. 
    data_file_output = strrep(data_file_template, 'run#', 
strcat('outputsignificantrun',num2str(runnum))); 
  
    
xlswrite(data_file_output,Significant_Coefficients_Sorted,1); 
  
    figure_file_output1 = strrep(data_file_template, 'run#', 
strcat('figureALL',num2str(runnum))); 
    figure_file_output2 = strrep(data_file_template, 'run#', 
strcat('figureSIG',num2str(runnum))); 
    figure_file_output1 = strrep(figure_file_output1, '.xlsx', 
''); 
    figure_file_output2 = strrep(figure_file_output2, '.xlsx', 
''); 
  
    figure; 
    semilogx(freq_no_offset,power_pos_no_const,'*b'); 
    graph_title1=['+ Power All Coefficients ']; 
    graph_title2=['Data File:',strrep(data_file,'_','\_'),' 
Alpha:',alpha_str,' Confidence Level']; 
    title({graph_title1;graph_title2}); 
    saveas(gcf, strcat('./Figures/',figure_file_output1),'fig'); 
    saveas(gcf, strcat('./Figures/',figure_file_output1),'png'); 
    close(gcf); 
  
    figure; 
    
semilogx(Significant_Coefficients(:,2),Significant_Coefficients(
:,1),'*b'); 
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    graph_title1=['+ Power Significant Coefficients ']; 
    graph_title2=['Data File:',strrep(data_file,'_','\_'),' 
Alpha:',alpha_str,' Confidence Level']; 
    title({graph_title1;graph_title2}); 
    saveas(gcf, strcat('./Figures/',figure_file_output2),'fig'); 
    saveas(gcf, strcat('./Figures/',figure_file_output2),'png'); 
    close(gcf); 
  
    %error('End of code execution'); 
    %---through here 
  
end 
  
  
% Wavelet generation code, to run manually 
% figure; 
% title('Continuous Transform, absolute coefficients, Linear DNA 
10 mer.')  
% cw1 = cwt(pressure1,1:1600,'sym2','plot');  
% ylabel('Scale') 
% [cw1,sc] = cwt(pressure1,1:1600,'sym2','scal'); 
% title('Scalogram')  
% ylabel('Scale') 
  
% Example CPSD code 
% cpsd(pressure12,pressure16,[],[],[],Fs) 
  
  
 
 
ProcessSequences.m: 

%Read in the data file 
  
data_file_template = 'seq_Parallel_21slab_seq#_summed.xlsx'; 
%file name with the literal "run#" that will be replaced by the 
current run number 
%data_file_template = 'seq_Linear_21slab_seq#_summed.xlsx'; 
%file name with the literal "run#" that will be replaced by the 
current run number 
  
type = 'Parallel'; 
%type = 'Linear'; 
  
%Synthesize path according to length and type 
winpath = strcat('..\',type,'\Excel\'); 
macpath = strcat('../',type,'/Excel/'); 
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numfiles = 20; %number of sequences 
%runnum = numfiles;%replace this with loop 
  
warning('off','MATLAB:xlswrite:AddSheet'); %suppress specious 
warnings on creating Excel sheets 
  
for seqnum=1:numfiles 
  
    data_file = strrep(data_file_template, 'seq#', 
strcat('seq',num2str(seqnum))); 
  
    if ismac 
        path = macpath; 
    else 
        path = winpath; 
    end 
  
    zdata1 = xlsread(strcat(path,data_file),1,'A:A'); %read in 
the step 
    zdata1(:,2) = xlsread(strcat(path,data_file),1,'AH:AH'); 
%read in the pressure in the X/Y-axis for the run from slice 11 
    pressure1=zdata1(:,2); 
    times1=zdata1(:,1); 
  
    %Begin processing/declaring constants 
    Fs = (0.5e+15)/10; % (1/2)e+15 simulation steps per second / 
10 (every 10 steps output) 
    T = 1/Fs;   % Take sampling frequency, convert to time 
    L= length(pressure1);   % will be 50000 measurements in the 
Excel sheet 
    t=times1*T;             % create time time vector from 
t=(0:L-1)*T (steps to time translation);   
    Zworking = fft(pressure1); 
    Zworking(1)=[]; 
    f = Fs/2*linspace(0,1,L/2+1); %generates a linearly spaced 
vector for frequency 
    f(1)=[]; 
    L=length(Zworking); 
    alpha=0.001; %99.9% CI per proposal 
    alpha_str=num2str(alpha); 
     
    eval(['Z' num2str(seqnum) '= Zworking']); 
  
    SampleTime = T*L; %time a single sample covers 
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    %Get mean and standard deviation of the raw coefficients, 
then standardize them 
    mean_fft_coef=mean(Zworking); 
    Sz1=std(Zworking); 
    fft_coef_std=(Zworking-mean_fft_coef)/Sz1; 
     
    eval(['fft_coef_std' num2str(seqnum) '= fft_coef_std']); 
  
    %We need to square the FFT coefficients to get power, this 
will give us  
    %coefficients with a Chi Square distribution that can be 
subjected 
    %to Hartley's Fmax test 
    %poweroutput = abs(fft_coef_std(1:floor(L/2))).^2; 
    poweroutput = abs(fft_coef_std).^2; 
    TotalPower=sum(poweroutput)-poweroutput(1); %Subtract DC 
offset from total power 
    Pos_TotalPower=TotalPower/2;        %Divide by 2 to get 
power of only [positive] side, recalling that the result of FFTs 
are symmetrical 
  
    eval(['power' num2str(seqnum) '= poweroutput']); 
     
    %Calculate the Standardized Positive FFT Coefficients 
    y=1; 
    Pos_fft_coef_std=zeros(floor(L/2),1); %preallocate array 
    while (y<floor(L/2)+1) 
        Pos_fft_coef_std(y)=fft_coef_std(y); y=y+1; 
    end 
     
    eval(['Pos_fft_coef_std' num2str(seqnum) '= 
Pos_fft_coef_std']); 
  
    freq = (0:(floor(L/2-1)))/(SampleTime); %find the 
corresponding frequency in Hz This assumes shifted coeficients 
    freq_no_offset = (1:(floor(L/2-1)))/(SampleTime); %find the 
corresponding frequency in Hz 
  
    power_zeroed_const=poweroutput; 
    power_zeroed_const(1)=0; %zero out the constant term of the 
power array, but leave it in, the offsets are needed to match up 
to frequencies 
    power_no_const=poweroutput(2:floor(L/2));%possibly an error? 
    power_pos=poweroutput(1:floor(L/2)); 
    power_pos_no_const=poweroutput(2:floor(L/2)); 
    power_pos_zeroed_const=power_zeroed_const(1:floor(L/2)); 
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    %to start Hartley's test, we have to come up with the 
quantities Pk, R, and 
    %the sum of residual for each variable (the sum of Pj, for 
all variables 
    %except j=k, and the constant term) 
    %we can then do Hartley's test for each harmonic 
  
    residuals=zeros((floor(L/2)),1); %preallocate array 
    for y=1:(floor(L/2)) 
        residuals(y)=(Pos_TotalPower-power_pos_zeroed_const(y)); 
    end 
  
    R=(L-3)/2; %total amount of relative power in these 
residuals is the sum of these # of random variables 
    Hstat=zeros((floor(L/2)),1); %zero out array 
    for i=1:(floor(L/2)) %Compute H-statistic 
        Hstat(i)=power_pos_zeroed_const(i)/((1/R)*residuals(i)); 
    end 
  
    Htestresults=zeros((floor(L/2)),1); %preallocate the array 
for storing H test results 
    j=1; 
    while (j<(L/2)) 
        Htestresult = Hartley(Hstat(j),2,(L-3),alpha); 
        if (Htestresult==1) 
            %Got a positive (reject) value, record it; no need 
to record hits, the 
            %array is pre-zeroed 
            Htestresults(j)=1; 
        end 
    j=j+1; 
    end 
  
    %Now we have our H-test results, let's put togeher an 
ordered list with 
    %just the significant ones 
  
    k=1; 
    z=1; 
    Significant_Coefficients = 0; %zero the array 
    while (k<(L/2)) 
        if (Htestresults(k)==0) 
            %A good result, grab the resulting coefficients and 
save them 
            
Significant_Coefficients(z,1)=power_pos_zeroed_const(k); 
%coefficient 
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            Significant_Coefficients(z,2)=freq(k); %frequency 
            z=z+1; 
        end 
    k=k+1; 
    end 
  
    %sort the list, greatest power to least 
    
Significant_Coefficients_Sorted=sortrows(Significant_Coefficient
s,-1); 
  
    eval(['Significant_Coefficients' num2str(seqnum) '= 
Significant_Coefficients']); 
  
%     %Now, let's save out that ordered list. 
    data_file_output = strrep(data_file_template, 'seq#', 
strcat('outputsignificantseq',num2str(seqnum))); 
  
    
xlswrite(data_file_output,Significant_Coefficients_Sorted,1); 
  
    figure_file_output1 = strrep(data_file_template, 'seq#', 
strcat('figureALL',num2str(seqnum))); 
    figure_file_output2 = strrep(data_file_template, 'seq#', 
strcat('figureSIG',num2str(seqnum))); 
    figure_file_output1 = strrep(figure_file_output1, '.xlsx', 
''); 
    figure_file_output2 = strrep(figure_file_output2, '.xlsx', 
''); 
  
    figure; 
    semilogx(freq_no_offset,power_pos_no_const,'*b'); 
    graph_title1=['Pos side of Pwr Spectrum ALL Coefficients ']; 
    graph_title2=['Data File:',strrep(data_file,'_','\_'),' 
Alpha:',alpha_str,' Confidence Level']; 
    title({graph_title1;graph_title2}); 
    saveas(gcf, strcat('./Figures/',figure_file_output1),'fig'); 
    saveas(gcf, strcat('./Figures/',figure_file_output1),'png'); 
    close(gcf); 
  
    figure; 
    
semilogx(Significant_Coefficients(:,2),Significant_Coefficients(
:,1),'*b'); 
    graph_title1=['Pos side of Pwr Spectrum Significant 
Coefficients ']; 
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    graph_title2=['Data File:',strrep(data_file,'_','\_'),' 
Alpha:',alpha_str,' Confidence Level']; 
    title({graph_title1;graph_title2}); 
    saveas(gcf, strcat('./Figures/',figure_file_output2),'fig'); 
    saveas(gcf, strcat('./Figures/',figure_file_output2),'png'); 
    close(gcf); 
   
end 
  
% Compute the CI -- a circle surrounding the vector (see Thibos) 
prob = 1 - alpha; 
df1 = 2; 
df2 = (L-3); 
F_table = finv(prob,df1,df2); 
rho = sqrt((F_table/R)*(residuals(1))); 
  
%Prepare Complete FFT coefficients for testing 
for seqnum=1:numfiles 
    
eval(strcat('Pos_fft_coef_std_combined(:,',num2str(seqnum),') = 
Pos_fft_coef_std',num2str(seqnum),';')); 
end 
Pos_fft_coef_std_combined_norm = 
arrayfun(@norm,Pos_fft_coef_std_combined); 
Pos_fft_coef_std_combined_real = 
arrayfun(@real,Pos_fft_coef_std_combined); 
Pos_fft_coef_std_combined_complex = 
arrayfun(@imag,Pos_fft_coef_std_combined); 
  
Pos_fft_coef_std_combined_norm = 
rot90(Pos_fft_coef_std_combined_norm); 
Pos_fft_coef_std_combined_real = 
rot90(Pos_fft_coef_std_combined_real); 
Pos_fft_coef_std_combined_complex = 
rot90(Pos_fft_coef_std_combined_complex); 
  
  
%Process according to CI and check that no Pdist is inside the 
CI 
overlaptest = zeros(floor(L/2),1); 
outputnum = 1; 
for freqnum=1:(floor(L/2)) 
  
    for rownum=1:numfiles 
        basecoef = 
Pos_fft_coef_std_combined_real(rownum,freqnum); 
        countup = 0; 
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        for pagenum=1:numfiles 
            eudist = abs(basecoef - 
Pos_fft_coef_std_combined_real(pagenum,freqnum)); 
            if (eudist <= rho) %distance is less than the 
critical 
                if (eudist > 0) %not the basecoef - basecoef 
case 
                    countup = countup + 1; 
                end 
            end 
             
        end 
        if (countup == 0) 
            outText = sprintf('Found significant point at 
sequence %d, frequency %d',rownum,freqnum); 
            disp(outText); 
            sigpoints(outputnum,1) = rownum; 
            sigpoints(outputnum,2) = freqnum; 
            sigpoints(outputnum,3) = freq(freqnum); 
            outputnum = outputnum + 1; 
        end 
    end 
     
end 
 
StatsLoader.m: 

%Concatenate the fourier coefficients of Zdata column 2's into a 
big 
%matrix, to support tests for randomness and generate graphs 
  
% Loader 
% Loads Excel sheets into workspace zdata1-20 
  
%Read in the data file 
  
%data_file_template = 
'tacgcccaaa_Linear_10_21slab_run#_summed.xlsx'; %file name with 
the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Linear_12_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaactagcc_Linear_16_21slab_run#_summed.xlsx'; %file name 
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with the literal "run#" that will be replaced by the current run 
number 
  
%data_file_template = 
'tacgcccaaa_Parallel_10_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Parallel_12_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
%data_file_template = 
'tacgcccaaact_Parallel_16_21slab_run#_summed.xlsx'; %file name 
with the literal "run#" that will be replaced by the current run 
number 
  
data_file_template = 
'control_Parallel_10_21slab_run#_summed.xlsx'; %file name with 
the literal "run#" that will be replaced by the current run 
number 
  
strand_length = 10; 
%strand_length = 12; 
%strand_length = 16; 
strand_length_string = num2str(strand_length); 
  
%type = 'Linear'; 
type = 'Parallel'; 
  
%Synthesize path according to length and type 
%winpath = 
strcat('..\',strand_length_string,'\',type,'\Excel\'); 
%macpath = 
strcat('../',strand_length_string,'/',type,'/Excel/'); 
  
winpath = '..\..\Control\10\Parallel\Excel\'; 
macpath = '../../Control/10/Parallel/Excel/'; 
  
numfiles = 1; %number of data files 
  
warning('off','MATLAB:xlswrite:AddSheet'); %suppress specious 
warnings on creating Excel sheets 
  
for runnum=1:numfiles 
  
    data_file = strrep(data_file_template, 'run#', 
strcat('run',num2str(runnum))); 
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    if ismac 
        path = macpath; 
    else 
        path = winpath; 
    end 
  
    zdatatmp = xlsread(strcat(path,data_file),1,'A:A'); %read in 
the step 
    zdatatmp(:,2) = xlsread(strcat(path,data_file),1,'AH:AH'); 
%read in the pressure in the X/Y-axis for the run from slice 11 
    eval(['zdata' num2str(runnum) '= zdatatmp']); 
    eval(['zdata' num2str(runnum) '(:,2) = zdatatmp(:,2)']); 
end 
  
ZRunsResult = zeros(length(ZTest),1); 
for runstestnum=1:length(ZTest) 
    ZRunsResult(runstestnum,1) = 
runstest(ZTest(:,runstestnum),'ud','Alpha',0.001); 
end 
  
sum(ZRunsResult(:)==1) 
  
%  
%     pressure1=zdata1(:,2); 
%     times1=zdata1(:,1); 
  
numfiles = 20; %number of data files 
  
%zdatasum = zeros(length(zdata1),2); 
  
alpha=0.001; %99.9% CI per proposal 
alpha_str=num2str(alpha); 
isMeanInited = 0; %initialize the variable, it'll grow later 
  
for runnum=1:numfiles 
  
%     zdatasum = zdatasum + eval(['zdata' num2str(runnum)]); 
     
    
eval(strcat('pressure',num2str(runnum),'=zdata',num2str(runnum),
'(:,2);')); 
    
eval(strcat('times',num2str(runnum),'=zdata',num2str(runnum),'(:
,1);')); 
  
    %Begin processing/declaring constants 
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    Fs = (0.5e+15)/10; % (1/2)e+15 simulation steps per second / 
10 (every 10 steps output) 
    T = 1/Fs;   % Take sampling frequency, convert to time 
    eval(strcat('L',num2str(runnum),'= 
length(pressure',num2str(runnum),');'));   % will be 50000 
measurements in the Excel sheet 
    eval(strcat('t=times',num2str(runnum),'*T;'));             % 
create time time vector from t=(0:L-1)*T (steps to time 
translation);   
    eval(strcat('Z',num2str(runnum),' = 
fft(pressure',num2str(runnum),');')); 
    eval(strcat('Z',num2str(runnum),'(1)=[];')); 
    eval(strcat('f',num2str(runnum),' = 
Fs/2*linspace(0,1,L',num2str(runnum),'/2+1);')); %generates a 
linearly spaced vector for frequency 
    eval(strcat('f',num2str(runnum),'(1)=[];')); 
    
eval(strcat('L',num2str(runnum),'=length(Z',num2str(runnum),');'
)); %get length of Fourier transform 
    if (isMeanInited == 0) %initialize the ZMean variable if it 
hasn't been before 
        eval(strcat('ZMean = 
zeros(length(Z',num2str(runnum),'),1);')); 
        eval(strcat('powerAvg = 
zeros(length(Z',num2str(runnum),')/2,1);')); 
        isMeanInited = 1; 
    end 
    eval(strcat('ZMean = ZMean + Z',num2str(runnum),';')); 
%     eval(strcat('ZHotel(:,',num2str(runnum),') = 
Z',num2str(runnum),';')); 
    eval(strcat('power',num2str(runnum),' = 
fft(pressure',num2str(runnum),')/(L',num2str(runnum),');')); 
    eval(strcat('power',num2str(runnum),' = 
(power',num2str(runnum),'(1:L',num2str(runnum),'/2)).^2;')); 
    eval(strcat('ZHotel(:,',num2str(runnum),') = 
power',num2str(runnum),';')); 
    eval(strcat('powerAvg = powerAvg + 
power',num2str(runnum),';')); 
end 
  
%create a combined power output to facilitate runs tests 
for runnum=1:numfiles 
    eval(strcat('powercombined(',num2str(runnum),',:) = 
power',num2str(runnum),';')); 
end 
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Exp3.m: 

% Experiment 3 processing file; must run StatsLoader.m to load 
all pressures 
% Change numeral of pressure1 for each of the runs 
  
[pxx,f,pxxc] = periodogram(pressure1,[],[],Fs,'ConfidenceLevel', 
0.999); 
plot(f,10*log10(pxx)) 
hold on 
plot(f,10*log10(pxxc),'r-.') 
xlabel('Hz') 
ylabel('dB') 
  
 
Exp4.m: 

% Experiment 4 processing file; must run StatsLoader.m to load 
all pressures 
  
f8 = fit(times1,pressure1,'fourier8') 
plot(f8,times1,pressure1); 
  
f8 = fit(times2,pressure2,'fourier8') 
figure 
plot(f8,times2,pressure2); 
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