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ABSTRACT 

The construction and characterization of ultra-low noise semiconductor-based mode-locked 

lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied 

in this dissertation. Several different systems were built and characterized. The first of these 

systems includes a novel mode-locking mechanism based on phase modulation and periodic 

spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both 

mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon 

(FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide 

Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of 

<2 fs and pulses compressible to <1 ps. Amplification of these pulse-trains with an external 

SCOWA lead to 390 mW of average optical power without evident degradation in phase noise 

and pulses that are compressible to the sub-picosecond regime. Finally, a new laser is built using 

a 10,000 Finesse Fabry-Pérot Etalon held in a vacuum chamber. The fluctuations in the optical 

frequency of the individual comb-lines over time periods longer than 12 minutes are shown to be 

significantly reduced to <100 kHz in a measurement that is limited by the linewidth of the 

reference source. 

The use of these comb sources as local oscillators in multi-heterodyne detection of arbitrary 

optical waveforms is explored in three different cases. 1) Sampling of mode-locked pulses, 2) 

sampling of phase modulated continuous wave light and 3) periodically filtered white light. The 

last experiment achieves spectral interferometry with unprecedented resolution. 
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"The ancient teachers of this science," said he, "promised impossibilities and 

performed nothing. The modern masters promise very little; they know that 

metals cannot be transmuted and that the elixir of life is a chimera but these 

philosophers, whose hands seem only made to dabble in dirt, and their eyes to 

pore over the microscope or crucible, have indeed performed miracles. They 

penetrate into the recesses of nature and show how she works in her hiding-

places. They ascend into the heavens; they have discovered how the blood 

circulates, and the nature of the air we breathe. They have acquired new and 

almost unlimited powers; they can command the thunders of heaven, mimic the 

earthquake, and even mock the invisible world with its own shadows." 

- M. Waldman (Frankenstein)  
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CHAPTER 1 : INTRODUCTION 

Frequency combs have revolutionized a number of fields in experimental physics, metrology and 

engineering that their importance can hardly be overstated. A frequency comb, as produced by a 

femtosecond mode-locked laser, consists of a large (10
3
 - 10

5
) array of equally spaced, phase-

locked narrow frequency components [1,2]. By controlling only two parameters, namely, the 

frequency spacing and the carrier-envelope offset frequency, every combline frequency can be 

known with sub-Hz accuracy [2,3]. It is this capability makes comb sources invaluable for a 

number of applications. This introduction is organized in three sections: the first enumerates and 

briefly describes some of the applications of frequency combs, making an attempt at pointing out 

which applications benefit from high repetition rate pulse-trains or widely spaced frequency 

combs, the second one presents a more detailed description of the frequency comb itself, as 

produced by a mode-locked laser, with emphasis on harmonically mode-locked lasers, and the 

last section contains a short review of recent advances in semiconductor-based lasers and 

frequency comb sources. 

1.Applications of frequency combs 

The range of applications of optical frequency combs is extremely broad and only a short review 

is presented here. Depending on whether the periodicity of the electric field or the spectral purity 

and precise equidistancy of the spectral lines is of use to the application at hand one can very 
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broadly (and somewhat artificially, since both characteristics are intimately connected) 

categorize the applications of frequency combs into frequency-domain applications and time-

domain applications. 

 Frequency domain applications 

In high precision spectroscopy, an optical frequency comb is used to accurately determine the 

optical frequency of the atomic or molecular transition by acting as a link between a microwave 

frequency standard and the narrow line-width laser that interrogates said transition [4]. This 

ability to essentially count the optical cycles permits extremely precise determinations of the 

transition frequencies in single ions [5] and cold atomic beams [6]. 

This process can be used in reverse using an atomic resonance with very narrow linewidth 

(known as a clock transition) as a primary frequency standard and a self-referenced frequency 

comb is used to count the optical cycles of the laser interrogating the resonance. The system is 

then essentially an optical clock. Optical clocks are expected to perform orders of magnitude 

better than the current fountain Cs clock [7,8]. 

The possibility of extending the spectral coverage of frequency combs via nonlinear processes 

also enables molecular spectroscopy in the mid-ir region where the rotational-vibrational 

molecular fingerprints lie [9–12]. Molecular fingerprinting with frequency combs could bring 

about simple and multiplexed stand-off detection as well as trace gas detection with 

unprecedented sensitivities. Nonlinear processes also allow generation of coherent light at the 

other end of the electromagnetic spectrum. This is done by generating extremely high peak 

electric fields via the control of the carrier-envelope phase slip, which enables coherent high-



3 

 

harmonic generation and has resulted in the generation of extreme UV combs [13] which can 

potentially be used for spectroscopy on ionized Helium, extending the tests of Quantum 

Electrodynamics [14,15] to a new level of precision. 

In the history of scientific progress, the advent of more accurate measurement tools (in this case, 

time-keeping and frequency metrology tools) has been accompanied by new scientific 

discoveries and technological developments. As an example in fundamental physics, the drift or 

fluctuation (or the lack thereof) of fundamental constants can be tested for [16] and more 

extreme tests of special and general relativity can be performed by following the changes in the 

speed of distant galaxies over time. One technique for detection of extrasolar planets requires the 

ability to measure changes in Doppler shifts as small as 1 cm/s/yr [17]. For the measurement of 

small Doppler shifts in the emission spectra from distant stars, frequency combs provide a stable 

and absolutely calibrated frequency grid that the stellar spectrographs can be compared to. The 

absolute calibration provided by the comb allows for comparisons of spectrographs recorded at 

distant locations and over very long periods of time without loss of calibration. In essence, this 

procedure measures the “wobble” of a star that has an earth-like companion and thus hunt for 

possible inhabited extra-solar planets [18,19]. 
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Figure 1.1: Frequency domain applications of frequency combs. (a) Calibration of stellar 

spectrograms and (b) Direct frequency comb spectroscopy using a second frequency comb as a 

local oscillator. 

Precision length measurements can be significantly improved by the use of two frequency 

combs [20,21], where the coherence in both the RF and optical domains is used to implement a 

combined time-of-flight and interferometric measurement which increases the resolution without 

decreasing the ambiguity range at the same time. Multi-heterodyne techniques can be also 

applied to spectroscopy, using one of the combs as a probe while the second comb acts as a local 

oscillator to down-convert and sample the changes undergone by the probe beam. This powerful 

technique can simultaneously resolve the individual vibrational-rotational levels in gases and the 

signals can be coherently accumulated for very long times, significantly increasing the signal-to-

noise ratio [22–26]. In this dissertation, the application of multi-heterodyne techniques will be 

extended to mutually incoherent sources with periodic spectral structures. 

Optical communications also benefit from frequency combs by allowing the development of 

dense WDM modulation schemes where each combline is modulated individually, the comb 

recombined and transmitted through the network [27,28]. Individual lines of lasers with comb 

spacing in the order of 10 GHz can be spectrally separated and modulated with high-speed 

(b) (a) 
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modulators such that the full bandwidth between the comblines is filled. This same capability 

enables true arbitrary waveform generation [29], which can have an impact in LIDAR and 

RADAR technologies. 

 

Figure 1.2: Optical arbitrary waveform generation using frequency comb from a mode-locked 

laser. 

 Time domain applications 

The ultra-low timing and amplitude jitter of the pulse-trains produced from mode-locked lasers 

can have an impact on photonically-sampled analog-to-digital conversion [30,31], where the 

laser pulse acts as the sampling gate holding the value of the RF signal until it is converted into 

an electrical signal. 
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Figure 1.3: Photonically-sampled analog-to-digital converter. The mode-locked pulse-train acts as 

the sampling gate in the ADC setup. 

More recently, frequency combs have been used in the generation of ultra-low noise microwave 

signals via optical frequency division [32–34]. This process requires a self-referenced mode-

locked laser whose repetition rate is locked to an ultra-narrow linewidth continuous wave laser. 

The repetition rate of the mode-locked laser is then photodetected and band-pass filtered. The 

phase noise of these signals has been shown to be extremely low, since it divides the optical 

frequency by a number in the order of 10
4
 to 10

6
. 

2. Harmonically mode-locked lasers 

This section outlines some of the properties of the pulse-trains obtained from fundamentally and 

harmonically mode-locked lasers. This topic has been treated extensively in the literature [35–

39] and only a brief summary is presented here. A picture of a typical loss-modulation setup for a 

mode-locked laser is shown in Figure 1.4, where the modulator in (a) is driven with a period 

equal to the round-trip time of the optical cavity or (b) at an integer submultiple of the round-trip 

time of the cavity. The pulses in case (b) have been color coded to show that they do not 
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originate from the regeneration of a single pulse, which gives rise to periodic noise patterns in 

the output pulse-train. 

 

 
Figure 1.4: Mode-locking through loss modulation. (a) Fundamentally and (b) harmonically mode-

locked lasers. 

In a fundamentally modelocked laser, pulses are generated periodically and every pulse 

originates from the regeneration of a single pulse. Assuming a perfectly periodic pulse-train, its 

electric field can be written as: 

 ( )   ∑ ̂(       ) 
    (       )

 

        

 ( 1.1 ) 

where  ̂(       ) is the envelope of a single pulse.     is the carrier-envelope phase-slip and 

it arises from the difference between the phase and group velocities of the pulse. Fourier 

transformation gives a perfect frequency comb (comprised of delta functions) in the limit of an 

infinitely long pulse-train, as follows: 

 

(a) 

(b) 
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 ( )   ̃(    )∑ (              )

 

 

 ( 1.2 ) 

where      
 

    
, and      

   

  
    , and  ̃( ) is the Fourier transform of the envelope of a 

single pulse. Therefore, the spectrum is an array of spectral lines located at frequencies equal to: 

               

 ( 1.3 ) 

The ratio between fceo/frep essentially determines the number of periods (1/frep) that it takes for the 

waveform to be exactly identical, considering the optical carrier under the envelope. 

 

Figure 1.5: Mode-locked pulse-train and the corresponding spectrum. Notice that the fceo has been 

chosen to be ¼frep, which can also be seen in the pulses where the peak of the carrier coincides with 

the peak of the envelope after four pulses. 
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In a harmonically mode-locked laser, however, there is more than one pulse in the cavity at the 

same time (in the case of some of the lasers presented in future chapters, there are 1000’s of 

pulses in the cavity). These pulse-trains originate from independent portions of spontaneous 

emission and are, in general, not correlated with each other. This property imposes a periodic 

noise pattern in the pulse-train with a periodicity equal to the cavity round-trip time. In this 

interpretation, the output pulse-train can be considered as the interleaving of multiple 

independent pulse-trains, each of which has the period of the cavity round-trip time. This in turn 

leads to a spectrum that consists of the summation of independent spectra with comblines spaced 

by the cavity fundamental frequency. This picture is shown in Figure 1.6. On the top left side a 

high repetition rate pulse-train is represented as the sum of multiple lower repetition rate pulse-

trains. The pulse-trains are assumed to be identical with the exception of a time delay equal to 

1/frep between them. This leads to a Fourier transform (top right) where each comb has a different 

linear phase slope (everything else is equal). Adding these spectra causes perfect destructive 

interference on 3 out of every 4 comb-lines, generating a comb spectrum at the repetition rate of 

the pulse-train. This ideal situation is not met in harmonically mode-locked lasers both because 

of the presence of dispersion and, more evidently, because each pulse-train is generated from an 

‘initial’ burst of amplified spontaneous emission appearing in its time-slot and without 

correlation to the other pulse-trains. By assuming that each pulse-train has a random overall 

phase shift with respect to the other pulse-trains and adding the obtained spectra (Figure 1.6) the 

obtained spectrum has comb-line to comb-line spacing of fcav. Evidently, there is an overall frep 

periodicity (both in amplitude and phase) on this comb. This accounts for the high-repetition rate 

intensity pattern while the electric field is periodic only with fcav. 
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Figure 1.6. Harmonic mode-locking picture from the perspective of interleaved pulse-trains. In the 

top two panels a set of identical pulses are interleaved and perfect coherence makes 3 out of every 4 

comb-lines destructively interfere. In the bottom panels small static phase shifts are introduced in 

each pulse-train, generating a periodic pattern in the frequency domain but without the destructive 

interference. 

In the case of an actively mode-locked laser, one can draw a similar picture starting from the 

frequency domain due to the fact that the loss modulation imposes a condition which couples 

comb-lines that are frep away from each other. Ultimately, this picture leads to a set of pulse-

trains whose repetition rate is equal to frep and which add to generate a pulse-train at the same 

repetition rate but whose electric-field phase is periodic with fcav. 
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3.Semiconductor-based mode-locked lasers as frequency comb sources 

Semiconductor-based mode-locked lasers can be very attractive as compact sources of 

picosecond pulses with high repetition rates in the fiber optic communication band of 1.5 

µm [40]. Semiconductor laser media are also attractive because they are electrically pumped, 

which contributes to the compactness of the system, as well as to its wall-plug efficiency. 

Although the integration of light emitting semiconductor chips with CMOS compatible 

technologies (to achieve full optical-electronic integration) remains a field that faces many 

challenges, significant improvements have been made over the past few years [41,42] and it can 

certainly be expected that more integrated devices will be developed in the near future. 

Ultra-stable and ultra-low noise performance of semiconductor lasers can be achieved with 

external cavities, through careful cavity engineering and design. Long term stabilization of pulse 

repetition rate and optical frequency has been demonstrated through the use of intra-cavity 

etalons and Pound-Drever-Hall control loops [35,43]. 

Finally, another advantage of semiconductors-based lasers is that their operation can be extended 

to other wavelength regimes via bandgap engineering. 
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CHAPTER 2 : PHASE NOISE MEASUREMENT TECHNIQUES 

This chapter will introduce some of the techniques used in the measurement of fluctuations in 

periodic signals. Several techniques previously developed in the domain of microwaves [44–46] 

can be imported and adapted to the field of optics since the photodetected current corresponds to 

a microwave electrical signal that carries the timing and amplitude jitter of the envelope of the 

original pulse-train. Other methods, such as frequency discriminators, benefit from optics and 

can be improved and used in a much broader spectral region using optical fibers and 

interferometric techniques [47,48], as will be discussed below. In general, it is relevant to 

understand the significance of noise, its fundamental limits and the techniques to measure and 

characterize it. 

1.Signal representation 

A narrow-band signal can be represented as a sinusoid whose amplitude and phase are allowed to 

present small deviations from the ideal case. This representation can be done in a Cartesian 

manner using in-phase and quadrature components or, in a phasor fashion, using amplitude and 

phase. The latter is convenient since the fluctuations in these quantities represent the amplitude 

and timing jitter of the signal. Thus, an almost perfect sinusoid can be represented as: 

 ( )   {[   ( )]  (     ( ))}  [   ( )]    (     ( )) 
 ( 2.1 ) 

where α(t) represents the fractional amplitude fluctuations and φ(t) the phase fluctuations. The 

signal is written normalized to unitary amplitude and an overall constant phase has been omitted 
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by setting the time origin at one of the maxima of the signal. Although both amplitude and phase 

noise are assumed to be small, phase noise and amplitude noise are fundamentally different in 

that, for long observation times, phase noise diverges, whereas amplitude noise is bound in every 

oscillator by some limiting mechanism. 

The spectral content of such a signal can be obtained through its Fourier transform as follows: 

 ̃( )  
 

√  
∫ [   ( )]   ( )   (    )   
 

  

 

 ( 2.2 ) 

Assuming φ(t) << 1 radian and α(t) << 1, expanding the phase noise from the exponential and 

ignoring all higher-order noise terms, we can rewrite this integral as 

 ̃( )  
 

√  
∫ [ ( )    ( )]   (    )   
 

  

 

 ( 2.3 ) 

where it is evident that the first-order noise terms appear as sidebands on a delta function 

centered at ω0. Amplitude noise and phase noise appear as an in-phase and in-quadrature 

addition, respectively. Higher order phase noise terms as well as mixing products do appear in 

the expansion, but can usually be ignored provided that the noise is small, which is always the 

case for a high-quality oscillator. 

2.Absolute, relative and residual phase noise 

Amplitude and phase fluctuations can be measured in several ways that are relevant depending 

on the particular application. Power spectral densities of either α(t) or φ(t) are usually measured 
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using a radio-frequency spectrum analyzer (RFSA) or a similar device. Measuring directly at the 

carrier frequency has some drawbacks: (1) an RFSA measures power spectral densities, 

combining phase and amplitude fluctuations, (2) the noise sidebands are usually extremely small 

compared to the carrier such that the dynamic range of the RFSA is not enough, (3) the IF filter 

bandwidth is usually much larger than would be desired and (4) the swept voltage controlled 

oscillator inside the RFSA can be too unstable for the task. Down-conversion with a mixer solves 

most of these problems by allowing the mixing to be done with an arbitrary phase angle 

(separating AM and PM noise) and producing the noise sidebands at close-to-zero frequencies, 

which makes it easy to accurately sample and analyze together with a second harmonic term 

which can be easily filtered out. Since timing jitter is probably the most important parameter in 

the stability of an oscillator, the descriptions given here will be centered on phase noise. Also, 

the experimental setups described are conceptual in nature and some practical issues will be 

discussed later. 

 

Figure 2.1: Noise measurement schemes. (a) Relative noise measurement by comparing two 

independent oscillators and (b) residual noise measurement. 

For any two input signals with the same frequency and a constant phase of π/2, a mixer will give 

a voltage that is proportional to the difference in the phase fluctuations between the two arms 

(see Figure 2.1): 
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 ( )      ( )      ( ) 
 ( 2.4 ) 

The power spectral density of this signal would then be: 

  ( )       ( )       ( )    { {    ( )      ( )}} 
 ( 2.5 ) 

where the last term in the expression is the Fourier transform of the cross correlation of the phase 

fluctuations of both sources and for uncorrelated devices this term vanishes. Each of the first two 

terms represents the absolute noise of each signal and it measures the deviation of the phase of 

the signal from that of a perfect sinusoid, while the measured quantity, Sv(ω), is known as the 

relative noise between the sources. The ultimate performance of an oscillator is given by its 

absolute noise. Figure 2.1 (a) shows a conceptual measurement setup of this type. If the reference 

oscillator’s phase noise is much lower than that of the device under test (DUT) then the output 

noise is approximately that of the DUT. If they are similar, then the noise is twice that of a single 

oscillator. It is evident from Eq. ( 2.4 ) that in a residual noise measurement the fluctuations that 

are common to both oscillators will interfere due to coherent addition of signals. For very short 

path differences or low Fourier frequencies, these quantities destructively interfere and vanish. 

Residual noise is used to mean the uncorrelated noise added by the DUT. In the case of mode-

locked lasers this includes spontaneous emission and the environmental noise that modifies the 

properties of the laser cavity. Figure 2.1 (b) shows a residual noise measurement, where it is 

evident that the fluctuations of the reference source will cancel out, as long as they are not 

filtered by the DUT. If the DUT includes a high-finesse filter, then the measurement will yield 

artificially high residual noise in the spectral regions where the phase noise in the DUT arm is 
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lower than the phase noise in the reference arm [49]. The total noise of a two-port device would 

be given by: 

 ( )   ( )     ( )      ( ) 
 ( 2.6 ) 

where h(t) is the impulse response of the DUT and φres(t) is the residual (uncorrelated) noise 

added by the device. The power spectral density of the output of the mixer would then be: 

  ( )  [   ( )]     ( )       ( ) 

 ( 2.7 ) 

The cross correlation term was omitted from Eq. ( 2.7 ) since the residual noise is by definition 

uncorrelated to the noise of the reference. From this equation it is also evident that in the spectral 

regions where H(ω) is flat, the output of the mixer is the residual noise of the device.  

 

Figure 2.2: Frequency discriminator technique for absolute noise measurements 

Measuring absolute noise can be challenging when there are no good frequency references on the 

frequency range of the oscillator under test. One technique mentioned above is using two similar 

oscillators under the assumption that each contributes half of the measured phase noise. Another 

possibility is using the three oscillator technique, where the measurement described by Eq. ( 2.5 ) 

is performed between the three possible combinations of three oscillators, and the phase noise of 

any one of them can be obtained from: 
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  ( )  
 

 
[    ( )      ( )      ( )] 

 ( 2.8 ) 

The main disadvantage of the three oscillator method is that it requires the three oscillators of 

comparable quality. Another method for absolute noise measurements consists of the frequency 

discriminator or delay-line measurement, schematically shown in Figure 2.2. In this setup, the 

signal is mixed with a delayed version of itself, causing the noise at different frequency offsets to 

interfere in a periodic fashion [47,48]. It is easy to see that: 

 { ( )   (   )}  
 

 
[      ]   { ( )} 

 ( 2.9 ) 

From this equation, we can see that the phase noise of the oscillator and the power spectral 

density at the output of the mixer are related by: 

  ( )  (       )    ( ) 
 ( 2.10 ) 

The frequency discriminator transfer function is shown in Figure 2.3. For this particular 

measurement system, it is advantageous to use a photonic (fiber) delay line because it minimizes 

the losses; it is practically immune to electromagnetic interference and can be very compact. It is 

important to note that the noise at low frequency offsets is severely attenuated due to the transfer 

function of the delay line. Thus, to measure long term stability of oscillator, long delay lines are 

required and high stability for these fiber coils must be ensured as well. 
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Figure 2.3: Frequency discriminator transfer function for two different delays. 

A common figure of merit for the performance of oscillators is the integrated rms timing jitter, 

which can be calculated from the phase noise power spectral density through: 

   
 

      
√ ∫   ( )  

  

  

 

 ( 2.11 ) 

In the following chapters, the residual timing jitter of actively mode-locked lasers will be used as 

a figure of merit to assess the quality of the pulse-train as it compares to the mode-locked source. 
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CHAPTER 3 : A MODE-LOCKED LASER STABILIZED TO AN 

INTRACAVTITY ETALON USING PHASE MODULATION AND 

PERIODIC OPTICAL FILTERING 

Both high repetition rate pulse-trains and frequency comb sources with multi-gigahertz 

combline-to-combline spacing are desirable for a multiplicity of applications [27,28]. 

Harmonically mode-locked lasers can directly provide high repetition rate pulse-train, but have 

the drawback that multiple cavity mode-sets may exist at the same time and this leads to periodic 

noise patterns in the output pulse-trains [35–37]. To overcome this issue, harmonically mode-

locked lasers with an intra-cavity Fabry-Pérot etalon (FPE) as a high-finesse filter have been 

demonstrated and have shown good performance in regards to amplitude and phase noise of the 

output optical pulse-trains as well as the frequency stability of the individual comblines [50]. 

This architecture has the advantage that the long fiber cavity has a high quality factor, providing 

narrow longitudinal modes, while the FPE provides the wide mode-spacing. In these comb 

sources, the modes of the fiber cavity are stabilized to the intra-cavity FPE through a modified, 

multi-combline, Pound-Drever-Hall (PDH) scheme. The PDH stabilization loop typically 

requires an independent radio-frequency source in order to phase modulate a portion of the 

output optical comb and derive an error signal by probing the FPE resonance through a technique 

analogous to frequency modulation spectroscopy [51,52]. However, there is a trade-off between 

the optical power available as usable laser output and that used in the stabilization loop. Since 

the slope of the error signal increases with the optical power, using a larger fraction of the light 

in the stabilization loop results in a tighter lock, but this reduces the power available in the output 
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pulse-train. Increasing the output coupling makes more power available for the PDH loop at the 

expense of the laser's cavity quality factor. 

Mode-locked lasers using phase modulation and an intra-cavity FPE have been demonstrated as 

a means for repetition rate multiplication [53,54]. These lasers operate by modulating at a sub-

harmonic of the etalon’s FSR. It is then the higher order side-bands that oscillate in the cavity, 

creating pulse-trains with a repetition rate that is a multiple of the driving frequency. 

In this chapter, a mode-locked laser is presented in which both mode-locking and frequency 

stabilization are achieved using a single phase modulator and the intra-cavity etalon. Using the 

same intra-cavity elements for both purposes achieves a simplification of the feedback loop that 

is typically used, as compared to the one in reference [50]. It should be noted that in this setup 

(Figure 3.1), all of the intra-cavity power is used for the stabilization loop, which is roughly an 

order of magnitude larger than the output power, creating tighter lock while avoiding the trade-

off with the available power at the output. 

1.Experimental setup and operation principle 

A commercially available semiconductor optical amplifier (SOA) is used as the gain medium 

and the phase modulator is driven at exactly one-half the free-spectral range (FSR) of the FPE. 

The etalon is built with an ultra-low expansion quartz spacer, is hermetically sealed to mitigate 

the effects of environmental fluctuations, and has FSR = 10.285 GHz and a Finesse of 1,000. The 

fiber cavity is 28 m long and is comprised entirely of standard single mode fiber. Mode-locking 
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is attained by the combination of high-depth phase modulation and the periodic spectral filtering 

provided by the etalon.  

 
Figure 3.1: Experimental setup. CIR: Circulator, DBM: Double Balanced Mixer, FPE: Fabry-Pérot 

Etalon, ISO: Isolator, LPF: Low-Pass Filter, OC: Output Coupler, PC: Polarization Controller, 

PD: Photodetector, PID: Proportional-Integral-Diferential Controller, PM: Phase Modulator, PS: 

Phase Shifter, PZT: Piezoelectric Transducer (Fiber Stretcher), SOA: Semiconductor Optical 

Amplifier 

The diagram in Figure 3.2 shows the phase modulation sidebands generated by the phase 

modulator and the transmission function of the FPE. Only the modes within the etalon 

transmission peaks are allowed to oscillate and become part of the mode-locked spectrum. Note 

that the transmitted modes are in phase with the main carrier and spaced by twice the modulation 

frequency, therefore the amplitude of the transmitted field is modulated at the FSR of the etalon. 

The reflected sidebands, (together with a portion of the carrier when it is off-resonance) are 

collected through a circulator and photodetected to generate a PDH error signal that is 

demodulated by mixing in quadrature with the driving signal. This signal is used to control the 

fiber cavity length via a piezoelectric fiber stretcher and keep the lasing frequency at the peak of 

the FPE transmission. The main advantages of the system simplification are: (1) the number of 

intra-cavity elements is reduced, reducing the footprint of the system and potentially leading to a 
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cavity design with lower loss, (2) an additional RF oscillator is not needed for the stabilization 

loop, and (3) the useful output power is increased since there is no need to use a portion of it in 

the stabilization loop. 

 
Figure 3.2: Phase modulation sidebands (black) and FPE transmission peaks (red). The mode-

locking occurs due to the combination of phase modulation and periodic spectral filtering. The 

Finesse of the cavity for this plot is F = 100 and the depth of modulation β = 1.84 rad, for 

illustration purposes. 

A few parameters must be optimized to obtain the desired laser performance. The depth of 

modulation was empirically optimized based on laser performance (optical bandwidth and pulse-

train stability). Keeping the RF power to the phase modulator constant and using a CW laser, a 

measurement was performed to obtain the depth of modulation. The plot in Figure 3.3 shows the 

High Resolution optical spectrum of the output from the phase modulator. This measurement 

shows that the depth of modulation is between 1.85 and 2 rad. It is important to note that this 

range of depth of modulation is with certainty below the point ( = 2.405 rad) at which the 

carrier is suppressed and it is in fact close to the point where the first and second order sidebands 

have the same power. It was also found that the laser can mode-lock (and be PDH locked) at 

lower modulation indices, typically at the cost of narrower spectral bandwidth. 
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Figure 3.3: Measurement of the depth of modulation in the mode-locked laser. The black (red) dots 

show the expected amplitudes for depth of modulation  = 1.85 rad (2.02 rad).  

The standard PDH stabilization scheme assumes a relatively low depth of modulation (to be able 

to consider only first order side-bands in the calculation) and that the generated side-bands are 

non-resonant. Neither condition is fulfilled in this setup because the depth of modulation is high, 

leading to considerable power in higher-order sidebands and, all the even order sidebands are 

resonant with the Fabry-Pérot cavity. For this reason, numerical calculations were performed to 

verify that an error signal could be obtained. Figure 3.4 shows the calculated error signals for 

several cases. To point out some of the interesting features of these calculations, notice that when 

the modulation index increases significantly (middle column) several structures appear from the 

interaction of the resonant even-order sidebands. Another interesting case is when the carrier is 

completely suppressed ( = 2.405), where no error signal is observed on resonance, signal that 

reappears as the modulation frequency reaches ½FSR, at which point the signal originates from 

the interaction of the ±2 sidebands. 
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Figure 3.4: Pound-Drever-Hall error signals for several depths of modulation and driving 

frequencies. These calculations include the effects of the interaction of higher-order sidebands with 

the Fabry-Pérot cavity. 

Another evident feature of the plots in Figure 3.4 is that the slope of the error signal is 

significantly reduced for the case that approximately matches the setup in the mode-locked laser 

under study ( = 2, fMOD = ½FSR). Other dynamic effects that could come into play would be the 

interaction between multiple laser comblines. For this reason it was decided that an empirical 

study of the error signal had to be performed. Essentially, we measured the “dynamic slope” of 

the PDH error signal. To do this, a heterodyne beat between a mode-locked laser combline and a 

cw laser was observed while the locking point was manually changed in 10 mV steps (see 

spectrogram in Figure 3.5) and from this data, we calculated that the dynamic slope is ~67 

mV/MHz. The total locking range is ~2MHz or ~20% of the FPE’s -3dB linewidth. 
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Figure 3.5: Measurement of the dynamic PDH slope. (a) Real-time spectrogram and, (b) recovered 

peak frequency. The laser remains locked throughout the measurement. An error signal slope can 

be calculated from the size of each step, and has been calculated to be ~67 mV/MHz. 

2.Experimental results 

The mode-locked laser output consists of a pulse-train with 10.285 GHz repetition rate and 

average power of ~5 mW. The optical spectrum is a comb of optical frequencies spaced by 

10.285 GHz and has a 10 dB bandwidth of ~3 nm (Figure 3.6(a)). A high resolution trace of one 

combline is shown in Figure 3.6 (b). The modes spaced by the cavity fundamental (~7 MHz) are 

not visible in this measurement. The observed optical signal to noise ratio is 60 dB at a resolution 

bandwidth of 1 MHz. An average of 12 sampling oscilloscope traces of the corresponding pulse-

train is shown in Figure 3.6 (c), using an oscilloscope with equivalent bandwidth of 30 GHz. The 

photodetected RF tone at 10.285 GHz in Figure 3.6 (d) has signal-to-noise ratio >115 dBc/Hz. 

  (b) (a) 
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Figure 3.6 – Laser characteristics. (a) Optical spectrum, (b) High-resolution optical spectrum, (c) 

Photodetected pulse-train and, (d) Photodetected RF tone. 

A frequency stability measurement is performed by heterodyning a relatively stable 

commercially available continuous wave laser with one of the mode-locked spectrum comblines 

and measuring the resulting radio-frequency beat-note. A spectrogram of the measurement 

recorded over 40 s is shown in Figure 3.7 (a). The maximum frequency deviation in this time 

span is ~200 kHz. An upper limit to the laser’s combline linewidth can be set from these 

measurements as well. Figure 3.7 (b) shows a single trace of the spectrogram with and observed -

3dB linewidth of < 4kHz. 
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Figure 3.7 – (a) Spectrogram and, (b) a single RF trace of the heterodyne beat between a 

continuous-wave laser and one combline of the mode-locked laser. An upper bound to the 

frequency stability and the linewidth of the laser comblines can be set from these measurements. 

Measuring the residual timing jitter on the pulse-train is a more challenging problem since the 

repetition rate of the pulse-train is twice that of the driving source. The most straightforward 

approach to this measurement would be to frequency divide the photodetected pulse-train using 

an electronic mixer with the LO driven by amplified feedback. Figure 3.8 shows the complete 

measurement setup including the frequency divider. The principle of operation can be easily 

understood if we consider a self-consistent solution with the difference frequency fRF – fLO = fIF, 

which forces fIF = fLO = ½fRF. The phase shifter in the feedback loop of the frequency divider is 

used to match the boundary conditions of the phase of the 5.14 GHz signal that goes into the LO 

port of the mixer. 

 

(a) (b) 
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Figure 3.8 – Phase noise measurement setup using a regenerative frequency divider.  

The resulting measurement is the residual jitter of both the mode-locked laser and the 

regenerative divider. Theory for regenerative division states that a perfect regenerative divider 

decreases the phase noise power spectral density (PSD) by a factor of 4 (-6 dB), which preserves 

the rms timing jitter of the original signal [55]. The results presented here show the noise PSD at 

5.1425 GHz, and its integrated timing jitter which is that of the 10.285 GHz signal plus a small 

(but uncharacterized) amount added by random fluctuations in the frequency divider. Phase noise 

measurement results are shown in Figure 3.9. The rms timing jitter of the 10.285 GHz pulse-train 

is calculated to be 13 fs in the integration band from 1 Hz to 100 MHz. 

 
Figure 3.9 – Phase noise power spectral density of the frequency divided radio-frequency tone and 

integrated timing jitter. The integrated timing jitter is the same as in the 10.285 GHz signal. 
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3.Conclusions 

In conclusion, a mode-locked laser is presented in which both mode-locking and PDH locking to 

an intra-cavity FPE are achieved by using a single phase modulator. The output of the laser 

consists of a multi-gigahertz spacing frequency comb stabilized to the transmission peaks of the 

FPE. The comblines exhibit a frequency instability <200 kHz over 40 seconds, which makes this 

laser suitable for applications in arbitrary waveform generation, coherent communications and 

photonic analog-to-digital conversion. A reduction of intra-cavity elements is achieved, allowing 

for a small footprint system. The residual timing jitter of the system is found to be 13 fs. 
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CHAPTER 4 : A MODE-LOCKED LASER USING A SLAB COUPLED 

OPTICAL WAVEGUIDE AMPLIFIER (SCOWA) AS A GAIN MEDIUM 

Optical frequency combs with multi-gigahertz spacing are useful in applications such as optical 

arbitrary waveform generation (OAWG) [29,56,57], ultrafast signal processing [27,28], high 

resolution spectroscopy [23,25], and astronomical spectrograph calibration [18]. In the time 

domain these sources produce low-noise high-repetition-rate pulse-trains that can be used in high 

speed analog-to-digital conversion (ADC) [30,31,58,59], and the generation of ultra-low noise 

microwaves [33,34,60,61]. Low pulse-to-pulse amplitude and timing fluctuations are key to 

many of these applications. For example, a photonically sampled ADC at 10 GS/s requires a 

timing jitter smaller than 12 fs and under 0.03% of amplitude noise to operate with 10 effective 

bits of resolution [30]. 

It has been shown that low noise semiconductor-based harmonically mode-locked lasers can 

produce stable frequency combs with a cavity design that uses a long optical fiber cavity with a 

nested Fabry-Pérot etalon (FPE) [50]. In this architecture, the narrow linewidth of the individual 

comblines is due to the long storage time of the fiber cavity (and thus, its more stringent 

frequency selectivity), while the wide comb spacing is due to the spacing between the periodic 

transmission peaks of the intra-cavity etalon. In this chapter, we describe experiments performed 

to include a Slab-Coupled Optical Waveguide Amplifier (SCOWA) in a harmonically mode-

locked laser with an intracavity etalon to further improve its performance. Additionally, a Pound-

Drever-Hall loop is incorporated to stabilize the comb to the transmission peaks of the etalon. 
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This setup locks the fiber cavity fundamental frequency to a subharmonic of the etalon or, 

equivalently, its optical path length to an integer multiple of the round trip length of the etalon. 

1.Experimental setup 

The experimental setup is shown in Figure 4.1. An optical cavity with 5 MHz free spectral range 

(corresponding to 40 m of single mode optical fiber) is built around a Fabry-Pérot etalon with a 

finesse of 10
3
. The laser is mode-locked via loss modulation using an intra-cavity LiNbO3 Mach-

Zehnder modulator driven by an ultra-low noise microwave oscillator. The modulator is driven at 

10.287 GHz, to closely match the free-spectral range of the FPE. The mode-locked comb is 

locked to the FPE’s transmission peaks through a Pound-Drever-Hall (PDH) loop, shown in the 

shaded box in Figure 4.1. The PDH loop consists on phase modulating the output comb at 500 

MHz and reinjecting this phase-modulated comb in the FPE in an orthogonal polarization state. 

The reflected sidebands are photodetected and mixed with the 500 MHz tone to recover a signal 

that is proportional to the frequency difference between the transmission peak of the FPE and the 

comblines. This signal is then used to feed back into the fiber cavity length through a piezo-

electric fiber stretcher. This loop essentially locks the fiber cavity fundamental frequency to a 

subharmonic of the FPE’s free spectral range (FSR), or its optical path length to an integer 

multiple of the FPE’s double-pass distance. A variable output coupler is used to optimize output 

coupling ratio. Furthermore, dispersion compensating fiber (DCF) is inserted in the cavity to 

make an attempt at increasing the spectral bandwidth of the output comb. Results for both the 

all-SMF and the dispersion compensated cavity are described in this chapter. 
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Figure 4.1. Mode-locked laser using a SCOWA and an intra-cavity Fabry-Pérot Etalon. CIR: 

Circulator, DBM: Double Balanced Mixer, FPE: Fabry-Perot Etalon, ISO: Isolator, LPF: Low-

Pass Filter, OC: Output Coupler (Variable), PC: Polarization controller, PD: Photodetector, PID: 

Proportional-Integral-Differential Controller, PM: Phase Modulator, PS: Phase Shifter, PZT: 

Piezoelectric Transducer (Fiber Stretcher), SOA: Semiconductor Optical Amplifier (SCOWA), 

VOD: Variable Optical Delay 

Improvements to the performance of a laser with this architecture can be achieved by increasing 

the quality factor of the combined cavity by either (1) increasing the fiber cavity length, which 

must be coupled with an increase in the FPE Finesse to be able to appropriately filter the fiber 

cavity modes and suppress all possible supermodes or, (2) reducing the intra-cavity losses either 

by careful selection of the intra-cavity elements (for example, hand-picking lower loss intensity 

modulators and choosing an etalon in the stable resonator region of the stability diagram which 

has lower insertion loss since spatial mode-matching can be easily accomplished) or by a 

reduction of the cavity complexity [62]. Another route to improving the oscillator quality is via 

the incorporation of a gain medium with higher saturation power in the cavity, which simply 

increases the energy stored in the cavity. In this work we have incorporated a Slab-Coupled 
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Optical Waveguide Amplifier (SCOWA) as a gain medium. SCOWAs have shown excellent 

performance with respect to high saturation power and low noise figure [63–65]. 

It should be noted that incorporating a SCOWA as the gain medium in this type of cavities is 

challenging due to the fact that SCOWAs typically have lower gain compared to commercially 

available devices, which considerably reduces the available loss budget. As an example, it would 

have been practically impossible to realize this laser using a flat-flat FPE, since the fiber-to-fiber 

insertion loss is typically high (~7dB). On the other hand, by using a cavity with curved mirrors, 

a stable resonator is achieved and the mode can be matched very closely using simple optics, 

which allows for coupling losses of ~1 dB or less. 

The cavity dispersion is roughly matched first by inserting a low-loss patchcord of DCF that is 

longer than the estimated required value and then the dispersion is matched by interchanging 

SMF fiber lengths and optimizing the laser performance at each step until the largest bandwidth 

is obtained. The rationale behind this iterative procedure of varying the length of SMF instead of 

DCF is that given the lower absolute value of the dispersion of SMF makes it simpler to change 

the dispersion by a smaller amount per step. 

2.Laser characterization 

 All SMF Cavity 

The output pulse-train has an average power of 20 mW, roughly 4 times higher than previous 

results using commercially available devices [50]. A high visibility comb spaced by the FSR of 

the etalon is shown in Figure 4.2 (a). The optical bandwidth is 2 nm at -10 dB. A high resolution 
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measurement of a single combline is shown in Figure 4.2 (b). Notice that the optical SNR is >60 

dB, limited by the noise floor of the High Resolution Spectrum Analyzer. 

 
Figure 4.2 – (a) Optical spectrum and (b) High-resolution optical spectrum of a single combline. 

A measurement of the optical frequency stability is presented in Figure 4.3. This measurement 

was done by heterodyning two similar mode-locked lasers, and then measuring the radio-

frequency beat-notes, spaced by the difference of the repetition rates of the mode-locked lasers, 

which in this case is ~2 MHz. The maximum deviation of the comblines is on the order of ~200 

kHz over the span of 30 s. 

Photo-detected pulse-trains and autocorrelation traces are shown in Figure 4.4. Directly from the 

cavity, the pulses are evidently chirped. After external compression, a close-to-transform-limited 

pulse can be obtained, also shown in the red trace. Notice that these pulses are still not 

appropriate for a photonically assisted ADC setup. This is the motivation for the addition of DCF 

to the optical cavity, in an attempt to increase the spectral bandwidth and, with this, the 

possibility of compressing the pulses to the sub-picosecond regime. 
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Figure 4.3 – Optical frequency stability measurement via multi-heterodyne detection with a 

similarly built laser. (a) Schematic of the experimental setup, (b) Conceptual description of the 

multi-heterodyne process and, (c) recorded real-time spectrogram. 

 
Figure 4.4 – Photodetected pulse-trains (a) directly out of the laser and (b) after external 

compression. (c) and (d) show the autocorrelation traces from the pulse-trains in (a) and (b) 

respectively. 
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The radio-frequency tone of the photodetected pulse-train is shown in Figure 4.5. Note that the 

SNR is >135 dBc/Hz. 

 
Figure 4.5 – RF tones of the photodetected pulse-trains. 

The residual phase noise is measured using a carrier noise test set and it is shown in Figure 4.6 

(b). Note that the white noise plateau (1 kHz to 100 kHz) is at -145 dBc/Hz. The integrated 

timing jitter in the band 10 Hz to 100 MHz is 1.7 fs. The noise power spectral density at 1 kHz 

offset represents an improvement of 5dB over ref. [50]. The phase noise PSD at 1 kHz offset (-

145 dBc/Hz) matches the absolute noise of the oscillator used to mode-lock the laser, a Sapphire 

Loaded Crystal Oscillator. By assuming a uniform noise floor, the integrated jitter to 5.14 GHz 

was calculated to be 10.7 fs, meeting the requirements for a 10 GS/s photonics-assisted ADC. 

The amplitude noise is shown in Figure 4.6 (a). The integrated AM noise results in ~0.02% 

pulse-to-pulse energy fluctuations. 
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Figure 4.6 – (a) Amplitude and (b) phase noise of the 10.287 GHz pulse-train. 

 Dispersion compensated cavity 

The incorporation of DCF in the cavity leads to an optical comb with a much broader bandwidth. 

Figure 4.7 (a) shows an optical spectrum with ~9.9 nm of bandwidth at -10 dB. A heterodyne 

beat between a stable cw laser and single comb-line is shown in Figure 4.7 (b). Shown for 

comparison are also two Lorentzian lineshapes, with 1 kHz (red) and 2 kHz (blue) FWHM 

linewidth. The output pulse-train can be externally compressed by using a dual grating 

compressor. Figure 4.8 shows the autocorrelation traces for the compressed pulses from the all-

SMF cavity and the dispersion compensated cavity. Also shown is the calculated autocorrelation 

trace for the transform-limited pulse, based on the optical spectrum. Figure 4.8 (b) shows the last 

two traces in a 10 ps time span. The pulse-width after deconvolution is ~930 fs.  
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Figure 4.7. (a) Optical spectrum of a dispersion compensated laser cavity. (b) Heterodyne beat-note 

between a cw laser and a single comb-line. Also shown in (b) are Lorentzian lineshapes with 1 kHz 

and 2 kHz FWHM linewidth. 

 

Figure 4.8. Autocorrelation traces. (a) A comparison of all the compressed autocorrelation traces in 

black, from all-SMF cavity, in blue from dispersion compensated cavity and in red, the calculated 

transform-limited pulse autocorrelation. (b) A 10 ps span plot showing only the red and blue traces. 

Phase noise measurements were also performed for the dispersion compensated cavity. A 

summary of all the results is shown in Figure 4.9, including the absolute noise of the driving 
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source and the phase noise of a previously demonstrated system using a commercially-available 

gain medium. 

 

Figure 4.9.  Residual phase noise measurements. The left axis shows the residual phase noise for (i) 

this chapter with the all-anomalous dispersion cavity and (ii) the dispersion compensated cavity; 

(iii) a similar laser with a commercially available gain medium [50] and (iv) absolute noise of the 

mode-locking source for all cases. The noise floor shown corresponds to measurement (i), but it is 

comparable in the other cases. The right axis in shows the integrated timing jitter for curves (i) and 

(ii) 

3.Conclusions 

In conclusion, we have built and characterized a comb source with 10 GHz comb-spacing using a 

SCOWA as a gain medium. The average optical output power is >20 mW, the optical SNR of a 

single comb-line is >60 dB. A broader comb can be obtained through compensation of the cavity 
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dispersion to ~9.9 nm. The timing jitter of the pulse-train from the all-SMF (dispersion-

compensated) cavity is ~1.9 fs (4.9 fs) integrated from 1 Hz to 100 MHz and ~11 (14 fs) fs to the 

Nyquist frequency. The optical pulses of the dispersion compensated cavity have been shown to 

be compressible to <1 ps. 

  



41 

 

CHAPTER 5 : ALL-DIODE AMPLIFICATION OF 10 GHZ PULSE-

TRAINS 

As mentioned in previous chapters, optical frequency combs have found a myriad of applications 

in multiple fields and, more specifically, we have focused applications require combs with wide 

mode-to-mode spacing such as optical arbitrary waveform generation [29,56,66], high-sensitivity 

direct comb spectroscopy [67] and high-speed signal processing [28]. For different reasons, each 

of these applications benefits from higher power available per-combline. For example, OAWG 

may be performed with a setup that has high insertion loss or requires equalization of the comb 

components through loss modulation or the sensitivity of a spectroscopic system trying to detect 

trace amounts of gases at the ppb or ppt level, greatly benefits from the added SNR from higher 

combline power. In time domain applications such as high-speed analog-to-digital conversion, 

the additional power is also beneficial since the available pulse energy further separates the 

digitization levels and reduces the contribution of shot noise to the uncertainty of the sampled 

values. 

In this chapter we present a master oscillator, power amplifier (MOPA) system that is entirely 

diode-based. At the output, the system produces a frequency comb with 10 GHz combline-to-

combline spacing and a pulse-train with sub-picosecond pulse-widths. The main advantages of 

all-diode systems are their wall-plug efficiency, compactness and ruggedness. The amplification 

stage is based on a single SCOW Amplifier, operated in the stretched pulse regime. Our 

experiments in other regimes show that in order to obtain minimum distortions, it is ideal to 

operate the system amplifying chirped pulses as produced by the oscillator and subsequently 
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compress in a posterior stage. Spectral and temporal domain analysis of the pulse distortions is 

presented as well as noise characterization of the original and amplified pulse-trains. 

1.Overall MOPA system 

The Master Oscillator is kept as described on Chapter 4, including stabilization loops and intra-

cavity dispersion compensation and a low noise Sapphire-Loaded Crystal Oscillator is used for 

mode-locking. The amplification stage consists of a SCOWA with lower gain and higher 

saturation power than the laser chip. Gain measurements with cw light input were performed and 

the small signal gain at 4 A of bias current is 15 dB and saturation power is ~25 dBm. The 

complete system is depicted in Figure 5.1. The output of the oscillator is isolated from possible 

reflections from connectors as well as amplified spontaneous emission from the power amplifier 

by placing a Faraday isolator at its output. One-tenth of the laser output is used for diagnostics, 

which include optical spectrum analysis, photodetection followed by RF spectral analysis and a 

sampling oscilloscope. The set of diagnostics connections are shown in the dashed box in Figure 

5.1 and are kept as a unit and used for either the original pulse-train or the amplified pulse-train. 

After amplification, only one-hundredth of the output is used for the standard diagnostics and the 

power used in residual phase noise measurements is carefully controlled to match the power used 

when the same measurement is performed on the pulse-train directly from the oscillator. A 

dispersion stage consisting of an optimized length of SMF (depicted as D in Figure 5.1) is used 

to compress the pulses either before or after the amplifier. 
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Figure 5.1. Overal MOPA system built in the laboratory. The diagnostics box shown in the dashed 

box contains standard diagnostics equipment and it is kept as a unit during the experiments. Phase 

noise measurements are performed using an attenuated beam both to protect the photodetector and 

to match the amount of power used from the original pulse-train. The dashed box before the 

amplifier is an optional dispersion stage used to compress the pulses before amplification. 

2.Experimental results 

Gain measurements were performed on the SCOW Amplifier using CW light from a Distributed 

Feedback Laser at 1550 nm, confirming the 15 dB small signal gain and the saturation power of 

~25 dBm. Once in the MOPA configuration, gain measurements were performed using both the 

pulses directly from the laser cavity and after passing the pulses through a dispersive stage that 

compressed them to the sub-picosecond regime. The autocorrelation traces of the input pulses 

and the resulting gain measurements are shown in Figure 5.2. The gain is observed to saturate at 

lower average powers for the sub-picosecond pulses, reducing the saturation power by ~3 dB. 

Autocorrelation traces of the input pulses are shown for reference in Figure 5.2 as well. The 

maximum power obtained during the gain measurements is ~250 mW and the maximum 

observed with a 10 GHz pulse-train input is ~390 mW. The reason for this discrepancy is mainly 
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due to the multiple diagnostics taps used to carefully calibrate the gain measurements, which 

limits the amount of power available for the amplification stage. 

 

Figure 5.2. Gain measurements with pulses directly from the cavity and after compression. On the 

left side, autocorrelation traces of the pulses input to the amplification stage. On the right side a 

plot of Gain vs. Output power for the long (short) pulses in black (red). 

From the gain measurements, it can be concluded that the amplifier is operating in a nonlinear 

regime when illuminated with short pulses; therefore the manifestation of spectral distortions is 

expected. To confirm this, optical spectra were recorded at different input powers to the 

amplifier. Figure 5.3 shows these measurements for amplification of long and short pulses. In the 

case of long pulses only a small red-shift is observed as the power is increased. This can be 

attributed to the fact that the pulses are up-chirped and therefore the red edge for the pulse sees a 

slightly higher gain as it passes through the amplifier. In the case of short pulses, much larger 
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distortions are observed as the edges of the spectrum are amplified much more significantly than 

the center of the spectrum generating the characteristic shape shown in Figure 5.3 (b). 

 

Figure 5.3. Optical spectra of the amplified pulse-trains, measured at different output powers. 

Amplification of (a) long and (b) short pulses. 

In order to further test the distortions induced in the pulse by the saturated amplifier pulse 

autocorrelation measurements were also performed. Most importantly, an attempt to recompress 

the pulses after amplification was made, a process which should highlight higher-order phase 

distortions across the pulse profile, if present. The results are summarized in Figure 5.4. In 

Figure 5.4(a) the pulses are amplified directly as obtained from the oscillator and then 

compressed after amplification and on (b) the pulses are first compressed and then amplified. It 

should be noted that in the first case the pulses are recompressed back to the sub-picosecond 

regime, while in the second case the pulse autocorrelation develops ‘wings’ characteristic of 

third-order phase. Figure 5.5 shows a comparison of the autocorrelation traces of the compressed 

pulse-train and the amplified-and-compressed pulse-train and only minimal distortions can be 

observed in this measurement. 
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Figure 5.4. Pulse autocorrelation traces before and after amplification. (a) Amplifying pulses 

directly from the oscillator and subsequently compressing and (b) amplifying compressed pulses. 

 

Figure 5.5. Comparison of compressed pulse autocorrelations before (red) and after (blue) 

amplification. 
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Finally, residual noise measurements were also performed on the amplified pulse-trains to 

quantify the noise added by the amplification stage. The results are shown in Figure 5.6 and as 

can be observed, no additional noise can be measured at the current stage. The technical noise is 

faithfully amplified together with the signal while the shot noise level is kept equal by placing 

equal amounts of average optical power on the photodetector. 

 

Figure 5.6 (a) Phase and (b) amplitude noise measurements for the pulse-trains before (black) and 

after (red) amplification 

3.Conclusions 

In conclusion, we have demonstrated a master oscillator and power amplifier system based 

entirely on diode amplifiers which produces >250 mW of average optical power (maximum 

observed 390 mW) in a 10 GHz optical frequency comb. The amplification can be performed 

with minimal distortions if the amplification stage is fed with chirped pulses as produced by the 

oscillator and the output of the amplification stage has been compressed to the sub-picosecond 
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regime. These systems can potentially find applications on optics-assisted sampling for analog to 

digital converters, optical arbitrary waveform generation and multi-heterodyne spectroscopy to 

name a few. 
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CHAPTER 6 : FREQUENCY STABILITY OF A MODE-LOCKED 

LASER WITH A 10,000 FINESSE FABRY-PEROT ETALON 

The central element in the type of comb sources presented in this dissertation (as well as in 

refs. [35,50]) is the inclusion of a high-finesse optical cavity, coupled to a long fiber ring cavity. 

The reason behind the inclusion of such high-finesse filter is the suppression of the interleaved 

cavity modes to accomplish a laser that operates as a comb source at 10 GHz. Besides this, the 

Fabry-Pérot Etalon (FPE) accomplishes at least three more purposes inside the cavity. The first 

one is the elimination of the so-called supermode noise spurs, which present themselves as noise 

that is periodic with the fundamental frequency of the cavity a known detrimental effect of 

harmonic mode-locking. The second effect is that this cavity is able to filter out broadband 

spontaneous emission from the gain medium and the last one is that the FPE becomes a 

frequency reference for the comb-lines. In this chapter, a new laser system using a 10,000 

Finesse etalon is constructed and characterized. This FPE is held in a vacuum chamber whose 

temperature is controlled in order to achieve an improvement on the absolute frequency stability 

of the comb. Also, an attempt is made at measuring the suppression of out-of-band ASE by 

placing several output couplers around the optical cavity and making spectral measurements with 

both a system with a 1,000 Finesse etalon and a 10,000 Finesse etalons. 

1.Experimental setup 

The experimental setup of the laser used in this chapter is shown in Figure 6.1 and it is very 

similar to previous implementations of the system, so details about the general laser architecture 
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are omitted in this chapter and the reader is referred to previous chapters and refs. [35,50] where 

details about the operation and performance of previously demonstrated sources can be found. In 

brief, the laser is mode-locked via loss modulation by driving the intensity modulator (IM) at a 

rate equal to the free-spectral range (FSR) of the FPE. The cavity length is actively stabilized by 

using a multi-combline Pound-Drever-Hall (PDH) stabilization scheme, shown in the dashed box 

in Figure 6.1. Note that multiple taps have been placed around the cavity which are used to 

characterize the evolution of the pulses as they travel around the cavity. The optical cavity is 

comprised mostly of single mode fiber (~20m) and a short section of dispersion compensating 

fiber (~2m), yielding a ~9 MHz cavity, which is then mode-locked at a harmonic close to the 

~1,130th, to closely match the FSR of the FPE. Contrary to previous experience, it was found 

that it was quite challenging to mode-lock the laser before the dispersion compensation was in 

place. We currently attribute this to a walk-off between the cold fiber cavity modes and the 

modes of the FPE.  
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Figure 6.1. Schematic of the mode-locked laser utilized in this experiment. CIR: Circulator, DBM: 

Double Balanced Mixer, DCF: Dispersion Compensating Fiber, FPE: Fabry-Pérot Etalon, IM: 

Intensity Modulator, ISO: isolator, OC: output coupler, PC: Polarization controller, PD: 

Photodetector, PBS: Polarizing Beam Splitter, PM: Electro-optic Phase Modulator, PZT: 

Piezoelectric Fiber Stretcher, SOA: Semiconductor Optical Amplifier, VOD: Variable Optical 

Delay. The PBS used to multiplex the error signal is a bulk component. The FPE is kept in a 

vacuum and temperature stabilized enclosure. 

2. Experimental results 

Characterization data of the laser is shown in Figure 6.2.  Figure 6.2 (a) shows two optical 

spectra taken from the port B, immediately after the SOA (red line) and from port C, after the 

light has passed through the FPE (black line). It is evident from the plot that background ASE is 

significantly filtered by the cavity. In the plot shown ASE is suppressed to below the noise-floor 

of the instrument. Further measurements were performed and are compared to a mode-locked 

laser with a 1,000 Finesse etalon in the next section. Figure 6.2 (b) shows two autocorrelation 

traces after the pulses have been passed through 20 m and 90 m of SMF. The smooth curve 

(blue) is a calculation of the transform-limited autocorrelation using the measured optical 

spectrum. The full-width at half-maximum (FWHM) of the measured autocorrelation after 90 m 
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of SMF is ~4 ps while the calculated transform-limited autocorrelation is ~3 ps FWHM. The 

calculated deconvolution factor is 1.43, yielding a deconvolved pulse-width of ~2.8 ps. The 

pulse compression was not optimized for these measurements. 

 

Figure 6.2. Characterization of the laser output. (a) Optical Spectrum measured at port B (black) 

and port C (red). (b) Autocorrelation traces with the pulses passing through ~20 m of SMF and ~90 

m of SMF. In blue, the calculated transform-limited autocorrelation. 

While it has been shown that timing jitter in a mode-locked laser scales inversely with the cavity 

Q as well as the intra-cavity power  [68], the stability of the optical frequency of the comb-lines 

is anchored to the length of the FPE's spacer via the PDH stabilization setup. Despite the fact that 

previous lasers were constructed with FPEs with ultra-low expansion (ULE) quartz spacers, 

environmental fluctuations were still observed to couple in and cause a measurable change in the 

optical frequency of the lasing modes (see refs. [35,50,62], Figure 3.7 and Figure 4.3). In this 

laser we have improved on the performance of our previous lasers both by using a higher finesse 

Etalon and by placing it in a temperature stabilized vacuum chamber. And, as expected, the 
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obtained comb is much more robust against environmental fluctuations. In previous 

measurements, we were also limited by the fact that the laser used for the comparison was free-

running [50,62]. To improve our measurement method, we have used a fully stabilized frequency 

comb as reference. The experimental setup for the measurement is shown in Figure 6.3. The 

reference comb is a commercially-available (Menlo Systems), fiber-based mode-locked laser in 

which both frep and fceo are stabilized to a microwave reference. The repetition rates are detuned 

from an exact harmonic in order to generate a multi-heterodyne spectrum, which is subsequently 

filtered and analyzed in a real-time spectrum analyzer. The only drawback of this setup is that 

the reference comb has a relatively broad comb line-width, in the order of 100 kHz. 

 

Figure 6.3. Multi-heterodyne experimental setup. RT-RFSA: real time Spectrum Analyzer. 

The beating of two frequency combs produces a multi-heterodyne spectrum, which allows us to 

track the frequency of multiple (14 in this case, but this is not limited by the method) beat-notes 

simultaneously using a real-time radiofrequency spectrum analyzer to record the spectrogram 

which is then analyzed for frequency deviations. The repetition rate of the reference source is 

stabilized to 250.955 MHz and the source under test is mode-locked at the FSR of the FPE, 

10.2898 GHz. Therefore, the effective repetition rate detuning       
         

     kHz. 

A single trace of such multi-heterodyne spectrum is shown in Figure 6.4. These spectra were 

continuously recorded for ~6 min on one measurement day (Dec/13/2012) and for ~12 min the 
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next day (Dec/14/2012). The centroid frequency of the beat-note is calculated for each of the 

peaks as well as a standard deviation. The standard deviation confirms the expected line-width of 

the beat-note. 

 

Figure 6.4. Single trace of the multi-heterodyne spectrum. Each comb-line is clearly resolved. The 

following measurements are the result of tracking the 14 comb-lines in the blue box. 

The measurement of the optical frequency stability of the comb yields a maximum deviation of 

<100 kHz in over 12 minutes of continuous operation. This measurement only sets an upper limit 

to the deviations because despite the fact that the reference comb has excellent frequency 

stability, the linewidth of its comb-lines suffers and we are unable to detect deviations that are 

smaller than said line-width. The beat-note centroids are shown in Figure 6.5. Notice that there 

are two sets of traces taken 20.5 hours apart and the average frequency of the comb-lines only 

changes by an amount smaller than the line-width of the reference source. The PDH lock had to 

be restarted multiple times between the two measurements and it is possible that the observed 

shift is due to locking at a different position in the FPE's resonance. Regardless of the origin of 

the shift, it is important to note that this shift is at least one order of magnitude smaller than the 

environmentally caused deviations in previous implementations of our comb-sources. 
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Figure 6.5. Long term tracking of the comb-line frequency. The data on the left side was taken on 

Dec-13-2012 and on the right on Dec-14-2012. The laser operated continuously but it had to be 

relocked several times in between. The plotted data shows the beat-note centroid and the error bars 

correspond to ±1σ. Notice that the centroid always remains within a 100 kHz window and the 

average value of σ is ~80 kHz. 

The beat-note centroid position has been statistically analyzed as well for the 12-minute long 

dataset. As shown in Figure 6.6, the maximum observed deviation over the full time span is 
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always under 100 kHz (< 90 kHz, with the exception of an anomalous data-point in the second 

beat-note) and twice the standard deviation is <40 kHz. 

 

Figure 6.6. Statistics of the beat-note centroid positions. 2xσ is plotted in black squares and the 

maximum observed deviation over 12 minutes in red circles. Notice that even the maximum 

observed deviations are within one beat-note line-width. 

3. Amplified spontaneous emission suppression as a function of filter Finesse 

Another one of the functionalities that the FPE performs in the cavity is the suppression of 

broadband amplified spontaneous emission from the amplifier. A simple mathematical analysis 

of the transfer function of the FPE shows that the expected suppression is inversely proportional 

to the Finesse of the FPE. Measurements of this suppression were performed on a mode-locked 

laser with a 1,000 Finesse etalon and then with a 10,000 Finesse etalon by recording the optical 

spectra in a coupler before and after the FPE. The fiber cavities contained the exact same 
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elements besides the 2 m DCF patchcord that was included in the laser with the 10,000 Finesse 

FPE. The results are shown in Figure 6.7, where we can see that the suppression of broadband 

ASE outside the lasing spectrum is ~27 dB in the 1,000 Finesse etalon case and ~37 dB in the 

10,000 Finesse etalon. 

 

Figure 6.7. Broadband ASE suppression for a mode-locked laser using (a) 1,000 Finesse and (b) 

10,000 Finesse etalons. 

4. Conclusions 

In conclusion, we have demonstrated an etalon-stabilized, harmonically mode-locked 

semiconductor laser with an optical frequency instability <100 kHz that lasts for continuous 

operation times longer than 12 min. The optical spectrum consists of a frequency comb with 

10.2898 GHz comb-line to comb-line spacing. Such sources could find applications in 

astronomical spectrograph calibration, optical arbitrary waveform generation, signal processing 

among other fields. Future improvements to the system include increasing the cavity length to 

mode-lock at a much higher harmonic (around 10,000) while keeping the dispersion 

compensation.  
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CHAPTER 7 : APPLICATION OF FREQUENCY COMBS IN MULTI-

HETERODYNE MEASUREMENTS. PART I: THEORY 

 

Since its invention, the optical frequency comb  [1,3,69], has been applied to several fields such 

as time and frequency metrology  [4,70,71], length metrology  [20], optical arbitrary waveform 

generation  [27,28,56,66,72,73], and high precision spectroscopy  [23]. All of these applications 

benefit from the fact that the frequency comb consists of a large set of coherent local oscillators 

with uniform frequency spacing. These oscillators can then probe the resonances of a molecular 

or atomic system in spectroscopic measurements, and become the Fourier basis whose 

amplitudes and phases are controlled for arbitrary waveform generation or provide the link 

between the optical frequency of a single combline and the microwave frequencies represented 

by the combline spacing in optical clocks. 

Sampling electric fields directly at optical frequencies is practically an impossible task given the 

fact that the center frequency of the oscillation is well beyond the capabilities of electronic 

sampling devices. Notwithstanding, most optical signals contain information only within a small 

bandwidth (i.e., they are bandlimited). Heterodyning a high-frequency but bandlimited signal 

with a coherent oscillator produces an exact copy of the bandlimited signal centered at a 

frequency corresponding to the frequency difference between the coherent oscillator and the 

signal under test. This low-frequency copy can then be sampled by electronic means. This 

principle can be applied to optical signals, that is, a narrowband optical signal can be 

heterodyned with a continuous wave (CW) laser and sampled at the beat frequency. If the signal 
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is distributed over periodically spaced portions of spectrum, it can be heterodyned with a set of 

coherent oscillators with different frequency spacing to generate a series of beat notes in the RF 

domain that can then be sampled. Heterodyne techniques are useful because both amplitude and 

phase information are retained in the process. Some of the requirements for the local oscillators 

are frequency stability and a fixed phase relation between them, both of which are typically met 

by frequency comb sources.  

Multiheterodyne detection with optical frequency combs was first proposed in  [22] and has been 

implemented in a coherent configuration where two combs that share an optical reference are 

mixed and from the mixing products the effect of a medium on the signal comb can be 

deduced  [23,74,75]. The mutual coherence of these combs makes possible the accumulation of 

signal over extended periods of time, beyond the coherence time of individual comblines. 

In our experiments, we utilize a frequency comb as a set of local oscillators to downconvert and 

sample periodic optical signals. The optical signals that are being sampled are not coherent with 

the local oscillator, which is a realistic approximation to measuring unknown optical signals as is 

the case in the spectral characterization of rapidly tunable CW lasers  [76], mode-locked laser 

systems, and arbitrarily shaped optical waveforms. The most evident limitations are that the 

waveforms must have an underlying periodicity and that the lack of mutual coherence sets a limit 

on the maximum time over which signal can be accumulated. Three types of experiments are 

presented, wherein different types of sources are sampled: 1) pulses from an independent optical 

frequency comb source; 2) phase-modulated, CW light; and 3) periodically filtered, incoherent 

white light. In the first two experiments, the repetition rates are extremely detuned, by more than 
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a multiple of the repetition rate of the lower repetition rate source and, therefore, the 

downconversion is performed using only a subset of the available comblines. An effective 

repetition rate detuning is introduced to accurately describe these experiments. In the third case, 

photocurrent interferometry of signals detected with time delays between them is performed to 

demonstrate the fidelity of the measurement.  

This chapter is organized as follows. In the next section a conceptual description of the 

experiments is presented by considering the sources to have infinitely narrow (represented by 

Dirac delta functions) frequency components. Following this section, a more rigorous treatment 

of the signals is presented and the analysis extended to random signals with bandlimited spectral 

content. The experimental results are left for the next chapter where our experiments will be 

described in detail. 

1.Conceptual description 

Equivalent time and frequency domain pictures can be drawn to explain the phenomena at hand. 

A conceptual form of the experimental setup is shown in Fig. 1, where one of the sources is an 

optical frequency comb and the other is the source under test. For this description, we shall 

assume that the source under test is a frequency comb with narrow components whose 

amplitudes and phases are unknown. This assumption is valid as long as the observation time 

does not exceed the coherence time, which can be on the order of hundreds of microseconds to 

milliseconds for free-running, narrow-linewidth lasers  [50], while cavity stabilized lasers have 

reached the sub-hertz linewidth regime  [77–79], allowing for second-long observation times. 
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In reference to Figure 7.1 (a), the source under test is depicted to have a repetition rate that is 

equal to four times that of the LO plus a small additional detuning. This additional detuning 

determines the rate at which the waveforms “walk” through each other, generating a slowly 

varying interference pattern which repeats itself at a rate equal to the difference between the 

repetition rate of the source under test and the closest harmonic of the repetition rate of the LO. 

 

Figure 7.1 – Conceptual picture of the multiheterodyne detection with a large repetition rate 

detuning. (a) Time domain depiction of the process. Notice the pulse walk-off between the LO and 

the signal under test. (b) Frequency domain picture in the optical domain and (c) the photodetected 

spectrum of the superposition of the two optical combs. The highest frequency combline pair 

(green) illustrates the aliasing effect. This is illustrated by the shaded areas underneath the 

frequency axis as well, with an overlapping region. Also note the difference in scales between the 

optical and RF frequency axes. 
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From the frequency domain picture [see Figure 7.1 (b) and (c)], it can be readily seen that the RF 

beat notes will appear at the frequency difference between each pair of comblines. The effective 

repetition rate detuning determines the rate at which the comblines from each source walk-off 

from each other, thus determining the beat-note spacing in the RF domain. It should be noted that 

for large detuning or a large interacting bandwidth, the beat notes may get to the point where the 

next closest combline is not to the lower frequency side but to the higher frequency side. When 

this occurs, a different set of beat notes with the same spacing but at an overall offset will appear 

within the region of interest, generating a signal with a slower overall periodicity (aliased). To 

avoid this problem the following limit must be satisfied: 

  |     |     
 

 
    
( )

 

  ( 7.1 ) 

In this expression, N is the number of interacting comblines, 
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 is the effective repetition rate detuning,     
( )

 is the 

larger of the two repetition rates, and    is the frequency difference between the two closest 

comblines. From ( 7.1 ), we can see that there is a tradeoff between the maximum repetition rate 

detuning and the available interacting bandwidth. The frequency difference of the two closest 

comblines also affects the maximum usable bandwidth and, in some cases, it can be tuned to a 

convenient value by changing the carrier-envelope offset frequency of the reference comb. For 

example, assume     
( )
      and     

( )
         , then ⌊    

( )
    
( )

⁄ ⌋    and the beat-note 

spacing                              . A maximum of 50 beat notes can be 
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observed within the band from dc to     
( )

 ⁄         , which limits the optical bandwidth that 

can be used before aliasing effects appear to a maximum of 200 GHz. 

The equivalent time domain picture is that of a sampling gate that has variable delay with respect 

to the periodic signal under test, given by the pulse walk-off. The relative position of the 

pulses/waveforms comes back to its original position after a time equal to       ⁄ , which in turn 

gives rise to the beat-note spacing in the RF domain. 

It is important to note that this is a linear technique and, consequently, the interacting quantities 

are the electric fields. The resulting waveforms arise from electric field interference, which, if 

the local oscillator is properly characterized, gives a snapshot of the periodic signal under test, 

including the carrier under the envelope. 

This process achieves two independent forms of spectral conversion: 1) it downconverts the 

carrier frequency from the optical domain to the RF domain; and 2) it compresses the spectrum 

by reducing the “empty” spaces in between comblines from the original repetition rate to the new 

sampled rate, given by the repetition rate detuning. The downconversion factor can be defined as 

the carrier optical frequency divided by the carrier microwave frequency and the compression 

factor as the ratio of the original repetition rate to the sampled repetition rate. 

As the repetition rate detuning is reduced, the generated waveforms have a longer periodicity. 

This detuning must evidently reach a point where the periodicity is longer than the coherence of 

the sources. In the frequency domain, this can be thought of as an overlap between finite-

linewidth components (as opposed to the ideal delta-like components described so far) when the 
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spectral compression is carried beyond the linewidth of individual comblines. A more detailed 

analysis of the signals obtained from finite linewidth signals is presented in the next section, but 

it must be stated that a lower limit to the repetition rate detuning can be written as: 

           

 ( 7.2 ) 

where ΔνLW is a parameter that represents the linewidth of the individual comblines and its 

definition may vary depending on the particular application. 

2.Heterodyne detection of bandlimited white light and periodically filtered white light 

When the source under test is a bandlimited white light source, the corresponding electric fields 

can be represented through a Fourier expansion whose frequency component pacing depends 

inversely on the observation time. A classical analysis for the correlations between two delayed 

copies of a white light signal is developed by Hanbury Brown and Twiss  [80]. In this paper, a 

heterodyne version of the derivation is presented for a single combline and the conclusions can 

be extended to the multi-combline beating by superposing individual solutions as long as the 

condition in ( 7.2 ) is fulfilled. 

An advantage of using heterodyne detection to downconvert a white light spectrum is that the 

resulting photocurrent interferometry has extremely high resolution, limited only by the available 

RF spectrum analyzers. As a comparison, a typical grating based optical spectrum analyzer can 

resolve fringes with a resolution on the order of 1 GHz, while a RF spectrum analyzer could 
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potentially resolve spectral fringes with spacing smaller than 1 Hz. The power spectral density of 

the white light spectrum then becomes the ultimate limitation in the detectability of the fringes. 

A few assumptions must be stated first: 1) The white light is considered band-limited; 2) the 

local oscillator is assumed to be coherent (i.e., a delta-like function); and 3) the frequency 

difference between the local oscillator and the closest nonzero frequency component of the white 

light is larger than the white light bandwidth. This allows us to treat the white light homodyne 

beats independently from the heterodyne beats. The assumptions are not extremely constraining, 

provided careful filtering. 

A random but bandlimited optical field is considered in this derivation. In general, the spectrum 

of a bandlimited signal may consist of a finite number of sparsely located finite bandwidth peaks. 

If such a random electric field is observed for a finite time τ, then it can be represented by a 

Fourier series in the following form: 

    ( )   ∑ |  |    [
   

 
    ]

      

    

 

 ( 7.3 ) 

where the coefficients qn are related to the integrated optical power in the nth frequency bin and 

are nonzero only for a finite frequency range,      
 

 
     .    are the phases of the 

frequency components and are assumed to be uniformly distributed over the range [0,2]. As 

shown in the analysis in  [80], the photocurrent generated by such a field is given by 
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where   is the photodetector responsivity, 〈    〉 is the average power contained in the signal 

and Pn and Pm are the average powers contained in the nth and mth frequency bins, respectively. 

The photocurrent fluctuations represented by the second term in ( 7.4 ) average zero, but, 

nonetheless, they can be shown to be correlated to the signals detected at a time delay    . The 

case that is of interest to us in this work is a heterodyne version of this experiment. The total 

electric field obtained by adding a CW carrier to a random signal like the one in ( 7.3 ) is given 

by: 

    ( )       [        ]   ∑   [
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 ( 7.5 ) 

The photodetected signal has four main components: the two terms in ( 7.4 ) plus an additional 

average power due to the local oscillator and a heterodyne term. As long as care is taken to keep 

the frequency difference between the local oscillator and the center of the white light’s spectrum 

larger than the white light bandwidth, the heterodyne term can be filtered and observed 

independently in the RF domain. The voltage across a resistor RL of the heterodyne part of the 

photodetected signal is given by 

 ( )( )     √  ∑√      [  (
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Figure 7.2 – Conceptual experimental setup for white light photocurrent interferometry. 

After including delays at different positions (see Fig. 9) at the second photodetector, the voltage 

is 

 ( )( )     √  ∑√      [  (
 

 
   )    (     )  

   

 
           ]

 

 

 ( 7.7 ) 

Note that phase delays in the optical paths (    and    ) change the phase of the photodetected 

spectrum directly. If we add the signals  ( ) and  ( ) in an RF coupler as shown in Figure 7.2, 

the interference pattern will have a fringe spacing related to the accumulated delay between the 

white light paths, but the fringe position will be extremely sensitive to small path changes in the 

order of the wavelength of light, due to the phase factor  (
   

 
           ). The expression 

for the spectral interference is given by: 
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where  ( )̃ (  ⁄    ) is the Fourier transform of the signal in a single channel. Notice that   ⁄  

and    are optical frequencies. As a consequence, while the periodicity of the interference pattern 
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changes with the difference frequency (
 

 
   ), its phase (or the absolute position of the fringes 

in the RF spectrum) is sensitive to delays (   ) smaller than the wavelength of light. 

 

Figure 7.3 – Simulation results. (a) Optical spectra. (b) Photocurrent interference for a fixed 20 ns 

delay 

Figure 7.3 shows a numerical calculation of the interference in the RF spectral domain of a 

heterodyne white light signal. Figure 7.3 (a) shows the optical spectra, with the CW laser in red 

and the white light modeled with a random amplitude variations on top of a Gaussian spectrum 

and uniformly distributed random spectral phases. The interference pattern for a path delay 

(         ) is shown in Figure 7.3 (b). 
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CHAPTER 8 : APPLICATION OF FREQUENCY COMBS IN MULTI-

HETERODYNE MEASUREMENTS. PART II: EXPERIMENTAL 

RESULTS 

 

The experiments presented cover various cases for which multiheterodyning an unknown, 

periodic, optical signal with a frequency comb is useful as a means to downconvert and sample 

the electric fields. Although all the experiments are conceptually very similar, in practice, they 

represent a broad set of cases. For this reason, the metrics for evaluation of the performance of 

the experimental setups are chosen specifically for each of the experiments. In some cases, the 

availability of different diagnostic tools also determines the type of analysis that can be 

performed. 

This chapter is organized as follows: the first section deals with pairs of optical frequency comb 

sources generated from mode-locked lasers, the second section deals with a mode-locked laser 

comb which samples phase modulated continuous wave light and the third section includes 

experiments done with periodically filtered white light. 

1.Mode-locked pulses 

In the first experiment, an erbium-doped fiber passively mode-locked laser source is used as a 

local oscillator to sample the electric field from a semiconductor-based harmonically mode-

locked laser, locked to an intracavity Fabry–Pérot etalon (FPE)  [35]. The repetition rates of the 
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lasers are ~250 MHz and ~10.24 GHz, respectively. The detuning is extremely large and only the 

beat notes from the 250 MHz spaced comblines that are nearest to the 10 GHz spaced comblines 

are used in the measurement, yielding an effective repetition rate detuning of ~600 kHz, which is 

calculated by comparing the 41st harmonic of the fiber laser with the fundamental of the 10.24 

GHz comb source. This is equivalent to sampling one out of every forty-one 10.24 GHz 

repetition rate pulses on each cycle. 

Optical and RF spectra of the results are shown in Figure 8.1. An effort was made in this 

experiment to make the detuning large enough to almost fill the available RF bandwidth (1/2 of 

250 MHz) for one copy of the spectrum. The absolute position of the downconverted comb can 

also be controlled by varying the carrier-envelope offset frequency of the 250 MHz comb. A 

smaller span of the RF measurement shows clearly resolved beat notes in Figure 8.1 (c). The 

interacting bandwidth is essentially the optical bandwidth of the semiconductor mode-locked 

laser which is ~2.12 THz, that is, more than 200 comblines. The downconversion factor 

(       ⁄ ) is on the order of      , and the compression factor (         ⁄ ) is        . 



71 

 

 
Figure 8.1 – (a) Optical spectra of the mode-locked comb sources. (b) Photodetected RF spectrum. 

(c) Smaller span of the RF spectrum. 

In order to test whether the spectral phase information is preserved, the photodetected signal is 

low pass filtered (ideally with a filter that cuts off everything above 125 MHz, but in this case, 

the oscilloscope bandwidth was limited to 80 MHz) and the resulting waveform is sampled with 

an electrical oscilloscope. The semiconductor laser’s pulses are then passed through different 

amounts of dispersion (~100 m of standard single-mode fiber with       (  ⁄    ) and a 

few meters of dispersion compensating fiber with         (  ⁄    )). The results are 

shown in Figure 8.2, where it can be observed that as the pulse chirp, and hence, the spectral 

phase of the optical signal is varied, the chirp and pulse duration of the RF signal varies 

accordingly. 
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Figure 8.2 – Time domain RF waveforms after downconversion as the 10.24 GHz mode-locked 

comb experiences different amounts of dispersion. 

It is interesting to note in Figure 8.2 that the sampled pulses coming straight from the laser cavity 

are chirped as expected from a semiconductor laser. The sharp rise in the front edge and the long 

tail are evidence of residual third-order phase. The RF carrier in these waveforms is chirped, 

mirroring the optical carrier of the mode-locked pulses, because the sampled RF waveforms 

contain information about the instantaneous optical frequency. 

The measurements presented in this section give a good picture of the spectral intensity of the 

target comb. The spectral phase is preserved relative to the reference comb. As long as the 

reference comb has a flat phase profile over the interacting bandwidth, the sampled waveform 

represents the target E-field accurately. Knowledge of the absolute frequency of each combline 

would require resolving the combline number ambiguity from the reference comb. That is, 

knowledge of the absolute frequency of the reference comb combined with the ability to trace the 

unique RF beats of each combline pair yields the absolute frequency of the target comblines. 

This issue has also been addressed in  [76] for the measurement of the absolute frequency of CW 
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lasers by using two reference frequency combs with detuned repetition rates. The sensitivity of 

our measurement is ultimately limited by the length of time over which a signal can be 

accumulated due to the lack of coherence between the target and reference combs. 

2.Phase modulated light 

Another particular case of interest is that of phase-modulated CW light. In fact, recent work  [76] 

has been done in the measurement of the absolute frequency of rapidly tuned CW lasers. The 

lack of intensity fluctuations and the fact that there is only a slow change in optical frequency 

make it an interesting case to test some of the limits of the technique. For example, the small 

number of interacting comblines reduces the number of free parameters and it is therefore easier 

to fully characterize the experimental data by fitting the measured waveform to an expected 

theoretical waveform. 

The experimental setup is shown in Figure 8.3. As in the previous experiment, the same 

commercially available, 250 MHz, erbium-fiber frequency comb is used as a local oscillator in 

this experiment to downconvert the comb generated by phase modulation at 10.006 31 GHz of 

CW light from a commercially available CW laser. In order to fully recover the comb 

parameters, it is desirable to obtain a high-fidelity sampled electrical waveform. Besides careful 

low-pass filtering to avoid higher frequency components to leak into the sampling device, good 

suppression of the 250 MHz tone from intracomb beatings is imperative to best use the available 

resolution of the sampling device. For this reason, an interferometric carrier suppression arm is 
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used, as shown in Figure 8.3. Additional filtering can be done in the digital domain after the data 

have been recorded. 

 
Figure 8.3 – Experimental setup. Amp: amplifier, BPF: bandpass filter, FC: frequency comb, CW: 

CW laser, LPF: low-pass filter, OC: optical coupler, PC: polarization controller, PD: 

photodetector, PM: phase modulator, PS: phase shifter, RFC: RF coupler, RFS: RF synthesizer, 

VA: variable attenuator. 

The optical spectrum of both sources is shown in Figure 8.4 (a), and the photodetected RF 

spectrum is shown in Figure 8.4 (b). Notice the difference in the 250 MHz carrier suppression 

through the interferometric filtering. 

 
Figure 8.4 – (a) Optical spectra of the phase-modulated CW light and the reference comb. (b) 

Photodetected RF spectrum. 

A real-time high bandwidth oscilloscope was used to record waveforms obtained from the 

multiheterodyne beat notes. After filtering the beat notes between 70 and 120 MHz, an example 
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of the obtained waveform is shown in Figure 8.5 with a time-shifted (by ~1/2 of a period of the 

repetition rate detuning) version of the same waveform shown in the red trace to show that the 

frequency modulation of the waveform can be observed by inspection. The repetition rate 

detuning was ~6.31 MHz and ~1262 cycles of this waveform were recorded in this case. The 

time axes can be conveniently normalized to the repetition period. A Fourier transform of the 

entire dataset is shown in Figure 8.5 (b). Figure 8.5 (c) shows the Fourier transform of a 1.6s 

segment of the sampled signal. The spectral phase of this fast Fourier transform (FFT) is 

available as well and shown in the figure after removing a constant offset and a linear trend. 

Notice the expected  phase shift between the ±1 comblines. The spectral phase can only be 

recovered from a shorter time segment of the signal because of the free-running nature of the 

target comb with respect to the LO comb, which causes the signal to add incoherently for time 

spans longer than the inverse of the linewidth of the comb teeth. 

 
Figure 8.5 – (a) Time domain waveforms, the red trace is displaced ~1/2 a period with respect to the 

black trace. (b) FFT of the fullwaveform. (c) FFT and spectral phase of a 1.6 s segment of the 

waveform. A constant offset and a linear trend have been removed from the phase plot. Only the 

phase values where the FFT has significant power are shown. The inset plot shows the errors of the 

phase compared to the theoretically expected values. 
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The phase of the optical field changes periodically with time. The phase of the downconverted 

RF waveform is expected to change in the same way. There is an additional slowly varying 

phase factor that undergoes a random walk and it represents the phase between the local 

oscillator modes and the CW laser (  ). This can be observed when the signal is recorded for 

times longer than the inverse of the individual combline linewidth. The phase of the 

photodetected RF waveform will then have a time dependence given by 

 ( )      (            )      

 ( 8.1 ) 

Interestingly, while the phase    undergoes a random walk, its derivative has zero mean, and 

therefore, the frequency modulation of the waveform is not affected by this term beyond a zero-

mean random quantity. That is,  ( )  
 

  

  

  
          (            )       , and 

〈   〉   . 

 
Figure 8.6 – Instantaneous frequency of the photodetected waveform. RF on the left y axis and 

optical in the right axis. Notice the compression between the two scales. The rms and mean absolute 

error are indicated in the figure. The fit errors are ~5% of the full range. 
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The recorded time domain data can be analyzed in several ways. For example, from the previous 

RF spectrum (and knowledge of the ratio of Bessel functions), the depth of phase modulation 

index can be estimated at ~1.4 rad. Another way of measuring such modulation index is through 

a time domain analysis of the instantaneous frequency of the measured waveform. Figure 8.6 

shows the measured instantaneous frequency and a calculated sinewave at the phase modulation 

frequency of the RF waveform (equal to the repetition-rate detuning) where only the phase factor 

   was fit to the data. Notice that the sinewave does not go out of step with the frequency 

modulation even after hundreds of periods (Figure 8.6 shows 510 periods or ~80 s). This is due 

to the fact that the optical phase drops out of the frequency modulation calculation and thus, the 

random walk that the relative phase between both lasers undergoes does not affect the 

measurement. The repetition rate detuning between the waveforms gives the compression factor, 

which can be used to calculate the instantaneous optical frequency of the phase-modulated light, 

shown in the right y-axis of Figure 8.6. 

 
Figure 8.7 – Fitted time domain waveform. Notice that after a carrier frequency shift and 

bandwidth decompression, this corresponds exactly to the phase-modulated optical waveform. 
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The complete signal can be fit to a perfect phase-modulated waveform only for short time 

intervals, as the relative phase between the lasers undergo a random walk and, after several 

periods, the waveforms slowly go out of step. Figure 8.7 shows this effect, where a perfect 

phase-modulated sinewave was fit in a portion of the waveform and then followed several 

periods in time. After ~20 periods (~3.2 s), the phase of the waveform is visibly changed. This 

is consistent with the linewidth of the local oscillator comblines, which is >100 kHz. 

3.White light and periodically filtered white light 

As a proof that the concept can be applied to a multi-heterodyne version of the experiment, a 

periodically filtered white light source was generated by taking Amplified Spontaneous Emission 

from a semiconductor optical amplifier and filtering it with a Fabry-Pérot etalon, followed by 

amplification stages to boost the power in each transmitted resonance. The FPE has 10.24 GHz 

of free-spectral range and a Finesse of ~100, making the width of each resonance of ~100 MHz. 

An actively, harmonically mode-locked laser where comb operation was forced by continuous-

wave optical injection, such as the one described in  [81], was used to down-convert this white 

light spectrum. The repetition rate detuning was adjusted to have a clear separation between 

resonances in the RF domain. The optical spectra of the sources are shown in Figure 8.8 (a), 

where a clear walk-off can be seen between the peaks. The photodetected signals were then 

interfered in the RF domain, generating a series of periodically spaced RF peaks, each with an 

interference pattern imposed upon it, as shown in Figure 8.8 (b) and (c). 
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Figure 8.8 – Multiheterodyne white light interferometry. (a) Optical spectra of the periodically 

filtered white light (blue) and the mode-locked laser (red). (b) RF spectra of the interfering 

photocurrents of the downconverted white light. 

An experiment was performed where the photocurrents were sampled independently and then 

interfered. The results are shown in Figure 8.9. A delay of ~12 m of fiber was added between the 

two arms and the waveforms sampled in two independent channels of a high-bandwidth 

oscilloscope. The sampled waveforms are shown in Figure 8.9 (b). It is interesting to note that 

while each of the waveforms is essentially noise (incoherent), the two waveforms are correlated 

with a delay of ~63 ns. The FFT spectra of these signals are shown in Figure 8.9 (c). When the 

signals are added, spectral interference can be observed in each of the down-converted ASE 

peaks. Figure 8.9 (d) shows the resulting interference. The transfer function of a spectral 

interferometer is shown in red for visual aid. 

Since the interference pattern is sensitive to small path length deviations, another test was made 

where a single ASE peak and a continuous wave laser were used to measure the spectrogram of 

the interference while the optical path in one of the arms of the interferometer was driven by a 

piezo-electric fiber stretcher, as shown in Figure 8.10 (a). The spectrogram in Figure 8.10 (b) is 

obtained by calculating the interference pattern while a slow triangular modulation is imposed on 
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ΔtA. The function driving ΔtA is a 1 Hz triangular wave with a peak-to-peak amplitude of 4 fs. 

That is, the path delay between the two ASE paths is only changed by 4 fs (ΔtA = 20ns ± 2fs) or, 

close to a single cycle of a 200 THz carrier. The experimentally obtained spectrogram is shown 

in Figure 8.10 (c), where a clear periodic shift in the fringes is observed with a frequency of 1Hz. 

 
Figure 8.9 – Spectral interference of downconverted incoherent light. (a) Experimental setup. (b) 

Sampled RF waveforms. (c) Power spectra of the sampled waveforms. (d) Spectral interference 

with superposed transfer function of a spectral interferometer (red). 

In conclusion, we have shown a series of experiments where the use of a comb source as a local 

oscillator to down-convert and compress optical signals is desirable. We have provided examples 

with coherent (too narrow-band to be observed in short observation times) sources where we 

have compressed the spectrum of phase modulated light waveforms by factors of ~1600x and 

mode-locked pulses by ~17,000x. The carrier frequencies were down-converted from the ~200 
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THz regime to the microwave regime ~100 MHz. An analysis is presented for white light 

heterodyne detection and interferometry. Interference patterns akin to those of spectral 

interferometry can be obtained in the microwave regime by adding the photocurrents. In this 

fashion, an extremely high-resolution version of white light spectral interferometry can be 

performed. 

 
Figure 8.10 – Heterodyne photocurrent interferometry. (a) Experimental setup. (b) Calculated 

interferometry spectrogram. (c) Measured interferogram. 
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