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ABSTRACT 

The primary focus of this dissertation is the development of novel fluorescent near-infrared 

molecules for various applications. In Chapter 1, a compound dU-BZ synthesized via 

Sonogashira coupling reaction methodology is described. A deoxyuridine building block was 

introduced to enhance hydrophilic properties and reduce toxicity, while an alkynylated 

benzothiazolium dye was incorporated for near-IR emission and reduce photodamage and 

phototoxicity that is characteristic of common fluorphores that are excited by UV or visible light. 

A 30-fold enhancement of fluorescence intensity of dU-BZ was achieved in a viscous 

environment. Values of fluorescence quantum yields in 99% glycerol/1% methanol (v/v) of 

varying temperature from 293 K to 343 K, together with fluorescence quantum yields, radiative 

and nonradiative rate constants and fluorescence lifetimes in glycerol/methanol solutions of 

varying viscosities from 4.8 to 950 cP were determined. It was found that both fluorescence 

quantum yields and fluorescence lifetimes increased with increasing viscosity, which is 

consistent with results predicted by theory. This suggests that the newly designed compound dU-

BZ is capable of functioning as a probe of local microviscosity, and was later confirmed by in 

vitro bioimaging experiments. 

 

In Chapter 2, a new BAPTA (O,O’-bis(2-aminophenyl)ethyleneglycol-N,N,N’,N’-tetra acetic 

acid) and BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based calcium indicator, 

BAPBO-3, is reported.  A new synthetic route was employed to simplify both synthesis and 

purification, which tend to be low yielding and cumbersome for BAPTA derivatives. Upon 

excitation, a 1.5-fold increase in fluorescence intensity in buffer containing 39 μΜ Ca
2+

 and a 3-
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fold increase in fluorescence intensity in buffer containing 1 M Ca
2+

 was observed; modest but 

promising fluorescence turn-on enhancements. 

 

In Chapter 3, a newly-designed unsymmetrical squaraine dye, SQ3, was synthesized. A one-pot 

synthesis was employed resulting in a 10% yield, a result that is generally quite favorable for the 

creation of unsymmetrical squaraines Photophysical and photochemical characterization was 

conducted in various solvents, and a 678 nm absorption maximum and a 692 nm emission 

maximum were recorded in DMSO solution with a fluorescence quantum yield of 0.32. In vitro 

cell studies demonstrated that SQ3 can be used as a near-IR probe for bioimaging. 
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CHAPTER 1. A DEOXYURIDINE-BASED VISCOSITY SENSOR FOR IN 

VITRO APPLICATION 

 

1.1 Introduction 

Information such as physiological composition can be reflected by microenvironments in cellular 

compartments.[1] For example, an increase in mitochondrial membrane viscosity was discovered 

after exposure to β-amyloid, which is essentially involved in Alzheimer's disease.[2] Mechanical 

methods [3, 4] have been universally applied to measure the viscosity of bulk liquids. However, 

viscosity on the microscopic scale may differ largely. It is a significant challenge to use 

techniques to measure microviscosity on the order of micrometers so that intracellular viscosity 

can be probed.  

 

One method to monitor viscosity changes at the single cell level is the use of fluorescence 

imaging with molecular rotors.[5, 6] Molecular rotors are fluorophores whose fluorescence 

intensity is affected by intramolecular rotation that can be greatly affected by the viscosity of its 

surrounding environment. This can be accomplished via an intramolecular charge transfer (ICT) 

mechanism by molecular twisting in the excited state.   A local excited (LE) state and a twisted 

intramolecular charge transfer (TICT) state are involved,[7] and de-excitation to the ground state 

can occur from both states. With different conformations of the two excited states, the energy 

gap between the LE and TICT states leads to different intensities of radiative decay, and this 

energy gap is caused by nonradiative deactivation from LE state to a dark, non-emissive TICT 
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state. In viscous media, the rate constant of nonradiative relaxation is reduced, and the radiative 

decay of LE state occurs, resulting in higher fluorescence quantum yield and longer fluorescence 

lifetime.[8] A qualitative sketch of the energy levels of a TICT molecule is shown in Figure 1. 

Upon excitation of the planar configuration, the molecule elevates to the LE state, with the angle 

of intramolecular rotation close to zero (φ0). From the LE state, the molecule can return to the 

ground state with rate constant kf, or it undergoes intramolecular rotation to TICT state with a 

rate constant ka and obtains a 90° intramolecular rotation angle φ1. From the TICT state, the 

molecule can return to the ground state with a rate constant kf’ or it returns to the LE state with a 

rate constant kd (kd is usually very small). In the twisted conformation, the ground state energy 

level is higher and the molecule has a tendency to return to the planar ground state conformation. 

Even though the TICT state has a lower energy than the LE state, it is difficult for a molecule to 

return back to the LE state from the TICT state, since it has to overcome several small energy 

maxima. 

 

Figure 1. Ground state and excited state energies in the planar and twisted conformations of a 

TICT molecule. 
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A TICT rotor usually employs a donor group, an acceptor group, and a π-conjugation system 

between them for electron transfer. An alkylated nitrogen atom is universally applied as a donor 

group, and acceptor groups vary from nitriles and carboxylic esters to aromatic rings. Extension 

of π-conjugation system usually brings changes in the fluorescence spectrum. These changes are 

significant, especially in consideration of designing a probe with emission maxima at specific 

wavelengths.  A representative TICT rotor DMABN (1,4-dimethylaminobenzonitrile) (Figure 2a) 

has been extensively studied[9, 10]. However, short excitation wavelengths (ca. 290 nm) and 

emission ranges (from 340 nm, LE state to 460 nm, TICT state) hinder further development of 

this compound for biological environments and other applications due to detrimental effects of 

UV irradiation. To solve the problem, julolidines (Figure 2b and 2c) have emerged. With 

extended conjugation system, 9-(dicyanovinyl)julolidine (DCVJ) and 9-(2-carboxy-2-cyanovinyl)

julolidine (CCVJ) exhibits excitation of 470-480 nm and emission at > 500 nm [6]. In fact, both 

TICT and photoisomerisation causing a zwitterion intermediate[11, 12] have been proposed to 

explain the photophysical behavior upon viscosity change. In addition, extended conjugation is 

also reflected in stilbene motif based molecular rotors, e.g. p-DASPMI (trans-4-(4-

dimethylaminostyryl)-1-methylpyridiniumiodide)[13] (Figure 2d). This type of molecular rotor 

has a larger number of bonds that allow twisting, so that more complex solvent interactions are 

involved.[14, 15] 

Another important subclass of fluorescent probes is produced by replacing acceptor groups with 

benzothiazole derivatives, represented by thioflavin T (4-(3,6-dimethyl-1,3-benzothiazol-3-ium-

2-yl)-N,N-dimethylaniline) (Figure 2e), which has been applied to visualize and quantify the 

presence of amyloid. [16, 17]. The photophysical chatacteristics of this probe has been attributed 

http://en.wikipedia.org/wiki/Amyloid
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to not only dimer, excimer[18], and micelle[19, 20] formation but also de-excitation due to 

intramolecular rotation. Although the nature of the dark state that causes the viscosity 

dependence is not as clear as for the case of DMABN, a remarkable fluorescence intensity 

increase and red shift has been observed for these dyes[6] (Figure 2b-2e), suggesting possible 

applications in various fields, such as in biological imaging. It has been experimentally 

confirmed that one can probe the viscosity in cellular membranes[21] and model phospholipid 

bilayers.[22, 23] These compounds can also function as markers for monitoring physiological 

changes in cells[24, 25]. 

 

 

Figure 2. The structures of TICT molecular rotors: (a) 1,4-dimethylaminobenzonitrile 

(DMABN), (b) 9-(dicyanovinyl)julolidine (DCVJ), (c) 9-(2-carboxy-2-cyanovinyl)julolidine 

(CCVJ), (d) 4-(4-dimethylaminostyryl)-1-methylpyridiniumiodide (p-DASPMI), and (e) 4-(3,6-

dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-dimethylaniline (thioflavin T) 

 

Molecular rotors have been proposed over decades for measurement of local viscosity by 

tracking the change of fluorescence quantum yield.[6, 26] A challenge in this approach is 

separating influences on fluorescence intensity caused by viscosity from other factors, such as 
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local concentration of fluorophores and specific solvent effects. A ratiometric approach was 

applied to address this problem.[5, 27-29] By conjugating the molecular rotor to a fluorescent 

label whose quantum yield is not affected by viscosity, the concentration can be determined in 

different viscous environments.[30, 31] An example of a ratiometric viscosity sensor was 

reported by Haidekker and Theodorakis based on a resonance energy transfer (RET) pair (Figure 

3). With varied viscosity, the coumarin chromophore (shown in blue) functions as a viscosity 

independent indicator while the amino cinnamonitrile moiety (shown in red) serves as a viscosity 

sensitive rotor. However, a relatively low excitation wavelength (365 nm) restricted biological 

applications of this RET pair, since this wavelength is very close to the absorption range of 

biofluids (280 nm for Trp) and autofluorescence of the fluid. [27] 

 

Figure 3. Structure of RET pair based fluorescent viscosity sensor (red part: rotor; blue part: 

fluorescent label) and emission spectrum upon changing viscosity in glycerol/ethylene glycol 

mixed solvent. Ref. 27, copyright 2007 Nature Publishing Group.  

 

In consideration of developing a fluorescent viscosity sensor with longer absorption and 

emission wavelengths, Kuimova and Ogilby introduced a porphyrin dimer-based compound.  
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Without significant changes observed in the absorption spectrum by varying viscosity, the 

authors assigned two well resolved bands in the emission spectrum located at 710 and 780 nm, 

corresponding to twisted and planar conformations of the dimer, respectively, providing 

convenient means for monitoring dynamic processes at the cellular level.[5] 

 

Figure 4. Porphyrin dimer-based fluorescent viscosity sensor and its viscosity dependent 

emission in glycerol/methanol solutions. Ref. 5, copyright 2009 Nature Publishing Group. 

 

Another reported ratiometric viscosity sensor is based on cyanine dyes, and Peng et al. suggested 

that viscosity dependent emission was achieved by rotating the aldehyde group in the structure. 

And indeed, a 12-fold of enhancement in fluorescence intensity was obtained upon increasing 

viscosity. This probe was also shown to work at the cellular level through visualizing 

intracellular viscosity differences.[32] 
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Figure 5. Cyanine dye based viscosity sensor with hypothetical rotation of the aldehyde group 

and viscosity dependent emission spectrum in glycerol/water mixed solvent. Ref.32, copyright 

2011 American Chemistry Society. 

 

An alternative method to determine viscosity by molecular rotors is the application of 

fluorescence lifetime imaging microscopy, since the fluorescence lifetime of molecular rotors 

does not change with the concentration of the fluorophore but changes with fluorescence 

quantum yield as a function of viscosity.[32, 33] In addition, conjugation of molecular rotors to 

another fluorophore can be omitted, which, in general, simplifies the synthesis and leaves 

possibility for further functionalization of the probe’s structure.  
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Figure 6. The structures of BODIPY based molecular rotors. Ref.34, Copyright 2008 American 

Chemical Society. 

 

 

Figure 7. Fluorescence spectra (a) and decay (b) recorded for molecular rotor BODIPY-phenyl-

C12 in methanol–glycerol mixtures of increasing viscosity. Ref.34, Copyright 2008 American 

Chemical Society. 
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Based on this design strategy, a series of 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) 

based viscosity sensors were reported by Suhling’s group (Figure 6).[34] Different 

conformations were proposed to be generated due to rotation around the single bond between 

phenyl ring and BODIPY core, resulting in fluorescence intensity changes. In Figure 7, a 

significant increase in fluorescence intensity was observed for BODIPY-phenyl-C12 in solutions 

of different viscosities, together with increased fluorescence quantum yield and lifetime.  

 

Our interest is to design and synthesize a dye emitting in the near-infrared region for bioimaging, 

[35-37] involving cyanine dyes, a class of materials that have been explored for some time. 

Absorption and emission maxima in the far red or near-IR can be achieved by extending their 

conjugation. In addition, moderate fluorescent quantum yields of cyanine dyes are sensitive to 

environmental conditions such as temperature and viscosity.  

 

Improving the properties of fluorophores with biomolecules, especially the use of nucleosides is 

quite interesting.[38-41] Conjugation of fluorophores as side chains to DNA nucleosides is 

favorable because modified nucleosides can be paired with the complementary strand without 

radically altering the structure.[42] Also, requirements such as reduced toxicity and enhanced 

hydrophilicity can be fulfilled by modifying the compound with biocompatible nucleoside 

building blocks, and live cell uptake suggests that these nucleoside-modified fluorophores can 

function as biological probes.[43] Usually carried out by Sonogashira coupling to conjugate 

nucledosides and fluorophores, our aim was to introduce an acetylene linker between them, and 

this linker can avoid steric hindrance that accompanies by direct coupling.[44] A squaraine and 
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deoxyuridine based viscosity sensor dU-SQ was reported by our group exhibiting a 300-fold 

fluorescence increase.[43] Optimizing reaction conditions for Sonagashira coupling has been 

carefully studied, and by utilizing amberlite IRA-67, a milder base when compared to some 

conventional bases such as DIPEA and TEA, much cleaner reactions were yielded. Although this 

great increase in fluorescence intensity was due to not only TICT but also caused by the 

aggregation nature of squaraine dyes (Figure 8), this new compound supported that intercellular 

viscosity is dependent on microtubules (MTs) cross-linking and density, and cell images were 

captured during different stages of mitosis. 

 

Figure 8. Absorption (a) and emission (b) spectrum of dU-SQ in glycerol/water solutions. Insert 

of (b) shows the linearity of log I (emission intensity at 675 nm) vs. log η (viscosity, cP) of dU-

SQ in glycerol/water solutions. Excitation wavelength of 625 nm. Ref.43, copyright 2014 Wiley-

VCH Verlag GmbH & Co. kGaA, Weinheim. 

 

Herein, we report a newly designed molecular rotor dU-BZ, which undergoes a Sonogashira 

coupling for covalently linking cyanine chromophore to deoxyuridine through an acetylene 

linker. Linear absorption, emission spectra, and fluorescence quantum yields of dU-BZ in 
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glycerol/methanol solutions were obtained, and a 30-fold fluorescence enhancement was realized 

on a purely viscosity-dependent manner (no aggregation effects were observed that contributed 

to the 300-fold increase reported previously). Near-IR excitation and emission wavelengths 

ensure lower risks of photodamage and phototoxicity. In vitro fluorescence microscopy was 

conducted to demonstrate that the new compound is an effective microviscosity probe at the 

cellular level. 

1.2 Theoretical Background 

Free-volume concepts[45] can be described by fluorescence quantum yield, Φf, viscosity, η, and 

temperature,T[26] 

            (1) 

where B = (kr /knr
0
) (T/A)

 x
, knr

0
 is the free-rotor reorientation rate, A is a constant, and x is a 

medium-dependent constant ranging between 0 and 1. When Φf is linearly related to η/T (x=1), 

the bulk viscosity of solvent can accurately indicate the friction experienced by molecular rotor. 

Normally, faster rotational diffusion is expected because the fluorophore can occupy certain free 

volume within the solvent, in which case x<1. If plotting log Φf verses log (η/T), a straight line 

will be yielded together with the exponent x as its slope, due to eq. 2. 

           (
 

 
)          

(2) 

The Förster-Hoffmann equation[46] can be used to describe Φf, and fluorescent lifetime, τf, of 

molecular rotors as a function of η 

        (3) 

where 
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(4) 

 
   

 

        

 
(5) 

then  

       
     (6) 

where z and α are constants, the value of 2/3 for α is predicted by Förster and Hoffmann, and kr 

and knr are radiative and nonradiative rate constants.[47] In a photon counting confocal FLIM 

experiment, after scanning the sample by the radiation from a pulsed light, varied arrival times of 

fluorescence photon are collected by time-correlated single-photon counting (TCSPC).[48, 49] 

An image is produced based on the differences in the exponential decay rate of the fluorescence, 

from which a value for τf can be extracted. According to eq 6, a straight line with a slope of α 

will be yielded after plotting log τf verses log η, since 

                  (
 

  

) 
(7) 

 

Excited by a linearly polarized light source, depolarization of the fluorescence occurs due to 

rotational diffusion of the fluorophore.[47, 50] Time-resolved fluorescence anisotropy imaging 

measures fluorescence intensity decays parallel and perpendicular to the polarization vector of 

the exciting light. The time-resolved fluorescence anisotropy, r (t), is obtained: 

 
     

              

               
 

(8) 

http://en.wikipedia.org/wiki/Fluorescence
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where    and     are the fluorescence intensity decays parallel and perpendicular to the 

polarization vector of the exciting light, respectively. The measured intensity ratio is different 

from the true value by a factor G. 

 

For a single-exponential intensity decay, r (t) is related to the rotational correlation time, θ, and 

the initial anisotropy, r0.  

      
  

   
 
 

 
(9) 

When taking into consideration the isotropic medium, θ is proportional to the viscosity, η, and 

the molecular hydrodynamic volume, υ: 

          
  

  
 

(10) 

where D is the rotational diffusion coefficient, R is the Boltzmann constant, and T is the absolute 

temperature.  

 

One should note that eq 3 only can be applied over a limited range of viscosities. According to 

the Förster-Hoffmann theory, Φf is solvent-independent at low viscosities, whereas at relatively 

high viscosities, a strong dependence on viscosity of Φf is expected, since radiative processes 

predominates over non-radiative relaxation. This very range of viscosities is determined by the 

properties of the particular molecular rotor and the mechanism of viscosity-dependent 

photophysical behavior. 
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1.3 Materials & Methods 

1.3.1 Synthesis 

Synthetic reagents and solvents were used as received from commercial suppliers. 5-Bromo-2-

methylbenzothiazole was purchased from TCI. Iodoethane and (+)-5-iodo-2’-deoxyuridine were 

purchased from Alfa Aesar. 
1
H and 

13
C NMR spectra were recorded on a Bruker Avance 400 

NMR spectrometer at 400 and 101 MHz, respectively. High-resolution mass spectrometry 

analysis was performed in the Department of Chemistry, University of Florida. Uncorrected 

melting points were collected using a Laboratory Devices Meltemp.  

 

2-Methyl-5-((trimethylsilyl)ethynyl)benzothiazole (1). Under an argon atmosphere 5-bromo-2-

methylbenzothiazole (1.5 g, 6.30 mmol), bis(triphenylphosphine)palladium(II) dichloride (442 

mg, 0.63 mmol), copper iodide (144 mg, 0.75 mmol) were mixed in 30 mL of degassed 

acetonitrile and triethyl amine solution (1 : 1, v/v). Trimethylsilylacetylene (4.50 mL) was added 

before stirring at room temperature for 10 min. Pyridine (3 mL) was added, and the resulting 

mixture was first stirred at room temperature for 30 min, then at 50 ˚C for 18 h. After being 

cooled to room temperature, solvent was removed under reduced pressure and the solid residue 

was purified by column chromatography (silica gel, degrade elution hexanes/ethyl acetate from 

10:1 to 7:1), resulting in 1.50 g of white solid (93% yield), m.p.: 126–127.5 ˚C. 
1
H NMR (400 

MHz, CDCl3) δ: 8.02 (d, J = 1 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.3, 1.5 Hz, 1H), 

2.82 (s, 3H), 0.28 (s, 9H). 
13

C NMR (101 Hz, CDCl3) δ: 167.91, 153.25, 138.06, 128.31, 125.83, 
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121.04, 104.77, 94.38, 20.21 ppm. HR-MS (ESI) theoretical [M+H]
+
 = 246.0767, found [M+H]

+
 

= 246.0777. 

 

5-Ethynyl-2-methylbenzothiazole (2). 2-Methyl-6-((trimethylsilyl)ethynyl)benzothiazole (1 g, 

4.07mmol) was dissolved in 15 mL of dichloromethane, and 15 mL of methanol/NaOH solution 

(3%, w/w) was added dropwise. The mixture was allowed to stir at room temperature for 2 h, 

followed by the removing the organic solvent in vacuo. The solid residue was further purified by 

column chromatography (silica gel, hexanes/ethyl acetate 10:1), affording 0.54 g of pale yellow 

crystal (77% yield), m.p.: 66–67 ˚C. 
1
H NMR (400 MHz, CDCl3) δ: 8.07 (d, J = 1.5 Hz, 1H), 

7.75 (d, J = 8.3 Hz, 1H), 7.45 (dd, J = 8.1, 1.7 Hz, 1H), 3.12 (s, 1H), 2.82 (s, 3H). 
13

C NMR (101 

Hz, CDCl3) δ: 168.12, 153.21, 136.39, 128.26, 126.09, 126.08, 121.33, 119.79, 83.38, 21.08 ppm. 

HR-MS (ESI) theoretical [M+H]
+
 = 174.0372, found [M+H]

+
 = 174.0378. 

 

5-Ethynyl-3-ethyl-2-methylbenzothiazolium iodide (3). 5-Ethynyl-2-methylbenzothiazole (1 g, 

5.78 mmol) was mixed with 2 mL of iodoethane in 1.5 mL of degassed acetonitrile. The mixture 

was heated in a microwave reactor (CEM, discover) at 150 ˚C for 20 min. Precipitate was 

collected by filtration and washed with diethyl ether to afford 1.06 g of grey powder, (91% yield), 

m.p.: 267 ˚C (dec.). 
1
H NMR (400 MHz, DMSO-d6) δ: 8.54 (d, J = 1.1 Hz, 1H), 8.43 (dd, J = 8.5, 

1.5 Hz, 1H), 7.86 (dd, J = 8.4, 1.3 Hz, 1H), 4.78 (q, J = 7.2 Hz, 2H), 4.60 (s, 1H), 3.21 (s, 3H), 

1.44 (m, 3H). 
13

C NMR (101 Hz, DMSO-d6) δ: 178.89, 141.14, 131.39, 130.18, 125.65, 123.20, 

120.19, 84.29, 82.36, 45.36, 17.47, 13.74 ppm. HR-MS (ESI) theoretical [M]
+
 = 202.0685, found 

[M]
+
 = 202.0692. 
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2-(4-(Dimethylamino)styryl)-3-ethyl-5-ethynylbenzothiazolium iodide (4). 5-eEhynyl-3-

ethyl-2-methylbenzothiazolium iodide (1.5 g, 7.42 mmol) and 2-methyl-N-benzaldehyde (1.33 g, 

8.90 mmol) were mixed with 126 mL of acetic anhydride. The mixture was refluxed at 150 ˚C 

for 20 min and then the hot solution was poured into 200 mL of warm KI solution. After cooling 

to room temperature, precipitate was filtered and washed with water and a large amount of 

diethyl ether, yielding 1.81 g of purple solid (73% yield), m.p.: 256 ˚C (dec.). 
1
H NMR (400 

MHz, DMSO-d6) δ: ppm 1.37 - 1.44 (m, 3 H) 3.04 (s, 1 H) 3.13 (s, 6 H) 4.54 (s, 1 H) 4.78 - 4.85 

(m, 2 H) 6.86 (d, J=9.05 Hz, 2 H) 7.59 (d, J=15.16 Hz, 1 H) 7.73 (d, J=8.31 Hz, 1 H) 7.94 (d, 

J=9.05 Hz, 2 H) 8.11 (d, J=14.92 Hz, 1 H) 8.27 - 8.31 (m, 2 H).
 13

C NMR (101 MHz, DMSO-d6) 

δ 14.62, 40.54, 44.29, 83.01, 84.10, 100.30, 106.04, 112.74, 119.21, 122.23, 123.03, 125.12, 

128.64, 134.07, 141.85, 152.08, 154.50, 172.35. HR-MS (ESI) theoretical [M]
+
 = 333.1420, 

found [M]
+
 = 333.1416. 

 

Synthesis of dU-BZ (5). Under an argon atmosphere a mixture of 5-iodo-2’-deoxyuridine (425 

mg, 1.2 mmol), 4 (1.2 g, 3.60 mmol), Pd(PPh3)4 (139 mg, 0.12 mmol), CuI (47 mg, 0.24 mmol), 

and 550 mg of Amberlite IRA-67 in 11.3 mL of degassed DMF was stirred at 55 ˚C for 48 h. The 

Amberlite IRA-67 beads were excluded by filtration first, and to the DMF solution diethyl ether 

was added,. The resulting precipitate was collected by filtration. Further purification was carried 

out by column chromatography (silica gel, dichloromethane/methanol 10:1), resulting in 141 mg 

of purple solid (21% yield), m.p.: 249 ˚C (dec.). 
1
H NMR (400 MHz, DMSO-d6) δ: ppm 1.38 - 

1.45 (m, 3 H) 2.20 (d, J=6.11 Hz, 2 H) 3.13 (s, 6 H) 3.84 (q, J=3.18 Hz, 1 H) 4.25 - 4.31 (m, 1 H) 
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4.80 - 4.90 (m, 2 H) 5.23 - 5.37 (m, 2 H) 6.14 (t, J=6.36 Hz, 1 H) 6.86 (d, J=9.05 Hz, 2 H) 7.62 

(d, J=15.16 Hz, 1 H) 7.73 (dd, J=8.44, 1.34 Hz, 1 H) 7.95 (d, J=9.05 Hz, 2 H) 8.12 (d, J=15.16 

Hz, 1 H) 8.23 (s, 1 H) 8.32 (d, J=8.31 Hz, 1 H) 8.50 (s, 1 H) 11.78 (br. s., 1 H). 
13

C NMR (101 

MHz, DMSO-d6) δ 14.62, 31.15, 51.96, 61.57, 70.65, 85.15, 85.83, 88.37, 88.43, 98.29, 106.15, 

112.82, 118.24, 122.31, 123.83, 125.13, 128.22, 128.95, 129.31, 130.83, 134.07,150.18, 152.04, 

154.53, 158.08, 172.37. HR-MS (ESI) theoretical [M]
+
 = 559.2010, found [M]

+
 = 559.2006. 

 

1.3.2 Viscosity Values 

Viscosities of pure glycerol at different temperature were employed to approximate the viscosity 

of 99% glycerol/1% methanol solution. Reported values[51] were directly used as viscosities of 

solutions with glycerol percentages ranging from 10% to 95%. 

 

1.3.3 Linear Photophysical and Photochemical Characterization 

The linear absorption spectra were obtained using an Agilent 8453 UV−vis spectrophotometer in 

10 mm path length quartz cuvettes in solvents with different glycerol/methanol ratios, with molar 

concentration C =1 × 10
−5

 M. The steady-state fluorescence was measured with a PTI 

QuantaMaster spectrofluorimeter using 10 mm spectrofluorometric quartz cuvettes with C = 1 × 

10
−5

 M. The correction for the spectral response of the PTI detection system was performed for 

all fluorescence spectra. The fluorescence quantum yields, Φf, were obtained by a standard 

method [47] relative to cresyl violet in methanol. 
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1.3.4 Fluorescence Lifetimes 

Fluorescence lifetimes, τf, were measured using a PicoQuant PicoHarp 300 time-correlated single 

photon-counting system with time resolution ≈ 80 ps, a Coherent Mira 900 fs laser system was 

used for excitation, linearly polarized at the magic angle. 

 

1.3.5 In Vitro Bioimaging 

3T3 cells (ATCC
®

) were seeded on poly-D-lysine coated coverslips at a concentration of 5×10
4
 

cells/ mL and incubated for 48 h. A dU-BZ stock solution in DMSO (dimethyl sulfoxide) was 

then diluted to 15 μM with DMEM medium (Corning, Cellgro
®

) and added to the cells. Cells 

were co-incubated with diluted dU-BZ for 30 min and then fixed with 4% formaldehyde. NaBH4 

was added twice at 1mg/ mL for 5 min to reduce auto-fluorescence. Cells were then 

permeabilized with 0.1% Triton-X. 1% BSA was applied to block non-specific binding. Hoechst 

33258 (Invitrogen
TM

) was added in to cell for 5 min to visualize cell nuclei. Coverslips were then 

washed with PBS (phosphate buffer saline, Corning, Cellgro
®

) and mounted on slides with 

ProLong Gold
®

 antifade reagent (Invitrogen
TM

). 

 

Cell slides were imaged with an Olympus IX70 DSU microscope. A Texas Red filter cube 

(562/40 ex., 593, 624/40 em.) was employed to excite dU-BZ and collect the fluorescence at the 

optimize wavelength range.  
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1.4 Results & Discussion 

1.4.1 Synthesis 

The synthesis of molecular rotor dU-BZ is illustrated in Scheme 1. Intermediate compound 3 

was synthesized according to the literature[43], and the resulting NMR matched the reported data. 

Next, compound 4 was synthesized by condensation of intermediate 3 with dimethylamino 

benzaldehyde via a Knoevenagel reaction; acetic anhydride was employed as both base and 

solvent.  

 

The following procedure was used for the conjugation of a deoxyuridine analog and compound 4 

through a triple bond. Rather than directly using deoxyuridine, a modified form, idoxuridine was 

exploiting not only due to the iodo group provided for conjugation, but also its similar enough 

structure can be incorporated into DNA/RNA strands for future study. Hydroxyl groups of 

idoxuridine are all unprotected in order to avoid possible low overall yield. Although protected 

hydroxyl groups possess enhanced water solubility when compared to unprotected ones, in 

consideration of the overall yield of the reaction, protected nucleosides were not pursued.  

 

dU-BZ was obtained via a Sonogashira coupling between (+)-5-iodo-2’-deoxyuridine and 

compound 4 in 21% yield after purification by column chromatography. After conjugation with 

the deoxyuridine analog, dU-BZ exhibited enhanced water solubility when compared to 

compound 4. The 
1
H NMR, 

13
C NMR, and HR-MS spectra were in good accordance with the 

chemical structure as expected. 
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Scheme 1. Synthetic route of molecular rotor dU-BZ 
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1.4.2 Photophsical Characterization 

The Φf of dU-BZ was measured in 99% glycerol/1% methanol (v/v) solution at various 

temperatures, ranging from 343 to 293K, with viscosity ranging from 50.6 to 1412 cP (Table 1). 

According to Figures 9a and 9b, no significant shifts were observed in absorption and emission 

spectra, but an increase in the fluorescence intensity was obtained with decreasing temperature 

when excited at 551 nm, and Φf increased from 0.04 to 0.34. 

 

Table 1. Fluorescence Quantum Yield (Φf) of dU-BZ and Viscosity (η) as a Function of 

Temperature (T) in 99% Glycerol/1% Methanol (v/v) Solution. 

Temperature (T)/K Viscosity (η)/cP 
Fluorescence 

quantum yield (Φf) 

343 50.6 0.04 ± 2.4E-03 

333 81.3 0.07 ± 3.5E-03 

323 142 0.10 ± 5.3E-03 

313 284 0.17 ± 8.5E-03 

303 612 0.24 ± 1.2E-02 

293 1412 0.34 ± 1.7E-02 
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Figure 9. Absorption (a) and emission (b) spectra of dU-BZ recorded as a function of 

temperature in 99% glycerol/1% methanol (v/v) solution. 
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Figure 10. Plot of log Φf vs. log (η/T) for dU-BZ in 99% glycerol/1% methanol (v/v) solution. 

 

From eq 2, a linear behavior will be observed when plotting log Φf vs. log (η/T). These results 

are shown in Figure 10. The slope of this plot provided the exponent x, 0.57 ± 0.04, with a R
2
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value of 0.98. Due to increased viscosity and decreased free volume, a decreased nonradiative 

rate constant is expected, and this prediction will be described in the following experiments. 
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Figure 11. Absorption (a) and emission (b) spectra of dU-BZ obtained as a function of viscosity 

in glycerol/methanol (v/v) solutions, percentage indicated is the glycerol content of the solution. 

 

At the same concentration, there was no obvious change observed in the absorption spectra for 

dU-BZ by varying the ratio of glycerol and methanol in solution. However, without any changes 

in shape of the emission spectrum or the peak emission wavelength, a 30-fold increase in 

fluorescence intensity appeared at 608 nm by increasing viscosity from 1.8 cP to 950 cP. This 

result is consistent with the Förester-Hoffmann equation (Figure 11). 

 

Measured values, Φf and τf, were used to calculate the rate constants via eqs 2 and 3. Plotted in 

Figure 12, with viscosity increasing from 58 cP to 950 cP (Table 2), Φf shows significantly 

increased values as expected. It is worth noting that kr remained constant but knr decreased 
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largely as a function of viscosity. These data suggest that the main contribution to the increase of 

Φf is via suppression of the nonradiative process.[3] In a highly viscous environment, because of 

the intramolecular rotation hindrance, the torsion angle between the benzothiazole and 

aminobenzene rings is close to zero, which yields the most stable conformation of the molecule 

in the LE state. At the same time, nonradiative relaxation to the TICT state, which has a 

conformation angle value close to 90°, is deactivated, and radiative decay from LE state to 

ground state starts to take place instead of de-excitation from the TICT state. 

 

Table 2. Fluorescence Quantum Yield (Φf), Fluorescence Lifetime (τf)*, Radiative (kr) and 

Nonradiative (knr) Rate Constants of dU-BZ as a Function of Viscosities (η) in 

Glycerol/Methanol Solutions. 

% glycerol Viscosity (η)/cP 
Fluorescence 

quantum yield (Φf) 

Fluorescence 

lifetime (τf)/ns 
kr/ns-1 knr/ns-1 

95 950 0.26 ± 0.01 1.07 0.243 0.692 

90 630 0.19 ± 9.5E-03 0.87 0.218 0.931 

85 350 0.13 ± 6.5E-03 0.59 0.220 1.475 

80 250 0.11 ± 5.5E-03 0.57 0.193 1.561 

75 170 0.07 ± 3.5E-03 0.40 0.175 2.325 

70 130 0.06 ± 3.0E-03 0.30 0.200 3.133 

65 70 0.06 ± 2.9E-03 0.28 0.179 3.393 

60 58 0.03 ± 1.5E-03 0.19 0.158 5.105 

50 28 0.02 ± 1.0E-03 0.10 0.200 9.800 

40 13 0.015 ± 7.5E-04 0.06 0.250 16.417 

30 7.7 0.010 ± 5.0E-04 0.05 0.200 19.800 

20 4.8 0.008 ± 4.0E-04 0.04 0.200 24.800 

10 1.8 0.006 ± 3.2E-04 0.05 0.120 19.880 

* Values of lifetime less than 0.2 ns are not reliable due to the resolution of the experimental 

system. 
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Figure 12. Fluorescence quantum yield (Φf), radiative (kr), and nonradiative (knr) rate constants 

of dU-BZ obtained as a function of viscosity in glycerol/methanol solutions. 
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Figure 13. (a) Fluorescence decay of dU-BZ recorded as a function of viscosity in 

glycerol/methanol solutions, percentage indicated the content of glycerol in solution. (b) log τf vs. 

log η for dU-BZ. 
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1.4.3 Fluoresence Lifetime of dU-BZ in Glycerol/Methanol Solutions 

Figure 13(a) shows fluorescence lifetime decay of dU-BZ with decreasing viscosity in 

glycerol/methanol solutions. As a function of viscosity, the fluorescence lifetime varied 

markedly from 0.19 ns at 58 cP to 1.07 ns at 950 cP. From eq 7, a straight line will be yielded if 

plotting log τf vs. log η, and as expected, a linear behavior showed in Figure 13(b), with a slope, 

α, of 0.59 ± 0.04, consistent with the value predicted by Förster-Hoffmann equation, and a R
2
 

value of 0.96 for dU-BZ. It was also found that plots below 58 cP fit in the same straight line, 

but lifetime values lower than 0.2 ns were not reliable due to the resolution of the experimental 

system (Table 2). Only plots from 58 cP to 950 cP are shown in the figure. 

 

1.4.4 In Vitro Bioimaging of dU-BZ 

Highly viscous, up to 400 cP, intra- and intercellular environments[32] have been reported. 

Taking into consideration dU-BZ, in vitro fluorescence enhancement by using dU-BZ is 

expected, and indeed, after incubation with 3T3 cells (mouse embryonic fibroblast cells) for 30 

min, dU-BZ appeared to readily enter the cells and remarkably clear fluorescence images were 

obtained (Figure 14, Hoechst stained cell nuclei as reference). These results demonstrate that 

compound dU-BZ is able to visulaize microviscosity at the cellular level.  
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Figure 14. 3T3 cells were incubated with dU-BZ (15 μM, 30 min). DIC image (A) indicates 

healthy morphology of 3T3 cells. Overlay image of dU-BZ fluorescence and DIC (B) indicates 

effective uptake of dU-BZ. C shows overlay image of Hoechst and dU-BZ fluorescence. Scale 

bar shows 10 μM. 

 

1.5 Conclusion and Future Work 

A deoxyribonucleoside-modified cyanine dye was prepared and characterized. Near-IR 

absorption and emission were obtained, which are favorable for in vitro and in vivo imaging. 

Viscosity-dependent studies, including fluorescence quantum yields, fluorescence lifetimes, and 

nonradiative rate constants were determineed, and results were in accordance with that predicted 

by theory for molecular rotors. A 30-fold enhancement in fluorescence intensity in homogenous 

glycerol/methanol solutions was obtained, and fluorescence lifetime increased from 0.19 to 1.07 

ns with increasing viscosity from 58 cP to 950 cP. Significantly, in vitro investigations suggest 

that dU-BZ is capable of functioning as a microviscosity sensor at cellular and subcellular levels. 

A B C 
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Thus, the newly designed deoxyribonucleoside-modified cyanine dye is a promising candidate as 

a near-IR viscosity sensor for bioimaging. 

 

Future work regarding optimizing this new molecular rotor dU-BZ can go in several directions. 

Since all three parts in the D-π-A (donor- π conjugation-acceptor) system are available for 

chemical modification, tuned photophysical properties, such as longer lifetime and higher 

quantum yield are conceivable. In addition, fluorescence anisotropy is powerful technique for 

microviscosity measurements in cells. As mentioned previously, with initial anisotropy, 

rotational correlation time θ can be obtained.  

 

Monitoring viscoelastic change of cell membranes can provide information in various states of 

disease since the viscosity of cell membrane has great influence on the activities of membrane 

bound proteins[52-56]. Hydrocarbon chains are known to improve membrane localization, and 

Levitt[57] has reported living cell membrane detection of viscosity probes that utilize BODIPY 

core and a long alkyl chain. This suggests that increasing the length of the alkyl chain or 

replacing it with a farnesyl substituent on the donor moiety of dU-BZ may also yield a 

membrane-targeted viscosity sensor. In addition, DCVJ has been demonstrated to be a cell 

membrane-specific viscosity probe[58]. However, certain cytotoxicity was revealed, a strong 

reminder that the toxicity of a probe needs to be considered while developing the structure. 

Beyond this, dU-BZ can also be functionalized by attaching recognition groups for specific 

protein binding.[59]  
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Since deoxyribonucleoside analogs have been introduced as a building block for dU-BZ, another 

aspect for developing this new viscosity probe is RNA binding. Upon effective binding, e.g., 

binding to mRNA, one may be able to monitor viscosity changes during protein synthesis 

processes, which is significant for further development of RNA therapeutics.  
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CHAPTER 2. A NEW FLUORESCENT CALCIUM ION INDICATOR 

BASED ON BAPTA AND BODIPY DERIVATIVES  

 

2.1 Introduction 

Functioning as an intracellular second messenger, calcium ion (Ca
2+

) plays a very important role 

by precisely controlling temporal and spatial fluctuations of its concentrations.[60, 61] 

Approaches to determine intracellular Ca
2+

 are accomplished using fluorescence indicators. 

Since Ca
2+

 chelator BAPTA (O,O’-bis(2-aminophenyl)ethyleneglycol-N,N,N’,N’-tetra acetic 

acid)[62] appeared, numerous BAPTA based Ca
2+

 indicators have been designed and synthesized 

over decades, such as Indo-1,[63] Quin-2,[64] and Fura-2[65, 66] (Figure 15). However, 

photodamage and phototoxicity caused by UV-light excitation, shallow penetration, and 

photobleaching of fluorophores make it difficult for these probes to be applied in biological 

samples.[67, 68]  

 

 

Figure 15. Indo-1, Quin-2, and Fura-2. 
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(a)   

(c) (d)  

Figure 16. (a) Structure of STDBT-AM, (b1) in vitro cell image of Fluo-3 (b2) in vitro cell 

image of STDBT-AM, absorption (c) and emission (d) spectra of STDBT-AM. Ref.72, copyright 

2010 Springer. 

 

To overcome these obstacles, near-IR fluorescent calcium probes have drawn more and more 

attention. Ca
2+

 indicators based on cyanine[69, 70] or squaraine[71] dyes have been reported. A 

representative compound, STDBT-AM, demonstrated a fluorescence intensity increase upon 

Ca
2+

 binding together with significant intracellular localization (Figure 16).[72] When compared 

to the fluorescence image of Fluo-3, rather than distributing throughout the entire cell, the image 

of STDBT-AM showed a clear boundary between the nucleus and cytosol. But limitations such 

as low fluorescence quantum yield and/or poor ion sensitivity hinder further development of this 
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type of Ca
2+

 probe. In addition, aggregation behavior evident in Figure 16(c) is usually observed 

from cyanine and squaraine dyes, which makes factors causing the fluorescence increase more 

complicated.  

 

Growing interest in 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives is due to 

its excellent features such as good solubility and low self-aggregation in various solvents, 

relative insensitive to solvent polarity and pH, good  photostability, narrow emission bandwidths, 

high fluorescence quantum yield, relatively long fluorescence lifetime (in the nanosecond range), 

and near-IR excitation/emission wavelengths.[73-75] In addition, tuned photophysical properties 

are achievable by attachment of specific residues at appropriate positions of the BODIPY core.  

(a) (b)  

Figure 17. (a) Structure of BOCA-1-BG and (b) images of cell expressing SNAP-tag in nuclei or 

in cytosol after culturing with BOCA-1-BG with cell images of Cy5  in nuclei or in cytosol as 

control. Images were taken during the ATP stimulation to induce a Ca
2+ 

signal. Ref. 79, 

copyright 2010 American Chemical Society.  

 

BODIPY-based Ca
2+

 probes have been reported previously[76-78] but relatively modest 

fluorescence intensity increase upon binding Ca
2+

 (< 40 fold) hindered their further development. 
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A combination of a BAPTA chelator and a BODIPY core is an intriguing possibility. The 

resulting structure may not only possess high-affinity of Ca
2+

 but also possess the advantages 

brought by BODIPY. Based on this design theory, BOCA-1-BG (Figure 17a) was created by 

Kamiya and co-workers[79], and a 250-fold increase in fluorescence intensity upon Ca
2+ 

binding 

was obtained. Furthermore, BOCA-1-BG is a targeted calcium probe with a residue O
6
-

benzylguanine which can selectively couple to SNAP-tag (The Soluble N-ethylmaleimide 

sensitive fusion Attachment Protein), a human DNA repair protein. A SNAP-tag can localize in 

living cells during its fusion with selected proteins so that a targeted probe is achievable. In vitro 

cell images showed that BOCA-1-BG is more targeted in both nucleus and cytosol when 

compared to Cy5 (Figure 17b).  

(a) (b)  

Figure 18. (a) Structure of KFCA (b) absorption and emission spectra in the absence (dotted line) 

and presence (solid line) of Ca
2+

. Ref. 80, copyright 2011 Royal Society of Chemistry.  

 

Although it doesn’t possess as much increase in fluorescence intensity as BOCA-1-BG, longer 

absorption and emission maximum (655 nm and 670 nm, respectively) were observed for 

compound KFCA (Figure 18).[80] Additionally most BODIPY-based probes are less soluble in 
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water due to their hydrophobic BODIPY core, but KFCA showed relatively high water solubility 

(> 1 mM without addition of a co-solvent). 

 

 

Figure 19. Left: mechanism of photoinduced electron transfer (PET). Right: no PET due to 

lower HOMO of the quencher.  

 

Photoinduced electron transfer (PET) can be applied to explain the phenomenon of increased 

fluorescence intensity after Ca
2+ 

binding. Serving as an electron donator, upon excitation, 

BAPTA transfers its electron to BODIPY. In an analyte free situation, PET opens a 

nonluminescent deactivation path to the ground state so that fluorescence of the BODIPY core is 

largely quenched via PET, resulting in a weak fluorescent or even nonfluorecent probe. Upon 

coordination of Ca
2+

, the electron-donating ability of BAPTA is weakened and the energy level 

javascript:popupOBO('MOP:0000615','B926224P')
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of the donor orbital is lowered resulting in electron transfer to BODIPY being switched off, 

which leads to suppression of PET and emission recovery (Figure 19).  

 

Although BAPTA and BODIPY-based calcium sensors exhibit superior chemical and 

photophysical properties, unfortunately, these types of probes have not been fully explored due 

to their inefficient synthesis and purification. Herein, we report a calcium sensor with two 

moieties, BAPTA and BODIPY, conjugated with an alkene linker via a Knoevenagel 

condensation. A new synthetic route was applied to simplify the rather inefficient and 

cumbersome purification procedure. Upon excitation, in buffer containing 39 μM Ca
2+

 and 1 M 

Ca
2+

, 1.5-fold and 3-fold increases in fluorescence intensity were observed, respectively. 

2.2 Materials and Methods 

2.2.1 Synthesis 

Synthetic reagents and solvents were used as received from commercial suppliers. All chemicals 

were purchased from Sigma-Aldrich or Fisher. 
1
H and 

13
C NMR spectra were recorded on a 

Bruker Avance 400 NMR spectrometer at 400 and 101 MHz, respectively. High-resolution mass 

spectrometry analysis was performed in the Department of Chemistry, University of Florida.  

 

 2-(2-Bromoethoxy)-4-methyl-1-nitrobenzene. 2-Nitro-5-methylphenoxide (4.59 g, 0.03 mol), 

DMF (2 mL) and K2CO3 (4.14 g, 0.03 mol) were mixed in and 1,2-dibromoethane (45 mL, 0.1 

mol). The resulting mixture was refluxed while stirring at 120 °C for 4 h and the color of 

solution changed from orange to pale yellow. Followed by vacuum filtration and filtrate was 
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diluted with 40 mL DCM and washed 3 times with 70 mL water each time. Then organic layer 

was washed with 1 mol/L NaOH, until no color observed from NaOH layer. Organic layer was 

collected and dried over Na2SO4 and solvent was evaporated under vacuum. No further 

purification was performed and 7.80 g of pale yellow product was obtained (71% yield). 
1
H 

NMR (400 MHz, CDCl3) δ: 2.35 (s, 3H), 3.59-3.64 (m, 2H), 4.33-4.37 (t, 3H), 6.79-6.84 (dd, 

2H), 7.68-7.71 (d, 1H). 
13

C NMR (101 MHz, CDCl3) δ: 21.83, 28.51, 29.87, 69.52, 115.84, 

121.98, 125.73, 137.78, 146.04, 151.53. Ref. 83. 

 

 4-Methyl-1-nitro-2-(2-(2-nitrophenoxy)ethoxy)benzene. 2-(2-Bromoethoxy)-4-methyl-1-

nitrobenzene (4.32 g, 16.61 mmol), 2-nitrophenol (2.50 g, 18 mmol) and K2CO3 (2.49 g, 18 mol) 

were mixed in DMF (10 mL). The resulting mixture was refluxed while stirring at 130 °C for 2 h 

before adding water to a 100 mL volume. Followed by vacuum filtration and the precipitate was 

washed with aqueous Na2CO3 until no color was observed from filtrate. After washing with 

water, recrystallization was performed to crude product with 1 L 95% ethanol, and 20 mL water 

was added to the solution after cooling down. The precipitate was collected and dried under 

vacuum, and 4.30 g of pale yellow powder resulted (81% yield). 
1
H NMR (400 MHz, CDCl3) δ: 

2.44 (s, 3H), 4.51-4.55 (m, 4H), 6.86-6.88 (ddd, 1H), 7.02-7.09 (m, 2H), 7.24-7.26 (m, 1H), 

7.55-7.58 (ddd, 1H), 7.76-7.78 (d, 1H), 7.81-7.83 (dd, 1H). 
13

C NMR (101 MHz, CDCl3) δ: 

21.84, 21.86, 68.64, 68.71, 115.82, 121.98, 116.45, 121.29, 122.07, 125.53, 12575, 134.27, 

137.91, 125.73, 134.27, 137.91, 140.28, 146.16, 151.89, 152.10. Ref. 83. 
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2-(2-(2-Aminophenoxy)ethoxy)-4-methylaniline. 4-Methyl-1-nitro-2-(2-(2-

nitrophenoxy)ethoxy)benzene (3 g, 9.43 mmol) was dissolved in  THF/ethanol (50 mL/50 mL), 

10% Pd/C (2.13 g) was added to the solution and the resulting mixture was degassed for 20 min. 

After bringing temperature to 70 °C, hydrazine hydrate (5.86 mL, 188.6 mmol) was added 

dropwise and reaction was refluxed while stirring for 12 h. After catalyst and solvent being 

removed, 1.80 g of white crystal was obtained as product without further purification (74% 

yield). 
1
H NMR (400 MHz, CDCl3) δ: 2.25 (s, 3H), 3.65 (NH2, 4H), 4.31-4.37 (m, 4H), 6.62-

6.63 (d, 2H), 6.68-6.73 (m, 3H), 6.80-6.86 (m, 2H). 
13

C NMR (101 MHz, CDCl3) δ: 20.89, 67.48, 

112.52, 113.53, 115.39, 118.37, 121.88, 122.07, 128.03, 134.07, 136.81, 146.24. Ref. 83. 

 

Dimethyl 2,2'-((2-(2-(2-(bis(2-methoxy-2-oxoethyl)amino)-5-

methylphenoxy)ethoxy)phenyl)azanediyl)diacetate. 2-(2-(2-Aminophenoxy)ethoxy)-4-

methylaniline (1.80 g, 7.0 mmol), methyl 2-bromoacetate (6 mL, 38.78 mmol), dry Na2HPO4 

(4.2 g, 3.5 mmol) and NaI (0.42 g, 2.8 mmol) were mixed in dry acetonitrile (20 mL). The 

resulting mixture was first degased for 20 min then refluxed for 18 h while stirring. Upon 

completion, the reaction was first diluted with toluene and washed with water. The organic phase 

was dried over MgSO4 and solvent was removed. Column chromatography was performed 

(hexanes:ethyl acetate = 2:1) and 3.10 g of yellow crystal was isolated (79% yield). 
1
H NMR 

(400 MHz, CDCl3) δ: 2.27 (s, 3H), 3.56-3.59 (m, 12H), 4.12-4.16 (dd, 8H), 4.27 (d, 4H) 6.66-

6.76 (m, 3H), 6.82-6.83 (m, 4H), 6.86-6.92 (m, 2H). 
13

C NMR (101 MHz, CDCl3) δ: 0.36, 21.31, 

51.89, 51.94, 53.79, 67.44, 67.54, 113.65, 114.58, 119.47, 119.65, 121.87, 122.14, 122.70, 

132.58, 137.13, 139.66, 150.76, 172.36. Ref. 83. 
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Dimethyl 2,2'-((2-(2-(2-(bis(2-methoxy-2-oxoethyl)amino)-5-formylphenoxy)ethoxy)-4-

methylphenyl)azanediyl)diacetate (BAPTA). Dimethyl 2,2'-((2-(2-(2-(bis(2-methoxy-2-

oxoethyl)amino)-5-methylphenoxy)ethoxy)phenyl)azanediyl)diacetate (1.11 g, 2.03 mmol) was 

added in dry DMF (2.03 mL), the solution was cooled in ice after adding of pyridine (0.2 mL, 

2.52 mmol), after being degassed with argon for 20 min, POCl3 was added dropwise while 

stirring and the reaction immediately turned black. The reaction was brought to room 

temperature after stirring for 30 min, followed by heating to 60 °C for 1 h and stirred overnight 

at room temperature. 60 mL DCM was added, the diluted solution was poured into crushed ice 

and pH was adjusted to ~7 with aqueous NaOH. After extraction with DCM, organic layer was 

dried over MgSO4 then solvent was removed. 15 mL isopropyl alcohol was added to wash and 

0.73 g precipitate was collected (62% yield). 
1
H NMR (400 MHz, CDCl3) δ: 2.27 (s, 3H), 3.58-

3.59 (m, 12H), 4.12 (d, 4H), 4.24-4.26 (dd, 6H), 4.31-4.33 (d, 2H), 6.66-6.69 (m, 2H), 6.74-6.77 

(m, 2H), 7.37-7.39 (m, 2H), 9.80 (S, 1H). 
13

C NMR (101 MHz, CDCl3) δ: 0.34, 21.28, 51.91, 

52.22, 53.93, 67.18, 67.82, 111.42, 114.75, 117.08, 119.79, 122.38, 126.94, 130.38, 132.53, 

137.29, 145.44, 150.11, 150.64, 171.59, 172.31, 190.83. Ref. 83. 

 

2,2'-((2-(2-(2-(Bis(carboxymethyl)amino)-5-formylphenoxy)ethoxy)-4-

methylphenyl)azanediyl)diacetic acid (BAP-HY). BAPTA (1 g, 1.74 mmol) was added in 30 

mL 1 M NaOH solution. The mixture was refluxed at 100 °C until the reaction mixture turned 

clear. After cooling in ice bath, concentrated HCl was added dropwise while stirring. The 

precipitate that formed was collected by vacuum filtration then washed with saturated NaCl 
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solution and dichloromethane, and dried under vacuum, resulting in 0.80 g product (89% yield). 

1
H NMR (400 MHz, CDCl3) δ: 2.21 (s, 3H), 4.00 (dd, 4H), 4.18-4.28 (ddd, 8H), 6.66-6.80 (m, 

4H), 7.40(m, 2H), 9.74(1H, s), 12.71 (COOH, 4H); 
13

C NMR (101 MHz, CDCl3) δ: 191.31, 

173.50, 172.82, 150.31, 149.10, 145.64, 137.56, 131.21, 129.07, 126.33, 122.48, 119.30, 116.54, 

116.24, 113.62, 68.26, 67.63, 54.63, 31.48, 21.25. Ref. 81. 

 

4,4-Difluoro-3,5,8-trimethyl-4-bora-3a,4a-diaza-s-indacene (BO-3). To a solution of 2-

methylpyrrole (500 mg, 6.15 mmol) in dry DCM (15 mL) was added acetyl chloride (0.2 mL, 3 

mmol) and the mixture was refluxed for 2 h. Triethylamine (3 mL, 15 mmol) was added, 

followed by an addition of BF3·Et2O (3 mL, 15 mmol) and stirring was continued for 30 min at rt. 

The reaction mixture was quenched with 10% aq HCl and extracted with EtOAc. The organic 

extracts were washed with water, dried over MgSO4, filtered and evaporated to dryness. Flash 

chromatography on silica gel using hexane/DCM (2:1) afforded product (150 mg, 43% yield) as 

red solid. 
1
H NMR (400 MHz, CDCl3) δ:  6.93 (d, J = 3.9 Hz, 2H), 6.10 (d, J = 3.9 Hz, 2H), 2.48 

(s, 6H), 2.27 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ: 155.57, 140.20, 134.98, 126.93, 118.67, 

15.13, 14.72. Ref. 82. 

 

Synthesis of BAPBO-3. BO-3 (90 mg, 0.39 mmol) and 200 mg BAP-HY (0.39 mmol) were 

mixed in 13 mL dry toluene and 5 mL DMF, the resulting mixture was argon degased for 15 min, 

followed by adding of 0.93 mL glacial acetic acid and 0.74 mL piperidine, and refluxed with 

Dean-Stark apparatus for 3 h under argon. After the solvent was removed under vacuum, the 

crude product was washed with hexane and ether.  The resulting solid was then washed with 0.02 
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M HCl. After filtration, the solid was dissolved in 0.02 M NaOH and the pH adjusted to 3-4 with 

0.02 M HCl. After collection of the formed precipitate, 40 mg purple solid was afforded (14% 

yield). 
1
H NMR (400 MHz, MeOD) δ: 2.37 (s, 3H), 2.48 (s, 3H), 2.54 (s, 3H), 4.15 (dd, 4H), 

4.51 (ddd, 8H), 6.20-6.30 (m, 2H), 6.99-6.98 (m, 3H), 7.14-7.21 (m, 2H), 7.31-7.46 (m, 5H); 
13

C 

NMR (101 MHz, MeOD) δ: 13.77, 20.59, 29.64, 54.37, 56.78, 67.65, 112.33, 118.23, 118.52, 

119.11, 121.99, 127.61, 127.93, 133.50, 135.21, 140.22, 142.59, 150.71, 155.76, 157.16, 173.64. 

HR-MS (ESI) theoretical [M]
+
 = 733.2505, found [M]

+
 = 733.2515. 

 

2.2.2 Linear Photophysical and Photochemical Characterization 

A 200 μM stock solution of BAPBO-3 in MeOH was prepared, and 75 μL was added to a 

cuvette containing 2.925 mL of buffer (Calcium Calibration Buffer Kit #1, which contains 30 

mM MOPS/KOH, pH 7.2, 100 mM KCl and 10 mM EGTA or 10 mM CaEGTA) at Ca
2+

 

concentrations (0 and 39 μM). The linear absorption spectra were obtained using an Agilent 8453 

UV−vis spectrophotometer in 10 mm path length quartz cuvettes in buffers containing different 

concentrations of Ca
2+

, with a C = 1.0 μM molar concentration of BAPBO-3. The steady-state 

fluorescence was measured with a PTI QuantaMaster spectrofluorimeter using 10 mm 

spectrofluorometric quartz cuvettes in buffers containing different concentrations of Ca
2+

, with a 

C = 1.0 μM molar concentration of BAPBO-3. The correction for the spectral response of the PTI 

detection system was performed for all fluorescence spectra. 
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2.3 Results and Discussion 

2.3.1 Synthesis 

BAPTA, BAP-HY, and BO-3 were prepared according to literature[81-83] and the resulting 

NMR spectra were consistent with the reported data. A Knoevenagel condensation was applied 

to produce BAPBO-3 by conjugation of BAP-HY and BO-3 via an alkene linker. DMF/toluene 

solution was employed as the solvent to ensure the solubility of BAP-HY (Scheme 2).  

 

Hydrolysis was performed before condensation rather than enrolled as a last step to avoid 

possible breakage of a C=C (double bond).  Actually, there are few BAPTA and BODIPY-based 

compounds with acetylene or alkene linkers reported so far, since the hydrolysis process of 

BAPTA was usually accomplished with bases like NaOH or K2CO3, which may cause bond 

breakage in most cases. A 14% yield was achieved after purification and the 
1
H NMR, 

13
C NMR, 

and HR-MS spectra were in good accordance with the chemical structure. 

 



42 

 

 

Scheme 2. Synthetic route of BAPBO-3 
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2.3.2 Linear Photophysical and Photochemical Properties 

Upon excitation at 475 nm, the emission maximum of BAPBO-3 was determined to be 527 nm, 

and 1.5-fold fluorescence enhancement upon Ca
2+

 binding (in solution containig 39 μM free Ca
2+

) 

was observed without any significant changes in the absorption spectrum. The fluorescence 

quantum yield, Φf, was calculated to be 0.04 ± 2.22 × 10
-3

. However, when the buffer solution 

contained 1 M Ca
2+

, a 3-fold fluorescence enhancement was observed together with a Φf of 0.07 

± 3 × 10
-3

. Apparently with a higher concentration of Ca
2+

, increased Φf can be obtained.  

(a)                                                                                (b) 

 

 

 

 

 

Figure 20. Absorption (a) and emission (b) spectra of BAPBO-3 in buffers (30 mM 

MOPS/KOH, pH 7.2, 100 mM KCl and 10 mM EGTA or 10 mM CaEGTA) at different Ca
2+

 

concentrations (0, 39 μM and 1 M). 

 

2.4 Conclusion and Future Work 

In summary, a new BAPTA and BODIPY based Ca
2+

 probe, BAPBO-3 was prepared via 

Knoevenagel condensation. Synthesis and purification were simplified by a new synthetic route. 
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Upon excitation, a 1.5-fold fluorescence enhancement was obtained for BAPBO-3 in buffer 

containing 39 μM Ca
2+

 together with a Φf of 0.04, while a 3-fold fluorescence enhancement was 

observed in buffer containing 1 M Ca
2+

 with a Φf of 0.07.  

 

The fluorescence enhancement upon Ca
2+

 binding and overall fluorescence were modest.  Thus, 

to work towards a more practical probe, modification of the molecular structure should be 

pursued. One possibility is introducing bulky groups to the BODIPY chromophore, by which the 

phenyl ring can be twisted out of the BODIPY plane, attenutaing fluorescence quenching that 

occurs through nonradiative pathways.[84] Second, the hydrophilicity needs to be considered 

after introducing such bulky groups, so that the stacking (aggregation) of the fluorophore can be 

avoided [85] and the original fluorescence of the compound can be preserved. Third, the PET 

process is not only affected by the electron-donating ability of receptor sites (binding form of 

BAPTA in this case), but also the reduction potential and excitation energy of the fluorophore. 

Attaching various substituents at the 2- and 6-positions of the BODIPY core to make the 

reduction potential more negative and lower the excitation energy can be considered. Although a 

certain amount of substituents is required to test for preferred features, it is still worth trying. 

Additional synthetic possibilities for chemical modification mentioned above are available. One 

strategy involves performing iodination of the 2- and 6-positions of the BOIDPY core, followed 

by a Heck reaction or a Sonogashira cross-coupling to conjugate specific groups to the structure. 

  

Since longer absorption and emission wavelengths are preferred and water-soluble probes are 

attractive, designing an unsymmetrical probe is quite interesting. By conjugating hydrophilic 
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derivatives at one side of the BODIPY core and the other side functionalized by a chromophore 

that shifts absorption and emission spectra to longer wavelengths, the requirements mentioned 

above may be fulfilled. 

 

Not only a water-soluble compound is needed, a cell membrane-permeable probe is also required 

for most biological applications. At the same time, good retention inside cells also needs to be 

considered. This may be accomplished by utilizing BAP-AM (1,2-bis(2-aminophenoxy)ethane-

N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)). The acetoxymethyl ester groups of 

BAP-AM can help probes diffuse into cells and then these ester groups can be hydrolyzed by an 

enzyme, esterase, inside cells preventing diffusion back out of the cell. Even though purification 

and characterization is more difficult for compounds based on BAP-AM when compared to the 

one based on BAPTA with methyl or ethyl esters, from cell membrane penetration 

considerations to achieve better in vitro images, BAP-AM is worth investigating. 

 

The ground state dissociation constant Kd is another value that can be calculated for a calcium 

sensor. Kd can be determined via direct fluorometric titration. For the complex PXn, steady-state 

fluorescence intensity F recorded as a function of concentration of analyte [X] yields eq 1[86], 

 

 

  
                

         
 

(1) 

where F stands for the fluorescence intensity at [X], while Fmin and Fmax are the fluorescence 

intensities at minimal [X] (in the absence of analyte X) and maximal [X] (in the presence of an 

excess of X). 
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After rearranging eq 1 in the form of log-log plot, an equation for a Hill plot[87] is given below: 

 

 

   
         

        
                

(2) 

and linear behavior is expected with binding n, as its slope, and intercept of -log Kd. The 

corresponding Kd can then be calculated. 

 

Another aspect for further development of BAPBO-3 is attaching a protein specific tag so that a 

targeted calcium indicator can be formed. Compounds conjugating RGD peptide for deep ex vivo 

imaging of tumor vasculature have been reported by our research group previously.[59] With a 

targeted calcium indicator, molecular imaging of nerve morphology and calcium transients 

should be more easily obtained. 
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CHAPTER 3. A NEAR-INFRARED SQUARAINE DYE FOR IN VITRO 

APPLICATION 

 

3.1 Introduction 

Interesting squaraine dyes were extensively studied after being first synthesized in the 1960s.[88, 

89]. With two donor groups conjugated to an oxocyclobutenolate acceptor core (D−A−D), a 

highly resonance stabilized zwitterionic structure is yielded. Excellent visible red and/or near-IR 

absorption and emission wavelengths facilitate applications covering various fields.[90-92] Since 

this long-wavelength region can avoid the self-absorption and self-fluorescence region of 

biological media, squaraine dyes can serve as bioimaging materials,[93-99] biomolecule 

labels,[93, 100-106] and photosensitizers for photodynamic therapy (PDT).[96, 107] Other 

studies associated with pH indicators,[108] solar cell dyes,[109, 110] nonlinear optical 

chromophores,[111, 112] and colorimetric sensors[113-115] were also developed over the past 

few decades. In addition, due to the rigid and planar conjugation structure, aggregation behavior 

is usually observed for squaraine dyes, while related physical properties[116-121] have also been 

investigated.  

 

Since two electron-donating groups can be conjugated to the oxocyclobutenolate core, 

symmetrical and unsymmetrical squaraines can be yielded. The synthesis of symmetrical 

squarianes is quite straightforward, in which two equivalents of electron-rich aromatic or 
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heterocyclic compounds and one equivalent of squaric acid are involved and a relative high yield 

can be obtained.  

However, more complicated synthetic routes are expected for unsymmetrical squaraines with 

different electron-donating groups on each side. Generally speaking, two synthetic routes can 

afford unsymmetrical squaraine dyes, but both of them require synthesis and separation of the 

semi-squaraine intermediate. Starting from squaric acid, one of the strategies is conversion of the 

hydroxyl groups to chlorides, while the other one is generating esters from hydroxyl groups. For 

the first route, one equivalent of activated electron donor can be conjugated to the core after 

conversion by nucleophilic attack, followed by hydrolysis of the semi-squaraine. Then the 

obtained compound is allowed to react with another donor to yield the final structure.  

 

For the second route, more reactive N-alkylated heterocyclic structures function as donors for 

unsymmetrical squaraine dyes. After converting hydroxyl groups to ester groups, squaric acid 

derivatives react with activated heterocyclic compounds in a 1:1 molar ratio, resulting in the 

semi-squaraine. Then another half heterocyclic moiety can be introduced, finally yielding the 

unsymmetrical product after laborious isolation and purification. [122-125] 

 

Merits are gained when developing near-IR probes. For example, photodamage and 

phototoxicity caused by UV and visible light excitation can be circumvented. By adjusting donor 

moieties and increasing π-conjugation systems, optimized squaraines can cover absorption 

wavelengths from 550 to 850 nm,[112, 126] with high molar extinction coefficients (ε > 10
5
 L 
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mol
-1

 cm
-1

).[127] In addition, squaraine dyes possess moderate fluorescent quantum yields (Φf) 

in organic solvents in the wavelength range of 650 - 850 nm[128] and a Stokes shift of 10–30 nm.  

 

Squaraines are also potential candidates for two-photon absorption (2PA) research. After a 5000 

GM (Goppert-Mayer units, 1 × 10
-50

 cm
4
 s photon

-1
 molecules

-1
)[129] two-photon absorption 

cross-section (δ2PA) was reported, scientists discovered that increased δ2PA of squaraines can be 

achieved by extending the π-conjugation. Indeed, Marder et al. reported δ2PA values as high as 

30,000 GM in THF by adding more pyrrole and benzene derivatives to the structure.[130] Our 

interest lies in application of squaraine dyes in advanced photonic materials. An example of a 

squaraine we have developed is shown in Figure 21, along with its linear and nonlinear 

absorption spectra. As a pyrrolium squaraine dye, SQ 1 gains extended π-conjugation, and 

~20,000 GM δ2PA value in DMSO was obtained.[99] 

 

Figure 21. Structure of SQ 1 and it is linear and nonlinear absorption spectra. Ref 99, copyright 

2011 American Chemical Society. 
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Herein, we report a newly designed squaraine dye SQ3. Unlike two unsymmetrical squaraine 

synthetic routes mentioned above, we employed a one-pot synthesis so that the separation of the 

semi-squaraine can be avoided. Two different activated heterocyclic compounds were added to 

the condensation reaction in a 1:1 ratio, and a 10% yield was obtained after purification. 

Photophyscial characterization was conducted in various solvents. In DMSO, an absorption 

maximum at 678 nm was observed. Upon excitation, a 692 nm emission maximum was obtained 

and the calculated fluorescence quantum yield was determined to be 0.32. Near-IR absorption 

and emission suggest this new compound SQ3 is favorable for in vitro and in vivo study, which 

was later confirmed by in vitro bioimaging. 

 

3.2 Materials and Methods 

3.2.1 Synthesis 

Synthetic reagents and solvents were used as received from commercial suppliers. All chemicals 

were purchased from Sigma-Aldrich or Fisher. 
1
H and 

13
C NMR spectra were recorded on a 

Bruker Avance 400 NMR spectrometer at 400 and 101 MHz, respectively. High-resolution mass 

spectrometry analysis was performed at the Department of Chemistry, University of Florida.  

 

3-(4-Iodobutyl)-2-methylbenzothiazol-3-ium iodide (1) was prepared as previously reported.[131]  

A mixture of 2-methylbenzothiazole (0.27 mL, 2.18 mmol) and 1,4-diiodobutane (0.57 mL, 4.36 

mmol) in 5 mL acetonitrile was added to a 15-ml microwave vial. The mixture was heated in 

microwave reactor (CEM Discover model) at 140 °C for 2.5 hours. A pale yellow solid was 
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obtained after precipitation with diethyl ether, filtered off, and washed with isopropyl alcohol 

and diethyl ether. The yield was 0.47 g (47%): mp 196−198 °C (dec.); 
1
H NMR (DMSO-d6, 500 

MHz) δ: 8.45 (d, 1H), 8.34 (d, 1H), 7.92 (td, 1H), 7.80 (td, 1H), 4.77 (t, 2H), 3.33 (t, 2H), 3.20 (s, 

3H), 1.95 (m, 4H). 

 

3-Octadecyl-2-methylbenzothiazol-3-ium iodide (2) was prepared by a literature method.[132-

134] 1-Iodooctadecane (1.00 g, 2.63 mmol) and 2-methylbenzothiazole (0.17 mL, 1.31 mmol) in 

5 ml acetonitrile was added to a 15-ml microwave vial. The mixture was heated in microwave 

reactor (CEM Discover model) at 140 °C for 4 hours. The white precipitate was filtered after the 

reaction and recrystallized with acetonitrile twice. The yield was 0.24 g (35%): mp 129-131 °C 

(liter. m.p. 116-118
o
C)

 3
; 

1
H NMR (CDCl3, 500 MHz) δ: 8.34 (d, 1H), 8.00 (d, 1H), 7.85 (td, 1H), 

7.71 (td, 1H), 4.85 (t, 2H), 3.48 (s, 3H), 1.96 (m, 2H), 1.49 (m, 2H), 1.25 (m, 30H), 0.88(t, 3H). 

13
C NMR (CDCl3, 500 MHz) δ: 175.04, 140.98, 129.95, 129.15, 128.64, 124.84, 116.46, 51.57, 

33.59, 31.93, 30.52, 29.7, 29.67, 29.62, 29.59, 29.55, 29.5, 29.43, 29.37, 29.17, 28.73, 28.55, 

26.85, 22.7, 19.86, 14.13. 

 

2-((3-Octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-

yl)butyl)benzothiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide (SQ3) was prepared by a 

one-pot synthesis. In a 50-ml round-bottom flask, added 3-(4-Iodobutyl)-2-methylbenzothiazol-

3-ium iodide (1) (0.25g, 0.54 mmol) and 3-Octadecyl-2-methylbenzothiazol-3-ium iodide (2) 

(0.29g, 0.54 mmol) with 3,4-diethoxycyclobutane-1,2-dione (0.08ml, 0.54 mmol) in 24 ml of n-

butanol and 6 ml pyridine. The mixture was refluxed with a Dean-Stark apparatus for 12 hours.  
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The solvent was evaporated under reduced pressure and crude product was purified by column 

chromatography using a mixture of methanol and dichloromethane (1:20) as an eluent. The yield 

was 0.05 g (10%): mp 249-250 °C (decomposed);
 1

H NMR (DMSO-d6, 500 MHz) δ: 9.11(d, 

2H), 8.61(t, 1H), 8.17(t, 2H), 7.86(q, 2H), 7.58(d, 1H), 7.52(d, 1H), 7.46(m, 2H), 7.28(m, 2H), 

5.79(s, 2H), 4.69(t, 2H), 4.29(q, 4H), 2.10(t, 2H), 1.71(q, 4H), 1.31(t, 2H), 1.21(m, 30H), 0.84(t, 

3H).
13

C NMR (DMSO-d6, 500 MHz) δ: 176.17, 175.33, 159.02,158.33, 146.08, 145.23, 141.46, 

141.41, 128.66,128.00, 124.46, 124.29, 122.93, 113.11, 112.72, 85.63, 85.48, 60.69, 45.95, 45.03, 

39.99, 39.83, 39.66, 39.49, 31.74, 29.48, 29.34, 29.15, 28.23, 27.35, 26.42, 23.88, 22.54, 14.41. 

HRMS (ESI) for C47H60N3O2S2 theoretical m/z [M
+
]= 762.4121, found [M

+
]=762.4132. 

 

 

Scheme 3. Synthetic route of SQ3. 

 

3.2.2 Linear Photophysical and Photochemical Characterization 

The linear absorption spectra were obtained using an Agilent 8453 UV−vis spectrophotometer in 

10 mm path length quartz cuvettes in varying. The steady-state fluorescence was measured with 

a PTI QuantaMaster spectrofluorimeter using 10 mm spectrofluorometric quartz cuvettes. The 
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correction for the spectral response of the PTI detection system was performed for all 

fluorescence spectra. The fluorescence quantum yields, Φf, were obtained by a standard method 

[47] relative to cresyl violet in methanol. 

 

3.2.3 In Vitro Cell Imaging 

Hela cells (ATCC
®

) were seeded on poly-D-lysine coated coverslips placed into 24-well glass 

plates (500000 cells per well) and incubated for 48 hours. SQ3 stock solution in DMSO was then 

diluted to 20 μM with MEM medium (Corning, Cellgro
®

) and added into cells. Cells were co-

incubated with diluted SQ3 for 30 min and then fixed with 3.7% formaldehyde. NaBH4 (1 

mg/mL) was added twice for 5 min to eliminate auto-fluorescence. The coverslips were then 

washed with PBS (phosphate buffer saline, Corning, Cellgro
®

) and mounted on microscope 

slides with ProLong Gold
®

 antifade reagent (Invitrogen
TM

). 

 

Cell slides were imaged with Olympus IX70 DSU microscope. Tex-Red filter cube (Ex 562/40, 

DM 593, Em 624/40) was employed to excite SQ3 and collect the fluorescence at the optimize 

wavelength range. 
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3.3 Results and Discussion 

3.3.1 Synthesis 

A one-pot synthesis was employed as the last step to yield SQ3 so that purification of the semi-

squaraine was avoided. With the goal of developing a near-IR dye, requirements of the extended 

π-conjugation system were fulfilled by the double bonds formed after the condensation reaction 

and the benzothiazole part (Scheme 3). Based on the structure, positive charged pyridine 

derivative was introduced for better cell uptake. 

 

3.3.2 Linear Photophysical and Photochemical Characterization 

In Figure 22, absorption and emission spectra of SQ3 are shown in various solvents. With 

absorption maxima from 646 nm (dichloromethane) to 678 nm (DMSO), upon excitation, 

emission maxima varied from 656 nm (dichloromethane) to 692 nm (DMSO) and fluorescence 

quantum yields were calculated to vary from 0.08 (dichloromethane) to 0.32 (DMSO), together 

with Stokes shifts drawing in the range of 10-14 nm (Table 3). We believe that aggregation 

occurred in solvents except DMSO, which leads to decreased fluorescence quantum yields.  
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Figure 22. Normalized absorption and emission spectra of SQ3 in solvents of dichloromethane, 

ethanol, dioxane, THF, and DMSO.  

 

Table 3. Absorption and Emission Maxima, Fluorescence Quantum Yields and Stokes Shift 

of SQ3 in Different Solvents 

Solvent λabs (nm) 
a
 λem (nm) 

b
 Φf 

c
 Stokes shift (nm) 

Dichloromethane 670 678 0.08 8 

Ethanol 656 669 0.17 13 

Dioxane 667 681 0.18 14 

THF 674 687 0.16 13 

DMSO 678 691 0.32 13 

a. maximum absorption peak; b. maximum emission peak; c. fluorescence quantum yield 
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3.3.3 In Vitro Cell Imaging 

 

Figure 23. HeLa cells were incubated with SQ3 (20 μM, 30 min). DIC image (A) indicates 

healthy morphology of HeLa cells. (B) SQ3 fluoresence image. Overlay image of SQ3 

fluorescence and DIC (C) indicates effective uptake of SQ3. Scale bar shows 10 μm. 

 

Since near-IR absorption and emission were observed for SQ3, an in vitro study was conducted 

to demonstrate whether this compound is applicable for bioimaging. After incubation with HeLa 

cells for 30 min, SQ3 appeared to readily enter the cells and remarkably clear fluorescence 

images were obtained (Figure 23). This result suggests that compound SQ3 is indeed capable of 

functioning as a near-IR probe.  

 

3.4 Conclusion and Future Work 

In summary, a new near-IR unsymmetrical squaraine dye, SQ3, was been synthesized by a one-

pot synthesis and a 10% yield was obtained after purification. Photophyscial and photochemical 

characterization was conducted in various solvents to explore possible solvatochromic effects. In 

DMSO, an absorption maximum at 678 nm was observed, and, upon excitation, a 692 nm 

A B C 
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emission maximum was obtained.  Fluorescence was relatively efficient with a fluorescence 

quantum yield of 0.32. The observed near-IR absorption and emission suggested that SQ3 may 

be favorable for in vitro and in vivo study.  This was confirmed through incubation with HeLa 

cells and subsequent in vitro imaging, resulting in good apparent cell penetration, little to no 

interference from autofluorescence, and good contrast, suggesting the future potential in cell and 

tissue imaging of this novel probe. 

 

Several experiments could be performed and various applications developed in the future. First 

of all a cell membrane targeting probe can be considered. This requires chemical modification 

such as introducing longer alkyl chains or farnesyl groups to the structure. Also as mentioned 

previously, δ2PA is a value worth measuring. With desirable δ2PA, bioimaging can be 

conducted under 2PA conditions to avoid possible photodamage caused by 1PA experiments and 

achieve greater depths on tissue. 

 

Another aspect for further development of this newly designed squaraine dye is consideration of 

its potential as a near-IR viscosity sensor. Since the benzothiazole moiety in the structure plays a 

typical electron acceptor role in viscosity sensors, if electron donors such as dimethylamine 

derivatives can be involved in the design, a promising squaraine-based near-IR viscosity sensor 

will be yielded. Recently, we reported a squaraine-based viscosity sensor utilizing the 

deoxyuridine as a building block,[43] both TICT and aggregation effects of the squaraine dye 

yielded a 300-fold fluorescence intensity increase at high viscosity. With cell images being 
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captured during different stages of mitosis, this new dye comprehensively demonstrated 

intercellular viscosity was dependent on microtubules (MTs) cross-linking and density. 
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1
H NMR of compound 1 
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13
C NMR of compound 1 
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HR MS of compound 1 
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1
H NMR of compound 2 
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13
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HR MS of compound 2 
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1
H NMR of compound 3 
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13
C NMR of compound 3 
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HR MS of compound 3 
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1
H NMR of DML-BZ 
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13
C NMR of DML-BZ 
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1
H NMR of dU-BZ 
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13
C NMR of dU-BZ 
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HRMS of dU-BZ 
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Figure. Absorption, emission and excitation spectra of dU-BZ in DMSO  
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Figure. Absorption, emission and excitation spectra of dU-BZ in DCM  
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Table. Maximum wavelengths of absorption and emission and quantum yields of dU-BZ in 

DMSO and DCM  

 
dU-BZ 

Solvent DMSO DCM 

λAbs (nm) 543 ± 1 562 ± 1 

λEm (nm) 617 ± 1 601 ± 1 

ΦFL 0.02 ± 0.002 0.04 ± 0.006 
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BAPBO-3 HRMS 
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3-(4-iodobutyl)-2-methylbenzothiazol-3-ium iodide 
1
H NMR 
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3-Octadecyl-2-methylbenzothiazol-3-ium iodide
 1
H NMR 
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3-Octadecyl-2-methylbenzothiazol-3-ium iodide
 13

C NMR 
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2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-

yl)butyl)benzothiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide
 1
H NMR 
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2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-

yl)butyl)benzothiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide
 13

C NMR 
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2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-

yl)butyl)benzothiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide HRMS 
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