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ABSTRACT 

The present dissertation is comprehended in two main parts. The first part is focused on 

understanding the mechanisms behind spin current to charge current interconversion (i.e. the spin 

Hall angle), where the spin current is generated by means of spin pumping. The measurement of 

a positive spin Hall angle of magnitude 0.004 in Uranium is reported in Chapter 2. These results 

support the idea that the electronic configuration may be at least as important as the atomic 

number in governing spin Hall effects. In Chapter 3, the design of a spintronics device designed 

to interconvert charge and spin currents in CVD graphene is presented.  

The second part of the thesis is centered in the study of transport through single 

molecules with the use of three-terminal devices. The first evidence of a molecular double 

quantum dot is detailed in Chapter 5. The conclusions are supported by self-assembled 

monolayers (SAMs) and single-electron transistors (SETs) measurements. Using gold electrodes 

for SETs measurements has its disadvantages, two of the main ones being: the junctions are not 

stable at room temperature and it does not allow for transport measurements in the presence of 

light. Graphene electrodes, on the other hand, have been reported to be stable at temperatures 

above room temperature and have no absorption in the visible range. Along those lines, the 

development of a multilayer graphene-based SET is reported in Chapter 6. Finally, a new 

technique, based on CVD graphene transistors, that will allow three-terminal measurements on 

an STM is described in Chapter 7. 
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CHAPTER 1:  

INTRODUCTION: DYNAMICAL SPIN PUMPING 

1.1. Introduction 

The control and manipulation of the spin and charge of electrons in nanoscale systems 

has developed into a very active field of research during the past few years, prompted by 

possible applications in emerging technologies, for instance spintronics and molecular 

electronics. Spintronics final goal is to actively manipulate the spin degree of freedom of 

electrons. In addition, it has the potential to provide smaller, non-volatile memory devices than 

standard CMOS [1]. It has also been demonstrated that pure spin current devices offer 

advantages over spin and charge current devices, the main one being reduced power dissipation 

[2]. Chapter 1, 2 and 3 will be focused on studying a particular technique for obtaining pure spin 

currents: Dynamical spin injection. 

On the other hand, molecular electronics is another very promising substitute to silicon 

nanoelectronics [1]. The idea that single molecules could replace every electric component in a 

circuit represents a final miniaturization for devices [3]. Molecules have already been 

functionalized to act as diodes, transistors and switches, to name a few [2]. To advance in the 

field, the electronic properties of single-molecules must be studied and only few techniques 

allow the study of transmolecular conduction, scanning tunneling microscopy (STM) and single-

electron transistors (SETs) spectroscopy are two of them [2]. Chapter 5 demonstrates single-

molecule transport on a molecular double quantum dot, Chapter 6 reports the development of a 

multilayer graphene SET, and in Chapter 7 a newly developed STM technique is presented. 
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1.2. Dynamical Spin Pumping 

As indicated in the introduction, pure spin currents offer further advantages in spintronics 

applications: reduced power dissipation, absence of stray Oesterd fields, and decoupling of spin 

and charge, to name a few [2]. Different experimental techniques can be used to obtain spin 

currents, for instance: nonlocal electrical injection from ferromagnetic contacts; spin Hall effect; 

thermal gradients; and spin pumping. The present chapter focuses on the generation of spin 

current by dynamical spin injection or spin pumping. 

In spin pumping, the precessing magnetization of an externally excited ferromagnet 

undergoing ferromagnetic resonance (FMR) is dynamically coupled to the charge carriers in an 

adjacent non-magnetic system, resulting in a net transfer of spin angular momentum across the 

ferromagnet/non-magnetic (FM/NM) interface [4]. 

1.2.1. Ferromagnetic Resonance 

At microwave frequencies, spin resonance in ferromagnets is similar to nuclear and 

electron spin resonance [5]. In a system of electronic or nuclear spin moments, the resonance 

arises when there is a Zeeman splitting of the energy levels, as a result of a uniform magnetic 

field being applied, and the system absorbs energy from an oscillating magnetic field at the 

frequencies that correspond to the transitions between levels (Equation 1.1). [6] 

ℏω = ∆𝐸𝑚𝑛 (1. 1) 

where ℏ is the reduced Planck’s constant and ω is the frequency of the electromagnetic radiation.  
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The value of the energy difference between the levels m and n is defined by Equation 1.2: 

∆𝐸𝑚𝑛 = 𝑔𝜇𝐵∆𝑚𝑚𝑛𝐻0  (1. 2) 

where g is the Lande factor, µB is the Bohr magneton, ∆mmn is the difference of the magnetic 

quantum numbers of the states m and n and H0 is the external magnetic field [7]. 

Combining Equations 1.1 and 1.2 we obtain the resonant condition: 

𝜔𝑟𝑒𝑠 =
𝑔 𝜇𝐵

ℏ
∆𝑚𝑚𝑛𝐻0 (1. 3) 

The values of the differences ∆mmn are limited by selection rules, which for a dipole radiation 

and given that for a Zeeman multiplet all levels have different quantum number (m ≠ n), are the 

following: 

∆𝑚𝑚𝑛 = ±1 (1. 4) 

For transitions that obey ∆𝑚𝑚𝑛 = ±1, the plane of polarization is perpendicular to the applied 

external magnetic field H0. In other words, to achieve the resonance condition the oscillating 

magnetic field (Hac) must be perpendicular to H0 [8]. Taking into consideration selection rules 

and using Equation 1.3 we can write a simplified expression for ωres: 

𝜔𝑟𝑒𝑠 = 𝛾 𝐻0  (1. 5) 

where, 

𝛾 =
𝑔 𝜇𝐵

ℏ
= 𝑔

𝑒

2mc
 (1. 6) 
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Sometimes it is more convenient in experiments to set a constant frequency and sweep the 

magnetic field. In that case, we can express the resonant condition in terms of the frequency: 

𝐻𝑟𝑒𝑠 =
1

γ
𝜔0 (1. 7) 

It is significant that we can express ωres (Equation 1.5) without the Planck’s constant. 

Which means that it is possible to use a classical approximation not only in the case of atomic 

magnetic resonance but also in the treatment of magnetic resonance phenomena in solids.  

The difference in the resonance condition between an isolated atom and a ferromagnet is 

the strong exchange interaction between the electrons in the latter. Because of the exchange 

interaction, the uncompensated magnetic spin moments of the atoms in the ferromagnet orient 

parallel to each other, which leads to the need of an effective field in Equation 1.5. Due to the 

effective field, if the magnetization shifts from the equilibrium position it will start precessing 

around Heff at the Larmor frequency (Figure 1). The classical equation of motion that describes 

the system is: 

𝑑𝑚

𝑑𝑡
= −𝛾[𝑚×H] (1. 8) 

where m is the mean magnetization per unit volume, γ is the gyromagnetic ratio and H = Hac + 

H0 

Near the Larmor frequency the magnetic susceptibility depends on the frequency of the 

electromagnetic radiation and the energy absorption is maximum. The width and shape of the 

absorption line have a strong dependence on the internal interactions in the ferromagnet 

(exchange interaction, dipole-dipole interaction, spin-orbit interaction…) as well as on its shape 
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and symmetry. Thus, FMR study provides very detailed information of the different properties of 

the system under study. 

 

 

Figure 1: Graphical representation of the precession of the magnetization about a uniform magnetic field in 

the absence of an A.C magnetic field. 

Equation 1.8 depicts a correct description of the system when energy losses are not 

present. Bearing that in mind, Equation 1.9 was suggested by L. D. Landau and E. M. Lifshitz, 

introducing a damping term to Equation 1.8: 

𝑑𝑚

𝑑𝑡
= −𝛾[𝑚×𝐻] − 𝛼

𝛾

𝑀𝑆
[𝑚×[𝑚×𝐻]] (1. 9) 

where α = λ/γ M is a non-dimensional damping parameter and λ characterizes the dipole-dipole 

interaction in the ferromagnet. 

For pulsed remagnetization processes the previous equation is not precise, the increment 

of the damping parameter is inversely proportional to the time of total reorientation of the 

magnetization. In order to correct this issue, Gilbert modified Equation 1.9: 
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𝑑𝑚

𝑑𝑡
= −𝛾[𝑚×𝐻] +

𝛼

𝑀𝑆
[𝑚×

dm

𝑑𝑡
] (1. 10) 

The first term on the right-hand side represents the precessional torque and the second term 

represents the Gilbert damping torque. In the limit of small damping (α / MS << 1), Equation 1.9 

and 1.10 are equivalent [9]. In the majority of experiments the relation α / MS << 1 is true. 

In Gilbert’s equation, the relaxation term is proportional to the rate of change of the 

magnetization in time. Figure 2a shows a graphical representation of the two different torques 

acting on the magnetization vector, while Figure 2b is an illustration of the trajectory of the time 

dependent magnetization under the action of damping. 

Figure 2: a) Schematics of the magnetization vector (M), the applied magnetic field (H), the precessional 

torque (-M x H) and the Gilbert damping torque (M x 
𝒅𝑴

𝒅𝒕
 ).  b) Damped precession of the magnetization 

vector. The magnetization spirals down along the field direction and gradually approaches equilibrium 

position. 

1.2.2. Theory of Precession-Induced Spin Pumping 

Yaroslav Tserkovnyak and Arne Brataas developed the theory of spin pumping in 2002 

to explain why the Gilbert damping constant was found to be dependent on the substrate and 

capping layer of the ferromagnet. Their theory demonstrates that the enhancement of the Gilbert 
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damping constant is due to a transfer of spins between the ferromagnet and the adjacent normal 

metal [4,10], i.e., the precessing magnetization vector transfers spin angular momentum into the 

normal metal. 

Tserkovnyak et al. [10] derived the adiabatic spin pumping theory via scattering theory. 

Considering a Ferromagnet/non-magnetic junction (FM/NM for future references), in the 

absence of voltage bias no charge currents flow and if the magnetization is constant in time there 

will be no spin currents. Once an external magnetic field is applied, the magnetization of the FM 

will start precessing, transferring spin angular momentum to the NM (Figure 3).  

Figure 3: At the interface between a ferromagnet and a normal metal, the precession of the magnetization 

(m(t)) induces a spin current in the NM (IS
pump). IS

back represents the spin current that flows back to the 

ferromagnet. Figure based on reference [13]. 

The pumped current is given by: 

𝐼𝑆
𝑝𝑢𝑚𝑝 =

ħ

4𝜋
(𝐴𝑟𝑚×

𝑑𝑚

𝑑𝑡
− 𝐴𝑖

𝑑𝑚

𝑑𝑡
) (1. 11) 
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where A ≡ Ar + iAi is the spin-pumping conductance parameter and m(t) is the unit vector of the 

magnetization of the ferromagnet.  

The spin-pumping conductance can be written in terms of the transmission and reflection 

coefficients: 

𝐴 =  𝑔↑↓ − 𝑡↑↓ (1. 12) 

g↑↓ being the complex interfacial mixing conductance and t↑↓ the transmission matrix. In 

ferromagnetic films thicker than their spin-coherence length, t↑↓ vanishes and the spin pumping 

through the FM/NM interface is governed by g↑↓.  

Previous calculations seem to indicate that Ai is very small for Cu/Co and Fe/Cr [11], and 

it vanishes in nonmagnetic tunnel barriers and in ballistic and diffusive contacts [12]. 

Consequently, Ai may be neglected in many systems. If that is the case, the spin current pumped 

into the NM is: 

𝐼𝑆
𝑝𝑢m𝑝 =

ħ

4𝜋
𝑔𝑟

↑↓𝑚×
𝑑𝑚

𝑑𝑡
 (1. 13) 

where gr
↑↓ is the real part of the interfacial mixing conductance. 

In order to generalize the theory of spin pumping and consider the spin build-up in the 

NM, the backflow of spin current into the FM (IS
back) has to be included. The total spin 

accumulation can be written as: 

𝐼𝑆 = 𝐼𝑆
𝑝𝑢𝑚𝑝 − 𝐼𝑆

𝑏𝑎𝑐𝑘 (1. 14) 
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As a first approximation, we are going to assume IS
back ≈ 0. The model will be valid for 

highly conductive metals with effective spin-flip processes that prevent any backscattering into 

the FM [13]. Taking that into consideration, the total spin current transferred to the NM is:  

I𝑆 =
ħ

4𝜋
𝑔𝑟

↑↓𝑚×
𝑑𝑚

𝑑𝑡
 (1. 15) 

Note that IS represents the instantaneous spin-pumping current at the interface. Pure spin 

currents are not conserved in real systems, spins relax over the NM spin diffusion length and the 

accumulated spin density diffuses across the NM (Figure 4). The spin accumulation diffuses 

according to [2, 13]: 

𝑖𝜔𝜇𝑆 = 𝐷
𝜕2𝜇𝑆

𝜕𝑥2 −
𝜇𝑆

𝜏𝑆𝑓
 (1. 16) 

where ω is the precession frequency, µS is the spin accumulation (difference in local 

electrochemical potentials of up and down spins), D is the diffusion coefficient and τsf is the spin-

flip time. 

Equation 1.16 is valid for τ/τsf << 1, that is, the spin-flip relaxation can be treated as a 

perturbation (τ is the transport mean free time). The boundary conditions for Equation 1.16 are 

set by the continuity of the spin current at the interface (x = 0) and the vanishing of IS for x = tN: 

𝑥 = 0: 𝐼𝑆(𝑥 = 0) = −𝐷
𝜕𝜇𝑆

𝜕𝑥
 (1. 17) 

𝑥 = 𝑡𝑁 : 
𝜕𝜇𝑆

𝜕𝑥
= 0 (1. 18) 

where tN is the thickness of the normal metal and λsd is the spin diffusion length. 
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Solving Equation 1.16 for the previous boundary conditions, we find the spin current 

density [2]: 

𝐼𝑆(𝑥) = 𝐼𝑆

sinh [
𝑥−𝑡𝑁

𝜆𝑠𝑑
]

sinh(𝑡𝑁/𝜆𝑠𝑑)
 (1. 19) 

The spin accumulation in the metal produces a spin backflow into the FM. This effect can 

be considered by replacing gr
↑↓ in Equation 1.15 with an effective spin mixing conductance geff

↑↓: 

𝑔𝑒𝑓𝑓
↑↓ =

4𝜋𝛾𝑀𝑆𝑡𝐹𝑀

𝑔𝜇𝐵𝜔𝑓
(∆𝐻𝐹𝑀/𝑁𝑀 − ∆𝐻𝐹𝑀) (1. 20) 

where γ is the gyromagnetic ratio, MS is the FM saturation magnetization in T, tFM is the 

thickness of the FM, µB is the Bohr magneton, ωf is the microwave angular frequency and ∆H is 

the linewidth of the FMR signal [10]. 

Figure 4: In a real material, the spin current pumped at the interface builds up a spin accumulation 

dependent on the position. This spin accumulation can relax by spin-flip scattering or flow back into the 

ferromagnet. Figure based on reference [13]. 
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Combining Equations 1.15, 1.19 and 1.20, we obtain a final expression for Is(x): 

𝐼𝑆(𝑥) =
ħ

4𝜋

sinh[
𝑥−𝑡𝑁

𝜆𝑠𝑑
]

sinh(𝑡𝑁/𝜆𝑠𝑑)
𝑔𝑒𝑓𝑓

↑↓ (𝑚×
𝑑𝑚

𝑑𝑡
)  (1. 21) 

1.2.3. Spin Pumping Formulation in Thin Films 

According to Equation 1.21, IS depends on the variation of the magnetization with time 

(i.e., the trajectory of the magnetization precession). In thin films the magnetization precession 

trajectory is conditioned to the angle between the magnetization and the normal plane of the film 

(Figure 5). The following section is dedicated to the formulation of the spin pumping theory 

regarding thin films. 

 

Figure 5: Graphical representation of the magnetization precession trajectory for different angles between 

the magnetization-precession axis and the film plane. a)  Magnetization-precession axis perpendicular to the 

film plane. b) Magnetization-precession axis oblique to the film plane.  c) Magnetization-precession axis 

parallel to the film plane. Figure based on reference [14] 
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In equilibrium conditions, we set the direction of the magnetization M parallel to the z 

axis (Figure 6) and neglect the magnetocrystalline anisotropy. The total effective field is given in 

terms of the external magnetic field H and the static demagnetizing field HM. The demagnetizing 

magnetic field is conditioned to the shape and anisotropy of the ferromagnet. The terms for 

Equation 1.24 are taken from reference [14]. 

𝐻𝑒𝑓𝑓 = 𝐻 + 𝐻𝑀 (1. 22) 

where 

𝐻 = 𝐻 (

0
sin (𝜃𝑀 − 𝜃𝐻)
𝑐𝑜𝑠 (𝜃𝑀 − 𝜃𝐻)

) (1. 23) 

𝐻𝑀 = −𝑀𝑆𝑐𝑜𝑠𝜃𝑀 (
0

sin 𝜃𝑀

cos 𝜃𝑀

) (1. 24) 

H is the strength of the external magnetic field, θM and θH are the magnetization angle and the 

external magnetic field angle to the normal axis of the film plane (Figure 6) [14]. M x Heff = 0 

(static equilibrium condition) leads to the following condition: 

2𝐻𝑠𝑖𝑛(𝜃𝑀 − 𝜃𝐻) + 𝑀𝑆𝑠𝑖𝑛2𝜃𝑀 = 0 (1. 25) 

Now, taking into account an external ac field h(t) and the consequent small precession of 

the magnetization m(t) that it induces:  

𝐻𝑒𝑓𝑓(𝑡) = 𝐻 + 𝐻𝑀 + 𝐻𝑚(𝑡) + ℎ(𝑡) (1. 26) 

where 
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𝐻𝑚(𝑡) = −4𝜋𝑚𝑦(𝑡)𝑠𝑖𝑛𝜃𝑀 (
0

𝑠𝑖𝑛𝜃𝑀

𝑐𝑜𝑠𝜃𝑀

) (1. 27) 

ℎ(𝑡) = (
ℎ𝑒𝑖𝜔𝑡

0
0

) (1. 28) 

𝑚(𝑡) = (𝑚𝑥𝑒𝑖𝜔𝑡, 𝑚𝑦𝑒𝑖𝜔𝑡, 0) (1. 29) 

 

Figure 6: A schematic illustration of the coordinate system used for describing a ferromagnetic film (blue in 

the figure). M and m(t) are the static and dynamic components of the magnetization. H is the external 

magnetic field. θM and θH are the magnetization angle and the external magnetic field angle to the normal axis 

of the film plane. Figure based on reference [14]. 

The resonance condition can be obtained from Equation 1.10, neglecting the external ac 

field, the damping term and disregarding second order contributions from the precession 

amplitude (Equation 1.30): 

(
𝜔

𝛾
)

2

= [𝐻𝐹𝑀𝑅𝑐𝑜𝑠(𝜃𝑀 − 𝜃𝐻) − 𝑀𝑆𝑐𝑜𝑠2𝜃𝑀]×[𝐻𝐹𝑀𝑅𝑐𝑜𝑠(𝜃𝑀 − 𝜃𝐻) − 𝑀𝑆𝑐𝑜𝑠2𝜃𝑀](1. 30) 

We can now solve Equation 1.10 for the different components of the time dependent 

magnetization m(t) by means of the relationships set in Equations 1.25 and 1.30: 
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𝑚𝑥(𝑡) =
𝑀𝑆ℎ𝛾{2𝛼𝜔𝑐𝑜𝑠𝜔𝑡+[𝑀𝑆𝛾𝑠𝑖𝑛2𝜃𝑀+√(𝑀𝑆)2𝛾2𝑠𝑖𝑛4𝜃𝑀+4𝜔2]𝑠𝑖𝑛𝜔𝑡}

8𝜋𝛼𝜔√(𝑀𝑆)2𝛾2𝑠𝑖𝑛4𝜃𝑀+4𝜔2
 (1. 31) 

𝑚𝑦(𝑡) = −
𝑀𝑆ℎ𝛾𝑐𝑜𝑠𝜔𝑡

4𝜋𝛼√(𝑀𝑆)2𝛾2𝑠𝑖𝑛4𝜃𝑀+4𝜔2
 (1. 32) 

 

Finally, time averaging Equation 1.15 for one period of precession and combining it with 

Equations 1.31 and 1.32 we find a general expression for the spin current density at the interface 

between a thin film of a FM and a NM: 

𝐼𝑠 =
𝑔𝑒𝑓𝑓

↑↓ 𝛾2ℎ2ħ[4𝜋𝑀𝑆𝛾𝑠𝑖𝑛2𝜃M+√(4𝜋𝑀𝑆)2𝛾2𝑠𝑖𝑛4𝜃𝑀+4𝜔2]

8𝜋𝛼2[(4𝜋𝑀𝑆)2𝛾2𝑠𝑖𝑛4𝜃𝑀+4𝜔2]
 (1. 33)  
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CHAPTER 2:  

MODERATE POSITIVE SPIN HALL ANGLE IN URANIUM 

2.1. Introduction 

The present chapter is based on the work published in Applied Physics Letters [27]. 

Spin pumping has been studied in a wide variety of materials, including transition metals 

[2,14,15], organic materials [17] and two-dimensional crystals [18-20], among others. 

Experimentally, the pumped spin current can be detected as an enhancement of the Gilbert 

damping in the ferromagnet. The injected spin current can be converted into an electrical signal 

by the inverse spin Hall effect (ISHE) for non-magnetic layers with sufficiently large spin-charge 

current interconversion [21, 22]. The latter has a figure of merit known as the spin Hall angle, θH, 

defined as the ratio of the inject spin current and resulting charge current.  

It is generally understood that the spin-orbit coupling, and consequently the spin Hall 

angle, scales as Z4 (being Z the atomic number) [17, 18, 23]. Indeed, most spin pumping and 

ISHE studies concentrate on metals with high spin-orbit coupling [18-20, 24]. However, a recent 

systematic study with transition metals shows that the spin Hall angle is strongly modulated by 

the orbital filling and can become comparable to that obtained in some heavy metals [18]. This 

indicates that the electronic structure is quite important in determining spin Hall conductivities 

and spin Hall angles, leaving the ultimate importance of the atomic number at a secondary level. 

Therefore, exploring higher atomic number elements in the periodic table is an important 

direction for understanding the underlying mechanisms governing the spin Hall effect in non-

magnetic materials.  
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As pointed out by Tanaka et al. [18-20, 23], the higher magnetic moment and the smaller 

band splitting near the Fermi surface of f-electron systems when compared to d-electron 

elements, place Lanthanides and Actinides as excellent candidates to display “giant” spin Hall 

and orbital Hall effects. In this context, this chapter reports the experimental realization of spin 

pumping and subsequent electrical detection of the generated spin current in the actinide metal 

Uranium, a super-heavy f-electron metal whose atomic number (Z = 92) is larger than any 

element studied to date in the context of spintronics. 

2.2. Sample Preparation 

Thin layers of permalloy (Py; Ni80Fe20) and bilayers of permalloy/uranium (Py/U) were 

deposited using a dedicated actinide sputter deposition chamber [25]. DC magnetron sputtering 

was employed to synthesize samples with thicknesses, tPy and tU of 12.5 nm and 3 nm, 

respectively. 3 nm of Nb was used as a capping layer to prevent oxidation of the underlying 

films. The growth rates were held between 0.05 and 0.1 nm/s in an argon pressure of 7 × 10-3 

mbar at a temperature of 300 K. The films were deposited onto BK7 glass with rms surface 

< 0.5 nm.  Depleted uranium sputtering targets are commercially available.  

2.3. FMR Measurements 

2.3.1. Experimental set-up 

As explained in Section 1.2., in order to perform FMR studies a dc magnetic field and a 

perpendicular a.c. magnetic field need to be applied to the sample. In our experiment, the d.c 

magnetic field is applied using an electromagnet (Figure 7a) with the capability of supplying 

approximately 1 Tesla. The electromagnet can be rotated 360 degrees, which allows for the 
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angular dependence studies of the FMR signal. The a.c. magnetic field is achieved by using on-

chip co-planar waveguides (CPW) fabricated on an insulating substrate (undoped GaAs) by 

means of optical lithography (Figure 7b). 

The CPW design must follow specific guidelines to minimize losses. The most important 

one being that the impedance throughout the entire CPW has to match the impedance of the 

microwave source (50 Ohms). This fact sets a relationship between the central line and the gap 

widths. Figure 7b shows a picture of a CPW with its critical dimensions [26]. 

Figure 7: a) Picture of the electromagnet used for the experiments. b) Optical image of a CPW patterned on a 

GaAs substrate with a closer look that shows the dimensions of the central line and the gap. c) Picture of a 

CPW mounted on the housing box. 

To maximize the magnetic field lines density, the width of the central line is reduced in 

the area where the sample is going to be placed [27]. The pattern becomes wider at both ends in 

order to facilitate the connection to the coaxials. The CPW is then placed inside a custom-built 

housing box that will connect the CPW to the microwave source. The housing box containing the 

CPW is attached to a solid probe (Figure 7c) that will be positioned between the poles of the 

electromagnet. 
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Before proceeding to measure the sample, the CPW must be characterized. The 

transmission characterization is done with an Agilent Technologies Performance Network 

Analyzer (PNA). The PNA will send a microwave signal through port P1 and will measure the 

signal received in port P2. The transmission spectra of one of our CPWs is shown in Figure 8a.  

The sample is then placed upside-down on top of the CPW. During FMR measurements, 

the dc magnetic field is swept while the PNA sends constant frequency microwave radiation and 

measures the transmission coefficient. A Labview program is used to record the data and control 

the different elements of the circuit. A schematic of the set-up is shown below (Figure 8b). 

Figure 8: a) Transmission spectra of an on-chip CPW measured with the PNA between 100MHz and 25GHz. 

b) Schematic of the FMR measurement set-up with the CPW situated between the two poles of the 

electromagnet and connected to the two ports of the PNA. In this geometry, the ac magnetic field will oscillate 

in the y direction while the dc magnetic field can be applied on the xz plane. 

2.3.2 Results 

The transmission absorption spectra of the two different set of samples (Py and Py/U) 

were measured for frequencies up to 18 GHz with the external dc magnetic field applied in-plane 

(Figure 9 a-b). The observed frequency dependence of the FMR linewidth for the Py and Py/U 

samples is shown in Figure 10 [27].  
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Figure 9: In-plane FMR signals for: a) the Py/Nb and b) the Py/U/Nb samples at eight different frequencies: 4 

GHz, 6 GHz, 8 GHz, 10 GHz, 12 GHz, 14 GHz and 18 GHz. 

Figure 10: Frequency dependence of the FMR linewidths for Py/Nb and Py/U/Nb samples. 
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The presence of Uranium substantially increases the FMR linewidth at all frequencies, 

while it does not alter the quality of the Py film (as inferred from the linear behavior of the data 

and the zero-width frequency intercepts). This implies an enhancement of the magnetic damping 

of Py film due to spin pumping into the U layer. The damping is determined via the slope of the 

linewidth with frequency, as per the phenomenological Gilbert damping model [13]: 

𝛿𝐻 = 𝛿𝐻0 +  
4𝜋𝛼

√3 𝛾
 𝑓  (2. 1)    

The first term in Equation 2.1 is the frequency independent inhomogeneous broadening, which is 

negligible in the samples studied here. The second term denotes the dynamical damping. The 

extracted damping parameters for both samples are represented in Table 1: 

Table 1:Values of the damping parameter α and the Gilbert damping parameter G for the samples of Py and 

Py/U. The Gilbert damping damping parameter is related to α as 𝐆 = 𝜶𝜸𝑴𝒔, with 𝑴𝒔 (= 9.5 kG) being the 

saturation magnetization. The saturation magnetization is obtained from the dependence of the magnetic 

field position of the FMR peak with frequency. 

 α G (GHz) 

Py 
9.610-3 0.257 

Py/U 
14.310-3 

0.384 

 

The observed damping enhancement (150%) can be understood as a direct consequence 

of the spin pumping mechanism which transfers angular momentum from the ferromagnet into 

the Uranium. The efficiency of spin pumping across the Py/U interface is given by the spin-

mixing conductance [13]: 

𝑔𝑟 =
4𝜋𝑀𝑠𝑡𝑃𝑦

𝛾ℎ
 (𝛼𝑃𝑦/𝑈  − 𝛼𝑃𝑦)                                                 (2. 2) 
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where tPy is the Py thickness. Using the damping parameters obtained from the linewidth-

frequency data and the saturation magnetization of the Py [28]: 

𝑔𝑟
↑↓ = 2.28×1019𝑚−2 (2. 3) 

This value is comparable to those found in Py/heavy-metal interfaces. One needs to keep 

in mind that Equation 2.2 assumes that no spins flow back into the Py film. This assumption 

should hold for this thickness of Uranium owing to its large expected spin-orbit coupling and 

hence small spin diffusion length, which, while unknown at this moment, should be, at least, 

comparable to those found in heavy metals (e.g., 1-4nm in Pt) [29,30].  

This spin mixing conductance value should be taken as a lower bound for Py/U since it 

comes from comparison measurements between Py and Py/U samples, both capped with a 3nm 

Nb layer. The Nb already contributes to the magnetic damping in the Py/Nb control sample, 

which enhances the damping slightly from that of isolated Py. Consequently, using the damping 

change observed between Py/Nb and Py/U/Nb samples would underestimate the spin-mixing 

conductance of the Py/U interface.  

2.4. ISHE Measurements 

2.4.1. Experimental set-up 

Next, we turn our attention to the experimental realization of spin-charge conversion in 

Uranium. The sample was placed on the bottom plate of a high-quality factor cylindrical 

resonant cavity with inner radius of 1.75 cm and inner length of 3 cm, machined out of a Copper 

piece (Figure 11).  
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Figure 12: Reflexion spectra of the cavity for frequencies up to 15 GHz. The different TE and TM modes are 

identified. 

Figure 11: a) Optical image of the copper cavity b) Optical image of the top plate of the cavity. The metallic 

circular loop is used to couple the microwave radiation from the source to the cavity. 

Different Transverse Electric (TE) and Transverse Magnetic (TM) modes can be excited. 

Each mode has a particular resonance frequency. Figure 12 identifies specific modes to their 
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resonance frequency.  

The ISHE measurements were carried out by tuning the cavity to its TM011 mode (8.54 

GHz). The sample is placed such that the rf magnetic field is maximum and parallel to the 

direction of the current generated through the ISHE (Figures 13a and 13b). This configuration 

minimizes the electric field components of the oscillating field along the ISHE field direction, 

avoiding interference with the measurements.  

The rf field is then pulse-modulated at a few kHz, and the generated ISHE voltage 

measured by a lock-in amplifier. The schematic of a typical ISHE measurement is depicted in 

Figure 13c, wherein the precessing magnetization of the Py (about the y-axis) adiabatically 

pumps a dc component of spin current into the U.  

Figure 13: a) Schematics of the direction and magnitude (length) of the microwave magnetic field at the 

bottom plate of the cavity for the TM 001 mode.  b) Color-coded plot of the magnitude of microwave magnetic 

field at the bottom plate of the cavity. c) The schematic of ISHE experiment, θ is the angle between the 

externally applied dc magnetic field and x direction. The spin currents are injected into uranium with 

polarization along the y-axis. The spin gradient normal to the interface results in electromotive force along 

the x-axis 
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2.4.2. Results 

The spin current generated from spin pumping (Equation 1.33) is converted into an 

electromotive force through the Inverse Spin Hall effect. The equivalent circuit for the Py/U 

bilayer is represented in Figure 14b and the expression for the originated voltage is [14]: 

𝑉𝐼𝑆𝐻𝐸 =
𝑅𝑃𝑦𝑅𝑈

𝑅𝑃𝑦+𝑅𝑈
𝐼𝐶 =

𝑤

𝑙𝑡𝑃𝑦𝜎𝑃𝑦

𝑤

𝑙𝑡𝑈𝜎𝑈
𝑤

𝑙𝑡𝑃𝑦𝜎𝑃𝑦
+

𝑤

𝑙𝑡𝑈𝜎𝑈

𝐼𝐶 =
𝑤

𝑙

1

𝑡𝑃𝑦𝜎𝑃𝑦+𝑡𝑈𝜎𝑈
𝐼𝐶 =

𝑤𝑑𝑈

𝑡𝑃𝑦𝜎𝑃𝑦+𝑡𝑈𝜎𝑈
〈𝑗𝐶〉 (2. 4) 

where RPy id the resistance of the Py film, RU is the resistance of the Uranium film, IC = ldU < jc 

> is the charge current created, σPy is the conductivity of Py, σU is the conductivity of U, tPy is the 

thickness of Py, tU is the thickness of U, w is the distance between the contacts and l is the length 

of the sample (Figure 14a). 

 

Figure 14: a) Graphical representation of the Py/U sample, where w is the distance between the contacts, l is 

the length of the sample, tU is the thickness of Uranium and tPy is the thickness of Permalloy b) Equivalent 

circuit for the Py/U bilayer. 

 The spin current density and the charge current density are related by the spin hall angle, 

θH, as follows: 
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〈𝑗𝐶〉 = 𝜃𝐻 (
2𝑒

ħ
) 〈𝑗𝑆〉 (2. 5) 

 <jS> being the averaged spin current density: 

〈𝑗𝑆〉 =
1

𝑡𝑈
∫ 𝑗𝑠(𝑥)𝑑𝑥

𝑡𝑈

0
 (2. 6) 

where jS (x) is given by Equation 2.19: 

〈𝑗𝑆〉 =
1

𝑡𝑈
∫

sinh [
𝑥−𝑡𝑈
𝜆𝑠𝑑

]

sinh(𝑡𝑈/𝜆𝑠𝑑)
𝑗𝑆

0𝑑𝑥 =
𝜆𝑠𝑑

𝑡𝑈
𝑡𝑎𝑛ℎ (

𝑡𝑈

2𝜆𝑠𝑑
) 𝑗𝑆

0𝑡𝑈

0
 (2. 7) 

Combining Equations 2.5 and 2.7 and recovering the expression of jS
0 for thin films with the 

magnetization parallel to the film (Equation 1.33): 

〈𝑗𝐶〉 = 𝜃𝐻 (
2𝑒

ħ
)

𝜆𝑠𝑑

𝑡𝑈
𝑡𝑎𝑛ℎ (

𝑡𝑈

2𝜆𝑠𝑑
) 𝑗𝑆

0 = 𝜃𝐻 (
2𝑒

ħ
)

𝜆𝑠𝑑

𝑡𝑈
𝑡𝑎𝑛ℎ (

𝑡𝑈

2𝜆𝑠𝑑
)

𝑔𝑒𝑓𝑓
↑↓ 𝛾2ℎ2ħ[𝑀𝑆𝛾+√(𝑀𝑆)2𝛾2+4𝜔2]

8𝜋𝛼2[(𝑀𝑆)2𝛾2+4𝜔2]
 (2. 8) 

Finally, substituting Equation 2.8 into Equation 2.4: 

𝑉𝐼𝑆𝐻𝐸 =
𝑤 𝜃𝐻𝜆𝑆𝐷𝑡𝑎𝑛ℎ(

𝑡𝑈

2𝜆𝑠𝑑
)

𝑡𝑃𝑦𝜎𝑃𝑦+𝑡𝑈𝜎𝑈
 (

2𝑒

ℏ
)

g𝑟𝛾2ℎ2ħ[𝑀𝑆𝛾+√(𝑀𝑆)2𝛾2+4𝜔2]

8𝜋𝛼2[(𝑀𝑆)2𝛾2+4𝜔2]
 (2. 9) 

As observed from Equation 2.9, the spin Hall angle depends on the magnitude of 

measured ISHE voltage signal, thus it is necessary to separate the ISHE signal from any other 

unwanted voltage generation effect. One of the most common alternative voltage contributions 

can be originated by the anisotropic magnetoresistance (AMR), which is due to a classical 

induction effect of in-plane oscillating magnetic fields within the film plane [2, 30]. Fortunately, 

the AMR voltage is antisymmetric around the resonance field [2], contrary to the symmetric 

nature of the voltage generation expected from the ISHE [2, 22, 23].  
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Figure 15 shows the measured dc signal corresponding to the FMR resonance of the 

sample with the dc magnetic field along opposite directions along the y-axis (θ = 90 and -90 

degrees). In order to separate the ISHE voltage signal arising from the spin pumping in our 

experiments, the observed signal (black circles in Figure 14) is fitted (solid black line) using a 

combination of symmetric, 𝑉𝑆(𝐻), and antisymmetric, 𝑉𝐴𝑆(𝐻) functions: 

𝑉(𝐻) = 𝑉𝑆 (𝐻) + 𝑉𝐴𝑆(𝐻)                                                       (2. 10) 

𝑉𝑆(𝐻) = 𝑉𝑆
Γ2

(𝐻−𝐻𝑟𝑒𝑠)2+ Γ2   ; 𝑉𝐴𝑆(𝐻) = 𝑉𝐴𝑆
[−2Γ(𝐻−𝐻𝑟𝑒𝑠)]

(𝐻−𝐻𝑟𝑒𝑠)2+ Γ2                               (2. 11) 

where Hres is the FMR resonance field and Γ is the resonance width extracted from the FMR 

measurements.  

Figure 15: Field dependence of the measured dc voltage in Py/U (circles). The continuous lines are fits to a 

sum of symmetric and antisymmetric functions (shown for 90 degrees as dashed grey and blue lines, 

respectively). 
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The symmetric and antisymmetric contributions to the observed data are shown in Figure 

15 with gray and blue dashed lines, respectively. The pure ISHE voltage originated from the spin 

pumping mechanism can be extracted from the peak value of the symmetric component at 

resonance. Figure 15 also shows the switching of the induced voltage upon reversal of the 

magnetic field polarity, thus confirming the pumping of spins from the permalloy into the 

uranium film.  Perhaps the most conspicuous feature of these results is that the ISHE voltage 

signal indicates that the spin Hall angle for U is positive [28].   

According to spin pumping theory, the amplitude of the generated spin current depends 

on the microwave power proportionally to the cone-angle of magnetization precession in the 

ferromagnet. As expected, the measured ISHE signal increases with microwave power (Figure 

16a). The linear behavior of the ISHE voltage with microwave power agrees well with the 

expectation from spin pumping (Figure 16b). 

Figure 16: a) Microwave power dependence of inverse spin Hall effect voltage signal in Py/U. The red arrow 

points to the increasing microwave power direction. b) Voltage amplitude for the symmetric and 

antisymmetric signals. The symmetric contribution scales linearly with power, confirming the spin pumping 

origin of the signal. 
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Finally, in order to quantify the spin-charge current interconversion efficiency in uranium 

we proceed to calculate the spin Hall angle from Equation 2.9. The values for the different 

parameters are shown in Table 2. 

Table 2: Values of the different parameters used to calculate the spin hall angle from Equation 3.9, where h is 

the magnitude of the ac magnetic field and λSD the spin diffusion length of Uranium. 

σU 3.5×106 (Ωm)-1 

σPy 1.5×106 (Ωm)-1 

tU 3×10-9 m 

tPy 12.5×10-9 m 

w 1×10-3 m 

MS 0.95 T 

γ 2.06 

h 0.86×10-4 T  

gr 2.28×1019 m-2 

VISHE 0.76×10-6 V 

λSD 3×10-9 m 

Since no data is available for the spin diffusion length in uranium, we have used 𝜆𝑆𝐷 = 

3 nm (a value within the range of those found in Pt), noting that the obtained result from 

Equation 2.9 would not change much for 𝜆𝑆𝐷 > 3 nm.  In addition, we note that the Nb capping 

layer may contribute to the ISHE signal if not all spins are diffused within the 3nm-thick U layer, 

which will ultimately depend on the spin diffusion length of uranium. Due to the negative spin 

Hall angle for Nb (-0.0087) [22], the small fraction of spin current interconverted to electric 

current in the Nb film would decrease the signal obtained from U, and lead to an underestimation 

of the spin Hall angle of the latter, although this effect is expected to be minimal for a 3 nm-thick 

U film, since most spins would be absorbed before reaching the Nb layer.   
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With the values given in Table 2 we find the spin Hall angle in uranium to be 

𝜃𝐻 = 0.004(0.4%) [28].  Where if we were to use the spin mixing conductance estimated relative 

to isolated Py, 𝜃𝐻 would be about 30% lower, with all else constant.  Surprisingly for such a high 

atomic number material, this value is lower than that of Pt, the most common system explored 

for spin pumping/ISHE experiments and for which there is still debate and different values 

ranging from 0.006 to 0.4 have been reported in the literature [2, 30-32].  

2.5. Conclusions 

According to the rule of thumb that the spin-orbit interaction is proportional to the atomic 

number, platinum (Z = 78) should present a lower spin-charge interconversion efficiency than 

uranium.  This is contrary to our observations, which points to alternative explanations for the 

origin of spin-orbit coupling in metallic systems. Following those same lines, Du et al. have 

recently reported a comprehensive study of spin pumping at FM/NM interfaces using several 

transition metals [16]. They found that the spin Hall angle in some of these elements is 

comparable to that found in substantially heavier metals (e.g., Pt), and that its value and sign do 

not follow a proportional law with the atomic weight within the studied series of elements. 

Indeed, the authors find the spin Hall angle sign to oscillate within the series, being maximum 

for Cr (𝜃𝐻 = -0.05) and Ni (𝜃𝐻 = 0.05), and associate this behavior to a dominant role of the d-

electron configuration in the spin Hall effect in 3d elements. More specifically, these authors find 

that the effects of atomic number and d-orbital filling are additive. For example, for elements 

with filled electronic orbitals, such as in the Cu, Au, Ag series, the atomic number is the most 

relevant parameter governing spin-orbit coupling because of their zero orbital moment [15, 16, 
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24], while for transition metals with partially filled d-orbitals, the orbital moment contribution is 

dominant [15, 16, 24]. It is likely that the same construction applies to Lanthanides (4f) and 

Actinides (5f metals), and that the f-orbital filling in elements of these series may govern the spin 

Hall conductivities.  

Our results clearly show there is novelty in the f-electron systems: aside from the 

moderate magnitude of the spin-Hall angle in uranium, its positive sign is incommensurate with 

results of transition metals. Since its electronic configuration ([Rn]5f36d17s2) has less than half 

filling of both the d and f orbitals, one would have expected a negative spin Hall angle, as is 

observed in transition metals. Perhaps, the strong spin-orbit coupling in lanthanides and actinides 

mixes the spin and orbital Hall effects in the same way that it makes only the total angular 

momentum, J = S+L, to be a good quantum number, and one should start thinking about the total 

angular momentum Hall effect (JHE) to understand spintronics effects in f-electron systems. A 

comprehensive study involving more elements on these series would be necessary to completely 

understand the underlying physics behind the spin and orbital Hall effects in heavy metals. 
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CHAPTER 3: 

DYNAMICAL SPIN INJECTION IN GRAPHENE 

3.1. Introduction 

Commonly, the studies of dynamical spin pumping on FM/NM interfaces use a heavy 

element as the NM layer [2, 16, 27], since heavy metals present efficient spin current to charge 

current interconversion, as reported in Chapter 2. Nonetheless, in the past few years, a great deal 

of effort has been made towards exploring the possibilities of carbon-based materials, such as 

organic semiconductors [33, 34], carbon nanotubes [35], and graphene [36], for novel spintronics 

applications. Graphene, in particular, is a very promising spin channel material owing to high 

electron mobility [37], gate-tunable charge carrier density, and room-temperature long spin-

diffusion length [38]. Above all mentioned advantages, the possibility of enhancing spin-orbit 

coupling in graphene, by either doping [39,40] or by the proximity effect [41,42], is the most 

promising one, as it facilitates the electrical manipulation of spin currents in 2D systems. 

Although spin pumping at FM/Graphene (FM/Gr) interfaces has already been 

demonstrated [18, 19, 42-46], the real nature of spin pumping and the spin relaxation processes 

in graphene are still poorly understood. Along those lines, J. B. S. Mendes et al. [45] and S. 

Dushenko et al. [46] reported measurements of spin current to charge current interconversion 

generated in FM/Gr devices, offering conflicting interpretations (Figure 17a and 17b). On one 

hand, Mendes and collaborators associated the results to the inverse Rashba-Edelstein effect, and 

noted that the effect could not be ascribed to the ISHE due to the geometrical disposition of the 

experiment (see Figure 17b). On the other hand, S. Dushenko et al. conducted the same 
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experiment with the capability of gating, and observed that the amplitude of the signal was 

independent of the gating voltage far away from the Dirac point. The absence of gate dependence 

made them conclude that the effect could not be associated to the Rashba-Edelstein effect, since 

the latter depends on the Fermi velocity of the carriers, which would be modified by an electric 

field in graphene. Therefore, the detected signal had to be originated from the ISHE. However, 

they did not provide with a clear explanation of the impossibility to obtain an ISHE signal in the 

plane of the device, since it violates the required symmetry, i.e., that the spin polarization, spin 

current and induced ISHE electric field must be orthogonal to each other (𝐸𝐼𝑆𝐻𝐸 ∝ 𝜃𝐻  𝐽𝑆 × 𝜎). 

For this, the spin current should flow into the graphene layer perpendicularly to the FM/graphene 

interface, which obviously not possible given the real bidimensionality of single-layer graphene.  

Figure 17: a) Results obtained by M. Shirashi et al. with a schematic of the sample configuration. Figures 

adapted from [46] b) Voltage signal measured in an in-plane configuration by J. B. S. Mendes et al. The inset 

shows linear dependence of the voltage amplitude versus the microwave power. Figures adapted from [45]. 

The goal of the experiment proposed in the present chapter is to better comprehend the 

processes involved in dynamical spin injection in FM/graphene interfaces. 
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3.2. Set-up and Sample Preparation 

Damping studies performed in Py/Gr bilayers by our group [19], show an enhancement of 

the Gilbert damping parameter in the Py/Gr sample only when graphene is protruding away from 

a ferromagnetic strip (Figure 18). The indicated enhancement can only be associated with the 

loss of spin angular momentum of the Py as taken away by the graphene areas away from the 

ferromagnet (i.e., spin pumping). Hence, the report proves that when graphene is under the 

ferromagnet no additional damping is observed. This is likely due a strong hybridization between 

the ferromagnet and the graphene, and/or because all the spins pumped into graphene flow back 

into the ferromagnet, as there is no possibility for the spins to decay, since the whole area 

underneath is homogenously excited. Therefore, if one is to measure the ISHE in graphene, the 

contacts of such device should be placed on a strip of graphene protruding away from the 

ferromagnet and the external magnetic field should be applied perpendicular to the plane. 

Figure 18: a) Sketches illustrating the strips used in the experiment [19] b) Out-of-plane frequency 

dependences of the FMR linewidth of the three strips measured by S. Simran et al. [19]. 
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The proposed device schematics is illustrated in Figure 19. Following the design, when 

the magnetization of the ferromagnet is directed perpendicular to the plane of the device (z-axis), 

its precession will generate spin current in graphene with spins polarized in the z direction. The 

spins will then decay away from the ferromagnet, in opposite directions for each of the strips, 

along x-axis as seen from the figure. Considering that 𝐸𝐼𝑆𝐻𝐸 ∝ 𝜃𝐻  𝐽𝑆 × 𝜎, the ISHE voltage will 

be generated along the y-axis. 

Figure 19: Schematic of the proposed device configuration. Two independent graphene strips protrude away 

from the ferromagnet, the spins are pumped into graphene and decay along the x-direction. Note that the 

spin current has opposite directions for the different strips. The electric field can be measured along the y 

direction by inducing the ferromagnet FMR out of the plane of the film (z-axis). 

It should be pointed out, that metallic ferromagnets cannot be used in this experiment, 

since they would shunt the ISHE signal considering the large resistance of the single layer 

graphene strips. To avoid this, a ferromagnetic insulator, Yttrium Iron Garnet (YIG), will be 

employed instead of Permalloy. 
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3.2.1. ISHE device fabrication 

After a sample of a YIG patterned bar (25µm x 1mm x 25nm) is provided by our 

collaborators at Argonne National Lab (Axel Hoffman’s group), a single layer CVD graphene 

sheet is transferred onto the substrate. Developing a good transfer process is imperative, since a 

continuous sheet of graphene is crucial for dynamical spin injection measurements (see Appendix 

A for graphene transfer recipe). 

Figure 20: a) Optical microscope image of the homemade mask used for graphene etching. b) Optical image 

of the device after the evaporation of the Ti/Au contacts.  

The graphene sheet is then etched into two 1mm long and 15µm wide strips, separated 

4µm using a homemade optical lithography mask (Figure 20a). Following the etching of 

graphene, Ti/Au electrodes are patterned on top of the protruding ends of graphene (Figure 20b). 

Before proceeding to the next step, the device is characterized with a probe station to confirm 

there is contact between the two ends of each graphene strip.  If the probe station 

characterization shows kΩ resistance on both strips, a layer of 200nm of SiO2 is e-beam 

evaporated only on the central part of the sample using a shadow mask to avoid liftoff issues. 

The SiO2 layer will insulate the YIG/Gr structure from the CPW central line that will lay on top 

and at the same time will act as a dielectric for the gate. Finally, the last step is to pattern the 
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CPW on top, followed by an e-beam evaporation of Ti/Cu/Au (10nm/250nm/10nm). Figure 21 is 

an illustration of the patterned device.  

Figure 21: Illustration of the patterned graphene ISHE device. The YIG/Gr bilayer is underneath 200nm of 

SiO2. Hac shows the direction of the ac magnetic field. 

3.2.2. Experimental set-up 

As seen in Chapter 2, the ISHE signal is linearly dependent on the microwave power. 

With the purpose of improving the transmission over the device, a CPW circuit board was 

developed as a replacement for the housing box set-up. The CPW circuit board contains a cavity 

in the center, where the patterned sample will be placed. The connections from the sample to the 

CPW circuit board are done through a wire bonder. The developed set-up consists of a 

commercially available R04000 Rogers Corporation circuit board machined in the machine shop. 

In Figure 22, an optical image of a sample mounted on the circuit board CPW exemplifies the 

assembly.  
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Figure 22: Picture of a ISHE device wire-bonded into the developed CPW circuit board. The inset is a zoom 

on the sample. 

A comparison between the transmissions of a sample mounted in the traditional housing 

box and a sample wire bonded to the CPW circuit board can be seen in Figure 23. The 

transmission through the sample in the new set-up has been improved by ~4dB.  

Figure 23: Comparison between the transmission of the sample when wire bonded into the circuit board and 

the transmission of the sample when placed in the housing box.  
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Once the sample is wire bonded to the circuit board and mounted on the probe it is ready 

to measure. A schematic of the circuits used to measure the ISHE voltage is shown in Figure 24a 

and 24b. The expected amplitude of the ISHE voltage signal is in the order of microvolts, 

therefore a lock-in detection technique will be used.  To measure the signal generated by the 

microwaves with a Lock-in amplifier, the microwave source (PNA or HP source-meter) must be 

pulsed with a duty cycle controlled by the lock-in amplifier. Both an Agilent vector network 

analyzer (PNA) and a HP microwave synthesizer have been used as microwave sources for these 

experiments. To pulse the signal in these two different sources, different approaches had to be 

followed. The HP synthesizer output can be directly pulsed, whereas for pulsing the PNA an 

external microwave switch must be employed (Figure 24a and 24b illustrate the two variations).  

Figure 24: Schematic of all the elements used for the ISHE instrumentation set-up. a) when the source-meter 

used is the PNA. b) when the HP Sweep Oscillator is the microwave source.  

In order to gate using the central line of the CPW, the dc voltage is superimposed to the 

microwave signal by means of a bias-tee on port 1. The dc voltage is sourced by a Keithley 2400. 

The second port should be grounded for ac signal but floating for dc voltage. To achieve that, a 

DC-Block is placed before the grounding cap in Port 2. 
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3.3. Results 

Graphene characterization is done by measuring the strip resistance while sweeping the 

dc voltage (gate) applied to the central line of the CPW (see Figure 24 for instrumentation set-

up). The gate dependence of one of the graphene strips is shown in Figure 25. Notice that 

graphene is slightly p-doped, since the Dirac point (highest resistance value) is positively shifted 

from zero gate voltage. This value has to be kept in mind as the ISHE voltage is going to be zero 

at the charge neutrality point [46]. 

Figure 25: Resistance in kOhms versus Gate voltage for one of the graphene strips. The charge neutrality 

point is situated at 0.2 V. 

Before attempting to measure the ISHE voltage, the FMR response should be studied. 

After all, VISHE will be generated only during the resonance condition of the ferromagnet. The 

experimental set-up used for the FMR measurements is very similar to the one explained in 
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Chapter 2, with the only difference being that the sample is now imbedded in the CPW. Figure 

26 displays the FMR signals obtained at seven different frequencies. The advantage of using a 

CPW versus a resonant cavity is that there is no limitation in the number of frequencies one can 

study. 

Figure 26: a) Transmission versus out of plane Magnetic Field showing the Ferromagnetic Resonance of YIG 

for: 4GHz, 4.5 GHz, 5.5 GHz, 6GHz, 6.5GHz and 7GHZ. b) Frequency versus on resonance out of plane 

magnetic field. 

Figure 27b shows the measured voltage when a 7GHz microwave signal is sent to the 

sample. The magnetic field sweeping values were determined from the FMR signal (Figure 27a). 

The amplitude of the signal is in the mV range and the noise observed is ±20uV, larger than the 

expected signal (≈2uV) [45, 46]. The mV range signal is due to the coupling between the 

substrate (GGG) and graphene. To uncouple the substrate from our sample a thicker layer of YIG 

is needed. 
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Figure 27: a) Transmission versus magnetic field at 7GHz (FMR). b) Voltage versus magnetic field at 7GHz. 

The red dashed line marks the position where the signal should have been. 

The next step is to measure the same set of experiments with a sample containing a μm 

thick YIG. 
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CHAPTER 4: 

ELECTRICAL TUNNELING TRANSPORT SPECTROSCOPY 

4.1. Introduction 

A different approach on utilizing graphene is to take advantage of its electronic and 

structural properties. The trend towards achieving smaller electronic devices is driving 

electronics to its ultimate molecular-scale limit [47]. Following this tendency, in the past decade, 

molecules have been functionalized to act as diodes [48], switches [49], transistors [50] and 

sensors [51], among others. Different experimental methods can be employed to characterize 

single-molecules, such as, scanning tunneling microscopy (STM) [52] and single-electron 

transistors (SETs) [50]. Up to date, gold is the favored material electrode used in both techniques 

because of its noble character. However, the fact that it has a very high atomic mobility makes 

the junction stable only at low temperatures [53]. Graphene, on the other hand, has a higher 

structural stability, given its covalent-bond structure, even at high temperatures. Moreover, it will 

reduce the size mismatch with the molecule, as most of the functionalized molecules mentioned 

above are organic [53, 54]. The following chapters will deepen on the use of graphene as an 

electrode for: Single-electron transistors (SETs) (Chapter 6) and scanning tunneling microscopy 

(STM) (Chapter 7), while Chapter 5 reports on the characterization of a molecular double 

quantum dot on gold-based SETs. The aim of the current chapter is to provide with the necessary 

concepts for the second part of this thesis. 
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4.2. Single-Molecule Spectroscopy Techniques 

In electron transport measurements, the system under study is contacted by two 

electrodes. These electrodes connect the object of study with the external circuitry in order to 

measure its conductance. In principle, it is a very simple set-up. Still, only after STM and SETs 

were developed could single-molecule measurements be performed [48]. 

4.2.1. Scanning tunneling microscopy 

Three decades ago, Binning and Rohrer developed the first STM [55]. Since then, the 

technique has advanced into being able to atomically resolve a range of structural, vibrational, 

magnetic, and spectroscopic properties of the system under study [56].  

Figure 28: a) Energy diagram of the tip and the sample, where z is the distance between them, EF,tip is the 

Fermi level of the tip and EF,sample is the Fermi level of the sample, eV is the offset between EF,tip and EF,sample. 

b) Illustration of the tip displacement in constant current mode. STM image of graphene taken in constant 

current mode of one of our devices. Figure a) adapted from reference [55]. 

On STM measurements, a bias voltage is applied between a sharp conducting metal tip, 

often tungsten or a platinum/iridium alloy, and a conducting or semiconducting sample. The tip, 

by means of piezoelectric materials that control with precision its position and movement, is able 
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to scan the surface of the sample at a very short distance (∼3–10 ˚A) [57]. A schematic of the 

STM operation is represented in Figure 28.  Figure 28a shows an energy diagram of the tip and 

the sample. The respective Fermi levels are offset by e times the applied bias voltage, where e is 

the electron charge. When the STM is set to constant tunneling current mode at a constant bias 

voltage, it can image the local density of states of the conducting surface with atomic-scale 

resolution (Figure 28b). 

4.2.2. Single-electron transport spectroscopy 

SETs are three-terminal devices consisting of two conducting electrodes (source and 

drain) bridging in between the quantum dot (QD) or molecule, similarly to an STM but with a 

fixed distance between the electrodes, and a third electrode (gate) electrically isolated from the 

previous ones (see Figure 29). It is the presence of the third electrode that allows SETs to shift 

the electrostatic potential of the QD with respect to the leads, revealing additional information 

about the molecule, for instance, the presence of vibrational modes and excited states and effects 

such as Franck–Condon blockade and superconductivity [54, 58].  

Figure 29: Schematic illustration of a SET. When a bias voltage is applied between source and drain, the 

electrons tunnel from the source to the quantum dot (QD), with a tunneling rate of ΓS, and again to the drain 

(ΓD). Voltage is applied to the gate electrode, also capacitively coupled to the QD. 
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The molecule is capacitively coupled to the three electrodes by three different 

capacitances: Cs, Cd and Cg (Figure 28). These capacitances depend on how strongly coupled is 

the molecule to each of the electrodes. From the single-electron transport spectroscopy is 

possible to experimentally find the value of these capacitances. Figure 30 depicts a typical SET 

spectroscopy contour plot. The slopes of Figure 30b are related to the capacitance in the 

following manner [58]: 

𝑉 = −
𝐶𝐺

𝐶𝑆
(𝑉𝐺 − 𝑉𝐶),   𝜇𝑁+1 = 𝜇𝐷  (4. 1) 

𝑉 =
𝐶𝐺

𝐶𝐺+𝐶𝐷
(𝑉𝐺 − 𝑉𝐶),   𝜇𝑁+1 = 𝜇𝑆 (4. 2) 

where VG is the gate voltage, VC is the charge degeneracy point (voltage gate value for zero 

bias), µN+1 is the chemical potential of the molecular level and µD and µS are the chemical 

potentials of the drain and source respectively. 

 

Figure 30: a) Tridimensional contour plot of a molecule in a single-electron transistor, where Vgate is in the x 

axis, Vbias in the y axis and the current (I) in the z axis. b) Derivative of the 3D contour plot, in this graph the z 

axis represents the conductance of the molecule and N and N+1 are, respectively, the neutral and charged 

states of the molecule. Figures based on reference [56] 
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The ratio between the gate capacitance and the total capacitance of the system is going to 

give us the total gate efficiency, β: 

𝛽 =
𝐶𝐺

𝐶𝑆+𝐶𝑇+𝐶𝐺
 (4. 3) 

4.3. The Coulomb Blockade Theory 

The coulomb blockade theory described in this section is based on the review article by 

Mickael L. Perrin et al. [54]. 

Charge transport through single-molecules follows the laws of quantum mechanics, 

which means, that electrons are only allowed to populate discrete energy states. Pauli exclusion 

states that each orbital can only be occupied by two electrons. Therefore, transport will only 

occur in unoccupied molecular orbitals. The unoccupied orbital with the lowest energy is 

referred to as LUMO (i.e. lowest unoccupied molecular orbital), and the fully occupied 

molecular orbital with the highest energy is the HOMO (i.e. highest occupied molecular orbital). 

The difference between the LUMO and the HOMO is the HOMO-LUMO gap.  

 

An illustration of the energy diagram of a molecular junction is represented in Figure 31. 

The energy difference between two consecutive charge states of the molecule (µN and µN+1) is 

called transport gap. The transport gap consists of the HOMO-LUMO gap (level splitting of the 

molecule, ∆E) plus electrostatic contributions (EC), such as, charging energy, image correction, 

etc.  

𝐸𝑐 + ∆𝐸 = 𝜇𝑁+1 − 𝜇𝑁 (4. 4) 
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Figure 31: Energy diagram of a molecular junction in equilibrium. The diagram shows a molecule separated 

from the source and drain electrodes (black) by tunneling barriers (grey). The molecule energy is described 

by discrete levels µN, where the occupied states are represented with solid lines and the unoccupied states with 

dashed lines. µS is the chemical potential of the source, µD the chemical potential of the drain, µN the chemical 

potential of the molecule and N is the number of electrons in the molecule.  

The presence of the electrodes affects the conduction through the molecule, acting as 

electron reservoirs with a chemical potential that depends on temperature according to the Fermi 

distribution of the electronic occupation in the leads: 

𝑓𝑆,𝐷(𝐸) =
1

1+𝑒
(

𝜀−µ𝑆,𝐷
𝑘𝐵𝑇

)
 (4. 5) 

where S is the source, D is the drain, T the temperature and ε the energy of the electrons. 

In equilibrium, we encounter the situation illustrated in Figure 31, where the chemical 

potentials of both electrodes are equal and no current flows through the system. For current to 

flow there must be an imbalance, which can be achieved by applying a bias voltage. For 

instance, if a bias voltage is applied to the source electrode its chemical potential will shift as 

follows: 

𝜇𝑆 = 𝜀𝐹 + 𝑒𝑉,                𝜇𝐷 = 𝜀𝐹  (4. 6) 
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where εF is the Fermi energy.  

The difference between the chemical potentials of source and drain is the bias window. 

Only when a molecular level lies in between the bias window will current flow, otherwise 

transport will be blocked (i.e. coulomb blockade regime). If the system is in the coulomb 

blockade regime (Figure 32a) the bias voltage can be increased until the bias window reaches a 

molecular level (Figure 32b). 

Figure 32: a) Energy diagram of a molecular junction when a bias voltage is applied to the source electrode. 

The bias voltage generates an imbalance between the chemical potentials of source and drain but no 

molecular level is present in the bias window and transport is suppressed (Coulomb blockade regime). b) In 

this situation, a larger bias voltage has been applied such that the source chemical potential reaches the 

LUMO level of the molecule. Now electrons can tunnel from the source to the molecule and from the molecule 

to the drain. ΓS is the electron transfer rate from the source to the molecule and ΓD is the transfer rate from 

the molecule to the drain. 

The current is determined by the transfer rates, ΓS and ΓD, which are related to the 

coupling between the respective electrodes and the molecule and define the broadening of the 

energy levels of the molecule. Depending on the ratio of Γ, the confinement energy (∆), the 

charging energy (EC), and kBT, we can distinguish three different transport regimes: weak 

coupling regime (Γ << ∆, EC, kBT), intermediate coupling regime (Γ ≈ ∆, EC, kBT) and strong 
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coupling regime (Γ > ∆, EC, kBT). I am only going to focus on the intermediate coupling regime, 

since is the one dominating transport in the molecular junctions presented in this Thesis. 

In the intermediate coupling regime, the molecules are covalently bonded to the 

electrodes, thus, the level broadening of the molecule must be considered. In small molecules, 

transport is governed by the molecular level closest to the Fermi energy of the electrodes (Figure 

32a), hence we can approximate that only one molecular level participates in the conduction 

(single-level model). Taking that into account, the density of states of the molecule has the 

following expression: 

𝐷(𝜀) =
4𝛤𝑆𝛤𝐷

[𝜀−𝜀0]2+[𝛤𝑆+𝛤𝐷]2 (4. 7) 

where ε0 is the energy difference between the molecular level and the Fermi energy of the 

electrodes. Due to the hybridization between the electrodes and the molecule, the density of 

states becomes a Lorentzian instead of a Dirac delta function. 

Using the Landauer-Buttiker formalism [59] one can obtain the total current through the 

molecule: 

𝐼 =
𝑒

ħ
∫

𝑑𝐸

2𝜋
𝑇(𝜀)[𝑓𝑆(𝜀) − 𝑓𝐷(𝜀)] (4. 8) 

where fS and fD are the fermi distribution of the leads and T(ε) is the transmission through the 

molecule given by: 

𝑇(𝜀) = 𝑇𝑟 {
𝛤𝑆(𝜀)𝛤𝐷(𝜀)

𝛤𝑆(𝜀)+𝛤𝐷(𝜀)
[𝐺 − 𝐺ϯ]} (4. 9) 

 



  50  

 

G(ε) being the retarded Green’s function: 

𝐺(𝜀) =
1

(𝜀𝑆−𝐻−𝛴𝑆−𝛴𝐷)
 (4. 10) 

here, H is the Hamiltonian of the molecule, S is the symmetric overlap matrix and Σ = Λ(ε) + 

iΓ(ε) describes the molecule-electrode interaction and Λ(ε) accounts for the level shift because of 

the hybridization of the molecular orbitals with leads [54]. Due to the uniform density of states 

of gold near the Fermi energy, we will neglect Λ(ε) and take Γ(ε) to be independent of the 

energy. 

Combining Equations 4.9 and 4.10 into Equation 4.8 and considering the low-

temperature limit, we find a final expression for the current: 

𝐼(𝑉) =
4𝐺0

𝑒

𝛤𝑆𝛤𝐷

𝛤𝑆+𝛤𝐷
[𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜀0+
𝑒𝑉

2

𝛤𝑆+𝛤𝐷
) − 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜀0−
𝑒𝑉

2

𝛤𝑆+𝛤𝐷
)] (4. 11) 
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CHAPTER 5: 

ELECTRICAL CHARACTERIZATION OF SINGLE S-DPA-C-Fc-C2-S 

MOLECULES 

5.1. Introduction 

In solid state junctions, where an individual molecule or a self-assembled monolayer 

(SAM) of molecules is contacted to electrodes, charge transport is governed by both the 

characteristic time that the electron spends in the molecule while tunneling from one electrode to 

another, described by the Landauer formalism explained in Chapter 4, and the characteristic 

interaction time resulting from the available degrees of freedom for the charge to sample the 

molecule, which follows the Marcus theory [60]. For example, for junctions with long molecular 

wires, or readily accessible degrees of freedom, one would expect long interaction times, leading 

to a complete charge relaxation in the molecule [60]. Indeed, transition from coherent tunneling 

to thermally activated charge transport as a function of molecular length has been demonstrated 

[61-64], but several groups reported unexplained activationless charge transport for junctions 

where the charge carriers almost certainly interact strongly with the (bio)molecule over large 

distances of even more than 10 nm [65-67].  

Recently, Migliore and collaborators [68] combined the Marcus and Landauer theories to 

describe charge transport across molecular junctions, suggesting that internal electrostatic gating 

could push the junction into the inverted Marcus region resulting in activationless charge 

transport, which could explain anomalous temperature-dependent charge transport. This chapter 

reports experimental data showing that it is possible to do so with a new molecular diode, 
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composed of a ferrocene (Fc) head group connected to a conjugated backbone via a (CH2)n 

tether.  

5.2. Single-electron Transistors Measurements 

To obtain direct evidence of intramolecular orbital gating, we performed charge transport 

measurements on individual S- DPA-C-Fc-C2-S molecules by means of single molecule 

transistor at low temperatures (T = 4K).  

5.2.1. SETs Fabrication 

The transistors were fabricated via optical and electron-beam lithography. Optical 

lithography is used for the first three metal layers that will configure the basis of the circuit and 

the gate electrode. Whereas, the gold nanowires that will form the source and drain electrodes 

are patterned by means of e-beam lithography. Figure 33 shows an optical image of the first 

three metal layers of the transistor. 

Figure 33: Optical images of the three first layers deposited. The first layer (dark green) consists on 5nm of Ti 

and 15nm of Pd, the gate (grey) is deposited on top (35nm of Al). Finally, 10nm of Ti and 70nm of Pd are 

deposited (light brown). The image on the right is a closer look of the area in the rectangle. 
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After the nanowires have been deposited, a nanometer sized gap must be created. In order 

to achieve that, we use an electromigration-induced breaking procedure at room temperature. 

During electromigration, gold atoms move due to the momentum transfer of the conducting 

electrons. This happens when the maximum current density is reached (jb ~5×1012A/m2). The 

process is controlled by a Labview program that monitors the current through the nanowire while 

slowly increasing the bias voltage. Once the current value drops, the bias voltage is recoiled back 

and the process is repeated until the current reaches a value close to the universal single-channel 

conductance (R = 25.8 kΩ) (Figure 34a).  

Figure 34: a) I-V graph of the feedback-controlled electromigration-induced breaking process at room 

temperature. The process is stopped when the resistance through the nanowire approaches 25.8kΩ (38.7μS). 

b) Scanning electron microscopy (SEM) image of a gold nanowire on top of the Al/Al2O3 back gate. The 

insets show the narrowing part of nanowire before (left) and after (right) breaking. Scale bar is 10μm.  
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The nanowires are then left untouched for two hours, time during which the gold atoms 

will reorganize and create a nanogap separating the source and drain leads due to surface tension. 

Finally, the transistor is characterized by measuring its I-V curve, which should show tunneling 

current if the gap is properly formed (Figure 35).  

 

 

Figure 35: I-V tunneling curve of a nanowire 2h after the electromigration-induced process. In blue the 

measured value, in red the fitting using the Simmons model for a gap of 1.6nm. For more information about 

the model see section 6.3.1. 

This technique allows the generation of a controlled nanometer-sized gap at room 

temperature. The molecules are consequently deposited after the electromigration-induced 

process, avoiding possible damage in their structure. It also prevents the formation of gold nano-

islands that could mask their behavior as molecules [58].  
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5.2.2. SETs results 

 

Figure 36: a) Schematic illustration of the single molecule transistor with S- DPA-C-Fc-C2-S. b) Experimental 

differential conductance stability diagram of a S-DPA-C-Fc-C2-S based SET at T = 4 K.  

Figure 36b shows the differential conductance as a function of bias and gate voltage. The 

excitation lines are associated with crossings of molecular orbitals with either the Fermi-level of 

the source or drain electrodes, and with both at the same time for zero bias, i.e., the charge 

degeneracy points at 1.23, 2.29, and 2.85 V.  

The transport stability diagram resembles that of a double quantum dot where the charge 

on one dot affects the energy states of the other, and vice versa, and which had only been 

reported before in solid state systems [69], metallic nanoparticles [70], and carbon nanotubes 

[71], thus constituting the first realization of a molecular double quantum dot. Here, the Fc and 

the DPA units serve as “quantum dots” separated by a tunneling barrier defined by the number n 

of connecting -CH2- groups.  
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DFT calculations of Au-S-DPA-C-Fc-C2-S-Au show that the HOMO is almost 

completely localized on the ferrocene and the LUMO on the DPA unit (Figure 37a). Figure 37a 

also shows the corresponding energy level diagram with the energy levels localized on the Fc 

(m) and DPA (p) isolated from each other, and Figure 37b shows the equivalent model circuit. 

Each molecular unit is capacitively coupled to the leads and to each other, with a parallel 

combination of a resistor and a capacitor, and to a gate.  

 

Figure 37: a) Energy level diagram of the molecular SET with the corresponding energetics associated with a 

double quantum dot picture. The electronic configurations of the HOMO and LUMO levels have been 

calculated by DFT for the molecule in between gold electrodes. b) Equivalent circuit of the molecular SET in 

terms of a double quantum dot system. 

A commercially available single electron tunnel device and circuit simulator (SIMON) 

was used for our calculations. To fit our experimental data, we used two energy levels for DPA, 

with Em = 70 meV and Em+1 = 119 meV, with level broadenings m = 0.98 meV and 

m = 2.23 meV (yellow lines in Figure 37 a-b). We used one level for dot Fc, with Ep = 135 meV 

and p = 2.5 meV (red lines in Figure 37 a-b).  
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Figure 38: a) Experimental differential conductance stability diagram of a S-DPA-C-Fc-C2-S based SET at 

T = 4 K. The lines represent excitations of molecular levels in a double quantum dot representation, with two 

levels in dot 1 (yellow lines) and one level in dot 2 (red lines). b) The fitting results calculated with 

Rs1(2) = 115(50) k, Cs1(2) = 0.99(2.40)10-18 F, Rd1(2) = 130(95) k, Cd1(2) = 8.9(11.0)10-19 F, Cg1(2) = 2.2(1.7)10-

19 F, and Rc = 80 k, Cc = 4.5710-18 F. 

The model reproduces remarkably well the Coulomb blockage areas defined by the 

crossings at zero bias of the main excitations (charge degeneracy points), as well as energy 

splittings in transport excitations that arise directly from the inter-dot coupling. This coupling 

between the two molecular components can be understood as an effective gating of one 

molecular unit by the other, i.e., molecular orbital gating. The corresponding coupling potential 

is given by: 

 𝑉𝑐 = 𝑒
𝐶𝑐

𝐶1𝐶2−𝐶𝑐
2 (5. 1) 

 with the charging potential for each unit given by: 

 𝑉1 = 𝑒
𝐶2

𝐶1𝐶2−𝐶𝑐
2, and 𝑉2 = 𝑒

𝐶1

𝐶1𝐶2−𝐶𝑐
2 ,  (5. 2) 
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where e is the electron charge, and C1(2) is the sum of the capacitances attached to dot 1(2) [69]. 

This coupling is responsible for the splittings of the transport excitations observed in Figure 38 

a-b (yellow and red arrows).  

Figure 39 a and b show the calculated near-zero-bias differential conductance without 

and with intermolecular gating, respectively. When the molecular units are uncoupled, gating the 

energy levels of one unit does not affect the other, while the opposite is true when the Fc and 

DPA units are coupled resulting in a complex differential conductance stability diagram. In our 

devices, the Fc and DPA units are both coupled to the same gate electrode and therefore both 

levels move diagonally across the diagram shown in Figure 39b. Here, the red arrow represents 

the gate potential sweep in Figures 38 a-b (Vg = 0.5-3.5 V) crossing excitations separating each 

charge state at the charge degeneracy points (white arrows in Figures 38a, b and Figure 39b).  

 

Figure 39: Calculated stability diagrams at low bias (1 mV) as a function of individual gating of each dot 

without (a) and with (b) inter-dot coupling, respectively. The red arrow represents the single gate voltage 

sweep in the experiments (Vg = Vg1 = Vg2), in correspondence with data in Figure 36. 
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5.3. Self-Assembled Monolayer Measurements 

The work detailed in this section was performed by our collaborators in Singapore. 

5.3.1. SAMs characterization 

HS-C-DPA-Cn-Fc with n = 0, 1, 2, or 3 derivatives were synthesized and their 

corresponding SAMs on template-stripped gold (AuTS) surface formed. The value of n 

determines the coupling between the conjugated backbone of the molecule and the Fc unit. 

Figure 40 shows the chemical structure of the molecules. The structure of SAMs was 

characterized by cyclic voltammetry.  

Figure 40: Illustration of the SAM-based junction with the chemical structure of the S-C-DPA-Cn-Fc (n = 0, 

1, 2, 3). 

The surface coverage was obtained by integration of the oxidation wave. Figure 41b 

shows that the surface coverage is 4.31 × 10-10 mol/cm2 for n = 3 but the surface coverage 

decreases with decreasing n. SAM (dSAM) thickness was determined by angle resolved X-ray 

photoemission spectroscopy (ARXPS) and the molecular length (l) by gas phase density 
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functional theory (DFT). From these data, we conclude that the SAMs are standing up right and 

are densely packed, with well-controlled supramolecular structures. 

 

Figure 41: a) The surface coverage determined from the cyclic voltammograms (black squares) and the SAM 

thickness determined by the ARXPS (red dots). b) The work function (Φ) and HOMO-onset (δEME) 

determined by UPS. 

To obtain more information regarding the electronic structure of the SAMs, the work 

function of the SAM-modified bottom-electrode Φn and the off-set in energy between the energy 

of the HOMO, EHOMO, and the Fermi level δEME,n (=EHOMO – EF) were determined from the UPS 

data. From n = 3 to 0, the values of Φn decrease slightly by 0.07 eV due to the well-known 

“push-back” effects consistent with the small decrease in the surface coverage. The increase of 

δEME,n as a function of n by 0.30 eV, indicates the decrease of delocalization of the HOMO 

centered on the Fc unit over the DPA backbone in agreement with DFT calculations. The 

position of the LUMO levels were estimated using near edge X-ray adsorption fine structure 
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spectroscopy (NEXAFS). These data were used to construct the energy level diagrams and as a 

reference for the modelling outlined below.  

5.3.2.  SAMs results 

The SAMs on Au were contacted with EGaIn (eutectic alloy of 75.5% Ga and 24.5% In 

by weight) top-electrodes. Figure 41 (a-d) shows the average J(V,T) traces measured from 240 

to 330 K at intervals of 10 K for n = 0, 1, 2 and 3. From the temperature dependence 

measurements, it is possible to obtain the activation energy (Ea), which relates to thermal 

excitations of molecular vibrational modes and reorganization of neighboring solvent molecules 

[72], using the Arrhenius law: 

𝐼 = 𝐼0𝑒
−

𝐸𝑎
𝑘𝐵𝑇 (5. 3) 

where I0 is a pre-exponential factor. The Arrhenius plots for n = 0, 1, 2 and 3 and voltages from -

0.4V to -1V and from 0.4V to 1V are represented in Figure 42 (e-l).  

The following information can be extracted from Figure 42. i) The rectification ratio R = 

J(-1.0V)/J(+1.0V) decreases from 74 to 23 when n decreases from 3 to 1, but increases again to 

71 for n = 0. ii) The mechanism of charge transport is thermally activated at negative bias for 

junctions with n = 1-3, however, it is activationless for n = 0 (the J(V) characteristics of all 

junctions are independent of T at positive bias). iii) The value of the activation energy increases 

with decreasing n from 3 to 1 from 68±8, 1.8102±23 to 2.1102±28 meV (error is one standard 

deviation from three different devices). iv) The value of Ea increases with applied bias above a 

threshold value of -0.40 V below which the J(V) curves are independent of T. 
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Figure 42: Temperature dependent J(V) data for junctions with SAMs of S-C-DPA-Cn-Fc, with n = 3 (a), 2 

(b), 1 (c), or 0 (d), and the corresponding Arrhenius plots for J from -0.4 to -1.0 V (e-h) and from +0.40 to 

+1.0 V (i-l). The solid lines are fits to the Arrhenius equation. 
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The measurements show that the rectification can be tuned by changing the 

intramolecular coupling between the Fc and DPA units. The molecular diodes with n = 1, 2 and 

3, rectify following a similar mechanism as reported before for diodes with an aliphatic 

backbone (i.e., S(CH2)11Fc) [73-76]). In contrast, the diodes with n = 0 rectify via a new 

mechanism since the mechanism of charge transport is activationless. In addition, the 

dependence of Ea on both n and applied bias, cannot be explained by the Marcus theory (which 

would predict activated transport for all cases) or Landauer theory (temperature independent 

transport for all cases). Here we argue that molecular orbital gating pushes the junctions with 

n = 0 into the inverted Marcus regime resulting in activationless transport despite strong 

interactions of the charge carriers with the molecular bridge. 

5.4. Charge Transport in the Inverted Marcus Regime 

As mentioned in the introduction, Marcus theory combined with the Landauer theory can 

be used to describe charge transfer where the charge carriers interact strongly with the 

molecule(s) inside the junction where the electron transfer rates between the neutral and charged 

molecular states (M and M-) are expressed by [68]:  

𝑘𝑀→𝑀− =
1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝑑𝜀𝛤1(𝜀) 𝑒

−
(∆𝐸+𝜀−𝜆)2

4𝜆𝑘𝐵𝑇 𝑓(𝜀)

𝑘𝑀−→𝑀 =
1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝑑𝜀𝛤1(𝜀) 𝑒

−
(∆𝐸+𝜀+𝜆)2

4𝜆𝑘𝐵𝑇 [1 − 𝑓(𝜀)]

  (5. 4) 

where λ is the reorganization energy, 𝑓(𝜀) is the Fermi distribution of the electron occupation in 

the junction electrodes, and ∆E = EM(xM) -E𝑀−(x𝑀−) + µ, where µ is the electrochemical 

potential of the electrodes, and xM and xM
- represent the configurations at equilibrium with the 
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molecular species M and M- in the reaction coordinate. In the Marcus theory, the reaction 

energetics of the transition from M and M- can be described using Marcus parabolas. Figure 1e 

(continuous lines) shows a typical energetically favorable electron transfer reaction with M- 

lower in energy at equilibrium than the initial state M. The transition from M to M-, however, 

does not occur spontaneously because of the energy barrier between the two states. This so-

called activation energy Ea can be provided thermally or simply by applying a large bias. The 

value of Ea is directly related to the reorganization energy  which is also defined in Figure 43a. 

This situation is the normal Marcus regime and electron transfer rates increase with increasing 

energy and J ∝ e-Ea/kBT applies. Migliore et al. [68] suggested that for junctions in the inverted 

Marcus regime, where the Marcus parabolas are arranged as shown in Figure 43a (dashed lines), 

the parabola of M- crosses with the minimum of the parabola M at point xc. In this situation, there 

is no activation energy and the mechanism of charge transport is activationless. To move the 

Marcus parabolas with respect to each other, independent electrical gating of M and M- would be 

necessary, which can be achieved by charging nearby molecular orbitals (i.e., intramolecular 

orbital gating).  

Figure 43b illustrates the situation in the context of a molecular tunnel junction in an 

energy level diagram which includes the coupling to the environment by means of the nuclear 

coordinate x. In case  lies in between the neutral and charged states, the system is in the normal 

Marcus regime and thermal fluctuations provide the energy necessary to transit from point A to 

B. The system can be pushed into the inverted Marcus regime when  shifts (as a result of a gate 

bias) with respect to points A and B so that xc reaches, and even overcomes, xM (or xM
- for the 

opposite bias). Beyond this point, no thermal energy is required to assist the transition and the 
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process becomes activationless. The value of Ea changes as a function of gate bias following a 

bell-shaped curve (inset of Figure 43b) arising from the overlapping exponentials in Equations 

5.4 and has a maximum value when  lies half way between 𝑥𝑀 and 𝑥𝑀−. Therefore, by 

measuring the value of Ea as a function of gate bias one can observe how a junction moves from 

the normal to the inverted Marcus regime. 

 
 

Figure 43: a) Marcus parabolas depicting a charge transfer process (here drawn for M→M-) in the Marcus 

(red solid line, parabola 1) or activationless in the inverted Marcus (red dashed lines, parabolas 2 and 3). See 

text for details. b) Schematic of the energetics of a molecular state in a tunnel junction in relation to the 

reaction coordinate x. µ is the electrochemical potential of electrons in the metal measured relative to 

vacuum. The inset illustrates Ea as a function of gating voltage (Vg). 

We now return to interpreting the temperature dependence of the SAM-based junctions. 

The single-molecule experiments show that intramolecular orbital gating functions as a local 

electrostatic gate. This intramolecular gating could push the two-terminal SAM-based junction 

into the inverted Marcus region explaining the unusual behaviour of Ea as a function of both the 

applied bias and n shown in Figure 44b. The continuous lines in Figure 44b are fits to the model 

proposed by Migliore et al. [68] (Equations 5.4) corresponding to the bell-shaped function 
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describing Ea vs. gate voltage shown in Figure 44a using  = 0.9 eV which results in maximum 

Ea of 230 meV close to the experimentally observed maximum. The value of E = +0.9 eV is in 

agreement with the spectroscopy data and places the transition into the inverted Marcus regime 

around zero gate voltage.  

The extent of molecular orbital gating is proportional to the charge in the molecule, 

which increases with bias (see fitting functions representing the charge Q(V, n) in Figure 44c). 

The value of Vc has been taken directly proportional to the bias dependency of the charge 

according to: 

 𝑉𝑐(𝑛) =
𝑄(𝑉,𝑛)

𝐶𝐶
∗(𝑛)

= 𝑄(𝑉, 𝑛)
 𝐶𝐶(𝑛)

𝐶1(𝑛)𝐶2(𝑛)
  (5. 5) 

which is a good approximation of the coupling potential 𝑉𝑐 = 𝑒
𝐶𝑐

𝐶1𝐶2−𝐶𝑐
2 when 𝐶1𝐶2 ≫ 𝐶𝑐

2, with 

the effective capacitive couplings values for SAM-based junctions represented in Table 3: 

Table 3: Effective capacitive couplings for n=1, 2 and 3 in SAM-based junctions. 

 n = 1 n = 2 n = 3 

 

𝑪𝑪
∗  

 

1.8810-19 F 

 

2.1210-19 F 

 

3.4810-19 F 

 

We note that the 𝐶𝐶
∗ increases with separation, as expected from its inverse relation with 

the coupling capacitance, 𝐶𝐶, which decreases with separation between the units. The fitting 

results are in excellent agreement with the data and confirm the transition from the activationless 

inverted Marcus regime at V < -0.5 V (no charge in the molecule), to the thermally activated 

Marcus regime for V > -0.5 V. The corresponding maximum values of the intramolecular 
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coupling potential (𝑉𝑐(𝑛) = 𝑄(1𝑉, 𝑛)/𝐶𝐶
∗(𝑛) = 0.85, 0.75, and 0.46 V, for n = 1, 2 and 3, 

respectively) achieved in each molecule for the maximum bias (Vmax = -1.0 V) are marked with 

dashed lines in Figure 43a.  

Figure 44: a) Bell-shaped activation energy vs. gate voltage function calculated from Eqns. 1used to fit the 

experimental results. b) Experimental activation energies of SAM-based junctions with n = 1, 2, and 3, 

(symbols) and the corresponding fits to the Marcus theory in which molecular orbital gating results from 

capacitive coupling between the Fc unit and DPA. c) Theoretical functional representing the charge in the 

n = 1, 2, and 3, molecules as a function of bias used to fit the results. 

One can extend this interpretation to the case of the temperature independent behaviour 

of the SAM-based junction with n = 0. Although the absence of thermal activation in the 

transport precludes evaluating the exact value of the maximum coupling potential for n = 0, one 

can estimate it by linearly extrapolating the n = 1-3 values of the effective capacitive coupling, 

which results in 𝐶𝐶
∗(𝑛 = 0) ~ 0.7910-19 F and 𝑉𝑐(𝑛 = 0) = 𝑄(1𝑉, 𝑛 = 0)/𝐶𝐶

∗(𝑛 = 0) ~ 1.92 V 

(Figure 45). This molecule has the largest intramolecular gating effect, pushing the molecule 

directly into the inverted Marcus region at negative bias. This explains why the mechanism of 

charge transport is independent of temperature despite the charge carriers interacting strongly 

with the molecule since all 4 molecules rectify and have similar lengths.  
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It is worth noting that the molecular orbital coupling between the Fc and DPA units in 

SAM-based junctions translates into gate voltages of the order of one volt, while in single 

molecule junctions is lower than 50mV (yellow and red arrows in Figures 38 a-b). This 

difference can be understood in terms of strong energy renormalization effects due to charge 

image effects in the electrodes [72, 77].   

Figure 45: Effective coupling capacitance as a function of the number of CH2 groups (n) separating the DPA 

and the ferrocene units (solid circles). The red line represents a linear fit to the data. Extrapolation to n = 0 

gives an upper bound estimate for the effective coupling capacitance of 0.7910-19 F, which represents a lower 

bound estimated for the coupling potential of 1.92 V. 

5.5. Conclusions 

We have demonstrated that the mechanism of charge transport of a molecular diode can 

be pushed deep into the inverted Marcus regime via intramolecular orbital gating. Our data fit 

well to a model put forward by Migliore et al. which combines both the Landauer and Marcus 

theories. These results indicate that molecular junctions can operate in between these two 

extremes with profound implications:  
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1. Temperature-dependent measurements alone cannot distinguish whether a junction 

operates in the coherent tunneling regime or in the charge transfer regime, as 

junctions in the inverted Marcus regime show activationless charge transport. 

2. Despite the lack of solvent molecules in solid state molecular junctions, Marcus 

processes are important and must be taken into consideration, particularly for 

junctions in the weak coupling regime. 

3. Intramolecular orbital gating can push a junction into the inverted Marcus regime 

eliminating the need for a gate electrode to do so. 

The latter could lead to new means of controlling the mechanism of charge transport 

across molecular tunnel junctions. Also from a practical perspective, our results are interesting as 

they provide means of obtaining efficient molecular diodes (with nearly two orders of magnitude 

rectification) in both the Marcus and inverted Marcus regions. We hope that our results inspire 

future theoretical and experimental studies. 
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CHAPTER 6: 

DEVELOPMENT OF GRAPHENE-BASED SINGLE-ELECTRON 

TRANSISTORS 

6.1. Introduction 

It was noted in Chapter 4 that graphene is a promising alternative as an electrode material 

for single-molecule measurements. Recent studies have demonstrated that graphene-based 

junctions are stable over weeks at room temperature [78], contrary to gold junctions that are 

stable only at low temperatures. In addition, graphene electrodes open the door to transport 

measurements in the presence of light, which will allow for the study of photo-active molecules 

[79] and plasmon resonances in gold nanoparticles, along with polarized current transport 

measurements via graphene-based spin valves. The fabrication of fully functionalized multilayer 

graphene-based single-electron transistors is reported in the present Chapter.  

6.2. Graphene-based SETs Fabrication 

6.2.1. Graphene exfoliation 

Graphite is exfoliated onto a silicon/silicon oxide wafer (Waferpro: 3" N/AS <1-0-0> 

<0.005 ohm-cm, 381+/-25um prime silicon wafer, SSP, 1 SEMI FLAT with 2,800A+/-10% 

thermal oxide on both sides) patterned with alignment markers. The wafer has been previously 

cleaned using a standard recipe (acetone, ethanol and isopropanol). After exfoliation, the samples 

are studied under an optical microscope in order to select the optimal flakes. The aforementioned 

markers will serve as coordinates for the future localization of the flakes. 
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The criteria for selection is the following: the area around the flakes must be clean from 

graphite and glue and the flakes must be ≈ 3-20nm thickness (Figure 46 a-b shows an optical 

and AFM image of a desired flake). The reason for the thickness criteria being that the electrodes 

must be thin enough so that the gate coupling with the molecule is maximized, but thick enough 

that the electrodes still act as a continuous reservoir of electrons [78, 80, 81]. 

Figure 46: a) Optical image of an exfoliated multilayer graphene flake. b) AFM analysis of the flake step 

height.  

Considering that each flake will present a different geometry, optical lithography is not 

an option and each transistor must be designed separately and patterned via electron beam 

lithography. The software used to design and pattern each device is DesignCad.  

During the fabrication process, gold contacts are patterned first, followed by the writing 

and etching of the multilayer graphene nanowires. 



  72  

 

6.2.2. Contacts 

Figure 47 depicts the design of the contacts layer for one device. Each color in the figure 

represents a different layer. Each layer will be patterned at different currents, the larger the 

designed features are, the larger the current. This process allows the optimization of the writing 

time.  

 

Figure 47: DesignCad design of the contacts of a transistor. The different colors represent different layers for 

the writing process. 

After the design is ready, the sample is spin coated with e-beam resists (MMA 8.5 EL (6) 

and PMMA 495 A4) following the parameters in Table 4. 

Table 4: Spin coating and baking parameters for MMA 8.5 EL (6)/PMMA 495 A4 bilayer. 

MMA 8.5 EL (6) PMMA 495 A4 

2s at 500rpm/ 50s at 4000rpm/ 2s at 0rpm 2s at 500rpm/ 50s at 4000rpm/ 2s at 0rpm 

Bake at 175°C for 5min Bake at 175°C for 5min 
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A Vega SBH SEM built by Tescan is employed for the e-beam lithography process. The 

beam is aligned and a Run File is created. The Run File sets the magnification, current and 

dosage at which each layer is patterned. The current dosage corresponding to the MMA 8.5 EL 

(6)/ PMMA 495 A4 bilayer is 325 μC/area. 

Once the writing is finished, the sample is developed in a MIBK:IPA (1:3) solution for 

45s. Finally, 7nm of Ti and 75nm of Au are deposited by means of an e-beam evaporator. The 

process is completed by submerging the sample in acetone, which will lift-off all the unwanted 

metal. 

6.2.3. Nanowires 

The nanowires are patterned following a similar procedure as the one described above. 

The desired etching pattern is designed (Figure 48) and the sample is spin-coated with PMMA 

495 A2 and PMMA 495 A5 (Table 5). This recipe allows the writing of features as small as 

100nm. 

Table 5: Spin coating and baking parameters for 3 layers of PMMA 495 A2 and a layer of PMMA 495 A4. 

3 layers of PMMA 495 A2 PMMA 495 A4 

2s at 500rpm/ 50s at 4000rpm/ 2s at 0rpm 2s at 500rpm/ 50s at 4000rpm/ 2s at 0rpm 

Bake at 170°C for 5min Bake at 170°C for 5min 

 

The current dosage corresponding to three layers of PMMA 495 A2 and a layer of PMMA 495 

A4 is 550 µC/area.  

The device is developed in a cold solution of isopropanol and DI water (3:1) for 1min 

20s. Once the development process is finished, a SAMCO RIE etcher is employed to etch the 
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multilayer graphene from the exposed areas. The parameters optimized for the etching of the 

nanowires are detailed in Table 6. 

Table 6: SAMCO RIE etcher parameters for multilayer graphene etching. 

Power scc Pressure Time 

50 W 5 53 mTorr 16s 

 

 

Figure 48: DesignCad design of the graphene etching layers. The narrowest part is designed to be 100nm 

wide. The green dashed lines follow the edges of the flake. The inset shows a zoom into the 100nm narrowing. 

The sample is then left in acetone overnight to remove the remainder e-beam resist. Once 

the transistors are clean from residues, they are electrically characterized with a probe station. 

The nanowires resistance should be between 1- 2 kOhm. Finally, the transistors are wire bonded 

to a chip carrier. The parameters used for the wire bonding of graphene-based transistors are 

represented in Table 7. It is crucial not to use a higher power or force than the ones in Table 7, as 

it could burn the device. 
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Table 7: Parameters for wire bonding graphene-based transistors. 

 Search Force Time Power 

1st bond 0 5.2 5.5 464 

2nd bond 20 1.5 3 300 

 

6.2.3. Nanogap 

The nanogap is opened using a feedback controlled electroburning technique [79]. 

Voltage is applied between the gold leads, generating current through the nanowires and heating 

graphene by the Joule effect. The hot carbon atoms react with the oxygen in the atmosphere and 

burn.  

Figure 49: I-V graph of the feedback-controlled electroburning induced breaking process at room 

temperature. The process is stopped when the resistance through the nanowire reaches 4 MOhms. 
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The program used to control the graphene breaking is similar to the one explained in 

Section 5.2.1. The current through the nanowire is recorded while increasing the bias voltage. 

Once the current drops 0.002%, the voltage is recoiled back to zero in miliseconds. The process 

is repeated until the resistance reaches 4MOhms (Figure 49). The values of the percentage of the 

current drop and the final resistance have been optimized through several breaking processes. 

For more information about the different parameters used in the Labview program see Appendix 

B. 

6.3. Gap Characterization 

In order to estimate the gap size generated, current-voltage characteristics are recorded. 

Figure 50 shows an IV curve indicative of tunneling behavior. The dashed line in the figure is a 

fit from the Simmons model. 

Figure 50: I-V characteristic of a multilayer graphene nanogap (blue solid line). The dashed line represents 

the Simmons model fit with a gap of 1.7nm, an area (A) of 50nm2 and an asymmetry of 0.52. 
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6.3.1. Simmons model 

The Simmons model describes the current-voltage behavior of tunneling junctions under 

vacuum. It assumes a trapezoidal barrier when the Vbias < Ф, where Ф is the barrier height [82] 

(Figure 51). Bearing that in mind, the current density in the tunnel junction is given by [53, 83]: 

𝑗 = 𝑒
4𝜋𝑚

ℎ3 ∫ 𝑑𝜀[𝑓𝐿(𝜀) − 𝑓𝑅(𝜀)] ∫ 𝑑𝜀𝑥𝑇(𝜀𝑥) = 𝑒
4𝜋𝑚

ℎ3 ∫ 𝑑𝜀 ∫ 𝑑𝜀𝑥𝑇(𝜀𝑥)
𝜀

0

𝜇𝐿

𝜇𝑅

𝜀

0

∞

0
 (6. 1) 

where T(εx) is the tunnel probability of an electron with kinetic energy εx in the x-direction, and it 

has been assumed that kBT << μL, μD, Ф. Therefore, the Fermi distribution of the electrons energy 

in the leads can be approximated to a step function. 

Figure 51: Schematic energy diagram of a junction with a thin insulating film of width d between source and 

drain. Where Φ is the potential barrier height.  
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Using the WKB-approximation, one can obtain an expression for the tunnel probability 

[53]: 

𝑇(𝜀𝑥) = 𝑒
−

2

ħ
∫ 𝑑𝑥|𝑝𝑥|

𝑥2
𝑥1 = 𝑒

−𝛽 ∫ 𝑑𝑥√Ф(𝑥)−𝜀𝑥
𝑥2

𝑥1 = 𝑒−𝛽𝑑√Ф−𝜀𝑥 (6. 2) 

where 𝛽 = 2
√2𝑚

ħ
, d = x2 – x1 and Ф is independent of x when the left and right electrodes have 

the same work function (situation illustrated in Figure 50). 

Substituting Equation 7.2 into Equation 7.1, the current density becomes: 

𝑗 ≈
𝑒

2𝜋ℎ𝑑2 [(Ф − 𝜇𝐿)𝑒−2𝑑
√2𝑚(Ф−𝜇𝐿)

ħ − (Ф − 𝜇𝑅)𝑒−2𝑑
√2𝑚(Ф−𝜇𝑅)

ħ ] (6. 3) 

Equation 6.3 is a good approximation when the junction has totally symmetric electrodes. For a 

more general model, we can introduce a parameter (α) that will account for the asymmetry 

between the electrodes (Equation 6.4) [58].  

𝑗 ≈
𝑒

2𝜋ℎ𝑑2
[(Ф − 𝛼𝜇𝐿)𝑒−2𝑑

√2𝑚(Ф−α𝜇𝐿)

ħ − (Ф − (1 − 𝛼)𝜇𝑅)𝑒−2𝑑
√2𝑚(Ф−(1−α)𝜇𝑅)

ħ ] (6. 4) 

6.3.2. Statistics 

From the electroburning of 50 junctions, 8 broke abruptly (the feedback was not fast 

enough during the breaking process), 8 broke all the way hours after the electroburning process 

and 34 showed the characteristic tunneling I-V response (statistics shown in Figure 52). The 

Simmons model was used to fit the IV curves of the 34 junctions and the gap size corresponded 

to 1.5nm – 2nm. 
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Figure 52: Histogram of the percentage of junctions divided in three groups: infinite resistance in the 

electroburning process (16%), infinite resistance 2h after breaking (16%), stable gap over time of 1.5nm to 

2nm (68%). 

6.4. Conclusions 

The fabrication of multilayer graphene transistors with a nano-constriction of 100nm 

(Figure 52) and the subsequent controlled electroburning process for the generation of gaps 

between 1.5 and 2nm has been reported in this Chapter. The gaps are electrically characterized 

and the gap sizes are estimated by fitting the tunneling IV curves to the Simmons Model. 

Figure 53: Optical image of six multilayer-graphene based nanowires.  
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CHAPTER 7: 

GRAPHENE-BASED GATEABLE SCANNING TUNNELING 

MICROSCOPY 

7.1. Introduction 

Scanning probe microscopy techniques have been widely used to study the conduction 

through individual molecules deposited on a metallic surface (Chapter 4). Unfortunately, these 

two-terminal transport measuring techniques lack the possibility of electrically gating the 

molecules, limiting a complete spectroscopic determination of the energy landscape. 

Alternatively, three-terminal SET devices, as the ones described in Chapter 5 and 6, although 

excellent for transport spectroscopy, carry low yields and a lack of control of the molecule’s 

disposition within the junction region. 

The work presented in the current chapter pretends to overcome the gate limitation of the 

STM measurements by efficiently gating through graphene. Although there have been some 

advances in this direction, the coulomb blockade diamond of a molecule has never been 

measured by means of an STM [84, 85].  

7.2. Device Fabrication and Characterization 

The STM images and measurements in the present section and in section 7.3 are done in 

collaboration with Jens Martin at NUS. 

Figure 54 illustrates the device geometry. The transistor is based on an undoped GaAs 

wafer with high quality CVD graphene transferred on top of an aluminum gate, which has been 

previously oxidized (2nm of oxide layer). The patterning consists of four steps: a first contact 
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layer for the gates (5nm Ti/15nm Au), Al/Al2O3 gates (45nm), CVD graphene transfer, and a 

second contact layer for the gates and contacts for graphene (5nm Ti/85nm Cu/20nm Au). For a 

detailed fabrication recipe see Appendix C. 

Once the lithography processes are completed, the sample is annealed using an optimized 

flow of Argon and Hydrogen at 300 degrees Celsius for further cleaning of the graphene sheet. 

 

Figure 54: Schematic illustration of the CVD graphene transistor device. The device is patterned on top of a 

GaAs wafer.  

STM measurements require atomically clean samples. To confirm the imaging of 

molecules would be possible in the proposed device, the quality and roughness of the CVD 

graphene on top of the aluminum gate were analyzed via AFM and STM. Figure 55 a-b shows 

AMF and STM images of graphene in one of our devices. From the AFM scale bar, it can be 

inferred that the roughness of our transistors is ±1nm. At the same time, Figure 55b shows that 

our graphene is atomically clean. 

Figure 55: a) AFM height image of CVD graphene on top of an Al/Al2O3 gate. The roughness in an area of 

5μm by 5µm is ±1nm. b) STM image taken in constant current mode of CVD graphene lattice on top of an 

Al/Al2O3 gate. The scale bar is 1nm. 



  82  

 

We also examined the gate dependence of the graphene sheet. Figure 56 a-b show the 

STM spectroscopy measurements taken at liquid Nitrogen temperatures. 

Figure 56: a) Conductance versus bias voltage for two different gate voltages (Vgate = 0V and Vgate = -0.5V). 

b) Tip Height (z) versus gate voltage. Measurement taken at a constant tunneling current. Graphene Dirac 

point is located at positive 0.5V gate voltage. 
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7.3. PTM Radical Molecules 

The molecules chosen for the study are polychlorotriphenylmethyl (PTM) radicals 

synthesized by our collaborator Jaume Veciana. The chemical structure and energy scheme of 

the PTM radical can be seen in Figure 57 a-b. The energy scheme was obtained using DFT 

calculations [86].  

Figure 57: a) Chemical structure of a polychlorotriphenylmethyl (PTM) radical. b) Energy scheme of the 

PTM radical obtained via DFT calculations. 

7.3.1. Molecule deposition 

Studies for the optimization of the deposition process were performed. The first approach 

was to optimize the concentration on a HOPG substrate. Figure 58 consists of two AFM images 

of the molecules on HOPG. The first HOPG sample (Figure 58a) was immersed for 90min in a 

solution of PTM radical molecules diluted in Toluene (1x10-4 M), whereas 20μL of the same 

solution were drop casted for the second sample (Figure 58b).  
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In Figure 58a either residues or molecules accumulations can be observed. However, the 

sample obtained by drop casting shows a clean surface with elongated bright features on top. A 

height profile of the bright features measured an average thickness of 1.2nm, thus confirming 

that these features are monolayer molecule arrangements.  

Figure 58: AFM images of the radical molecules on the surface of cleaned HOPG grown with different 

methods. a) immersing HOPG in 1x10-4M solution of toluene for 90min. b) drop casting 20µL of the same 

solution. 

 The same dilution concentration and drop casting method was used for our devices. The 

AFM images, height and phase profile, are displayed in Figure 59 a-b. From the images, it can 

be observed that the surface is almost fully covered by molecules. The dark spots in the height 

profile image (bright spots in the phase profile image) correspond to the areas without molecules. 

Some elongated features can still be appreciated in the height profile image. 
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Figure 59: a) AFM height profile of PTM radical molecules drop casted on CVD graphene. b) AFM phase 

profile of PTM radical molecules drop casted on CVD graphene. Both images are taken on top of the 

Al/Al2O3 gate. 

We have determined that the CVD Graphene surface is atomically clean, tested the 

efficiency of the gate, and optimized the deposition of the PTM radical molecules on our 

devices. The next step is to analyze the molecules with the STM. 

7.3.2. STM measurements 

In the following page, scanning tunneling images of PTM molecules on top of CVD 

graphene are shown (Figure 60 a-b). The images show the graphene lattice distorted. The 

distortion is due to the presence of molecules between the tip and graphene. However, the high 

charging energy of the molecules made the imaging of its density of states impossible.  

A recent study performed in SET, demonstrates that within a gate window of ±4V it is 

not possible to charge the PTM radical molecule [86], hence this molecule is not suitable for our 

experiment. 
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Figure 60: Scanning tunneling images of PTM molecules on top of CVD graphene. a) area scanned is 40nm 

by 40nm. b) area scanned is 5nm by 5nm. 
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7.4. C60 Molecules 

The work presented in this section was performed in collaboration with Masahiro 

Ishigami at UCF.  

Fullerene molecules (C60) (chemical structure represented in Figure 61) were chosen this 

time. The temperature for its sublimation and the parameters for imaging its density of states 

have been previously reported, since C60 molecules have been thoroughly studied in the STM 

field [56]. However, none of the reports show a complete spectroscopy (coulomb blockade 

diamond) of the molecule. 

Figure 61: Fullerene C60 molecule chemical structure. 

7.4.1. Molecules deposition 

We wanted to avoid the presence of solvent in our samples, therefore the molecules had 

to be sublimated in situ. In order to determine the parameters for the molecule evaporation, a 

thermocouple was installed in a UHV chamber with a thickness monitor attached to it (Figure 

62a). The current and voltage parameters were slowly increased until a constant frequency shift 

of 10 Hz was observed in the crystal. The obtained parameters are represented in Table 8. 
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Table 8: Current, voltage and frequency parameters for C60 sublimation in UHV. 

Current Voltage Freq. shift 

0.75 A 6.0 V 10 Hz 

 

 

Figure 62: a) UHV chamber with thickness monitor employed to obtain the current and voltage parameters 

for the sublimation of the C60 molecules. b) Omicron scanning tunneling microscope used for the 

measurements presented in this section.  

Once the sublimation parameters were established, an HOPG sample was prepared and 

the thermocouple was installed in the STM prep chamber (Figure 62b). The thermocouple 

current and voltage parameters were set to the values in Table 8, and the sample was exposed to 

the sublimated molecule in UHV for 30s. To assure only a monolayer of C60 was present in the 

sample, after the sublimation, the substrate was heated at 450 degrees (temperature above C60 
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evaporation) for 5s. Figure 63 shows an STM image of the monolayer of C60 molecules obtained 

on the HOPG substrate. 

 

Figure 63: Scanning Tunneling Microscope constant current image of sublimed C60 molecules on top of 

HOPG. 

7.4.2. Future work 

Unfortunately, after taking the image in Figure 63 the measurements had to be stopped 

due to a leak in the STM system. The next step is to use the same sublimation parameters on a 

CVD graphene-based transistor, confirm that a monolayer of C60 molecules is present and 

perform spectroscopy measurements for different gate voltage values. 
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APPENDIX A: 

GRAPHENE TRANSFER PROCESS 
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Graphene Transfer Recipe 

1. Cut the desired size piece of copper foil (with graphene on both sides). 

2. Cut a piece of plastic slightly larger than the copper foil piece. Blow N2 on it. 

3. Use Kapston tape to tie the copper foil on the plastic as shown in the Figure 64a, very 

carefully so the copper foil does not bend.  

Figure 64: Illustration showing the graphene/Cu foil tied on plastic with Kapton tape ready for spin 

coating. b) Graphical representation of how to prepare the graphene/Cu for etching. 

4. Spin coat a layer of PMMA A4 495 resist using program G. (4000 rpm 45 seconds) 

5. Heat at 155° C for 3 minutes. 

6. Very carefully remove the tape.  

7. Place the copper foil with the spin coated side facing down on a new piece of plastic.  

8. Use Kapston tape to tie the copper foil (Figure 64b).  

9. Etch graphene with O2 plasma Oxidation (see Table 9). 

10. Remove the tape and cut the copper foil into smaller pieces if necessary. 

11. Prepare 1% APS Copper etchant solution on a plastic container. 

Table 9: O2 plasma parameters for CVD graphene etching. 

SCCM Power Pressure Time 

5 50 W 53 mTorr 45 s 
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12. Place very gently the copper pieces with the spin coated side facing up in the solution.  

13. Leave overnight 

14. Prepare a small container with ultrapure water and place a clean glass slide in it. 

15. Prepare new 1% APS Copper etchant solution on a clean plastic container. 

16. After leaving it overnight the copper has been etched, we will find a layer of polymer and 

graphene floating in the solution. 

17. Use the clean glass slide previously placed in ultrapure water to scoop graphene out of 

the solution. Place the glass slide into the solution at a 45° angle and very carefully 

approach the target piece. Once the film is touching the glass slide slowly remove it from 

the solution and place it carefully into the fresh 1% APS solution. 

18. Leave on solution for 3 hours. 

19. After 3 hours, place ultrapure water in a plastic container. 

20. Scoop graphene out of the 1% APS solution (same as n and q) and place it in the 

ultrapure water container. 

21. Leave overnight 

22. Prepare a new recipient with fresh ultrapure water. 

23. Scoop graphene out of the water and place it in the fresh ultrapure water recipient. Leave 

for 3 hours. 

24. Scoop graphene out of ultrapure water container, instead of using a glass slide for the 

process now we will be using the desired substrate previously cleaned using standard 

process. 
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25. Wait for the water between the substrate and graphene to evaporate (5-10 minutes). Then 

heat at 55°C for 5 minutes and at 180°C for 5 minutes after that. 

26. Leave the sample cool down (usually 5 minutes) and place it in acetone for 5 minutes. 

27. Place the substrate in a fresh acetone recipient. Leave overnight 

28. Remove from acetone and gently blow dry with N2 
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APPENDIX B: 

PARAMETERS FOR FEEDBACK-CONTROLLED LABVIEW PROGRAM 
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Control parameters used in the Labview program (Figure 65) for the feedback-controlled 

electroburning process are represented in Table 10. 

Table 10: Control parameters for feed-back controlled Labview program 

Figure 65: Screenshot of the Labview program interface. 

  

Initial Drain Voltage 0.010 V 

Final Drain Voltage 7.0 V 

Increment Drain Voltage 0.010 V 

Initial Percentage 0.002% 

Current to Change 2.6 mA 

Percentage After Change 0.0025% 

Resistance to Stop 4.5 MOhms 
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APPENDIX C: 

GRAPHENE-BASED TRANSISTORS FOR STM MEASUREMENTS 

FABRICATION RECIPE 
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Photolithography Process 

Sample Preparation: 

a. Take a Si/SiO2 doped wafer and cut it pieces of 11 mm x 2.5 mm (2.5 mm maximum, 

these are the dimensions for the STM in Singapore) 

b. Clean wafer with Acetone, Ethanol, and IPA (in that order) then blow dry with Nitrogen 

gas. 

Polymers Spin Coating: 

c. Clean wafer with Acetone, Ethanol, and IPA (in that order) then blow dry with Nitrogen 

gas. 

d. Spin LOR resist and bake for 5 minutes at 175°C. 

e. Spin Shipley resist and bake for 2 minutes at 120°C. 

Table 11: Spin coating parameters for LOR 3A and Shipley bilayer. 

 

 Alignment and Development: 

f. Clean Mask with Acetone, Ethanol, IPA and then sonication in DI water for at least 5 

minutes. 

g. Place wafer on mask aligner using cut away plastic to ensure sample vacuum. (Read 

guide lines of Mask Aligner).  

h. With your eyes align wafer piece to the sample pattern on the mask. 

LOR 3A (B) Shipley S1813 (A) 

2s at 500rpm / 30s at 3000rpm / 2s at 0rpm 2s at 500rpm / 30s at 5000rpm / 2s at 0rpm 
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i. Using contact vacuum raise wafer also you can use the dial. 

j. Use micrometers to align layers. 

k. Once it is aligned, check the intensity of the UV-light in order to choose the time of 

exposition correctly. The exposing relation must be ~ 𝟏𝟐𝟔 
𝐦𝐉

𝐜𝐦𝟐. 

l. After exposing, develop in CD-26 for 45 seconds, then quickly in DI water. 

m. Blow dry with Nitrogen. 

n. Check under the microscope, if the etches and color is good and uniform; place the 

sample at 130° C for 5 minutes, then 1 minute in CD-26 followed by DI water and 

Nitrogen blow dry. 

o. It is very recommendable to use new CD-26 in every development. Also, Change DI 

water every time that it has been used. 

Gold Layer (for Al contact) 

a. Tape sample on sample holder and mount in chamber. The evaporations should take 

place at <5E-6 Torr. 

b. Right before this deposition clean the wafer with O2 plasma. 

Table 12: O2 plasma parameters to remove residues before evaporation. 

 

 

 

 

Table 13: Evaporation parameters for Layer 1 (17~20 nm Ti/Au). 

SCCM Power Pressure Time 

12 50 W 200 mTorr 10 s 
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 Ti Au 

Density 4.5 g/cm3 19.3 

g/cm3 Z-ratio 0.628 0.381 

Tooling Factor 170 % 175 % 

Deposition Rate 1 Å/s 1.5 Å/s 

Thickness 10 nm 10 nm 

Current ~30 mA ~ 50 

mA 
Aluminum Gates 

a. Repeat steps from Polymer Spin Coating to Development. 

b. Tape sample on sample holder and mount in chamber. The evaporations should take 

place at <5E-6 Torr. 

c. Before every deposition clean the wafer right before the evaporation with O2 plasma. 

Using parameters from Table 12. 

d. Evaporate 10nm before opening the shutter in order to remove the Al2O3 first. 

Table 14: Evaporation parameters for Aluminum. 

 

 

Al 

Density 2.7 g/cm3 

Z-ratio 1.08 

Tooling Factor 160 % 

Deposition Rate 0.6 Å/s 

Thickness 45 nm 

Current ~200 mA 
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Oxidation:  

e. After the Aluminum evaporation, turn off e-beam source and ion gauge and leave it 

cooling down for 1hour. Use the manual Instructions to be followed by user during 

introduction of oxygen to the Evaporator Chamber. This manual is next to the 

chamber in the clean room. 

f. First open the oxygen valve and then add oxygen “slowly” to the chamber with the leak 

valve 

g. Stop at 250 mTorr 

h. Close oxygen valve and the leak valve 

i. Leave it in 250 mTorr for 40 min 

j. Then, pump with dry pump for 15s and then roughing pump around 20 min (until 

pressure in the chamber is very low) 

k. Then turn off roughing and dry pump 

l. Vent chamber 

Aluminum Lift Off and Oxidation: 

m. For the Al layer place the sample in Acetone at Room Temperature for about 45 min, 

spray with acetone for helping the lift off, followed by 5 min in PG and then DI water. 

n. After lift off leave the sample for 24 hours at atmosphere conditions. Also, it might be 

useful to oxidize the gates even more with O2 plasma Oxidation. 

o. Then check with meter or probe station the resistance of the gates. They should be around 

~ 400 Ω. 

Table 15: O2 plasma parameters for Aluminum oxidation. 
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Graphene transfer (see Appendix A) 

Gold Layer (Contact for Graphene and Second Layer for Aluminum) 

a. Repeat steps from Polymer Spin Coating to Development. 

b. Tape sample on sample holder and mount in the chamber. The evaporations should take 

place at <5E-6 Torr. 

Table 16: Evaporation parameters for Ti, Cu and Au. 

 Ti Cu Au 

Density 4.5 g/cm3 8.93 

g/cm3 

19.3 

g/cm3 Z-ratio 0.628 0.437 0.381 

Tooling Factor 170 % 175 %  175 % 

Deposition Rate 1 Å/s 1.5 Å/s 1 Å/s 

Thickness 15 nm 85 nm 20 nm 

Current  ~30 mA ~  mA ~ 50 mA 

 

  

SCCM Power Pressure Time 

12 50 W 100  mTorr 10 min 
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