
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Design And Synthesis Of Clockless Pipelines Based On Self-Design And Synthesis Of Clockless Pipelines Based On Self-

resetting Stage Logic resetting Stage Logic

Abdelhalim Alsharqawi
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Alsharqawi, Abdelhalim, "Design And Synthesis Of Clockless Pipelines Based On Self-resetting Stage
Logic" (2005). Electronic Theses and Dissertations, 2004-2019. 524.
https://stars.library.ucf.edu/etd/524

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/524?utm_source=stars.library.ucf.edu%2Fetd%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DESIGN AND SYNTHESIS OF CLOCKLESS PIPELINES

BASED ON
SELF-RESETTING STAGE LOGIC

by

ABDELHALIM M. ALSHARQAWI
B.S. Princess Sumaya University, 2000

M.S. University of Central Florida, 2002

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2005

Major Professor: Abdel Ejnioui

© 2005 Abdelhalim Alsharqawi

ii

ABSTRACT

For decades, digital design has been primarily dominated by clocked circuits. With larger

scales of integration made possible by improved semiconductor manufacturing techniques,

relying on a clock signal to orchestrate logic operations across an entire chip became

increasingly difficult. Motivated by this problem, designers are currently considering circuits

which can operate without a clock. However, the wide acceptance of these circuits by the digital

design community requires two ingredients: (i) a unified design methodology supported by

widely available CAD tools, and (ii) a granularity of design techniques suitable for synthesizing

large designs. Currently, there is no unified established design methodology to support the

design and verification of these circuits. Moreover, the majority of clockless design techniques is

conceived at circuit level, and is subsequently so fine-grain, that their application to large designs

can have unacceptable area costs.

Given these considerations, this dissertation presents a new clockless technique, called

self-resetting stage logic (SRSL), in which the computation of a block is reset periodically from

within the block itself. SRSL is used as a building block for three coarse-grain pipelining

techniques:

(i) Stage-controlled self-resetting stage logic (S-SRSL) Pipelines: In these pipelines, the

control of the communication between stages is performed locally between each pair

of stages. This communication is performed in a uni-directional manner in order to

simplify its implementation.

iii

(ii) Pipeline-controlled self-resetting stage logic (P-SRSL) Pipelines: In these pipelines,

the communication between each pair of stages in the pipeline is driven by the

oscillation of the last pipeline stage. Their communication scheme is identical to the

one used in S-SRSL pipelines.

(iii) Delay-tolerant self-resetting stage logic (D-SRSL) Pipelines: While communication

in these pipelines is local in nature in a manner similar to the one used in S-SRL

pipelines, this communication is nevertheless extended in both directions. The result

of this bi-directional approach is an increase in the capability of the pipeline to handle

stages with random delay.

Based on these pipelining techniques, a new design methodology is proposed to

synthesize clockless designs. The synthesis problem consists of synthesizing an SRSL pipeline

from a gate netlist with a minimum area overhead given a specified data rate. A two-phase

heuristic algorithm is proposed to solve this problem. The goal of the algorithm is to pipeline a

given datapath by minimizing the area occupied by inter-stage latches without violating any

timing constraints. Experiments with this synthesis algorithm show that while P-SRSL pipelines

can reach high throughputs in shallow pipelines, D-SRSL pipelines can achieve comparable

throughputs in deeper pipelines.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Abdel Ejnioui, who invested time

and patience toward the completion of this dissertation. Without his encouragement, support, and

guidance, this dissertation would not have been possible. I would like to thank my committee

members, Drs. Issa Batarseh, Ronald F. Demara, Hassan Foroosh, and Alain Kassab, for their

support and willingness to serve on my defense examination. In particular, I would like to show

my special gratitude to Dr. Issa Batarseh for supporting my research work in times when support

resources were scarce. Beside Dr. Batarseh, I would like to show the same gratitude to Dr.

Harold Klee for providing me with department support whenever possible. Also, I would like to

thank Donald Harper for his patience and generosity in supporting the EDA design tools in the

VLSI Lab. Furthermore, I am grateful to my friend and lab mate, Rashad Oreifej, for his

insightful comments and helpful feedback on my work.

I would like to express my sincere thanks to my parents for their unconditional support,

guidance, and sacrifice. They have always believed in me and gratified me with their unending

love. Finally, I would like to thank my loving wife Amani for her generosity, support, and

understanding throughout my graduate studies. Her presence has been a pillar of steadfastness

on which to lean after long hours of toiling in the VLSI Lab.

v

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES.. xvii

CHAPTER ONE: INTRODUCTION... 1

1.1 Motivation... 1

1.1.1 The Clocking Problem ... 1

1.1.2 Growing Importance of Clockless Circuits.. 2

1.1.3 Coarse-Grain Clockless Pipelining .. 4

1.2 Design Methodology in Clocked Circuits... 5

1.2.1 Specification and Modeling ... 5

1.2.2 Verification .. 6

1.2.3 Synthesis .. 6

1.2.4 Mapping ... 8

1.3 Limitations of Clocked Circuits.. 8

1.3.1 Clock Frequency .. 8

1.3.2 Timing Closure .. 9

1.3.3 Power Implications .. 9

1.3.4 Area Implications... 9

1.3.5 Noise Margins.. 10

1.3.6 Multiple Clock Domains.. 10

1.4 Clockless Circuits ... 11

1.4.1 Self-Clocked Circuits... 11

vi

1.4.2 Speed-Independent Circuits ... 13

1.4.3 Delay-Insensitive Circuits.. 13

1.4.4 Self-Timed Circuits.. 14

1.4.5 Self-Resetting Circuits ... 15

1.5 Design Methodology in Clockless Circuits .. 15

1.6 Contributions of the Dissertation .. 17

1.7 Overview of the Dissertation .. 19

CHAPTER TWO: RELATED CLOCKLESS DESIGN METHODOLOGIES 21

2.1 Petri Nets... 21

2.2 Signal Transition Graphs .. 25

2.3 Micropipelines .. 27

2.4 Null Convention Logic ... 30

2.5 Burst Mode Machine... 34

2.6 Handshake Circuits ... 36

2.7 Extended Delay Insensitive Model ... 39

2.8 Summary ... 39

CHAPTER THREE: STAGE-CONTROLLED SELF-RESETTING STAGE LOGIC

PIPELINES... 42

3.1 SRSL... 42

3.2 S-SRSL Linear Pipelines .. 44

3.3 S-SRSL Non-linear Pipelines ... 50

3.3.1 S-SRSL Join Operation.. 50

3.3.2 S-SRSL Fork Operation... 52

vii

3.4 Performance of the Pipeline.. 54

3.4.1 Parameter Definitions .. 54

3.4.2 Analysis of the Reset and Evaluate Phase ... 55

3.4.3 Effect of δ on the Pipeline Stages .. 58

3.4.4 δ and Pipeline Depth.. 59

3.4.5 Area Cost ... 61

3.4.6 Fault Handling ... 61

3.5 Prototype Implementation of the S-SRSL Pipelines... 65

3.5.1 The S-SRSL Linear Pipeline.. 66

3.5.2 The S-SRSL Non-Linear Pipeline ... 70

3.5.2.1 The S-SRSL Join Pipeline .. 70

3.5.2.2 The S-SRSL Fork Pipeline.. 72

3.6 Summary ... 74

CHAPTER FOUR: PIPLINE-CONTROLLED SELF-RESETTING STAGE LOGIC PIPLINES

... 75

4. 1 P-SRSL Linear Pipeline... 75

4.2 P-SRSL Non-Linear Pipelines .. 82

4.2.1 P-SRSL Join Pipeline... 82

4.2.2 P-SRSL Fork Pipeline.. 85

4.3 Performance of the Pipeline.. 87

4.3.1 Analysis of the Reset and Evaluate Phase ... 87

4.3.2 Effect of δ on the Pipeline Stages .. 90

4.3.3 Effect of the Period on the Latch Enable ... 91

viii

4.3.4 Area Cost ... 92

4.3.5 Fault Handling ... 92

4.4 Prototype Implementation of the P-SRSL Pipeline .. 94

4.4.1 Implementation of the Linear Pipeline .. 94

4.4.2 Implementation of the Non-Linear Pipelines... 97

4.4.2.1 The P-SRSL Join Pipeline .. 97

4.4.2.2 The P-SRSL Fork Pipeline.. 100

4.5 Comparison of P-PRSL to S-SRSL Pipelines... 102

4.6 Summary ... 103

CHAPTER FIVE: DELAY TOLERANT SELF-RESETTING STAGE LOGIC PIPELINES.. 104

5.1. D-SRSL Linear Pipeline .. 104

5.1.1 Pipeline Structure... 104

5.1.2 Phase Control Block .. 106

5.1.3 Latch Control Block... 108

5.2. D-SRSL Non-Linear Pipelines .. 109

5.2.1 D-SRSL Join Pipeline .. 109

5.2.2 D-SRSL Fork Pipeline ... 114

5.3. Performance of the Pipeline... 118

5.3.1 The Reset and Evaluate Phase ... 118

5.3.2 Duration of Latch Enable... 122

5.3.3 Stage Delay and Period.. 123

5.3.4 Area Cost ... 128

5.3.5 Fault Handling ... 128

ix

5.4 Prototype Implementation of the D-SRSL Pipeline.. 131

5.4.1 Implementation of the PC Block.. 131

5.4.2 Implementation of the LC Block ... 132

5.4.3 Implementation of the Join Block.. 134

5.4.4 Implementation of the Fork Block... 136

5.4.5 Implementation of D-SRSL Pipeline ... 137

5.5. Conclusion ... 141

CHAPTER SIX: SYNTHESIS OF SRSL PIPELINES.. 143

6.1 SRSL Pipeline Design Methodology.. 143

6.2 Synthesis of SRSL Pipelines... 145

6.3 Preliminaries ... 146

6.4 Modeling of the Synthesis Problem.. 150

6.5 Proposed Solution of the SRSL Pipeline Synthesis.. 156

6.5.1 Phase I: Stage Assignment... 157

6.5.1.1 Phase I Approach .. 158

6.5.1.2 Phase I Algorithm ... 159

6.5.2 Phase II: Vertex Shuffling ... 161

6.5.2.1 Phase II Approach... 161

6.5.2.2 Phase II Algorithm.. 168

6.6 Experimental Results .. 170

6.6.1 P-SRSL Pipelining Experiments.. 170

6.6.2 D-SRSL Pipelining Experiments ... 177

6.6.3 Summary of the Experiment Results ... 182

x

6.7 Summary ... 184

CHAPTER SEVEN: CONCLUSION... 186

7.1 Summary of Completed Work .. 186

7.2 Future Work .. 190

LIST OF REFERENCES.. 193

xi

LIST OF FIGURES

Figure 1.1: Design flow of clocked circuits [14]. ... 7

Figure 1.2: General architecture of SC circuits [25]... 12

Figure 2.1: C-element and its surrounding dummy environment [27]. .. 22

Figure 2.2: The PN of the C-element shown in Figure 2.1 [27]. .. 22

Figure 2.3: Petrify framework... 24

Figure 2.4 :Timing diagram of the C-element shown in Figure 2.1. .. 26

Figure 2.5: STG of the C-element shown in Figure 2.1.. 26

Figure 2.6: Synthesis flow of clockless circuits from STG specifications. 27

Figure 2.7: Micropipeline handshake protocols.. 28

Figure 2.8: Basic structure of a micropipeline.. 28

Figure 2.9: Pipefitter framework... 29

Figure 2.10: NCL 2-of-3 threshold gate. .. 31

Figure 2.11: A half adder circuit in conventional Boolean logic.. 31

Figure 2.12: NCL half adder circuit.. 32

Figure 2.13: RTL flow for NCL design [51]. ... 33

Figure 2.14: Burst mode specification of a C-element. .. 35

Figure 2.15: Handshake channel... 36

Figure 2.16: The Tangram Toolset. .. 38

Figure 3.1: Reset and evaluate network of an SRSL stage. .. 43

Figure 3.2: STG of the reset network shown in Figure 3.1... 43

Figure 3.3: A four-stage S-SRSL pipeline.. 44

xii

Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3. .. 45

Figure 3.5: Two execution cycles of a four-stage S-SRSL Pipeline... 49

Figure 3.6: Structure of the join S-SRSL pipeline.. 51

Figure 3.7: STG of the S-SRSL join pipeline shown in Figure 3.6. ... 52

Figure 3.8: Structure of the fork S-SRSL pipeline. .. 53

Figure 3.9: STG of the S-SRSL fork pipeline shown in Figure 3.8.. 54

Figure 3.10: Simulation snapshot of stage 15 and 16 in a 16-stage prototype S-SRSL pipeline. 56

Figure 3.11: Simulation snapshot of stage 1 and 2 in a 16-stage prototype S-SRSL pipeline. 56

Figure 3.12: Chip layout of the four-bit 16-stage S-SRSL pipeline. .. 66

Figure 3.13: Simulation results of d(L+), d(R), d(E), δ, and P in a 16-stage S-SRSL pipeline. ... 68

Figure 3.14: The empirical and analytical values of d(R) and d(L+) in a 16-stage S-SRSL

pipeline.. 69

Figure 3.15: Four-bit six-stage S-SRSL join pipeline. ... 70

Figure 3.16: Simulation snapshot of the prototype S-SRSL join pipeline.................................... 71

Figure 3.17: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL join pipeline......... 72

Figure 3.18: Four-bit six-stage S-SRSL fork pipeline. ... 72

Figure 3.19: Simulation snapshot of the prototype S-SRSL fork pipeline 73

Figure 3.20: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL fork pipeline. 74

Figure 4.1: A four-stage P-SRSL pipeline.. 76

Figure 4.2: STG of the P-SRSL pipeline shown in Figure 4.1. .. 78

Figure 4.3: Two execution cycles of a four-stage P-SRSL Pipeline... 81

Figure 4.4: Structure of a join P-SRSL pipeline. .. 83

Figure 4.5: STG of the P-SRSL join pipeline shown in Figure 4.3. ... 84

xiii

Figure 4.6: Structure of a fork P-SRSL pipeline... 85

Figure 4.7: STG of the P-SRSL fork pipeline shown in Figure 4.6.. 86

Figure 4.8: Simulation snapshot of stages 13, 14, 15 and 16 in a 16-stage prototype P-SRSL

pipeline.. 89

Figure 4.9: Chip layout of the four-bit 16-stage P-SRSL pipeline. .. 95

Figure 4.10: Simulation results of d(L+), d(R), d(E), δ, and P in a P-SRSL pipeline. 96

Figure 4.11: Four-bit six-stage P-SRSL join pipeline. ... 98

Figure 4.12: Simulation snapshot of the prototype P-SRSL join pipeline.................................... 98

Figure 4.13: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype join

pipeline.. 99

Figure 4.14: Four-bit six-stage P-SRSL fork pipeline. ... 100

Figure 4.15: Simulation snapshot of the prototype P-SRSL fork pipeline. 100

Figure 4.16: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype fork

pipeline.. 102

Figure 5.1: A four-stage D-SRSL pipeline. .. 105

Figure 5.2: STG of the D-SRSL pipeline shown in Figure 5.1. ... 106

Figure 5.3.:Phase control block. ... 107

Figure 5.4: State graph of the PC block.. 107

Figure 5.5: Latch control block... 109

Figure 5.6: State graph of the latch control block... 109

Figure 5.7: D-SRSL join pipeline. .. 110

Figure 5.8: STG of the D-SRSL join pipeline shown in Figure 5.7. .. 111

Figure 5.9: The Join block. ... 111

xiv

Figure 5.10: State graph of the Join block. ... 112

Figure 5.11: Prototype D-SRSL join pipeline... 112

Figure 5.12: Simulation snapshot of the prototype D-SRSL join pipeline. 113

Figure 5.13: D-SRSL fork pipeline... 115

Figure 5.14: STG of the D-SRSL fork pipeline shown in Figure 5.13....................................... 115

Figure 5.15: Fork block... 116

Figure 5.16: State graph of the Fork block. .. 116

Figure 5.17: Prototype D-SRSL fork pipeline. ... 116

Figure 5.18: Simulation snapshot of the prototype D-SRSL fork pipeline................................. 117

Figure 5.19: Simulation snapshot of stage 14, 15 and 16 in a 16-stage prototype D-SRSL

pipeline.. 119

Figure 5.20: Simulation snapshot of stages 7 through 11 in a 17-stage prototype D-SRSL

pipeline.. 124

Figure 5.21: Simulation snapshot of stages 8 and 9 in the 17-stage D-SRSL prototype pipeline.

... 125

Figure 5.22: Simulation snapshot of stages 9 and 10 in the 17-stage D-SRSL prototype pipeline.

... 126

Figure 5.23: Synthesized netlist of the PC block.. 132

Figure 5.24: Synthesized netlist of the LC block.. 133

Figure 5.25: Synthesized netlist of the Join block. ... 134

Figure 5.26: Synthesized netlist of the Fork block. .. 136

Figure 5.27: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 1.... 139

Figure 5.28: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline 2.... 140

xv

Figure 5.29: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline3..... 141

Figure 6.1: SRSL design flow... 144

Figure 6.2: Example of a Boolean network. ... 147

Figure 6.3: Boolean graph of the Boolean network shown in Figure 6.2. 149

Figure 6.4: Latch insertion between two neighboring pipeline stages.. 162

Figure 6.5: P-SRSL area as a percentage of the pipeline area across different pipelines of the

C6822 benchmark circuit.. 171

Figure 6.6: Pipeline throughputs for various P-SRSL pipeline depths....................................... 172

Figure 6.7: P-SRSL area as a percentage of the pipeline area across various depth pipelines. .. 174

Figure 6.8: Period over area ratios for different depths P-SRSL pipelines. 176

Figure 6.9: D-SRSL area as a percentage of the pipeline area across different pipelines of the

C5135 benchmark circuit.. 178

Figure 6.10: Pipeline throughputs for various D-SRSL pipeline depths. 179

Figure 6.11: D-SRSL area as a percentage of the pipeline area across various depth pipelines. 181

xvi

LIST OF TABLES

Table 2.1: Summary of clockless design methodologies.. 41

Table 3.1: S-SRSL linear pipeline implementation .. 67

Table 4.1: P-SRSL pipeline implementation. ... 95

Table 4.2: Comparison summary of the P-SRSL to S-SRSL pipeline. 103

Table 5.1: D-SRSL pipeline implementation.. 138

Table 5.2: Gate area of a single D-SRSL stage. ... 138

Table 6.1: Experimental circuits. .. 170

Table 7.1: SRSL pipelining parameters. ... 188

Table 7.2: Fault handling in the three pipelines.. 189

xvii

CHAPTER ONE: INTRODUCTION

1.1 Motivation

In this section, the rationale and the motivation behind the work undertaken in this

dissertation is presented.

1.1.1 The Clocking Problem

For three decades, digital design has been primarily dominated by clocked circuits

since these circuits can be extremely robust and fairly easy to build. The use of a clock

signal in clocked circuits introduces a level of abstraction in the time domain that hides

many details about the temporal relations among circuit signals. This greatly simplifies

the timing analysis of such circuits by reducing it to a mere analysis of the critical paths

contained within the circuit. In a clocked circuit, a designer can simply define the

combinational logic necessary to compute the given functions and surround it with

latches. By setting the clock rate to a sufficiently long period, concerns about undesired

signal transitions and the dynamic state of the circuit are eliminated [1]. The ease of

design in clocked circuits has made them inevitably highly attractive to members of the

commercial and research communities. In return, this interest has lead to a significant

investment in the automation of designing these circuits thus culminating in the wide

acceptance of a unified design methodology supported by widely available CAD tools.

Along this evolution, the semiconductor industry has kept improving fabrication

processes by shrinking silicon features to attain larger scale of integration. New

1

manufacturing techniques have made the integration of multi-million transistors onto the

same die possible. As designers kept packing more devices into chips to take advantage

of these large scales of integration, significant challenges have emerged the most

important of which is the reliance on a clock signal to orchestrate logic operations across

an entire chip. This challenge is known as the clocking problem. Today, this problem is

considered at the root of three consequential fundamental obstacles in current VLSI

design:

(i) Design cycle time: Design time can be extended significantly by unexpected

clocking problems. These extensions can disturb product schedules and shrink

potential market profits.

(ii) Power budget: The power budget allocated for a design initially may be

completely underestimated if clocking problems are not addressed early in the

design cycle. Even if they are, there is still no guarantee that the power budget

will remain within initial estimates.

(iii) Chip area: To overcome the technical difficulties imposed by the distribution

of the clock to different parts of a chip, substantial silicon area has to be

sacrificed to support this distribution. As known in the economics of the

semiconductor industry, area cost can add up to the fixed cost of producing

each chip unit.

1.1.2 Growing Importance of Clockless Circuits

Motivated by the gravity of the clocking problem and its severe consequences,

designers are currently considering other circuits which can operate without a clock.

2

These circuits are known as clockless circuits [1]. Although considered esoteric by most

digital designers, these circuits have been subject to intensive investigation for some

time. While clockless circuits have some disadvantages, there is wide agreement among

researchers that their well known advantages make them suitable to overcome the

clocking problem. Unfortunately, at this time, there is no unified established design

methodology to support the design and verification of clockless circuits although a

plethora of ad-hoc design methodologies have been proposed in the past for various

classes of clockless circuits [2-10]. In fact, this variety of design methodologies triggered

strong reluctance from digital designers to consider clockless circuits as viable

alternatives. As a result, since existing CAD tools have been intended for clocked

designs, it would be reasonable to adapt them for clockless designs considering the

massive investments that have been spent on the developments of these tools. An ideal

solution to leverage these investments would be a design methodology that would exploit

existing CAD tools as much as possible and deviate from them as little as possible. Even

by adopting such a methodology, one quickly realizes that only a handful of clockless

circuits can be designed and verified using this adopted methodology. For instance, most

of the pipeline-based clockless techniques, such as micropipelines, are not adequate to

synthesize large data paths. These clockless pipelines, often implemented at circuit level,

are so fine-grain that their application to pipeline data paths can have an unacceptable

area overhead.

3

1.1.3 Coarse-Grain Clockless Pipelining

Faced with this difficulty, it would make sense to (i) either select a few coarse-

grain pipelining techniques among previously proposed clockless techniques, or (ii)

propose new coarse-grain clockless pipelining techniques that seem supportable by

existing CAD tools. A few attempts have been already undertaken in pursuing the former

alternative [2, 11-12]. However, if the latter alternative is pursued, the best place to

transform a clocked design into a clockless one is at the gate level where minimum

disruption of the design flow supported by existing CAD tools is achievable. By doing so,

the synthesis step of the clocked gate netlist from the initial register transfer level (RTL)

model in the design flow is completely preserved. The obtained clockless gate netlist can

be mapped using technology mappers packaged in existing CAD tools, and standard cell

libraries which do not contain any specially designed handshaking components. In

addition, the same gate netlist can be simulated using any existing simulators.

Furthermore, the proposed clockless design technique is of sufficient granularity as to not

impose a high area overhead.

Based on the rationale of the second alternative, this dissertation presents a novel

clockless design technique highly adaptable for existing CAD tools. This technique can

be incorporated within existing CAD tools without altering their design flow. This design

technique is used to develop three coarse-grain pipelining techniques with distinct control

mechanisms, which can be used to transform a clocked gate netlist into a highly pipelined

clockless gate netlist based on data rate and area cost specifications. The remainder of

this chapter reviews the design methodology of clocked circuits in section 1.2. In section

4

1.3, a review of the limitations of clocked circuits is presented while section 1.4

introduces several classes of clockless circuits. Section 1.5 gives an overview of the

design methodologies used in synthesizing clockless circuits while section 1.6 presents

the contributions of this dissertation. Finally, section 1.7 shows an overview of the

dissertation.

1.2 Design Methodology in Clocked Circuits

Today, the design methodology of clocked circuits is widely accepted and

supported by existing CAD tools. As shown in Figure 1.1, this methodology consists of

(i) specification and modeling, (ii) verification, (iii) synthesis, (iv) technology mapping,

and (v) physical layout.

1.2.1 Specification and Modeling

A clocked circuit is specified in both general and specific terms that provide design

targets such as functionality, speed, and size. These specifications are used to create an

abstract, high level model using a high level hardware description language (HDL). The

abstract model contains information on behavior of each block and the interaction among

the blocks in the circuit [13]. VHDL and Verilog HDL are the most widely used HDLs in

the digital design community to model these circuits.

5

1.2.2 Verification

The HDL model is subjected to extensive verification wherein the design is

checked to ensure correct functionality. Simulation is the most widely used form of

verification. During simulation, test benches are created and applied on the design to

validate its functionality against initial requirements.

1.2.3 Synthesis

The synthesis step consists of creating a gate implementation of the specified

model. This step can be performed as follows:

(i) Translate the abstract Register Transfer Level (RTL) design description to

 register elements and combinational logic.

(ii) Optimize the combinational logic by minimizing, flattening and factoring the

 resulting Boolean equations.

(iii) Translate the optimized logic level description to a generic gate netlist using

 cells from a generic library.

6

Figure 1.1: Design flow of clocked circuits [14].

7

1.2.4 Mapping

In this step, the optimized generic gate netlist is mapped to a specific standard cell

library in a given technology. The mapping must satisfy area and timing constraints

specified earlier in the design flow. After mapping, simulation can be performed on the

mapped gate netlist in order to compare its results with the results obtained from the

simulation of the model specified in the modeling step of the design flow.

1.3 Limitations of Clocked Circuits

In nanometer technology processes, circuit designers can build super fast

transistors capable of processing data in several steps during the time it takes a wire to

carry a signal from one side of a chip to the other [15]. Keeping operation frequency

identical across the chip area requires substantial effort in distributing the clock to the

various areas of the chip. To do so, the clock distribution at chip level can generate

numerous costly difficulties that exacerbate the three fundamental obstacles encountered

in current VLSI design.

1.3.1 Clock Frequency

To insure correct synchronization of the latches across the chip, designers assume

a clock frequency based on the worst case propagation delay through the slowest path in

the design [16-18]. This pessimistic estimation usually accounts for maximum clock

skew, and process variations due to process, voltage, and temperature. The margin

allotted for these variations tend to increase as nanometer processes are adopted.

8

1.3.2 Timing Closure

For high performance designs, timing closure can become a major bottleneck

before tape out time. In principle, the delay through the slowest paths, augmented with

the safety margins accounting for process variation and skew, should be less than the

target clock period. Often, design teams realize that the target is not met after layout in

spite of the extensive simulations at different levels of the design flow. Designers are

forced then to iterate numerous times through the design flow cycle in order to meet the

target. These iterations can cause costly delays in production schedules.

1.3.3 Power Implications

It has been established that the clock network can consume a sizable portion of

the chip power budget. This phenomenon is highly acute in high-capacity Field

Programmable Gate Arrays (FPGA) chips [19]. In fact, the clock is continually switching

unless clock gating techniques are used. This means that latches are dissipating heat

whether they are processing data or not [17]. Clock gating techniques can alleviate the

problem to some degree at the expense of added design complexity and a drop in

performance [20, 21].

1.3.4 Area Implications

Several researchers have proposed advanced approaches to alleviate clock

distribution and de-skewing problems. However these approaches can, in some cases,

impose a substantial cost in added area. There were reported instances in which a

9

complex clock-driver network on a commercial microprocessor was designed to keep the

clock skew within 300 picoseconds. However, this resulted in a circuit that occupied 10%

of the chip area and consumed more than 40% of the total power budget [22]. In semi-

custom designs, the clock network can occupy an area that is even larger reaching 30 to

40% of the total chip area.

1.3.5 Noise Margins

Beside increases in area and power cost, clock networks are highly noisy. By

keeping all signal transitions in lock step, the clock network creates the worst

environment to suppress noise. Similar to data signals, current transitions on clock lines

become synchronized to some degree thus maximizing the AC component of any

generated noise in relation to the harmonics of the clock frequency.

1.3.6 Multiple Clock Domains

With increasing numbers of clock domains in current chips, concerns are

growing about synchronization of cross-domain signal paths. A complex communication

system-on-chip can contain up to 300 such domains [23]. The synchronization of these

domains requires proper placement of synchronizers at precise points in the design. Even

with proper placement, there is no guarantee that all the bits of a domain-crossing bit

vector in a cross-domain path signal will cross domain boundaries at the same time

through these synchronizers. This is further complicated by the fact that clock

frequencies across domains differ widely, which necessitates the insertion of FIFO

buffers at various points in the design. Insertion of FIFO buffers raises sizing and correct

10

implementation issues. While synchronizer placement and buffer insertion can be

performed manually, it is not advised in most cases since it is labor-intensive and highly

prone to errors. Designers can overcome these difficulties if automatic tools for

placement and verification were available. Unfortunately, there are no specialized tools to

support these tasks on the market at this time.

1.4 Clockless Circuits

Clockless circuits are circuits that operate without the synchronization of a clock

signal. Although numerous clockless circuits have been proposed before, they can

nevertheless be classified based on a limited number of characteristics. The most

important characteristic in distinguishing the underlying principle behind the operation of

a clockless circuit is how signal delay is handled in order to insure the proper

synchronization of the different components of the circuit. This assumption is known as

the delay model. Based on this delay model, clockless circuits can be divided in five

distinct classes of circuits.

1.4.1 Self-Clocked Circuits

In general, self-clocked (SC) circuits consist of three components as shown in

Figure 1.2 [24] [25]:

11

Figure 1.2: General architecture of SC circuits [25].

(i) Clock logic: This component generates a clock pulse only whenever the state

or output signals change. It is used to eliminate hazards and control state

changes of the machine.

(ii) Storage elements: These elements capture data by responding to the clock

signal.

(iii) Combinational logic: This component does not require special care to protect

it from hazards. The clock component is chosen to be slow enough to allow

outputs to settle before it is fed back to the combinational logic.

12

 SC circuits are simple and attractive since they reduce the potential overhead due

to the clock. In addition, they allow the realization of hazard-free logic based on the

specification of finite state machines.

1.4.2 Speed-Independent Circuits

Speed-independent (SI) circuits were introduced by David Muller in the 1950s

[26]. These circuits operate correctly regardless of gate delays. In these circuits, wires are

assumed to have zero or negligible delay. As a result, every fork in the circuit is assumed

to be an isochronic fork causing only a negligible skew. An isochronic fork is a wire fork

in which the delays on the branches of the fork are equal. If this delay model is assumed,

an SI circuit works properly for all possible ordering of events associated with all

possible and varying relative delays of the components of the circuit. SI circuits can be

synthesized from Petri nets and signal transition graphs used in synthesizing clockless

circuits.

1.4.3 Delay-Insensitive Circuits

Delay-Insensitive (DI) circuits are circuits which operate correctly with positive

and unbounded delay in wires and gates [27]. In a bounded-delay model, it is assumed

that a circuit will settle in a stable state as a response to an input if given enough time.

Immediately after, a new input can be safely fed to the circuit. Micropipelines and burst

mode circuits are examples of circuits whose operations are based on the bounded-delay

model. However, in an unbounded delay model, no matter how long a circuit waits, there

is no guarantee that the input will be properly absorbed. This required some kind of

13

handshaking protocol between sender and receiver components of the circuit. The sender

sends data and waits on an acknowledge signal from the receiver. The latter receives the

data and sends the acknowledge signal back to the sender. By managing these signal

exchanges, handshaking protocols can make circuits highly immune to hazards.

Unfortunately, the number of DI circuits, built out of simple gates and operators, is quite

small. In fact, it has been proven that almost no useful DI circuits can be built if one is

restricted to a class of simple gates and operators [28]. However, many practical DI

circuits can be built if one allows more complex components [29].

Because the unbounded delay model is too restrictive, it can be slightly relaxed by

allowing bounded delays on wire forks or using isochronic forks. In adopting this

modified unbounded delay model, DI circuits can be refined further into a subclass of

quasi-delay-insensitive (QDI) circuits [27]. In contrast to QDI circuits, delays on the

different fork branches of DI circuits are completely independent and may vary

considerably. DI circuits can be built from Null Convention Logic, handshake-based

circuits, and extended delay insensitive clockless models.

1.4.4 Self-Timed Circuits

In [30], self-timed (ST) circuits are described as interconnections of parts called

“elements". Each element is contained in an “equipotential region" in which wires have

negligible or well-bounded delay. An element itself may be an SI circuit, or a circuit

whose correct operation relies on the use of local timing assumptions. However, no

timing assumptions are made on the communication between regions; that is,

14

communication between regions is delay-insensitive. Null Convention Logic (NCL) is

considered as ST circuits.

1.4.5 Self-Resetting Circuits

Earlier implementations of self-resetting circuits rely on circuit techniques to

realize self-resetting behavior. For instance, self-resetting CMOS (SRCMOS) operates on

signals represented as short-duration pulses rather than as voltage levels [31]. After a

logic gate processes a set of input pulses, a reset signal is activated to restore the logic

gate to a state in which it is ready to receive another set of input pulses. The input pulses

must arrive at the same time and must overlap with one another for a minimum duration.

Several reset schemes have been proposed before. Jung has proposed two techniques to

increase the robustness and efficiency of SRCMOS circuits [32]. The first technique uses

a logical structure to properly sequence the reset and evaluates modes of an SRCMOS

logic stage without having to rely on a timing chain. The second technique uses a pulse

stretcher so that input pulses of widely different arrival times can be properly combined

at a given stage logic. Beside Jung schemes, Dooply has proposed locally self resetting

CMOS where the reset signal for each stage is generated locally [33]. This technique is

based on single-rail domino logic stages in which the reset signal is obtained by sending

the stage own output through a short delay chain.

1.5 Design Methodology in Clockless Circuits

Various design methodologies have been proposed in the past to synthesize

clockless circuits. In general, there is a close relationship between the theoretical model

15

used to represent the behavior of clockless circuits and the tools used to model this

behavior. Given this relationship, design methodologies for clockless circuits can be

classified as follows:

(i) Graph-based methodologies: These methodologies require the modeling of

the circuit as Petri nets (PNs) or signal transition graphs (STGs). Circuits are

synthesized from these graphs and mapped onto general C-elements and

complex gates [3-8].

(ii) HDL-based methodologies: These methodologies require the modeling of a

circuit using an existing HDL [2, 9-10], [34-37]. The model is translated to a

netlist that can be mapped onto a standard cell library.

(iii) Script-based methodologies: In these methodologies, circuit behavior is

described using algebraic expressions and saved as scripts [38-41]. The scripts

are expanded into graphs from which circuits are synthesized and mapped.

(iv) Compilation-based methodologies: These methodologies require the use of

high level programming languages, some of which are proprietary, designed

to express concurrency, handshaking, and sequencing [42-45]. The source

code of the program describing the circuit behavior is parsed and compiled

into a circuit containing pre-designed components which support the

programming language constructs for concurrency, handshaking, and

sequencing.

Given this diversity of design methodologies, it is understandable why most

designers are reluctant to delve in clockless logic. This reluctance can be justified by the

16

fact that adopting any methodology requires some amount of retraining and retooling on

the part of the designers. This reluctance is reinforced further by a visible lack of

simulation and verification tools at all levels of the design flow that is suggested by these

methodologies. In addition, proprietary cell libraries are necessary to map circuits using

some of these methodologies. What most designers are seeking instead is a single

uniform design methodology that is (i) familiar, (ii) widely accepted, (iii) tested and

proven by a long usage experience, (iv) and may use proprietary resources as little as

possible. Such a methodology has been already in use for some time to produce clocked

circuits in the form of successful commercial CAD or EDA tools. In this case, the design

methodology of these CAD tools can be used to support clockless design techniques that

can be specified and modeled using current HDLs. The obtained HDL models can be

verified through simulation. Next, the HDL models can be synthesized into clockless gate

netlist which can be mapped using standard cell libraries found in the realization of

clocked circuits. Note that, in general, these libraries do not contain any special cells

designed to handle events specific to clockless logic such as concurrency, rendez-vous,

and handshaking. By implementing these clockless techniques using existing CAD tools

with a minimum modification to the design flow of these tools, the need for relearning

and retooling can be eliminated.

1.6 Contributions of the Dissertation

This dissertation presents a new clockless design technique suitable for existing

CAD tools. Specifically, its contributions are as follows:

17

(i) A new self-resetting logic technique, called self-resetting stage logic (SRSL),

in which the computation of a block is reset periodically from inside the

block. This automatic self-resetting behavior manifests itself in the form of a

periodic oscillation of the block driven by a reset loop similar to an internal

clock. This simplifies the synchronization scheme by using a uni-directional

communication channel between senders and receivers.

(ii) A pipelining technique based on SRSL controlled at stage level, called stage-

controlled self-resetting stage logic (S-SRSL). In S-SRSL, the control of the

communication between stages is performed between each pair of stages.

(iii) A pipelining technique based on SRSL controlled at pipeline level, called

pipeline-controlled self-resetting stage logic (P-SRSL). In P-SRSL, the

control of the communication between stages is performed by the last stage in

the pipeline whereby the oscillation of the last stage drives the oscillatory

behavior of the other stages in the pipeline.

(iv) A coarse-grain pipelining technique called delay-tolerant self-resetting stage

logic (D-SRSL) that is similar to S-SRSL pipelining where data flow across

stages is orchestrated by each pair of neighboring stages. Whereas S-SRSL

and P-SRSL pipelines require that intra-stage delay and communication

scheme be identical and uni-directional respectively, D-SRSL can tolerate

stages with arbitrarily different delays by using a bi-directional

communication scheme.

(v) Graph-theoretic and analytical formulations of a combinatorial problem

encountered in the synthesis of SRSL pipelines. Specifically, this problem

18

consists of synthesizing an SRSL pipeline from a gate netlist with a minimum

area overhead based on a specified data rate. The analytical formulation

consists primarily of an integer programming problem.

(vi) Since the size of the integer programming problem formulation is significantly

large, and subsequently solving it using analytical approaches is impractical, a

new heuristic algorithm is proposed to solve it. Because latches tend to

occupy a large silicon area, the main goal of the algorithm is to minimize the

area occupied by inter-stage latches without violating any timing constraints.

This algorithm accomplishes this by executing two successive phases where

phase I assigns each gate in the gate netlist to a specific pipeline stage whereas

phase II minimizes the number of inter-stage latches between every pair of

neighboring pipeline stages.

1.7 Overview of the Dissertation

This dissertation consists of six chapters beside the current chapter. Chapter 2

reviews the main clockless design methodologies and evaluates their suitability for

existing CAD tools. Chapter 3 explains the underlying concepts behind SRSL and

introduces S-SRSL pipelines followed by an analysis of the experimental results

conducted on these pipelines. Chapter 4 presents P-SRSL pipelines and the experiments

conducted on these pipelines followed by a comparison of S-SRSL and P-SRSL

pipelines. Chapter 5 presents D-SRSL pipelines and analyzes the results obtained from

the prototyping experiments conducted on these pipelines. Chapter 6 introduces the

synthesis problem of SRSL pipelines, presents the formulation of the combinatorial

19

problem stemming from the synthesis of SRSL pipelines, and describes the synthesis

algorithm implemented for this purpose. Finally, Chapter 7 concludes the dissertation

and suggests avenues for future work.

20

CHAPTER TWO: RELATED CLOCKLESS DESIGN
METHODOLOGIES

This chapter reviews the main clockless design methodologies and the available

tools that support each design methodology as reported in the literature. Section 2.1

presents methodologies based on Petri nets while section 2.2 presents methodologies

based on signal transition graphs. Section 2.3 presents micropipelines while section 2.4

presents Null Convention Logic. Burst mode machines are described in section 2.5.

Section 2.6 describes handshake circuits while section 2.7 describes the extended delay

insensitive model. Finally, section 2.8 gives a summary of the chapter and compares the

listed design methodologies with the proposed SRSL technique.

2.1 Petri Nets

Petri Nets (PNs) is a formal syntax and semantic representation suitable to specify

causality, concurrency and choice between events. PNs can be a powerful tool to model

clockless circuits [3, 46, 47]. Formally, a PN is a triple N = (P, T, F) where:

(i) P is a finite set of places.

(ii) T is a finite set of transitions: T P∩ =∅ .

(iii) () ():F F P T T P⊆ × ∪ × is the flow function.

Transitions in PNs represent events in the system such as a request to access a

memory bank in a multi processor system. On the other hand, places in PNs represent

placeholders for needed resources and conditions necessary for events to occur. Figure

2.1 shows a C-element and its surrounding environment while figure 2.2 shows its PN

specification.

21

a

b
c

Figure 2.1: C-element and its surrounding dummy environment [27].

Figure 2.2: The PN of the C-element shown in Figure 2.1 [27].

The PN is marked with tokens on the input places to the a+ and b+ transition. The

a+ and b+ transitions may fire in any order. The c+ transition becomes enabled to fire

when both a+ and b+ transitions fire [27]. Previously developed methods for PN-based

synthesis of clockless circuits can fall in one of the following two approaches [48]:

(i) A direct, syntax oriented, translation of the PN into logic.

(ii) A translation of the PN into a signal transition graph (STG) followed by the

synthesis of a circuit from the obtained STG.

22

The approach in (i) can be used to obtain implemented circuit in three steps. In the

first step, a net model is extracted from the circuit model described in the PN while in the

second step the net model is transformed into an equivalent net where each signal event is

associated with a unique transition. Finally, the net is translated into the circuit that can

be constructed from a standard set of event-based modules. So far, most previous

research focused on the synthesis of the clockless circuits from STGs. Petrify belongs to

category (i) of synthesis tools. It is mainly a research tool used in the synthesis of

clockless controllers from PN specifications [4]. Petrify reads a specification PN and

generates a reduced version of the initial PN where the latter is used to produce an

optimized netlist of a clockless controller based on a target gate library. Recent

improvements to Petrify consist of generating circuits from STGs instead of solely PN

specifications. These improvements help Petrify fall in category (ii) of synthesis tools. As

shown in Figure 2.3, Petrify can be used as a standalone synthesis tool. The design flow

shown in the figure starts from a specification of the system behavior described by a PN,

state graph, or finite state machine (FSM) in a textual format. Petrify performs logic

synthesis on the construction state graph in which each reachable state is assigned a

binary code representing the value of each signal. This allows the generation of a circuit

using logic minimization techniques. The circuit can be constructed from C-elements and

generic complex gates. If these generic complex gates are not available in the gate

library, Petrify performs combinational and sequential decomposition of the logic into

primitive gates that are available in the target gate library. The PNs accepted by Petrify

can also be interpreted as behavior-specifying STGs of clockless controllers.

23

Figure 2.3: Petrify framework.

Since Petrify uses symbolic techniques to represent the state space, it can

synthesize large controllers whose specifications consist of more than 20 signals if well-

structured behavior is specified. However, previous experiments showed that Petrify is

not appropriate for data-path synthesis since it cannot always guarantee a correct

synthesized netlist [5]. Although Petrify starts its synthesis process from a PN or STG

specification, the latter two representations are not widely used among digital designers.

Specifying system behavior in these representations can be challenging if the designer

does not have proper knowledge on how to use them. In addition, it is difficult to

integrate Petrify with existing simulation and synthesis tools since it is intended to

24

operate as a stand-alone tool. Furthermore, Petrify does not offer any capability to

support verification or simulation of the PNs or STGs before they are synthesized into

circuits. Petrify support mapping the synthesized netlist to C-element and complex gates

assuming that the target cell library contains such elements and gates.

2.2 Signal Transition Graphs

Signal transition graphs (STGs) are a subset of PNs. When PNs are used to model

clockless circuits, it is sometimes necessary to relate transitions to events on signal wires

[6-8]. Several PN variants have been proposed to relate these transition events including

M-nets, I-nets, change diagrams, and STGs. An STG is a labeled safe PN which is

modeled as a 7-tuple 0 0(, , , , , ,)TP T F M N s λ , where:

(i) P, T, F are defined in the PN section.

(ii) 0M is the initial marking representing the function that maps the places to

natural numbers.

(iii) is the set of signals where I is the set of the input signals and O is

the set of the output signals

N I O= ∪

(iv) is the initial value for each signal in the initial state. 0s

(v) { }:T T Nλ → × + −,

1

0

is the transition labeling function.

In an STG, each transition is labeled with a rising transition, s+, or a falling

transition, s-. An s+ label indicates that the transition corresponds to a transition

on the signal wire s. On the other hand, an s- label indicates that the transition

corresponds to a 1 transition on s. Figure 2.5 shows the STG specification for the C-

0→

→

25

element shown in Figure 2.1. This specification can be directly derived by following the

causality arrows defined in the timing diagram shown in Figure 2.4 [27].

a

b

c

Figure 2.4 :Timing diagram of the C-element shown in Figure 2.1.

a+b+

c+

b- a-

c-

Figure 2.5: STG of the C-element shown in Figure 2.1.

The first step in STG-based synthesis is the generation of a stage graph (SG).

After obtaining an SG, there are two approaches to implement a circuit. In the first

approach, if the SG is free of complete state coding (CSC) violations, a Boolean equation

is derived and directly implemented with an SI circuit using generalized C-elements. A

CSC violation represents the situation in which different states of a state machine are

encoded with the same binary code although they imply contradictory next values for at

least one of the output signals. However, in the second approach, specific state encoding

26

methods are applied to get a realizable STG. The Boolean equation of the newly obtained

realizable STG can be used to realize a circuit directly using generalized C-elements. In

general, the derived Boolean equation may not be implementable as a single complex

gate. In that case, logic decomposition is applied to transform the equation into smaller

equations, which can be implemented using simple gates. Figure 2.6 shows the design

flow to synthesize clockless circuit from STGs [47]. Petrify can be used to synthesize

circuits from STG specifications and support mapping the synthesized netlist to C-

elements and complex gates.

State space
analysis

State
encoding

Boolean
minimization

Logic
decomposition

STG

SG SG with
CSC

Boolean
equations

Gate
netlist

Figure 2.6: Synthesis flow of clockless circuits from STG specifications.

2.3 Micropipelines

Microppipelines consist of event-driven elastic pipelines [49]. These pipelines can

realize fast and efficient implementations of arithmetic circuits by using a two-phase

handshake protocol instead of a four-phase handshake protocol. Both protocols are shown

in Figure 2.7. The implementation structure for a micropipeline is the controlled first-in

first-out (FIFO) queue, shown in Figure 2.8, in which the gates labeled C are Muller C-

elements. In addition, the registers in the Figure 2.8 are level-sensitive latches that

respond to transitions on two inputs instead of responding to a single clock wire as is

done in clocked latches.

27

(a) Two-phase handshake protocol. (b) Four-phase handshake protocol.

Figure 2.7: Micropipeline handshake protocols.

Figure 2.8: Basic structure of a micropipeline.

These latches are initially active by passing data directly from data inputs to data

outputs. When a transition occurs on the capture wire of the latch, labeled C, data is no

longer allowed to pass, and the current value of the outputs is statically maintained. Once

a transition occurs on the pass input, labeled P, data is again allowed to pass from input

to output, and the cycle repeats. The Cd and Pd ports on the latch simply keep copies of

the control signals that are delayed so that the register completes its response to the

control signal transitions before they are sent back out.

Pipefitter has been proposed as a tool for automated synthesis of micropipelined

clockless circuits consisting of a 4-phase control unit and a clockless data path with

matched delays [9, 10]. The synthesized control unit supports concurrency, sequencing

28

and choice. As shown in Figure 2.9, Pipefitter’s framework uses Verilog HDL as the

output format for intermediate representations of both control unit and data path.

Figure 2.9: Pipefitter framework.

Based on this representation, designers can use existing EDA tools for most

design phases, including synthesis, simulation and layout. The Verilog source code is

optimized and split into two separated databases: one for the control unit and the other for

the data path. After the Verilog netlist is generated, a standard logic synthesis tool can be

used for technology mapping. Pipefitter can automatically generate a netlist of matched

delays for each block in the data path. In addition, it can generate the netlist of the control

unit by calling Petrify. By merging the netlist of both control unit and data path, a

complete netlist is constructed. At this point, the netlist can be placed and routed in order

to produce a final layout. While Pipefitter can be integrated with existing EDA tools

better than Petrify can, its shortcomings stems from the fact that it supports only a

29

restricted subset of Verilog statements. Pipefitter uses existing EDA commercial tools for

simulation, and the final standard netlist can be mapped to a standard cell library.

2.4 Null Convention Logic

The NULL Convention Logic (NCL) synthesis flow is a framework that integrates

data transformation and control into a single expression thus yielding delay-insensitive

circuits [50]. NCL uses threshold gates with hysteresis to provide the basic building block

of NCL designs. Threshold gate inputs and outputs can be in one of two states, DATA or

NULL. DATA corresponds to a logic-1 voltage level while NULL corresponds to a logic-

0 voltage level in the normal logic mapping [34, 36]. The operation of NCL gates is

based on two primary properties of M-of-N gate, namely threshold behavior and

hysteresis behavior. Threshold behavior requires that the output becomes DATA if at

least M of the N inputs are DATA. On the other hand, hysteresis behavior requires that

the output changes only after a sufficiently complete set of input values have been

established. In the case of a transition to DATA, the output remains at NULL until at

least M of the N inputs become DATA. On the other hand, in the case of a transition to

NULL, the output remains at DATA until all N inputs become NULL. Since these gates

use two-value logic, as traditional Boolean logic does, they can be constructed with

traditional CMOS, Bipolar, or even more exotic processes [36]. Figure 2.10 shows a 2-of-

3 threshold gate that fires when two of it is inputs are active and return to null when all of

the inputs are null.

30

Figure 2.11 shows a half adder circuit in Boolean logic with its clock while Figure

2.12 shows its NCL counterpart [37].

Figure 2.10: NCL 2-of-3 threshold gate.

Figure 2.11: A half adder circuit in conventional Boolean logic.

Although NCL can use any delay insensitive encoding, it uses mostly a dual rail

one-hot encoding in which the presence of DATA on one of two wires indicates a TRUE

state while the presence of DATA on both wires indicates a FALSE state. Unlike

previously described clockless approaches, the algebraic theory behind NCL makes it

extremely applicable to high-level design methodologies such as RTL simulation, RTL

31

synthesis, and gate optimization. Motivated by these advantages, Theseus Logic has

developed a synthesis and simulation flow based on existing, off-the-shelf, EDA tools

from industry leaders such as Synopsys and Mentor Graphics. Based on this flow, NCL

designers can specify their designs in VHDL or Verilog and simulate them using existing

EDA tools. As shown in Figure 2.13, the NCL flow is centered around two primary

synthesis steps [51, 52]:

Figure 2.12: NCL half adder circuit.

(i) Translate the HDL code into a 3NCL netlist: This stage starts with an HDL

source code written with 3NCL, a single-rail multi-valued representation of

the initial NCL. The synthesis tool performs HDL optimizations and outputs

an unmapped VHDL dataflow description expressed by AND and INV

assignments. This dataflow description is referred to as a 3NCL netlist.

(ii) Optimize the 3NCL netlist into a 2NCL netlist: the second stage expands the

intermediate 3NCL netlist into a fully dual-rail 2NCL netlist by overloading

all AND and INV assignment as Delay-Insensitive Minterm Synthesis

(DIMS) dual rail type assignments. This expansion is described in a VHDL

32

package. At this point, multilevel minimization of Boolean networks,

available in existing CAD tools, can be performed if an NCL target library is

available.

Figure 2.13: RTL flow for NCL design [51].

While threshold and hysterisis properties provide NCL with advantages that are

not available in other clockless methodologies, they remain responsible for some of its

disadvantages [5]:

(i) By using existing synthesis tools, the area of some NCL designs can be

sometimes two to three times larger than the area of the same designs

synthesized in clocked logic.

33

(ii) The throughput of NCL designs may suffer unless heavy pipelining is used

which may result in an area increase.

(iii) Experimentation shows that straightforward translations of clocked logic to

NCL designs results in a substantial increase in power consumption.

(iv) Although existing synthesis tools can be used to implement NCL designs,

proprietary libraries owned by Theseus are necessary to map the synthesized

designs onto library cells if a high quality implementation is desired.

To remedy the problem described in (i), synthesis tools tailored to NCL logic may be

necessary. However, this would defeat the advantage of leveraging the investment spent

on existing synthesis tools.

2.5 Burst Mode Machine

When in a stable state, a burst-mode circuit waits for a set of input signals to

change in arbitrary order. After this input burst has completed, the machine computes a

burst of output signals and new values of internal variables. The surrounding

environment is not allowed to change a new input burst until the circuit has completely

reacted to the previous burst [44, 45, 53]. Figure 2.14 shows an example of burst mode

circuit [27].

Burst-mode circuits are specified using state graphs similar to those used in the

design of clocked circuits. Several tools for synthesizing burst-mode controllers have

been previously developed primarily in academia. MINIMALIST, developed at Columbia

University, is a CAD package for synthesis, optimization and verification of burst-mode

34

controllers [54]. The focus of the package is on technology-independent synthesis.

MINIMALIST includes a number of highly-optimized algorithms for state minimization,

optimal state assignment, two-level hazard-free logic minimization, synthesis of

generalized C-element implementations, and verification. The latter is achieved by using

a simulation environment to verify the modeled burst mode machines. The synthesized

implementations are hazard-free gate-level circuits consisting of two-level AND-OR

networks and generalized-C elements. These circuits can then be technology-mapped

using existing technology mapping tools. To support this functionality, MINIMALIST

provides a graphical display to show specifications and implementations, an interactive

shell, design scripts, help menus, and a tutorial.

Figure 2.14: Burst mode specification of a C-element.

Beside MINIMALIST, 3D, developed at University of California, is a synthesis

package which uses the extended burst-mode (XBM) model [55]. The XBM design style

covers a wide spectrum of sequential circuits ranging from DI to clocked circuits. 3D can

synthesize multiple-input change clockless finite state machines in addition to numerous

35

circuits that fall in the area between clocked and clockless logic. These circuits are

difficult and sometimes impossible to synthesize automatically using existing methods.

3D synthesizes XBM controllers in two-level AND-OR networks, and maps these

networks to a generic CMOS standard cell library or generalized C-elements. Both tools

do not offer any HDL front-end interface. As a result, a designer can interact with these

tools only in two modes: using prepared design scripts or typing individual commands.

2.6 Handshake Circuits

An alternative to clockless finite-state machines that communicate using

fundamental mode or burst-mode has been proposed as handshaking circuits. Figure 2.15

shows a handshake channel, which is a point-to-point connection between an active and a

passive block.

Active Passive

Req

Ack

Figure 2.15: Handshake channel.

This approach requires that both blocks be connected by two wires: a request

(Req) and an acknowledge (Ack) wire. A handshake is initiated by the active block, which

starts by sending a signal via Req, and waits until a signal arrives via Ack. After a request

arrives to the passive block, this block sends an acknowledge [27, 42, 56-58]. Most

clockless circuits use a four-phase handshake protocol. This protocol consists of a

channel which starts in a state where both Req and Ack are low. The active block starts a

36

handshake by making Req high. When the passive block receives Req, it sets Ack to high.

A return-to-zero cycle follows, during which Req and Ack go low thus returning to the

initial state.

To support this handshake methodology, the Tangram toolset has been proposed

[43]. As shown in Figure 2.16, a design can be specified in Tangram, which is a

programming language, similar to the C language, extended to include constructs that

support concurrency and communication.

In fact, Tangram has language constructs which support blocks sharing and

waiting for clock-like edges. A compiler translates Tangram programs into handshake

circuits, which are netlists composed from a library of some 40 handshake components.

Each handshake component implements a language construct, such sequencing,

communication, and sharing. Packaged with the compiler, the handshake circuit

simulator and performance analyzer give the designer feedback about the design function,

area, timing, and power of the synthesized circuit. The process of mapping the handshake

circuit using a conventional standard cell library can be done in two steps. In the first

step, the component expander uses the component library to generate an abstract netlist of

combinational logic, registers, and clockless cells, such as Muller C-elements. This step

also determines the encoding of data and handshake protocol. In the second step, a

commercial synthesis tool and technology mapper can be used to generate the cell netlist.

Today, Tangram is considered one of the most complete toolset used to design medium

size clockless integrated circuits. Besides being a proprietary toolset, designers will have

37

to endure the learning curve of a new programming language if they are interested in

using the Tangram toolset.

Figure 2.16: The Tangram Toolset.

38

2.7 Extended Delay Insensitive Model

The eXtended model for Delay-Insensitive systems (XDI) is a theoretical

framework used to define the external structure and observable behavior of DI systems.

Besides being state-based, the framework includes refinement or satisfaction relations

and composition operators. The XDI model specifies the conditions and the rules to

implement a DI circuit from initial specifications by taking in consideration the

expression of progress requirements for the circuit and its environment. XDI transforms

these specification to DI-algebra first, and then to a state graph that is expressed in

AND/IF-notation [38-40]. A handful of tools such Digg and Ludwig have been proposed

to automate the refinement process [40]. Digg transforms a DI-algebra specification into

XDI automata. DI-algebra specification can be expressed as recursive DI-algebraic

expression while XDI automata can be represented as AND/IF graphs. After Digg’s

transformation, Ludwig can analyze and synthesize the obtained state graph into a circuit.

A major shortcoming of this design methodology is the absence of simulation and

mapping tools based on existing cell libraries.

2.8 Summary

This chapter presents a review of previously proposed clockless design

methodologies. Although there are different design methodologies, none can be easily

integrated in a complete design flow using existing CAD tools without significant

modifications to the design flow. While designs in some design methodologies cannot be

modeled using existing HDLs, others cannot be simulated using existing simulators. In

addition, some design methodologies requires special synthesizers and mappers which

39

40

target special-purpose cell libraries. In contrast to these methodologies, the SRSL design

technique is sufficiently flexible to be supported by existing CAD tools. SRSL can be

modeled using existing HDLs, simulated using existing simulators, synthesized using

existing synthesis compilers, and mapped using existing technology mappers. At the end,

a pipelined SRSL netlist is produced with can be placed and routed using existing

physical layout tools granted that design constraints are propagated from synthesis to

layout tools. Table 2.1 shows a summary of the design methodologies.

41

 Design
Methodology

Modeling Verification Synthesis Mapping Features

PN or STG

PN or STG

Not supported

Petrify as a stand
alone tool

Generalized C-elements and complex gates
using a standard cell library

Synthesis of large controllers

Not suitable for data path synthesis

Micropipeline

Verilog

Off-the-shelf
simulators

Petrify to
synthesize the
control unit

Pipefitter to
synthesize data
paths

Based on a standard cell library

Separates the control unit from data
path

Supports only a subset of Verilog
statements

NCL

VHDL

Off-the-shelf
simulators

Off-the-shelf
synthesis tools

In principle, a standard cell library can be
used.

NCL design flow supports NCL proprietary
cell libraries for high quality
implementations.

Translates HDL to 3NCL and
optimize the 3NCL into a 2NCL
netlist

Increases area and power, and may
degrade throughput.

Burst Mode

Circuits

Design scripts

Command-driven
interaction

MINIMALIST
verification

MINIMALIST

3D

Generalized C-elements and complex gates
using a standard cell library

No HDL front-end interface

Handshake
Circuits

Tangram language

Handshake simulator

Off-the-shelf
synthesis tools

Handshake component library in addition to a
standard cell library

Compiler translates the program into
handshake circuits.

Component expander uses the
component library to generate an
abstract netlist.

XDI Model

DI algebra

Not supported

Ludwig synthesis
tool

Not supported

DI algebra is translated to a state
graph which can be synthesized with
Ludwig.

SRSL

VHDL or Verilog

Off-the-shelf
simulators

Off-the-shelf
synthesis tools

Standard cell library

Transforms a gate netlist into a
pipelined SRSL netlist

Suitable for data path and control

Table 2.1: Summary of clockless design methodologies.

CHAPTER THREE: STAGE-CONTROLLED SELF-RESETTING
STAGE LOGIC PIPELINES

This chapter presents the concept of self-resetting stage logic (SRSL) and shows

how it can be used as a building block in linear and non-linear pipelines. Section 3.1

introduces SRSL while section 3.2 describes how SRSL can be used in a linear pipeline

controlled at stage level. Section 3.3 explains how SRSL can be used in a non-linear

pipeline while section 3.4 presents a detailed timing analysis of a linear pipeline. Section

3.5 describes the implementation of a prototype pipeline while section 3.6 summarizes

the chapter.

3.1 SRSL

In SRSL, a stage consists of two networks: a reset network and a combinational

network. In Figure 3.1, the reset network consists of a NOR gate whose output O feeds

one of its inputs. The other input is tied to a reset line. As long as the reset input is

asserted, O remains 0. When the reset is de-asserted, O oscillates from 0 to 1 and vice

versa. The oscillation frequency is controlled by the delay ∆ embedded in the loop

between the NOR output and its input. When O is 0, the reset network is in the reset

phase. Later, when O switches to 1, the reset network is in the evaluate phase. As such, a

reset network can oscillate between phases in an autonomous fashion. The period of the

reset network consists of the two phases: reset and evaluate. Based on this oscillation, a

reset network can be embedded in a pipeline stage forcing the stage to oscillate between

two phases. This oscillation can be used to synchronize data transfer between

42

neighboring stages in a pipeline. In fact, a stage is ready to accept inputs from the

preceding stage when it is in the reset phase, and ready to produce outputs to the

following stage when it is in the evaluate phase.

Figure 3.1: Reset and evaluate network of an SRSL stage.

Figure 3.2: STG of the reset network shown in Figure 3.1.

Figure 3.2 shows the signal transition graph (STG) of the reset network shown in

Figure 3.1 where the signals in the STG are labeled identically to the signals in Figure

3.1. In an STG, a node v, labeled v+, represents a rising transition on signal v while the

same node, labeled v-, represents a falling transition on signal v. On the other hand, an

edge going from node u to node v means that transition on signal u precedes in time the

transition on signal v.

43

3.2 S-SRSL Linear Pipelines

Figure 3.3 shows the interconnection structure of a four-stage S-SRSL pipeline

where each stage consists of a combinational and a reset network while Figure 3.4 shows

the STG of the S-SRSL pipeline shown in Figure 3.3. Data flows from one stage to

another through a latch in the linear pipeline. To insure proper data flow across stages,

data is transferred from the current stage to the next one if the current stage is in the

evaluate phase while the next stage is in the reset phase. Hence, the latch separating both

stages is enabled when the left stage is in the evaluate while the right stage is in the reset

phase [59-61].

Figure 3.3: A four-stage S-SRSL pipeline.

The enable signal (Li) is the output of the AND gate that triggers the latch. For

each latch, the inputs of the AND gate consists of the outputs of the NOR gates of the

reset network in the current stage and the following stage. As a result, the

synchronization of the entire pipeline depends on the communication between each pair

44

of neighboring stages. This locally controlled pipeline is called stage-controlled self-

resetting stage logic pipeline (S-SRSL). While a stage is accepting input, its reset network

enters the reset phase (O = 0), which disables the latch on its right side.

Figure 3.4: STG of the S-SRSL pipeline shown in Figure 3.3.

At any cycle, the latch on the left side of a stage in the reset phase will be enabled

while the latch on its right side will be disabled. The latter will be enabled only when the

stage enters its evaluate phase. As a result, during every cycle, every other stage will be

in the reset phase while the remaining stages will be in the evaluate phase. A cycle later,

the stages that were in the reset phase start their evaluate phases while the stages that

were in the evaluate phase start their reset phases. In Figure 3.4, the STG shows that the

rising transition of L3 occurs after O2 and O3 experience a rising and falling transition

respectively. This means that latch 3 is enabled only when stage 2 is in the evaluate phase

while stage 3 is in the reset phase. If O3 experiences a falling transition, this forces

another falling transition on L4. This shows that while latch 3 is enabled, latch 4 is

45

disabled. Figure 3.5 shows how the stages alternate between phases as data flows across

the pipeline by representing asserted and de-asserted signals as solid and dashed lines

respectively.

3.5(a): Assertion of the stage reset signals.

3.5(b): Reset phase of all stages.

46

3.5(c): Evaluate phase of stage 4.

3.5(d): Evaluate phase of stage 3.

47

3.5(e): Evaluate phase of stage 2 and 4.

3.5(f): Evaluate phase of stage 1 and 3.

48

3.5(g): Evaluate phase of stage 2 and 4.

3.5(h): Evaluate phase of stage 1 and 3.

Figure 3.5: Two execution cycles of a four-stage S-SRSL Pipeline.

49

3.3 S-SRSL Non-linear Pipelines

While linear pipelines can be used in many applications, complex systems require

data to flow in divergent and convergent directions. Such systems can be realized as non

linear pipelines [62-64]. To support divergence and convergence of data flow, primitives

such as the fork and join operations have to be incorporated in the pipeline.

3.3.1 S-SRSL Join Operation

Figure 3.6 shows an S-SRSL join pipeline. Inter-stage data flow is similar to the

data flow in a linear pipeline. Data is transferred from stage A to stage C when the former

is in the evaluate phase while the latter is in the reset phase. Similarly, data flows from

stage B to stage C when the former is in the evaluate phase while the latter is in the reset

phase. When these conditions are true, latches 3 and 4 are activated to capture the outputs

of stage A and B, and feed it to the inputs of stage C. Note that completion of the

evaluate phase of stage A and B depends only on the arrival of the reset phase of stage C.

By limiting the interaction only between these neighboring stages, a localized

communication control between stages in the join is guaranteed.

50

Figure 3.6: Structure of the join S-SRSL pipeline.

Figure 3.7 shows the STG of the join structure shown in Figure 3.6. In this STG,

both L3 and L4 experience rising transitions when both OA and OB experience falling

transitions while OC experience a rising transition. This shows that latches 3 and 4 are

enabled when both stages A and B are both in the evaluate phase while stage C is in the

reset phase. While latches 3 and 4 are enabled latch 5 is disabled. The latter will be

enabled when stage C is in the evaluate while the succeeding stage to stage C is in the

reset phase.

51

Figure 3.7: STG of the S-SRSL join pipeline shown in Figure 3.6.

3.3.2 S-SRSL Fork Operation

Figure 3.8 shows an S-SRSL fork pipeline. Data is transferred from stage A to

stage B and C when the former is in the evaluate phase while the two latter stages are in

the reset phase. When these conditions are true, latches 2 and 3 are enabled to capture

the output of stage A and feed it to stages B and C. After L2 and L3 become asserted,

they propagate through the gate G forcing the signal IA to become asserted. This in turn

forces signal OA to switch to 0 at which time stage A enters its reset phase. Figure 3.9

shows the STG of the fork pipeline shown in Figure 3.8. In this STG, L2 experiences a

rising transition when OA and OB experience a rising and a falling transition respectively.

Similar observation can be made with regard to the rising transition of L3 as it relates to

52

the rising and falling transitions of OA and OC respectively. On the other hand, L2

experiences a falling transition when OA and OB experience a falling and rising transition

respectively. While L2 and L3 experience a rising transition, L4 and L5 experience falling

transitions. These two signals will experience rising transitions only when both OB and

OC experience rising transitions while both OUpperNext and OLowerNext experience falling

transitions.

Figure 3.8: Structure of the fork S-SRSL pipeline.

53

Figure 3.9: STG of the S-SRSL fork pipeline shown in Figure 3.8.

3.4 Performance of the Pipeline

To explain the performance of the S-SRSL pipeline, several timing parameters are

defined first. Next, these parameters are used in a signal timing analysis to characterize

the performance of the pipeline.

3.4.1 Parameter Definitions

Let d(Ei) and d(Ri) be the time duration of the evaluate and reset phase in stage i

respectively.

Definition 3.1: Pi = d(Ei) + d(Ri) is the period of stage i, which is the delay between the

arrival of an input at the current stage i to the arrival of the next input at the current stage

54

i. The period P represents a single cycle of execution in a stage consisting of a reset and

an evaluate phase.

3.4.2 Analysis of the Reset and Evaluate Phase

As shown in Figure 3.3, the internal phase of a stage i can be determined by

observing signal Oi. When Oi = 0, stage i is in the reset phase. Otherwise, it is in the

evaluate phase. Assume there are n stages in the pipeline. Since the evaluate phase of

stage n, which is the last pipeline stage, does not depend on the reset phase of another

stage, its reset and evaluate phase tend to have the same duration:

() () (3.1)
2
n

n n
Pd E d R= =

Figure 3.10 shows the waveforms of the stage outputs and the phase of stage 15

and 16 in a 16-stage prototype S-SRSL pipeline. It is clear that the reset and evaluate

phase of stage 16 have the same duration (i.e., d(E16) = d(R16)). However, this is not true

for other stages. Figure 3.11 shows the waveforms of the stage outputs and the phases of

stage 1 and 2 in a 16-stage S-SRSL prototype pipeline. Figure 3.11 shows how the

duration of the evaluate phase of stage 2 is much greater than the duration of its reset

phase.

The equal duration of the reset and evaluate phase on the right side of the pipeline

can be explained by considering stage 4 in Figure 3.3 in which the reset loop oscillates

without waiting on any incoming signal since stage 4 is the last stage in the pipeline.

55

Figure 3.10: Simulation snapshot of stage 15 and 16 in a 16-stage prototype S-SRSL

pipeline.

Figure 3.11: Simulation snapshot of stage 1 and 2 in a 16-stage prototype S-SRSL

pipeline.

However, the evaluate phase of stage n−1 has to wait on the arrival of the reset

phase from stage n to the latch-enabling AND gate in order for data to flow from the

former to the latter. This has the effect of stretching the duration of the evaluate phase of

stage n−1:

() ()1 (3.2)n nd E d E− >

56

In Figure 3.10, it is clear that d(E15) is slightly greater than d(R16). Since d(E16) =

d(R16) by equation (3.1), then d(E15) > d(E16) as stated in equation (3.2). This relationship

between the duration of the evaluate phases in one stage and the next stage becomes more

pronounced between stages located on the left side of the pipeline as shown in Figure

3.11. For example in Figure 3.3, O3 = 1 has to travel through the reset loop delay to reach

the AND gate that enables latch 4. Next, it waits for the arrival of O4 = 0 to the same

gate, which has the effect of increasing the duration of O3 = 1. After a short time, L4

switches to 1 when O4 = 0 arrives to the AND gate that enables latch 4. L4 = 1 travels

through the NOR gate before reaching O3 when the latter switches to 0. This cycle is

much longer in stage 3 than in stage 4, which makes the evaluate phase of stage 3 longer

than that of stage 4.

Since stage n starts its reset phase somewhat earlier, it tends to complete this

phase also earlier, thus causing the reset phase of stage n-1 to be somewhat shorter:

() ()1 (3.3)n nd R d R− <

In Figure 3.10, d(R15) < d(E16). Also, d(R1) < d(E2) in Figure 3.11. Since d(E16) =

d(R16) by equation (3.1), then d(R15) < d(R16) as stated in equation (3.3). The increase in

the evaluate phase and the decrease in the reset phase of stage n-1 with regard to the

phases of stage n is exactly the same:

() () () ()1 1 (3.4)n n n nd E d E d R d R δ− −− = − �

57

This equal increase and decrease is due to the fact that the period is equal for both

stages n and n-1:

1 (3.5)n nP P P− = =

This can be seen in Figure 3.10 and 3.11, where the duration of the stage output

when it is 0 plus the duration of the same stage output when it is not 0 is identical for all

stages.

3.4.3 Effect of δ on the Pipeline Stages

The delay difference, denoted by δ, is caused by the unequal lengths of the reset

loop on which the phase signals travels in stage n-1 and n. While the phase signal in stage

n starts from the left NOR gate, passes through the buffer delay, and back to the same

NOR gate, the phase signal in stage n-1 crosses the same path in addition to an inverter

and an AND gate. The AND gate with one inverted input is the latch enabling gate

between stage n-1 and n. Since the phase signal travels along this augmented path in

stage n-1 twice, once when On-1 = 1 and once when On-1 = 0, the δ delay difference

between the two paths in both stages is at most equal to twice the delay of the inverter

and latch enabling AND gate. Let d(INV) and d(AND) be the average delay through an

inverter and an AND gate respectively, then:

() ()()2 INV AND (3.6d dδ = +)

58

δ propagates leftward from stage n to stage 1 causing the duration of the evaluate

and reset phase of each stage i to increase and decrease by δ respectively with regard to

its successor stage i+1:

() () ()
() () ()

(3.7)

(3.8)
i n

i n

d E d E n i

d R d R n i

δ

δ

= + −

= − −

In brief, this delay propagates toward the left side of the pipeline thus causing the

duration of the evaluate and reset phases to gradually increase and decrease respectively

with each stage to the left of the pipeline without changing the duration of a single

period. The propagation of this delay is highly visible in Figure 3.11 where the phases of

stage 1 and 2 are highlighted.

3.4.4 δ and Pipeline Depth

Based on equation (3.4) shown in the previous section with regard to stage n-1

and n,

() ()
() ()

()

() ()

1

1

1

1

2
(3.9)

n n

n n

n

n n

d E d E

d E d E
Pd E

d E d R

δ

δ

δ

δ

−

−

−

−

− =

= +

= +

= +

This implies

() ()1 (3.10)n nd E d R− >

59

Let d(Li
+) be the minimum duration of the enable of the latch at logic level 1

between stage i-1 and i. Since the latch between stage n-1 and n is enabled when the

former is in the evaluate phase and the latter is in the reset phase, the duration of the latch

enable depends primarily on that of the reset phase of stage n since this reset phase is

shorter than the evaluate phase of stage n-1 as shown in equation (3.10):

() ()

() (3.11)
2

n n

n

d L d R

Pd L

+

+

=

=

This can be seen in Figure 3.10 where d(L16
+) = d(R16). Given the δ delay domino

effect, this dependence of the duration of the latch enable on the duration of the reset

phase of the stage to the right of the latch applies to every stage going leftward in the

pipeline:

() () (3.12)i id L d R+ =

As a result, as the duration of the reset phase of each stage decreases by moving

to stages on the left side of the pipeline, so does the duration of the latch enable:

() () () () () () () (3.13)
2i i i n i
Pd L d R d L d R n i d L n iδ δ+ + += ⇔ = − − ⇔ = − −

Based on the above equation, one can predict the maximum number of stages that

the pipeline can accommodate by solving the above equation for the variable n starting

from stage 1:

60

() () ()1 1
11 1 (3.14)

2 2
P Pd L n n d Lδ

δ
+ +⎛ ⎞= − − ⇔ = + −⎜ ⎟

⎝ ⎠

Based on equation (3.14), a deep pipeline can be realized by (i) decreasing δ, (ii)

increasing P, or (iii) decreasing d(L1
+). (i) can be achieved by using high speed AND

gates, (ii) can be achieved by increasing the delay in the self-reset network of each stage

through the insertion of buffers or inverter chains, while (iii) can be achieved by using

high speed latches.

3.4.5 Area Cost

In order to shed light on the area cost of S-SRSL pipelines, they are briefly

contrasted with the area cost of clocked pipelines. Whereas the latter require only flip-

flop registers between the pipeline stages, S-SRSL pipelines require inter-stage latches in

addition to intra-stage reset networks and delay buffers. Although the area of a flip-flop

tends to be slightly greater than the area of a latch (by the equivalent of two gates in most

library implementations), this difference is not sufficiently large to overcome the area

overhead caused by the insertion of delay buffers. In general, the area of these buffers

tends to grow proportionally with the delay on the critical path of the intra-stage logic.

3.4.6 Fault Handling

In analyzing how the S-SRSL pipeline handle faults, only stuck-at faults are

considered. Focus is directed to the outcomes caused by the output of the reset network

61

of a given stage getting (i) stuck at 1, thus causing the stage to be locked in the evaluate

phase, or (ii) stuck at 0 causing the stage to be locked in the reset phase.

• Stage locked in the evaluate phase: If the phase line, which is the output line of the

reset network, of a stage j gets stuck at 1 for a time longer than P, the stage is locked into

the evaluate phase. Two distinct behaviors can be observed throughout the pipeline

depending on where the stage, displaying one behavior or another, is located in the

pipeline:

(i) Left Side Stages: When stage j is stuck in the evaluate phase, the right input

of the AND gate which controls latch j is stuck on 1. This in turn causes the

output of the AND gate to be stuck on 0. As a result latch j is closed and data

does not flow between stage j and j−1. When the output of the AND gate gets

stuck on 0, the output of the NOR gate of the reset network in stage j−1 gets

stuck on 1. As a result, stage j−1 is locked into the evaluate phase. This

phenomenon occurs in every pair of stages located on the left of stage j. In

the overall, this automatically causes all stages i, where i < j, to complete their

reset phases before getting stuck in their evaluate phases. Note that, in an S-

SRSL pipeline, each stage completes its reset phase on its own. However, a

stage cannot complete its evaluate phase unless its right neighbor enters its

own reset phase. As each pair of neighboring pipeline stages gets stuck in the

evaluate phase, starting from stage j and going leftward to stage 1, their inter-

stages latches are disabled and subsequently the flow of data is interrupted in

62

all stages to the left of stage j. This forced locking of the stages in the

evaluate phase will propagate as a wave to the left side of the pipeline starting

from stage j until it reaches stage 1.

(i) Right Side Stages: Even though stage j is stuck at 1, stage j+1 can

nevertheless complete its own reset phase based on how an S-SRSL pipeline

operates. Note that the input of the reset network in stage j+1 is driven by the

output of the AND gate controlling the latch between stage j+1 and j+2. As a

result, the oscillations of the reset network in stage j+1 depends primarily on

those of the reset network in stage j+2. Since neither of the reset networks in

these two stages is stuck, they can operate in lock-step fashion. So, when

stage j+1 enters its reset phase, its latch is transparent and data is subsequently

passed from stage j to stage j+1. Just as stage j+1 is able to complete its own

reset phase, stage j+2 can complete its own in a similar manner. As soon as

stage j+2 enters its reset phase, data is transferred from stage j+1 to stage j+2.

Sequence of events, similar to the ones described for stage j+1 and j+2, occur

in every pair of stages located to the right of stage j, thus allowing data to flow

through the pipeline from stage j to stage n where n is the last stage in the

pipeline. Since the flow of data is interrupted on the left side stages, the same

data items keeps flowing repeatedly from stage j to stage n as long as stage j

remains stuck in the evaluate phase.

63

• Stage locked in the reset phase: If the output the reset network of a stage j gets stuck

at 0 for a time longer than P, the stage is locked into the reset phase. Two distinct

behaviors can be observed throughout the pipeline depending on where the stage,

displaying one behavior or another, is located in the pipeline:

(i) Left Side Stages: When stage j is stuck in the reset phase, the right input of

the AND gate, which controls latch j, is stuck at 0. This in turn causes the

output of the AND gate to depend on the output of the reset network of stage

j−1. If this output becomes 0, which indicates that stage j−1 is in the reset

phase, it forces the output of the AND gate to become 0 thus disabling latch j.

The 0-output of the AND gate drives the input of the reset network in stage

j−1 to force its output to switch to 1. This indicates that stage j−1 has started

its evaluate phase. This 1-output of the reset network of stage j−1 forces the

output of the AND gate controlling latch j to switch to 1, thus enabling latch j

and allowing data to flow from stage j−1 to j. The 1-ouput of the AND gate

drives the input of the reset network of stage j−1 forcing the output of the

latter to switch to 0 and allowing stage j−1 to start a reset phase. In the

overall, stage j−1 continues to oscillate between the reset and evaluate phases

even though stage j is stuck in the reset phase. Because stage j−1 continues its

normal oscillation, this allows all the stages to the left of stage j−1 to oscillate

normally in lock step fashion with each other. As a result, data flows

uninterrupted from stage 1 to stage j.

64

(ii) Right Side Stages: When stage j is stuck in the reset phase, the left input of

the AND gate, which controls latch j+1, is stuck at 0. This will disable latch

j+1 as long as stage j is stuck in the reset phase. As a result, data is prohibited

from flowing from stage j to j+1. However, this does not stop stage j+1 from

oscillating between its reset and evaluate phases. As stated before, the input

of the reset network in stage j+1 is driven by the output of the AND gate

controlling the latch between stage j+1 and j+2. As a result, the oscillations of

the reset network in stage j+1 depends primarily on those of the reset network

in stage j+2. Since neither of the reset networks in these two stages is stuck,

they can operate in lock-step fashion. In fact, every pair of stages located to

the right of stage j allows data to flow through their latches thus establishing

an uninterrupted data flow from stage j+1 to n. Because the latch between

stage j and j+1 remains disabled, the flow of incoming data stops at latch j.

As a result, data is overwritten at every period in stage j while the same data

item keep flowing from stage j+1 to n.

3.5 Prototype Implementation of the S-SRSL Pipelines

To test and validate SRSL and its use in S-SRSL pipelines, several prototypes of

linear and non-linear pipelines have been implemented.

65

3.5.1 The S-SRSL Linear Pipeline

A 16-stage four-bit S-SRSL pipeline was modeled in VHDL where each stage

contains a four-bit ripple-carry adder. For validation purposes, it was decided to insert an

adder in each stage in order to amplify delay effects and subsequently constrain the

performance of the pipeline. The netlist of the pipeline was generated using Synopsys

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Cadence’s Silicon

Ensemble was used to place and route the pipeline. The pipeline fits into a frame of

90,057.74 µm2 as shown in Figure 3.12 yielding a total latency of 15.76 nanoseconds and

a throughput of 453.95 Megaoutputs/second based on the 2.18 ns period of the last stage.

Figure 3.12: Chip layout of the four-bit 16-stage S-SRSL pipeline.

Table 3.1 shows the summary of the linear pipeline implementation. The layout of

this pipeline contains 1,344 standard cells connected by 1,416 nets and 1,66 IO pins. four

parameters were measured in layout simulations of the pipeline, the period of each stage

P, the duration of the evaluate phase d(E), the reset phase of each stage d(R), and the

enable of each latch d(L+).

66

Table 3.1: S-SRSL linear pipeline implementation.

Stages 16
Bit width 4
Combinational network 4-bit adder
Synthesis Synopsys Design Compiler
Layout Cadence Silicon Ensemble
Simulation Synopsys VCS Simulator
Library 0.25 µm CMOS library
Cells 1,344
Nets 1,416
IO pins 166
Area 90,057.74 µm2

Latency 15.76 ns
Throughput 453.95 Megaoutputs/second
Stage period 2.18 ns
Latch enable duration 1.01 ns (stage 16) down to 0.64 ns (stage 1)
δ delay Between any stage and the last stage

Theoretical pipeline depth ()1

11
2
Pn d

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠
L

Figure 3.13 shows the duration of the latch enable, reset phase, evaluate phase, δ,

and the period of each stage. In this figure, δ, labeled as Delta Delay, is almost constant

from stage to stage. However, the reset phase gradually decreases from the right to the

left of the pipeline while the evaluate phase gradually increases from the right to the left

of the pipeline as predicted by equation (3.7) and (3.8). This gradual increase in the

evaluate phase, from the right to the left of the pipeline, is attributed to the propagation of

δ based on the explanation proposed in the timing analysis section of the pipeline.

Similarly, the observed gradual decrease in the reset phase, from the right to the left of

the pipeline, is also attributed to the propagation of δ based on the same explanation.

Furthermore, the duration of the latch enable is almost equal to that of the reset phase in

each stage. As a result, the duration of the latch enable decreases gradually at the same

rate as the duration of the reset phase from the right to the left of the pipeline. This shows

67

how the duration of the latch enable is closely tied to the duration of the reset phase as

derived in equation (3.12).

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 3.13: Simulation results of d(L+), d(R), d(E), δ, and P in a 16-stage S-SRSL

pipeline.

Figure 3.14 shows the values obtained for the duration of the reset phase and the

latch enables using simulation and the derived equations (3.8) and (3.13). The values

obtained through simulation are labeled as empirical values while the values obtained

analytically are labeled as analytical values. As shown in the figure, the values predicted

by the equations and those obtained through simulation are highly correlated. On the

overall, the empirical duration of the reset phase is higher than its analytical duration by

47 picoseconds on the average while the empirical duration of the latch enable is higher

that its analytical duration by 35 picoseconds across all stages of the pipeline.

68

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stages

P
ic

os
ec

on
ds

Empirical Latch Enable Analytical Latch Enable Emirical Reset Analytical Reset

Figure 3.14: The empirical and analytical values of d(R) and d(L+) in a 16-stage S-SRSL

pipeline.

This difference can be viewed as under-estimation since the analytical values are

slightly smaller than the simulation values. The 47 picoseconds underestimation

represents 6.21% of the duration of the reset phase on the average across all stages of the

pipeline. On the other hand, the 35 picoseconds underestimation represents 5.52% of the

duration of the latch enable on the average in all stages of the pipeline. However, this

underestimation is not constant across all stages. In fact, the underestimation increases

slightly above the average in the stages located on the right side of the pipeline while it

decreases slightly below the average in the stages located on the left side of the pipeline.

This indicates that the prediction accuracy of equation (3.8) and (3.13) tends to be higher

for stages on the left side of the pipeline. These non-constant underestimations can be

accounted for by the fact that δ does not remain exactly constant since it decreases at a

69

negligible rate while propagating from the left to the right stages across the pipeline. For

simplicity, δ was considered constant throughout the timing analysis of the pipeline.

3.5.2 The S-SRSL Non-Linear Pipeline

To evaluate the performance of the S-SRSL non-linear pipeline, two prototype

pipelines were implemented in order to study the impact of the join and fork operation on

the overall performance of the pipeline.

3.5.2.1 The S-SRSL Join Pipeline

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a

four-bit adder as shown in Figure 3.15. The pipeline netlist was generated using

Synopsys Design Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters

were measured in layout simulations of the pipeline, namely the period of each stage (P),

the duration of the evaluate phase (d(E)), the reset phase of each stage (d(R)), and the

enable of each latch (d(L+)).

Figure 3.15: Four-bit six-stage S-SRSL join pipeline.

Figure 3.16 shows a simulation snapshot of stages 3A, 3B and 4 from the

prototype pipeline shown in Figure 3.15. In Figure 3.16, the phase of stage 4 is always

de-asserted when the phase of stage 3A and 3B are asserted and vice-versa. This shows

70

that both stages 3A and 3B oscillate in the same phase while stage 4 oscillates in the

opposite phase. This ensures that data flow from stages 3A and 3B to stage 4 when both

the former are in the evaluate phase while the latter is in the reset phase.

Figure 3.16: Simulation snapshot of the prototype S-SRSL join pipeline.

Figure 3.17 shows the duration of the latch enable, the reset phase, the evaluate

phase, δ , and the period of each stage in the S-SRSL join pipeline. As the figure shows,

the duration of the latch enable and reset phase gradually decreases form the right to the

left across the stages of the pipeline while the duration of the evaluate phase gradually

increases from the right to the left across the stages of the pipeline due to the propagation

of δ . This propagation, characteristic of a linear pipeline, appears to occur also in the

join pipeline.

71

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 3.17: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL join pipeline.

3.5.2.2 The S-SRSL Fork Pipeline

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a

four-bit adder as shown in Figure 3.18. Its netlist was generated using Synopsys Design

Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters were measured in

layout simulations of the pipeline, namely the period of each stage (P), the duration of the

evaluate phase (d(E)), the reset phase of each stage (d(R)), and the enable of each latch

(d(L+)).

Figure 3.18: Four-bit six-stage S-SRSL fork pipeline.

72

Figure 3.19 shows a simulation snapshot of stages 4, 5A, and 5B from the

prototype pipeline shown in Figure 3.18. In Figure 3.19, the phase of stages 5A and 5B

are always de-asserted when the phase of stage 4 is asserted and vice-versa. This shows

that stages 5A and 5B oscillate in the same phase while stage 4 oscillates in the opposite

phase. This insures that data flows from stage 4 to stages 5A and 5B when the former is

in the evaluate phase while the two latter are in the reset phase.

Figure 3.19: Simulation snapshot of the prototype S-SRSL fork pipeline

Figure 3.20 shows the duration of the latch enable, the reset phase, the evaluate

phase, δ, and the period of each stage in the S-SRSL fork pipeline. As the figure shows,

the duration of the latch enable and reset phase gradually decreases form the right to the

left across the stages of the pipeline while the duration of the evaluate phase gradually

increases from the right to the left across the stages of the pipeline due to the propagation

of δ. This propagation, characteristic of an S-SRSL linear pipeline, appears to occur also

in the S-SRSL fork pipeline.

73

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 3.20: Simulation results of d(L+), d(R), d(E), δ, and P in the S-SRSL fork pipeline.

3.6 Summary

This chapter introduces SRSL, a clockless technique that can be used to pipeline

computation and communication in order to circumvent problems associated with global

clocking. In addition, the chapter describes how S-SRSL can be used to implement linear

pipelines in addition to fork and join operations encountered in non-linear pipelines.

Analysis of the pipeline performance shows that the depth of the pipeline is bound by its

period, δ, and the duration of the enable of the latch used in the pipeline implementation

[59-64]. Prototyping experiments of the pipeline show that its actual performance is

significantly closer to its analytical performance.

74

CHAPTER FOUR: PIPLINE-CONTROLLED SELF-RESETTING
STAGE LOGIC PIPLINES

This chapter presents the design and implementation of both linear and nonlinear

P-SRSL pipelines. The communication protocol of these pipelines is quite different from

that of the S-SRSL pipelines. Section 4.1 and 4.2 describe respectively how P-SRSL

linear and non-linear pipelines operate while section 4.3 presents their timing analysis.

Section 4.4 describes the implementation of P-SRSL prototype pipelines while section

4.5 presents a summarized comparison between the S-SRSL and P-SRSL pipelines.

Section 4.6 concludes the chapter.

4. 1 P-SRSL Linear Pipeline

In P-SRSL pipelines, each stage consists of a combinational and a reset network

similar to a stage in an S-SRSL pipeline as shown in Figure 4.1. Data flows from one

stage to another through a latch in a linear pipeline. To insure proper data flow across

stages, data is transferred from the current stage to the next one if the current stage is in

the evaluate phase while the next stage is in the reset phase. Hence, the latch separating

both stages is enabled when both stages are in the evaluate and reset phase respectively.

This enable is the output of the AND gate that triggers the latch [67, 68].

75

Figure 4.1: A four-stage P-SRSL pipeline.

Note that signal O4 drives the right input of each AND gate that enables each

latch in the pipeline. This signal emanates from the last stage and travels along the

pipeline to reach the AND gate of each inter-stage latch. Hence, the control of the phase

sequences across the stages performed by this signal is exercised at the pipeline level.

This approach is quite different from the S-SRSL pipeline where the output of the

matching delay in a given stage drives one input of the AND gate that enables the latch

separating it from the preceding stage. The control of the phase sequences in the latter

approach is more local in nature since it propagates from stage to stage. In P-SRSL

pipelines, stage synchronization is controlled in a semi-global manner whereby

communication occurs primarily between the last stage and any other stage in the

pipeline. To clarify the inner working of the P-SRSL pipeline, a stage is characterized

based on the control signals of its proper latch.

76

Definition 4.1: A pipeline stage is said to be of type A if the phase signal of the last stage

is inverted when it reaches the AND gate controlling the latch of the stage.

Definition 4.2: A pipeline stage is said to be of type B if the phase signal of the last stage

is not inverted when it reaches the AND gate controlling the latch of the stage.

Note that the latch of a stage is the latch whose number is equal to the stage

number in Figure 4.1. By default, stage 1 is of the complement type of that of stage 2,

meaning that if stage 2 is of type A (B), stage 1 should of type B (A). This stage

characterization assigns opposite types to adjacent stages and identical types to every

other stage. Stages of the same type oscillate in the same phase while stages of opposite

types oscillate in opposite phases. When the last stage enters its reset phase, every stage

of type B starts its own evaluate phase while every stage of type A starts its own reset

phase. As soon as the last stage transitions to its evaluate phase, all the stages switch

phase. During the reset phase of a stage of type A, the stage’s left latch is enabled while

the stage’s right latch is disabled. Both latches are driven by the reset phase of the last

stage in the pipeline. The latter latch will be enabled only when the stage switches phase,

which occurs when the last stage enters its evaluate phase. At any cycle, every other stage

will be in the reset phase while the remaining stages will be in the evaluate phase. A

cycle later, the stages that were in the reset phase start their evaluate phases while the

stages that were in the evaluate phase start their reset phases. Similarly to an S-SRSL

pipeline, stages in a P-SRSL pipeline alternate between phases as computation progresses

across the pipeline. Figure 4.2 shows the STG of the P-SRSL pipeline shown in Figure

77

4.1. This STG shows that the rising transition of L3 occurs after O2 and O4 experience

both rising transitions. This means that latch 3 is enabled when both stages 2 and 4 are in

the evaluate phase. However when O4 experiences a rising transition, L2 and L4

experience falling transitions. This shows that when latch 3 is enabled, latch 2 and 4 are

disabled. Figure 4.3 shows how the stages alternate between phases as data flows across

the pipeline by representing the asserted and de-asserted signals as solid and dashed lines

respectively.

Figure 4.2: STG of the P-SRSL pipeline shown in Figure 4.1.

78

4.3(a): Assertion of the stage reset signals.

4.3(b): Reset phase of all stages.

79

4.3(c): Evaluate phase of all stages.

4.3(d): Evaluate phase of stage 3 and 1.

80

4.3(e): Evaluate phase of stage 4 and 2.

4.3(f): Evaluate phase of stage 1 and 3.

Figure 4.3: Two execution cycles of a four-stage P-SRSL Pipeline.

81

4.2 P-SRSL Non-Linear Pipelines

While linear pipelines can be used in many applications, complex systems require

data to flow in divergent and convergent directions. Such systems can be realized as non-

linear pipelines [63, 64]. To support divergence and convergence of data flow, primitives

such as the fork and join operations have to be incorporated in the pipeline.

4.2.1 P-SRSL Join Pipeline

Figure 4.4 shows a P-SRSL join pipeline. This pipeline operates similarly to the

S-SRSL join pipeline. Data is transferred from stage A to stage C when the former is in

the evaluate phase while the latter is in the reset phase. Similarly, data flows from stage B

to stage C when the former is in the evaluate phase while the latter is in the reset phase.

When data flows from stage A and B to C, the latches separating stage A and B from

stage C are activated to capture the outputs of stage A and B thus feeding them to the

inputs of stage C. Note that the phase signal of the last stage of the pipeline, namely

OLaststage, drives the three AND gates which enable the latches of stage A, B, and C as

shown in Figure 4.4. Specifically, this phase signal drives the AND gate which enables

the latch on the right side of stage C without being inverted. This means that data flows

from stage C to its right neighbor when stage C and the last pipeline stage are both in the

evaluate.

Moreover, the inverted value of the same phase signal drives the input of the

AND gates that enable the latches on the right side of stage A and B. In this case, data

82

flows from both stage A and B to stage C when both stage A and B are in the evaluate

phase while the last pipeline stage is in the reset phase. Contrary to the local control seen

in the join operation of the S-SRSL non-linear pipeline, the last stage of the pipeline

plays a primary role in synchronizing data transfer between neighboring stages in the join

operation of the P-SRSL non-linear pipeline. Note that Figure 4.4 shows a sample join

structure in which stage A and B are of type B stages while stage C is of type A based on

the stage characterization described in section 4.1.

Figure 4.4: Structure of a join P-SRSL pipeline.

83

An alternative to this join structure will be a join operation in which stage A and

B are of type A stages while stage C is of type B. In this case, both latches separating

stage A and B from C will be enabled by AND gates whose outputs will be all non-

inverted. In this pipeline, the control of latch 3 (L3) and 4 (L4) depends on the phase of

stage A (OA), B (OB), and the last stage (OLaststage). In fact, signal OLaststage reaches the left

input of each AND gate enabling each inter-stage in the pipeline.

Figure 4.5 shows the STG of the pipeline shown in Figure 4.4. As shown in the

figure, OLaststage is involved in synchronizing the latch enables of each stage in the join

structure.

Figure 4.5: STG of the P-SRSL join pipeline shown in Figure 4.3.

84

4.2.2 P-SRSL Fork Pipeline

Figure 4.6 shows a P-SRSL fork pipeline. This pipeline operates similarly to the

S-SRSL fork pipeline. However, in this pipeline, the enables of latches 2 (L2) and 4 (L4)

depend on the phase of the last stage in the upper branch of the fork (OUpperLast), while the

enables of latches 3 (L3) and 5 (L5) depend on the phase of the last stage in the lower

branch of the fork (OLowerLast). In addition, the enable of latch 1 (L1) depends on the

arrival of the phases of the last stages in both fork branches (OUpperLast and OLowerLast).

This arrival is captured by the H gate shown in Figure 4.6. The G gate plays the same

role as the G gate of the S-SRSL fork pipeline.

Figure 4.6: Structure of a fork P-SRSL pipeline.

85

Figure 4.7 shows the STG of the pipeline shown in Figure 4.6. In this STG, L2

experiences a rising transition after OUpperLast experiences the same transition while L4

experiences a rising transition after OUpperLast experiences a falling transition. A similar

observation can be made for L3 and L5 with regard to OLowerLast. On the other hand, L1

experiences a rising transition after OFork experiences a falling transition and vice-versa.

The falling transition of OFork occurs after both OUpperLast and OLowerLast experience falling

transitions.

Figure 4.7: STG of the P-SRSL fork pipeline shown in Figure 4.6.

Contrary to the local control seen in the fork operation of the S-SRSL non-linear

pipeline, the last stage in the upper and lower segments of the pipeline fork plays a

primary role in synchronizing data transfer between neighboring stages in the fork

operation of the P-SRSL non-linear pipeline. Note that Figure 4.6 shows a sample fork

86

structure in which stage B and C are of type B stages while stage A is of type A based on

the stage characterization described in section 4.1. An alternative to this fork structure

will be a fork operation in which stage B and C are of type A while stage A is of type B.

In this case, latch 3 and 4 will be enabled by two-input AND gates where each gate has

an inverted input.

4.3 Performance of the Pipeline

To explain the performance of the P-SRSL pipeline, the same timing parameters

defined in chapter 3, namely d(Ei), d(Ri), Pi, are used in this section. Next, these

parameters are used in a signal timing analysis to characterize the performance of the

pipeline.

4.3.1 Analysis of the Reset and Evaluate Phase

As shown in Figure 4.1, the internal phase of a stage i can be determined by

observing signal Oi. When Oi = 0, stage i is in the reset phase. Otherwise, it is in the

evaluate phase. Assume there are n stages in the pipeline. Since the evaluate phase of

stage n, which is the last pipeline stage, does not depend on the reset phase of another

stage, its reset and evaluate phase tend to have the same duration:

() () (4.1)
2

n
n n

Pd E d R= =

87

Figure 4.8 shows the waveforms of the stage outputs and the phase of stage 13,

14, 15 and 16 in a 16-stage prototype P-SRSL pipeline. It is clear that the reset and

evaluate phase of stage 16 have the same duration (i.e., d(E16) = d(R16)). However, this is

not true for other stages. The equal duration of the reset and evaluate phase on the right

side of the pipeline can be explained by considering stage 4 in Figure 4.1 in which the

reset loop oscillates without waiting on any incoming signal since stage 4 is the last stage

in the pipeline. However, the evaluate phase of stage n−1 has to wait on the arrival of the

reset phase from stage n to the latch-enabling AND gate in order for data to flow from the

former to the latter. This has the effect of stretching the duration of the evaluate phase of

stage n−1:

() ()1 (4.2)n nd E d E− >

In Figure 4.1, it is clear that the evaluate phase of any stage i of type B, 0 < i < n,

has to wait on the arrival of the reset phase from stage n while the evaluate phase of any

stage i of type A, 0 < i < n, has to wait on the arrival of the evaluate phase from stage n to

the latch-enabling AND gate in order for data to flow from stage i to stage i+1. This has

the effect of stretching the duration of the evaluate phase of stage i compared to stage n

as shown in Figure 4.8:

() () (4.3)i nd E d E>

Since stage n starts its reset phase somewhat earlier, it tends to complete this

phase also earlier, thus causing the reset phase of stage n-1 to be somewhat shorter.

88

1() () (4.4n nd R d R− <)

In fact, it is clear from Figure 4.8 that the reset phase of any stage i, 0 < i < n, is

shorter than the reset phase of stage n:

() () (4.5)i nd R d R<

Figure 4.8: Simulation snapshot of stages 13, 14, 15 and 16 in a 16-stage prototype P-

SRSL pipeline.

The increase in the evaluate phase and the decrease in the reset phase of stage i, 0

< i < n, with regard to the phases of stage n is exactly the same:

() () () () (4.6)i n n id E d E d R d R δ− = − �

 This equal increase and decrease is due to the fact that the period is equal for all

stages in the pipeline:

(4.7)i nP P P= =

89

4.3.2 Effect of δ on the Pipeline Stages

The δ delay difference is caused by the unequal lengths of the reset loop on which the

phase signals travels in stage n and i. While the phase signal in stage n starts from the

left NOR gate, passes through the buffer delay, and back to the same NOR gate, the

phase signal in stage n-1 crosses the same path in addition to an inverter and an AND

gate. The AND gate with one inverted input is the latch enabling gate between stage n-1

and n. Since the phase signal travels along this augmented path in stage n-1 twice, once

when On-1 = 1 and once when On-1 = 0, the δ delay difference between the two paths in

both stages is at most equal to twice the delay of the inverter and latch enabling AND

gate. Let d(INV) and d(AND) be the average delay through an inverter and an AND gate

respectively, then:

()() ()2 AND 2 (INV) (AND) (4.8)d d dδ≤ ≤ +

δ propagates from stage n to any stage i, 0 < i < n, causing in the process the duration

of the evaluate and reset phase of each stage i to increase and decrease by δ respectively

with regard to stage n:

() ()
() ()

(4.9)

(4.10)
i n

i n

d E d E

d R d R

δ

δ

= +

= −

Simulation experiments show that this delay difference is present in each stage before

the last stage in the pipeline.

90

4.3.3 Effect of the Period on the Latch Enable

With regard to stage i and n, it follows from equation (4.6) that:

() ()
() ()

()

() ()
2

(4.11)

i n

i n

i

i n

d E d E

d E d E
Pd E

d E d R

δ

δ

δ

δ

− =

= +

= +

= +

This implies

() () (4.12)i nd E d R>

Let d(Li
+) be the minimum duration at logic level 1 of the enable of the latch

between stage i-1 and i. Since the latch between stage n-1 and n is enabled when the

former is in the evaluate phase and the latter is in the reset phase, the duration of the latch

enable depends primarily on that of the reset phase of stage n. Because the duration of

reset phase and evaluate phase are equal in stage n:

() () ()

() (4.13)
2

n nn

n

d R d Ed L

Pd L

+

+

= =

=

If stage i is of type A, the duration of the enable of latch i, namely d(Li), depends

primarily on the duration of the reset phase of stage n. On the other hand, if stage i is of

type B, the duration of the enable of latch i depends primarily on the duration of the

evaluate phase of stage n:

91

() () ()

() () ()

, stage is of type (4.14)
2

, stage is of type (4.15)
2

i i n

i i n

Pd L d R d R i A

Pd L d E d E i B

δ

δ

+

+

= + = =

= − = =

A faster pipeline can be realized by reducing P, which requires (i) faster latches or

(ii) a faster reset network within each stage. The latter can be realized by reducing the

delay in the reset network of a stage.

4.3.4 Area Cost

The same comparison used to contrast S-SRSL pipeline with clocked pipelines in

section 3.4.5 can be applied to P-SRSL pipelines. Given the similarities between S-SRSL

and P-SRSL pipelines, the outcome of this comparison applies in the case of P-SRSL

pipelines. In the overall, the area of a P-SRSL pipeline will be higher than the area of its

clocked counterpart.

4.3.5 Fault Handling

In analyzing how the P-SRSL pipeline handle faults, only stuck-at faults are

considered. Attention is paid to the outcomes caused by the output of the reset network

of a given stage getting (i) stuck at 1, thus causing the stage to be locked in the evaluate

phase, or (ii) stuck at 0 causing the stage to be locked in the reset phase.

92

• Stage locked in the evaluate phase: If the output of the reset network in a given stage

j gets stuck at 1 for a time longer than P, stage j remains locked in the evaluate phase. In

this case, the output of the AND gate controlling latch j+1 depends on the output of the

reset network of stage n. Note that the right input of the AND gates, which controls each

inter-stage latch in the pipeline, is driven by the output of the reset network of the last

stage (i.e., stage n). On the other hand, the left inputs of the same AND gates are each

driven by the outputs of the reset networks of each individual stage. If stage j+1 is of

type A, latch j+1 becomes enabled when stage n enters its reset phase. However, if stage

j+1 is of type B, latch j+1 becomes enabled when stage n enters its evaluate phase. As

such, stage j+1 oscillates in a normal fashion based on the oscillation of stage n.

Consequently, data is transferred from stage j to stage j+1 when latch j+1 is enabled.

Any stage after j, including stage j+1, oscillates in a normal fashion since its oscillation is

exclusively based on the output of its reset network and the output of the reset network in

stage n. As a result, data flows uninterrupted from stage j to n. With regard to stage j−1,

it continues to oscillate in a normal fashion since its reset network is totally disconnected

from the reset network of stage j. In fact, all the stages from 1 to j−1 continue to behave

similarly to stage j−1 for the same reason. As a result, data flows uninterrupted from

stage 1 to stage j. Taking into account the behavior of the stages before and after stage

j, it is obvious that data can flow uninterrupted throughout the entire pipeline without

missing a single data item.

• Stage locked in the reset phase: If the output the reset network of a stage j gets stuck

at 0 for a time longer than P, stage j remains locked into the reset phase. In this case, the

93

output of the AND gate controlling latch j+1 is forced to remain 0, thus disabling it as

long as stage j is remains locked in the reset phase. As mentioned previously, stages,

located on each side of stage j, continue to oscillate as expected since their individual

reset networks are completely decoupled from each other and are individually driven by

the oscillation of the reset network of the last stage. As a result, data flow uninterrupted

from (i) stage 1 to stage j, and (ii) stage j+1 to n. However, due to the disabled j+1st

latch, stage j acts as a barrier to the flow of data from stage 1 to stage j causing data to be

overwritten in stage j. This results in the same data flowing repeatedly from stage j+1 to

stage n.

4.4 Prototype Implementation of the P-SRSL Pipeline

To test and validate SRSL and its use in P-SRSL pipelines, several pipeline

prototypes have been implemented.

4.4.1 Implementation of the Linear Pipeline

A 16-stage four-bit pipeline was modeled in VHDL where each stage contains a

four-bit ripple-carry adder. Similarly to S-SRSL pipelines, it was decided to insert an

adder in each stage in order to amplify delay effects and subsequently constrain the

performance of the pipeline. The corresponding netlist was generated using Synopsys

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Cadence’s Silicon

Ensemble was used to place and route the pipeline. The pipeline fits into a frame of

94

89,731 µm2 as shown in Figure 4.9 yielding a total latency of 14.40 nanoseconds and a

throughput of 463.30 Megaoutputs/second based on the period of the last stage.

Figure 4.9: Chip layout of the four-bit 16-stage P-SRSL pipeline.

Table 4.1: P-SRSL pipeline implementation.

Stages 16
Bit width 4
Combinational network 4-bit adder
Synthesis Synopsys Design Compiler
Layout Cadence Silicon Ensemble
Simulation Synopsys VCS Simulator
Library 0.25 µm CMOS library
Cells 1,144
Nets 1,216
IO pins 166
Area 89,731µm2

Latency 14.40 ns
Throughput 463.30 Megaoutputs/second

95

Four parameters were measured in layout simulations of the pipeline, namely the

period of each stage (P), the duration of the evaluate phase (d(Ei)), the reset phase of each

stage (d(Ri)), and the enable of each latch (d(Li
+)). Figure 4.10 shows the duration of the

latch enable, the reset phase, the evaluate phase, δ (labeled as Delta Delay), and the

period across a 16-stage pipeline with a matching delay of 1.5 ns. In the figure, δ remains

constant across all stages. However, the duration of the evaluate phase of any stage

located to the left of the last stage is larger than the duration phase of the last stage by δ .

In addition, the duration of the reset phase of any stage located to the left of the last stage

is smaller than that of the last stage by δ.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 4.10: Simulation results of d(L+), d(R), d(E), δ, and P in a P-SRSL pipeline.

Both observations are expressed in equation (4.9) and (4.10). In addition, it is

clear from the figure that the duration of the evaluate phase in the stages located to the

left of the last stage are all equal. Similar observation can be made with regard to the

duration of the reset phase in all the stages located to the left of the last stage. Both

96

observations are predicted by equation (4.9) and (4.10). However, the duration of the

latch enable of each stage in the pipeline remains constant and is approximately equal to

half of the period of each stage as predicted by equation (4.14) and (4.15). Although the

matching delay inserted in the self-resetting loop of a single stage must be long enough to

allow the outputs of the stage combinational network to settle, it can be reduced further

by taking advantage of the overlapping of the opposite phases of two neighboring stages

without disturbing the operation of the pipeline. After all, the reset phase of a stage will

overlap for a brief moment with the evaluate phase of its neighbors.

4.4.2 Implementation of the Non-Linear Pipelines

To evaluate the performance of the P-SRSL non-linear pipeline, two prototype

pipelines were implemented in order to study the impact of the join and fork operation on

the overall performance of the pipeline.

4.4.2.1 The P-SRSL Join Pipeline

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a

four-bit adder as shown in Figure 4.11. The pipeline netlist was generated using

Synopsys Design Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters

were measured in layout simulations of the pipeline, namely the period of each stage (P),

the duration of the evaluate phase (d(E)), the reset phase of each stage (d(R)), and the

enable of each latch (d(L+)).

97

Figure 4.11: Four-bit six-stage P-SRSL join pipeline.

In order to verify the functional correctness of the P-SRSL join structure,

simulation experiments were conducted on a prototype join pipeline similar to the

pipeline shown in Figure 4.11. Figure 4.12 shows a simulation snapshot of only stages

3A, 3B, and 4 from the prototype pipeline of Figure 4.11.

Figure 4.12: Simulation snapshot of the prototype P-SRSL join pipeline.

In Figure 4.12, the phase of stage 4 is always de-asserted when the phase of stage

3A and 3B are asserted and vice-versa. This shows that both stages 3A and 3B oscillate

in the same phase while stage 4 oscillates in the opposite phase. This ensures that data

flows from stages 3A and 3B to stage 4 when both the former are in the evaluate phase

while the latter is in the reset phase. In addition, the phase of the last stage (O6) is

identical to the phase of stage 4 (O4). If stage 6 is of type A, then stage 5 is of type B, and

98

consequently stage 4 is of type A. Stages of the same type will have identical phases as

described in section 4.1.

Figure 4.13 shows the duration of the latch enable, the reset phase, the evaluate

phase, δ, and the period of each stage in the P-SRSL join pipeline. Note the stages

numbered 1, 2, and 3 in Figure 4.13 represents the stages labeled 1A, 1B, 2A, 2B, 3A,

and 3B in Figure 4.11. As the figure shows, the duration of the latch enable of each stage

in the pipeline remains constant and is approximately equal to half of the period of each

stage. The duration of the evaluate phase of any stage located to the left of the last stage

is larger than the duration phase of the last stage by δ, while the duration of the reset

phase of any stage located to the left of the last stage is smaller than that of the last stage

by δ. These results are consistent with the findings of equations (4.9), (4.10), (4.14), and

(4.15).

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 4.13: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype

join pipeline.

99

4.4.2.2 The P-SRSL Fork Pipeline

A four-bit six-stage pipeline was modeled in VHDL where each stage contains a

four-bit adder as shown in Figure 4.14. Its netlist was generated using Synopsys Design

Compiler based on a 0.25µm CMOS library [65, 66]. Four parameters were measured in

layout simulations of the pipeline, namely the period of each stage (P), the duration of the

evaluate phase (d(E)), the reset phase of each stage (d(R)), and the enable of each latch

(d(L+)).

Figure 4.14: Four-bit six-stage P-SRSL fork pipeline.

In order to verify the functional correctness of the P-SRSL fork structure,

simulation experiments were conducted on the prototype fork pipeline shown in Figure

4.14. Figure 4.15 shows a simulation snapshot of only stages 4, 5A, 5B, 6A, and 6B from

the prototype pipeline.

Figure 4.15: Simulation snapshot of the prototype P-SRSL fork pipeline.

100

In Figure 4.15, the phase of stages 5A and 5B are always de-asserted when the

phase of stage 4 is asserted and vice-versa. This shows that stages 5A and 5B oscillate in

the same phase while stage 4 oscillates in the opposite phase. This insures that data flows

from stage 4 to stages 5A and 5B when the former is in the evaluate phase while the two

latter are in the reset phase. Based on the stage characterization introduced in section 4.1,

stage 6 and 4 are of the same type, and subsequently, their phases will be identical. This

can be seen in Figure 4.16 by inspecting the phase signals of stage 4, 6A, and 6B.

Figure 4.16 shows the duration of the latch enable, the reset phase, the evaluate

phase, δ, and the period of each stage in the P-SRSL fork pipeline. Note that the stages

numbered 5 and 6 in Figure 4.16 represent the stages labeled 5A, 5B, 6A, and 6B in

Figure 4. 14. As the figure shows, the duration of the latch enable of each stage in the

pipeline remains constant and is approximately equal to half of the period of each stage

as expressed by equations (4.14) and (4.15). In addition, the duration of the evaluate

phase of any stage located to the left of the last stage is larger than the duration of the

evaluate phase of the last stage by δ as found in equation (4.9), while the duration of the

reset phase of any stage located to the left of the last stage is smaller than that of the last

stage by δ as found in equation (4.10). However, as can be seen in the figure, stage 4 has

a slightly longer evaluate phase and shorter reset phase compared to other stages located

on the left side of the last stage. When stage 4 transitions from the evaluate to the reset

phase, the latch enables of stage 5A and 5B have to propagate through the G-labeled

AND gate as shown in Figure 4.5. This has the effect of stretching the evaluate phase

and shrinking the reset phase of stage 4 in particular.

101

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Stages

P
ic

os
ec

on
ds

Latch Enable Period Reset Evaluate Delta Delay

Figure 4.16: Simulation results of d(L+), d(R), d(E), δ, and P in the P-SRSL prototype

fork pipeline.

4.5 Comparison of P-PRSL to S-SRSL Pipelines

Table 4.2 highlights the differences between P-SRSL and S-SRSL pipelines. It

seems that the P-SRSL pipeline displays better latency and area performance that the S-

SRSL pipeline. The table shows that the P-SRSL pipeline has 0.4% area reduction, 2.1%

increase in the pipeline throughput. Whereas the P-SRSL has a constant duration of the

latch enable, the S-SRSL pipeline has a variable duration of its latch enable. The

variability in the latter depends on the pipeline location of the stage to which the latch is

associated. This variability imposes a limit on the maximum number of stages in the S-

SRSL pipeline. It can be conjectured that some of the mentioned performance

improvements in the P-SRSL pipeline can be attributed to the fact that the δ domino

effect does not propagate across the pipeline stages. As a result, there is a general

102

uniformity in its timing behavior, which allows it to some degree to produce slightly

faster responses.

Table 4.2: Comparison summary of the P-SRSL to S-SRSL pipeline.

Parameter P-SRSL Pipeline S-SRSL Pipeline
Period 2.10 ns 2.18 ns
Total Latency 14.40 ns 15.76 ns
Pipeline area 89,731.14 µm2 90,057.74 µm2

Latch Enable Duration 0.96 ns 1.01 ns (stage 16) down to
0.64 ns (stage 1)

Throughput 463.3 Megaoutputs/sec 453.95 Megaoutputs/sec

Theoretical Pipeline Depth

No limit 1

11 (
2
Pn d

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠
)L

δ Delay Difference Between any stage and the
last stage

Between any two
neighboring stages

4.6 Summary

This chapter shows how P-SRSL can be used to implement linear pipelines in

addition to fork and join operations encountered in non-linear pipelines. The prototyping

experiments show that the actual performance of the P-SRSL pipeline is significantly

closer to its analytical performance. The timing analysis of the P-SRSL pipeline shows

that the duration of the latch enable is constant for any stage in the pipeline. This is due to

the fact that the δ effect does not propagate across the pipeline stages, which in return

keeps the duration of the evaluate and reset phases constant in the stages before the right

stage of the pipeline. In contrast to the S-SRSL pipeline, the incremental delays caused

by the propagation of δ are completely absent in the P-SRSL pipeline. This can explain

its better performance confirmed by the prototyping experiments conducted on the P-

SRSL pipeline [67, 68].

103

CHAPTER FIVE: DELAY TOLERANT SELF-RESETTING STAGE
LOGIC PIPELINES

This chapter presents a clockless pipeline design technique, called delay-tolerant

self-resetting stage logic (D-SRSL), which can be used to handle pipeline stages with

significant delay differences. Section 5.1 introduces the two building blocks namely the

phase control and latch control and then shows how they can be used as a building block

in linear pipeline while section 5.2 shows the non-linear D-SRSL pipelines. Section 5.3

presents a detailed timing analysis of a linear pipeline and shows how the worst stage

delay is impacting the period of the pipeline. Section 5.4 describes the implementation of

three prototype pipelines while section 5.5 summarizes the chapter.

5.1. D-SRSL Linear Pipeline

This section describes the various components of a D-SRSL linear pipeline and

how they operate to support data flows across the pipeline.

5.1.1 Pipeline Structure

D-SRSL pipelines are supported by a clockless pipelining technique in which data

flows across stages through latches as shown in Figure 5.1. These latches are controlled

by a latch control (LC) block. Each stage oscillates between two phases: a reset and

evaluate phase indicated by signal φ. A stage is ready to absorb its inputs in the reset

phase while it is ready to evaluate its inputs in the evaluate phase. The evaluation is

performed by feeding the inputs to a combinational network (CN) embedded within the

104

stage. The control of this phase oscillation is performed by a phase control (PC) block,

which can be reset at any moment by the reset signal R. In each stage, the CN is

completely decoupled from the PC block, and can have an arbitrary delay.

Figure 5.1: A four-stage D-SRSL pipeline.

Figure 5.1 shows the interconnection structure of a four-stage D-SRSL pipeline

where each stage consists of a CN, PC and LC blocks. To insure proper data flow across

stages, data is transferred from the current stage to the next one if the current stage is in

the evaluate phase while the next stage is in the reset phase. Hence, the latch separating

both stages is enabled when the left stage is in the evaluate while the right stage is in the

reset phase. Beside the reset signal, the PC block takes as inputs the enable signal of the

left and right latches and outputs the phase signal of the stage. On the other hand, the LC

block takes as inputs the phases of the left and right PC blocks and outputs the signal

enable of the latch it controls. Figure 5.2 shows the STG of the D-SRSL linear pipeline

shown in Figure 5.1. Although the Clr signal in Figure 5.2 is not shown in Figure 1, its

function within the LC block will be described in section 5.1.3. The STG shows that the

rising transition of L3 occurs after φ2 and φ3 experience a rising and falling transition

respectively. This means that latch 3 is enabled only when stage 2 is in the evaluate

105

phase while stage 3 is in the reset phase. Since L3 is asserted while stage 3 is in the reset

phase, this guarantees that latch 4 will not be enabled until φ3 experiences a rising

transition.

Figure 5.2: STG of the D-SRSL pipeline shown in Figure 5.1.

5.1.2 Phase Control Block

Figure 5.3 shows that the PC block receives three inputs: (i) the reset signal, R,

which resets the PC block output to 0, (ii) Li which is the latch enable of the left latch of

stage i, and (iii) Li+1, which is the latch enable of the right stage i+1. In addition, it

produces an output, φi, which is the phase signal of stage i. To illustrate the behavior of

the PC block, Figure 5.4 shows its state graph which consists of two states: (i) the reset

state, SR, in which the phase signal becomes 0, and (ii) the evaluate state, SV, in which the

phase signal becomes 1. As shown in Figure 5.4, the PC block enters the reset state after

106

the reset signal is de-asserted. In this state, φi is de-asserted, which indicates that the

stage is in the reset phase. The PC block remains in this state as long as R and Li are de-

asserted while Li+1 is asserted. Once Li+1 is de-asserted while Li becomes asserted, the PC

block transitions to the evaluate state in which φi is asserted. This means that the stage is

in the evaluate phase. As long as Li+1 remains de-asserted, the PC block remains in the

evaluate state until Li+1 becomes asserted, in which case the PC block returns to the reset

state. As φi switches back and forth, a stage can oscillate between a reset and evaluate

phase in a single execution cycle or period. Given this oscillation, a stage is ready to

absorb inputs when it is in the reset phase.

Figure 5.3.:Phase control block.

Figure 5.4: State graph of the PC block.

While the inputs are traveling along the critical path of the CN, φi is similarly

traveling along a path that is extended by a delay equal to the critical path delay in the

CN. This extended delay is implemented by a delay buffer which delays the reset phase

107

long enough to allow CN outputs to stabilize. Based on this oscillation, a PC block can

be embedded in a pipeline stage forcing the stage to oscillate between two phases. This

oscillation can be used to synchronize data transfer between neighboring stages in a D-

SRSL pipeline.

5.1.3 Latch Control Block

Figure 5.5 shows the block diagram of the LC block. This block has three inputs,

φi and φi-1, which are the phases of the current and previous stages respectively, and the

reset (R) signal. In addition, it has one output Li, as defined above, which feeds back into

the clear port (Clr) of the LC block. Li is the enable signal of the latch between stage i

and its predecessor stage i-1. To show the behavior of the LC block, Figure 5.6 shows its

state graph which consist of two states, namely the enabled state SE, and the disabled

state SD. When the reset signal is asserted, the LC block enters the disabled state in

which Li gets de-asserted. As long as φi-1 is de-asserted while φi is asserted, the block

remains in the disabled state. The LC block waits until φi-1 gets asserted while φi

becomes de-asserted to transition to the enabled state. In this state, Li gets asserted in

order to allow the latch of stage i to capture the incoming data from stage i-1. After a

delay, sufficiently long to allow the data to go through the latch, has elapsed, the latch

block returns automatically to the disabled state, thus disabling the latch.

108

Figure 5.5: Latch control block.

Figure 5.6: State graph of the latch control block.

5.2. D-SRSL Non-Linear Pipelines

Most non-linear pipelines rely on primitives such as the fork and join operations.

In this section, the join and fork operations are described for the D-SRSL pipeline.

5.2.1 D-SRSL Join Pipeline

Figure 5.7 shows a D-SRSL join pipeline. Inter-stage data flow is similar to the

data flow in a linear pipeline. Data is transferred from stage A to stage C when the

former is in the evaluate phase while the latter is in the reset phase. Similarly, data flows

from stage B to stage C when the former is in the evaluate phase while the latter is in the

reset phase. When these conditions are true, latches 3 and 4 are activated to capture the

outputs of stage A and B, and feed it to the inputs of stage C. The coordination between

109

the stages A and B, and stage C is orchestrated by the Join block. Figure 5.8 shows the

STG of the join structure shown in Figure 5.7. In this STG, the LJoin signal which drives

the enable of both latches 3 and 4, experiences a rising transition when both φA and φB

experience a rising transition while φC experiences a falling transition. This shows that

latches 3 and 4 are enabled when stages A and B are both in the evaluate phase while

stage C is in the reset phase.

Figure 5.7: D-SRSL join pipeline.

110

Figure 5.8: STG of the D-SRSL join pipeline shown in Figure 5.7.

As Figure 5.7 shows, the Join block takes four input signals, namely φA, φB, φC,

and R. In addition, it produces a single output, namely LJoin. Figure 5.9 shows the block

diagram of the Join block while Figure 5.10 shows its state graph.

Figure 5.9: The Join block.

The Join block oscillates between two states: the disabled (SD) and enabled state

(SE). The transition from the former to the latter state can occur if both φA and φB are

asserted while φC is de-asserted. In the enable state, the LJoin signal becomes asserted.

After a delay, sufficiently long to allow the data to go through the latch, has elapsed, the

111

Join block returns automatically to the disabled state, thus disabling the latches 3 and 4

shown in Figure 5.7.

Figure 5.10: State graph of the Join block.

In order to verify the functional correctness of the D-SRSL join structure,

simulation experiments were conducted on a prototype join pipeline shown in Figure

5.11. In this pipeline, each stage contains different CNs with different delays shown in

parentheses in Figure 5.11. The total combinational delay through branch A is 3.9 ns

while the total delay through branch B is 3 ns. The rationale behind using a different CN

in each stage is to test the functional correctness of the join pipeline in the face of

different delays. For purpose of clarity, Figure 5.12 shows a simulation snapshot of only

stages 3A, 3B, and 4 from the prototype pipeline shown in Figure 5.11.

Figure 5.11: Prototype D-SRSL join pipeline.

Let d(Ei) and d(Ri) be the time duration of the evaluate and reset phase in stage i

respectively. Also, let the period of stage i, Pi, be the sum of duration of the evaluate and

reset phase in stage i, namely Pi = d(Ei) + d(Ri). Note that for each stage, the reset and

112

evaluate phase are indicated by logic 0 and 1 respectively. Since stage 3B has a smaller

CN delay, its evaluate and reset phases should be in principle shorter than the evaluate

and reset phase of stage 3A. As a result, its period should be shorter than the period of

stage 3A. Although its period should be shorter, it is nevertheless extended in order to

force stage 3B to wait for stages 3A and 4 to enter their evaluate and reset phases

respectively. Only then, the LJoin signal becomes asserted as shown in Figure 5.12. When

LJoin is asserted, it then forces stages 3A and 3B to enter their reset phase, and stage 4 to

enter its evaluate phase. In general, if two branches of a join pipeline has different

delays, the last stage before the join stage in the fastest branch will remain in the evaluate

phase until the last stage in the slowest branch enter its evaluate phase. Thus, the Join

block synchronizes both branches before computation proceeds past the join stage.

Figure 5.12: Simulation snapshot of the prototype D-SRSL join pipeline.

113

5.2.2 D-SRSL Fork Pipeline

Figure 5.13 shows a D-SRSL fork pipeline. Data is transferred from stage A to

stage B and C when the former is in the evaluate phase while the two latter stages are in

the reset phase. When these conditions are true, latches 2 and 3 are enabled to capture

the output of stage A and feed it to stages B and C. The coordination between the three

stages is orchestrated by the Fork block. Figure 5.14 shows the STG of the fork structure

shown in Figure 5.13. In this STG, L2 experiences a rising transition when φA and φB

experience a rising and a falling transition respectively. Similar observation can be made

with regard to L3, φA and φC. Once both signals L2 and L3 experience rising transitions, so

does LFork, thus forcing stage A to finish its evaluate phase while stages B and C are

forced to start their evaluate phases. When LFork becomes asserted, the Clr signal gets

asserted in return, which triggers the Fork block to transition to the disabled state.

As Figure 5.15 shows, the Fork block has three inputs L2, L3, and R. In addition, it

has one output LFork. Figure 5.16 shows the state graph of the Fork block which consist

of two states, namely the enabled state SE, and the disabled state SD. As long as R is

asserted, the Fork block remains in the disabled state. It wait until L2 and L3 become

asserted to transition to the enabled state. After a delay, sufficiently long to allow the

data to go through the latch, has elapsed, the Fork block returns automatically to the

disabled state, thus disabling the latches 2 and 3 shown in Figure 5.13.

114

Figure 5.13: D-SRSL fork pipeline.

Figure 5.14: STG of the D-SRSL fork pipeline shown in Figure 5.13.

115

Figure 5.15: Fork block.

Figure 5.16: State graph of the Fork block.

In order to verify the functional correctness of the D-SRSL fork structure,

simulation experiments were conducted on a prototype fork pipeline shown in Figure

5.17 in which each stage contains a CN with a different delay. The same rationale used

in the simulation experiment of the join prototype pipeline is also adopted in simulating

the fork structure on the fork prototype pipeline. In the prototype pipeline, the total delay

of the CNs through branch A is 4.5 ns while it reaches 3.6 ns through branch B.

Figure 5.17: Prototype D-SRSL fork pipeline.

116

For purpose of illustration, Figure 5.18 shows a simulation snapshot of stages 4,

5A, and 5B for the prototype pipeline shown in Figure 5.17. Note that although the delay

difference between stage 5A and 5B is quite significant, they seem to be synchronized in

the way they start and complete their respective evaluate phases. As soon as the LFork

experiences a rising transition, both stages 5A and 5B start their evaluate phases. As

shown in Figure 5.18, stage 5A starts its evaluate phase slightly after stage 5B since its

CN has a higher delay than the CN of stage 5B. After both stages 5A and 5B finish their

evaluate phases, they start their reset phase. Although the CN in stage 5B has a smaller

delay, its reset phase is nevertheless extended for the purpose of waiting for a rising

transition on LFork, which occurs only when the latch enables of stages 5A and 5B

experience rising transitions. These transitions take place only when stage 4 is in the

evaluate phase while stages 5A and 5B are both in the reset phase. As a result, by

delaying the rising transition of LFork until the rising transitions of the latch enables of

stages 5A and 5B take place, both stages are forced to start their evaluate phases

simultaneously.

Figure 5.18: Simulation snapshot of the prototype D-SRSL fork pipeline.

117

5.3. Performance of the Pipeline

This section starts by examining the relationships between the duration of the

reset and evaluate phase in two neighboring stages of a D-SRSL pipeline and how these

two parameters depend on the delays through the PC and LC blocks. This explanation is

followed by a brief description of how the relationships between the duration of the reset

and evaluate phases affect the duration of the latch enable in a given stage. Finally, an

elaboration on how the delay of a CN embedded in a stage affects the duration of the

reset and evaluate phases of a stage, based on the stage which contains the CN with the

longest delay in a D-SRSL pipeline, is presented.

5.3.1 The Reset and Evaluate Phase

The phase of a stage i can be determined by observing φi. When φi = 0, stage i is

in the reset phase. Otherwise, it is in the evaluate phase. Since the start and end of the

evaluate phase of stage i depends on the rising transition of the Li and Li+1 signals, the

duration of the evaluate phase of any stage i is:

() () () ()1 1 5.1i i id E t L t L+ +
+= −

where t(Li+1
+) represents the time at which the latch enable of stage i+1 experiences a

rising transition while t1(Li
+) represents the time at which the latch enable of stage i

experiences a rising transition. Note that the subscript 1 of t indicates that t1(Li
+)

precedes t(Li+1
+) in time. On the other hand, since the start and end of the reset phase in

118

stage i depend on the rising transitions of Li and Li+1 signals, the duration of the reset

phase of any stage i is:

() () () ()2 1 5.2i i id R t L t L+ +
+= −

where t(Li+1
+) is defined as above and t2(Li

+) represents the time at which the latch enable

of stage i experiences a rising transition. Note that the subscript 2 of t indicates that

t2(Li
+) succeeds t(Li+1

+). Since t2(Li
+) succeeds t(Li+1

+), it succeeds by transitivity t1(Li
+).

Figure 5.19 shows the simulation waveforms the latch enables and phases of stages 14,

15, and 16 in a 16-stage D-SRSL pipeline.

Figure 5.19: Simulation snapshot of stage 14, 15 and 16 in a 16-stage prototype D-SRSL
pipeline.

To illustrate the proper operation of the pipeline based on the waveforms shown

in Figure 5.19, focus is placed on how stage 15 reacts to the phases of the neighboring

stages, namely stages 14 and 16. As the left callout in the figure shows, when the latch

enable of stage 15 is asserted, stage 14 is in the evaluate phase while stage 15 is in the

reset phase. After a short time, stage 15 enters its evaluate phase while stage 14 ends its

own evaluate phase. Later, stage 15 ends its evaluate phase a short time after the latch

119

enable of stage 16 becomes asserted. Since both short times are almost equal, they cancel

each other thus making the duration of the evaluate phase in stage 15 start when its latch

enable becomes asserted, and ends when the latch enable of stage 16 becomes asserted.

In essence, this validates equation (5.1). Similarly, as the right callout in the figure

shows, when the latch enable of stage 16 is asserted, stage 15 is still in the evaluate phase

while stage 16 is in the reset phase. A short time later, stage 15 enters its reset phase

while stage 16 starts its evaluate phase. Stage 15 will remain in its reset phase until a

short time after its own latch has been enabled. Since both short times are almost equal,

they cancel each other thus making the duration of the reset phase of stage 15 start when

the latch enable of stage 16 is asserted, and ends when the latch enable of stage 15

becomes asserted. In essence, this validates equation (5.2). Let D(PCi) be the delay from

an input port to the output port of PC block i. As Figure 5.5 shows, the LC block has a

left and right input port in addition to an output port. Let Dleft(LCi) be the delay from the

left input port to the output port of LC block i. Similarly, let Dright(LCi) be the delay from

the right input port to the output port of LC block i. These newly defined delays can be

expressed as follows:

() () () () () ()1φ φ 5.3i i i i iD PC t t L t t L+ + − +
+= − ≅ −

()() () (φ) 5.4right i i iD LC t L t+ −= −

() () () ()1φ 5.5left i i iD LC t L t+ +
−= −

Note that t(φi
+) and t(Li

+) represent the time at which φi and Li experience rising

transitions. By replacing the + with a –, the same notation can be used to indicate falling

transitions. By adding the delay through the phase control block of stage i and the delay

120

from the left port to the output of the latch control block of latch i+1, one can determine

d(Ei) as follows:

() () () () () ()
() ()
() ()

1 1

1

φ φ

 5.6

i left i i i i i

i i

i

D PC D LC t t L t L t

t L t L

d E

+ + + +
+ +

+ +
+

+ = − + −

= −

=

Similarly, by adding the delay through the phase control block of stage i and the

delay from the right port to the output of the latch control block of latch i, one can

determine d(Ri) as follows:

() () () () () ()
() ()
() ()

1

1

φ φ

 5.7

i right i i i i i

i i

i

D PC D LC t t L t L t

t L t L

d R

− + + −
+

+ +
+

+ = − + −

= −

=

In the overall, to insure correct operation of the D-SRSL pipeline, the propagation

delay through the latch of any stage i, D(Li), plus the delay through the combinational

network, D(CNi), should be less than the period of the stage Pi. As a result, a delay block

∆i with delay D(∆i), has to be inserted in the PC block to satisfy the following constraint:

() () () ()
() () () 5.8

i i i i

i i i

d E d R D L D CN

P D L D CN

+ ≥ +

≥ +

121

5.3.2 Duration of Latch Enable

As Figure 5.5 shows, the LC block can be reset by asserting the R signal, which can

be done manually or when Li is fed back to the Clr port of the LC block after its assertion.

Let Dclr(LCi) be the time elapsed between the instant in which Clr is asserted and the

instant in which the latch enable Li is de-asserted. This time lapse can be expressed as:

() () () () 5.9clr i iD LC t L t Clr− += −

The duration of the latch enable, d(Li), can be characterized based on two distinct

scenarios:

(i) If D(CNi) < Dclr(LCi), Li becomes de-asserted when φi is asserted. In this case,

() () () 5.10i id L d R=

(ii) If D(CNi) > Dclr(LCi), Li becomes de-asserted when Clr is asserted. In this case,

() () () 5.11i Clr id L D LC=

In brief, the duration of the latch enabled can be quantified as:

() () (){ } ()min , 5.12i i Clr id L d R D LC=

Scenario (i) represents the case in which the CN is so small that its delay is less

than the delay of latch control block. In this case, the duration of the latch enable

depends on the duration of the reset phase. On the other hand, scenario (ii) represents the

case in which the delay through the CN is larger than the delay of the latch control block.

122

In this case, the duration of the latch enable depends on the delay through the latch

control block.

5.3.3 Stage Delay and Period

To study the impact of CN delay on stage periods across the pipeline, a prototype

17-stage pipeline has been implemented in which the CNs of the stages have different

delays. In this pipeline, stage 9 has the CN with the longest delay of 2.4 ns while stages 1

through 8 and 10 through 17 have randomly distributed CN delays of 0.9 ns to 2.3 ns and

0.9 ns to 2.1 ns respectively. Figure 5.20 shows a simulation snapshot of stage 7 through

11 of the 17-stage prototype pipeline in order to illustrate how the evaluate and reset

phases of the stages on each side of stage 9 behave. It is clear from the figure that d(E7)

> d(E9) and d(E8) > d(E9) while d(R10) > d(R9) and d(R11) > d(R9). In fact, the duration of

the evaluate phase of any stage before the worst-delay stage will be greater than the

duration of the evaluate phase of the worst-delay stage. On the other hand, the duration

of the reset phase of any stage after the worst-delay stage will be greater than the duration

of the reset phase of the worst-delay stage. If stage k is the stage which contains the

longest-delay CN, then

() () () () () (, 5.13 and , 5.14i k j kd E d E i k d R d R j k> < > >)

123

Figure 5.20: Simulation snapshot of stages 7 through 11 in a 17-stage prototype D-SRSL
pipeline.

In addition, the figure shows that the period of every stage is identical in an n-

stage pipeline:

(), 1 5.15iP P i n= ≤ ≤

To explain how d(E8) > d(E9), Figure 5.21 shows a simulation snapshot of stages

8 and 9 in the same 17-stage prototype pipeline described above. In the figure, the latch

enable of stage 9 experiences a rising transition when stage 8 is in the evaluate phase

while stage 9 is in the reset phase. This transition allows stages 8 and 9 to finish and start

their own evaluate phases respectively. Since stage 9 contains the longest-delay CN, it

has a relatively longer evaluate and reset phases. The long evaluate phase of stage 9

delays the onset of its own reset phase, which in return delays the rising transition of its

own latch enable. As a result, the evaluate phase of stage 8 is stretched further as it waits

for the rising transition on the latch enable of stage 9, even though the CN delay in stage

124

8 is smaller than the CN delay in stage 9. This explains equation (5.13). Initially, when

the pipeline starts operating, the stretching of the evaluate phase of stage 8 is somewhat

smaller as shown in the leftmost callout in Figure 5.21. After the first pipeline

throughput, the pipeline reaches a steady state in which the stretching of the evaluate

phase of stage 8 is at its maximum as shown in the rightmost callout in Figure 5.21. In

general, any stage before stage 9 will not be able to finish its evaluate phase until its own

successor stage finishes its own evaluate phase.

Figure 5.21: Simulation snapshot of stages 8 and 9 in the 17-stage D-SRSL prototype
pipeline.

To explain how d(R10) > d(R9), Figure 5.22 shows a simulation snapshot of stages

9, and 10 in the same 17-stage prototype pipeline described above. In the figure, the

rising edge of the latch enable of stage 10 allows stages 9 and 10 to finish and start their

own evaluate phases respectively. The evaluate phase of stage 10 will last for a slightly

shorter time since its CN has a smaller delay than the CN delay of stage 9. This results in

stage 10 finishing its evaluate phase and starting its reset phase before stage 9 completes

its own evaluate phase. Hence, stage 10 remains in the reset phase thereby waiting for

stage 9 to complete its evaluate phase, then start and complete its own reset phase. This

long wait time causes a long reset phase in stage 10 which in turn delays the onset of the

reset phase of stage 11. The domino effect of these delays is that every stage after stage 9

125

ends up with a reset phase that is longer than the reset phase of stage 9 as expressed in

equation (5.14).

Figure 5.22: Simulation snapshot of stages 9 and 10 in the 17-stage D-SRSL prototype

pipeline.

If equation (5.13) is true, it becomes possible to determine how d(Ri) relates to

d(Rk). If both sides of equation (5.13) are replaced with equation (5.8), equation (5.13)

can be rewritten as follows:

() () () () () () (5.16i i i k k kD L D CN d R D L D CN d R+ − > + −)

Because the latches and the PC blocks are identical in all stages of the pipeline, then

D(Li) = D(Lk). Based on this equality, the two quantities can be dropped from equation

(5.16) to rewrite it as:

() () () () (5.17i i k kD CN d R D CN d R− > −)

Since stage k has the worst CN delay, it follows that D(CNk) > D(CNi). Given this

remark, equation (5.17) remains valid only if:

() () (), 5.18i kd R d R i k< <

126

The differences between the evaluate and reset phases of any stage before stage k can be

quantified as follows:

() () () () () () (, 5.19i k k i k id E d E d R d R D CN D CN i k− = − > − <)

Similar reasoning can be followed to characterize the evaluate phases of the stages after

stage k. In this case, both sides of equation (5.14) can be replaced with equation (5.8) as

follows:

() () () () () () (5.20j j j k k kD L D CN d E D L D CN d E+ − > + −)

Because the latches and the PC blocks are identical in all stages of the pipeline, then

D(Lj) = D(Lk). Based on this equality, the two quantities can be dropped from equation

(5.20) to rewrite it as:

() () () () (5.21j j k kD CN d E D CN d E− > −)

)

Since stage k has the worst CN delay, it follows that D(CNk) > D(CNj). Given this

remark, equation (5.20) remains valid only if:

() () (, 5.22j kd E d E j k< >

The differences between the evaluate and reset phases of any stage after stage k can be

quantified as follows:

127

() () () () () () (), 5.23k j j k k jd E d E d R d R D CN D CN j k− = − > − >

5.3.4 Area Cost

To assess the area cost of D-SRSL pipelines, they are briefly compared to clocked

pipelines. While the latter require only flip-flops between pipeline stages, D-SRSL

pipelines require inter-stage latches in addition to intra-stage PC blocks, which contain

delay buffers, and LC blocks. Since both blocks are in essence small state machines,

their area is more than marginal. In fact, the implementation of the PC blocks require

three NAND gates, one AND gate, and one inverter while the implementation of the LC

block requires one AND gate, one OR gate, one inverter, and one D flip-flop. Within a

single stage, both blocks can consume the equivalent of eight gates and one flip-flop in

addition to the delay block whose area can be proportional to the critical path delay of the

intra-stage logic. Given this area overhead, it is obvious that D-SRSL pipelining is

suitable for coarse-grain logic in general, and shallow and wide logic in particular. In

any case, the area cost of D-SRSL pipelines is clearly greater than the area cost of

clocked pipelines.

5.3.5 Fault Handling

Similarly to the analysis elaborated on S-SRSL and P-SRSL pipelines, only stuck-

at faults are considered based on whether a given stage gets stuck in the evaluate or reset

phase.

128

• Stage locked in the evaluate phase: If the output of the PC block of a given stage j

gets stuck at 1 (i.e., φj = 1), stage j remains locked in the evaluate phase. As long as φj is

equal to 1, LCj block remains in the disabled state. This in turn forces Lj to switch to 0,

thus disabling latch j. As a result, data is prohibited from passing from stage j−1 to j.

After Lj switches to 0, this forces PCj−1 block to transition to the enabled state, thus

forcing stage j−1 into the evaluate phase. Since φj−1 remains equal to 1, it triggers the

same sequence of responses in LCj−1 block, Lj−1, and latch j−1 thus locking stage j−2 into

the evaluate phase. This phenomenon propagates leftward from stage j to stage 1 of the

pipeline locking every stage from 1 to j into the evaluate phase. As a result, data flow is

completely stopped in this segment of the pipeline. When stage j remains locked in the

evaluate phase, this allows LCj+1 block to transition to the enabled state, which in turn

enables latch j+1. As a result, data flows between stage j and j+1. After Lj+1 becomes

equal to 1, it allows PCj+1 block to transition to the enabled state thus forcing stage j+1

into the evaluate phase. This in turn allows LCj+2 block to transition to the enabled state

after which stage j+1 and j+2 enter the reset and evaluate phase respectively. The former

remains in the reset phase as long as Lj+1 is equal to 0 due to the fact that stage j is stuck

in the evaluate phase. The same sequence of events occurs between stage j+2 and j+3

resulting in stage j+2 being stuck in the reset phase. This phenomenon propagates

rightward locking every stage from j to n into the reset phase. Whereas data flows

uninterrupted from stage 1 to j for one period before each stage before stage j get locked

in the reset phase, its flow is completely blocked from stage j+1 to n.

129

• Stage locked in the reset phase: If the output of the PC block of stage j gets stuck at 0

(i.e., φj = 0), stage j remains locked in the reset phase. Since φj is equal to 0, LCj block

transitions to the enabled state. This in turn forces Lj to switch to 1, thus enabling latch j.

As a result, data is allowed to flow from stage j−1 to j. After Lj switches to 1, PCj−1 block

transitions to the disabled state forcing stage j−1 into the reset phase. After stage j−1

enters the reset phase, LCj−2 block transitions to the enabled stage, which in turn forces

Lj−1 to switch to 1, thus enabling latch j−1. As a result, data flows from stage j−2 to j−1.

After Lj−1 switches to 1, PCj−2 block transitions to the disabled state forcing stage j−2 into

the reset phase. This sequence of events occurs in every stage from j to 1 at the end of

which each one of these stage remains locked in the reset phase. On the other hand,

when stage j remains locked in the reset phase, LCj+1 block transitions to the disabled

state, which in turn forces Lj+1 to switch to 0. In this case, latch j+1 is disabled which

prohibits data from passing from stage j to j+1. After Lj+1 switches to 0, PCj+1 block

transitions to the disabled state, thus forcing stage j+1 in the reset phase. After stage j+1

enters the reset phase, LCj+2 block transitions to the disabled state, which in turn forces

Lj+2 to switch to 0. In this case, latch j+2 is disabled, which prohibits data from passing

from stage j+1 to j+2. This phenomenon propagates rightward from stage j to n locking

in its propagation all these stages in the reset phase. In the overall, data flows from stage

1 to j for a single period after which each stage before j gets locked in the reset phase. At

the same time, data is completely blocked in the stages after stage j.

130

5.4 Prototype Implementation of the D-SRSL Pipeline

This section presents the implementation details of the blocks used in the D-SRSL

pipeline where the delay path of each implementation is used to illustrate how it impacts

the overall delay of the pipeline. These blocks consist of the PC block, LC block, the

Join and Fork blocks. Next, simulation results of three prototype pipelines and their

interpretations are presented.

5.4.1 Implementation of the PC Block

The PC block was modeled in VHDL, synthesized, and optimized using Synopsys

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Figure 5.23 shows the

synthesized netlist as a sequential circuit which implements the state machine shown in

Figure 5.4. Note that this sequential circuit can be reset by an active low Reset signal.

Since this circuit is located within the self-resetting loop embedded within a stage of a D-

SRSL pipeline, its critical path becomes part of the self-resetting loop path.

In Figure 5.23, this critical path starts at the inverter I, crosses the gates N1, N2,

and A, before reaching the delay block ∆. Based on this critical path, equation (5.3) can

be rewritten as:

() () () () () () () ()φ 2 5.24i i i iD PC t t L D INV D NAND D AND D+ += − = + + + ∆

131

Figure 5.23: Synthesized netlist of the PC block.

5.4.2 Implementation of the LC Block

The LC block was modeled in VHDL, synthesized, and optimized using Synopsys

Design Compiler based on a 0.25 µm CMOS library [65, 66]. Figure 5.24 shows the

synthesized netlist as a sequential machine consisting of one flip-flop and two gates.

This netlist implements the sequential machine shown in Figure 5.6.

Because the LC block is part of the self-resetting loop embedded within a stage in

a D-SRSL pipeline, this circuit becomes part of the self-resetting path. As a result, the

path delays of this netlist add up the overall delay of the self-resetting loop. However,

there are two possible paths of interest in the netlist shown in Figure 5.24. The right path

132

starts at the inverter I, and traverses the gates A and O. Based on this path, equation (5.4)

can be rewritten as follows:

() () () (() () (φ) 5.25right i i iD LC t L t D INV D AND D OR+ −= − = + +)

Figure 5.24: Synthesized netlist of the LC block.

On the other hand, the left path starts at the clock port of the D flip-flop, goes out

the output port of the flip-flop, and traverses the gates A and O. Based on this path,

equation (5) can be rewritten as follows:

() () () () () () ()1φ clk_to_Q 5.26left i i iD LC t L t D D AND D OR+ +
−= − = + +

Note hat in the cell library used in this implementation, D(INV) < D(clk_to_Q).

As a result, Dright(LCi) < Dleft(LCi) based on equations (5.25) and (5.26). From this

inequality, it follows that equation (5.6) relates to equation (5.7) as follows:

() () () () (5.27i right i i left iD PC D LC D PC D LC+ < +)

By substituting the left and right sides of equation (5.27) for equations (5.6) and

(5.7) respectively, equation (5.27) can be rewritten as:

133

() () () 5.28i id R d E<

As mentioned in section 5.2, the LC block can be reset by asserting the R signal,

which can be done manually or when Li is fed back to the Clr port of the LC block after

its assertion. The resetting of the LC block follows a path which starts at the Clr port of

the flip-flop, goes out the output port of the flip-flop, and traverses the gates A and O.

Since Dclr(LCi) denotes the delay on this path, equation (5.9) can be rewritten as follows:

() () () () () ()clr_to_Q () 5.29clr i iD LC t L t Clr D D AND D OR− += − = + +

5.4.3 Implementation of the Join Block

The Join block was modeled in VHDL, synthesized, and optimized using

Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66]. Figure 5.25

shows the synthesized netlist as a sequential machine consisting of two flip-flops and two

gates. This netlist implements the sequential machine shown in Figure 5.10.

Figure 5.25: Synthesized netlist of the Join block.

134

In the case of a join pipeline, the Join block becomes part of the self-resetting

loop embedded in each stage around the join block, namely stages A, B, and C as shown

in Figure 5.7. Note that for either stage A or B in Figure 5.7, the Join block replaces both

the LCA and LCB blocks. As a result, the delay contributed by the LC block in each stage

can be replaced by the delay of the Join block. Using the same nomenclature adopted in

the implementation of the LC block, the right path through the Join block, shown in

Figure 5.25, starts at the inverter I, and traverses the gates A and O. Based on this path,

() () () () (5.30rightD Join D INV D AND D OR= + +)

Note that Dright(Join) = Dright(LC). On the other hand, the left path starts at the

clock port of either D flip-flop, goes out the output port of the flip-flops, and traverses the

gates A and O. Based on this path,

() () () () (clk_to_Q 5.31leftD Join D D AND D OR= + +)

Note that Dleft(Join) = Dleft(LC). As mentioned in section 5.2.1, the Join block can

be reset by asserting the R signal, which can be done manually or when LJoin is fed back

to the Clr port of the Join block after its assertion. The resetting of the Join block follows

a path which starts at the Clr port of either flip-flop, goes out the output port of the flip-

flop, and traverses the gates A and O. Using the same nomenclature, the delay on this

path can be expressed as follows:

() () () (clr_to_Q () 5.32clrD Join D D AND D OR= + +)

Note that Dclr(Join) = Dclr(LC).

135

5.4.4 Implementation of the Fork Block

The Fork block was modeled in VHDL, synthesized, and optimized using

Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66]. Figure 5.26

shows the synthesized netlist as a sequential machine consisting of two flip-flops and two

gates. This netlist implements the sequential machine shown in Figure 5.16.

Figure 5.26: Synthesized netlist of the Fork block.

In the case of a fork pipeline, the Fork block becomes part of the self-resetting

loop embedded in the stage containing the Fork block, namely stage A in Figure 5.13.

Contrary to the case of the Join block in a join pipeline, the Fork block augments the path

of the self resetting loop embedded in the stage containing the Fork block in a fork

pipeline. As a result, the delay contributed by the Fork block can be added to the overall

delay of the self-resetting loop. This delay through the Fork block starts at the clock port

of either D flip-flop, goes out the output port of the flip-flop, and traverses the gates A

and O. This delay can be expressed as:

() () () () (clk_to_Q 5.33D Fork D D AND D OR= + +)

136

Note that equation (5.6) expresses d(E) as a function of the delay of the self-

resetting loop. Based on the delay path of the Fork block, equation (5.6) can be rewritten

as follows:

() () () () () () ()
() () ()()

() () () () () ()
()

1 2

 2 clk_to_Q

3 2 2 clk_to_Q 2

i left i i

i

i

D PC D LC D Fork D INV D NAND D AND D

D D AND D OR

D AND D NAND D D OR D INV D

d E

++ + = + + + ∆

+ + +

= + + + + + ∆

= () 5.34

As mentioned in section 5.2.2, the Fork block can be reset by asserting the R

signal, which can be done manually or when LFork is fed back to the Clr port of the Fork

block after its assertion. The resetting of the Fork block follows a path which starts at the

Clr port of either flip-flop, goes out the output port of the flip-flop, and traverses the

gates A and O. Using the same nomenclature, the delay on this path can be expressed as

follows:

() () () (clr_to_Q () 5.35clrD Fork D D AND D OR= + +)

5.4.5 Implementation of D-SRSL Pipeline

A 16-stage pipeline was modeled in VHDL and the corresponding netlist was

generated using Synopsys Design Compiler based on a 0.25 µm CMOS library [65, 66].

Cadence’s Silicon Ensemble was used to place and route the pipeline. This pipeline

displays a total latency of 15.3 ns and a throughput of 1088.14 Megaoutputs/sec based on

the period of the last stage as shown in Table 5.1. Table 5.2 shows the gate area of the

various blocks in a single D-SRSL stage.

137

Table 5.1: D-SRSL pipeline implementation.

Stages 16
Bit width 5
Combinational network None
Synthesis Synopsys Design Compiler
Layout Cadence Silicon Ensemble
Simulation Synopsys Scirocco Simulator
Library 0.25 µm CMOS library
Latency 15.3 ns
Throughput 1088.14 Megaoutputs/second
Stage period 0.916 ns
Latch enable duration 0.42 ns
Theoretical pipeline depth No limit

Table 5.2: Gate area of a single D-SRSL stage.

Parameter Gate Cost
PC block 3 NAND gate, 1 AND gate, 1 INV
Delay block Area of the CN critical path
LC block 1 AND gate, 1 OR gate, 1 INV, 1 D-FF

Simulations of the pipeline were conducted in order to measure P, d(E), d(R), and

d(L). Figure 5.27 shows these four parameters in D-SRSL prototype pipeline 1. This

pipeline is a 16-stage D-SRSL pipeline in which the stages are empty (i.e., they do not

contain CNs). In the figure, d(E) is identical in all the stages of the pipeline. Similarly,

d(R) is identical in every stage of the pipeline. However, d(E) > d(R) in any stage as

expressed by equation (5.28). In addition, d(L) is almost equal to d(R) as predicted by

equation (5.10) since D(CNi) = 0 for any stage in this pipeline.

138

0
100
200

300
400
500
600
700

800
900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stages

P
ic

os
ec

on
ds

Evaluate Reset Latch Enable Period

Figure 5.27: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline
1.

Figure 5.28 shows these four parameters in D-SRSL prototype pipeline 2. This

pipeline is a 16-stage D-SRSL pipeline where D(CNi) > Dclr(LCi) in each stage. To this

end, a 0.6 ns delay CN was embedded in each stage of the pipeline. As the figure shows,

d(L) < d(R). In fact, d(L) = Dclr(LC) in every stage based on the value of Dclr(LCi)

extracted from the implementation of the LC block as shown in Figure 5.24. This

validates equation (5.11).

139

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Stages

P
ic

os
ec

on
ds

Evalute Reset Latch Enable Period

Figure 5.28: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype pipeline
2.

Figure 5.29 show the implementation of a D-SRSL prototype pipeline 3. This

pipeline is a 17-stage D-SRSL pipeline in which stage 9 has the longest CN delay while

the remaining stages have CNs with randomly distributed delays that are smaller than the

delay of the CN embedded in stage 9. It is clear from the figure that, in stage 9, d(E) is

closer to d(R) than in any other stage. In the stages before stage 9, d(Ei) > d(E9), i < 9, as

stated in equation (5.13). This results in d(Ri) < d(R9), i < 9, as predicted by equation

(19). On the other hand, d(Rj) > d(R9), j > 9, in the stages after stage 9 as stated in

equation (5.14, which results in d(Ei) < d(E9), j > 9, as predicted by equation (5.22). Note

that equation (5.19) regarding the stages before stage 9, and equation (5.23) regarding the

stags after stage 9, are both valid based on the simulation results of Figure 5.29.

Regardless of the delay in stage 9, P is identical in all stages as is the case in pipeline 1,

140

2, and 3. This shows that stage 9 determines P for the remaining stages in the pipeline

although these stages have smaller delays than stage 9.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Stages

P
ic

os
ec

on
ds

Evaluate Reset Latch Enable Period

Figure 5.29: Simulation results of P, d(E), d(R), and d(L+) in D-SRSL prototype
pipeline3.

5.5. Conclusion

This chapter presents D-SRSL as a new clockless pipeline design technique that

can handle significant delays difference between the stages of the pipeline. This

capability provides a high degree of flexibility in pipelining coarse grain datapaths. In the

D-SRSL approach, stages communicate with each other through their respective phases.

The timing analysis showed that in the D-SRSL pipeline, it was observed that the

duration of the evaluate phase and the duration of the reset phase are equal for all the

stage in equal delay pipelines. However, in random delay pipelines, it was observed that

141

the duration of the evaluate phase increases on the left side of the worst stage delay while

the reset phase duration increases on the right side of the worst stage delay. This makes

the worst delay stage the stage which controls the period of the pipeline. This timing

analysis is validated through experiments with three pipelines with different stage delay

assumptions.

142

CHAPTER SIX: SYNTHESIS OF SRSL PIPELINES

This chapter presents the proposed SRSL design methodology in section 6.1 while

section 6.2 presents the synthesis of SRSL pipelines. Section 6.3 reviews the preliminary

concepts used to formulate the synthesis of the SRSL pipeline synthesis problem. The

modeling and the formulation of this problem is presented in section 6.4 while

section 6.5 explains the proposed heuristic solution. Section 6.6 discuses the obtained

experimental results for SRSL pipelines. Finally, section 6.7 gives a summary of the

chapter.

6.1 SRSL Pipeline Design Methodology

In order to leverage the investment spent on current commercial design tools used

in clocked logic, it would make sense to adopt the same design methodology and flow

supported by these tools to synthesize SRSL pipelines as argued in chapter 1. Ideally,

minimum disturbance to this design methodology is highly desirable. Figure 6.1 proposes

the adopted design flow for SRSL logic. In the figure, a parser extracts the clocked gate

netlist in order to build a Boolean graph. Next, an SRSL pipeline synthesizer partitions

the graph into stages and inserts the latches and the reset network of each stage in

appropriate places inside the graph without violating performance constraints. At the end,

the synthesizer produces an SRSL pipeline represented as a gate netlist. The SRSL gate

netlist can be simulated with any commercial simulator. It can also be mapped onto a

standard cell library using any commercial technology mapper in order to produce a cell

netlist. The latter can be placed and routed using conventional physical synthesis tools by

143

propagating the same performance constraints used in high level synthesis to the physical

synthesis tools.

Figure 6.1: SRSL design flow.

144

6.2 Synthesis of SRSL Pipelines

The synthesis of SRSL pipelines consist of transforming a clocked gate netlist

into an SRSL pipeline characterized by a data rate and an area cost. Note that by area

cost, it is meant the gate area needed to support an SRSL pipeline structure. This gate

area consists primarily of (i) latches located between pipeline stages, and (ii) delay

elements needed for the reset network of each stage. As such, this synthesis requires (i)

the availability of specific gate resources, and (ii) the specification of performance

constraints. The gate resources consist of primitive combinational gates, latches, and

delay elements. Each resource is characterized by a function, area, and delay attributes.

On the other hand, performance constraints can be area or timing constraints. The former

refers to a specified upper limit on gate area needed to convert a gate netlist into an SRSL

pipeline while the latter refers to a specified lower limit on data rates that can be achieved

by converting a gate netlist into an SRSL pipeline.

To transform a gate netlist into an SRSL pipeline, a designer is faced with three

problems:

Problem 1 (P1): Given a gate netlist and a data rate, transform the gate netlist into an

SRSL pipeline by incurring the smallest area cost. P1 can be called the data rate

constrained minimum area SRSL pipelining problem.

145

Problem 2 (P2): Given a gate netlist and an area cost, transform the gate netlist into an

SRSL pipeline by achieving the highest data rate. P2 can be called the area constrained

maximum data rate SRSL pipelining problem.

Problem 3 (P3): Given a gate netlist, transform the netlist into an SRSL pipeline with the

smallest area cost and the highest data rate. P3 can be called the unconstrained maximum

data rate minimum area SRSL pipelining problem.

Based on their formulations, both P1 and P2 are dual problems. From a practical

perspective, P1 is more relevant to designers than P2 and P3.

6.3 Preliminaries

In order to transform a gate netlist into an SRSL pipeline, a gate netlist is abstracted

into an algebraic representation suitable for computation.

Definition 6.1: An incidence structure consists of a set of modules, a set of nets, and an

incidence relation among modules and nets [69, 70].

For instance, an incidence structure can be specified by representing each module

with its terminals, also called pins or ports, and to describe the incidence among nets and

pins. The incidence relationship can be represented by a matrix.

146

Definition 6.2: A Boolean network is an incidence structure where:

• Each module performs a Boolean function.

• Each module has multiple inputs and a single output.

• Pins are partitioned into input and output pins.

• Pins that do not belong to modules are primary inputs and primary outputs.

• Each net has a terminal, called source, and an orientation from the source to the other

 terminals, called sinks.

• The source of a net can be either a primary input or the output of a module.

• The sink of a net can be either a module input or a primary output.

• The relation induced by the nets on the module is a partial order [70].

Figure 6.2 shows a Boolean network with 10 primary inputs, 10 modules, and

four primary outputs [70].

Figure 6.2: Example of a Boolean network.

147

Boolean networks can be represented in abstract algebraic structures such as

graphs.

Definition 6.3: A graph G(V, E) is a pair (V, E) where V is a set and E is a binary relation

on V.

Two vertices in V are neighbors or adjacent if they are connected by an edge in E.

In this dissertation, only finite graphs are considered, meaning graphs with finite sets V.

The elements of V are vertices while the elements of E are edges.

Definition 6.4: A directed graph is graph G(V, E) where E is a set of ordered pairs of

vertices.

In a directed graph, if two vertices, vi and vj, are adjacent, meaning (vi, vj) ∈ E, the

predecessor is the vertex located at the tail of the edge, namely vi, while the successor is

the vertex located at the head of the same edge, namely vj. In contrast, the edges are

unordered pairs in an undirected graph.

Definition 6.5: A path from vertex v to w in a graph G(V, E) is a sequence of edges v0v1,

v1v2, …, vk-1vk, such that v = v0 and vk = w. The length of the path is k.

Such a path can also be represented as an ordered (k+1)-tuple: π = (v0, v1, v2, …,

vk). In directed graphs, paths follow the direction of the edges.

148

Definition 6.6: A cycle in a directed graph is a nonempty path such that the first vertex

and the last vertex are identical.

Definition 6.7: A graph is acyclic if it has no cycles.

Definition 6.8: A Boolean graph G(V, E) is a directed graph where:

• The vertex set V is a one-to-one correspondence with the primary inputs, modules, and

 primary outputs of a Boolean network.

• The directed edge set E represents the decomposition of the multi-terminal nets of the

 Boolean network into two-terminal nets.

Figure 6.3 shows a Boolean graph based on the Boolean network of Figure 6.2.

Note that the Boolean graph is acyclic since the nets induce a partial order on the

modules.

Figure 6.3: Boolean graph of the Boolean network shown in Figure 6.2.

149

The modules of a Boolean network can be mapped to Boolean gates. In this case,

its resulting Boolean graph is a mapped or bound Boolean graph. The gate netlist

produced by the compiler in Figure 6.1 is a mapped Boolean network. Before it is

transformed into an SRSL pipeline, it is translated into a Boolean graph.

6.4 Modeling of the Synthesis Problem

It is assumed that a clocked gate netlist is specified by a mapped Boolean graph

which is subject to a set of constraints. In addition, it is assumed that the function, area,

and delay of each gate representing each vertex in the Boolean graph G(V, E) are known.

The constraints can be either data rates or area costs. Transforming a gate netlist into an

SRSL pipeline is equivalent to partitioning the Boolean graph of the gate netlist into

partitions and assigning each partition to a distinct pipeline stage. Let S = {s1, s2, …, s|S|}

be the set of pipeline stages where the size of this set, |S|, is some positive integer. Let V

= {vi ; i = 1, 2, …, |V|} and E = {(vi, vj) ; i, j = 1, 2, …, |E|}.

Definition 6.9: A pipelining of a Boolean graph is a function :V Zϕ +→ where

()iv skϕ = denotes the gate assignment to a stage such that

.

ks S∈

() () (), ,i j i jv v v vϕ ϕ≤ ∀ ∈E

Since each vertex in V has a delay, D = {di ; i = 1, 2, …, |V|}. It is assumed that

there are no delays on edges in E beside the delays on the vertices in V. Adding delays to

the edges will not disturb the modeling of the synthesis problem although it will improve

150

the quality of its solution. Obviously, such a graph, in which a delay is attributed to each

vertex, will have a critical path.

Definition 6:10: The delay of a path p in a graph G, denoted by dp, is the sum of the

delays of the vertices in p, i.e.,
: i

p i
i v p

d d
∈

= ∑ .

Definition 6.11: Let Π be the set of all paths in a Boolean graph G(V, E). A critical path

in G is a path π whose delay is the largest path delay in Π, i.e., { }max :pd d pπ = ∈Π .

In P1, a data rate f is given and the objective is to minimize the area cost incurred

by partitioning the Boolean graph into stage partitions. The period P of a single stage can

be obtained from f as 1P
f

= . Surely, there is a critical path π in the Boolean graph G

whose delay is dπ. An upper bound on the number of stages in the pipeline, called

maximum pipeline depth, can be obtained from P and dπ. If |S| is the cardinality of S, the

maximum pipeline depth is dS
P
π

π
⎡ ⎤= = d f⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

. Moreover, |S| can be refined further by

using equation 3.14 from chapter 3 if an S-SRSL pipeline is being synthesized. In this

case, ()1
1min , 1

2
d PS d
P
π

δ
+⎧ ⎫⎢ ⎥⎡ ⎤ ⎛ ⎞= + −⎨ ⎬⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎩ ⎭

L .

151

Definition 6.12: A binary variable xi,s is associated with each vertex vi in V of G(V, E)

where:

(i) xi,s = 1 iff the gate i, represented by vi, is assigned to stage s

(ii) xi,s = 0 otherwise.

In order to realize a correct partitioning, it is imperative that each vertex in the

Boolean graph be assigned to a single stage. This requirement is the foundation for a set

of constraints called assignment constraints:

(),
1

1, 1, 2, ..., 6.1
S

i s
s

x i V
=

= =∑

There are V such constraints in the problem. It also imperative to observe the

condition stated in Definition 6.9, namely that the successor of a vertex should be

assigned to (i) the same stage as its predecessor, or (ii) a stage located after the stage of

its predecessor. This requirement is the foundation for a set of constraints called

precedence constraints:

() (), ,
1 1

, , 6.2
S S

i s j s i j
s s

sx sx v v E
= =

≤ ∀ ∈∑ ∑

These constraints can be rewritten as:

() (), ,
1 1

0, , 6.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑

There are E such constraints in the problem. Since P can be obtained from the

given data rate, it is important that the delay through each stage does not exceed P:

(),
:

, 1, 2, ..., 6.4
i

i i s
i v

d x p s S
π∈

≤ =∑

152

There are S such constraints in the problem. By partitioning the Boolean graph

into stages, segments of the critical path, or subpaths, are assigned to different stages. The

delay on these subpaths determines primarily the period of the stage in which they are

included. Constraint (6.4) can be rewritten as an equality if a balanced pipeline is desired.

A balanced pipelined is a pipeline in which all the stages have the same period, i.e.,

, 1, 2, ..., iP P i S= = . The partitioning of the gate netlist into stages requires the

insertion of (i) latches to separate neighboring stages, and (ii) delay elements to realize

the reset network of each pipeline stage. In general, the number of latches inserted

between two adjacent vertices, (vi, vj) ∈ E, depend on the stages, sk and sl ∈ S, to which

both vertices are assigned respectively. Two cases are possible based on the precedence

constraints (6.2):

(i) sk = sl: This means that both stages represent the same stage. In this case, vi

and vj are assigned to the same stage.

(ii) sk ≠ sl: This means that both stages are different. In this case, vi and vj are

assigned to distinct stages. However, there is no indication that both stages, sk

and sl are neighbors.

In fact, it is possible that two adjacent vertices may be assigned to two non-

neighboring stages. For example, if vi is assigned to stage 3 and vj is assigned to stage 7,

the edge between the two vertices has to cross the latches of stage 3, 4, 6, and 7, which

may require the insertion of four latches to accommodate this case.

153

Definition 6.13: If two adjacent vertices, (vi, vj) ∈ E, are assigned to stages sk and sl ∈ S

respectively, the pipeline distance between vi and vj, denoted by δi,j, is ,i j l kδ = − .

Depending on the bit width of the combinational network in a given stage, latches

of different bit widths can be used to separate a stage from its neighbor. It would make

sense to quantify the area of the inter-stage latches by multiplying the area of a single-bit

latch by the number of output bit lines crossing from stage to stage. These lines

correspond to edges in the Boolean graph. Assume that al is the area of a single-bit latch.

If n bit lines are crossing from a stage to another, n latches are needed adding up to an

area of nal. Using the definition of pipeline distance, the number of 1-bit latches between

two adjacent vertices can be determined as:

() (), , ,
1 1

, , 6.5
S S

i j j s i s i j
s s

sx sx v v Eδ
= =

= − ∈∑ ∑

If applied to a single edge, (6.5) is similar to the left-hand side of (6.3). The latch

area needed to support the stages between vi and vj is ,i j laδ . By considering all the edges

in the Boolean graph, the total latch area needed in an entire pipeline can be determined

as follows:

()
()

, ,
1 1,

6.6
i j

S S

l j s i s
s sv v E

a sx sx
= =∀ ∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑

Beside the insertion of latches, the insertion of delay elements is also needed to

realize the reset network of a stage. These delay elements can be inverters, buffers, or

154

gates. Since the role of the matching delay of a reset network in SRSL is to provide a

delay equal to the delay of the critical path of the combinational network, it would make

sense to use gates as delay elements to realize the matching delay of the reset network. In

fact, the critical path of the combinational network can be merely duplicated and the

obtained copy can be used as a matching delay in the reset network. In this case, the area

of the matching delay to be inserted in the reset network of a stage can be determined by

obtaining the area of the critical path of the combinational network in the stage. Since

each vertex in V has an area, A = {ai ; i = 1, 2, …, |V|}. If the area of the matching delay

of a stage s is as, then:

(),
:

, 1, 2, ..., 6.7
i

s i i s
i v

a a x s S
π∈

= =∑

By considering all the stages in the pipeline, the total area of matching delays can

be determined as:

(),
1 :

 6.8
i

S

i i s
s i v

a x
π= ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

By summing the total area needed for latches shown in (6.6), and matching delays

shown in (6.7), the minimization of the area cost can be expressed as the following

objective function:

()
(), , ,

1 1 1 :,

min 6.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑

155

In summary, P1 can be formulated as the following integer programming (IP)

problem:

()
(), , ,

1 1 1 :,

min 6.9
ii j

S S S

l j s i s i i s
s s s i vv v E

a sx sx a x
π= = = ∈∀ ∈

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑

(),
1

1, 1, 2, ..., 6.1
S

i s
s

x i V
=

= =∑

() (), ,
1 1

0, , 6.3
S S

j s i s i j
s s

sx sx v v E
= =

− ≥ ∀ ∈∑ ∑

(),
:

, 1, 2, ..., 6.4
i

i i s
i v

d x p s S
π∈

≤ =∑

(), {0,1}, 1, 2, ..., , 1, 2, ..., 6.10i sx i V s S∈ = =

6.5 Proposed Solution of the SRSL Pipeline Synthesis

The SRSL pipeline synthesis problem can be solved in different ways to obtain

two types of solutions:

(i) Exact solutions which can be obtained by solving the IP problems

formulated for P1. Several mathematical programming software packages

can be used to obtain such solutions. However, obtaining these solutions

can take an unreasonable time depending on the size of the IP formulation

represented by the number of variables and constraints in the formulation.

In fact, the formulation of the IP problem based on the C6822 circuit, one

of the benchmark circuits used in the synthesis experiments of D-SRSL

pipelines, can generate 6656 assignments constraints (6.1), 9082

156

precedence constraints (6.3), and 245 period constrains (6.4). In total, the

IP formulation consists of a matrix that has 15983 rows and 245 columns.

(ii) Approximate solutions which can be obtained in a short time although they

do not guarantee optimality. Such solutions can be reached by applying

heuristic algorithms on P1.

The approximate solution has been implemented as a heuristic algorithm

consisting of two phases: a stage assignment phase and a vertex shuffling phase. The

first phase assigns each gate to a pipeline stage by partitioning the Boolean graph of the

gate netlist into subgraphs that meet specific timing constraints. On the other hand, the

second phase minimizes the area occupied by inter-stage latches by shuffling nearby

vertices from the Boolean graph between adjacent stages without violating the specified

timing constraints.

6.5.1 Phase I: Stage Assignment

This section explains the graph-theoretic approach behind the stage assignment

performed in phase I. This explanation is followed by a presentation of the algorithm

used in phase I.

157

6.5.1.1 Phase I Approach

In order to pipeline the gate netlist, the Boolean graph of the netlist has to be

partitioned into subgraphs whose critical path delays do not exceed a pre-defined value.

Each subgraph represents a subnetlist that is assigned to a distinct pipeline stage. Assume

that the Boolean graph G(V, E) can be partitioned into n partitions or subgraphs where

. In order to construct an operationally correct

pipeline, the pipeline stages have to be connected through proper insertion of latches

between the stages and duplication of the critical path in each stage. This is equivalent to

inserting vertices to represent inserted pipeline latches and duplicated critical paths. In

fact, the pipeline distance δ between two adjacent vertices in G(V, E) determines the

number of latches that needs to be inserted. The edge connecting these two adjacent

vertices in E has to be broken in δ edges to accommodate the insertion of δ vertices

whereby each vertex represents a latch. The resulting graph is an augmented graph G’(V’,

E’) where . The objective is to add as few vertices

as possible in order to realize the smallest area cost possible. For each partition, its

critical path delay is determined and a delay block matching the partition’s critical path

delay is inserted at the appropriate places in the partition. In addition, for each edge

crossing one or more partition in the partitioned graph, the pipeline distance δ is

computed and δ vertices representing latches are inserted in the appropriate places in the

partitioned graph. The final graph G’(V’, E’) represents the Boolean graph of the pipeline

gate netlist with inserted latches and matching delays. The following heuristic procedure

1 1 1

 such that and
n

i
i

n n

i
i i

G G V V E
= = =

= = =∪ ∪ iE∪

⊆' such that ' and 'G G V V E E⊆ ⊆

158

can be used to an initial assignment of every gate in the gate netlist to a given pipeline

stage:

6.5.1.2 Phase I Algorithm

The pseudocode of the graph partitioning algorithm is as follows:

Input: G(V, E)
 D = {di ; i = 1, 2, …, |V|}
 A = {ai ; i = 1, 2, …, |V|}
 f
Output: Partitioned graph G’(V’, E’)

1. Let
1

P
f

= ;

2. While there are unassigned vertices in V
3. Select a vertex v in V whose predecessors are all assigned to
 the current partition;
4. Get the critical path of the vertices within the current
 partition including v;
5. If the delay of the critical path is less than or equal to P
6. Assign v to the current partition;
7. Else
8. Add another partition;
 Assign v to the newly added partition;
9. Endif
10. Endwhile
11. For each edge in E
12. Compute the pipeline distance δ;
13. Add δ vertices to V’;
14. Add δ edges to E’;
15. Endfor
16. For each partition in V’;
17. Get the critical path in the current partition;
18. Duplicate the path and insert it into the current partition;
19. Endfor
20. The final obtained partitioned graph is G’(V’, E’);

In line 1, the stage delay is obtained. The algorithm starts with partition 1 which

does not contain any vertices at this point. Line 2 shows a loop which looks for vertices

in V which have not been assigned to any partition. Line 3 shows that the first step in

159

assigning a vertex from V to the vertex set of the current partition is to select a vertex

whose predecessors have been already assigned to the vertex set of the current partition.

Next, the critical path of the Boolean graph including vertex v is obtained in line 4. In

line 5 through 9, the algorithm checks if the critical path of the Boolean graph obtained in

line 4 is less than or equal to the period of the partition. If the check result is true the

selected vertex is added to the vertex set of the current partition. Otherwise, a new graph

partition is created to which the selected vertex is subsequently added. The algorithm

repeats the line 3 through 9 until there no unassigned vertices in V. At the end, each

vertex in V is assigned to a distinct vertex set Vi which belongs to a subgraph Gi (Vi, Ei)

as defined above. After the initial graph G(V, E) is partitioned, the next step consists of

adding vertices between the partitions to represent latches between pipeline stages as

shown in line 11 through 15. For each edge in E crossing two neighboring partitions, a

vertex is added followed by the addition of an edge to connect the newly added vertex to

its predecessor. This step is followed by a second step in which the portion of the critical

path contained in a partition is duplicated and added to that partition as shown in line 16

through 19. This duplicated path represents the matching delay of the reset network

which will be attached to the combinational network of the stage represented by the

partition. At the end, the augmented graph G’(V’, E’) is obtained.

160

6.5.2 Phase II: Vertex Shuffling

This section explains the graph-theoretic approach behind the vertex shuffling

performed in phase II. This explanation is followed by a presentation of the algorithm

used in phase II.

6.5.2.1 Phase II Approach

The input to phase II is the augmented partitioned graph G’(V’, E’) where each

partition represents the portion of the gate netlist embedded in a single pipeline stage.

Thus, the number of partitions in the graph represents the number of stages in the

pipeline. Every edge that crosses from a partition to another represents a single 1-bit

latch in the pipeline. Because latches tend to occupy a significant portion of the overall

area of the pipeline, it makes sense to invest additional effort in minimizing the number

of latches used in the pipeline. As a result, the objective of phase II is to minimize the

number of edges crossing each inter-partition boundary in G’(V’, E’). Note that each

inter-partition boundary in G’(V’, E’) represents the set of latches separating two adjacent

stages in the pipeline corresponding to the two adjacent partitions in G’(V’, E’). Figure

6.4 shows two adjacent partitions where the left partition contains vertices labeled 1

through 10 while the right partition contains vertices labeled 11 through 17.

161

Figure 6.4: Latch insertion between two neighboring pipeline stages.

Definition 6.14: Let u be a vertex in the left partition GL(VL, EL), i.e. u ∈ VL. u is called a

left cut vertex if it does not have any successors in the left partition, i.e.,

∃ (): and ,L Lv v V u v E∈ ∈ .

For example, vertices 6, 7, 8, 9, and 10 in Figure 6.4 are all left cut vertices.

Definition 6.15: Let GL (VL, EL) be the left partition. A subset CL of VL, i.e., CL ⊆ VL, is

called a left cut vertex set if every vertex in CL is a left cut vertex, i.e.,

, Lu C∀ ∈ ∃ (): and ,L Lv v V u v E∈ ∈ .

162

Since vertices 6, 7, 8, 9, and 10 in Figure 6.4 are all left cut vertices, they make up a left

cut vertex set.

 Definition 6.16: Let w be a vertex in the right partition GR(VR, ER), i.e. w ∈ VR. w is

called a right cut vertex if it does not have any predecessors in the right partition, i.e.,

∃ (): and ,R Rv v V v w E∈ ∈ .

For example, vertices 11, 12, 13, and 14 in Figure 6.4 are all right cut vertices.

Definition 6.17: Let GR (VR, ER) be the right partition. A subset CR of VR, i.e., CR ⊆ VR, is

called a right cut vertex set if every vertex in CR is a right cut vertex, i.e.,

, Rv C∀ ∈ ∃ (): and ,R Rw w V v w E∈ ∈ .

Since vertices 11, 12, 13, and 14 in Figure 6.4 are all right cut vertices, they make up a

right cut vertex set.

Definition 6.18: Let CL and CR be the left and right cut vertex sets respectively. The set

Cv, called the cut vertex set, is the union of the left and right cut vertex sets, i.e.,

. v LC C C= ∪ R

163

While the set of vertices 6, 7, 8, 9, and 10 in Figure 6.4 make up the left cut vertex set,

the set of vertices 11, 12, 13, and 14 make up the right cut vertex set. The union of these

two sets, namely vertices 6, 7, 8, 9, 10, 11, 12, 13, and 14 makes up a cut vertex set.

Definition 6.19: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’). e is

called a cut edge if u is a vertex in CL and v is a vertex in CR, i.e.,

. (), ' and and L Ru v E u C v C∈ ∈ ∈

R

For example, the edge between vertex 6 and 11 in Figure 6.4 is a cut edge.

Definition 6.20: Let CL and CR be the left and right cut vertex sets respectively. A set Ce

is called a cut edge set if every edge in Ce is a cut edge, i.e.,

. () (), , , ' and and e Lu v C u v E u C v C∀ ∈ ∈ ∈ ∈

In Figure 6.4, the set of edges between vertices 6 and 11, 7 and 11, 8 and 12, 8 and 13, 9

and 12, 9 and 13, 10 and 13, and 10 and 14 make up the cut edge set.

Definition 6.21: Let edge e = (u, v) ∈ E’ in the initial partitioned graph G’(V’, E’). e is

called an internal edge if e is not a cut edge, i.e.,

() () (), ' and , and ,L Ru v E u v C u v C∈ ∉ ∉ .

164

For example, the edges between vertices 1 and 6, 2 and 6, 11 and 15, and 12 and 15 are

all internal edges in Figure 6.4. Consider a vertex v in the initial partitioned graph G’(V’,

E’). It is possible that a number of internal edges may be incident to v. In this case, let

I(v) denote the set of these internal edges. It is also possible that a number of cut edges

may be incident to v. Let C(v) denote the set of these cut edges. Note that, depending on

where v is located in G’(V’, E’), it is possible that I(v) = ∅ or C(v) = ∅. The proposed

vertex shuffling algorithm uses a gain function to guide how it shuffles cut vertices from

one partition to another.

Definition 6.22: Let v be a cut vertex in a partition H(VH, EH) where H can be a left or

right partition, i.e., v ∈ VH. The gain function of v, denoted as g(v), is the difference

between the sizes of the set of cut edges and the set of internal edges of all the edges

incident to v, i.e., () () ()g v C v I v= − .

In Figure 6.4, vertex 6 has two internal edges and one cut edge. Its gain

is () () ()2 2 2 1 2 1g v C v I v= − = − = − . On the other hand, since vertex 11 has one internal

and two cut edges, its gain is () () ()8 8 8 2 1 1g v C v I v= − = − = .

The ultimate objective of the vertex shuffling algorithm is to minimize the number of cut

edges. After shuffling a number of cut vertices, the algorithm evaluates the overall cost

of these shuffling moves by using a move cost function. This move function is based on

the size of the cut edge set. Note that after a cut vertex is moved from one partition to

165

another, its predecessors and successors in G’(V’, E’) will have to be added or removed

from a given cut vertex set depending on which cut vertex set contains the moved vertex.

Definition 6.23: Let v be a left cut vertex (i.e., v ∈ CL). If v is moved to the right cut

vertex set (i.e., CL = CL – {v} and CR = CR ∪ {v}), (i) each predecessor of v in G’(V’, E’)

must be added to the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} ∪ CL), and (ii)

each successor of v in G’(V’, E’) must be removed from the right cut vertex set (i.e., {w |

w ∈ V’ and (v, w) ∈ E’} – CR). The set of these moves is called the set of induced moves

by v.

In Figure 6.4, if vertex 6 is moved to the right cut vertex set, (i) all its predecessors,

namely vertices 1 and 2, must be added to the left cut vertex set, and (ii) its sole

successor, namely vertex 11, must be removed from the right cut vertex set. These three

moves make up the set of induced moves by vertex 6. The effect of these moves leaves

the left cut vertex set consisting of vertices 1, 2, 7, 8, 9, and 10, while the right cut vertex

set consisting of vertices 6, 12, 13, and 14.

 Definition 6.24: Let v be a right cut vertex (i.e., v ∈ CR). If v is moved to the left cut

vertex set, (i) each successor of v in G’(V’, E’) must be added to the right cut vertex set

(i.e., {w | w ∈ V’ and (v, w) ∈ E’} ∪ CR), and (ii) each predecessor of v in G’(V’, E’)

must be removed from the left cut vertex set (i.e., {u | u ∈ V’ and (u, v) ∈ E’} – CL). The

set of these moves is called the set of induced moves by v.

166

In Figure 6.4, if vertex 11 is moved to the left cut vertex set, (i) its sole successor, namely

vertex 15, must be added to the right cut vertex set, and (ii) all its predecessors, namely

vertices 6 and 7, must be removed from the left cut vertex set. These three moves make

up the set of induced moves by vertex 7. The effect of these moves leaves the left cut

vertex set consisting of vertices 8, 9, 10, and 11, while the right cut vertex set consisting

of vertices 12, 13, 14, and 15.

Definition 6.25: Assume that the shuffling algorithm is on the point of moving a cut

vertex v from one partition to another. The cost function of this move, denoted by m(v),

is the size of the left cut vertex set if this move and the set of induced moves by v are

completed, i.e., () Lm v C= .

Since moving vertex 6 in Figure 6.4 leaves the left cut vertex set consisting of vertices 1,

2, 7, 8, 9, and 10 after the set of its induced moves is completed,

() { }6 1, 2, 7, 8, 9, 10 6Lm v C= = = . Note that the number of latches between the two

pipeline stages represented by the two partitions shown in Figure 6.4 is equal to the size

of the left vertex cut set.

167

6.5.2.2 Phase II Algorithm

The pseudocode of the vertex shuffling algorithm is as follows:

Input: G’(V’, E’) SRSL pipelined graph that meets p
 D = {di ; i = 1, 2, …, |V|}
 A = {ai ; i = 1, 2, …, |V|}

Output: Partitioned graph G’’(V’’, E’’) with minimum cost function
 between each pair of partitions.

1. For every pair of adjacent partitions in G’(V’, E’)
2. While the minimum move cost function in the current pass is less
 than the minimum move cost function in the previous pass
3. While there are unmarked vertices in the left and right cut
 vertex sets
4. For every unmarked vertex in this cut vertex set
5. Compute its gain function;
6. Endfor
7. Get the vertex with the next highest gain function and
 whose delay does not violate the period constraint in
 its opposite partition;
8. Compute the move cost function of this vertex;
9. Mark this vertex and insert it into a queue;
10. Endwhile
11. For every cut vertex in the queue starting from the first
 vertex to the vertex with the minimum move cost function
12. If this vertex is a left cut vertex
13. Move it to the right cut vertex set;
14. Perform the set of its induced moves;
15. Else
16. Move it to the left cut vertex set;
17. Perform the set of its induced moves;
18. Endif
19. Endfor
20. For every cut vertex in the queue starting from the vertex
 following the minimum move cost function vertex to the
 last vertex
21. Unmark this vertex;
22. Endfor
23. Endwhile
24. Endfor

Line 1 shows that phase II algorithm executes for every pair of adjacent partitions in

G’(V’, E’). A minimum cost function from a given cut vertex, that is selected to be

moved from one partition to another, will be computed in every pass of the procedure,

whereby a pass consists of the pseudocode shown in lines 2 through 23. As long as this

168

cost functions is less than the cost function computed in the previous pass as shown in

line 2, another pass is executed. In line 3, all the unmarked vertices in the left and right

cut vertex sets will be processed. This processing starts first by computing the gain

function for each vertex in these two sets as shown in lines 4 through 6. Next, the move

cost function of the vertex with the highest gain function is computed as shown in lines 7

and 8, after which the vertex is marked and inserted in a queue as shown in line 9. This

procedure is repeated for every unmarked vertex with the next highest gain function until

there are no more unmarked vertices in the left and cut vertex sets as shown in line 3

through 10. Note that from the current iteration to the next, computing the gain function

of the remaining unmarked vertices assumes that the induced moves by the marked

vertex in the current iteration have been completed. After all unmarked vertices in the

vertex cut set are processed, the queue is searched to find the vertex with the minimum

move cost function. As shown in lines 11 through 19, every vertex in the queue, starting

from the vertex in the first entry of the queue until the vertex with the minimum move

cost function in the queue, is moved to the opposite partition followed by the completion

of the set of its induced moves. The remaining vertices in the queue are unmarked as

shown in lines 20 through 22 to be possibly processed in another pass starting from line

2. To give the unmarked vertices an opportunity to reduce the minimum cost function

further, the pseudocode between lines 3 and 22 is re-executed with a different ordering in

picking the vertices to compute their move cost functions. To this end, the vertices are

processed in non-decreasing order of gain function instead of non-increasing order of

gain function as shown in line 7. For simplicity, this pseudocode is omitted from the

pseudocode shown above.

169

6.6 Experimental Results

This section shows the experimental results of both P-SRSL and D-SRSL

pipelines. Both phases of the algorithm have been implemented and applied on a set of

six circuits shown in Table 6.1.

Table 6.1: Experimental circuits.

Circuit

Functionality

Gates

Critical Path
Delay
(ps)

C6288 16x16 Multiplier (Largest and deepest) 6656 25355

C7552 34-bit adder and magnitude comparator with input parity
checking (Large and shallowest)

3569 4957

C5135 9-bit ALU (Medium size and shallow) 2332 6026
16_Bit_Multiplier 16x16 Multiplier (Medium size and medium depth) 1456 12658

32_Bit_Adder 32 Bit Adder (Small and deep) 160 18850
16_Bit_Adder 16 Bit Adder (Smallest and medium depth) 80 9380

In this table, column 1 shows the six circuits where the top three are borrowed

from the ISCAS-85 benchmark suite while column 2 shows the functionality of each

circuit. Column 3 shows the number of gates in the netlist of each circuit while column 4

shows the delay on the critical path. Since S-SRSL and P-SRSL pipelines resemble each

other in terms of components, it was decided to apply pipelining experiments on the P-

SRSL and D-SRSL pipelines.

6.6.1 P-SRSL Pipelining Experiments

To study the cost of the P-SRSL area, the largest benchmark circuit, namely C6288, was

chosen for experimentation since it can accommodate deeper pipelines. It is meant by the

P-SRSL area the area that includes the area of the inter-stage latches, intra-stage delay

170

buffers, and NOR and AND gates used for synchronization. Figure 6.5 shows the P-

SRSL area as a percentage of the overall pipeline circuit area including the P-SRSL area.

In the figure, as the number of the stages increases the percentage of the P-SRSL area

increases too. For example, the P-SRSL area represents only 26% of the pipeline area in

the four-stage pipeline. However, this percentage reaches 81% in the 35-stage pipeline.

In addition, the figure shows that most P-SRSL area is occupied by the latches. For

example, the area of the latches alone consumes 23% of the pipeline area of a four-stage

pipeline, and can grow up to 79% of the pipeline area of the 35-stage pipeline. On the

other hand, the area of the NOR, AND gates and delay buffers barely consume 5% of the

pipeline area across all the pipelines.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 25 31 35

Stages

P
-S

R
S

L
A

re
a

Latches Delay Buffers NOR Gates AND Gates Pipelined Circuit

Figure 6.5: P-SRSL area as a percentage of the pipeline area across different pipelines of
the C6822 benchmark circuit.

In order to study how P-SRSL pipelining affects the throughput of a circuit, the

pipelining algorithm is applied on the six circuits for different pipeline depths as shown

in Figure 6.6. For each circuit, the pipeline depth is increased until the circuit ceases to

171

operate correctly. This situation occurs when the delay in a given stage is so small that

the duration of its reset phase is just as small. Note that the inter-stage latches are

enabled as long as the stage reset phase lasts. If this duration is smaller than the required

enable of the latches used in the actual implementation of the pipeline, these latches will

not have sufficient time to capture incoming data, and subsequently the pipeline ceases to

operate correctly.

I

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 2 4 6 8 10 12 15 16 24 25 26 31 32 35

Stages

Th
ro

ug
hp

ut
 (M

eg
a

O
pe

ra
tio

n/
se

c)

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier c6288 c7552 c5315

Figure 6.6: Pipeline throughputs for various P-SRSL pipeline depths.

In Figure 6.6, one stage represents the circuit in its non-pipelined version. This

figure shows that the throughput of a circuit can increase significantly depending on the

172

pipeline depth. Indeed, for a shallow circuit, such as C7552, the throughput goes from

201 Megaoperations/sec in its non-pipelined version to 1327.79 Megaoperations/sec in its

10-stage SRSL pipeline. This increase is equivalent to a 6.6 times improvement in

throughput. This improvement is even more pronounced in deep circuits. For example,

the throughput of C6288 goes from 39.44 Megaoperations/sec in its non-pipelined

version to 875.66 Megaoperations/sec in its 35-stage SRSL pipeline. This increase

represents 22.2 fold in throughput improvement. While the throughput increases as more

stages are added to the pipeline, it is obvious that the rate of throughput increase is not

the same for all circuits. It seems that shallow circuits, such as C7552 and C5315, display

the fastest throughput increase as opposed to deep circuits such as C6288 and

32_Bit_Adder. In fact, shallow circuits have lower latency before they are pipelined.

This can be seen by examining stage delays in equal depth pipelines where the delay of a

single stage is usually higher in deep circuits than the delay of a single stage in shallow

circuits. As a result, the throughput will be higher in shallow circuits as opposed to deep

circuits for the same pipeline depth. Furthermore, it is obvious that the maximum

possible pipeline depth will be higher in deep circuits than in shallow circuits. Deep

circuits can be partitioned into large numbers of stages before the partitioning renders the

pipeline inoperable as opposed to shallow circuits.

Figure 6.7 shows the P-SRSL area as a percentage of the total area of a pipeline

for each circuit across different pipeline depths. It is clear that the area of each pipeline

increases as the circuit is partitioned into a deeper pipeline. However, the largest

increases in areas tend to occur in larger circuits partitioned into deeper pipelines.

173

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 6 8 10 12 15 16 24 25 26 31 32 35

Stages

P
-S

R
S

L
A

re
a

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier C6288 c7552 c5315

Figure 6.7: P-SRSL area as a percentage of the pipeline area across various depth
pipelines.

For example, C6288 shows an increase in P-SRSL area from 26% in a four-stage

pipeline to 80% into its maximum depth 35-stage P-SRSL pipeline. On the other hand,

slightly smaller area increases can occur in shallow circuits partitioned into shallower

pipelines. For example, C5315 shows an increase in P-SRSL area from 42% in a two-

stage pipeline to 81% in its maximum depth 12-stage pipeline. Furthermore, it is clear

from the figure that the area occupied by P-SRSL circuitry tends to be smaller in general

for large and deep circuits than for large and shallow circuits or small and deep circuits.

174

For example, the P-SRSL area of C6288 occupies around 62% of the total area of its 12-

stage pipeline while it can occupy up to 92% of the total area of the 12-stage pipeline in

32_Bit_Adder. In any case, small circuits tend to experience high P-SRSL areas

regardless of pipeline depth. Since Figure 6.6 and 6.7 show that increasing throughput

leads in general to larger P-SRSL areas, it would make sense to evaluate this associated

area cost with regard to gains or losses in throughput. A relatively accurate way to

measure this relationship is to examine the ratio of the pipeline period over P-SRSL area

for all circuits across different pipeline depths as shown in Figure 6.8.

This figure shows that for all circuits, the decrease rate of this ratio speeds up in

shallow pipelines and slows down in deep pipelines. This can be explained by the fact

that in partitioning the circuit graph into a few partitions, the number of vertices in the

partitions is significantly large. As a result, there is a relatively large number of edges

crossing the partitions. These edges will all be covered by latches to synchronize the data

flow across partitions or pipeline stages thus leading to a large P-SRSL area. As the

circuits get partitioned into deeper pipelines, the number of graph partitions increases,

which yields to a decrease in the number of vertices in the partitions in general. This

decrease is accompanied by a decrease in the number of inter-partition edges leading to a

decrease in the number of latches needed to cover these edges.

175

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

2 4 6 8 10 12 15 16 24 25 26 31 32 35

Stages

P
er

io
d/

A
re

a
(p

s/
µm

^2
)

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier c6288 c7552 c5315

Figure 6.8: Period over area ratios for different depths P-SRSL pipelines.

Note that among the components used to support P-SRSL synchronization, such

as latches, delay buffers, AND and NOR gates, the latches are the components with the

largest areas. In any case, this shows that the tradeoff of throughput gain or loss vs. P-

SRSL area is beneficial for deep S-SRSL pipelines and costly in shallower P-SRSL

pipelines. In the ideal case, the period-area ratio should be decreasing or at least remain

constant. However, Figure 6.8 shows that this ratio decreases for all circuits at different

rates. If this is the case, a ratio with a slow decreasing rate is highly desirable since it

would indicate that the P-SRSL area increases slowly as more stages are added to the

pipeline of a given circuit. Figure 6.8 shows that whereas the slowest decrease in this

ratio occurs for large and deep circuits such as C6288, this ratio decreases quite rapidly

176

for small and deep circuits, such as 16_Bit_Adder, particularly when partitioned into

shallow pipelines. The decrease is even slower for large and shallow circuits such as

C7552. This shows that partitioning small and deep circuits requires relatively larger P-

SRSL areas to support their P-SRSL pipelines. The increase in area cost can be offset in

throughput gains only when large and deep datapaths are converted into deep P-SRSL

pipelines. Without a doubt, it can be concluded P-SRSL pipelining is highly suitable for

coarse-grain datapaths.

6.6.2 D-SRSL Pipelining Experiments

To study the cost of the additional area that is required to synchronize the D-

SRSL pipeline, Circuit C5135 is chosen as an example. It is meant by the D-SRSL area

the area that includes the area of the PC blocks, the LC blocks, inter-stage latches, and

the intra-stage delay buffers. Figure 6.9 shows the area percentage of each component

that contributes to D-SRSL area. This figure shows that as the number of stages

increases, the percentage of the D-SRSL area increases too. For example, the D-SRSL

area is around 43 % of the overall all area of a four-stage pipeline. This percentage can

go up to 81 % in a 12-stage pipeline. Among the components used in D-SRSL pipelines,

the area of inter-stage latches is significantly large since it occupies around 41% of the

overall area of a four-stage pipeline. This percentage can go up to 80.3% in a 12-stage

pipeline. However, the entire area of the PC blocks, LC blocks, and delay buffers

occupies barely 2% of the overall area of a four-stage pipeline, and 0.7 % in a 12-stage

pipeline.

177

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12

Stages

D
-S

R
S

L
A

re
a

Latches Delay Buffers Phase Control Latch Control Original Circuit

Figure 6.9: D-SRSL area as a percentage of the pipeline area across different pipelines of

the C5135 benchmark circuit.

In order to study how D-SRSL pipelining affects the throughput of a circuit, the

pipelining algorithm is applied to the six experimental circuits for different pipeline

depths as shown in Figure 6.10. For each circuit, the pipeline depth is increased until the

circuit throughput cannot be improved any more. This situation occurs when the CN is

so small that its delay is less than the delay of the LC block (i.e., D(CNi) < Dclr(LCi)) as

described in scenario (i) of equation (5.10).

178

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1 2 4 6 8 10 12 15 16 24 25 26 31 32 35

Stages

Th
ro

ug
hp

ut
 (M

eg
a

O
pe

ra
tio

n/
se

c)

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier c6288 c7552 c5315

Figure 6.10: Pipeline throughputs for various D-SRSL pipeline depths.

In Figure 6.10, one stage represents a circuit in its non-pipelined version. This

figure shows that the throughput of a pipeline can increase significantly depending on the

pipeline depth. In the case of C7552, which is the shallowest circuit in the benchmark

set, the throughput goes from 200 Megaoperations/sec in its non-pipelined version to

1088.14 Megaoperations/sec in its eight-stage D-SRSL pipeline. This increase is

equivalent to a 5.44 times throughput improvement. This improvement is even more

pronounced in deep circuits. For example, the throughput of C6288 goes from 39.44

179

Megaoperations/sec in its non-pipelined version to 1088.14 Megaoperations/sec in its 35-

stage D-SRSL pipeline. This increase represents 27.58 fold in throughput improvement.

While some circuits, such as C7552, can reach their maximum throughput in a

few stages, other circuits, such as C6288, do not seem to reach a maximum throughput

even when partitioned into deeper pipelines of 35 stages. In fact, the throughput of

shallow circuits, such as C7552, seems to level off after they have been partitioned into

short pipelines. On the other hand, the throughput of deep circuits, such as C6288, do not

display this leveled-off curve. In a smaller number of stages, shallow circuits can get

partitioned so much that their intra-stage CNs are quite small. As a result, the delay of

these CNs becomes smaller than the delay of the LC block (i.e., D(CNi) < Dclr(LCi)). By

partitioning these circuits further after this point, Dclr(LCi) does not change, and

subsequently, d(Li) and d(Ri) remain constant. This has the effect of keeping P constant,

which results in a leveling off of the throughput. In deeper circuits, this throughput

improvement limit does not appear so quickly, and consequently these circuits display a

continuous increase in throughput improvement even when partitioned in deeper

pipelines.

Note that, similarly to P-SRSL pipelines, shallow circuits tend to have a higher

throughput than deep circuits for the same pipeline depth. This can be attributed to the

fact that the delay of a single stage is usually higher in deep circuits than the delay of a

single stage in shallow circuits. As a result, the throughput will be higher in shallow

circuits as opposed to deep circuits for the same pipeline depth.

180

Figure 6.11 shows the D-SRSL area as a percentage of the overall pipeline area

for each circuit across different pipeline depths. It is clear that the area of each circuit

increases as the circuit is partitioned into a deeper pipeline. However, the largest

increases in areas tend to occur in larger circuits partitioned into deeper pipelines in a

similar fashion to the area increase in P-SRSL pipelines.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2 4 6 8 10 12 15 16 24 25 26 31 32 35

Stages

D
-S

R
S

L
A

re
a

16_Bit_Adder 32_Bit_Adder 16_Bit_Multiplier C6288 c7552 c5315

Figure 6.11: D-SRSL area as a percentage of the pipeline area across various depth
pipelines.

For example, C6288 shows an increase in D-SRSL area from 26% in a four-stage

pipeline to 80% into its maximum depth 35-stage D-SRSL pipeline. On the other hand,

slightly smaller area increases can occur in shallow circuits partitioned into shallower

181

pipelines. For example, C7552 shows an increase in D-SRSL area from 35% in a two-

stage pipeline to 75% in its maximum depth 10-stage pipeline. Furthermore, it is clear

from the figure that the D-SRSL area tends to be smaller in general for large and deep

circuits than for small circuits. For example, the D-SRSL area of C6288 occupies around

58% of the total area of its 12-stage pipeline while it can occupy up to 90% of the total

area of the 12-stage pipeline in 32_Bit_Adder. In any case, small circuits tend to

experience high D-SRSL areas regardless of pipeline depth.

6.6.3 Summary of the Experiment Results

The experimental results for both P-SRSL and D-SRSL pipeline shows that P-

SRSL pipeline can reach a throughput of 1327 Megaoperations/sec while D-SRSL can

reach only 1088 Megaoperations/sec throughput. This can be explained by considering

the parameters which affect d(L). In D-SRSL pipelines, extreme pipelining can lead to

the situation where D(CNi) < Dclr(LCi) thus making d(Li) = d(Ri) as shown in equation

(5.10). However, equation (5.7) states that d(Ri) = D(PCi) + Dright(LCi). Note that

extreme fine-grain pipelining will affect D(CNi), but not D(PCi) and Dright(LCi). As a

result, d(Ri) and subsequently P remain constant beyond this point. Once P ceases to

decrease, the pipeline throughput ceases to increase. On the other hand, d(L) in P-SRSL

pipelines is affected differently. In fact, () 2i
Pd L+ = as equation (4.14) and (4.15) state.

This means that, as the pipeline gets partitioned into fine-grain logic, P decreases without

affecting the ability of the latch to capture data during pipeline operation. As a result, the

182

P-SRSL pipeline can reach throughputs that are higher than those reached by the D-SRSL

pipeline.

Whereas the P-SRSL pipeline seems to display a higher throughput in deeper

pipelines in general, D-SRSL pipelines reach a higher throughput in deeper pipelines of

large and deep circuits. For instance, circuit C6288 can reach a throughput of 1088

Megaoperations/sec in its 35-stage D-SRSL pipeline while it can only reach a throughput

of 875 Megaoperations/sec in 35-stage P-SRSL pipeline. In the case of D-SRSL

pipelines, equation (5.8) states that:

() () () () (5.8i i i id E d R D L D CN+ ≥ +)

Using equations (5.6) and (5.7), equation (5.8) can be rewritten as:

() () () () () () (1 + 6.11i left i i right i i iD PC D LC D PC D LC D CN D LC++ + ≥ +)

This is equivalent to:

() () () () ()12 (6.12)i right i left i i iD PC D LC D LC D CN D LC++ + ≥ +

If delay parameters relevant to the implementations of the PC and LC blocks are

considered, equations (6.12) can be rewritten by using equations (5.24), (5.25), and (5.26)

as follows:

() () () () () ()
() ()

3 4 4 2 clk_to_Q

 (6.13)i i

D INV D NAND D AND D OR D D

D CN D LC

+ + + + + ∆

≥ +

From an implementation perspective, a straightforward optimization would be to reduce

the slack of equation (6.13). This reduction can be achieved only by reducing D(∆).

Since all the other terms are all library-dependent, only D(∆) can be fine-tuned by the

183

designer. Experimentation shows that by reducing D(∆) further without violating

equation (5.8), P can be reduced further leading to a higher throughput. Whereas this

optimization of the implementation is possible in D-SRSL pipelines of deeper circuits, it

is not suitable for the implementation P-SRSL pipelines. As a result, D(∆) ≥ D(CN) in

each stage in P-SRSL pipelines. This explains the higher throughput displayed by D-

SRSL pipelines of deep circuits in deep pipelines.

With regard to area, both pipelines display the same overhead in SRSL circuitry

area. As explained in the previous paragraph, the optimization of D-SRSL

implementations rely on reducing the delay matching D(∆) of D(CN). This reduction

leads to a reduction in the number and size of the buffers used to calibrate this delay.

Since buffers are second to latches in consuming large silicon areas, this reduction in the

number and size of buffers yields a significant reduction in the area occupied by D-SRSL

circuitry. Although D-SRSL circuitry requires more coarse-grain components such as the

PC and LC blocks in a pipeline, the area reduction stemming from the elimination of

buffers brings the D-SRSL circuitry to a level that is sufficiently low to be comparable to

the area occupied by the P-SRSL circuitry.

6.7 Summary

In this chapter, the conventional design flow is minimally modified in order to

support the synthesis of SRSL pipelines. The synthesis of these pipelines is formulated as

an optimization problem subject to a set of data rate and timing constraints. Analytical

184

formulation of this problem is presented as a standard IP problem [71]. Since the size of

the IP problem is significantly large, and subsequently solving it using analytical

approaches is impractical, a heuristic algorithm is proposed to solve it. The goal of the

algorithm is to minimize the area occupied by inter-stage latches without violating any

timing constraints [72]. This algorithm reaches this goal into two phases: (i) Phase I in

which a partitioning procedure is applied on the Boolean graph of the gate netlist, and (ii)

Phase II in which partition vertices are swapped between each pair of adjacent partitions

in order to minimize the cut size between the pairs of partitions. The goal of Phase I is to

assign each gate in the gate netlist to a specific pipeline stage. On the other hand, the

goal of Phase II is to minimize the number of inter-stage latches between every pair of

neighboring pipeline stages.

The heuristic algorithm has been implemented and applied to six different circuits

for the purpose of producing P-SRSL and D-SRSL pipelines with different depths. The

experimental results reveal that P-SRSL pipelines can reach higher throughput in deeper

pipelines in general while D-SRSL pipelines produce the same performance if large and

deep circuits are partitioned into deep pipelines. In addition, these results show that both

pipelines exact the same cost in terms of the area occupied by SRSL circuitry.

185

CHAPTER SEVEN: CONCLUSION

This chapter summarizes the work presented in this dissertation. This summary is

followed by a discussion of future work.

7.1 Summary of Completed Work

This dissertation presents SRSL as a clockless design technique highly suitable

for existing CAD tools. This technique displays self-resetting characteristics in the form

of a periodic oscillation of a logic block driven by a reset loop similar to an internal

clock. Based on SRSL, three pipelining techniques are proposed: S-SRSL, P-SRSL and

D-SRSL.

In S-SRSL, communication between stages is controlled at the stage level. The

timing analysis of S-SRSL pipelines reveals insights on how the duration of the evaluate

phase gradually increases while the duration of the reset phase and the latch enable

gradually decreases toward the left stages of the pipeline. This gradual decrease in the

duration of the enable of the latches between stages is used to derive a bound on the

maximum possible depth of the pipeline.

In P-SRSL, pipeline stages are synchronized with the oscillations of the last

pipeline stage. In this communication scheme, stages of type A oscillate in the same

phase with the last stage while stages of type B oscillate in opposite phase with the last

stage. Timing analysis of P-SRSL pipelines reveals that the duration of the evaluate and

186

187

reset phase remains constant in the stages located to the left of the last stage in the

pipeline. Also, this analysis shows that the duration of the latch enable is constant

regardless of the stages in the pipeline. This is due to the fact that the δ effect does not

propagate across the pipeline stages as seen in S-SRSL pipelines, which in return keeps

the duration of the evaluate and reset phases constant in the stages before the last stage of

the pipeline. In contrast to S-SRSL pipelines, the incremental delays caused by the

propagation of δ are completely absent in P-SRSL pipelines.

Contrary to S-SRSL and P-SRSL pipelines in which the stages must have equal

delays, D-SRSL pipelines can tolerate stages with different delays. As a result, this

pipelining style is highly suitable for coarse-grain datapaths. Similarly to S-SRSL and P-

SRSL pipelines, the stages in D-SRSL pipelines oscillate between an evaluate and reset

phase. Timing analysis of these pipelines shows that, although pipeline stages have equal

period, the duration of their reset and evaluate phase depends on the location of the stage

in relation to the location of the slowest stage in the pipeline. The ability of the pipeline

to handle stages with different delays is made possible by stretching the evaluate phases

and shrinking the reset phases of the stages before the slowest stage in the pipeline. The

amount of stretching and shrinkage is roughly equal to the difference between logic delay

in the slowest stage and in any stage before it. While this phenomenon appears on the

stages before the slowest stage, its dual manifests itself in the stags after the slowest stage

in the pipeline. Table 7.1 highlights the characteristics of the three SRSL pipelining

techniques by contrasting their performance parameters while table 7.2 contrasts their

capabilities in handling stuck-at faults.

188

Table 7.1: SRSL pipelining parameters.

Parameter P-SRSL Pipeline S-SRSL Pipeline D-SRSL Pipeline
Data Encoding Bundled data Bundled data Bundled data
Synchronization Scheme Pipeline level Stage level Stage level
Synchronization Directions Uni-directional Uni-directional Bi-directional
Delay tolerance Comparable stage delays Comparable stage delays Unequal stage delays

SRSL area 1 NOR gate, 1 AND gate,
Delay block

1 NOR gate, 1 AND gate,
Delay block

PC block, LC block, Delay
block

Matching Delay D(∆) ≥ D(CN) D(∆) ≥ D(CN) D(∆) < D(CN)
Reset Phase () ()

() ()
,

1 1 , 1 1
i jd R d R

i n j n

=

≤ ≤ − ≤ ≤ −

() () ()
()

,

1 1
i nd R d R n i

i n

δ= − −

≤ ≤ −

() ()
() ()

,

,
i k

j k

d R d R i k

d R d R j k

< <

> >

where k is the slowest stage
Evaluate Phase () ()

() ()
,

1 1 , 1 1
i jd E d E

i n j n

=

≤ ≤ − ≤ ≤ −

() () ()
()

,

1 1
i nd E d E n i

i n

δ= −

≤ ≤ −

+

() ()
() ()

,

,
i k

j k

d E d E i k

d E d E j k

> <

< >

where k is the slowest stage
Evaluate vs. Reset Phase () () (), 1 1i id R d E i n< ≤ ≤ −

() () (), 1 1i id R d E i n< ≤ ≤ − () ()

() () ,

,

j j

i i

d R d E j k

d R d E i k

> >

< <

where k is the slowest stage
Period () () ()()2P D NOR D D L≤ + ∆ +

() () ()()2P D NOR D D L≤ + ∆ + () () ()12 i right i left iP D PC D LC D LC +≤ + +

Latch Enable () 2i

Pd L+ = () ()
2i
Pd L n i δ+ = − − () () (){ }min ,i i Clr id L d R D LC=

δ Delay Difference Between any stage and the
last stage

Between any two
neighboring stages

None

Theoretical Pipeline Depth

No limit 1

11 ()
2
Pn d L

δ
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠

No limit

Table 7.2: Fault handling in the three pipelines.

Fault P-SRSL Pipeline S-SRSL Pipeline D-SRSL Pipeline
Stage j is
stuck in the
evaluate
phase

• Data keeps flowing
uninterrupted throughout
the pipeline.

• Data flow is blocked
from stage 1 to stage j.

• The same data item
keeps moving from stage
j+1 to stage n.

• Data flows from
stage 1 to stage j for
one period before its
flow is blocked.

• Data flow is blocked
from stage j+1 to n.

Stage j is
stuck in the
reset phase

• Data flows
uninterrupted from stage
1 to stage j resulting in
overwriting data in stage
j.

• The same data item
keeps moving from stage
j+1 to stage n.

• Data flows uninterrupted
from stage 1 to stage j
resulting in overwriting
data in stage j.

• The same data item
keeps moving from stage
j+1 to stage n.

• Data flows from
stage 1 to stage j for
one period before its
flow is blocked.

• Data flow is blocked
from stage j+1 to n.

Since SRSL is intended to be supported by existing CAD tools, the synthesis of

these pipelines is formulated as an optimization problem, in the form of an IP, subject to

a set of data rate and timing constraints. Because the size of the IP problem is

significantly large, a two-phase heuristic algorithm is proposed to solve it. The goal of

the algorithm is to minimize the area occupied by inter-stage latches without violating

any timing constraints. This goal is reached by executing Phase I of the algorithm in

which each gate in the gate netlist is assigned to a specific pipeline stage. Subsequent to

Phase I, Phase II is executed in order to minimize the number of inter-stage latches

between every pair of neighboring pipeline stages. Application of this pipelining to a set

of experimental circuits reveals that high throughputs can be achieved by P-SRSL and D-

SRSL in shallow and deep pipelines respectively. Whereas the pipeline throughput of the

experimental circuits depends on the specific SRSL technique used for pipelining, their

area cost tends to be comparable regardless of the SRSL technique used.

189

7.2 Future Work

While the research in this dissertation explored the inner working of three SRSL

pipelines, namely S-SRSL, P-SRSL, and D-SRSL pipelines, and proposed a synthesis

framework for such pipelines, this research raised during its course an additional set of

questions that can be addressed as an extension to this dissertation:

(i) Incorporation of interconnect effects as a factor which can affect the

performance of the pipeline [73-75]. Preliminary examination of the three

pipelines suggests that this effect may be highly relevant in the P-SRSL

pipeline. In this pipeline, the phase signal leaves the last stage to drive the

AND gate of each inter-stage latch, thus acting as a long synchronizing signal

that spans the entire length of the pipeline. It remains to be seen how far this

signal can travel before its RC effects starts to affect the correct operation of

the pipeline.

(ii) Refinement of the delay models of the three pipelines by incorporating the

same interconnect effects. These effects are considered important in delays

exacerbated by high fanout gates in large gate netlists, which are prevalent in

most datapaths.

(iii) Incorporation of power effects on the performance of the three pipelines.

Although pipelining has been used to alleviate power effects [76, 77], deep

pipelining can, in some cases, have the reverse effect by increasing the power

budget of a pipeline, which in return will degrade its overall performance. In

the case of SRSL pipelines, it is not known at what point pipelining ceases to

190

alleviate power consumption and subsequently their heat dissipation. In

addition, it is not well understood how much of the performance of the

pipelines is caused by their power budgets.

(iv) Refinement of the pipeline synthesis algorithm by taking into account the

fanout delay of each net in the pipelined circuits. By incorporating the

interconnect effects mentioned in (i), the synthesis algorithm can build an

accurate model for each gate and each net in the circuit. This delay model can

guide both phases of the synthesis algorithm to produce a delay-accurate gate

netlist in each stage of the pipeline.

(v) While phase II of the synthesis algorithm is completely heuristic, it is not

known at this point how sub-optimal the solutions produced by phase II can

be. From an optimization perspective, it would be interesting to quantify the

sub-optimality of these heuristic solutions.

(vi) From a practical perspective, if the approximative power of the heuristic used

in phase II is not satisfactory, it can be used as a strong rationale for

developing a better heuristic approach which has the potential to reduce the

sub-optimality of the initial vertex shuffling heuristic proposed in phase II of

the synthesis algorithm. The overall benefit of this improvement in the

quality of the solutions produced by the heuristic in phase II is a maximal

minimization of inter-stage latches of the pipelines since the latter occupy a

significant portion of the overall pipeline area.

(vii) While the circuits used to prototype the three SRSL pipelines were all

combinational datapaths, it is imperative to extend pipelining techniques

191

based on SRSL to implement control-dominated circuits. The latter circuits

are known to have feedback loops and clocked storage elements embedded

within their gate netlists. A straightforward conversion of these netlists to

SRSL pipelines would require the substitution of these clocked storage

elements with latches and the padding of the feedback loops with matching

delays as suggested in [78].

(viii) If robust pipelining techniques based on SRSL are possible for control

circuitry, suitable synthesis approaches need to be devised to synthesize SRSL

pipelines for controlled datapaths without violating data rate constraints. It

would be interesting to see whether it is possible to extend the current

synthesis algorithm to the synthesis of controlled datapaths, or devise an

entirely new algorithm for this task.

192

LIST OF REFERENCES

[1] K. Emerson, "Asynchronous design: an interesting alternative," Tenth

International Conference on VLSI Design, 4-7 January 1997, pp. 318-320.

[2] I. Blunno and L. Lavagno, "Automated synthesis of micro-pipelines from

behavioral Verilog HDL," International Symposium on Advanced Research in

Asynchronous Circuits and Systems, Eilat, Israel, 2000, pp. 84-92.

[3] J. Cortadella, M. Kishnevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,

Synthesis of asynchronous controllers and interfaces: New York: Springer-

Verlag, 2002.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,

"Petrify: a tool for manipulating concurrent specifications and synthesis of

asynchronous controllers," IEICE Transactions on Information and Systems, vol.

E80-D, no. 3, 1997, pp. 315-325.

[5] D. A. Edwards and B. W. Toms, "Design automation and test for asynchronous

circuits and systems," Information Society Technologies Programme Technical

Report IST-1999-29119, 2004.

[6] K.-J. Lin and C.-W. Kuo, "On synthesis of speed-independent circuits at STG

level," Asia and South Pacific Design Automation Conference, 28-31 January

1997, pp. 619-624.

[7] V. Khomenko, M. Koutny, and A. Yakovlev, "Logic synthesis for asynchronous

circuits based on Petri net unfoldings and incremental SAT," Fourth International

Conference, 16-18 June 2004, pp. 16-25.

193

[8] N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov, and A. Smirnov,

"Towards synthesis of monotonic asynchronous circuits from signal transition

graphs," Application of Concurrency to System Design, 25-29 June 2001, pp. 179-

188.

[9] I. Blunno and L. Lavagno, "Designing an asynchronous microcontroller using

Pipefitter," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 12, no. 7, July 2004, pp. 696-699.

[10] I. Blunno and L. Lavagno, "Designing an asynchronous microcontroller using

Pipefitter," International Conference on Computer Design: VLSI in Computers &

Processors, September 2002, pp. 488-493.

 [11] C. P. Soitriou, "Implementing asynchronous circuits using a conventional EDA

tool-flow," Design Automation Conference, New Orleans, LA, 2002, pp. 415-418.

[12] C. P. Sotiriou and L. Lavagno, "Desynchronization: asynchronous circuits from

synchronous specifications," IEEE International SOC Conference, Portland, OR,

2003, pp. 165-168.

[13] J. P. Uyemura, Introduction to VLSI circuits and systems: John Wiley & Sons,

Inc., 2002.

[14] S. Palnitkar, Verilog HDL: A guide to digital design and synthesis: Sun Soft

Press, 1996.

[15] I. E. Sutherland and J. Ebergen, "Computers without clocks," Scientific American,

August 2002, pp. 62-69.

[16] S. Hauck, "Asynchronous design methodologies: an overview," Proceedings of

the IEEE, vol. 83, no.1, January 1995, pp. 69-93.

194

[17] C. H. Van Berkel, M. B. Josephs, and S. M. Nowick, "Applications of

asynchronous circuits," Proceedings of the IEEE, vol. 87, no. 2, February 1999,

pp. 223-233.

[18] S. M. Nowick, "Automatic synthesis of burst-mode asynchronous controllers,"

Department of Electrical Engineering and Computer Science: Stanford

University, March 1993.

[19] V. George and J. M. Rabaey, Low-energy FPGAs: architecture and design,

Kluwer Academic Publishers, 2001.

[20] M. Donno, A. Ivaldi, L. Benini, and E. Macii, "Clock-tree power optimization

based on RTL clock-gating," Design Automation Conference, 2003, pp. 622-627.

[21] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, and M. Sarrafzadeh, "Activity-

driven clock design," IEEE Transactions on Computer-Aided Design of Circuits

and Systems, vol. 20, no. 6, June 2001, pp. 705-714.

[22] Fulcrum Microsystems, "Asynchronous circuit technology: an alternative for

high-speed semiconductors," available at

http://www.fulcrummicro.com/Library/async_wp.htm, 2004.

[23] J. Rennert and D. Hafeman, "Clock domain modeling is essential in high density

SOC design," EE Times, vol. 36, no.1, June 2003.

[24] S. M. Nowick and D. L. Dill, "Automatic synthesis of locally-clocked

asynchronous state machines," IEEE International Conference on Computer-

Aided Design, 11-14 November 1991, pp. 318-321.

195

[25] S. M. Nowick and D. L. Dill, "Synthesis of asynchronous state machines using a

local clock," IEEE International Conference on Computer Design: VLSI in

Computers and Processors, 14-16 October 1991, pp. 192-197.

[26] Miller, E. Raymond, Switching theory: New York, Wiley, 1965.

[27] J. Sparso and S. Furber, Principles of asynchronous circuit design: Kluwer

Academic Publishers, 2001.

[28] A. J. Martin, "The limitation to delay-insensitivity in asynchronous circuits,"

Advanced Research in VLSI: Proceedings of the Sixth MIT Conference, 1990, pp.

263-278.

[29] J. C. Ebergen, "A formal approach to designing delay-insensitive circuits,"

Distributed Computing, vol. 5, no. 3, 1991, pp. 107-119.

[30] C. Mead and L. Conway, Introduction to VLSI systems: Addison-Wesley, 1980.

[31] W. Hwang, G. D. Gristede, P. Sanda, S. Y. Wang, and F. Heidel, "Implementation

of a self-resetting CMOS 64-bit parallel adder with enhanced testability," IEEE

Journal of Solid-State Circuits, vol. 34, no. 8, August 1999, pp. 1108-1117.

[32] G. Jung, V. Sudarajan, and G. E. Sobelman, "A robust self-resetting CMOS 32-bit

parallel adder," IEEE International Symposium on Circuits and Systems, 2002,

pp. I/473-I/476.

[33] A. E. Dooply and K. Y. Yun, "Optimal clocking and enhanced testability for

high-performance self-resetting domino pipelines," 20th Conference on Advanced

Research in VLSI, 1999, pp. 200-214.

196

[34] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguston, "Speedup

of delay-insensitive digital systems using NULL cycle reduction," International

Workshop on Logic and Synthesis, 2001.

[35] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguston, "NULL

convention multiply and accumulate with conditional rounding, scaling and

saturation," Journal of Systems Architecture, vol. 47, no. 12, June 2002, pp. 977-

998.

[36] G. E. Sobelman and K. M. Fant, "CMOS circuit design of threshold gates with

hysteresis," IEEE Transactions on Circuits and Systems, vol. 2, no. 2, June 1998,

pp. 61-64.

[37] K. M. Fant and S. A. Brandt, "NULL convention logic: a complete and consistent

logic for asynchronous digital circuit synthesis," International Conference on

Application Specific Systems, Architectures, and Processors, 1996, pp. 261-273.

[38] T. Verhoeff, “Analyzing specifications for delay-insensitive circuits," Fourth

International Symposium on Advanced Research in Asynchronous Circuits and

Systems, 1998, pp. 172-183.

[39] T. Verhoeff, "Encyclopedia of Delay-Insensitive Systems (EDIS)," available at

http://edis.win.tue.nl/.

[40] W. C. Mallon, J. T. Udding, and T. Verhoeff, "Analysis and applications of the

XDI model," Fifth International Symposium on Advanced Research in

Asynchronous Circuits and Systems, 1999, pp. 231-242.

197

[41] W. C. Mallon and J. T. Udding, "Building finite automata from DI

specifications," International Symposium on Advanced Research in Asynchronous

Circuits and Systems, 30 March-2 April 1998, pp. 184-193.

[42] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, "The VLSI-

programming language Tangram and its translation into handshake circuits,"

European Conference on Design Automation, 1991, pp. 384-389.

[43] J. Kessels and A. Peeters, "The Tangram framework: asynchronous circuits for

low power," Asia and South Pacific Design Automation Conference, 2001, pp.

255-260.

[44] K. Y. Yun and D. L. Dill, "Automatic synthesis of extended burst-mode circuits.

II. (Automatic synthesis)," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 18, no. 2, February 1999, pp. 118-132.

[45] K. Y. Yun and D. L. Dill, "Automatic synthesis of extended burst-mode circuits.

I. (Specification and hazard-free implementations)," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 2,

February 1999, pp. 101-117.

[46] T. Murata, "Petri Nets: Properties, analysis and application," Proceedings of the

IEEE, vol. 77, no. 4, 1989, pp. 541-574.

[47] C. J. Myers, Asynchronous circuit design: John Wiley & Sons, Inc., 2001.

[48] A. Yakovlev, A. Semenov, A. M. Koelmans, and D. J. Kinniment, "Petri nets and

asynchronous circuit design," IEE Colloquium on Design and Test of

Asynchronous Systems, 1996, pp. 8/1-8/6.

198

[49] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, no. 6,

1989, pp. 270-733.

[50] M. Ligthart, K. M. Fant, R. Smith, A. Taubin, and A. Kondratyev, "Asynchronous

design using commercial HDL synthesis tools," Advanced Research in

Asynchronous Circuits and Systems, 2-6 April 2000, pp. 114-125.

[51] J. Fragoso, G. Sicard, and M. Renaudin, "Automatic generation of 1-of-M QDI

asynchronous adders," Integrated Circuits and Systems Design, September 2003,

pp. 149-154.

[52] R. Smith and M. Ligthart, "High-level design for asynchronous logic," Asia and

South Pacific Design Automation Conference, February 2001, pp. 431-436.

[53] S. Chakraborty, K. Y. Yun, and D. L. Dill, "Timing analysis of asynchronous

systems using time separation of events," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 18, no. 8, August 1999, pp. 1061-

1076.

[54] M. F. Robert, M. N. Steven, T. Michael, K. J. Niraj, L. Bill, and P. Luis,

"MINIMALIST: an environment for the synthesis, verification and testability of

burst-mode asynchronous machines," Columbia University, Computer Science

Department, July 1999.

[55] K. Y. Yun, "Automatic synthesis of extended burst-mode circuits using

generalized C-elements," European Design Automation Conference, Geneva,

Switzerland, 1996, pp. 290-295.

199

[56] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou,

"Handshake protocols for de-synchronization," International Symposium on

Asynchronous Circuits and Systems, 2004, pp. 149-158.

[57] Z. Shengxian, L. Weidong, J. Carlsson, K. Palmkvist, and L. Wanhammar, "An

asynchronous wrapper with novel handshake circuits for GALS systems,"

International Conference on Communications, Circuits and Systems, West Sino

Expositions, 2002, pp. 1521-1525.

[58] A. Peeters and K. van Berkel, "Single-rail handshake circuits," Second Working

Conference on Asynchronous Design Methodologies, 1995, pp. 53–62.

[59] A. Alsharqawi and A. Ejnioui, "Clockless pipelining for coarse grain datapaths,"

accepted in 19th International Conference on VLSI Design and 5th International

Conference on Embedded Systems, 2006.

[60] A. Ejnioui and A. Alsharqawi, "A clockless reconfigurable array based on self-

resetting logic," Multi-conference on Systemics, Cybernetics, and Informatics,

2004, pp. 61-66.

[61] A. Ejnioui and A. Alsharqawi, "Self-resetting stage logic pipelines," ACM Great

Lakes Symposium on VLSI, 2004, pp. 174-177.

[62] A. Ejnioui and A. Alsharqawi, "Pipeline design based on self-resetting stage

logic," IEEE Computer Society Annual Symposium on VLSI, 2004, pp. 254-257.

[63] A. Ejnioui and A. Alsharqawi, "Coarse-grain clockless pipelining based on self-

resetting stage logic," submitted to the Journal of Circuits, Systems, and

Computer.

200

[64] A. Alsharqwi and A. Ejnioui, "A clockless pipelining technique based on self-

resetting stage logic," submitted to the IEEE Transactions on Circuits and

Systems.

[65] J. B. Sulistyo and D. S. Ha, "A new characterization method for delay and power

dissipation of standard library cells," VLSI Design, vol. 15, no. 3, 2002, pp. 667-

678.

[66] J. B. Sulistyo, J. Perry, and D. S. Ha, "Developing standard cells for TSMC

0.25um technology under MOSIS deep rules," Department of Electrical and

Computer Engineering, Virginia Tech Technical Report VISC-2003-01,

November 2003.

[67] A. Ejnioui and A. Alsharqawi, "Pipeline-level control of self-resetting pipelines,"

Euromicro Symposium on Digital System Design, 2004, pp. 342-349.

[68] A. Ejnioui and A. Alsharqawi, "Pipeline level control of self-resetting stage logic

pipelines," IEEE Northeast Workshop on Circuits and Systems, 2004, pp. 389-

392.

[69] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguston, "Delay-

insensitive gate-level pipelining," Integration: the VLSI Journal, vol. 30, no. 2,

October 2001, pp. 103-131.

[70] G. DeMicheli, Synthesis and optimization of digital circuits: McGraw-Hill, 1994.

[71] R. Oreifej, A. Alsharqawi, and A. Ejnioui, "Pipeline synthesis of SRSL circuits,"

accepted in IEEE International Conference on Electronics, Circuits and Systems,

2005.

201

[72] A. Alsharqawi and A. Ejnioui, "Synthesis of self-resetting stage logic pipelines,"

IEEE Computer Society Annual Symposium on VLSI, 2005, pp. 260-263.

[73] S. Bothra, B. Rogers, and M. Kellam, "Analysis of the effects of scaling on

interconnect delay in ULSI circuits," IEEE Transactions on Electron Devices, vol.

40, no. 3, March 1993, pp. 591-597.

[74] K. K. Ryu, A. Talpasanu, V. J. Mooney, and J. A. Davis, "Interconnect delay

aware RTL Verilog bus architecture generation for an SOC," Advanced System

Integrated Circuits Conference, 2004, pp. 176-179.

[75] Y. Zhang, Q. Zhou, X. Hong, and Y. Cai, "Path-based timing optimization by

buffer insertion with accurate delay model," International Conference on ASICs,

21-24 October 2003, pp. 89-92.

[76] A. Hartstein and T. R. Puzak, "Optimum power/performance pipeline depth,"

IEEE/ACM International Symposium on Microarchitecture, 2003, pp. 117-125.

[77] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski, and

P. G. Emma, "Optimizing pipelines for power and performance," 35th Annual

IEEE/ACM International Symposium on Microarchitecture, 2002, pp. 333-344.

[78] R. O. Ozdag and P. A. Beerel, "High-speed QDI asynchronous pipelines," Eighth

International Symposium on Asynchronous Circuits and Systems, 2002, pp. 13-22.

202

	Design And Synthesis Of Clockless Pipelines Based On Self-resetting Stage Logic
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	1.1 Motivation
	1.1.1 The Clocking Problem
	1.1.2 Growing Importance of Clockless Circuits
	1.1.3 Coarse-Grain Clockless Pipelining

	1.2 Design Methodology in Clocked Circuits
	1.2.1 Specification and Modeling
	1.2.2 Verification
	1.2.3 Synthesis
	1.2.4 Mapping

	1.3 Limitations of Clocked Circuits
	1.3.1 Clock Frequency
	1.3.2 Timing Closure
	1.3.3 Power Implications
	1.3.4 Area Implications
	1.3.5 Noise Margins
	1.3.6 Multiple Clock Domains

	1.4 Clockless Circuits
	1.4.1 Self-Clocked Circuits
	1.4.2 Speed-Independent Circuits
	1.4.3 Delay-Insensitive Circuits
	1.4.4 Self-Timed Circuits
	1.4.5 Self-Resetting Circuits

	1.5 Design Methodology in Clockless Circuits
	1.6 Contributions of the Dissertation
	1.7 Overview of the Dissertation

	CHAPTER TWO: RELATED CLOCKLESS DESIGN METHODOLOGIES
	2.1 Petri Nets
	2.2 Signal Transition Graphs
	2.3 Micropipelines
	2.4 Null Convention Logic
	2.5 Burst Mode Machine
	2.6 Handshake Circuits
	2.7 Extended Delay Insensitive Model
	2.8 Summary

	CHAPTER THREE: STAGE-CONTROLLED SELF-RESETTING STAGE LOGIC P
	3.1 SRSL
	3.2 S-SRSL Linear Pipelines
	3.3 S-SRSL Non-linear Pipelines
	3.3.1 S-SRSL Join Operation
	3.3.2 S-SRSL Fork Operation

	3.4 Performance of the Pipeline
	3.4.1 Parameter Definitions
	3.4.2 Analysis of the Reset and Evaluate Phase
	3.4.3 Effect of (on the Pipeline Stages
	3.4.4 (and Pipeline Depth
	3.4.5 Area Cost
	3.4.6 Fault Handling

	3.5 Prototype Implementation of the S-SRSL Pipelines
	3.5.1 The S-SRSL Linear Pipeline
	3.5.2 The S-SRSL Non-Linear Pipeline
	3.5.2.1 The S-SRSL Join Pipeline
	3.5.2.2 The S-SRSL Fork Pipeline

	3.6 Summary

	CHAPTER FOUR: PIPLINE-CONTROLLED SELF-RESETTING STAGE LOGIC
	4. 1 P-SRSL Linear Pipeline
	4.2 P-SRSL Non-Linear Pipelines
	4.2.1 P-SRSL Join Pipeline
	4.2.2 P-SRSL Fork Pipeline

	4.3 Performance of the Pipeline
	4.3.1 Analysis of the Reset and Evaluate Phase
	4.3.2 Effect of (on the Pipeline Stages
	4.3.3 Effect of the Period on the Latch Enable
	4.3.4 Area Cost
	4.3.5 Fault Handling

	4.4 Prototype Implementation of the P-SRSL Pipeline
	4.4.1 Implementation of the Linear Pipeline
	4.4.2 Implementation of the Non-Linear Pipelines
	4.4.2.1 The P-SRSL Join Pipeline
	4.4.2.2 The P-SRSL Fork Pipeline

	4.5 Comparison of P-PRSL to S-SRSL Pipelines
	4.6 Summary

	CHAPTER FIVE: DELAY TOLERANT SELF-RESETTING STAGE LOGIC PIPE
	5.1. D-SRSL Linear Pipeline
	5.1.1 Pipeline Structure
	5.1.2 Phase Control Block
	5.1.3 Latch Control Block

	5.2. D-SRSL Non-Linear Pipelines
	5.2.1 D-SRSL Join Pipeline
	5.2.2 D-SRSL Fork Pipeline

	5.3. Performance of the Pipeline
	5.3.1 The Reset and Evaluate Phase
	5.3.2 Duration of Latch Enable
	5.3.3 Stage Delay and Period
	5.3.4 Area Cost
	5.3.5 Fault Handling

	5.4 Prototype Implementation of the D-SRSL Pipeline
	5.4.1 Implementation of the PC Block
	5.4.2 Implementation of the LC Block
	5.4.3 Implementation of the Join Block
	5.4.4 Implementation of the Fork Block
	5.4.5 Implementation of D-SRSL Pipeline

	5.5. Conclusion

	CHAPTER SIX: SYNTHESIS OF SRSL PIPELINES
	6.1 SRSL Pipeline Design Methodology
	6.2 Synthesis of SRSL Pipelines
	6.3 Preliminaries
	6.4 Modeling of the Synthesis Problem
	6.5 Proposed Solution of the SRSL Pipeline Synthesis
	6.5.1 Phase I: Stage Assignment
	6.5.1.1 Phase I Approach
	6.5.1.2 Phase I Algorithm

	6.5.2 Phase II: Vertex Shuffling
	6.5.2.1 Phase II Approach
	6.5.2.2 Phase II Algorithm

	6.6 Experimental Results
	6.6.1 P-SRSL Pipelining Experiments
	6.6.2 D-SRSL Pipelining Experiments
	6.6.3 Summary of the Experiment Results

	6.7 Summary

	CHAPTER SEVEN: CONCLUSION
	7.1 Summary of Completed Work
	7.2 Future Work

	LIST OF REFERENCES

