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ABSTRACT 

For decades, digital design has been primarily dominated by clocked circuits. With larger 

scales of integration made possible by improved semiconductor manufacturing techniques, 

relying on a clock signal to orchestrate logic operations across an entire chip became 

increasingly difficult. Motivated by this problem, designers are currently considering circuits 

which can operate without a clock. However, the wide acceptance of these circuits by the digital 

design community requires two ingredients: (i) a unified design methodology supported by 

widely available CAD tools, and (ii) a granularity of design techniques suitable for synthesizing 

large designs. Currently, there is no unified established design methodology to support the 

design and verification of these circuits. Moreover, the majority of clockless design techniques is 

conceived at circuit level, and is subsequently so fine-grain, that their application to large designs 

can have unacceptable area costs. 

 

Given these considerations, this dissertation presents a new clockless technique, called 

self-resetting stage logic (SRSL), in which the computation of a block is reset periodically from 

within the block itself. SRSL is used as a building block for three coarse-grain pipelining 

techniques:  

(i) Stage-controlled self-resetting stage logic (S-SRSL) Pipelines: In these pipelines, the 

control of the communication between stages is performed locally between each pair 

of stages. This communication is performed in a uni-directional manner in order to 

simplify its implementation.  
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(ii) Pipeline-controlled self-resetting stage logic (P-SRSL) Pipelines: In these pipelines, 

the communication between each pair of stages in the pipeline is driven by the 

oscillation of the last pipeline stage. Their communication scheme is identical to the 

one used in S-SRSL pipelines. 

(iii) Delay-tolerant self-resetting stage logic (D-SRSL) Pipelines: While communication 

in these pipelines is local in nature in a manner similar to the one used in S-SRL 

pipelines, this communication is nevertheless extended in both directions. The result 

of this bi-directional approach is an increase in the capability of the pipeline to handle 

stages with random delay.  

 

Based on these pipelining techniques, a new design methodology is proposed to 

synthesize clockless designs. The synthesis problem consists of synthesizing an SRSL pipeline 

from a gate netlist with a minimum area overhead given a specified data rate. A two-phase 

heuristic algorithm is proposed to solve this problem.  The goal of the algorithm is to pipeline a 

given datapath by minimizing the area occupied by inter-stage latches without violating any 

timing constraints. Experiments with this synthesis algorithm show that while P-SRSL pipelines 

can reach high throughputs in shallow pipelines, D-SRSL pipelines can achieve comparable 

throughputs in deeper pipelines.      

 

iv 



ACKNOWLEDGMENTS 

I would like to express my gratitude to my advisor, Dr. Abdel Ejnioui, who invested time 

and patience toward the completion of this dissertation. Without his encouragement, support, and 

guidance, this dissertation would not have been possible. I would like to thank my committee 

members, Drs. Issa Batarseh, Ronald F. Demara, Hassan Foroosh, and Alain Kassab, for their 

support and willingness to serve on my defense examination. In particular, I would like to show 

my special gratitude to Dr. Issa Batarseh for supporting my research work in times when support 

resources were scarce.  Beside Dr. Batarseh, I would like to show the same gratitude to Dr. 

Harold Klee for providing me with department support whenever possible. Also, I would like to 

thank Donald Harper for his patience and generosity in supporting the EDA design tools in the 

VLSI Lab.  Furthermore, I am grateful to my friend and lab mate, Rashad Oreifej, for his 

insightful comments and helpful feedback on my work. 

 

I would like to express my sincere thanks to my parents for their unconditional support, 

guidance, and sacrifice.  They have always believed in me and gratified me with their unending 

love.  Finally, I would like to thank my loving wife Amani for her generosity, support, and 

understanding throughout my graduate studies.  Her presence has been a pillar of steadfastness 

on which to lean after long hours of toiling in the VLSI Lab.   

v 



TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................................... xii 

LIST OF TABLES...................................................................................................................... xvii 

CHAPTER ONE: INTRODUCTION............................................................................................. 1 

1.1 Motivation................................................................................................................................. 1 

1.1.1 The Clocking Problem ................................................................................................... 1 

1.1.2 Growing Importance of Clockless Circuits.................................................................... 2 

1.1.3 Coarse-Grain Clockless Pipelining ................................................................................ 4 

1.2 Design Methodology in Clocked Circuits................................................................................. 5 

1.2.1 Specification and Modeling ........................................................................................... 5 

1.2.2 Verification .................................................................................................................... 6 

1.2.3 Synthesis ........................................................................................................................ 6 

1.2.4 Mapping ......................................................................................................................... 8 

1.3 Limitations of Clocked Circuits................................................................................................ 8 

1.3.1 Clock Frequency ............................................................................................................ 8 

1.3.2 Timing Closure .............................................................................................................. 9 

1.3.3 Power Implications ........................................................................................................ 9 

1.3.4 Area Implications........................................................................................................... 9 

1.3.5 Noise Margins.............................................................................................................. 10 

1.3.6 Multiple Clock Domains.............................................................................................. 10 

1.4 Clockless Circuits ................................................................................................................... 11 

1.4.1 Self-Clocked Circuits................................................................................................... 11 

vi 



1.4.2 Speed-Independent Circuits ......................................................................................... 13 

1.4.3 Delay-Insensitive Circuits............................................................................................ 13 

1.4.4 Self-Timed Circuits...................................................................................................... 14 

1.4.5 Self-Resetting Circuits ................................................................................................. 15 

1.5 Design Methodology in Clockless Circuits ............................................................................ 15 

1.6 Contributions of the Dissertation ............................................................................................ 17 

1.7 Overview of the Dissertation .................................................................................................. 19 

CHAPTER TWO: RELATED CLOCKLESS DESIGN METHODOLOGIES ........................... 21 

2.1 Petri Nets................................................................................................................................. 21 

2.2 Signal Transition Graphs ........................................................................................................ 25 

2.3 Micropipelines ........................................................................................................................ 27 

2.4 Null Convention Logic ........................................................................................................... 30 

2.5 Burst Mode Machine............................................................................................................... 34 

2.6 Handshake Circuits ................................................................................................................. 36 

2.7 Extended Delay Insensitive Model ......................................................................................... 39 

2.8 Summary ................................................................................................................................. 39 

CHAPTER THREE: STAGE-CONTROLLED SELF-RESETTING STAGE LOGIC 

PIPELINES................................................................................................................................... 42 

3.1 SRSL....................................................................................................................................... 42 

3.2 S-SRSL Linear Pipelines ........................................................................................................ 44 

3.3 S-SRSL Non-linear Pipelines ................................................................................................. 50 

3.3.1 S-SRSL Join Operation................................................................................................ 50 

3.3.2 S-SRSL Fork Operation............................................................................................... 52 

vii 



3.4 Performance of the Pipeline.................................................................................................... 54 

3.4.1 Parameter Definitions .................................................................................................. 54 

3.4.2 Analysis of the Reset and Evaluate Phase ................................................................... 55 

3.4.3 Effect of δ on the Pipeline Stages ................................................................................ 58 

3.4.4 δ and Pipeline Depth.................................................................................................... 59 

3.4.5 Area Cost ..................................................................................................................... 61 

3.4.6 Fault Handling ............................................................................................................. 61 

3.5 Prototype Implementation of the S-SRSL Pipelines............................................................... 65 

3.5.1 The S-SRSL Linear Pipeline........................................................................................ 66 

3.5.2 The S-SRSL Non-Linear Pipeline ............................................................................... 70 

3.5.2.1 The S-SRSL Join Pipeline .................................................................................... 70 

3.5.2.2 The S-SRSL Fork Pipeline.................................................................................... 72 

3.6 Summary ................................................................................................................................. 74 

CHAPTER FOUR: PIPLINE-CONTROLLED SELF-RESETTING STAGE LOGIC PIPLINES

....................................................................................................................................................... 75 

4. 1 P-SRSL Linear Pipeline......................................................................................................... 75 

4.2 P-SRSL Non-Linear Pipelines ................................................................................................ 82 

4.2.1 P-SRSL Join Pipeline................................................................................................... 82 

4.2.2 P-SRSL Fork Pipeline.................................................................................................. 85 

4.3 Performance of the Pipeline.................................................................................................... 87 

4.3.1 Analysis of the Reset and Evaluate Phase ................................................................... 87 

4.3.2 Effect of δ on the Pipeline Stages ................................................................................ 90 

4.3.3 Effect of the Period on the Latch Enable ..................................................................... 91 

viii 



4.3.4 Area Cost ..................................................................................................................... 92 

4.3.5 Fault Handling ............................................................................................................. 92 

4.4 Prototype Implementation of the P-SRSL Pipeline ................................................................ 94 

4.4.1 Implementation of the Linear Pipeline ........................................................................ 94 

4.4.2 Implementation of the Non-Linear Pipelines............................................................... 97 

4.4.2.1 The P-SRSL Join Pipeline .................................................................................... 97 

4.4.2.2 The P-SRSL Fork Pipeline.................................................................................. 100 

4.5 Comparison of P-PRSL to S-SRSL Pipelines....................................................................... 102 

4.6 Summary ............................................................................................................................... 103 

CHAPTER FIVE: DELAY TOLERANT SELF-RESETTING STAGE LOGIC PIPELINES.. 104 

5.1. D-SRSL Linear Pipeline ...................................................................................................... 104 

5.1.1 Pipeline Structure....................................................................................................... 104 

5.1.2 Phase Control Block .................................................................................................. 106 

5.1.3 Latch Control Block................................................................................................... 108 

5.2. D-SRSL Non-Linear Pipelines ............................................................................................ 109 

5.2.1 D-SRSL Join Pipeline ................................................................................................ 109 

5.2.2 D-SRSL Fork Pipeline ............................................................................................... 114 

5.3. Performance of the Pipeline................................................................................................. 118 

5.3.1 The Reset and Evaluate Phase ................................................................................... 118 

5.3.2 Duration of Latch Enable........................................................................................... 122 

5.3.3 Stage Delay and Period.............................................................................................. 123 

5.3.4 Area Cost ................................................................................................................... 128 

5.3.5 Fault Handling ........................................................................................................... 128 

ix 



5.4 Prototype Implementation of the D-SRSL Pipeline.............................................................. 131 

5.4.1 Implementation of the PC Block................................................................................ 131 

5.4.2 Implementation of the LC Block ............................................................................... 132 

5.4.3 Implementation of the Join Block.............................................................................. 134 

5.4.4 Implementation of the Fork Block............................................................................. 136 

5.4.5 Implementation of D-SRSL Pipeline ......................................................................... 137 

5.5. Conclusion ........................................................................................................................... 141 

CHAPTER SIX: SYNTHESIS OF SRSL PIPELINES.............................................................. 143 

6.1 SRSL Pipeline Design Methodology.................................................................................... 143 

6.2 Synthesis of SRSL Pipelines................................................................................................. 145 

6.3 Preliminaries ......................................................................................................................... 146 

6.4 Modeling of the Synthesis Problem...................................................................................... 150 

6.5 Proposed Solution of the SRSL Pipeline Synthesis.............................................................. 156 

6.5.1 Phase I: Stage Assignment......................................................................................... 157 

6.5.1.1 Phase I Approach ................................................................................................ 158 

6.5.1.2 Phase I Algorithm ............................................................................................... 159 

6.5.2 Phase II: Vertex Shuffling ......................................................................................... 161 

6.5.2.1 Phase II Approach............................................................................................... 161 

6.5.2.2 Phase II Algorithm.............................................................................................. 168 

6.6 Experimental Results ............................................................................................................ 170 

6.6.1 P-SRSL Pipelining Experiments................................................................................ 170 

6.6.2 D-SRSL Pipelining Experiments ............................................................................... 177 

6.6.3 Summary of the Experiment Results ......................................................................... 182 

x 



6.7 Summary ............................................................................................................................... 184 

CHAPTER SEVEN: CONCLUSION......................................................................................... 186 

7.1 Summary of Completed Work .............................................................................................. 186 

7.2 Future Work .......................................................................................................................... 190 

LIST OF REFERENCES............................................................................................................ 193 

xi 



LIST OF FIGURES 

Figure 1.1: Design flow of clocked circuits [14]. ........................................................................... 7 

Figure 1.2: General architecture of SC circuits [25]..................................................................... 12 

Figure 2.1: C-element and its surrounding dummy environment [27]. ........................................ 22 

Figure 2.2: The PN of the C-element shown in Figure 2.1 [27]. .................................................. 22 

Figure 2.3: Petrify framework....................................................................................................... 24 

Figure 2.4 :Timing diagram of the C-element shown in Figure 2.1. ............................................ 26 

Figure 2.5: STG of the C-element shown in Figure 2.1................................................................ 26 

Figure 2.6: Synthesis flow of clockless circuits from STG specifications. .................................. 27 

Figure 2.7: Micropipeline handshake protocols............................................................................ 28 

Figure 2.8: Basic structure of a micropipeline.............................................................................. 28 

Figure 2.9: Pipefitter framework................................................................................................... 29 

Figure 2.10: NCL 2-of-3 threshold gate. ...................................................................................... 31 

Figure 2.11: A half adder circuit in conventional Boolean logic.................................................. 31 

Figure 2.12: NCL half adder circuit.............................................................................................. 32 

Figure 2.13: RTL flow for NCL design [51]. ............................................................................... 33 

Figure 2.14: Burst mode specification of a C-element. ................................................................ 35 

Figure 2.15: Handshake channel................................................................................................... 36 

Figure 2.16: The Tangram Toolset. .............................................................................................. 38 

Figure 3.1: Reset and evaluate network of an SRSL stage. .......................................................... 43 

Figure 3.2: STG of the reset network shown in Figure 3.1........................................................... 43 

Figure 3.3: A four-stage S-SRSL pipeline.................................................................................... 44 

xii 



Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3. .................................................... 45 

Figure 3.5: Two execution cycles of a four-stage S-SRSL Pipeline............................................. 49 

Figure 3.6: Structure of the join S-SRSL pipeline........................................................................ 51 

Figure 3.7: STG of the S-SRSL join pipeline shown in Figure 3.6. ............................................. 52 

Figure 3.8: Structure of the fork S-SRSL pipeline. ...................................................................... 53 

Figure 3.9: STG of the S-SRSL fork pipeline shown in Figure 3.8.............................................. 54 

Figure 3.10: Simulation snapshot of stage 15 and 16 in a 16-stage prototype S-SRSL pipeline. 56

Figure 3.11: Simulation snapshot of stage 1 and 2 in a 16-stage prototype S-SRSL pipeline. .... 56 

Figure 3.12: Chip layout of the four-bit 16-stage S-SRSL pipeline. ............................................ 66 

Figure 3.13: Simulation results of d(L+), d(R), d(E), δ, and P in a 16-stage S-SRSL pipeline. ... 68 

Figure 3.14: The empirical and analytical values of d(R) and d(L+) in a 16-stage S-SRSL 

pipeline.................................................................................................................................. 69 

Figure 3.15: Four-bit six-stage S-SRSL join pipeline. ................................................................. 70 

Figure 3.16: Simulation snapshot of the prototype S-SRSL join pipeline.................................... 71 

Figure 3.17: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL join pipeline......... 72 

Figure 3.18: Four-bit six-stage S-SRSL fork pipeline. ................................................................. 72 

Figure 3.19: Simulation snapshot of the prototype S-SRSL fork pipeline ................................... 73 

Figure 3.20: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL fork pipeline. ....... 74 

Figure 4.1: A four-stage P-SRSL pipeline.................................................................................... 76 

Figure 4.2: STG of the P-SRSL pipeline shown in Figure 4.1. .................................................... 78 

Figure 4.3: Two execution cycles of a four-stage P-SRSL Pipeline............................................. 81 

Figure 4.4: Structure of a join P-SRSL pipeline. .......................................................................... 83 

Figure 4.5: STG of the P-SRSL join pipeline shown in Figure 4.3. ............................................. 84 

xiii 



Figure 4.6: Structure of a fork P-SRSL pipeline........................................................................... 85 

Figure 4.7: STG of the P-SRSL fork pipeline shown in Figure 4.6.............................................. 86 

Figure 4.8: Simulation snapshot of stages 13, 14, 15 and 16 in a 16-stage prototype P-SRSL 

pipeline.................................................................................................................................. 89 

Figure 4.9: Chip layout of the four-bit 16-stage P-SRSL pipeline. .............................................. 95 

Figure 4.10: Simulation results of d(L+), d(R), d(E), δ, and P in a P-SRSL pipeline. .................. 96 

Figure 4.11: Four-bit six-stage P-SRSL join pipeline. ................................................................. 98 

Figure 4.12: Simulation snapshot of the prototype P-SRSL join pipeline.................................... 98 

Figure 4.13: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype join 

pipeline.................................................................................................................................. 99 

Figure 4.14: Four-bit six-stage P-SRSL fork pipeline. ............................................................... 100 

Figure 4.15: Simulation snapshot of the prototype P-SRSL fork pipeline. ................................ 100 

Figure 4.16: Simulation results of d(L+), d(R), d(E), δ, and P in  the P-SRSL prototype fork 

pipeline................................................................................................................................ 102 

Figure 5.1: A four-stage D-SRSL pipeline. ................................................................................ 105 

Figure 5.2: STG of the D-SRSL pipeline shown in Figure 5.1. ................................................. 106 

Figure 5.3.:Phase control block. ................................................................................................. 107 

Figure 5.4: State graph of the PC block...................................................................................... 107 

Figure 5.5: Latch control block................................................................................................... 109 

Figure 5.6: State graph of the latch control block....................................................................... 109 

Figure 5.7: D-SRSL join pipeline. .............................................................................................. 110 

Figure 5.8: STG of the D-SRSL join pipeline shown in Figure 5.7. .......................................... 111 

Figure 5.9: The Join block. ......................................................................................................... 111 

xiv 



Figure 5.10: State graph of the Join block. ................................................................................. 112 

Figure 5.11: Prototype D-SRSL join pipeline............................................................................. 112 

Figure 5.12: Simulation snapshot of the prototype D-SRSL join pipeline. ................................ 113 

Figure 5.13: D-SRSL fork pipeline............................................................................................. 115 

Figure 5.14: STG of the D-SRSL fork pipeline shown in Figure 5.13....................................... 115 

Figure 5.15: Fork block............................................................................................................... 116 

Figure 5.16: State graph of the Fork block. ................................................................................ 116 

Figure 5.17: Prototype D-SRSL fork pipeline. ........................................................................... 116 

Figure 5.18: Simulation snapshot of the prototype D-SRSL fork pipeline................................. 117 

Figure 5.19: Simulation snapshot of stage 14, 15 and 16 in a 16-stage prototype D-SRSL 

pipeline................................................................................................................................ 119 

Figure 5.20: Simulation snapshot of stages 7 through 11 in a 17-stage prototype D-SRSL 

pipeline................................................................................................................................ 124 

Figure 5.21: Simulation snapshot of stages 8 and 9 in the 17-stage D-SRSL prototype pipeline.

............................................................................................................................................. 125

Figure 5.22: Simulation snapshot of stages 9 and 10 in the 17-stage D-SRSL prototype pipeline.

............................................................................................................................................. 126

Figure 5.23: Synthesized netlist of the PC block........................................................................ 132 

Figure 5.24: Synthesized netlist of the LC block........................................................................ 133 

Figure 5.25: Synthesized netlist of the Join block. ..................................................................... 134 

Figure 5.26: Synthesized netlist of the Fork block. .................................................................... 136 

Figure 5.27: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 1.... 139 

Figure 5.28: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 2.... 140 

xv 



Figure 5.29: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline3..... 141 

Figure 6.1: SRSL design flow..................................................................................................... 144 

Figure 6.2: Example of a Boolean network. ............................................................................... 147 

Figure 6.3: Boolean graph of the Boolean network shown in Figure 6.2. .................................. 149 

Figure 6.4: Latch insertion between two neighboring pipeline stages........................................ 162 

Figure 6.5: P-SRSL area as a percentage of the pipeline area across different pipelines of the 

C6822 benchmark circuit.................................................................................................... 171 

Figure 6.6: Pipeline throughputs for various P-SRSL pipeline depths....................................... 172 

Figure 6.7: P-SRSL area as a percentage of the pipeline area across various depth pipelines. .. 174 

Figure 6.8: Period over area ratios for different depths P-SRSL pipelines. ............................... 176 

Figure 6.9: D-SRSL area as a percentage of the pipeline area across different pipelines of the 

C5135 benchmark circuit.................................................................................................... 178 

Figure 6.10: Pipeline throughputs for various D-SRSL pipeline depths. ................................... 179 

Figure 6.11: D-SRSL area as a percentage of the pipeline area across various depth pipelines. 181

xvi 



LIST OF TABLES 

Table 2.1: Summary of clockless design methodologies.............................................................. 41 

Table 3.1: S-SRSL linear pipeline implementation ...................................................................... 67 

Table 4.1: P-SRSL pipeline implementation. ............................................................................... 95 

Table 4.2: Comparison summary of the P-SRSL to S-SRSL pipeline. ...................................... 103 

Table 5.1: D-SRSL pipeline implementation.............................................................................. 138 

Table 5.2: Gate area of a single D-SRSL stage. ......................................................................... 138 

Table 6.1: Experimental circuits. ................................................................................................ 170 

Table 7.1: SRSL pipelining parameters. ..................................................................................... 188 

Table 7.2: Fault handling in the three pipelines.......................................................................... 189 

 

xvii 



CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

In this section, the rationale and the motivation behind the work undertaken in this 

dissertation is presented.   

1.1.1 The Clocking Problem 

For three decades, digital design has been primarily dominated by clocked circuits 

since these circuits can be extremely robust and fairly easy to build. The use of a clock 

signal in clocked circuits introduces a level of abstraction in the time domain that hides 

many details about the temporal relations among circuit signals. This greatly simplifies 

the timing analysis of such circuits by reducing it to a mere analysis of the critical paths 

contained within the circuit. In a clocked circuit, a designer can simply define the 

combinational logic necessary to compute the given functions and surround it with 

latches. By setting the clock rate to a sufficiently long period, concerns about undesired 

signal transitions and the dynamic state of the circuit are eliminated [1]. The ease of 

design in clocked circuits has made them inevitably highly attractive to members of the 

commercial and research communities. In return, this interest has lead to a significant 

investment in the automation of designing these circuits thus culminating in the wide 

acceptance of a unified design methodology supported by widely available CAD tools. 

Along this evolution, the semiconductor industry has kept improving fabrication 

processes by shrinking silicon features to attain larger scale of integration. New 
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manufacturing techniques have made the integration of multi-million transistors onto the 

same die possible. As designers kept packing more devices into chips to take advantage 

of these large scales of integration, significant challenges have emerged the most 

important of which is the reliance on a clock signal to orchestrate logic operations across 

an entire chip. This challenge is known as the clocking problem. Today, this problem is 

considered at the root of three consequential fundamental obstacles in current VLSI 

design: 

(i) Design cycle time: Design time can be extended significantly by unexpected 

clocking problems. These extensions can disturb product schedules and shrink 

potential market profits.  

(ii) Power budget: The power budget allocated for a design initially may be 

completely underestimated if clocking problems are not addressed early in the 

design cycle. Even if they are, there is still no guarantee that the power budget 

will remain within initial estimates. 

(iii) Chip area: To overcome the technical difficulties imposed by the distribution 

of the clock to different parts of a chip, substantial silicon area has to be 

sacrificed to support this distribution. As known in the economics of the 

semiconductor industry, area cost can add up to the fixed cost of producing 

each chip unit.  

1.1.2 Growing Importance of Clockless Circuits 

Motivated by the gravity of the clocking problem and its severe consequences, 

designers are currently considering other circuits which can operate without a clock. 
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These circuits are known as clockless circuits [1]. Although considered esoteric by most 

digital designers, these circuits have been subject to intensive investigation for some 

time. While clockless circuits have some disadvantages, there is wide agreement among 

researchers that their well known advantages make them suitable to overcome the 

clocking problem. Unfortunately, at this time, there is no unified established design 

methodology to support the design and verification of clockless circuits although a 

plethora of ad-hoc design methodologies have been proposed in the past for various 

classes of clockless circuits [2-10]. In fact, this variety of design methodologies triggered 

strong reluctance from digital designers to consider clockless circuits as viable 

alternatives. As a result, since existing CAD tools have been intended for clocked 

designs, it would be reasonable to adapt them for clockless designs considering the 

massive investments that have been spent on the developments of these tools. An ideal 

solution to leverage these investments would be a design methodology that would exploit 

existing CAD tools as much as possible and deviate from them as little as possible. Even 

by adopting such a methodology, one quickly realizes that only a handful of clockless 

circuits can be designed and verified using this adopted methodology. For instance, most 

of the pipeline-based clockless techniques, such as micropipelines, are not adequate to 

synthesize large data paths. These clockless pipelines, often implemented at circuit level, 

are so fine-grain that their application to pipeline data paths can have an unacceptable 

area overhead.  
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1.1.3 Coarse-Grain Clockless Pipelining 

Faced with this difficulty, it would make sense to (i) either select a few coarse-

grain pipelining techniques among previously proposed clockless techniques, or (ii) 

propose new coarse-grain clockless pipelining techniques that seem supportable by 

existing CAD tools. A few attempts have been already undertaken in pursuing the former 

alternative [2, 11-12]. However, if the latter alternative is pursued, the best place to 

transform a clocked design into a clockless one is at the gate level where minimum 

disruption of the design flow supported by existing CAD tools is achievable. By doing so, 

the synthesis step of the clocked gate netlist from the initial register transfer level (RTL) 

model in the design flow is completely preserved. The obtained clockless gate netlist can 

be mapped using technology mappers packaged in existing CAD tools, and standard cell 

libraries which do not contain any specially designed handshaking components. In 

addition, the same gate netlist can be simulated using any existing simulators. 

Furthermore, the proposed clockless design technique is of sufficient granularity as to not 

impose a high area overhead.  

 

Based on the rationale of the second alternative, this dissertation presents a novel 

clockless design technique highly adaptable for existing CAD tools. This technique can 

be incorporated within existing CAD tools without altering their design flow. This design 

technique is used to develop three coarse-grain pipelining techniques with distinct control 

mechanisms, which can be used to transform a clocked gate netlist into a highly pipelined 

clockless gate netlist based on data rate and area cost specifications. The remainder of 

this chapter reviews the design methodology of clocked circuits in section 1.2. In section 
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1.3, a review of the limitations of clocked circuits is presented while section 1.4 

introduces several classes of clockless circuits. Section 1.5 gives an overview of the 

design methodologies used in synthesizing clockless circuits while section 1.6 presents 

the contributions of this dissertation. Finally, section 1.7 shows an overview of the 

dissertation. 

1.2 Design Methodology in Clocked Circuits 

Today, the design methodology of clocked circuits is widely accepted and 

supported by existing CAD tools. As shown in Figure 1.1, this methodology consists of 

(i) specification and modeling, (ii) verification, (iii) synthesis, (iv) technology mapping, 

and (v) physical layout.  

1.2.1 Specification and Modeling 

A clocked circuit is specified in both general and specific terms that provide design 

targets such as functionality, speed, and size. These specifications are used to create an 

abstract, high level model using a high level hardware description language (HDL). The 

abstract model contains information on behavior of each block and the interaction among 

the blocks in the circuit [13]. VHDL and Verilog HDL are the most widely used HDLs in 

the digital design community to model these circuits. 
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1.2.2 Verification 

The HDL model is subjected to extensive verification wherein the design is 

checked to ensure correct functionality. Simulation is the most widely used form of 

verification. During simulation, test benches are created and applied on the design to 

validate its functionality against initial requirements.  

1.2.3 Synthesis 

The synthesis step consists of creating a gate implementation of the specified 

model. This step can be performed as follows: 

(i) Translate the abstract Register Transfer Level (RTL) design description to    

            register elements and combinational logic.  

(ii) Optimize the combinational logic by minimizing, flattening and factoring the    

            resulting Boolean equations. 

(iii) Translate the optimized logic level description to a generic gate netlist using  

            cells from a generic library. 
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Figure 1.1: Design flow of clocked circuits [14]. 
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1.2.4 Mapping 

In this step, the optimized generic gate netlist is mapped to a specific standard cell 

library in a given technology. The mapping must satisfy area and timing constraints 

specified earlier in the design flow. After mapping, simulation can be performed on the 

mapped gate netlist in order to compare its results with the results obtained from the 

simulation of the model specified in the modeling step of the design flow.    

1.3 Limitations of Clocked Circuits 

In nanometer technology processes, circuit designers can build super fast 

transistors capable of processing data in several steps during the time it takes a wire to 

carry a signal from one side of a chip to the other [15]. Keeping operation frequency 

identical across the chip area requires substantial effort in distributing the clock to the 

various areas of the chip. To do so, the clock distribution at chip level can generate 

numerous costly difficulties that exacerbate the three fundamental obstacles encountered 

in current VLSI design. 

1.3.1 Clock Frequency 

To insure correct synchronization of the latches across the chip, designers assume 

a clock frequency based on the worst case propagation delay through the slowest path in 

the design [16-18]. This pessimistic estimation usually accounts for maximum clock 

skew, and process variations due to process, voltage, and temperature. The margin 

allotted for these variations tend to increase as nanometer processes are adopted.  
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1.3.2 Timing Closure 

For high performance designs, timing closure can become a major bottleneck 

before tape out time. In principle, the delay through the slowest paths, augmented with 

the safety margins accounting for process variation and skew, should be less than the 

target clock period. Often, design teams realize that the target is not met after layout in 

spite of the extensive simulations at different levels of the design flow. Designers are 

forced then to iterate numerous times through the design flow cycle in order to meet the 

target. These iterations can cause costly delays in production schedules. 

1.3.3 Power Implications   

It has been established that the clock network can consume a sizable portion of 

the chip power budget. This phenomenon is highly acute in high-capacity Field 

Programmable Gate Arrays (FPGA) chips [19]. In fact, the clock is continually switching 

unless clock gating techniques are used. This means that latches are dissipating heat 

whether they are processing data or not [17]. Clock gating techniques can alleviate the 

problem to some degree at the expense of added design complexity and a drop in 

performance [20, 21].  

1.3.4 Area Implications 

Several researchers have proposed advanced approaches to alleviate clock 

distribution and de-skewing problems. However these approaches can, in some cases, 

impose a substantial cost in added area. There were reported instances in which a 
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complex clock-driver network on a commercial microprocessor was designed to keep the 

clock skew within 300 picoseconds. However, this resulted in a circuit that occupied 10% 

of the chip area and consumed more than 40% of the total power budget [22]. In semi-

custom designs, the clock network can occupy an area that is even larger reaching 30 to 

40% of the total chip area. 

1.3.5 Noise Margins 

Beside increases in area and power cost, clock networks are highly noisy. By 

keeping all signal transitions in lock step, the clock network creates the worst 

environment to suppress noise. Similar to data signals, current transitions on clock lines 

become synchronized to some degree thus maximizing the AC component of any 

generated noise in relation to the harmonics of the clock frequency.  

1.3.6 Multiple Clock Domains 

With increasing numbers of clock domains in current chips, concerns are 

growing about synchronization of cross-domain signal paths. A complex communication 

system-on-chip can contain up to 300 such domains [23]. The synchronization of these 

domains requires proper placement of synchronizers at precise points in the design. Even 

with proper placement, there is no guarantee that all the bits of a domain-crossing bit 

vector in a cross-domain path signal will cross domain boundaries at the same time 

through these synchronizers. This is further complicated by the fact that clock 

frequencies across domains differ widely, which necessitates the insertion of FIFO 

buffers at various points in the design. Insertion of FIFO buffers raises sizing and correct 
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implementation issues. While synchronizer placement and buffer insertion can be 

performed manually, it is not advised in most cases since it is labor-intensive and highly 

prone to errors. Designers can overcome these difficulties if automatic tools for 

placement and verification were available. Unfortunately, there are no specialized tools to 

support these tasks on the market at this time. 

1.4 Clockless Circuits 

Clockless circuits are circuits that operate without the synchronization of a clock 

signal. Although numerous clockless circuits have been proposed before, they can 

nevertheless be classified based on a limited number of characteristics. The most 

important characteristic in distinguishing the underlying principle behind the operation of 

a clockless circuit is how signal delay is handled in order to insure the proper 

synchronization of the different components of the circuit. This assumption is known as 

the delay model. Based on this delay model, clockless circuits can be divided in five 

distinct classes of circuits.   

1.4.1 Self-Clocked Circuits 

In general, self-clocked (SC) circuits consist of three components as shown in 

Figure 1.2 [24] [25]: 
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Figure 1.2: General architecture of SC circuits [25]. 

 

(i) Clock logic: This component generates a clock pulse only whenever the state 

or output signals change. It is used to eliminate hazards and control state 

changes of the machine. 

(ii) Storage elements: These elements capture data by responding to the clock 

signal. 

(iii) Combinational logic: This component does not require special care to protect 

it from hazards. The clock component is chosen to be slow enough to allow 

outputs to settle before it is fed back to the combinational logic. 
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 SC circuits are simple and attractive since they reduce the potential overhead due 

to the clock. In addition, they allow the realization of hazard-free logic based on the 

specification of finite state machines. 

1.4.2 Speed-Independent Circuits 

Speed-independent (SI) circuits were introduced by David Muller in the 1950s 

[26]. These circuits operate correctly regardless of gate delays. In these circuits, wires are 

assumed to have zero or negligible delay. As a result, every fork in the circuit is assumed 

to be an isochronic fork causing only a negligible skew. An isochronic fork is a wire fork 

in which the delays on the branches of the fork are equal. If this delay model is assumed, 

an SI circuit works properly for all possible ordering of events associated with all 

possible and varying relative delays of the components of the circuit. SI circuits can be 

synthesized from Petri nets and signal transition graphs used in synthesizing clockless 

circuits.  

1.4.3 Delay-Insensitive Circuits 

Delay-Insensitive (DI) circuits are circuits which operate correctly with positive 

and unbounded delay in wires and gates [27]. In a bounded-delay model, it is assumed 

that a circuit will settle in a stable state as a response to an input if given enough time. 

Immediately after, a new input can be safely fed to the circuit. Micropipelines and burst 

mode circuits are examples of circuits whose operations are based on the bounded-delay 

model. However, in an unbounded delay model, no matter how long a circuit waits, there 

is no guarantee that the input will be properly absorbed. This required some kind of 
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handshaking protocol between sender and receiver components of the circuit. The sender 

sends data and waits on an acknowledge signal from the receiver. The latter receives the 

data and sends the acknowledge signal back to the sender. By managing these signal 

exchanges, handshaking protocols can make circuits highly immune to hazards. 

Unfortunately, the number of DI circuits, built out of simple gates and operators, is quite 

small. In fact, it has been proven that almost no useful DI circuits can be built if one is 

restricted to a class of simple gates and operators [28]. However, many practical DI 

circuits can be built if one allows more complex components [29]. 

 

Because the unbounded delay model is too restrictive, it can be slightly relaxed by 

allowing bounded delays on wire forks or using isochronic forks. In adopting this 

modified unbounded delay model, DI circuits can be refined further into a subclass of 

quasi-delay-insensitive (QDI) circuits [27]. In contrast to QDI circuits, delays on the 

different fork branches of DI circuits are completely independent and may vary 

considerably. DI circuits can be built from Null Convention Logic, handshake-based 

circuits, and extended delay insensitive clockless models.  

1.4.4 Self-Timed Circuits 

In [30], self-timed (ST) circuits are described as interconnections of parts called 

“elements". Each element is contained in an “equipotential region" in which wires have 

negligible or well-bounded delay. An element itself may be an SI circuit, or a circuit 

whose correct operation relies on the use of local timing assumptions. However, no 

timing assumptions are made on the communication between regions; that is, 
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communication between regions is delay-insensitive. Null Convention Logic (NCL) is 

considered as ST circuits. 

1.4.5 Self-Resetting Circuits 

Earlier implementations of self-resetting circuits rely on circuit techniques to 

realize self-resetting behavior. For instance, self-resetting CMOS (SRCMOS) operates on 

signals represented as short-duration pulses rather than as voltage levels [31]. After a 

logic gate processes a set of input pulses, a reset signal is activated to restore the logic 

gate to a state in which it is ready to receive another set of input pulses. The input pulses 

must arrive at the same time and must overlap with one another for a minimum duration. 

Several reset schemes have been proposed before. Jung has proposed two techniques to 

increase the robustness and efficiency of SRCMOS circuits [32]. The first technique uses 

a logical structure to properly sequence the reset and evaluates modes of an SRCMOS 

logic stage without having to rely on a timing chain. The second technique uses a pulse 

stretcher so that input pulses of widely different arrival times can be properly combined 

at a given stage logic. Beside Jung schemes, Dooply has proposed locally self resetting 

CMOS where the reset signal for each stage is generated locally [33]. This technique is 

based on single-rail domino logic stages in which the reset signal is obtained by sending 

the stage own output through a short delay chain. 

1.5 Design Methodology in Clockless Circuits 

Various design methodologies have been proposed in the past to synthesize 

clockless circuits. In general, there is a close relationship between the theoretical model 
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used to represent the behavior of clockless circuits and the tools used to model this 

behavior. Given this relationship, design methodologies for clockless circuits can be 

classified as follows: 

(i) Graph-based methodologies: These methodologies require the modeling of 

the circuit as Petri nets (PNs) or signal transition graphs (STGs). Circuits are 

synthesized from these graphs and mapped onto general C-elements and 

complex gates [3-8].  

(ii) HDL-based methodologies: These methodologies require the modeling of a 

circuit using an existing HDL [2, 9-10], [34-37]. The model is translated to a 

netlist that can be mapped onto a standard cell library.  

(iii) Script-based methodologies: In these methodologies, circuit behavior is 

described using algebraic expressions and saved as scripts [38-41]. The scripts 

are expanded into graphs from which circuits are synthesized and mapped. 

(iv) Compilation-based methodologies: These methodologies require the use of 

high level programming languages, some of which are proprietary, designed 

to express concurrency, handshaking, and sequencing [42-45]. The source 

code of the program describing the circuit behavior is parsed and compiled 

into a circuit containing pre-designed components which support the 

programming language constructs for concurrency, handshaking, and 

sequencing.  

 

Given this diversity of design methodologies, it is understandable why most 

designers are reluctant to delve in clockless logic. This reluctance can be justified by the 
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fact that adopting any methodology requires some amount of retraining and retooling on 

the part of the designers. This reluctance is reinforced further by a visible lack of 

simulation and verification tools at all levels of the design flow that is suggested by these 

methodologies. In addition, proprietary cell libraries are necessary to map circuits using 

some of these methodologies. What most designers are seeking instead is a single 

uniform design methodology that is (i) familiar, (ii) widely accepted, (iii) tested and 

proven by a long usage experience, (iv) and may use proprietary resources as little as 

possible. Such a methodology has been already in use for some time to produce clocked 

circuits in the form of successful commercial CAD or EDA tools. In this case, the design 

methodology of these CAD tools can be used to support clockless design techniques that 

can be specified and modeled using current HDLs. The obtained HDL models can be 

verified through simulation. Next, the HDL models can be synthesized into clockless gate 

netlist which can be mapped using standard cell libraries found in the realization of 

clocked circuits. Note that, in general, these libraries do not contain any special cells 

designed to handle events specific to clockless logic such as concurrency, rendez-vous, 

and handshaking. By implementing these clockless techniques using existing CAD tools 

with a minimum modification to the design flow of these tools, the need for relearning 

and retooling can be eliminated. 

1.6 Contributions of the Dissertation 

This dissertation presents a new clockless design technique suitable for existing 

CAD tools. Specifically, its contributions are as follows: 
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(i) A new self-resetting logic technique, called self-resetting stage logic (SRSL), 

in which the computation of a block is reset periodically from inside the 

block. This automatic self-resetting behavior manifests itself in the form of a 

periodic oscillation of the block driven by a reset loop similar to an internal 

clock. This simplifies the synchronization scheme by using a uni-directional 

communication channel between senders and receivers. 

(ii) A pipelining technique based on SRSL controlled at stage level, called stage-

controlled self-resetting stage logic (S-SRSL). In S-SRSL, the control of the 

communication between stages is performed between each pair of stages.   

(iii) A pipelining technique based on SRSL controlled at pipeline level, called 

pipeline-controlled self-resetting stage logic (P-SRSL). In P-SRSL, the 

control of the communication between stages is performed by the last stage in 

the pipeline whereby the oscillation of the last stage drives the oscillatory 

behavior of the other stages in the pipeline.  

(iv) A coarse-grain pipelining technique called delay-tolerant self-resetting stage 

logic (D-SRSL) that is similar to S-SRSL pipelining where data flow across 

stages is orchestrated by each pair of neighboring stages.  Whereas S-SRSL 

and P-SRSL pipelines require that intra-stage delay and communication 

scheme be identical and uni-directional respectively, D-SRSL can tolerate 

stages with arbitrarily different delays by using a bi-directional 

communication scheme.  

(v) Graph-theoretic and analytical formulations of a combinatorial problem 

encountered in the synthesis of SRSL pipelines. Specifically, this problem 
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consists of synthesizing an SRSL pipeline from a gate netlist with a minimum 

area overhead based on a specified data rate.  The analytical formulation 

consists primarily of an integer programming problem.   

(vi) Since the size of the integer programming problem formulation is significantly 

large, and subsequently solving it using analytical approaches is impractical, a 

new heuristic algorithm is proposed to solve it.  Because latches tend to 

occupy a large silicon area, the main goal of the algorithm is to minimize the 

area occupied by inter-stage latches without violating any timing constraints. 

This algorithm accomplishes this by executing two successive phases where 

phase I assigns each gate in the gate netlist to a specific pipeline stage whereas 

phase II minimizes the number of inter-stage latches between every pair of 

neighboring pipeline stages.  

1.7 Overview of the Dissertation 

This dissertation consists of six chapters beside the current chapter. Chapter 2 

reviews the main clockless design methodologies and evaluates their suitability for 

existing CAD tools. Chapter 3 explains the underlying concepts behind SRSL and 

introduces S-SRSL pipelines followed by an analysis of the experimental results 

conducted on these pipelines. Chapter 4 presents P-SRSL pipelines and the experiments 

conducted on these pipelines followed by a comparison of S-SRSL and P-SRSL 

pipelines. Chapter 5 presents D-SRSL pipelines and analyzes the results obtained from 

the prototyping experiments conducted on these pipelines.  Chapter 6 introduces the 

synthesis problem of SRSL pipelines, presents the formulation of the combinatorial 
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problem stemming from the synthesis of SRSL pipelines, and describes the synthesis 

algorithm implemented for this purpose.  Finally, Chapter 7 concludes the dissertation 

and suggests avenues for future work.  
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CHAPTER TWO: RELATED CLOCKLESS DESIGN 
METHODOLOGIES 

This chapter reviews the main clockless design methodologies and the available 

tools that support each design methodology as reported in the literature. Section 2.1 

presents methodologies based on Petri nets while section 2.2 presents methodologies 

based on signal transition graphs. Section 2.3 presents micropipelines while section 2.4 

presents Null Convention Logic. Burst mode machines are described in section 2.5. 

Section 2.6 describes handshake circuits while section 2.7 describes the extended delay 

insensitive model. Finally, section 2.8 gives a summary of the chapter and compares the 

listed design methodologies with the proposed SRSL technique. 

2.1 Petri Nets  

Petri Nets (PNs) is a formal syntax and semantic representation suitable to specify 

causality, concurrency and choice between events. PNs can be a powerful tool to model 

clockless circuits [3, 46, 47]. Formally, a PN is a triple N = (P, T, F) where: 

(i) P is a finite set of places. 

(ii) T is a finite set of transitions: T P∩ =∅ . 

(iii) ( ) ( ):F F P T T P⊆ × ∪ × is the flow function. 

Transitions in PNs represent events in the system such as a request to access a 

memory bank in a multi processor system. On the other hand, places in PNs represent 

placeholders for needed resources and conditions necessary for events to occur. Figure 

2.1 shows a C-element and its surrounding environment while figure 2.2 shows its PN 

specification.  
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Figure 2.1: C-element and its surrounding dummy environment [27]. 

 

Figure 2.2: The PN of the C-element shown in Figure 2.1 [27]. 

The PN is marked with tokens on the input places to the a+ and b+ transition. The 

a+ and b+ transitions may fire in any order. The c+ transition becomes enabled to fire 

when both a+ and b+ transitions fire [27]. Previously developed methods for PN-based 

synthesis of clockless circuits can fall in one of the following two approaches [48]: 

(i) A direct, syntax oriented, translation of the PN into logic.  

(ii) A translation of the PN into a signal transition graph (STG) followed by the 

synthesis of a circuit from the obtained STG. 
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The approach in (i) can be used to obtain implemented circuit in three steps. In the 

first step, a net model is extracted from the circuit model described in the PN while in the 

second step the net model is transformed into an equivalent net where each signal event is 

associated with a unique transition. Finally, the net is translated into the circuit that can 

be constructed from a standard set of event-based modules. So far, most previous 

research focused on the synthesis of the clockless circuits from STGs. Petrify belongs to 

category (i) of synthesis tools. It is mainly a research tool used in the synthesis of 

clockless controllers from PN specifications [4]. Petrify reads a specification PN and 

generates a reduced version of the initial PN where the latter is used to produce an 

optimized netlist of a clockless controller based on a target gate library. Recent 

improvements to Petrify consist of generating circuits from STGs instead of solely PN 

specifications. These improvements help Petrify fall in category (ii) of synthesis tools. As 

shown in Figure 2.3, Petrify can be used as a standalone synthesis tool. The design flow 

shown in the figure starts from a specification of the system behavior described by a PN, 

state graph, or finite state machine (FSM) in a textual format. Petrify performs logic 

synthesis on the construction state graph in which each reachable state is assigned a 

binary code representing the value of each signal. This allows the generation of a circuit 

using logic minimization techniques. The circuit can be constructed from C-elements and 

generic complex gates. If these generic complex gates are not available in the gate 

library, Petrify performs combinational and sequential decomposition of the logic into 

primitive gates that are available in the target gate library. The PNs accepted by Petrify 

can also be interpreted as behavior-specifying STGs of clockless controllers.  
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Figure 2.3: Petrify framework. 

Since Petrify uses symbolic techniques to represent the state space, it can 

synthesize large controllers whose specifications consist of more than 20 signals if well-

structured behavior is specified. However, previous experiments showed that Petrify is 

not appropriate for data-path synthesis since it cannot always guarantee a correct 

synthesized netlist [5]. Although Petrify starts its synthesis process from a PN or STG 

specification, the latter two representations are not widely used among digital designers. 

Specifying system behavior in these representations can be challenging if the designer 

does not have proper knowledge on how to use them. In addition, it is difficult to 

integrate Petrify with existing simulation and synthesis tools since it is intended to 
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operate as a stand-alone tool. Furthermore, Petrify does not offer any capability to 

support verification or simulation of the PNs or STGs before they are synthesized into 

circuits. Petrify support mapping the synthesized netlist to C-element and complex gates 

assuming that the target cell library contains such elements and gates. 

2.2 Signal Transition Graphs 

Signal transition graphs (STGs) are a subset of PNs. When PNs are used to model 

clockless circuits, it is sometimes necessary to relate transitions to events on signal wires 

[6-8]. Several PN variants have been proposed to relate these transition events including 

M-nets, I-nets, change diagrams, and STGs. An STG is a labeled safe PN which is 

modeled as a 7-tuple 0 0( , , , , , , )TP T F M N s λ , where: 

(i) P, T,  F are defined in the PN section. 

(ii) 0M  is the initial marking representing the function that maps the places to 

natural numbers. 

(iii)  is the set of signals where I is the set of the input signals and O is 

the set of the output signals 

N I O= ∪

(iv)  is the initial value for each signal in the initial state. 0s

(v) { }:T T Nλ → × + −,

1

0

is the transition labeling function. 

In an STG, each transition is labeled with a rising transition, s+, or a falling 

transition, s-. An s+ label indicates that the transition corresponds to a  transition 

on the signal wire s. On the other hand, an s- label indicates that the transition 

corresponds to a 1  transition on s. Figure 2.5 shows the STG specification for the C-

0→

→
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element shown in Figure 2.1. This specification can be directly derived by following the 

causality arrows defined in the timing diagram shown in Figure 2.4 [27].  

a

b

c
 

Figure 2.4 :Timing diagram of the C-element shown in Figure 2.1. 

a+b+

c+

b- a-

c-

 

Figure 2.5: STG of the C-element shown in Figure 2.1. 

The first step in STG-based synthesis is the generation of a stage graph (SG). 

After obtaining an SG, there are two approaches to implement a circuit. In the first 

approach, if the SG is free of complete state coding (CSC) violations, a Boolean equation 

is derived and directly implemented with an SI circuit using generalized C-elements. A 

CSC violation represents the situation in which different states of a state machine are 

encoded with the same binary code although they imply contradictory next values for at 

least one of the output signals. However, in the second approach, specific state encoding 

26 



methods are applied to get a realizable STG. The Boolean equation of the newly obtained 

realizable STG can be used to realize a circuit directly using generalized C-elements. In 

general, the derived Boolean equation may not be implementable as a single complex 

gate. In that case, logic decomposition is applied to transform the equation into smaller 

equations, which can be implemented using simple gates. Figure 2.6 shows the design 

flow to synthesize clockless circuit from STGs [47]. Petrify can be used to synthesize 

circuits from STG specifications and support mapping the synthesized netlist to C-

elements and complex gates. 
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Figure 2.6: Synthesis flow of clockless circuits from STG specifications. 

2.3 Micropipelines 

Microppipelines consist of event-driven elastic pipelines [49]. These pipelines can 

realize fast and efficient implementations of arithmetic circuits by using a two-phase 

handshake protocol instead of a four-phase handshake protocol. Both protocols are shown 

in Figure 2.7. The implementation structure for a micropipeline is the controlled first-in 

first-out (FIFO) queue, shown in Figure 2.8, in which the gates labeled C are Muller C-

elements. In addition, the registers in the Figure 2.8 are level-sensitive latches that 

respond to transitions on two inputs instead of responding to a single clock wire as is 

done in clocked latches.  
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(a) Two-phase handshake protocol.                              (b) Four-phase handshake protocol. 

Figure 2.7: Micropipeline handshake protocols. 

 

Figure 2.8: Basic structure of a micropipeline. 

These latches are initially active by passing data directly from data inputs to data 

outputs. When a transition occurs on the capture wire of the latch, labeled C, data is no 

longer allowed to pass, and the current value of the outputs is statically maintained. Once 

a transition occurs on the pass input, labeled P, data is again allowed to pass from input 

to output, and the cycle repeats. The Cd and Pd ports on the latch simply keep copies of 

the control signals that are delayed so that the register completes its response to the 

control signal transitions before they are sent back out. 

 

Pipefitter has been proposed as a tool for automated synthesis of micropipelined 

clockless circuits consisting of a 4-phase control unit and a clockless data path with 

matched delays [9, 10]. The synthesized control unit supports concurrency, sequencing 
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and choice. As shown in Figure 2.9, Pipefitter’s framework uses Verilog HDL as the 

output format for intermediate representations of both control unit and data path.  

 

Figure 2.9: Pipefitter framework. 

Based on this representation, designers can use existing EDA tools for most 

design phases, including synthesis, simulation and layout. The Verilog source code is 

optimized and split into two separated databases: one for the control unit and the other for 

the data path. After the Verilog netlist is generated, a standard logic synthesis tool can be 

used for technology mapping. Pipefitter can automatically generate a netlist of matched 

delays for each block in the data path. In addition, it can generate the netlist of the control 

unit by calling Petrify. By merging the netlist of both control unit and data path, a 

complete netlist is constructed. At this point, the netlist can be placed and routed in order 

to produce a final layout. While Pipefitter can be integrated with existing EDA tools 

better than Petrify can, its shortcomings stems from the fact that it supports only a 
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restricted subset of Verilog statements. Pipefitter uses existing EDA commercial tools for 

simulation, and the final standard netlist can be mapped to a standard cell library. 

2.4 Null Convention Logic 

The NULL Convention Logic (NCL) synthesis flow is a framework that integrates 

data transformation and control into a single expression thus yielding delay-insensitive 

circuits [50]. NCL uses threshold gates with hysteresis to provide the basic building block 

of NCL designs. Threshold gate inputs and outputs can be in one of two states, DATA or 

NULL. DATA corresponds to a logic-1 voltage level while NULL corresponds to a logic-

0 voltage level in the normal logic mapping [34, 36]. The operation of NCL gates is 

based on two primary properties of M-of-N gate, namely threshold behavior and 

hysteresis behavior. Threshold behavior requires that the output becomes DATA if at 

least M of the N inputs are DATA. On the other hand, hysteresis behavior requires that 

the output changes only after a sufficiently complete set of input values have been 

established. In the case of a transition to DATA, the output remains at NULL until at 

least M of the N inputs become DATA. On the other hand, in the case of a transition to 

NULL, the output remains at DATA until all N inputs become NULL. Since these gates 

use two-value logic, as traditional Boolean logic does, they can be constructed with 

traditional CMOS, Bipolar, or even more exotic processes [36]. Figure 2.10 shows a 2-of-

3 threshold gate that fires when two of it is inputs are active and return to null when all of 

the inputs are null.  
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Figure 2.11 shows a half adder circuit in Boolean logic with its clock while Figure 

2.12 shows its NCL counterpart [37]. 

 

Figure 2.10: NCL 2-of-3 threshold gate. 

 

Figure 2.11: A half adder circuit in conventional Boolean logic. 

Although NCL can use any delay insensitive encoding, it uses mostly a dual rail 

one-hot encoding in which the presence of DATA on one of two wires indicates a TRUE 

state while the presence of DATA on both wires indicates a FALSE state. Unlike 

previously described clockless approaches, the algebraic theory behind NCL makes it 

extremely applicable to high-level design methodologies such as RTL simulation, RTL 
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synthesis, and gate optimization. Motivated by these advantages, Theseus Logic has 

developed a synthesis and simulation flow based on existing, off-the-shelf, EDA tools 

from industry leaders such as Synopsys and Mentor Graphics. Based on this flow, NCL 

designers can specify their designs in VHDL or Verilog and simulate them using existing 

EDA tools. As shown in Figure 2.13, the NCL flow is centered around two primary 

synthesis steps [51, 52]: 

 

 

Figure 2.12: NCL half adder circuit. 

(i) Translate the HDL code into a 3NCL netlist: This stage starts with an HDL 

source code written with 3NCL, a single-rail multi-valued representation of 

the initial NCL. The synthesis tool performs HDL optimizations and outputs 

an unmapped VHDL dataflow description expressed by AND and INV 

assignments. This dataflow description is referred to as a 3NCL netlist. 

(ii) Optimize the 3NCL netlist into a 2NCL netlist: the second stage expands the 

intermediate 3NCL netlist into a fully dual-rail 2NCL netlist by overloading 

all AND and INV assignment as Delay-Insensitive Minterm Synthesis 

(DIMS) dual rail type assignments. This expansion is described in a VHDL 
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package. At this point, multilevel minimization of Boolean networks, 

available in existing CAD tools, can be performed if an NCL target library is 

available.  

 

Figure 2.13: RTL flow for NCL design [51]. 

While threshold and hysterisis properties provide NCL with advantages that are 

not available in other clockless methodologies, they remain responsible for some of its 

disadvantages [5]: 

(i) By using existing synthesis tools, the area of some NCL designs can be 

sometimes two to three times larger than the area of the same designs 

synthesized in clocked logic.   
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(ii) The throughput of NCL designs may suffer unless heavy pipelining is used 

which may result in an area increase. 

(iii) Experimentation shows that straightforward translations of clocked logic to 

NCL designs results in a substantial increase in power consumption.  

(iv) Although existing synthesis tools can be used to implement NCL designs, 

proprietary libraries owned by Theseus are necessary to map the synthesized 

designs onto library cells if a high quality implementation is desired. 

To remedy the problem described in (i), synthesis tools tailored to NCL logic may be 

necessary. However, this would defeat the advantage of leveraging the investment spent 

on existing synthesis tools.  

2.5 Burst Mode Machine 

When in a stable state, a burst-mode circuit waits for a set of input signals to 

change in arbitrary order. After this input burst has completed, the machine computes a 

burst of output signals and new values of internal variables. The surrounding 

environment is not allowed to change a new input burst until the circuit has completely 

reacted to the previous burst [44, 45, 53]. Figure 2.14 shows an example of burst mode 

circuit [27].  

 

Burst-mode circuits are specified using state graphs similar to those used in the 

design of clocked circuits. Several tools for synthesizing burst-mode controllers have 

been previously developed primarily in academia. MINIMALIST, developed at Columbia 

University, is a CAD package for synthesis, optimization and verification of burst-mode 
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controllers [54]. The focus of the package is on technology-independent synthesis. 

MINIMALIST includes a number of highly-optimized algorithms for state minimization, 

optimal state assignment, two-level hazard-free logic minimization, synthesis of 

generalized C-element implementations, and verification. The latter is achieved by using 

a simulation environment to verify the modeled burst mode machines. The synthesized 

implementations are hazard-free gate-level circuits consisting of two-level AND-OR 

networks and generalized-C elements. These circuits can then be technology-mapped 

using existing technology mapping tools. To support this functionality, MINIMALIST 

provides a graphical display to show specifications and implementations, an interactive 

shell, design scripts, help menus, and a tutorial.  

 

 

Figure 2.14: Burst mode specification of a C-element. 

Beside MINIMALIST, 3D, developed at University of California, is a synthesis 

package which uses the extended burst-mode (XBM) model [55]. The XBM design style 

covers a wide spectrum of sequential circuits ranging from DI to clocked circuits. 3D can 

synthesize multiple-input change clockless finite state machines in addition to numerous 
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circuits that fall in the area between clocked and clockless logic. These circuits are 

difficult and sometimes impossible to synthesize automatically using existing methods. 

3D synthesizes XBM controllers in two-level AND-OR networks, and maps these 

networks to a generic CMOS standard cell library or generalized C-elements. Both tools 

do not offer any HDL front-end interface. As a result, a designer can interact with these 

tools only in two modes: using prepared design scripts or typing individual commands.  

2.6 Handshake Circuits 

An alternative to clockless finite-state machines that communicate using 

fundamental mode or burst-mode has been proposed as handshaking circuits. Figure 2.15 

shows a handshake channel, which is a point-to-point connection between an active and a 

passive block.  

Active Passive

Req

Ack
 

Figure 2.15: Handshake channel. 

This approach requires that both blocks be connected by two wires: a request 

(Req) and an acknowledge (Ack) wire. A handshake is initiated by the active block, which 

starts by sending a signal via Req, and waits until a signal arrives via Ack. After a request 

arrives to the passive block, this block sends an acknowledge [27, 42, 56-58]. Most 

clockless circuits use a four-phase handshake protocol. This protocol consists of a 

channel which starts in a state where both Req and Ack are low. The active block starts a 
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handshake by making Req high. When the passive block receives Req, it sets Ack to high. 

A return-to-zero cycle follows, during which Req and Ack go low thus returning to the 

initial state.  

 

To support this handshake methodology, the Tangram toolset has been proposed 

[43]. As shown in Figure 2.16, a design can be specified in Tangram, which is a 

programming language, similar to the C language, extended to include constructs that 

support concurrency and communication.  

 

In fact, Tangram has language constructs which support blocks sharing and 

waiting for clock-like edges. A compiler translates Tangram programs into handshake 

circuits, which are netlists composed from a library of some 40 handshake components. 

Each handshake component implements a language construct, such sequencing, 

communication, and sharing. Packaged with the compiler, the handshake circuit 

simulator and performance analyzer give the designer feedback about the design function, 

area, timing, and power of the synthesized circuit. The process of mapping the handshake 

circuit using a conventional standard cell library can be done in two steps. In the first 

step, the component expander uses the component library to generate an abstract netlist of 

combinational logic, registers, and clockless cells, such as Muller C-elements. This step 

also determines the encoding of data and handshake protocol. In the second step, a 

commercial synthesis tool and technology mapper can be used to generate the cell netlist. 

Today, Tangram is considered one of the most complete toolset used to design medium 

size clockless integrated circuits. Besides being a proprietary toolset, designers will have 
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to endure the learning curve of a new programming language if they are interested in 

using the Tangram toolset.  

 

 

Figure 2.16: The Tangram Toolset. 
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2.7 Extended Delay Insensitive Model 

The eXtended model for Delay-Insensitive systems (XDI) is a theoretical 

framework used to define the external structure and observable behavior of DI systems. 

Besides being state-based, the framework includes refinement or satisfaction relations 

and composition operators. The XDI model specifies the conditions and the rules to 

implement a DI circuit from initial specifications by taking in consideration the 

expression of progress requirements for the circuit and its environment. XDI transforms 

these specification to DI-algebra first, and then to a state graph that is expressed in 

AND/IF-notation [38-40]. A handful of tools such Digg and Ludwig have been proposed 

to automate the refinement process [40]. Digg transforms a DI-algebra specification into 

XDI automata. DI-algebra specification can be expressed as recursive DI-algebraic 

expression while XDI automata can be represented as AND/IF graphs. After Digg’s 

transformation, Ludwig can analyze and synthesize the obtained state graph into a circuit. 

A major shortcoming of this design methodology is the absence of simulation and 

mapping tools based on existing cell libraries. 

2.8 Summary 

This chapter presents a review of previously proposed clockless design 

methodologies. Although there are different design methodologies, none can be easily 

integrated in a complete design flow using existing CAD tools without significant 

modifications to the design flow. While designs in some design methodologies cannot be 

modeled using existing HDLs, others cannot be simulated using existing simulators. In 

addition, some design methodologies requires special synthesizers and mappers which 
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40 

target special-purpose cell libraries. In contrast to these methodologies, the SRSL design 

technique is sufficiently flexible to be supported by existing CAD tools. SRSL can be 

modeled using existing HDLs, simulated using existing simulators, synthesized using 

existing synthesis compilers, and mapped using existing technology mappers. At the end, 

a pipelined SRSL netlist is produced with can be placed and routed using existing 

physical layout tools granted that design constraints are propagated from synthesis to 

layout tools. Table 2.1 shows a summary of the design methodologies. 
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     Design 
Methodology 

Modeling Verification Synthesis Mapping Features

 
PN  or STG 

 
PN or STG 

 
Not supported 

Petrify as a stand 
alone tool 

Generalized C-elements and complex gates 
using a standard cell library 

Synthesis of large controllers  
 
Not suitable for data path synthesis 

 
 
 

Micropipeline 

 
 
 
Verilog 

 
 
 
Off-the-shelf 
simulators 

Petrify to 
synthesize the 
control unit  
 
Pipefitter to
synthesize data 
paths 

 
Based on a standard cell library 

 
 
 

 
Separates the control unit from data 
path 
 
Supports only a subset of Verilog 
statements  

 
 

NCL 

 
 
VHDL 

 
 
Off-the-shelf  
simulators 

 
 
Off-the-shelf 
synthesis tools 

In principle, a standard cell library can be 
used. 
 
NCL design flow supports NCL proprietary 
cell libraries for high quality 
implementations. 

Translates HDL to 3NCL and 
optimize the 3NCL into a 2NCL 
netlist 
 
Increases area and power, and may 
degrade throughput. 

 
Burst Mode 

Circuits 

Design scripts 
 
Command-driven 
interaction 

 
MINIMALIST 
verification   

MINIMALIST 
 
3D 

 
Generalized C-elements and complex gates 
using a standard cell library 

 
No HDL front-end interface 

 
 

Handshake 
Circuits 

 
 
Tangram language 

 
 
Handshake simulator 

 
 
Off-the-shelf 
synthesis tools 

 
 
Handshake component library in addition to a 
standard cell library 

Compiler translates the program into 
handshake circuits. 
 
Component expander uses the 
component library to generate an 
abstract netlist. 

 
XDI Model 

  
DI algebra 

 
Not supported 

Ludwig synthesis 
tool 

 
Not supported 

DI algebra is translated to a state 
graph which can be synthesized with 
Ludwig.  

 
SRSL 

 
VHDL or Verilog 

 
Off-the-shelf  
simulators 

 
Off-the-shelf 
synthesis tools 

 
Standard cell library 

Transforms a gate netlist into a 
pipelined SRSL netlist 
 
Suitable for data path and control 

Table 2.1: Summary of clockless design methodologies. 



CHAPTER THREE: STAGE-CONTROLLED SELF-RESETTING 
STAGE LOGIC PIPELINES  

This chapter presents the concept of self-resetting stage logic (SRSL) and shows 

how it can be used as a building block in linear and non-linear pipelines. Section 3.1 

introduces SRSL while section 3.2 describes how SRSL can be used in a linear pipeline 

controlled at stage level. Section 3.3 explains how SRSL can be used in a non-linear 

pipeline while section 3.4 presents a detailed timing analysis of a linear pipeline. Section 

3.5 describes the implementation of a prototype pipeline while section 3.6 summarizes 

the chapter.  

3.1 SRSL  

In SRSL, a stage consists of two networks: a reset network and a combinational 

network.  In Figure 3.1, the reset network consists of a NOR gate whose output O feeds 

one of its inputs.  The other input is tied to a reset line. As long as the reset input is 

asserted, O remains 0. When the reset is de-asserted, O oscillates from 0 to 1 and vice 

versa.  The oscillation frequency is controlled by the delay ∆ embedded in the loop 

between the NOR output and its input. When O is 0, the reset network is in the reset 

phase. Later, when O switches to 1, the reset network is in the evaluate phase.  As such, a 

reset network can oscillate between phases in an autonomous fashion.  The period of the 

reset network consists of the two phases: reset and evaluate.  Based on this oscillation, a 

reset network can be embedded in a pipeline stage forcing the stage to oscillate between 

two phases. This oscillation can be used to synchronize data transfer between 
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neighboring stages in a pipeline. In fact, a stage is ready to accept inputs from the 

preceding stage when it is in the reset phase, and ready to produce outputs to the 

following stage when it is in the evaluate phase.  

 
Figure 3.1: Reset and evaluate network of an SRSL stage. 

 
Figure 3.2: STG of the reset network shown in Figure 3.1. 

Figure 3.2 shows the signal transition graph (STG) of the reset network shown in 

Figure 3.1 where the signals in the STG are labeled identically to the signals in Figure 

3.1. In an STG, a node v, labeled v+, represents a rising transition on signal v while the 

same node, labeled v-, represents a falling transition on signal v.  On the other hand, an 

edge going from node u to node v means that transition on signal u precedes in time the 

transition on signal v. 
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3.2 S-SRSL Linear Pipelines 

Figure 3.3 shows the interconnection structure of a four-stage S-SRSL pipeline 

where each stage consists of a combinational and a reset network while Figure 3.4 shows 

the STG of the S-SRSL pipeline shown in Figure 3.3. Data flows from one stage to 

another through a latch in the linear pipeline. To insure proper data flow across stages, 

data is transferred from the current stage to the next one if the current stage is in the 

evaluate phase while the next stage is in the reset phase. Hence, the latch separating both 

stages is enabled when the left stage is in the evaluate while the right stage is in the reset 

phase [59-61]. 

 
Figure 3.3: A four-stage S-SRSL pipeline. 

The enable signal (Li) is the output of the AND gate that triggers the latch. For 

each latch, the inputs of the AND gate consists of the outputs of the NOR gates of the 

reset network in the current stage and the following stage. As a result, the 

synchronization of the entire pipeline depends on the communication between each pair 
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of neighboring stages. This locally controlled pipeline is called stage-controlled self-

resetting stage logic pipeline (S-SRSL). While a stage is accepting input, its reset network 

enters the reset phase (O = 0), which disables the latch on its right side. 

 
Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3. 

At any cycle, the latch on the left side of a stage in the reset phase will be enabled 

while the latch on its right side will be disabled. The latter will be enabled only when the 

stage enters its evaluate phase. As a result, during every cycle, every other stage will be 

in the reset phase while the remaining stages will be in the evaluate phase. A cycle later, 

the stages that were in the reset phase start their evaluate phases while the stages that 

were in the evaluate phase start their reset phases. In Figure 3.4, the STG shows that the 

rising transition of L3 occurs after O2 and O3 experience a rising and falling transition 

respectively. This means that latch 3 is enabled only when stage 2 is in the evaluate phase 

while stage 3 is in the reset phase. If O3 experiences a falling transition, this forces 

another falling transition on L4. This shows that while latch 3 is enabled, latch 4 is 
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disabled. Figure 3.5 shows how the stages alternate between phases as data flows across 

the pipeline by representing asserted and de-asserted signals as solid and dashed lines 

respectively. 

 
3.5(a): Assertion of the stage reset signals. 

 

 
3.5(b): Reset phase of all stages. 
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3.5(c): Evaluate phase of stage 4. 

 

 
3.5(d): Evaluate phase of stage 3. 
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3.5(e): Evaluate phase of stage 2 and 4. 

 

 
3.5(f): Evaluate phase of stage 1 and 3. 
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3.5(g): Evaluate phase of stage 2 and 4. 

 

 
3.5(h): Evaluate phase of stage 1 and 3. 

Figure 3.5: Two execution cycles of a four-stage S-SRSL Pipeline. 
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3.3 S-SRSL Non-linear Pipelines 

While linear pipelines can be used in many applications, complex systems require 

data to flow in divergent and convergent directions. Such systems can be realized as non 

linear pipelines [62-64]. To support divergence and convergence of data flow, primitives 

such as the fork and join operations have to be incorporated in the pipeline. 

3.3.1 S-SRSL Join Operation  

Figure 3.6 shows an S-SRSL join pipeline.  Inter-stage data flow is similar to the 

data flow in a linear pipeline. Data is transferred from stage A to stage C when the former 

is in the evaluate phase while the latter is in the reset phase. Similarly, data flows from 

stage B to stage C when the former is in the evaluate phase while the latter is in the reset 

phase. When these conditions are true, latches 3 and 4 are activated to capture the outputs 

of stage A and B, and feed it to the inputs of stage C. Note that completion of the 

evaluate phase of stage A and B depends only on the arrival of the reset phase of stage C. 

By limiting the interaction only between these neighboring stages, a localized 

communication control between stages in the join is guaranteed. 
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Figure 3.6: Structure of the join S-SRSL pipeline. 

Figure 3.7 shows the STG of the join structure shown in Figure 3.6.  In this STG, 

both L3 and L4 experience rising transitions when both OA and OB experience falling 

transitions while OC experience a rising transition.  This shows that latches 3 and 4 are 

enabled when both stages A and B are both in the evaluate phase while stage C is in the 

reset phase. While latches 3 and 4 are enabled latch 5 is disabled.  The latter will be 

enabled when stage C is in the evaluate while the succeeding stage to stage C is in the 

reset phase. 
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Figure 3.7: STG of the S-SRSL join pipeline shown in Figure 3.6. 

3.3.2 S-SRSL Fork Operation 

Figure 3.8 shows an S-SRSL fork pipeline.  Data is transferred from stage A to 

stage B and C when the former is in the evaluate phase while the two latter stages are in 

the reset phase.  When these conditions are true, latches 2 and 3 are enabled to capture 

the output of stage A and feed it to stages B and C. After L2 and L3 become asserted, 

they propagate through the gate G forcing the signal IA to become asserted. This in turn 

forces signal OA to switch to 0 at which time stage A enters its reset phase.  Figure 3.9 

shows the STG of the fork pipeline shown in Figure 3.8.  In this STG, L2 experiences a 

rising transition when OA and OB experience a rising and a falling transition respectively. 

Similar observation can be made with regard to the rising transition of L3 as it relates to 
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the rising and falling transitions of OA and OC respectively.  On the other hand, L2 

experiences a falling transition when OA and OB experience a falling and rising transition 

respectively. While L2 and L3 experience a rising transition, L4 and L5 experience falling 

transitions.  These two signals will experience rising transitions only when both OB and 

OC experience rising transitions while both OUpperNext and OLowerNext experience falling 

transitions. 

 

 
Figure 3.8: Structure of the fork S-SRSL pipeline. 
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Figure 3.9: STG of the S-SRSL fork pipeline shown in Figure 3.8. 

3.4 Performance of the Pipeline 

To explain the performance of the S-SRSL pipeline, several timing parameters are 

defined first. Next, these parameters are used in a signal timing analysis to characterize 

the performance of the pipeline. 

3.4.1 Parameter Definitions 

Let d(Ei) and d(Ri) be the time duration of the evaluate and reset phase in stage i 

respectively. 

Definition 3.1: Pi = d(Ei) + d(Ri) is the period of stage i, which is the delay between the 

arrival of an input at the current stage i to the arrival of the next input at the current stage 
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i. The period P represents a single cycle of execution in a stage consisting of a reset and 

an evaluate phase. 

3.4.2 Analysis of the Reset and Evaluate Phase 

As shown in Figure 3.3, the internal phase of a stage i can be determined by 

observing signal Oi. When Oi = 0, stage i is in the reset phase. Otherwise, it is in the 

evaluate phase.  Assume there are n stages in the pipeline. Since the evaluate phase of 

stage n, which is the last pipeline stage, does not depend on the reset phase of another 

stage, its reset and evaluate phase tend to have the same duration: 

( ) ( ) (3.1)
2
n

n n
Pd E d R= =  

 

Figure 3.10 shows the waveforms of the stage outputs and the phase of stage 15 

and 16 in a 16-stage prototype S-SRSL pipeline.  It is clear that the reset and evaluate 

phase of stage 16 have the same duration (i.e., d(E16) = d(R16)). However, this is not true 

for other stages. Figure 3.11 shows the waveforms of the stage outputs and the phases of 

stage 1 and 2 in a 16-stage S-SRSL prototype pipeline. Figure 3.11 shows how the 

duration of the evaluate phase of stage 2 is much greater than the duration of its reset 

phase.  

 

The equal duration of the reset and evaluate phase on the right side of the pipeline 

can be explained by considering stage 4 in Figure 3.3 in which the reset loop oscillates 

without waiting on any incoming signal since stage 4 is the last stage in the pipeline.  
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Figure 3.10: Simulation snapshot of stage 15 and 16 in a 16-stage prototype S-SRSL 

pipeline. 

 
Figure 3.11: Simulation snapshot of stage 1 and 2 in a 16-stage prototype S-SRSL 

pipeline. 

However, the evaluate phase of stage n−1 has to wait on the arrival of the reset 

phase from stage n to the latch-enabling AND gate in order for data to flow from the 

former to the latter. This has the effect of stretching the duration of the evaluate phase of 

stage n−1:   

( ) ( )1 (3.2)n nd E d E− >  
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In Figure 3.10, it is clear that d(E15) is slightly greater than d(R16). Since d(E16) = 

d(R16) by equation (3.1), then d(E15) > d(E16) as stated in equation (3.2). This relationship 

between the duration of the evaluate phases in one stage and the next stage becomes more 

pronounced between stages located on the left side of the pipeline as shown in Figure 

3.11. For example in Figure 3.3, O3 = 1 has to travel through the reset loop delay to reach 

the AND gate that enables latch 4. Next, it waits for the arrival of O4 = 0 to the same 

gate, which has the effect of increasing the duration of O3 = 1. After a short time, L4 

switches to 1 when O4 = 0 arrives to the AND gate that enables latch 4. L4 = 1 travels 

through the NOR gate before reaching O3 when the latter switches to 0. This cycle is 

much longer in stage 3 than in stage 4, which makes the evaluate phase of stage 3 longer 

than that of stage 4.  

 

Since stage n starts its reset phase somewhat earlier, it tends to complete this 

phase also earlier, thus causing the reset phase of stage n-1 to be somewhat shorter:  

( ) ( )1 (3.3)n nd R d R− <  

 

In Figure 3.10, d(R15) < d(E16). Also, d(R1) < d(E2) in Figure 3.11. Since d(E16) = 

d(R16) by equation (3.1), then d(R15) < d(R16) as stated in equation (3.3). The increase in 

the evaluate phase and the decrease in the reset phase of stage n-1 with regard to the 

phases of stage n is exactly the same:  

( ) ( ) ( ) ( )1 1 (3.4)n n n nd E d E d R d R δ− −− = − �  
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This equal increase and decrease is due to the fact that the period is equal for both 

stages n and n-1:  

1 (3.5)n nP P P− = =  

 

This can be seen in Figure 3.10 and 3.11, where the duration of the stage output 

when it is 0 plus the duration of the same stage output when it is not 0 is identical for all 

stages.  

3.4.3 Effect of δ on the Pipeline Stages  

The delay difference, denoted by δ, is caused by the unequal lengths of the reset 

loop on which the phase signals travels in stage n-1 and n. While the phase signal in stage 

n starts from the left NOR gate, passes through the buffer delay, and back to the same 

NOR gate, the phase signal in stage n-1 crosses the same path in addition to an inverter 

and an AND gate. The AND gate with one inverted input is the latch enabling gate 

between stage n-1 and n. Since the phase signal travels along this augmented path in 

stage n-1 twice, once when On-1 = 1 and once when On-1 = 0, the δ delay difference 

between the two paths in both stages is at most equal to twice the delay of the inverter 

and latch enabling AND gate. Let d(INV) and d(AND) be the average delay through an 

inverter and an AND gate respectively, then: 

( ) ( )( )2 INV AND (3.6d dδ = + )  
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δ propagates leftward from stage n to stage 1 causing the duration of the evaluate 

and reset phase of each stage i to increase and decrease by δ respectively with regard to 

its successor stage i+1: 

( ) ( ) ( )
( ) ( ) ( )

(3.7)

(3.8)
i n

i n

d E d E n i

d R d R n i

δ

δ

= + −

= − −
 

 

In brief, this delay propagates toward the left side of the pipeline thus causing the 

duration of the evaluate and reset phases to gradually increase and decrease respectively 

with each stage to the left of the pipeline without changing the duration of a single 

period. The propagation of this delay is highly visible in Figure 3.11 where the phases of 

stage 1 and 2 are highlighted. 

3.4.4 δ and Pipeline Depth 

Based on equation (3.4) shown in the previous section with regard to stage n-1 

and n,  

( ) ( )
( ) ( )

( )

( ) ( )

1

1

1

1

2
(3.9)

n n

n n

n

n n

d E d E

d E d E
Pd E

d E d R

δ

δ

δ

δ

−

−

−

−

− =

= +

= +

= +

 

This implies  

( ) ( )1 (3.10)n nd E d R− >  
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Let d(Li
+) be the minimum duration of the enable of the latch at logic level 1 

between stage i-1 and i. Since the latch between stage n-1 and n is enabled when the 

former is in the evaluate phase and the latter is in the reset phase, the duration of the latch 

enable depends primarily on that of the reset phase of stage n since this reset phase is 

shorter than the evaluate phase of stage n-1 as shown in equation (3.10):  

( ) ( )

( ) (3.11)
2

n n

n

d L d R

Pd L

+

+

=

=
 

 

This can be seen in Figure 3.10 where d(L16
+) = d(R16). Given the δ delay domino 

effect, this dependence of the duration of the latch enable on the duration of the reset 

phase of the stage to the right of the latch applies to every stage going leftward in the 

pipeline: 

( ) ( ) (3.12)i id L d R+ =  

 

As a result, as the duration of the reset phase of each stage decreases by moving 

to stages on the left side of the pipeline, so does the duration of the latch enable:  

( ) ( ) ( ) ( ) ( ) ( ) ( )             (3.13)
2i i i n i
Pd L d R d L d R n i d L n iδ δ+ + += ⇔ = − − ⇔ = − −  

 

Based on the above equation, one can predict the maximum number of stages that 

the pipeline can accommodate by solving the above equation for the variable n starting 

from stage 1: 
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( ) ( ) ( )1 1
11 1 (3.14)

2 2
P Pd L n n d Lδ

δ
+ +⎛ ⎞= − − ⇔ = + −⎜ ⎟

⎝ ⎠
 

 

Based on equation (3.14), a deep pipeline can be realized by (i) decreasing δ, (ii) 

increasing P, or (iii) decreasing d(L1
+). (i) can be achieved by using high speed AND 

gates, (ii) can be achieved by increasing the delay in the self-reset network of each stage 

through the insertion of buffers or inverter chains, while (iii) can be achieved by using 

high speed latches. 

3.4.5 Area Cost   

In order to shed light on the area cost of S-SRSL pipelines, they are briefly 

contrasted with the area cost of clocked pipelines.  Whereas the latter require only flip-

flop registers between the pipeline stages, S-SRSL pipelines require inter-stage latches in 

addition to intra-stage reset networks and delay buffers.  Although the area of a flip-flop 

tends to be slightly greater than the area of a latch (by the equivalent of two gates in most 

library implementations), this difference is not sufficiently large to overcome the area 

overhead caused by the insertion of delay buffers. In general, the area of these buffers 

tends to grow proportionally with the delay on the critical path of the intra-stage logic.        

3.4.6 Fault Handling 

In analyzing how the S-SRSL pipeline handle faults, only stuck-at faults are 

considered.  Focus is directed to the outcomes caused by the output of the reset network 
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of a given stage getting (i) stuck at 1, thus causing the stage to be locked in the evaluate 

phase, or (ii) stuck at 0 causing the stage to be locked in the reset phase.   

 

• Stage locked in the evaluate phase: If the phase line, which is the output line of the 

reset network, of a stage j gets stuck at 1 for a time longer than P, the stage is locked into 

the evaluate phase.  Two distinct behaviors can be observed throughout the pipeline 

depending on where the stage, displaying one behavior or another, is located in the 

pipeline:  

 

(i) Left Side Stages: When stage j is stuck in the evaluate phase, the right input 

of the AND gate which controls latch j is stuck on 1.  This in turn causes the 

output of the AND gate to be stuck on 0.  As a result latch j is closed and data 

does not flow between stage j and j−1.  When the output of the AND gate gets 

stuck on 0, the output of the NOR gate of the reset network in stage j−1 gets 

stuck on 1.  As a result, stage j−1 is locked into the evaluate phase.  This 

phenomenon occurs in every pair of stages located on the left of stage j.  In 

the overall, this automatically causes all stages i, where i < j, to complete their 

reset phases before getting stuck in their evaluate phases.  Note that, in an S-

SRSL pipeline, each stage completes its reset phase on its own.  However, a 

stage cannot complete its evaluate phase unless its right neighbor enters its 

own reset phase.  As each pair of neighboring pipeline stages gets stuck in the 

evaluate phase, starting from stage j and going leftward to stage 1, their inter-

stages latches are disabled and subsequently the flow of data is interrupted in 
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all stages to the left of stage j.  This forced locking of the stages in the 

evaluate phase will propagate as a wave to the left side of the pipeline starting 

from stage j until it reaches stage 1.              

 

(i) Right Side Stages: Even though stage j is stuck at 1, stage j+1 can 

nevertheless complete its own reset phase based on how an S-SRSL pipeline 

operates.  Note that the input of the reset network in stage j+1 is driven by the 

output of the AND gate controlling the latch between stage j+1 and j+2.  As a 

result, the oscillations of the reset network in stage j+1 depends primarily on 

those of the reset network in stage j+2.  Since neither of the reset networks in 

these two stages is stuck, they can operate in lock-step fashion.  So, when 

stage j+1 enters its reset phase, its latch is transparent and data is subsequently 

passed from stage j to stage j+1.  Just as stage j+1 is able to complete its own 

reset phase, stage j+2 can complete its own in a similar manner.  As soon as 

stage j+2 enters its reset phase, data is transferred from stage j+1 to stage j+2.  

Sequence of events, similar to the ones described for stage j+1 and j+2, occur 

in every pair of stages located to the right of stage j, thus allowing data to flow 

through the pipeline from stage j to stage n where n is the last stage in the 

pipeline.  Since the flow of data is interrupted on the left side stages, the same 

data items keeps flowing repeatedly from stage j to stage n as long as stage j 

remains stuck in the evaluate phase.      

 

63 



• Stage locked in the reset phase: If the output the reset network of a stage j gets stuck 

at 0 for a time longer than P, the stage is locked into the reset phase.  Two distinct 

behaviors can be observed throughout the pipeline depending on where the stage, 

displaying one behavior or another, is located in the pipeline: 

 

(i) Left Side Stages: When stage j is stuck in the reset phase, the right input of 

the AND gate, which controls latch j, is stuck at 0.  This in turn causes the 

output of the AND gate to depend on the output of the reset network of stage 

j−1.  If this output becomes 0, which indicates that stage j−1 is in the reset 

phase, it forces the output of the AND gate to become 0 thus disabling latch j.  

The 0-output of the AND gate drives the input of the reset network in stage 

j−1 to force its output to switch to 1.  This indicates that stage j−1 has started 

its evaluate phase.  This 1-output of the reset network of stage j−1 forces the 

output of the AND gate controlling latch j to switch to 1, thus enabling latch j 

and allowing data to flow from stage j−1 to j.  The 1-ouput of the AND gate 

drives the input of the reset network of stage j−1 forcing the output of the 

latter to switch to 0 and allowing stage j−1 to start a reset phase.  In the 

overall, stage j−1 continues to oscillate between the reset and evaluate phases 

even though stage j is stuck in the reset phase.  Because stage j−1 continues its 

normal oscillation, this allows all the stages to the left of stage j−1 to oscillate 

normally in lock step fashion with each other.  As a result, data flows 

uninterrupted from stage 1 to stage j.   
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(ii) Right Side Stages: When stage j is stuck in the reset phase, the left input of 

the AND gate, which controls latch j+1, is stuck at 0.  This will disable latch 

j+1 as long as stage j is stuck in the reset phase.  As a result, data is prohibited 

from flowing from stage j to j+1.  However, this does not stop stage j+1 from 

oscillating between its reset and evaluate phases.  As stated before, the input 

of the reset network in stage j+1 is driven by the output of the AND gate 

controlling the latch between stage j+1 and j+2.  As a result, the oscillations of 

the reset network in stage j+1 depends primarily on those of the reset network 

in stage j+2.  Since neither of the reset networks in these two stages is stuck, 

they can operate in lock-step fashion.  In fact, every pair of stages located to 

the right of stage j allows data to flow through their latches thus establishing 

an uninterrupted data flow from stage j+1 to n.  Because the latch between 

stage j and j+1 remains disabled, the flow of incoming data stops at latch j.  

As a result, data is overwritten at every period in stage j while the same data 

item keep flowing from stage j+1 to n.  

3.5 Prototype Implementation of the S-SRSL Pipelines 

To test and validate SRSL and its use in S-SRSL pipelines, several prototypes of 

linear and non-linear pipelines have been implemented.  
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3.5.1 The S-SRSL Linear Pipeline 

A 16-stage four-bit S-SRSL pipeline was modeled in VHDL where each stage 

contains a four-bit ripple-carry adder. For validation purposes, it was decided to insert an 

adder in each stage in order to amplify delay effects and subsequently constrain the 

performance of the pipeline. The netlist of the pipeline was generated using Synopsys 

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Cadence’s Silicon 

Ensemble was used to place and route the pipeline. The pipeline fits into a frame of 

90,057.74 µm2 as shown in Figure 3.12 yielding a total latency of 15.76 nanoseconds and 

a throughput of 453.95 Megaoutputs/second based on the 2.18 ns period of the last stage.  

 
Figure 3.12: Chip layout of the four-bit 16-stage S-SRSL pipeline. 

Table 3.1 shows the summary of the linear pipeline implementation. The layout of 

this pipeline contains 1,344 standard cells connected by 1,416 nets and 1,66 IO pins. four 

parameters were measured in layout simulations of the pipeline, the period of each stage 

P, the duration of the evaluate phase d(E), the reset phase of each stage d(R), and the 

enable of each latch d(L+). 
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Table 3.1: S-SRSL linear pipeline implementation. 

Stages 16 
Bit width 4 
Combinational network 4-bit adder 
Synthesis Synopsys Design Compiler 
Layout Cadence Silicon Ensemble 
Simulation Synopsys VCS Simulator 
Library 0.25 µm CMOS library 
Cells 1,344 
Nets 1,416 
IO pins 166 
Area 90,057.74 µm2

Latency 15.76 ns 
Throughput 453.95 Megaoutputs/second 
Stage period  2.18 ns 
Latch enable duration 1.01 ns (stage 16) down to 0.64 ns (stage 1) 
δ delay  Between any stage and the last stage 
 
Theoretical pipeline depth ( )1

11
2
Pn d

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠
L  

 

Figure 3.13 shows the duration of the latch enable, reset phase, evaluate phase, δ, 

and the period of each stage.  In this figure, δ, labeled as Delta Delay, is almost constant 

from stage to stage. However, the reset phase gradually decreases from the right to the 

left of the pipeline while the evaluate phase gradually increases from the right to the left 

of the pipeline as predicted by equation (3.7) and (3.8). This gradual increase in the 

evaluate phase, from the right to the left of the pipeline, is attributed to the propagation of 

δ based on the explanation proposed in the timing analysis section of the pipeline. 

Similarly, the observed gradual decrease in the reset phase, from the right to the left of 

the pipeline, is also attributed to the propagation of δ based on the same explanation.  

Furthermore, the duration of the latch enable is almost equal to that of the reset phase in 

each stage. As a result, the duration of the latch enable decreases gradually at the same 

rate as the duration of the reset phase from the right to the left of the pipeline. This shows 
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how the duration of the latch enable is closely tied to the duration of the reset phase as 

derived in equation (3.12). 
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Figure 3.13: Simulation results of d(L+), d(R), d(E), δ, and P in a 16-stage S-SRSL 

pipeline. 

Figure 3.14 shows the values obtained for the duration of the reset phase and the 

latch enables using simulation and the derived equations (3.8) and (3.13). The values 

obtained through simulation are labeled as empirical values while the values obtained 

analytically are labeled as analytical values. As shown in the figure, the values predicted 

by the equations and those obtained through simulation are highly correlated. On the 

overall, the empirical duration of the reset phase is higher than its analytical duration by 

47 picoseconds on the average while the empirical duration of the latch enable is higher 

that its analytical duration by 35 picoseconds across all stages of the pipeline.  
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Figure 3.14: The empirical and analytical values of d(R) and d(L+) in a 16-stage S-SRSL 

pipeline. 

This difference can be viewed as under-estimation since the analytical values are 

slightly smaller than the simulation values. The 47 picoseconds underestimation 

represents 6.21% of the duration of the reset phase on the average across all stages of the 

pipeline. On the other hand, the 35 picoseconds underestimation represents 5.52% of the 

duration of the latch enable on the average in all stages of the pipeline. However, this 

underestimation is not constant across all stages. In fact, the underestimation increases 

slightly above the average in the stages located on the right side of the pipeline while it 

decreases slightly below the average in the stages located on the left side of the pipeline. 

This indicates that the prediction accuracy of equation (3.8) and (3.13) tends to be higher 

for stages on the left side of the pipeline. These non-constant underestimations can be 

accounted for by the fact that δ does not remain exactly constant since it decreases at a 
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negligible rate while propagating from the left to the right stages across the pipeline. For 

simplicity, δ was considered constant throughout the timing analysis of the pipeline.  

3.5.2 The S-SRSL Non-Linear Pipeline 

To evaluate the performance of the S-SRSL non-linear pipeline, two prototype 

pipelines were implemented in order to study the impact of the join and fork operation on 

the overall performance of the pipeline.  

3.5.2.1 The S-SRSL Join Pipeline 

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a 

four-bit adder as shown in Figure 3.15. The pipeline netlist was generated using 

Synopsys Design Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters 

were measured in layout simulations of the pipeline, namely the period of each stage (P), 

the duration of the evaluate phase (d(E)), the reset phase of each stage (d(R)), and the 

enable of each latch (d(L+)).  

 
Figure 3.15: Four-bit six-stage S-SRSL join pipeline. 

Figure 3.16 shows a simulation snapshot of stages 3A, 3B and 4 from the 

prototype pipeline shown in Figure 3.15.  In Figure 3.16, the phase of stage 4 is always 

de-asserted when the phase of stage 3A and 3B are asserted and vice-versa.  This shows 
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that both stages 3A and 3B oscillate in the same phase while stage 4 oscillates in the 

opposite phase. This ensures that data flow from stages 3A and 3B to stage 4 when both 

the former are in the evaluate phase while the latter is in the reset phase. 

 
Figure 3.16: Simulation snapshot of the prototype S-SRSL join pipeline.  

Figure 3.17 shows the duration of the latch enable, the reset phase, the evaluate 

phase, δ , and the period of each stage in the S-SRSL join pipeline. As the figure shows, 

the duration of the latch enable and reset phase gradually decreases form the right to the 

left across the stages of the pipeline while the duration of the evaluate phase gradually 

increases from the right to the left across the stages of the pipeline due to the propagation 

of δ . This propagation, characteristic of a linear pipeline, appears to occur also in the 

join pipeline.  
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Figure 3.17: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL join pipeline. 

3.5.2.2 The S-SRSL Fork Pipeline 

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a 

four-bit adder as shown in Figure 3.18. Its netlist was generated using Synopsys Design 

Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters were measured in 

layout simulations of the pipeline, namely the period of each stage (P), the duration of the 

evaluate phase (d(E)), the reset phase of each stage (d(R)), and the enable of each latch 

(d(L+)).  

 
Figure 3.18: Four-bit six-stage S-SRSL fork pipeline. 
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Figure 3.19 shows a simulation snapshot of stages 4, 5A, and 5B from the 

prototype pipeline shown in Figure 3.18.  In Figure 3.19, the phase of stages 5A and 5B 

are always de-asserted when the phase of stage 4 is asserted and vice-versa.  This shows 

that stages 5A and 5B oscillate in the same phase while stage 4 oscillates in the opposite 

phase.  This insures that data flows from stage 4 to stages 5A and 5B when the former is 

in the evaluate phase while the two latter are in the reset phase.  

 
Figure 3.19: Simulation snapshot of the prototype S-SRSL fork pipeline 

Figure 3.20 shows the duration of the latch enable, the reset phase, the evaluate 

phase, δ, and the period of each stage in the S-SRSL fork pipeline. As the figure shows, 

the duration of the latch enable and reset phase gradually decreases form the right to the 

left across the stages of the pipeline while the duration of the evaluate phase gradually 

increases from the right to the left across the stages of the pipeline due to the propagation 

of δ. This propagation, characteristic of an S-SRSL linear pipeline, appears to occur also 

in the S-SRSL fork pipeline. 
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Figure 3.20: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL fork pipeline. 

3.6 Summary 

This chapter introduces SRSL, a clockless technique that can be used to pipeline 

computation and communication in order to circumvent problems associated with global 

clocking. In addition, the chapter describes how S-SRSL can be used to implement linear 

pipelines in addition to fork and join operations encountered in non-linear pipelines. 

Analysis of the pipeline performance shows that the depth of the pipeline is bound by its 

period, δ, and the duration of the enable of the latch used in the pipeline implementation 

[59-64]. Prototyping experiments of the pipeline show that its actual performance is 

significantly closer to its analytical performance. 
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CHAPTER FOUR: PIPLINE-CONTROLLED SELF-RESETTING 
STAGE LOGIC PIPLINES 

This chapter presents the design and implementation of both linear and nonlinear 

P-SRSL pipelines. The communication protocol of these pipelines is quite different from 

that of the S-SRSL pipelines. Section 4.1 and 4.2 describe respectively how P-SRSL 

linear and non-linear pipelines operate while section 4.3 presents their timing analysis.  

Section 4.4 describes the implementation of P-SRSL prototype pipelines while section 

4.5 presents a summarized comparison between the S-SRSL and P-SRSL pipelines.  

Section 4.6 concludes the chapter.   

4. 1 P-SRSL Linear Pipeline 

In P-SRSL pipelines, each stage consists of a combinational and a reset network 

similar to a stage in an S-SRSL pipeline as shown in Figure 4.1. Data flows from one 

stage to another through a latch in a linear pipeline. To insure proper data flow across 

stages, data is transferred from the current stage to the next one if the current stage is in 

the evaluate phase while the next stage is in the reset phase. Hence, the latch separating 

both stages is enabled when both stages are in the evaluate and reset phase respectively. 

This enable is the output of the AND gate that triggers the latch [67, 68]. 
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Figure 4.1: A four-stage P-SRSL pipeline. 

Note that signal O4 drives the right input of each AND gate that enables each 

latch in the pipeline. This signal emanates from the last stage and travels along the 

pipeline to reach the AND gate of each inter-stage latch. Hence, the control of the phase 

sequences across the stages performed by this signal is exercised at the pipeline level. 

This approach is quite different from the S-SRSL pipeline where the output of the 

matching delay in a given stage drives one input of the AND gate that enables the latch 

separating it from the preceding stage. The control of the phase sequences in the latter 

approach is more local in nature since it propagates from stage to stage. In P-SRSL 

pipelines, stage synchronization is controlled in a semi-global manner whereby 

communication occurs primarily between the last stage and any other stage in the 

pipeline. To clarify the inner working of the P-SRSL pipeline, a stage is characterized 

based on the control signals of its proper latch.  
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Definition 4.1: A pipeline stage is said to be of type A if the phase signal of the last stage 

is inverted when it reaches the AND gate controlling the latch of the stage.  

 

Definition 4.2: A pipeline stage is said to be of type B if the phase signal of the last stage 

is not inverted when it reaches the AND gate controlling the latch of the stage.  

 

Note that the latch of a stage is the latch whose number is equal to the stage 

number in Figure 4.1.  By default, stage 1 is of the complement type of that of stage 2, 

meaning that if stage 2 is of type A (B), stage 1 should of type B (A).  This stage 

characterization assigns opposite types to adjacent stages and identical types to every 

other stage.  Stages of the same type oscillate in the same phase while stages of opposite 

types oscillate in opposite phases.  When the last stage enters its reset phase, every stage 

of type B starts its own evaluate phase while every stage of type A starts its own reset 

phase. As soon as the last stage transitions to its evaluate phase, all the stages switch 

phase. During the reset phase of a stage of type A, the stage’s left latch is enabled while 

the stage’s right latch is disabled. Both latches are driven by the reset phase of the last 

stage in the pipeline. The latter latch will be enabled only when the stage switches phase, 

which occurs when the last stage enters its evaluate phase. At any cycle, every other stage 

will be in the reset phase while the remaining stages will be in the evaluate phase. A 

cycle later, the stages that were in the reset phase start their evaluate phases while the 

stages that were in the evaluate phase start their reset phases. Similarly to an S-SRSL 

pipeline, stages in a P-SRSL pipeline alternate between phases as computation progresses 

across the pipeline.  Figure 4.2 shows the STG of the P-SRSL pipeline shown in Figure 
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4.1. This STG shows that the rising transition of L3 occurs after O2 and O4 experience 

both rising transitions.  This means that latch 3 is enabled when both stages 2 and 4 are in 

the evaluate phase.  However when O4 experiences a rising transition, L2 and L4 

experience falling transitions.  This shows that when latch 3 is enabled, latch 2 and 4 are 

disabled.  Figure 4.3 shows how the stages alternate between phases as data flows across 

the pipeline by representing the asserted and de-asserted signals as solid and dashed lines 

respectively. 

 

 

Figure 4.2: STG of the P-SRSL pipeline shown in Figure 4.1. 
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4.3(a): Assertion of the stage reset signals. 

 

 

4.3(b): Reset phase of all stages. 
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4.3(c): Evaluate phase of all stages. 

 

 
4.3(d): Evaluate phase of stage 3 and 1. 
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4.3(e): Evaluate phase of stage 4 and 2. 

 

 
4.3(f): Evaluate phase of stage 1 and 3. 

Figure 4.3: Two execution cycles of a four-stage P-SRSL Pipeline. 
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4.2 P-SRSL Non-Linear Pipelines 

While linear pipelines can be used in many applications, complex systems require 

data to flow in divergent and convergent directions. Such systems can be realized as non-

linear pipelines [63, 64]. To support divergence and convergence of data flow, primitives 

such as the fork and join operations have to be incorporated in the pipeline.  

4.2.1 P-SRSL Join Pipeline  

Figure 4.4 shows a P-SRSL join pipeline.  This pipeline operates similarly to the 

S-SRSL join pipeline.  Data is transferred from stage A to stage C when the former is in 

the evaluate phase while the latter is in the reset phase. Similarly, data flows from stage B 

to stage C when the former is in the evaluate phase while the latter is in the reset phase. 

When data flows from stage A and B to C, the latches separating stage A and B from 

stage C are activated to capture the outputs of stage A and B thus feeding them to the 

inputs of stage C. Note that the phase signal of the last stage of the pipeline, namely 

OLaststage, drives the three AND gates which enable the latches of stage A, B, and C as 

shown in Figure 4.4. Specifically, this phase signal drives the AND gate which enables 

the latch on the right side of stage C without being inverted. This means that data flows 

from stage C to its right neighbor when stage C and the last pipeline stage are both in the 

evaluate. 

 

Moreover, the inverted value of the same phase signal drives the input of the 

AND gates that enable the latches on the right side of stage A and B. In this case, data 

82 



flows from both stage A and B to stage C when both stage A and B are in the evaluate 

phase while the last pipeline stage is in the reset phase. Contrary to the local control seen 

in the join operation of the S-SRSL non-linear pipeline, the last stage of the pipeline 

plays a primary role in synchronizing data transfer between neighboring stages in the join 

operation of the P-SRSL non-linear pipeline. Note that Figure 4.4 shows a sample join 

structure in which stage A and B are of type B stages while stage C is of type A based on 

the stage characterization described in section 4.1. 

 

 
Figure 4.4: Structure of a join P-SRSL pipeline. 
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An alternative to this join structure will be a join operation in which stage A and 

B are of type A stages while stage C is of type B. In this case, both latches separating 

stage A and B from C will be enabled by AND gates whose outputs will be all non-

inverted.  In this pipeline, the control of latch 3 (L3) and 4 (L4) depends on the phase of 

stage A (OA), B (OB), and the last stage (OLaststage). In fact, signal OLaststage reaches the left 

input of each AND gate enabling each inter-stage in the pipeline.   

 

Figure 4.5 shows the STG of the pipeline shown in Figure 4.4.  As shown in the 

figure, OLaststage is involved in synchronizing the latch enables of each stage in the join 

structure.   

 

Figure 4.5: STG of the P-SRSL join pipeline shown in Figure 4.3. 
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4.2.2 P-SRSL Fork Pipeline 

Figure 4.6 shows a P-SRSL fork pipeline.  This pipeline operates similarly to the 

S-SRSL fork pipeline.  However, in this pipeline, the enables of latches 2 (L2) and 4 (L4) 

depend on the phase of the last stage in the upper branch of the fork (OUpperLast), while the 

enables of latches 3 (L3) and 5 (L5) depend on the phase of the last stage in the lower 

branch of the fork (OLowerLast). In addition, the enable of latch 1 (L1) depends on the 

arrival of the phases of the last stages in both fork branches (OUpperLast and OLowerLast).  

This arrival is captured by the H gate shown in Figure 4.6.  The G gate plays the same 

role as the G gate of the S-SRSL fork pipeline. 

 

Figure 4.6: Structure of a fork P-SRSL pipeline. 
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Figure 4.7 shows the STG of the pipeline shown in Figure 4.6.  In this STG, L2 

experiences a rising transition after OUpperLast experiences the same transition while L4 

experiences a rising transition after OUpperLast experiences a falling transition.  A similar 

observation can be made for L3 and L5 with regard to OLowerLast.  On the other hand, L1 

experiences a rising transition after OFork experiences a falling transition and vice-versa.  

The falling transition of OFork occurs after both OUpperLast and OLowerLast experience falling 

transitions. 

 

 

Figure 4.7: STG of the P-SRSL fork pipeline shown in Figure 4.6. 

Contrary to the local control seen in the fork operation of the S-SRSL non-linear 

pipeline, the last stage in the upper and lower segments of the pipeline fork plays a 

primary role in synchronizing data transfer between neighboring stages in the fork 

operation of the P-SRSL non-linear pipeline. Note that Figure 4.6 shows a sample fork 
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structure in which stage B and C are of type B stages while stage A is of type A based on 

the stage characterization described in section 4.1. An alternative to this fork structure 

will be a fork operation in which stage B and C are of type A while stage A is of type B. 

In this case, latch 3 and 4 will be enabled by two-input AND gates where each gate has 

an inverted input.  

4.3 Performance of the Pipeline 

To explain the performance of the P-SRSL pipeline, the same timing parameters 

defined in chapter 3, namely d(Ei), d(Ri), Pi, are used in this section. Next, these 

parameters are used in a signal timing analysis to characterize the performance of the 

pipeline. 

4.3.1 Analysis of the Reset and Evaluate Phase 

As shown in Figure 4.1, the internal phase of a stage i can be determined by 

observing signal Oi. When Oi = 0, stage i is in the reset phase. Otherwise, it is in the 

evaluate phase.  Assume there are n stages in the pipeline. Since the evaluate phase of 

stage n, which is the last pipeline stage, does not depend on the reset phase of another 

stage, its reset and evaluate phase tend to have the same duration: 

( ) ( ) (4.1)
2

n
n n

Pd E d R= =  
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Figure 4.8 shows the waveforms of the stage outputs and the phase of stage 13, 

14, 15 and 16 in a 16-stage prototype P-SRSL pipeline.  It is clear that the reset and 

evaluate phase of stage 16 have the same duration (i.e., d(E16) = d(R16)). However, this is 

not true for other stages.  The equal duration of the reset and evaluate phase on the right 

side of the pipeline can be explained by considering stage 4 in Figure 4.1 in which the 

reset loop oscillates without waiting on any incoming signal since stage 4 is the last stage 

in the pipeline. However, the evaluate phase of stage n−1 has to wait on the arrival of the 

reset phase from stage n to the latch-enabling AND gate in order for data to flow from the 

former to the latter. This has the effect of stretching the duration of the evaluate phase of 

stage n−1: 

( ) ( )1 (4.2)n nd E d E− >  

 

In Figure 4.1, it is clear that the evaluate phase of any stage i of type B, 0 < i < n, 

has to wait on the arrival of the reset phase from stage n while the evaluate phase of any 

stage i of type A, 0 < i < n, has to wait on the arrival of the evaluate phase from stage n to 

the latch-enabling AND gate in order for data to flow from stage i to stage i+1. This has 

the effect of stretching the duration of the evaluate phase of stage i compared to stage n 

as shown in Figure 4.8:   

( ) ( ) (4.3)i nd E d E>  

 

Since stage n starts its reset phase somewhat earlier, it tends to complete this 

phase also earlier, thus causing the reset phase of stage n-1 to be somewhat shorter. 
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1( ) ( ) (4.4n nd R d R− < )  

 

In fact, it is clear from Figure 4.8 that the reset phase of any stage i, 0 < i < n, is 

shorter than the reset phase of stage n: 

( ) ( ) (4.5)i nd R d R<  

 

 
Figure 4.8: Simulation snapshot of stages 13, 14, 15 and 16 in a 16-stage prototype P-

SRSL pipeline. 

The increase in the evaluate phase and the decrease in the reset phase of stage i, 0 

< i < n, with regard to the phases of stage n is exactly the same:  

( ) ( ) ( ) ( ) (4.6)i n n id E d E d R d R δ− = − �  

 

 This equal increase and decrease is due to the fact that the period is equal for all 

stages in the pipeline:   

(4.7)i nP P P= =  
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4.3.2 Effect of δ on the Pipeline Stages 

The δ delay difference is caused by the unequal lengths of the reset loop on which the 

phase signals travels in stage n and i.  While the phase signal in stage n starts from the 

left NOR gate, passes through the buffer delay, and back to the same NOR gate, the 

phase signal in stage n-1 crosses the same path in addition to an inverter and an AND 

gate. The AND gate with one inverted input is the latch enabling gate between stage n-1 

and n. Since the phase signal travels along this augmented path in stage n-1 twice, once 

when On-1 = 1 and once when On-1 = 0, the δ delay difference between the two paths in 

both stages is at most equal to twice the delay of the inverter and latch enabling AND 

gate. Let d(INV) and d(AND) be the average delay through an inverter and an AND gate 

respectively, then: 

( )( ) ( )2 AND 2 (INV) (AND) (4.8)d d dδ≤ ≤ +  

 

δ propagates from stage n to any stage i, 0 < i < n, causing in the process the duration 

of the evaluate and reset phase of each stage i to increase and decrease by δ respectively 

with regard to stage n: 

( ) ( )
( ) ( )

(4.9)

(4.10)
i n

i n

d E d E

d R d R

δ

δ

= +

= −
 

 

Simulation experiments show that this delay difference is present in each stage before 

the last stage in the pipeline.  
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4.3.3 Effect of the Period on the Latch Enable 

With regard to stage i and n, it follows from equation (4.6) that:  

( ) ( )
( ) ( )

( )

( ) ( )
2

(4.11)

i n

i n

i

i n

d E d E

d E d E
Pd E

d E d R

δ

δ

δ

δ

− =

= +

= +

= +

 

 

This implies  

( ) ( ) (4.12)i nd E d R>  

 

Let d(Li
+) be the minimum duration at logic level 1 of the enable of the latch 

between stage i-1 and i. Since the latch between stage n-1 and n is enabled when the 

former is in the evaluate phase and the latter is in the reset phase, the duration of the latch 

enable depends primarily on that of the reset phase of stage n.  Because the duration of 

reset phase and evaluate phase are equal in stage n:  

( ) ( ) ( )

( ) (4.13)
2

n nn

n

d R d Ed L

Pd L

+

+

= =

=
 

 

If stage i is of type A, the duration of the enable of latch i, namely d(Li), depends 

primarily on the duration of the reset phase of stage n.  On the other hand, if stage i is of 

type B, the duration of the enable of latch i depends primarily on the duration of the 

evaluate phase of stage n: 
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A faster pipeline can be realized by reducing P, which requires (i) faster latches or 

(ii) a faster reset network within each stage. The latter can be realized by reducing the 

delay in the reset network of a stage.  

4.3.4 Area Cost   

The same comparison used to contrast S-SRSL pipeline with clocked pipelines in 

section 3.4.5 can be applied to P-SRSL pipelines.  Given the similarities between S-SRSL 

and P-SRSL pipelines, the outcome of this comparison applies in the case of P-SRSL 

pipelines.  In the overall, the area of a P-SRSL pipeline will be higher than the area of its 

clocked counterpart.   

4.3.5 Fault Handling 

In analyzing how the P-SRSL pipeline handle faults, only stuck-at faults are 

considered.  Attention is paid to the outcomes caused by the output of the reset network 

of a given stage getting (i) stuck at 1, thus causing the stage to be locked in the evaluate 

phase, or (ii) stuck at 0 causing the stage to be locked in the reset phase.   
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• Stage locked in the evaluate phase: If the output of the reset network in a given stage 

j gets stuck at 1 for a time longer than P, stage j remains locked in the evaluate phase.  In 

this case, the output of the AND gate controlling latch j+1 depends on the output of the 

reset network of stage n.  Note that the right input of the AND gates, which controls each 

inter-stage latch in the pipeline, is driven by the output of the reset network of the last 

stage (i.e., stage n).  On the other hand, the left inputs of the same AND gates are each 

driven by the outputs of the reset networks of each individual stage.  If stage j+1 is of 

type A, latch j+1 becomes enabled when stage n enters its reset phase.  However, if stage 

j+1 is of type B, latch j+1 becomes enabled when stage n enters its evaluate phase.  As 

such, stage j+1 oscillates in a normal fashion based on the oscillation of stage n.  

Consequently, data is transferred from stage j to stage j+1 when latch j+1 is enabled.  

Any stage after j, including stage j+1, oscillates in a normal fashion since its oscillation is 

exclusively based on the output of its reset network and the output of the reset network in 

stage n.  As a result, data flows uninterrupted from stage j to n.  With regard to stage j−1, 

it continues to oscillate in a normal fashion since its reset network is totally disconnected 

from the reset network of stage j.  In fact, all the stages from 1 to j−1 continue to behave 

similarly to stage j−1 for the same reason.  As a result, data flows uninterrupted from 

stage 1 to stage j.  Taking into account the behavior of the stages before and after stage   

j, it is obvious that data can flow uninterrupted throughout the entire pipeline without 

missing a single data item.  

 

• Stage locked in the reset phase: If the output the reset network of a stage j gets stuck 

at 0 for a time longer than P, stage j remains locked into the reset phase.  In this case, the 
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output of the AND gate controlling latch j+1 is forced to remain 0, thus disabling it as 

long as stage j is remains locked in the reset phase.  As mentioned previously, stages, 

located on each side of stage j, continue to oscillate as expected since their individual 

reset networks are completely decoupled from each other and are individually driven by 

the oscillation of the reset network of the last stage.  As a result, data flow uninterrupted 

from (i) stage 1 to stage j, and (ii) stage j+1 to n.  However, due to the disabled j+1st 

latch, stage j acts as a barrier to the flow of data from stage 1 to stage j causing data to be 

overwritten in stage j.  This results in the same data flowing repeatedly from stage j+1 to 

stage n. 

4.4 Prototype Implementation of the P-SRSL Pipeline 

To test and validate SRSL and its use in P-SRSL pipelines, several pipeline 

prototypes have been implemented. 

4.4.1 Implementation of the Linear Pipeline 

A 16-stage four-bit pipeline was modeled in VHDL where each stage contains a 

four-bit ripple-carry adder. Similarly to S-SRSL pipelines, it was decided to insert an 

adder in each stage in order to amplify delay effects and subsequently constrain the 

performance of the pipeline. The corresponding netlist was generated using Synopsys 

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Cadence’s Silicon 

Ensemble was used to place and route the pipeline. The pipeline fits into a frame of 
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89,731 µm2 as shown in Figure 4.9 yielding a total latency of 14.40 nanoseconds and a 

throughput of 463.30 Megaoutputs/second based on the period of the last stage.  

 

Figure 4.9: Chip layout of the four-bit 16-stage P-SRSL pipeline. 

 

Table 4.1: P-SRSL pipeline implementation. 

Stages 16 
Bit width 4 
Combinational network 4-bit adder 
Synthesis Synopsys Design Compiler 
Layout Cadence Silicon Ensemble 
Simulation Synopsys VCS Simulator 
Library 0.25 µm CMOS library 
Cells 1,144 
Nets 1,216 
IO pins 166 
Area 89,731µm2

Latency 14.40 ns 
Throughput 463.30 Megaoutputs/second 
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Four parameters were measured in layout simulations of the pipeline, namely the 

period of each stage (P), the duration of the evaluate phase (d(Ei)), the reset phase of each 

stage (d(Ri)), and the enable of each latch (d(Li
+)).  Figure 4.10 shows the duration of the 

latch enable, the reset phase, the evaluate phase, δ (labeled as Delta Delay), and the 

period across a 16-stage pipeline with a matching delay of 1.5 ns. In the figure, δ remains 

constant across all stages. However, the duration of the evaluate phase of any stage 

located to the left of the last stage is larger than the duration phase of the last stage by δ .  

In addition, the duration of the reset phase of any stage located to the left of the last stage 

is smaller than that of the last stage by δ. 
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Figure 4.10: Simulation results of d(L+), d(R), d(E), δ, and P in a P-SRSL pipeline. 

Both observations are expressed in equation (4.9) and (4.10). In addition, it is 

clear from the figure that the duration of the evaluate phase in the stages located to the 

left of the last stage are all equal. Similar observation can be made with regard to the 

duration of the reset phase in all the stages located to the left of the last stage. Both 
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observations are predicted by equation (4.9) and (4.10). However, the duration of the 

latch enable of each stage in the pipeline remains constant and is approximately equal to 

half of the period of each stage as predicted by equation (4.14) and (4.15). Although the 

matching delay inserted in the self-resetting loop of a single stage must be long enough to 

allow the outputs of the stage combinational network to settle, it can be reduced further 

by taking advantage of the overlapping of the opposite phases of two neighboring stages 

without disturbing the operation of the pipeline. After all, the reset phase of a stage will 

overlap for a brief moment with the evaluate phase of its neighbors.  

4.4.2 Implementation of the Non-Linear Pipelines 

To evaluate the performance of the P-SRSL non-linear pipeline, two prototype 

pipelines were implemented in order to study the impact of the join and fork operation on 

the overall performance of the pipeline.  

4.4.2.1 The P-SRSL Join Pipeline 

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a 

four-bit adder as shown in Figure 4.11. The pipeline netlist was generated using 

Synopsys Design Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters 

were measured in layout simulations of the pipeline, namely the period of each stage (P), 

the duration of the evaluate phase (d(E)), the reset phase of each stage (d(R)), and the 

enable of each latch (d(L+)).  
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Figure 4.11: Four-bit six-stage P-SRSL join pipeline. 

In order to verify the functional correctness of the P-SRSL join structure, 

simulation experiments were conducted on a prototype join pipeline similar to the 

pipeline shown in Figure 4.11.  Figure 4.12 shows a simulation snapshot of only stages 

3A, 3B, and 4 from the prototype pipeline of Figure 4.11. 

 
Figure 4.12: Simulation snapshot of the prototype P-SRSL join pipeline. 

In Figure 4.12, the phase of stage 4 is always de-asserted when the phase of stage 

3A and 3B are asserted and vice-versa.  This shows that both stages 3A and 3B oscillate 

in the same phase while stage 4 oscillates in the opposite phase.  This ensures that data 

flows from stages 3A and 3B to stage 4 when both the former are in the evaluate phase 

while the latter is in the reset phase.  In addition, the phase of the last stage (O6) is 

identical to the phase of stage 4 (O4).  If stage 6 is of type A, then stage 5 is of type B, and 
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consequently stage 4 is of type A. Stages of the same type will have identical phases as 

described in section 4.1. 

 

Figure 4.13 shows the duration of the latch enable, the reset phase, the evaluate 

phase, δ, and the period of each stage in the P-SRSL join pipeline. Note the stages 

numbered 1, 2, and 3 in Figure 4.13 represents the stages labeled 1A, 1B, 2A, 2B, 3A, 

and 3B in Figure 4.11.  As the figure shows, the duration of the latch enable of each stage 

in the pipeline remains constant and is approximately equal to half of the period of each 

stage. The duration of the evaluate phase of any stage located to the left of the last stage 

is larger than the duration phase of the last stage by δ, while the duration of the reset 

phase of any stage located to the left of the last stage is smaller than that of the last stage 

by δ.  These results are consistent with the findings of equations (4.9), (4.10), (4.14), and 

(4.15).  
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Figure 4.13: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype 

join pipeline. 
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4.4.2.2 The P-SRSL Fork Pipeline 

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a 

four-bit adder as shown in Figure 4.14. Its netlist was generated using Synopsys Design 

Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters were measured in 

layout simulations of the pipeline, namely the period of each stage (P), the duration of the 

evaluate phase (d(E)), the reset phase of each stage (d(R)), and the enable of each latch 

(d(L+)).  

 
Figure 4.14: Four-bit six-stage P-SRSL fork pipeline. 

In order to verify the functional correctness of the P-SRSL fork structure, 

simulation experiments were conducted on the prototype fork pipeline shown in Figure 

4.14.  Figure 4.15 shows a simulation snapshot of only stages 4, 5A, 5B, 6A, and 6B from 

the prototype pipeline. 

 
Figure 4.15: Simulation snapshot of the prototype P-SRSL fork pipeline. 
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In Figure 4.15, the phase of stages 5A and 5B are always de-asserted when the 

phase of stage 4 is asserted and vice-versa.  This shows that stages 5A and 5B oscillate in 

the same phase while stage 4 oscillates in the opposite phase.  This insures that data flows 

from stage 4 to stages 5A and 5B when the former is in the evaluate phase while the two 

latter are in the reset phase. Based on the stage characterization introduced in section 4.1, 

stage 6 and 4 are of the same type, and subsequently, their phases will be identical.  This 

can be seen in Figure 4.16 by inspecting the phase signals of stage 4, 6A, and 6B. 

 

Figure 4.16 shows the duration of the latch enable, the reset phase, the evaluate 

phase, δ, and the period of each stage in the P-SRSL fork pipeline.  Note that the stages 

numbered 5 and 6 in Figure 4.16 represent the stages labeled 5A, 5B, 6A, and 6B in 

Figure 4. 14.  As the figure shows, the duration of the latch enable of each stage in the 

pipeline remains constant and is approximately equal to half of the period of each stage 

as expressed by equations (4.14) and (4.15). In addition, the duration of the evaluate 

phase of any stage located to the left of the last stage is larger than the duration of the 

evaluate phase of the last stage by δ as found in equation (4.9), while the duration of the 

reset phase of any stage located to the left of the last stage is smaller than that of the last 

stage by δ as found in equation (4.10).  However, as can be seen in the figure, stage 4 has 

a slightly longer evaluate phase and shorter reset phase compared to other stages located 

on the left side of the last stage. When stage 4 transitions from the evaluate to the reset 

phase, the latch enables of stage 5A and 5B have to propagate through the G-labeled 

AND gate as shown in Figure 4.5.  This has the effect of stretching the evaluate phase 

and shrinking the reset phase of stage 4 in particular.   

101 



0

500

1000

1500

2000

2500

1 2 3 4 5 6

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

 
Figure 4.16: Simulation results of d(L+), d(R), d(E), δ, and P in  the P-SRSL prototype 

fork pipeline. 

4.5 Comparison of P-PRSL to S-SRSL Pipelines  

Table 4.2 highlights the differences between P-SRSL and S-SRSL pipelines. It 

seems that the P-SRSL pipeline displays better latency and area performance that the S-

SRSL pipeline. The table shows that the P-SRSL pipeline has 0.4% area reduction, 2.1% 

increase in the pipeline throughput. Whereas the P-SRSL has a constant duration of the 

latch enable, the S-SRSL pipeline has a variable duration of its latch enable.  The 

variability in the latter depends on the pipeline location of the stage to which the latch is 

associated.  This variability imposes a limit on the maximum number of stages in the S-

SRSL pipeline. It can be conjectured that some of the mentioned performance 

improvements in the P-SRSL pipeline can be attributed to the fact that the δ domino 

effect does not propagate across the pipeline stages. As a result, there is a general 
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uniformity in its timing behavior, which allows it to some degree to produce slightly 

faster responses.  

Table 4.2: Comparison summary of the P-SRSL to S-SRSL pipeline. 

Parameter P-SRSL Pipeline S-SRSL Pipeline 
Period  2.10 ns 2.18 ns 
Total Latency  14.40 ns 15.76 ns 
Pipeline area  89,731.14 µm2 90,057.74 µm2

Latch Enable Duration  0.96 ns 1.01 ns (stage 16) down to 
0.64 ns (stage 1) 

Throughput  463.3 Megaoutputs/sec 453.95 Megaoutputs/sec 
 
Theoretical Pipeline Depth  

 
No limit 1

11 (
2
Pn d

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠
)L  

δ Delay Difference Between any stage and the 
last stage 

Between any two 
neighboring stages 

4.6 Summary  

This chapter shows how P-SRSL can be used to implement linear pipelines in 

addition to fork and join operations encountered in non-linear pipelines. The prototyping 

experiments show that the actual performance of the P-SRSL pipeline is significantly 

closer to its analytical performance. The timing analysis of the P-SRSL pipeline shows 

that the duration of the latch enable is constant for any stage in the pipeline. This is due to 

the fact that the δ effect does not propagate across the pipeline stages, which in return 

keeps the duration of the evaluate and reset phases constant in the stages before the right 

stage of the pipeline. In contrast to the S-SRSL pipeline, the incremental delays caused 

by the propagation of δ are completely absent in the P-SRSL pipeline. This can explain 

its better performance confirmed by the prototyping experiments conducted on the P-

SRSL pipeline [67, 68]. 
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CHAPTER FIVE: DELAY TOLERANT SELF-RESETTING STAGE 
LOGIC PIPELINES 

This chapter presents a clockless pipeline design technique, called delay-tolerant 

self-resetting stage logic (D-SRSL), which can be used to handle pipeline stages with 

significant delay differences. Section 5.1 introduces the two building blocks namely the 

phase control and latch control and then shows how they can be used as a building block 

in linear pipeline while section 5.2 shows the non-linear D-SRSL pipelines. Section 5.3 

presents a detailed timing analysis of a linear pipeline and shows how the worst stage 

delay is impacting the period of the pipeline. Section 5.4 describes the implementation of 

three prototype pipelines while section 5.5 summarizes the chapter.  

5.1. D-SRSL Linear Pipeline 

This section describes the various components of a D-SRSL linear pipeline and 

how they operate to support data flows across the pipeline. 

5.1.1 Pipeline Structure  

D-SRSL pipelines are supported by a clockless pipelining technique in which data 

flows across stages through latches as shown in Figure 5.1.  These latches are controlled 

by a latch control (LC) block.  Each stage oscillates between two phases: a reset and 

evaluate phase indicated by signal φ.  A stage is ready to absorb its inputs in the reset 

phase while it is ready to evaluate its inputs in the evaluate phase.  The evaluation is 

performed by feeding the inputs to a combinational network (CN) embedded within the 
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stage.  The control of this phase oscillation is performed by a phase control (PC) block, 

which can be reset at any moment by the reset signal R.  In each stage, the CN is 

completely decoupled from the PC block, and can have an arbitrary delay.   

 
Figure 5.1: A four-stage D-SRSL pipeline. 

Figure 5.1 shows the interconnection structure of a four-stage D-SRSL pipeline 

where each stage consists of a CN, PC and LC blocks.  To insure proper data flow across 

stages, data is transferred from the current stage to the next one if the current stage is in 

the evaluate phase while the next stage is in the reset phase.  Hence, the latch separating 

both stages is enabled when the left stage is in the evaluate while the right stage is in the 

reset phase.  Beside the reset signal, the PC block takes as inputs the enable signal of the 

left and right latches and outputs the phase signal of the stage.  On the other hand, the LC 

block takes as inputs the phases of the left and right PC blocks and outputs the signal 

enable of the latch it controls.  Figure 5.2 shows the STG of the D-SRSL linear pipeline 

shown in Figure 5.1.  Although the Clr signal in Figure 5.2 is not shown in Figure 1, its 

function within the LC block will be described in section 5.1.3.  The STG shows that the 

rising transition of L3 occurs after φ2 and φ3 experience a rising and falling transition 

respectively.  This means that latch 3 is enabled only when stage 2 is in the evaluate 
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phase while stage 3 is in the reset phase.  Since L3 is asserted while stage 3 is in the reset 

phase, this guarantees that latch 4 will not be enabled until φ3 experiences a rising 

transition.   

 
Figure 5.2: STG of the D-SRSL pipeline shown in Figure 5.1. 

5.1.2 Phase Control Block 

Figure 5.3 shows that the PC block receives three inputs: (i) the reset signal, R, 

which resets the PC block output to 0, (ii) Li which is the latch enable of the left latch of 

stage i, and (iii) Li+1, which is the latch enable of the right stage i+1.  In addition, it 

produces an output, φi, which is the phase signal of stage i.  To illustrate the behavior of 

the PC block, Figure 5.4 shows its state graph which consists of two states: (i) the reset 

state, SR, in which the phase signal becomes 0, and (ii) the evaluate state, SV, in which the 

phase signal becomes 1.  As shown in Figure 5.4, the PC block enters the reset state after 
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the reset signal is de-asserted.  In this state, φi is de-asserted, which indicates that the 

stage is in the reset phase.  The PC block remains in this state as long as R and Li are de-

asserted while Li+1 is asserted.  Once Li+1 is de-asserted while Li becomes asserted, the PC 

block transitions to the evaluate state in which φi is asserted.  This means that the stage is 

in the evaluate phase.  As long as Li+1 remains de-asserted, the PC block remains in the 

evaluate state until Li+1 becomes asserted, in which case the PC block returns to the reset 

state.  As φi switches back and forth, a stage can oscillate between a reset and evaluate 

phase in a single execution cycle or period. Given this oscillation, a stage is ready to 

absorb inputs when it is in the reset phase. 

 
Figure 5.3.:Phase control block. 

 
Figure 5.4: State graph of the PC block. 

While the inputs are traveling along the critical path of the CN, φi is similarly 

traveling along a path that is extended by a delay equal to the critical path delay in the 

CN.  This extended delay is implemented by a delay buffer which delays the reset phase 
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long enough to allow CN outputs to stabilize.  Based on this oscillation, a PC block can 

be embedded in a pipeline stage forcing the stage to oscillate between two phases.  This 

oscillation can be used to synchronize data transfer between neighboring stages in a D-

SRSL pipeline.   

5.1.3 Latch Control Block 

Figure 5.5 shows the block diagram of the LC block.  This block has three inputs, 

φi and φi-1, which are the phases of the current and previous stages respectively, and the 

reset (R) signal.  In addition, it has one output Li, as defined above, which feeds back into 

the clear port (Clr) of the LC block.  Li is the enable signal of the latch between stage i 

and its predecessor stage i-1.  To show the behavior of the LC block, Figure 5.6 shows its 

state graph which consist of two states, namely the enabled state SE, and the disabled 

state SD.  When the reset signal is asserted, the LC block enters the disabled state in 

which Li gets de-asserted.  As long as φi-1 is de-asserted while φi is asserted, the block 

remains in the disabled state.  The LC block waits until φi-1 gets asserted while φi 

becomes de-asserted to transition to the enabled state.  In this state, Li gets asserted in 

order to allow the latch of stage i to capture the incoming data from stage i-1.  After a 

delay, sufficiently long to allow the data to go through the latch, has elapsed, the latch 

block returns automatically to the disabled state, thus disabling the latch. 
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Figure 5.5: Latch control block. 

 
Figure 5.6: State graph of the latch control block. 

5.2. D-SRSL Non-Linear Pipelines  

Most non-linear pipelines rely on primitives such as the fork and join operations.  

In this section, the join and fork operations are described for the D-SRSL pipeline. 

5.2.1 D-SRSL Join Pipeline 

Figure 5.7 shows a D-SRSL join pipeline.  Inter-stage data flow is similar to the 

data flow in a linear pipeline.  Data is transferred from stage A to stage C when the 

former is in the evaluate phase while the latter is in the reset phase.  Similarly, data flows 

from stage B to stage C when the former is in the evaluate phase while the latter is in the 

reset phase.  When these conditions are true, latches 3 and 4 are activated to capture the 

outputs of stage A and B, and feed it to the inputs of stage C.  The coordination between 
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the stages A and B, and stage C is orchestrated by the Join block.  Figure 5.8 shows the 

STG of the join structure shown in Figure 5.7.  In this STG, the LJoin signal which drives 

the enable of both latches 3 and 4, experiences a rising transition when both φA and φB 

experience a rising transition while φC experiences a falling transition.  This shows that 

latches 3 and 4 are enabled when stages A and B are both in the evaluate phase while 

stage C is in the reset phase.   

 

 
Figure 5.7: D-SRSL join pipeline. 
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Figure 5.8: STG of the D-SRSL join pipeline shown in Figure 5.7. 

As Figure 5.7 shows, the Join block takes four input signals, namely φA, φB, φC, 

and R.  In addition, it produces a single output, namely LJoin.  Figure 5.9 shows the block 

diagram of the Join block while Figure 5.10 shows its state graph.  

 
Figure 5.9: The Join block. 

The Join block oscillates between two states: the disabled (SD) and enabled state 

(SE).  The transition from the former to the latter state can occur if both φA and φB are 

asserted while φC is de-asserted.  In the enable state, the LJoin signal becomes asserted.  

After a delay, sufficiently long to allow the data to go through the latch, has elapsed, the 
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Join block returns automatically to the disabled state, thus disabling the latches 3 and 4 

shown in Figure 5.7.  

 
Figure 5.10: State graph of the Join block.  

In order to verify the functional correctness of the D-SRSL join structure, 

simulation experiments were conducted on a prototype join pipeline shown in Figure 

5.11.  In this pipeline, each stage contains different CNs with different delays shown in 

parentheses in Figure 5.11.  The total combinational delay through branch A is 3.9 ns 

while the total delay through branch B is 3 ns.  The rationale behind using a different CN 

in each stage is to test the functional correctness of the join pipeline in the face of 

different delays.   For purpose of clarity, Figure 5.12 shows a simulation snapshot of only 

stages 3A, 3B, and 4 from the prototype pipeline shown in Figure 5.11.   

 

 

Figure 5.11: Prototype D-SRSL join pipeline. 

Let d(Ei) and d(Ri) be the time duration of the evaluate and reset phase in stage i 

respectively.  Also, let the period of stage i, Pi, be the sum of duration of the evaluate and 

reset phase in stage i, namely Pi = d(Ei) + d(Ri).  Note that for each stage, the reset and 
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evaluate phase are indicated by logic 0 and 1 respectively.  Since stage 3B has a smaller 

CN delay, its evaluate and reset phases should be in principle shorter than the evaluate 

and reset phase of stage 3A.  As a result, its period should be shorter than the period of 

stage 3A.  Although its period should be shorter, it is nevertheless extended in order to 

force stage 3B to wait for stages 3A and 4 to enter their evaluate and reset phases 

respectively.  Only then, the LJoin signal becomes asserted as shown in Figure 5.12.  When 

LJoin is asserted, it then forces stages 3A and 3B to enter their reset phase, and stage 4 to 

enter its evaluate phase.  In general, if two branches of a join pipeline has different 

delays, the last stage before the join stage in the fastest branch will remain in the evaluate 

phase until the last stage in the slowest branch enter its evaluate phase.  Thus, the Join 

block synchronizes both branches before computation proceeds past the join stage.       

 

 

Figure 5.12: Simulation snapshot of the prototype D-SRSL join pipeline. 
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5.2.2 D-SRSL Fork Pipeline 

Figure 5.13 shows a D-SRSL fork pipeline.  Data is transferred from stage A to 

stage B and C when the former is in the evaluate phase while the two latter stages are in 

the reset phase.  When these conditions are true, latches 2 and 3 are enabled to capture 

the output of stage A and feed it to stages B and C.  The coordination between the three 

stages is orchestrated by the Fork block.  Figure 5.14 shows the STG of the fork structure 

shown in Figure 5.13.  In this STG, L2 experiences a rising transition when φA and φB 

experience a rising and a falling transition respectively. Similar observation can be made 

with regard to L3, φA and φC.  Once both signals L2 and L3 experience rising transitions, so 

does LFork, thus forcing stage A to finish its evaluate phase while stages B and C are 

forced to start their evaluate phases. When LFork becomes asserted, the Clr signal gets 

asserted in return, which triggers the Fork block to transition to the disabled state.  

 

As Figure 5.15 shows, the Fork block has three inputs L2, L3, and R. In addition, it 

has one output LFork.  Figure 5.16 shows the state graph of the Fork block which consist 

of two states, namely the enabled state SE, and the disabled state SD.  As long as R is 

asserted, the Fork block remains in the disabled state.  It wait until L2 and L3 become 

asserted to transition to the enabled state.  After a delay, sufficiently long to allow the 

data to go through the latch, has elapsed, the Fork block returns automatically to the 

disabled state, thus disabling the latches 2 and 3 shown in Figure 5.13. 
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Figure 5.13: D-SRSL fork pipeline. 

 
Figure 5.14: STG of the D-SRSL fork pipeline shown in Figure 5.13. 
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Figure 5.15: Fork block. 

 
Figure 5.16: State graph of the Fork block. 

In order to verify the functional correctness of the D-SRSL fork structure, 

simulation experiments were conducted on a prototype fork pipeline shown in Figure 

5.17 in which each stage contains a CN with a different delay.  The same rationale used 

in the simulation experiment of the join prototype pipeline is also adopted in simulating 

the fork structure on the fork prototype pipeline.  In the prototype pipeline, the total delay 

of the CNs through branch A is 4.5 ns while it reaches 3.6 ns through branch B. 

 

 
Figure 5.17: Prototype D-SRSL fork pipeline.  
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For purpose of illustration, Figure 5.18 shows a simulation snapshot of stages 4, 

5A, and 5B for the prototype pipeline shown in Figure 5.17.  Note that although the delay 

difference between stage 5A and 5B is quite significant, they seem to be synchronized in 

the way they start and complete their respective evaluate phases.  As soon as the LFork 

experiences a rising transition, both stages 5A and 5B start their evaluate phases.  As 

shown in Figure 5.18, stage 5A starts its evaluate phase slightly after stage 5B since its 

CN has a higher delay than the CN of stage 5B.  After both stages 5A and 5B finish their 

evaluate phases, they start their reset phase.  Although the CN in stage 5B has a smaller 

delay, its reset phase is nevertheless extended for the purpose of waiting for a rising 

transition on LFork, which occurs only when the latch enables of stages 5A and 5B 

experience rising transitions.  These transitions take place only when stage 4 is in the 

evaluate phase while stages 5A and 5B are both in the reset phase.  As a result, by 

delaying the rising transition of LFork until the rising transitions of the latch enables of 

stages 5A and 5B take place, both stages are forced to start their evaluate phases 

simultaneously. 

 
Figure 5.18: Simulation snapshot of the prototype D-SRSL fork pipeline.  
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5.3. Performance of the Pipeline 

This section starts by examining the relationships between the duration of the 

reset and evaluate phase in two neighboring stages of a D-SRSL pipeline and how these 

two parameters depend on the delays through the PC and LC blocks.  This explanation is 

followed by a brief description of how the relationships between the duration of the reset 

and evaluate phases affect the duration of the latch enable in a given stage.  Finally, an 

elaboration on how the delay of a CN embedded in a stage affects the duration of the 

reset and evaluate phases of a stage, based on the stage which contains the CN with the 

longest delay in a D-SRSL pipeline, is presented.       

5.3.1 The Reset and Evaluate Phase 

The phase of a stage i can be determined by observing φi. When φi = 0, stage i is 

in the reset phase. Otherwise, it is in the evaluate phase.  Since the start and end of the 

evaluate phase of stage i depends on the rising transition of the Li and Li+1 signals, the 

duration of the evaluate phase of any stage i is: 

( ) ( ) ( ) ( )1 1                    5.1i i id E t L t L+ +
+= −  

 

where t(Li+1
+) represents the time at which the latch enable of stage i+1 experiences a 

rising transition while t1(Li
+) represents the time at which the latch enable of stage i 

experiences a rising transition.  Note that the subscript 1 of t indicates that t1(Li
+) 

precedes t(Li+1
+) in time.  On the other hand, since the start and end of the reset phase in 
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stage i depend on the rising transitions of Li and Li+1 signals, the duration of the reset 

phase of any stage i is: 

( ) ( ) ( ) ( )2 1                    5.2i i id R t L t L+ +
+= −  

 

where t(Li+1
+) is defined as above and t2(Li

+) represents the time at which the latch enable 

of stage i experiences a rising transition.  Note that the subscript 2 of t indicates that 

t2(Li
+) succeeds t(Li+1

+).  Since t2(Li
+) succeeds t(Li+1

+), it succeeds by transitivity t1(Li
+).  

Figure 5.19 shows the simulation waveforms the latch enables and phases of stages 14, 

15, and 16 in a 16-stage D-SRSL pipeline.  

 

Figure 5.19: Simulation snapshot of stage 14, 15 and 16 in a 16-stage prototype D-SRSL 
pipeline. 

To illustrate the proper operation of the pipeline based on the waveforms shown 

in Figure 5.19, focus is placed on how stage 15 reacts to the phases of the neighboring 

stages, namely stages 14 and 16.  As the left callout in the figure shows, when the latch 

enable of stage 15 is asserted, stage 14 is in the evaluate phase while stage 15 is in the 

reset phase.  After a short time, stage 15 enters its evaluate phase while stage 14 ends its 

own evaluate phase.  Later, stage 15 ends its evaluate phase a short time after the latch 
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enable of stage 16 becomes asserted.  Since both short times are almost equal, they cancel 

each other thus making the duration of the evaluate phase in stage 15 start when its latch 

enable becomes asserted, and ends when the latch enable of stage 16 becomes asserted.  

In essence, this validates equation (5.1).  Similarly, as the right callout in the figure 

shows, when the latch enable of stage 16 is asserted, stage 15 is still in the evaluate phase 

while stage 16 is in the reset phase.  A short time later, stage 15 enters its reset phase 

while stage 16 starts its evaluate phase.  Stage 15 will remain in its reset phase until a 

short time after its own latch has been enabled.  Since both short times are almost equal, 

they cancel each other thus making the duration of the reset phase of stage 15 start when 

the latch enable of stage 16 is asserted, and ends when the latch enable of stage 15 

becomes asserted.  In essence, this validates equation (5.2).  Let D(PCi) be the delay from 

an input port to the output port of PC block i.  As Figure 5.5 shows, the LC block has a 

left and right input port in addition to an output port.  Let Dleft(LCi) be the delay from the 

left input port to the output port of LC block i.  Similarly, let Dright(LCi) be the delay from 

the right input port to the output port of LC block i.  These newly defined delays can be 

expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )1φ φ                     5.3i i i i iD PC t t L t t L+ + − +
+= − ≅ −  

( )( ) ( ) (φ )                    5.4right i i iD LC t L t+ −= −  

( ) ( ) ( ) ( )1φ                     5.5left i i iD LC t L t+ +
−= −  

 

Note that t(φi
+) and t(Li

+) represent the time at which φi and Li experience rising 

transitions.  By replacing the + with a –, the same notation can be used to indicate falling 

transitions.  By adding the delay through the phase control block of stage i and the delay 
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from the left port to the output of the latch control block of latch i+1, one can determine 

d(Ei) as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 1

1

φ φ

                                 

                                                                         5.6

i left i i i i i

i i

i

D PC D LC t t L t L t

t L t L

d E

+ + + +
+ +

+ +
+

+ = − + −

= −

=

 

 

Similarly, by adding the delay through the phase control block of stage i and the 

delay from the right port to the output of the latch control block of latch i, one can 

determine d(Ri) as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1

1

φ φ

                                 

                                                                         5.7

i right i i i i i

i i

i

D PC D LC t t L t L t

t L t L

d R

− + + −
+

+ +
+

+ = − + −

= −

=

 

 

In the overall, to insure correct operation of the D-SRSL pipeline, the propagation 

delay through the latch of any stage i, D(Li), plus the delay through the combinational 

network, D(CNi), should be less than the period of the stage Pi.  As a result, a delay block 

∆i with delay D(∆i), has to be inserted in the PC block to satisfy the following constraint:  

( ) ( ) ( ) ( )
( ) ( ) ( )                   5.8

i i i i

i i i

d E d R D L D CN

P D L D CN

+ ≥ +

≥ +
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5.3.2 Duration of Latch Enable 

As Figure 5.5 shows, the LC block can be reset by asserting the R signal, which can 

be done manually or when Li is fed back to the Clr port of the LC block after its assertion.  

Let Dclr(LCi) be the time elapsed between the instant in which Clr is asserted and the 

instant in which the latch enable Li is de-asserted. This time lapse can be expressed as:   

( ) ( ) ( ) ( )                   5.9clr i iD LC t L t Clr− += −  

 

The duration of the latch enable, d(Li), can be characterized based on two distinct 

scenarios: 

(i) If D(CNi) < Dclr(LCi), Li becomes de-asserted when φi is asserted.  In this case, 

( ) ( ) ( )                    5.10i id L d R=  

(ii) If D(CNi) > Dclr(LCi), Li becomes de-asserted when Clr is asserted.  In this case, 

( ) ( ) ( )                   5.11i Clr id L D LC=  

 

In brief, the duration of the latch enabled can be quantified as: 

( ) ( ) ( ){ } ( )min ,                     5.12i i Clr id L d R D LC=  

 

Scenario (i) represents the case in which the CN is so small that its delay is less 

than the delay of latch control block.  In this case, the duration of the latch enable 

depends on the duration of the reset phase.  On the other hand, scenario (ii) represents the 

case in which the delay through the CN is larger than the delay of the latch control block.  
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In this case, the duration of the latch enable depends on the delay through the latch 

control block.   

5.3.3 Stage Delay and Period 

To study the impact of CN delay on stage periods across the pipeline, a prototype 

17-stage pipeline has been implemented in which the CNs of the stages have different 

delays.  In this pipeline, stage 9 has the CN with the longest delay of 2.4 ns while stages 1 

through 8 and 10 through 17 have randomly distributed CN delays of 0.9 ns to 2.3 ns and 

0.9 ns to 2.1 ns respectively.  Figure 5.20 shows a simulation snapshot of stage 7 through 

11 of the 17-stage prototype pipeline in order to illustrate how the evaluate and reset 

phases of the stages on each side of stage 9 behave.  It is clear from the figure that d(E7) 

> d(E9) and d(E8) > d(E9) while d(R10) > d(R9) and d(R11) > d(R9).  In fact, the duration of 

the evaluate phase of any stage before the worst-delay stage will be greater than the 

duration of the evaluate phase of the worst-delay stage.  On the other hand, the duration 

of the reset phase of any stage after the worst-delay stage will be greater than the duration 

of the reset phase of the worst-delay stage. If stage k is the stage which contains the 

longest-delay CN, then 

( ) ( ) ( ) ( ) ( ) (,        5.13    and   ,        5.14i k j kd E d E i k d R d R j k> < > > )  
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Figure 5.20: Simulation snapshot of stages 7 through 11 in a 17-stage prototype D-SRSL 
pipeline. 

In addition, the figure shows that the period of every stage is identical in an n-

stage pipeline: 

( ),    1                     5.15iP P i n= ≤ ≤  

 

To explain how d(E8) > d(E9), Figure 5.21 shows a simulation snapshot of stages 

8 and 9 in the same 17-stage prototype pipeline described above.  In the figure, the latch 

enable of stage 9 experiences a rising transition when stage 8 is in the evaluate phase 

while stage 9 is in the reset phase.  This transition allows stages 8 and 9 to finish and start 

their own evaluate phases respectively.  Since stage 9 contains the longest-delay CN, it 

has a relatively longer evaluate and reset phases.  The long evaluate phase of stage 9 

delays the onset of its own reset phase, which in return delays the rising transition of its 

own latch enable.  As a result, the evaluate phase of stage 8 is stretched further as it waits 

for the rising transition on the latch enable of stage 9, even though the CN delay in stage 
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8 is smaller than the CN delay in stage 9.  This explains equation (5.13).  Initially, when 

the pipeline starts operating, the stretching of the evaluate phase of stage 8 is somewhat 

smaller as shown in the leftmost callout in Figure 5.21.  After the first pipeline 

throughput, the pipeline reaches a steady state in which the stretching of the evaluate 

phase of stage 8 is at its maximum as shown in the rightmost callout in Figure 5.21.  In 

general, any stage before stage 9 will not be able to finish its evaluate phase until its own 

successor stage finishes its own evaluate phase.      

 

Figure 5.21: Simulation snapshot of stages 8 and 9 in the 17-stage D-SRSL prototype 
pipeline. 

To explain how d(R10) > d(R9), Figure 5.22 shows a simulation snapshot of stages 

9, and 10 in the same 17-stage prototype pipeline described above.  In the figure, the 

rising edge of the latch enable of stage 10 allows stages 9 and 10 to finish and start their 

own evaluate phases respectively.  The evaluate phase of stage 10 will last for a slightly 

shorter time since its CN has a smaller delay than the CN delay of stage 9.  This results in 

stage 10 finishing its evaluate phase and starting its reset phase before stage 9 completes 

its own evaluate phase.  Hence, stage 10 remains in the reset phase thereby waiting for 

stage 9 to complete its evaluate phase, then start and complete its own reset phase.  This 

long wait time causes a long reset phase in stage 10 which in turn delays the onset of the 

reset phase of stage 11.  The domino effect of these delays is that every stage after stage 9 
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ends up with a reset phase that is longer than the reset phase of stage 9 as expressed in 

equation (5.14).         

 

 
Figure 5.22: Simulation snapshot of stages 9 and 10 in the 17-stage D-SRSL prototype 

pipeline. 

If equation (5.13) is true, it becomes possible to determine how d(Ri) relates to 

d(Rk).  If both sides of equation (5.13) are replaced with equation (5.8), equation (5.13) 

can be rewritten as follows: 

( ) ( ) ( ) ( ) ( ) ( ) (         5.16i i i k k kD L D CN d R D L D CN d R+ − > + − )  

 

Because the latches and the PC blocks are identical in all stages of the pipeline, then 

D(Li) = D(Lk).  Based on this equality, the two quantities can be dropped from equation 

(5.16) to rewrite it as: 

( ) ( ) ( ) ( ) (                   5.17i i k kD CN d R D CN d R− > − )  

 

Since stage k has the worst CN delay, it follows that D(CNk) > D(CNi).  Given this 

remark, equation (5.17) remains valid only if:   

( ) ( ) ( ),            5.18i kd R d R i k< <  
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The differences between the evaluate and reset phases of any stage before stage k can be 

quantified as follows: 

( ) ( ) ( ) ( ) ( ) ( ) (,                     5.19i k k i k id E d E d R d R D CN D CN i k− = − > − < )  

 

Similar reasoning can be followed to characterize the evaluate phases of the stages after 

stage k.  In this case, both sides of equation (5.14) can be replaced with equation (5.8) as 

follows: 

( ) ( ) ( ) ( ) ( ) ( ) (       5.20j j j k k kD L D CN d E D L D CN d E+ − > + − )  

 

Because the latches and the PC blocks are identical in all stages of the pipeline, then 

D(Lj) = D(Lk).  Based on this equality, the two quantities can be dropped from equation 

(5.20) to rewrite it as: 

( ) ( ) ( ) ( ) (                   5.21j j k kD CN d E D CN d E− > − )

)

 

 

Since stage k has the worst CN delay, it follows that D(CNk) > D(CNj).  Given this 

remark, equation (5.20) remains valid only if:   

( ) ( ) (,           5.22j kd E d E j k< >  

 

The differences between the evaluate and reset phases of any stage after stage k can be 

quantified as follows: 

127 



( ) ( ) ( ) ( ) ( ) ( ) ( ),                      5.23k j j k k jd E d E d R d R D CN D CN j k− = − > − >  

5.3.4 Area Cost   

To assess the area cost of D-SRSL pipelines, they are briefly compared to clocked 

pipelines.  While the latter require only flip-flops between pipeline stages, D-SRSL 

pipelines require inter-stage latches in addition to intra-stage PC blocks, which contain 

delay buffers, and LC blocks.  Since both blocks are in essence small state machines, 

their area is more than marginal.  In fact, the implementation of the PC blocks require 

three NAND gates, one AND gate, and one inverter while the implementation of the LC 

block requires one AND gate, one OR gate, one inverter, and one D flip-flop.  Within a 

single stage, both blocks can consume the equivalent of eight gates and one flip-flop in 

addition to the delay block whose area can be proportional to the critical path delay of the 

intra-stage logic.  Given this area overhead, it is obvious that D-SRSL pipelining is 

suitable for coarse-grain logic in general, and shallow and wide logic in particular.  In 

any case, the area cost of D-SRSL pipelines is clearly greater than the area cost of 

clocked pipelines.          

5.3.5 Fault Handling 

Similarly to the analysis elaborated on S-SRSL and P-SRSL pipelines, only stuck-

at faults are considered based on whether a given stage gets stuck in the evaluate or reset 

phase.   
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• Stage locked in the evaluate phase: If the output of the PC block of a given stage j 

gets stuck at 1 (i.e., φj = 1), stage j remains locked in the evaluate phase.  As long as φj is 

equal to 1, LCj block remains in the disabled state.  This in turn forces Lj to switch to 0, 

thus disabling latch j.  As a result, data is prohibited from passing from stage j−1 to j.  

After Lj switches to 0, this forces PCj−1 block to transition to the enabled state, thus 

forcing stage j−1 into the evaluate phase.  Since φj−1 remains equal to 1, it triggers the 

same sequence of responses in LCj−1 block, Lj−1, and latch j−1 thus locking stage j−2 into 

the evaluate phase.  This phenomenon propagates leftward from stage j to stage 1 of the 

pipeline locking every stage from 1 to j into the evaluate phase.  As a result, data flow is 

completely stopped in this segment of the pipeline.  When stage j remains locked in the 

evaluate phase, this allows LCj+1 block to transition to the enabled state, which in turn 

enables latch j+1.  As a result, data flows between stage j and j+1.  After Lj+1 becomes 

equal to 1, it allows PCj+1 block to transition to the enabled state thus forcing stage j+1 

into the evaluate phase.  This in turn allows LCj+2 block to transition to the enabled state 

after which stage j+1 and j+2 enter the reset and evaluate phase respectively.  The former 

remains in the reset phase as long as Lj+1 is equal to 0 due to the fact that stage j is stuck 

in the evaluate phase.  The same sequence of events occurs between stage j+2 and j+3 

resulting in stage j+2 being stuck in the reset phase.  This phenomenon propagates 

rightward locking every stage from j to n into the reset phase.  Whereas data flows 

uninterrupted from stage 1 to j for one period before each stage before stage j get locked 

in the reset phase, its flow is completely blocked from stage j+1 to n.       
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• Stage locked in the reset phase: If the output of the PC block of stage j gets stuck at 0 

(i.e., φj = 0), stage j remains locked in the reset phase.  Since φj is equal to 0, LCj block 

transitions to the enabled state.  This in turn forces Lj to switch to 1, thus enabling latch j.  

As a result, data is allowed to flow from stage j−1 to j.  After Lj switches to 1, PCj−1 block 

transitions to the disabled state forcing stage j−1 into the reset phase.  After stage j−1 

enters the reset phase, LCj−2 block transitions to the enabled stage, which in turn forces 

Lj−1 to switch to 1, thus enabling latch j−1.  As a result, data flows from stage j−2 to j−1.  

After Lj−1 switches to 1, PCj−2 block transitions to the disabled state forcing stage j−2 into 

the reset phase.  This sequence of events occurs in every stage from j to 1 at the end of 

which each one of these stage remains locked in the reset phase.  On the other hand, 

when stage j remains locked in the reset phase, LCj+1 block transitions to the disabled 

state, which in turn forces Lj+1 to switch to 0.  In this case, latch j+1 is disabled which 

prohibits data from passing from stage j to j+1.  After Lj+1 switches to 0, PCj+1 block 

transitions to the disabled state, thus forcing stage j+1 in the reset phase.  After stage j+1 

enters the reset phase, LCj+2 block transitions to the disabled state, which in turn forces 

Lj+2 to switch to 0.  In this case, latch j+2 is disabled, which prohibits data from passing 

from stage j+1 to j+2.  This phenomenon propagates rightward from stage j to n locking 

in its propagation all these stages in the reset phase.  In the overall, data flows from stage 

1 to j for a single period after which each stage before j gets locked in the reset phase.  At 

the same time, data is completely blocked in the stages after stage j. 
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5.4 Prototype Implementation of the D-SRSL Pipeline 

This section presents the implementation details of the blocks used in the D-SRSL 

pipeline where the delay path of each implementation is used to illustrate how it impacts 

the overall delay of the pipeline.  These blocks consist of the PC block, LC block, the 

Join and Fork blocks.  Next, simulation results of three prototype pipelines and their 

interpretations are presented.    

5.4.1 Implementation of the PC Block 

The PC block was modeled in VHDL, synthesized, and optimized using Synopsys 

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Figure 5.23 shows the 

synthesized netlist as a sequential circuit which implements the state machine shown in 

Figure 5.4. Note that this sequential circuit can be reset by an active low Reset signal.  

Since this circuit is located within the self-resetting loop embedded within a stage of a D-

SRSL pipeline, its critical path becomes part of the self-resetting loop path.   

 

In Figure 5.23, this critical path starts at the inverter I, crosses the gates N1, N2, 

and A, before reaching the delay block ∆.  Based on this critical path, equation (5.3) can 

be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φ 2                   5.24i i i iD PC t t L D INV D NAND D AND D+ += − = + + + ∆  
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Figure 5.23: Synthesized netlist of the PC block. 

5.4.2 Implementation of the LC Block 

The LC block was modeled in VHDL, synthesized, and optimized using Synopsys 

Design Compiler based on a 0.25 µm CMOS library [65, 66].  Figure 5.24 shows the 

synthesized netlist as a sequential machine consisting of one flip-flop and two gates.  

This netlist implements the sequential machine shown in Figure 5.6. 

 

Because the LC block is part of the self-resetting loop embedded within a stage in 

a D-SRSL pipeline, this circuit becomes part of the self-resetting path.  As a result, the 

path delays of this netlist add up the overall delay of the self-resetting loop.  However, 

there are two possible paths of interest in the netlist shown in Figure 5.24.  The right path 
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starts at the inverter I, and traverses the gates A and O.  Based on this path, equation (5.4) 

can be rewritten as follows: 

( ) ( ) ( ) (( ) ( ) (φ )                     5.25right i i iD LC t L t D INV D AND D OR+ −= − = + + )  

 

Figure 5.24: Synthesized netlist of the LC block. 

On the other hand, the left path starts at the clock port of the D flip-flop, goes out 

the output port of the flip-flop, and traverses the gates A and O.  Based on this path, 

equation (5) can be rewritten as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1φ clk_to_Q                     5.26left i i iD LC t L t D D AND D OR+ +
−= − = + +  

 

Note hat in the cell library used in this implementation, D(INV) < D(clk_to_Q).  

As a result, Dright(LCi) < Dleft(LCi) based on equations (5.25) and (5.26).  From this 

inequality, it follows that equation (5.6) relates to equation (5.7) as follows: 

( ) ( ) ( ) ( ) (                   5.27i right i i left iD PC D LC D PC D LC+ < + )  

 

By substituting the left and right sides of equation (5.27) for equations (5.6) and 

(5.7) respectively, equation (5.27) can be rewritten as: 
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( ) ( ) ( )                    5.28i id R d E<  

 

As mentioned in section 5.2, the LC block can be reset by asserting the R signal, 

which can be done manually or when Li is fed back to the Clr port of the LC block after 

its assertion.  The resetting of the LC block follows a path which starts at the Clr port of 

the flip-flop, goes out the output port of the flip-flop, and traverses the gates A and O.  

Since Dclr(LCi) denotes the delay on this path, equation (5.9) can be rewritten as follows:   

( ) ( ) ( ) ( ) ( ) ( )clr_to_Q ( )                    5.29clr i iD LC t L t Clr D D AND D OR− += − = + +  

5.4.3 Implementation of the Join Block 

The Join block was modeled in VHDL, synthesized, and optimized using 

Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66].  Figure 5.25 

shows the synthesized netlist as a sequential machine consisting of two flip-flops and two 

gates.  This netlist implements the sequential machine shown in Figure 5.10. 

 

Figure 5.25: Synthesized netlist of the Join block. 
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In the case of a join pipeline, the Join block becomes part of the self-resetting 

loop embedded in each stage around the join block, namely stages A, B, and C as shown 

in Figure 5.7.  Note that for either stage A or B in Figure 5.7, the Join block replaces both 

the LCA and LCB blocks.  As a result, the delay contributed by the LC block in each stage 

can be replaced by the delay of the Join block.  Using the same nomenclature adopted in 

the implementation of the LC block, the right path through the Join block, shown in 

Figure 5.25, starts at the inverter I, and traverses the gates A and O.  Based on this path,  

( ) ( ) ( ) ( ) (                   5.30rightD Join D INV D AND D OR= + + )  

 

Note that Dright(Join) = Dright(LC).  On the other hand, the left path starts at the 

clock port of either D flip-flop, goes out the output port of the flip-flops, and traverses the 

gates A and O.  Based on this path, 

( ) ( ) ( ) ( ) (clk_to_Q                    5.31leftD Join D D AND D OR= + + )  

Note that Dleft(Join) = Dleft(LC).  As mentioned in section 5.2.1, the Join block can 

be reset by asserting the R signal, which can be done manually or when LJoin is fed back 

to the Clr port of the Join block after its assertion.  The resetting of the Join block follows 

a path which starts at the Clr port of either flip-flop, goes out the output port of the flip-

flop, and traverses the gates A and O.  Using the same nomenclature, the delay on this 

path can be expressed as follows:     

( ) ( ) ( ) (clr_to_Q ( )                    5.32clrD Join D D AND D OR= + + )  

Note that Dclr(Join) = Dclr(LC). 
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5.4.4 Implementation of the Fork Block 

The Fork block was modeled in VHDL, synthesized, and optimized using 

Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66].  Figure 5.26 

shows the synthesized netlist as a sequential machine consisting of two flip-flops and two 

gates.  This netlist implements the sequential machine shown in Figure 5.16. 

 

 

Figure 5.26: Synthesized netlist of the Fork block. 

In the case of a fork pipeline, the Fork block becomes part of the self-resetting 

loop embedded in the stage containing the Fork block, namely stage A in Figure 5.13.  

Contrary to the case of the Join block in a join pipeline, the Fork block augments the path 

of the self resetting loop embedded in the stage containing the Fork block in a fork 

pipeline.  As a result, the delay contributed by the Fork block can be added to the overall 

delay of the self-resetting loop. This delay through the Fork block starts at the clock port 

of either D flip-flop, goes out the output port of the flip-flop, and traverses the gates A 

and O.  This delay can be expressed as: 

( ) ( ) ( ) ( ) (clk_to_Q                     5.33D Fork D D AND D OR= + + )  
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Note that equation (5.6) expresses d(E) as a function of the delay of the self-

resetting loop.  Based on the delay path of the Fork block, equation (5.6) can be rewritten 

as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )

1 2

                                                         2 clk_to_Q

3 2 2 clk_to_Q 2

                                       

i left i i

i

i

D PC D LC D Fork D INV D NAND D AND D

D D AND D OR

D AND D NAND D D OR D INV D

d E

++ + = + + + ∆

+ + +

= + + + + + ∆

= ( )                                                                     5.34

 

 

As mentioned in section 5.2.2, the Fork block can be reset by asserting the R 

signal, which can be done manually or when LFork is fed back to the Clr port of the Fork 

block after its assertion.  The resetting of the Fork block follows a path which starts at the 

Clr port of either flip-flop, goes out the output port of the flip-flop, and traverses the 

gates A and O.  Using the same nomenclature, the delay on this path can be expressed as 

follows:     

( ) ( ) ( ) (clr_to_Q ( )                    5.35clrD Fork D D AND D OR= + + )  

5.4.5 Implementation of D-SRSL Pipeline 

A 16-stage pipeline was modeled in VHDL and the corresponding netlist was 

generated using Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66]. 

Cadence’s Silicon Ensemble was used to place and route the pipeline.  This pipeline 

displays a total latency of 15.3 ns and a throughput of 1088.14 Megaoutputs/sec based on 

the period of the last stage as shown in Table 5.1. Table 5.2 shows the gate area of the 

various blocks in a single D-SRSL stage.  
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Table 5.1: D-SRSL pipeline implementation. 

Stages 16 
Bit width 5 
Combinational network None 
Synthesis Synopsys Design Compiler 
Layout Cadence Silicon Ensemble 
Simulation Synopsys Scirocco Simulator 
Library 0.25 µm CMOS library 
Latency  15.3 ns 
Throughput 1088.14 Megaoutputs/second 
Stage period  0.916 ns 
Latch enable duration 0.42 ns 
Theoretical pipeline depth No limit 

 

Table 5.2: Gate area of a single D-SRSL stage. 

Parameter Gate Cost  
PC block  3 NAND gate, 1 AND gate, 1 INV 
Delay block Area of the CN critical path 
LC block 1 AND gate, 1 OR gate, 1 INV, 1 D-FF 

 

Simulations of the pipeline were conducted in order to measure P, d(E), d(R), and 

d(L). Figure 5.27 shows these four parameters in D-SRSL prototype pipeline 1. This 

pipeline is a 16-stage D-SRSL pipeline in which the stages are empty (i.e., they do not 

contain CNs).  In the figure, d(E) is identical in all the stages of the pipeline.  Similarly, 

d(R) is identical in every stage of the pipeline.  However, d(E) > d(R) in any stage as 

expressed by equation (5.28).  In addition, d(L) is almost equal to d(R) as predicted by 

equation (5.10) since D(CNi) = 0 for any stage in this pipeline.   
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Figure 5.27: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 
1. 

Figure 5.28 shows these four parameters in D-SRSL prototype pipeline 2. This 

pipeline is a 16-stage D-SRSL pipeline where D(CNi) > Dclr(LCi) in each stage. To this 

end, a 0.6 ns delay CN was embedded in each stage of the pipeline. As the figure shows, 

d(L) < d(R).  In fact, d(L) = Dclr(LC) in every stage based on the value of Dclr(LCi) 

extracted from the implementation of the LC block as shown in Figure 5.24. This 

validates equation (5.11). 
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Figure 5.28: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 
2. 

Figure 5.29 show the implementation of a D-SRSL prototype pipeline 3.  This 

pipeline is a 17-stage D-SRSL pipeline in which stage 9 has the longest CN delay while 

the remaining stages have CNs with randomly distributed delays that are smaller than the 

delay of the CN embedded in stage 9.  It is clear from the figure that, in stage 9, d(E) is 

closer to d(R) than in any other stage.  In the stages before stage 9, d(Ei) > d(E9), i < 9,  as 

stated in equation (5.13).  This results in d(Ri) < d(R9), i < 9, as predicted by equation 

(19).  On the other hand, d(Rj) > d(R9), j > 9, in the stages after stage 9 as stated in 

equation (5.14, which results in d(Ei) < d(E9), j > 9,  as predicted by equation (5.22). Note 

that equation (5.19) regarding the stages before stage 9, and equation (5.23) regarding the 

stags after stage 9, are both valid based on the simulation results of Figure 5.29. 

Regardless of the delay in stage 9, P is identical in all stages as is the case in pipeline 1, 
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2, and 3.  This shows that stage 9 determines P for the remaining stages in the pipeline 

although these stages have smaller delays than stage 9.     
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Figure 5.29: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype 
pipeline3.  

5.5. Conclusion 

This chapter presents D-SRSL as a new clockless pipeline design technique that 

can handle significant delays difference between the stages of the pipeline.  This 

capability provides a high degree of flexibility in pipelining coarse grain datapaths. In the 

D-SRSL approach, stages communicate with each other through their respective phases. 

The timing analysis showed that in the D-SRSL pipeline, it was observed that the 

duration of the evaluate phase and the duration of the reset phase are equal for all the 

stage in equal delay pipelines. However, in random delay pipelines, it was observed that 
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the duration of the evaluate phase increases on the left side of the worst stage delay while 

the reset phase duration increases on the right side of the worst stage delay.  This makes 

the worst delay stage the stage which controls the period of the pipeline. This timing 

analysis is validated through experiments with three pipelines with different stage delay 

assumptions.    
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CHAPTER SIX: SYNTHESIS OF SRSL PIPELINES  

This chapter presents the proposed SRSL design methodology in section 6.1 while 

section 6.2 presents the synthesis of SRSL pipelines. Section 6.3 reviews the preliminary 

concepts used to formulate the synthesis of the SRSL pipeline synthesis problem. The 

modeling and the formulation of  this problem is presented in section 6.4 while 

section 6.5 explains the proposed heuristic solution. Section 6.6 discuses the obtained 

experimental results for SRSL pipelines. Finally, section 6.7 gives a summary of the 

chapter. 

6.1 SRSL Pipeline Design Methodology  

In order to leverage the investment spent on current commercial design tools used 

in clocked logic, it would make sense to adopt the same design methodology and flow 

supported by these tools to synthesize SRSL pipelines as argued in chapter 1. Ideally, 

minimum disturbance to this design methodology is highly desirable. Figure 6.1 proposes 

the adopted design flow for SRSL logic. In the figure, a parser extracts the clocked gate 

netlist in order to build a Boolean graph. Next, an SRSL pipeline synthesizer partitions 

the graph into stages and inserts the latches and the reset network of each stage in 

appropriate places inside the graph without violating performance constraints. At the end, 

the synthesizer produces an SRSL pipeline represented as a gate netlist. The SRSL gate 

netlist can be simulated with any commercial simulator. It can also be mapped onto a 

standard cell library using any commercial technology mapper in order to produce a cell 

netlist. The latter can be placed and routed using conventional physical synthesis tools by 
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propagating the same performance constraints used in high level synthesis to the physical 

synthesis tools. 

 

Figure 6.1: SRSL design flow. 
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6.2 Synthesis of SRSL Pipelines 

The synthesis of SRSL pipelines consist of transforming a clocked gate netlist 

into an SRSL pipeline characterized by a data rate and an area cost. Note that by area 

cost, it is meant the gate area needed to support an SRSL pipeline structure. This gate 

area consists primarily of (i) latches located between pipeline stages, and (ii) delay 

elements needed for the reset network of each stage. As such, this synthesis requires (i) 

the availability of specific gate resources, and (ii) the specification of performance 

constraints. The gate resources consist of primitive combinational gates, latches, and 

delay elements. Each resource is characterized by a function, area, and delay attributes. 

On the other hand, performance constraints can be area or timing constraints. The former 

refers to a specified upper limit on gate area needed to convert a gate netlist into an SRSL 

pipeline while the latter refers to a specified lower limit on data rates that can be achieved 

by converting a gate netlist into an SRSL pipeline.   

 

To transform a gate netlist into an SRSL pipeline, a designer is faced with three 

problems: 

 

Problem 1 (P1): Given a gate netlist and a data rate, transform the gate netlist into an 

SRSL pipeline by incurring the smallest area cost. P1 can be called the data rate 

constrained minimum area SRSL pipelining problem. 
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Problem 2 (P2): Given a gate netlist and an area cost, transform the gate netlist into an 

SRSL pipeline by achieving the highest data rate. P2 can be called the area constrained 

maximum data rate SRSL pipelining problem.  

 

Problem 3 (P3): Given a gate netlist, transform the netlist into an SRSL pipeline with the 

smallest area cost and the highest data rate. P3 can be called the unconstrained maximum 

data rate minimum area SRSL pipelining problem.  

 

Based on their formulations, both P1 and P2 are dual problems. From a practical 

perspective, P1 is more relevant to designers than P2 and P3.  

6.3 Preliminaries 

In order to transform a gate netlist into an SRSL pipeline, a gate netlist is abstracted 

into an algebraic representation suitable for computation.   

 

Definition 6.1: An incidence structure consists of a set of modules, a set of nets, and an 

incidence relation among modules and nets [69, 70]. 

 

For instance, an incidence structure can be specified by representing each module 

with its terminals, also called pins or ports, and to describe the incidence among nets and 

pins. The incidence relationship can be represented by a matrix.  
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Definition 6.2: A Boolean network is an incidence structure where: 

• Each module performs a Boolean function. 

• Each module has multiple inputs and a single output. 

• Pins are partitioned into input and output pins. 

• Pins that do not belong to modules are primary inputs and primary outputs. 

• Each net has a terminal, called source, and an orientation from the source to the other  

   terminals, called sinks.  

• The source of a net can be either a primary input or the output of a module. 

• The sink of a net can be either a module input or a primary output. 

• The relation induced by the nets on the module is a partial order [70]. 

 

Figure 6.2 shows a Boolean network with 10 primary inputs, 10 modules, and 

four primary outputs [70].  

 

Figure 6.2: Example of a Boolean network. 
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Boolean networks can be represented in abstract algebraic structures such as 

graphs.  

 

Definition 6.3: A graph G(V, E) is a pair (V, E) where V is a set and E is a binary relation 

on V. 

Two vertices in V are neighbors or adjacent if they are connected by an edge in E. 

In this dissertation, only finite graphs are considered, meaning graphs with finite sets V. 

The elements of V are vertices while the elements of E are edges.  

 

Definition 6.4: A directed graph is graph G(V, E) where E is a set of ordered pairs of 

vertices.  

 

In a directed graph, if two vertices, vi and vj, are adjacent, meaning (vi, vj) ∈ E, the 

predecessor is the vertex located at the tail of the edge, namely vi, while the successor is 

the vertex located at the head of the same edge, namely vj. In contrast, the edges are 

unordered pairs in an undirected graph.  

 

Definition 6.5: A path from vertex v to w in a graph G(V, E) is a sequence of edges v0v1, 

v1v2, …, vk-1vk, such that v = v0 and vk = w. The length of the path is k. 

 

Such a path can also be represented as an ordered (k+1)-tuple: π = (v0, v1, v2, …, 

vk). In directed graphs, paths follow the direction of the edges.  
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Definition 6.6: A cycle in a directed graph is a nonempty path such that the first vertex 

and the last vertex are identical. 

Definition 6.7: A graph is acyclic if it has no cycles.  

 

Definition 6.8: A Boolean graph G(V, E) is a directed graph where: 

• The vertex set V is a one-to-one correspondence with the primary inputs, modules, and  

   primary outputs of a Boolean network.    

• The directed edge set E represents the decomposition of the multi-terminal nets of the  

   Boolean network into two-terminal nets.   

 

Figure 6.3 shows a Boolean graph based on the Boolean network of Figure 6.2. 

Note that the Boolean graph is acyclic since the nets induce a partial order on the 

modules.  

 
Figure 6.3: Boolean graph of the Boolean network shown in Figure 6.2. 
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The modules of a Boolean network can be mapped to Boolean gates. In this case, 

its resulting Boolean graph is a mapped or bound Boolean graph. The gate netlist 

produced by the compiler in Figure 6.1 is a mapped Boolean network. Before it is 

transformed into an SRSL pipeline, it is translated into a Boolean graph.   

6.4 Modeling of the Synthesis Problem 

It is assumed that a clocked gate netlist is specified by a mapped Boolean graph 

which is subject to a set of constraints. In addition, it is assumed that the function, area, 

and delay of each gate representing each vertex in the Boolean graph G(V, E) are known. 

The constraints can be either data rates or area costs. Transforming a gate netlist into an 

SRSL pipeline is equivalent to partitioning the Boolean graph of the gate netlist into 

partitions and assigning each partition to a distinct pipeline stage. Let S = {s1, s2, …, s|S|} 

be the set of pipeline stages where the size of this set, |S|, is some positive integer. Let V 

= {vi ; i = 1, 2, …, |V|} and E = {(vi, vj) ; i, j = 1, 2, …, |E|}. 

 

Definition 6.9: A pipelining of a Boolean graph is a function :V Zϕ +→ where 

( )iv skϕ = denotes the gate assignment to a stage  such that 

.   

ks S∈

( ) ( ) ( ), ,i j i jv v v vϕ ϕ≤ ∀ ∈E

 

Since each vertex in V has a delay, D = {di ; i = 1, 2, …, |V|}. It is assumed that 

there are no delays on edges in E beside the delays on the vertices in V. Adding delays to 

the edges will not disturb the modeling of the synthesis problem although it will improve 
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the quality of its solution. Obviously, such a graph, in which a delay is attributed to each 

vertex, will have a critical path.  

 

Definition 6:10: The delay of a path p in a graph G, denoted by dp, is the sum of the 

delays of the vertices in p, i.e., 
: i

p i
i v p

d d
∈

= ∑ .  

 

Definition 6.11: Let Π be the set of all paths in a Boolean graph G(V, E). A critical path 

in G is a path π whose delay is the largest path delay in Π, i.e., { }max :pd d pπ = ∈Π .   

 

In P1, a data rate f is given and the objective is to minimize the area cost incurred 

by partitioning the Boolean graph into stage partitions. The period P of a single stage can 

be obtained from f as 1P
f

= . Surely, there is a critical path π in the Boolean graph G 

whose delay is dπ. An upper bound on the number of stages in the pipeline, called 

maximum pipeline depth, can be obtained from P and dπ. If |S| is the cardinality of S, the 

maximum pipeline depth is dS
P
π

π
⎡ ⎤= = d f⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

. Moreover, |S| can be refined further by 

using equation 3.14 from chapter 3 if an S-SRSL pipeline is being synthesized. In this 

case, ( )1
1min , 1

2
d PS d
P
π

δ
+⎧ ⎫⎢ ⎥⎡ ⎤ ⎛ ⎞= + −⎨ ⎬⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎩ ⎭

L .    
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Definition 6.12: A binary variable xi,s is associated with each vertex vi in V of G(V, E) 

where: 

(i) xi,s = 1 iff the gate i, represented by vi, is assigned to stage s 

(ii) xi,s = 0 otherwise. 

In order to realize a correct partitioning, it is imperative that each vertex in the 

Boolean graph be assigned to a single stage. This requirement is the foundation for a set 

of constraints called assignment constraints: 

( ),
1

1,     1, 2, ...,           6.1
S

i s
s

x i V
=

= =∑  

There are V such constraints in the problem. It also imperative to observe the 

condition stated in Definition 6.9, namely that the successor of a vertex should be 

assigned to (i) the same stage as its predecessor, or (ii) a stage located after the stage of 

its predecessor. This requirement is the foundation for a set of constraints called 

precedence constraints: 

( ) ( ), ,
1 1

,      ,           6.2
S S

i s j s i j
s s

sx sx v v E
= =

≤ ∀ ∈∑ ∑  

These constraints can be rewritten as: 

( ) ( ), ,
1 1

0,      ,           6.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑  

There are E such constraints in the problem. Since P can be obtained from the 

given data rate, it is important that the delay through each stage does not exceed P:  

( ),
:

, 1, 2, ..., 6.4
i

i i s
i v

d x p s S
π∈

≤ =∑  
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There are S such constraints in the problem. By partitioning the Boolean graph 

into stages, segments of the critical path, or subpaths, are assigned to different stages. The 

delay on these subpaths determines primarily the period of the stage in which they are 

included. Constraint (6.4) can be rewritten as an equality if a balanced pipeline is desired. 

A balanced pipelined is a pipeline in which all the stages have the same period, i.e., 

,  1, 2, ..., iP P i S= = . The partitioning of the gate netlist into stages requires the 

insertion of (i) latches to separate neighboring stages, and (ii) delay elements to realize 

the reset network of each pipeline stage. In general, the number of latches inserted 

between two adjacent vertices, (vi, vj) ∈ E, depend on the stages, sk and sl ∈ S, to which 

both vertices are assigned respectively. Two cases are possible based on the precedence 

constraints (6.2): 

(i) sk = sl: This means that both stages represent the same stage. In this case, vi 

and vj are assigned to the same stage.  

(ii) sk ≠ sl: This means that both stages are different. In this case, vi and vj are 

assigned to distinct stages. However, there is no indication that both stages, sk 

and sl are neighbors.  

In fact, it is possible that two adjacent vertices may be assigned to two non-

neighboring stages. For example, if vi is assigned to stage 3 and vj is assigned to stage 7, 

the edge between the two vertices has to cross the latches of stage 3, 4, 6, and 7, which 

may require the insertion of four latches to accommodate this case.  
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Definition 6.13: If two adjacent vertices, (vi, vj) ∈ E, are assigned to stages sk and sl ∈ S 

respectively, the pipeline distance between vi and vj, denoted by δi,j, is ,i j l kδ = − .    

 

Depending on the bit width of the combinational network in a given stage, latches 

of different bit widths can be used to separate a stage from its neighbor. It would make 

sense to quantify the area of the inter-stage latches by multiplying the area of a single-bit 

latch by the number of output bit lines crossing from stage to stage. These lines 

correspond to edges in the Boolean graph. Assume that al is the area of a single-bit latch. 

If n bit lines are crossing from a stage to another, n latches are needed adding up to an 

area of nal. Using the definition of pipeline distance, the number of 1-bit latches between 

two adjacent vertices can be determined as: 

( ) ( ), , ,
1 1

,      ,           6.5
S S

i j j s i s i j
s s

sx sx v v Eδ
= =

= − ∈∑ ∑  

 

If applied to a single edge, (6.5) is similar to the left-hand side of (6.3). The latch 

area needed to support the stages between vi and vj is ,i j laδ . By considering all the edges 

in the Boolean graph, the total latch area needed in an entire pipeline can be determined 

as follows:  

( )
( )

, ,
1 1,

6.6
i j

S S

l j s i s
s sv v E

a sx sx
= =∀ ∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

 

Beside the insertion of latches, the insertion of delay elements is also needed to 

realize the reset network of a stage. These delay elements can be inverters, buffers, or 
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gates. Since the role of the matching delay of a reset network in SRSL is to provide a 

delay equal to the delay of the critical path of the combinational network, it would make 

sense to use gates as delay elements to realize the matching delay of the reset network. In 

fact, the critical path of the combinational network can be merely duplicated and the 

obtained copy can be used as a matching delay in the reset network. In this case, the area 

of the matching delay to be inserted in the reset network of a stage can be determined by 

obtaining the area of the critical path of the combinational network in the stage. Since 

each vertex in V has an area, A = {ai ; i = 1, 2, …, |V|}. If the area of the matching delay 

of a stage s is as, then: 

( ),
:

,      1, 2, ...,           6.7
i

s i i s
i v

a a x s S
π∈

= =∑  

 

By considering all the stages in the pipeline, the total area of matching delays can 

be determined as: 

( ),
1 :

         6.8
i

S

i i s
s i v

a x
π= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  

 

By summing the total area needed for latches shown in (6.6), and matching delays 

shown in (6.7), the minimization of the area cost can be expressed as the following 

objective function: 

( )
( ), , ,

1 1 1 :,

min            6.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑  
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In summary, P1 can be formulated as the following integer programming (IP) 

problem: 

( )
( ), , ,

1 1 1 :,

min            6.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑  

( ),
1

1,     1, 2, ...,           6.1
S

i s
s

x i V
=

= =∑  

( ) ( ), ,
1 1

0,      ,           6.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑  

( ),
:

, 1, 2, ..., 6.4
i

i i s
i v

d x p s S
π∈

≤ =∑  

( ), {0,1},      1, 2, ..., ,      1, 2, ...,          6.10i sx i V s S∈ = =  

6.5 Proposed Solution of the SRSL Pipeline Synthesis 

The SRSL pipeline synthesis problem can be solved in different ways to obtain 

two types of solutions:  

(i) Exact solutions which can be obtained by solving the IP problems 

formulated for P1. Several mathematical programming software packages 

can be used to obtain such solutions. However, obtaining these solutions 

can take an unreasonable time depending on the size of the IP formulation 

represented by the number of variables and constraints in the formulation. 

In fact, the formulation of the IP problem based on the C6822 circuit, one 

of the benchmark circuits used in the synthesis experiments of D-SRSL 

pipelines, can generate 6656 assignments constraints (6.1), 9082 
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precedence constraints (6.3), and 245 period constrains (6.4).  In total, the 

IP formulation consists of a matrix that has 15983 rows and 245 columns.   

(ii) Approximate solutions which can be obtained in a short time although they 

do not guarantee optimality. Such solutions can be reached by applying 

heuristic algorithms on P1. 

 

The approximate solution has been implemented as a heuristic algorithm 

consisting of two phases: a stage assignment phase and a vertex shuffling phase.  The 

first phase assigns each gate to a pipeline stage by partitioning the Boolean graph of the 

gate netlist into subgraphs that meet specific timing constraints.  On the other hand, the 

second phase minimizes the area occupied by inter-stage latches by shuffling nearby 

vertices from the Boolean graph between adjacent stages without violating the specified 

timing constraints.  

 

6.5.1 Phase I: Stage Assignment  

This section explains the graph-theoretic approach behind the stage assignment 

performed in phase I.  This explanation is followed by a presentation of the algorithm 

used in phase I.  
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6.5.1.1 Phase I Approach 

In order to pipeline the gate netlist, the Boolean graph of the netlist has to be 

partitioned into subgraphs whose critical path delays do not exceed a pre-defined value. 

Each subgraph represents a subnetlist that is assigned to a distinct pipeline stage. Assume 

that the Boolean graph G(V, E) can be partitioned into n partitions or subgraphs where 

. In order to construct an operationally correct 

pipeline, the pipeline stages have to be connected through proper insertion of latches 

between the stages and duplication of the critical path in each stage. This is equivalent to 

inserting vertices to represent inserted pipeline latches and duplicated critical paths. In 

fact, the pipeline distance δ between two adjacent vertices in G(V, E) determines the 

number of latches that needs to be inserted. The edge connecting these two adjacent 

vertices in E has to be broken in δ edges to accommodate the insertion of δ vertices 

whereby each vertex represents a latch. The resulting graph is an augmented graph G’(V’, 

E’) where . The objective is to add as few vertices 

as possible in order to realize the smallest area cost possible.  For each partition, its 

critical path delay is determined and a delay block matching the partition’s critical path 

delay is inserted at the appropriate places in the partition. In addition, for each edge 

crossing one or more partition in the partitioned graph, the pipeline distance δ is 

computed and δ vertices representing latches are inserted in the appropriate places in the 

partitioned graph. The final graph G’(V’, E’) represents the Boolean graph of the pipeline 

gate netlist with inserted latches and matching delays. The following heuristic procedure 

1 1 1

 such that  and 
n

i
i

n n

i
i i

G G V V E
= = =

= = =∪ ∪ iE∪

⊆'  such that '  and 'G G V V E E⊆ ⊆
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can be used to an initial assignment of every gate in the gate netlist to a given pipeline 

stage: 

6.5.1.2 Phase I Algorithm 

The pseudocode of the graph partitioning algorithm is as follows: 

Input:  G(V, E) 
        D = {di ; i = 1, 2, …, |V|}            
        A = {ai ; i = 1, 2, …, |V|} 
        f 
Output: Partitioned graph G’(V’, E’) 
 

1.  Let 
1

P
f

= ; 

2.  While there are unassigned vertices in V 
3.     Select a vertex v in V whose predecessors are all assigned to     
        the current partition; 
4.     Get the critical path of the vertices within the current 
        partition including v; 
5.     If the delay of the critical path is less than or equal to P 
6.        Assign v to the current partition; 
7.     Else 
8.        Add another partition; 
          Assign v to the newly added partition; 
9.     Endif 
10. Endwhile 
11. For each edge in E 
12.   Compute the pipeline distance δ; 
13.   Add δ vertices to V’;  
14.   Add δ edges to E’; 
15. Endfor 
16. For each partition in V’;        
17.    Get the critical path in the current partition; 
18.    Duplicate the path and insert it into the current partition; 
19. Endfor 
20. The final obtained partitioned graph is G’(V’, E’); 
  

 

In line 1, the stage delay is obtained. The algorithm starts with partition 1 which 

does not contain any vertices at this point. Line 2 shows a loop which looks for vertices 

in V which have not been assigned to any partition. Line 3 shows that the first step in 
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assigning a vertex from V to the vertex set of the current partition is to select a vertex 

whose predecessors have been already assigned to the vertex set of the current partition. 

Next, the critical path of the Boolean graph including vertex v is obtained in line 4. In 

line 5 through 9, the algorithm checks if the critical path of the Boolean graph obtained in 

line 4 is less than or equal to the period of the partition. If the check result is true the 

selected vertex is added to the vertex set of the current partition. Otherwise, a new graph 

partition is created to which the selected vertex is subsequently added. The algorithm 

repeats the line 3 through 9 until there no unassigned vertices in V. At the end, each 

vertex in V is assigned to a distinct vertex set Vi which belongs to a subgraph Gi (Vi, Ei) 

as defined above.  After the initial graph G(V, E) is partitioned, the next step consists of 

adding vertices between the partitions to represent latches between pipeline stages as 

shown in line 11 through 15. For each edge in E crossing two neighboring partitions, a 

vertex is added followed by the addition of an edge to connect the newly added vertex to 

its predecessor. This step is followed by a second step in which the portion of the critical 

path contained in a partition is duplicated and added to that partition as shown in line 16 

through 19. This duplicated path represents the matching delay of the reset network 

which will be attached to the combinational network of the stage represented by the 

partition. At the end, the augmented graph G’(V’, E’) is obtained. 
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6.5.2 Phase II: Vertex Shuffling   

This section explains the graph-theoretic approach behind the vertex shuffling 

performed in phase II.  This explanation is followed by a presentation of the algorithm 

used in phase II. 

6.5.2.1 Phase II Approach 

The input to phase II is the augmented partitioned graph G’(V’, E’) where each 

partition represents the portion of the gate netlist embedded in a single pipeline stage.  

Thus, the number of partitions in the graph represents the number of stages in the 

pipeline.  Every edge that crosses from a partition to another represents a single 1-bit 

latch in the pipeline.  Because latches tend to occupy a significant portion of the overall 

area of the pipeline, it makes sense to invest additional effort in minimizing the number 

of latches used in the pipeline.  As a result, the objective of phase II is to minimize the 

number of edges crossing each inter-partition boundary in G’(V’, E’).  Note that each 

inter-partition boundary in G’(V’, E’) represents the set of latches separating two adjacent 

stages in the pipeline corresponding to the two adjacent partitions in G’(V’, E’).  Figure 

6.4 shows two adjacent partitions where the left partition contains vertices labeled 1 

through 10 while the right partition contains vertices labeled 11 through 17.   
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Figure 6.4: Latch insertion between two neighboring pipeline stages. 

 

Definition 6.14: Let u be a vertex in the left partition GL(VL, EL), i.e. u ∈ VL.  u is called a 

left cut vertex if it does not have any successors in the left partition, i.e., 

∃ ( ):  and ,L Lv v V u v E∈ ∈ .   

 

For example, vertices 6, 7, 8, 9, and 10 in Figure 6.4 are all left cut vertices.  

 

Definition 6.15: Let GL (VL, EL) be the left partition.  A subset CL of VL, i.e., CL ⊆ VL, is 

called a left cut vertex set if every vertex in CL is a left cut vertex, i.e., 

, Lu C∀ ∈ ∃ ( ):  and ,L Lv v V u v E∈ ∈ .  
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Since vertices 6, 7, 8, 9, and 10 in Figure 6.4 are all left cut vertices, they make up a left 

cut vertex set.   

 

 Definition 6.16: Let w be a vertex in the right partition GR(VR, ER), i.e. w ∈ VR.  w is 

called a right cut vertex if it does not have any predecessors in the right partition, i.e.,  

∃ ( ):  and ,R Rv v V v w E∈ ∈ . 

 

For example, vertices 11, 12, 13, and 14 in Figure 6.4 are all right cut vertices. 

 

Definition 6.17: Let GR (VR, ER) be the right partition.  A subset CR of VR, i.e., CR ⊆ VR, is 

called a right cut vertex set if every vertex in CR is a right cut vertex, i.e., 

, Rv C∀ ∈ ∃ ( ):  and ,R Rw w V v w E∈ ∈ . 

 

Since vertices 11, 12, 13, and 14 in Figure 6.4 are all right cut vertices, they make up a 

right cut vertex set. 

 

Definition 6.18: Let CL and CR be the left and right cut vertex sets respectively.  The set 

Cv, called the cut vertex set, is the union of the left and right cut vertex sets, i.e., 

.    v LC C C= ∪ R
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While the set of vertices 6, 7, 8, 9, and 10 in Figure 6.4 make up the left cut vertex set, 

the set of vertices 11, 12, 13, and 14 make up the right cut vertex set.  The union of these 

two sets, namely vertices 6, 7, 8, 9, 10, 11, 12, 13, and 14 makes up a cut vertex set.   

 

Definition 6.19: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’).  e is 

called a cut edge if u is a vertex in CL and v is a vertex in CR, i.e.,  

.     ( ), '  and  and L Ru v E u C v C∈ ∈ ∈

R

 

For example, the edge between vertex 6 and 11 in Figure 6.4 is a cut edge.  

 

Definition 6.20: Let CL and CR be the left and right cut vertex sets respectively.  A set Ce 

is called a cut edge set if every edge in Ce is a cut edge, i.e., 

.     ( ) ( ), , , '  and  and e Lu v C u v E u C v C∀ ∈ ∈ ∈ ∈

 

In Figure 6.4, the set of edges between vertices 6 and 11, 7 and 11, 8 and 12, 8 and 13, 9 

and 12, 9 and 13, 10 and 13, and 10 and 14 make up the cut edge set.   

 

Definition 6.21: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’).  e is 

called an internal edge if e is not a cut edge, i.e., 

( ) ( ) ( ), '  and ,  and ,L Ru v E u v C u v C∈ ∉ ∉ .  
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For example, the edges between vertices 1 and 6, 2 and 6, 11 and 15, and 12 and 15 are 

all internal edges in Figure 6.4. Consider a vertex v in the initial partitioned graph G’(V’, 

E’).  It is possible that a number of internal edges may be incident to v.  In this case, let 

I(v) denote the set of these internal edges.  It is also possible that a number of cut edges 

may be incident to v. Let C(v) denote the set of these cut edges.  Note that, depending on 

where v is located in G’(V’, E’), it is possible that I(v) = ∅ or C(v) = ∅.  The proposed 

vertex shuffling algorithm uses a gain function to guide how it shuffles cut vertices from 

one partition to another.             

 

Definition 6.22: Let v be a cut vertex in a partition H(VH, EH) where H can be a left or 

right partition, i.e., v ∈ VH.  The gain function of v, denoted as g(v), is the difference 

between the sizes of the set of cut edges and the set of internal edges of all the edges 

incident to v, i.e., ( ) ( ) ( )g v C v I v= − .    

 

In Figure 6.4, vertex 6 has two internal edges and one cut edge.  Its gain 

is ( ) ( ) ( )2 2 2 1 2 1g v C v I v= − = − = − . On the other hand, since vertex 11 has one internal 

and two cut edges, its gain is ( ) ( ) ( )8 8 8 2 1 1g v C v I v= − = − = .        

 

The ultimate objective of the vertex shuffling algorithm is to minimize the number of cut 

edges.  After shuffling a number of cut vertices, the algorithm evaluates the overall cost 

of these shuffling moves by using a move cost function.  This move function is based on 

the size of the cut edge set.  Note that after a cut vertex is moved from one partition to 
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another, its predecessors and successors in G’(V’, E’) will have to be added or removed 

from a given cut vertex set depending on which cut vertex set contains the moved vertex.   

 

Definition 6.23: Let v be a left cut vertex (i.e., v ∈ CL). If v is moved to the right cut 

vertex set (i.e., CL = CL – {v} and CR = CR ∪ {v}), (i) each predecessor of v in G’(V’, E’) 

must be added to the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} ∪ CL), and (ii) 

each successor of v in G’(V’, E’) must be removed from the right cut vertex set (i.e., {w | 

w ∈ V’ and (v, w) ∈ E’} – CR).  The set of these moves is called the set of induced moves 

by v.   

 

In Figure 6.4, if vertex 6 is moved to the right cut vertex set, (i) all its predecessors, 

namely vertices 1 and 2, must be added to the left cut vertex set, and (ii) its sole 

successor, namely vertex 11, must be removed from the right cut vertex set.  These three 

moves make up the set of induced moves by vertex 6.  The effect of these moves leaves 

the left cut vertex set consisting of vertices 1, 2, 7, 8, 9, and 10, while the right cut vertex 

set consisting of vertices 6, 12, 13, and 14.    

 

 Definition 6.24: Let v be a right cut vertex (i.e., v ∈ CR). If v is moved to the left cut 

vertex set, (i) each successor of v in G’(V’, E’) must be added to the right cut vertex set 

(i.e., {w | w ∈ V’ and (v, w) ∈ E’} ∪ CR), and (ii) each predecessor of v in G’(V’, E’) 

must be removed from the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} – CL).  The 

set of these moves is called the set of induced moves by v. 
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In Figure 6.4, if vertex 11 is moved to the left cut vertex set, (i) its sole successor, namely 

vertex 15, must be added to the right cut vertex set, and (ii) all its predecessors, namely 

vertices 6 and 7, must be removed from the left cut vertex set.  These three moves make 

up the set of induced moves by vertex 7.  The effect of these moves leaves the left cut 

vertex set consisting of vertices 8, 9, 10, and 11, while the right cut vertex set consisting 

of vertices 12, 13, 14, and 15.     

 

Definition 6.25: Assume that the shuffling algorithm is on the point of moving a cut 

vertex v from one partition to another.  The cost function of this move, denoted by m(v), 

is the size of the left cut vertex set if this move and the set of induced moves by v are 

completed, i.e., ( ) Lm v C= .      

 

Since moving vertex 6 in Figure 6.4 leaves the left cut vertex set consisting of vertices 1, 

2, 7, 8, 9, and 10 after the set of its induced moves is completed, 

( ) { }6 1, 2, 7, 8, 9, 10 6Lm v C= = = .  Note that the number of latches between the two 

pipeline stages represented by the two partitions shown in Figure 6.4 is equal to the size 

of the left vertex cut set.   

 

 

167 



6.5.2.2 Phase II Algorithm 

The pseudocode of the vertex shuffling algorithm is as follows: 

Input: G’(V’, E’) SRSL pipelined graph that meets p 
       D = {di ; i = 1, 2, …, |V|} 
       A = {ai ; i = 1, 2, …, |V|}  
        
Output: Partitioned graph G’’(V’’, E’’) with minimum cost function  
        between each pair of partitions. 
 
1.  For every pair of adjacent partitions in G’(V’, E’) 
2.     While the minimum move cost function in the current pass is less  
             than the minimum move cost function in the previous pass 
3.        While there are unmarked vertices in the left and right cut  
                vertex sets 
4.           For every unmarked vertex in this cut vertex set 
5.              Compute its gain function; 
6.           Endfor 
7.           Get the vertex with the next highest gain function and  
               whose delay does not violate the period constraint in  
               its opposite partition; 
8.           Compute the move cost function of this vertex; 
9.           Mark this vertex and insert it into a queue; 
10.       Endwhile 
11.       For every cut vertex in the queue starting from the first  
              vertex to the vertex with the minimum move cost function    
12.          If this vertex is a left cut vertex 
13.             Move it to the right cut vertex set; 
14.             Perform the set of its induced moves; 
15.          Else 
16.             Move it to the left cut vertex set; 
17.             Perform the set of its induced moves; 
18.          Endif 
19.       Endfor         
20.       For every cut vertex in the queue starting from the vertex  
              following the minimum move cost function vertex to the  
              last vertex 
21.          Unmark this vertex; 
22.       Endfor 
23.    Endwhile 
24. Endfor  
 
    
Line 1 shows that phase II algorithm executes for every pair of adjacent partitions in 

G’(V’, E’).  A minimum cost function from a given cut vertex, that is selected to be 

moved from one partition to another, will be computed in every pass of the procedure, 

whereby a pass consists of the pseudocode shown in lines 2 through 23.  As long as this 
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cost functions is less than the cost function computed in the previous pass as shown in 

line 2, another pass is executed.  In line 3, all the unmarked vertices in the left and right 

cut vertex sets will be processed.  This processing starts first by computing the gain 

function for each vertex in these two sets as shown in lines 4 through 6.  Next, the move 

cost function of the vertex with the highest gain function is computed as shown in lines 7 

and 8, after which the vertex is marked and inserted in a queue as shown in line 9.  This 

procedure is repeated for every unmarked vertex with the next highest gain function until 

there are no more unmarked vertices in the left and cut vertex sets as shown in line 3 

through 10.  Note that from the current iteration to the next, computing the gain function 

of the remaining unmarked vertices assumes that the induced moves by the marked 

vertex in the current iteration have been completed.  After all unmarked vertices in the 

vertex cut set are processed, the queue is searched to find the vertex with the minimum 

move cost function.  As shown in lines 11 through 19, every vertex in the queue, starting 

from the vertex in the first entry of the queue until the vertex with the minimum move 

cost function in the queue, is moved to the opposite partition followed by the completion 

of the set of its induced moves.  The remaining vertices in the queue are unmarked as 

shown in lines 20 through 22 to be possibly processed in another pass starting from line 

2.  To give the unmarked vertices an opportunity to reduce the minimum cost function 

further, the pseudocode between lines 3 and 22 is re-executed with a different ordering in 

picking the vertices to compute their move cost functions.  To this end, the vertices are 

processed in non-decreasing order of gain function instead of non-increasing order of 

gain function as shown in line 7. For simplicity, this pseudocode is omitted from the 

pseudocode shown above.   
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6.6 Experimental Results 

This section shows the experimental results of both P-SRSL and D-SRSL 

pipelines. Both phases of the algorithm have been implemented and applied on a set of 

six circuits shown in Table 6.1. 

Table 6.1: Experimental circuits. 

 
Circuit 

 
Functionality 

 
 

Gates 

Critical Path 
Delay 
(ps) 

C6288 16x16 Multiplier (Largest and deepest) 6656 25355 

C7552 34-bit adder and magnitude comparator with input parity 
checking (Large and shallowest) 

3569 4957 

C5135 9-bit ALU (Medium size and shallow) 2332 6026 
16_Bit_Multiplier 16x16 Multiplier (Medium size and medium depth) 1456 12658 

32_Bit_Adder 32 Bit Adder (Small and deep) 160 18850 
16_Bit_Adder 16 Bit Adder (Smallest and medium depth) 80 9380 

 

In this table, column 1 shows the six circuits where the top three are borrowed 

from the ISCAS-85 benchmark suite while column 2 shows the functionality of each 

circuit. Column 3 shows the number of gates in the netlist of each circuit while column 4 

shows the delay on the critical path.  Since S-SRSL and P-SRSL pipelines resemble each 

other in terms of components, it was decided to apply pipelining experiments on the P-

SRSL and D-SRSL pipelines.    

6.6.1 P-SRSL Pipelining Experiments 

To study the cost of the P-SRSL area, the largest benchmark circuit, namely C6288, was 

chosen for experimentation since it can accommodate deeper pipelines.  It is meant by the 

P-SRSL area the area that includes the area of the inter-stage latches, intra-stage delay 
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buffers, and NOR and AND gates used for synchronization. Figure 6.5 shows the P-

SRSL area as a percentage of the overall pipeline circuit area including the P-SRSL area. 

In the figure, as the number of the stages increases the percentage of the P-SRSL area 

increases too. For example, the P-SRSL area represents only 26% of the pipeline area in 

the four-stage pipeline.  However, this percentage reaches 81% in the 35-stage pipeline.  

In addition, the figure shows that most P-SRSL area is occupied by the latches. For 

example, the area of the latches alone consumes 23% of the pipeline area of a four-stage 

pipeline, and can grow up to 79% of the pipeline area of the 35-stage pipeline. On the 

other hand, the area of the NOR, AND gates and delay buffers barely consume 5% of the 

pipeline area across all the pipelines. 
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Figure 6.5: P-SRSL area as a percentage of the pipeline area across different pipelines of 
the C6822 benchmark circuit. 

In order to study how P-SRSL pipelining affects the throughput of a circuit, the 

pipelining algorithm is applied on the six circuits for different pipeline depths as shown 

in Figure 6.6. For each circuit, the pipeline depth is increased until the circuit ceases to 
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operate correctly. This situation occurs when the delay in a given stage is so small that 

the duration of its reset phase is just as small.  Note that the inter-stage latches are 

enabled as long as the stage reset phase lasts.  If this duration is smaller than the required 

enable of the latches used in the actual implementation of the pipeline, these latches will 

not have sufficient time to capture incoming data, and subsequently the pipeline ceases to 

operate correctly.   
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Figure 6.6: Pipeline throughputs for various P-SRSL pipeline depths. 

In Figure 6.6, one stage represents the circuit in its non-pipelined version.  This 

figure shows that the throughput of a circuit can increase significantly depending on the 
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pipeline depth.  Indeed, for a shallow circuit, such as C7552, the throughput goes from 

201 Megaoperations/sec in its non-pipelined version to 1327.79 Megaoperations/sec in its 

10-stage SRSL pipeline. This increase is equivalent to a 6.6 times improvement in 

throughput. This improvement is even more pronounced in deep circuits. For example, 

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined 

version to 875.66 Megaoperations/sec in its 35-stage SRSL pipeline. This increase 

represents 22.2 fold in throughput improvement.  While the throughput increases as more 

stages are added to the pipeline, it is obvious that the rate of throughput increase is not 

the same for all circuits. It seems that shallow circuits, such as C7552 and C5315, display 

the fastest throughput increase as opposed to deep circuits such as C6288 and 

32_Bit_Adder.  In fact, shallow circuits have lower latency before they are pipelined.  

This can be seen by examining stage delays in equal depth pipelines where the delay of a 

single stage is usually higher in deep circuits than the delay of a single stage in shallow 

circuits.  As a result, the throughput will be higher in shallow circuits as opposed to deep 

circuits for the same pipeline depth. Furthermore, it is obvious that the maximum 

possible pipeline depth will be higher in deep circuits than in shallow circuits. Deep 

circuits can be partitioned into large numbers of stages before the partitioning renders the 

pipeline inoperable as opposed to shallow circuits. 

 

Figure 6.7 shows the P-SRSL area as a percentage of the total area of a pipeline 

for each circuit across different pipeline depths.  It is clear that the area of each pipeline 

increases as the circuit is partitioned into a deeper pipeline. However, the largest 

increases in areas tend to occur in larger circuits partitioned into deeper pipelines. 
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Figure 6.7: P-SRSL area as a percentage of the pipeline area across various depth 
pipelines. 

For example, C6288 shows an increase in P-SRSL area from 26% in a four-stage 

pipeline to 80% into its maximum depth 35-stage P-SRSL pipeline.  On the other hand, 

slightly smaller area increases can occur in shallow circuits partitioned into shallower 

pipelines. For example, C5315 shows an increase in P-SRSL area from 42% in a two-

stage pipeline to 81% in its maximum depth 12-stage pipeline. Furthermore, it is clear 

from the figure that the area occupied by P-SRSL circuitry tends to be smaller in general 

for large and deep circuits than for large and shallow circuits or small and deep circuits. 
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For example, the P-SRSL area of C6288 occupies around 62% of the total area of its 12-

stage pipeline while it can occupy up to 92% of the total area of the 12-stage pipeline in 

32_Bit_Adder.  In any case, small circuits tend to experience high P-SRSL areas 

regardless of pipeline depth.  Since Figure 6.6 and 6.7 show that increasing throughput 

leads in general to larger P-SRSL areas, it would make sense to evaluate this associated 

area cost with regard to gains or losses in throughput.  A relatively accurate way to 

measure this relationship is to examine the ratio of the pipeline period over P-SRSL area 

for all circuits across different pipeline depths as shown in Figure 6.8. 

 

This figure shows that for all circuits, the decrease rate of this ratio speeds up in 

shallow pipelines and slows down in deep pipelines.  This can be explained by the fact 

that in partitioning the circuit graph into a few partitions, the number of vertices in the 

partitions is significantly large.  As a result, there is a relatively large number of edges 

crossing the partitions.  These edges will all be covered by latches to synchronize the data 

flow across partitions or pipeline stages thus leading to a large P-SRSL area.  As the 

circuits get partitioned into deeper pipelines, the number of graph partitions increases, 

which yields to a decrease in the number of vertices in the partitions in general.  This 

decrease is accompanied by a decrease in the number of inter-partition edges leading to a 

decrease in the number of latches needed to cover these edges. 
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Figure 6.8: Period over area ratios for different depths P-SRSL pipelines. 

Note that among the components used to support P-SRSL synchronization, such 

as latches, delay buffers, AND and NOR gates, the latches are the components with the 

largest areas.  In any case, this shows that the tradeoff of throughput gain or loss vs. P-

SRSL area is beneficial for deep S-SRSL pipelines and costly in shallower P-SRSL 

pipelines.  In the ideal case, the period-area ratio should be decreasing or at least remain 

constant.  However, Figure 6.8 shows that this ratio decreases for all circuits at different 

rates.  If this is the case, a ratio with a slow decreasing rate is highly desirable since it 

would indicate that the P-SRSL area increases slowly as more stages are added to the 

pipeline of a given circuit. Figure 6.8 shows that whereas the slowest decrease in this 

ratio occurs for large and deep circuits such as C6288, this ratio decreases quite rapidly 
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for small and deep circuits, such as 16_Bit_Adder, particularly when partitioned into 

shallow pipelines.  The decrease is even slower for large and shallow circuits such as 

C7552. This shows that partitioning small and deep circuits requires relatively larger P-

SRSL areas to support their P-SRSL pipelines.  The increase in area cost can be offset in 

throughput gains only when large and deep datapaths are converted into deep P-SRSL 

pipelines.  Without a doubt, it can be concluded P-SRSL pipelining is highly suitable for 

coarse-grain datapaths.  

6.6.2 D-SRSL Pipelining Experiments  

To study the cost of the additional area that is required to synchronize the D-

SRSL pipeline, Circuit C5135 is chosen as an example. It is meant by the D-SRSL area 

the area that includes the area of the PC blocks, the LC blocks, inter-stage latches, and 

the intra-stage delay buffers.  Figure 6.9 shows the area percentage of each component 

that contributes to D-SRSL area.  This figure shows that as the number of stages 

increases, the percentage of the D-SRSL area increases too. For example, the D-SRSL 

area is around 43 % of the overall all area of a four-stage pipeline.  This percentage can 

go up to 81 % in a 12-stage pipeline.  Among the components used in D-SRSL pipelines, 

the area of inter-stage latches is significantly large since it occupies around 41% of the 

overall area of a four-stage pipeline.  This percentage can go up to 80.3% in a 12-stage 

pipeline.  However, the entire area of the PC blocks, LC blocks, and delay buffers 

occupies barely 2% of the overall area of a four-stage pipeline, and 0.7 % in a 12-stage 

pipeline. 
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Figure 6.9: D-SRSL area as a percentage of the pipeline area across different pipelines of 

the C5135 benchmark circuit. 

In order to study how D-SRSL pipelining affects the throughput of a circuit, the 

pipelining algorithm is applied to the six experimental circuits for different pipeline 

depths as shown in Figure 6.10. For each circuit, the pipeline depth is increased until the 

circuit throughput cannot be improved any more.  This situation occurs when the CN is 

so small that its delay is less than the delay of the LC block (i.e., D(CNi) < Dclr(LCi)) as 

described in scenario (i) of equation (5.10). 
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Figure 6.10: Pipeline throughputs for various D-SRSL pipeline depths. 

In Figure 6.10, one stage represents a circuit in its non-pipelined version. This 

figure shows that the throughput of a pipeline can increase significantly depending on the 

pipeline depth.  In the case of C7552, which is the shallowest circuit in the benchmark 

set, the throughput goes from 200 Megaoperations/sec in its non-pipelined version to 

1088.14 Megaoperations/sec in its eight-stage D-SRSL pipeline. This increase is 

equivalent to a 5.44 times throughput improvement.  This improvement is even more 

pronounced in deep circuits. For example, the throughput of C6288 goes from 39.44 
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Megaoperations/sec in its non-pipelined version to 1088.14 Megaoperations/sec in its 35-

stage D-SRSL pipeline. This increase represents 27.58 fold in throughput improvement.   

 

While some circuits, such as C7552, can reach their maximum throughput in a 

few stages, other circuits, such as C6288, do not seem to reach a maximum throughput 

even when partitioned into deeper pipelines of 35 stages.  In fact, the throughput of 

shallow circuits, such as C7552, seems to level off after they have been partitioned into 

short pipelines.  On the other hand, the throughput of deep circuits, such as C6288, do not 

display this leveled-off curve.  In a smaller number of stages, shallow circuits can get 

partitioned so much that their intra-stage CNs are quite small.  As a result, the delay of 

these CNs becomes smaller than the delay of the LC block (i.e., D(CNi) < Dclr(LCi)).  By 

partitioning these circuits further after this point, Dclr(LCi) does not change, and 

subsequently, d(Li) and d(Ri) remain constant.  This has the effect of keeping P constant, 

which results in a leveling off of the throughput.  In deeper circuits, this throughput 

improvement limit does not appear so quickly, and consequently these circuits display a 

continuous increase in throughput improvement even when partitioned in deeper 

pipelines. 

 

Note that, similarly to P-SRSL pipelines, shallow circuits tend to have a higher 

throughput than deep circuits for the same pipeline depth.  This can be attributed to the 

fact that the delay of a single stage is usually higher in deep circuits than the delay of a 

single stage in shallow circuits.  As a result, the throughput will be higher in shallow 

circuits as opposed to deep circuits for the same pipeline depth. 
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Figure 6.11 shows the D-SRSL area as a percentage of the overall pipeline area 

for each circuit across different pipeline depths.  It is clear that the area of each circuit 

increases as the circuit is partitioned into a deeper pipeline. However, the largest 

increases in areas tend to occur in larger circuits partitioned into deeper pipelines in a 

similar fashion to the area increase in P-SRSL pipelines. 
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Figure 6.11: D-SRSL area as a percentage of the pipeline area across various depth 
pipelines. 

For example, C6288 shows an increase in D-SRSL area from 26% in a four-stage 

pipeline to 80% into its maximum depth 35-stage D-SRSL pipeline.  On the other hand, 

slightly smaller area increases can occur in shallow circuits partitioned into shallower 
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pipelines. For example, C7552 shows an increase in D-SRSL area from 35% in a two-

stage pipeline to 75% in its maximum depth 10-stage pipeline. Furthermore, it is clear 

from the figure that the D-SRSL area tends to be smaller in general for large and deep 

circuits than for small circuits. For example, the D-SRSL area of C6288 occupies around 

58% of the total area of its 12-stage pipeline while it can occupy up to 90% of the total 

area of the 12-stage pipeline in 32_Bit_Adder.  In any case, small circuits tend to 

experience high D-SRSL areas regardless of pipeline depth.  

6.6.3 Summary of the Experiment Results 

The experimental results for both P-SRSL and D-SRSL pipeline shows that P-

SRSL pipeline can reach a throughput of 1327 Megaoperations/sec while D-SRSL can 

reach only 1088 Megaoperations/sec throughput.  This can be explained by considering 

the parameters which affect d(L).  In D-SRSL pipelines, extreme pipelining can lead to 

the situation where D(CNi) < Dclr(LCi) thus making d(Li) = d(Ri) as shown in equation 

(5.10).  However, equation (5.7) states that d(Ri) = D(PCi) + Dright(LCi).  Note that 

extreme fine-grain pipelining will affect D(CNi), but not D(PCi) and Dright(LCi).  As a 

result, d(Ri) and subsequently P remain constant beyond this point.  Once P ceases to 

decrease, the pipeline throughput ceases to increase.  On the other hand, d(L) in P-SRSL 

pipelines is affected differently.  In fact, ( ) 2i
Pd L+ = as equation (4.14) and (4.15) state.  

This means that, as the pipeline gets partitioned into fine-grain logic, P decreases without 

affecting the ability of the latch to capture data during pipeline operation.  As a result, the 
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P-SRSL pipeline can reach throughputs that are higher than those reached by the D-SRSL 

pipeline.               

 

Whereas the P-SRSL pipeline seems to display a higher throughput in deeper 

pipelines in general, D-SRSL pipelines reach a higher throughput in deeper pipelines of 

large and deep circuits.  For instance, circuit C6288 can reach a throughput of 1088 

Megaoperations/sec in its 35-stage D-SRSL pipeline while it can only reach a throughput 

of 875 Megaoperations/sec in 35-stage P-SRSL pipeline.  In the case of D-SRSL 

pipelines, equation (5.8) states that:  

( ) ( ) ( ) ( ) (           5.8i i i id E d R D L D CN+ ≥ + )  

Using equations (5.6) and (5.7), equation (5.8) can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) (1 +           6.11i left i i right i i iD PC D LC D PC D LC D CN D LC++ + ≥ + )  

This is equivalent to: 

( ) ( ) ( ) ( ) ( )12           (6.12)i right i left i i iD PC D LC D LC D CN D LC++ + ≥ +  

If delay parameters relevant to the implementations of the PC and LC blocks are 

considered, equations (6.12) can be rewritten by using equations (5.24), (5.25), and (5.26) 

as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

3 4 4 2 clk_to_Q

                                                                                 (6.13)i i

D INV D NAND D AND D OR D D

D CN D LC

+ + + + + ∆

≥ +
 

From an implementation perspective, a straightforward optimization would be to reduce 

the slack of equation (6.13).  This reduction can be achieved only by reducing D(∆).  

Since all the other terms are all library-dependent, only D(∆) can be fine-tuned by the 
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designer.  Experimentation shows that by reducing D(∆) further without violating 

equation (5.8), P can be reduced further leading to a higher throughput.  Whereas this 

optimization of the implementation is possible in D-SRSL pipelines of deeper circuits, it 

is not suitable for the implementation P-SRSL pipelines.  As a result, D(∆) ≥ D(CN) in 

each stage in P-SRSL pipelines.  This explains the higher throughput displayed by D-

SRSL pipelines of deep circuits in deep pipelines.           

 

With regard to area, both pipelines display the same overhead in SRSL circuitry 

area. As explained in the previous paragraph, the optimization of D-SRSL 

implementations rely on reducing the delay matching D(∆) of D(CN).  This reduction 

leads to a reduction in the number and size of the buffers used to calibrate this delay.  

Since buffers are second to latches in consuming large silicon areas, this reduction in the 

number and size of buffers yields a significant reduction in the area occupied by D-SRSL 

circuitry.  Although D-SRSL circuitry requires more coarse-grain components such as the 

PC and LC blocks in a pipeline, the area reduction stemming from the elimination of 

buffers brings the D-SRSL circuitry to a level that is sufficiently low to be comparable to 

the area occupied by the P-SRSL circuitry. 

6.7 Summary 

In this chapter, the conventional design flow is minimally modified in order to 

support the synthesis of SRSL pipelines. The synthesis of these pipelines is formulated as 

an optimization problem subject to a set of data rate and timing constraints. Analytical 
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formulation of this problem is presented as a standard IP problem [71]. Since the size of 

the IP problem is significantly large, and subsequently solving it using analytical 

approaches is impractical, a heuristic algorithm is proposed to solve it. The goal of the 

algorithm is to minimize the area occupied by inter-stage latches without violating any 

timing constraints [72]. This algorithm reaches this goal into two phases: (i) Phase I in 

which a partitioning procedure is applied on the Boolean graph of the gate netlist, and (ii) 

Phase II in which partition vertices are swapped between each pair of adjacent partitions 

in order to minimize the cut size between the pairs of partitions.  The goal of Phase I is to 

assign each gate in the gate netlist to a specific pipeline stage.  On the other hand, the 

goal of Phase II is to minimize the number of inter-stage latches between every pair of 

neighboring pipeline stages.   

 

The heuristic algorithm has been implemented and applied to six different circuits 

for the purpose of producing P-SRSL and D-SRSL pipelines with different depths.  The 

experimental results reveal that P-SRSL pipelines can reach higher throughput in deeper 

pipelines in general while D-SRSL pipelines produce the same performance if large and 

deep circuits are partitioned into deep pipelines.  In addition, these results show that both 

pipelines exact the same cost in terms of the area occupied by SRSL circuitry.     
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CHAPTER SEVEN: CONCLUSION 

This chapter summarizes the work presented in this dissertation. This summary is 

followed by a discussion of future work.  

7.1 Summary of Completed Work 

This dissertation presents SRSL as a clockless design technique highly suitable 

for existing CAD tools. This technique displays self-resetting characteristics in the form 

of a periodic oscillation of a logic block driven by a reset loop similar to an internal 

clock. Based on SRSL, three pipelining techniques are proposed: S-SRSL, P-SRSL and 

D-SRSL.  

 

In S-SRSL, communication between stages is controlled at the stage level. The 

timing analysis of S-SRSL pipelines reveals insights on how the duration of the evaluate 

phase gradually increases while the duration of the reset phase and the latch enable 

gradually decreases toward the left stages of the pipeline. This gradual decrease in the 

duration of the enable of the latches between stages is used to derive a bound on the 

maximum possible depth of the pipeline.  

 

In P-SRSL, pipeline stages are synchronized with the oscillations of the last 

pipeline stage. In this communication scheme, stages of type A oscillate in the same 

phase with the last stage while stages of type B oscillate in opposite phase with the last 

stage. Timing analysis of P-SRSL pipelines reveals that the duration of the evaluate and 
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reset phase remains constant in the stages located to the left of the last stage in the 

pipeline. Also, this analysis shows that the duration of the latch enable is constant 

regardless of the stages in the pipeline. This is due to the fact that the δ effect does not 

propagate across the pipeline stages as seen in S-SRSL pipelines, which in return keeps 

the duration of the evaluate and reset phases constant in the stages before the last stage of 

the pipeline. In contrast to S-SRSL pipelines, the incremental delays caused by the 

propagation of δ are completely absent in P-SRSL pipelines.  

 

Contrary to S-SRSL and P-SRSL pipelines in which the stages must have equal 

delays, D-SRSL pipelines can tolerate stages with different delays.  As a result, this 

pipelining style is highly suitable for coarse-grain datapaths.  Similarly to S-SRSL and P-

SRSL pipelines, the stages in D-SRSL pipelines oscillate between an evaluate and reset 

phase.  Timing analysis of these pipelines shows that, although pipeline stages have equal 

period, the duration of their reset and evaluate phase depends on the location of the stage 

in relation to the location of the slowest stage in the pipeline.  The ability of the pipeline 

to handle stages with different delays is made possible by stretching the evaluate phases 

and shrinking the reset phases of the stages before the slowest stage in the pipeline.  The 

amount of stretching and shrinkage is roughly equal to the difference between logic delay 

in the slowest stage and in any stage before it.  While this phenomenon appears on the 

stages before the slowest stage, its dual manifests itself in the stags after the slowest stage 

in the pipeline.  Table 7.1 highlights the characteristics of the three SRSL pipelining 

techniques by contrasting their performance parameters while table 7.2 contrasts their 

capabilities in handling stuck-at faults.  
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Table 7.1: SRSL pipelining parameters. 

 
Parameter P-SRSL Pipeline S-SRSL Pipeline D-SRSL Pipeline 
Data Encoding Bundled data Bundled data Bundled data 
Synchronization Scheme Pipeline level Stage level Stage level 
Synchronization Directions Uni-directional   Uni-directional Bi-directional
Delay tolerance  Comparable stage delays Comparable stage delays Unequal stage delays 

SRSL area 1 NOR gate, 1 AND gate, 
Delay block 

1 NOR gate, 1 AND gate, 
Delay block 

PC block, LC block, Delay 
block 

Matching Delay D(∆) ≥ D(CN) D(∆) ≥ D(CN) D(∆) < D(CN) 
Reset Phase ( ) ( )

( ) ( )
,  

1 1 ,  1 1
i jd R d R

i n j n

=

≤ ≤ − ≤ ≤ −

 

( ) ( ) ( )
( )

,

1 1
i nd R d R n i

i n

δ= − −

≤ ≤ −
 

( ) ( )
( ) ( )

,  

,  
i k

j k

d R d R i k

d R d R j k

< <

> >
 

where k is the slowest stage 
Evaluate Phase ( ) ( )

( ) ( )
,  

1 1 ,  1 1
i jd E d E

i n j n

=

≤ ≤ − ≤ ≤ −

( ) ( ) ( )
( )

,

1 1
i nd E d E n i

i n

δ= −

≤ ≤ −

+
 

( ) ( )
( ) ( )

,  

,  
i k

j k

d E d E i k

d E d E j k

> <

< >
 

where k is the slowest stage 
Evaluate vs. Reset Phase ( ) ( ) ( ),  1 1i id R d E i n< ≤ ≤ −

 
( ) ( ) ( ),  1 1i id R d E i n< ≤ ≤ − ( ) ( )

( ) ( ) ,  

,  

j j

i i

d R d E j k

d R d E i k

> >

< <
 

where k is the slowest stage 
Period ( ) ( ) ( )( )2P D NOR D D L≤ + ∆ +

 
( ) ( ) ( )( )2P D NOR D D L≤ + ∆ +  ( ) ( ) ( )12 i right i left iP D PC D LC D LC +≤ + +

 
Latch Enable ( ) 2i

Pd L+ =  ( ) ( )
2i
Pd L n i δ+ = − −  ( ) ( ) ( ){ }min ,i i Clr id L d R D LC=

δ Delay Difference Between any stage and the 
last stage 

Between any two 
neighboring stages 

None 

 
Theoretical Pipeline Depth  

 
No limit 1

11 ( )
2
Pn d L

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠
 

 
No limit 



Table 7.2: Fault handling in the three pipelines. 

Fault P-SRSL Pipeline S-SRSL Pipeline D-SRSL Pipeline 
Stage j is 
stuck in the 
evaluate 
phase 

• Data keeps flowing 
uninterrupted throughout 
the pipeline. 

• Data flow is blocked 
from stage 1 to stage j. 
 
• The same data item 
keeps moving from stage 
j+1 to stage n.   

• Data flows from 
stage 1 to stage j for 
one period before its 
flow is blocked.  
 
• Data flow is blocked 
from stage j+1 to n. 

Stage j is 
stuck in the 
reset phase 

• Data flows 
uninterrupted from stage 
1 to stage j resulting in 
overwriting data in stage 
j.  
 
• The same data item 
keeps moving from stage 
j+1 to stage n. 

• Data flows uninterrupted 
from stage 1 to stage j 
resulting in overwriting 
data in stage j. 
 
• The same data item 
keeps moving from stage 
j+1 to stage n. 

• Data flows from 
stage 1 to stage j for 
one period before its 
flow is blocked.  
 
• Data flow is blocked 
from stage j+1 to n. 

 

Since SRSL is intended to be supported by existing CAD tools, the synthesis of 

these pipelines is formulated as an optimization problem, in the form of an IP, subject to 

a set of data rate and timing constraints.  Because the size of the IP problem is 

significantly large, a two-phase heuristic algorithm is proposed to solve it.  The goal of 

the algorithm is to minimize the area occupied by inter-stage latches without violating 

any timing constraints.  This goal is reached by executing Phase I of the algorithm in 

which each gate in the gate netlist is assigned to a specific pipeline stage.  Subsequent to 

Phase I, Phase II is executed in order to minimize the number of inter-stage latches 

between every pair of neighboring pipeline stages.  Application of this pipelining to a set 

of experimental circuits reveals that high throughputs can be achieved by P-SRSL and D-

SRSL in shallow and deep pipelines respectively.  Whereas the pipeline throughput of the 

experimental circuits depends on the specific SRSL technique used for pipelining, their 

area cost tends to be comparable regardless of the SRSL technique used.     
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7.2 Future Work 

While the research in this dissertation explored the inner working of three SRSL 

pipelines, namely S-SRSL, P-SRSL, and D-SRSL pipelines, and proposed a synthesis 

framework for such pipelines, this research raised during its course an additional set of 

questions that can be addressed as an extension to this dissertation: 

(i) Incorporation of interconnect effects as a factor which can affect the 

performance of the pipeline [73-75]. Preliminary examination of the three 

pipelines suggests that this effect may be highly relevant in the P-SRSL 

pipeline.  In this pipeline, the phase signal leaves the last stage to drive the 

AND gate of each inter-stage latch, thus acting as a long synchronizing signal 

that spans the entire length of the pipeline.  It remains to be seen how far this 

signal can travel before its RC effects starts to affect the correct operation of 

the pipeline.   

(ii) Refinement of the delay models of the three pipelines by incorporating the 

same interconnect effects.  These effects are considered important in delays 

exacerbated by high fanout gates in large gate netlists, which are prevalent in 

most datapaths.  

(iii) Incorporation of power effects on the performance of the three pipelines.  

Although pipelining has been used to alleviate power effects [76, 77], deep 

pipelining can, in some cases, have the reverse effect by increasing the power 

budget of a pipeline, which in return will degrade its overall performance.  In 

the case of SRSL pipelines, it is not known at what point pipelining ceases to 
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alleviate power consumption and subsequently their heat dissipation.  In 

addition, it is not well understood how much of the performance of the 

pipelines is caused by their power budgets.         

(iv) Refinement of the pipeline synthesis algorithm by taking into account the 

fanout delay of each net in the pipelined circuits.  By incorporating the 

interconnect effects mentioned in (i), the synthesis algorithm can build an 

accurate model for each gate and each net in the circuit.  This delay model can 

guide both phases of the synthesis algorithm to produce a delay-accurate gate 

netlist in each stage of the pipeline.   

(v) While phase II of the synthesis algorithm is completely heuristic, it is not 

known at this point how sub-optimal the solutions produced by phase II can 

be.  From an optimization perspective, it would be interesting to quantify the 

sub-optimality of these heuristic solutions.   

(vi) From a practical perspective, if the approximative power of the heuristic used 

in phase II is not satisfactory, it can be used as a strong rationale for 

developing a better heuristic approach which has the potential to reduce the 

sub-optimality of the initial vertex shuffling heuristic proposed in phase II of 

the synthesis algorithm.  The overall benefit of this improvement in the 

quality of the solutions produced by the heuristic in phase II is a maximal 

minimization of inter-stage latches of the pipelines since the latter occupy a 

significant portion of the overall pipeline area.    

(vii) While the circuits used to prototype the three SRSL pipelines were all 

combinational datapaths, it is imperative to extend pipelining techniques 
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based on SRSL to implement control-dominated circuits.  The latter circuits 

are known to have feedback loops and clocked storage elements embedded 

within their gate netlists.  A straightforward conversion of these netlists to 

SRSL pipelines would require the substitution of these clocked storage 

elements with latches and the padding of the feedback loops with matching 

delays as suggested in [78]. 

(viii) If robust pipelining techniques based on SRSL are possible for control 

circuitry, suitable synthesis approaches need to be devised to synthesize SRSL 

pipelines for controlled datapaths without violating data rate constraints.  It 

would be interesting to see whether it is possible to extend the current 

synthesis algorithm to the synthesis of controlled datapaths, or devise an 

entirely new algorithm for this task.  
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