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ABSTRACT 
Advances in microfabrication and surface chemistry techniques have provided a new 

paradigm for the creation of in vitro systems for studying problems in biology and medicine in 

ways that were previously not practical.  The ability to create devices with micro- to nano-scale 

dimensions provides the opportunity to non-invasively interrogate and monitor biological cells 

and tissue in large arrays and in a high-throughput manner.  These systems hold the potential to, 

in time, revolutionize the way problems in biology and medicine are studied in the form of point-

of-care devices, lab-on-chip devices, and biological microelectromechanical systems 

(BioMEMS).  With new in vitro models, it will be possible to reduce the overall cost of medical 

and biological research by performing high-throughput experiments while maintaining control 

over a wide variety of experimental variables.  A critical aspect of developing these sorts of 

systems, however, is controlling the device/tissue interface.  The surface chemistry of cell-

biomaterial and protein-biomaterial interactions is critical for long-term efficacy and function of 

such devices. 

The work presented here is focused on the application of surface and analytical chemistry 

techniques for better understanding the interface of biological elements with silica substrates and 

the development a novel Bio-MEMS device for studying muscle and neuromuscular biology.  A 

novel surface patterning technique based on the use of a polyethylene glycol (PEG) silane self-

assembled monolayer (SAM) as a cytophobic surface and the amine-terminated silane 

diethyeletriamine (DETA) as a cytophilic surface was developed for patterning a variety of cell 

types (e.g. skeletal muscle, and neural cells) over long periods of time (over 40 days) with high 

fidelity to the patterns.  This method was then used to pattern embryonic rat skeletal muscle and 
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motor neurons onto microfabricated silicon cantilevers creating a novel biological 

microelectromechanical system (BioMEMS) for studying muscle and the neuromuscular 

junction.  This device was then used to study the effect of exogenously applied substances such 

as growth factors and toxins.  Furthermore, a whispering-gallery mode (WGM) biosensor was 

developed for measuring the adsorption of various proteins onto glass microspheres coated with 

selected silane SAMS commonly used in BioMEMS system.  With this biosensor it was possible 

to measure the kinetics of protein adsorption onto alkylsilane SAMS, in a real-time and label-

free manner. 
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CHAPTER ONE: INTRODUCTION 
The boom in the semiconductor manufacturing industry of the past three decades has 

yielded a vast array of tools and methods for fabricating devices with micro- to nano-scale 

features.  Concomitantly, advances in biotechnology, i.e. the sequencing of the human 

genome, and looming proteomic era have opened new avenues for the application of 

technologies from the semiconductor industry in the form of gene and protein arrays, lab-on-

a-chip devices and biological micro-electromechanical systems (Bio-MEMS).  To date, most 

applications of these technologies have focused on studying biomolecular interactions (DNA-

DNA, DNA-RNA, protein-protein, etc.) 1-8, individual cells or pure cultures of a single cell 

type 9-34.  These methods, while suitable for answering specific questions about a limited 

number of factors within a biological system, do not necessarily reflect the overall 

complexity of the whole biological context in which the system of interest exists and can be 

poor predictors of the in vivo reality.  Typically animal studies are required for understanding 

the complex interactions of cells and biomolecules in vivo.  These types of studies, however, 

can yield results that are difficult to interpret due to the lack of sufficient control over all 

experimental variables.  Also, animal studies can be ethically questionable causing 

unnecessary pain and suffering to the animals used.  Ethical concerns regarding animal 

studies in and of themselves can prevent researchers from being able to perform studies that 

can yield significant findings.  For example, in Europe legislation has been passed to limit the 

use of animal studies to medical research, and even so the use of animal studies for medical 

purposes has become more difficult to justify.  For these reasons and more the development 

of in vitro models for drug discovery, disease research, and basic science has become 

increasingly fertile ground.  New devices and techniques are being developed to study the 

complex interactions of multiple cell types in lab-on-a-chip systems that allow stringent 
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control of environmental variables, as well as real-time, non-invasive monitoring and 

interrogation21, 30, 35-48. 

One critical capability to have when developing in vitro model systems is the ability to 

control the spatial orientation of the different cell types with respect to each other.  One 

common method for doing this modifying the surface of a substrate to present a 2-

dimensional pattern consisting of cytophilic (cell adhesive) regions surrounded by cytophobic 

(cell repulsive) regions.  Methods to achieve this include microcontact printing, microfluidic 

patterning, dip-pen nanolithography, and photolighography.  Various chemistries can be used 

with these methods such as, physical adsorption of biopolymers, alkanethiol, and alkylsilane 

chemistry.  Alkylsilanes are a broad class of compounds that can be covalently linked to 

silica substrates and hence a wide variety of solid state devices.  This is a particularly 

advantageous type of chemistry to use as a wide variety of silanes area commercially 

available and provide stable covalently linked films that are suitable for use in aqueous 

environments.  For these reasons alkylsilane self-assemble monolayers were chosen as model 

substrates for the development of a novel surface patterning technique as a broadly applicable 

method for the long-term culture of multiple cell types on silica substrates and the 

development of a novel BioMEMS device for studying muscle biology and neuromuscular 

junction formation. 

The work presented here demonstrates the development of a photolithographic method 

for patterning PEG and amine terminated alkylsilane monolayers for patterning embryonic 

neurons and muscle cells in long-term cultures.  This technique was then applied to 

patterning cells on a novel BioMEMS device based on microfabricated silicon cantilevers 

and an AFM detection system.  Embryonic skeletal myocytes were plated onto patterned 

cantilevers and differentiated in situ into functional myotubes that were capable of bending 



3 

the cantilever.  The contractile stress generated by the myotubes was quantified using a 

modified Stoney’s equation.  Furthermore, it was shown that this system could be used to 

quantify differences in muscle behavior and development due to exogenously applied factors.  

This system was further applied to the coculture of myotubes with embryonic motor neurons 

for creating a model system for studying neuromuscular junction formation and function.  

The adsorption of proteins onto alkylsilane SAMS was also studied.  To this end a WGM 

biosensor and novel fluidic system was contsructed.  Using this system the adsorption of 

proteins onto DETA, PEG, 13F and glass was quantified.   
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CHAPTER TWO: DIRECT PATTERNING OF COPLANAR 
ALKYLSILANE MONOLAYERS BY DEEP-ULTRAVIOLET 

PHOTOLITHOGRAPHY AS A GENERAL METHOD FOR LONG-
TERM CELL PATTERNING AND CULTURE 

Introduction 

Surface modification and patterning have been staple techniques in bioengineering and 

cell biology for decades.  This is due primarily to the fact that the interaction of a cell or 

biomolecule with a particular material is dictated by the properties of the first few 

nanometers of the surface of the bulk material49.  Various methods have been developed to 

modify the surface characteristics of bulk materials to tune the biocompatibility of a material 

for promoting or preventing the attachment of cells and biomolecules25.  Such methods 

include, but are not limited to, physical adsorption of polymers, microcontact printing, 

microfluidic patterning, and photolithographic pattering.  Patterning cells onto various 

substrates has been used extensively to create cellular microarrays in which the spatial 

orientation of the cells with respect to one another can be tightly controlled, thereby creating 

a unique microenvironment for each cell.  In this way individual cells can be studied in 

isolation, in networks, or in complex coculutures where the interaction of multiple cell types 

can be comparatively studied. 

The basis of cell patterning lies in the interaction of membrane bound receptors, known as 

integrins, with adsorbed biomolecules on the underlying substrate50-54.  Cells secrete adhesion 

proteins (fibronectin, laminin, collagen, etc.), which adsorb onto a material by physical 

interactions (electrostatic, van Der Waals, hydrophobic interactions, etc.).  The nature and 

extent of the adsorption is determined by the chemical characteristics of the surface.  

Cytophobic surfaces, those that resist cell adhesion, tend either to adsorb very little protein or 

adsorb it in such a way that it looses its biological activity.  Cytophilic surfaces, those that 
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promote cell adhesion and growth, tend to adsorb protein in such a way that its biological 

activity is retained allowing it to bind to membrane bound integrin receptors.  Surfaces that 

tend to resist cell adhesion are non-polar and either strongly hydrophobic (such as 

hydrocarbon or perfluorinated surfaces) or strongly hydrophilic (such as PEG).  Surfaces that 

tend to promote cell adhesion usually consist of polar, hydrophilic molecules.  Aminated 

molecules, such as DETA and poly-lysine are considered to be strongly cytophilic and 

promote the growth and differentiation of cells. 

Alkylsilane self-assembled monolayers are a class of compounds that are used 

extensively for modifying the surface properties of silica substrates (silicon, glass, etc.)55.  

These compounds come in a variety of chemistries that are used for a number of different 

applications and are often used to modulate the biocompatibility of silica substrates 55.  Work 

by Stenger and coworkers56, 57 showed that it is possible to pattern the aminated alkylsilane 

DETA using deep ultraviolet (DUV) photolithography.  By this method DETA SAMs were 

exposed to intense ultraviolet light from an ArF excimer laser (emission wavelength 193 nm).  

Upon exposure the DETA molecule underwent a photochemical reaction that cleaved the 

carbon-nitrogen bonds within the molecule, thereby removing the cytophilic surface coating.  

The ablated regions were then re-derivitized with the perfluorinated silane 13F to create a 

surface that resisted cell adhesion.  This method was extended to produce high contrast 

micrometer scale patterns that were used to pattern cells into microarrays.  Furthermore, it 

was shown that the geometric cues designed into the silane patterns induced specific polarity 

in neural cells and direct the outgrowth of axonal processes and the development of the 

dendritic field. 

A novel cell patterning method has been developed using the same DUV 

photolithography method of Stenger and coworkers.  First a polyethylene glycol (PEG) 



6 

monolayer was formed on a silica substrate.  The PEG monolayer was then patterned using 

DUV photolithography creating ablated regions suitable for re-derivitization.  The patterned 

PEG monolayers were then reacted with DETA to form cell adhesive islands.  These 

patterned PEG-DETA substrates were then used for culturing embryonic myocytes, motor 

neurons, and hippocampal neurons.  It has been shown that these surfaces can support 

attachment and growth of a variety of cell types for periods in excess of 40 days.  This ability 

to create patterned arrays of cells in long-term cultures enhances the ability to create cellular 

microarrays and Bio-MEMS devices. 

Materials and methods 

PEG-silane preparation protocol 

Substrate Cleaning 

Silica substrates (glass and/or silicon wafers) were cleaned using serial acid baths.  

Substrates were arranged in a porcelain coverslip holder (Thomas Scientific, Swedesboro, 

NJ).  The substrates were then immersed in a 1:1 (vol:vol) solution of methanol and 

concentrated HCl for at least 1 hour.  This step removed surface contaminants.  After 1 hour 

the substrates were rinsed 3x in diH2O and transferred to a solution of concentrated sulfuric 

acid for at least 1 hour.  This step oxidized the surface of the silica substrates leaving a 

hydrophilic surface suitable for reaction of the silane derivatives.  After at least one hour in 

sulfuric acid the substrates were washed 3x in diH2O.  The rinsed substrates were then boiled 

in diH2O for 30 minutes.  After boiling the samples were place in a 120oC oven for at least 3 

hours.  The resulting surfaces were analyzed using contact angle goniometry and XPS to 

verify hydrophilicity of the surfaces (CA < 5.0o) and the elemental composition of the 
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surfaces respectively.  Surfaces with a CA of less that 5.0o and an elemental carbon content 

of approximately 5.0% were considered suitable for derivitization. 

PEG-silane coating procedure 

Silica substrates were coated with a PEG-terminated silane by a modified protocol from 

Papra et al 58.  Dry toluene was prepared by distillation over metallic sodium to remove any 

water or other contaminants.  The toluene was refluxed for a minimum of 2 hours prior to 

collection.  The first toluene fraction was discarded to ensure a minimum of contamination.  

Toluene was collected in clean Pyrex bottles that had been placed in a 120oC oven for at least 

2 hours to drive off any water adsorbed to the surface of the glass.  The remaining air in the 

Pyrex bottle was replaced with dry ultra-pure nitrogen to ensure a minimum of gaseous 

oxygen in the reaction mixture.  The toluene was then placed in the antechamber of an 

MBraun glove box (MBraun, Stratham, NH).  The chamber was evacuated and refilled with 

dry nitrogen 3x before bringing the toluene into the main chamber.  The alkylsilane 2-

[Methoxypoly( ethyleneoxy)propyl]trimethoxysilane (Gelest, Tullytown, PA), as seen in 

Figure 1, was added to the toluene to a final concentration of 0.1% by volume.  The PEG-

toluene solution was then removed from the glove box and brought into a chemical fume 

hood.  Concentrated HCl was added to a final volume of 0.08 % (0.8 ml HCl/L) and the 

solution briefly stirred.  The cleaned silica substrates were removed from the oven and 

allowed to cool to room temperature before incubation in the PEG-toluene solution.  Samples 

were incubated in the PEG-toluene solution for 1 hour at room temperature.  The reaction 

vessel was loosely covered to prevent excessive exposure to atmosphere.  After 1 hour the 

samples were removed and rinsed in serial washes of toluene (1x), ethanol (2x), and diH2O 
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(1x).  The washed samples were blown dry under a stream of ultrapure nitrogen and were 

used immediately or stored in a desiccator until needed. 

 

Figure 1: Chemical structure for 2-[Methoxypoly( ethyleneoxy)propyl]trimethoxysilane. 

Deep-UV photolithography of PEG-silane monolayers 

PEG-silane modified silica substrates were patterned using DUV photolithography.  The 

samples were patterned in a photolithography system of our own design (Figure 2), which 

was based on a mask aligner, 193 nm ArF excimer laser (Lambda Physik, Santa Clara, CA) 

with an in-line beam homogenizer.  A beam homogenizer was necessary for patterning of the 

monolayers.  Light emitted from the laser had a parabolic intensity profile (Figure 2) that 

yielded uneven ablation.  The beam homogenizer refocused the laser such that it yielded a 

top-hat profile with an even distribution of light intensity across the ablation area.  Samples 

were placed on the stage of the mask aligner under a 5x5 inch chrome plated photomask, 

which contained the pattern to be ablated.  The masks were written in dark-field polarity such 

that the areas corresponding to the ablated pattern were transparent and the remaining areas 

were coated with chrome.  If necessary the substrate was precision aligned using the aligner 

stage to ensure micrometer precision placement of the pattern.  The substrate was then 

brought into contact with the mask and a vacuum applied between the stage and mask to 

ensure a hard contact.  A hard contact was used to minimize the gap between the substrate 

and mask to ensure a high contrast pattern with minimal edge effects due to refringence of 

the laser light. The substrates were then exposed to 193 nm ultraviolet laser light for 15 to 

120 seconds with a pulse intensity of 200 mJ/pulse and a frequency of 10Hz.  After ablation 
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the samples were removed from the aligner stage and stored for subsequent processing.  

When necessary, the orientation of the pattern on the substrate was marked by scoring or 

breaking the upper right-hand corner of the substrate.  This enabled easy recognition of the 

orientation of the pattern on the substrate during subsequent processing and cell culture. 

 

Figure 2: DUV photolithography system and proposed reaction scheme 

Back-fill of patterned PEG-silane monolayers with DETA-silane 

After ablation the patterned PEG-silane substrates were reacted with the alkylsilane (3-

Trimethoxysilyl propyl) diethylenetriamine (DETA), seen in Figure 3.  Fresh distilled toluene 

was transferred into a Pyrex bottle that had been dried in an 120oC oven to dry off excess 

surface water.  Dry nitrogen was used to replace the air in the remaining volume of the bottle 

to minimize free oxygen.  The bottle was sealed and placed in the antechamber of an MBraun 

glovebox, which was evacuated and refilled with dry nitrogen 3 times.  The toluene was 

transferred into the main chamber.  DETA was added to the toluene to a final concentration 

of 0.1% (vol:vol).  The DETA-toluene solution was removed from the glove box and 
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transferred to a pyrex beaker and the samples were immersed in the solution.  To drive the 

reaction forward the solution was gently heated to no more than 65oC.  Optimal reaction time 

was analyzed for these conditions by incubating the samples 10, 20, and 30 minutes.  After 

reaction with DETA the samples were allowed to cool to room temperature, washed 3 time 

with dry tolune and heated too 65oC in fresh toluene for 30 more minutes, then dried under 

ultrapure nitrogen.  The resulting samples were analyzed by XPS and contact angle 

goniometry.  

 

Figure 3: Chemical structure for (3-Trimethoxysilyl propyl) diethylenetriamine (DETA). 

Characterization of unpatterned and patterned silane monolayers 

Contact angle goniometry analysis 

The surface contact angle of the modified substrates was measured by contact angle 

goniometry.  The samples were place on the stage of a Ramé Hart (Netcong, NJ) contact 

angle goniometer.  The sample stage was raised to close proximity with the outlet nozzle of 

the drop-dispensing pump.  A 5 ul drop of reagent grade ultra-pure water was placed on the 

surface of the sample.  A side-on image of the water drop on the surface was taken using an 

imaging video CCD camera and processed with DropImage Advance software (Ramé Hart, 

Netcong, NJ).  Normal contact angle for PEG was considered to be 38±2o, and 49±2o for 

DETA. 
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X-ray photoelectron spectroscopy analysis 

XPS was performed on unpatterned and patterned samples to verify the relative amounts 

of the elements comprising the different monolayers.  All analysis were performed on a 

Fisons ESCALab 220-XL with a monochromatic single-anode K- source.  Samples were 

first introduced into the preplock chamber which was then closed and evacuated for at least 

30 minutes to a vacuum of less than 5x10-3 Torr by a roughing pump.  The samples were then 

transferred into the main chamber.  After introduction the main chamber was allowed to settle 

to a pressure of less than 1x10-8 Torr.  Elemental analysis was performed for identification of 

all relevant constituents of the silanes used.  Elements were identified according to their 

characteristic binding energies.  A survey scan from 10 to 1200 eV was first performed to 

identify the major elemental constituents of the samples using a step increment of 1 eV, a 

dwell time of 100 ms, and a pass energy of 50 eV.  The strong line peaks were analyzed using 

high resolution scans for Si 2p (103.3eV) C 1s (284.5 eV), N 1s (402.5 eV), and O 1s (533.0 

eV).  High resolution scans were performed over a minimum spectral width of +/- 5 eV of the 

elemental center binding energy, a step increment of 0.1 eV, a dwell time of 20 ms, and pass 

energy of 50 eV.  Analysis for the presence of the strong line of fluorine, F 1s (689.0 eV), 

was also performed as a negative control to ensure there was no contamination from 

fluorinated silanes that are stored in the glove box.  Relative elemental composition of the 

various elements was measured by calculating the area under the curves of the different 

elements and normalizing those areas by the sensitivity factor of the particular element, and 

the transmission function of the instrument.  Relative atom percent was calculated from 

normalized peak areas. 
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Palladium-catalyzed metallization of patterned silane monolayers 

Patterned samples were visualized using a palladium-catalyzed copper reduction reaction, 

modified from Kind et al.59, that specifically deposits metallic copper on regions containing 

the amine terminated silane DETA.  The patterned substrates were immersed in a solution 

containing 0.8 mM Palladium chloride and 0.6 mM NaCl for 10 minutes.  The substrates 

were then rinsed in 3 x in diH20.  A solution of 1 part 0.6 M dimethylamiobutyrate (DMAB) 

and 4 parts diH2O was prepared, and the samples were immersed for 10 minutes.  The 

samples were again washed in diH20 then immersed in 10 ml of a 0.2 M solution of Copper 

(II) sulfate with 10 l of formaldehyde (37.2%) until copper deposition can be seen.  When 

the solutions used for this reaction are made fresh the final copper reduction may only take a 

minute to visualize the pattern.  As the solutions age, however, the reduction reaction may 

take longer so care must be taken to monitor the development of pattern.  Metallized patterns 

were imaged and analyzed using light microscopy. 

Cell Culture Methods 

Embryonic Skeletal Muscle 

Skeletal muscle was dissected from the hind limb thighs of a rat fetus at embryonic day 

18 (Charles River Laboratories, Wilmington, MA) according to previously published 

protocol 37 with some modification. Tissue samples were collected in a sterile 15-ml 

centrifuge tube containing 1 ml of calcium and magnesium free phosphate buffered saline 

(PBS).   Tissue samples were enzymatically disassociated using 3 ml of 0.05% of trypsin–

EDTA (Invitrogen, Carlsbad, CA) solution for 60 min in a 37°C water bath with agitation of 

100 rpm.  After 60 min, the trypsin solution was removed and 6 ml of L15 media (Invitrogen, 

Carlsbad, CA) containing 10% fetal bovine serum (FBS) was added to terminate the trypsin 
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action.  The tissue was then mechanically triturated using a sterile narrow bore Pasteur 

pipette, allowed to settle for 3 min, and transferred to a 15-ml centrifuge tube.  This was 

repeated three times.  The dissociated tissue was then centrifuged at 300g for 10 minutes at 

4oC on 6 ml of a 4% (wt/vol) cushion of bovine serum albumin (BSA). The pellet was 

resuspended in 10 ml L15 + 10% FBS and plated in uncoated 100-mm Petri dishes for 20–30 

min depending on the amount of tissue, to allow contaminating fibroblasts to settle out.  After 

20–30 minutes the supernatant was layered on 6 ml of a 4% BSA cushion, and centrifuged at 

300g for 10 min at 4°C.  The pellet was resuspended in 1.5 ml of medium.   

Purified myocytes were plated at a density of 500–800 cells per square millimeter.  

Myocytes were allowed to attach for 1 hour after which time 3 ml of culture medium 

(Neurobasal media containing B-27 [Invitrogen, Carlsbad, CA], Glutamax [Invitrogen, 

Carlsbad, CA], and Pencillin/Streptavidin) was added. Cultures were maintained in a 5% CO2 

incubator (relative humidity, 85%). Culture medium was exchanged every 4 days.  

Cantilever/myocyte constructs were allowed to culture for 10-13 days.  During this time 

myocytes fuse into functional myotubes capable of spontaneous contraction, as well as 

evoked contraction under electrical field stimulation. 

Embryonic motor neuron 

Spinal motoneurons were purified from ventral cords of embryonic day 14 (E14) rat pups. 

Briefly, rats were euthanized by CO2 asphyxiation. Ventral spinal cells from the embryo were 

collected in cold Hibernate E (BrainBits, Springfield, IL, SA)/GlutaMAX™/antibiotic-

antimycotic/ B27 (Invitrogen, Carlsbad, CA, USA). The cells were dissociated with 0.05% 

trypsin–EDTA (Invitrogen) treatment. The dissociated cells were layered over a 4 ml step 

gradient (Optipep diluted 1:1 (vol/vol) with Hibernate E/GlutaMAX™/antibioticantimycotic/ 
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B27 and then made to 15%, 20%, 25% and 35% (vol:vol) in Hibernate 

E/GlutaMAX™/antibiotic-antimycotic/B27) followed by centrifugation for 15 min, using 

800g, at 4 °C. This is modified from the previously described protocols due to non-

availability of metrizamide 36, 60, 61. After centrifugation, four bands of cells were obtained, 

the topmost of which contained the motor neurons. These cells were further purified by 

immunopanning. The motoneurons were selected using the immune interaction between the 

motoneurons and MAB192 antibody (1:2 dilution, ICN Biomedicals, Akron, OH, USA) 

coated on the dishes 36, 62. The antibody recognized the low affinity NGF receptor that is only 

expressed by ventral motoneurons at this age 63. 

Embryonic hippocampal  neuron 

Rat pups at embryonic day 18 dissected from timed pregnant rats which were euthanized 

using CO2 asphyxiation. Embryos were collected in ice cold Hibernate E/ B27/ Glutamax™/ 

Antibiotic-Antimycotic.  The hippocampi were isolated from the embryonic brain and 

collected in  tube containing 1ml of Hibernate E/ B27/ Glutamax™/ Antibiotic-Antimycotic. 

The embryonic hippocampal neurons were obtained by triturating the tissue using a Pasteur 

pipette. The 1ml cell suspension was layered over a 4 ml step gradient (Optipep diluted 1:1 

(vol:vol) with Hibernate E/ GlutaMAX™ / antibiotic-antimycotic/ B27 and then made to 

15%, 20%, 25% and 35% (v/v) in Hibernate E/ GlutaMAX™/ antibiotic-antimycotic/ B27) 

followed by centrifugation for 15 min, using 800g, at 4°C.  This additional step helped to 

remove the debris arise during dissection from the damaged cells. After centrifugation, one 

strong bands of cells were obtained at the top. The pyramidal hippocampal neurons 

constituted this band with large somas. The cells were resuspended in culture medium ( 
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Neurobasal / B27 / Glutamax™ / Antibiotic-Antimycotic) and plated at a density of 75 

cells/mm2 57, 64-68. Half of the medium was changed after every 3-4 days. 

Results and discussion 

Contact angle measurements 

Contact angle measurements were performed on samples from all reaction conditions: 

Control PEG monolayer, control DETA monolayer, and DETA backfilled onto unablated and 

ablated PEG monolayer, as well as PEG backfilled onto a control DETA surface.  The results 

are seen in Figure 4.  For the control PEG monolayers, the contact angle was measured to be 

37.0o ± 1.1o which is consistent with a silane PEG monolayer.  The control DETA samples 

also showed a normal contact angle of 48.6o ± 1.1o.  Figure 4c shows the contact angle for 

DETA backfilled onto an unablated PEG monolayer.  While the reaction conditions were 

identical to those of plain clean glass immersed in the same reaction mixture the contact 

angle, 37.2o ± 0.6o, does not show a significant degree of change from the control PEG 

sample.  This is due to the presence of the methoxy-terminal group of the PEG silane 

protecting the monolayer from reaction with the DETA silane.  The methoxy-terminal group 

is a poor nucleophile compared to the hydroxylated surface of the clean glass coverslips, 

therefore little to no reaction takes place on the PEG monolayer.  Conversely, when the PEG 

silane is reacted onto a DETA surface the resulting contact angle and XPS data show 

evidence of PEG reacting onto the unprotected DETA forming a hybrid surface with a 

contact angle of 42.6o ± 0.5o which is intermediate between that of PEG (~38o) and DETA 

(~49o).  Figure 4d shows the contact angle resulting for DETA reacted onto a PEG monolayer 

ablated by DUV photolithography for 45 seconds.  The contact angle for this condition, 

49.3o± 1.2o, is statistically indistinguishable (p<.01) from the control DETA sample.  This 
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demonstrates that the PEG monolayer is ablated sufficiently to leave a surface suitable for 

formation of a normal DETA monolayer. 

 

Figure 4: Contact angle measurements for, a) PEG control, b) DETA control, c) DETA 
backfilled into unablated PEG control, d) DETA backfilled into ablated PEG, e) PEG 

backfilled into a DETA control. 
 

XPS analysis 

Analysis was done by XPS to verify the chemical composition of the various surfaces 

tested in this study.  Figure 5 shows representative spectra (survey spectrum, and high 

resolution spectra for C 1s and N 1s peaks) for a control PEG monolayer.  The characteristic 

peak for this surface is the C 1s peak.  In figure 5 it can be seen that the C 1s spectrum is 

comprised of to partially overlapping peaks.  The smaller peak, at ~284.6 eV is characteristic 

of an aliphatic carbon peak which corresponds to the 3 carbon spacer between the silane and 

the PEG units.  The larger peak, at ~286.6 eV corresponds to a carbon bound to an oxygen or 

nitrogen group.  This is expected as the PEG silane used for this study is a 6-9 mer of PEG 
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groups.  The ratio of these two peaks is approximately 6:1 indicating the proportion of 

aliphatic to ether linkages expected the PEG silane. 

 

Figure 5: Representative XPS spectra of PEG monolayer on silicon. Survey spectrum and 
high resolution C 1s and N 1s (inset). 

 

A time course study was then performed to determine the optimal ablation time for the 

PEG monolayer.  Figure 6a shows the atom percent values for the C 1s spectra as a function 

of ablation time.  It can be seen that at time zero the total carbon content is ~21%.  After only 

30 seconds of ablation time the carbon content is reduced to values comparable to those of 

clean silicon (dummy point at 240 seconds).  After 30 seconds of ablation little change is 

seen in the carbon content of the samples tested.   

The ablated PEG samples were then reacted with DETA to determine which ablation 

times yield optimal backfill of DETA into the patterned PEG monolayer.  Figure 6b shows 

the percent nitrogen content versus ablation time.  As seen in Figure 6a, at thirty seconds of 

ablation time nitrogen content values consistent with those of a normal DETA monolayer are 

observed.  Beyond 30 seconds nitrogen content values are consistent with those found in a 

normal DETA monolayer.  Figure 7 shows representative XPS spectra of a PEG coated 

silicon wafer ablated for 45 seconds by DUV photolithography.  It should be noted that in 

these spectra the C-O component of the C 1s spectrum is drastically reduced compared to the 
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C-C component (figure 7).  This is evidence that the C-O bond of the PEG silane is photo-

labile at 193 nm and is the site of reaction during photoablation. 

 

Figure 6: A) Atomic percent of C1s signal vs. ablation time.  After 30 seconds atomic 
percent of C1s is comparable to that of clean Si. B) Atomic percent of N1s signal vs. ablation 
time.  Ablated samples were reacted with 0.1% DETA for 30 minutes to form a monolayer of 

DETA in ablated regions. 
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Figure 7: Representative XPS spectra of ablated PEG monolayer on silicon. Survey 
spectrum and high resolution C 1s and N 1s (inset). 

 

For the culture of cells on patterned PEG-DETA surfaces it was important to verify a high 

level of contrast between the PEG and DETA portions of the pattern.  Therefore, it is 

important that a minimum of DETA be incorporated into the PEG portion of the pattern.  If 

DETA were able to freely react with the PEG monolayer, an over-layer of DETA would be 

formed on the PEG and effectively eliminate the surface contrast and hence the cytophobicity 

of the PEG surface.  Also, it was necessary to optimize the reaction time to ensure DETA 

monolayer formation on the ablated regions while minimizing incorporation into the PEG 

regions.  Figure 8 shows the nitrogen content as measured by XPS on control PEG samples as 

well as samples that had been ablated for 45 seconds versus reaction time.  The blue trace 

shows the nitrogen content of DETA backfilled onto ablated samples.  Here it can bee seen 

that at 30 minutes the nitrogen content reaches a level suitable for cell culture.  Samples 

incubated for 20 minutes or less, while showing substantial DETA incorporation, are slightly 

lower than what is optimal for culture (~7.5).  Conversely it can be seen in the blue trace that 

after 10 minutes of reaction time, the relative nitrogen content incorporated onto a control 

PEG sample does not change.  DETA incorporation into a PEG monolayer reaches its 

maximum before 10 minutes reaction time.  This is important to know as it becomes clear 
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that longer reaction times can be used to optimize DETA coating on ablated samples while 

not sacrificing incorporation of DETA into the PEG coating. 

Incorporation of DETA into Control vs. Ablated PEG
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Figure 8: Nitrogen content incorporated into control vs. ablated PEG monolayers as a 
function of reaction time. 

As noted in the previous section the contact angle of an unablated PEG surface reacted 

with DETA does not significantly differ from that of a control PEG surface.  XPS analysis 

was performed to compare spectra from control PEG monolayers to that of unablated PEG 

monolayers reacted with DETA for 30 minutes at 65oC (Figure 9).  It can be seen from both 

the survey and high resolution spectra that only a very small amount of nitrogen can be 

detected (~1.9%).  This evidence lends support to the hypothesis that the methoxy-terminated 

PEG-silane effectively protects the PEG monolayer from reaction with the DETA silane 

allowing the formation of high contrast alkylsilane monolayer patterns. 
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Figure 9: Representative XPS of unablated PEG monolayer reacted with DETA for 30 
minutes at 65oC. Survey spectrum and high resolution C 1s and N 1s (inset).  

 

In order to test whether the nitrogen detected on the control PEG samples was due to 

covalently linked or physically adsorbed DETA, samples were sonicated for 30 minutes in 

dry toluene to attempt to remove adsorbed silane.  XPS analysis showed that after sonication 

the measured nitrogen content was identical to that in unsonicated samples.  This suggests 

that the DETA was covalently linked to the surface although it is unclear what mechanism it 

occurs by (Data not shown). 

Figure 10 shows XPS spectra for a control DETA surface.  The C 1s component of the 

XPS spectrum shows two components at 285.5 eV and 286.7 eV, which correspond to 

aliphatic carbon (C-C) and carbon in an amine (C-N) bonded environment respectively.  The 

primary component of the carbon signal comes from the C-N component, which is expected 

as 5 of the 7 carbon atoms in DETA are bonded to nitrogen.  The ratio of the two peaks 

reflects this (Table 1).   
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Figure 10: Representative XPS of control DETA monolayer. Survey spectrum and high 
resolution C 1s and N 1s (inset). 

 

Figure 11 shows XPS spectra of DETA backfilled into an ablated PEG monolayer.  The 

DETA monolayer deposited onto the ablated PEG surface was comparable to that of the 

control DETA deposited onto clean glass with some slight differences.  The analysis of the N 

1s spectrum shows that the amount of nitrogen present, 7.4 % (Table 1), was suitable for cell 

cultur.  The C 1s spectrum shows, as with the control sample, the primary component of the 

C1s signal is centered at 286.7 eV, which corresponds to an amine bonded carbon.  An 

aliphatic component is present at 285.5 eV and a small component at 288.9 eV which 

corresponds to carbon in a highly oxidized state such as an amide or carboxylic acid group.  

This component of the signal may be due to oxidized carbon residue resulting from the 

ablation reacting with the amine containing DETA.  The precise nature of carbons in this 

chemical state cannot be deduced from the data presented here. 
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Figure 11: Representative XPS of ablated PEG monolayer reacted with DETA for 30 
minutes at 65oC. Survey spectrum and high resolution C 1s and N 1s (inset). 

 
Table 1: Relative content and chemical states of carbon and nitrogen on silane surfaces. 

 Clean Si 
Control 

PEG 
Ablated 

PEG 

DETA on 
control 

PEG 

Ablated 
PEG-
DETA 
backfill 

PEG on 
control 
DETA 

Control 
DETA 

N1s 0.0±0.0% 0.0±0.0% 0.0±0.0% 2.2±0.6% 7.4±0.7% 5.9±0.1% 7.8±0.8%

C-O/C-N 0.0±0.0% 18.3±1.3% 1.6±0.2% 16.8±0.8% 14.6±1.5% 18.0±2.8% 12.1±.03%

C-C 5.1±0.5% 2.9±0.3% 3.9±0.7% 3.6±0.8% 6.0±2.1% 10.4±2.6% 9.4±0.8%

COO 0.0±0.0% 0.0±0.0% 0.3±0.1% 0.9±0.9% 2.8±0.3% 2.1±0.2% 0.0±0.0% 

 

Figure 12 shows representative XPS spectra of PEG reacted onto a control DETA 

surface.  Samples reacted with DETA then PEG respectively yielded surface properties 

intermediate to those of either PEG or DETA alone.  The high resolution spectrum of the C 

1s region shows that the dominant peak is found at 286.9 eV, which corresponds to either the 

ether or amine group found in PEG and DETA surfaces respectively.  However, the ratio of 

the ether/amine peak to that of the aliphatic carbon is intermediate to that of PEG and DETA.  

This suggest that this set of conditions yields a mixed monolayer that is neither completely 
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PEG of DETA.  As previously stated, the contact angle measurements support this conclusion 

as the contact angle lies in between that of pure PEG and DETA surfaces.  It is possible that 

this is due to PEG silane reacting directly to the free terminal amine of DETA, as it is a good 

nucleophile.  This data also serves as further evidence that the methoxy-terminus of the PEG 

silane effectively protects it from reaction with the DETA silane during backfilling. 

 

Figure 12: Representative XPS of PEG reacted onto a control DETA surface for 30 
minutes at 65oC. Survey spectrum and high resolution C 1s and N 1s (inset). 

Metallization and cell culture 

Various types of cells were cultured on PEG-DETA surfaces to verify the usefulness of 

this method for cell patterning. Figure 13 shows the results for both metallization and culture 

of different cell types on PEG-DETA patterns. Figure 13a-c-e show palladium catalyzed 

metallization of DETA.  In these images the metalized pattern corresponds to the dark 

regions of the picture.  The pattern in Figure 13a consists of a series of 100 um wide lines 

used for culturing embryonic skeletal muscle.  The patterns were used to mimic the geometry 

that would be used in future experiments on microfabricated silicon cantilevers. Figure 13c 

consists of an array of 30 m x 30 m squares and Figure 13e is a pattern designed 

specifically for creating 2-cell networks of hippocampal neurons.  The metallization results 

confirm that the combination of PEG and DETA creates high contrast patterns that should be 

suitable for cell culture.  Since the copper reduction reaction only occurs on regions 
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containing the amine-terminated DETA, it can be seen that the DETA is confined primarily 

to regions where the PEG had been ablated.  This result is in agreement with the XPS 

analysis and the hypothesis that the methoxy-terminated PEG used for these studies resists 

incorporation of DETA.  A limited amount copper of deposition can be seen on the PEG 

regions of the DETA backfilled patterns, which indicates a small amount of nitrogen present 

in the PEG regions.  This also is in agreement with XPS analysis, which shows a low level of 

nitrogen signal in unablated PEG samples reacted with DETA.  It was possible that this low-

level copper deposition could be due to reduced copper precipitating out onto the background 

in a non-specific manner.  For this reason, metallization experiments were performed on 

unablated PEG surfaces (results not shown), which confirmed that no copper deposition was 

seen on native PEG surfaces.  Thus, it can be concluded that a small yet detectable amount of 

DETA is being incorporated into the PEG regions.  Both XPS and contact angle analysis 

indicated that the amount of DETA incorporated in to the PEG regions is not sufficient to 

alter the surface properties from cytophobic to cytophilic, since the nitrogen content is well 

below that used in cell culture and the contact angle was indistinguishable from control PEG 

surfaces.  Cell culture experiments confirmed that these surfaces were suitable for cell 

patterning. 
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Figure 13: Metalized PEG-DETA patterns and resulting cell cultures with varying cell 
types. A-C-E) Metallization results for three different patterns (A, 100 m lines; B, 30 m x 
30 m squares; C, two-cell circuit pattern). B-D-F) cells cultured on PEG-DETA patterns (B, 

embryonic skeletal muscle; D, embryonic motorneuron; F, hippocampal neurons). 
 

Multiple cell types were cultured on the PEG-DETA surface to verify that this method is 

broadly applicable to patterning cells on two dimension surfaces.  Figure 13b-d-f shows 

phase contrast microscopy images embryonic skeletal muscle, motorneuron, and 
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hippocampal neuron respectively.  In all cases the cells were confined to the DETA regions 

of the patterns and adhered to the patterns for the duration of the culture.  Figure 13b shows 

embryonic skeletal muscle cultured on 100 m wide lines of DETA.  It can be seen that the 

cells adhered and differentiated on the DETA regions of the lines.  Myotube assembly was 

anisotropic with myotubes orienting themselves along the long axis of the pattern. This 

behavior has been demonstrated before using mouse skeletal muscle cell lines on 

microcontact printing patterned surfaces17.  The myocytes then fused and differentiated into 

functional myotubes that exhibited spontaneous contraction as well as contraction under 

electrical stimulation.  

Embryonic motorneurons were also cultured on PEG-DETA surfaces.  Figure 13d shows 

phase contrast images of motorneurons cultured for 10 days on surfaces patterned with an 

array of 30 m x 30 m DETA squares.  It can be seen that it is primarily the cell bodies that 

adhere to the square pattern, while processes can be seen to extend across the PEG regions to 

contact cells on other squares.  It was common to see cells extend processes onto the PEG 

while the cell bodies remained attached to the DETA regions.  This indicates that while the 

PEG is a cytophobic surface, it is not completely repulsive to attachment of cell processes.  A 

discussion of the difference between the mechanisms of cell soma versus process adhesion is 

beyond the scope of the current study.   

Figure 13f shows embryonic hippocampal neurons cultured on PEG-DETA patterns 

designed for creating two-cell circuits.  The pattern consisted of two circular regions (20 m 

diameter) intended for adhesion of the cell bodies.  These circular regions were connected by 

2 m lines that extend in an arc from one somal adhesion site to another.  The somal 

adhesion sites were further surrounded by dashed lines extending radially from the somal 

adhesion sites.  This geometry served to induce a specific polarity in the neurons similar to 
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Ravenscroft et al.12, such that they would extend a dominant process (which would become 

the axon), which would contact the soma of the opposing cell.  The image in Figure 13f 

shows cells adhering to the pattern shown in figure 12e.  Cell bodies can be adhered to the 

circular regions for somal adhesion and sending out axonal processes which follow the lines 

connecting the two cell bodies  

Figure 14 shows results from embryonic skeletal myoblasts cultured on PEG-DETA 

patterns over 41 days.  Embryonic skeletal myoblasts were cultured on 100 m wide lines of 

DETA patterned on PEG surfaces.  After 5 days the myoblasts fused and differentiated into 

myotubes.  Figure 14a-d shows myotubes formed on the DETA lines after 9, 16, 26, and 41 

days in culture respectively.  It can be seen that after 26 days in culture the number of 

myotubes adhering to the patterns is reduced when compared to earlier culture days.  This is 

in part due to the functional myotubes spontaneously contracting on the substrate and 

detaching.  Despite this, a significant number of myotubes remain attached to the patterns.  It 

can also be seen that the areas between the DETA lines remain relatively free of migrating 

cells and cell debris.  This long-term maintenance pattern contrast and fidelity will prove 

critical in the application of this technique for creating long-term patterned cultures that can 

be used to create in vitro models for the study of cellular development, cell-cell interactions, 

and cellular response to exogenously applied compounds(growth factors, drugs, toxins, etc). 

Conclusions 

A novel method for patterning cells with alkylsilane monolayers was developed.  PEG-

terminated monolayers were used a cytophobic surface to prevent cell adhesion.  The PEG 

monolayers were then patterned using DeepUV photolithography according to Stenger et al 

56.  The patterned monolayer was then reacted with the amine-terminated silane DETA to 

create cell-adhesive islands in the non-adhesive PEG regions.  Patterned and unpatterned 
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surfaces were analyzed by XPS, contact angle goniometry, and palladium catalyzed copper 

reduction metallization.  This technique was used to pattern various cell types (motorneuron, 

hippocampal neuron, and skeletal muscle).  Furthermore it was shown that cells were 

confined to the patterns for time periods in excess of 40 days. 
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Figure 14: Skeletal muscle on patterned PEG-DETA surface remained confined to the 
DETA regions of the pattern up to 41 days on 100 m wide lines.  A) 9 days in culture, B) 16 
days in culture, C) 26 days in culture, D) 41 days in culture.  Although many of the myotubes 
had pulled off the surface due to spontaneous contraction, the remaining myotubes were still 

confined to the patterns.. 
 

Characterization of unpatterned and patterned surfaces showed that this method produces 

high-contrast 2-dimensional silane patterns with characteristics suitable for cell culture.  XPS 

analysis showed that the PEG silane can be ablated sufficiently to create a surface suitable for 

rederivitization with a DETA monolayer capable of supporting cell adhesion, growth, and 

differentiation.  Furthermore, it was shown that the DETA did not significantly incorporate 

into the PEG regions.  Because of this the contrast between adhesive and non-adhesive 

regions was maintained.  Contact angle measurements show that the wetting properties of the 

unablated PEG monolayers reacted with DETA are identical to those of control PEG 

surfaces, while the contact angle of DETA monolayers formed on ablated PEG are identical 

to that of control DETA surfaces.  Also, metallization of the patterned DETA regions 

demonstrated that the amine silane is confined to the ablated PEG regions resulting in a high-

contrast pattern.  It is hypothesized that the lack of incorporation of DETA into the PEG 

regions is due to the methoxy-terminus on the PEG silane.  Control experiments in which the 

PEG silane was reacted onto a DETA monolayer resulted in a hybrid surface with contact 

angle and elemental composition intermediate to that of PEG and DETA.  

Cell culture experiments showed that this technique creates surfaces suitable for culturing 

a wide variety of cell types.  Culture results for hippocampal neurons, motorneurons, and 

skeletal muscle are presented.  The applicability of this technique to such a broad range of 

cell types make it ideal for creating complex cocultures with multiple cell types.  This can be 

used for creating in vitro systems that can be used as models for in vivo biological circuits 
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such as neuronal networks and neuromuscular constructs.  In this manner in vitro test beds 

can be created that control the spatial orientation of the cells in question on a well-defined 

substrate and in a highly controlled culture environment. 
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CHAPTER THREE: PROTEIN ADSORPTION TO ALKYLSILANE 
MONOLAYERS AS MEASURED WITH A WHISPERING-GALLERY 

MODE BIOSENSOR 

Introduction 

Protein adsorption 

Non-specific binding (adsorption) of biomolecules at solid-liquid interfaces is an 

important phenomenon that affects the function of materials and devices intended for use 

with biological systems.  Biomolecule adsorption is a crucial factor in determining detection 

limits, biocompatibility, and long-term efficacy of lab-on-a-chip, microfluidic, and Bio-

MEMS devices due to loss of analyte by adsorption and fouling of microchannels and active 

sensors.  Proteins are particularly notorious for their ability to non-specifically stick to 

materials.  An excellent review of protein adsorption is provided by Andrade and Hlady 69.  

The inherent variability of protein sequence and structure make the prediction of protein 

adsorption from first principles an intractable problem.  Thus, it is necessary to devise elegant 

experimental solutions for making empirical observations that can be used to develop better 

models for predicting how various surface/protein combinations will interact.  

There are many different methods for studying adsorption of biomolecules, such as radio-

labeling, fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy 

(XPS), ellipsometry, and the surface plasmon resonance (SPR) technique, all of which have 

strengths and weaknesses.  Ideally a technique for studying adsorption should be highly 

sensitive, label free, suitable for high throughput applications, and allow for real-time 

monitoring of adsorption kinetics.  Currently the standard method for studying adsorption of 

biomolecules at liquid-solid interfaces is SPR.  SPR is a mature technique that is label free, 

allows real-time monitoring, and boasts an ultimate detection limit of ~10 pg/mm2,70.  

However, SPR is not suitable as a high throughput technique.  Furthermore, due to the small 
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volumes and low sample concentrations used in many applications sensitivity approaching 

the single molecule regime is highly desirable.    

Surface Chemistry Effects 

It is well known that the chemical composition of the outermost few nanometers of a 

material’s surface largely determines the biocompatibility of that material 71.  The Gibbs free 

energy of interaction between a surface and protein, G, can be used as a general predictor of 

adsorption.  The Gibbs free energy equation is written as: G = H-TS, where H is the 

change in enthalpy upon adsorption, S is the change in entropy, and T is the temperature of 

the system in Kelvin.  Surfaces can be loosely classified into three categories that have been 

shown to have distinct behavior with respect to protein adsorption: 1) neutral hydrophobic, 2) 

neutral hydrophilic, 3) and charged hydrophilic. 

Hydrophobic surfaces (particularly those consisting of alkane moieties) generally exhibit 

high levels of protein adsorption.  This is largely attributed to the entropic benefits gained 

from a hydrophobic material shedding its hydration layer in favor of interacting with 

hydrophobic residues on a protein surface.  Proteins with hydrophobic internal residues may 

also denature, exposing those internal residues to a hydrophobic surface thus, reducing the 

solvent accessible surface of the entire system, further increasing entropy.  This denaturation 

of the protein, however, leads to irreversible binding and an undesirable loss of function.  

This phenomenon is well documented in the biomaterial literature 69, 72, 73. 

Hydrophilic surfaces (-OH, PEG) are considered the most inactive towards protein 

adsorption.  The ability of a hydrophilic surface to hydrogen bond with water creates an 

enthalpic barrier to protein adsorption.  It is energetically unfavorable for both the material 

and protein surface to shed their bound water in favor of an adsorbed state, which in the case 
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of a neutral surface would be dominated only by weak Van der Waals forces.  These surfaces 

cannot be said to be completely passive towards adsorption, however.  Various papers have 

shown that proteins do adsorb somewhat on hydrophilic surfaces, just in comparatively small 

amounts.  Proteins can retain their native conformation on a hydrophilic surface as well, 

allowing them to retain their function 53, 54, 74, 75. 

Protein adsorption on charged surfaces is dominated by the electrostatic interactions 

between the surface and protein.  The extent of protein adsorption has been shown to vary 

with pH 69.  At the isoelectric point (i.e.p.) of a protein, adsorption varies mainly with 

temperature indicating that entropic contributions dominate in the absence of charge/charge 

interactions.   Bovine serum albumin (BSA), for example, has a net negative charge at pH 7.4 

and will adsorb strongly to a positively charged surface while adsorbing much less on a 

negatively charged surface.  At the i.e.p. of BSA little difference can be measured.  The 

extent to which a protein adsorbs to a charged surface is not strictly dictated by net charge, 

however.  The charge distribution on a protein surface may be inhomogeneous and posses 

enough local charge for it to adsorb, thus affecting not only the extent of adsorption but also 

the accessible binding surface of the protein.  This effect has been reported in the 

biomaterials literature for several proteins, such as fibronectin (FN) 53, 74, 75 and osteopontin 

(Opn) 54.  It has been shown that, while the total amount of protein adsorbing to negatively 

and positively charged surfaces is comparable, there are significant differences in the binding 

of antibodies to specific binding motifs as well as effects on cellular adhesion, proliferation, 

and differentiation.  

WGM biosensors 

The so-called Whispering gallery mode (WGM) sensors derive their name from the 

whispering gallery of St. Paul’s cathedral in London, where two people standing at 
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diametrically opposed sides of the room can clearly hear whispers from each other due to the 

resonance of sound waves within the gallery. WGM sensors are based on the total internal 

reflection of light within a dielectric resonator, usually a glass microsphere.  Light is 

evanescently coupled to a glass microsphere with a radius of 100-500 m, from an acid 

etched or flame drawn optical fiber connected to a tunable laser at one end and an InGaAs 

photodetector at the other. The resonant wavelength of the incident light is related to the 

radius, r, of the glass microsphere by the simple equation, N x  = 2πr, where  is the 

wavelength of light, and N is an integer number.  Upon resonance the incident photons 

couple with the microsphere reducing the transmitted light through the optical fiber to almost 

zero.  As the photons orbit the microsphere they form a standing evanescent wave of light 

that extends ~200 nm from the surface76, 77.  The tunable laser source is then swept through a 

range of wavelengths and the shift of the resonant peak is monitored by computer software.  

The change in the resonant peak, , is related to the thickness, t, of the adsorbed layer by 

the equation /=t/r.  Thus as material is adsorbed from solution, increasing the effective 

radius of the microsphere, the resonant peak shifts to longer wavelengths.  Even with a 

simple experimental configuration it has been shown that a detection limit of ~1 pg/mm2 can 

be achieved (10 times more sensitive than SPR) and theoretical calculations predict the 

ultimate detection limit of the method to be in the single molecule regime78, 79.   

The limit of detection for WGM biosensors is determined by the number of orbits that a 

photon can make in a resonator before being absorbed or scattered 78.  In a perfect resonator 

with no loss of photons a sharp resonant line would be observed at the resonant wavelength, 

.  In reality, however, any resonator experiences losses that limit the number of orbits to a 

finite number and the resonance to a certain line width, .  A resonant shift can only be 

measured if it is greater than the width of the resonant line.  For this reason a quality factor 
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has been defined, Q = /  to compare resonators and determine the limit of detection for a 

particular resonator.  Under ideal conditions, atmospheric conditions where nascent water 

vapor adsorbed to the silica surface has been prevented, ultimate Q’s of 1010 have been 

reported 80.  Due to vibrational light absorption by H2O molecules, resonators in an aqueous 

environment are typically limited to Q values of 106.  Even with these relatively modest Q 

values, it is possible to detect an adsorbed layer thickness of 10 picometers or 0.1 Å.  This is 

well below the dimensions of even the smallest proteins. 

Using this technique it is possible to quantitatively analyze a variety of parameters related 

to protein adsorption, such as adsorption kinetics, binding and debinding constants, and total 

surface density.  Vollmer and coworkers 79 have developed a method based on first order 

perturbation theory that allows the calculation of the surface density of the adsorbed species, 

s, based on the measured change in resonant wavelength, : 
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    Equation 1 

where  is the nominal resonant wavelength, ex is the excess polarizability (which is related 

to molecular weight), o is the vacuum permittivity, R is the microsphere (resonator) radius, 

and n1 and n2 are the refractive indices of the sphere and the buffer solution respectively.  

With this method it is possible to monitor the development of the adsorbed protein layer as a 

function of time.  Furthermore, since the dimensions of a protein molecule (usually less than 

20 nm) are much smaller than the length of the evanescent field of the WGM, the resonant 

shift can be considered to be linearly proportional to the thickness of the adsorbed layer. 

WGM biosensors are highly suitable for high throughput applications.  WGM devices can 

be fabricated in large arrays on silicon wafers using standard photolithographic techniques.  

Resonators can be fabricated as simple disk 81, toroid 82, or microcavities in large arrays 83.  
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Variations in diameter give each of the microcavities a distinct resonant wavelength that can 

be tracked using a single waveguide or fiber optic.  One particularly promising application 

for such an array is for label-free detection of DNA for sequencing and genetic analysis 81, 84.  

The creation of a WGM biosensor array is beyond the scope of the current work, but provides 

tantalizing possibilies for future applications.  Furthermore, as the resonators are made of Si 

or SiO2, they are amenable to functionalization with alkylsilanes monolayers, which are 

broadly used in biomaterials and biosensing applications.  With this method it is possible to 

perform real-time, label-free measurements of protein adsorption onto silanized microspheres 

and characterize the interactions of the protein with various SAMs.  

Here a WGM biosensor has been constructed for real-time measurement of the adsorption 

of proteins onto alkylsilane self-assembled monolayers.  The system is based on that of 

Vollmer and coworkers, but incorporates a novel flow cell for the delivery of sample to the 

resonator surface under laminar flow conditions.  Adsorption of the extracellular matrix 

protein Fibronectin (FN) and the enzymatic protein glucose oxidase (GO) were studied at 

varying concentrations on PEG, DETA and 13F alkylsilanes SAMs.  

Materials and methods 

WGM instrument 

A simplified schematic representation of the instrument used in these experiments is 

shown in Figure 15.  The instrument can be broken down into three components: the fluidic 

system, the laser and detector, and the data acquisition and analysis system.  The fluidics 

system is comprised of a peristaltic pump for delivery of the buffer and protein solutions to 

the sensor, the flow cell for housing the resonator and waveguide and focusing the buffer and 

protein solutions onto the resonator, as well as a waterbath for keeping solutions at a constant 

temperature.  The laser and detection system consist of a tunable distributed feed-back (DFB) 
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diode laser, an arbitrary function generator, a current and temperature control unit for 

controlling the DFB laser, and an InGaAs photodetector.  The data acquisition and analysis 

system was comprised of a computer with a data acquisition card with Labview software for 

acquiring the data, and data analysis software for calculating the surface concentration of 

adsorbed protein. 

 

Figure 15: Schematic representation of WGM biosensor system. The instrument was 
comprised of three components, a fluidic system for driving buffer and protein solutions 
(dashed lines), the laser and detection system (dotted lines), and the data acquisition and 

analysis system (dotted and dashed lines). 

Laser and detection system 

The laser and detection system was based from that described by Vollmer et al 79. A 

Lucent D2304G DFB laser diode with a nominal wavelength of 1310 nm and maximum 

power output of 10 mW was used as the excitation source in for all experiments.  This laser 

contained a built-in optical isolator to prevent backscattering of the emitted light back into 
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the laser module itself and was connectorized with an FC/PC connector.  The laser was 

mounted on an LDM-4984 butterfly laser diode mount (ILX Lightwave Corp, Bozeman, MT) 

and controlled with a LDC 3724B single channel current and temperature controller (ILX 

Lightwave Corp, Bozeman, MT).  The wavelength of the DFB laser was modulated using an 

HP 33120A arbitrary waveform generator.  The waveform generator was connected to the 

modulation input of the laser controller and the transfer coefficient was set to 20 mA/V.  

Under these conditions, for a change of 1 V the laser current was modulated by 20 mA, thus 

changing the wavelength emitted by the DFB laser in a current dependent manner.  For all 

experiments a saw-tooth function with a variable peak-to-peak height was used to modulate 

the laser at a frequency of 100 Hz.  The laser output was coupled to an FC/PC optical fiber, 

the end of which was connected, via a BNC cable, to a Thorlabs model PDA10CF InGaAs 

photodetector.  The photodetector was connected to a Labview M-series data acquisition card 

and the signal from the detector was analyzed using a virtual instrument software written 

Labview 7.0 (National Instruments, Austin, TX).   

The data acquisition software was modified from virtual instrument (VI) files kindly 

provided by Dr. Frank Vollmer of the Rowland Institute at Harvard University.  The data 

acquisition VI tracked all resonant valleys in the acquired spectrum using a peak fitting 

algorithm that selected all valleys with a minimum FWHM value set within the VI and 

determined the position of the valley minimum using a Bessel function.  The data acquisition 

was synchronized with the saw-tooth function created by the function generator such that 

acquisition began at the minimum and ended at the peak of the function.  The position of 

each resonance over time was saved to a binary file to be analyzed later. 
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Microsphere fabrication 

Microspheres were fabricated according to Vollmer et al 79.  A single mode fiber optic 

with a 250 m acrylate polymer coating and 125 m cladding with a 9 m core (Fiber 

instrument sales, Oriskany, NY) was used to fabricate resonators.  The acrylate coating was 

first removed using a fiber optic stripper and the stripped region wiped with a Kimwipe 

soaked with IPA to remove any residual acrylate.  The end of the stripped fiber was then 

placed in the flame of a nitrous-butane Microflame torch (Azuremoon trading company, 

Cordova, TN).  A nitrous-butane flame was used due to the very high temperatures needed to 

melt the glass and form the resonator (~2500oC).  The tip of the fiber was placed in the flame 

until the glass was seen to glow a bright white color and begin to melt.  As the glass fiber 

melted the surface tension of the molten glass caused it to form into a spheroidal droplet 

suitable for exciting WGM resonances.  As the tip melted the fiber was rotated to ensure that 

the resonator remained centered on the stalk of the fiber.  This process was repeated until a 

resonator of the desired size was obtained (Figure 16).  Resonator diameters used for these 

studies ranged from 250 to 350 m.  For studies of protein adsorption on glass, the resonators 

were used immediately after fabrication.  Glass resonators made by this method had a contact 

angle of <5o. 
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Figure 16: Fabrication of glass microspheres.  The cladding was stripped from a section 
of the fiber and wiped with IPA.  Then the tip of the stripped end was placed in a nitrous-
butane flame while being rotated.  Surface tension of the melting glass formed a spherical 

droplet that was used as a microresonator. 

Surface modification of microspheres with silane monolayers 

Glass microspheres were mounted into a resonator holder made from a perforated PDMS 

block which was adhered to a glass microscope slide.  The resonators were inserted into the 

PDMS block with the resonator protruding out of the block (Figure 17).  Glass microspheres, 

and glass coverslip controls for XPS and CA analysis, were then placed in a Harrick model 

PDC-32G plasma cleaner (Harrick, Ithaca, NY).  The door of the plasma cleaner was closed 

and the chamber was evacuated to a pressure of 300 millitorr.  Ultrapure oxygen was then 

purged into the system to a pressure of 800 millitorr, and evacuated again to 300 millitorr.  

Oxygen plasma was initiated by applying a RF field around the chamber.  After initiation of 

the plasma, the pressure in the chamber was adjusted to ~550 millitorr.  Cleaning was 
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allowed to proceed for 20 minutes.  After cleaning the resonators and coverslips were 

removed for subsequent silane reaction. 

 

Figure 17: Surface modification of microspheres.  Microspheres were first mounted in a 
PDMS block.  They were then cleaned using an O2 plasma.  Cleaned microspheres were then 

immersed in solutions containing DETA, 13F, or PEG. 
 

Modification with PEG and DETA silanes was performed as previously described in 

Chapter 2, with slight variation.  Solutions of silane in toluene were prepared as described 

and transferred to 250 ml Pyrex beakers.  The microspheres mounted onto the resonator 

holder were then inverted and immersed in the silane solution such that the microspheres 

were immersed in the solution and suspended from the holder.  Microspheres coated with 13F 

were immersed in a 0.1% (vol:vol) solution of 13F silane in dry toluene.  Dry toluene, 

resonators, and control coverslips were transferred into an MBraun glovebox (Stratham, NH) 

to perform the 13F modification under anhydrous, low oxygen conditions.  This step was 

necessary to prevent polymerization of the 13F monomer, as it is a trichloro-silane which is 

highly reactive in the presence of water vapor.  13F was added to the dry toluene, mixed and 

transferred to a 250 ml Pyrex beaker.  The coverslips and microspheres were then immersed 

in the silane solution for 30 minutes.  5 minutes prior to completion of the reaction, the 

beaker was removed from the glovebox and place in a chemical fume hood.  Upon 

completion of the reaction, the microspheres and coverslips were washed 3x in dry toluene 
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and dried in an 80oC oven for 1 hour.  Control coverslips were analyzed by XPS and contact 

angle goniometry. 

Waveguide fabrication 

A 1.5 m section a single-mode fiber optic (125 m cladding/ 9 m core) (Fiber 

instrument sales, Oriskany, NY) was prepared by stripping a 1-2 cm section in the middle of 

the fiber and cleaning it with IPA.  The fiber was mounted on a syringe pump (KD Scientific, 

Holliston, MA) such that tension was applied on the stripped section of the fiber when the 

pump was running.  As tension was applied to the fiber and a nitrous-butane Microflame 

torch (Azuremoon trading company, Cordova, TN) was used to briefly melt a 0.5 to 1 cm 

section of the stripped portion of fiber.  As the syringe pump pulled the fiber taut the section 

was again melted with the torch, thus thinning the fiber in this short section.  This procedure 

was repeated until the tapered region of the fiber was approximately 10 m thick. 

Flow-cell fabrication and assembly 

A flow-cell was fabricated for PA experiments using polycarbonate blocks (l =50 mm, 

w=50 mm, h=6 mm).  The final device configuration can be seen in Figure 18.  The body of 

the flow cell was fabricated by milling out a channel (l =30 mm, w=3 mm, h=3 mm) in one 

of the polycarbonate blocks, Figure 18, this served as the fluid channel.  A channel for 

mounting the resonator (l =10 mm, w=3 mm, h=1.5 mm) was created at one end of the main 

channel. Another channel for mounting the resonator (l =50 mm, w=3 mm, h=1.5 mm) was 

also created.  A lid was fabricated using a similar polycarbonate block with 6-32 tapped holes 

aligned to the ends of the main channel, these served as the inlet and outlet ports.  Female 

Luer connectors with 6-32 tapped ends were threaded into the inlet and outlet ports, and 

sealed with hot glue. 
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Figure 18: Schematic of flow cell with waveguide and resonator mounted in place. 
 

After fabrication of the waveguide the cross-channel of the flow cell was aligned to the 

waveguide such that the narrowest region of the waveguide was centered in the main fluidic 

channel.  The flow cell was raised into place using a 3-axis micromanipulator (Newport, 

Irvine, CA) such that the waveguide was resting on the channel bottom.  The waveguide was 

sealed in place with Kwik-sil silicon elastomer adhesive (World Precision Instruments Inc., 

Sarasota, FL).  After the adhesive was set (approximately 10 minutes) the waveguide was 

connected to the laser and detection system.  The polymer coating on the free ends of the 

waveguide was stripped using a fiber optic stripper and cleaned with IPA.  The ends of the 

waveguide were then cleaved using a Fitel fiber optic cleaver (Furukawa Electric Co. Ltd, 

Tokyo) to ensure a clean flat break at the end of the fiber.  Having a clean break at the ends 

of the waveguide was critical to minimize insertion loss due to splicing optical fibers.  One 

end of the waveguide was inserted into mechanical fiber optic splice (Fiber instrument sales, 

Oriskany, NY) connected to the DFB laser and the other end was inserted into another 

mechanical fiber optic splice that was connected to the detector.  The laser was then turned 
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on to ensure sufficient laser intensity was being conducted through the waveguide.  The gain 

on the DAQ card and detector was adjusted to optimize signal to noise. 

Either a plain glass or silane-coated microsphere was then mounted into the flow cell.  A 

glass microsphere was taped to a 3-axis micrometer and aligned over the waveguide.  The 

microsphere was slowly lowered into contact with the tapered section of the waveguide.  

Upon contact with the waveguide resonances could be seen in the resulting spectrum on the 

data acquisition software.  The detector gain was adjusted again to optimize the signal 

intensity.  The microsphere was then aligned so that it was centered in the fluid channel and 

the stalk of the fiber was resting on the bottom of the microsphere channel.  The microsphere 

was then secured into place using Kwik-sil elastomer adhesive as with the waveguide.  After 

the adhesive had set the channels were primed with 50 mM PBS (pH 7.4).  Priming the 

channels ensured that no bubbles would be present in the flow cell when it was sealed. 

A 1 mm thick PDMS gasket was created to place between the lid and the body of the flow 

cell.  A 10:1 (wt:wt) mixture of Sylgard (Dow Corning, Midland, MI) and initiator was 

mixed and degassed the poured over a polished silicon wafer.  The mixture was allowed to 

settle on a flat surface then cured in a 65oC oven for 1 hour.  A 50 mm x 50 mm square was 

then cut out and holes were cut out for the inlet and outlet ports.  The gasket was aligned on 

the lid such that fluid could freely flow through the inlet and outlet.  The lid was then aligned 

using the mounting posts of the flow cell base plate and brought into contact with the body of 

the flow cell.  The lid was sealed to the flow cell using wing nuts to apply even compression 

across the lid.  More PBS was added through the inlet port using a hypodermic needle and 

syringe to displace remaining air in the flow cell.   

Buffer and protein solution were re-circulated using a peristaltic pump that flowed the 

solutions from 50 ml Pyrex bottles through the flow cell and back into the Pyrex bottle.  3-
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way stopcocks were used to switch between buffer and protein solutions.  Silastic tubing (1.6 

mm O.D., 0.76 mm I.D., Dow Corning) was used to connect the flow cell with the buffer and 

protein solution containers.  Holes were drilled in the lids of the Pyrex bottles for feed and 

return lines.  The tubing was run through the holes and secured into place using hot glue.  

Male Luer connectors (Harvard Apparatus, Cambridge, MA) were connected to the free ends 

of the feed and return tubes that were then connected to separate 3-way stopcocks with 

female Luer connections.  One stopcock was used for feed lines from the buffer and protein 

bottles and one was used for the return lines.  A length of tubing was then connected to the 

stopcock for the feed lines and threaded through the roller of a peristaltic pump.  The tubing 

was then primed with buffer to ensure no bubbles were present in the line.  The free end of 

the feed line was then fitted with a male Luer connector, which was then attached to the inlet 

connector of the flow cell.  A similar piece of tubing was connected to the outlet port of the 

flow cell and subsequently the stopcock for the return lines.  Using this system it was 

possible to switch between the buffer and protein lines without disturbing the flow field. 

Fibronectin adsorption experiments 

FN adsorption was measured on resonators modified with DETA, 13F, and PEG as 

previously described.  Adsorption experiments using Fibronectin (FN), M.W. 500kD, from 

bovine plasma (Sigma-Aldrich, St. Louis, MO) were performed to determine the extent to 

which it adsorbs onto the silanes chosen for this study, as it is a critical mediator of cell 

adhesion, focal contact formation and differentiation in many cell types.  Solutions of 10 

g/ml, 1 g/ml, 0.5 g/ml, and 0.25 g/ml in PBS (pH 7.4) were used for the WGM 

experiments.  Buffer solution was first flowed through the flow cell at rate of 150 ml/hr to 

equilibrate the system for at least 15 minutes.  After a stable baseline had been achieved the 
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protein solution was introduced.  Data was collected until a stable equilibrium had been 

achieved and no further adsorption was evident. 

Cell Culture 

To determine the biological activity of the protein on the various silanes, cell culture 

experiments were performed on silane-coated coverslips that had been treated with 1g/ml 

of FN in PBS (pH 7.4).  Embryonic hippocampal neurons and skeletal myoblasts were used.  

Cells were plated on FN coated coverslips and allowed to adhere for 1 hour.  After plating 3 

ml of culture media was added and cultures were maintained in a water-jacketed incubator at 

37oC and 5% CO2 for seven days.  Phase-contrast microscopy images were taken during the 

course of the culture to document the morphology of the cells and, in the case of skeletal 

myoblasts, the differentiation of the cells into functional myotubes. 

Embryonic Skeletal Muscle 

Skeletal muscle was dissected from the hind limb thighs of a rat fetus at embryonic day 

18 (Charles River Laboratories, Wilmington, MA) according to previously published 

protocol 37 with some modification. Tissue samples were collected in a sterile 15-ml 

centrifuge tube containing 1 ml of calcium and magnesium free phosphate buffered saline 

(PBS).   Tissue samples were enzymatically disassociated using 3 ml of 0.05% of trypsin–

EDTA (Invitrogen, Carlsbad, CA) solution for 60 min in a 37°C water bath with agitation of 

100 rpm.  After 60 min, the trypsin solution was removed and 6 ml of L15 media (Invitrogen, 

Carlsbad, CA) containing 10% fetal bovine serum (FBS) was added to terminate the trypsin 

action.  The tissue was then mechanically triturated using a sterile narrow bore Pasteur 

pipette, allowed to settle for 3 min, and transferred to a 15-ml centrifuge tube.  This was 

repeated three times.  The dissociated tissue was then centrifuged at 300g for 10 minutes at 
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4oC on 6 ml of a 4% (wt/vol) cushion of bovine serum albumin (BSA). The pellet was 

resuspended in 10 ml L15 + 10% FBS and plated in uncoated 100-mm Petri dishes for 20–30 

min depending on the amount of tissue, to allow contaminating fibroblasts to settle out.  After 

20–30 minutes the supernatant was layered on 6 ml of a 4% BSA cushion, and centrifuged at 

300g for 10 min at 4°C.  The pellet was resuspended in 1.5 ml of medium.  Purified myocytes 

were plated at a density of 500–800 cells per square millimeter onto the cantilevers.  

Myocytes were allowed to attach for 1 hour after which time 3 ml of culture medium 

(Neurobasal media containing B-27 [Invitrogen, Carlsbad, CA], Glutamax [Invitrogen, 

Carlsbad, CA], and Pencillin/Streptavidin) was added. Cultures were maintained in a 5% CO2 

incubator (relative humidity, 85%). Culture medium was exchanged every 4 days.  

Embryonic hippocampal neuron 

Rat pups at embryonic day 18 dissected from timed pregnant rats that were euthanized 

using CO2 asphyxiation. Embryos were collected in ice cold Hibernate E/ B27/ Glutamax™/ 

Antibiotic-Antimycotic.  The hippocampi were isolated from the embryonic brain and 

collected in tube containing 1ml of Hibernate E/ B27/ Glutamax™/ Antibiotic-Antimycotic. 

The embryonic hippocampal neurons were obtained by triturating the tissue using a Pasteur 

pipette. The 1ml cell suspension was layered over a 4 ml step gradient (Optipep diluted 1:1 

(vol:vol) with Hibernate E/ GlutaMAX™ / antibiotic-antimycotic/ B27 and then made to 

15%, 20%, 25% and 35% (vol:vol) in Hibernate E/ GlutaMAX™/ antibiotic-antimycotic/ 

B27) followed by centrifugation for 15 min, using 800g, at 4°C.  This additional step helped 

to remove the debris arise during dissection from the damaged cells. After centrifugation, one 

strong band of cells was obtained at the top. The pyramidal hippocampal neurons constituted 

this band with large somas. The cells were resuspended in culture medium (Neurobasal / B27 
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/ Glutamax™ / Antibiotic-antimycotic) and plated at a density of 75 cells/mm2 57, 64-68. Half 

of the medium was changed after every 3-4 days. 

Live-dead assay 

  A Live-dead assay (Invitrogen, Carlsbad, CA) was performed at day 7 to determine the 

amount of living versus dead cells on the coverslips.  Briefly, a solution containing 5 M of 

casein and 20 M ethidium bromide was prepared in 50 mM PBS.  Cells were washed 3x in 

PBS and incubated in the live-dead solution for 30 minutes.  Random images were taken on 

an epifluorescence microscope (Zeiss) and the number of live cells (green fluorescing) and 

dead cells (red-fluorescing) were counted.   

GO activity assay 

To further probe the extent of denaturation of proteins on silane surfaces the enzymatic 

protein glucose oxidase (GO), M.W, 160kD, was used in adsorption experiments.  By using 

GO it was possible to measure the enzymatic activity of the protein in solution versus when it 

was adsorbed to a surface.  GO was purchased from Sigma (St. Louis, MO).  Solutions of 100 

g/ml and 10 g/ml were prepared in PBS (pH 7.4).  Adsorption of GO was measured on 

DETA, PEG, 13F and glass as described in previous sections.  Enzymatic activity was 

measured using the Amplex Red glucose oxidase assay (Invitrogen, Carlsbad, CA).  

Resonators were soaked in 100 g/ml and 10 g/ml GO solutions for two hours in a round-

bottomed 96-well ELISA plate.  After two hours the resonators were washed 3x with PBS.  

The resonators were then transferred to a new 96-well plate and allowed to soak in 100 l of 

PBS for 2 hours to allow any reversibly bound GO to desorb from the surface of the 

resonator.  After 2 hours 50 l of the PBS was transferred to another well in the 96-well 

plate.  A solution containing 0.1 mM Amplex red, 0.1 mM Glucose, and 0.5 U/ml horseradish 
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peroxidase (HRP) was prepared.  50 l of the Amplex red solution was added to each of the 

wells containing the resonators and soak buffer.  The reaction mixtures were then placed in a 

Synergy HT multi-mode microplate reader (Bio-Tek, Winooski, VT) and the absorbance at 

530 nm was read for each well at 1-minute intervals.  Standard dilutions of GO of 100 ng/ml, 

50 ng/ml, 10 ng/ml, 5 ng/ml, 1 ng/ml, and 0.5 ng/ml were prepared and reacted with Amplex 

red reagent for all experiments. 

Data analysis 

Data analysis software was written using the Python programming language (Appendix 

A).  The binary file from an experiment was loaded into the software and the traces were 

reconstructed from the raw data.  During the reconstruction the change in position of the trace 

was plotted as the absolute wavelength shift versus time.  The trace from one resonance was 

chosen for further data analysis.  Continuous traces from resonances with the lowest FWHM 

value were chosen for analysis.  A linear baseline subtraction was applied to correct for 

baseline drift.  Surface concentrations were then calculated using Equation 1 from Vollmer 

and Arnold85, where s is the average surface concentration (in g/m2), r is the nominal 

wavelength of the resonance (1310 nm), r is the fractional wavelength shift of the 

resonance, ns is the refractive index of the sphere (1.46), nm is the refractive index of the 

medium surrounding the sphere (1.3357), ex is the excess polarizability of the protein 

molecule (0.184 cm3/g), o is the permittivity of free space, and R is the radius of the sphere.  

Sphere radii were measured from images taken by brightfield microscopy.  Multiple traces 

for each set of experimental conditions were averaged using MatLab data analysis software 

(Appendix B) and plotted using Excel. 

http://www.biotek.com/products/product_detail.php?pid=133�
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Results and discussion 

Fibronectin adsorption onto alkylsilane monolayers 

WGM measurements 

Adsorption of FN on DETA, 13F, and PEG coated microspheres was measured using the 

WGM biosensor. Figure 19 shows averaged sensograms for FN adsorption onto silane coated 

resonators (A,B,C) and the isotherms plotting the measured saturation values versus solution 

concentration (D).  Saturation values at the higher concentrations are in excellent agreement 

with previously published results 50, 51, 86 for FN adsorption measured by SPR onto 

alkanethiol SAMS with similar surface chemistries and contact angles.  It can be seen that for 

DETA, 13F, and PEG saturation at 10 g/ml solution concentration occurs at ~1.9 ng/mm2, 

2.1 ng/mm2, and 0.5 ng/mm2 respectively.  However, the amount of protein adsorption 

measured by our system at lower concentrations is significantly greater than that of 

previously published results.  At solution concentrations of 1 g/ml, FN adsorption onto 

DETA and 13F is measured to be ~1.5 ng/mm2 and ~1.4 ng/mm2 respectively.  Values 

reported for amine-terminated and methyl-terminated SAMS show saturation values of ~0.25 

ng/mm2.  Furthermore, adsorption measurements performed at solution concentrations as low 

as 0.25 ng/ml showed saturation values for DETA and 13F (~1.0 ng/mm2) that are higher 

than those previously published on similar surfaces, while those measure for PEG modified 

microspheres are below 0.1 ng/mm2.  These results indicate that, while the limiting surface 

coverage on silane monolayers is comparable to those of alkanethiol SAMS, FN has a higher 

affinity for silane SAMs.  SPR measurements by Michael et al. were performed under 

conditions that were shown not to be mass transport limited as with our system (data not 

shown).  Thus, these measurements likely reflect the true affinity of FN for the SAMs studied 

here. 
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Figure 19: Adsorption of FN onto DETA, 13F, and PEG coated microspheres.  Panels 
A,B,C shows adsorption sensograms of FN acquired with WGM biosensor on DETA, 13F 

and PEG microspheres respectively.  Panel D shows saturation values of FN versus solution 
concentration on DETA, 13F, and PEG. 

Cell culture on fibronectin adsorbed to alkylsilane monolayers 

Cell culture experiments were performed to determine the biological activity of FN on the 

silanes used for this study.  Embryonic hippocampal neurons (EHipp) and skeletal myocytes 

(ESM) were plated onto DETA, 13F, and PEG substrates that had been coated with 1 g/ml 

of FN in PBS.  The cultures were maintained for 7 days before live/dead assay was 

performed to determine the extent of cell survival.  Figure 20 shows results for EHipps 

cultured on silanes.  Panels A-C and D-F show phase contrast images of cells at 1 day and 7 

days in culture respectively.  It can be seen from these pictures that EHipp cells survive on 

DETA significantly more on DETA than on 13F or PEG surfaces.  Table 2 shows the results 
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for live versus dead EHipp cells counted on the various surfaces.  The lack of survival of 

cells on PEG surfaces can be attributed to a low amount of adsorbed FN.  However, on the 

amount of adsorbed protein measured on 13F surfaces is comparable to that of DETA.  Thus, 

the lack of cell is likely due to decreased bioactivity of FN on the strongly hydrophobic 13F.  

To further probe the activity of FN on the silanes used, embryonic skeletal myocytes (ESM) 

were cultured on substrates coated with FN. 

 

Figure 20: Embryonic hippocampal cells cultured on DETA (A-D-G), 13F (B-E-H), and 
PEG (C-F-I)coated substrates.  All scale bars represent 100 m. 

 

Table 2: Live/dead assay for embryonic hippocampal cells on silanes.  All values are 
units of cells/mm2. 

 DETA 13F PEG 

Live 212±102 1±3 4±5 

Dead 340±75 218±81 265±86 
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Skeletal myocytes are precursor cells that fuse and differentiate into contractile myotubes.  

This differentiation is mediated by, among other factors, the interaction of the 51 integrin 

receptors on the surface of the myocytes with the cell binding domain of the FN molecule 87, 

88.  Without this interaction the formation of myotubes does not take place.  Figure 21 shows 

results from cell culture experiments a 1 day and 7 days after plating.  At day 1 in culture 

dense myoctye adhesion can be seen on DETA coverslips coated with FN, while significantly 

less adhered cells can be seen on 13F and PEG.  Furthermore, on DETA coverslips myocytes 

can be seen to be taking on the spindle shaped morphology that is characteristic of activation 

of 51 integrin receptors.  Cells on 13F and PEG maintain an unelongated morphology.  

After 7 days in culture myocytes on DETA have begun to form long cylindrical myotubes.  

The myotubes could be seen to spontaneously twitch indicating that they were in fact 

functional myotubes.  After 7 days no myotube formation had occurred on either 13F or PEG 

coated substrates.  Table 3 show the resulting cells counts using the live/dead assay.  On 

DETA 178±43 live cells/mm2 and 35±13 myotubes/mm2 were counted, while 63±66 dead 

cells/mm2 were counted.  On PEG no live cells or myotubes were observe, but 111±59 dead 

cells/mm2 were counted.  The results for 13F showed that while a significant number of cells 

survived 50±32 cells/mm2 no myotubes formed and the number of dead cells 18±14 

cells/mm2 was actually less than that of PEG or DETA.  The fact that so many cells survived 

on the 13F substrates indicates that there is enough protein adsorbed to the surface to promote 

adhesion, however, the lack of myotube formation indicates that FN has a reduced biological 

activity and does not activate the 51 integrin signaling pathways necessary for myotube 

differentiation. 
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Figure 21: Embryonic skeletal muscle cultured on DETA (A-D-G), 13F (B-E-H), and 
PEG (C-F-I)coated substrates. 

 

Table 3: Live/dead assay for embryonic skeletal muscle on silanes.  All values are units 
of cells/mm2. 

 

 DETA 13F PEG 

Myotubes 35±13 0±0 0±0 

Live 178±43 50±32 0±0 

Dead 63±66 18±14 111±59 

 

Glucose oxidase adsorption onto alkylsilane monolayers 

To further characterize the amount of denaturation occurring during adsorption of 

proteins onto silane SAMs, the enzymatic protein glucose oxidase (GO) was studied.  By 
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using an enzymatic protein it was possible to use its catalytic activity as an indicator of its 

conformation on the surface.  Figure 22 shows WGM measurements of GO adsorption onto 

silane-modified resonators from solution concentrations of 100 g/ml and 10 g/ml 

respectively.  The data shown here vary qualitatively from the FN adsorption data in that 

there are significant differences in the amount of protein adsorbed on the DETA and 13F 

surfaces.  For the 100 g/ml data the saturation values can be seen to vary on the surfaces 

according to the trend DETA > 13F > Glass > PEG, while the trend for the 10 g/ml data 

follows the trend 13F > DETA > Glass > PEG.  It is as of yet unclear why this would be the 

case.  One possible interpretation is that on DETA, GO can form multiple layers at high 

solution concentrations.  As can be seen in Figure 22a, the adsorption curve for DETA starts 

at an initially high rate of adsorption then begins to slow at around 250 seconds.  At ~400 

seconds, however, the rate of adsorption begins to increase again.  The graph gives the 

impression of two super-imposed adsorption curves that would indicate multilayer formation.  

It is interesting to note that this behavior is only seen on DETA, which at physiological pH is 

positively charged.  This may be indicative of an electrostatically mediated adsorption 

process as GO has a net negative charge at physiological pH.  It should be noted, however, 

that the error bars on the DETA isotherm are quite significant.  This is most likely due to the 

variability inherent in the DETA coating procedure and more replicates of this set of 

conditions are required.  Saturation values for each set of conditions were tabulated for 

subsequent use in the activity calculations. 

The enzymatic activity of GO on the resonators was measured using the Amplex-red 

glucose oxidase assay89 (Invitrogen, Carlsbad, CA).  In this assay the oxidation of glucose 

and O2 to gluconate and H2O2 is coupled to the oxidation of the Amplex reagent by HRP to 

the reaction product resorufin, which has peak absorbance at 530 nm.  Silane coated 
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resonators with adsorbed GO (n=6 for all conditions) were immersed in the Amplex reagent 

and incubated at room temperature at room along with glucose standards for 30 minutes.  The 

absorbance at 530 nm was monitored over 30 minutes.  Figure 23 shows the change in 

absorbance over time for protein adsorbed on silanes from solution concentrations of 10 

g/ml and 100 g/ml.  It can be seen that for the 100 g/ml data, the protein adsorbed to the 

DETA, 13F, and glass still retain significant catalytic activity and follows the trend DETA = 

13F = glass >> PEG.  The activity does not follow the same trend as the saturation values, as 

there is no statistically significant difference between them.  Very little activity is seen for 

GO adsorbed to PEG.  The activity assay for protein adsorbed from solutions of 10 g/ml, 

however, shows a markedly different trend, DETA > 13F = glass = PEG.  For these data it 

can be seen that while significant activity remains for GO adsorbed to DETA, the activity on 

13F and glass is drastically reduced and is comparable to that of PEG.  These results also do 

not follow the adsorption trend.  For this reason it was necessary to normalize the activity 

data to the saturation values measured by WGM.  The normalized activity was used as an 

indicator of denaturation. 
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Figure 22: Glucose oxidase adsorption onto DETA, 13F, Glass, and PEG resonators from 
solutions of 100 g/ml (top) and 10 g/ml (bottom). 

 

In order to calculate the normalized activity a standard curve was first created using the 

glucose standards run with each experiment.  A linear regression line was fitted to the 

absorbance curves to calculate the rate of change in absorbance for each set of conditions.  

The slope of the line is the activity of the GO (units = min-1).  However as can be seen in 

Figure 23, the absorbance curves for conditions with higher activity were not linear.  This is 
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most likely due to the fact that the protein was localized to the resonator rather than being in 

solution.  This means that the rate of change in absorbance was limited by the diffusion of 

glucose to the resonator surface.  As the GO oxidizes the glucose around the resonator it 

becomes depleted, and since the catalytic rate of glucose oxidation by GO is limited only by 

the diffusion rate of glucose into the active site of the protein, depletion of the substrate 

around the resonator can slow the reaction rate.    Another possible source of this artifact is a 

competing reaction between the HRP, which oxidizes the Amplex reagent, and excess H2O2 

produced by GO which can oxidize the reaction product resorufin to resazurin89, which has 

different absorbance characteristics.  For these reason the linear regression line was fitted to 

the initial slope of the absorbance curves to capture the true catalytic activity of the GO 

adsorbed to the resonators.  Figure 24 shows the standard curve (Figure 24a) and 

representative linear regression fit (Figure 24b). 

 

Figure 23: Kinetic measurements of enzymatic activity of protein adsorbed onto silane 
modified resonators from solutions of from solutions of 100 g/ml (left) and 10 g/ml (right).  

 

To calculate the normalized activity, the slope of the regression line for the absorbance 

curve was used to calculate the corresponding solution concentration from the standard curve, 

and subsequently the mass of protein.  The average mass of protein adsorbed onto the 
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resonator was calculated using the surface concentration measured by the WGM biosensor 

multiplied by the surface area of the resonator.  The mass calculated from the activity assay 

was then divided by the average mass measured by WGM to yield the normalized activity.  

Figure 24c-d shows the resulting normalized activity data for GO adsorbed to the silanes 

used.  For GO adsorbed from solutions of 100 g/ml it can be seen that the normalized 

activity follows the trend glass > 13F = DETA > PEG.  These results show that the highest 

activity, and therefore the least amount of denaturation, occurs on glass at this concentration, 

while the lowest activity is found, surprisingly on PEG.  The normalized activities of GO on 

DETA and 13F were found not to be statistically different.  The trend found for GO adsorbed 

from solutions of 10 g/ml, however, show a different trend, DETA > 13F = glass = PEG.  

These results indicate that at different solution concentrations the activity of GO on DETA, 

while reduced, remains the same (normalized activity of GO on DETA not significantly 

different at p = 0.05), while the activity on glass and 13F is reduced at lower concentrations.  

One possible explanation for this is would be due to increased spreading of the proteins (i.e. 

denaturation) on these surfaces at lower solution concentrations.  Work by van der Veen et al. 

90 and Michael et al 52 have shown that there is evidence for protein spreading on glass and 

strongly hydrophilic surfaces respectively.  It has been hypothesized by van der Veen et al. 

that at higher solution concentrations, protein adsorbs to a surface more quickly creating a 

“crowded” monolayer that prevents neighboring protein molecules from denaturing due to 

lateral interactions.  At lower solution concentrations, however, adsorption occurs more 

slowly resulting in a less densely packed layer, in which individual protein molecules can 

denature and spread more resulting in a lower saturating surface concentration.  The work by 

Michael et al. further shows reduced spreading and denaturation on amine-terminated 

alkanethiol surfaces.  The activity values for GO on PEG, however, are contrary to what is 
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expected for a surface of this type.  On PEG one would expect to see very little denaturation.  

This result may be artifactual.  Due to the very small amounts of protein adsorbed to the 

PEG, the activity measured is exceedingly low (approximately the same as blank samples) 

which could result in significant error in the measurement.  Thus, since the measured activity 

is so close to zero, the resulting normalized activities are artifactually low.  The difference in 

activity between the 100 g/m and 10 g/ml data on DETA is somewhat surprising, however.  

While the two values are not statistically different (p>0.05), one would not expect to see a 

decrease in enzyme activity on DETA, as previous experiments have shown aminated 

surfaces to be non-denaturing.  Also, experiments with Fn in the previous section have shown 

that DETA allows integrin-mediated differentiation of skeletal myocytes, indicating 

biologically active Fn on the surface.  One possible interpretation is the previously mentioned 

multilayer formation of GO on DETA.  It is possible that if GO forms multiple layers at 

higher concentrations, the diffusion of the compounds in the activity assay may be hindered 

and limit the rate of substrate turnover.  Further experiments are required to confirm this 

hypothesis, however.  

 

Figure 24: Enzymatic activity of GO (10 g/ml) adsorbed onto silane surfaces normalized 
by adsorbed surface concentration. 
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Conclusions 

The data presented in this chapter outline the use of a novel WGM biosensor and flow 

cell to characterize the adsorption of protein onto silane SAMs.  Adsorption of the 

extracellular matrix protein Fibronectin (FN) and the enzymatic protein glucose oxidase (GO) 

were studied at varying concentrations and flow conditions.  For FN it was shown that 

comparable amounts of protein adsorb to DETA monolayers compared to 13F monolayers 

over a range of solution concentrations.  In contrast to previously published results of FN 

adsorption onto alkanethiol SAM, however, significantly more adsorption was measured on 

alkylsilane surfaces at lower solution concentrations 52.  Measurements on PEG monolayers 

show a drastic reduction in the amount of adsorbed protein, as expected.  Cell culture 

experiments showed that despite the comparable amounts of protein adsorbed to DETA and 

13F, the biological activity of the protein was not retained on the highly hydrophobic 13F 

indicating that the protein was in fact denatured.  Similarly, cells tended not to grow on PEG 

surfaces due to the lack of adsorbed protein.  To further probe the extent of denaturation 

caused by the various surfaces the enzymatic protein GO was studied.  GO catalyzes the 

oxidation of beta-D-glucose and O2 into D-glucono-1,5-lactone and H2O2, which can then be 

detected by the horseradish peroxidase mediated oxidation of the colorimetric substrate 

Amplex-red into resorufin 89.  The catalytic activity of GO adsorbed onto silane surfaces was 

measured by this reaction and it was found that significant denaturation does indeed occur on 

13F, while significant catalytic activity remains on GO adsorbed to DETA.  Furthermore, 

denaturation of GO adsorbed to glass was found to be strongly concentration dependent. 
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CHAPTER FOUR: DEVELOPMENT OF A NOVEL BIO-MEMS DEVICE FOR 
FUNCTIONAL STUDIES OF NEUROMUSCULAR FUNCTION AND 

DEVELOPMENT 

Introduction 

Microelectro-mechanical systems (MEMS) have received a great deal of attention in 

recent years due to their promise for miniaturizing systems for a variety of applications.  One 

particularly alluring facet of MEMS technologies is the possibility of coupling solid state 

devices with biological components (Bio-MEMS) such as biomolecules, cells, and tissues for 

creating novel bio-analytical systems.  To date biological components have been incorporated 

into MEMS devices to create cell-based sensors and assays 10, 20, 44, 91-93, motors and actuators 

5, 24, 94, and pumps 95.  Bio-MEMS technologies present a unique opportunity to study 

fundamental biological processes at a level unrealized with previous methods.  The capability 

to miniaturize analytical systems enables researchers to perform multiple experiments in 

parallel and with a high degree of control over experimental variables.  This capacity will 

allow a high throughput approach for studying a wide variety of problems in biology. 

One tissue of particular interest with respect to a variety of diseases is skeletal muscle.  

Diseases affect skeletal muscle in different ways.  Some diseases, such as amyotrophic lateral 

sclerosis (ALS), affect the stimulating inputs from the neuromuscular junction 96.  Other 

diseases affect the muscle directly such as muscular dystrophy and muscular atrophy 97, 

which cause deterioration of the muscles’ ability to generate force.  Thus, it is advantageous 

to have a system that allows the real-time interrogation of the physiological properties of 

muscle as well as the controlled addition of exogenous factors for comparative 

experimentation.  However, it is first necessary to be able to apply the measurements to 

statistical analysis with regard to physiological factors such as peak stress generated, time to 

peak stress, the time needed for the muscle to relax to half of the peak stress, and the average 
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rate of stress generation 98, 99.  All of these factors give information about the condition of the 

muscle and can be compared to published values. 

The present study outlines a novel method for performing real-time quantitative 

measurements of the physiological properties of cultured skeletal muscle using a Bio-MEMS 

device.  Stresses generated by myotubes were measured using a modified Stoney’s equation, 

which quantifies stresses generated by a thin film on a cantilever with known physical 

properties 100.  By this method it has been shown that it is possible to quantitatively measure 

stress on cantilevers that are in agreement with values previously published in the literature 

for cultured skeletal muscle.  Furthermore, a method for selectively seeding and coculturing 

neuronal and muscle cells on these devices using microfluidic chambers was developed.  By 

this method it was possible to create a model for studying neuromusclular junction 

development and function.  This work validates the use of this system as a foundation for a 

high-throughput Bio-MEMS device. 

Materials and methods 

Cantilever Fabrication 

The layout for the cantilevers was generated using AutoCAD 2004 (Figure 25).  The 

patterns were written to chrome coated 4-5 inch soda-lime glass masks for front and back 

side photolithography. Cantilevers were fabricated from 6 inch double-sided polished silicon-

on-insulator (SOI) wafers with a 5 m crystalline silicon layer (front side) and a 500 m 

silicon dioxide layer (back side).  The front side was primed with a 10 nm layer of 

hexamethyldisilazane (HMDS) to promote resist adhesion.  A 5 m layer of the photoresist 

AZ 5214 E (Clariant, Muttenz, Switzerland) was spun onto the device layer followed by 

softbake, alignment, exposure, and development.  The device layer was etched using the deep 

reactive ion etch (DRIE) process at a rate of 2 m/min.  Resist was stripped and a 0.5 m 
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thick layer of silicon dioxide was deposited via Plasma Enhanced Chemical Vapor 

Deposition (PECVD) process to protect the device layer during subsequent processing.  The 

wafer was then flipped over and was primed with a 100 Å layer of HMDS and spun with 4.15 

m layer of AZ 9245 photoresist (Clariant, Muttenz, Switzerland).  Coating was followed by 

softbake, front-back alignment, development, and DRIE etch at 4 m/min until the bulk of 

the back side had been etched through leaving only the buried native oxide layer.  The 

devices were then immersed in a buffered HF dip to remove the buried native oxide layer as 

well as the protective silicon dioxide that had been deposited onto the device layer.  

Individual devices were separated by breaking connecting tabs that were incorporated into 

the device design.  Cantilever dimensions were measured using a JEOL 6400 scanning 

electron microscope (SEM) at a take-off angle of 50o off normal.   

 

Figure 25: Layout of cantilever devices generated in AutoCAD, all units are shown in 
microns.  A) The layout of a single die.  The outer boundaries, delimited by dashed lines 

which formed connecting tabs allowing the die to be easily separated, were designed to be 
14.8 mm x 14.8 mm. B) Close-up view of a partial cantilever row showing cantilever 

dimensions (737 m x 100 m) and spacing between cantilevers (300 m). 
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PEG-DETA surface modification 

The silicon cantilevers were coated with the PEG-terminated alkylsilane, 2-

[Methoxypoly( ethyleneoxy)propyl]trimethoxysilane (Gelest, Tullytown, PA) to prevent 

nonspecific cell adhesion and differentiation.  Cantilevers were cleaned in serial acid baths of 

concentrated HCl in methanol (1:1 dilution) for 30 minutes and concentrated H2SO4 for 1 hr, 

followed by 30 minutes in boiling de-ionized water.  Cleaned cantilevers were dried 

overnight in an 120oC oven.  Surface modification with PEG silane was performed according 

to the protocol outlined in Chapter 2.  Briefly, the cantilevers were incubated in 0.1% 

(vol:vol) solution of PEG silane in toluene for 60 minutes at room temperature, followed by 

washing in fresh toluene, 2x wash in 95% ethanol, and 1x wash in deionized water.  They 

were then dried under a stream of dry nitrogen.  Cantilevers were then patterned using Deep 

UV photolithography and backfilled with DETA, also as described in chapter 2.  X-ray 

photoelectron spectroscopy (XPS) and contact angle measurements were used to characterize 

the surface coating. 

Microfluidic chamber fabrication 

Chamber molds fabricated by SU-8 photolithography 

Fabrication of chamber molds was performed in a class 10,000 clean room.  Square 

pieces of a single-side polished silicon <100> wafer (65mm x65mm) were rinsed with 

methanol, isopropanol, and acetone respectively, and then blown dry under filtered 

compressed air.  The final chamber geometry was achieved using three layers of SU-8 

patterned with different photomasks.  Five such molds were fabricated onto each wafer.  The 

wafer pieces were placed on a spin coating device and secured with vacuum.  Approximately 

3 ml of the negative photoresist SU-8 100 (Microchem, Newton MA) was deposited on the 
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center of the wafer piece.  SU-8 100 is a negative resist (one that polymerizes under exposure 

to light energy) and was chosen due to its viscosity and ability to form high aspect ration 

structures up to 200 m thick.  Any bubbles present in the resist were manually removed 

prior to spinning.  The wafer and resist were then spun at three sequentially increasing rates 

of 500 rpm (10 seconds with a ramp of 500 rpm/second), 1500 rpm (30 seconds with a ramp 

of 500 rpm/second), and 2750 rpm (30 seconds with a ramp of 500 rpm/second).  By 

increasing the spin rate over multiple steps it was possible to ensure an even coating of the 

resist.  The final spin resulted in an SU-8 layer that was ~100 m thick.  The wafer pieces 

were removed from the spin coater and place on a level surface to allow the SU-8 resist to 

relax.  Allowing the resist to relax was critical to ensure that the layer was flat and even with 

no edge beads.  The resist was then baked on a 65oC hotplate for 10 minutes followed by a 

bake in a 100oC oven for 45 minutes.  This “prebake” step drives off excess solvent in the 

resist and hardens it for photolithography.  The wafer pieces were then place in a Karl Suss 

MJB3-1 mask aligner (Garching, Germany) and aligned under a photomask containing the 

pattern for the first layer of the micro-chamber mold (figure 16a).  The resist was then 

exposed to light from a UV lamp for 30 seconds (200 mJ/second).  The patterned wafer was 

then placed on a 65oC hotplate for 1 minute followed by baking in a 100oC oven for 14 

minutes to develop the exposed resist.  This process was repeated 2 more times to fabricate 

the second and third layers of the mold (Figure 26a-b respectively).  Fabricating molds with 

greater than three layers yielded poor resolution for the smaller structures in the patterns.  

After the third layer was developed, the wafer was then immersed in SU-8 developer 

(Microchem, Newton MA) for 45 minutes or until all of the unexposed resist had dissolved 

away.  The developed mold was rinsed with excess IPA.  After rinsing with IPA any 

undeveloped resist remaining on the surface was evident as a white film.  If undeveloped 
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resist was evident the wafer was returned to the SU-8 developer until it was completely 

removed.  After development was complete the wafer was rinsed again with IPA and was 

blown dry with filtered compressed air. 

 

Figure 26: AutoCAD designs for chamber molds (all units given in microns or degress). 
A) The first two layers were exposed with a mask containing the pattern seen here.  A slight 

variation of this pattern was used for the first layer where 10 m vias connected the 
chambers. B) The top layer was fabricated using the pattern here.  The smaller diameter 

circles result in raised structures with the same dimensions as the inner diameter of the tubing 
used for introducing cell suspensions. C) Expanded view of one half of the chamber pattern 

showing all dimensions of the design. 
 

The resulting molds were then coated with the alkylsilane 13F to create a non-adhesive 

surface for subsequent steps.  Briefly a solution of 0.1% (vol:vol) 13F in dry toluene was 

prepared in glove box under a dry, nitrogen atmosphere.  The 13F solution was transferred to 

a Pyrex Petri dish.  The wafers were then placed into the 13F solution for 5-10 minutes.  The 
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wafers were then removed and rinsed with toluene and blown dry under a stream of filtered 

dry nitrogen.  The 13F coated molds were placed in a desiccator until used.   

Microfluidic chamber fabrication 

The microfluidic chambers were fabricated by casting PDMS (Dow Corning, Midland 

MI) over the 13F coated SU-8 chamber molds.  Prior to casting, the chamber mold was taped 

onto a casting form to confine the PDMS to a square the same area as the cantilever die to 

enable subsequent alignment of the chamber and cantilevers.  The molds were fitted with 1 

cm segments of silicone tubing, I.D. 0.75 mm and O.D. 1.6 mm, (Dow Corning, Midland MI) 

at the inlet and outlet portions of the individual chambers.  A small amount of Duco cement 

was placed on the end of the tube segment to hold it into place prior to casting.  Sylgard 184, 

PDMS monomer, was mixed with initiator in a 10:1 (wt:wt) ratio and mixed thoroughly.  The 

mixture was degassed under vacuum for ~25 minutes to remove any air bubbles present.  The 

degassed mixture was then poured into the casting form.  Care was taken to ensure none of 

the Sylgard 184 entered the tubing, as this would clog the tube and render the device useless.  

The entire assembly was then degassed again to remove any air bubbles between the Sylgard 

184 and chamber mold.  After degassing, Sylgard was added to compensate for any loss that 

occurred during the degassing process.  The uncured chambers were then place in a 65oC 

oven for 1 hour to polymerize the Sylgard.  After curing the casting form was removed from 

the oven and allowed to cool for 15 minutes and allow the PDMS to contract, making 

extracting the microfluidic chambers easier.  A scalpel blade was used to trim excess PDMS 

from the edges of the chambers.  IPA was then injected into the spaces between the casting 

form, molds and PDMS chambers to facilitate removal of the chambers.  Once the chambers 
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were removed, remaining Duco cement was removed from the ends of the tubing to create a 

continuous chamber through which solution could flow. 

Cell culture 

Cell harvesting and preparation 

Skeletal muscle was dissected from the hind limb thighs of a rat fetus at embryonic day 

18 (Charles River Laboratories, Wilmington, MA) according to previously published 

protocol 37 with some modification. Tissue samples were collected in a sterile 15-ml 

centrifuge tube containing 1 ml of calcium and magnesium free phosphate buffered saline 

(PBS).   Tissue samples were enzymatically disassociated using 3 ml of 0.05% of trypsin–

EDTA (Invitrogen, Carlsbad, CA) solution for 60 min in a 37°C water bath with agitation of 

100 rpm.  After 60 min, the trypsin solution was removed and 6 ml of L15 media (Invitrogen, 

Carlsbad, CA) containing 10% fetal bovine serum (FBS) was added to terminate the trypsin 

action.  The tissue was then mechanically triturated using a sterile narrow bore Pasteur 

pipette, allowed to settle for 3 min, and transferred to a 15-ml centrifuge tube.  This was 

repeated three times.  The dissociated tissue was then centrifuged at 300g for 10 minutes at 

4oC on 6 ml of a 4% (wt/vol) cushion of bovine serum albumin (BSA). The pellet was 

resuspended in 10 ml L15 + 10% FBS and plated in uncoated 100-mm Petri dishes for 20–30 

min depending on the amount of tissue, to allow contaminating fibroblasts to settle out.  After 

20–30 minutes the supernatant was layered on 6 ml of a 4% BSA cushion, and centrifuged at 

300g for 10 min at 4°C.  The pellet was resuspended in 1.5 ml of medium.   

Purified myocytes were plated at a density of 500–800 cells per square millimeter onto 

the cantilevers.  Myocytes were allowed to attach for 1 hour after which time 3 ml of culture 

medium (Neurobasal media containing B-27 [Invitrogen, Carlsbad, CA], Glutamax 
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[Invitrogen, Carlsbad, CA], and Pencillin/Streptavidin) was added. Cultures were maintained 

in a 5% CO2 incubator (relative humidity, 85%). Culture medium was exchanged every 4 

days.  Cantilever/myocyte constructs were allowed to culture for 10-13 days.  During this 

time myocytes fuse into functional myotubes capable of generating contractile stresses 

sufficient to deflect the cantilever.  These cultures were used in experiments for validating the 

use of Stoney’s equations equation for calculating contractile stress of the myotubes. 

Cell seeding using microfluidic chambers 

Cantilever die and microfluidic chambers were sterilized in absolute ethanol for 5 

minutes and dried in a sterile biosafety cabinet prior to cell seeding.  Cantilever die were 

placed on a sterile piece of PDMS, cantilever side up, to create a sealed base on which the 

chambers could be placed.  The microfluidic chambers were then aligned by hand onto the 

cantilever die as shown in Figure 27 and pressed to seal the PDMS to the silicon.  The PDMS 

sealed to the silicon wafer sufficiently to allow confinement of cell suspensions within the 

boundaries of the chamber.  The assembled devices were then seeded with motorneuron and 

skeletal muscle cell suspensions (Figure 27).  The cells were introduced by injecting 200 l 

of the respective suspensions using a programmable Eppendorf pipettor (Hamburg, 

Germany).  The cell suspensions were aspirated into the pipettes, and the tips of the pipettes 

were placed in the end of the tube embedded in the PDMS chamber.  The cells were injected 

into the chamber simultaneously.  The pipette tips were then removed from the tubing and the 

chamber/cantilever assembly was kept in a water jacketed incubator for one hour at a 

temperature of 37oC.  After one hour the chamber and PDMS backing were removed from 

the cantilever die, and 3 ml of culture media were added.  The resulting Bio-MEMS device 

was then cultured for 10-13 days at 37oC and a 5% CO2. 
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Figure 27: Simplified schematic of cell seeding procedure on surface patterned 
microcantilevers.  The cantilevers were isolated from the bulk substrate by a PDMS barrier 

with 10 m vias to allow passage of axonal processes through to the developing muscle.  
After the chambers were sealed onto the substrate, myocytes and motorneuron suspensions 

were introduced simultaneously into their respective compartments. 

AFM setup 

An atomic force microscope (AFM) detection system was designed for measuring 

deflection of the cantilevers during myotube contraction (Figure 28).  The entire system was 

assembled around an upright Olympus BX51WI electrophysiology microscope (Olympus 

Inc., Center Valley, PA).  The AFM consisted of a class 2 red photodiode laser (Newport, 

Irvine, CA), a stimulation chamber, a 4-quadrant photodetector (Noah Industries, Melbourne, 

FL), and a computer with pClamp 10.0 data acquisition software (Molecular Devices, Union 

City, CA).  The laser and photodetector (PD) were mounted on x-y-z-θ translators (Newport, 

Irvine, CA) which were mounted on the underside of the microscope stage.  The stimulation 

chamber was fabricated from 5 mm thick polycarbonate sheet.  An approximately 15 mm x 

15 mm square chamber was milled out of the sheet and fitted with silver wires (0.015 inch 

diameter) for field stimulation.  The silver wires were mounted parallel to each other with a 

separation of 15 mm.  The bottom of the chamber was sealed using a 22 mm x 22 mm glass 

coverslip.  This created a transparent base through which the laser beam could easily pass.  



73 

The silver wires were connected to an external pulse generator (A-M systems, Sequim, WA) 

capable of producing field stimulation pulses of varying intensity, frequency, and waveform.  

Both the pulse generator and PD were connected to an Axon Instruments series 1440 digitizer 

(Molecular Devices, Union City, CA) which was interfaced with the computer. 

 

Figure 28: Schematic representation of AFM detection system 

AFM calibration 

The AFM system was calibrated using a modified version of the optical lever method 101.  

A bare, uncultured cantilever was placed in the stimulation chamber.  The laser was focused 

on one of the cantilevers and the PD was adjusted so that the laser fell on the diode surface.  

Using a digital volt meter to monitor the output voltage, the PD was lowered so that the 

voltage being read was less than -7 volts.  The PD was then raised in 5 m increments and 

the voltage recorded at each position.  The results were plotted in Excel and a linear 

regression line was fitted to the linear region of the calibration curve, which was the region 

between -5 and 5 volts.  The slope of this region was the detectors sensitivity (ydetector).  This 
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value was used to calculated the angle, θ, of the deflection at the end of the cantilever using 

the equation: 

ector

measured

yl

y

det)cos(2 



     Equation 2 

where, ymeasured is the voltage measured from the PD, φ, is the angle of the detector to normal, 

and l, is the path length of the reflected laser beam. 

Stress calculation 

The stress exerted by a myotube attached along its length to a cantilever can be estimated 

by considering the system as a cantilever bimorph and using Stoney’s equation 100. Stoney’s 

equation relates the stress in a bimorph system (film on substrate) to curvature of the 

substrate and the mechanical properties and thicknesses of the substrate and adherent film 

layer.  The film stress, film, is: 
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where Ebeam and νbeam are the cantilever material modulus (130 GPa) and Poisson’s ratio 

(0.28), respectively, tbeam is the cantilever thickness, tfilm is the myotube thickness, R is the 

effective radius of curvature of the beam caused by the stress in the myotube layer, σfilm. 

Many applications of Stoney’s formula, most recently for studies of deposited and 

adsorbed films on thin substrates 102 or cantilevers 103-105, neglect the second term in the 

brackets because the films are much thinner than the substrate. In the present Bio-MEMS 

system, this assumption is not satisfied (tfilm ~ 10 μm compared to the cantilever thickness, 

tbeam  5 μm). However, for the system we also neglect this term because the modulus of the 

myotube cells comprising the film on the cantilever are expected to be in the kPa range, at 
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least 6 orders of magnitude lower than the modulus of the beam substrate Si (130 GPa). Thus 

we write: 

Rttt
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    Equation 4 

The radius of curvature of the cantilever during contraction was calculated using the raw 

voltage data collected from the PD.  This was done taking into account the geometry of the 

system (path length of the reflected laser, sensitivity of the detector, etc.) 106, 107.  From the 

raw data the change in angle of the end of the cantilever, θ, was calculated using equation 1.  

Using θ it was then possible to calculate the deflection of the free end of the cantilever, , by 

the relation from Butt et al 103: 

3

2 L       Equation 5 

where L is the length of the cantilever.  Experimentally, 1/R is estimated using the measured 

beam deflection and the geometric approximation from Ratieri et al. 108: 
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      Equation 6 

From Figure 28, tensile or compressive stress in the myotube film will result in an 

upward or downward vertical deflection of the cantilever beam. Measured deflections from 

the photodiode detector will be reported as positive and negative deflection δ, respectively. 

Since the myotube film is grown on the top face of the cantilever array, deflections due to 

tensile (positive values) or compressive (negative values) stresses in the film are consistent 

with standard conventions 109.  All calculations were performed using Matlab (Appendix C) 
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Immunostaining and Confocal Microscopy 

After AFM measurements the tissue samples were washed 3x with PBS, then fixed for 15 

minutes in 4% (vol/vol) paraformaldehyde at room temperature.  Tissues were permeabilized 

and blocked in a single step using a solution of 0.1% Triton-X100 in PBS, with 10% donkey 

serum.  Blocking and permeabilization was allowed to proceed for 1-2 hours.  Afterward, the 

samples were washed 3x in PBS and incubated with a mouse anti-myosin heavy chain 

primary antibody (Developmental Studies Hybridoma Bank, Iowa City, IA) overnight at 

20oC.  For cocultures with both muscle and motorneuron, a second goat anti-neurofilament 

primary antibody was used.  Following incubation with the primary antibody, the tissues 

were washed 3x with PBS and incubated with a donkey anti-mouse secondary conjugated 

with Alexa Fluor 594 and donkey anti-goat Alexa Fluor 488 (Invitrogen, Carlsbad, CA) at 

room temperature for 1-2 hours.  The final stained samples were washed again with PBS and 

imaged under PBS using confocal microscopy. 

Myotube thickness was measured by optical sectioning with a Perkin Elmer Ultraview 

spinning disc confocal microscope (Perkin Elmer, Waltham, MA) under a 40x water 

immersion lens.  The 40x lens was mounted on a piezoelectric z-step motor with a minimum 

step size of 0.4 m and a total travel length of 60 m.  Images were collected in 0.5 m steps 

from the surface of the cantilever to the top of the tissue.  The “z-stack” of images was 

reconstructed using a 3-D rendering program provided with the microscope.  The thickness of 

the myotube was then measured using the reconstructed image and an internal reference 

scale. 

Exogenous factors added to muscle culture 

In order to demonstrate the usefulness of this device for studying the biology of muscle 

development and function, experiments were conducted using exogenously applied factors to 
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elicit a measurably different response of the muscle compared to control conditions.  The 

sodium channel agonist veratridine was added to normally cultured myotube on cantilevers 

and the response was measure with the AFM detection system.  After 10 days of culture the 

myotube/cantilever constructs were place in the AFM detection system and stimulated with a 

1 Hz pulse to elicit synchronous, detectable contraction.  Upon confirmation of synchronous 

contraction veratridine was added to a final concentration of 5 M, and the resulting 

contractile behavior recorded. 

Cultures were also performed in order to enhance the contractile capacity of the 

myotubes.  The culture medium NbActiv4 was used in lieu of the Neurobasal/B27 

formulation used for control cultures.  Cantilevers were seeded normally and cultured under 

conditions identical to those previously stated.  After 10-13 days cantilever/myotube 

constructs were placed in the AFM detection system and stimulated with a 1 Hz pulse train.  

The calculated values were then compared to previous experiments and published literature. 

Results and discussion 

Characterization of cantilevers 

When using Stoney’s equation to estimate film stress on cantilevers it is critical to have 

precise knowledge of the thickness of both the beam and the film.  Figure 29 shows 

representative SEM micrographs of the cantilevers used for the experiments.  The cantilevers 

were measured to have a mean length and width of 755 +/- 3 m and 109 +/- 1 m.  As 

shown in Figure 29B the mean thickness of the cantilevers was measured to be 5.27 +/- 0.07 

m.  Given these values one can expect a ~4% error in the stress estimation from experiment 

to experiment due to variation in beam thickness. 



78 

 

Figure 29: SEM and confocal microscopy measurements of cantilever and tissue 
thickness. A) Low magnification view (50o takeoff angle) of silicon cantilevers, B) High 
magnification view (50o takeoff angle) of cantilever showing the measured thickness, C) 

Top-down view of cultured myotube taken by confocal microscopy, D) Digitally 
reconstructed side-view of cultured myotube showing measured thickness. 

 

The spring constant of the cantilevers was calculated theoretically and measured 

experimentally.  The calculated spring constant, 1.21 N/m, was determined from the 

measured dimensions and Young’s modulus for crystalline silicon, using formula for the 

spring constant of a rectangular cantilever.  The spring constant was determined 

experimentally using the method of Sader et al. 110.  In short the resonant frequency was 

measured via ring-down experiment, and the resulting data processed by the spectrum 

analysis routines in the pClamp software.  The resonant frequency in air was determined to 

be 88.5 kHz.  Corrected for damping by air, the resonant frequency of the cantilevers was 

found to be 88.7 kHz.  This value was then applied to Sader’s equation for calculating the 

cantilever spring constant, which was found to be 1.26 N/m.  Due to the high resonance 
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frequency of the cantilevers, it is expected that the resulting data reflects only the behavior of 

the myotube contraction as the response time of the cantilevers is on the order of 

microseconds, whereas the time scale of the muscle contraction is on the order of 

milliseconds. 

 Myotube culture 

After plating the dissociated myocytes on the cantilevers, the Bio-MEMS constructs were 

allowed to culture for 10-13 days during which time the myocytes fused into functional 

myotubes.  During fusion and differentiation, the myotubes spontaneously orient along the 

long axis of the cantilever, facilitating bending of the cantilever.  It should be noted, however, 

that the orientation of the myotubes was not always directly parallel to the long axis of the 

cantilever.  This configuration resulted in some torsional bending, and hence a possible 

underestimation of the total contractile stress.  Typically the coverage of myotubes on 

cantilevers was greater than 95%.  Occasionally, tissue coverage was less due to tissue 

processing, suboptimal surface modification, and other systematic errors.  Only robust 

cultures with morphologically normal looking myotubes were used for AFM experiments.  

Figure 29c shows a confocal microscope image of a section of a representative myotube 

cultured for 13 days on a DETA modified cantilever (not visible).  Figure 3a shows the top 

down projection of the z-stack in the plane of the cantilever.  The data from the z-stack of 

images were reconstructed into a 3-dimensional representation of the myotube geometry.  

Figure 29b is a side view showing the thickness of the myotube along a section of the 

cantilever.  The mean thickness of the myotube was ~10 m.  Due to the morphology of the 

myotube, however, the thickness is not necessarily uniform throughout the length of the 

cantilever.  The thickness has been measured to range between 5 m to 15 m on an 
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individual cantilever.  This variation in film thickness throughout the tissue can potentially 

lead to discrepancies between true and calculated stress values.  In this study we used the 

average value of 10 m for calculations.  The effect of the thickness variation on the 

calculated stress will be considered in a later section. 

Stress Calculation 

Figure 30 shows both the raw voltage data from the PD and the resulting stress calculated 

using the Stoney’s equation.  Figure 30a shows the raw data collected in free-run mode from 

myotubes cultured for 13 days and stimulated with a 5 volt DC pulse at a frequency of 1 Hz.  

As shown previously 38 this allowed selective stimulation of the myotubes to actuate the 

cantilevers.  Each trigger pulse, Figure 30b, corresponds precisely with the onset of a 

myotube contraction.  The myotubes responded to the stimulation in a frequency dependent 

manner; increasing or decreasing the stimulation frequency would result in a corresponding 

change in the frequency of myotube contraction, Figure 30b-c.  As with previously published 

results, stimulation at or above a frequency of 10 Hz induced a state of fused tetanus 38.   

Figure 31 shows the resulting Stoney’s calculation using the raw data.  The stresses 

calculated from this data set range between 1.1 kPa and 1.4 kPa.  These values are in 

excellent agreement with previously published literature for cultured skeletal muscle 111, 

which report average peak twitch stress values of 2.9 kPa (reported as specific peak twitch 

force in units of kN/m2), but less than 1% those expected for adult muscle, ~300 kPA 99, 111.  

This is not surprising due to the fact that the tissue used in this study was collected from 

embryonic stage rat pups and cultured in vitro for only 13 days after dissection.  It is possible 

that the culture conditions, as published here, are not sufficient for the development of 

myotubes with adult phenotype. Similar observations were made by Dennis and Kosnik 111 
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for cultured adult rat myoids noting the possibility of developmental arrest in culture 

preventing the development of adult isoforms of myosin.   

 

Figure 30: Real time interrogation and monitoring of myotube contraction with a Bio-
MEMS device.  In each picture the top trace shows the stimulus trigger and the lower trace is 
the raw data recorded from the PD.  A) 1 Hz stimulus resulting in synchronous contraction, 
B) In the absence of stimulus no contraction was recorded, C) 10 Hz stimulation induced a 

state of fused tetanus, where the muscle was unable to relax. 
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Figure 31: Raw data versus calculated stress for cultured embryonic muscle. 
 

To further characterize the myotubes, three other parameters were analyzed (Figure 32): 

the time to peak twitch stress (TPT) was measured, which is the time required to reach stress 

from the onset of contraction, time to half relaxation (½RT), which is the time require to 

relax to 50% of peak tension, and the average stress generation (d/dt), which is the slope of 

the force curve between 20% and 80% of peak tension.  Figure 31 shows both the raw data 

(Figure 31a) and calculated stress from 5 myotube contractions (Figure 31b).  The resulting 

average contractile stress for these data is ~1.2 kPa which is in agreement with previously 

stated results.  The calculated values for TPT, and ½RT (Table 4) were significantly longer 

than those published for cultured muscle by Dennis and Kosnik 111 and for adult rat muscle as 

published by Close 98.  The average TPT for the cultured myotubes was 236.8 ± 26.1 ms.  

This value is considerably slower than that of 69.3 ± 9.4 ms published by Dennis for cultured 

rat myoids as well as values of 65.0 ± 3.8 ms and 36.0 ± 2.3 ms, for neonatal and adult rat 

respectively, published by Close.  The ½RT values for cultured myotubes were also 

prolonged compared to those reported by Dennis and Kosnik and Close.  The average ½RT 

for the data presented in Table 4 was measured to be 233.6 ± 23.8 ms.  Dennis reported ½RT 

values of 116.4 ± 19.4 ms for myoids, while Close reported values of 70.0 ± 4.9 ms for 

neonatal muscle and 48.0 ± 3.4 ms for adult muscle.  It is interesting to note, however, that 

the TPT:½RT (~1:1) ratio for the cultured myotubes was closer to that of the neonatal and 

adult rat muscle than that of the cultured myoids (~1:1.7).  It can be concluded from these 

data that the myotubes cultured in the Bio-MEMS system, while exhibiting contractile stress 

magnitudes comparable with those previously published for cultured rat muscle, show 

evidence of a more embryonic phenotype with regard to other important physiological 
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parameters.  This is further reinforced by previously published results showing staining of 

similarly cultured myotubes for embryonic myosin heavy chain, but not adult or fetal 

isoforms 35. 

 

Figure 32: Critical parameters for muscle characterization. 
 

Table 4: Comparison of calculated stress values to published literature.  Values for d/dt 
are not available in Close et al., but average force generation has been reported to be more 

than 1000 fold higher that measured in Dennis and Kosnik 

  F (kPa) TPT (ms) ½ RT (ms) d/dt (Pa/ms) 

ESM ~1.1 236.8 ± 26.1  233.6 ± 23.8 7.15  

Cultured 
Myoids 

~2.9 69.3 ± 9.4  116.4 ± 19.4  75.3 ± 10.0 

Adult > 300 36.0 ± 2.3 48.0 ± 3.4 X 
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Variation in Stress Calculation due to film thickness 

As previously stated the thickness of the myotube film on the cantilever has been 

measured to vary between 5 to 15 m (Figure 29).  Figure 33 shows the variation in 

calculated stress due to film thickness.  Figure 33a is a plot of the variation in calculated 

stress using the average of 11 contractions versus the film thicknesses used in the Stoney’s 

calculation ranging from 5 to 15 m.  It is clear from this graph that there is a significant 

variation in the calculated stress due to the measured film thickness.  Figure 33b shows a plot 

of the calculated peak contractile stress vs. film thickness.  In this plot it can be seen that the 

stress values range from ~0.5 kPa to ~3.2 kPa over the selected film thickness values.  It is 

interesting to note that the Stoney’s calculation is particularly sensitive to variations in the 

film thickness in the range encountered here.   Below 5 m the stress values increase 

exponentially.  Above 15 m the change in stress due to film thickness slows considerably.  

This reinforces the need for accurate measurements of the myotube thickness and 

standardization of the culture methods to minimize variations of the same.  It should be 

noted, however, that even though there is obviously significant variation in calculated stress 

these values are still within the range of those published by Dennis and Kosnik (0.9 kN/m2 to 

5.0 kN/m2).  These results validate this approach as a method for measuring contractile stress 

generated by cultured skeletal muscle in a Bio-MEMS device. 
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Figure 33: Stress variation with measured film thickness. A) Data recorded from a 
contracting myotube plotted as a function of time and measured film thickness. B) Peak stress 

plotted as a function of film thickness.  Arrow indicates calculated stress value for 10 m 
film thickness. 

Cell patterning using microfluidic chambers and surface chemistry 

Microfluidic chambers were prepared as previously described.  Figure 34 shows SEM 

images of the resulting PDMS chambers.  The lower micrograph shows the low 

magnification view of the entire device.  In each device there are two chambers, one for 

seeding muscle on the cantilevers and one for seeding motorneurons on the bulk silicon.  The 

two chambers are separated by a barrier with small vias (top right image) incorporated to 

allow cellular processes from the motorneurons to interact with the muscle.  The vias were 

made small relative to the size of a cell body (top left image), about 10 m.  This was 

necessary to prevent migrating cell bodies from crossing over onto the cantilever while 

allowing cell processes to pass through.   
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Figure 34: SEM images of PDMS chambers made from SU-8 molds.  The lower image 
shows a low magnification view of the entire chamber area.  The inset at the top right shows 
vias for allowing cell processes to penetrate the barrier.  The inset at the top left shows the 

width of the vias. 
 

Cells were seeded into the chambers as previously described.  Cell growth and 

differentiation was monitored throughout the course of the culture. Figure 35 shows 

representative pictures of myoblasts and motorneurons growing on patterned PEG-DETA 

substrates.  The pattern, seen in Figure 35a, corresponds to the DETA portion of the pattern 

which was surrounded by a cytophobic PEG region.  The chamber was aligned over the 

pattern such that the barrier fell approximately over the region where lines from the somal 

adhesion sites meet the myoblast adhesion region (large rectangles).  Differentiating 

myoblasts can be seen in Figure 35b after seeding.  Fidelity of myoblasts to the pattern was 

very good.  Myotubes begin to form after 5 days and align themselves along the long axis of 

the rectangular pattern.  Confinement of the motorneurons to the somal adhesion site was also 

good, Figure 35c.  Motorneurons would adhere to the 30 m diameter circle and send out 

processes down the lines leading to the developing myotubes.  However, migration of 

motorneurons down the DETA lines was occasionally problematic.  Due to the height of the 

chambers (~300 um) it was impractical to leave them on the cultures beyond the time 

required for seeding.  The small volume of the chambers prevented long term culture, due to 

nutrient depletion and lack of diffusion of gasses through the thick PDMS chamber.  

Perfusing the cells with media was also problematic due to the high shear rates encountered 

in such small chambers.  For this reason chambers were removed after seeding.  In the 

absence of a physical barrier it was not uncommon to see motorneurons migrating down the 

lines to the differentiating myoblasts.  However, the majority of cultures yielded cells 

confined to their respective regions. 
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Figure 35: Cocultured motorneurons and myoblasts seeded with microfluidic chambers.  
A) Pattern used for PEG-DETA photolithography.  The pattern consists of a 100 m wide 
rectangle for myoblast adhesion, with 6 m wide lines leading to 30 m diameter circular 

somal adhesion sites for motorneurons. B) Montaged micrograph to the left shows 
differentiating myoblasts on the patterned substrate. C) High magnification view of 

motorneurons adhered to somal adhesion site. 
 

Addition of exogenous factors modulates function of cultured myotubes 

Addition of the sodium channel agonist veratridine 

Given the ability of this method for quantifying muscle contraction force and dynamics in 

real-time, it is ideal for studying the effect of exogenously applied factors on muscle 

physiology.  One such example was the addition of the toxin veratridine to the stimulation 

chamber during electrical stimulation.  Veratridine is an agonist that causes the persistent 

opening of voltage-gated sodium channels.  Normally, upon depolarization of the cell 

membrane from either field stimulation or neurotransmitter release from neural inputs 
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voltage-gated sodium channels open allowing an influx of sodium ions into the cytoplasm 

which further depolarizes the sarcoplasmic reticulum causing calcium release and 

contraction.  After a certain refractory period the voltage-gated sodium channels close and 

the resting membrane potential is restored.  Veratridine binds to the voltage-gated sodium 

channels causing an abnormally high release of sodium into the cytoplasm, tetanic 

contraction, and if it is not removed cell death.  Figure 36 shows the recording of contracting 

skeletal muscle before and after addition of veratridine.  Before addition the muscle was 

contracting normally in synchronization with the one Hz stimulus.  At 84 seconds veratridine 

was injected into the stimulation chamber and allowed to diffuse to the tissue.  As seen in 

figure 18 upon injection of the veratridine the muscle began to contract in an asynchronous, 

tetanic, manner with a peak stress far beyond those of the synchronized contractions.  After 

the initial tetanic contraction, the muscle then lost the ability to further contract and the stress 

exerted on the cantilever returned to baseline.  This is the reaction that is expected upon 

exposure to this toxin. 
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Veratridine spikeVeratridine spikeVeratridine spike

 

Figure 36: Contractile myotubes were exposed to the sodium channel agonist veratridine.  
Myotube were contracting synchronously with the 1 Hz stimulus when, at 84 seconds into the 
recording, veratridine was injected.  After injection of the toxin the muscle tissue contracted 

in a tetanic manner, and lost the ability to contract further. 
 

Growth of myotube in NbActiv4 to enhance muscle contractility 

As stated in previous sections, the contactile phenotype of the muscle cultured in this 

system was of an embryonic nature.  For this device to serve as a model system for the study 

of normal muscle it is necessary to be able to culture muscle of a more adult phenotype.  In 

order to do this it is necessary to supply additional factors that promote the development of 

more mature contractile properties in the myotubes.  The culture medium NbActiv4 is a 

proprietary formulation based on Neurobasal medium and the growth factor cocktail B27112.  

NbActiv4 contains three additional growth factors (creatine, cholesterol, and estrogen) that 

have been shown to produce an eight-fold increase in spike activity in cultured neurons.  



90 

However, these extra growth factors are also critical for the development of the contractile 

mechanism of skeletal muscle.  For this reason we cultured embryonic skeletal myotubes 

grown on silicon cantilevers in NbActiv4 to quantify the changes in myotube development 

due to the added growth factors.  Figure 37 shows representative contraction data for 

myotube.  Figure 37a shows the raw data recorded by AFM for NbActiv4 cultured muscle.  

Here it can be seen that the TPT is measured to 172.1 ms and the ½ RT 175.7 ms.   

 

 

Figure 37: Contraction kinetics from muscle tissue cultured in NB4 media. A) raw data 
recorded from Bio-MEMS device showing TPT and ½ RT, B) Stress values calculated using 

Stoney’s equation. 
 

Table 5 shows comparison of NbActiv4 cultured muscle with previously published results 

as well as myotubes cultured in Neurobasal/B27.  It can be seen that the addition of NbActiv4 

enhances the contractile properties of the myotubes significantly.  Most notably the 

contractile stress generated by NbActiv4 myotubes, 3.2 kPa, is approximately 3 fold higher 

than those cultured in Neurobasal/B27, 1.1 kPa.  Although this value is still much less than 

the stress generated by adult muscle, it is comparable to that published by Dennis et al 111.  

Also, TPT and ½ RT values for NbActiv4 myotubes have decreased significantly compared 

to muscle cultured in Neurobasal/B27.  This decrease in contraction time demonstrates that 
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the myotubes are being pushed down a path towards a more mature phenotype, and 

developing fast-twitch isoforms of myosin, while increasing the speed of contraction.  

Furthermore, the increase in average stress generation (d/dt) by almost five fold reinforces 

the argument that the contractile apparatus of myotubes grown in NbActiv4 is more mature 

and capable of greater stress generation.  A more detailed treatment of the effects of 

NbActiv4 on embryonic myotube development are presented in work by Das (dissertation). 

Table 5: Contractile properties of NbActiv4 cultured muscle versus previous results and 
published literature.  Values for d/dt are not available in Close et al., but average force 

generation has been reported to be more than 1000 fold higher that measured in Dennis and 
Kosnik  

 F (kPa) TPT (ms) ½ RT (ms) d/dt (Pa/ms) 

ESM ~1.1 236.8 ± 26.1  233.6 ± 23.8 7.2  

NbActiv4 ~3.2 172.1 ± 4.7  175.6 ± 3.6 35.4 

Cultured 
Myoids 

~2.9 69.3 ± 9.4  116.4 ± 19.4  75.3 ± 10.0 

Adult >300 36.0 ± 2.3 48.0 ± 3.4 X 

 

The work presented in this chapter demonstrates the development of a novel Bio-MEMS 

device for studying skeletal muscle and its development using microfabricated silicon 

cantilevers and alkylsilane surface chemistry.  The usefulness of this device has been 

demonstrated for real-time interrogation of cultured skeletal muscle and the quantification 

contractile stress and kinetics.  It has also been shown that physiological phenomena can be 

monitored and quantified such as tetanus, and response to exogenously applied factors. 

Cultured myocytes spontaneously differentiate into functional myotubes on silicon 

cantilevers coated with DETA that produce contractile stress sufficient to deflect the 
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cantilevers.  These deflections were then detected by AFM.  By applying electrical field 

stimulation, it was possible to selectively actuate the myotubes on cantilevers in a frequency 

and intensity dependent manner.  This ability to selectively actuate a cantilever is 

advantageous as it allows a high degree of control over the timing and nature of contraction.  

This method could also be applied to create bio-robotic devices using skeletal muscle as on 

actuator on a microfabricated device.  Previous studies have utilized cardiomyocytes to 

provide mechanical force.  However, cardiac tissue contracts in a primarily spontaneously 

manner unlike skeletal muscle which will remain inactive in the absence of in the absence of 

stimulating inputs.  Also, skeletal muscle is preferable over cardiac muscle due to its rate-

response characteristics.  As stimulation frequencies increase, contraction frequency and 

force generation of skeletal muscle will also increase until tetanus is induced, resulting in 

tonic contraction.  Cardiac muscle, on the other hand, will cease to contract under high 

frequency stimulation, a situation similar to that of cardiac infarction (see appendices).   

Furthermore it has been shown that neuronal cell types can be patterned and cocultured 

with skeletal muscle using surface chemistry and microfluidics.  The ability to create 

organized neural/muscle cocultures will enable the creation of in vitro biological circuits that 

can be used for a variety of applications (pharmacology, basic science, 

biorobotics/bioprosthetics).  Still it must be understood that many technological hurdles 

remain to be overcome to realize the full potential of this technology. 

This technique holds particular promise for applications in drug discovery and as a model 

for various diseases involving skeletal muscle.  The development of an in vitro model for 

functional biological circuits would greatly benefit the broader scientific community and 

society in general.  By creating lab-on-chip systems that allow high-throughput, real-time 

experimentation, research costs would be reduced, data collection and analysis would be 
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simplified, and the need for costly and ethically questionable animal studies would be 

reduced. 
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CHAPTER FIVE: CONCLUDING REMARKS 
The work presented in this dissertation is highly interdisciplinary in nature and draws 

upon such diverse fields as surface and analytical chemistry, cell biology, and engineering.  

The unifying theme throughout is the application of alkylsilane self-assembled monolayers as 

model substrates for controlling cell adhesion and differentiation and creating functional 

BioMEMS that can serve as in vitro models for studying cell function and interaction.   

A new method for patterning cells using PEG and DETA terminated alkylsilane 

monolayers was demonstrate.  By this method, cell repulsive PEG monolayers were 

photolithographically patterned to selectively remove regions of the PEG where cell adhesive 

islands of DETA monolayers could then be formed.  These patterned substrates were then 

used for controlling the spatial orientation of cells in both pure and co-cultured systems.  

Multiple cell types were cultured on patterned PEG-DETA substrates demonstrating its broad 

applicability different tissues of interest.  Furthermore it was shown that this combination of 

silane surfaces was suitable for creating long-term cultures that could be maintained up to 41 

days.  This is a particularly attractive capability to have, particularly when trying to create in 

vitro models for studying cellular development and function cellular process in vivo occur 

over a broad range of time scales (milliseconds to years).  Thus, in order to create predictive 

models for cell biology it is critical to be able to maintain patterned cultures over the 

necessary time scales. 

As the adsorption of biomolecules, such as proteins, to a substrate is critical to the 

attachment and function of cells growing on it, a novel WGM biosensor and fluidic delivery 

system was constructed to study how different proteins adsorb to alkylsilane monolayers.  

The adsorption of the extracellular matrix protein fibronectin was characterized with respect 

to the amount and nature of its interaction with our model surfaces.  Results from WGM 
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measurements were then correlated with cell culture studies to verify the biological activity 

of FN on the various silanes.  To further probe the affect of the underlying substrate on the 

biological activity of the protein the enzymatic protein glucose oxidase was used.  By 

measuring the amount of protein adsorbed with the WGM system and correlating those 

results with those of a colorimetric activity assay for GO it was shown that measurable 

differences in the activity of the protein on DETA, 13F, PEG and glass were present.  This is 

first known instance of being able to directly correlate quantitative protein adsorption 

measurements with enzymatic activity.  Furthermore, for the case of GO on DETA it, 

evidence was presented for the possible formation of multiple layers of protein on the surface 

of the resonator.  These results lend further evidence to the role of surface-protein interaction 

with biological activity. 

Finally a novel BioMEMS device was constructed based on silicon microcantilevers and 

using the surface chemistry methods outlined previously.  Embryonic skeletal myoblasts 

were grown on patterned microcantilevers and differentiate into functional myotubes capable 

of producing contractile stress sufficient to produce detectable bending of the cantilever.  A 

custom built AFM detection system was devised to measure the contractile stress generated 

by the myotubes.  Stress generation was quantified using a modified Stoney’s.  Values 

calculated using Stoney’s equation were in excellent agreement with previously published 

results.  This method was also used to study the effect of exogenously applied factors on 

muscle behavior.  The results of this study validated the use of this system as the foundation 

for further work in developing in vitro models of cell behavior and development. 

The chapters presented in this dissertation represent significant milestones towards 

developing in vitro systems for studying biology using alkylsilane modified substrates and 

BioMEMS devices.  Much work remains to be done towards creating predictive model that 
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could be used as replacements for systems that are now in use.  Current methods tend to 

focus on either simplifying experimental systems (cell culture, biochemical assays, etc.) for 

tightly controlling experimental variables, or using animal models that sacrifice experimental 

control for including complex cellular, tissue and systemic interactions that are otherwise 

difficult to recapitulate.  The alternative to these approaches is to create methods and devices 

that can incorporate the best of both worlds.  With BioMEMS and in vitro model systems it is 

possible to study complex interactions of multiple cell and tissue types while retaining a high 

degree of control over experimental variables, while interrogating and monitoring the 

components of interest in a real-time high-throughput manner.  This is the ultimate potential 

of what this technology can achieve.  Small, yet significant steps have been presented here 

towards this end. 
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APPENDIX A: PYTHON CODE FOR WGM SENSOR DATA ANALYSIS 
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# Name: wxmpl 
# Purpose: painless matplotlib embedding for wxPython 
# Author: Ken McIvor <mcivor@iit.edu> 
# 
# Copyright 2005-2006 Illinois Institute of Technology 
# 
# See the file "LICENSE" for information on usage and redistribution 
# of this file, and for a DISCLAIMER OF ALL WARRANTIES. 
 
""" 
Embedding matplotlib in wxPython applications is straightforward, but the 
default plotting widget lacks the capabilities necessary for interactive use. 
WxMpl (wxPython+matplotlib) is a library of components that provide these 
missing features in the form of a better matplolib FigureCanvas. 
""" 
 
 
import wx 
import sys 
import os.path 
import weakref 
 
import matplotlib 
matplotlib.use('WXAgg') 
import matplotlib.numerix as Numerix 
from matplotlib.axes import PolarAxes, _process_plot_var_args 
from matplotlib.backend_bases import FigureCanvasBase 
from matplotlib.backends.backend_agg import FigureCanvasAgg, RendererAgg 
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg 
from matplotlib.figure import Figure 
from matplotlib.font_manager import FontProperties 
from matplotlib.transforms import Bbox, Point, Value 
from matplotlib.transforms import bound_vertices, inverse_transform_bbox 
 
__version__ = '1.2.9' 
 
__all__ = ['PlotPanel', 'PlotFrame', 'PlotApp', 'StripCharter', 'Channel', 
    'FigurePrinter', 'EVT_POINT', 'EVT_SELECTION'] 
 
# If you want to use something other than `lpr' to print under linux you may 
# specify that command here. 
LINUX_PRINTING_COMMAND = 'lpr' 
 
# Work around some problems with the pre-0.84 WXAgg backend 
BROKEN_WXAGG_BACKEND = matplotlib.__version__ < '0.84' 
 
# Work around an API change in 0.90's matplotlib.axes._process_plot_var_args 
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PROCESS_PLOT_ARGS_REQUIRED_AXES = matplotlib.__version__ >= '0.90' 
 
# 
# Utility functions and classes 
# 
 
def is_polar(axes): 
    """ 
    Returns a boolean indicating if C{axes} is a polar axes. 
    """ 
    return isinstance(axes, PolarAxes) 
 
 
def find_axes(canvas, x, y): 
    """ 
    Finds the C{Axes} within a matplotlib C{FigureCanvas} contains the canavs 
    coordinates C{(x, y)} and returns that axes and the corresponding data 
    coordinates C{xdata, ydata} as a 3-tuple. 
 
    If no axes contains the specified point a 3-tuple of C{None} is returned. 
    """ 
 
    axes = None 
    for a in canvas.get_figure().get_axes(): 
        if a.in_axes(x, y): 
            if axes is None: 
                axes = a 
            else: 
                return None, None, None 
 
    if axes is None: 
        return None, None, None 
 
    xdata, ydata = axes.transData.inverse_xy_tup((x, y)) 
    return axes, xdata, ydata 
 
 
def get_bbox_lims(bbox): 
    """ 
    Returns the boundaries of the X and Y intervals of a C{Bbox}. 
    """ 
    return bbox.intervalx().get_bounds(), bbox.intervaly().get_bounds() 
 
 
def find_selected_axes(canvas, x1, y1, x2, y2): 
    """ 
    Finds the C{Axes} within a matplotlib C{FigureCanvas} that overlaps with a 
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    canvas area from C{(x1, y1)} to C{(x1, y1)}.  That axes and the 
    corresponding X and Y axes ranges are returned as a 3-tuple. 
 
    If no axes overlaps with the specified area, or more than one axes 
    overlaps, a 3-tuple of C{None}s is returned. 
    """ 
    axes = None 
    bbox = bound_vertices([(x1, y1), (x2, y2)]) 
 
    for a in canvas.get_figure().get_axes(): 
        if bbox.overlaps(a.bbox): 
            if axes is None: 
                axes = a 
            else: 
                return None, None, None 
 
    if axes is None: 
        return None, None, None 
 
    xymin, xymax = limit_selection(bbox, axes) 
    xrange, yrange = get_bbox_lims( 
        inverse_transform_bbox(axes.transData, bound_vertices([xymin, xymax]))) 
    return axes, xrange, yrange 
 
 
def limit_selection(bbox, axes): 
    """ 
    Finds the region of a selection C{bbox} which overlaps with the supplied 
    C{axes} and returns it as the 2-tuple C{((xmin, ymin), (xmax, ymax))}. 
    """ 
    bxr, byr = get_bbox_lims(bbox) 
    axr, ayr = get_bbox_lims(axes.bbox) 
 
    xmin = max(bxr[0], axr[0]) 
    xmax = min(bxr[1], axr[1]) 
    ymin = max(byr[0], ayr[0]) 
    ymax = min(byr[1], ayr[1]) 
    return (xmin, ymin), (xmax, ymax) 
 
 
def format_coord(axes, xdata, ydata): 
    """ 
    A C{None}-safe version of {Axes.format_coord()}. 
    """ 
    if xdata is None or ydata is None: 
        return '' 
    return axes.format_coord(xdata, ydata) 
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class AxesLimits: 
    """ 
    Alters the X and Y limits of C{Axes} objects while maintaining a history of 
    the changes. 
    """ 
    def __init__(self): 
        self.history = weakref.WeakKeyDictionary() 
 
    def _get_history(self, axes): 
        """ 
        Returns the history list of X and Y limits associated with C{axes}. 
        """ 
        return self.history.setdefault(axes, []) 
 
    def zoomed(self, axes): 
        """ 
        Returns a boolean indicating whether C{axes} has had its limits 
        altered. 
        """ 
        return not (not self._get_history(axes)) 
 
    def set(self, axes, xrange, yrange): 
        """ 
        Changes the X and Y limits of C{axes} to C{xrange} and {yrange} 
        respectively.  A boolean indicating whether or not the 
        axes should be redraw is returned, because polar axes cannot have 
        their limits changed sensibly. 
        """ 
        if is_polar(axes): 
            return False 
 
        history = self._get_history(axes) 
        if history: 
            oldRange = axes.get_xlim(), axes.get_ylim() 
        else: 
            oldRange = None, None 
 
        history.append(oldRange) 
        axes.set_xlim(xrange) 
        axes.set_ylim(yrange) 
        return True 
 
    def restore(self, axes): 
        """ 
        Changes the X and Y limits of C{axes} to their previous values.  A 
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        boolean indicating whether or not the axes should be redraw is 
        returned. 
        """ 
        hist = self._get_history(axes) 
        if not hist: 
            return False 
        else: 
            xrange, yrange = hist.pop() 
            if xrange is None and yrange is None: 
                axes.autoscale_view() 
            else: 
                axes.set_xlim(xrange) 
                axes.set_ylim(yrange) 
            return True 
 
 
class DestructableViewMixin: 
    """ 
    Utility class to break the circular reference between an object and its 
    associated "view". 
    """ 
    def destroy(self): 
        """ 
        Sets this object's C{view} attribute to C{None}. 
        """ 
        self.view = None 
 
 
# 
# Director of the matplotlib canvas 
# 
 
class PlotPanelDirector(DestructableViewMixin): 
    """ 
    Encapsulates all of the user-interaction logic required by the 
    C{PlotPanel}, following the Humble Dialog Box pattern proposed by Michael 
    Feathers: 
    U{http://www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf} 
    """ 
 
    # TODO: merge all of the self.view.XYZ.something() methods into 
    #       accessor methods of the PlotPanel (Law of Demeter fixes). 
    # TODO: make `rightClickUnzoom' an option on PlotPanel, PlotFrame, etc 
    # TODO: add a programmatic interface to zooming 
 
    def __init__(self, view, zoom=True, selection=True, rightClickUnzoom=True): 
        """ 
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        Create a new director for the C{PlotPanel} C{view}.  The keyword 
        arguments C{zoom} and C{selection} have the same meanings as for 
        C{PlotPanel}. 
        """ 
        self.view = view 
        self.zoomEnabled = zoom 
        self.selectionEnabled = selection 
        self.rightClickUnzoom = rightClickUnzoom 
        self.limits = AxesLimits() 
        self.leftButtonPoint = None 
 
    def setSelection(self, state): 
        """ 
        Enable or disable left-click area selection. 
        """ 
        self.selectionEnabled = state 
 
    def setZoomEnabled(self, state): 
        """ 
        Enable or disable zooming as a result of left-click area selection. 
        """ 
        self.zoomEnabled = state 
 
    def setRightClickUnzoom(self, state): 
        """ 
        Enable or disable unzooming as a result of right-clicking. 
        """ 
        self.rightClickUnzoom = state 
 
    def canDraw(self): 
        """ 
        Returns a boolean indicating whether or not the plot may be redrawn. 
        """ 
        return self.leftButtonPoint is None 
 
    def zoomed(self, axes): 
        """ 
        Returns a boolean indicating whether or not the plot has been zoomed in 
        as a result of a left-click area selection. 
        """ 
        return self.limits.zoomed(axes) 
 
    def keyDown(self, evt): 
        """ 
        Handles wxPython key-press events.  These events are currently skipped. 
        """ 
        evt.Skip() 
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    def keyUp(self, evt): 
        """ 
        Handles wxPython key-release events.  These events are currently 
        skipped. 
        """ 
        evt.Skip() 
 
    def leftButtonDown(self, evt, x, y): 
        """ 
        Handles wxPython left-click events. 
        """ 
        self.leftButtonPoint = (x, y) 
 
        view = self.view 
        axes, xdata, ydata = find_axes(view, x, y) 
 
        if self.selectionEnabled and not is_polar(axes): 
            view.cursor.setCross() 
            view.crosshairs.clear() 
 
    def leftButtonUp(self, evt, x, y): 
        """ 
        Handles wxPython left-click-release events. 
        """ 
        if self.leftButtonPoint is None: 
            return 
 
        view = self.view 
        axes, xdata, ydata = find_axes(view, x, y) 
 
        x0, y0 = self.leftButtonPoint 
        self.leftButtonPoint = None 
        view.rubberband.clear() 
 
        if x0 == x: 
            if y0 == y and axes is not None: 
                view.notify_point(axes, x, y) 
                view.crosshairs.set(x, y) 
            return 
        elif y0 == y: 
            return 
 
        xdata = ydata = None 
        axes, xrange, yrange = find_selected_axes(view, x0, y0, x, y) 
 
        if axes is not None: 
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            xdata, ydata = axes.transData.inverse_xy_tup((x, y)) 
            if self.zoomEnabled: 
                if self.limits.set(axes, xrange, yrange): 
                    self.view.draw() 
            else: 
                bbox = bound_vertices([(x0, y0), (x, y)]) 
                (x1, y1), (x2, y2) = limit_selection(bbox, axes) 
                self.view.notify_selection(axes, x1, y1, x2, y2) 
 
        if axes is None: 
            view.cursor.setNormal() 
        elif is_polar(axes): 
            view.cursor.setNormal() 
            view.location.set(format_coord(axes, xdata, ydata)) 
        else: 
            view.crosshairs.set(x, y) 
            view.location.set(format_coord(axes, xdata, ydata)) 
 
    def rightButtonDown(self, evt, x, y): 
        """ 
        Handles wxPython right-click events.  These events are currently 
        skipped. 
        """ 
        evt.Skip() 
 
    def rightButtonUp(self, evt, x, y): 
        """ 
        Handles wxPython right-click-release events. 
        """ 
        view = self.view 
        axes, xdata, ydata = find_axes(view, x, y) 
        if (axes is not None and self.zoomEnabled and self.rightClickUnzoom 
        and self.limits.restore(axes)): 
            view.crosshairs.clear() 
            view.draw() 
            view.crosshairs.set(x, y) 
 
    def mouseMotion(self, evt, x, y): 
        """ 
        Handles wxPython mouse motion events, dispatching them based on whether 
        or not a selection is in process and what the cursor is over. 
        """ 
        view = self.view 
        axes, xdata, ydata = find_axes(view, x, y) 
 
        if self.leftButtonPoint is not None: 
            self.selectionMouseMotion(evt, x, y, axes, xdata, ydata) 
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        else: 
            if axes is None: 
                self.canvasMouseMotion(evt, x, y) 
            elif is_polar(axes): 
                self.polarAxesMouseMotion(evt, x, y, axes, xdata, ydata) 
            else: 
                self.axesMouseMotion(evt, x, y, axes, xdata, ydata) 
 
    def selectionMouseMotion(self, evt, x, y, axes, xdata, ydata): 
        """ 
        Handles wxPython mouse motion events that occur during a left-click 
        area selection. 
        """ 
        view = self.view 
        x0, y0 = self.leftButtonPoint 
        view.rubberband.set(x0, y0, x, y) 
        if axes is None: 
            view.location.clear() 
        else: 
            view.location.set(format_coord(axes, xdata, ydata)) 
 
    def canvasMouseMotion(self, evt, x, y): 
        """ 
        Handles wxPython mouse motion events that occur over the canvas. 
        """ 
        view = self.view 
        view.cursor.setNormal() 
        view.crosshairs.clear() 
        view.location.clear() 
 
    def axesMouseMotion(self, evt, x, y, axes, xdata, ydata): 
        """ 
        Handles wxPython mouse motion events that occur over an axes. 
        """ 
        view = self.view 
        view.cursor.setCross() 
        view.crosshairs.set(x, y) 
        view.location.set(format_coord(axes, xdata, ydata)) 
 
    def polarAxesMouseMotion(self, evt, x, y, axes, xdata, ydata): 
        """ 
        Handles wxPython mouse motion events that occur over a polar axes. 
        """ 
        view = self.view 
        view.cursor.setNormal() 
        view.location.set(format_coord(axes, xdata, ydata)) 
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# 
# Components used by the PlotPanel 
# 
 
class Painter(DestructableViewMixin): 
    """ 
    Painters encapsulate the mechanics of drawing some value in a wxPython 
    window and erasing it.  Subclasses override template methods to process 
    values and draw them. 
 
    @cvar PEN: C{wx.Pen} to use (defaults to C{wx.BLACK_PEN}) 
    @cvar BRUSH: C{wx.Brush} to use (defaults to C{wx.TRANSPARENT_BRUSH}) 
    @cvar FUNCTION: Logical function to use (defaults to C{wx.COPY}) 
    @cvar FONT: C{wx.Font} to use (defaults to C{wx.NORMAL_FONT}) 
    @cvar TEXT_FOREGROUND: C{wx.Colour} to use (defaults to C{wx.BLACK}) 
    @cvar TEXT_BACKGROUND: C{wx.Colour} to use (defaults to C{wx.WHITE}) 
    """ 
 
    PEN = wx.BLACK_PEN 
    BRUSH = wx.TRANSPARENT_BRUSH 
    FUNCTION = wx.COPY 
    FONT = wx.NORMAL_FONT 
    TEXT_FOREGROUND = wx.BLACK 
    TEXT_BACKGROUND = wx.WHITE 
 
    def __init__(self, view, enabled=True): 
        """ 
        Create a new painter attached to the wxPython window C{view}.  The 
        keyword argument C{enabled} has the same meaning as the argument to the 
        C{setEnabled()} method. 
        """ 
        self.view = view 
        self.lastValue = None 
        self.enabled = enabled 
 
    def setEnabled(self, state): 
        """ 
        Enable or disable this painter.  Disabled painters do not draw their 
        values and calls to C{set()} have no effect on them. 
        """ 
        oldState, self.enabled = self.enabled, state 
        if oldState and not self.enabled: 
            self.clear() 
 
    def set(self, *value): 
        """ 
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        Update this painter's value and then draw it.  Values may not be 
        C{None}, which is used internally to represent the absence of a current 
        value. 
        """ 
        if self.enabled: 
            value = self.formatValue(value) 
            self._paint(value, None) 
 
    def redraw(self, dc=None): 
        """ 
        Redraw this painter's current value. 
        """ 
        value = self.lastValue 
        self.lastValue = None 
        self._paint(value, dc) 
 
    def clear(self, dc=None): 
        """ 
        Clear the painter's current value from the screen and the painter 
        itself. 
        """ 
        if self.lastValue is not None: 
            self._paint(None, dc) 
 
    def _paint(self, value, dc): 
        """ 
        Draws a previously processed C{value} on this painter's window. 
        """ 
        if dc is None: 
            dc = wx.ClientDC(self.view) 
 
        dc.SetPen(self.PEN) 
        dc.SetBrush(self.BRUSH) 
        dc.SetFont(self.FONT) 
        dc.SetTextForeground(self.TEXT_FOREGROUND) 
        dc.SetTextBackground(self.TEXT_BACKGROUND) 
        dc.SetLogicalFunction(self.FUNCTION) 
        dc.BeginDrawing() 
 
        if self.lastValue is not None: 
            self.clearValue(dc, self.lastValue) 
            self.lastValue = None 
 
        if value is not None: 
            self.drawValue(dc, value) 
            self.lastValue = value 
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        dc.EndDrawing() 
 
    def formatValue(self, value): 
        """ 
        Template method that processes the C{value} tuple passed to the 
        C{set()} method, returning the processed version. 
        """ 
        return value 
 
    def drawValue(self, dc, value): 
        """ 
        Template method that draws a previously processed C{value} using the 
        wxPython device context C113.  This DC has already been configured, so 
        calls to C{BeginDrawing()} and C{EndDrawing()} may not be made. 
        """ 
        pass 
 
    def clearValue(self, dc, value): 
        """ 
        Template method that clears a previously processed C{value} that was 
        previously drawn, using the wxPython device context C113.  This DC has 
        already been configured, so calls to C{BeginDrawing()} and 
        C{EndDrawing()} may not be made. 
        """ 
        pass 
 
 
class LocationPainter(Painter): 
    """ 
    Draws a text message containing the current position of the mouse in the 
    lower left corner of the plot. 
    """ 
 
    PADDING = 2 
    PEN = wx.WHITE_PEN 
    BRUSH = wx.WHITE_BRUSH 
 
    def formatValue(self, value): 
        """ 
        Extracts a string from the 1-tuple C{value}. 
        """ 
        return value[0] 
 
    def get_XYWH(self, dc, value): 
        """ 
        Returns the upper-left coordinates C{(X, Y)} for the string C{value} 
        its width and height C{(W, H)}. 
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        """ 
        height = dc.GetSize()[1] 
        w, h = dc.GetTextExtent(value) 
        x = self.PADDING 
        y = int(height - (h + self.PADDING)) 
        return x, y, w, h 
 
    def drawValue(self, dc, value): 
        """ 
        Draws the string C{value} in the lower left corner of the plot. 
        """ 
        x, y, w, h = self.get_XYWH(dc, value) 
        dc.DrawText(value, x, y) 
 
    def clearValue(self, dc, value): 
        """ 
        Clears the string C{value} from the lower left corner of the plot by 
        painting a white rectangle over it. 
        """ 
        x, y, w, h = self.get_XYWH(dc, value) 
        dc.DrawRectangle(x, y, w, h) 
 
 
class CrosshairPainter(Painter): 
    """ 
    Draws crosshairs through the current position of the mouse. 
    """ 
 
    PEN = wx.WHITE_PEN 
    FUNCTION = wx.XOR 
 
    def formatValue(self, value): 
        """ 
        Converts the C{(X, Y)} mouse coordinates from matplotlib to wxPython. 
        """ 
        x, y = value 
        return int(x), int(self.view.get_figure().bbox.height() - y) 
 
    def drawValue(self, dc, value): 
        """ 
        Draws crosshairs through the C{(X, Y)} coordinates. 
        """ 
        dc.CrossHair(*value) 
 
    def clearValue(self, dc, value): 
        """ 
        Clears the crosshairs drawn through the C{(X, Y)} coordinates. 
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        """ 
        dc.CrossHair(*value) 
 
 
class RubberbandPainter(Painter): 
    """ 
    Draws a selection rubberband from one point to another. 
    """ 
 
    PEN = wx.WHITE_PEN 
    FUNCTION = wx.XOR 
 
    def formatValue(self, value): 
        """ 
        Converts the C{(x1, y1, x2, y2)} mouse coordinates from matplotlib to 
        wxPython. 
        """ 
        x1, y1, x2, y2 = value 
        height = self.view.get_figure().bbox.height() 
        y1 = height - y1 
        y2 = height - y2 
        if x2 < x1: x1, x2 = x2, x1 
        if y2 < y1: y1, y2 = y2, y1 
        return [int(z) for z in (x1, y1, x2-x1, y2-y1)] 
 
    def drawValue(self, dc, value): 
        """ 
        Draws the selection rubberband around the rectangle 
        C{(x1, y1, x2, y2)}. 
        """ 
        dc.DrawRectangle(*value) 
 
    def clearValue(self, dc, value): 
        """ 
        Clears the selection rubberband around the rectangle 
        C{(x1, y1, x2, y2)}. 
        """ 
        dc.DrawRectangle(*value) 
 
 
class CursorChanger(DestructableViewMixin): 
    """ 
    Manages the current cursor of a wxPython window, allowing it to be switched 
    between a normal arrow and a square cross. 
    """ 
    def __init__(self, view, enabled=True): 
        """ 
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        Create a CursorChanger attached to the wxPython window C{view}.  The 
        keyword argument C{enabled} has the same meaning as the argument to the 
        C{setEnabled()} method. 
        """ 
        self.view = view 
        self.cursor = wx.CURSOR_DEFAULT 
        self.enabled = enabled 
 
    def setEnabled(self, state): 
        """ 
        Enable or disable this cursor changer.  When disabled, the cursor is 
        reset to the normal arrow and calls to the C{set()} methods have no 
        effect. 
        """ 
        oldState, self.enabled = self.enabled, state 
        if oldState and not self.enabled and self.cursor != wx.CURSOR_DEFAULT: 
            self.cursor = wx.CURSOR_DEFAULT 
            self.view.SetCursor(wx.STANDARD_CURSOR) 
 
    def setNormal(self): 
        """ 
        Change the cursor of the associated window to a normal arrow. 
        """ 
        if self.cursor != wx.CURSOR_DEFAULT and self.enabled: 
            self.cursor = wx.CURSOR_DEFAULT 
            self.view.SetCursor(wx.STANDARD_CURSOR) 
 
    def setCross(self): 
        """ 
        Change the cursor of the associated window to a square cross. 
        """ 
        if self.cursor != wx.CURSOR_CROSS and self.enabled: 
            self.cursor = wx.CURSOR_CROSS 
            self.view.SetCursor(wx.CROSS_CURSOR) 
 
 
# 
# Printing Framework 
# 
 
# TODO: Map print quality settings onto PostScript resolutions automatically. 
#       For now, it's set to something reasonable to work around the fact that 
#       it defaults to `72' rather than `720' under wxPython 2.4.2.4 
wx.PostScriptDC_SetResolution(300) 
 
 
class FigurePrinter(DestructableViewMixin): 
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    """ 
    Provides a simplified interface to the wxPython printing framework that's 
    designed for printing matplotlib figures. 
    """ 
 
    def __init__(self, view, printData=None): 
        """ 
        Create a new C{FigurePrinter} associated with the wxPython widget 
        C{view}.  The keyword argument C{printData} supplies a C{wx.PrintData} 
        object containing the default printer settings. 
        """ 
        self.view = view 
 
        if printData is None: 
            self.pData = wx.PrintData() 
        else: 
            self.pData = printData 
 
    def getPrintData(self): 
        """ 
        Return the current printer settings in their C{wx.PrintData} object. 
        """ 
        return self.pData 
 
    def setPrintData(self, printData): 
        """ 
        Use the printer settings in C{printData}. 
        """ 
        self.pData = printData 
 
    def pageSetup(self): 
        dlg = wx.PrintDialog(self.view) 
        pdData = dlg.GetPrintDialogData() 
        pdData.SetPrintData(self.pData) 
        pdData.SetSetupDialog(True) 
 
        if dlg.ShowModal() == wx.ID_OK: 
            self.pData = pdData.GetPrintData() 
        dlg.Destroy() 
 
    def previewFigure(self, figure, title=None): 
        """ 
        Open a "Print Preview" window for the matplotlib chart C{figure}.  The 
        keyword argument C{title} provides the printing framework with a title 
        for the print job. 
        """ 
        window = self.view 
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        while not isinstance(window, wx.Frame): 
            window = window.GetParent() 
            assert window is not None 
 
        fpo = FigurePrintout(figure, title) 
        fpo4p = FigurePrintout(figure, title) 
        preview = wx.PrintPreview(fpo, fpo4p, self.pData) 
        frame = wx.PreviewFrame(preview, window, 'Print Preview') 
        if self.pData.GetOrientation() == wx.PORTRAIT: 
            frame.SetSize(wx.Size(450, 625)) 
        else: 
            frame.SetSize(wx.Size(600, 500)) 
        frame.Initialize() 
        frame.Show(True) 
 
    def printFigure(self, figure, title=None): 
        """ 
        Open a "Print" dialog to print the matplotlib chart C{figure}.  The 
        keyword argument C{title} provides the printing framework with a title 
        for the print job. 
        """ 
        pdData = wx.PrintDialogData() 
        pdData.SetPrintData(self.pData) 
        printer = wx.Printer(pdData) 
        fpo = FigurePrintout(figure, title) 
        if printer.Print(self.view, fpo, True): 
            self.pData = pdData.GetPrintData() 
 
 
class FigurePrintout(wx.Printout): 
    """ 
    Render a matplotlib C{Figure} to a page or file using wxPython's printing 
    framework. 
    """ 
 
    ASPECT_RECTANGULAR = 1 
    ASPECT_SQUARE = 2 
 
    def __init__(self, figure, title=None, size=None, aspectRatio=None): 
        """ 
        Create a printout for the matplotlib chart C{figure}.  The 
        keyword argument C{title} provides the printing framework with a title 
        for the print job.  The keyword argument C{size} specifies how to scale 
        the figure, from 1 to 100 percent.  The keyword argument C{aspectRatio} 
        determines whether the printed figure will be rectangular or square. 
        """ 
        self.figure = figure 



115 

 
        figTitle = figure.gca().title.get_text() 
        if not figTitle: 
            figTitle = title or 'Matplotlib Figure' 
 
        if size is None: 
            size = 100 
        elif size < 0 or size > 100: 
            raise ValueError('invalid figure size') 
        self.size = size 
 
        if aspectRatio is None: 
            aspectRatio = self.ASPECT_RECTANGULAR 
        elif (aspectRatio != self.ASPECT_RECTANGULAR 
        and aspectRatio != self.ASPECT_SQUARE): 
            raise ValueError('invalid aspect ratio') 
        self.aspectRatio = aspectRatio 
 
        wx.Printout.__init__(self, figTitle) 
 
    def GetPageInfo(self): 
        """ 
        Overrides wx.Printout.GetPageInfo() to provide the printing framework 
        with the number of pages in this print job. 
        """ 
        return (0, 1, 1, 1) 
 
    def OnPrintPage(self, pageNumber): 
        """ 
        Overrides wx.Printout.OnPrintPage to render the matplotlib figure to 
        a printing device context. 
        """ 
        # % of printable area to use 
        imgPercent = max(1, min(100, self.size)) / 100.0 
 
        # ratio of the figure's width to its height 
        if self.aspectRatio == self.ASPECT_RECTANGULAR: 
            aspectRatio = 1.61803399 
        elif self.aspectRatio == self.ASPECT_SQUARE: 
            aspectRatio = 1.0 
        else: 
            raise ValueError('invalid aspect ratio') 
 
        # Device context to draw the page 
        dc = self.GetDC() 
 
        # PPI_P: Pixels Per Inch of the Printer 
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        wPPI_P, hPPI_P = [float(x) for x in self.GetPPIPrinter()] 
        PPI_P = (wPPI_P + hPPI_P)/2.0 
 
        # PPI: Pixels Per Inch of the DC 
        if self.IsPreview(): 
            wPPI, hPPI = [float(x) for x in self.GetPPIScreen()] 
        else: 
            wPPI, hPPI = wPPI_P, hPPI_P 
        PPI = (wPPI + hPPI)/2.0 
 
        # Pg_Px: Size of the page (pixels) 
        wPg_Px,  hPg_Px  = [float(x) for x in self.GetPageSizePixels()] 
 
        # Dev_Px: Size of the DC (pixels) 
        wDev_Px, hDev_Px = [float(x) for x in self.GetDC().GetSize()] 
 
        # Pg: Size of the page (inches) 
        wPg = wPg_Px / PPI_P 
        hPg = hPg_Px / PPI_P 
 
        # minimum margins (inches) 
        # TODO: make these arguments to __init__() 
        wM = 0.75 
        hM = 0.75 
 
        # Area: printable area within the margins (inches) 
        wArea = wPg - 2*wM 
        hArea = hPg - 2*hM 
 
        # Fig: printing size of the figure 
        # hFig is at a maximum when wFig == wArea 
        max_hFig = wArea / aspectRatio 
        hFig = min(imgPercent * hArea, max_hFig) 
        wFig = aspectRatio * hFig 
 
        # scale factor = device size / page size (equals 1.0 for real printing) 
        S = ((wDev_Px/PPI)/wPg + (hDev_Px/PPI)/hPg)/2.0 
 
        # Fig_S: scaled printing size of the figure (inches) 
        # M_S: scaled minimum margins (inches) 
        wFig_S = S * wFig 
        hFig_S = S * hFig 
        wM_S = S * wM 
        hM_S = S * hM 
 
        # Fig_Dx: scaled printing size of the figure (device pixels) 
        # M_Dx: scaled minimum margins (device pixels) 
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        wFig_Dx = int(S * PPI * wFig) 
        hFig_Dx = int(S * PPI * hFig) 
        wM_Dx = int(S * PPI * wM) 
        hM_Dx = int(S * PPI * hM) 
 
        image = self.render_figure_as_image(wFig, hFig, PPI) 
 
        if self.IsPreview(): 
            image = image.Scale(wFig_Dx, hFig_Dx) 
        self.GetDC().DrawBitmap(image.ConvertToBitmap(), wM_Dx, hM_Dx, False) 
 
        return True 
 
    def render_figure_as_image(self, wFig, hFig, dpi): 
        """ 
        Renders a matplotlib figure using the Agg backend and stores the result 
        in a C{wx.Image}.  The arguments C{wFig} and {hFig} are the width and 
        height of the figure, and C{dpi} is the dots-per-inch to render at. 
        """ 
        figure = self.figure 
 
        old_dpi = figure.dpi.get() 
        figure.dpi.set(dpi) 
        old_width = figure.figwidth.get() 
        figure.figwidth.set(wFig) 
        old_height = figure.figheight.get() 
        figure.figheight.set(hFig) 
        old_frameon = figure.frameon 
        figure.frameon = False 
 
        wFig_Px = int(figure.bbox.width()) 
        hFig_Px = int(figure.bbox.height()) 
 
        agg = RendererAgg(wFig_Px, hFig_Px, Value(dpi)) 
        figure.draw(agg) 
 
        figure.dpi.set(old_dpi) 
        figure.figwidth.set(old_width) 
        figure.figheight.set(old_height) 
        figure.frameon = old_frameon 
 
        image = wx.EmptyImage(wFig_Px, hFig_Px) 
        image.SetData(agg.tostring_rgb()) 
        return image 
 
 
# 
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# wxPython event interface for the PlotPanel and PlotFrame 
# 
 
EVT_POINT_ID = wx.NewId() 
 
 
def EVT_POINT(win, id, func): 
    """ 
    Register to receive wxPython C{PointEvent}s from a C{PlotPanel} or 
    C{PlotFrame}. 
    """ 
    win.Connect(id, -1, EVT_POINT_ID, func) 
 
 
class PointEvent(wx.PyCommandEvent): 
    """ 
    wxPython event emitted when a left-click-release occurs in a matplotlib 
    axes of a window without an area selection. 
 
    @cvar axes: matplotlib C{Axes} which was left-clicked 
    @cvar x: matplotlib X coordinate 
    @cvar y: matplotlib Y coordinate 
    @cvar xdata: axes X coordinate 
    @cvar ydata: axes Y coordinate 
    """ 
    def __init__(self, id, axes, x, y): 
        """ 
        Create a new C{PointEvent} for the matplotlib coordinates C{(x, y)} of 
        an C{axes}. 
        """ 
        wx.PyCommandEvent.__init__(self, EVT_POINT_ID, id) 
        self.axes = axes 
        self.x = x 
        self.y = y 
        self.xdata, self.ydata = axes.transData.inverse_xy_tup((x, y)) 
 
    def Clone(self): 
        return PointEvent(self.GetId(), self.axes, self.x, self.y) 
 
 
EVT_SELECTION_ID = wx.NewId() 
 
 
def EVT_SELECTION(win, id, func): 
    """ 
    Register to receive wxPython C{SelectionEvent}s from a C{PlotPanel} or 
    C{PlotFrame}. 
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    """ 
    win.Connect(id, -1, EVT_SELECTION_ID, func) 
 
 
class SelectionEvent(wx.PyCommandEvent): 
    """ 
    wxPython event emitted when an area selection occurs in a matplotlib axes 
    of a window for which zooming has been disabled.  The selection is 
    described by a rectangle from C{(x1, y1)} to C{(x2, y2)}, of which only 
    one point is required to be inside the axes. 
 
    @cvar axes: matplotlib C{Axes} which was left-clicked 
    @cvar x1: matplotlib x1 coordinate 
    @cvar y1: matplotlib y1 coordinate 
    @cvar x2: matplotlib x2 coordinate 
    @cvar y2: matplotlib y2 coordinate 
    @cvar x1data: axes x1 coordinate 
    @cvar y1data: axes y1 coordinate 
    @cvar x2data: axes x2 coordinate 
    @cvar y2data: axes y2 coordinate 
    """ 
    def __init__(self, id, axes, x1, y1, x2, y2): 
        """ 
        Create a new C{SelectionEvent} for the area described by the rectangle 
        from C{(x1, y1)} to C{(x2, y2)} in an C{axes}. 
        """ 
        wx.PyCommandEvent.__init__(self, EVT_SELECTION_ID, id) 
        self.axes = axes 
        self.x1 = x1 
        self.y1 = y1 
        self.x2 = x2 
        self.y2 = y2 
        self.x1data, self.y1data = axes.transData.inverse_xy_tup((x1, y1)) 
        self.x2data, self.y2data = axes.transData.inverse_xy_tup((x2, y2)) 
 
    def Clone(self): 
        return SelectionEvent(self.GetId(), self.axes, self.x1, self.y1, 
            self.x2, self.y2) 
 
 
# 
# Matplotlib canvas in a wxPython window 
# 
 
class PlotPanel(FigureCanvasWxAgg): 
    """ 
    A matplotlib canvas suitable for embedding in wxPython applications. 
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    """ 
    def __init__(self, parent, id, size=(6.0, 3.70), dpi=96, cursor=True, 
     location=True, crosshairs=True, selection=True, zoom=True): 
        """ 
        Creates a new PlotPanel window that is the child of the wxPython window 
        C{parent} with the wxPython identifier C{id}. 
 
        The keyword arguments C{size} and {dpi} are used to create the 
        matplotlib C{Figure} associated with this canvas.  C{size} is the 
        desired width and height of the figure, in inches, as the 2-tuple 
        C{(width, height)}.  C{dpi} is the dots-per-inch of the figure. 
 
        The keyword arguments C{cursor}, C{location}, C{crosshairs}, 
        C{selection}, and C{zoom} enable or disable various user interaction 
        features that are descibed in their associated C{set()} methods. 
        """ 
        FigureCanvasWxAgg.__init__(self, parent, id, Figure(size, dpi)) 
 
        self.insideOnPaint = False 
        self.cursor = CursorChanger(self, cursor) 
        self.location = LocationPainter(self, location) 
        self.crosshairs = CrosshairPainter(self, crosshairs) 
        self.rubberband = RubberbandPainter(self, selection) 
        self.director = PlotPanelDirector(self, zoom, selection) 
 
        self.figure.set_edgecolor('black') 
        self.figure.set_facecolor('white') 
        self.SetBackgroundColour(wx.WHITE) 
 
        # find the toplevel parent window and register an activation event 
        # handler that is keyed to the id of this PlotPanel 
        topwin = self._get_toplevel_parent() 
        topwin.Connect(-1, self.GetId(), wx.wxEVT_ACTIVATE, self.OnActivate) 
 
        wx.EVT_ERASE_BACKGROUND(self, self.OnEraseBackground) 
        wx.EVT_WINDOW_DESTROY(self, self.OnDestroy) 
 
    def _get_toplevel_parent(self): 
        """ 
        Returns the first toplevel parent of this window. 
        """ 
        topwin = self.GetParent() 
        while not isinstance(topwin, (wx.Frame, wx.Dialog)): 
            topwin = topwin.GetParent() 
        return topwin        
 
    def OnActivate(self, evt): 
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        """ 
        Handles the wxPython window activation event. 
        """ 
        if not evt.GetActive(): 
            self.cursor.setNormal() 
            self.location.clear() 
            self.crosshairs.clear() 
            self.rubberband.clear() 
        evt.Skip() 
 
    def OnEraseBackground(self, evt): 
        """ 
        Overrides the wxPython backround repainting event to reduce flicker. 
        """ 
        pass 
 
    def OnDestroy(self, evt): 
        """ 
        Handles the wxPython window destruction event. 
        """ 
        if self.GetId() == evt.GetEventObject().GetId(): 
            objects = [self.cursor, self.location, self.rubberband, 
                self.crosshairs, self.director] 
            for obj in objects: 
                obj.destroy() 
 
            # unregister the activation event handler for this PlotPanel 
            topwin = self._get_toplevel_parent() 
            topwin.Disconnect(-1, self.GetId(), wx.wxEVT_ACTIVATE) 
 
    def _onPaint(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} paint event to redraw the 
        crosshairs, etc. 
        """ 
        if not isinstance(self, FigureCanvasWxAgg): 
            return 
 
        self.insideOnPaint = True 
        FigureCanvasWxAgg._onPaint(self, evt) 
        self.insideOnPaint = False 
 
        dc = wx.PaintDC(self) 
        self.location.redraw(dc) 
        self.crosshairs.redraw(dc) 
        self.rubberband.redraw(dc) 
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    def get_figure(self): 
        """ 
        Returns the figure associated with this canvas. 
        """ 
        return self.figure 
 
    def set_cursor(self, state): 
        """ 
        Enable or disable the changing mouse cursor.  When enabled, the cursor 
        changes from the normal arrow to a square cross when the mouse enters a 
        matplotlib axes on this canvas. 
        """ 
        self.cursor.setEnabled(state) 
 
    def set_location(self, state): 
        """ 
        Enable or disable the display of the matplotlib axes coordinates of the 
        mouse in the lower left corner of the canvas. 
        """ 
        self.location.setEnabled(state) 
 
    def set_crosshairs(self, state): 
        """ 
        Enable or disable drawing crosshairs through the mouse cursor when it 
        is inside a matplotlib axes. 
        """ 
        self.crosshairs.setEnabled(state) 
 
    def set_selection(self, state): 
        """ 
        Enable or disable area selections, where user selects a rectangular 
        area of the canvas by left-clicking and dragging the mouse. 
        """ 
        self.rubberband.setEnabled(state) 
        self.director.setSelection(state) 
 
    def set_zoom(self, state): 
        """ 
        Enable or disable zooming in when the user makes an area selection and 
        zooming out again when the user right-clicks. 
        """ 
        self.director.setZoomEnabled(state) 
 
    def zoomed(self, axes): 
        """ 
        Returns a boolean indicating whether or not the C{axes} is zoomed in. 
        """ 
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        return self.director.zoomed(axes) 
 
    def draw(self, repaint=True): 
        """ 
        Draw the associated C{Figure} onto the screen. 
        """ 
        if (not self.director.canDraw() 
        or  not isinstance(self, FigureCanvasWxAgg)): 
            return 
 
        # Before matplotlib 0.84, FigureCanvasWxAgg.draw() always called 
        # gui_repaint(), which redrew the plot using a ClientDC.  This is 
        # a workaround that lets us repaint the plot decorations in a sane 
        # manner. 
 
        doRepaint = repaint and not self.insideOnPaint 
        if BROKEN_WXAGG_BACKEND: 
            FigureCanvasAgg.draw(self) 
            s = self.tostring_rgb() 
            w = int(self.renderer.width) 
            h = int(self.renderer.height) 
            image = wx.EmptyImage(w, h) 
            image.SetData(s) 
            self.bitmap = image.ConvertToBitmap() 
 
            # Don't repaint when called by _onPaint() 
            if doRepaint: 
                self.gui_repaint() 
        else: 
            FigureCanvasWxAgg.draw(self, repaint) 
 
        # Don't redraw the decorations when called by _onPaint() 
        if doRepaint: 
            self.location.redraw() 
            self.crosshairs.redraw() 
            self.rubberband.redraw() 
 
    def notify_point(self, axes, x, y): 
        """ 
        Called by the associated C{PlotPanelDirector} to emit a C{PointEvent}. 
        """ 
        wx.PostEvent(self, PointEvent(self.GetId(), axes, x, y)) 
 
    def notify_selection(self, axes, x1, y1, x2, y2): 
        """ 
        Called by the associated C{PlotPanelDirector} to emit a 
        C{SelectionEvent}. 
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        """ 
        wx.PostEvent(self, SelectionEvent(self.GetId(), axes, x1, y1, x2, y2)) 
 
    def _get_canvas_xy(self, evt): 
        """ 
        Returns the X and Y coordinates of a wxPython event object converted to 
        matplotlib canavas coordinates. 
        """ 
        return evt.GetX(), int(self.figure.bbox.height() - evt.GetY()) 
 
    def _onKeyDown(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} key-press event handler, dispatching 
        the event to the associated C{PlotPanelDirector}. 
        """ 
        self.director.keyDown(evt) 
 
    def _onKeyUp(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} key-release event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        self.director.keyUp(evt) 
  
    def _onLeftButtonDown(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} left-click event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        x, y = self._get_canvas_xy(evt) 
        self.director.leftButtonDown(evt, x, y) 
 
    def _onLeftButtonUp(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} left-click-release event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        x, y = self._get_canvas_xy(evt) 
        self.director.leftButtonUp(evt, x, y) 
 
    def _onRightButtonDown(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} right-click event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        x, y = self._get_canvas_xy(evt) 
        self.director.rightButtonDown(evt, x, y) 
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    def _onRightButtonUp(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} right-click-release event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        x, y = self._get_canvas_xy(evt) 
        self.director.rightButtonUp(evt, x, y) 
 
    def _onMotion(self, evt): 
        """ 
        Overrides the C{FigureCanvasWxAgg} mouse motion event handler, 
        dispatching the event to the associated C{PlotPanelDirector}. 
        """ 
        x, y = self._get_canvas_xy(evt) 
        self.director.mouseMotion(evt, x, y) 
 
 
# 
# Matplotlib canvas in a top-level wxPython window 
# 
 
class PlotFrame(wx.Frame): 
    """ 
    A matplotlib canvas embedded in a wxPython top-level window. 
 
    @cvar ABOUT_TITLE: Title of the "About" dialog. 
    @cvar ABOUT_MESSAGE: Contents of the "About" dialog. 
    """ 
 
    ABOUT_TITLE = 'About wxmpl.PlotFrame' 
    ABOUT_MESSAGE = ('wxmpl.PlotFrame %s\n' %  __version__ 
        + 'Written by Ken McIvor <mcivor@iit.edu>\n' 
        + 'Copyright 2005 Illinois Institute of Technology') 
 
    def __init__(self, parent, id, title, size=(6.0, 3.7), dpi=96, cursor=True, 
     location=True, crosshairs=True, selection=True, zoom=True, **kwds): 
        """ 
        Creates a new PlotFrame top-level window that is the child of the 
        wxPython window C{parent} with the wxPython identifier C{id} and the 
        title of C{title}. 
 
        All of the named keyword arguments to this constructor have the same 
        meaning as those arguments to the constructor of C{PlotPanel}. 
 
        Any additional keyword arguments are passed to the constructor of 
        C{wx.Frame}. 
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        """ 
        wx.Frame.__init__(self, parent, id, title, **kwds) 
        self.panel = PlotPanel(self, -1, size, dpi, cursor, location, 
            crosshairs, selection, zoom) 
 
        pData = wx.PrintData() 
        pData.SetPaperId(wx.PAPER_LETTER) 
        if callable(getattr(pData, 'SetPrinterCommand', None)): 
            pData.SetPrinterCommand(LINUX_PRINTING_COMMAND) 
        self.printer = FigurePrinter(self, pData) 
 
        self.create_menus() 
        sizer = wx.BoxSizer(wx.VERTICAL) 
        sizer.Add(self.panel, 1, wx.ALL|wx.EXPAND, 5) 
        self.SetSizer(sizer) 
        self.Fit() 
 
        wx.EVT_WINDOW_DESTROY(self, self.OnDestroy) 
 
    def create_menus(self): 
        mainMenu = wx.MenuBar() 
        menu = wx.Menu() 
 
        id = wx.NewId() 
        menu.Append(id, '&Save As...\tCtrl+S', 
            'Save a copy of the current plot') 
        wx.EVT_MENU(self, id, self.OnMenuFileSave) 
 
        # Printing under OSX doesn't work well because the DPI of the 
        # printer is always reported as 72.  It will be disabled until print 
        # qualities are mapped onto wx.PostScriptDC resolutions. 
 
        if not sys.platform.startswith('darwin'): 
            menu.AppendSeparator() 
 
            id = wx.NewId() 
            menu.Append(id, 'Page Set&up...', 
                'Set the size and margins of the printed figure') 
            wx.EVT_MENU(self, id, self.OnMenuFilePageSetup) 
 
            id = wx.NewId() 
            menu.Append(id, 'Print Pre&view...', 
                'Preview the print version of the current plot') 
            wx.EVT_MENU(self, id, self.OnMenuFilePrintPreview) 
 
            id = wx.NewId() 
            menu.Append(id, '&Print...\tCtrl+P', 'Print the current plot') 



127 

            wx.EVT_MENU(self, id, self.OnMenuFilePrint) 
 
        menu.AppendSeparator() 
 
        id = wx.NewId() 
        menu.Append(id, '&Close Window\tCtrl+W', 
            'Close the current plot window') 
        wx.EVT_MENU(self, id, self.OnMenuFileClose) 
 
        mainMenu.Append(menu, '&File') 
        menu = wx.Menu() 
 
        id = wx.NewId() 
        menu.Append(id, '&About...', 'Display version information') 
        wx.EVT_MENU(self, id, self.OnMenuHelpAbout) 
 
        mainMenu.Append(menu, '&Help') 
        self.SetMenuBar(mainMenu) 
 
    def OnDestroy(self, evt): 
        if self.GetId() == evt.GetEventObject().GetId(): 
            self.printer.destroy() 
 
    def OnMenuFileSave(self, evt): 
        """ 
        Handles File->Save menu events. 
        """ 
        fileName = wx.FileSelector('Save Plot', default_extension='png', 
            wildcard=('Portable Network Graphics (*.png)|*.png|' 
                + 'Encapsulated Postscript (*.eps)|*.eps|All files (*.*)|*.*'), 
            parent=self, flags=wx.SAVE|wx.OVERWRITE_PROMPT) 
 
        if not fileName: 
            return 
 
        path, ext = os.path.splitext(fileName) 
        ext = ext[1:].lower() 
 
        if ext != 'png' and ext != 'eps': 
            error_message = ( 
                'Only the PNG and EPS image formats are supported.\n' 
                'A file extension of `png\' or `eps\' must be used.') 
            wx.MessageBox(error_message, 'Error - plotit', 
                parent=self, style=wx.OK|wx.ICON_ERROR) 
            return 
 
        try: 
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            self.panel.print_figure(fileName) 
        except IOError, e: 
            if e.strerror: 
                err = e.strerror 
            else: 
                err = e 
 
            wx.MessageBox('Could not save file: %s' % err, 'Error - plotit', 
                parent=self, style=wx.OK|wx.ICON_ERROR) 
 
    def OnMenuFilePageSetup(self, evt): 
        """ 
        Handles File->Page Setup menu events 
        """ 
        self.printer.pageSetup() 
 
    def OnMenuFilePrintPreview(self, evt): 
        """ 
        Handles File->Print Preview menu events 
        """ 
        self.printer.previewFigure(self.get_figure()) 
 
    def OnMenuFilePrint(self, evt): 
        """ 
        Handles File->Print menu events 
        """ 
        self.printer.printFigure(self.get_figure()) 
 
    def OnMenuFileClose(self, evt): 
        """ 
        Handles File->Close menu events. 
        """ 
        self.Close() 
 
    def OnMenuHelpAbout(self, evt): 
        """ 
        Handles Help->About menu events. 
        """ 
        wx.MessageBox(self.ABOUT_MESSAGE, self.ABOUT_TITLE, parent=self, 
            style=wx.OK) 
 
    def get_figure(self): 
        """ 
        Returns the figure associated with this canvas. 
        """ 
        return self.panel.figure 
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    def set_cursor(self, state): 
        """ 
        Enable or disable the changing mouse cursor.  When enabled, the cursor 
        changes from the normal arrow to a square cross when the mouse enters a 
        matplotlib axes on this canvas. 
        """ 
        self.panel.set_cursor(state) 
 
    def set_location(self, state): 
        """ 
        Enable or disable the display of the matplotlib axes coordinates of the 
        mouse in the lower left corner of the canvas. 
        """ 
        self.panel.set_location(state) 
 
    def set_crosshairs(self, state): 
        """ 
        Enable or disable drawing crosshairs through the mouse cursor when it 
        is inside a matplotlib axes. 
        """ 
        self.panel.set_crosshairs(state) 
 
    def set_selection(self, state): 
        """ 
        Enable or disable area selections, where user selects a rectangular 
        area of the canvas by left-clicking and dragging the mouse. 
        """ 
        self.panel.set_selection(state) 
 
    def set_zoom(self, state): 
        """ 
        Enable or disable zooming in when the user makes an area selection and 
        zooming out again when the user right-clicks. 
        """ 
        self.panel.set_zoom(state) 
 
    def draw(self): 
        """ 
        Draw the associated C{Figure} onto the screen. 
        """ 
        self.panel.draw() 
 
 
# 
# wxApp providing a matplotlib canvas in a top-level wxPython window 
# 
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class PlotApp(wx.App): 
    """ 
    A wxApp that provides a matplotlib canvas embedded in a wxPython top-level 
    window, encapsulating wxPython's nuts and bolts. 
 
    @cvar ABOUT_TITLE: Title of the "About" dialog. 
    @cvar ABOUT_MESSAGE: Contents of the "About" dialog. 
    """ 
 
    ABOUT_TITLE = None 
    ABOUT_MESSAGE = None 
 
    def __init__(self, title="WxMpl", size=(6.0, 3.7), dpi=96, cursor=True, 
     location=True, crosshairs=True, selection=True, zoom=True, **kwds): 
        """ 
        Creates a new PlotApp, which creates a PlotFrame top-level window. 
 
        The keyword argument C{title} specifies the title of this top-level 
        window. 
 
        All of other the named keyword arguments to this constructor have the 
        same meaning as those arguments to the constructor of C{PlotPanel}. 
 
        Any additional keyword arguments are passed to the constructor of 
        C{wx.App}. 
        """ 
        self.title = title 
        self.size = size 
        self.dpi = dpi 
        self.cursor = cursor 
        self.location = location 
        self.crosshairs = crosshairs 
        self.selection = selection 
        self.zoom = zoom 
        wx.App.__init__(self, **kwds) 
 
    def OnInit(self): 
        self.frame = panel = PlotFrame(None, -1, self.title, self.size, 
            self.dpi, self.cursor, self.location, self.crosshairs, 
            self.selection, self.zoom) 
 
        if self.ABOUT_TITLE is not None: 
            panel.ABOUT_TITLE = self.ABOUT_TITLE 
 
        if self.ABOUT_MESSAGE is not None: 
            panel.ABOUT_MESSAGE = self.ABOUT_MESSAGE 
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        panel.Show(True) 
        return True 
 
    def get_figure(self): 
        """ 
        Returns the figure associated with this canvas. 
        """ 
        return self.frame.get_figure() 
 
    def set_cursor(self, state): 
        """ 
        Enable or disable the changing mouse cursor.  When enabled, the cursor 
        changes from the normal arrow to a square cross when the mouse enters a 
        matplotlib axes on this canvas. 
        """ 
        self.frame.set_cursor(state) 
 
    def set_location(self, state): 
        """ 
        Enable or disable the display of the matplotlib axes coordinates of the 
        mouse in the lower left corner of the canvas. 
        """ 
        self.frame.set_location(state) 
 
    def set_crosshairs(self, state): 
        """ 
        Enable or disable drawing crosshairs through the mouse cursor when it 
        is inside a matplotlib axes. 
        """ 
        self.frame.set_crosshairs(state) 
 
    def set_selection(self, state): 
        """ 
        Enable or disable area selections, where user selects a rectangular 
        area of the canvas by left-clicking and dragging the mouse. 
        """ 
        self.frame.set_selection(state) 
 
    def set_zoom(self, state): 
        """ 
        Enable or disable zooming in when the user makes an area selection and 
        zooming out again when the user right-clicks. 
        """ 
        self.frame.set_zoom(state) 
 
    def draw(self): 
        """ 
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        Draw the associated C{Figure} onto the screen. 
        """ 
        self.frame.draw() 
 
 
# 
# Automatically resizing vectors and matrices 
# 
 
class VectorBuffer: 
    """ 
    Manages a Numerical Python vector, automatically growing it as necessary to 
    accomodate new entries. 
    """ 
    def __init__(self): 
        self.data = Numerix.zeros((16,), Numerix.Float) 
        self.nextRow = 0 
 
    def clear(self): 
        """ 
        Zero and reset this buffer without releasing the underlying array. 
        """ 
        self.data[:] = 0.0 
        self.nextRow = 0 
 
    def reset(self): 
        """ 
        Zero and reset this buffer, releasing the underlying array. 
        """ 
        self.data = Numerix.zeros((16,), Numerix.Float) 
        self.nextRow = 0 
 
    def append(self, point): 
        """ 
        Append a new entry to the end of this buffer's vector. 
        """ 
        nextRow = self.nextRow 
        data = self.data 
 
        resize = False 
        if nextRow == data.shape[0]: 
            nR = int(Numerix.ceil(self.data.shape[0]*1.5)) 
            resize = True 
 
        if resize: 
            self.data = Numerix.zeros((nR,), Numerix.Float) 
            self.data[0:data.shape[0]] = data 
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        self.data[nextRow] = point 
        self.nextRow += 1 
 
    def getData(self): 
        """ 
        Returns the current vector or C{None} if the buffer contains no data. 
        """ 
        if self.nextRow == 0: 
            return None 
        else: 
            return self.data[0:self.nextRow] 
 
 
class MatrixBuffer: 
    """ 
    Manages a Numerical Python matrix, automatically growing it as necessary to 
    accomodate new rows of entries. 
    """ 
    def __init__(self): 
        self.data = Numerix.zeros((16, 1), Numerix.Float) 
        self.nextRow = 0 
 
    def clear(self): 
        """ 
        Zero and reset this buffer without releasing the underlying array. 
        """ 
        self.data[:, :] = 0.0 
        self.nextRow = 0 
 
    def reset(self): 
        """ 
        Zero and reset this buffer, releasing the underlying array. 
        """ 
        self.data = Numerix.zeros((16, 1), Numerix.Float) 
        self.nextRow = 0 
 
    def append(self, row): 
        """ 
        Append a new row of entries to the end of this buffer's matrix. 
        """ 
        row = Numerix.asarray(row, Numerix.Float) 
        nextRow = self.nextRow 
        data = self.data 
        nPts = row.shape[0] 
 
        if nPts == 0: 
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            return 
 
        resize = True 
        if nextRow == data.shape[0]: 
            nC = data.shape[1] 
            nR = int(Numerix.ceil(self.data.shape[0]*1.5)) 
            if nC < nPts: 
                nC = nPts 
        elif data.shape[1] < nPts: 
            nR = data.shape[0] 
            nC = nPts 
        else: 
            resize = False 
 
        if resize: 
            self.data = Numerix.zeros((nR, nC), Numerix.Float) 
            rowEnd, colEnd = data.shape 
            self.data[0:rowEnd, 0:colEnd] = data 
 
        self.data[nextRow, 0:nPts] = row 
        self.nextRow += 1 
 
    def getData(self): 
        """ 
        Returns the current matrix or C{None} if the buffer contains no data. 
        """ 
        if self.nextRow == 0: 
            return None 
        else: 
            return self.data[0:self.nextRow, :] 
 
 
# 
# Utility functions used by the StripCharter 
# 
 
def make_delta_bbox(X1, Y1, X2, Y2): 
    """ 
    Returns a C{Bbox} describing the range of difference between two sets of X 
    and Y coordinates. 
    """ 
    return make_bbox(get_delta(X1, X2), get_delta(Y1, Y2)) 
 
 
def get_delta(X1, X2): 
    """ 
    Returns the vector of contiguous, different points between two vectors. 
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    """ 
    n1 = X1.shape[0] 
    n2 = X2.shape[0] 
 
    if n1 < n2: 
        return X2[n1:] 
    elif n1 == n2: 
        # shape is no longer a reliable indicator of change, so assume things 
        # are different 
        return X2 
    else: 
        return X2 
 
 
def make_bbox(X, Y): 
    """ 
    Returns a C{Bbox} that contains the supplied sets of X and Y coordinates. 
    """ 
    if X is None or X.shape[0] == 0: 
        x1 = x2 = 0.0 
    else: 
        x1 = min(X) 
        x2 = max(X) 
 
    if Y is None or Y.shape[0] == 0: 
        y1 = y2 = 0.0 
    else: 
        y1 = min(Y) 
        y2 = max(Y) 
 
    return Bbox(Point(Value(x1), Value(y1)), Point(Value(x2), Value(y2))) 
 
 
# 
# Strip-charts lines using a matplotlib axes 
# 
 
class StripCharter: 
    """ 
    Plots and updates lines on a matplotlib C{Axes}. 
    """ 
    def __init__(self, axes): 
        """ 
        Create a new C{StripCharter} associated with a matplotlib C{axes}. 
        """ 
        self.axes = axes 
        self.channels = [] 
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        self.lines = {} 
 
    def setChannels(self, channels): 
        """ 
        Specify the data-providers of the lines to be plotted and updated. 
        """ 
        self.lines = None 
        self.channels = channels[:] 
 
        # minimal Axes.cla() 
        self.axes.legend_ = None 
        self.axes.lines = [] 
 
    def update(self): 
        """ 
        Redraw the associated axes with updated lines if any of the channels' 
        data has changed. 
        """ 
        axes = self.axes 
        figureCanvas = axes.figure.canvas 
        zoomed = figureCanvas.zoomed(axes) 
 
        redraw = False 
        if self.lines is None: 
            self._create_plot() 
            redraw = True 
        else: 
            for channel in self.channels: 
                redraw = self._update_channel(channel, zoomed) or redraw 
 
        if redraw: 
            if not zoomed: 
                axes.autoscale_view() 
            figureCanvas.draw() 
 
    def _create_plot(self): 
        """ 
        Initially plot the lines corresponding to the data-providers. 
        """ 
        self.lines = {} 
        axes = self.axes 
 
        if PROCESS_PLOT_ARGS_REQUIRED_AXES: 
            styleGen = _process_plot_var_args(axes) 
        else: 
            styleGen = _process_plot_var_args() 
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        for channel in self.channels: 
            self._plot_channel(channel, styleGen) 
 
        if self.channels: 
            lines  = [self.lines[x] for x in self.channels] 
            labels = [x.get_label() for x in lines] 
            self.axes.legend(lines, labels, pad=0.1, axespad=0.0, numpoints=2, 
                handlelen=0.02, handletextsep=0.01, 
                prop=FontProperties(size='xx-small')) 
 
#        # Draw the legend on the figure instead... 
#        handles = [self.lines[x] for x in self.channels] 
#        labels = [x._label for x in handles] 
#        self.axes.figure.legend(handles, labels, 'upper right', 
#            pad=0.1, handlelen=0.02, handletextsep=0.01, numpoints=2, 
#            prop=FontProperties(size='xx-small')) 
 
    def _plot_channel(self, channel, styleGen): 
        """ 
        Initially plot a line corresponding to one of the data-providers. 
        """ 
        empty = False 
        x = channel.getX() 
        y = channel.getY() 
        if x is None or y is None: 
            x = y = [] 
            empty = True 
 
        line = styleGen(x, y).next() 
        line._wxmpl_empty_line = empty 
 
        if channel.getColor() is not None: 
            line.set_color(channel.getColor()) 
        if channel.getStyle() is not None: 
            line.set_linestyle(channel.getStyle()) 
        if channel.getMarker() is not None: 
            line.set_marker(channel.getMarker()) 
            line.set_markeredgecolor(line.get_color()) 
            line.set_markerfacecolor(line.get_color()) 
 
        line.set_label(channel.getLabel()) 
        self.lines[channel] = line 
        if not empty: 
            self.axes.add_line(line) 
 
    def _update_channel(self, channel, zoomed): 
        """ 
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        Replot a line corresponding to one of the data-providers if the data 
        has changed. 
        """ 
        if channel.hasChanged(): 
            channel.setChanged(False) 
        else: 
            return False 
 
        axes = self.axes 
        line = self.lines[channel] 
        newX = channel.getX() 
        newY = channel.getY() 
 
        if newX is None or newY is None: 
            return False 
 
        oldX = line._x 
        oldY = line._y 
 
        x, y = newX, newY 
        line.set_data(x, y) 
 
        if line._wxmpl_empty_line: 
            axes.add_line(line) 
            line._wxmpl_empty_line = False 
        else: 
            if line.get_transform() != axes.transData: 
                xys = axes._get_verts_in_data_coords( 
                    line.get_transform(), zip(x, y)) 
                x = Numerix.array([a for (a, b) in xys]) 
                y = Numerix.array([b for (a, b) in xys]) 
            axes.update_datalim_numerix(x, y) 
 
        if zoomed: 
            return axes.viewLim.overlaps( 
                make_delta_bbox(oldX, oldY, newX, newY)) 
        else: 
            return True 
 
 
# 
# Data-providing interface to the StripCharter 
# 
 
class Channel: 
    """ 
    Provides data for a C{StripCharter} to plot.  Subclasses of C{Channel} 
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    override the template methods C{getX()} and C{getY()} to provide plot data 
    and call C{setChanged(True)} when that data has changed. 
    """ 
    def __init__(self, name, color=None, style=None, marker=None): 
        """ 
        Creates a new C{Channel} with the matplotlib label C{name}.  The 
        keyword arguments specify the strings for the line color, style, and 
        marker to use when the line is plotted. 
        """ 
        self.name = name 
        self.color = color 
        self.style = style 
        self.marker = marker 
        self.changed = False 
 
    def getLabel(self): 
        """ 
        Returns the matplotlib label for this channel of data. 
        """ 
        return self.name 
 
    def getColor(self): 
        """ 
        Returns the line color string to use when the line is plotted, or 
        C{None} to use an automatically generated color. 
        """ 
        return self.color 
 
    def getStyle(self): 
        """ 
        Returns the line style string to use when the line is plotted, or 
        C{None} to use the default line style. 
        """ 
        return self.style 
 
    def getMarker(self): 
        """ 
        Returns the line marker string to use when the line is plotted, or 
        C{None} to use the default line marker. 
        """ 
        return self.marker 
 
    def hasChanged(self): 
        """ 
        Returns a boolean indicating if the line data has changed. 
        """ 
        return self.changed 



140 

 
    def setChanged(self, changed): 
        """ 
        Sets the change indicator to the boolean value C{changed}. 
 
        @note: C{StripCharter} instances call this method after detecting a 
        change, so a C{Channel} cannot be shared among multiple charts. 
        """ 
        self.changed = changed 
 
    def getX(self): 
        """ 
        Template method that returns the vector of X axis data or C{None} if 
        there is no data available. 
        """ 
        return None 
 
    def getY(self): 
        """ 
        Template method that returns the vector of Y axis data or C{None} if 
        there is no data available. 
        """ 
        return None 
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APPENDIX B: MATLAB CODE FOR AVERAGING AND PLOTTING 
WGM DATA 
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%% load Excel file 

global oldpath 

if ~isvarname('oldpath') | length(oldpath) == 0 

    oldpath = 'u:\messungen\tida\'; 

end 

[filename, pathname] = uigetfile({'*.xls'},'Open Excel file',oldpath); 

if ~filename, break, end 

filename = [pathname filename]; 

oldpath = pathname; 

data = xlsread(filename); 

clear oldpath 

%% split time and data columns 

t = data(:,1:2:end); 

d = data(:,2:2:end); 

clear data 

%% crate linear time and interpolate data 

time = 1:max(max(t)); 

for i = 1:size(d') 

    temp = d(:,i); 

    temp(isnan(temp))=[]; 

    data(:,i) = interp1(t(1:length(temp),i), temp, time, 'linear', temp(end)); 

end 

clear t d temp 
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%% open windows and fetch links to axes 

f1 = figure('name', '(Press ESC to exit)'); 

a1 = subplot(2,1,1); 

a2 = subplot(2,1,2); 

%% GUI 

b = 0; 

while b(1) ~= 27 % ESC-key 

    % plot data 

    p = plot(data, 'parent', a1); 

    xlabel('Time [s]', 'parent', a1); 

    ylabel('something [idk]', 'parent', a1); 

    title('-- raw data --', 'parent', a1); 

 

    % calculate mean and std 

    m = mean(data,2); 

    s = std(data,0,2); 

 

    % plot results 

    plot([m+s m-s], 'color', [.8 .8 .8], 'parent', a2); hold(a2); 

    plot(mean(data,2), 'k', 'linewidth', 2.5, 'parent', a2); hold(a2); 

    xlabel('Time [s]', 'parent', a2); 

    ylabel('something [idk]', 'parent', a2); 

    title('-- results --', 'parent', a2); 
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    % actual GUI-stuff 

    b = 0; 

    while (b(1) ~= 27) && (b(1) ~= 127) % wait for either ESC- or DEL-key 

        k = waitforbuttonpress; 

        if k 

            b = uint8(get(gcf,'CurrentCharacter')); 

        end 

    end 

    data = []; 

    for i = 1:length(p) % check which data set has been deleted 

        try 

            data(:,end+1) = get(p(i), 'YData')'; 

        catch 

        end 

    end 

end 

clear data b a1 a2 

%% close windows 

try 

    close(f1); 

catch 

end 

clear f1 

%% write results to an Excel file 
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disp(['writing average data and std to ''' filename(length(pathname)+1:end-4) 

'_averaged.xls'' ...']); 

xlswrite([filename(1:end-4) '_averaged.xls'], [time' m s]); 

clear time m s pathname 
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APPENDIX C: MATLAB SCRIPT FOR PERFORMING STONEY’S 
CALCULATION 
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%This script converts raw data from the PSD into forces generated 

%by cultured myotubes on rectangular cantilevers fabricated from 

%crystalline silicon.   

function [time,sigma]=cantilever(fileName) 

file=fopen(fileName,'r'); 

data=char(fread(file)); 

data=str2num(reshape(data,1,length(data))); 

ymeas=data(:,2)*100;%voltage from PSDY 

xmeas=data(:,3)*100;%voltage from PSDX 

time=data(:,1);%Time in seconds 

trigger=data(:,4)/10;%Stimulus Trigger 

ESi=130*10^9;%Elastic modulus of crystalline silicon 

tSi=4*10^-6;%Thickness of the cantilever in meters 

vf=0.3;%Poisson's ratio of muscle tissue 

vSi=0.28;%poisson's ratio of silicon 

L=7.55*10^-4;%length of the cantilever 

l=10.5*10^-2;%path length of laser 

width=1.0*10^-4;%width of the cantilever 

Emuscle=10^4;%Elastic modulus of muscle tissue 

Ef=Emuscle; 

tF=1*10^-5;%Thickness of the muscle tissue 

I=width*tSi^3/12;%Bending moment of cantilever 

deltay=ymeas/(cos(.45379)*97.5*10^6);%change of the laser position in the y-direction 

deltax=xmeas/(cos(.45379)*97.5*10^6);%change of the laser position in the x-direction 
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thetay=deltay/(2*l);%Theta calculation y axis 

thetax=deltax/(2*l);%Theta calculation for x axis 

Ry=L./thetay;%radius of curvature in the y axis 

Rx=L./thetax;%radius of curvature in the x axis 

if(Ry==0)%avoids divde by zero errors for ymeas 

   sigmay=0; 

else 

   sigmay=1/(6*tF)./Ry*(ESi/(1-vSi)*tSi^3/(tF+tSi));%stress generated in the y axis 

end; 

if(Rx==0)%avoids divide by zero errors for xmeas 

   sigmax=0; 

else 

   sigmax=1/(6*tF)./Rx*(ESi/(1-vSi)*tSi^3/(tF+tSi));%stress generated in the x axis 

   end; 

Fy=sigmay*tF*width;%converts sigmay into a force 

Fx=sigmax*tF*width;%converts sigmax into a force 

%subplot(3,3,1);plot(time,sigmay);%plots sigmay vs. time 

%subplot(3,3,4);plot(time,sigmax);%plots sigmax vs. time 

%subplot(3,3,7);plot(time,trigger);%plots the trigger voltage vs. time 

%subplot(3,2,1);plot(time,Fy) 

%xlabel('time(s)') 

%ylabel('Fy(Newtons)') 

%title('Bending Force');%plots Fy vs. time 

%subplot(3,2,3);plot(time,Fx) 
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%label('time(s)') 

%ylabel('Fx(Newtons)') 

%title('Torsional Force');%plots Fx vs. time 

%subplot(3,2,5);plot(time,trigger) 

%xlabel('time(s)') 

%ylabel('Trigger') 

%title('Trigger trace');%plots the trigger voltage vs. time 

subplot(3,1,1);plot(time,sigmay) 

xlabel('time(s)') 

ylabel('Stress(Pa)') 

title('Bending Stress');%plots Fy vs. time 

subplot(3,1,2);plot(time,sigmax) 

xlabel('time(s)') 

ylabel('Stress(Pa)') 

title('Torsional Stress');%plots Fx vs. time 

subplot(3,1,3);plot(time,trigger) 

xlabel('time(s)') 

ylabel('Trigger') 

title('Trigger trace'); 

%save GapFree_10umfilm_sigmax1.xls sigmax -ASCII 

%save GapFree_10umfilm_sigmay1.xls sigmay -ASCII 

%save GapFree_10umfilm_Fx1.xls Fx -ASCII 

%save GapFree_10umfilm_Fy1.xls Fy -ASCII 

%save GapFree_10umfilm_Trigger1.xls trigger -ASCII 
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