
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2012

Towards Evolving More Brain-Like Artificial Neural Networks Towards Evolving More Brain-Like Artificial Neural Networks

Sebastian Risi
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Risi, Sebastian, "Towards Evolving More Brain-Like Artificial Neural Networks" (2012). Electronic Theses
and Dissertations, 2004-2019. 4675.
https://stars.library.ucf.edu/etd/4675

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F4675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F4675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4675?utm_source=stars.library.ucf.edu%2Fetd%2F4675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

TOWARDS EVOLVING MORE BRAIN-LIKE ARTIFICIAL NEURAL NETWORKS

by

SEBASTIAN RISI
Diplom. Philipps-Universität Marburg, Germany 2007

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2012

Major Professor: Kenneth O. Stanley

© 2012 SEBASTIAN RISI

ii

ABSTRACT

An ambitious long-term goal for neuroevolution, which studies how artificial evolutionary

processes can be driven to produce brain-like structures, is to evolve neurocontrollers with a

high density of neurons and connections that can adapt and learn from past experience. Yet

while neuroevolution has produced successful results in a variety of domains, the scale of nat-

ural brains remains far beyond reach. In this dissertation two extensions to the recently intro-

duced Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach

are presented that are a step towards more brain-like artificial neural networks (ANNs).

First, HyperNEAT is extended to evolve plastic ANNs that can learn from past experience.

This new approach, called adaptive HyperNEAT, allows not only patterns of weights across

the connectivity of an ANN to be generated by a function of its geometry, but also patterns

of arbitrary local learning rules. Second, evolvable-substrate HyperNEAT (ES-HyperNEAT)

is introduced, which relieves the user from deciding where the hidden nodes should be placed

in a geometry that is potentially infinitely dense. This approach not only can evolve the

location of every neuron in the network, but also can represent regions of varying density,

which means resolution can increase holistically over evolution. The combined approach,

adaptive ES-HyperNEAT, unifies for the first time in neuroevolution the abilities to indi-

rectly encode connectivity through geometry, generate patterns of heterogeneous plasticity,

and simultaneously encode the density and placement of nodes in space. The dissertation

iii

culminates in a major application domain that takes a step towards the general goal of

adaptive neurocontrollers for legged locomotion.

iv

Ich widme diese Dissertation meiner Familie, insbesondere meinen Eltern, meiner Schwester

Jessica, meiner Oma Sigrid, meiner Großtante Renate und meiner Oma Waltraud.

v

ACKNOWLEDGMENTS

First and foremost I want to thank my advisor Dr. Kenneth Stanley, for being a constant

source of inspiration. I appreciate all his contributions of time and ideas to make my Ph.D.

experience stimulating and productive.

Thanks to my dissertation committee members Dr. Charles Hughes, Dr. Gita Sukthankar

and Dr. Paul Wiegand for offering their advice and donating their time and suggestions.

Special thanks to Dr. Charles Hughes for serving as my initial advisor and providing me

with funding during the first year of my Ph.D. career.

Thanks to past and present members of the Evolutionary Complexity Research Group

(EPlex) at University of Central Florida (http://eplex.cs.ucf.edu) for their valuable feedback

on my various papers, projects, and presentations. Especially, Amy Hoover, Joel Lehman,

Dr. David D’Ambrosio, Dr. Charles E. Bailey, Dr. Ben Jones, Dr. Phillip Verbancsics, Paul

Szerlip, and Brian Woolley.

Thanks also to DARPA and ARO for funding the majority of this research through DARPA

grants HR0011- 08-1-0020, HR0011-09-1-0045 and N11AP20003 (Computer Science Study

Group Phases 1, 2, and 3), and US Army Research Office grant Award No. W911NF-11-1-

0489. This dissertation does not necessarily reflect the position or policy of the government,

and no official endorsement should be inferred.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xiv

CHAPTER 1 INTRODUCTION 1

1.1 Contributions . 5

1.2 Outline . 7

CHAPTER 2 BACKGROUND 8

2.1 Artificial Neural Networks . 8

2.2 Neuroevolution . 10

2.3 Neuroevolution of Augmenting Topologies (NEAT) 12

2.4 Generative and Developmental Systems (GDS) 15

2.4.1 Compositional Pattern Producing Networks (CPPNs) 15

2.4.2 HyperNEAT . 17

2.5 Evolution and Learning . 21

2.5.1 Evolution of Adaptive ANNs . 22

2.5.2 Evolution of Neuromodulated Plasticity 24

2.6 Novelty Search . 27

CHAPTER 3 ESTABLISHING THE POTENTIAL ADVANTAGE OF EVOLVING

PLASTIC NEURAL NETWORKS WITH NOVELTY SEARCH 30

vii

3.1 The Deceptive Trap of Learning to Learn . 31

3.2 Extending NEAT to Evolve Neuromodulated ANNs 32

3.3 The Discrete T-Maze Domain . 33

3.4 T-Maze Experiment . 36

3.4.1 Measuring Novelty in the Single T-Maze 38

3.4.2 Generalization Performance . 41

3.5 Single T-Maze Results . 42

3.6 Analysis of Deception in the Single T-Maze 46

3.7 Additional Experiments . 56

3.7.1 Discrete Double T-Maze . 57

3.7.2 Foraging Bee . 58

3.8 Implications of Combining Novelty Search with Plasticity 61

CHAPTER 4 APPROACH PART I: ADAPTIVE HYPERNEAT 66

4.1 Indirectly Encoding Local Learning Rules 66

4.2 Discrete T-Maze Experiment . 69

4.3 Discrete T-Maze Results . 72

4.4 Adaptive HyperNEAT Implications . 74

CHAPTER 5 APPROACH PART II: EVOLVABLE-SUBSTRATE HYPERNEAT 77

5.1 Implicit Information in the Hypercube . 78

5.2 Quadtree Information Extraction . 80

5.3 ES-HyperNEAT Algorithm . 85

viii

5.4 Key Hypotheses . 88

5.5 Experiment 1: Dual Task . 91

5.5.1 Experimental Setup . 93

5.5.2 Dual Task Results . 95

5.6 Experiment 2: Maze Navigation . 96

5.6.1 Maze Navigation Results . 98

5.6.2 Example Solution Lineage . 100

5.6.3 Evolvability Analysis . 103

5.7 Experiment 3: Left & Right Retina Problem 105

5.7.1 Link Expression Output . 106

5.7.2 ES-HyperNEAT Geometry Seeding 108

5.7.3 Retina Problem Setup . 111

5.7.4 Results . 113

5.8 ES-HyperNEAT Implications . 115

5.8.1 Dictating Node Locations . 117

5.8.2 Incrementally Building on Stepping Stones 118

5.8.3 Geometry Seeding . 120

CHAPTER 6 UNIFIED APPROACH: ADAPTIVE ES-HYPERNEAT 122

6.1 Evolving Plasticity and Neural Geometry . 122

6.2 Continuous T-Maze Domain . 124

6.3 Continues T-Maze Results . 127

ix

6.4 Adaptive ES-HyperNEAT Implications . 129

CHAPTER 7 TOWARDS AN ADAPTIVE NEUROCONTROLLER FOR LEGGED

LOCOMOTION 131

7.1 Static Quadruped Neural Controller . 133

7.2 Flexible Neural Controller . 136

7.3 Experimental Setup . 138

7.4 Quadruped Results . 139

7.4.1 Interpolation Performance . 140

7.4.2 Relationship Between Morphology and Control 142

7.5 Implications of Flexible Controllers . 143

CHAPTER 8 DISCUSSION AND FUTURE WORK 146

8.1 Towards More Brain-Like ANNs . 146

8.2 HyperNEAT Extensions . 147

8.3 Future Directions . 149

CHAPTER 9 CONCLUSION 152

9.1 Contributions . 152

9.2 Conclusion . 154

APPENDIX: PARAMETERS AND PSEUDOCODE 156

LIST OF REFERENCES . 178

x

LIST OF FIGURES

Figure 2.1 CPPN Encoding . 17

Figure 2.2 Hypercube-based Geometric Connectivity Pattern Interpretation . . . 19

Figure 2.3 Neuromodulated Plasticity . 25

Figure 3.1 The Discrete T-Maze . 34

Figure 3.2 T-Maze ANN Topology . 37

Figure 3.3 The T-Maze Novelty Metric . 39

Figure 3.4 Three T-Maze Sample Behaviors . 40

Figure 3.5 Comparing Generalization of Novelty Search and Fitness-based Search 43

Figure 3.6 Average Evaluations to Solution for Novelty Search and Fitness-based

Search . 44

Figure 3.7 Novelty Search Archive and Fitness Champions 47

Figure 3.8 Combined Sammon’s Mapping . 51

Figure 3.9 Sammon’s Mapping of Novelty and Fitness-based Search at Different

Stages of Evolution . 54

Figure 3.10 Distribution of Fitness for Novelty and Fitness-based Search for a Typ-

ical Run . 55

Figure 3.11 The Double T-Maze . 57

Figure 3.12 Comparing Novelty Search to Fitness-based Search in the Bee Domain 59

Figure 4.1 Adaptive HyperNEAT . 68

xi

Figure 4.2 T-Maze and Substrate Configuration 70

Figure 4.3 Nonlinear Reward Color Encoding . 71

Figure 4.4 T-Maze Training Performance . 73

Figure 4.5 Discovered Learning Rules of an ANN Solution Created by the Iterated

Model and the Underlying CPPN . 74

Figure 5.1 Quadtree Information Extraction Example 82

Figure 5.2 Example Connection Selection . 84

Figure 5.3 The ES-HyperNEAT Algorithm . 86

Figure 5.4 The Dual Task . 91

Figure 5.5 Substrate Configuration and Sensor Layout 93

Figure 5.6 FS-HyperNEAT Hidden Node Layouts 94

Figure 5.7 Average Dual Task Performance . 96

Figure 5.8 Maze Navigation Domain . 97

Figure 5.9 Average Performance and Champion Complexity 99

Figure 5.10 ANN Milestones and Underlying CPPNs Together With the Agent’s

behavior From a Single Maze Solution Lineage 102

Figure 5.11 Comparing the Evolvability of Fixed-Substrate and Evolvable-Substrate

HyperNEAT . 104

Figure 5.12 The Retina Problem . 106

Figure 5.13X-locality and Geometry Seeding . 109

Figure 5.14 Retina Problem Substrate Configuration 110

xii

Figure 5.15 Average Performance in Retina Domain 114

Figure 5.16 Example Connectivity Patterns from ES-HyperNEAT-LEO with Ge-

ometry Seeding in a Modular Domain 116

Figure 6.1 Adaptive ES-HyperNEAT CPPN . 123

Figure 6.2 Continues T-Maze Domain and Substrate Configuration 126

Figure 6.3 Average Performance in Continues T-Maze 128

Figure 6.4 Example Solution ANN Created by Adaptive ES-HyperNEAT and its

Underlying CPPN . 128

Figure 7.1 Quadruped Training Morphologies . 133

Figure 7.2 Distributed Substrate Architecture and CPPN 134

Figure 7.3 Motor Neuron Dynamics . 141

Figure 7.4 Best Interpolation Performance . 141

Figure 7.5 Morphology-Dependent Change . 142

xiii

LIST OF TABLES

Table A.1 Parameter Settings in HyperNEAT Experiments 161

xiv

CHAPTER 1
INTRODUCTION

The human brain is the most complex system known to exist (Kandel et al., 1991; Zigmond

et al., 1999). It is composed of an astronomically high number of neurons and connections

organized in precise, intricate motifs that repeat throughout it, often with variation on a

theme, such as cortical columns (Sporns, 2002). Additionally, the brain is not a static entity

but instead adaptive and changing throughout life, enabling us to learn and modify our

behavior based on past experience. These characteristics have so far eluded attempts to

create artificial neural networks (ANNs) with the same capabilities.

One methodology that has shown promise in autonomously generating ANNs for complex

control problems is neuroevolution, i.e. evolving ANNs through evolutionary algorithms

(EAs) (Floreano et al., 2008; Reil and Husbands, 2002; Stanley et al., 2005; Stanley and

Miikkulainen, 2002; Yao, 1999). To this end, as such algorithms are asked to evolve in-

creasingly large and complex structures, interest has increased in recent years in indirect

neural network encodings, wherein the description of the solution is compressed such that

information can be reused (Bongard, 2002; Gauci and Stanley, 2010; Hornby and Pollack,

2002; Stanley, 2007; Stanley and Miikkulainen, 2003). Such compression allows the final

solution to contain more components than its description. Nevertheless, neuroevolution has

historically produced networks with orders of magnitude fewer neurons and significantly less

organization and regularity than natural brains (Stanley and Miikkulainen, 2004; Yao, 1999).

1

While past approaches to neuroevolution generally concentrated on deciding which node is

connected to which (i.e. neural topology) (Floreano et al., 2008; Stanley and Miikkulainen,

2004; Yao, 1999), the recently introduced Hypercube-based NeuroEvolution of Augmenting

Topologies (HyperNEAT) method (D’Ambrosio and Stanley, 2007; Gauci and Stanley, 2008;

Stanley et al., 2009) provided a new perspective on evolving ANNs by showing that the

pattern of weights across the connectivity of an ANN can be generated as a function if its

geometry. HyperNEAT employs an indirect encoding called compositional pattern producing

networks (CPPNs; Stanley 2007), which can compactly encode patterns with regularities such

as symmetry, repetition, and repetition with variation. In effect, the CPPN in HyperNEAT

paints a pattern within a four-dimensional hypercube that is interpreted as the isomorphic

connectivity pattern.

HyperNEAT exposed the fact that neuroevolution benefits from neurons that exist at loca-

tions within the space of the brain and that by placing neurons at locations, evolution can

exploit topography (as opposed to just topology), which makes it possible to correlate the

geometry of sensors with the geometry of the brain. While lacking in many ANNs, such

geometry is a critical facet of natural brains that is responsible for e.g. topographic maps

and modular organization across space (Sporns, 2002). This insight allowed large ANNs

with regularities in connectivity to evolve for high-dimensional problems (Clune et al., 2011;

Gauci and Stanley, 2008, 2010; Stanley et al., 2009). In a step towards more brain-like

neurocontrollers, this dissertation presents two extensions to HyperNEAT, which extend its

reach to more complex domains.

2

In contrast with real brains HyperNEAT is so far only able to produce static networks, which

means that the synaptic connections in the ANN do not change their strength during the

lifetime of the network. While some tasks do not require the network to change its behavior,

many domains would benefit from online adaptation. In other words, whereas evolution

produces phylogenetic adaptation, learning gives the individual the possibility to react much

faster to environmental changes by modifying its behavior during its lifetime. For example,

a robot that is physically damaged should be able to adapt to its new circumstances without

the need to re-evolve its neurocontroller. One way that agents controlled by ANNs can evolve

the ability to adapt over their lifetime is by encoding local learning rules in the genome that

determine how their synaptic connection strengths should change in response to changing

activation levels in the neurons they connect (Floreano and Urzelai, 2000; Niv et al., 2002;

Soltoggio et al., 2008). This approach resembles the way organisms in nature, which possess

plastic nervous systems, cope with changing and unpredictable environments. Although

demonstrations of this approach have suggested the promise of evolving adaptive ANNs, a

significant problem is that local learning rules for every connection in the network must be

discovered separately (Floreano and Urzelai, 2000).

The first HyperNEAT extension introduced in this dissertation, which is called adaptive Hy-

perNEAT, addresses this problem and shows that not only patterns of weights across the

connectivity of an ANN to be generated by a function of its geometry, but also patterns of

local neural learning rules. The idea that learning rules can be distributed in a geometric pat-

3

tern is new to neuroevolution but reflects the intuition that synaptic plasticity in biological

brains is not encoded in DNA separately for every synapse in the brain.

The second HyperNEAT extension addresses the significant limitation of the original Hy-

perNEAT approach that the positions of the nodes must be decided a priori by the user.

In other words, in the original HyperNEAT, the user must literally place nodes (i.e. neu-

rons) at locations within a two-dimensional or three-dimensional space called the substrate.

The new approach, called evolvable-substrate HyperNEAT (ES-HyperNEAT), shows that

the placement and density of the hidden nodes can in fact be determined solely based on

implicit information in an infinite-resolution pattern of weights generated by HyperNEAT.

That way, the user no longer needs to decide their positions. The novel insight is that a

representation that encodes the pattern of connectivity across a network (such as in Hyper-

NEAT) automatically contains implicit clues on where the nodes should be placed to best

capture the information stored in the connectivity pattern. In other words, there is no need

for any new information or any new representational structure beyond the very same CPPN

that already encodes network connectivity in the original HyperNEAT. This approach not

only can evolve the location of every neuron in the network, but also can represent regions

of varying density, which means resolution can increase holistically over evolution.

Based on the insights behind adaptive HyperNEAT and ES-HyperNEAT, the two approaches

are then combined to encode the geometry, density, and plasticity of an evolving ANN. This

4

new method is called adaptive ES-HyperNEAT, which significantly expands the scope of

neural structures that evolution can discover.

In addition to adaptive ES-HyperNEAT, this dissertation presents work in the major ap-

plication domain of legged locomotion. First steps towards the general goal of a plastic

neurocontroller that can adapt to a variety of different robot body proportions are taken by

showing that HyperNEAT can learn the relationship between the morphology and control

of different quadruped robots. Highlighting the unique potential of such an approach, the

evolved neurocontrollers can interpolate to never-seen intermediate morphologies without

any further training.

The idea that we are beginning to be able to reproduce some of the phenomena produced

through natural evolution at a high level of abstraction is important for the field of AI because

the evolution of brains ultimately produced the seat of intelligence in nature.

1.1 Contributions

The research hypothesis of this dissertation is that evolving more brain-like ANNs will allow

neuroevolution to more easily solve complex control problems and adaptive tasks than current

neuroevolution technology. This hypothesis is supported by the following contributions:

5

1. The advantages of evolving plastic neural networks with the recently introduced nov-

elty search method (Lehman and Stanley, 2008, 2011b) are established (Chapter 3).

Highlighting this advantage is important to this dissertation because of its later focus

on evolving such plastic network.

2. Adaptive HyperNEAT extends HyperNEAT to allow not only patterns of weights across

the connectivity of an ANN to be generated by a function of its geometry, but also

patterns of arbitrary learning rules (Chapter 4).

3. ES-HyperNEAT extends HyperNEAT to determine the placement and density of the

hidden nodes automatically based on implicit information in an infinite-resolution pat-

tern of weights (Chapter 5).

4. The combined approach, adaptive ES-HyperNEAT, unifies for the first time the ability

to indirectly encode connectivity through geometry, simultaneously encode the density

and placement of nodes in space, and generate patterns of heterogeneous plasticity

(Chapter 6).

5. A step towards the general goal of adaptive controllers for locomotion is taken by

showing that HyperNEAT allows learning the relationship between the morphology

and control of different quadruped robots (Chapter 7).

6

1.2 Outline

The next chapter begins with relevant background on artificial neural network, neuroevolu-

tion, the evolution of adaptive ANNs, generative and developmental systems, and a review of

HyperNEAT. Chapter 3 establishes the advantages of evolving plastic neural network with

novelty search. Next, adaptive HyperNEAT is introduced in Chapter 4, followed by the

evolvable-substrate extension to HyperNEAT in Chapter 5. The unified approach, adaptive

ES-HyperNEAT, is introduced in Chapter 6. Chapter 7 then presents initial experiments

towards an adaptive neurocontroller for legged locomotion. Finally, a discussion and conclu-

sions are in Chapter 8 and 9.

7

CHAPTER 2
BACKGROUND

This chapter reviews several areas relevant to ES-HyperNEAT and adaptive HyperNEAT,

including the basics of neural networks, the field of neuroevolution, the evolution of adaptive

ANNs, the field of generative and developmental systems, and the original HyperNEAT.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models based on the architecture of the

human brain. The fundamental processing units in neural networks are neurons, which are

connected by weightened links to each other to form the full network. A neuron (also called

a node) in an ANN is usually classified as one of three types: input, hidden or output. While

input nodes receives information from the external world, the output nodes of the network

control the behavior of the system (e.g. a robot) containing the ANN. The neurons between

the input and output nodes, where most processing takes place, are the hidden nodes.

Each neuron j in a typical neural network computes the weighted sum of its incoming signals

passed through an activation function Φ that squashes the activation into a certain range

8

(typically between 0 and 1 or -1 to 1) and calculates output yj given an input vector x:

yj = Φ

(∑
i=1

(wijxi)

)
, (2.1)

where wij is the connection weight between neuron i and neuron j. One of the most common

activation functions is the sigmoid, or logistic function:

σ(z) =
1

1 + e−z
. (2.2)

All experiments in this dissertation, except the legged locomotion experiment described in

Chapter 7, employ the neural model described above. While this model is sufficient to

generate neural controllers for a broad range of problems, it does not allow a neuron to

display varied temporal behavior. For example, complex oscillating patterns, like the non-

linear dynamics found in natural gaits, seem to rely on more realistic models of neural

activation (Reil and Husbands, 2002; McHale and Husbands, 2004).

A model with this capability is the continuous-time recurrent neural network (CTRNN;

Yamauchi and Beer 1994). The neurons in CTRNNs are called leaky integrator neurons.

Such neurons integrate incoming activation over time (instead of all at once as in the previous

model) and also gradually leak internal activation (i.e. the neuron’s activation level slowly

decreases to zero without any input). The rate of integration and leak is controlled by a a

time constant τ , which allows different neurons to exhibit different temporal dynamics. A

discrete time update rule (Blynel and Floreano, 2002) of the internal activation level γ takes

9

the following form

γj(n+ 1) = γj(n) +
∆t

τj

(
−γj (n) +

N∑
i=1

wijAi(n) +
S∑

k=1

wkjIk

)
, (2.3)

where N is the total numbers of neurons, S is the number of inputs, Ik is the sensory ac-

tivation, and Ai is the incoming activation from neuron i. The legged controllers evolved

in Chapter 7 are controlled by CTRNNs because they requiere sophisticated oscillatory

patterns. The next section describes a method for training neural networks called neuroevo-

lution.

2.2 Neuroevolution

Neuroevolution (NE) focuses on training ANNs through evolutionary algorithms. It can

serve as an alternative to value function reinforcement learning (RL) methods (Sutton and

Barto, 1998; Kaelbling et al., 1996) and hand designed cortical simulations (Lytton and

Sejnowski, 1991; Izhikevich, 2004), and has shown promise in a variety of difficult control

tasks (Floreano et al., 2008; Reil and Husbands, 2002; Stanley et al., 2005; Stanley and

Miikkulainen, 2002; Yao, 1999).

A typical evolutionary algorithm works by first evaluating a set (population) of individuals

that are assigned a score (fitness) based on their performance in a given task. In the next

10

step, the new population is created by probabilistically choosing the individuals with higher

fitness. The individuals of this next generation are created by probabilistically applying

mutation and crossover operations to the parent individuals. This generational process is

iteratively repeated until an individual with a high enough fitness value is found.

The genotype in NE is a compact representation of specific features of a network that is

translated into the final ANN phenotype. The advantage of neuroevolution is that it allows

the evolution of any kind of ANN, including recurrent and adaptive networks (Section 2.5.1).

Early NE research focused on only evolving the synaptic weights, while the topology of the

ANN remained fixed during evolution (Gomez and Miikkulainen, 1999; Saravanan and Fogel,

1995). While this approach allowed the optimization of the network topology by a human

expert, it is not trivial to determine the right topology a priori. Therefore interest in recent

years has increased in methods that can discover the right neural architecture and weights

on their own (Angeline et al., 1994; Gruau et al., 1996; Yao, 1999).

The next section reviews such a method, called NEAT, which is the foundation of the Hy-

perNEAT method that is itself extended in this dissertation.

11

2.3 Neuroevolution of Augmenting Topologies (NEAT)

The NEAT method was originally developed to evolve ANNs to solve difficult control and

sequential decision tasks and has proven successful in a wide diversity of domains (Aalto-

nen et al., 2009; Stanley et al., 2003, 2005; Stanley and Miikkulainen, 2002; Taylor et al.,

2006; Whiteson and Stone, 2006). Evolved ANNs control agents that select actions based

on their sensory inputs. NEAT is unlike many previous NE methods, which traditionally

evolve either fixed-topology networks (Gomez and Miikkulainen, 1999; Saravanan and Fogel,

1995), or arbitrary random-topology networks (Angeline et al., 1994; Gruau et al., 1996;

Yao, 1999). Instead, NEAT begins evolution with a population of small, simple networks

and complexifies the network topology into diverse species over generations, leading to in-

creasingly sophisticated behavior. A similar process of gradually adding new genes has been

confirmed in natural evolution (Martin, 1999; Watson et al., 1987) and shown to improve

adaptation in a few prior evolutionary (Watson et al., 1987) and neuroevolutionary (Har-

vey, 1993) approaches. However, a key feature that distinguishes NEAT from prior work

in complexification is its unique approach to maintaining a healthy diversity of complexify-

ing structures simultaneously, as this section reviews. Complete descriptions of the NEAT

method, including experiments confirming the contributions of its components, are available

in Stanley and Miikkulainen (2002, 2004) and Stanley et al. (2005).

The NEAT method is based on three key ideas. First, to allow network structures to increase

in complexity over generations, a method is needed to keep track of which gene is which.

12

Otherwise, it is not clear in later generations which individual is compatible with which in a

population of diverse structures, or how their genes should be combined to produce offspring.

NEAT solves this problem by assigning a unique historical marking to every new piece of

network structure that appears through a structural mutation. The historical marking is

a number assigned to each gene corresponding to its order of appearance over the course

of evolution. The numbers are inherited during crossover unchanged, and allow NEAT

to perform crossover among diverse topologies without the need for expensive topological

analysis.

Second, historical markings make it possible for the system to divide the population into

species based on how similar they are topologically. That way, individuals compete primarily

within their own niches instead of with the population at large. Because adding new structure

is often initially disadvantageous, this separation means that unique topological innovations

are protected and therefore have time to optimize their structure before competing with other

niches in the population. The distance δ between two network encodings can be measured

as a linear combination of the number of excess (E) and disjoint (D) genes, as well as the

average weight differences of matching genes (W), where excess genes are those that arise in

the lineage of one parent at a time later than all the genes in the other parent and disjoint

genes are any other genes in the lineage of one parent but not the other one (Stanley and

Miikkulainen, 2002, 2004):

δ =
c1E

N
+
c2D

N
+ c3 ·W. (2.4)

13

The coefficients c1, c2, and c3 adjust the importance of the three factors, and the factor

N , the number of genes in the larger genome, normalizes for genome size (N is normally

set to one unless both genomes are excessively large; accordingly, it is set to one in the

experiments in this dissertation). Genomes are tested one at a time; if a genome’s distance

to a representative member of the species is less than δt, a compatibility threshold, the

genome is placed into this species.

Third, many systems that evolve network topologies and weights begin evolution with a

population of random topologies (Gruau et al., 1996; Yao, 1999). In contrast, NEAT begins

with a uniform population of simple networks with no hidden nodes, differing only in their

initial random weights. Because of speciation, novel topologies gradually accumulate over

evolution, thereby allowing diverse and complex phenotype patterns to be represented. No

limit is placed on the size to which topologies can grow. New structures are introduced

incrementally as structural mutations occur, and only those structures survive that are found

to be useful through fitness evaluations. In effect, then, NEAT searches for a compact,

appropriate topology by incrementally increasing the complexity of existing structure.

The next section reviews generative and developmental systems (GDS), focusing on compo-

sitional pattern producing networks (CPPNs) and the HyperNEAT approach, which will be

extended in this dissertation.

14

2.4 Generative and Developmental Systems (GDS)

In direct encodings like NEAT, each part of the solution’s representation maps to a single

piece of structure in the final solution (Floreano et al., 2008; Yao, 1999). The significant

disadvantage of this approach is that even when different parts of the solution are similar,

they must be encoded and therefore discovered separately. Thus this dissertation employs

an indirect encoding instead, which means that the description of the solution is compressed

such that information can be reused, allowing the final solution to contain more components

than the description itself. Indirect encodings are powerful because they allow solutions

to be represented as a pattern of parameters, rather than requiring each parameter to be

represented individually (Bentley and Kumar, 1999; Bongard, 2002; Gauci and Stanley, 2010;

Hornby and Pollack, 2002; Stanley, 2007; Stanley and Miikkulainen, 2003). The next section

reviews one such indirect encodings in more detail, called compositional pattern producing

networks.

2.4.1 Compositional Pattern Producing Networks (CPPNs)

Recently, NEAT has been extended to evolve a high-level developmental abstraction called

compositional pattern producing networks (CPPNs) (Stanley, 2007). The idea behind CPPNs

is that patterns in nature can be described at a high level as compositions of functions,

15

wherein each function in the composition represents a stage in development. CPPNs are

similar to ANNs, but they rely on more than one activation function (each representing a

common regularity).

The indirect CPPN encoding can compactly encode patterns with regularities such as sym-

metry, repetition, and repetition with variation (Secretan et al., 2008, 2011; Stanley, 2007).

For example, simply by including a Gaussian function, which is symmetric, the output pat-

tern can become symmetric. A periodic function such as sine creates segmentation through

repetition. Most importantly, repetition with variation (e.g. such as the fingers of the human

hand) is easily discovered by combing regular coordinate frames (e.g. sine and Gaussian)

with irregular ones (e.g. the asymmetric x-axis). For example, a function that takes as input

the sum of a symmetric function and an asymmetric function outputs a pattern with imper-

fect symmetry. In this way, CPPNs produce regular patterns with subtle variations. The

potential for CPPNs to represent patterns with motifs reminiscent of patterns in natural

organisms has been demonstrated in several studies (Secretan et al., 2008, 2011; Stanley,

2007).

Specifically, CPPNs produce a phenotype that is a function of n dimensions, where n is

the number of dimensions in physical space. For each coordinate in that space, its level

of expression is an output of the function that encodes the phenotype. Figure 2.1 shows

how a two-dimensional phenotype can be generated by a function of two parameters that is

represented by a network of composed functions. Because CPPNs are a superset of traditional

16

CPPN
x
y

value
at x,y

x

y

(applied at
each point)

(a) Mapping

x y

output pattern

bias
(b) Composition

Figure 2.1: CPPN Encoding. (a) The function f takes arguments x and y, which
are coordinates in a two-dimensional space. When all the coordinates are drawn with
an intensity corresponding to the output of f , the result is a spatial pattern, which
can be viewed as a phenotype whose genotype is f . (b) The CPPN is a graph that
determines which functions are connected. The connections are weighted such that the
output of a function is multiplied by the weight of its outgoing connection.

ANNs, which can approximate any function (Cybenko, 1989), CPPNs are also universal

function approximators. Thus a CPPN can encode any pattern within its n-dimensional

space. The next section reviews the HyperNEAT extension to NEAT that is itself extended

in this dissertation.

2.4.2 HyperNEAT

HyperNEAT, reviewed in this section, is an indirect encoding extension of NEAT that is

proven in a number of challenging domains that require discovering regularities (Clune et al.,

17

2009; Drchal et al., 2009; Gauci and Stanley, 2008, 2010; Stanley et al., 2009). For a full

description of HyperNEAT see Stanley et al. (2009) and Gauci and Stanley (2010).

The main idea in HyperNEAT is to extend CPPNs, which encode spatial patterns, to also

represent connectivity patterns (Clune et al., 2009; Gauci and Stanley, 2008, 2010; Stanley

et al., 2009). That way, NEAT can evolve CPPNs that represent large-scale ANNs with their

own symmetries and regularities. The key insight is that 2n-dimensional spatial patterns

are isomorphic to connectivity patterns in n dimensions, i.e. in which the coordinate of each

endpoint is specified by n parameters. Consider a CPPN that takes four inputs labeled x1;

y1; x2; and y2; this point in four-dimensional space also denotes the connection between the

two-dimensional points (x1; y1) and (x2; y2), and the output of the CPPN for that input

thereby represents the weight of that connection (figure 2.2). By querying every possible

connection among a set of points in this manner, a CPPN can produce a neural network,

wherein each queried point is a neuron position. Because the connections are produced by a

function of their endpoints, the final structure is produced with knowledge of its geometry.

In effect, the CPPN is painting a pattern on the inside of a four-dimensional hypercube that

is interpreted as an isomorphic connectivity pattern, which explains the origin of the name

Hypercube-based NEAT (HyperNEAT). Connectivity patterns produced by a CPPN in this

way are called substrates so that they can be verbally distinguished from the CPPN itself,

which has its own internal topology.

18

-1 1

CPPN (evolved)

x1 y1 x2 y2

3) Output is weight
between (x

1
,y

1
) and (x

2
,y

2
)

1) Query each potential
connection on substrate

Substrate

1,0 1,1
...

-0.5,0 0,1
...

-1,-1 -0.5,0
...

-1,-1 - 1,0
...

2) Feed each coordinate pair into CPPN

X

1 Y

-1

Figure 2.2: Hypercube-based Geometric Connectivity Pattern Interpreta-
tion. A collection of nodes, called the substrate, is assigned coordinates that range
from −1 to 1 in all dimensions. (1) Every potential connection in the substrate is
queried to determine its presence and weight; the dark directed lines in the substrate
depicted in the figure represent a sample of connections that are queried. (2) Internally,
the CPPN (which is evolved) is a graph that determines which activation functions are
connected. As in an ANN, the connections are weighted such that the output of a func-
tion is multiplied by the weight of its outgoing connection. For each query, the CPPN
takes as input the positions of the two endpoints and (3) outputs the weight of the
connection between them. Thus, CPPNs can produce regular patterns of connections
in space.

19

Each queried point in the substrate is a node in an ANN. In traditional implementations

of HyperNEAT the experimenter defines both the location and role (i.e. hidden, input, or

output) of each such node. As a rule of thumb, nodes are placed on the substrate to reflect

the geometry of the task (Clune et al., 2009; Drchal et al., 2009; Gauci and Stanley, 2008;

Stanley et al., 2009). That way, the connectivity of the substrate is a function of the task

structure.

For example, the sensors of an autonomous robot can be placed from left to right on the

substrate in the same order that they exist on the robot. Outputs for moving left or right can

also be placed in the same order, allowing HyperNEAT to understand from the outset the

correlation of sensors to effectors. In this way, knowledge about the problem geometry can

be injected into the search and HyperNEAT can exploit the regularities (e.g. adjacency, or

symmetry) of a problem that are invisible to traditional encodings. Yet a problem that has

endured with HyperNEAT is that the experimenter is left to decide how many hidden nodes

there should be and where to place them. That is, although the CPPN determines how to

connect nodes in a geometric space, it does not specify where the nodes should be. Before

ES-HyperNEAT, introduced in this dissertation, no automated solution to this problem had

yet been introduced, in part because it seems to require some kind of additional structure

or apparatus beyond the CPPN representation.

In answer to this challenge, I present the evolvable-substrate extension to HyperNEAT in

Chapter 5 of this dissertation, in which the placement and density of the hidden nodes do

20

not need to be set a priori. In fact, they are completely determined by implicit information

in the CPPN itself.

2.5 Evolution and Learning

Unlike the synaptic connections in living brains, the synaptic connections in ANNs produced

by NE are normally static, which may limit the adaptive dynamics the network can display

during its lifetime (Blynel and Floreano, 2002). While some tasks do not require the network

to change its behavior, many domains would benefit from online adaptation. In other words,

whereas evolution produces phylogenetic adaptation, learning gives the individual the pos-

sibility to react much faster to environmental changes by modifying its behavior during its

lifetime. For example, a robot that is physically damaged or altered should be able to adapt

to its new circumstances without the need to re-evolve its neurocontroller. In this way, when

the environment changes from what was encountered during evolution, adapting online is

often necessary to maintain performance. One contribution of this dissertation is to add this

capability to HyperNEAT.

There is much evidence that evolution and learning are both integral to the success of

biological evolution (Mayley, 1997; Nolfi and Floreano, 1999) and that lifetime learning

itself can help to guide evolution to higher fitness (Hinton and Nowlan, 1987).

21

Thus NE can benefit from combining these complementary forms of adaptation by evolving

ANNs with synaptic plasticity driven by local learning rules (Baxter, 1992; Floreano and

Urzelai, 2000; Stanley et al., 2003). Synaptic plasticity allows the network to change its

internal connection weights based on experience during its lifetime. It also resembles the

way organisms in nature, which possess plastic nervous systems, cope with changing and

unpredictable environments (Floreano and Urzelai, 2000; Niv et al., 2002; Soltoggio et al.,

2008).

The next section reviews the evolution of adaptive ANNs and details a model for neuromod-

ulated plasticity, which is a recent advance in plastic neurocontrollers.

2.5.1 Evolution of Adaptive ANNs

Researchers have been evolving adaptive ANNs for more than fifteen years. Early work often

focused on combining the built-in adaptive capabilities of backpropagation (Rumelhart et al.,

1986) with NE. For example, Nolfi and Parisi (1993, 1996) evolved self-teaching networks

that train a motor control network through backpropagation from the outputs of a teaching

subnetwork. In separate work, they evolved a network that learns through backpropagation

to predict what it would see after moving around in its environment (Nolfi et al., 1994).

Learning to predict the next state during the network’s lifetime was shown to enhance

performance in a foraging task. Interestingly, Chalmers (1990) evolved a global learning

22

rule (i.e. a rule that applies to every connection) and discovered that the evolved rule is

similar to the well-known delta rule used in backpropagation. Furthermore, McQuesten

and Miikkulainen (1997) showed that NE can benefit from parent networks teaching their

offspring through backpropagation.

Baxter (1992) performed early work on evolving networks with synaptic plasticity driven by

local learning rules, setting the stage for NE of adaptive ANNs. He evolved a very simple

network that could learn boolean functions of one value. Each connection had a rule for

changing its weight to one of two possible values. Baxter’s contribution was mainly to show

that local learning rules are sufficient to evolve an adaptive network. Floreano and Urzelai

(2000) later showed that the evolution of local (node-based) synaptic plasticity parameters

produces networks that can solve complex problems better than networks with fixed-weights.

In Floreano and Urzelai’s experiment, an adaptive network and a fully-connected network

were evolved to turn on a light by moving to a switch. After the light turned on, the networks

had to move onto a gray square. Adaptive networks were compared to fixed-weight networks.

Each connection in the adaptive network included a learning rule and a learning rate. The

fixed-weight network only encoded static connection weights. The sequence of two actions

proved difficult to learn for the fixed-weight network because the network could not adapt

to the sudden change in goals after the light was switched on. Fixed-weight networks tended

to circle around the environment, slightly attracted by both the light switch and the gray

square. Adaptive networks, on the other hand, completely changed their trajectories after

23

turning on the light, reconfiguring their internal weights to tackle the problem of finding the

gray square. This landmark result established the promise of evolving adaptive ANNs and

that in fact adaptive networks can sometimes evolve faster than static networks. The local

learning rules in the evolved networks facilitated the policy transition from one task to the

other.

Adaptive ANNs have also been successfully evolved to simulate robots in a dangerous forag-

ing domain (Stanley et al., 2003). Although this work also showed that recurrent fixed-weight

networks can be more effective and reliable than adaptive Hebbian controllers in some do-

mains, more recent studies (Niv et al., 2002; Soltoggio et al., 2008, 2007) suggest that both

network types reach their limits when more elaborate forms of learning are needed. For

example, classical conditioning seems to require mechanisms that are not present in most

current network models. To expand to such domains, the adaptive ES-HyperNEAT approach

presented in Chapter 6 will control synaptic plasticity through neuromodulation, which is

explained in the next section.

2.5.2 Evolution of Neuromodulated Plasticity

In the plastic ANNs presented in the previous section (e.g. Floreano and Urzelai 2000; Stanley

et al. 2003), the internal synaptic connection strengths change following a Hebbian learning

rule that modifies synaptic weights based on pre- and postsynaptic neuron activity. The

24

x y

m
Modulatory Neuron

Figure 2.3: Neuromodulated Plasticity. The weight of the connection between
standard neurons n1 and n2 is modified by a Hebbian rule. Modulatory neuron m
determines the magnitude of the weight change.

generalized Hebbian plasticity rule (Niv et al., 2002) takes the following form:

∆w = η · [Axy +Bx+ Cy +D], (2.5)

where η is the learning rate, x and y are the activation levels of the presynaptic and post-

synaptic neurons, and A–D are the correlation term, presynaptic term, postsynaptic term,

and constant, respectively.

In a neuromodulated network, a special neuromodulatory neuron can change the degree

of potential plasticity between two standard neurons in response to their activation levels

(figure 2.3). In addition to its standard activation value aj, each neuron j in such a network

also computes its modulatory activation mj:

aj =
∑
i∈Std

wij · oi, (2.6)

mj =
∑

i∈Mod

wij · oi, (2.7)

25

where wij is the connection strength between presynaptic neuron i and postsynaptic neuron

j and oi is calculated as oi(ai) = tanh(ai/2). The weight between neurons i and j then

changes following the mi-modulated plasticity rule

∆wij = tanh(mj/2) · η · [Aoioj +Boi + Coj +D]. (2.8)

The benefit of adding modulation is that it allows the ANN to change the level of plasticity

on specific neurons at specific times. That is, it becomes possible to decide when learning

should stop and when it should start. This property seems to play a critical role in regulating

learning behavior in animals (Carew et al., 1981) and neuromodulated networks have a clear

advantage in more complex dynamic, reward-based scenarios: Soltoggio et al. (2008) showed

that networks with neuromodulated plasticity significantly outperform both fixed-weight and

traditional adaptive ANNs without neuromodulation in a double T-Maze learning domain,

and display nearly optimal learning performance.

However, evolving adaptive controllers for more complicated tasks has proven difficult in

part because learning to learn can be highly deceptive: Reaching a mediocre fitness through

non-adaptive behavior is often relatively easy, but any further improvement requires an

improbable leap to sophisticated adaptive behavior. Therefore the next section reviews a

method called novelty search (Lehman and Stanley, 2008, 2011b), which abandons objective-

based fitness and instead simply searches only for novel behavior, which avoids deception

26

entirely. The advantages of training plastic ANNs with novelty search in particular are then

established in Chapter 3.

2.6 Novelty Search

The problem with the objective fitness function in evolutionary computation is that it does

not necessarily reward the intermediate stepping stones that lead to the objective. The more

ambitious the objective, the harder it is to identify a priori these stepping stones.

A potential solution to this problem is novelty search, which is a recent method for avoiding

deception based on the radical idea of ignoring the objective (Lehman and Stanley, 2008,

2011b). The idea is to identify novelty as a proxy for stepping stones. That is, instead

of searching for a final objective, the learning method is rewarded for finding any behavior

whose functionality is significantly different from what has been discovered before. Thus,

instead of an objective function, search employs a novelty metric. That way, no attempt

is made to measure overall progress. In effect, such a process gradually accumulates novel

behaviors.

Although it is counterintuitive, novelty search was actually more effective at finding the

objective than a traditional objective-based fitness function in a deceptive navigation do-

main that requires an agent to navigate through a maze to reach a specific goal location

27

(Lehman and Stanley, 2008; Mouret, 2009), in evolving biped locomotion (Lehman and

Stanley, 2011b), and in evolving a program for an artificial ant benchmark task (Lehman

and Stanley, 2010a).

To implement novelty search in an evolutionary algorithm, the fitness function has to be

replaced by a novelty metric, which measures the difference between the behaviors of two in-

dividuals. Once the novelty metric is defined, the novelty of a new behavior can be computed

by comparing it to the individuals of the current population and an archive of individuals

whose behaviors were highly novel when they first appeared. The farther away the behavior

of a new individual is from the rest of the population in the space of unique behaviors the

higher should be its novelty. Thus novelty at point x in the behavior space can be measured

based on the spareness ρ of behaviors at that point in the novelty space and calculated as

the average distance to its k-nearest neighbors

ρ(x) =
1

k

k∑
i=1

dist(x, µi), (2.9)

where µi is the ith-nearest neighbor of x with respect to the novelty metric dist. If novelty

is above some minimal threshold ρmin, then the individual is entered into the permanent

archive that characterizes the distribution of prior highly novel behaviors.

In summary, novelty search depends on the following four main concepts:

• Individuals’ behaviors are characterized so that they can be compared.

28

• The novelty of an individual is computed with respect to observed behaviors of other

individuals and not others’ genotypes.

• Novelty search replaces the fitness function with a novelty metric that computes the

sparseness at any point in the novelty space.

• An archive of past individuals is maintained whose behaviors were highly novel.

The next chapter describes the application of novelty search to the deceptive task of learning

to learn.

29

CHAPTER 3
ESTABLISHING THE POTENTIAL ADVANTAGE OF
EVOLVING PLASTIC NEURAL NETWORKS WITH

NOVELTY SEARCH

This chapter analyzes the inherent deceptiveness in reinforcement learning problems and

shows how novelty search (Lehman and Stanley, 2008, 2011b) can avoid such deception by

exploiting intermediate stepping stones to guide its search. The experiments in this chapter,

which are published in the Adaptive Behavior journal (Risi et al., 2010a), are a major

extension of work first published at the Genetic and Evolutionary Computation Conference

(GECCO 2009) (Risi et al., 2009). While these are not the main contributions of this

dissertation, which are presented in later chapters, this chapter identifies novelty search as

a new tool for evolving plastic neural networks (which are also a later focus) because such

experiments are often thwarted by deception. For example, in Chapter 7 this technique helps

to evolve solutions in a challenging legged locomotion domain that requires adaptation. Also

importantly, to focus on the problem of deception in reinforcement learning domains, the

ANNs in this chapter are evolved by NEAT, while the ANNs in the following chapters are

evolved by more sophisticated indirect encoding extensions of HyperNEAT.

30

3.1 The Deceptive Trap of Learning to Learn

Deception in domains that require adaptation is particularly pathological for two primary

reasons: (1) Reaching a mediocre fitness through non-adaptive behavior is often relatively

easy, but any further improvement requires an improbable leap to sophisticated adaptive

behavior, and (2) only sparse feedback on the acquisition of adaptive behavior is available

from an objective-based performance measure. Because it is easier at first to improve fitness

without evolving the ability to learn, objective functions may sometimes exploit domain-

dependent static (i.e. non-adaptive) heuristics that can lead them further away from the

adaptive solution in the genotypic search space, as analysis in this chapter will confirm.

Because of the problem of deception in adaptive domains, prior experiments in evolving

plastic ANNs have needed to be carefully designed to ensure that no non-adaptive heuristics

exist that could potentially lead evolution prematurely astray. This awkward requirement

has significantly limited the scope of domains amenable to adaptive evolution and stifled

newcomers from entering the research area. To remedy this situation and open up the range

of problems amenable to evolving adaptation, this chapter shows that the novelty search

algorithm (Section 2.6; Lehman and Stanley 2008, 2011b), which abandons the traditional

notion of objective-based fitness, circumvents the deception inherent in adaptive domains.

To demonstrate the potential of this approach, the following section compares novelty search

to fitness-based evolution in a dynamic, reward-based single T-Maze scenario first studied in

the context of NE by Blynel and Floreano (2003) and further investigated by Soltoggio et al.

31

(2008) to demonstrate the advantage of neuromodulated plasticity. In this scenario, the

reward location is a variable factor in the environment that the agent must learn to exploit.

Because the aim of this chapter is to show that novelty search solves particular difficult

problems in the evolution of plastic networks and it has been shown that neuromodulation

(Section 2.5.2) is critical to those domains (Soltoggio et al., 2008), all evolved ANNs employ

this most effective form of plasticity. Additional experiments in the more complicated double

T-Maze domain and a bee foraging task further test the hypothesis that novelty search can

effectively overcome the deception inherent in many dynamic, reward-based scenarios.

3.2 Extending NEAT to Evolve Neuromodulated ANNs

Few modifications to the standard NEAT algorithm are required also to encode neuromod-

ulated plasticity. NEAT’s genetic encoding is augmented with a new modulatory neuron

type and each time a node is added through structural mutation, it is randomly assigned a

standard or modulatory role. The neuromodulatory dynamics follow equations 2.6–2.8.

The coefficients of the generalized Hebbian learning rule used by all evolved neuromodulated

networks in the T-Maze domain are A = 0.0, B = 0.0, C = −0.38, D = 0.0 and η = −94.6,

resulting in the following mi-modulated plasticity rule:

∆wji = tanh(mi/2) · 35.95y. (3.1)

32

These values worked well for a neuromodulated ANN in learning problems described by

Soltoggio et al. (2008). Therefore, to isolate the effect of evolving based on novelty versus

fitness, they are fixed at these values in the experiments in this chapter. However, modulatory

neurons still affect the learning rate at Hebbian synapses as usual. For a more detailed

description of the implications of different coefficient values for the generalized Hebbian

plasticity rule, see Niv et al. (2002).

3.3 The Discrete T-Maze Domain

The first domain is based on experiments performed by Soltoggio et al. (2008) on the evo-

lution of neuromodulated networks for the T-Maze learning problem. T-Mazes are often

studied in the context of operant conditioning of animals; they are also studied to assess

the ability of plastic ANNs (Blynel and Floreano, 2003; Soltoggio et al., 2008). This domain

is ideal to test the hypothesis that novelty search escapes deception in adaptive domains

because it is well-established from prior work (Blynel and Floreano, 2003; Dürr et al., 2008;

Soltoggio et al., 2008, 2007) and can be adjusted to be more or less deceptive, as is done in

the experiments presented here. Furthermore, it represents a typical reward-based dynamic

scenario (i.e. the agent’s actions that maximize reward intake can change during its lifetime),

where optimal performance can only be obtained by an adaptive agent. Thus the results

33

Figure 3.1: The Discrete T-Maze. In this depiction, high reward is located on the
left and low reward is on the right side, but these positions can change over a set of
trials. The goal of the agent is to navigate to the position of the high reward and
back home to its starting position. The challenge is that the agent must remember the
location of the high reward from one trial to the next.

presented here should also provide more insight into the potential deceptiveness in similar

learning problems.

The single T-Maze (Figure 3.1) consists of two arms that either contain a high or low reward.

The agent begins at the bottom of the maze and its goal is to navigate to the reward position

and return home. This procedure is repeated many times during the agent’s lifetime. One

such attempted trip to a reward location and back is called a trial. A deployment consists of

a set of trials (e.g. 20 trials in the single T-Maze experiments in this chapter are attempted

over the course of a deployment). The goal of the agent is to maximize the amount of reward

collected over deployments, which requires it to memorize the position of the high reward

in each deployment. When the position of the reward sometimes changes, the agent should

alter its strategy accordingly to explore the other arm of the maze in the next trial. In

Soltoggio’s original experiments (Soltoggio et al., 2008), the reward location changes at least

once during each deployment of the agent, which fosters the emergence of learning behavior.

34

However, the deceptiveness of this domain with respect to the evolution of learning can be

increased if the reward location is not changed in all deployments in which the agent is

evaluated. For example, an individual that performs well in the 99 out of 100 deployments

wherein learning is not required and only fails in the one deployment that requires learning

will most likely score a high fitness value. Thus such a search space is highly deceptive to

evolving learning and the stepping stones that ultimately lead to an adaptive agent will not

be rewarded. The problem is that learning domains often have the property that signifi-

cant improvement in fitness is possible by discovering hidden heuristics that avoid lifetime

adaptation entirely, creating a pathological deception against learning to learn.

If adaptation is thus only required in a small subset of deployments, the advantage of an

adaptive individual over a non-adaptive individual (i.e. always navigating to the same side)

in fitness is only marginal. The hypothesis is that novelty search should outperform fitness-

based search with increased domain deception.

It is important to note that the agent acts in a discrete grid-like world in the T-Maze

experiments presented in this chapter and also in Chapter 4; the agent moves at a constant

pace with only a limited number of available discrete actions (e.g. turn left, turn right).

Chapter 6 will investigate a more realistic scenario in which the agent has to operate in a

continues T-Maze domain that requires it to develop obstacle avoidance together with the

ability to adapt its behavior to changing reward locations. This later advance will be enabled

by adaptive ES-HyperNEAT’s ability to evolve more complex plastic ANNs.

35

3.4 T-Maze Experiment

To compare the performance of NEAT with fitness-based search and NEAT with novelty

search, each agent is evaluated on ten deployments, each consisting of 20 trials. The number

of deployments in which the high reward is moved after ten trials varies among one (called

the 1/10 scenario), five (called the 5/10 scenario), and ten (called the 10/10 scenario),

effectively controlling the level of deception. The high reward always begins on the left side

at the start of each deployment.

Note that all deployments are deterministic, that is, a deployment in which the reward does

not switch sides will always lead to the same outcome with the same ANN. Thus the number

of deployments in which the reward switches is effectively a means to control the proportional

influence of adaptive versus non-adaptive deployments on fitness and novelty. The question

is whether the consequent deception impacts novelty as it does fitness.

Of course, it is important to note that a population rewarded for performance in the 1/10

scenario would not necessarily be expected to be attracted to a general solution. At the same

time, a process like novelty search that continues to find new behaviors should ultimately

encounter the most general such behavior. Thus the hypothesized advantage of novelty search

in such scenarios follows naturally from the dynamics of these different types of search.

Figure 3.2 shows the inputs and outputs of the ANN (following Soltoggio et al. (2008)). The

Turn input is set to 1.0 when a turning point is encountered. M-E is set to 1.0 at the end of

36

Figure 3.2: T-Maze ANN Topology. The network has four inputs, one bias, and
one output neuron. Turn is set to 1.0 at a turning point location. M-E is set to
1.0 at the end of the maze, and Home is set to 1.0 when the agent returns to the
home location. The Reward input returns the level of reward collected at the end of
the maze. The bias neuron emits a constant 1.0 activation that can connect to other
neurons in the ANN. Network topology is evolved by NEAT.

the maze and Home becomes 1.0 when the agent successfully navigates back to its starting

position. The Reward input is set to the amount of reward collected at the maze end. An

agent crashes if it does not (1) maintain a forward direction (i.e. activation of output neuron

between −0.3 and 0.3) in corridors, (2) turn either right (o > 0.3) or left (o < −0.3) when it

encounters the junction, or (3) make it back home after collecting the reward. If the agent

crashes then the current trial is terminated.

The fitness function for fitness-based NEAT (which is identical to Soltoggio et al. 2008) is

calculated as follows: Collecting the high reward has a value of 1.0 and the low reward is

worth 0.2. If the agent fails to return home by taking a wrong turn after collecting a reward

then a penalty of 0.3 is subtracted from fitness. On the other hand, 0.4 is subtracted if

the agent does not maintain forward motion in corridors or does not turn left or right at a

37

junction. The total fitness of an individual is determined by summing the fitness values for

each of the 20 trials over all ten deployments.

Novelty search on the other hand requires a novelty metric to distinguish between different

behaviors. The novelty metric for this domain distinguishes between learning and non-

learning individuals and is explained in more detail in the next section.

3.4.1 Measuring Novelty in the Single T-Maze

The aim of the novelty metric is to measure differences in behavior. In effect, it determines

the behavior-space through which the search explores. Because the goal of this chapter is to

evolve adaptive individuals, the novelty metric must distinguish a learning agent from a non-

learning agent. Thus it is necessary to characterize behavior so that different such behaviors

can be compared. The behavior of an agent in the T-Maze domain is characterized by a series

of trial outcomes (i.e. 200 trial outcomes for ten deployments with 20 trials each). To observe

learning behavior, and to distinguish it from non-learning behavior, it is necessary to run

multiple trials in a single lifetime, such that the agent’s behavior before and after a reward

switch can be observed. Importantly, the behavior space in the T-Maze domain is therefore

significantly larger than in prior experiments (Lehman and Stanley, 2008), effectively testing

novelty search’s ability to succeed in a high-dimensional behavior space of 200 dimensions

(versus only two dimensions in Lehman and Stanley (2008)). It is important to note that

38

Figure 3.3: The T-Maze Novelty Metric. Each trial is characterized by (1) the
amount of collected reward (2) whether the agent crashed. The pairwise distances
(shown at right) among the five possible trial outcomes, NY , LY , HY , LN , and HN ,
depend on their behavioral similarities.

the dimensionality of the behavior space is not the only possible characterization of the

dimensionality of the problem. For example, the dimensionality of the solution ANN is also

significantly related to the difficulty of the problem.

Each trial outcome is characterized by two values: (1) the amount of reward collected (high,

low, none) and (2) whether or not the agent crashed. These outcomes are assigned different

distances to each other depending on how similar they are (Figure 3.3). In particular, an

agent that collects the high reward and returns home successfully without crashing (HN)

should be more similar to an agent that collects the low reward and also returns home

(LN) than to one that crashes without reaching any reward location (NY). The novelty

distance metric distnovelty is ultimately computed by summing the distances between each

trial outcome of two individuals over all deployments.

Figure 3.4 depicts outcomes over several trials of three example agents. The first agent

always alternates between the left and the right T-Maze arm, which leads to oscillating

39

Figure 3.4: Three T-Maze Sample Behaviors. These learning and non-learning
individuals all exhibit distinguishable behaviors when compared over multiple trials.
Agent three achieves the desired adaptive behavior. The vertical line indicates the
point in time that the position of the high reward changed. While agents 1 and 2 look
the same to fitness, novelty search notices their difference, as the distance calculation
(inset line between agents 1 and 2) shows.

low and high rewards. The second agent always navigates to the left T-Maze arm. This

strategy results in collecting the high reward in the first four trials and then collecting the

low reward after the reward switch. The third agent exhibits the desired learning behavior

and is able to collect the high reward in seven out of eight trials. (One trial of exploration

is needed after the reward switch.) Interestingly, because both agents one and two collect

the same amount of high and low reward, they achieve the same fitness, making them in-

distinguishable to fitness-based search. However, novelty search discriminates between them

because distnovelty(agent1, agent2) = 4.0 (Figure 3.4). Recall that this behavioral distance is

part of the novelty metric (Equation 2.9), which replaces the fitness function and estimates

the sparseness at a specific point in behavior space.

Importantly, fitness and novelty both use the same information (i.e. the amount of reward

collected and whether or not the agent crashed) to explore the search space, though in a

completely different way. Thus the comparison is fair.

40

3.4.2 Generalization Performance

An important goal of the comparison between fitness and novelty is to determine which

learns to adapt most efficiently in different deployment scenarios, e.g. 1/10, 5/10, and 10/10.

Thus it is important to note that, because performance on different scenarios will vary based

on the number of trials in which the reward location switches, for the purpose of analyzing

the results there is a need for an independent measure that reveals the overall adaptive

capabilities of each individual.

Therefore, to test the ability of the individuals to generalize independently of the number of

deployments in which the position of the high reward changes, they are tested for 20 trials

on each of two different initial settings: (1) high reward starting left and (2) high reward

starting right. In both cases, the position of the high reward changes after 10 trials. An

individual passes the generalization test if it can collect the high reward and return back

home in at least 18 out of 20 trials from both initial positions. Two low reward trials in each

setting are necessary to explore the T-Maze at the beginning of each deployment and when

the position of the high reward switches.

The generalization measure does not necessarily correlate to fitness. An individual that re-

ceives a high fitness in the 1/10 scenario can potentially perform poorly on the generalization

test because it does not exhibit adaptive behavior. Nevertheless, generalization performance

does follow a general upward trend over evaluations and reveals the ultimate quality of solu-

41

tions (i.e. individuals passing the generalization test would receive high fitness scores in all

scenarios).

The number of nearest neighbors for the novelty search algorithm is 15 (following Lehman and

Stanley 2008, 2011b). The novelty threshold is 2.0. This threshold for adding behaviors to the

archive dynamically changes every 1,500 evaluations. If no new individuals are added during

that time the threshold is lowered by 5%. It is raised by 20% if the number of individuals

added is equal to or higher than four. The novelty scores of the current population are

reevaluated every 100 evaluations to keep them up to date (the archive does not need to be

reevaluated). Connection weights range within [-10, 10]. These parameter values are shared

by all experiments in this chapter. Additional experimental parameters for this experiment

and all other experiments in this dissertation are given in the Appendix.

3.5 Single T-Maze Results

Because the aim of the experiment is to determine how quickly a general solution is found

by fitness-based search and novelty search, an agent that can solve the generalization test

described in Section 3.4.2 counts as a solution.

Figure 3.5 shows the average performance (over 20 runs) of the current best-performing

individuals on the generalization test across evaluations for novelty search and fitness-based

42

Figure 3.5: Comparing Generalization of Novelty Search and Fitness-based
Search. The change in performance (calculated like fitness) over evaluations on the
generalization test is shown for NEAT with novelty search and fitness-based search in
the 1/10 and 10/10 scenarios. All results are averaged over 20 runs. The main result
is that novelty search learns a general solution significantly faster.

search, depending on the number of deployments in which the reward location changes.

Novelty search performs consistently better in all scenarios. Even in the 10/10 domain that

resembles the original experiment (Soltoggio et al., 2008), it takes fitness significantly longer

to reach a solution than novelty search. The fitness-based approach initially stalls, followed

by gradual improvement, whereas on average novelty search rises sharply from early in the

run.

Figure 3.6 shows the average number of evaluations (over 20 runs) that it took fitness-based

and novelty-based NEAT to solve the generalization test in the 1/10, 5/10, and 10/10 sce-

narios. If no solution was found within the initial 125,000 evaluations, the current simulation

was restarted (i.e. a new run was initiated). This procedure was repeated until a solution

was found, counting all evaluations over all restarts.

43

Figure 3.6: Average Evaluations to Solution for Novelty Search and Fitness-
based Search. The average number of evaluations over 20 runs that it took novelty
search and fitness-based search to solve the generalization test is shown. Novelty
search performs significantly better in all scenarios and fitness-based search performs
even worse when deception is high. Interestingly, novelty search performance does not
degrade at all with increasing deception.

Both novelty and fitness-based NEAT were restarted three times out of 20 runs in the

10/10 scenario. Fitness-based search took on average 90,575 evaluations (σ = 52, 760) while

novelty search was almost twice as fast at 48,235 evaluations on average (σ = 55, 638). This

difference is significant (p < 0.05). In the more deceptive 1/10 scenario, fitness-based search

had to be restarted six times and it took 124,495 evaluations on average (σ = 81, 789) to

find a solution. Novelty search only had to be restarted three times and was 2.7 times faster

(p < 0.001) at 45,631 evaluations on average (σ = 46, 687).

Fitness-based NEAT performs worse with increased domain deception and is 1.4 times slower

in the 1/10 scenario than in the 10/10 scenario. It took fitness on average 105,218 evaluations

(σ = 65, 711) in the intermediate 5/10 scenario, which is in-between its performance on

44

the 1/10 and 10/10 scenarios, confirming that deception increases as the number of trials

requiring adaptation decreases. In contrast, novelty search is not significantly affected by

increased domain deception: The performance differences among the 1/10, 5/10, and 10/10

scenarios is insignificant for novelty search, confirming its immunity to deception.

Recall that individuals cannot avoid spending at least two trials (when the position of the

reward switches for both initial settings; Section 3.4.2) collecting the low reward to pass the

generalization test. However, the action after collecting the low reward (e.g. crashing into a

wall or taking a wrong turn on the way home) is not part of the criteria for passing the test.

To ensure that stricter criteria do not change the results, a second experiment consisting of

50 independent runs was performed in which the agent also had to return back home after

collecting the low reward. That way, the agent always must return home. It took novelty

search on average 191,771 evaluations (σ = 162, 601) to solve this harder variation while

fitness-based search took 267,830 evaluations (σ = 198, 455). In this harder scenario, both

methods needed more evaluations to find a solution but the performance difference is still

significant (p < 0.05).

Interestingly, novelty search not only outperforms fitness-based search in the highly deceptive

1/10 scenario but also in the intermediate 5/10 scenario and even in the 10/10 scenario, in

which the location of the reward changes every deployment. There is no obvious deception in

the 10/10 scenario (which resembles Soltoggio’s original experiment; Soltoggio et al. (2008)).

However, the recurring plateaus in fitness common to all scenarios (Figure 3.5) suggest a

45

general problem for evolving learning behavior inherent to dynamic, reward-based scenarios.

The next section addresses this issue in more depth.

3.6 Analysis of Deception in the Single T-Maze

Why does novelty search outperform fitness-based search even when the position of the high

reward changes in every deployment? To answer this question the analysis in this section

is based on runs in a seemingly non-deceptive setting: Every individual is evaluated in one

deployment consisting of 20 trials in which the position of the high reward switches after

ten trials. The high reward is always located on the left side of the maze at the beginning

of each deployment and an individual counts as a solution if it can collect at least 18 out

of 20 high rewards and navigate back home. This reduction in deployments combined with

the relaxed solution criteria simplifies an in-depth analysis (e.g. by yielding smaller novelty

archives that are easy to visualize) and is analogous to the 10/10 scenario. The aim is to

uncover the hidden source of deception and how exactly novelty search avoids it.

One interesting way to analyze different evolutionary search techniques is to examine what

they consider best, i.e. which individuals have the highest chances to reproduce. For novelty

search, these are the individuals that display the most novel behavior and therefore enter the

archive. For fitness-based search, the most rewarded are the champions, i.e. the behaviors

with the highest fitness found so far. Although the probabilistic nature of the evolutionary

46

Figure 3.7: Novelty Search Archive and Fitness Champions. Behaviors archived
by novelty search and the highest-fitness-so-far found by fitness-based search dur-
ing evolution are shown together with their corresponding fitness and evaluation at
which they were discovered. Agents are evaluated on 20 trials and the reward location
switches after 10 trials. Arcs (at top) connect behaviors that were highly rewarded by
both methods. Novelty search consistently archives new behaviors while fitness-based
search improves maximum fitness only four times during the whole evolutionary run.
Many of the behaviors found by novelty search would receive the same fitness, which
means they are indistinguishable to fitness-based search. The main result is that a
higher number of promising directions are explored by novelty search.

search means that such individuals are not guaranteed to produce offspring, they represent

the most likely to reproduce.

Highlighting the dramatic difference between these contrasting reward systems, Figure 3.7

shows the behaviors archived by novelty search and the most fit individuals (when they first

appear) found by fitness-based search during a typical evolutionary run. It took novelty

47

search 27,410 evaluations to find a solution in this scenario while fitness-based search took

almost twice as long with 49,943 evaluations. While novelty search finds 30 behaviors that are

novel enough to enter the archive, fitness only discovers five new champions during the whole

evolutionary run. A look at the fitness values of the archived novel behaviors reveals that

many of them collapse to the same score, making them indistinguishable to fitness-based

search (also see Section 3.4.1 for discussion of such conflation). For example, the second

through fifth archived behaviors in Figure 3.7, which represent different combinations of ten

HY (high reward/crash) and ten LY (low reward/crash) events, all receive the same fitness.

However, they are all highly rewarded by novelty search at the time they are discovered,

which places them into the archive.

In the first 40,429 evaluations, fitness-based search does not discover any new champions,

giving it little information about the direction in which the search should proceed. On the

other hand, novelty search constantly produces novel behaviors and takes these behaviors

and the current population into account to guide the search.

A visualization technique can help to gain a deeper understanding of how the two approaches

navigate the high-dimensional genotypic search space. The most common technique to visu-

alize evolution is to plot fitness over evaluations; although this technique reveals information

about the quality of the solution found so far, it provides no information on how the search

proceeds through the high-dimensional search space. Various methods have been proposed

to illuminate the trajectory of the search (Barlow et al., 2002; Kim and Moon, 2003; Vas-

48

silev et al., 2000), most of which focus on visualizing the fitness landscape to gain a deeper

understanding of its ruggedness.

However, the aim of this analysis is to visualize how the genotypes produced by both search

methods traverse the search space in relation to each other. Two potential such visualiza-

tion techniques are Principal Component Analysis (PCA) (Kittler and Young, 1973) and

Sammon’s Mapping (Sammon, 1969). Both methods provide a mapping of high-dimensional

points in genotypic space (<p) to points in <2. However, while PCA tries to account for the

most variance in the data at expense to their original Euclidean distances, Sammon’s Map-

ping aims to preserve the distances of the genotypes in the mapping to a lower dimension

(Dybowski et al., 1996). Therefore, Sammon’s mapping is chosen for this analysis because

the distances between genotypes produced by fitness-based search and novelty search in the

two dimensional visualization should be as close to their original distances as possible to un-

derstand how they relate. This approach facilitates the comparison between different regions

of the search space that both methods explore.

Sammon’s mapping maps a high-dimensional dataset onto a lower number of dimensions

(typically two or three-dimensions), allowing a better understanding of the underlying struc-

ture of data. The mapping minimizes the stress measure E, which is the discrepancy between

the high dimensional distances δij between all objects i and j and the resulting distances dij

49

between the data points in the lower dimension:

E =
1∑n−1

i=1

∑n
j=i+1 δij

n−1∑
i=1

n∑
j=i+1

(δij − dij)2

δij
. (3.2)

The stress measure can be minimized by a steepest descent procedure in which the resulting

value of E is a good indicator of the quality of the projection.

For this study, Sammon’s mapping projects high-dimensional genotypes produced over the

course of evolution onto a two-dimensional space. The output of the mapping are x and y co-

ordinates for every genotype that minimize stress measure E. The original high-dimensional

distance δij between two genotypes is based on NEAT’s genome distance (Equation 2.4),

which is a good indicator of the similarity of two network encodings. The distance dij be-

tween two objects i and j in the visualization space is calculated by their Euclidean distance√
(ix − jx)2 + (iy − jy)2. To make the two-dimensional visualization clearer, not all geno-

types created during evolution are part of the Sammon’s mapping; instead, only those are

shown that have either (1) a genome distance δ greater than 9.0 compared to already recorded

genotypes or (2) have a distance smaller than 9.0 but display a different behavior (based on

the novelty metric described in Section 3.4.1). These criteria ensure that a representative

selection of genotypes is shown that is still sparse enough to be visible in the projection onto

two dimensions.

Figure 3.8 shows a Sammon’s mapping of 882 genotypes; 417 were found by novelty search

and 465 were found by fitness-based search during a typical evolutionary run of each. In this

50

Figure 3.8: Combined Sammon’s Mapping. The Sammon’s mapping of 417 geno-
types found by novelty search (gray) and 465 found by fitness-based search (black)
is shown. The size of each mark corresponds to the fitness of the decoded network.
Larger size means higher fitness. Fitness-based search covered more of the genotypic
search space than novelty search because it searches through many identical behaviors
(though different genotypes) when it is stuck at a local optimum. Four important in-
dividuals are identified: the final solution found by fitness-based search (A), a network
that collects the high reward in the first ten trials and then the low reward (B), a
network that collects the low reward in 18/20 trials (C) and the final solution found
by novelty search (D). Although A and C are close they have significantly different
fitnesses. Thus while the discovery of C could potentially serve as a stepping stone for
novelty search, fitness-based search is led astray from the final solution. Points B and
D are discussed in the text.

example, novelty search found a solution after 19,524 evaluations while it took fitness-based

search 36,124 evaluations. The low stress measure E = 0.058 indicates that the original

genotypic distances have been conserved by the mapping. Genotypes that are close to each

other in the two-dimensional output space are also close to each other in genotype space.

51

The mapping reveals that both methods discover different regions of high fitness and that the

majority of behaviors simply crash without collecting any rewards (denoted by the smallest

points). The main result is that while novelty search (light gray) discovers a genotypic region

of high fitness and then quickly reaches the solution (i.e. a behavior that can collect the high

reward in at least 18 out of 20 trials, denoted by D in Figure 3.8), fitness-based search

(black) needs to cover more of the genotypic search space because it searches through many

identical behaviors (though different genotypes) when it is stuck at a local optimum.

Interestingly, an intermediate solution found by fitness-based search discovers a behavior

that collects 18 out of 20 low rewards and returns back home (denoted by C in Figure 3.8).

The network that produces this behavior and the final solution (A) are close in genotypic

space though they have very different fitness values (178 vs. 50). Thus while the discovery

of this behavior could potentially serve as a stepping stone to finding the final solution for

novelty search, rather than helping fitness it actually deceives it. Agents that collect the

high reward in 10 out of 20 trials and return back home (B in Figure 3.8) receive a higher

fitness than C-type agents even though they are actually farther away from the final solution

in genotype space and therefore might lead fitness search astray.

Figure 3.9 examines the temporal progression of the two search methods in more detail by

showing the Sammon’s mapping from Figure 3.8 at different stages of evolution in the corre-

sponding run. For each evaluation (i.e. snapshot in time) the mapping shows the genotypes

52

found so far together with the behaviors archived by novelty search and the champions found

by fitness-based search.

Novelty search explores a wider sampling of the search space than fitness-based search during

the first 1,000 evaluations. After that, both methods explore similar behaviors until novelty

search finds a novel behavior at evaluation 13,912 that collects the low reward and returns

back home in the first ten trials and then collects the high reward and returns back home in

the successive trials. The ability to successfully return back home after collecting a reward

turns out to be a stepping stone to regions of higher fitness. It opens up a wide range of

possible new behaviors that lead novelty search to discover 18 new archive members between

evaluations 15,000 and 19,520. Interestingly, all the underlying network encodings for these

behaviors are close to each other in genotypic space even though they produce significantly

different behaviors. Finally, novelty search discovers a solution after 19,524 evaluations.

In contrast, fitness-based search is not able to exploit the same set of behaviors as poten-

tial stepping stones because many collapse to the same fitness. While fitness-based search

discovers two new champions in the first 1,000 evaluations, it does not discover the next

until evaluation 19,520. This more fit behavior is located within a cluster of high fitness

genotypes close to the final solution. However, it takes fitness-based search another 17,439

evaluations to discover that solution. The problem again is that fitness-based search is de-

ceived by genotypes that have a higher fitness than those that are actually closer to the

solution (Figure 3.8).

53

Figure 3.9: Sammon’s Mapping of Novelty and Fitness-based Search at Dif-
ferent Stages of Evolution. A mapping of 882 recorded genotypes – 470 produced
by novelty search (second column) and 465 by fitness-based search (fourth column) – is
shown at seven different time steps together with the corresponding behavior charac-
terizations added to the archive by novelty search and those of the champions found by
fitness-based search. Larger markers in the Sammon’s mapping denote higher fitness
received by the decoded network. The archived behaviors found by novelty search and
the champions found by fitness-based search are connected to show the progression of
each search. The magnification (bottom left) of the novelty mapping shows a region
of the genotypic space with many novel behaviors that have small genotypic distances
to each other. Novelty search finds a solution significantly faster than fitness-based
search by exploiting intermediate stepping stones to guide the search.

54

(a) Fitness-based search (b) Novelty search

Figure 3.10: Distribution of Fitness for Novelty and Fitness-based Search for
a Typical Run. The fitness values for fitness-based search (a) and novelty search
(b) both have three peaks in both histograms. There are other values, but they are
relatively very rare. Thus many of the genotypes collapse to the same few fitness values,
suggesting a lack of intermediate stepping stones for a fitness-based search method.

In a sense, novelty search proceeds more systematically, discovering a region of novel behav-

iors and then discovering the final solution in fewer evaluations than fitness-based search by

exploiting intermediate stepping stones to guide the search. In fact, the number of archived

behaviors is always higher than the number of new champions found by fitness across all

runs.

To gain a better understanding of the fitness landscape in this domain, Figure 3.10 shows

histograms of fitness values for individuals discovered by novelty and fitness-based search in

a typical run. The histograms are normalized so that the area sum is one. Interestingly, the

vast majority of behaviors (for novelty and fitness-based search) receive one of three different

fitness values resulting in three peaks in each distribution. In effect, many behaviors receive

55

the same fitness, which is another indicator of the lack of intermediate stepping stones and

the absence of a fitness gradient in the T-Maze domain. Moreover, the majority of behaviors

(61% for fitness and 88% for novelty) simply crash without collecting any reward, suggesting

that the encoded networks are brittle to small mutations.

Overall, the analysis in this section shows that novelty search is able to return more in-

formation about how behavior changes throughout the search space. It finds a solution

significantly faster than fitness-based search by exploiting intermediate stepping stones to

guide its search. Interestingly, genotypes that are potential stepping stones for novelty search

can lead fitness-based search astray if fitness does not correlate with distance to the final

solution (Figure 3.8).

3.7 Additional Experiments

To further demonstrate novelty search’s ability to efficiently evolve plastic ANNs, two sub-

stantially more complex scenarios are investigated, which are explained in the next sections.

56

Figure 3.11: The Double T-Maze. The maze includes two turning points and four
maze endings. In this depiction, high reward is located at the top-left of the maze, but
its position can change over a set of trials. The goal of the agent is to navigate to the
position of the high reward and remember that location from one trial to the next.

3.7.1 Discrete Double T-Maze

The double T-Maze (Figure 3.11) includes two turning points and four maze endings, which

makes the learning task substantially more difficult than the single T-Maze studied in the

previous sections (Soltoggio et al., 2008). In effect the agent must now memorize a location

on a map that is twice as large.

The experiment follows the setup described in Section 3.4 with a slightly modified novelty

metric to capture behaviors in the larger environment. The behavior of an agent is still

characterized by a series of trial outcomes, but each such outcome is now determined by

the corresponding trial fitness value (e.g. 0.2 for collecting the low reward). The behavioral

difference between two behaviors is then calculated as the sum over all trial differences. Each

57

evaluation consists of two deployments with 200 trials each in which the high reward changes

location after every 50 trials. Thus the behavior characterization includes 400 dimensions.

Fitness-based search had to be restarted five times and found a solution in 801,798 evaluations

on average (σ=695,534). Novelty search found a solution in 364,821 evaluations on average

(σ=411,032) and had to be restarted two times. Therefore, even with an increased behavioral

characterization (200-dimensional for the single T-Maze vs. 400-dimensional for the double

T-Maze) and increased domain complexity, novelty search still finds the appropriate adaptive

behavior significantly faster than fitness-based search (p < 0.05).

3.7.2 Foraging Bee

Another domain studied for its reinforcement learning-like characteristics is the bee foraging

task (Soltoggio et al., 2007; Niv et al., 2002). A simulated bee needs to remember which type

of flower yields the most nectar in a stochastic environment wherein the amount of nectar

associated with each type of flower can change.

The bee flies in a simulated three-dimensional environment (Figure 3.12a) that contains a

60 × 60 meter flower field on the ground with two different kind of flowers (e.g. yellow and

blue). The bee constantly flies downward at a speed of 0.5m/s and can perceive the flower

58

(a) Simulated Bee (b) Average Maximum Fitness

Figure 3.12: Comparing Novelty Search to Fitness-based Search in the Bee
Domain. The simulated bee flying in a three-dimensional space is shown in (a). The
bee is constantly flying downwards but can randomly change its direction. The bee
can perceive the flower patch with a simulated view cone. (b) The change in fitness
over time (i.e. number of evaluations) is shown for NEAT with novelty search and
fitness-based NEAT, which are both averaged over 25 runs for each approach. The
main result is that both methods reach about the same average fitness but novelty
search finds a solution significantly faster.

patch through a single eye with a 10-degree view cone. The outside of the flower patch is

perceived as gray-colored.

The ANN controller has five inputs (following Soltoggio et al. 2007); the first three are Gray,

Blue, and Y ellow, which receive the percentage of each perceived color in the bee’s view

cone. The Reward input is set to the amount of nectar consumed after the bee successfully

lands on either a yellow or blue flower. It remains zero during the flight. The Landing input

is set to 1.0 upon landing. The bee has only one output that determines if it stays on its

current course or changes its direction to a new random heading.

Each bee is evaluated on four deployments with 20 trials each. The flower colors are inverted

after 10 trials on average and between deployments, thereby changing the association between

59

color and reward value. The amount of collected nectar (0.8 for high-rewarding and 0.3 for

low-rewarding flowers) over all trials is the performance measure for fitness-based search.

To mitigate noisy evaluation in novelty search (i.e. a single random change in direction at

the beginning of the flight can lead to a very different sequence of collected high and low

rewards), each deployment is described by two values. The first is the number of high

rewards collected before the color switch and the second is the number of high rewards

collected afterwards. This novelty metric rewards the bee for collecting a different number

of high rewards before and after the reward switch than other individuals. This measure

reflects that what is important is displaying adaptive behavior that is dependent on the

time of the reward switch. The coefficients of the generalized Hebbian learning rule for this

experiment are A = −0.79, B = 0.0, C = 0.0, and D = −0.038. These values worked well

for a neuromodulated ANN in the foraging bee domain described by Soltoggio et al. (2007).

The other experimental parameters are kept unchanged.

A bee counts as a solution if it displays the desired learning behavior of associating the right

color with the currently high-rewarding flower (which corresponds to a fitness of 61). Both

fitness-based search and novelty search discovered solutions in 13 out of 25 runs. Novelty

search took on average 261,098 evaluations (σ=130,926) when successful and fitness-based

search on average 491,221 evaluations (σ=277,497). Although novelty search still finds a

solution significantly faster (p < 0.05), both methods quickly reach a high local optimum

before that (Figure 3.12b).

60

3.8 Implications of Combining Novelty Search with Plasticity

Novelty search outperforms fitness-based search in all domains investigated and is not af-

fected by increased domain deception. This result is interesting because it is surprising that

without any other a priori knowledge an algorithm that is not even aware of the desired

behavior would find such behavior at all, let alone in a general sense.

Fitness-based search also takes significantly more evaluations to produce individuals that

exhibit the desired adaptive behavior when the impact of learning on the fitness of the agent

is only marginal. Because it is easier at first to improve fitness without evolving the ability

to learn, objective-based search methods are likely to exploit domain-dependent static (i.e.

non-adaptive) heuristics.

In the T-Maze domain in this chapter, agents initially learn to always navigate to one arm

of the maze and back, resulting in collecting 20 high rewards (i.e. ten high rewards for each

of the two starting positions) on the generalization test. Yet, because the reward location

changes after ten trials for both initial settings, to be more successful requires the agents to

exhibit learning behavior.

The natural question then is why novelty search outperforms fitness-based search in the

seemingly non-deceptive 10/10 scenario? While the deception in this setting is not as obvious,

the analysis presented in Section 3.6 addressed this issue in more depth. The problem is that

evolving the right neuromodulated dynamics to be able to achieve learning behavior is not

61

an easy task. There is little information available to incentivize fitness-based search to pass

beyond static behavior, making it act more like random search. In other words, the stepping

stones that lead to learning behavior are hidden from the objective approach behind long

plateaus in the search space.

This analysis reveals that fitness-based search is easily led astray if fitness does not reward

the stepping stones to the final solution, which is the case in the T-Maze learning problem

(Figure 3.8). Novelty search, on the other hand, escapes the deceptive trap and instead builds

on the intermediate stepping stones to proceed through the search space more efficiently.

Novelty search’s ability to keep track of already-explored regions in the search space is

probably another factor that accounts for its superior performance.

While in some domains the fitness gradient can be improved, i.e. by giving the objective-

based search clues in which direction to search, such an approach might not be possible in

dynamic, reward-based scenarios. The problem in such domains is that reaching a certain

fitness level is relatively easy, but any further improvement requires sophisticated adaptive

behavior to evolve from only sparse feedback from an objective-based performance measure.

That is, novelty search returns more information about how behavior changes throughout

the search space.

In this way, novelty search removes the need to carefully design a domain that fosters the

emergence of learning because novelty search on its own is capable of doing exactly that. The

only prerequisite is that the novelty metric is constructed such that learning and non-learning

62

agents are separable, which is not necessarily easy, but is worth the effort if objective-based

search would otherwise fail.

In fact, because NEAT itself employs the fitness sharing diversity maintenance technique

(Goldberg and Richardson, 1987; Stanley and Miikkulainen, 2002) within its species (Sec-

tion 2.3), the significant difference in performance between NEAT with novelty search and

NEAT with fitness-based search also suggests that traditional diversity maintenance tech-

niques do not evade deception as effectively as novelty search. Interestingly, novelty search

has also been shown to succeed independently of NEAT (Mouret, 2009) in evolving ANNs

and it also outperforms fitness-based search in genetic programming (Lehman and Stanley,

2010a). Thus evidence is building for its generality.

Novelty search’s ability to build gradients that lead to stepping stones is evident in perfor-

mance curves (Figure 3.5). The increase in generalization performance is steeper than for

fitness-based NEAT, indicating a more efficient climb to higher complexity behaviors. In

effect, by abandoning the objective, the stepping stones come into greater focus (Lehman

and Stanley, 2008, 2011b). Although it means that the search is wider, the alternative is to

be trapped by deception.

Of course, there are likely domains for which the representation is not suited to discovering

the needed adaptive behavior or in which the space of behaviors is too vast for novelty search

to reliably discover the right one. However, even in the double T-Maze domain in which the

length of the behavioral characterization is substantially larger (i.e. 400 dimensions), novelty

63

search still significantly outperforms fitness-based search. There are only so many ways to

behave and therefore the search for behavioral novelty becomes computationally feasible

and is different than random search. On the other hand, even though novelty search is still

significantly faster in the foraging bee task, fitness-based search reaches a local optimum

that is very close to the final solution in about the same number of evaluations. A possible

explanation for the more even performance in this domain is that the noisy environment

offers a vast space of exploitable behavioral strategies.

Overall, the results in this chapter are important because research on evolving adaptive

agents has been hampered largely as a result of the deceptiveness of adaptive tasks. Yet

the promise of evolving plastic ANNs is among the most intriguing in artificial intelligence.

After all, our own brains are the result of such an evolutionary process. Therefore, a method

to make such domains more amenable to evolution has the potential to further unleash a

promising research direction that is only just beginning. In Chapter 7 this technique helps

to evolve solutions in a challenging legged locomotion domain.

Characterizing when and for what reason novelty search fails is also an important future re-

search direction. Yet its performance in experiments in past research (Lehman and Stanley,

2008, 2010a,b; Mouret, 2009) and also in the evolution of legged locomotion in this disserta-

tion (Chapter 7) has proven surprisingly robust. While it is not always going to work well,

this chapter suggests that it is a viable new tool in the toolbox of evolutionary computation

to counteract the deception inherent in evolving adaptive behavior.

64

However, evolving neural plasticity is not just limited by deception. A significant problem

with most approaches that are based on direct encodings (like NEAT) is that the parameters

governing the plasticity for each synapse must be discovered separately by evolution. The

next chapter introduces a method called adaptive HyperNEAT that addresses this problem,

and shows that plasticity in artificial brains can be distributed in a geometric pattern, which

reflects the intuition that synaptic plasticity in biological brains is not encoded in DNA

separately for every synapse in the brain.

65

CHAPTER 4
APPROACH PART I: ADAPTIVE HYPERNEAT

The main idea in adaptive HyperNEAT is that CPPNs in HyperNEAT can not only encode

connectivity patterns but also patterns of plasticity rules. As in the brain, different regions

of the ANN should be more or less plastic and employ different learning rules, which Hy-

perNEAT allows because it sees the ANN geometry. The experiments in this chapter are

published in Risi and Stanley (2010).

4.1 Indirectly Encoding Local Learning Rules

In general, a learning rule changes the weight of a connection based on presynaptic activity

oi, postsynaptic activity oj, and the current connection weight wij:

∆wij = Φ(oi, oj, wij) . (4.1)

In the experiments in this chapter three different adaptive HyperNEAT models are intro-

duced and compared that are able to encode different levels of learning rule generality. The

goal of this comparison is to elucidate the advantages and disadvantages of different levels

66

of generality to modeling dynamic learning processes. All three models allow learning rules

to be distributed as patterns across the connectivity of an ANN.

The most general iterated model (figure 4.1a) augments the four-dimensional CPPN that

normally encodes connectivity patterns with three additional inputs: presynaptic activity

oi, postsynaptic activity oj, and the current connection weight wij. That way, the synaptic

plasticity of a connection between two two-dimensional points (x1, y1) and (x2, y2) can be

described by

∆wij = CPPN(x1, y1, x2, y2, oi, oj, wij) . (4.2)

The update of the synaptic weights can thereby be iteratively performed by the same CPPN

that normally encodes network connectivity, which allows evolving increasingly complex

learning rules. In effect, the CPPN encodes an entire dynamical system, including how

changes depend on both location and activity. The CPPN is requeried on every tick of the

clock to update the ANN weights. The initial weight configuration is determined by querying

the CPPN as in the original HyperNEAT approach (Section 2.4.2) with the presynaptic

activity, postsynaptic activity, and weight inputs all set to zero.

The less general Hebbian ABC model augments the CPPN instead with four additional

outputs (figure 4.1b): learning rate η, correlation term A, presynaptic term B, and post-

synaptic term C. When the CPPN is initially queried, these parameters are permanently

stored, which allows the synaptic weight to be modified during the lifetime of the agent by

67

X1 X2 Pre

F

Y1 Y2 Post

W

Evolved CPPN Topology Connection
in Substrate

W

∆

(a) Iterated Model

F F F

X1 X2Y1 Y2

W A C

Evolved CPPN Topology

B

(b) ABC Model

Figure 4.1: Adaptive HyperNEAT. CPPNs for the iterated (a) and ABC models (b)
are shown. The CPPN in (a) is continually requeried during the lifetime of the agent
to determine the weight change given the location of the connection, activation of the
presynaptic and postsynaptic neuron, and the current weight as input. In contrast,
the CPPN in (b) is only activated once to determine the three parameters A–C and
the learning rate η, which control synaptic plasticity during the lifetime of the agent,
in addition to the initial weight w.

the following plasticity rule:

∆wij = η · [Aoioj +Boi + Coj] . (4.3)

Traditional approaches to evolving adaptive ANNs with direct encodings, like the one in the

previous chapter, also normally evolve the coefficients of equation (4.3) but because of the

limitations of direct encodings often only employ one such evolved rule throughout all ANN

connections (Soltoggio, 2008; Soltoggio et al., 2008). The difference here is that A, B, C,

and η are indirectly encoded by HyperNEAT in a geometric pattern across the connectivity

of the whole network. Therefore each connection can potentially employ a different rule

if necessary. However, unlike the more general iterated model, this CPPN only produces

variants of the ABC Hebbian rule. Thus the space of possible rules is more restricted.

68

Finally, the simplest model is plain Hebbian. The CPPN has only one additional output

that encodes the learning rate η:

∆wij = η · oioj . (4.4)

This variant tests for the minimal sufficient dynamics to solve the T-Maze domain given

in this dissertation, which is explained in the next section. For all adaptive HyperNEAT

models synaptic strength is bound within the range [−1.0, 1.0]. Experimental parameters

are given in the Appendix.

4.2 Discrete T-Maze Experiment

The discrete T-Maze presented here (figure 4.2a) is similar to the setup described in Sec-

tion 3.3. However, because HyperNEAT can see the geometry of the underlying task, the

robot has slightly different input and output sensors (figure 4.2b) and their locations are de-

signed to geometrically correlate (e.g. seeing something on the left correlates to turning left).

Thus the CPPN can exploit the geometry of the agent. Also, instead of a Reward input, the

agent has a Color input (explained shortly), which is set to the color of the collected reward

at the maze end and determines the amount of reward given to the agent.

69

RR

A

(a) T-Maze

1
Y

-1
-1 1 X

31 2

L

A

F R

C

(b) Substrate

Figure 4.2: T-Maze and Substrate Configuration. (a) In this depiction, high
reward is located on the left and low reward is on the right side, but these positions can
change over a set of trials. The challenge for the agent is to remember the location of the
high reward from one trial to the next. (b) The autonomous agent A is equipped with
three distance sensors and a reward color sensor that is set to zero during navigation.

The agent is equipped with three rangefinder sensors that detect walls to the left, front, and

right of the robot. The three output neurons are Left, Forward, and Right. At each simulated

time step, the agent continues to move straight at a constant pace if the Forward output

has the highest activation level. Otherwise the agent turns 90 degrees in the direction of

the highest activated neuron (Left or Right). An agent crashes if it does not (1) maintain a

forward direction in corridors or (2) turn either right or left when it encounters the junction.

If the agent crashes then the current trial is terminated.

Two T-Maze scenarios are studied to elucidate the advantages and disadvantages of encoding

different levels of plasticity rule generality. Scenario 1 resembles the traditional T-Maze

domain described in Section 3.3. Each agent is evaluated on four deployments with 100 trials

each. The starting position of the high reward alternates between deployments and switches

70

0.1(Blue) 0.3 (Green) 0.8 (Yellow) 1.0 (Red) High RewardLow Reward

Figure 4.3: Nonlinear Reward Color Encoding. The agent receives a high reward
for green or red and a low reward for blue or yellow. The ANN color encoding together
with the given ANN topology requires the agent to include a nonlinear learning rule.

positions after 50 trials on average. Color input values of 1.0 and 0.1 encode the high (red)

and low (blue) reward, respectively.

In scenario 2, the agent is exposed to a total of four different colored rewards. The first

deployment resembles scenario 1 with reward signatures of 0.1 and 1.0. However, in the

second deployment, color input values of 0.3 and 0.8 are introduced to encode new high

yellow and low green rewards, respectively (figure 4.3). Adding these intermediate reward

colors yields a reward signature that is not linearly separable. Because the ANN controlling

the agent does not have any hidden neurons, the learning rule must itself be nonlinear.

Scenario 2 therefore makes a good domain for this study because it requires evolving a

specific learning rule that depends on the ANN topology.

The fitness function, which is the same for all compared approaches and identical to Soltoggio

et al. (2008), is calculated as follows: Collecting a high reward has a value of 1.0 and a low

reward is worth 0.2. A penalty of 0.4 is subtracted if the agent does not maintain forward

motion in corridors or does not turn left or right at a junction. The total fitness of an

individual is determined by summing the fitness values for each of the 100 trials over all

deployments.

71

Note that although Chapter 3 showed that novelty search significantly outperforms fitness-

based search in the traditional T-Maze domain, a standard fitness function is employed in

this chapter to keep the experiment focused on the issue of adaptation.

4.3 Discrete T-Maze Results

The standard T-Maze (scenario 1) is solved when the agent reaches a fitness of 395. A

minimum amount of exploration (i.e. collecting the low reward) is required at the beginning

of each deployment and when the reward positions switch. The T-Maze with nonlinear

reward signature (scenario 2), consisting of two deployments with different reward signatures,

is solved with a fitness of 195. All reported results are averaged over 20 runs.

Figure 4.4a shows the average training performance over generations for the standard T-

Maze (scenario 1). It took the ABC model 141 generations (σ=141) on average to find a

solution. The iterated model took 89 generations (σ=61) on average. While the fitness for

the iterated model initially increases more slowly than for ABC, it finds a solution slightly

(though not significantly) faster on average. The plain Hebbian model cannot solve the task.

Although both the more general iterated model and the ABC model can solve the task, the

iterated model is computationally more expensive because the CPPN must be continually

requeried for every ANN connection.

72

220
240
260
280
300
320
340
360
380
400
420

0 100 200 300

Av
er

ag
e

Fi
tn

es
s

Generations

Iterated

ABC

Plain Hebb

(a) T-Maze

155
160
165
170
175
180
185
190
195
200

0 100 200 300 400

Av
er

ag
e

Fi
tn

es
s

Generations

Iterated

ABC

500

(b) T-Maze with Nonlinear Reward Signature

Figure 4.4: T-Maze Training Performance. The change in performance over eval-
uations for both scenarios is shown in this figure. All results are averaged over 20
runs. The horizontal line (top) indicates at what fitness the domain is solved. The
iterated and ABC model are both able to solve the standard T-Maze domain (a) in
about the same number of generations whereas the plain Hebbian approach does not
show the necessary dynamics. The T-Maze domain with a nonlinear reward signature
(b) requires a nonlinear learning rule, which only the iterated model discovers.

The average training performance over generations for scenario 2 is shown in figure 4.4b. The

plain Hebbian rule is not tested in this variant because it is not able to solve the standard T-

Maze. Whereas the iterated model solves the domain in 19 out of 20 runs, in 367 generations

(σ=101) on average, ABC is not able to solve the task with the given ANN topology, which

suggest the need for a nonlinear learning rule in this scenario (or potentially an ANN with

hidden nodes). The more general iterated model is able to evolve such a rule.

Figure 4.5a shows CPPN-encoded learning rules of an ANN solution discovered by the iter-

ated model. The function embodied by the CPPN (figure 4.5b) encodes a geometric pattern

of nonlinear learning rules. Interestingly, the evolved rules resemble postsynaptic-based

learning rules that have been shown essential in the T-Maze domain (Soltoggio, 2008).

73

1 2
C

0

1 0
1

-1

1

∆
w

pre post

F R

3

L

(a) Evolved Learning Rules

PostX1Y1 BiasWPreY2

Weight∆

X2

(b) CPPN

Figure 4.5: Discovered Learning Rules of an ANN Solution Created by the
Iterated Model and the Underlying CPPN. The nonlinear learning rules shown
in (a) are encoded by the evolved CPPN shown in (b). A geometric pattern of learning
rules can been seen that varies with the target node’s x location. The amount of synap-
tic change is a function of the pre- and postsynaptic activity and the corresponding
positions of the pre- and postsynaptic neurons in the substrate (weight input w on the
CPPN is set to zero in this depiction).

The conclusion is that adaptive HyperNEAT can in fact efficiently indirectly encode local

plasticity rules which is a step towards more biologically plausible adaptive systems.

4.4 Adaptive HyperNEAT Implications

The indirect HyperNEAT encoding is able to generate ANNs with millions of connections

based on underlying geometric motifs (Stanley et al., 2009). This chapter introduced an

extension called adaptive HyperNEAT that generates not only patterns of weights across

the connectivity of an ANN, but also patterns of learning rules (figure 4.5).

While the ABC model together with an adequate ANN topology should be sufficient for

most domains, the nonlinear variant of the T-Maze learning domain reveals that sometimes

74

a more general encoding may be necessary. Although the ANN topology could potentially

have been extended (or automatically determined as the unified approach introduced in

Chapter 6 will attempt) to allow a less general model to solve the nonlinear T-Maze domain,

this experiment confirms the risk of making a priori assumptions about the type of necessary

learning rules (Yao, 1999).

However, the generality of the indirect encoding of plasticity trades off with its computational

cost. The most general iterated model is computationally expensive because the CPPN must

be continually requeried for every ANN connection. The computational complexity for every

time step is O(n) + nO(m), where O(n) and O(m) are the costs of simulating an ANN with

n connections and an underlying CPPN with m connections, respectively. Thus the most

general model in its current form might be too computationally expensive for practical

purposes that require large CPPNs and ANNs. However, it gives us a reference point from

which to derive more specialized models such as the ABC model.

In the current iterated model the synaptic weights are updated at every time step. Char-

acterizing how often a weight update is necessary is an important future research direction

that may allow cutting down the computational cost of even the most general model.

While the ANN substrate in this chapter did not rely on any hidden nodes, more challenging

domains will likely depend on more complicated network structures. As the next chapter

will show, not only can HyperNEAT be extended to represent patterns of learning rules, but

also to determine the placement of the hidden nodes solely based on implicit information in

75

the CPPN-generated pattern. Ultimately these two abilities will be combined in Chapter 6,

which will allow the unified approach to evolve increasingly complex neural geometry, density,

and plasticity.

76

CHAPTER 5
APPROACH PART II: EVOLVABLE-SUBSTRATE

HYPERNEAT

The placement of nodes in original HyperNEAT is decided by the user. Yet whereas it is

often possible to determine how sensors and effectors relate to domain geometry, it is difficult

for the user to determine the best placement and number of necessary hidden nodes a priori.

For example, the location of the hidden nodes in the substrate in figure 2.2 had to be decided

by the user. HyperNEAT thus creates the strange situation that it can decide with what

weight any two nodes in space should be connected, but it cannot tell us anything about

where the nodes should be. What representation can evolve the placement and density of

nodes that can potentially span between networks of several dozen nodes and several billion?

This chapter explains how the internal geometry of node placement and density can be

determined only based on implicit information in an infinite-resolution pattern of weights in a

method called evolvable-substrate HyperNEAT. The text in this chapter is a major extension

of work previously published at the Genetic and Evolutionary Computation Conference

(GECCO 2011; Risi and Stanley 2011). The initial ES-HyperNEAT approach was published

at GECCO 2010 (Risi et al., 2010b). The next section introduces the key insight, which is

that a representation that encodes the pattern of connectivity across a network automatically

contains implicit information on where the nodes should be placed.

77

5.1 Implicit Information in the Hypercube

In HyperNEAT the pattern of connectivity is described by the CPPN, where every point

in the four-dimensional space denotes a potential connection between two two-dimensional

points (recall that a point in the four-dimensional hypercube is actually a connection weight

and not a node). Because the CPPN takes x1, y1, x2, and y2 as input, it is a function of

the infinite continuum of possible coordinates for these points. In other words, the CPPN

encodes a potentially infinite number of connection weights within the hypercube of weights.

Thus one interesting way to think about the hypercube is as a theoretically infinite pattern

of possible connections that might be incorporated into a neural network substrate. If a

connection is chosen to be included, then by necessity the nodes that it connects must also

be included in the substrate. Thus by asking which connections to include from the infinite

set, we are also asking which nodes to include.

By shifting the question of what to include in the substrate from nodes to connections, two

important insights follow: First, the more such connections are included, the more nodes

would also be added to the substrate. Thus the node density increases with the number

of connections. Second, for any given infinite-resolution pattern, there is some sampling

density above which increasing density further offers no advantage. For example, if the

hypercube is a uniform gradient of maximal connection weights (i.e. all weights are the same

constant), then in effect it encodes a substrate that computes the same function at every

node. Thus adding more such connections and nodes adds no new information. On the other

78

hand, if there is a stripe of differing weights running through the hypercube, but otherwise

uniform maximal connections everywhere else, then that stripe contains information that

would contribute to a different function from its redundantly-uniform neighbors.

The key insight is thus that it is not always a good idea to add more connections because

for any given finite pattern, at some resolution there is no more information and adding

more weights at such high resolution would be redundant and unnecessary. This maximal

useful resolution varies for different regions of the hypercube depending on the complexity

of the underlying weight pattern in those regions. Thus the answer to the question of which

connections should be included in ES-HyperNEAT is that connections should be included at

high enough resolution to capture the detail (i.e. information) in the hypercube. Any more

than that would be redundant. Therefore, an algorithm is needed that can choose many

points to express in regions of high variance and fewer points to express in regions of relative

homogeneity. Each such point is a connection weight in the substrate whose respective nodes

will be expressed as well. The main principle is simple: Density follows information. In this

way, the placement of nodes in the topographic layout of an ANN is ultimately a signification

of where information is stored within weights.

To perform the task of choosing points (i.e. weights) to express, a data structure is needed

that allows space to be represented at variable levels of granularity. One such multi-resolution

technique is the quadtree (Finkel and Bentley, 1974), which traditionally describes two-

dimensional regions. It has been applied successfully in fields ranging from pattern recogni-

79

tion to image encoding (Rosenfeld, 1980; Strobach, 1991) and is based on recursively splitting

a two-dimensional region into four sub-regions. That way, the decomposition of a region into

four new regions can be represented as a subtree whose parent is the original region with one

descendant for each decomposed region. The recursive splitting of regions can be repeated

until the desired resolution is reached or until no further subdivision is needed because ad-

ditional resolution is no longer uncovering any new information. The next sections describe

the ES-HyperNEAT algorithm in more detail. Pseudocode for the algorithm can be found

in the Appendix.

5.2 Quadtree Information Extraction

Instead of searching directly in the four-dimensional hypercube space (recall that it takes four

dimensions to represent a two-dimensional connectivity pattern), ES-HyperNEAT iteratively

discoverers the ANN connections starting from the inputs and outputs of the ANN (which

are predefined by the user). This approach focuses the search within the hypercube on

two-dimensional cross-sections of the hypercube.

The foundation of the ES-HyperNEAT algorithm is the quadtree information extraction

procedure, which receives a two-dimensional position as input and then either analyzes the

outgoing connectivity pattern from that single neuron (if it is an input), or the incoming

connectivity pattern (if it is an output). For example, given an input neuron at (a, b),

80

the quadtree connection-choosing algorithm is applied only to the two-dimensional outgoing

connectivity patterns described by the function CPPN(a , b , x2, y2), where x2 and y2 range

between -1 to 1. The algorithm works in two main phases (figure 5.1): In the division and

initialization phase the quadtree is created by recursively subdividing the initial square

(lines 8–11 of Algorithm 1 in Appendix), which spans the space from (-1, -1) to (1, 1), until

a desired initial resolution r is reached (e.g. 4 × 4, which corresponds to a quadtree depth

of 3). For every quadtree square with center (x, y) the CPPN is queried with arguments

(a, b, x, y) and the resulting connection weight value w is stored (line 14 of Algorithm 1).

Given the values (w1, w2, .., wk) of the k leaf nodes in a subtree of quadtree node p and

mean weight w̄, the variance of node p in the quadtree can be calculated as σ2
p = 1

k

∑k
1(w̄−

wi)
2. This variance is a heuristic indicator of the heterogeneity (i.e. presence of information)

of a region. If the variance of the parent of a quadtree leaf is still higher than a given

division threshold dt (line 20 of Algorithm 1) then the division phase can be reapplied for

the corresponding leaf’s square, allowing increasingly high densities. Just as the initialization

resolution ensures that some minimum level of sampling is enforced (i.e. the basic shape of

the encoded pattern is likely to be discovered), a maximum resolution level rm can also be

set to place an upper bound on the number of possible neurons if desired. However, it is

theoretically interesting that in principle this algorithm can yield arbitrarily high density,

which means that very large ANNs are possible to represent.

81

V 4x4

2x2

1x1

1 2
3 42 3 4

c. Determine
variance for all
higher nodes

a.
S

pl
it

un
ti

ld
es

ir
ed

re
so

lu
ti

on

b. Query CPPN

1

(0,0)

(1) Division And Initialization Phase

(2) Pruning And Extraction Phase

Figure 5.1: Quadtree Information Extraction Example. Given an input neuron
at (a, b) the algorithm works in two main stages. (1) In the division and initialization
phase the quadtree is created by recursively splitting each square into four new squares
until the desired resolution is reached (1a), while the values (1b) for each square with
center (x, y) are determined by CPPN(a, b, x, y) and the variance values of each higher
node are calculated (1c). Gray nodes in the figure have a variance greater than zero.
Then, in the pruning and extraction phase (2), the quadtree is traversed depth-first
until the node’s variance is smaller than a given threshold (2a). A connection (a, b, x, y)
is created for each qualifying node with center (x, y) (2b). That way, the density of
neurons in different regions will correspond to the amount of information in that region.

82

The quadtree representation created in the initialization phase serves as a heuristic variance

indicator to decide on the connections (and therefore placement and density of neurons)

to express. Because more connections should be expressed in regions of higher variance, a

pruning and extraction phase (Algorithm 2 in the Appendix) is next executed (figure

5.1 bottom), in which the quadtree is traversed depth-first until the current node’s variance

is smaller than the variance threshold σ2
t (line 4 of Algorithm 2) or until the node has no

children (which means that the variance is zero). Subsequently, a connection (a, b, x, y) is

created for each qualifying node with center (x, y) (line 22 of Algorithm 2; the band threshold

in Algorithm 2 is explained shortly). The result is higher resolution in areas of more variation.

Figure 5.2a shows an example of the outgoing connections from source neuron (0,−1) (de-

picted only by their target location for clarity) chosen at this stage of the algorithm. The

variance is high at the borders of the circles, which results in a high density of expressed

points at those locations. However, for the purpose of identifying connections to include in

a neural topography, the raw pattern output by the quadtree algorithm can be improved

further. If we think of the pattern output by the CPPN as a kind of language for specifying

the locations of expressed connections, then it makes sense additionally to prune the points

around borders so that it is easy for the CPPN to encode points definitively within one

region or another.

Thus a more parsimonious “language” for describing density patterns would ignore the edges

and focus on the inner region of bands, which are points that are enclosed by at least two

83

C
P

P
N

(0
, -

1,
 x

, y
)

(0, -1)

(a) Without band pruning

C
P

P
N

(0
, -

1,
 x

, y
)

(0, -1)

P

(b) With band pruning

Figure 5.2: Example Connection Selection. Chosen connections (depicted only by
their target location) originating from (0,−1) are shown in (a) after the pruning stage
but without band pruning. Points that still remain after band pruning (e.g. point
P , whose neighbors at the same resolution have different CPPN activation levels) are
shown in (b). The resulting point distribution reflects the information inherent in the
pattern.

neighbors on opposite sides (e.g. left and right) with different CPPN activation levels (fig-

ure 5.2b). Furthermore, narrower bands can be interpreted as requests for more point density,

giving the CPPN an explicit mechanism for affecting density.

Thus, to facilitate banding, a pruning stage is added that removes points that are not in a

band. Membership in a band for a square with center (x, y) and width ω is determined by

band level

β = max(min(dtop, dbottom),min(dleft, dright)),

where dleft is the difference in CPPN activation levels between the connection (a, b, x, y) and

its left neighbor at (a, b, x − ω, y) (line 9 of Algorithm 2). The other values, dright, dbottom,

and dtop, are calculated accordingly. If the band level β is below a given threshold βt then

84

the corresponding connections is not expressed (line 19 of Algorithm 2). Figure 5.2b shows

the resulting point selections with band pruning.

This approach also naturally enables the CPPN to increase the density of points chosen

by creating more bands or making them thinner. Thus no new information and no new

representational structure beyond the CPPN already employed in HyperNEAT is needed to

encode node placement and connectivity, as concluded in the next section.

5.3 ES-HyperNEAT Algorithm

The complete ES-HyperNEAT algorithm (Algorithm 3 in the Appendix) is depicted in fig-

ure 5.3. The connections originating from an input at (0,−1) (figure 5.3a; line 7 in Algo-

rithm 3) are chosen based on the connection-choosing approach described in the previous

section. The corresponding hidden node are created if not already existent (lines 9–10 in

Algorithm 3). The approach can be iteratively applied to the discovered hidden nodes until

a user-defined maximum iteration level is reached (line 15 in Algorithm 3) or no more in-

formation is discovered in the hypercube (figure 5.3b). To tie the network into the outputs,

the approach chooses connections based on each output’s incoming connectivity patterns

(figure 5.3c; line 27 in Algorithm 3).

85

A
N

N
C

on
st

ru
ct

io
n

a. Input to Hidden

b. Hidden to Hidden

c. Hidden to Output

d. Complete Paths

C
P

P
N

(x
,y

,0
,1

)
C

P
P

N
(0

,-1
,x

,y
)

C
P

P
N

(-0
.8

,-0
.5

,x
,y

)

C
P

P
N

(0
,0

,x
,y

)

C
P

P
N

(0
.8

,0
.2

,x
,y

)

Figure 5.3: The ES-HyperNEAT Algorithm. The algorithm starts by iteratively
discovering the placement of the hidden neurons from the inputs (a) and then ties the
network into the outputs (c). The two-dimensional motif in (a) represent outgoing
connectivity patterns from a single input node whereas the motif in (c) represent
incoming connectivity pattern for a single output node. The target nodes discovered
(through the quadtree algorithm) are those that reside within bands in the hypercube.
In this way regions of high variance are sought only in the two-dimensional cross-
section of the hypercube containing the source or target node. The algorithm can be
iteratively applied beyond the inputs to the discovered hidden nodes (b). Only those
nodes are kept at the end that have a path to an input and output neuron (d). That
way, the search through the hypercube is restricted to functional ANN topologies.

86

Once all hidden neurons are discovered, only those are kept that have a path to an input and

output neuron (figure 5.3d; line 34 in Algorithm 3). This iterated approach helps to reduce

computational costs by focusing the search on a sequence of two-dimensional cross-sections

of the hypercube instead of searching for information directly in the full four-dimensional

hyperspace.

ES-HyperNEAT ultimately unifies a set of algorithmic advances stretching back to NEAT,

each abstracted from an important facet of natural evolution that contributes to its ability to

evolve complexity. The first is that evolving complexity requires a mechanism to increase the

information content in the genome over generations (Stanley and Miikkulainen, 2002, 2004).

Second, geometry plays an important role in natural neural connectivity; in neuroevolution,

endowing neurons with geometric coordinates means that the genome can in effect project

regularities in connectivity across the neural geometry, thereby providing a kind of scaffolding

for situating cognitive structures (Stanley et al., 2009; Gauci and Stanley, 2008, 2010). Third,

the placement and density of neurons throughout the geometry of the network should reflect

the complexity of the underlying functionality of its respective parts (Risi and Stanley, 2011).

Later in this dissertation it will be further unified with adaptive HyperNEAT.

Because ES-HyperNEAT can automatically deduce node geometry and density from CPPNs

instead of requiring a priori placement (as in original HyperNEAT), it significantly expands

the scope of neural structures that evolution can discover. The approach does not only evolve

the location of every neuron in the brain, but also can represent regions of varying density,

87

which means resolution can increase holistically over evolution. The main insight is that the

connectivity and hidden node placement can be automatically determined by information

already inherent in the pattern encoded by the CPPN. In this way, the density of nodes is

automatically determined and effectively unbounded. Thus substrates of unbounded density

can be evolved and determined without any additional representation beyond the original

CPPN in HyperNEAT.

5.4 Key Hypotheses

Automatically determining the placement and density of hidden neurons introduces sev-

eral advantages beyond just liberating the user from making such decisions. This section

introduces the key hypotheses in this chapter that elucidate these advantages, which the

experiments in sections 5.5, 5.6, and 5.7 aim to validate.

Hypothesis 1. ES-HyperNEAT facilitates evolving networks with targeted connectivity for

multimodal tasks.

Although it produces regular patterns of weights, the original HyperNEAT tends to produce

fully-or near fully-connected networks (Clune et al., 2010), which may create a disadvan-

tage in domains where certain neurons should only receive input from one modality while

other neurons should receive inputs from multiple modalities, thus allowing the sharing of

88

information about the underlying task similarities in the hidden layer. In contrast, because

ES-HyperNEAT only creates connections where there is high variance in the hypercube, it

should be able to find greater variation in connectivity for different neurons. To test Hy-

pothesis 1, the first experiment will explores how ES-HyperNEAT performs in a multi-task

domain (Section 5.5), which requires the agent to react differently based on the type of input

(e.g. rangefinder or radar) it receives.

Hypothesis 2. The fixed locations of hidden nodes in original HyperNEAT that are chosen

by the user make finding an effective pattern of weights more difficult than by allowing

the algorithm itself to determine their locations, as in ES-HyperNEAT.

The problem is that when node locations are fixed, the pattern in the hypercube that is

encoded by the CPPN must intersect those node coordinates at precisely the right locations.

Even if such a CPPN encodes a pattern of weights that expresses an effective network, a

slight shift (i.e. a small translation) of the pattern would cause it to detach from the correct

node locations. Thus the network would receive a low fitness even though it actually does

encode the right pattern, if only it were slightly shifted. In contrast, ES-HyperNEAT in

effect tracks shifts in the underlying pattern because the quadtree algorithm searches for the

appropriate locations of nodes regardless of exactly where the pattern is expressed. This

increased flexibility means that the feasible area of the search space will be larger and hence

easier to hit.

89

Comparing the complexities of the evolved CPPNs will give an indication of how hard it is for

the different HyperNEAT variants to represent the correct pattern. Additionally, analyzing

the resulting ANNs will demonstrate whether ES-HyperNEAT can express hidden nodes at

slightly different locations when the pattern of weights changes.

Hypothesis 3. ES-HyperNEAT is able to elaborate on existing structure by increasing the

number of synapses and neurons in the ANN during evolution while regular Hyper-

NEAT takes the entire set of ANN connection weights to represent a partial solution.

The second experiment in a deceptive maze navigation domain (Section 5.6) will isolate this

issue by examining the affect of a task with several intermediate milestones on both variants.

Hypothesis 4. ES-HyperNEAT can more easily evolve modular ANNs than the original

fixed-substrate HyperNEAT, in part because it facilitates evolving network with limited

connectivity and because it has the capability to start the evolutionary search with a

bias towards locality and towards certain canonical ANN topologies.

The third experiment, called left & right retina problem (Clune et al., 2010; Kashtan and

Alon, 2005) (Section 5.7), will test of the ability to evolve modular structures because it

benefits from separating different functional structures.

If these hypothesis are correct then ES-HyperNEAT should not only match but outperform

the original HyperNEAT, as the experiments in the next sections will test.

90

G

(a) Scenario 1 (b) Scenario 2

Figure 5.4: The Dual Task. In the dual task domain the agent either has to exhibit
wall-following (a) or food-gathering behavior (b) depending on the type of sensory
input it receives.

5.5 Experiment 1: Dual Task

Organisms in nature have the ability to switch rapidly between different tasks depending on

the demands of the environment. For example, a rat should react differently when placed

in a maze or in an open environment with a visible food source. The dual task domain

presented here (figure 5.4) will test the ability of ES-HyperNEAT and regular HyperNEAT

to evolve such task differentiation for a multimodal domain.

The dual task domain consists of two non-dependent scenarios (i.e. the performance in one

scenario does not directly influence the performance in the other scenario) that require the

agent to exhibit different behaviors and to react either to its rangefinders or pie-slice sensors.

Because certain hidden neurons ideally would be responsible for information that should be

treated differently, while other hidden neurons should be able to share information where

the tasks are similar, this domain will likely benefit from ANNs that are not fully-connected,

91

which the original HyperNEAT has struggled to produce in the past (Clune et al., 2010). ES-

HyperNEAT should facilitate the evolution of networks with more targeted connectivity, as

suggested by Hypothesis 1, because connections are only included at a high enough resolution

to capture the information in the hypercube.

The first scenario is a simple navigation task in which the agent has to navigate from a

starting point to an end point in a fixed amount of time using only its rangefinder sensors to

detect walls (figure 5.4a). The fitness in this scenario is calculated as fnav = 1 − dg, where

dg is the distance of the robot to the goal point at the end of the evaluation scaled into the

range [0, 1]. The second scenario is a food gathering task in which a single piece of food

is placed within a square room with an agent that begins at the center (figure 5.4b). The

agent attempts to gather as much food as possible within a time limit using only its pie-slice

sensors, which act as a compass towards the food item. Food only appears at one location at

a time and is placed at another random location once consumed by the agent. The fitness for

the food gathering task is defined by: ffood =
n+(1−df)

4
, where n corresponds to the number

of collected food items (maximum four) and df is the distance of the robot to the next food

item at the end of the evaluation.

The total fitness is calculated as the average performance on both scenarios. The domain is

considered solved when the agent is able to navigate to the goal point in the first scenario

and successfully collects all four food items in the second scenario, which corresponds to a

fitness of 1.

92

1.0
Y

X-1.0 1.0

Left Forward Right
Range-
finders

Radar

Hidden Nodes

-1.2

Heading
-1.0

Figure 5.5: Substrate Configuration and Sensor Layout. The controller substrate
is shown at left. Whereas the number of hidden nodes for the fixed-substrate approach
is determined in advance, ES-HyperNEAT decides on the positions and density of
hidden nodes on its own. The sensor layout is shown on the right. The autonomous
agent is equipped with five distance and four pie-slice sensors.

5.5.1 Experimental Setup

Evolvable and fixed-substrate (original) HyperNEAT use the same placement of input and

output nodes on the substrate (figure 5.5), which are designed to correlate senses and outputs

geometrically (e.g. seeing something on the left and turning left). Thus the CPPN can exploit

the geometry of the agent. The agent is equipped with five rangefinder sensors that detect

walls and four pie-slice sensors that act as a compass towards the next food item. All sensor

values are scaled into the range [0,1], where lower activation indicates closer proximity to

a wall. At each discrete moment of time, the number of units moved by the agent is 20F ,

where F is the forward effector output. The agent also turns by (L − R) ∗ 18◦, where L is

the left effector output and R is the right effector output. A negative value is interpreted as

a right turn.

93

(a) FS10x1 (b) FS1x10 (c) FS5x5 (d) FS8x8

Figure 5.6: FS-HyperNEAT Hidden Node Layouts. This figure shows (a) a
horizontal configuration of hidden nodes, (b) a vertical arrangement, and two (c,d)
grid configurations.

To highlight the challenge of deciding the location and number of available hidden nodes, ES-

HyperNEAT is compared to four fixed-substrate variants (figure 5.6). FS10x1 is the typical

setup with a single row of ten hidden neurons in a horizontal line at y = 0 (figure 5.6a).

For the FS1x10 variant ten hidden neurons are arranged vertically at x = 0 (figure 5.6b).

FS5x5 has a substrate containing 25 hidden nodes arranged in a 5 × 5 grid (figure 5.6c).

FS8x8 tests the effects on performance of uniformly increasing the number of hidden nodes

from 25 to 64 neurons (figure 5.6d). To generate such a controller for original HyperNEAT,

a four-dimensional CPPN with inputs x1, y1, x2, and y2 queries the substrate shown in

figure 5.5, to determine the connection weights between the input/hidden, hidden/output,

and hidden/hidden nodes. In contrast, ES-HyperNEAT decides the placement and density

of nodes on its own.

Experimental parameters for this experiment and all other experiments in this chapter are

given in the Appendix.

94

5.5.2 Dual Task Results

All results are averaged over 20 runs. Figure 5.7 shows the training performance over gen-

erations for the HyperNEAT variants on the dual task domain. ES-HyperNEAT solves the

domain in all runs and took on average 33 generations (σ = 31), whereas the best performing

fixed-substrate variant, FS5x5, finds a solution in only 13 out of 20 runs. The difference in

average final performance is significant (p < 0.001 according to the Student’s t-test).

These results suggest that a multimodal domain benefits from ES-HyperNEAT’s ability to

generate networks with limited and targeted connectivity, which an analysis of the evolved

ANNs confirms. ES-HyperNEAT usually creates networks in which certain hidden neurons

only receive direct input from the agent’s rangefinders, while other neurons receive input

from both modalities (e.g. rangefinders and radar). The networks created by the original

HyperNEAT are generally fully-or near fully-connected and do not show the same level of

targeted connectivity.

Interestingly, the average CPPN complexity of solutions discovered by FS5x5 is 9.7 hidden

nodes (σ = 6.7), almost six times higher than CPPN solutions by ES-HyperNEAT, which

have 1.65 hidden nodes on average (σ = 2.2). This difference is significant (p < 0.05) and

indicates that dictating the location of the hidden nodes a priori makes it harder for the

CPPN to represent the correct pattern, as suggested by Hypothesis 2.

95

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

Generation
Av

er
ag

e
P

er
fo

rm
an

ce

ES
FS 10x1
FS 1x10
FS 5x5
FS 8x8

Figure 5.7: Average Dual Task Performance. The average best fitness over gen-
erations is shown for the dual task domain for the different HyperNEAT variants,
which are averaged over 20 runs. The main result is that ES-HyperNEAT significantly
outperforms all other variants.

5.6 Experiment 2: Maze Navigation

To evolve controllers for more complicated tasks will require a neuroevolution method that

benefits from previously-discovered partial solutions to find the final solution. While direct

encodings like NEAT allow the network topology to complexify over generations, leading

to increasingly sophisticated behavior, they suffer from the problem of reinvention. That

is, even if different parts of the solution are similar they must be encoded and therefore

discovered separately.

HyperNEAT alleviated this problem by allowing the solution to be represented as a pattern

of parameters, rather than requiring each parameter to be represented individually. How-

ever, because regular HyperNEAT tends to produce fully-connected ANNs (Clune et al.,

2010), it likely takes the entire set of ANN connection weights to represent a partial task

solution, while ES-HyperNEAT should be able to elaborate on existing structure because

96

G

Figure 5.8: Maze Navigation Domain. The goal of the agent in the maze navigation
domain is to reach goal point G. Because the task is deceptive the agent is rewarded
for making incremental process towards the goal by following the waypoints.

it can increase the number of connections and nodes in the substrate during evolution, as

suggested by Hypothesis 3.

To test this third hypothesis on when ES-HyperNEAT provides an advantage, a task is

needed in which a solution is difficult to evolve without crossing several intermediate mile-

stones. One such tasks is the deceptive maze navigation domain introduced in Lehman and

Stanley (2008). In this domain (figure 5.8), a robot controlled by an ANN must navigate in

a maze from a starting point to an end point in a fixed time. The robot has five rangefinders

that indicate the distance to the nearest wall within the maze, and four pie-slice radar sen-

sors that fire when the goal is within the pie-slice. The experimental setup follows the one

described in Section 5.5.1 with the same substrate configuration and sensor layout (figure

5.5). The agent thus sees walls with its rangefinders and the goal with its radars.

If fitness is rewarded proportionally to how close the robot ends from the goal, cul-de-sacs in

the maze that lead close to the goal but do not reach it are deceptive local optima (Lehman

97

and Stanley, 2011b). Therefore, in this section, the fitness function f rewards the agent

explicitly for discovering stepping stones towards the goal:

f =


10, if the agent is able to reach the goal

n+ (1− d), otherwise,

where n is the number of passed waypoints (which are not visible to the agent) and d is

the distance of the robot to the next waypoint scaled into the range [0, 1] at the end of

the evaluation. The idea is that agents that can reach intermediate waypoints should make

good stepping stones to those that reach further waypoints. ES-HyperNEAT should be

able to elaborate more efficiently on agents that reach intermediate waypoints by increasing

gradually their neural density.

5.6.1 Maze Navigation Results

ES-HyperNEAT performed significantly better than the other variants in the maze navigation

domain (p < 0.001) (figure 5.9a) and finds a solution in 19 out of 20 runs in 238 generations on

average when successful (σ = 262). The default setup for FS-HyperNEAT, FS10x1, reaches

a significantly higher average maximum fitness than the vertically arrangement FS1x10 (p <

0.001) or the grid-like setup FS8x8 (p < 0.05).

98

0 200 400 600 800 1000
2

4

6

8

10

Generation

A
ve

ra
ge

P
er

fo
rm

an
ce

ES
FS 10x1

FS 1x10
FS 5x5
FS 8x8

(a) Maze Navigation Training

0

0.2

0.4

0.6

0.8

1

10x1 1x10 5x5 8x8 ESFr
ac

tio
n

of
Ru

ns
Su

cc
es

sf
ul

HyperNEAT Variant

(b) Successful Maze
Runs

0

50

100

150

200

250

0 150 300 450 600 750 900

C
om

pl
ex

ity

Generations

ANN Connections

CPPN Connections

(c) Champion Complexity

Figure 5.9: Average Performance and Champion Complexity. The average
best fitness over generations is shown for the maze navigation domain (a) for the
different HyperNEAT variants, which are averaged over 20 runs. The fraction of 20
runs that successfully solve the maze navigation domain is shown in (b) for each of the
HyperNEAT variants after 1,000 generations. The average number of connections of
the champion ANNs produced by ES-HyperNEAT and the number of connections of
the underlying CPPNs are shown in (c). Increasing CPPN complexity shows a positive
(and significant) correlation with an increase in ANN substrate complexity.

The differing performance of evolvable- and fixed-substrate HyperNEAT can also be appre-

ciated in how frequently they solve the problem perfectly (figure 5.9b). ES-HyperNEAT

significantly outperforms all fixed-substrate variants and finds a solution in 95% of the 20

runs. FS10x1 solves the domain in 45% of runs, whereas the vertical arrangement of the

same number of nodes (FS1x10) degrades performance significantly (p < 0.001), not finding

a solution in any of the runs. FS5x5 finds a solution in 20% of all runs. Interestingly, uni-

formly increasing the number of hidden nodes to 64 for FS8x8, which might be hypothesized

to help, in fact degrades performance significantly (p < 0.001), not finding a solution in any

of the runs.

In ES-HyperNEAT, there is a significant positive correlation (r = 0.95, p < 0.001 according

to the Spearman’s rank correlation coefficient) between the number of connections in the

99

CPPN and in the resulting ANN (figure 5.9c). This trend indicates that the substrate

evolution algorithm may tend to create increasingly complex indirectly-encoded networks

even though it is not explicitly designed to do so (e.g. like regular NEAT). The complexity

of ANN (substrate) solutions (242 connections on average) is more than 9 times greater

than that of the underlying CPPNs (25 connections on average), which suggests that ES-

HyperNEAT can encode large ANNs from compact CPPN representations.

The conclusion is that evolving the substrate can significantly increase performance in tasks

that require incrementally building on stepping stones. The next two sections examine how

this result comes about.

5.6.2 Example Solution Lineage

To gain a better understanding of how an indirect encoding like ES-HyperNEAT elaborates

a solution over generations, additional evolutionary runs in the maze navigation domain

were performed with sexual reproduction disabled (i.e. every CPPN has only one ancestor).

This change facilitates analyzing the lineage of a single champion network. Disabling sexual

reproduction did not result in a significant performance difference.

An example of four milestone ANNs in the lineage of a solution and the CPPNs that encode

them is shown in figure 5.10. All ANNs share common geometric features: most prominent

100

are the symmetric network topology and denser regions of hidden neurons resembling the

shape of an “H” (except the second ANN). Between generations 24 and 237 the ANN evolves

from not being able to reach the first waypoint to solving the task.

The solution discovered at generation 237 shows a clear holistic resemblance to generation

106 despite some general differences. Both networks have strong positive connections to the

three output neurons that originate at slightly different hidden node locations. This slight

shift is due to a movement of information within the hypercube for which ES-HyperNEAT can

nevertheless compensate, as suggested by Hypothesis 2. The number of connections gradually

increases from 184 in generation 24 to 356 in generation 237, indicating the incremental

elaboration on existing ANN structure, as suggested by Hypothesis 3. Interestingly, the

final ANN solves the task without feedback from its pie-slice sensors.

Figure 5.10 also shows that ES-HyperNEAT can encode large ANNs from compact CPPN

representations. The solution ANN with 40 hidden neurons and 356 connections is encoded

by a much smaller CPPN with only 5 hidden neurons and 18 connections.

In contrast to direct encodings like NEAT (Stanley and Miikkulainen, 2002, 2004), genotypic

CPPN mutations can have a more global effect on the expressed ANN patterns. For example,

changes in only four CPPN weights are responsible for the change in topology from the second

to the third ANN milestone. Other solutions followed similar patterns but single neuron or

connection additions to the substrate do also sometimes occur.

101

Outputs

Rangefinders
Radar

Bias

S

X1 Y1

G

X2 Y2

A

L

G

(a) Generation 24
ANN: 30 n, 184 c
CPPN: 2 n, 9 c
fitness = 0.85

Bias

S

X1 Y1

G

X2 Y2

A

L

G

G

(b) Generation 30
ANN: 52 n, 280 c
CPPN: 3 n, 10 c
fitness = 0.93

Bias

S

X1 Y1

G

X2 Y2

A

L

G

G

(c) Generation 106
ANN: 42 n, 310 c
CPPN: 3 n, 10 c
fitness = 5.96

Bias

S

X1 Y1

G

X2 Y2

A

L

G

S

Si

G

(d) Generation 237
ANN: 40 n, 356 c
CPPN: 5 n, 18 c
fitness = 10.00

Figure 5.10: ANN Milestones and Underlying CPPNs Together With the
Agent’s behavior From a Single Maze Solution Lineage. Four ANN milestones
(bottom) and the CPPNs (top) that encode them are shown together with the number
of hidden neurons n and connections c. Fitness f is also shown. Positive connections
are dark whereas negative connections are light. Line width corresponds to connection
strength. Hidden nodes with recurrent connections are denoted by a smaller concentric
circle. CPPN activation functions are denoted by G for Gaussian, S for sigmoid, Si
for sine, and A for absolute value. The CPPNs receive the length L of the queried
connection as an additional input. The gradual increase of connections indicates an
increase of information in the hypercube, which in turn leads to an increase in perfor-
mance.

102

5.6.3 Evolvability Analysis

Kirschner and Gerhart (1998) define evolvability as “an organism’s capacity to generate

heritable phenotypic variation.” The highly evolvable representations found in biological

systems have allowed natural evolution to discover a great variety of diverse organisms. Thus

facilitating a representation’s effective search (i.e. its evolvability) is an important research

direction in EC (Reisinger et al., 2005).

The dual task (Section 5.5) and the maze navigation domain (Section 5.6) suggest that the

original HyperNEAT fails to elaborate on existing ANN structure because it likely consumes

the entire set of connection weights to represent an intermediate solution. Furthermore, small

mutations in the CPPN can cause a shift in the location of information within the hypercube

for which the original HyperNEAT cannot compensate, making such evolved individuals

fragile. However, ES-HyperNEAT should be more robust because it can compensate for

shifts in the CPPN pattern by following the movement of information within the hypercube

(Hypothesis 2). This ability and the fact that ES-HyperNEAT can elaborate on existing ANN

structure (Hypothesis 3) should allow ES-HyperNEAT to more easily generate individuals

whose offspring display diverse functional behaviors, and thus more heritable phenotypic

variation. To demonstrate this capability, the evolvability of the different representations

needs to be measured.

103

0

10

20

30

40

50

0 150 300 450 600 750 900

Ev
ol

va
bi

lit
y

Generation

ES
FS 10x1

Figure 5.11: Comparing the Evolvability of Fixed-Substrate and Evolvable-
Substrate HyperNEAT. ES-HyperNEAT exhibits a significantly higher evolvability
throughout all generations. Results are averaged over 20 runs.

Kirschner’s definition reflects a growing consensus in biology that the ability to generate

phenotypic variation is fundamental to evolvability (Kirschner and Gerhart, 1998; Wagner

and Altenberg, 1996; Pigliucci, 2008). Therefore, following Lehman and Stanley (2011a), an

individual’s evolvability is estimated by generating many children from it and then measuring

the degree of phenotypic variation among those offspring. In effect, this measure quantifies

how well the underlying encoding enables behaviorally diverse mutations. To measure phe-

notypic variation a behavioral distance measure is needed. Following Lehman and Stanley

(2011a), behavioral distance in the maze navigation domain is measured in this analysis

by the Euclidean distance between the ending position of two individuals. Evolvability is

measured every 50 generations, when each individual in the population is forced to create

200 offspring by asexual reproduction. A greedy algorithm calculates the evolvability by

adding each individual to a list of behaviors if its behavioral distance to all other individuals

already in the list is higher than a given threshold. Thus the number of added behaviors is

an indicator of the individual’s ability to generate phenotypic variation (i.e. its evolvability).

104

Figure 5.11 shows the average evolvability of the best-performing fixed-substrate variant

FS10x1 compared to ES-HyperNEAT. The main result is that ES-HyperNEAT shows a

significantly (p < 0.001) higher evolvability across all generations, further explaining its

better performance in the domains presented here.

5.7 Experiment 3: Left & Right Retina Problem

Modularity likely plays an important role in the evolvability of complex biological organisms

(Hansen, 2003; Dürr et al., 2010; Clune et al., 2010; Kashtan and Alon, 2005). Lipson (2007)

defines functional modularity as the structural localization of function, which allows parts

of a solution to be optimized independently (Kashtan and Alon, 2005). Because modularity

enhances evolvability and allows natural systems to scale to tasks of high complexity, it is

an important ingredient in evolving complex networks, which is a major goal in the field

of GDS. ES-HyperNEAT should more easily evolve modular ANNs than the original fixed-

substrate HyperNEAT because it has the capability to start the evolutionary search with a

bias towards locality and certain canonical ANN topologies, as suggested by Hypothesis 4.

Following Verbancsics and Stanley (2011) and Clune et al. (2010), the modular domain in

this section is a modified version of the retina problem, originally introduced by Kashtan

and Alon (2005). The goal of the ANN is to identify a set of valid 2× 2 patterns on the left

and right side of a 4× 2 artificial retina (figure 5.12). That is, the ANN must independently

105

Left Objects Right Objects

Retina

Figure 5.12: The Retina Problem. The artificial retina consist of 4× 2 pixels that
constitute the inputs to the ANN. Eight out of 16 possible patterns are considered left
objects. The same is true for the right four pixels, though the eight valid patterns are
different.

decide for each pattern presented to the left and right side of the retina if that pattern is a

valid left or right pattern, respectively. Thus it is a good test of the ability to evolve modular

structures because the left and right problem components are ideally separated into different

functional structures.

5.7.1 Link Expression Output

While the original HyperNEAT approach performs poorly in generating modular ANNs

(Clune et al., 2010), a recently-introduced extension called Link Expression Output (Hyper-

NEAT-LEO) (Verbancsics and Stanley, 2011) showed that allowing HyperNEAT to evolve

the pattern of weights independently from the pattern of connection expression, while seed-

ing HyperNEAT with a bias towards local connectivity, allows modular structures to arise

naturally.

106

The LEO is represented as an additional output to the CPPN that indicates whether a con-

nection should be expressed or not. If the LEO output is greater than zero the corresponding

connection is created and its weight is set to the original CPPN weight output. Because Hy-

perNEAT evolves such patterns as functions of geometry, important general topographic

principles for organizing connectivity can be seeded into the initial population. For example,

a key topographic concept in nature that encourages modularity is locality, that is, com-

ponents of a module are located near each other. Verbancsics and Stanley (2011) showed

that by seeding HyperNEAT with a bias towards local connectivity implemented through

the LEO, modular structures arise naturally. Furthermore, the authors report that they

achieved the best results in the retina left & right task by only seeding with the concept

of locality along the x-axis. That is, the seed CPPN starts with a Gaussian node G that

receives x1 − x2 as input and is connected to the LEO output. Therefore G peaks when

the two coordinates are the same, seeding the CPPN with a concept of locality. This result

makes sense because the retina problem is distributed along the horizontal axis (figure 5.12)

Because ES-HyperNEAT does not require any special changes to the traditional Hyper-

NEAT CPPN, enhancements like the LEO can in principle also be incorporated into ES-

HyperNEAT. Thus extending ES-HyperNEAT with a LEO is straightforward and should

combine the advantages of both methods: evolving modular ANNs should be possible wherein

the placement and density of hidden nodes is determined solely based on implicit informa-

tion in the hypercube. In this combined approach, once all connections are discovered by

the weight-choosing approach (Section 5.3) only those are kept whose LEO output is greater

107

than zero. In fact, the idea that geometric concepts such as locality can be imparted to

the CPPN opens an intriguing opportunity to go further than the LEO locality seed in ES-

HyperNEAT. In fact, it is also possible to start the evolutionary search with a bias towards

certain ANN topologies, as explained in the next section.

5.7.2 ES-HyperNEAT Geometry Seeding

Because the pattern output by the CPPN in ES-HyperNEAT is a kind of language for

specifying the locations of expressed connections and nodes, ES-HyperNEAT can be seeded

to begin with a bias towards certain ANN topologies (e.g. ANNs with multiple hidden layers

and connected inputs and outputs) that should facilitate the evolutionary search. Especially

in the initial generations ES-HyperNEAT runs the risk of being trapped in local optima where

high fitness values can be achieved only by incorporating a subset of the available inputs.

The idea of seeding with a bias towards certain types of structures is important because

it provides a mechanism for emulating key biases in the natural world that are provided

ultimately by physics. For example, evolution could be seeded with an ANN topology that

resembles the organization of the cortical columns found in the human brain (Sporns, 2002),

potentially allowing higher cognitive tasks to be solved.

Providing such bias means escaping the black box of evolutionary optimization to provide a

kind of general domain knowledge. Even though ES-HyperNEAT could in principle discover

108

weight LEO

x1 y1 x2 y2 bias

G1
G2

Figure 5.13: X-locality and Geometry Seeding. The CPPN is initialized with
two Gaussian hidden nodes G1 and G2 that take as input x1 − x2 and y1 − y2 + b,
respectively. Whereas G1 is connected to the LEO with a bias of -1, G2 connects to
the weight output. G1 peaks when x1 and x2 are the same, thereby seeding the initial
CPPNs with locality along the x-axis. G2 creates horizontal stripes of differing weights
running through the hypercube, which induces the expression of multiple hidden layers
in the decoded ANN. Positive connections are dark whereas negative connections are
light.

the appropriate ANN topology by itself, biasing the search with a good initial topology should

thus make the search less susceptible to local optima. While ES-HyperNEAT can modify

and elaborate on such initial ANN topologies, FS-HyperNEAT would likely not benefit from

geometry seeding because it cannot compensate for movement of information within the

hypercube and certain structures are a priori not possible to represent if the nodes are not

placed in the correct locations. Figure 5.13 shows a CPPN that combines seeded locality

and seeded geometry. In addition to Gaussian node G1 that specifies locality along the

x-axis (Verbancsics and Stanley, 2011), a second Gaussian node G2 is added that receives

y1 − y2 + b, where b is bias, as input (figure 5.13) and therefore creates horizontal stripes

of differing weights running through the hypercube along y1. Interestingly, changing the

bias input of G2 thus can immediately create ANNs with more or less hidden layers. In

109

x

y

-1.0 1.00.0

0.0

1.0 Outputs

Inputs

Layer 1

Layer 2

z = 1
z = 0
z = -1

Bias

0.36

0.61

Figure 5.14: Retina Problem Substrate Configuration. The substrate consists
of four layers with the inputs at y = 0.0, the first hidden layer at y = 0.37, a second
hidden layer at y = 0.61 and the outputs at y = 1.0. Note that this substrate has
three dimensions. The z coordinates are indicated by the different circle patterns.

the experiments reported here a bias weight of 0.33 was chosen, resulting in initial ANNs

with two hidden layers, which is similar to the setup of the fixed-substrate variant explained

in the next section. It is important to note that most connections will initially not be

expressed because of the locality seeding. However, slight perturbations of the seed in the

initial generation provide a variety of local connectivity patterns and ANN topologies. That

the organization of a locally-connected two-hidden-layer network can be entirely described

by two new hidden nodes in the initial CPPN suggests the power of the encoding and the

expressiveness that is possible when seeding ES-HyperNEAT.

110

5.7.3 Retina Problem Setup

This substrate configuration is derived from the setups of Verbancsics and Stanley (2011)

and Clune et al. (2010), which established such a three-dimensional setup as standard for

the retina problem (figure 5.14). The ANN has eight input nodes and two output nodes.

Fixed-substrate HyperNEAT has two layers of hidden nodes, with four hidden nodes each.

Note that the substrate has three dimensions (x, y, z). The ANN inputs receive either -3.0 or

3.0 depending on the state (e.g. off or on) for each retina input. The left and right outputs

specify the classification for the left and right retinas, respectively, where values close to

1.0 indicate valid patterns. Values close to -1.0 indicate an invalid pattern. Six different

HyperNEAT approaches are compared to isolate the effects of the LEO and the hidden layer

seeding:

• In the ES-HyperNEAT approach the placement and density of the hidden nodes

and their connections to the input and output nodes are determined entirely from the

CPPN by the algorithm in Section 5.3 without any seeding.

• ES-HyperNEAT-LEO extends ES-HyperNEAT with LEO, which should facilitate

the evolution of modular ANNS.

• ES-HyperNEAT with Geometry Seeding tests ES-HyperNEAT’s ability to take

advantage of initial geometric seeding through the CPPN. The seed, shown in fig-

ure 5.13, creates ANNs with two hidden layers with four neurons each, corresponding

111

to the fixed-substrate retina setup (figure 5.14). Note that the functionality of the

LEO is disabled in this setup.

• ES-HyperNEAT-LEO with Geometry Seeding tests the hypothesis that both

extensions, LEO with locality seeding and geometric seeding (figure 5.13), should be

complementary in increasing ES-HyperNEAT’s ability to generate modular networks

for complicated classification problems.

• Following Verbancsics and Stanley (2011), FS-HyperNEAT-LEO with x-locality

seeding is the original HyperNEAT approach with a fixed substrate and an additional

LEO.

• In the FS-HyperNEAT-LEO with Geometry Seeding approach FS-HyperNEAT

is also seeded with x-locality and initial weight patterns (figure 5.13) that intersect

the positions of the fixed hidden nodes (figure 5.14). The hypothesis is that the ad-

ditional geometric seeding should not significantly increase FS-HyperNEAT’s perfor-

mance because small variations in the initial seed will disrupt the alignment between

the CPPN-expressed pattern and hidden node positions, for which FS-HyperNEAT

cannot compensate.

Note that the seed CPPN for all approaches without geometry seeding does not have direct

connections from the inputs to the weight output in the CPPN. However, mutations on the

seed to create the initial generation can connect arbitrary inputs to arbitrary outputs. This

112

setup has shown a generally better performance than starting with a fully-connected CPPN.

Fitness, which is computed the same way for all approaches, is inversely proportional to

the summed distance of the outputs from the correct values for all 256 possible patterns:

F = 1000.0
(1.0+E2)

, where E is error.

5.7.4 Results

All results are averaged over 40 runs. Figure 5.15 shows the training performance over

generations for the different HyperNEAT variants and how frequently they solve the problem

perfectly (i.e. correctly classify 100% of the patterns). Because FS-HyperNEAT-LEO succeds

in almost every run after 5,000 generations (Verbancsics and Stanley, 2011), to highlight the

differences in the HyperNEAT variants, figure 5.15b reports the number of successful runs

after a much shorter period of 2,000 generations.

While ES-HyperNEAT solves the retina domain in only 30% of the runs, augmenting ES-

HyperNEAT with LEO and geometry seeding improves the odds of finding a solution to 57%.

ES-HyperNEAT-LEO with geometry seeding performs significantly better than the other

variants (p < 0.05), confirming Hypothesis 4 and the advantages of both ES-HyperNEAT ex-

tensions for the evolution of modular ANNs. The performance of the original FS-HyperNEAT

with LEO, on the other hand, even decreases from finding a solution in 30% of the runs to

113

0 500 1000 1500 2000
0

100

200

300

400

500

Generation

A
ve

ra
ge

P
er

fo
rm

an
ce

FS-LEO

ES + G

ES-LEO + G

FS-LEO + G

ES

ES-LEO

(a) Retina Training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ES ES
LEO

ES
Geometry

ES
LEO

Geometry

FS
LEO

FS
LEO

Geometry

Fr
ac

tio
n

of
R

un
s

Su
cc

es
sf

ul

HyperNEAT Variant

(b) Successful Runs

Figure 5.15: Average Performance in Retina Domain. The average best fitness
over generations is shown for the retina domain (a) for the different HyperNEAT
variants, which are averaged over 40 runs. The fraction of 40 runs that successfully
solve the domain is shown in (b) for each of the HyperNEAT variants after 2,000
generations. The main result is that ES-HyperNEAT-LEO with geometry seeding
significantly outperforms all other approaches.

only finding the solution in 25%, when seeded with geometry, confirming that only ES-

HyperNEAT can take advantage of such geometry seeding.

Surprisingly, just extending ES-HyperNEAT with a LEO alone does not increase perfor-

mance but instead decreases it slightly (though not significantly). Especially in the first 1,000

generations there is almost no improvement in performance (figure 5.15a), which suggests

that pruning connections based on the amount of information in the hypercube and addi-

tionally through the LEO without any geometry seeding hinders the evolution of functional

networks (i.e. ANNs with paths from the input to the output neurons). Additionally, only

seeding with geometry but not extending ES-HyperNEAT with a LEO (ES-HyperNEAT with

geometry seeding) also decreases performance, which is likely due to the increased crosstalk

in the more fully-connected ANNs.

114

A closer look at the structure of some final solutions gives insight into how ES-HyperNEAT-

LEO can elaborate on initial geometric seeding (figure 5.16). ES-HyperNEAT-LEO can

successfully build on the initial structure, creating networks of varying complexity and resem-

blance to the initial seed (figure 5.13). Modularity is the prevailing pattern (figure 5.16a,b,e)

but non-modular ANNs also emerge (figure 5.16c). While most networks display a high

degree of symmetry (figure 5.16a-c), resembling the symmetry in the retina patterns (fig-

ure 5.12), less symmetric ANNs are also discovered (figure 5.16d,e).

The main result is that it is the combination of LEO and geometry seeding that allows

ES-HyperNEAT more easily to evolve modular ANNs. The original HyperNEAT approach,

on the other hand, cannot take full advantage of those extensions and performs significantly

worse, even though it too benefits from the LEO.

5.8 ES-HyperNEAT Implications

The central insight in this chapter is that a representation that encodes the pattern of con-

nectivity across a network (such as in HyperNEAT) automatically contains implicit clues on

where the nodes should be placed to best capture the information stored in the connectiv-

ity pattern. Experimental results show that ES-HyperNEAT significantly outperforms the

original HyperNEAT while taking a step towards more biologically plausible ANNs and sig-

115

(a) 55 neurons, 198 connections (b) 25 neurons, 54 connections (c) 69 neurons, 201 connections

(d) 27 neurons, 72 connections (e) 77 neurons, 368 connections

Figure 5.16: Example Connectivity Patterns from ES-HyperNEAT-LEO with
Geometry Seeding in a Modular Domain. Modularity is commonly found when
ES-HyperNEAT-LEO is seeded with the geometry seed (a, b). Once modularity is
found, the regularities needed to solve the task for each module can be discovered in
the weight pattern. ES-HyperNEAT-LEO evolves a variety of different ANNs with
more or less hidden neurons and connections. Non-modular ANNs that solve the task
are also discovered (c), although with less frequency. Hidden nodes with recurrent
connections are denoted by a smaller concentric circle. Positive connections are dark
(black) whereas negative connections are light (red).

116

nificantly expanding the scope of neural structures that evolution can discover. This section

explores the implications of this capability and its underlying methodology.

5.8.1 Dictating Node Locations

The convention in HyperNEAT of the last several years that the user would simply decide

a priori where the nodes belong evaded the deeper mystery about how connectivity relates

to node placement. As suggested by Hypothesis 2, dictating the location of nodes makes

it harder for the original HyperNEAT to represent the correct pattern, which the reported

results in a variety of domains confirm. While ES-HyperNEAT can compensate for movement

of information within the hypercube by expressing the hidden nodes at slightly different

locations (e.g. figure 5.10c,d), representing the correct pattern for the original HyperNEAT

is more difficult, resulting in more complex CPPNs. The significantly reduced performance of

the vertical node arrangement FS1x10 in the maze navigation domain (figure 5.9a) indicates

that the more complex the domain the more restrictive it is to have nodes at fixed locations.

One way to interpret the preceding argument is that the locations of useful information in

the hypercube are where the nodes need to be. That way, the size of the brain is roughly

correlated to its complexity. There is no need for a billion neurons to express a simple

Braitenberg vehicle. Even if a billion neurons were summoned for the task, many of their

functions would end up redundant, which geometrically means that large cross-sections of

117

the hypercube would be uniform, containing no useful information. The ES-HyperNEAT

approach presented here is a heuristic attempt to formalize this notion and thereby correlate

size to complexity. In this context, nodes become a kind of harbinger of complexity, prolif-

erating where it is present and receding where it is not. Thus the solution to the mystery

of the relationship between nodes and connections is that nodes are sentinels of complex

connectivity; they are beacons of information in an infinite cloud of possible connections.

5.8.2 Incrementally Building on Stepping Stones

Previous work showed that ES-HyperNEAT and the original HyperNEAT exhibit similar

performance in a simple navigation domain (Risi et al., 2010b). However, in the more

complicated navigation domain presented here (Section 5.6), the best fixed-substrate Hy-

perNEAT method (FS10x1) solves the domain in only 45% of runs. How can this poor

performance be explained?

The problem is that the increased complexity of the domain requires incrementally building

on previously discovered stepping stones. While direct encodings like NEAT (Stanley and

Miikkulainen, 2002, 2004) can complexify ANNs over generations by adding new nodes and

connections through mutation, the indirect HyperNEAT encoding tends to start already with

fully-connected ANNs (Clune et al., 2010), which take the entire set of ANN connection

weights to represent a partial task solution. On the other hand, ES-HyperNEAT is able

118

to elaborate on existing structure in the substrate during evolution (figure 5.10), confirming

Hypothesis 3. This result is important because the more complicated the task, the more likely

it will require a neuroevolution method that benefits from previously-discovered stepping

stones.

These results also explain why uniformly increasing the number of hidden nodes in the

substrate does not necessarily increase HyperNEAT’s performance. In fact, FS8x8 performs

significantly worse than FS5x5, which is likely due to the increased crosstalk that each neuron

experiences.

The ES-HyperNEAT solutions are in general more complex than necessary for the navigation

task. Yet they are nevertheless optimized more quickly than their fixed substrate counter-

parts. An indirectly-encoded neuroevolution algorithm is not the same as a direct encoding

like NEAT that complexifies by adding one node at a time to find just the right number

of nodes for a task. The promise of the indirect encoding is rather to evolve very large

networks that would be prohibitive to such direct encodings, with thousands or more nodes.

Figure 5.9c shows that the substrate evolution algorithm can actually create increasingly

complex indirectly-encoded networks even though it is not explicitly designed to do so (e.g.

like regular NEAT) and that it can encode large ANNs from compact CPPN representations.

One reason for this capability is that the impact of adding new nodes and connections to

the CPPN is that the complexity of the pattern it encodes will often increase. Because ES-

HyperNEAT in effect attempts to match the structures it discovers in the hypercube to the

119

complexity of the pattern within it, it makes sense that as the size of the CPPN increases,

the complexity of the ANN substrate it encodes would generally increase as well.

So far NE techniques have mainly focused on evolving behaviors that require relatively small

ANNs. ES-HyperNEAT’s new capabilities and its higher evolvability (figure 5.11) should

enable more complex tasks to be solved in the future that require large-scale unknown node

placements and the traversal of many stepping stones. The more complex the task, the more

important it will be to free the user from the burden of configuring the substrate by hand.

Also importantly, the approach has the potential to create networks from several dozen nodes

up to several million, which will be necessary in the future to create truly intelligent systems.

5.8.3 Geometry Seeding

Whereas the original HyperNEAT only allowed seeding with a bias towards local connectiv-

ity (Verbancsics and Stanley, 2011), ES-HyperNEAT can also be seeded with a bias towards

certain ANN topologies. The results in the retina problem confirm Hypothesis 4: the com-

bination of LEO and geometry seeding allows the approach more easily to evolve modular

ANNs, yet the original HyperNEAT approach cannot take full advantage of such a seed.

While the work of Verbancsics and Stanley (2011) took a step in the direction of incorporat-

ing important geometric principles (e.g. locality) that are helpful to create structures that

120

resembles those of nature, the geometry seeding presented here goes a step further. The idea

of seeding with a bias towards certain types of structures is important because it provides

a mechanism for emulating key biases in the natural world that are provided ultimately by

physics.

As noted by Verbancsics and Stanley (2011), the better performance with an initial bias

towards locality suggests that the path to encoding locality is inherently deceptive with

respect to the fitness function in the retina task. Such deception may turn out common when

geometric principles such as locality that are conceptually orthogonal to the main objective

are nevertheless essential to achieving the goal. Thus seeding with the right geometric bias

may prove an important tool to avert deception in many domains.

Overall, ES-HyperNEAT thus advances the state-of-the-art in NE beyond the original Hy-

perNEAT and has the potential to create large-scale ANNs for more complicated tasks, like

robots driven by raw high-resolution vision, strategic game-players, or human assistants.

For the field of AI, the idea that we are beginning to be able to reproduce some of the

phenomena produced through natural evolution (e.g. compactly encoded regular and mod-

ular networks) at a high level of abstraction is important because the evolution of brains

ultimately produced the seat of intelligence in nature.

The next chapter augments ES-HyperNEAT with adaptive HyperNEAT’s ability to indi-

rectly encode plastic ANNs as a pattern of local learning rules, which yields a unified ap-

proach that can evolve agents for more complex task that require lifetime learning.

121

CHAPTER 6
UNIFIED APPROACH: ADAPTIVE ES-HYPERNEAT

To date no method in neuroevolution unifies the ability to indirectly encode connectivity

through geometry, simultaneously encode the density and placement of nodes in space, and

generate patterns of heterogeneous plasticity. While such a unified approach risks being ad

hoc, HyperNEAT offers a unifying principle that naturally expresses both node placement

and plasticity. That is, both can be encoded by the CPPN as a pattern situated within the

geometry of the substrate.

Thus this chapter introduces for the first time the complete adaptive ES-HyperNEAT ap-

proach that can evolve increasingly complex neural geometry, density, and plasticity. The

experiments in this chapter are to appear in Risi and Stanley (2012).

6.1 Evolving Plasticity and Neural Geometry

The Hebbian ABC model (Section 4.1) was chosen as the basis for extending ES-HyperNEAT

to also evolve plastic ANNs because it offers a good compromise between the generality

of an indirect encoding of plasticity and its computational cost. Additionally, given the

right topology (which ES-HyperNEAT should be able to evolve), the ABC model should be

sufficient for most domains.

122

Evolved CPPN Topology

X1 Y1 Y2 X2

F F FW A CB FD FMη

Figure 6.1: Adaptive ES-HyperNEAT CPPN. This CPPN is only activated once
for each queried connection to determine its weight and learning parameters. This
model completely determines weights, plasticity, and modulation through a single vec-
tor function encoded by the CPPN. Node placement is further determined by implicit
information in the pattern within the hypercube, following the ES-HyperNEAT ap-
proach.

Adaptive ES-HyperNEAT augments the four-dimensional CPPN that normally encodes con-

nectivity patterns with six additional outputs beyond the usual weight output: learning rate

η, correlation term A, presynaptic term B, postsynaptic term C, constant D, and mod-

ulation parameter M (figure 6.1). The pattern produced by parameter M encodes the

modulatory connections, as explained below. When the CPPN is initially queried, these

parameters are permanently stored for each connection, which allows the weights to be mod-

ified during the lifetime of the ANN. In addition to its standard activation, each neuron i

also computes its modulatory activation mi based on the types of its incoming connections:

mi =
∑

wji∈Modwji · oj. The weight of a connection between neurons i and j then changes

following the mi-modulated plasticity rule: ∆wji = tanh(mi/2) · η · [Aojoi +Boj +Coi +D].

That way, HyperNEAT allows connection-mediated neuromodulation (i.e. connections in-

stead of neurons (unlike in Section 2.5.2) are either standard or neuromodulatory), because

that way HyperNEAT can efficiently encode plasticity as a pattern of local rules.

123

The other important component of adaptive ES-HyperNEAT is that it determines the place-

ment and density of nodes from implicit information in the hypercube encoded by the CPPN,

as in ES-HyperNEAT alone (Chapter 5). Among the seven CPPN outputs, the node place-

ment and connectivity is determined by searching only through the patterns produced by the

weight output W (to discover regular connections) and modulatory output M (to discover

modulatory connections). These patterns in effect represents a priori information at the

“birth” of the ANN, which by convention then determines node placement. As noted earlier,

the node-placement algorithm searches for areas of high variances within the hypercube, in

effect giving the CPPN a language to express density patterns (Risi and Stanley, 2011).

Once all hidden neurons are discovered, only those are kept that have a path to an input

and output neuron.

Thus adaptive ES-HyperNEAT is able to fully determine the geometry, density, and plasticity

of an evolving ANN based on a function of its geometry. While work in Chapter 5 showed

the benefits of evolving the HyperNEAT substrate, the next section presents an experiment

designed to demonstrate the advantages of augmenting the model with synaptic plasticity.

6.2 Continuous T-Maze Domain

The domain investigated in this chapter is a more complicated version of the T-Maze task

studied in Chapters 3 and 4. The most important aspect of this domain is that it is not the

124

traditional discrete grid-world T-Maze that is popular in this area (Soltoggio et al., 2008);

rather, the more realistic domain presented here (figure 6.2) requires the robot to develop

both collision avoidance and the ability to learn during its lifetime in a continuous world

(unlike the traditional discrete T-Maze). Similar experiments with neuromodulated ANNs

were performed by Dürr et al. (2010) but their robot relied on additional ANN inputs (e.g.

an input that signaled the end of the maze and an input that was activated once the T-

Maze junction came into view) to solve the task. Additionally, to facilitate the task, their

robots had only two infrared sensors whose values were merged into one sensory input. The

increased number of rangefinder inputs (five) in the present experiment gives the simulated

robot a finer resolution without the need for any sensor preprocessing. Blynel and Floreano

(2003) also solved a version of the continues task, but with CTRNNs instead of plastic

networks, which often required incremental evolution. Therefore, this challenging version of

the T-Maze domain should test adaptive ES-HyperNEAT’s ability to directly evolve more

sophisticated plastic ANNs.

To generate a controller for the T-Maze domain, the evolved CPPNs query the substrate

shown in figure 6.2b. The placement of input and output nodes on the substrate is designed

to geometrically correlate sensors and effectors (e.g. seeing something on the left and turning

left). Thus the CPPN can exploit the geometry of the robot. The simulated robot is equipped

with five rangefinder sensors that are scaled into the range [0, 1]. The Reward input remains

zero during navigation and is set to the amount of reward collected at the maze end (e.g. 0.1

or 1.0). At each discrete moment of time, the number of units moved by the robot is 20F ,

125

rR

(a) T-Maze Learning

1.0
Y

X
-1.0 1.0

41 2 53
-1.2

-1.0

Re

Hidden Nodes

(b) Substrate

Figure 6.2: Continues T-Maze Domain and Substrate Configuration. (a) The
challenge for the robot in the T-Maze domain is to remember the location of the high
reward from one trial to the next. (b) The simulated robot is equipped with five
distance sensors (white) and one reward sensor (black).

where F is the forward effector output. The robot also turns by 17(R − L) degrees, where

R is the right effector output and L is the left effector output.

The goal of the robot is to maximize the amount of reward collected over four independent

deployments with varying initial reward positions and switching times. Because Chapter 3

showed that only measuring performance based on the amount of collected reward is not

a good indicator of the adaptive capabilities of the evolved agent, the fitness function in

this chapter rewards consistently collecting the same reward, with a score of 1.0 for each

low reward and a score of 2.0 for each high reward collected in sequence. The design of

this fitness function is based on insights gained by analyzing typical behaviors archived by

novelty search in the discrete T-Maze domain (figure 3.7). Experimental parameters for this

experiment are given in the Appendix.

126

6.3 Continues T-Maze Results

Whereas ES-HyperNEAT alone could only solve the T-Maze task in one out of 30 runs (by

storing state information through recurrent connections), adaptive ES-HyperNEAT found

a solution in 19 out of 30 runs, in 426 generations on average (σ = 257) when successful

(figure 6.3a). This result suggests that augmenting ES-HyperNEAT with the ability also

to encode plastic ANNs is important for tasks that require the agent to adapt. Evolved

solutions always collect the maximum-possible reward without colliding and only require

a minimum amount of exploration (i.e. collecting a low reward) at the beginning of their

lifetime and when the reward changes position. Unlike in Dürr et al. (2010), the ANNs have

no special sensors to designate key locations and they also take raw rangefinder input.

Figure 6.3b also shows that the neural dynamics start to resemble particular dynamics found

in nature. Similarly to cells in the rat’s hippocampus (Eichenbaum, 2000), individual hidden

neurons in a typical ANN solution only fire when the robot is in a left or right-side trial,

indicating an episodic-like coding of events (i.e. each trial is encoded separately).

Figure 6.4 shows an example ANN solution and its underlying CPPN. The ANN has 149

connections and 32 hidden nodes. With seven parameters per connection, the network

has a total of 1,043 parameters. In contrast, the CPPN that encodes this network has

only 54 connections and 6 hidden nodes; thus it is 19 times smaller than the network it

encodes. In this way, HyperNEAT is able to explore a significantly smaller search space (i.e.

127

0 200 400 600 800 1000

10

20

30

40

50

Generation

A
ve

ra
ge

P
er

fo
rm

an
ce

Adaptive ES-HyperNEAT
ES-HyperNEAT

(a) T-Maze Training (b) Neuron Activation

Figure 6.3: Average Performance in Continues T-Maze. The average best fitness
over generations is shown for the T-Maze domain (a). The main result is that adaptive
ES-HyperNEAT significantly outperforms ES-HyperNEAT because it allows the robot
to more easily adapt during its lifetime. The activation of two hidden neurons from
a T-Maze solution ANN is shown in (b). Only on trials with the high reward to the
right does one of the two neurons show a positive activation (black) while the robot
passes through the maze and turns onto the right choice arm. The other neuron only
shows a positive activation (gray) on trials with the reward to the left, indicating an
episodic-like encoding of events (Eichenbaum, 2000).

(a) ANN (1,043 parameters)

Bias

A B C D M

Si

X1 Y1

W

X2 Y2 L

A S Si S G

η

(b) CPPN (54 parameters)

Figure 6.4: Example Solution ANN Created by Adaptive ES-HyperNEAT
and its Underlying CPPN. Positive connections are dark whereas negative con-
nections are light. Modulatory connections are dotted and line width corresponds to
connection strength. The algorithm discovered this ANN solution (a) by extracting the
information inherent in the simpler underlying CPPN (b). CPPN activation functions
are denoted by G for Gaussian, S for sigmoid, Si for sine, and A for absolute value.
The CPPN receives the length of the queried connection L as an additional input.

128

CPPNs) while still creating complex structures (i.e. substrates). The ANN includes both

neuromodulatory and plastic connections, showing that the full heterogeneous plasticity of

an adaptive network can be encoded by a single compact CPPN. Different regions of the

substrate show varying levels of node density and the majority of the modulatory connections

originate from the right side of the substrate. Similar neural structures can also be found in

the brain, where groups of neurons, called diffuse modulatory systems, project to numerous

other areas (Bear et al., 2007).

6.4 Adaptive ES-HyperNEAT Implications

The main results in this chapter signify progress in the field of neuroevolution. Evolved

ANNs are beginning to assume more natural properties such as topography, regularity, het-

erogeneous plasticity, and neuromodulation. Furthermore, the results in the continuous

T-Maze demonstrate that these capabilities combine effectively in a task that requires adap-

tation. Perhaps the most important point is that progress in this area has been cumulative:

rather than separate methods that depend on entirely different architectures, the techniques

combined in this study are built one upon another. In effect, a new research trajectory is

coming into focus. For the field of AI, the idea that we are beginning to be able to reproduce

some of the phenomena produced through natural evolution at a high level of abstraction is

important because it might allow the creating of a new kind of intelligent machines.

129

The main idea behind adaptive ES-HyperNEAT is that the node placement and plasticity

can be encoded by the CPPN as a pattern situated within the geometry of the substrate. The

next chapter explores a variant of the idea that the CPPN can encode plasticity in a legged

robot domain, in which the entire substrate is impacted by global morphological information

rather than local neural activation. In this spirit, the ability of CPPNS to encode particular

weight configurations based on external conditions is exploited and the network is able to

adapt to a variety of different robot body proportions.

130

CHAPTER 7
TOWARDS AN ADAPTIVE NEUROCONTROLLER FOR

LEGGED LOCOMOTION

Legged robots have long captured the interest of researchers in robotics (Hornby et al.,

2000; Kimura et al., 2001; Wettergreen and Thorpe, 1992; Lewis and Bekey, 2002). Unlike

their wheeled counterparts, they offer a high degree of mobility and excel on rugged terrain.

However, designing a controller for a legged robot is challenging because of the high number

of degrees of freedom within each leg and the need for tight coordination and balance.

Controllers for legged robots are often crafted and tuned for a specific robot morphology,

which can be a difficult and time-consuming task (Wettergreen and Thorpe, 1992). There-

fore, interest has increased in recent years in automatically learning gaits for particular

robots. In one seminal work, Hornby et al. (2000) trained dynamic gaits (i.e. gaits that re-

quire transient instability during ambulation) for the AIBO robot dog with an evolutionary

technique. The trained controller was actually included in the commercial release of the

robot. In fact, a range of techniques have shown promise (Kimura et al., 2001; Lewis and

Bekey, 2002; Clune et al., 2009).

However, learned and hand-designed controllers both are likely to fail when the robot’s

morphology is altered, even if only slightly (Hornby et al., 2000). This brittleness contrasts

starkly with the capabilities of legged animals in nature. For example, a foal can quickly learn

to walk a short time after birth. As noted by Lewis and Bekey (2002), it is unlikely that the

131

locomotion controller in the foal is determined completely before birth or that any “learning

algorithm cold program a nervous system ab initio with so few training epochs”. Thus rather

than learning a controller for a particular morphology, an intriguing unexplored possibility

is instead to learn a relationship between the morphology of a robot and its control. In fact,

the ability to exploit such a relationship is a major goal for the field of robotics.

In this spirit, the ability of CPPNs to encode particular weight configurations based on

external conditions is exploited not only to create ANNs as a function of the domain geometry

but also based on the particular quadruped morphology. By evolving a function that can

output controllers for different morphologies (figure 7.1), HyperNEAT can actually learn

the relationship between morphology and control policy. This approach can be viewed as a

variant of the idea behind adaptive HyperNEAT, except that in this realization, the entire

substrate is impacted by global morphological information rather than local activation. That

way, the network adapts to the robot’s size. The hope for such an approach, which has

not been demonstrated previously, is that once such a relationship is learned the output

controllers are able to work on a diversity of different morphologies without further training.

While this approach differs from how animals and humans gradually learn to adapt to their

bodies of origin, it should provide useful conceptual insights towards the general goal of

adaptive controllers for locomotion. To understand how a diversity of morphologies will be

encoded by the same CPPN, it helps to begin by considering how a single CPPN encodes a

single quadruped controller.

132

(a) Small (b) Medium (c) Large

Figure 7.1: Quadruped Training Morphologies. The flexible neural controller
trained on three quadrupeds with different leg segment lengths (0.25, 0.30, and 0.37
meters) learns to interpolate to never-seen intermediate morphologies without further
training.

7.1 Static Quadruped Neural Controller

In this chapter, a three-dimensional quadruped robot (figure 7.1) in a realistic physics simu-

lation using the freely available Open Dynamics Engine (see http://www.ode.org), is con-

trolled by a continuous-time recurrent neural network (CTRNN) (Section 2.1) that is able

to express the non-linear dynamics found in natural gaits and is common in other legged

robot experiments (Reil and Husbands, 2002; McHale and Husbands, 2004). The quadruped

robot (figure 7.1) has a total of twelve degrees of freedom (DOF): two degrees in each hip

joint (pitch and roll) and one degree in each knee joint (pitch).

The neural architecture for the quadruped is distributed into separate substrate modules for

each of the four legs (figure 7.2). Similar decentralized architectures seem critical in walking

biological organisms (Pearson et al., 1976), and also have inspired hand-designed control

architectures for hexapod robots (Brooks, 1989).

133

http://www.ode.org

-1 1x
-1

1

y

-1 1x
-1

1

y

-1 1x
-1

1

y

-1 1x

-1

1

y

1-1

-1

xm

ym

1

Anterior Left Anterior Right

Posterior Left Posterior Right

(a) Substrate

xm1

xm2

ym1

ym2

T

B

W

M

x1

y2

y1

x2

IN
P

U
TS

O
U

TP
U

TS

L

C
P

P
N

(b) CPPN

Figure 7.2: Distributed Substrate Architecture and CPPN. The quadruped ar-
chitecture is divided into four different substrate modules (a). Each module is respon-
sible for controlling a single leg, where the inter-module connections allow neighboring
nodes in different modules to communicate (dotted line). Each leg module has one
input (black), two hidden (white), and three output nodes (gray). The CPPN (b)
takes the internal position of each node inside their corresponding module (x.y) and
the the position of the module itself (x m, y m) as input to generate the intra-module
connections (determined by output W), inter-module connections (output M), time
constants (output T), and node biases (output B). The flexible neural controller addi-
tionally receive the current leg length L as input when determining the time constant
and bias values of the hidden nodes.

134

Each leg module has one input, two hidden, and three output nodes. The inputs provide the

current angle of the anterior-posterior hip joint. The ANN outputs movement requests for

each degree of freedom in the model, i.e. for each independent axis of rotation for all joints

in the model. The outputs are scaled to match the angular range of the corresponding DOF,

which is interpreted as the angle that the neural controller is requesting. The difference

between the requested angle and the current orientation of the DOF denotes the disparity

between the state the ANN is requesting and the current state of the model. A proportional

controller applies torque to reduce this disparity. In other words, the ANN directs the low-

level controllers towards a particular state. This method of control are similar to those in

Reil and Husbands (2002) and Lehman and Stanley (2011b).

To generate a controller for the quadruped, a CPPN (figure 7.2b) with inputs x1, y1, x2,

y2, x m1, y m1, x m2, and y m2 first queries each of the four substrate modules shown in

figure 7.2a to determine the intra-module connection weights between the input/hidden,

hidden/hidden, hidden/output, and output/output nodes of each module (determined by

CPPN output W). That is, inputs x and y describe the internal position of each node inside

their corresponding module, whereas the x m and y m inputs determine the position of the

module itself (e.g. the module controlling the anterior left leg is located at (x m = −1, y m =

1)) within the larger substrate. The CPPN can thus emphasize the influence of x m and y m

for increasing heterogeneity or minimize it to produce greater homogeneity between different

leg modules. Subsequently, the inter-module connections between corresponding neighboring

hidden and output neurons are determined (dotted lines in figure 7.2a) by CPPN output

135

M . This approach to encoding separate modules within a single substrate is inspired by

the multiagent HyperNEAT approach (D’Ambrosio et al., 2010), which showed how several

similar ANNs can be encoded by the same CPPN. However, an added idea here is also to

encode connections between such modules, to help them synchronize in time.

Additionally the bias and time constant values for each hidden node are determined by

CPPN outputs T and B. By convention those values are determined by a node-centric

query at (x1, y1, x m1, y m1, 0, 0, 0, 0), where x2, y2, x m2, y m2 are simply set to zero. The

time constants and bias values for the output nodes are fixed for all approaches to 0.1

and 3.0, respectively. These values have been found to work well for a variety of different

morphologies. Most importantly, the key idea in this section is that the CPPN takes a set

of geometric parameters and outputs a connectivity pattern for a network.

7.2 Flexible Neural Controller

A flexible network controller poses a greater challenge; how can a single CPPN encode a

set of different architectures for different quadruped morphologies, all related but requiring

slightly different gaits?

The main idea is that a single CPPN is able to create different ANNs based on both the

robot’s internal geometry and its current leg length. While the connectivity pattern of the

136

network is generated as described in the previous section, now the leg length is provided

as an additional input to the CPPN for the node-centric queries of the time constants and

biases of the hidden nodes. These hidden nodes function as the main Central Pattern

Generators (CPGs) of the quadruped, controlling the rhythmic movement of the legs of

the robot. CPGs have been suggested as important functional units of the central nervous

system (Grillner and Wallen, 1985). The hypothesis in this work is that given the right

neural connectivity, a change in the time constants can modulate the gait of the robot to fit

a certain morphology. Additionally, by supplying the CPPN with a morphology-dependent

input (e.g. leg length) and evaluating it on a variety of different morphologies, it should be

able to learn a relationship between morphology and control. In effect the CPPN encodes

an adaptive controller dependent upon leg length.

While the CPPN in this chapter is only augmented with a single additional input, in prin-

ciple more inputs could be added (i.e. joint ranges, maximum torque, torso densities, etc.),

allowing the CPPN to produce an even wider range of different controllers for different robot

morphologies.

A key question about such a flexible controller is whether the CPPN can also in principle

generate controllers for intermediate leg scales on which it was not trained. This capability

would allow one CPPN to produce ANNs for a variety of different morphologies without

further training. The controllers would be able to interpolate between the policies of the

137

learned morphologies, thereby allowing less model-specific controllers than have heretofore

been possible.

7.3 Experimental Setup

Because initial random controllers for legged robots and all of their immediate perturbations

tend to fall they provide a bad gradient for an objective-driven evolutionary search (Van

De Panne and Lamouret, 1995; Lehman and Stanley, 2011b). Therefore, the experiments

in this chapter employ novelty search (Section 2.6), which has also been shown to overcome

deception in locomotion-based problems in the past (Lehman and Stanley, 2011b). Chapter 3

also showed how novelty search supports learning plastic controllers. For the purposes of

this study, it is the chosen learning approach for both static and flexible controllers. In the

future, when more is known about the proper incentives to encourage flexible controllers to

evolve consistently, a more targeted methodology may be warranted. However, at present

novelty search, which is agnostic about the specific objective of the search, is a good choice

for an initial exploration of what is possible.

To investigate the effect of evolving flexible controllers, both static and flexible neural archi-

tectures are trained and tested. Each neural controller is evaluated on three robot morpholo-

gies (figure 7.1) with leg segment lengths of 0.25, 0.30, and 0.37 meters. Each evaluation

lasts for the duration of 15 simulated seconds and is terminated if the robot falls.

138

Creating controllers for robot morphologies not seen in training is challenging because the

new robots must be assigned gaits automatically. Yet such a capability could be important

to learning controllers for whole ranges of morphologies. To test this capability, the CPPNs

recorded in novelty search’s permanent archive during training are tested on several different

quadrupeds with intermediate leg sizes without further learning. Experimental parameters

for this experiment are given in the Appendix.

7.4 Quadruped Results

To investigate the potential for flexible controllers, results were collected from 25 runs of

static-controller evolution and 25 runs of flexible-controller evolution. The main question

is whether the flexible neural controller’s ability to potentially learn a relationship between

morphology and control benefits its performance when transfered to never-seen intermediate

morphologies.

In training on the three morphologies shown in figure 7.1 both methods perform similarly.

The final performance on these three cases with the flexible method is 4.88 meters traveled

on average (σ = 3.15) in the allocated time, which is slightly (though not significantly

according to the Student’s T-test) better than the static method, which travels 3.84 meters

on average (σ = 1.21). In fact, this result simply reflects the fact that most runs of both

approaches do not produce effective walkers on all three morphologies, brining the average

139

down. However, a significant difference between the two methods is their standard deviation

(p < 0.0001 according to the F-test). This result is interesting because it suggests that the

best controllers possible are more likely to be found at the tail of the distribution of flexible

controllers, which is where the potential for genuine interpolation may be confirmed.

Indeed, the best gait discovered by the dynamic method traveled 12.39 meters (averaged

over the three training morphologies), while the best gait discovered by the static method

traveled only 6.24 meters. Figure 7.3 shows the neural dynamics of the best evolved gait from

the flexible setup for the medium sized robot (leg segment length = 0.30 meters). Evolution

discovered a dynamic trot gait, which is characterized by the motor outputs of the opposing

legs being in antiphase with each other.

7.4.1 Interpolation Performance

More interestingly, the key question is whether any such controllers can work on morphologies

never seen in training. Recall that the flexible neural approach encodes multiple controllers as

a function of their morphology. To test the capability to interpolate to unseen morphologies,

leg segment increments of 0.01 meters in the interval from 0.25 (small training morphology)

to 0.37 meters (large training morphology) were attempted. An interesting discovery is that

two flexible controllers are able to pass the threshold of 6.0 meters in 12 and 11 out of 13

morphologies, respectively (figure 7.4). In contrast, the best static controller fails for 11 out

140

Figure 7.3: Motor Neuron Dynamics. The neural dynamics of the four hip outputs
(pitch) controlling a medium quadruped with 0.30 meters leg segment length are shown.
The dynamics of the opposing legs (e.g. anterior left and anterior right) are directly in
antiphase with each other, which results in a dynamic trot-like gait.

0
2
4
6
8
10
12
14
16

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
Leg Segment Length

Flexible Static

Figure 7.4: Best Interpolation Performance. The performance of the controller
that interpolates best for both approaches is shown for 13 different morphologies. The
flexible approach almost always interpolates perfectly (i.e. reaches the threshold value
of 6.0 meters), while the best static controller fails in 11 out of 13 cases.

of the 13 morphologies. Reflecting the high variance in solutions, the flexible method solves

on average 2.16 intermediate morphologies (σ = 3.68), while the static approach only solves

0.52 on average (σ = 0.71), which is statistically significant (p < 0.05). Videos of this best

evolved controller are available at: http://youtu.be/X-nQ0xgceJs.

Thus the results do confirm that such relationships exist and can be discovered. The CPPN

that outputs these controllers for different leg lengths is the first network interpolator of its

kind of which we are aware off.

141

http://youtu.be/X-nQ0xgceJs

(a) Relationship Between Time Constant And Leg
Size

(b) Hip Output Pattern for Three Different Mor-
phologies

Figure 7.5: Morphology-Dependent Change. The relationship between the leg
length of the robot and the time constant values of the hidden nodes are shown in (a).
While the increase in leg length has almost no effect on the time constant values of
the hidden nodes controlling the left side of the robot (data not shown), an increase in
leg sizes correlates clearly with an increase of the time constant values controlling the
two right legs. The right anterior hip (pitch) output generated by the three training
quadrupeds are shown in (b). The period of the oscillation increases with the length
of the robot’s legs, resulting in a prolonged leg stride.

7.4.2 Relationship Between Morphology and Control

The better performance of the flexible approach stems from its ability to generate a neural

controller fitted to a specific morphology. How is this relationship represented in the un-

derlying architecture? Figure 7.5a shows a correlation between time constant values of the

hidden nodes, which are determined by the CPPN, and the change of the leg length CPPN

input.

In particular, the time constant values of the hidden nodes controlling the right side of the

robot exhibit a significant positive correlation (r = 0.97, p < 0.01) with the increased leg

segment length. This change in time constant values results in an increased period of the hip

(pitch) oscillation (figure 7.5b), thereby prolonging the leg stride of the robot (i.e. the larger

142

the robot’s legs, the larger the leg strides it has to make). This correlation suggests that the

CPPN has actually learned a functional relationship between different robot morphologies

and the network architectures that are necessary to control them.

7.5 Implications of Flexible Controllers

The major contribution of this chapter is conceptual. It introduces the idea that learning a

relationship between morphology and control may ultimately be more practical than learning

individual controllers. Yet to learn such a relationship requires a learning method that

outputs controllers, which is what a CPPN can do. In this sense the CPPN is a powerful

abstraction able to encode more than one kind of plasticity (i.e. not restricted to local learning

rules).

While training a flexible CPPN-based controller-generator on three different morphologies

might be expected to generate controllers on those three morphologies, the surprise in this

chapter was the discovery that the best such CPPNs actually can generate intermediate

controllers as well for morphologies never seen in training. This discovery suggests that

there is a tangible relationship between morphology and controller architectures that can

be discovered and exploited, at least with quadrupeds. While the reward system in the

experiment (i.e. novelty search) was not set up explicitly to encourage such interpolation,

143

now that we know it is possible to do it, a further important task is to craft reward functions

that indeed produce interpolating controllers consistently.

This task is more complex than it may sound; it is likely that simply rewarding several inter-

mediate morphologies would present a deceptive landscape to the search algorithm, which

is one reason novelty search is a good initial choice. However, now that such solutions are

confirmed to exist, the prospect of devising a better reward scheme to find them consistently

is more promising.

While this chapter established the benefits of learning a relationship between morphology

and control, naive interpolation might sometimes fail and a controller that has to interpo-

late between different morphologies and different robot specific properties (e.g. joint ranges,

maximum motor forces, etc.), will likely not always work directly. However, HyperNEAT’s

abilities to evolve complex regular ANNs (Chapter 5) combined with adaptive HyperNEAT’s

ability to generate plastic networks (Chapter 6) should allow such controllers to fine-tune

their synaptic connections to the current quadruped model in the future. Adaptive ES-

HyperNEAT could also allow robots to be more resilient to morphological changes that were

not encountered during evolution.

Perhaps in the future it will be possible to vary the morphology of certain canonical types of

robots such as quadrupeds or bipeds and simply pop in a generic controller-generator that

seamlessly adapt to their bodies of origin. Such a capability could one day liberate roboticists

144

from the minutia of designing morphology-specific controllers to concentrate instead only on

the best morphology for the job.

145

CHAPTER 8
DISCUSSION AND FUTURE WORK

This chapter begins with a discussion of the importance of being able to reproduce some

of the phenomena produced through natural evolution at a high level of abstraction. The

following section then contemplates the two HyperNEAT extension and their unification into

adaptive ES-HyperNEAT. The final section covers future possibilities created by the results

in this dissertation.

8.1 Towards More Brain-Like ANNs

Intelligence in nature is the product of living brains, which are themselves the product of

natural evolution. These brains are the very inspiration for the field of AI and for research on

neural computation in particular. After all, our idea of emulating intelligence is ultimately

inspired by the observation that it exists in nature. Yet despite this central role of evolved

brains in the inspiration for AI, the idea of literally trying to recapitulate the evolutionary

process that produced intelligence on Earth has received attention only in the small subfield

of neuroevolution.

Yet the one motivation that neuroevolution offers unlike any other area in AI is to illuminate

how it was possible for an unguided process to produce structures of astronomical complexity

146

that translate into intelligence in its highest form. To understand such a process, even

incompletely, is to shed light on the very genesis of intelligence on Earth, which is essential

to the mission of AI.

In fact, while neuroevolution began as little more than an optimization heuristic for evolving

simple ANNs, the HyperNEAT method and the HyperNEAT extensions presented in this

dissertation have begun to yield such insight into the necessary ingredients for more brain-

like structures to evolve. For the field of AI, the idea that we are beginning to be able to

reproduce some of the phenomena produced through natural evolution at a high level of

abstraction is important because brains are the seat of intelligence in nature. To be able

to begin to produce artifacts of evolution that exhibit some natural properties means that

these artifacts and their evolution can ultimately be studied and deconstructed in their own

right, similarly to neuroscience but without the inconvenience of flesh and blood.

8.2 HyperNEAT Extensions

Two extensions to the HyperNEAT method are introduced in this dissertation together

with their unification. The first is adaptive HyperNEAT (Chapter 4), which allows not

only generating patterns of weights across the connectivity of an ANN as a function of

its geometry, but also patterns of learning rules. To demonstrate adaptive HyperNEAT, a

discrete T-Maze task was selected (Section 4.2). The experiments revealed that adaptive

147

HyperNEAT can successfully indirectly encode arbitrary learning rules but also that there is

a tradeoff between the generality of an indirect encoding of plasticity and its computational

cost. Yet, as experiments in a variant of the T-Maze domain showed, in special cases, e.g.

when the reward signature is nonlinear and the ANN topology is restricted, a most general

encoding may be necessary.

Chapter 7 explored a variant of the idea that the CPPN can encode plasticity, in which

the entire substrate is impacted by global morphological information rather than neural

activation. This form of plasticity allowed a legged robot to adapt to a variety of different

body proportions and interpolate to morphologies never seen in training. The ability of

CPPNs to encode particular weight configurations based on external conditions hints at the

powerful possibility of adaptation without the need for local interaction. Reproducing some

of the learning abilities of real brains at a high level of abstraction could give insights into

their essential properties without introducing unnecessary inefficiencies.

The second extension to HyperNEAT is evolvable-substrate HyperNEAT (Chapter 5). The

key insight behind ES-HyperNEAT is that a representation that encodes the pattern of con-

nectivity across a network (such as in HyperNEAT) automatically contains implicit clues on

where the nodes should be placed to best capture the information stored in the connectivity

pattern. The approach was demonstrated through multi-task (Section 5.5), maze navigation

(Section 5.6), and modular retina domains (Section 5.7), revealing that the neural networks

generated by this new approach assume more natural properties such as neural topography

148

and geometric regularity. Analysis of the results and the evolved ANNs showed that ES-

HyperNEAT outperforms the original HyperNEAT because of ES-HyperNEAT’s ability to

evolve ANNs with partial and targeted connectivity, elaborate on existing ANN structure,

and to compensate for movement of information within the underlying hypercube. Addition-

ally, ES-HyperNEAT can more easily evolve modular ANNs when biased towards locality

and certain canonical ANN topologies

The unified approach combines the algorithmic advances behind adaptive HyperNEAT and

ES-HyperNEAT, each abstracting an important facet of natural evolution that contributes

to its ability to evolve complexity. While ES-HyperNEAT and adaptive HyperNEAT have

shown promise, it is the combination of the two methods that allows the evolution of complex

regular plastic ANNs, which is a major goal for neuroevolution. Adaptive ES-HyperNEAT is

able to fully determine the geometry, density, and plasticity of an evolving ANN. The results

in a continuous T-Maze (Section 6.2) demonstrate that these capabilities combine effectively

in a task that requires adaptation.

8.3 Future Directions

NE has produced successful results in a variety of domains but higher cognitive abilities

remain to be evolved. One such ability that is important for both humans and animals is

to localize and to navigate in an unknown environment. Ethological studies (O’Keefe and

149

Dostrovsky, 1971) suggest that rats and primates build an internal representation, i.e. a

cognitive map, of the environment that allows goal-directed movement planning.

The cognitive map, hypothesized by Tolman (1948), allows rats not only to learn a specific

path leading to a food item but also an internal representations of their environment that

guides the local navigation. This hypothesis is supported by the discovery of place cells

(O’Keefe and Dostrovsky, 1971) and head direction cells (Taube et al., 1990). Place cells are

neurons found primarily in the hippocampus and their activation is correlated to the rat’s

position in the environment. Once the rat enters a new environment, place cells become

established within minutes and stay active even in the dark (Quirk et al., 1990). They tend

to be stable in the same environment but when entering a new environment the place fields

of neurons can become completely different, a process known as remapping. On the other

hand, the activity of head direction cells depends on the orientation of the rat’s head while

navigating.

Adaptive ES-HyperNEAT can potentially later be applied to such a neural-inspired naviga-

tion domain that requires map-based reasoning. An interesting question in such a domain

is whether an architecture reminiscent of place cells, might evolve. If they did, or if an

alternative structure emerged, it would provide insight into possible neural organizations for

intelligent thought and significantly impact the wider research community. Neuro-ethological

analyses of the evolved ANNs could potentially also deepen our understanding of how similar

cognitive processes evolved in nature.

150

Future work for adaptive ES-HyperNEAT will also explore other challenging domains. While

the work in this dissertation focused on relatively simple problems, it is an important future

research question how close evolved indirectly encoded ANNs can approach the complexity

of biological brains. For example, a challenging tasks would be to evolve a new generation

of more brain-like adaptive controllers for legged robots. While Chapter 7 presented first

steps towards that direction by establishing the benefits of learning a relationship between

morphology and control, a plastic controller could potentially be deployed into an even wider

range of body variants and seamlessly adapt to their bodies of origin, just as people can walk

as they grow up through a wide array of body sizes and proportions. Another intriguing

possibility is the evolution of a robot that starts crawling and then incrementally learns to

walk in an upright posture, which would be a step towards creating a new generation of

intelligent systems. Such research could help to facilitate the manufacturing of a variety of

different robots because it would eliminate the need to design model-specific controllers.

151

CHAPTER 9
CONCLUSION

This dissertation introduced two extensions to a neuroevolutionary method called Hyper-

NEAT, as well as their unification, adaptive ES-HyperNEAT, a new approach that allows

the evolved ANNs to assume more brain-like properties. This chapter summarizes the main

contributions of the dissertation.

9.1 Contributions

In summary, by showing that the ANNs evolved by adaptive ES-HyperNEAT assume more

brain-like properties (e.g. topography, regularity, heterogeneous plasticity, and neuromodula-

tion), this dissertation validates the research hypothesis that evolving more brain-like ANNs

will allow neuroevolution to solve complex control problems and adaptive tasks more easily

than current neuroevolution technology.

1. The advantages of evolving plastic neural networks with novelty search (Chapter 3)

were established by analyzing the inherent deceptiveness in a variety of different dy-

namic, reward-based learning tasks. Because novelty search has the potential to foster

the emergence of adaptive behavior in reward-based learning tasks, it opens a new

direction for research in evolving adaptive ANNs.

152

2. Adaptive HyperNEAT extends HyperNEAT to allow not only patterns of weights across

the connectivity of an ANN to be generated by a function of its geometry, but also

patterns of arbitrary learning rules (Chapter 4). The idea that learning rules can be

distributed in a geometric pattern is new to neuroevolution but reflects the intuition

that synaptic plasticity in biological brains is not encoded in DNA separately for every

synapse in the brain. Thus the main idea behind adaptive ES-HyperNEAT is a step

towards more biologically plausible adaptive systems.

3. HyperNEAT was extended to automatically determine the placement and density of the

hidden nodes based on implicit information in the infinite-resolution pattern of weights

(Chapter 5). The ES-HyperNEAT approach not only can evolve the location of every

neuron in the network, but also can represent regions of varying density, which means

resolution can increase holistically over evolution. ES-HyperNEAT was demonstrated

through multi-task, maze navigation, and modular retina domains, revealing that the

neural networks generated by this new approach assume more natural properties such

as neural topography and geometric regularity. Also importantly, ES-HyperNEAT’s

compact indirect encoding can be seeded to begin with a bias towards a desired class of

ANN topologies, which facilitates the evolutionary search. As a result, ES-HyperNEAT

significantly outperforms the original HyperNEAT and expands the scope of neural

structures that evolution can discover.

153

4. The combined approach, adaptive ES-HyperNEAT, unifies for the first time the ability

to indirectly encode connectivity through geometry, simultaneously encode the density

and placement of nodes in space, and generate patterns of heterogeneous plasticity

(Chapter 6). In this way, adaptive ES-HyperNEAT takes another step towards more

biologically-plausible ANNs. Importantly, the combined abilities of adaptive Hyper-

NEAT and ES-HyperNEAT work well together, as demonstrated by experiments in

the continuous T-Maze learning task.

5. Finally, a step towards the general goal of adaptive controllers for locomotion was taken

by showing that HyperNEAT allows learning the relationship between morphology and

control of different quadruped robots (Chapter 7). Once such a relationship is learned

the controllers are able to work on a diversity of never-seen intermediate morphologies

without any further training.

9.2 Conclusion

This dissertation presented two new extension to HyperNEAT called adaptive HyperNEAT

and ES-HyperNEAT that overcome shortcomings of the original HyperNEAT approach.

Adaptive HyperNEAT allows not only patterns of weights across the connectivity of an ANN

to be generated by a function of its geometry, but also patterns of arbitrary learning rules.

The second HyperNEAT extension, called ES-HyperNEAT, is introduced to automatically

154

determines the placement and density of the hidden nodes and was shown to significantly

outperform the original HyperNEAT in multiple domains. The combined approach, adaptive

ES-HyperNEAT can for the first time compactly encode and discover neural geometry and

plasticity that exhibit more natural features than traditional ANNs. The conclusion is that it

is becoming possible to produce more natural neural structures through artificial evolution,

which increasingly opens up opportunities for discovery relevant to the broader field of AI.

155

APPENDIX: PARAMETERS AND PSEUDOCODE

156

This appendix first describes the parameters and their chosen values across all the experi-

ments in this dissertation and then gives pseudocode for the ES-HyperNEAT algorithm.

1. Population Size: The number of networks evaluated every generation.

2. c1: A parameter from the original NEAT that defines the weight of excess genes when

computing compatibility between networks.

3. c2: A parameter from the original NEAT that defines the weight of disjoint genes when

computing compatibility between networks.

4. c3: A parameter from the original NEAT that defines the weight of connection strength

differences when computing compatibility between networks.

5. ct: A parameter from the original NEAT that defines the compatibility threshold that

determines whether networks are in the same species. In SharpNEAT and Hyper-

SharpNEAT, this value is variable and changes to accommodate the desired number

of species.

6. Add Link Probability: The probability of adding a new connection to a network

(i.e. to the CPPN in case of HyperNEAT).

7. Add Node Probability: The probability of adding a new node to a network (i.e. to

the CPPN in case of HyperNEAT).

157

8. Target # of Species: The desired number of species in the population. If there are

more or less species, ct will be adjusted down or up respectively in an effort to maintain

the target number of species.

9. Elitism: The top percentage of each species that will be copied into the next generation

unchanged.

10. Expression Threshold: The value for which a CPPN’s output must exceed for a

connection to be expressed in the original HyperNEAT.

11. Function Set: The set of functions that the CPPN can choose from when adding a

node.

12. Initial Resolution: A parameter that defines the initial resolution for the division

phase of ES-HyperNEAT.

13. Maximum Resolution: A parameter that defines the maximum resolution for the

division phase of ES-HyperNEAT.

14. Band Pruning Threshold: The value that the band level of a connection must

exceed to be expressed in ES-HyperNEAT.

15. Variance Threshold: The variance value that determines how far the depth-first

search in the pruning and extraction phase in ES-HyperNEAT should traverse the

quadtree.

158

16. Iteration Level: The parameter that determines how many times the quadtree ex-

traction algorithm in ES-HyperNEAT should be iteratively applied to the discovered

hidden neurons.

17. Division Threshold: The variance value that a quadtree node in ES-HyperNEAT

must exceed to be further divided.

The NEAT coefficients c1, c2, c3 were all set to 1.0 for all experiments. The novelty search

experiments with NEAT (Chapter 3) were run with an extension of the steady-state real-time

NEAT (rtNEAT) package (Stanley, 2006-2008). The population size was 500, with a 0.001

probability of adding a node and 0.01 probability of adding a link. The evaluation count for

the single T-Maze domain was 125,000, and 950,000 for the double T-Maze and bee domain.

The adaptive HyperNEAT (Chapter 4), ES-HyperNEAT (Chapter 5) and adaptive ES-

HyperNEAT (Chapter 6) experiments were run with the HyperSharpNEAT Simulator and

Experimental Platform v1.0, which builds on a modified version of the public domain Sharp-

NEAT package (Green, 2003–2006). The simulator and the ES-HyperNEAT source code

can be found at http://eplex.cs.ucf.edu/software.html. Because HyperNEAT differs from

original NEAT only in its set of activation functions, it uses the same parameters (Stanley

and Miikkulainen, 2002). These parameters were found to be robust to moderate variation

through preliminary experimentation. Elitism was set to 10%.

159

The quadruped experiments (Chapter 7) were run with a HyperNEAT extension of the

steady-state rtNEAT package (Stanley, 2006-2008) in a realistic physics simulation using

the freely available Open Dynamics Engine (see http://www.ode.org).

The parameters for all HyperNEAT experiments in this dissertation are shown in table A.1.

The generation count and ES-HyperNEAT’s maximum resolution can vary from experiment

to experiment depending on the complexity of the task. The HyperNEAT implementations

based on the rtNEAT and SharpNEAT packages differ slightly in their implementations

and their experiments were performed separately; accordingly they use slightly different

parameters.

160

http://www.ode.org

Table A.1: Parameter Settings in HyperNEAT Experiments

Parameter Discrete Dual Task Retina Continues Quadruped
T-Maze &Maze Task T-Maze Experiment

Population Size 500 300 300 300 200

Generation Count 500 500 2000 1000 600

Link Add. Prob. 0.03 0.03 0.03 0.03 0.06

Node Add. Prob. 0.02 0.02 0.02 0.02 0.005

Asexual Prob. 0.5 0.5 0.5 0.5 0.25

Sexual Prob. 0.5 0.5 0.5 0.5 0.75

Expr. Threshold 0.4 0.7 0.7 0.7 0.0

Initial Resolution - 8× 8 8× 8 8× 8 -

Max Resolution - 8× 8 32× 32 16× 16 -

Variance Threshold - 0.03 0.03 0.03 -

Division Threshold - 0.03 0.03 0.03 -

Band Threshold - 0.3 0.3 0.3 -

Iteration Level - 1 1 1 -

Function Set Gaussian, Gaussian, Gaussian, Gaussian, Gaussian,
Sine, Sine, Sine, Sine, Sine,

Sigmoid, Sigmoid, Sigmoid, Sigmoid, Sigmoid,
Abs. Value Abs. Value Abs. Value Abs. Value, Abs. Value,

Linear Cosine
Step, Ramp

161

Algorithm 1: DivisionAndInitialization(a, b, outgoing)

input : Coordinates of source (outgoing = true) or target node (outgoing = false)
at (a, b).

output: Quadtree, in which each quadnode at (x,y) stores CPPN activation level for
its position. The initialized quadtree is used in the PruningAndExtraction
phase to generate the actual ANN connections.

1 begin
2 root ← QuadPoint(0, 0, 1, 1) ; // x, y, width, level

3 q ← Queue() ;
4 q.enqueue (root) ;
5 while q is not empty do
6 p ← q.dequeue();
7 // Divide into sub-regions and assign children to parent

8 p.cs[0] ← QuadPoint(p.x - p.width/2, p.y - p.width/2, p.width/2, p.lev + 1) ;
9 p.cs[1] ← QuadPoint(p.x - p.width/2, p.y + p.width/2, p.width/2, p.lev + 1) ;

10 p.cs[2] ← QuadPoint(p.x + p.width/2, p.y + p.width/2, p.width/2, p.lev + 1) ;
11 p.cs[3] ← QuadPoint(p.x + p.width/2, p.y - p.width/2, p.width/2, p.lev + 1) ;
12 foreach c ∈ p.cs do
13 if outgoing then // Querying connection from input or hidden node

14 c.w ← CPPN (a, b, c.x, c.y); // Outgoing connectivity pattern

15 else // Querying connection to output node

16 c.w ← CPPN (c.x, c.y, a, b); // Incoming connectivity pattern

17 end

18 end
19 // Divide until initial resolution or if variance is still high

20 if (p.level < initialDepth) | (p.level < maxDepth & variance (p) >
divThr) then

21 foreach child ∈ p.cs do
22 q.enqueue (child);
23 end

24 end

25 end
26 return root ;

27 end

162

Algorithm 2: PruningAndExtraction(a, b, connections, p, outgoing)

input : Coordinates of source (outgoing = true) or target node (outgoing = false)
at (a, b) and initialized quadtree p.

output: Adds the connections that are in bands of the two-dimensional cross-section
of the hypercube containing the source or target node to the connections list.

1 begin
2 // Traverse quadtree depth-first

3 foreach c ∈ p.cs do
4 if variance (c) ≥ varianceThreshold then
5 PruningAndExtraction (a, b, connections, c, outgoing);
6 else
7 // Determine if point is in a band by checking neighbor CPPN

values

8 if outgoing then
9 dleft ← | c.value - CPPN (a, b, c.x-p.width, c.y) | ;

10 dright ← | c.value - CPPN (a, b, c.x+p.width, c.y) | ;
11 dtop ← | c.value - CPPN (a, b, c.x, c.y − p.width) | ;
12 dbottom ← | c.value - CPPN (a, b, c.x, c.y + p.width) | ;

13 else // Querying connection to output node

14 dleft ← | c.value - CPPN (c.x-p.width, c.y, a, b) | ;
15 dright ← | c.value - CPPN (c.x+p.width, c.y, a, b) | ;
16 dtop ← | c.value - CPPN (c.x, c.y − p.width, a, b) | ;
17 dbottom ← | c.value - CPPN (c.x, c.y + p.width, a, b) | ;

18 end
19 if max(min(dtop, dbottom),min(dleft, dright)) > bandThreshold then
20 // Create new connection specified by (x1, y1, x2, y2, weight)
21 if outgoing then
22 con ← Connection(a, b, c.x, c.y, c.w);
23 else // Querying connection to output node

24 con ← Connection(c.x, c.y, a, b, c.w);
25 if con /∈ connections then connections ← connections ∪ con;

26 end

27 end

28 end

29 end

163

Algorithm 3: ES-HyperNEAT

1 /* Parameters : initialDepth, maxDepth, varianceThreshold,

bandThreshold, iterationLevel, divisionThreshold */

input : CPPN, InputPositions, OutputPositions
output: Connections, HiddenNodes

2 begin
3 foreach input ∈ InputPositions do // Input to hidden node connections

4 // Analyze outgoing connectivity pattern from this input

5 root ← DivisionAndInitialization (input.x, input.y, true);
6 // Traverse quadtree and add connections to list

7 PruningAndExtraction (input.x, input.y, connections1, root, true);
8 foreach c ∈ connections1 do
9 node ← Node(c.x2,c.y2);

10 if node /∈ HiddenNodes then HiddenNodes ← HiddenNodes ∪ node;
11 end

12 end
13 // Hidden to hidden node connections

14 UnexploredHiddenNodes ← HiddenNodes;
15 for i = 1 to iterationLevel do
16 foreach hidden ∈ UnexploredHiddenNodes do
17 root ← DivisionAndInitialization (hidden.x, hidden.y, true);
18 PruningAndExtraction (hidden.x, hidden.y, connections2, root, true);
19 foreach c ∈ connections2 do
20 node ← Node(c.x2,c.y2);
21 if node /∈ HiddenNodes then HiddenNodes← HiddenNodes ∪ node;
22 end

23 end
24 // Remove the just explored nodes

25 UnexploredHiddenNodes ← HiddenNodes - UnexploredHiddenNodes;

26 end
27 foreach output ∈ OutputPositions do // Hidden to output connections

28 // Analyze incoming connectivity pattern to this output

29 root ← DivisionAndInitialization (output.x, output.y, false);
30 PruningAndExtraction (output.x, output.y, connections3, root, false);
31 /* Nodes not created here because all the hidden nodes that are

connected to an input/hidden node are already expressed. */

32 end
33 connections ← connections1 ∪ connections2 ∪ connections3;
34 Remove all neurons and their connections that do not have a path to an input and

an output neuron;

35 end

164

LIST OF REFERENCES

T. Aaltonen et al. Measurement of the top quark mass with dilepton events selected using

neuroevolution at CDF. Physical Review Letters, 102(15):2001, 2009.

P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that constructs

recurrent neural networks. Neural Networks, IEEE Transactions on, 5(1):54–65, 1994.

M. Barlow, J. Galloway, and H. A. Abbass. Mining evolution through visualization. In

E. Bilotta et al., editors, ALife VIII Workshops, pages 103–112, 2002.

J. Baxter. The evolution of learning algorithms for artificial neural networks. In D. Green

and T. Bossomaier, editors, Complex Systems, pages 313–326. IOS Press, 1992.

M. Bear, B. Connors, and M. Paradiso. Neuroscience: Exploring the brain. Lippincott

Williams & Wilkins, 2007.

P. J. Bentley and S. Kumar. The ways to grow designs: A comparison of embryogenies for an

evolutionary design problem. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-1999), pages 35–43, San Francisco, 1999. Kaufmann.

J. Blynel and D. Floreano. Levels of Dynamics and Adaptive Behavior in Evolutionary

Neural Controllers. In From Animals to Animats 7, 2002. In B. Hallam, D. Floreano, J.

Hallam, G. Hayes, and J.-A. Meyer (eds).

J. Blynel and D. Floreano. Exploring the T-Maze: Evolving learning-like robot behaviors

using CTRNNs. In 2nd European Workshop on Evolutionary Robotics (EvoRob 2003),

Lecture Notes in Computer Science, 2003.

165

J. C. Bongard. Evolving modular genetic regulatory networks. In Proceedings of the 2002

Congress on Evolutionary Computation, 2002.

R. Brooks. A robot that walks; emergent behaviors from a carefully evolved network. Neural

computation, 1(2):253–262, 1989.

T. Carew, E. Walters, and E. Kandel. Classical conditioning in a simple withdrawal reflex

in Aplysia californica. The Journal of Neuroscience, 1(12):1426–1437, 1981.

D. J. Chalmers. The evolution of learning: An experiment in genetic connectionism. In

Proceedings of the 1990 Connectionist Models Summer School, pages 81–90. Morgan Kauf-

mann, 1990.

J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock. Evolving coordinated quadruped

gaits with the HyperNEAT generative encoding. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC-2009) Special Session on Evolutionary Robotics, Piscat-

away, NJ, USA, 2009. IEEE Press.

J. Clune, B. E. Beckmann, P. K. McKinley, and C. Ofria. Investigating whether Hyper-

NEAT produces modular neural networks. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2010), New York, NY, 2010. ACM Press.

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect en-

coding across the continuum of regularity. Evolutionary Computation, IEEE Transactions

on, 15(3):346–367, 2011.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems, 2(4):303–314, 1989.

166

D. D’Ambrosio and K. O. Stanley. A novel generative encoding for exploiting neural network

sensor and output geometry. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2007), New York, NY, 2007. ACM Press.

D. D’Ambrosio, J. Lehman, S. Risi, and K. O. Stanley. Evolving policy geometry for scalable

multiagent learning. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’10, pages 731–738, Richland, SC, 2010. Inter-

national Foundation for Autonomous Agents and Multiagent Systems.

J. Drchal, J. Koutnık, and M. Šnorek. HyperNEAT controlled robots learn to drive on

roads in simulated environment. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2009). IEEE Press, 2009.

P. Dürr, C. Mattiussi, A. Soltoggio, and D. Floreano. Evolvability of neuromodulated learn-

ing for robots. In The 2008 ECSIS Symposium on Learning and Adaptive Behavior in

Robotic Systems, pages 41–46, Los Alamitos, CA, 2008. IEEE Computer Society.

P. Dürr, C. Mattiussi, and D. Floreano. Genetic representation and evolvability of modular

neural controllers. IEEE Computational Intelligence Magazine, 2010.

R. Dybowski, T. D. Collins, W. Hall, and P. R. Weller. Visualization of binary string

convergence by sammon mapping. In Proceedings of The Fifth Annual Conference on

Evolutionary Programming. MIT Press, 1996.

H. Eichenbaum. A cortical–hippocampal system for declarative memory. Nature Reviews

Neuroscience, 1(1):41–50, 2000.

167

R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on composite keys. Acta

informatica, 4(1):1–9, 1974.

D. Floreano and J. Urzelai. Evolutionary robots with online self-organization and behavioral

fitness. Neural Networks, 13:431–443, 2000.

D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to learning.

Evolutionary Intelligence, 1(1):47–62, 2008.

J. Gauci and K. O. Stanley. A case study on the critical role of geometric regularity in

machine learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial

Intelligence (AAAI-2008), Menlo Park, CA, 2008. AAAI Press.

J. Gauci and K. O. Stanley. Autonomous evolution of topographic regularities in artificial

neural networks. Neural Comput., 22:1860–1898, 2010.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function

optimization. In Proceedings of the Second International Conference on Genetic Algorithms

on Genetic algorithms and their application, pages 41–49, Hillsdale, NJ, USA, 1987. L.

Erlbaum Associates Inc. ISBN 0-8058-0158-8.

F. J. Gomez and R. Miikkulainen. Solving non-markovian control tasks with neuroevolution.

In Proceedings of the 16th International Joint Conference on Artificial Intelligence, pages

1356–1361. Morgan Kaufmann, 1999.

C. Green. SharpNEAT homepage. http://sharpneat.sourceforge.net/, 2003–2006.

S. Grillner and P. Wallen. Central pattern generators for locomotion, with special reference

to vertebrates. Annual review of neuroscience, 8(1):233–261, 1985.

168

http://sharpneat.sourceforge.net/

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct

encoding for genetic neural networks. In Genetic Programming 1996: Proceedings of the

First Annual Conference, pages 81–89. MIT Press, 1996.

T. F. Hansen. Is modularity necessary for evolvability?: Remarks on the relationship between

pleiotropy and evolvability. Biosystems, 69(2-3):83 – 94, 2003.

I. Harvey. The Artificial Evolution of Adaptive Behavior. PhD thesis, School of Cognitive

and Computing Sciences, University of Sussex, Sussex, 1993.

G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems, 1,

1987.

G. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita. Evolving

robust gaits with AIBO. In Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE

International Conference on, volume 3, pages 3040–3045, 2000.

G. S. Hornby and J. B. Pollack. Creating high-level components with a generative represen-

tation for body-brain evolution. Artificial Life, 8(3), 2002.

E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on

neural networks, 15(5):1063–1070, Sept. 2004.

L. P. Kaelbling, M. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal

of Artificial Intelligence, 4:237–285, May 1996.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell, editors. Principles of Neural Science.

Elsevier, Amsterdam, third edition, 1991.

169

N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs. Proceed-

ings of the National Academy of Sciences of the United States of America, 102(39):13773,

2005.

Y.-H. Kim and B.-R. Moon. New Usage of Sammon’s Mapping for Genetic Visualization.

In Proceedings Genetic and Evolutionary Computation (GECCO 2003), pages 1136–1147.

Springer-Verlag, 2003.

H. Kimura, T. Yamashita, and S. Kobayashi. Reinforcement learning of walking behavior

for a four-legged robot. In Decision and Control, 2001. Proceedings of the 40th IEEE

Conference on, pages 411–416, 2001.

M. Kirschner and J. Gerhart. Evolvability. Proceedings of the National Academy of Sciences

of the United States of America, 95(15):8420, 1998.

J. Kittler and P. C. Young. A new approach to feature selection based on the Karhunen-Loeve

expansion. Pattern Recognition, 5:335–352, 1973.

J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through the

search for novelty. In S. Bullock, J. Noble, R. Watson, and M. Bedau, editors, Proceedings

of the Eleventh International Conference on Artificial Life (Alife XI), Cambridge, MA,

2008. MIT Press.

J. Lehman and K. O. Stanley. Revising the evolutionary computation abstraction: minimal

criteria novelty search. In Proceedings of the 12th annual conference on Genetic and

evolutionary computation, GECCO ’10, pages 103–110, New York, NY, USA, 2010a. ACM.

170

J. Lehman and K. O. Stanley. Efficiently evolving programs through the search for novelty.

In Proceedings of the 12th annual conference on Genetic and evolutionary computation,

GECCO ’10, pages 837–844, New York, NY, USA, 2010b. ACM.

J. Lehman and K. O. Stanley. Improving evolvability through novelty search and self-

adaptation. pages 2693–2700, Piscataway, NJ, 2011a. IEEE Press.

J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for

novelty alone. Evolutionary Computation, 19(2):189–223, 2011b.

M. A. Lewis and G. A. Bekey. Gait adaptation in a quadruped robot. Autonomous Robots,

12:301–312, 2002.

H. Lipson. Principles of modularity, regularity, and hierarchy for scalable systems. Journal

of Biological Physics and Chemistry, 7(4):125, 2007. ISSN 1512-0856.

W. W. Lytton and T. J. Sejnowski. Simulations of cortical pyramidal neurons synchronized

by inhibitory interneurons. Journal of Neurophysiology, 66:1059–1079, 1991.

A. P. Martin. Increasing genomic complexity by gene duplication and the origin of verte-

brates. The American Naturalist, 154(2):111–128, 1999.

G. Mayley. Guiding or hiding: Explorations into the effects of learning on the rate of

evolution. In Fourth European Conference on Artificial Life, pages 135–144. MIT Press,

1997.

G. McHale and P. Husbands. Gasnets and other evolvable neural networks applied to bipedal

locomotion. From Animals to Animats 8, 2004.

171

P. McQuesten and R. Miikkulainen. Culling and teaching in neuro-evolution. In Proceed-

ings of the Seventh International Conference on Genetic Algorithms, San Francisco, 1997.

Kaufmann.

J. Mouret. Novelty-based multiobjectivization. In Proceedings of IROS Workshop on Ex-

ploring New Horizons in the Evolutionary Design of Robots, 2009.

Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. Evolution of reinforcement learning in uncertain

environments: A simple explanation for complex foraging behaviors. Adaptive Behavior,

10(1):5–24, 2002. ISSN 1059-7123.

S. Nolfi and D. Floreano. Learning and evolution. Autonomous Robots, 7(1):89–113, July

1999.

S. Nolfi and D. Parisi. Auto-teaching: Networks that develop their own teaching input. In

Proceedings of the Second European Conference on Artificial Life, pages 845–862., 1993.

S. Nolfi and D. Parisi. Learning to adapt to changing environments in evolving neural

networks. Adaptive Behavior, 5:75–98, 1996.

S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks. Adaptive

Behavior, 3:5–28, 1994.

J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. Preliminary evidence

from unit activity in the freely-moving rat. Brain research, 34(1):171, 1971.

K. Pearson et al. The control of walking. Scientific American, 235(6):72, 1976.

M. Pigliucci. Is evolvability evolvable? Nature Reviews Genetics, 9(1):75–82, 2008.

172

G. Quirk, R. Muller, and J. Kubie. The firing of hippocampal place cells in the dark depends

on the rat’s recent experience. Journal of Neuroscience, 10(6):2008, 1990.

T. Reil and P. Husbands. Evolution of central pattern generators for bipedal walking in a

real-time physics environment. IEEE Transactions on Evolutionary Computation, 6(2):

159–168, April 2002.

J. Reisinger, K. O. Stanley, and R. Miikkulainen. Towards an empirical measure of evolv-

ability. In Genetic and Evolutionary Computation Conference (GECCO2005) Workshop

Program, pages 257–264, Washington, D.C., 2005. ACM Press.

S. Risi and K. O. Stanley. Indirectly encoding neural plasticity as a pattern of local rules.

In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, and J.-B. Mouret, editors,

From Animals to Animats 11, volume 6226 of Lecture Notes in Computer Science, pages

533–543. Springer Berlin / Heidelberg, 2010.

S. Risi and K. O. Stanley. Enhancing ES-HyperNEAT to evolve more complex regular

neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2011), pages 1539–1546, New York, NY, USA, 2011. ACM.

S. Risi and K. O. Stanley. A Unified Approach to Evolving Plasticity and Neural Geometry.

In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2012),

Piscataway, NJ, 2012. IEEE Press. To appear.

S. Risi, S. D. Vanderbleek, C. E. Hughes, and K. O. Stanley. How novelty search escapes

the deceptive trap of learning to learn. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2009), New York, NY, USA, 2009. ACM Press.

173

S. Risi, C. E. Hughes, and K. O. Stanley. Evolving plastic neural networks with novelty

search. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Sys-

tems, 18:470–491, December 2010a. ISSN 1059-7123.

S. Risi, J. Lehman, and K. O. Stanley. Evolving the placement and density of neurons in

the hyperneat substrate. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2010), New York, NY, 2010b. ACM Press.

A. Rosenfeld. Quadtrees and pyramids for pattern recognition and image processing. In

Proceedings of the 5th International Conference on Pattern Recognition, pages 802–809.

IEEE Press, 1980.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by

error propagation. In Parallel Distributed Processing, pages 318–362. MIT Press, 1986.

J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans. Comput., 18

(5):401–409, 1969. ISSN 0018-9340.

N. Saravanan and D. B. Fogel. Evolving neural control systems. IEEE Expert: Intelligent

Systems and Their Applications, 10(3):23–27, 1995. ISSN 0885-9000.

J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stan-

ley. Picbreeder: Evolving pictures collaboratively online. In CHI ’08: Proceedings of the

twenty-sixth annual SIGCHI conference on Human factors in computing systems, pages

1759–1768, New York, NY, USA, 2008. ACM.

J. Secretan, N. Beato, D. B. D.Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik,

and K. O. Stanley. Picbreeder: A case study in collaborative evolutionary exploration of

174

design space. Evolutionary Computation, 2011. To appear.

A. Soltoggio. Neural Plasticity and Minimal Topologies for Reward-Based Learning. In

Proceedings of the 2008 8th International Conference on Hybrid Intelligent Systems, pages

637–642. IEEE Computer Society, 2008.

A. Soltoggio, P. Dürr, C. Mattiussi, and D. Floreano. Evolving neuromodulatory topolo-

gies for reinforcement learning-like problems. In Proceedings of the IEEE Congress on

Evolutionary Computation, 2007.

A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano. Evolutionary advan-

tages of neuromodulated plasticity in dynamic, reward-based scenarios. In Artificial Life

XI, pages 569–576, Cambridge, MA, 2008. MIT Press.

O. Sporns. Network analysis, complexity, and brain function. Complexity, 8(1):56–60, 2002.

URL http://www3.interscience.wiley.com/cgi-bin/jissue/102525814.

K. O. Stanley. rtNEAT C++ software homepage:

www.cs.utexas.edu/users/nn/keyword?rtneat. 2006-2008.

K. O. Stanley. Compositional pattern producing networks: A novel abstraction of devel-

opment. Genetic Programming and Evolvable Machines Special Issue on Developmental

Systems, 8(2):131–162, 2007.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-

gies. Evolutionary Computation, 10:99–127, 2002.

K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9

(2):93–130, 2003.

175

http://www3.interscience.wiley.com/cgi-bin/jissue/102525814

K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complex-

ification. Journal of Artificial Intelligence Research, 21:63–100, 2004.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving adaptive neural networks with

and without adaptive synapses. In Proceedings of the 2003 IEEE Congress on Evolutionary

Computation (CEC-2003). Canberra, Australia: IEEE Press, 2003.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time neuroevolution in the NERO

video game. IEEE Transactions on Evolutionary Computation, 9(6):653–668, December

2005.

K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based indirect encoding for

evolving large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

P. Strobach. Quadtree-structured recursive plane decomposition coding of images. Signal

Processing, 39:1380–1397, 1991.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT press,

1998. ISBN 0262193981.

J. Taube, R. Muller, and J. Ranck Jr. Head-direction cells recorded from the postsubiculum

in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience,

10(2):420, 1990.

M. E. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and temporal difference

methods in a reinforcement learning domain. In GECCO 2006: Proceedings of the Genetic

and Evolutionary Computation Conference, pages 1321–1328, July 2006.

176

E. C. Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189–208, July

1948. ISSN 0033-295X.

M. Van De Panne and A. Lamouret. Guided Optimization for Balanced Locomotion. In 6th

Eurographics Workshop on Animation and Simulation, Maastricht, Pays-Bas, 1995.

V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information characteristics and the structure

of landscapes. Evol. Comput., 8(1):31–60, 2000. ISSN 1063-6560.

P. Verbancsics and K. O. Stanley. Constraining Connectivity to Encourage Modularity in

HyperNEAT. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2011), New York, NY, 2011. ACM.

G. P. Wagner and L. Altenberg. Perspective: Complex adaptations and the evolution of

evolvability. Evolution, 50(3):pp. 967–976, 1996. ISSN 00143820.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular

Biology of the Gene Fourth Edition. The Benjamin Cummings Publishing Company, Inc.,

Menlo Park, CA, 1987.

D. Wettergreen and C. Thorpe. Gait generation for legged robots. In IEEE International

Conference on Intelligent Robots and Systems, 1992.

S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning.

J. Mach. Learn. Res., 7:877–917, 2006. ISSN 1533-7928.

B. Yamauchi and R. D. Beer. Integrating reactive, sequential, and learning behavior using

dynamical neural networks. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson,

editors, From Animals to Animats 3: Proceedings of the Third International Conference

177

on Simulation of Adaptive Behavior, pages 382–391. Cambridge, MA: MIT Press, 1994.

ISBN 0-262-53122-4.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire, editors. Funda-

mental Neuroscience. Academic Press, London, 1999.

178

	Towards Evolving More Brain-Like Artificial Neural Networks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Contributions
	1.2 Outline

	CHAPTER 2 BACKGROUND
	2.1 Artificial Neural Networks
	2.2 Neuroevolution
	2.3 Neuroevolution of Augmenting Topologies (NEAT)
	2.4 Generative and Developmental Systems (GDS)
	2.4.1 Compositional Pattern Producing Networks (CPPNs)
	2.4.2 HyperNEAT

	2.5 Evolution and Learning
	2.5.1 Evolution of Adaptive ANNs
	2.5.2 Evolution of Neuromodulated Plasticity

	2.6 Novelty Search

	CHAPTER 3 ESTABLISHING THE POTENTIAL ADVANTAGE OF EVOLVING PLASTIC NEURAL NETWORKS WITH NOVELTY SEARCH
	3.1 The Deceptive Trap of Learning to Learn
	3.2 Extending NEAT to Evolve Neuromodulated ANNs
	3.3 The Discrete T-Maze Domain
	3.4 T-Maze Experiment
	3.4.1 Measuring Novelty in the Single T-Maze
	3.4.2 Generalization Performance

	3.5 Single T-Maze Results
	3.6 Analysis of Deception in the Single T-Maze
	3.7 Additional Experiments
	3.7.1 Discrete Double T-Maze
	3.7.2 Foraging Bee

	3.8 Implications of Combining Novelty Search with Plasticity

	CHAPTER 4 APPROACH PART I: ADAPTIVE HYPERNEAT
	4.1 Indirectly Encoding Local Learning Rules
	4.2 Discrete T-Maze Experiment
	4.3 Discrete T-Maze Results
	4.4 Adaptive HyperNEAT Implications

	CHAPTER 5 APPROACH PART II: EVOLVABLE-SUBSTRATE HYPERNEAT
	5.1 Implicit Information in the Hypercube
	5.2 Quadtree Information Extraction
	5.3 ES-HyperNEAT Algorithm
	5.4 Key Hypotheses
	5.5 Experiment 1: Dual Task
	5.5.1 Experimental Setup
	5.5.2 Dual Task Results

	5.6 Experiment 2: Maze Navigation
	5.6.1 Maze Navigation Results
	5.6.2 Example Solution Lineage
	5.6.3 Evolvability Analysis

	5.7 Experiment 3: Left & Right Retina Problem
	5.7.1 Link Expression Output
	5.7.2 ES-HyperNEAT Geometry Seeding
	5.7.3 Retina Problem Setup
	5.7.4 Results

	5.8 ES-HyperNEAT Implications
	5.8.1 Dictating Node Locations
	5.8.2 Incrementally Building on Stepping Stones
	5.8.3 Geometry Seeding

	CHAPTER 6 UNIFIED APPROACH: ADAPTIVE ES-HYPERNEAT
	6.1 Evolving Plasticity and Neural Geometry
	6.2 Continuous T-Maze Domain
	6.3 Continues T-Maze Results
	6.4 Adaptive ES-HyperNEAT Implications

	CHAPTER 7 TOWARDS AN ADAPTIVE NEUROCONTROLLER FOR LEGGED LOCOMOTION
	7.1 Static Quadruped Neural Controller
	7.2 Flexible Neural Controller
	7.3 Experimental Setup
	7.4 Quadruped Results
	7.4.1 Interpolation Performance
	7.4.2 Relationship Between Morphology and Control

	7.5 Implications of Flexible Controllers

	CHAPTER 8 DISCUSSION AND FUTURE WORK
	8.1 Towards More Brain-Like ANNs
	8.2 HyperNEAT Extensions
	8.3 Future Directions

	CHAPTER 9 CONCLUSION
	9.1 Contributions
	9.2 Conclusion

	APPENDIX: PARAMETERS AND PSEUDOCODE
	LIST OF REFERENCES

