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ABSTRACT 

The process of decoding is the most crucial determinant of the quality of protein synthesis. 

Ribosomal protein L9 was first implicated in decoding fidelity when a mutant version of L9 was 

found to increase the translation of a T4 phage gene. Later studies confirmed that the absence 

of L9 leads to increased translational bypassing, frameshifting, and stop codon readthrough. L9 

is part of the large subunit of the prokaryotic ribosome and is located more than 90 Å from the 

site of decoding, making it difficult to envision how it might affect decoding and reading frame 

maintenance. Twenty years after the identification of L9’s putative function, there is no 

mechanism for how a remotely located L9 improves translation fidelity. This mystery makes our 

picture of translation incomplete. Despite the high conservation of L9 in eubacteria, E.coli 

lacking L9 does not exhibit any obvious growth defects. Thus, the evolutionary advantage 

conferred by L9 in bacteria is masked under laboratory conditions. In order to uncover unique 

L9-dependent conditions, a library of E. coli mutants was screened to isolate those that rely on 

L9 for fitness. Interestingly, factors found to be synergistic with L9 had no known role in fidelity.  

Six independent mutants were isolated, each exhibiting a severe growth defect that is partially 

suppressed in the presence of L9. One class of L9-dependent mutations was present in an 

essential ribosome biogenesis factor, Der. Der’s established function is in the maturation of the 

large ribosomal subunit. The identified mutations severely impaired the GTPase activity of Der. 

Interestingly, L9 did not directly compensate for the defective GTPase activity of mutant Der. 

The second class of L9-dependent mutations was present in EpmA and EpmB, factors required 



 iii 

to post-translationally modify elongation factor, EF-P. EF-P’s established function is in the 

translation of poly-proline containing proteins. EF-P deficient cells were nearly inviable in the 

absence of L9; however, L9 did not directly influence poly-proline translation. Therefore, in 

each case, L9 improved cell health without altering the activity of either Der or EF-P. 

Remarkably, the der mutants required only the N domain of L9, whereas the absence of active 

EF-P required full-length, wild-type L9 for growth complementation. Thus, each mutant class 

needed a different aspect of L9’s unique architecture. In cells lacking either active EF-P or Der, 

there was a severe deficiency of 70S ribosomes and the indication of small subunit maturation 

defects, both of which worsened upon L9 depletion. These results strongly suggest that L9 plays 

a role in improving ribosome quality and abundance under certain conditions. 

Overall, the genetic screen lead to the discovery that bacteria need L9 when either of two 

important translation factors (Der or EF-P) is inactivated. This work has characterized the 

physiological requirement for L9 in each case and offers a new insight into L9’s assigned role in 

translation fidelity. 

 

 

 

 



 iv 

 

 

 

 

 

 

 

 

Dedicated to my family 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

ACKNOWLEDGMENTS 

My PhD experience has been truly meaningful under the mentorship of my advisor, Dr. 

Sean D. Moore. I am grateful for having worked with him as his first graduate student. He 

genuinely cared about my graduate training experience and provided an ideal learning 

environment. I cannot thank him enough for his constant encouragement at every step of my 

project, especially during times when my confidence was tested by failed experiments and by 

my own errors. He has been a patient teacher and a great role model during this entire journey. 

His philosophies and ideas as a scientist have tremendously influenced me and provided the 

perspective I need, as I enter the next phase of my career. I want to also thank all the members 

of the Moore Lab, past and present, for their support and their excellent company in lab.  

I would like to thank all my committee members. They motivated me to do better at 

every stage and were always willing to provide guidance. I would like to specially thank them 

for always willing to schedule several committee meetings over the years to discuss my 

progress and offer advice. These committee meetings have helped me improve my 

presentation and communication skills.  

I would like to thank my parents and my family for their love and support. Finally, I have 

shared every good and bad part of being a graduate student with my husband, Gowri and 

would like to thank him for being there through it all. 

 

 

 

 



 vi 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................................... x 

LIST OF TABLES ............................................................................................................................... xii 

CHAPTER I: INTRODUCTION ............................................................................................................ 1 

History Of Studies On The Ribosome .......................................................................................... 1 

The Decoding Property Of The Ribosome .............................................................................. 3 

The Composition Of The Ribosome ........................................................................................ 4 

The Process Of Translation ..................................................................................................... 5 

The Prokaryotic Ribosome As A Model For Macromolecular Assembly .................................... 7 

Why Do Ribosomes Have Proteins? ............................................................................................ 8 

Background ............................................................................................................................... 10 

Ribosomal Protein L9: Structure and conservation .............................................................. 10 

A Synthetic Lethal Approach Reveals the Reason for L9’s Conservation ............................. 14 

CHAPTER II: CRIPPLING THE ESSENTIAL GTPASE DER CAUSES A DEPENDENCE ON RIBOSOMAL 

PROTEIN L9.................................................................................................................................... 22 

Introduction .............................................................................................................................. 22 

Materials and Methods ............................................................................................................. 26 

Strains and plasmids. ............................................................................................................ 26 



 vii 

Chemical mutagenesis and library screening. ...................................................................... 27 

Protein expression and purification. ..................................................................................... 28 

Conditional Degradation. ...................................................................................................... 30 

Microscopy. ........................................................................................................................... 31 

Results ....................................................................................................................................... 31 

Mutations in der cause a dependence on L9. ....................................................................... 31 

The N-domain of L9 complements derT57I. ......................................................................... 34 

The derT57I and derE271K mutants are partially functional and recessive. ........................ 34 

Suppressor mutations arise frequently in the derT57I background. ................................... 35 

The T57I and E271K mutations impair the GTPase activity of Der. ...................................... 37 

Additional YihI partially complements the der mutants. ..................................................... 40 

YihI stimulation is potassium sensitive. ................................................................................ 42 

YihI fails to bind to or restore the GTPase activity of the Der mutants. .............................. 42 

Purified L9 does not influence Der's GTPase activity. .......................................................... 44 

L9 suppresses an elongated cell morphology caused by derT57I. ....................................... 44 

Discussion.................................................................................................................................. 49 

CHAPTER III: THE LARGE RIBOSOMAL SUBUNIT L9 ENHANCES SMALL SUBUNIT MATURATION 

AND ENABLES THE GROWTH OF EF-P DEFICIENT CELLS ............................................................... 54 



 viii 

Introduction .............................................................................................................................. 54 

Results ....................................................................................................................................... 58 

L9 increases translation fidelity independently of the miscoding surveillance system. ...... 58 

Mutations in EF-P modification genes cause L9 dependence. ............................................. 60 

The conserved architecture of L9 is required for suppression ............................................. 65 

Cells with inactive EF-P have reduced monosome levels. .................................................... 67 

Depleting L9 from ΔepmA cells exacerbates the ribosome deficiency. ............................... 70 

L9 also enhances small subunit quality in a Der mutant. ..................................................... 73 

ΔrplI cells accumulate immature 16S rRNA in their 30S subunits, but not in their 

polysomes. ............................................................................................................................ 75 

Discussion.................................................................................................................................. 79 

Materials and methods. ............................................................................................................ 82 

Strains and plasmids ............................................................................................................. 82 

Screening for L9-dependent mutants ................................................................................... 83 

Ribosome analyses ................................................................................................................ 83 

Targeted L9 degradation ....................................................................................................... 84 

CHAPTER IV: DISCUSSION ............................................................................................................. 86 

APPENDIX A: CHAPTER II SUPPLEMENTAL INFORMATION ........................................................... 93 



 ix 

Strains and plasmids ............................................................................................................. 94 

Mutation mapping. ............................................................................................................... 94 

Protein expression and purification. ..................................................................................... 95 

Plating efficiency and morphology of L9-depleted derT57I cells. ........................................ 98 

Translation bypass assays. .................................................................................................... 99 

APPENDIX B: CHAPTER III SUPPLEMENTAL INFORMATION ........................................................ 105 

REFERENCES ................................................................................................................................ 116 

 



 x 

LIST OF FIGURES 

Figure 1. Organization of the ribonucleoprotein particles (RNPs) ................................................. 2 

Figure 2. The conservation of the sequence and structure of protein L9 .................................... 12 

Figure 3. L9 deletion strains exhibit no significant growth pertubations. .................................... 13 

Figure 4. The modified synthetic lethal screen used to isolate L9-dependent mutants .............. 15 

Figure 5. The crystal structure of Der from Thermotoga maritima .............................................. 16 

Figure 6. The crystal strucuture of the Thermus thermophilus ribosome bound to EF-P............ 19 

Figure 7: L9 on the ribosome. ....................................................................................................... 24 

Figure 8: L9 improves the health of der mutants. ........................................................................ 33 

Figure 9: The locations of the L9-dependent Der mutants and T57I suppressors. ...................... 36 

Figure 10: DerT57I and E271K are compromised in their GTPase activities. ............................... 39 

Figure 11: YihI complementation and stimulation of Der. ........................................................... 41 

Figure 12: Conditional L9 degradation reveals an unsuppressed derT57I phenotype. ................ 47 

Figure 13: L9 on the ribosome ...................................................................................................... 57 

Figure 14: L9 improves resistance to aminoglycoside class of antibiotics. .................................. 59 

Figure 15: Inactivating EF-P causes L9 dependence ..................................................................... 62 

Figure 16: Partial restoration of growth sickness by chromosomal L9 ........................................ 63 

Figure 17: Near-lethal growth phenotypes of double deletion strains. ....................................... 64 

Figure 18: L9’s conserved architecture is essential for complementation. .................................. 66 

Figure 19: ΔEF-P strains have a severe ribosome deficiency ........................................................ 69 



 xi 

Figure 20: Depleting L9 from ΔepmA cells leads to small subunit defects ................................... 72 

Figure 21: L9 also enhances small subunit quality in Der mutant ................................................ 74 

Figure 22: Immature 16S rRNA is found to be more abundant in ΔrplI 30S particles but not in 

ΔrplI polysomes ............................................................................................................................. 77 

Figure 23: A model for L9’s function in decoding ......................................................................... 78 

Figure 24: S1. Potassium and YihI stimulation. ........................................................................... 101 

Figure 25: S2. L9 does not influence Der’s GTPase activity or YihI stimulation. ........................ 102 

Figure 26: S3. Plating efficiency of derT57I when L9 is depleted. .............................................. 103 

Figure 27: S4. L9 influences the stability of translation bypass reporters. ................................ 104 

Figure 28: S1. L9 is not required for RF-3 mediated surveillance. .............................................. 106 

Figure 29: S2. Expression of L9 variants from plasmids. ............................................................ 107 

Figure 30: S3. EF-P abundance and distribution ......................................................................... 108 

Figure 31: S4. Quantification of subunits and monosomes ........................................................ 109 

Figure 32: S5. Depleting L9 in wild-type cells recapitulates rplI- defects ................................... 110 

Figure 33: EF-P does not require L9 to function. ........................................................................ 111 



 xii 

 LIST OF TABLES  

Table 1. Genes sequenced in a fast-growing Δefp escape mutant ............................................ 112 

Table 2. Cloned genes tested for multi-copy suppression of Δefp sickness. .............................. 114  

 

 



 1 

CHAPTER I: INTRODUCTION 

History Of Studies On The Ribosome 

In 1958, Francis Crick put forth the idea of the central dogma of molecular biology, 

which states that all genetic information flows from nucleic acid to nucleic acid or nucleic acid 

to protein. In his paper, he stated, “I shall also argue that the main function of the genetic 

material is to control the synthesis of proteins” [1]. Although the composition, structure, and 

the importance of proteins in biological systems were fairly well studied at the time, little was 

known about the machinery used to transfer information from nucleic acid to protein. 

Ribosomes serve as the fundamental machinery required to convert genetic information into 

proteins. The first evidence of the existence of ribosomes came from electron micrographs of 

disrupted animal and bacterial cells [2]. Micrographs of the endoplasmic reticulum showed the 

presence of “electron-dense particles” associated as clusters on either side of the membrane 

and were referred to as microsomal particles by Crick. These particles were merely speculated 

to be sites of protein synthesis. Soon after, it was shown that these particles are made up of 

RNA and protein, and were given the name ribonucleoprotein (RNP) particles [3, 4]. Analytical 

centrifugation allowed the separation of different kinds of ribonucleoprotein particles away 

from cell debris and their subsequent characterization. These particles could be separated on a 

linear sucrose gradient based on their sedimentation coefficient (or the Svedberg unit, S) [5-7]. 

Prokaryotic ribosomes are organized into two asymmetric subunits – the 50S large subunit and 

the 30S small subunit) and come together to form a 70S particle [5]. Up to eighty percent of the 
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ribosomes are involved in translation at any given time [8], meaning that most of ribosomes are 

present as polyribosomes (polysomes) (Figure 1).   

 

 

 

 

Figure 1. Organization of the ribonucleoprotein particles (RNPs) 

The 30S subunit associates with mRNA, initiator tRNA, and initiatior factors to form the pre-
initiation complex. The complex then finds a mature 50S subunit to form the 70S ribosome. 70S 
ribosomes that are actively translating a mRNA are called polysomes. The polysomes depicted 
here show an actively growing polypeptide chain. At the end of translation of a given mRNA, 
the nascent peptide is released and the ribosomal subunits are recycled to initiate a new round 
of translation.  
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The Decoding Property Of The Ribosome 

Linus Pauling’s work on haemoglobin protein chemistry provided clues that “errors” in 

the amino acid sequence of proteins can arise even in the absence of a genetic mutation [9]. 

The idea that ribosomes have an innate property of amino acid selection was considered and 

lead to the question - how do ribosomes discriminate between amino acids? Watson and Crick 

independently proposed an explanation - an adapter RNA molecule (now known as tRNA or 

transfer RNA) could base-pair with the correct triplet code (codon) to position the amino acid 

appropriately for polymerization. Studies by Offengand and Hoagland confirmed this so-called 

“adapter hypothesis” and showed that tRNAs can be fused covalently to each amino acid (a 

process now called aminoacylation) [10-12]. After the discovery of the messenger RNA [13], 

studies on tRNA-mRNA interaction showed that the thermodynamic base-pairing energy 

difference between a cognate and a non-cognate tRNA could drive selection of the correct 

amino acid by its corresponding tRNA.  The ribosome was thought to only stabilize interactions 

between the tRNA and mRNA [14]. Although this explained amino acid selection to some 

extent, the selectivity of the ribosome in vivo was found to be much higher than that explained 

by in vitro base pairing alone [9, 12]. 

Studies using antibiotics such as streptomycin and paromomycin revealed that binding 

of antibiotics to the ribosome can introduce significant errors in translation [12, 15-18]. 

Moreover, resistance to antibiotics was mapped to many ribosomal genes, indicating that 

interactions within the ribosome do more than just facilitate a tRNA-mRNA interaction. The 

hypothesis of an “active site” for decoding on the ribosome was soon proposed. These 
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decoding interactions (unknown at the time) were said to determine the accuracy with which 

tRNAs were selected. It was not until the early 2000s that a clear picture of the interactions at 

the decoding site emerged. Today, we know that important conformational changes that occur 

after tRNA binding accelerate the selection of the correct tRNA [19]. These mechanistic studies 

were possible because of atomic-level resolution of crystal structures of the ribosome. The 

advent of X-ray crystallography to study ribosomal structure was an important milestone in our 

understanding of the extremely dynamic process of protein synthesis. Although ribosomes 

were crystallized as early as 1980 [20], structures were not available until the late 1990s. The 

crystal structure of the ribosome paved way for researchers to design more meaningful genetic 

and biochemical experiments to directly address key questions in translation [21-25].  

The Composition Of The Ribosome 

Bacterial ribosomes contain about 33% protein and 67% RNA [3]. Building the ribosome 

requires the efficient and proper maturation of long sequences of rRNA along with binding of 

ribosomal proteins and biogenesis factors. The 30S small subunit contains 21 r-proteins and one 

rRNA molecule (16S, 1542 nucleotides). The 50S ribosome contains 34 r-proteins and two rRNA 

molecules (23S, 2904 nucleotides) and (5S, 120 nucleotides) [26]. Ribosomal RNA is transcribed 

from seven rDNA operons (A, B, C, D, E, G, H), each with one copy of 16S and 23S and varying 

copies of 5S and tRNA genes [3, 17]. After transcription, the spacer and leader sequences 

flanking the mature rRNA sequence are processed and removed. The remarkable complexity 

and highly evolved architecture of the ribosome implies that a lot of cellular resources are 
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dedicated to ensure that ribosomes are built correctly. This is especially true for the formation 

of active sites of the ribosome: the 30S decoding center [25] and 50S peptidyl-transferase 

center (PTC) [27]. These two functional centers of the ribosome are located ~75 Å apart and 

communicate at each stage of elongation. The ribosome has three tRNA binding sites – A 

(aminoacyl), P(peptidyl), and E (exit) [28]; these sites span both the ribosomal subunits. The 

chemistry in the PTC is favorable for a nucleophillic attack of the alpha-amine of the A-site 

amino acid on the carbonyl carbon of the P-site amino acid. rRNA residues at the PTC (A2602 

and U2585) are directly responsible for peptide bond formation [29, 30]. The decoding site 

hosts important conformational changes at each cycle of elongation starting from the binding 

of a cognate tRNA (along with EF-Tu-GTP) to tRNA accommodation [31]. 

The Process Of Translation 

The goal of translation is to manufacture proteins that can fold and function properly. 

The earliest genetic studies on the ribosome [17] utilized mutants that conferred antibiotic 

resistance by altering translation fidelity. Two questions emerged from these studies – 1) what 

is the accuracy of protein synthesis? and 2) how does the ribosome distinguish between a 

cognate, a near-cognate, and a non-cognate tRNA [12, 32].  

A “kinetic proofreading” model was suggested first by Hopfield in 1974 to explain the 

selectivity of the ribosome [33, 34]. Several kinetic and biochemical studies have confirmed this 

“kinetic proofreading” hypothesis [19, 35, 36]. According to this model, the ternary complex 

(consisting of elongation factor, EF-Tu, GTP and an aminoacylated tRNA) is presented at the A-



 6 

site of the ribosome (Initial binding). Only cognate tRNAs successfully bind, while non-cognate 

tRNAs dissociate readily (codon recognition). During a cognate interaction, the C75 of the 

aminoacyl tRNA basepairs with A-site rRNA residue G2553 and this anchors the tRNA to the A-

site. If the correct tRNA is selected, GTP hydrolysis occurs, and EF-Tu is released from the 

ribosome (GTP hydrolysis). Near-cognate and non-cognate tRNAs have a higher probability of 

being rejected at this stage because their base-pairing interaction consumes a lot more energy 

for EF-Tu dissociation than cognate-tRNA (tRNA selection). Once tRNA is selected, the rest of 

the selected tRNA orients itself into the PTC (tRNA accommodation).  The CCA end of the tRNA 

then interacts with 23S rRNA and is ready for peptide bond formation (Peptidyl transfer). 

Elongation is followed by the process of translocation, where the tRNAs move from A/P sites to 

the P/E sites, placing the subsequent codon on the A-site, ready for the next round of 

elongation. This process continues until a stop-codon is encountered at the A-site and is 

recognized by release factors for termination. Each cycle of elongation is driven by the GTPase 

activity of elongation factors EF-G and EF-Tu and involves movement of mRNA together with 

tRNA.   

An alternative “allosteric model” was suggested by Nierhaus and his colleagues, which 

postulates that base-pairing interactions at the ribosomal E-site influences tRNA selection at 

the A-site [37]. However, the model has been debated in the field due to experimental evidence 

that argues against it [38, 39] . Nonetheless, there is strong evidence for the influence of 

alloteric interactions on translation fidelity in general and cannot be ruled out [37].  
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The Prokaryotic Ribosome As A Model For Macromolecular Assembly 

 It was demonstrated in the late 60s by Nomura and colleagues that all the information 

required to build a functional ribosome is present within the components of the ribosome itself 

[40, 41]. Nomura’s group carried out elaborate reconsitution experiments and demonstrated 

that the ribosome is capable of self-assembly. If the ribosome can assemble itself, why do 

bacteria have “assembly” factors? [42]. 

Actively growing cells can synthesize upto 70,000 ribosomes during its lifetime and 

thereby constitute a large percentage of the bacterial biomass [5]. Kjeldgaard and colleagues 

showed that the number of ribosomes in a cell (of Salmonella typhimurium) is directly 

proportional to its growth rate, suggesting that the formation of ribosomes is the rate-limiting 

step to synthesis of proteins [4]. There are some important differences between in vivo and in 

vitro ribosome assembly which provide an explanation for the requirement of biogenesis 

factors. In an actively dividing cell, ribosomes assembly is exceptionally efficient (rRNA local 

structures are known to form in ~100 milliseconds and long range interactions in a few 

minutes), remains coupled to cell growth, and is completed in a matter of minutes. In vitro, 

formation of ribosomes takes about 20-30 minutes [43, 44] and requires conditions (of 

increased ionic strength and temperature) that deviate considerably from the cellular 

environment. In vitro assembly involves post-transcriptional binding of ribosomal proteins, 

whereas in vivo assmebly involves co-transcriptional binding of proteins [45]. In vitro studies 

have indicated a certain order of binding events and formation of specific intermediates. 

Recent studies using advanced techniques such as X-ray hydroxyl footprinting and quantitative 
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isotope labeling mass spectrometry that have shown multiple intermediates form at the early 

stages of assembly [44, 46]. The “concurrent nucleation” at multiple points strongly suggests 

there is more than one way to assemble the ribosome. In order to ensure that ribosomes are 

properly matured given the speed at which they are made, the cell utilizes “biogenesis” or 

“assembly” factors. Bacteria have about 40 biogenesis factors [26] and eukaryotes have over 

200 [42] that aid in processes such as rRNA transcription, processing, and ribosomal protein 

binding. Moreover, intermediates formed in vitro may be very different from those formed 

invivo. The ribosome serves as a remarkable model for studying the assemblage of large, 

macromolecular complexes in the cell. The ribosome assembly process avoids thermodyanmic 

traps to successfully assemble its 54 proteins and large RNA molecules. Despite severel years of 

work in the field of ribosome assembly, the function of individual ribosomal or non-ribosomal 

proteins that facilitate this highly efficient process is poorly understood. Characterization of 

factors that regulate the quality of ribosomes is crucial to fully understand bacterial translation. 

Why Do Ribosomes Have Proteins? 

The interactions within the ribosome are governed by the critical architectures that are 

held together by its protein and RNA components. Many ribosomal proteins are present at the 

center of these crucial interactions. Despite our expanding knowledge of the molecular stages 

of translation, it remains unclear why the ribosome requires so many proteins, several of which 

are very highly conserved, yet non-essential [47]. Ribosomal proteins have long extended 
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structures which allow anchoring of rRNA in its place and these r-proteins are thought to serve 

as an “anchor” for maintaining the ribosomal architecture [48]. Is the sole function of ribosomal 

proteins to preserve and stabilize the important regions of the ribosome? There are conserved 

patches on ribosomal proteins that extend away from active sites or rRNA regions important for 

maintaining structural integrity. Thus, it appears that ribosomal proteins may be connecting the 

processes that occur in the ribosome to pathways outside the ribosome. The sheer number of 

proteins and the unique locations of their conserved regions on the ribosome suggests that 

they do not simply provide a scaffold for ribosomal RNA, but perform specific functions during 

translation [49].  

Of the ~54 r-proteins on the prokaryotic ribosome, 34 are “core” proteins that are 

common to all three domains of life (bacteria, archaea, and eukarya) [50]. Ribosomal proteins 

unique to bacteria are an indication that important aspects of bacterial translation that have 

been preserved throughout evolution. Many of these ribosomal proteins are non-essential for 

growth, which hampers the interpretation of their function. To define the pathways that have 

preserved such proteins on the eubacterial ribosome, we need to identify interactions that 

connect these proteins to their function. This dissertation is an effort in that direction and is 

focussed on the interrogation the function of a highly conserved, non-essential, large subunit 

eubacterial protein, L9.  
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Background 

Ribosomal Protein L9: Structure and conservation 

The gene coding for L9 (rplI) is clustered with genes for PriB (priB) S6 (rpsF) and S18 

(rpsR) on the rpsF operon [51]. L9 is highly conserved across all eubacteria, but absent in 

archaeal and cytoplasmic eukaryotic ribosomes [50]. Early structural data on L9 came from 

studies on Bacillus stearothermophilus and revealed the highly extended and unique 

architecture of L9 (Figure 2). The N domain of L9 primarily contacts the domain V of the 23S 

rRNA of the 50S [52] and its extended C terminus projects highly conserved amino acid residues 

away from the peptidyl transferase and the decoding centers [53]. The two highly conserved 

domains are connected via a nine-turn alpha helix that is invariant in length, creating a fixed 

distance between the domains [54, 55]. L9 improves reading frame maintenance by an 

unknown mechanism. The first evidence for this came from studies on an extreme form of 

programmed event of translational frameshifting (called translational bypass) of a T4 phage 

gene60. This programmed frameshifting event is required for the production of a DNA 

topoisomerase in T4 phage [56, 57]. A mutant form of L9 (hop-1, Ser93Phe) was isolated using a 

genetic screen as a suppressor of a defective version of gene60 [58]. Later, mutational analysis 

revealed that the N domain of L9 has one highly conserved residue that influences bypass, 

while residues that increase bypass by more than ten-fold are present at the surface of the C-

terminal domain of L9  [59]. These residues are located almost ~150 Å from the P-site of the 

ribosome. Because reading frame shifts are thought to occur at the P-site, it is mysterious why 
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the C domain of L9 would be positioned so remotely. We carried out a protein sequence 

allignment of L9 from several representative bacterial phyla and showed that the highly 

conserved residues of L9 are isolated to the N and C domains of L9 (Figure 2). This suggests that 

the orientation of the C domain with respect to the N domain is crucial L9’s function. Although 

L9 has been linked to improving translation fidelity, cells lacking L9 do not exhibit any apparent 

growth defects [60-62] (Figure 3).  
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Figure 2. The conservation of the sequence and structure of protein L9  

We carried out a multiple sequence allignment of L9 using ClustalW omega. The residues that 
are greater than 90% chemically conserved are highlighted (in red). The conserved residues are 
isolated to the two domains of L9 and the connecting helix is invariant in length. The structure 
of L9 has been modelled in Pymol using a crystal structure of the E. coli ribosome [53].  
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Figure 3. L9 deletion strains exhibit no significant growth pertubations. 

A) We monitored the absorbance of cultures of wild-type vs two deletion strains of L9 (ΔrplI::tet 
and ΔrplI::cat) at 600nm. B) The data from the log phase of growth curves from (A) was fit to a 
linear equation to calculate growth rate. The growth rates of rplI- cells are represented as a 
percent of the wild-type growth rate. The error bars represent standard deviation from 
triplicate measurements. There is no difference in exponential growth between L9+ and L9- 
cells under laboratory conditions.  
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A Synthetic Lethal Approach Reveals the Reason for L9’s Conservation 

Because of non-essentiality of L9, we were able to take a novel genetic approach to 

investigate L9’s function. We set out to identify conditions that make L9 essential for cell 

health. We modified an existing genetic screen for synthetic lethality (Figure 4) [63]. Using this 

genetic approach, we isolated six mutants each carrying a single point mutation that exhibited 

severe L9 dependence. Three of the six mutations were present in an essential GTPase Der 

while the other three mutations were in enzymes that post-translationally modify EF-P. An 

introduction to these two pathways and the existing literature is provided below. These E. coli 

mutants provided the first oppurtunity to understand why bacteria need L9 and establish 

situations where the demand for L9 is high. 
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Figure 4. The modified synthetic lethal screen used to isolate L9-dependent mutants  

Shown on the left is a schematic of the synthetic lethal tool (unstable plasmid) used for the 
screen. The plasmid has a defective par locus causing it to segregate randomly during cell 
division [63]. The gene coding for L9 (rplI) and LacZ (lacZ) were cloned under the control of a 
strong IPTG-inducible promoter (trc) [64]. Cells carrying the plasmid appear blue on an X-GAL 
indicator plate (shown on the right). The loss of plasmid indicates the absence of both L9 and 
LacZ. A library of random E. coli mutants was screened to isolate mutants that exhibit 
dependence on plasmid-borne L9 (a solid-blue phenotype).  
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Figure 5. The crystal structure of Der from Thermotoga maritima  

 The enzyme Der contains two tandem GTP-binding domains connected to a RNA binding KH 
domain. The image was prepared in Pymol using the crystal structure of Der from Thermotoga 
maritima (Robinson 2002). Mutations in Der that causes L9 dependence were present in 
different GTPase domains (highlighted in red).  
  



 17 

Essential Biogenesis factor, Der (EngA, YphC, or YfgK) 

Bacterial GTPases are known to have critical roles in ribosome assembly and translation 

[65, 66]. Their function is generally coupled to their GTPase activity that drives key 

conformational changes during cellular processes such as translation. While in eukaryotes 

GTPases mostly participate in signal transduction, most bacterial GTPases have been implicated 

in ribosome biogenesis and translation. Ribosome assembly (RA) GTPases identified so far are 

not required for in vitro ribosome synthesis; however, most of them are indispensible for cell 

growth [66]. RA GTPases are known for their function in biogenesis because their absence 

results in the accumulation of ribosomal intermediates in vivo. Many GTPases serve as check 

points in ribosome assembly to prevent the accumulation of energetically unstable dead-end 

intermediates, which explains its importance in the cell. Of all the characterized bacterial 

GTPases, Der (double Era-like) is the only GTPase with two tandem GTP-binding and hydrolysis 

domains [67] (Figure 5). There are no homologs of Der in archaea or in eukaryotes, with the 

exception of some plants [68]. Der has been implicated in large subunit assembly in E. coli  [69] 

and Bacillus subtilis [70] and found to be essential in several other bacteria [65]. The two 

domains of Der function in a co-operative manner and are both are required for GTPase activity 

[71]. We have identified a unique synergy between Der and L9. Two point mutations in Der 

(DerT57I and DerE271K) inactivate the enzyme activity of Der and cause severe growth 

dependence on protein L9. These mutants and their functional association with L9 have been 

characterized and the manuscript is presented here (in Chapter II). Der has been implicated in 

50S biogenesis for two reasons - its association with the 50S subunit seems to be coupled to its 
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GTPase activity and the depletion of Der leads to severe 70S deficiency. Intermediates of 50S 

accumulate in Der-depleted cells (45S, 40S and 35S) in a Mg++-dependent manner [69]. The 

Mg++ dependency and the accumulation of multiple intermediates suggests that the stabiliy of 

the 50S may be compromised at a late-stage of biogenesis in Der mutants [69].  

Although some bacterial GTPases seem to be involved in cell division, whether this is 

simply a secondary effect of a ribosome maturation function is not known. The pleiotropic 

phenotypes of most of the ribosome-associated GTPases make it difficult to study their isolated 

function in biogenesis. The accumulation of improperly assembled ribosomes can pose a great 

threat to the cell. If misassembled ribosomes are allowed to initiate translation, the quality of 

proteins in the cell will be severely compromised. To fully understand quality control of 

translation it is important to identify what biogenesis factors do, when they act, and how they 

influence the quality of ribosomes entering translation. Performing directed functional studies 

aimed at understanding one biogenesis factor has been challenging because in vivo, biogenesis 

occurs very rapidly and is coupled to multiple events such as protein binding, RNA folding, and 

RNA modification. The synergy between a ribosome biogenesis factor like Der and a fidelity 

factor such as L9 provides the exciting oppurtunity to investigate the relationship between 

ribosome synthesis and ribosome function.  
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Figure 6. The crystal strucuture of the Thermus thermophilus ribosome bound to EF-P  

EF-P (in red) binds between the E- and the P-sites of the ribosome and its modified lysine 
residue (K34) reaches into the peptidyl-transferase cavity of the ribosome. The L9-dependent 
mutants isolated in our screen were present in factors that modify the lysine (K34) of EF-P. L9 
has been highlighted (in blue). The image was prepared in Pymol using the crystal structure 
from Thermus thermophilus [72].  
  



 20 

Elongation factor, EF-P 

Elongation factor P (EF-P) was first identified as a stimulator of peptidyl transferase 

activity in vitro [73, 74]. However, EF-P is not an essential component in in vitro translation 

assays and the gene coding for EF-P can be deleted in E. coli. Although the chemical reaction of 

peptide-bond formation occurs in the large subunit, EF-P was shown to require both ribosomal 

subunits for its stimulatory activity [75, 76]. The crystal structure of EF-P bound to the bacterial 

ribosome indicates that EF-P spans both subunits of the ribosome (Figure 6) and binds between 

the E- and the P- sites of the ribosome, with its C terminus binding near the anticodon stem-

loop of the P-site tRNA (at the 30S) and the N terminus positioned near the CCA end of the P-

site tRNA (at the 50S). A highly conserved patch on the N terminus of EF-P makes extensive 

contacts with the 23S rRNA near the PTC. This patch contains a lysine residue that is post-

translationally modified by the addition of a β-lysine. Genes poxA (yjeA or epmA), yjeK (epmB), 

and yfcM (epmC) encoding enzymes 2,3-Aminomutase, Lysyl tRNA synthetase, and Lysine 

hydroxylase respectively are responsible for the modification of the lysine residue. The function 

of EF-P has come to light only recently. EF-P promotes translation elongation of certain poly-

proline containing polypetides [77, 78] and thereby relives ribosome stalling of at these 

transcripts. The modification of Lys34 of EF-P by epmA and epmB is essential for EF-P’s function 

in translation [79, 80]. Although EF-P is not essential for cell growth, E. coli cells lacking EF-P 

exhibit considerable growth defects and in Salmonella, EF-P’s activity has been shown to 

increase virulence [81]. The eukaryotic EF-P ortholog, eIF5A is essential and has also been 

linked to polyproline translation [82].  
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The second class of L9-dependent mutations in our study was found in epmA (E116K 

and W117R) and epmB (W15amber). Unlike the der mutants, efp mutants require full-length L9 

for complementation. The synergy between L9 and EF-P provides an explanantion for the highly 

elongated structure of L9. Considering EF-P’s function in alleviating ribosome stalling, it is likely 

that the lack of EF-P activity results in increased accumulation of polysomes, causing a decline 

in the availability of 70S. Such situation puts a high demand on ribosome biogenesis. We 

observed that the presence of L9 alleviates ribosome biogenesis defects in EF-P-deficient cells, 

placing L9’s importance in ribosome quality control rather than in the decoding process. 

Identifying the mechanism by which an efp- phenotype is suppressed by L9 will be important to 

fully understand the function of L9.  
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CHAPTER II: CRIPPLING THE ESSENTIAL GTPASE DER CAUSES A DEPENDENCE ON 
RIBOSOMAL PROTEIN L9 

Introduction 

  Ribosomal proteins are a curious class of translation factors in that most of them 

do not appear to participate directly in protein synthesis [49]. Although the roles of some 

ribosomal proteins may be to maintain the architecture of the ribosome active centers, many 

typically possess regions of high conservation in areas that do not contact other ribosomal 

proteins or ribosomal RNA. There is mounting evidence that the conserved motifs in some 

ribosomal proteins are used to either regulate translation or to connect ribosomes to other 

important cellular processes [83-86] . Interestingly, some very highly conserved ribosomal 

proteins can be deleted from bacteria without inducing appreciable growth phenotypes, which 

obfuscates determination of their molecular functions [83, 87]. The bacterial-specific ribosomal 

protein L9 is an example of this non-essential class: it possesses a conserved secondary and 

tertiary architecture and contains several invariant amino acids, yet deletion strains grow well 

[61, 88, 89]. From the perspective that all highly conserved factors serve as windows to 

important cellular processes, we reasoned that a deeper understanding of L9 would help 

connect this enigmatic ribosomal protein to basic bacterial physiology. 

Ribosomal protein L9 was initially characterized during the in vitro ribosome assembly 

studies in the early 1980s [52, 90]. From those studies, it was established that L9 is a primary 

ribosome binding protein in that it does not require other proteins to engage the 23S RNA. A 
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functional role for L9 in reading frame maintenance came from a genetic screen for E. coli 

mutants that increased translation through a partially defective phage bacteriophage T4 gene 

60 bypass region [58]. The bypass event during gene 60 translation is remarkable in that the 

ribosome recognizes signals in the nascent peptide and mRNA that promote a 50 nucleotide 

“hop” before re-engaging the same mRNA to complete the synthesis of the encoded protein 

[56]. The hop-1 mutation was recovered and identified as Ser93Phe alteration in a highly 

conserved patch on the C terminus of L9. Subsequent studies demonstrated that L9 also 

influences frameshifting at codon repeats and stop codons [56] [91-93]. More recently, L9 

deletion strains were shown to read through stop codons more frequently (out of frame) and 

encounter the 3’ ends of their engaged mRNAs, which then invokes ribosome rescue systems 

[61]. Thus, at least one role for L9 is in maintaining translation fidelity, but nothing is known 

about the mechanism for this activity. 
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Figure 7: L9 on the ribosome.  

A rendering of the crystal structure of the E. coli ribosome with L9 conservation is shown in two 
views (PDB files 2i2t and 2i2p). The 50S and 30S subunits are indicated with 23S rRNA in pink 
and 16S rRNA in slate. The locations of the peptidyl-transferase center (PTC) and the P-site are 
highlighted.  L9 is surface rendered in blue with invariant amino acids in red. The hop-1 residue 
that affects translation bypass, Ser93 is colored green.  
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Structurally, L9 is odd in that it projects from the surface of the large subunit near the 

base of the L1 stalk. L9’s architecture is very highly conserved and is comprised of a globular N 

domain that docks with the 23S RNA, a long alpha helix of fixed length, and a globular C domain 

displayed away from the surface in crystal structures (Figure 7) [53, 94, 95]. Although the 

positioning of L9 in crystal structures implies a rigid conformation, chemical footprinting and 

crosslinking experiments suggest that L9 is dynamic and may engage portions of the L1 stalk 

RNA and also surrounding regions of the large subunit [59, 96]. In support of this idea, 

structural biologists recently demonstrated that L9 might be inadvertently stabilized in 

ribosome crystals through inter-ribosomal contacts. Indeed, ribosomes missing L9 can enter 

alternative crystal forms, a feature that allowed, for the first time, resolution of the GTPase-

activating center [89, 95, 97]. 

Not only is the architecture of L9 conserved, but there are also collections of invariant 

amino acids in both the N and C domains. Considering the expansive evolutionary history of L9 

in eubacteria (it is conserved in all bacterial phyla) it would seem that L9 plays a critical role in 

cell physiology that is frequently selected in nature. However, in tested cases, L9 deletion 

strains appear healthy. While it can be argued that a small fitness advantage is sufficient for 

evolutionary conservation, the other domains of life do not have L9 (aside from bacteria-like 

organelles). 

The conservation of specific residues in L9 suggests that it interacts with other factors 

that are also very highly conserved. We are interested in identifying such factors, not only to 

develop a mechanistic understanding of L9’s role in translation fidelity, but also to potentially 
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reveal new biochemistries. To move in this direction, we screened a chemically-mutated E. coli 

library for mutants that depend on L9 in the hopes we could recover mutations in essential 

factors that would point to the functions of L9. Here, we describe strains with mutations in the 

essential ribosome biogenesis GTPase Der (EngA/YphC) that grow better with L9 than without it 

[71, 98]. We show that the L9- dependent Der mutants are severely compromised for GTPase 

activity, which was previously shown to be critical for Der’s essential function [69, 71, 99]. 

Purified L9 does not rescue the GTPase defects, nor does it alter the stimulatory activity of Der’s 

GAP-like factor YihI, so the fitness afforded by L9 seems indirect. We put forward a preliminary 

hypothesis that the ribosome-binding domain of L9 may help stabilize structurally compromised 

large subunits synthesized when Der activity is limiting. 

Materials and Methods 

Strains and plasmids.  

Strain TB28 (MG1655, lacIZYA) was designated as wild-type E. coli for this study [63]. 

The gene encoding L9 (rplI) was deleted or modified by recombineering in strain SM1405 (X90, 

clpX clpA harboring plasmid pSIM5) using selection for either a promoter-less kanR ORF or 

promoter-containing tetR or catR genes [100]. Mutants of rplI were P1 transduced into TB28 

and the modifications verified by diagnostic PCR and DNA sequencing [101, 102]. For 

complementation, Der variants, full length L9 (1-149), L9 1-149-FLAG-His6, L9 1-53-FLAG-His6, L9 65-

149-FLAG-His6, and YihI-FLAG-His6 were expressed from derivatives of the pTrc99a plasmid [64]. 
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Der variants were overexpressed for purification from pET-3a (Novagen). The construction of 

the unstable reporter plasmid used for the screen is described in the Supplemental Material. 

Chemical mutagenesis and library screening.  

The screening strain AN226 (TB28, rplI::tet harboring pRC-L9) was mutated using N-

ethyl-N-nitrosourea (ENU, Sigma #N3385) using a published protocol as a guide [103]. An 

overnight culture of AN226 was diluted (1/50) in 1mL A-0 medium with 0.2 % glycerol, 0.5 mM 

IPTG, and 75 g/mL ampicillin. At early exponential phase, 26 mM of ENU (stock prepared in 

0.1% acetic acid and 23% DMSO) was added to the culture. A parallel control culture received 

only the ENU diluent. After 20 minutes at room temperature, the cells were recovered in 1mL 

of LB medium containing 0.5 mM IPTG and 28 mM 2-mercaptoethanol (to inactivate the 

mutagen) for 2 hours at room temperature. The culture that received ENU exhibited ~95 % loss 

in viability compared to the mock. Dilutions of the library were plated on LB agar (with 40 

μg/mL X-Gal, 0.2 % glycerol, and 0.5 mM IPTG) and screened at ~250 colonies per 90 mm plate. 

These mutants were cured of pRC-L9 and mutations causing the phenotype were mapped using 

transposon-based P1 transduction marker rescue (Supplemental Material). The mutations were 

then identified by sequencing the mapped locus. Three mutants had changes to der. All 

sequences were analyzed using E. coli K-12 MG1655 genome as wild-type (GenBank: U00096.2) 

[104].  
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Protein expression and purification.  

L9-FLAG-His6 was purified under denaturing conditions, refolded on a Ni++ column by 

desalting, and then eluted under native conditions (Supplemental Material). YihI-FLAG-His6 was 

purified similarly, but under native conditions. L9 and YihI were further purified by 

hydroxyapatite chromatography. Purified proteins were exchanged into Buffer A (20 mM Tris-

HCl, 25 mM NaCl, 0.05 % Tween-20, 5% glycerol, and 5 mM 2-mercaptoethanol, pH 8.0) prior to 

storage at -80 oC. The concentrations were determined by UV absorbance (L9 in GuHCl = 1,280 

M-1 cm-1 and YihI in GuHCl = 6,890 M-1 cm-1) [105]. We were unable to obtain ample soluble Der 

with either N- or C-terminal epitope tags and strains with C-terminally-tagged chromosomal der 

were very sick, suggesting a defective enzyme. Therefore, wild-type and mutant versions of 

untagged Der were overexpressed using a T7-expression system (pET-3a, Novagen) and purified 

conventionally (Supplemental Material). Briefly, overexpressed protein was purified from 

cleared lysates under native conditions using a combination of anion exchange, hydroxyapatite 

binding, and ammonium sulfate precipitations. Purified Der contained a contaminant that 

exhibited the absorbance profile of nucleic acid (likely GDP as has been reported) [67, 70, 106], 

which prevented quantification using UV absorbance. Therefore, the concentration of Der was 

measured using Bradford assays with BSA as a standard (Bio-Rad). GTPase assays. Der’s GTPase 

activity was measured using a regenerative, coupled assay [107]. A 20X Assay Mix (20 mM 

NADH, 150 mM phosphoenolpyruvate and ~10 U/mL pyruvate kinase/lactate dehydrogenase 

mixture (Sigma #P0294) was prepared in Assay Buffer (20 mM Tris-HCl, 100 mM KCl, 0.05 % 

Tween-20, 5 % glycerol, and 5 mM 2-mercaptoethanol, pH 8.0) and frozen in aliquots at -80 C. It 
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is established that Der’s GTPase rate is increased at high concentrations of potassium [98, 106]. 

In preliminary experiments, we determined that by increasing KCl or K-PO4, the rate of GTP 

hydrolysis could be accelerated to the point that stimulatory effects of YihI were no longer 

measureable (Supplemental Material). Therefore, our assay buffer was formulated to set the 

basal rate of wild-type Der at ~50% the YihI-stimulated rate so that stimulatory effects could be 

readily observed. Although the T57I and E271K mutants were also stimulated by potassium, the 

relative turnover differences were not affected. 2X assay mixes were prepared in Assay Buffer 

supplemented with GTP and a 2 mM MgCl2 excess over the GTP concentration. 30 L of the 2X 

assay mixture was combined with 30 µL of 2X enzyme (diluted in Assay Buffer). 50 L of the 

mixed reaction was then transferred to a 96-well plate and the loss of absorbance of NADH was 

monitored at 340 nm at 1 min intervals. The slopes of straight lines fitted to the raw data were 

converted to GTPase rates using the NADH extinction coefficient and the background rates of 

controls lacking GTPase were subtracted [107]. Doping of GDP into pilot reactions established 

that the regeneration system was capable of converting >150 M GDP to GTP min-1. Reaction 

rates were typically linear over several hours. The Km and Vmax values were determined at 

varying GTP concentrations by fitting to the Michaelis-Menten equation using Prism 6 

(GraphPad software). The affinity of YihI for Der was determined by converting the stimulation 

data to fractional occupancy and fitting to the law of mass action to determine Kd 

(Supplemental Methods). 
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Conditional Degradation.  

The conditional degradation system has been described elsewhere [101]. Briefly, the 

endogenous target gene was modified to encode a C-terminal peptide tag that is recognized by 

the processive unfoldase/protease ClpXP. The expression of ClpXP was then regulated from a 

plasmid. Strains were maintained in glucose to repress expression of ClpXP and then switched 

to medium containing arabinose to induce the protease and degrade the target. For this study, 

recombineering was used to replace wild type rplI with rplI-deg or rplI-cont using a downstream 

antibiotic marker for selection, (rplI is the last gene in the S6 operon) [100]. P1 transduction 

was used to move tagged versions of rplI into a clpX strain with WT or mutant der. The strains 

were then transformed with a pBR-ClpXP plasmid library with randomized Shine-Dalgarno 

sequences to select candidate plasmids that allowed optimum expression of ClpXP for L9 

degradation [101]. Transformants were tested for L9 degradation in the first ~30-40 minutes of 

induction using Westerns. For degradation experiments, a rich, defined MOPS-buffered 

medium was used to better control catabolite responses (Teknova) [108]. Mutant derT57I 

strains carrying tagged rplI and pBR-ClpXP were diluted from an overnight (1/100) into medium 

containing 100 g/mL ampicillin and 0.2 % glycerol and 100 L was grown with continuous shaking 

in a 96-well plate at 37 °C (Biotek Synergy MX). At early exponential phase, either 0.2 % 

arabinose or 0.2 % glucose was added. After ~40-50 minutes of induction, samples of the 

cultures were normalized for their absorbance at 600 nm for Western analysis, and a separate 

aliquot diluted (1/10) into a new well containing either glucose or arabinose medium. When the 
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cultures reached a density nearing the end of exponential phase, the sampling and dilution was 

repeated. 

Microscopy.  

Cells from control and L9-depleted cells were imaged using differential interference 

contrasting (DIC) from PBS-washed samples of liquid cultures. Cells were heat-fixed onto slides 

and covered with mounting medium (Prolong Gold, Invitrogen) prior to imaging (Zeiss Axiocam 

MRc5, DIC III). Cell lengths were measured using software from the microscope manufacturer 

(Axiovision).   

Results 

Mutations in der cause a dependence on L9.  

To reveal pathways influenced by L9 in E. coli, we carried out a synthetic-lethal screen 

for mutations in other genes that compromise cell health in L9's absence [63]. We first deleted 

the chromosomal gene encoding L9 (rplI) by replacing it with a tetracycline resistance gene. 

Consistent with previous reports that L9 is non-essential, the rplI strain formed colonies that 

were indistinguishable from rplI+ cells and exhibited only a slight reduction in yield in liquid 

cultures [61, 88, 89]. We then placed a clone of the L9 open reading frame (ORF) on an unstable 

reporter plasmid under control of a controllable promoter (Ptrc). The resulting strain was 

chemically mutated to generate a library and screened for colonies that retained the reporter 
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plasmid (synthetic lethality, indicating that L9 improved their fitness). Potential L9-dependent 

mutants (exhibiting a solid blue colony phenotype) were recovered at approximately 1 in 

20,000 colonies. Three rplI-dependent mutants mapped to a common locus and DNA 

sequencing revealed that each had a point mutation in the ORF of the der gene (also called 

engA and yphC) [98].  The mutated der genes encode DerT57I and DerE271K (DerT57I was 

recovered and mapped twice independently). The T57I and E271K mutations alter very highly 

conserved residues in each of Der’s two GTPase domains (“G domains”) [67, 71]. T57 is within 

the G3 motif of G domain 1 and E271 is within the switch II motif of G domain 2. When cured of 

the support plasmid that supplies L9, the derT57I mutant was sicker than the derE271K mutant, 

but each still formed colonies (Figure 8, panel A). To verify that rplI indeed improved the fitness 

of the recovered der mutants, we used phage transductions to replace the rplI locus in the 

mutants to either another L9 null (rplI::cat, as a control) or to wild-type (rplI-cat). Replacing 

the existing rplI::tet with rplI::cat did not rescue the growth defects. In contrast, restoring 

rplI in the chromosome improved growth to a level that was intermediate between the 

recovered rplI, der mutants and an rplI+der+ strain (Figure 8, panel B). Thus, the fitness of these 

der mutants is increased when the cells have L9, but the mutant der genes cause growth 

reductions, suggesting they remain partially defective in the presence of L9.  
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Figure 8: L9 improves the health of der mutants. 

A synthetic lethal screen revealed mutants that grow better with an unstable reporter plasmid 
expressing L9. Panel A, a comparison of the parental screening strain to two recovered der 
mutants on an X-gal indicator plate. The parental cells did not require L9 and turned white 
during colony development from plasmid loss. Cells that grew better L9 maintained a blue color 
in the colony because plasmid-containing cells were more fit. The derT57I strain was sicker in 
the absence of L9 than was derE271K, evidenced by the relative colony sizes without the 
reporter plasmid. Panel B, strains cured of the reporter plasmid were transduced to replace the 

rplI locus in the chromosome. A control transduction replaced the original rplI::tet and 

rplI::cat and did not improve growth. Restoring rplI (rplI-cat) improved the health of both der 
mutants, but not to the level of the parental cells with wild-type der. Panel C, complementation 

of the rplI, derT57I mutant with a mock plasmid, or plasmids encoding L9 1-149-FLAG-His6 
(full-length), L91-53-FLAG-His6 (N domain), or L965-149-FLAG-His6 (C-domain). The N domain 
alone complemented the small colony phenotype as well trans-complementation of the 
chromosomal der alleles. Wild-type Der restored full health to each mutant (second column). 
Overexpression of either the T57I or E271K mutant improved the health of each mutant, but 
did not sicken cells with wild-type der in the chromosome. Therefore, each der mutant is 
partially functional and recessive.  
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The N-domain of L9 complements derT57I. 

L9 contains highly conserved amino acids in both its N and C domains. To determine if 

either domain could suppress the small colony phenotype independently of the other, we 

expressed them from plasmids in the derT57I strain because of its easily scorable phenotype (L9 

residues 1-53 and 65-149). Both full-length and N domain constructs improved the growth to 

comparable extents on plates and in liquid cultures (~60 % of der+). The C domain did not 

complement and grew similarly to the derT57I strain with a mock plasmid (~30 % of der+, Figure 

8, panel C and not shown). We established that the C domain construct expressed protein of 

the predicted size from this construct in a separate experiment (not shown). Therefore, the N 

domain of L9 is necessary and sufficient for complementation of the derT57I allele.  

The derT57I and derE271K mutants are partially functional and recessive.  

We cloned the der+, derT57I, and derE271K ORFs onto plasmids and introduced them 

into rplI, der+ and dermut strains. A mock plasmid lacking der was used as a control. Because 

homologous recombination was active in these strains and capable of replacing the mutant der 

loci, we plated dilutions of freshly-transformed cells to evaluate colony fitness without 

substantial outgrowth. This procedure also reduced the accumulation of second-site 

suppressors (described below). Introducing plasmid-borne, der+ into the derT57I and derE271K 

strains fully restored colony and liquid culture growth (Figure 8, panel D, second column, and 

not shown). This finding indicates that the slow-growth phenotypes were caused solely by the 
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mutations in der. Plasmid-born versions of either derT57I or derE271K partially restored the 

growth of strains with the same alleles and also of the other mutant (Figure 8, panel D second 

and third columns). Moreover, these plasmids did not sicken cells with chromosomal der+. 

Therefore, the recovered der mutants are recessive and they encode partially active Der 

variants that support growth better when more is expressed. 

Suppressor mutations arise frequently in the derT57I background.  

Our efforts to transduce the mutant genes to other strains were impeded by the weak 

screenable phenotype of derE271K and a rampant accumulation of escape mutants of derT57I 

that grew well and lost their dependence on L9. The observed frequency of escape in overnight 

cultures (10-2
 to 10-5) of derT57I was too high to be accounted for by same-site reversion 

(expected at ~10-9). Therefore, to determine if the escape mutations were intra-or extragenic, 

we sequenced the der genes from four derT57I fast-growing escape mutants. Each retained the 

original T57I mutation, but contained an additional mutation in the same GTPase domain near 

the T57I position (Figure 9). This finding reinforces the conclusion that the T57I mutation in Der 

is solely responsible for the slow-growth phenotype and the dependence on L9. Also, 

unsuppressed derT57I strains are not able to be reliably cultured for biochemical studies. 
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Figure 9: The locations of the L9-dependent Der mutants and T57I suppressors.  

Shown is a rendering of Der from Thermotoga maritima (PDB IMKY) showing the locations of 
T57 and E271 and the relative positions of four E. coli T57I suppressors (A45V, R109G, T113A, 
V158G, in green). The GDP bound in G domain 2 is pink. In this conformation of Der, T57I lies at 
the interface between G domain 1 and the KH domain. E271K is in switch II of G domain 2.  
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The T57I and E271K mutations impair the GTPase activity of Der.  

Prior studies indicated that GTP hydrolysis by each of the two GTPase domains is 

required for E. coli Der’s essential function and that they act cooperatively [67, 98]. We 

discovered that der encoding a C-terminal FLAG-His6 tag was unable to functionally replace 

wild-type der in the chromosome. Very sick strains with these tags spawned fast-growing 

escape mutants with frameshift mutations in the 5’ end of der that prevented expression of the 

tagged enzyme. To avoid the possibility of aberrant behaviors stemming from tags on Der, the 

wild-type, T57I, and E271K versions were purified as untagged proteins for in vitro 

characterization. The reported apparent Km of E. coli Der for GTP is ~140 M (23). Therefore, we 

preliminarily measured the basal GTP hydrolysis rates for each enzyme at 1 mM substrate 

(near-saturating) using 0.125 to 2 M enzyme. Under these conditions, we observed a dose-

dependent increase in GTP hydrolysis rate for the wild-type enzyme and a turnover of ~1.5 min-

1, which is consistent with the reported basal GTPase activity of Der (Figure 10, panel A). Both 

mutants were severely compromised in their GTPase activities, with the E271K mutant 

possessing a higher turnover rate than T57I (~0.30 and ~0.02 min-1 respectively). Thus, the 

severity of the GTPase defects mirrored the severity of the growth phenotypes. Moreover, each 

mutation inhibited the GTPase activity of both GTPase domains, which supports a proposed 

highly-cooperative hydrolysis mechanism for Der [71]. To determine if the observed rate 

defects were from a loss in affinity for GTP or from a catalytic defect, we measured the 
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hydrolysis rates under varying GTP concentrations to obtain Km and Vmax values (Figure 10, panel 

B). In these conditions, wild-type Der exhibited an apparent Km of ~0.22 mM and a Vmax of 2.42 

min-1. We were unable to obtain these kinetic parameters for the T57I mutant because the 

hydrolysis rates were too low for fitting, but the E271K exhibited an apparent Km of ~0.25 mM 

and a Vmax of 0.2 min-1. Thus, this mutant was not compromised in its ability to bind GTP and the 

observed slow rate may stem from a reduction in the mechanical cycling of the enzyme because 

the E271 residue is not in contact with the GTPase center.  
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Figure 10: DerT57I and E271K are compromised in their GTPase activities.  

Panel A, various concentration of wild-type, T57I, and E271K Der proteins were evaluated in a 
regenerative GTPase assay using a GTP concentration that nearby saturated wild-type (1 mM). 
Inset, Coomassie-stained SDS-PAGE of the purified Der proteins. Increasing the wild-type Der 
concentration increased the observed GTP hydrolysis at each concentration tested. The T57I 
and E271K mutants only displayed a measurable hydrolysis rate above background at high 

concentrations (~2 M for T57I and ~1 M for E271K). The error bars are the standard 
deviations from three measurements. Panel B, Michaelis-Menten kinetic analysis of each 

protein at varying GTP concentrations (0.008 to 2 mM). The wild-type was assayed at 0.5 M 

and the T57I and E271K mutants were each assayed at 2 M and then the rates were converted 

to turnover rate per enzyme. The Km and Vmax values for wild-type were 0.22  0.04 mM and 

2.42   0.16 mM and these values for E271K were 0.25   0.06 mM and 0.20   0.01 
respectively. The rate of GTP hydrolysis by T57I was too low for fitting.  
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Additional YihI partially complements the der mutants.  

A recent study identified the highly conserved, non-essential protein YihI as factor that 

stimulates Der [109]. In particular, YihI was reported to increase Der’s GTPase Vmax by ~50 % 

and decrease its Km by ~50 %. DNA sequencing revealed that yihI was wild-type in each of our 

der mutant strains. To determine if YihI influenced the fitness of the L9-dependent der mutants, 

we cloned its ORF onto a multi-copy plasmid under control of the Ptrc promoter and introduced 

it into the der mutants. We and others observed that high levels of YihI severely inhibited 

growth (not shown) [109]; therefore, we tested for complementation under non-inducing 

conditions, wherein leaky expression from the plasmid would moderately overexpress YihI. 

Under these conditions, the additional YihI complemented both the colony and liquid culture 

growth of derT57I mutant as well as L9 did (~60 % recovery of growth rate), but neither protein 

complemented as well as wild-type Der (full restoration) (Figure 11, panel A and not shown). 

Providing additional YihI only subtly improved derE271K growth. These findings suggest YihI 

helps these mutants deal with their defective Der; however, we show below that this factor 

does not restore their GTPase activities. 
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Figure 11: YihI complementation and stimulation of Der.  

YihI with a FLAG-His6 tag on its C-terminus was expressed form a plasmid and used for 
complementation studies and to overexpress the protein for purification. Panel A, L9- strains 
with wild-type der, derT57I, or derE271K alleles. YihI complementation was evaluated under 
non-inducing conditions to reduce YihI toxicity. YihI expression partially complemented the 
derT57I and derE271K mutants, but did not restore wild-type growth. Panel B, the stimulation 

of wild-type Der (0.5 M) with and without YihI-FLAG-His6 (5.0 M) was measured with 
increasing KCl and presented as fold stimulation. At high concentrations of potassium, YihI did 
not stimulate Der. Panel C, under conditions that allowed approximately half-maximal YihI 

stimulation of 0.5 M wild-type Der (YihI at 2.6 M), GTPase activities were assayed in the 

presence of eitehr the T57I or E271K as competitors (each at 5 M). The observed activity of 
wild-type mixed with T57I was the sum of the stimulated wild-type and the non-stimulated 
T57I, indicating that T57I did not appreciably compete for YihI (arrows). The E271K was partially 
stimulated by YihI and the mixture displayed the sum of both stimulated rates.  



 42 

YihI stimulation is potassium sensitive.  

To directly evaluate the influence of YihI on the Der mutants, we purified YihI so we 

could monitor its stimulatory effect in GTPase assays. Consistent with previous reports, Der's 

basal GTPase activity was stimulated by potassium [98, 106]. The rate also increased with 

added KPO4 and did not increase with additional NaCl, so the stimulation was from the 

potassium ion as has been reported (not shown) [98, 106]. Surprisingly, we discovered that the 

stimulatory activity of YihI was inversely proportional to potassium stimulation. Without added 

KCl, YihI increased the weak GTPase rate of wild-type Der approximately three-fold. At 

concentrations of potassium greater than ~250 mM, the stimulation by YihI was lost. Curiously, 

YihI suppressed the additional stimulation observed at concentrations of potassium >250 mM 

(Figure 11, panel B and Supplemental Material). Therefore, YihI stimulation is sensitive to 

potassium concentration. Viewed another way, YihI helps Der function at lower potassium 

levels. 

YihI fails to bind to or restore the GTPase activity of the Der mutants.  

Using wild-type Der, we sought to establish an affinity between these factors under our 

standard assay conditions (100 mM KCl) by monitoring the increase in Der’s GTPase activity as a 

function of YihI concentration. Consistent with the previous report of YihI activity under similar 

conditions [109], we observed ~50% increase in Der’s GTPase when nearly saturated with YihI 

(Figure 11, panel C). We were able to derive a Kd between YihI and Der of 2.6 ± 0.6 M 
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(Supplemental Material). Thus, the affinity between these factors is moderate and consistent 

with YihI serving a dynamic regulatory role [109]. Next, we evaluated the ability of YihI to 

stimulate the L9-dependent Der mutants. We did not detect activation of T57I at our highest 

tested concentrations (2 M Der and 20 M YihI). The E271K mutant could be stimulated, but 

only at very high protein concentrations (>2 M E271K and 20 M YihI, Figure 11, panel C). 

Moreover, although the E271K mutation did not reduce GTP binding, it responded similarly to 

YihI as mutants that have GTP binding site alterations (S16A and S216A) [71, 109]. Thus, YihI 

appears to aid in the turnover of the enzyme, but cannot restore the GTPase activities of the 

mutants despite the fact it partially complements the in vivo phenotypes. In previous work, it 

was shown that YihI does not require G domain 1 for binding [109]. We were interested in 

establishing whether YihI could bind to T57I because this protein has a wild-type G domain 2 

and KH domain. Therefore, we performed an in solution competition experiment between wild-

type and T57I for access to YihI. Using our Der-YihI affinity data as a guide (Supplemental 

Material), we established a condition where the wild-type enzyme was ~50% occupied by YihI 

(0.5 M Der and 2.6 M YihI). In doing so, small changes in the available YihI would manifest 

observable changes in overall GTPase hydrolysis rate. Because the T57I protein is nearly 

inactive, if this mutant is capable of binding to YihI to any appreciable extent, an excess of T57I 

over wild-type in the mixture should reduce the observed stimulation. We did not observe a 

reduction in the GTPase stimulation of 0.5 M wild-type using 5  M T57I as a competitor and 

the observed rate was the sum of the stimulated wild-type plus the basal T57I rates (Figure 11, 

panel D). Therefore, T57I had no detectable affinity for YihI. For comparison, adding excess 



 44 

E271K to a reaction containing wild-type Der and YihI caused an increase in GTPase activity that 

was consistent with both enzymes being stimulated simultaneously. Because Der can function 

with T57 mutated (when second-site suppressed), these results emphasize a new importance of 

this highly conserved residue aside from routine GTP hydrolysis. 

Purified L9 does not influence Der's GTPase activity.  

When purified L9 was added to assays containing wild-type or mutant Der, there was no 

change in the GTPase rates. Moreover, L9 did not influence Der that was under YihI stimulation 

(Supplemental Material). This finding suggests that L9’s complementation activity in the der 

mutants may be indirect. Alternatively, the purified L9 may not be active or appropriately 

presented to Der (technical limitations prevented us from testing ribosomes with and without 

L9 at sufficiently high concentrations for these assays). 

L9 suppresses an elongated cell morphology caused by derT57I.  

The synthetic lethal analyses revealed that the small colony phenotype arises when the 

L9 support plasmid is lost (Figure 8). On the surface, this observation could be interpreted in 

two ways: either L9 accelerated the growth rate of all der mutant cells in a colony (synthetic 

sickness), or there was a high mortality rate in the der mutants and L9 improves survivability 

(true synthetic lethality). L9 had the greatest influence on the phenotype of cells with the 

derT57I allele, so we focused on this mutant for viability and morphology studies. We were 

unable to grow homogeneous cultures of the highly compromised rplI, derT57I mutant 
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because of the high frequency of second-site suppression (Figure 12, panel A, left plate). We 

devised a solution to this problem by employing a targeted protein degradation system to 

rapidly deplete L9 protein from derT57I cells at a convenient time [101]. By allowing L9 to 

suppress the derT57I allele during culturing, we were able to grow cultures of sufficient size for 

biochemical analyses. For this experiment, we modified the derT57I strain in three ways. First, 

we introduced a functional allele of rplI that encoded a degradation tag on the C terminus of L9 

that is recognized by the processive ClpXP protease (rplI-deg); second, we deleted the 

chromosomal clpX; and third, we introduced a controllable ClpXP expression plasmid. A control 

strain had a tag on L9 that is not recognized by ClpX (rplI-cont). We prepared a dilution of an 

rplI-deg, derT57I culture grown with the proteolysis system off and plated it under conditions 

with the proteolysis system on. All of the colonies were small and reminiscent of freshly-

isolated derT57I strains (Figure 12, panel A, right plate). Thus, the L9-deg protein was capable of 

suppressing the slow growth phenotype sufficiently to allow culturing without the 

accumulation of fast-growing suppressors. In an rplI-deg, derT57I culture, inducing expression 

of ClpXP caused a rapid depletion of L9-deg (Figure 12, panel B, inset). Keeping in mind that L9 

was still being expressed at high levels as a ribosomal protein, this result indicates that the 

degradation system was capable of overcoming the L9 synthesis rate and substantially reducing 

the half-life of the target protein. We noted that extended induction of ClpXP also caused a 

slight reduction in the L9-cont levels as well, indicating that the protease exhibited partial 

activity for this tag. This finding also suggests L9 protein levels may not be auto-regulated. The 

thorough depletion of L9 occurred by ~30 min, but we did not observe a pronounced reduction 
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in growth rate until ~4 subsequent mass doublings had occurred (Figure 12, panel B). This result 

is important because it demonstrates that ribosomes (or other important factors) synthesized 

in the presence of L9 and DerT57I are functional when L9 is removed. Thus, DerT57I likely 

functions in a difficult biogenesis step that, once overcome, no longer requires the support of 

L9. In addition, this experiment formally establishes that the protein product of rplI (and not its 

mRNA) is responsible for the suppression of this der allele. In a separate set of experiments, we 

determined that the degradation of L9 in derT57I caused a loss in plating efficiency to ~40% 

that of controls (Supplemental Material). We initially attributed this observation to a loss in cell 

viability. However, microscopic analyses revealed that culturing of the L9-depleted, derT57I 

cells invoked an aberrant, elongated cell morphology (Figure 12, panel C). The average cell 

length of L9+ derT57I was similar to L9+ der+ cells (2.84 vs. 2.53 m respectively). In contrast, 

when L9 was depleted from the derT57I, the average cell length increased to 4.65 m with a 

high variance and the distribution of lengths formed clusters, with some cells being longer than 

30 m (Figure 12, panel D). Thus, the reduction in plating efficiency was likely caused by a 

reduction in cell division and not from growth inhibition per se. Overall, L9 appears to suppress 

a cell division defect caused by a crippled Der. 
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Figure 12: Conditional L9 degradation reveals an unsuppressed derT57I phenotype.  

A clpX, derT57I strain supported with either L9-cont or L9-deg was transformed with a 
controllable ClpXP expression plasmid and maintained under non-inducing conditions to reduce 
the accumulation of second-site suppressors. Panel A, providing L9-deg to the derT57I strain 
greatly reduced the accumulation of second-site suppressors. On the left is a representative 

plate showing the presence of suppressed mutant contaminants when rplI, derT57I was grown 

as an overnight culture without L9 support. On the right is a plate of rplI-deg, clpX cells 
containing pClpXP that were grown from an overnight culture to late exponential phase in 
glucose medium (ClpXP off) and then plated on arabinose to induce ClpXP and degrade L9-Deg. 

All colonies were small and reminiscent of freshly-isolated, unsuppressed rplI, derT57I strains. 
Panel B, cultures of L9-cont and L9-deg were grown to exponential phase and then treated 
either with glucose (to repress ClpXP expression, circles and triangles) or induced with 
arabinose (to express ClpXP, crosses and diamonds). As each fast-growing culture neared the 
end of exponential phase, aliquots of each were diluted 10-fold into fresh medium to allow 
extended outgrowth. Separate aliquots were removed for Western analysis of the tagged L9 
(above). L9-cont was stable and L9-deg was reduced to very low levels by the first sampling. The 
growth rate of the culture undergoing L9 degradation was reduced to 36% during the last 
outgrowth. Panel C, DIC micrographs of derT57I strains grown with L9 (L9-cont, pClpXP induced) 
or without L9 (L9-deg, pClpXP induced). Degradation of L9 caused the cells to become 
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elongated. Panel D, the lengths of 100 cells from each of the four different cultures grown with 
pClpXP induced for three outgrowths were measured from several micrographs and plotted 

along with their averages (long lines) and standard deviations. Average lengths (m): L9-cont, 
der+ = 2.53; L9-deg, der+ = 2.53; L9-cont, derT57I =2.84; L9-deg, derT57I = 4.65.  
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Discussion 

We identified mutations in the highly conserved and essential GTPase Der that cause a 

dependence on ribosomal protein L9 for improved fitness. The T57I mutant was independently 

recovered and mapped twice during our screen, probably as daughters of the original mutant 

that separated during recovery. This mutant displayed a pronounced phenotype and illustrates 

a balance between the inactivation of an essential enzyme and the ability to identify potential 

candidates during the visual screening of the library. In G domain 1, T57 is located within the G3 

motif, which connects to the switch II region of this GTPase. Threonine is found at this position 

in nearly all Der orthologs and could play an important role in the function of the invariant 

flanking motif residues. G domain 1 is reported to be responsible for the majority of Der’s 

GTPase activity [71, 106], so breaking the basic catalytic mechanism may explain the highly 

defective nature of this mutant. However, this GTPase domain is thought to undergo a dramatic 

reorganization during the GTP hydrolysis cycle. Structures of the Der ortholog from Bacillus 

subtilis show the G domain rotated such that the T57 location is positioned far away from the 

KH domain [106]. In contrast, in the Thermotoga maritima structure, T57 sits at a well-packed 

interface between G domain 1 and the RNA-binding KH domain [67]. Therefore, the T57I 

mutation may interfere with the ability of the domain to properly interact with the KH domain. 

The numerous second-site suppressors of T57I also support an architectural role for this residue 

because if it is required for GTP hydrolysis, only revertants should have functioned well. The 

E271K mutation sits in the switch II motif of G domain 2 [70]. Although there is generally a high 

variability in switch domains of GTPases [110-112], E271 appears invariant among all Der 
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proteins. Switch motifs in GTPases are thought to couple the energy of GTP hydrolysis to the 

movement of the switches and allow the enzymes to do mechanical work [112]. In the crystal 

structures of Der, E271 is not in direct contact with residues of the P-loop that gates the GTP 

hydrolysis site. Nonetheless, this residue is situated at a location that docks this switch against 

Der in the GTP-bound state. Envisioning a tensioned spring that gets released by GTP hydrolysis 

during the cycling of the enzyme, a mutation at this location could prevent the formation of a 

stable, high energy state of the switch. Our observation that the affinity for GTP of the E271K 

mutant was comparable to wild type also supports the idea that GTP binding was not inhibited, 

but that the cycling of the enzyme through high- and low-energy states was compromised. 

Perhaps even more compelling is the observation that the GTPase activity of G domain 1, which 

is reported to possess the majority of the observed GTPase activity [67], was also substantially 

inhibited by this mutation. We observed partial complementation of the phenotypes of each 

mutant by overexpressing YihI. This factor was identified as an interacting partner of Der that 

stimulated Der’s GTPase rate by both lowering the Km and increasing Vmax [109]. Because YihI 

was not observed to stimulate GDP release, it was designated a GAP-like factor [109]. Unlike 

canonical GAPs, YihI is reported to stimulate Der only marginally and our stimulation data was 

consistent with this conclusion. One interpretation of these findings is that Der is not likely to 

be a signaling GTPase; so raising its basal GTPase rate several orders of magnitude, as 

traditional GAPs do, would not be warranted [113]. Alternatively, YihI may not serve a bona fide 

GAP function by contributing to catalysis and could be stimulating the GTPase activity by 

stabilizing a catalytically active conformation, an idea put forth by its discoverers [109]. We did 
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not observe dermut complementation by YihI that was better than that provided by L9, 

suggesting the growth defects caused by dermut persisted in the presence of excess YihI. 

Moreover, YihI is not universally conserved in bacteria and it is non-essential [109]; yet, 

overexpression is toxic (suggesting it can shield Der from important targets). Der has joined a 

growing list of GTPases that require high potassium levels for optimal activity [71, 106]. We 

discovered that YihI had no stimulatory activity when potassium was present at high levels. 

Interestingly, the potassium level in E. coli and K. pneumoniae (where YihI is present) is 

reported to fluctuate between ~100 and ~250 mM, whereas those of B. subtilis (where YihI is 

absent) are maintained at ~400 mM. [106, 114-116]. Perhaps YihI helps load Der with 

potassium or helps Der function when intracellular potassium levels are low. The goal of this 

project was to decipher why L9 is conserved in nature, so what is L9’s role in Der physiology? 

Part of the conundrum stems from the fact that we do not know what Der specifically does. Der 

depletion for extended periods causes the accumulation of unstable and/or incomplete large 

subunits and defects in both 16S and 23S ribosomal RNA processing, which others have 

suggested points to a role in ribosome biogenesis [69, 71, 98, 99, 117]. Cells with deficient rRNA 

folding factors commonly display cold-sensitivities [66, 118]. We tested for cold-sensitivity in 

our der mutants and observed none (not shown). In addition, another group reported that 

overexpression of the stringent response factor RelA suppressed the growth defects caused by 

Der with mutations in either GTPase site, but not a der null [119]. A conclusion from that 

project was that the overexpressed RelA increased (p)ppGpp pools, restricted rRNA synthesis, 

and restored balance to the assembly process. We tested for the ability of overexpressed RelA 
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to suppress the L9-dependent Der mutants and, despite imparting a growth restriction in all 

strains, we observed no relative fitness increases in the mutants (not shown). Thus, the T57I 

and E271K mutants are distinct from Der variants with defective GTPase centers in this regard. 

An interesting feature of the large ribosomal subunits recovered from Der- depleted E. coli is 

that they are sensitive to reduced magnesium levels, suggesting they have not been assembled 

correctly [69, 99]. Curiously, when these destabilized subunits were evaluated for protein 

content, L9 was among the few proteins reported to fall off [69, 99]. This finding suggests that 

the binding site of L9 may be compromised when Der activity is reduced. In line with this 

notion, our studies indicate that the N-terminal domain alone is able to complement derT57I as 

well as the full-length protein. Additionally, the hop-1 mutation in L9 is in a conserved patch on 

the C domain and this variant complements our Der mutants as well as wild-type (not shown). 

Considering there are extensive contacts between the N domain and the 23S RNA, it seems that 

this potion of L9 may be helping to stabilize the large subunit when Der activity is limiting. The 

physiological functions of Der and L9 remain a mystery. An additional approach we took to 

interrogate the role of L9 in the Der mutants was to evaluate translation bypassing in the 

mutants using established reporters. Aside from the complication of second-site suppression, 

we discovered a curious phenomenon that led us to abandon that approach (Supplemental 

Material). We used a targeted degradation system to get around a thorny genetic problem and 

to preliminarily interrogate the physiology of Der mutants as they lose the support of L9. We 

were pleased to find that the degradation system could deplete L9 so well considering it is a 

highly expressed protein that is tightly associated with the ribosome. We plan to use our 
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degradation system to evaluate the integrity of ribosomes built with a defective Der upon L9 

depletion both in vivo and in vitro. In the preliminary investigation reported here, we revealed 

an elongation phenotype when the derT57I strain lost the support of L9. We also observed 

elongated cells in unsupported cultures of derE271K (not shown). We interpret these results as 

a problem with cell division caused by a defective Der and not necessarily a problem with 

biomass accumulation. Thus, der mutants were likely recovered in our screen because the loss 

of L9 promotes the retention of the reporter plasmid by reducing cell division. These findings 

raise interesting new questions about the roles of L9 and Der in ribosome assembly and in 

maintaining bacterial physiologies. 
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CHAPTER III: THE LARGE RIBOSOMAL SUBUNIT L9 ENHANCES SMALL SUBUNIT 
MATURATION AND ENABLES THE GROWTH OF EF-P DEFICIENT CELLS 

Introduction 

Translation fidelity is controlled on a number of levels; from tRNA aminoacylation, to 

mRNA decoding, to co- or post-translational surveillance [12, 19, 33, 120-122]. Numerous 

factors have been identified that influence the quality of protein synthesis, which is not 

surprising considering the complexity and the physiological commitment to this essential 

process. Among these, ribosomal protein, L9 reduces translational frameshifting, miscoding, 

and bypassing, but the mechanism for this activity remains a curiosity because L9’s location 

precludes interactions with either the peptidyl transferase center or the decoding center [53, 

88, 94]. Thus, L9’s activity as a fidelity factor indicates that there is an important missing 

component in existing models of translation.  

L9 has a highly conserved architecture consisting of two widely spaced globular domains 

connected by an elongated α-helix (Figure 13) [94, 123]. A mutation in the C-terminal domain 

(Ser93Phe) was isolated as a suppressor of a partially defective translational bypass reporter 

based on the bacteriophage T4 gene60 mRNA [58]. It was subsequently determined that L9 is 

required to suppress bypassing, frameshifting, stop-codon “hopping”, which suggests that there 

is a common mechanism behind each of these events [58, 61, 93, 124, 125]. In addition, it was 

demonstrated that conserved patches on the globular domains of L9 and the length of the 

connecting helix affect L9’s activity, so the conserved architecture of L9 is also required for its 
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fidelity function [93, 124, 125]. Interestingly, despite a remarkable eubacterial conservation, L9 

deletion mutants show little growth disadvantage under laboratory conditions [60, 61, 125-

127].  

Mechanistically, it is conceivable that L9 directly influences activities near the E-site, but 

a direct influence on the peptidyl transferase or the decoding centers is hard to reconcile (these 

are more than 70 Å and 90 Å away form L9 respectively). Recognizing that the ribosome is a 

champion of allosteric regulation over large distances, it is possible that L9 imparts a regulatory 

activity by influencing the decoding center under certain conditions; yet, no evidence for such 

distortions has been observed in ribosomes lacking L9 using chemical probing or X-ray 

crystallography [128, 129]. However, an absence of allosteric behavior is not evidence of its 

absence, as the structural analyses performed to date did not evaluate ribosomes in the 

process of frameshifting and bypassing.  

As a requisite for establishing a molecular mechanism for L9’s function, we 

implemented a genetic screen to identify physiological situations that are influenced by L9. This 

screen revealed that L9 suppresses growth defects caused by the inactivation of the essential 

ribosome biogenesis factor Der and we recently reported a biochemical characterization of this 

phenomenon [60]. Here, we report that our screen also revealed mutations in two of the three 

genes that post-translationally modify elongation factor P (EF-P). Deletion of these genes, or efp 

itself, renders cells highly dependent on L9. The post-translational modification of EF-P 

enhances its ability to stimulate the synthesis of certain polyproline motifs when EF-P engages 

ribosomes between the P and E sites [81, 130-134].  



 56 

We discovered that both der and efp mutants exhibit a reduction in 70S pools and show 

defects in small subunit maturation; each potentially caused by an inability to meet the high 

ribosomal protein synthesis demand. L9 does not substitute for Der or EF-P activity; rather, L9 

suppresses subunit maturation defects and partially restores pools of 70S particles. Taken 

together, L9’s role in enhancing fidelity seems to most important when free ribosomes become 

limiting and the demand for high quality protein synthesis is elevated.  
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Figure 13: L9 on the ribosome 

A crystal structure of the E. coli ribosome is shown with large subunit RNA and proteins in 
green, small subunit RNA and proteins in orange, and L9 in blue (PDB entries 3R8S and 4GD1). 
Residues of the peptidyltransferase center (PTC) and decoding center (DC) are shown in red 
along with the Ser93 residue in L9 that affects decoding fidelity. 
  

Naganathan 1

PTC

DC

L9

Ser93



 58 

Results 

L9 increases translation fidelity independently of the miscoding surveillance system.  

We evaluated L9’s influence on growth in the presence of several well-characterized 

translation inhibitors and discovered that L9 provides a fitness advantage in the presence of 

antibiotics that promote miscoding (streptomycin, paromomycin, and neomycin), but not an 

antibiotic that blocks transpeptidation (chloramphenicol) (Figure 14). Therefore, consistent 

with reports of L9 increasing the decoding fidelity in a handful of engineered reporter systems, 

L9 likely acts to increase translation fidelity in general because these miscoding antibiotics 

indiscriminately act at multiple stages of decoding.   

Recent reports describe a translation quality control system in bacteria that employs 

release factors 2 and 3 to prematurely terminate the synthesis of proteins in ribosomes with 

mispaired tRNAs in their P- and E-sites [120, 135]. Because mispairing is a requisite for many 

miscoding events, we considered the possibility that L9 may be involved in regulating this 

surveillance process, which could readily explain L9’s influence on translation fidelity. However, 

L9 did not influence RF-3-mediated miscoding surveillance (Figure 28). Therefore, L9 increases 

translation fidelity via another mechanism.   



 59 

 

 

Figure 14: L9 improves resistance to aminoglycoside class of antibiotics.  

A ΔrplI (L9-) was evaluated for its innate resistance to antibiotics and compared to the isogenic 
parent (L9+). Consistent with previous reports, the absence of L9 caused only a subtle reduction 
in growth yield in liquid cultures, but ΔrplI colonies are indistinguishable from wild-type. The 
turbidity of 100 μL cultures grown in a 96-well plate is shown for various concentrations of each 
drug. The bars are standard deviations from three experiments. 
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Mutations in EF-P modification genes cause L9 dependence.  

Prelimnary attempts to integrate the drug resistance and frameshift reporter data into a 

mechanistic model for L9 function suggested that there may be unrecognized pathways that 

are influenced by L9 activity or that compensate for its absence. To identify such factors, we 

used a synthetic lethal screen to identify E. coli mutants that require L9 for fitness [60]. One 

class of mutants was found in enzymes responsible for post-translationally modifying EF-P [131, 

136]. In many bacteria, EF-P is modified by the addition of hydroxyl-β-lysine to a conserved 

lysine residue and the modification required for enhancing EF-P’s established functions [130, 

132, 133]. One L9-dependent mutant contained an amber stop-codon in epmB/yjeK (epmB-

W15am), whose product converts α-lysine to β-lysine [137]. In addition, two of the L9-

dependent strains contained missense mutations in the predicted active site of EpmA (epmA-

E116K and epmA-W117R, formerly poxA or yjeA) [81], the enzyme responsible for attaching the 

β-lysine residue to the highly conserved Lys34 of EF-P. When cured of the L9 support plasmid, 

each mutant exhibited poor growth, with the epmA-W117R mutant displaying the most 

pronounced phenotype (Figure 15).  

We verified that the mutated EF-P-modification genes were responsible for the 

dependence on L9 by providing wild-type copies of each from a plasmid (Figure 15). We also 

established that restoring rplI in the chromosomal alleviated the sicknesses caused by the 

mutations in these genes (Figure 16). Finally, we generated new ΔrplI strains containing full 

deletions of epmA, epmB, and efp ORFs. These strains were extremely sick, only forming small 
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colonies after 24h of incubation, so null alleles were likely missed during our screen because of 

near-lethal phenotypes (Figure 17).  

In some bacteria, β-lysyl-EF-P is additionally hydroxylated by EpmC (formerly, YfcM) 

[131]. However, we did not recover mutations in epmC and a ΔrplI, ΔepmC strain grew as well 

as epmC+, which is consistent with reports that this additional hydroxylation does not improve 

EF-P function [131, 133]. Taken together, these data indicate that complete inactivation EF-P 

causes a severe dependence on L9 and that our recovered mutants likely produce a low level of 

active EF-P because they grow better than Δefp cells [132].  
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Figure 15: Inactivating EF-P causes L9 dependence 

A genetic screen revealed mutants that depend on L9 for fitness. (A) An X-GAL  indicator plate 
streaked with strains harboring a partitioning-defective plasmid that expressed both L9 and 
LacZ. The parent strain (ΔrplI::tet) grew well without the L9 plasmid, which was readily lost 
upon outgrowth. Three recovered L9-dependent mutants contained defects in genes 
responsible for post-translationally modifying EF-P. The expanded views highlight the growth 
differences between colonies seeded from a cell containing the L9 plasmid (blue) and those 
that were seeded from cells without the plasmid (white). (B) The L9-dependent strains were 
transformed with plasmids that express wild-type versions of EpmA, EpmB, EpmC, or EF-P. Each 
mutant was only complemented by its respective wild-type allele. The epmA-W117R mutant 
was only partially complemented by excess wild-type, suggesting this mutant is dominant 
negative. 
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Figure 16: Partial restoration of growth sickness by chromosomal L9 

In our intial screening of blue/white colonies in Figure 19, we observed that epmA-W117R was 
sicker compared to the other two mutants. This growth difference was easier to distinguish 
when the mutants were complemented by L9. The plate contains the three mutants (of epmA 
and epmB) that have been cured of plasmid-borne L9 and transduced to replace the 

chromosomal rplI locus using a cat-marker linked wild-type or rplI. We also carried out liquid 
culture growth of the mutants, but this did not reflect the increased sickness of the epmA-
W117R mutant. Moreover, the L9- mutants are easily suppressed in liquid culture and their 
growth rates are not reliable.  
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Figure 17: Near-lethal growth phenotypes of double deletion strains. 

The growth defect caused by the complete inactivation of efp is more severe compared to that 
of the mutants recovered from the screen, suggesting that the mutants are not completely 

inactivated.  We used recombineering to make strains with a deletion (rplI::cat) or a wild-type 
(rplI-cat) L9 locus. P1 transduction was used to replace the existing chromosomal rplI locus in 

epmA, epmB, or efp. 
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The conserved architecture of L9 is required for suppression 

The necessity of L9 in cells lacking EF-P activity provided a unique platform to 

interrogate the role of L9’s preserved architecture. We engineered several variants of L9 

expression plasmids and transformed the ΔrplI, epmA/epmB/efp double mutants to test for 

complementation. We made constructs that expressed each globular domain, that expressed 

the hop-1 bypass mutant, or variants with mutations in the connecting helix  intended to distort 

the presentation of the C domain from the surface of the ribosome (a “flexible” linker and a 

more rigid, “bent” linker) [93, 125]. ΔrplI, epmA/epmB/efp double mutants were too sick for 

reproducible microbiological analyses, so we focused on characterizing the recovered point 

mutants.  

Each mutant’s slow colony growth was suppressed by the L9 variants in the same order: 

wild-type>flexible>bent>hop-1>C-domain=N-domain=mock (Figure 18). A similar suppression 

pattern was observed in liquid cultures during exponential growth, but there was more 

variability, which may have stemmed from the faster-growing escape mutants. In a separate 

experiment, we established that the hop-1, flexible and bent L9 versions expressed well form 

these constructs (Figure 18). Overall, unlike the L9-dependent der mutants we previously 

described, the positioning and quality of L9’s C domain clearly impacts its ability to suppress the 

growth defect caused by a reduction of EF-P activity. This finding reveals an unprecendented 

connection between the conserved architecture of L9 and translation elongation efficiency.  
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Figure 18: L9’s conserved architecture is essential for complementation. 

The L9-dependent mutant ΔrplI::tet, epmB-W15am was transformed with a battery of plasmids 
that express variants of L9. (A) A plate showing the relative colony size differences. (B) Liquid 
culture data of exponential-phase growth rates for the same strains in panel A. Providing wild-
type L9 from a plasmid suppressed the growth defect caused by epmB-W15am the most and 
was indistinguishable from a strain that had the rplI gene restored in the chromosome (not 
shown). The N- and C-terminal domains failed to suppress the mutant and the hop-1, flexible, 
and bent versions only marginally suppressed it. Error bars indicate the standard deviations of 
three independent exponential phase growth rate measurements. Despite discernable colony 
size differences, the p values from Student's t-tests of the liquid culture growth rate data 
indicate that the growth rate advantage provided by the even most active the L9 variant 
(flexible) was not substantial. 
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Cells with inactive EF-P have reduced monosome levels.  

Under our preparative conditions, sucrose gradients of Δefp lysates were deficient in 

monosomes relative to polysomes. The level of monosomes relative to the total in Δefp cells 

was reduced by ~50%, which is consistent with a prior study of ribosomes from Δefp cells [133] 

(Figure 19). When sedimented to better separate subunit peaks, the monosomes from Δefp 

cells unexpectedly resolved as two peaks (Figure 19). Using the relative spacing of the wild-type 

peaks as a metric, we calculated apparent s-values for these monosome peaks as ~67S and 

~72S. Interestingly, we routinely observe shoulders on the monosome peaks derived from wild-

type cell, which may be caused by the same monosome variants in different relative 

abundances. We also observed a comparable reduction of monosomes ΔepmA cells. Consistent 

with data in a prior report [138], our ΔepmB::kan allele exhibited a strong polar effect that 

concomitantly reduced EF-P levels (Figure 30), so we did not characterize this strain further. Gel 

electrophoresis of RNAs purified from the gradient fractions revealed that much of the RNA 

present in the 30S region of the Δefp gradient appeared to be either immature or fragmented 

(Figure 19) [139, 140] . In addition, in Δefp cells the level of 5S rRNA present in the 50S fractions 

was elevated relative to the level in the monosome peaks, suggesting that there was an 

accumulation of mature 50S subunits [123, 139]. We did not detect proteins missing form the 

30S peak relative to wild-type by Coomassie staining, but small differences may have been 

masked by an abundance of mature forms. In conjunction with a recent report demonstrating 

that Δefp cells have reduced levels of several translation-related proteins (including 

KsgA/RsmA, which regulates 16S rRNA processing)  [138, 141], these data are consistent with a 
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model wherein the loss of EF-P activity caused a deficiency of available ribosomes, possibly 

through a combination of slowed ribosome recycling, imbalanced protein production, and small 

subunit maturation defects.  
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Figure 19: ΔEF-P strains have a severe ribosome deficiency 

Lysates of wild-type and Δefp cultures were normalized by their 260 nm absorbance and 
resolved in linear sucrose gradients. (A) Profiles of each lysate were generated under conditions 
that resolved polysomes. (B) Gradients that resolved subunits from the same lysates in panel A. 
The dashed lines mark the peak centers that were used to calculate the s-values of particles and 
the dotted lines indicate the relative fraction locations. The calculated position of 70S in the 
Δefp gradient is indicated with an arrow. Under each gradient, denaturing gels stained with 
SYBR green II dye show RNAs purified from the indicated fractions. In the 30S region of the Δefp 
gradient, RNAs larger and smaller than mature 16S were abundant (asterisks). (C) In separate 
gels, the 5S RNA was resolved and quantified from the 50S and 70S peak fractions. The bar 
graphs show the relative amount of 5S across this region as a percent of the total in those 
fractions. 
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Depleting L9 from ΔepmA cells exacerbates the ribosome deficiency.  

We sought to characterize L9’s influence on ribosome quality in Δefp cells to gain insight 

into L9’s mechanism of growth rate suppression. Unfortunately, our ΔrplI, ΔepmA/ΔepmB/Δefp 

double deletion strains were too sick to grow the larger cultures required for ribosome 

analyses. One strategy to overcome this limitation is to temporarily provide L9 to cells lacking 

EF-P activity to enhance growth, and then remove L9 at a convenient time for biochemical 

analyses. To achieve a conditional removal of L9, we employed a targeted protein degradation 

system to rapidly deplete L9 in ΔepmA cells [60, 101]. In this system, a functional variant 

bearing a C-terminal degradation tag is conditionally degraded by expressing a processive 

protease (ClpXP) that recognizes the degradation tag. This degradation system rapidly strips 

and degrades existing L9 from ribosomes and decreases steady-state levels substantially [60]. 

We established that the tagged L9 versions support the growth of EF-P related mutants as well 

as untagged L9 (not shown).  

We elected to characterize the effects of L9 depletion in ΔepmA cells (as opposed to 

ΔepmB or Δefp) because they were the healthiest when suppressed by L9 and they did not 

display additional growth rate reductions when ClpX was absent. After allowing the L9-

suppressed ΔepmA culture to enter exponential phase, the degradation system was activated 

and the cultures were grown for an additional 60 minutes prior to harvesting. Using western 

blots that monitored L9 levels, L9-deg declined over a period of ~15-30 minutes to a steady-

state trace level (not shown). Therefore, this harvest time represents ~30 minutes of growth 
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with thorough L9 depletion. A parallel control culture contained an L9 variant with a stable tag 

(L9-cont).  

The ribosome quality of the L9-suppressed (L9-cont) ΔepmA culture was reminiscent of 

a Δefp profile, with a heterogenous monosome peak (Figure 20). The depletion of L9 in this 

mutant caused an additional reduction in monosomes and further accumulation of 30S 

particles. Interestingly, the relative abundance of the two monosome peaks changed when L9 

was depleted, suggesting that these forms are differentially affected by L9 activity. Peak areas 

from gradients of three independent experiments were quantified and we determined that the 

relative amount of 30S particles approximately doubled when L9 was depleted where as the 

level of 50S was essentially unchanged (Figure 31). As with the Δefp cells, the 30S peak had an 

abundance of particles containing immature 16S rRNAs (Figure 20). Upon L9 depletion, the 

abundance of this immature RNA increased and fragmentation became evident (Figure 20). We 

also evaluated ribosome quality from the same culture at later harvest time (additional 60 

minutes) and the qualitative findings were the same (not shown). Thus, L9’s ability to suppress 

the ΔepmA growth is correlated with increased maturation of small subunits and increased 

monosome abundance.  
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Figure 20: Depleting L9 from ΔepmA cells leads to small subunit defects 

Cultures of ΔepmA cells expressing L9 with either a control or degradation tag were grown to 
early exponential phase prior to the expression of ClpXP protease to degrade L9-deg. Lysates 
were then prepared for cell fractionation studies. (A) A Western blot showing L9 levels before 
induction of the degradation system (pre ind.) and at the time of harvest. L9 was thoroughly 
depleted in the L9-deg culture, but not in the L9-cont culture (top panel). With L9 support (cells 
with the stable L9-cont), the ribosome profiles were reminiscent of those from rplI+ Δefp cells, 
displaying a reduction in monosomes (left panel). In the culture depleted of L9, the monosome 
pool was further reduced and 30S particles hyper-accumulated. (B) Sucrose gradients that 
resolved the subunit region for each lysate are shown with gels of purified RNAs. The 
monosomes resolved as two peaks and the depletion of L9 altered their relative abundances. In 
addition, 30S particles became more abundant, additional immature 16S rRNA accumulated 
(asterisk), and RNA fragmentation was evident (frags). 
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L9 also enhances small subunit quality in a Der mutant.  

In a previous report, we showed that muations in Der also cause an L9-dependence that 

is satisfied solely by the N-terminal ribosome-binding domain [60]. In that study, we 

implemented the targeted degradation to deplete L9 in a derT57I mutant – the more severe of 

the two recovered der mutants, but we did not evaluate the quality of ribosomes under those 

conditions. Following our findings in EF-P related strains, we revisited this der mutant to 

determine if L9 also influences ribosome subunit quality in this background. In cells supported 

with L9, derT57I exhibited a start deficiency of monosomes and increased 30S and 50S particle 

abundances, consistent with reports of ribosome assembly defects upon long-term Der 

depletion (Figure 21) [69, 71, 99]. However, unlike EF-P deficient cells, the monosome peak was 

more homogenous.  

Depleting L9 from the derT57I cells caused an additional reduction in monosomes and 

an accumulation of incompletely processed 30S, similar to the case of ΔepmA (Figure 21). 

However, unlike the L9 depletion study in ΔepmA cells, these changes in particle abundances 

were concomitant with a severe fragmentation of 23S RNA (Figure 21). This finding is consistent 

with a role for L9 in stabilizing the large subunit during late stage assembly when Der activity is 

limiting. Curiously, in conjunction with these changes, immature 16S RNA is also hyper-

accumulated in derT57I 30S particles.  
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Figure 21: L9 also enhances small subunit quality in Der mutant 

Cultures of derT57I cells with L9-cont or L9-deg were grown to exponential phase prior to 
depleting L9-deg. (A) A Western blot evaluated L9 depletion (top). With L9 support (L9-cont), 
the level of 70S particles was substantially reduced compared to der+ cells and subunit material 
accumulated between the 30S and 50S peaks. L9 depletion further reduced the 70S peak. (B) 
RNA gels revealed that derT57I caused an increase in immature 16S rRNA (asterisk) and 
substantial 23S RNA fragmentation. Depleting L9 exacerbated both of these defects. 
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ΔrplI cells accumulate immature 16S rRNA in their 30S subunits, but not in their polysomes. 

The preceding studies suggested that L9’s activity influenced small subunit maturation 

in two cases in which the monosome pool was compromised for different reasons. Recent 

reports suggest that when small subunits with immature 16S rRNA enter the translation pool, 

decoding fidelity is reduced [142, 143]. These findings raised the exciting possibility that L9’s 

established role as a fidelity factor may stem from this same mechanism. Therefore, we 

examined the quality and distributions of small subunit rRNAs in otherwise wild-type ΔrplI cells. 

Although an absence of L9 did not affect the abundance of or distributions of ribosomal 

particles in sucrose gradients (Figure 31), we discovered that the 30S particles from ΔrplI cells 

contained approximately twice as much immature 16S rRNA when compared to wild-type). 

Immature 16S rRNA in 70S and polysomes was undetectable using stained gels, and it was 

previously established that the amount of 17S precursor in 70S particles is low [142]. We felt it 

was important to quantify 16S precursors in polysomes directly because 70S particles in sucrose 

gradients are typically a mixture of monosomes (engaged with tRNAs and mRNA) and contrived 

species formed by excessive magnesium driving idle subunits together, which do not necessarily 

reflect a competent translational pool. Therefore, we developed a highly sensitive RT-qPCR 

assay to detect established 16S precursors in polysomes.  

In prelimnary experiments, we detected higher levels of immature 16S in polysomes 

from ΔrplI cells. However, because the qPCR method is very sensitive, we determined that this 

apparent elevation was due to small subunit contamination from top-down fractionations 

contaminating polysomes with 30S material form higher in the gradients (Figure 22). Therefore, 
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we fractionated gradients from the bottom-up for this experiment and prepared RNA for qPCR 

from those pooled polysome fractions.  

Normalized RNA samples were subjected to RT-qPCR reactions that detected total 16S, 

or the “short precursor” (sp16S) or “long precursor” (lp16S) versions of the immature 5’ end 

[140].  In wild-type polysomes, we detected each immature form (Figure 22). Highly differential 

detection efficiencies for each species prevented us from establishing precursor to mature 

ratios using this technique. Surprisingly, the amount of immature 16S was lower in ΔrplI 

polysomes (~75% of wild-type). We also observed elevated immature 16S in 30S subunits, but 

not in polysomes, after the activation of the L9 degradation system in otherwise wild-type cells 

(Figure 22). While this perplexing finding suggests that L9 may be a part of a regulatory 

mechanism that controls the presence and distribution of immature subunits in the translation 

pool, an abundance of 16S RNA in polysomes is not likely to be the molecular cause of fidelity 

loss in rplI mutants.  
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Figure 22: Immature 16S rRNA is found to be more abundant in ΔrplI 30S particles but not in 
ΔrplI polysomes 

Lysates were prepared from wild-type and ΔrplI cells and resolved using sucrose gradients. (A) 
30S peak RNAs from each gradient were recovered by fractionating from the top-down, 
resolved in denaturing gels and stained with SYBR green II prior to densitometry. The quantified 
immature 16S from this gel is shown as a bar chart with the abundance reported for each of the 
three peak fractions. (B) Polysome RNA samples were collected using bottom-up fractionation. 
The inset shows RNA from the recovered polysomes, the immature precursor is not evident. 
The bar chart shows the abundance of immature lp16S (additional 115 5' nucleotides) and 
sp16S (additional 66 5' nucleotides) relative to total 16S determined by RT-qPCR. The amount 
of immature 16S is lower in the polysomes from ΔrplI cells despite being overabundant in the 
30S particles. Error bars are standard deviations from three measurements. 
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Figure 23: A model for L9’s function in decoding 

L9 may enhance fidelity of ribosomes in the context of polysomes. In this model, L9’s C domain 
temporarily slows the forward thrust of ribosomes that trail trail ribosomes with unstable 
decoding center. Without L9, the forward push of trailing ribosomes compromises the stalled 
lead ribosome.  
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Discussion 

We have uncovered a novel L9/EF-P synergy that stems from L9 partially restoring the 

pool of 70S particles and improving small subunit maturation when EF-P activity is 

compromised, which may be linked phenomena. It is important to emphasize that without a 

full-length, wild-type L9, Δefp cells are nearly inviable, which places special emphasis on the 

relationship between L9’s conserved structure and this particular translation factor. Because L9 

also restores the 70S pool in a der mutant, it appears that L9 becomes important when 

monosomes become limiting. Curiously, there are many plausible ways to disrupt ribosome 

biogenesis, but all six independently derived L9-dependent mutations were related to either 

Der or EF-P.  

Although several general models related to translation fidelity could explain the 

observed L9-related physiological changes, an examination of the molecular contacts and the 

function of L9 during translation will be needed to tease apart a detailed mechanism. ΔrplI cells 

grow nearly as well as wild-type and we determined that L9 is not required for EF-P’s function 

(Figure 33). Therefore, L9’s activity is not likely to be specific to the expression of proteins 

containing EF-P dependent motifs. Nonetheless, we made an effort to determine if L9 affected 

the distribution of EF-P in sucrose gradients to see if there was a change in the abundance of 

EF-P engaged ribosomes. Unfortunately, we were only able to detect unassociated EF-P in the 

tops of sucrose gradients, not in polysomes (Figure 30). This observation is consistent with a 

report acts quickly to resolve translation problems [132]. When EF-P activity becomes limiting 

or absent, the life-time of stalled ribosomes is expected to increase and allow for other 
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molecular events to influence the translation of those messages (such as advancing mRNA 

degradation, crowding ribosomes, or activating toxin systems). As a corollary, the rRNA found in 

30S particles from Δefp is reminiscent of the rRNAs generated by the action of the MazF toxin, 

so we are inspired to characterize the influence of this RNase on L9-related events in future 

work. Translation pauses also occur during miscoding events, programmed stalling, and at 

internal SD sequences [62]. A simple mechanism for an L9 activity affecting translation fidelity 

under a variety of circumstances would be for L9 to temporarily shut down trailing ribosomes 

to prevent their forward thrust from unseating or crowding stalled ribosomes (Figure 23). In 

support of this model, L9 forms a bridge between adjacent ribosomes in crystal structures and 

occludes the binding of factors at adjacent GTPase-activating centers [127, 128]. Likewise, the 

GTPase-activating center of a trailing ribosome would be occluded by L9 if stalled polysomes 

condense to a similar state.  

In case of Der, there is evidence that the large subunits produced in Der’s absence are 

structurally compromised (hypersensitive to Mg depletion) [69]. Although the same model for 

L9 function would allow enhanced protection of stalled ribosomes with unstable large subunits, 

only the ribosome-binding N domain of L9 is required to suppress the Der defect. In addition, L9 

is reported to be one of the few proteins that dissociates from large subunits produced in Der’s 

absence when Mg is depleted in vitro, so it seems that L9 aids in stabilizing a mature 50S 

conformation and partially compensates for a slow maturation step.  

Immature small subunits over accumulate when L9 is absent and this increase is 

correlated with L9’s suppression activity in both der and efp mutants. Others have reported 
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that small subunit maturation is also impaired by sub-lethal doses of aminoglycosides [144]. By 

rapidly depleting L9 in the derT57I mutant, we discovered that immature 16S accumulation is a 

downstream consequence of a large subunit defect. There are several possible explanations for 

a delay in SSU maturation, including a deficiency in the quality or production of small subunit 

proteins or processing RNases. However, genes associated with translation fidelity and 

stringent response were wild-type in fast-growing Δefp strains we analyzed (Table S1). 

Continuing this effort, we recently sequenced the genomes of several fast-growing Δefp and 

ΔrplI/Δefp escape mutants and tentatively identified the mutations responsible. The identified 

mutations are not in ribosomal genes or in any genes associated with ribosome production in 

the literature.  

The RNA processing of the 16S 5’ end is regulated by the methylation activity of KsgA, one of 
the several proteins found to be deficient in cells lacking EF-P activity [138, 141]. However, 
providing additional copies of ksgA and other biogenesis genes on plasmids did not enhance 
the growth of Δefp mutants ( 
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Table 2. Cloned genes tested for multi-copy suppression of Δefp sickness.). Nonetheless, 

a late stage in small subunit production is a logical place for regulating the flow of small 

subunits into the translation pool, a model previously suggested by others [145-147]. Because 

we observed immature 16S hyper-accumulation in three different genetic backgrounds, we 

cautiously suggest that elevated 17S rRNA in small subunits is an effect rather than a cause, of 

some associated physiologies. Moreover, the amount of immature 16S we detected in 

polysomes is very low (and affected by trace contamination from preceding gradient fractions), 

so it is hard to justify major physiological influences of immature 16S in polysomes. L9 may 

influence 30S maturation by helping to orchestrate stoichiometric activation of subunits to 

reduce wasteful idling and subunit turnover in the absence of partners. Such a regulation would 

be optimal at late stages in assembly, after the established feedback checkpoints governing 

ribosomal RNA and protein production.  

Materials and methods. 

Strains and plasmids 

Strain TB28 (MG1655, lacZYIA::frt) was designated as wild-type for this study. The 

generation of the rplI deletion strain and the unstable plasmid expressing L9 have been 

described previously [60]. EF-P, EpmA, and L9 expression plasmids were cloned into derivatives 

of pTrc-99a. Strain BW30270 (K12 MG1655 rph+; CGSC #7925) was used in addition to TB28 for 

the antibiotic sensitivity studies. A streptomycin-resistant strain, rpsL25 (CGSC #5522) was used 
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as a positive control to ensure that the streptomycin was responsible for the dose-dependent 

toxicity. ΔrplI::tet and ΔprfC::kan (KEIO #JW5873) were transduced into BW30270 for RF-3 

studies and verified by PCR [60, 148]. RF-3 influenced frameshift reporter plasmids were 

previously described (a kind gift from Hani Zaher, Washington University, St. Louis) [120]. 

Ribosome biogenesis genes and initiation factor clones from the ASKA library were used for 

complementation tests (kindly provided by Gloria Culver, University of Rochester) [149].  

Screening for L9-dependent mutants 

The EF-P related L9-dependent mutants were recovered from a previous screen [60]. 

Briefly, an unstable plasmid harboring the only copies of rplI and lacZ were transformed into an 

ΔrplI::tet TB28 derivative. A chemically mutated library was then generated and screened for 

blue colonies (containing cells that needed the unstable plasmid to grow well).  The locations of 

the epmA and epmB alleles were narrowed using co-transduction mapping using a random-

insertion transposon donor library. The mapped regions were then sequenced. Each mapped 

region had only the reported mutation and efp, epmC, and der were wild-type. Also, Δefp and 

the previously identified L9-dependent derT57I allele were not synthetically lethal with each 

other [60].  

Ribosome analyses 

Cultures were mixed with an equal volume of crushed ice made with HT-10 buffer [20 

mM HEPES-Tris, 100 mM K+-glutamate, and 10.5 mM magnesium acetate, 0.05 mM EDTA, pH 
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7.8] prior to harvest. 100X lysates were prepared in HT-10 suppremented with 0.05% Tween-

20, 14 mM 2-mercaptoethanol, 20 U/mL RNase inhibitor (Roche), 20 U/mL DNase (NEB), 0.5 

mM calcium chloride, and 0.1 mg/mL lysozyme and frozen at -80°C.  

Lysates were cleared by centrifugation, normalized by 260 nm absorbance, and aliquots 

layered into either 10-40% (polysomes) or 10-30% (subunit) sucrose gradients prepared with 

supplemental HT-10 using a gradient master (Biocomp) and centrifuged in an SW-41 rotor 

(Beckman) at 35,000 (151,000 g)/ 40,000 (197,000 g) for 2.5/ 4 hours respectively. Profiles were 

recorded during fractionation with a gradient fractionator (Brandel) or by collecting samples 

from the bottom (Beckman). Fractions were stored at -80°C. RNA was extracted from the 

fractions by guandinium thiocyanate-acidic phenol chloroform extraction as previously 

described [150, 151]. Addition of chloramphenicol, a transpeptidation inhibitor to cultures has 

been used previously to stabilize polysomes during culture harvest [80]. We observed no 

substantial difference in gradients of lysates pre-treated with 100 μg/mL chloramphenicol. 

Primers that amplified the 5’ ends of the target open reading frames or 16S rRNA species were 

used for real-time quantitative PCR [101].  

Targeted L9 degradation 

The L9 degradation system was previously described [60, 101]. Briefly, ΔepmA::kan, 

ΔclpX, rplI-tag strains carrying an inducible protease system (pClpXP) was cultured in 

exponential phase after induction by diluting cultures into fresh medium containing arabinose. 

The depletion of L9 was monitored as a function of induction time using Westerns. After 
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approximately 30 minutes of protease induction, L9 levels declined to trace levels. The 

depletion of L9 was also verified in the harvested samples. 
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CHAPTER IV: DISCUSSION 

New details of bacterial protein synthesis and the molecular stages of the translation 

process have emerged in the last 10 years; however, the contribution of r-proteins like L9 in 

translation is yet to be fully recognized. The remote location of L9 on the large subunit of the 

ribosome complicates its assignment in translation fidelity. Moreover, L9 is non-essential for 

growth under laboratory conditions. In this study, we identified and characterized two cellular 

conditions that require L9 for fitness. One L9-dependent condition is caused by mutations in an 

essential GTPase called Der and the other L9-dependent condition is caused by the loss of 

function of elongation factor, P (EF-P). 

Interestingly, we did not detect a synthetic lethal interaction between Der and EF-P. 

Thus, the physiological requirement for L9 in each case stems from a different underlying 

problem. We also established that each condition requires a different aspect of L9’s unique 

architecture for growth complementation (Figure 8, Figure 18). We observed that L9 has no 

direct influence on either Der’s GTPase activity (Figure 25) or EF-P’s activity in translation 

(Figure 33). Instead, L9 influences the quality of ribosomes when either Der or EF-P is inactive 

(Figure 20, Figure 21). Our observations lay the foundation to develop and test different models 

to mechanistically determine whether L9 has a direct role in decoding fidelity or in ribosome 

biogenesis. L9 may improve ribosomal subunit maturation under certain conditions, influence 

the selection of mature subunits for translation intiation, or alter ribosome occupancy via inter-

ribosomal communication during translation. 
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We observed that both classes of L9 dependent conditions exhibited increased 

accumulation of 16S precursor rRNA at the 30S fraction, a phenotype that worsened upon L9 

depletion. The accumulation of precursor 16S rRNA is a commonly observed side-effect of both 

the 50S and 30S assembly defects [69, 110, 139, 142, 152]. Although Der is involved in 50S 

biogenesis, we and others have detected 16S rRNA precursors in Der-defective strains. If L9 

actively participates in the maturation of either the 30S or the 50S subunit, L9- cells should 

have increased total precursor rRNA compared to wild-type. Furthermore, the presence of 

immature 16S rRNA has been associated with increased miscoding and the crystal structure of 

immature 30S particles exhibit distortions at the decoding center [140, 142, 143, 152, 153]. 

Considering L9’s role in fidelity, we entertained the idea that delayed 30S maturation may be 

the reason for the decreased fidelity of L9- cells. Although we observed increased accumulation 

of 16S precursor in the 30S fraction of L9- cells (Figure 22), we showed using RT-qPCR that L9- 

polysomes had lower amounts of precursor than polysomes from wild-type. Polysomes 

represent bulk of the translating ribosomes in the cell. Therefore, actively translating ribosomes 

of L9- cells do not contain more total precursor rRNA than wild-type. Furthermore, there is no 

evidence of active site distortions (caused by precursors) in crystal structures of L9- ribosomes 

[126-128]. Taken together, L9 may influence the redistribution of the precursor rRNA-

containing subunits during translation rather than its accumulation itself. This places L9 as part 

of a mechanism that inspects and differentiates mature from immature subunits before they 

enter the translation pool.  
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The initiation of translation begins with the formation of the preinitiation complex 

which consists of the 30S subunit, mRNA, initiator tRNA (fmet-tRNA), and initation factors 

[154]. The maturation of the 30S subunit is therefore the rate-limiting step for translation 

initiation. What prevents immature 30S subunits from forming preintiation complexes? Recent 

studies have discovered mechanisms that monitor the quality of subunits enterting the 

translation pool [42, 147, 155-157]. Such systems either eliminate incompletely assembled 

subunits or place a short-term delay on small subunit maturation to prevent incorporation of 

immature subunits in translation. The complete maturation of rRNA involves multiple steps and 

this allows the cell multiple layers of regulation by which it can control the rate of rRNA 

processing, and thereby control ribosome assembly. The highly conserved nature of the leader 

and the spacer regions of the 16S rRNA and its importance in proper 30S maturation supports 

such a regulatory mechanism [158, 159]. 

Given our observations of ribosomal abnormalities, we considered how L9 might 

influence ribosome quality. We observed a 70S deficiency in both Der and EF-P mutants. The N-

terminal, ribosome binding domain of L9 fully complements der mutants (Figure 8). Under 

conditions where 50S biogenesis is affected (as seen in der mutants), mature 50S subunits are 

scarce and the immature 50S particles are unstable [69]. The depletion of L9 exacerbates 70S 

deficiency, likely causing a delay in the maturation of the 30S (observed as increased precursor 

accumulation) and the degradation of inactive 50S subunits (observed as fragmented 23S rRNA) 

(Figure 21). L9 may improve 70S abundance by stabilizing the on-pathway 50S intermediates 
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and improving the efficiency with which it associates with the preinitiation complex. This 

explains the increased accumulation of inactive 50S subunits in the L9-depleted der mutant.  

In the absence of efp, we observed severe small subunit defects and an indication of 

mature 50S accumulation (Figure 20). The depletion of L9 in the EpmA- strain also likely creates 

a delay in 30S maturation (causing increased accumulation of precursors). However, there was 

no indication of a 50S defect in the absence of EF-P activity, indicating that the cause of 70S 

deficiency in each class of L9-dependent mutants is different. Because the relative positions of 

the N and C domains are critical for growth suppression of efp mutants, it is possible that the C 

domain of L9 improves subunit association during translation initiation by increasing interaction 

between mature 50S and 30S preinitiation complexes. Although there is no evidence of L9 

directly associating with preinitiation complexes, there is evidence of the C domain of L9 

contacting the 30S subunit in crystal structures [126-128]. So far, our data support the 

conclusion that L9 does not directly participate in Der’s or EF-P’s activity; instead L9 somehow 

improves the quality of ribosomes entering translation. This model of L9’s involvement in 

subunit selection or association during translation initiation provides an explanation for L9’s 

location on the 50S subunit (required by Der mutants) and the highly extended structure of full-

length L9 (required in EF-P deficient cells).  

A recent cryo-EM structure of Der bound to the ribosome shows that it causes 

significant conformational changes to the 23S rRNA helices of the 50S subunit [160] . These 

conformations of the Der-bound 23S rRNA resembles those seen in a late-stage intermediate of 

the 50S  [143]. Because Der has an established biogenesis function, it is conceivable that the 
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GTP hydrolysis of Der may allow the progression of a 50S intermediate into complete 

maturation and serve as a checkpoint during assembly. However, Der’s GTPase hydrolysis rate 

is also significantly increased in the presence of 50S subunits [160]. Such an activation by 

mature 50S subunits argues against a direct role for Der in 50S maturation. Instead, Der could 

serve as a molecular switch on the ribosome that is required to regenerate 50S subunits after 

translation. The GTPase activity can provide the mechanical force required to recycle 50S 

subunits at the end of translation. Der mutants that are defective in GTP binding cannot bind to 

50S, thus the lack of Der’s GTPase activity may prevent the 50S subunits from either entering 

translation or being recycled efficiencty. There is precedent for such a checkpoint in eukaryotes 

[161, 162]. Whether Der participates directly in de novo 50S biogenesis or in 50S recycling, both 

cases explain why the GTPase-defective Der mutants in our study showed a severe 70S 

deficiency with a concomitant increase in absorbance at the 50S region. Intriguingly, YihI, a 

factor that stimulates GTPase activity of Der in vitro complements the growth of der mutants 

without directly stimulating mutant enzyme activity (Figure 11). It is possible that YihI may 

improve the ability of the 50S to increase GTPase activity of Der in vivo, supporting the idea 

that Der’s interaction with 50S is required for its function. 

It is important to note that the biogenesis defects seen in EF-P- cells can be a secondary 

effect caused by either increased buildup of ribosomes on poly-proline messages or decreased 

translation of a specific biogenesis or maturation factor. EF-P substrates are ribosomes that are 

stalled in during translation caused by a difficult PTC chemistry [72, 81, 130-132]. Therefore, it 

is important to consider a direct influence of L9 on translation. We established that L9 does not 
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directly participate in translation of EF-P-dependent transcripts (containing poly-proline) (Figure 

33). 

L9, along with the L1 stalk forms one of the most flexible regions of the ribosome. The 

role of the L1 stalk in translocation is well understood and its movement is known to be 

coupled to intersubunit rotation. In addition to interacting with the translocating tRNA, the L1 

stalk also contacts parts of the 30S subunit [163-165]. The role of L1 in intersubunit movements 

and the presence of L9 at the base of the L1 stalk suggests that L9 may also influence large scale 

ribosomal movements. A cryoEM modelling of bacterial polysomes by Brandt et al., shows the 

the C-terminal domain L9 contacting the 30S subunit of a neighboring ribosome [166]. Recent 

crystal structures of elongation factors, EF-G and EF-Tu support the idea that L9 may contact a 

neighnoring ribosome during translation. L9 sterically interferes with the crystallization of the 

binding sites for these elongation factors [89, 167-169]. We observed an increase in the fraction 

of polysomes to free ribosomes in EF-P- cells (Figure 19), likely caused by increased stalling of 

actively translating ribosomes on polyproline messages. This accumulation of ribosomes on a 

single mRNA can put increased pressure on adjacent ribosomes to either fall off or shift the 

reading frame. Given the structural evidence of inter-ribosomal contact by L9, it is plausible 

that L9 of a stalled ribosome contacts the preceding ribosome. This physical contact by L9 can 

help temporarily relieve the forward thrust on the stalled ribosome, thus allowing time for the 

slow peptide bond formation to be resolved so that proteins can be synthesized properly. A 

role in inter-ribosomal contact places L9 as a regulator of reading frame maintenance, a role 
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previously discussed for L9 [88, 124]. This model also provides a simple explanation for L9’s role 

in translation fidelity. 
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APPENDIX A: CHAPTER II SUPPLEMENTAL INFORMATION 
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Strains and plasmids  

The unstable L9 expression / reporter plasmid (pRC-L9) was derived from pRC-7 (an 

ampicillin-resistant, mini-F plasmid with a defective partitioning locus, par-) [63]. To ensure high 

level expression of L9, the Ptrc promoter from pTrc99a, which drove the expression of both L9 

and LacZ, replaced the PlacZYA promoter in pRC-7. LacZ expression was subsequently attenuated 

by randomizing two nucleotides in its ribosome-binding site and selecting for a clone that gave 

sufficient blue color on X-Gal / IPTG plates for screening without hindering cell growth. This 

plasmid also contains lacIQ; however, expression from the Ptrc promoter is not fully repressed on 

glucose medium, is moderate on glycerol medium, and strong when IPTG is present [64]. 

Mutation mapping. 

Mutant strains exhibiting a dependence on plasmid-borne and chromosomal rplI for fast 

growth were selected for mapping. Each was cured of the pRCL9 plasmid (which rendered them 

slow growing) and then infected with a P1 phage lysate derived from a random-insertion, 

kanamycin-resistant transposon library formed in MG1655 (a gift from Thomas Bernhardt, 

Harvard University). Fast-growing kanR tetR transductants had the L9-dependence mutation 

replaced by a wild-type gene from the donor library and the mutation location was within a P1 

genome length of the kanR transposon [102]. A new P1 lysate was formed from fast-growing 

kanR transductants and used to re-infect the original mutant strains. This analysis revealed that 

the recovered mutations fell into two complementation groups of three mutants each (a kanR 
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marker near a given mutation was able to restore fast growth to separately-isolated mutants in 

the same group). Moreover, the ratio of fast- to slow-growing kanR transductants reflected the 

distance of a given kanR
 marker to each L9-dependent mutation [170]. The insertion locations of 

transposons near each mutant locus were identified using arbitrary PCR and DNA sequencing 

using a primer that annealed within the transposon (EZ-Tn5, Epicentre) [171]. These locations 

were plotted against the frequency that each marker that rescued the slow-growth phenotype 

to generate a plot that revealed the locations in the chromosome with the highest probabilities 

of containing the L9-dependent mutations. Sections of the genome in these regions (~5 kb 

each) were then amplified using PCR and sequenced. Only one mutation was found in each 

mapped region. 

Protein expression and purification.  

YihI-FLAG-His6 and L9-FLAG-His6 were purified using a C-terminal FLAG-His6 tag after 

being overexpressed from clones in pTrc99a at 37°C in DH5-alpha. After induction with IPTG for 

3 hours, cells expressing L9-FLAG-His6 were harvested and washed in 1/10 the original volume 

with Cell Wash Buffer (25 mM K+-HEPES, 100 mM K+-Glutamate, pH 7.5). Overexpressed L9 is 

largely insoluble, but can be refolded from denaturing conditions. Therefore, expression cells 

were lysed in 1/200 the original volume with Denaturing Buffer (6 M guanidine hydrochloride, 

25 mM K+-HEPES, 0.05% Tween-20, 14 mM 2-mercaptoethanol, and 2 mM imidazole, pH 7.5). 

The lysate was centrifuged at 16,000 × g for 20 minutes to remove insoluble debris and the 
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supernatant was mixed with pre-rinsed Ni++-NTA resin (Qiagen, 1 ml per harvested liter) and 

agitated at 4°C for 30 min. The resin was then collected by centrifugation, transferred to 0.45 

μm pore centrifugal filter (Costar) and washed with four bed volumes of Denaturing Buffer 

containing 12 mM imidazole followed by six bed volumes of Desalting Buffer (10 mM Tris-Cl, pH 

8.0) to refold the protein on the column. Soluble protein was then eluted in Native Buffer (25 

mM K+-HEPES, 100 mM K+-glutamate, 0.05 % Tween-20, 5 % glycerol, pH 8.0) supplemented 

with 333 mM Imidazole. Refolded L9-FLAG-His6 was further purified by binding to 

hydroxyapatite resin (Bio-Rad), washed with Native Buffer supplemented with 100 mM KH2PO4, 

and eluted with buffer containing 250 mM KH2PO4. The protein was finally exchanged into 

Buffer A (20 mM Tris-HCl, 25 mM NaCl, 0.05% Tween-20, 5% glycerol, and 5 mM 2-

mercaptoethanol, pH 8.0) using pre-equilibrated size-exclusion spin columns (Bio-Rad, Biospin-

6). For expression of untagged Der, the der gene (wild-type and mutant) was cloned into a T7-

expression vector (pET-3a, Novagen). Strain SM1192 (a recA- ER2556 derivative, NEB) was 

transformed with untagged wild-type or mutant pET-Der. At mid-exponential phase, the 

cultures were induced with 0.5 mM IPTG for three hours. The cultures were then iced, 

harvested, and washed in 1/10 of the original volume (20 mM Tris-HCl, 100 mM NaCl, pH 8.0). 

Cells were lysed in 1/400 the original volume with Lysis Solution (1 X BPER (Pierce) 

supplemented with 0.25 mg/mL lysozyme, 14 mM 2- mercaptoethanol, 1 mM EDTA, and 

protease inhibitor cocktail (Roche)) at room temperature for 15 minutes. Following lysis, an 

equal volume of Nuclease Solution was added (20 mM Tris-HCl, 100 mM NaCl, 5 mM 2-

Mercaptoethanol, 0.05 % Tween-20, 5% glycerol, 4 mM MgCl2, and Benzonase (25 U/mL, 
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Sigma)). Once viscosity reduced, the lysate was cleared at 16,000 × g for 5 minutes and the 

soluble fraction was diluted, mixed with anion exchange resin (Hi-trap Q, Pierce), prewashed in 

Buffer A. The resin was washed with Buffer A containing 275 mM NaCl and the protein eluted in 

Buffer A containing 1M NaCl. The eluate was diluted with water, and pre-washed 

hydroxyapatite was added (Bio-Rad). After binding, the resin was transferred to a gravity 

column and washed with Buffer B (25 mM K+-HEPES pH 7.4, 0.05% Tween-20, 5% glycerol, and 

5 mM 2-mercaptoethanol). The resin was washed in Buffer B congaing 125 mM KH2PO4 and Der 

was eluted with 250 mM KH2PO4. The eluate was then chilled on ice and an equal volume of 

ice-cold 3 M ammonium sulfate was added to precipitate Der. The precipitated protein was re-

suspended in Buffer A. After clearing insoluble material, the protein was again bound to anion 

exchange resin in Buffer C (25 mM K+-MES, 25 mM NaCl, 0.05 % Tween-20, 5 mM 

mercaptoethanol, and 5 % Glycerol, pH 5.75), washed with 250 mM NaCl, and eluted with 500 

mM NaCl. Most purification steps were carried out at 4 °C. Before storage and quantification, 

all proteins were buffer exchanged into Buffer A. Potassium activation of Der and YihI 

stimulation. Der GTPase activity was monitored with increasing concentrations of KCl with and 

without YihI. At 500 mM KCl, Der was stimulated ~15-fold (Figure 24, panel A, left side). Near-

saturating YihI (5 μM) increased the rate without potassium ~3-fold, but did not stimulate at 

concentrations above ~250 mM (Figure 24, panel B right side). The ratio between these data 

sets was used to generate the fold-stimulation plot in Figure 11, panel B. Measuring an affinity 

between Der and YihI. The GTPase rate of 0.5 μM Der in 100 mM KCl was monitored as a 

function of added YihI. The GTPase rates were first plotted against total YihI for fitting to obtain 
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the maximal stimulation by YihI. This value represented fully-occupied Der at 0.5 μM, which is 

also the amount of YihI bound. The total YihI values in the data set were then adjusted by 

subtracting the amount bound to Der (using the observed GTPase rates) to obtain the unbound 

fractions of YihI. Re-plotting of the data allowed for a determination of Kd (Figure 24, panel B). 

Evaluating L9's influence on Der activity. L9-FLAG-His6 complemented the slow-growth 

phenotypes of the der mutants as well as untagged L9 (Figure 12  and not shown). L9-FLAG-His6 

was purified and added to GTPase assays in a 10-fold excess over the tested Der (0.5 μM wild-

type, 2.0 μM mutant), with and without 5 μM YihI. Neither the basal nor the YihI-stimulated 

GTPase rates were affected by L9 (Figure 25). 

Plating efficiency and morphology of L9-depleted derT57I cells.  

Cultures of rplI-cont/deg, ΔclpX, derT57I harboring pClpXP were induced to promote L9 

degradation as described in Figure 12. Samples of the cultures were plated to determine the 

colony forming units as a function of the turbidity at the time of sampling. The resulting data 

were fit to a first-order decay model with a plateau constant representing the limit at infinite 

time. The depletion of L9 in the rplI-deg, derT57I culture caused a reduction in plating efficiency 

by ~60 % (Figure 26). We considered the possibility that the Der defect may reduce expression 

of β-lactamase, which could also cause a reduction in viability under these conditions. We 

tested this idea by comparing the plating efficiencies of L9-, derT57I cells transformed with 

plasmids conferring ampicillin resistance (bla, periplasmic) to those that confer resistance to 

tetracycline (tetR, inner membrane) and chloramphenicol (catR, cytoplasmic). We observed no 
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differences in the plating efficiencies between these strains (not shown). Therefore, the 

observed reduction in plating efficiency when L9 was removed was not from a reduction in β-

lactamase secretion. 

Translation bypass assays.  

We constructed a series of plasmids encoding translation bypass reporters based on 

those used to identify the original hop-1 L9 mutant that first linked L9’s function to translation 

fidelity (rplIS93F) [58]. In these reporters, sections of the phage T4 gene 60 were fused to lacZ. 

Gene60 translation invokes a remarkable 50-nucleotide bypass during translation to generate 

the encoded enzyme. This bypass requires several features in the nascent peptide and mRNA to 

drive the release of the ribosome and to repositioning it at the appropriate landing site [91, 

172]. The quantitative assay then measures the amount of 60-LacZ fusion produced using Miller 

assays. We were struck by an obvious lack of reproducibility in our assays using wild-type cells 

with the reporter constructs. In our hands, typical variance in a Miller assay is ~5%, yet we were 

observing greater than 50% changes between experiments using the same reporter construct 

on different days (Figure 27, panel A). We traced the cause of this variance to an uncanny 

instability of the reporter plasmid. Although the cells were grown under antibiotic selection, 

many of them lost the plasmid as the cultures grew, as if partitioning had become defective. 

This was not observed in cultures harboring variants without the gene 60 bypass segment. We 

went on to re-clone the reporter construct into a different plasmid backbone with a different 

origin and observed the same instability (not shown). Remarkably, we observed that L9 seems 



 100 

to reduce the instability (Figure 27, panel B). In addition, we isolated the reporter plasmid from 

dark blue L9- colonies, re-sequenced, and re-transformed naïve strains and observed the same 

phenomenon. Aside from revealing that these constructs are inappropriate for evaluating L9 or 

Der’s role in bypassing, these results suggest that the original screen for increased translation 

bypass that identified hop-1 may have, in some fashion, selected for plasmid stability. 
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Figure 24: S1. Potassium and YihI stimulation. 

Der GTPase activity (0.5 M) with increasing KCl. On the right, Der in the presence of 5 M YihI. 
At higher concentrations of KCl, YihI no longer stimulated Der and slightly inhibited it. Panel B, 

in our standard assay condition (100 mM KCl), the stimulation of wild-type Der (0.5 M) with 
increasing YihI-FLAG-His6 concentrationswas used to determine an affinity constant between 
the two proteins. Three GTPase measurements at each YihI concentration were averaged and 

plotted against the fraction of Der occupied by YihI to obtain a Kd of 2.6 M  0.6.  
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Figure 25: S2. L9 does not influence Der’s GTPase activity or YihI stimulation.  

The GTPase activities of wild-type and mutant Der were analyzed in the presence of purified L9-
FLAG-His6. Pacel A, purified L9-FLAG-His6 was added to GTPase assays containing wild-type (0.5  

M Der, 5 M L9) or mutant (2.0 M Der, 20 M L9) with or without YihI-FLAG-His6 (10-fold 
excess over Der). L9 did not influence the basal or YihI-stimulated GTPase activities of any Der 
variant. Inset, Coomassie-stained SDS-PAGE of the purified L9-FLAG-His6 protein.  
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Figure 26: S3. Plating efficiency of derT57I when L9 is depleted.  

Cultures of rplI-cont or rplI-deg, derT57I cells were cultured and uninduced (glucose) or induced 
(arabinose) for ClpXP expression. Samples of the cultures were plated to determine the colony 
forming units as a function of the turbidity in the plate well. The results of three experiments 
are shown for each condition: rplI-cont in glucose (open triangles); rplI-cont in arabinose (open 
circles). Each data set was fitted to a first-order decay model (solid lines) to estimate the plating 
efficiency at infinite culturing (which would otherwise spawn suppressors). The depletion of L9 
in derT57I reduced the plating efficiency to ~40% that of the controls.  
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Figure 27: S4. L9 influences the stability of translation bypass reporters.  

Translation bypass reporter plasmids were constructed that expressed the phage T4 gene 60 
bypass region fused to lacZ. Pancel A, Miller units from cultures of L9+ and L9- cells harboring a 
reporter plasmid with a wild-type gene 60 segment under non-inducing and inducing 
conditions. Shown are the averages and standard deviations from five experiments. In the right 
section, Miller units are shown (average of two experiments) for the BX1k extended stem-loop 
construct used to screen for the original hop-1 mutation. Unlike the wild-type bypass region, 
this construct expresses more LacZ in L9- cultures. Panel B, L9+ and L9- cultures harboring the 
wild-type gene60 reporter plasmid were grown under antibiotic selection were sampled at the 
time of harvest for a miller assay, serially diluted, and plated with and without ampicillin 
selection on IPTG/X-gal plates. Note that the L9- culture was heterogenous, with some cells 
giving rise to colonies with high levels of LacZ and others with none. Also, the colony count 
under selective conditions was lower suggesting that a substantial population was losing the 
plasmid as the cultures grew. 
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APPENDIX B: CHAPTER III SUPPLEMENTAL INFORMATION 
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Figure 28: S1. L9 is not required for RF-3 mediated surveillance. 

Test strains were transformed with plasmids that express reporters based on the well-
characterized frameshift sequence found in prfB (kind gifts from Hani Zaher, Washington 
University in St. Louis). The constructs are described in reference [5]. In wild-type cells, 
frameshifting events are detected in the ribosome and the products are prematurely released 
through the activity of release factor 3 (RF3). Both non frameshifted and prematurely released 
products migrate at the conventional position in Western blots. Frameshifted products are 
longer because they read through an otherwise in-frame stop codon adjacent to the frameshift 
motif. The top panel is an anti-His6 Western that detected all reporter products. The bottom 
panel is an anti-cMyc Western that only detected frameshifted material. The "strong" reporter 
contained a bona fide prfC sequence that promoted a high level of frameshifting. The "weak" 
reporter had alterations that reduced the level of frameshifting. The frameshifted material in 
ΔrplI cells was not statistically different than that observed in wild-type cells when separate 
Westerns were used to more accurately quantify the ratios of the two products using dilution 
series. 
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Figure 29: S2. Expression of L9 variants from plasmids. 

Transformed strains were induced to express L9 variants and total protein was analyzed using 
SDS-PAGE. Each full-length version and the C domain expressed to high levels. The N domain 
construct did not accumulate to high levels, but was able to fully complement der mutants. 
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Figure 30: S3. EF-P abundance and distribution 

EF-P was detected using Western blots with polyclonal antibodies. (A) EF-P levels were 
determined in normalized total protein samples from wild type, Δefp::kan, ΔepmA::kan, and 
ΔepmB::kan cells. (B) EF-P (top panel) and LepA (bottom panel) were detected in pooled 
sucrose gradient fractions from the top, 30S and 50S subunits region, monosome peak, and 
polysome region. Each pooled sample was precipitated with alcohol and resuspended in SDS-
PAGE sample buffer for analysis. The band migrating above the EF-P band is not related to EF-P 
(detectable in knockout strains). The anti-LepA Western served as a control to evaluate protein 
content using a translation factor that also transiently associates with polysomes. 
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Figure 31: S4. Quantification of subunits and monosomes 

Peaks were integrated from gradients derived from the indicated cultures and plotted along 
with the standard deviations from three independent experiments. (A) A comparison of 30S, 
50S, and 70S peaks from wild-type and ΔrplI::tet cells (top) a well as cells that had the 
degradation system activated in cells with L9-cont and L9-deg. The degradation system did not 
reduce 70S material (~90% of total) and there was essentially no change in the relative particle 
abundances when L9 was absent or depleted. (B) Abundance of particles in ΔepmA cells with L9 
support (L9-cont) or with L9 depleted (L9-deg). With L9 support, monosomes were reduced to 
~70% accompanied by an increase in both 30S and 50S material. The abundance of 30S material 
nearly doubled when L9 was depleted, which was accompanied by a further reduction of 
monosomes to ~60%. Both monosome peaks were integrated together and considered as "70S" 
for this comparison. (C) Abundances in derT57I cells with and without L9 support. With L9, the 
70S peak was ~45%. When L9 was depleted, the abundance of 30S and 50S particles increased 
and 70S decreased to ~25%. 
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Figure 32: S5. Depleting L9 in wild-type cells recapitulates rplI- defects 

The L9 degradation system was activated in otherwise wild-type cells. (A) Westerns show the 
abundance of L9-cont and L9-deg before activation of the protease system and at the time of 
harvest. Sucrose gradients of the two lysates have similar peak intensities, but there is more 
immature RNA in the 30S peak of the L9-deg sample (asterisk). (B) RNA samples were prepared 
from polysomes recovered from either top down or bottom-up fractionations of the same 
lysates. The inset shows RNAs from the recovered polysomes, immature 16S rRNA was not 
evident. RT-qPCR was used to quantify the lp16S (additional 115 5' nucleotides) and sp16S 
(additional 66 5' nucleotides) levels relative to total 16S. For comparison, the amount of 
immature 16S found in the top-down fractionated L9-cont gradient was set to 100%. Note that 
the fractionation method reversed the observed relative abundance. Error bars represent the 
standard deviation of four measurements. 
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Figure 33: EF-P does not require L9 to function. 

A. Plasmid based reporter constructs used to evaluate EF-P’s activity in WT, rplI, and efp 
strains. A control motif (AST) and a poly-proline containing motif (PPP) were fused to the C-
terminus of GFP-His6. B. Coomassie and Western blot of whole lysates were used to evaluate 
expression. The differences in expression levels correlated with difference in mRNA levels. C. 
The reporter proteins were purified using Ni++-column chromatography and purified proteins 
were subjected to mass spectrometry.  The translation of the poly-proline reporter was not 
reduced in L9- cells. However, the absence of EF-P leads to accumulation of a truncated form of 
the reporter protein.  
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Table 1. Genes sequenced in a fast-growing Δefp escape mutant 

Each was wild-type. Functional annotations derived from www.ecogene.org 
 

Gene Function/rationale 

der ribosome biogenesis, mutation renders L9 dependence 

eno enolase, RNA degradosome component, in relA operon 

mazE antitoxin of MazF, in relA operon 

mazF RNase, toxin, in relA operon 

mazG NTPase, binds Era, in relA operon 

relA (p)ppGpp synthetase, stringent response regulator 

rlmD 23S rRNA m(5)U1939 methyltransferase, in relA operon 

rlmN 23S rRNA m(2)A2503, tRNA m(2)A37 methyltransferase, near der 

priB primosome component, in rplI operon 

recG DNA helicase, in spoT operon 

rplI L9, suppresses EF-P absence 

rpoZ RNAP omega subunit, in spoT operon 

rpsD S4, aminoglycoside resistance, miscoding (ram), or hyperaccuracy 

rpsE S5, aminoglycoside resistance or miscoding (ram) 

rpsL S12, aminoglycoside dependence (hyperaccuracy) 

rpsR S18, in rplI operon 

SpoT (p)ppGpp synthetase/hydrolase, stringent response regulator 

http://www.ecogene.org/
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Gene Function/rationale 

trmH tRNA mG18 2'-O-methyltransfersase, in spoT operon 
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Table 2. Cloned genes tested for multi-copy suppression of Δefp sickness.  

ASKA library clones were transformed into Δefp cells and evaluated for their ability to enhance 
the growth under different induction conditions (glucose = low, glycerol = moderate, IPTG = 
high). None improved the fitness. Annotations derived from www.ecogene.org. 
Genes sequenced in a fast-growing Δefp escape mutant. Each was wild-type. Functional 
annotations derived from www.ecogene.org. 
 
 

Gene Function/rationale 

deaD 50S subunit biogenesis 

infA  translation initiation factor IF-1 

infB translation initiation factor IF-2 

infC translation initiation factor IF-3 

ksgA 16S rRNA dimethyltransferase, mutation confers kasugamycin resistance 

rhlE RNA helicase in degradasome 

rimJ acetylates S5, 30S subunit biogenesis 

rluB 23S rRNA pseudouridine synthase 

rng RNase G, 16S processing 

rnpA RNase P, tRNA and 4.5S RNA processing 

rsgA 30S subunit biogenesis 

rsmC 16S rRNA methylase 

rsmE 16S rRNA methylase 

rsuA 16S rRNA pseudouridine synthase 

smpB tmRNA binding and ribosome rescue 

http://www.ecogene.org/
http://www.ecogene.org/


 115 

Gene Function/rationale 

yhbC 30S subunit biogenesis 

 

  



 116 

REFERENCES 

1. Crick, F.H.C., On Protein Synthesis. Symposia of the soceity for experimental biology, 1958. 12: p. 

138-163. 

2. PALADE, G.E., A small particulate component of the cytoplasm., in J Biophys Biochem Cytol1955. 

p. 59-68. 

3. Richard L. Gourse, T.G., Michael S. Bartlett, J. Alex Appleman, and Wilma Ross, rRNA 

transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. 

Annu Rev Microbiol, 1996. 50: p. 645-677. 

4. Maaloe O, K.N., Control of macromolecular synthesis: a study of DNA, RNA, and protein synthesis 

in bacteria. New York; Benjamin, 1966: p. 1-284. 

5. A. Tissieres, B.R.H., Ribonucleoprotein particles from Escherichia coli. J. Mol. Biol, 1959. 1: p. 221-

233. 

6. Day, L.E., Tetracycline Inhibition of Cell-free protein synthesis I. Binding of Tetracycline to 

components of the system. Journal of Bacteriology, 1966. 91(5): p. 1917-1923. 

7. B.J. McCarthy, R.J.B., and R.B. Roberts, The synthesis of ribosomes in E. coli Biophysical Journal 

1962. 2: p. 57-82. 

8. RY Young, H.B., Polypeptide-Chain Elongation rate in E. coli B/r as a function of growth rate. 

Biochem. J., 1976. 160: p. 185-194. 

9. Loftfield, R.B., The Frequency of Errors in Protein Biosynthesis. Biochem. J., 1963. 89: p. 82-92. 

10. Lipmann, D.N.a.F., Amino acid transfer from Amino acyl-ribonucleic acids to proteins on 

ribosomes of E.coli. Biochemistry, 1961. 47: p. 497-504. 



 117 

11. Offengand, P.B.a.E.J., An enzymatic mechanism for linking amino acids to RNA. Symposium, 

1958. 44: p. 77-86. 

12. Ogle, J.M. and V. Ramakrishnan, Structural insights into translational fidelity., in Annu. Rev. 

Biochem.2005. p. 129-177. 

13. R. W. Risebrough, A.T., J. D. Watson, Messenger-RNA attachment to the ribosome. PNAS, 1962. 

48: p. 430-436. 

14. Saunders, C.S.M.a.G., Stability of the messenger RNA-transfer RNA-ribosome complex. J. Mol. 

Biol, 1968. 32: p. 521-542. 

15. Davis, J.D.a.B.D., Misreading of ribonucleic acid code words induced by aminoglycoside 

antibiotics. The Journal of Biological Chemistry, 1968. 243: p. 3312-3316. 

16. Kataja, L.G.a.E., Streptomycin-induced oversuppression in E. coli. PNAS, 1964. 51: p. 995-1001. 

17. Morgan, M.N.a.E.A., Genetics of Bacterial Ribosomes. Annu Rev Genet, 1977. 11: p. 297-347. 

18. Noller, D.M.a.H.F., Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 

1987. 327: p. 389-395. 

19. Wintermeyer, M.V.R.a.W., Fidelity of aminoacyl-tRNA selection on the ribosome: Kinetic and 

structural mechanisms. Annu Rev Biochem, 2001. 70: p. 415-435. 

20. Krzysztof Applet, A.Y., The crystallization of ribosomal proteins from the 50S subunit of the E. coli 

and C. stearothermophilus ribosome. Journal of Biological Chemistry, 1981. 256(22): p. 11787-

11790. 

21. Yonath, F.S.a.A., Structure of functionally activated small ribosomal subunit at 3.3 A resolution. 

Cell, 2000. 102: p. 615-623. 

22. Nenad Ban, P.N., Thomas A. Steitz, The Complete Atomic Structure of the Large Ribosomal 

Subunit at 2.4 A resolution. Science, 2000. 289: p. 905-919. 



 118 

23. James M. Ogle, F.V.M.I., V. Ramakrishnan, Selection of tRNA by the Ribosome Requires a 

Transition from an Open to a Closed Form. Cell, 2002. 111: p. 721-732. 

24. Brian T. Wimberly, D.E.B., V. Ramakrishnan, Structure of the 30S ribosomal subunit. Nature, 

2000. 407: p. 327-339. 

25. Andrew P. Carter, W.M.C., V. Ramakrishnan, Functional Insights from the structure of the 30S 

ribosomal subunit and its interactions with antibiotcs. Nature, 2000. 407: p. 340-348. 

26. Shajani, Z., M.T. Sykes, and J.R. Williamson, Assembly of bacterial ribosomes., in Annu. Rev. 

Biochem.2011. p. 501-526. 

27. Poul Nissen, T.A.S., The structural basis of ribosome activity in peptide bond synthesis. Science, 

2000. 289: p. 920-929. 

28. Hans-Jorg Rheinberger, K.H.N., Three tRNA binding sites on Escherichia coli ribosomes. PNAS, 

1981. 78: p. 5310-5314. 

29. Youngman, E.M., et al., The active site of the ribosome is composed of two layers of conserved 

nucleotides with distinct roles in peptide bond formation and peptide release., in Cell2004. p. 

589-599. 

30. Brunelle, J.L., et al., Peptide release on the ribosome depends critically on the 2&apos; OH of the 

peptidyl-tRNA substrate., in RNA2008. p. 1526-1531. 

31. Green, R. and H. Noller, RIBOSOMES AND TRANSLATION, 1997. p. 1-38. 

32. Ogle, J.M., A.P. Carter, and V. Ramakrishnan, Insights into the decoding mechanism from recent 

ribosome structures., in Trends Biochem. Sci.2003. p. 259-266. 

33. Zaher, H.S. and R. Green, Fidelity at the molecular level: lessons from protein synthesis., in 

Cell2009. p. 746-762. 



 119 

34. Hopfield, J.J., Kinetic proofreading: A New Mechanism for Reducing Errors in Biosynthetic 

Processes Requiring High Specificity. PNAS, 1974. 71(10): p. 4135-4139. 

35. Stone, R.C.T.a.P.J., Proofreading of the codon-anticodon interaction on ribosomes. PNAS, 1977. 

74: p. 198-202. 

36. Cochella, L. and R. Green, An active role for tRNA in decoding beyond codon:anticodon pairing. 

Science, 2005. 308(5725): p. 1178-80. 

37. Nierhaus, K.H., The Allosteric three site model for the ribosomal elongation cycle: Features and 

Future. Perspectives in Biochemistry, 1990. 29: p. 4997-5007. 

38. Yuri P. Semenkov, M.V.R., and Wolfgang Wintermeyer, The " allosteric three-site model" of 

elongation cannot be confirmed in a well defined ribosome system from E. coli. PNAS, 1996. 93: 

p. 12183-12188. 

39. Petropoulos, A.D. and R. Green, Further in vitro exploration fails to support the allosteric three-

site model. J Biol Chem, 2012. 287(15): p. 11642-8. 

40. Nomura, P.T.a.M., Structure and Function of E. coli ribosomes PNAS, 1968: p. 778-784. 

41. Erdmann, M.N.a.V.A., Reconstitution of 50S ribosomal subunits from dissociated molecular 

components. Nature, 1970. 228: p. 744-748. 

42. Karbstein, K., Inside the 40S ribosome assembly machinery. Curr Opin Chem Biol, 2011. 15(5): p. 

657-63. 

43. Adilakshmi, T., D.L. Bellur, and S.A. Woodson, Concurrent nucleation of 16S folding and induced 

fit in 30S ribosome assembly. Nature, 2008. 455(7217): p. 1268-72. 

44. Clatterbuck Soper, S.F., et al., In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-

dependent remodeling of late assembly intermediates. Mol Cell, 2013. 52(4): p. 506-16. 



 120 

45. Lewicki, B.T., et al., Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of 

active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA 

polymerase which cannot be replaced by bacteriophage T7 RNA polymerase., in J. Mol. 

Biol.1993. p. 581-593. 

46. Talkington, M.W., G. Siuzdak, and J.R. Williamson, An assembly landscape for the 30S ribosomal 

subunit. Nature, 2005. 438(7068): p. 628-32. 

47. Shoji, S., et al., Systematic Chromosomal Deletion of Bacterial Ribosomal Protein Genes, in J. 

Mol. Biol.2011. p. 751-761. 

48. Brodersen, D.E. and P. Nissen, The social life of ribosomal proteins, in FEBS Journal2005. p. 2098-

2108. 

49. Wilson, D.N. and K.H. Nierhaus, Ribosomal proteins in the spotlight., in Crit. Rev. Biochem. Mol. 

Biol.2005. p. 243-267. 

50. Lecompte, O., et al., Comparative analysis of ribosomal proteins in complete genomes: an 

example of reductive evolution at the domain scale., in Nucleic Acids Research2002. p. 5382-

5390. 

51. Kitakawa, K.I.a.M., Cluster of ribosomal proteins in E. coli containing genes for proteins S6, S18, 

and L9. PNAS, 1978. 75(12): p. 6163-6167. 

52. Nierhaus, R.R.a.K.H., Assembly map of the large subunit (50S) of Escherichia coli ribosomes. 

PNAS, 1981. 79: p. 729-733. 

53. Berk, V., et al., Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad 

Sci U S A, 2006. 103(43): p. 15830-4. 



 121 

54. David W. Hoffman, C.D., Sue Ellen Gerchman, J.H. Kycia, Stephanie J. Porter, Stephen W. White 

and V.Ramakrishnan, Crystal structure of prokayotic ribosomal protein L9: a bi-lobed RNA-

binding protein. The EMBO journal, 1994. 13: p. 205-212. 

55. David W. Hoffman, C.S.C., Christopher Davies, Stephen W. White and V. Ramakrishnan, 

Ribosomal protein L9: A structure determination by the combined use of X-ray crystallography 

and NMR spectroscopy. 1996, 1996. 264: p. 1058-1071. 

56. Huang WM, A.S., Casjens S, Orlandi R, Zeikus, Weiss R, Winge D, Fang M., A persistent 

untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science, 1988. 

239: p. 1005-1012. 

57. Robert B. Weiss, W.M.H.a.D.M.D., A nascent peptide is required for ribosomal bypass of the 

coding gap in bacteriophage T4 gene 60. Cell, 1990. 62: p. 117-126. 

58. Herbst, K.L., et al., A mutation in ribosomal protein L9 affects ribosomal hopping during 

translation of gene 60 from bacteriophage T4., in Proc. Natl. Acad. Sci. U.S.A.1994. p. 12525-

12529. 

59. Adamski, F.M., J.F. Atkins, and R.F. Gesteland, Ribosomal Protein L9 Interactions with 23 S rRNA: 

The Use of a Translational Bypass Assay to Study the Effect of Amino Acid Substitutions, in J. Mol. 

Biol.1996. p. 357-371. 

60. Naganathan, A. and S.D. Moore, Crippling the Essential GTPase Der Causes Dependence on 

Ribosomal Protein L9., in J. Bacteriol.2013. p. 3682-3691. 

61. Seidman, J.S., B.D. Janssen, and C.S. Hayes, Alternative fates of paused ribosomes during 

translation termination. J Biol Chem, 2011. 286(36): p. 31105-12. 



 122 

62. Atkins, J.F. and G.R. Bjork, A gripping tale of ribosomal frameshifting: extragenic suppressors of 

frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev, 2009. 73(1): p. 178-

210. 

63. Bernhardt, T.G. and P.A.J. de Boer, Screening for synthetic lethal mutants in Escherichia coli and 

identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity., in 

Mol. Microbiol.2004. p. 1255-1269. 

64. Egon Amann, B.O., and Karl-Josef Abel, Tightly regulated tac promoter vectors useful for the 

expression of unfused and fused proteins in Escherichia coli. Gene, 1988. 69: p. 301-315. 

65. Caldon, C.E., P. Yoong, and P.E. March, Evolution of a molecular switch: universal bacterial 

GTPases regulate ribosome function., in Mol. Microbiol.2001. p. 289-297. 

66. Britton, R.A., Role of GTPases in Bacterial Ribosome Assembly, in Annu. Rev. Microbiol.2009. p. 

155-176. 

67. Robinson, V.L., et al., Domain arrangement of Der, a switch protein containing two GTPase 

domains., in Structure2002. p. 1649-1658. 

68. Young Jeon, H.-S.P., Der containing two consecutive GTP-binding domains plays an essential role 

in chloroplast ribosomal RNA processing and ribosome biogenesis in higher plants. Jounal of 

Experimental Botany, 2014. 65(1): p. 117-130. 

69. Hwang, J. and M. Inouye, The tandem GTPase, Der, is essential for the biogenesis of 50S 

ribosomal subunits in Escherichia coli., in Mol. Microbiol.2006. p. 1660-1672. 

70. Muench, S.P., et al., The essential GTPase YphC displays a major domain rearrangement 

associated with nucleotide binding., in Proc. Natl. Acad. Sci. U.S.A.2006. p. 12359-12364. 



 123 

71. Bharat, A., et al., Cooperative and Critical Roles for Both G Domains in the GTPase Activity and 

Cellular Function of Ribosome-Associated Escherichia coli EngA, in J. Bacteriol.2006. p. 7992-

7996. 

72. Blaha, G., R.E. Stanley, and T.A. Steitz, Formation of the First Peptide Bond: The Structure of EF-P 

Bound to the 70S Ribosome, in Science2009. p. 966-970. 

73. Glick, B.R. and M.C. Ganoza, Identification of a soluble protein that stimulates peptide bond 

synthesis., in Proc. Natl. Acad. Sci. U.S.A.1975. p. 4257-4260. 

74. Glick, B.R. and M.C. Ganoza, Characterization and site of action of a soluble protein that 

stimulates peptide-bond synthesis., in Eur. J. Biochem.1976. p. 483-491. 

75. Ganoza, B.R.G.a.M.C., Characterization and site of action of a soluble protein that stimulates 

peptide-bond synthesis. Eur J Biochem, 1976. 71: p. 483-491. 

76. Aoki, H., et al., Molecular characterization of the prokaryotic efp gene product involved in a 

peptidyltransferase reaction., in Biochimie1997. p. 7-11. 

77. Ude, S., et al., Translation elongation factor EF-P alleviates ribosome stalling at polyproline 

stretches., in Science2013. p. 82-85. 

78. Doerfel, L.K., et al., EF-P is essential for rapid synthesis of proteins containing consecutive proline 

residues., in Science2013. p. 85-88. 

79. Peil, L., et al., Lys34 of translation elongation factor EF-P is hydroxylated by YfcM, in Nat. Chem. 

Biol.2012. p. 695-697. 

80. Bullwinkle, T.J., et al., (R)-β-lysine-modified elongation factor P functions in translation 

elongation., in Journal of Biological Chemistry2013. p. 4416-4423. 

81. Navarre, W.W., et al., PoxA, yjeK, and elongation factor P coordinately modulate virulence and 

drug resistance in Salmonella enterica. Mol Cell, 2010. 39(2): p. 209-21. 



 124 

82. Gutierrez, E., et al., eIF5A promotes translation of polyproline motifs. Mol Cell, 2013. 51(1): p. 

35-45. 

83. Akanuma, G., et al., Inactivation of ribosomal protein genes in Bacillus subtilis reveals 

importance of each ribosomal protein for cell proliferation and cell differentiation. J Bacteriol, 

2012. 194(22): p. 6282-91. 

84. Hauser, R., et al., RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet, 

2012. 8(7): p. e1002815. 

85. Huber, D., et al., SecA interacts with ribosomes in order to facilitate posttranslational 

translocation in bacteria. Mol Cell, 2011. 41(3): p. 343-53. 

86. McGary K, E.N., RNA polymerase and the ribosome: the close relationship. 2013. 

87. Bubunenko, M., T. Baker, and D.L. Court, Essentiality of ribosomal and transcription 

antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J Bacteriol, 

2007. 189(7): p. 2844-53. 

88. Atkins, J.F. and G.R. Bjork, A Gripping Tale of Ribosomal Frameshifting: Extragenic Suppressors of 

Frameshift Mutations Spotlight P-Site Realignment, in Microbiology and Molecular Biology 

Reviews2009. p. 178-210. 

89. Selmer, M., et al., Ribosome engineering to promote new crystal forms, in Acta Cryst (2012). 

D68, 578-583 [doi:10.1107/S0907444912006348]2012, International Union of Crystallography. 

p. 1-6. 

90. Nierhaus, V.N.a.K.H., Initiator proteins for the assembly of the 50S subunit from Escherichia coli 

ribosomes. PNAS, 1982. 79: p. 7238-7242. 

91. Herr, A.J., J.F. Atkins, and R.F. Gesteland, Coupling of open reading frames by translational 

bypassing., in Annu. Rev. Biochem.2000. p. 343-372. 



 125 

92. Herr, A.J., et al., Analysis of the roles of tRNA structure, ribosomal protein L9, and the 

bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA, in J. Mol. 

Biol.2001. p. 1029-1048. 

93. Leipuviene, R. and G.R. Bjork, Alterations in the Two Globular Domains or in the Connecting  -

Helix of Bacterial Ribosomal Protein L9 Induces +1 Frameshifts, in J. Bacteriol.2007. p. 7024-

7031. 

94. Dunkle, J.A., et al., Structures of the bacterial ribosome in classical and hybrid states of tRNA 

binding. Science, 2011. 332(6032): p. 981-4. 

95. Voorhees, R.M., et al., The mechanism for activation of GTP hydrolysis on the ribosome. Science, 

2010. 330(6005): p. 835-8. 

96. Lieberman, K.R., et al., The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal 

subunit., in J. Mol. Biol.2000. p. 1129-1143. 

97. Jin, H., A.C. Kelley, and V. Ramakrishnan, Crystal structure of the hybrid state of ribosome in 

complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci U S A, 2011. 

108(38): p. 15798-803. 

98. Hwang, J. and M. Inouye, An essential GTPase, der, containing double GTP-binding domains from 

Escherichia coli and Thermotoga maritima., in J. Biol. Chem.2001. p. 31415-31421. 

99. Hwang, J. and M. Inouye, Interaction of an essential Escherichia coli GTPase, Der, with the 50S 

ribosome via the KH-like domain., in J. Bacteriol.2010. p. 2277-2283. 

100. Datta, S., N. Costantino, and D.L. Court, A set of recombineering plasmids for gram-negative 

bacteria., in Gene2006. p. 109-115. 

101. Carr, A.C., et al., Rapid depletion of target proteins allows identification of coincident 

physiological responses. J Bacteriol, 2012. 194(21): p. 5932-40. 



 126 

102. Moore, S.D., Assembling new Escherichia coli strains by transduction using phage P1., in 

Methods Mol. Biol.2011. p. 155-169. 

103. Fix, D. N-Ethyl-N-nitrosourea-induced mutagenesis in Escherichia coli: 

Multiple roles for UmuC protein. 1993. 294, 127-138. 

104. Koji, H., Highly accurate genome sequences of Escherichia coli 

K-12 strains MG1655 and W3110. Vol. 2. 2006, Molecular Systems Biology: EMBO and Nature. 

105. Pace, C.N., How to measure and predict the molar absorption 

coefficient of a protein. Protein Science, 1995. 4: p. 2411-2423. 

106. Foucher, A.E., et al., Potassium acts as a GTPase-activating element on each nucleotide-binding 

domain of the essential Bacillus subtilis EngA. PLoS One, 2012. 7(10): p. e46795. 

107. Ingerman Nunnari regenerative GTPase assay 2012. p. 1-6. 

108. Niedhardt, F.C., Culture Medium for Enterobacteria. Journal of Bacteriology, 1974. 119(3): p. 

736-747. 

109. Hwang, J. and M. Inouye, A bacterial GAP-like protein, YihI, regulating the GTPase of Der, an 

essential GTP-binding protein in Escherichia coli., in J. Mol. Biol.2010. p. 759-772. 

110. Britton, R.A., Role of GTPases in bacterial ribosome assembly., in Annu. Rev. Microbiol.2009. p. 

155-176. 

111. Gasper, R., et al., The role of the conserved switch II glutamate in guanine nucleotide exchange 

factor-mediated nucleotide exchange of GTP-binding proteins. J Mol Biol, 2008. 379(1): p. 51-63. 

112. Vetter, I.R. and A. Wittinghofer, The guanine nucleotide-binding switch in three dimensions. 

Science, 2001. 294(5545): p. 1299-304. 

113. Cherfils, J. and M. Zeghouf, Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev, 

2013. 93(1): p. 269-309. 



 127 

114. DW, T., Influence of growth condition on the concentration of potassium in Bacillus subtilis var. 

niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid. 

Biochem. J., 1968. 106: p. 237-243. 

115. J, M., The regulation of potassium fluxes for the adjustment and maintenance of potassium 

levels in Escherichia coli. Eur. J. Biochem, 1981. 119: p. 165-170. 

116. MJ, T.d.M., Bioenergetic consequences of microbial adaptation to low-nutrient environments. J. 

Biotechnol., 1997. 59: p. 117-126. 

117. Schaefer, L., et al., Multiple GTPases participate in the assembly of the large ribosomal subunit in 

Bacillus subtilis. J Bacteriol, 2006. 188(23): p. 8252-8. 

118. Tu, C., et al., The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 

3' end of 16S rRNA. Proc Natl Acad Sci U S A, 2011. 108(25): p. 10156-61. 

119. Hwang, J. and M. Inouye, RelA functionally suppresses the growth defect caused by a mutation in 

the G domain of the essential Der protein., in J. Bacteriol.2008. p. 3236-3243. 

120. Zaher, H.S. and R. Green, A primary role for release factor 3 in quality control during translation 

elongation in Escherichia coli., in Cell2011. p. 396-408. 

121. Nakatogawa, H., A. Murakami, and K. Ito, Control of SecA and SecM translation by protein 

secretion., in Curr. Opin. Microbiol.2004. p. 145-150. 

122. Ling, J., N. Reynolds, and M. Ibba, Aminoacyl-tRNA synthesis and translational quality control., in 

Annu. Rev. Microbiol.2009. p. 61-78. 

123. Herold, M. and K.H. Nierhaus, Incorporation of six additional proteins to complete the assembly 

map of the 50 S subunit from Escherichia coli ribosomes., in J. Biol. Chem.1987. p. 8826-8833. 



 128 

124. Herr, A.J., et al., Analysis of the roles of tRNA structure, ribosomal protein L9, and the 

bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J Mol Biol, 

2001. 309(5): p. 1029-48. 

125. Frances M. Adamski, J.F.A.a.R.F.G., Ribosomal protein L9 interactions with 23S rRNA: The use of 

a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol, 1996. 

261: p. 357-371. 

126. Schmeing, T.M., et al., The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. 

Science, 2009. 326(5953): p. 688-94. 

127. Gao, Y.-G., et al., The structure of the ribosome with elongation factor G trapped in the 

posttranslocational state., in Science2009. p. 694-699. 

128. Selmer, M., et al., Ribosome engineering to promote new crystal forms. Acta Crystallogr D Biol 

Crystallogr, 2012. 68(Pt 5): p. 578-83. 

129. Lieberman, K.R., et al., The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal 

subunit. J Mol Biol, 2000. 297(5): p. 1129-43. 

130. Ude, S., et al., Translation elongation factor EF-P alleviates ribosome stalling at polyproline 

stretches. Science, 2013. 339(6115): p. 82-5. 

131. Peil, L., et al., Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat Chem Biol, 

2012. 8(8): p. 695-7. 

132. Doerfel, L.K., et al., EF-P is essential for rapid synthesis of proteins containing consecutive proline 

residues. Science, 2013. 339(6115): p. 85-8. 

133. Bullwinkle, T.J., et al., (R)-beta-lysine-modified elongation factor P functions in translation 

elongation. J Biol Chem, 2013. 288(6): p. 4416-23. 



 129 

134. Bailly, M. and V. de Crécy-Lagard, Predicting the pathway involved in post-translational 

modification of elongation factor P in a subset of bacterial species., in Biol. Direct2010. p. 3. 

135. Zaher, H.S. and R. Green, Quality control by the ribosome following peptide bond formation. 

Nature, 2009. 457(7226): p. 161-6. 

136. Yanagisawa, T., et al., A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine 

residue in translation elongation factor P. Nat Struct Mol Biol, 2010. 17(9): p. 1136-43. 

137. Roy, H., et al., The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine, 

in Nat. Chem. Biol.2011. p. 667-669. 

138. Peil, L., et al., Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the 

translation elongation factor EF-P., in Proc. Natl. Acad. Sci. U.S.A.2013. p. 15265-15270. 

139. Korepanov, A.P., et al., Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal 

subunit central protuberance. Nucleic Acids Res, 2012. 40(18): p. 9153-9. 

140. Biswajoy Roy-Chaudhuri, N.K., and Gloria Culver, Appropriate maturation and folding of 16S 

rRNA during 30S subunit biogenesis are critical for translational fidelity. PNAS, 2010. 107: p. 

4567-4572. 

141. Demirci, H., et al., A structural basis for streptomycin-induced misreading of the genetic code., in 

Nat Commun2013. p. 1355. 

142. Roy-Chaudhuri, B., et al., Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals 

a role for RimJ in ribosome biogenesis. Mol Microbiol, 2008. 68(6): p. 1547-59. 

143. Jomaa, A., et al., Functional domains of the 50S subunit mature late in the assembly process. 

Nucleic Acids Res, 2014. 42(5): p. 3419-35. 

144. Frazier, A.D. and W.S. Champney, Impairment of ribosomal subunit synthesis in aminoglycoside-

treated ribonuclease mutants of Escherichia coli., in Arch. Microbiol.2012. p. 1033-1041. 



 130 

145. Simon Lebaron, C.S., Robert W van Nues, Agata Swiatkowska, Dietrich Walsh, Bettina Bottcher, 

Sander Granneman, Nicholas J Watkins, and David Tollervey, Proofreading of pre-40S ribosome 

maturation by a translation initiation factor and 60S subunits. Nature Structural and Molecular 

Biology, 2012. 19: p. 744-753. 

146. Jarosloav M. Belotserkovsky, E.R.D.a.L.A.I., Mutations in 16S rRNA that suppress cold-sensitive 

initiation factor 1 affect ribosomal subunit association. FEBS, 2011. 278: p. 3508-3517. 

147. Connolly, K. and G. Culver, Overexpression of RbfA in the absence of the KsgA checkpoint results 

in impaired translation initiation. Mol Microbiol, 2013. 87(5): p. 968-81. 

148. Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the 

Keio collection. Mol Syst Biol, 2006. 2: p. 2006 0008. 

149. Masanari Kitagawa, T.A., Mohammad Arifuzzaman, TOmoko Ioka-Nakamichi, Eiji Inamoto, 

Hiromi Toyonaga, and Hirotada Mori, Complete set of ORF clones of E. coli ASKA library DNA res, 

2005. 12: p. 291-299. 

150. Sacchi, P.C.a.N., The single-step method of RNA isolation by acid guanidinium thiocyanate 

phenol chloroform extraction: twenty something years on. Nature Protocol, 2006. 2: p. 581-585. 

151. Moore, S.D. and R.T. Sauer, Ribosome rescue: tmRNA tagging activity and capacity in Escherichia 

coli. Mol Microbiol, 2005. 58(2): p. 456-66. 

152. Shajani, Z., M.T. Sykes, and J.R. Williamson, Assembly of bacterial ribosomes. Annu Rev Biochem, 

2011. 80: p. 501-26. 

153. Leong, V., et al., Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits 

of similar structure and protein complement. RNA, 2013. 19(6): p. 789-802. 

154. Laursen, B.S., et al., Initiation of Protein Synthesis in Bacteria, in Microbiology and Molecular 

Biology Reviews2005. p. 101-123. 



 131 

155. Lebaron, S., et al., Proofreading of pre-40S ribosome maturation by a translation initiation factor 

and 60S subunits. Nat Struct Mol Biol, 2012. 19(8): p. 744-53. 

156. LaRiviere, F.J., et al., A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell, 

2006. 24(4): p. 619-26. 

157. Jacob, A.I., et al., Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control 

and 16S rRNA maturation. Mol Cell, 2013. 49(3): p. 427-38. 

158. Sykes, M.T. and J.R. Williamson, A complex assembly landscape for the 30S ribosomal subunit. 

Annu Rev Biophys, 2009. 38: p. 197-215. 

159. Gupta, N. and G.M. Culver, Multiple in vivo pathways for Escherichia coli small ribosomal subunit 

assembly occur on one pre-rRNA. Nat Struct Mol Biol, 2014. 21(10): p. 937-43. 

160. Zhang, X., et al., Structural insights into the function of a unique tandem GTPase EngA in 

bacterial ribosome assembly. Nucleic Acids Res, 2014. 

161. Strunk, B.S., et al., A translation-like cycle is a quality control checkpoint for maturing 40S 

ribosome subunits. Cell, 2012. 150(1): p. 111-21. 

162. Strunk, B.S., et al., Ribosome assembly factors prevent premature translation initiation by 40S 

assembly intermediates. Science, 2011. 333(6048): p. 1449-53. 

163. Fei, J., et al., Allosteric collaboration between elongation factor G and the ribosomal L1 stalk 

directs tRNA movements during translation., in Proc. Natl. Acad. Sci. U.S.A.2009. p. 15702-

15707. 

164. Cornish, P.V., et al., Following movement of the L1 stalk between three functional states in single 

ribosomes., in Proc. Natl. Acad. Sci. U.S.A.2009. p. 2571-2576. 

165. Bock, L.V., et al., Energy barriers and driving forces in tRNA translocation through the ribosome. 

Nat Struct Mol Biol, 2013. 20(12): p. 1390-6. 



 132 

166. Brandt, F., et al., The Native 3D Organization of Bacterial Polysomes, in Cell2009, Elsevier Inc. p. 

261-271. 

167. Zhou, J., et al., Crystal structures of EF-G-ribosome complexes trapped in intermediate states of 

translocation. Science, 2013. 340(6140): p. 1236086. 

168. Tourigny, D.S., et al., Elongation Factor G Bound to the Ribosome in an Intermediate State of 

Translocation, in Science2013. p. 1235490-1235490. 

169. Pulk, A. and J.H. Cate, Control of ribosomal subunit rotation by elongation factor G. Science, 

2013. 340(6140): p. 1235970. 

170. T.T., W., A model for three-point analysis of random general transduction. Genetics 1966. 

54(405-410). 

171. Das, S.C. and A.K. Pattnaik, Role of the hypervariable hinge region of phosphoprotein P of 

vesicular stomatitis virus in viral RNA synthesis and assembly of infectious virus particles., in J. 

Virol.2005. p. 8101-8112. 

172. Wills, N.M., et al., Translational bypassing without peptidyl-tRNA anticodon scanning of coding 

gap mRNA, in EMBO J2008. p. 2533-2544. 

 

 


	The role of a highly conserved eubacterial ribosomal protein in translation quality control
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I: INTRODUCTION
	History Of Studies On The Ribosome
	The Decoding Property Of The Ribosome
	The Composition Of The Ribosome
	The Process Of Translation

	The Prokaryotic Ribosome As A Model For Macromolecular Assembly
	Why Do Ribosomes Have Proteins?
	Background
	Ribosomal Protein L9: Structure and conservation
	A Synthetic Lethal Approach Reveals the Reason for L9’s Conservation
	Essential Biogenesis factor, Der (EngA, YphC, or YfgK)
	Elongation factor, EF-P



	CHAPTER II: CRIPPLING THE ESSENTIAL GTPASE DER CAUSES A DEPENDENCE ON RIBOSOMAL PROTEIN L9
	Introduction
	Materials and Methods
	Strains and plasmids.
	Chemical mutagenesis and library screening.
	Protein expression and purification.
	Conditional Degradation.
	Microscopy.

	Results
	Mutations in der cause a dependence on L9.
	The N-domain of L9 complements derT57I.
	The derT57I and derE271K mutants are partially functional and recessive.
	Suppressor mutations arise frequently in the derT57I background.
	The T57I and E271K mutations impair the GTPase activity of Der.
	Additional YihI partially complements the der mutants.
	YihI stimulation is potassium sensitive.
	YihI fails to bind to or restore the GTPase activity of the Der mutants.
	Purified L9 does not influence Der's GTPase activity.
	L9 suppresses an elongated cell morphology caused by derT57I.

	Discussion

	CHAPTER III: THE LARGE RIBOSOMAL SUBUNIT L9 ENHANCES SMALL SUBUNIT MATURATION AND ENABLES THE GROWTH OF EF-P DEFICIENT CELLS
	Introduction
	Results
	L9 increases translation fidelity independently of the miscoding surveillance system.
	Mutations in EF-P modification genes cause L9 dependence.
	The conserved architecture of L9 is required for suppression
	Cells with inactive EF-P have reduced monosome levels.
	Depleting L9 from ΔepmA cells exacerbates the ribosome deficiency.
	L9 also enhances small subunit quality in a Der mutant.
	ΔrplI cells accumulate immature 16S rRNA in their 30S subunits, but not in their polysomes.

	Discussion
	Materials and methods.
	Strains and plasmids
	Screening for L9-dependent mutants
	Ribosome analyses
	Targeted L9 degradation


	CHAPTER IV: DISCUSSION
	APPENDIX A: CHAPTER II SUPPLEMENTAL INFORMATION
	Strains and plasmids
	Mutation mapping.
	Protein expression and purification.
	Plating efficiency and morphology of L9-depleted derT57I cells.
	Translation bypass assays.

	APPENDIX B: CHAPTER III SUPPLEMENTAL INFORMATION
	REFERENCES

