
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

High Performance Data Mining Techniques For Intrusion High Performance Data Mining Techniques For Intrusion

Detection Detection

Muazzam Ahmed Siddiqui
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Siddiqui, Muazzam Ahmed, "High Performance Data Mining Techniques For Intrusion Detection" (2004).
Electronic Theses and Dissertations, 2004-2019. 117.
https://stars.library.ucf.edu/etd/117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236256321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/117?utm_source=stars.library.ucf.edu%2Fetd%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

HIGH PERFORMANCE DATA MINING TECHNIQUES FOR INTRUSION
DETECTION

by

MUAZZAM SIDDIQUI
B.E. NED University of Engineering & Technology, 2000

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the School of Computer Science

in the College of Engineering & Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2004

Major Professor: Joohan Lee

ABSTRACT

The rapid growth of computers transformed the way in which information and data was

stored. With this new paradigm of data access, comes the threat of this information being

exposed to unauthorized and unintended users. Many systems have been developed which

scrutinize the data for a deviation from the normal behavior of a user or system, or search for a

known signature within the data. These systems are termed as Intrusion Detection Systems

(IDS). These systems employ different techniques varying from statistical methods to machine

learning algorithms.

Intrusion detection systems use audit data generated by operating systems, application

softwares or network devices. These sources produce huge amount of datasets with tens of

millions of records in them. To analyze this data, data mining is used which is a process to dig

useful patterns from a large bulk of information. A major obstacle in the process is that the

traditional data mining and learning algorithms are overwhelmed by the bulk volume and

complexity of available data. This makes these algorithms impractical for time critical tasks like

intrusion detection because of the large execution time.

Our approach towards this issue makes use of high performance data mining techniques

to expedite the process by exploiting the parallelism in the existing data mining algorithms and

the underlying hardware. We will show that how high performance and parallel computing can

be used to scale the data mining algorithms to handle large datasets, allowing the data mining

component to search a much larger set of patterns and models than traditional computational

platforms and algorithms would allow.

We develop parallel data mining algorithms by parallelizing existing machine learning

techniques using cluster computing. These algorithms include parallel backpropagation and

parallel fuzzy ARTMAP neural networks. We evaluate the performances of the developed

models in terms of speedup over traditional algorithms, prediction rate and false alarm rate. Our

results showed that the traditional backpropagation and fuzzy ARTMAP algorithms can benefit

from high performance computing techniques which make them well suited for time critical

tasks like intrusion detection.

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES.. vii

CHAPTER 1: INTRODUCTION... 1

CHAPTER 2: RELATED RESEARCH ... 3

Intrusion Detection ... 3
Intrusion ..3
Intrusion Detection..3
Intrusion Detection System ...4
Classification of intrusion detection..5

Architecture.. 6
Information Source... 6
Analysis Type... 8
Timing .. 9

A survey of intrusion detection research...10

Data Mining .. 14
A survey of intrusion detection research using data mining ...17

Neural Networks ... 18
Neural Network Architectures ..21

Single Layer Feed Forward Networks.. 21
Multi Layer Feed Forward Networks ... 23
Fuzzy ARTMAP Neural Networks .. 24

Learning Procedures..26
Learning Algorithms ...28

Backpropagation Algorithm... 29
Fuzzy ARTMAP Algorithm... 31

Intrusion Detection using Neural Networks..35
Neural Network Intruder Detector (NNID) .. 36
Application of Neural Networks to UNIX Security ... 36
Hierarchical Anomaly Network IDS using NN Classification... 37
Artificial Neural Networks for Misuse Detection .. 38
Anomaly and Misuse Detection using Neural Networks.. 38
UNIX Host based User Anomaly Detection using SOM ... 38
Host Based Intrusion Detection using SOM... 39
Elman Networks for Anomaly Detection ... 40

CHAPTER 3: OUR APPROACH .. 41

High Performance Data Mining.. 42

High performance computing approach ..42
Motivation behind the work ..43
High performance approach for intrusion detection..44

Parallel Neural Networks.. 46
Large training time ..47
Approaches to improve efficiency ..47
Parallel implementation of neural networks..47
Our implementation environment ...48
Neural networks architectures used...49
Parallel Backpropagation ..50
Parallelism in the BP Algorithm ...50

Network based Parallelism... 51
Training Set Parallelism ... 52

Parallel Backpropagation ..53
Algorithm ... 53

Parallel Fuzzy ARTMAP ..58
Algorithm ... 59

CHAPTER 4: EXPERIMENTAL RESULTS .. 65

Data preprocessing.. 68

Experiments .. 69
Experiments with backpropagation ...69
Experiments with fuzzy ARTMAP ...73

CHAPTER 5: CONCLUSIONS ... 79

LIST OF REFERENCES.. 80

LIST OF FIGURES

Figure 1: A generic intrusion detection system. ... 5
Figure 2: Data mining ... 15
Figure 3: A 4 input, 3 hidden and 2 output nodes neural network.. 19
Figure 4: Model of a neuron ... 20
Figure 5: Single layer feed forward neural network ... 22
Figure 6: Multi layer feed forward network ... 23
Figure 7: A block diagram of the fuzzy ARTMAP architecture. ... 25
Figure 8: Illustration of supervised learning... 27
Figure 9: Illustration of unsupervised learning. The cross marks (designated by the letter X)

indicate that the corresponding blocks are not available. ... 28
Figure 10: Network partitioning using vertical slicing scheme. ... 52
Figure 11: Training set partitioning of English alphabets. ... 53
Figure 12: Execution times for backpropagation for a single epoch in logarithmic scale for full

dataset. .. 70
Figure 13: Execution times for backpropagation for a single epoch in logarithmic scale for 10%

dataset ... 72
Figure 14: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for full

dataset ... 75
Figure 15: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for 10%

dataset ... 77

LIST OF TABLES

Table 1: Attack types in the training data set.. 66
Table 2: Basic features of individual TCP connections.. 67
Table 3: Content features within a connection suggested by domain knowledge 67
Table 4: Features computed using a two-second time window. ... 68
Table 5: Training times for a single epoch for parallel backpropagation for full dataset............. 70
Table 6: Setup times for parallel backpropagation for full dataset ... 71
Table 7: Training times for a single epoch for parallel backpropagation for 10% dataset 72
Table 8: Setup times for parallel backpropagation for 10% dataset ... 73
Table 9: Performance of parallel backpropagation algorithm. ... 73
Table 10: Training times for a single epoch on parallel fuzzy ARTMAP for full dataset 74
Table 11: Setup times for fuzzy ARTMAP for full dataset. ... 76
Table 12: Training times for a single epoch on parallel fuzzy ARTMAP for 10% dataset.......... 77
Table 13: Distribution times on parallel fuzzy ARTMAP for 10% dataset................................. 78
Table 14: Performance of parallel fuzzy ARTMAP algorithm .. 78

CHAPTER 1: INTRODUCTION

Computers have become an essential component of our daily lives. The World Wide Web

has transformed the world into a global village. Everyday there are millions of transactions on

the Internet. A tremendous amount of information and data is shared by the World Wide Web

users all over the world. The problem of protecting this information and data has become more

important, as the size of this network of interconnected machines is increasing dramatically

everyday. The number of security incidents reported in 2002 by CERT is 833% more than in

1999 [1]. The number of incidents in the first three quarters of 2003 outnumbered the previous

year figure.

Many methods have been developed to secure the infrastructure and communication over

the Internet. These techniques include firewalls, data encryption and virtual private networks.

Intrusion detection is relatively newer addition to this family of cyber guards. Intrusion detection

systems first appeared in early 1980s but they were limited for mostly military purposes.

Although commercial products became available in late 1980s, it was not until mid and late

1990s that intrusion detection systems started enjoying popularity with the explosion of the

Internet [5].

Intrusion detection systems are the systems designed to monitor computer and network

activities for security violations. These activities are observed by scrutinizing the audit data

generated by the operating system or some other application programs running on the computer.

With the availability of microprocessors that perform billions of operations in a second and high

speed network connections, the size of the file recording all these events usually reach in the

order of gigabytes. Dealing with such a huge amount of data is not a trivial task and specialized

methods are needed to process its information contents. To unearth useful patterns of previously

unknown information from a data source is a process, termed as data mining. Data mining is an

information extraction activity whose goal is to discover hidden facts contained in a database.

Mining the large volumes of intrusion detection audit data requires a lot of computational

time and resources. Traditional data mining algorithms are overwhelmed by the sheer complexity

and bulkiness of the available data. They have become computationally expensive and their

execution times largely depend on the size of the data they are dealing with.

In this research we are presenting a high performance data mining approach to deal with

the high volumes of intrusion detection data. Our work makes use of high performance

distributed computing techniques to scale the existing data mining algorithms, making them

practical to use in time critical applications like intrusion detection. We used machine learning

algorithms to extract normal behavior patterns and attacks from network traffic data. Among the

various learning approaches, we chose backpropagation and fuzzy ARTMAP neural networks.

Neural networks are well suited for intrusion detection because of their prediction and

generalization capabilities, which makes them able to identify known and unknown intrusions.

We developed parallel versions of backpropagation and fuzzy ARTMAP algorithms that allowed

them to search a much larger set of patterns and models than traditional algorithms would allow.

We evaluated their performances in terms of speedup over sequential algorithms and negative

and false positive rates. The speedup gave the measure of the high performance part while

negative and false positive rates represent the classification efficiency of the algorithms.

CHAPTER 2: RELATED RESEARCH

Intrusion Detection

The word intrusion as defined in the Webster’s dictionary means

1. The act of intruding or the condition of being intruded on.

2. An inappropriate or unwelcome addition.

3. Law. Illegal entry upon or appropriation of the property of another.

Where intrude means

To put or force in inappropriately, especially without invitation, fitness, or permission

Intrusion

Based upon the above definitions, intrusion in the terms of information can be defined as

when a user of information tries to access such information for which he/she is not authorized,

the person is called intruder and the process is called intrusion.

Intrusion Detection

Intrusion detection is the process of determining an intrusion into a system by the

observation of the information available about the state of the system and monitoring the user

activities. Detection of break-ins or attempts by intruders to gain unauthorized access of the

system is intrusion detection.

The intruders may be an entity from outside or may be an inside user of the system trying

to access unauthorized information. Based upon this observation intruders can be widely divided

into two categories; external intruders and internal intruders. [2]

• External intruders are those who don’t have an authorized access to the system

they are dealing with.

• Internal intruders are those who have limited authorized access to the systems

and they overstep their legitimate access rights.

Internal users can be further divided into two categories; masqueraders and clandestine

users.

• Masqueraders are those who use the identification and authorization of other

legitimate users.

• Clandestine users are those who successfully evade audit and monitoring

measures.

Intrusion Detection System

An intrusion detection system or IDS is any hardware, software or combination of both

that monitors a system or network of systems for a security violation [3].An IDS is often

compared with a burglar alarm system. Just like a burglar alarm system monitors for any

intrusion or malicious activity in a building facility, IDS keeps an eye on intruders in a computer

or network of computers [4].

Figure 1 displays a generic intrusion detection system. From the audit data source the

information goes to the pattern matching module for misuse detection and a profile engine to

compare current profile with the normal behavior defined for the system. Pattern matching

module interacts with policy rules to look for any signature defined in the policy. An anomaly

detector distinguishes an abnormal behavior using the profile engine.

Audit Data Source

Pattern
Matcher

Profile
Engine

Anomaly
Detector

Policy
Rules

Alarm/Report
Generator

Figure 1: A generic intrusion detection system.

Classification of intrusion detection

There are many strategies to detect intrusions. Some of them involve monitoring user

activities while some involve examining system logs or network traffic for some specific

patterns. There are some attributes that classify these strategies for intrusion detection. These

attributes are architecture, information source, analysis type and timing [5].

Architecture

There are two types of intrusion detection systems according to the architecture. One

which are implemented on the system they are monitoring and others which are implemented

separately. This separate implementation has several advantages over the other approach.

• It keeps a successful intruder from disabling the intrusion detection system by

deleting or modifying the audit records on which the system is based.

• It lessens the load associated with running the intrusion detection system on the

monitored system.

The only disadvantage with this scheme is that it requires secure communication between

the monitoring and monitored system.

Information Source

The first and foremost source for intrusion detection is the data source. Data can be

obtained from system logs or packet sniffers or some other source. Depending upon the origin of

data source, intrusion detection can be classified into four categories; host based, network based,

application based and target based systems.

Host based intrusion detection involves the data that is obtained from sources internal to

a system. These include the operating system audit trails and system logs.The operating system

audit trails is a record of system events generated by the operating system. These system events

results from user actions and the process invoked on behalf of the user, whenever either makes a

system call or execute a command. A system log is a file of system events and settings. It is

different from audit trails in the sense that it is generated by a log-generation software within the

operating system and it is stored as a file.

Network based intrusion detection uses the data collected from the network traffic stream.

It is the most common information source in the intrusion detection systems because of the three

reasons. First, it can be accomplished by placing the network interface card in promiscuous mode

which has a very low or even no affect on the performance on the system being monitored.

Second, it can be transparent to the users on the network. And the third, there are some very

common types of attacks that are not easily detected by the host based systems. These include

various denial of service attacks.

Application based intrusion detection uses the data obtained from application softwares

such as web servers or some security devices. Many firewalls, access control systems and other

security devices generate their own event logs which contain information of security

significance.

Target based intrusion detection doesn’t require event data from any internal or external

source. Instead this scheme provides means of determining if the existing data in the system has

been modified in some fashion. Target based monitors use cryptographic hash functions to detect

alterations to the system objects and then compare these alterations to some defined policy to

detect any intrusion.

Analysis Type

Once the data is obtained, the next step is to analyze the data. There are two broad

categories into which intrusion detection can be classified according to the analysis performed;

anomaly detection and misuse detection.

Anomaly detection looks for any abnormal or unusual patterns in the data. It involves

defining and characterizing a normal behavior of the system in the static form or dynamic and

then flagging any event that deviates from the defined behavior. Since anomaly detection looks

for unusual pattern, therefore any unseen pattern that was not defined in the base profile of the

system will flag an intrusion. For this reason anomaly detection will suffer false positives.

(Normal behavior detected as abnormal) To combat this certain techniques are devised. Instead

of using a yes/no approach, intrusion detection systems use some statistical measures to figure

out the degree of anomalousness and a threshold value then gives the final decision. Anomaly

detection can be divided into two classes; static anomaly detection and dynamic anomaly

detection.

Static anomaly detection checks for data integrity in the system. A system normal state is

defined which represents the system code and a portion of the system data that should remain

constant. This state is then compared with any other state defined later to check for any alteration

which flags an intrusion if found positive.

Dynamic anomaly detection creates a base profile of the system’s normal behavior and

checks it against any new profile created. For each feature selected to define the base profile, a

list of observed values is recorded and inserted into the profile. Any new profile that

characterizes the system observed behavior is compared against the base profile.

Misuse detection is also called signature detection as it looks for specific signature

patterns in the data. Misuse detection searches for known intrusions in the data regardless of the

system normal behavior. The signature patterns misuse detection is looking for can be a static bit

string e.g. a virus or it can be a set of events or actions a user might take. In either case, the

searched patterns are already defined to be bad. Since misuse detection looks for only known

intrusions, it suffers from false negatives (Attacks identified as normal patterns), if the pattern in

question was not defined to be bad previously.

Timing

Based upon the timing intrusion detection can be classified roughly into two categories;

real time intrusion detection and interval/batch intrusion detection.

Real time intrusion detection means that the information source is analyzed in real-time.

This is the most desirable form of intrusion detection because the ultimate goal of intrusion

detection is to prevent an attack before it happens. But there are certain types of attacks which

can only be detected by observing the data for a certain period of time. Most commercial systems

employing real-time intrusion detection actually define a window size of 5 to 15 minutes.

Batch mode analysis means that the information source is analyzed in a batch fashion.

Data for a large interval of time, e.g. a day, is monitored at the end of the interval (in this case,

end of the day).

A survey of intrusion detection research

As described earlier, an intrusion detection system is a system that tries to detect break-

ins or break-in attempts into a computer system or network by monitoring network packets,

system files or log files. This section describes a survey of research in the intrusion detection

systems. The survey classifies all the systems covered according to the classification criteria

described in the previous section. In addition it also describes the basic approach taken by each

system to detect intrusions. These include rule based systems, statistical analysis, neural

networks and data mining approaches. All the systems described here focuses on the

classification accuracy and none of them address the issue of learning time though some [50, 51]

report large volumes of data to be a factor hindering in research.

EMERALD – Event Monitoring Enabling Responses to Anomalous Live Disturbances

EMERALD [41] is a real-time hybrid analysis type intrusion detection system employing

both anomaly and misuse detection. It is intended to be a framework for scalable, distributed,

interoperable computer and network intrusion detection. It uses a three layer approach to large

scale intrusion detection. Each of these layers has monitors. The lowest layer called service layer

monitors a single domain. The middle layer called domain-wide accepts inputs from the lowest

layer and detects intrusion across multiple single domains. Similarly the topmost layer called

enterprise-wide accepts inputs from middle layer and detects intrusion across the entire system.

IDES – Intrusion Detection Expert System

IDES [42] is a real-time host based anomaly detection system. It is considered to be the

pioneer in the anomaly detection approach. The basic motivation behind IDES approach was that

the users behave in a consistent manner from time to time, when performing their activities on

the computer. The manner in which they behave can be summarized by calculating various

statistics for their behavior. IDES applied a rule based approach to determine user’s behavior.

NIDES – Next Generation Intrusion Detection System

NIDES [43] is an extension to IDES which was a rule based anomaly detection system.

NIDES is a real-time host based system with a misuse detection component in addition to the

anomaly detection engine. The rule based component was based upon Product-Based Expert

System Toolset (P-BEST) which is a forward-chaining LISP based environment. Four major

versions were released for NIDES each with refinements as a result of further research and users

inputs. In these versions the misuse detection part used the older rule based approach while the

anomaly detection functionality was changed to statistical based analysis. NIDES builds

statistical profile of users, though the entities monitored can also be workstations, network of

workstations, remote hosts, groups of users, or application programs. A statistical unusual

behavior from the user flags an intrusion into the system.

MIDAS – (Multics Intrusion Detection and Alerting System)

MIDAS [44] is a real-time host based system employing both anomaly and misuse

detection. The basic concept behind MIDAS was heuristic intrusion detection. MIDAS rules

were divided into two parts; primary rules and secondary rules. Primary rules describe some pre-

defined action when an intrusion is detected while secondary rules determine the type of action

that should be taken by the system. MIDAS is considered to be the first system employing

misuse detection.

Tripwire

Tripwire [45] is a static anomaly detector that uses a target based information source. It is

a file integrity checker that uses signatures as well as Unix file meta-data. It calculates

cryptographic checksum of critical files. The information is stored in a file called tw.config.

Periodically, Tripwire re-calculates the checksum. Any change to a file results in a checksum

change which indicates an abnormal activity.

CSM – Cooperative Security Manager

CSM [46] is a real-time, host based, distributed intrusion detection system. Each

computer on the network runs a copy of the security manager. This manager is responsible of

detecting anomaly and misuse detection on the local system as well as intrusive behavior

originating from the original user of the machine. When a user accesses a host from another host,

the managers exchange information about the user and the connection. The site security officer

can trace a connection request. An alarm is raised if the same user is trying to connect from two

different locations.

GrIDS – Graph based Intrusion Detection System

GrIDS [47] is a graph based intrusion detection system for large networks. It operates in

batch mode on both host and network traffic data. The graph based approach considers host as

nodes and the connections between hosts and edges on a graph. It uses a decentralized approach

and the system being observed is broken down into hierarchical domains. Each domain

constructs its own graph and sends its analysis to its parent domain. A rule set is used to build

graphs from incoming and previous information. A possible intrusion is determined again by a

set of rules.

NSM – Network Security Monitor

NSM [48] is a real-time network based intrusion detection system with a strong tendency

towards misuse detection. It was the first system to use raw network traffic as information

source. As a result NSM can monitor for a network of heterogeneous hosts without having to

convert the data into some canonical form. Since NSM is implemented on a separate system it

doesn’t consume resources from the monitored host.

NNID – Neural Network Intruder Detector

NNID [49] is a batch-mode host based anomaly detection system. It defines a normal

behavior of a user by using the distribution of commands he/she executes. This system uses a

backpropagation neural network for user behavior analysis. At fixed intervals, the collected data

is used to train the network. Once trained, the system monitors for user activities and detect any

anomalous behavior.

MADAM ID – Mining Audit Data for Automated Models for Intrusion Detection

MADAM ID [50] is a network based intrusion detection system that uses a data mining

approach to detect anomaly as well as misuse detection. The main components of MADAM ID

are classification and meta-classification programs, association rules and frequent episodes

programs, a feature construction system, and a conversion system that translates off-line learned

rules into real-time modules.

ADAM – Audit Data Analysis and Mining

ADAM [51] is a real-time network based anomaly detection system. It employs data

mining to extract association rules from the audit data. ADAM works by creating a customizable

profile of rules of normal behavior and it contains a classifier that distinguishes the suspicious

activities, classifying them into real attacks and false alarms.

Data Mining

Data mining, also known as Knowledge Discovery in Databases (KDD) has been

recognized as a rapidly emerging research area. This research area can be defined as efficiently

discovering human knowledge and interesting rules from large databases. Data mining involves

the semiautomatic discovery of interesting knowledge, such as patterns, associations, changes,

anomalies and significant structures from large amounts of data stored in databases and other

information repositories [6].

Data mining is an information extraction activity whose goal is to discover hidden facts

contained in databases. Using a combination of machine learning, statistical analysis, modeling

techniques and database technology, data mining finds patterns and subtle relationships in data

and infers rules that allow the prediction of future results.

Artificial
Intelligence Database Theory

Statistics

Data
Warehousing

Machine Learning

Data Mining

Figure 2: Data mining

Figure 2 displays how database theory, statistics and artificial intelligence approaches are

used in data mining.

Data mining sorts through data to identify patterns and establish relationships. Data

mining parameters include: association, sequence analysis, classification, clustering, forecasting

• Association - looking for patterns where one event is connected to another event.

• Sequence or path analysis - looking for patterns where one event leads to another

later event.

• Classification - looking for new patterns (May result in a change in the way the

data is organized but that's ok).

• Clustering - finding and visually documenting groups of facts not previously

known.

• Forecasting - discovering patterns in data that can lead to reasonable predictions

about the future.

For every data mining system, a data preprocessing step is one of the most important

aspects. Data preprocessing consumes 80% time of a typical, real world data mining effort. Poor

quality of data may lead to nonsensical data mining results which will subsequently have to be

discarded. Data preprocessing concerns the selection, evaluation, cleaning, enrichment, and

transformation of the data. Data preprocessing involves the following aspects: [7]

Data cleaning is used to ensure that the data are of a high quality and contain no

duplicate values. The data-cleaning process involves the detection and possible elimination of

incorrect and missing values.

Data integration. When integrating data, historic data and data referring to day-to-day

operations are merged into a uniform format.

Data selection involves the collection and selection of appropriate data. The data are

collected to cover the widest range of the problem domain.

Data transformation involves transforming the original data set to the data

representations of the individual data mining tools.

A survey of intrusion detection research using data mining

Over the past few years a growing number of research projects have applied data mining

for intrusion detection. The research could date back to 1984 when the development of Wisdom

& Sense [52] started and then published in 1989. Wisdom & Sense was the first work to mine

association rules from audit data. But it was not until recently that researchers started realizing

that the data size they are dealing with is getting larger and larger and to analyze data manually is

not possible anymore for extracting patterns of information. Data mining was viewed as a

solution to this problem. Our work in this thesis is also driven by the same motivation.

This section presents a survey of research in applying data mining techniques for

intrusion detection.

W&S – Wisdom & Sense

Wisdom & Sense [52] (W&S) is a host based anomaly detection system. W&S studies

audit data to mine association rules that describes the normal behavior. This is called the

Wisdom part of W&S. The Sense part of W&S comprises of an expert system that analyze recent

audit data to monitor for any violation based upon the rules produced by the Wisdom part.

MADAM ID – Mining Audit Data for Automated Models for Intrusion Detection

MADAM ID [50] is considered to be one of the best data mining projects in intrusion

detection. It applies data mining programs to network audit data to compute misuse and anomaly

detection models, according to the observed behavior in the data. MADAM ID consists of

several components to construct concise and intuitive rules that can detect intrusions. MADAM

ID has a meta- learning component that constructs a combined model that incorporates evidence

from multiple models. A basic association rules and frequent episode algorithms component to

accommodate the special requirements in analyzing audit data. A feature construction system

and a conversion system that translates off-line learned rules into real-time modules.

ADAM – Audit Data Analysis and Mining

ADAM [51] is the second most widely known and published worked amongst the data

mining projects in intrusion detection. ADAM is a network anomaly detection system. The

ADAM approach includes detecting events and patterns explicitly defined by the system

operator, mining exclusively within a limited time window to detect recent “hot” associations,

comparing currently mined rules with a repository of aggregated past rules, testing rules with a

multi-algorithm classification engine, and applying post-processing filtering and prioritization of

alarms.

Neural Networks

Artificial Neural Networks, commonly known as “neural networks” have been an

academic disciple since the advent of the notion that brain computes in an entirely different

fashion from the conventional digital computer. The research was started over 50 years ago with

the publication by McCulloch and Pitts [8] of their famous result that any logical problem can be

solved by a suitable network composed of so-called binary decision nodes.

A neural network is a set of interconnected processing elements that has the ability to

learn through trial and error.

A neural network resembles the brain in two respects: [9]

• Knowledge is acquired by the network through a learning process.

• Connection strengths between the processing elements known as synaptic weights

are used to store the knowledge.

Figure 3 displays a feed forward neural network architecture with 4 input, 3 hidden and 2

output nodes.

Output nodes Hidden nodes Input nodes

Figure 3: A 4 input, 3 hidden and 2 output nodes neural network.

The processing elements in the neural network are called neurons. There are essentially

three basic elements of a neuron.

• A set of weighted connection links or synapses.

• An adder for summing the input signals, weighted by the respective synapses of

the neurons.

• An activation function for limiting the output of the neuron.

Figure 4 displays a neuron with its 3 components. Connection weights coming from other

neurons. An adder which receives inputs using the connection weights. The last is the activation

function that receives input from the adder to give the final output.

x1 Threshold
xj1 θj

xjk
Σ g(.)

xk
netj Output

Figure 4: Model of a neuron

The model of a neuron in Figure 4 includes another parameter θ that is an externally

applied threshold (also referred as the bias input). In order for the neuron to be fired the

cumulative effect of all the neuron connected to it should be greater than θ [10].

In mathematical terms a neuron can be described with the following two equations.

xjK

yj

xK

netj = Σk=1
K

 wjkxk - θj

and

yj = g(netj)

where x1, x2, …, xk are the input signals, wj1, wj2, …, wjk are the synaptic weights

converging to neuron j, netj is the cumulative effect of all the neurons connected to neuron j and

the internal threshold of neuron j, g(.) is the activation function and yj is the output of the neuron.

Neural Network Architectures

The architecture of the neural network can be defined as the manner in which the neurons

and their interconnection links are arranged in the network. Neural networks need a learning

algorithm to train the neurons. The architecture of the network also depends upon the underlying

learning algorithm.

Keeping within the scope of our work we are only defining 3 neural network

architectures. First the simplest architecture found in the neural networks literature and the other

two are those that we used in our experiments.

Single Layer Feed Forward Networks

The neurons in a neural network are essentially arranged in the form of layers. The

simplest possible arrangement is the single layer feed forward network that has one input layer

and one output layer. It is called single layer because only output layer has neurons. Input layer

nodes just register the input patterns applied to neural network.

… …

Figure 5: Single layer feed forward neural network

Figure 5 depicts a single layer feed forward network with K input nodes and I output

nodes. In the figure, input layer is termed as layer 0 and output layer is termed as layer 1. The

interconnection links are emanating from layer 0 and converging to layer 1. The links are only

going from a layer of lower index to a layer of higher index. There are no interconnections

within the same layer and no links from a layer of higher index to a layer of lower index. These

are special type of connections and are termed as feed forward connections and that is the reason

these architectures are called Single Layer Feed Forward Neural Networks. Another name for

this architecture is Single Layer Perceptron Neural or SLP.

… …

… …

Layer 0

Forward
propagation

Input Layer

1 i I Output Layer

1 k K

Multi Layer Feed Forward Networks

The multi layer feed forward network is an extension to the single layer feed forward

network as it contains one or more layers in addition to the input and output layers. These layers

are called hidden layers and they are situated between input and output layers.

Figure 6: Multi layer feed forward network

…

… …

…

… …

… …

Layer 0

Layer 1

Forward
propagation

Input Layer

Output Layer

1 k K

1 j J

1 i ILayer 2

1st Hidden
Layer

Forward
propagation

… …

Figure 6 depicts a multi layer feed forward network with one hidden layer. Input layer

with K nodes is designated as layer 0, hidden layer with J nodes is designated as layer 1 and

output layer with I nodes is designated as layer 2. As in single layer feed forward network

interconnections links are only from a layer of lower index to a layer of higher index. Signals are

propagated from input layer to hidden layer and then from hidden layer to output layer. This type

of connectivity is called standard connectivity and the connections are called feed forward

connections. That is the reason these architectures are called Multi Layer Feed Forward Neural

Networks or Multi Layer Perceptron (MLP).

Fuzzy ARTMAP Neural Networks

The third type of neural network architecture we are discussing is the fuzzy ARTMAP

which belongs to a special class of neural networks called Adaptive Resonance Theory (ART)

Neural Networks. [21]

Fuzzy ARTMAP neural network consists of two fuzzy ART modules designated as ARTa

and ARTb and as well as an interART module. Inputs are presented at the ARTa module while

ARTb module receives their corresponding outputs. The purpose of the interART module is to

establish a mapping between inputs and outputs.

Figure 7 displays a block diagram of the fuzzy ARTMAP system. The fuzzy ART

modules ARTa and ARTb are connected through an interART module Fab. An internal controller,

controls the creation of mapping between inputs and outputs patterns at Fab.

Fab

F2
a F2

b

Top down
weights

Top down
weights

Internal
Control F1

a F1
b

ARTa ARTb

Figure 7: A block diagram of the fuzzy ARTMAP architecture.

Each of the ARTa and ARTb modules consists of three layers, input layer F0 (not shown

in the figure), choice layer F1 and matching layer F2.

The purpose of the input layers F0 in ARTa and ARTb modules is to preprocess the input

and output patterns presented to these modules respectively. The processing involved is called

complement coding and it converts an M dimensional vector a = (a1, …, aM) to 2M dimensional

vector I such that

I = (a, ac) = (a1, …, aM, a1

c, …, aM
c)

Where,

ai
c = 1 – ai 1 ≤ i ≤ M

Choice layer F1a in ARTa contains 2Ma nodes where Ma is the input dimensionality.

Similarly F2b in ARTb has 2Mb nodes where Mb is the output dimensionality. Matching layer F2a

and F2b have Na and Nb nodes respectively. Nx corresponds to the number of commited nodes

plus one uncommitted node. Commited nodes are the nodes in ARTa and ARTb modules which

have established a mapping. Each node in F1 is connected via a bottom up weight to each node in

F2. Similarly each node in F2 is connected via top down weights to each node in F1. These top

down weights are called ARTa and ARTb templates for the ARTa and ARTb modules respectively.

The interART module has one layer Fab of Nb nodes and has weights converging to its every

node from the F2a layer in ARTa module.

Learning Procedures

There are essentially two types of learning procedures involved with the neural networks;

supervised learning and unsupervised learning. Sometimes a third type of learning is also

employed which is the hybrid of the above two types and is called hybrid learning.

• Supervised learning, as the name implies, is the form of learning which is

managed by an external teacher. The learning patterns are applied to the network

and the teacher steers the process by providing the network, the target response to

the input patterns.

Environment Teacher

Figure 8: Illustration of supervised learning

• Unsupervised learning doesn’t employ an external teacher for the learning

procedure. A desired response cannot be provided to the network, in the absence

of a teacher. Instead unsupervised learning uses another procedure called self-

organizing to learn the training patterns.

Learning System

Desired Response

Vector
describing state

of the
environment

Actual Response +

Σ

-

Error Signal

Environment Teacher

Figure 9: Illustration of unsupervised learning. The cross marks (designated by the letter X) indicate that the

corresponding blocks are not available.

Learning Algorithms

Learning algorithms in neural networks can be classified based upon the learning method

they use. This thesis covers two types of learning. Match based learning and error based

learning.

Match based learning uses a pattern matching process that compares the external input

with the internal memory of an active code. Match based learning allows memory to change only

when external input is close enough to internal expectations, or when something completely new

occurs. The ART architectures, including fuzzy ARTMAP use match based learning.

Learning System

Desired Response

Actual Response +

Σ

Vector
describing state

of the
environment

-

Error Signal

Error based learning responds to a mismatch by changing memories so as to reduce the

difference between a target output and the actual output, rather than by searching for a better

match. The difference between target output and actual output represents the error of the system

and error based learning tries to minimize this error. The famous backpropagation algorithm

employs error based learning.

Backpropagation Algorithm

Backpropagation algorithm is based on the error-correction learning rule under a

supervised learning environment. Backpropagation consists of two passes; a forward pass and a

backward pass. In the forward pass the inputs are applied to a multilayer perceptron and the

resulting signals are propagated forward layer by layer. Finally an actual response is produced as

the output of the network. The weights of the network remain unchanged in this pass. During the

backward pass, on the other hand, the synaptic weights are changed according to the error-

correction rule. Specifically, the actual response is subtracted from the desired response of the

network to produce an error signal. This error signal is then propagated backward through the

layers of the network, hence the name error backpropagation. The synaptic weights are adjusted

so as to make the actual response of the network move closer to the desired response.

The following notations are used in the description of the algorithm below.

PT total number of patterns

N total number of processors

K number of nodes in the input layer

J number of nodes in the hidden layer

I number of nodes in the output layer

xk(p) input for pattern p

yj
2(p) calculated output for pattern p

di
2(p) desired output for pattern p

yj
1(p) hidden layer output for pattern p

wij
2(t) current output layer weights

wjk
1(t) current hidden layer weights

σi
2(p) output layer error term for pattern p

σj
1(p) hidden layer error term for pattern p

∆ wij
2(t) current change in weight for output layer

∆ wjk
1(t) current change in weight for hidden layer

∆ wij
2(t-1) previous change in weight for output layer

∆ wjk
1(t-1) previous change in weight for hidden layer

η learning rate

α momentum term

The backpropagation algorithm as a step by step procedure is presented as follows:

1. Initialize the weights in the MLP-NN architecture.

2. Present the input pattern x(p) to the input layer.

3. Calculate the outputs at the hidden and output layers.

yj
1(p) = g(neti

1(p)) = g[Σk=0
Kwjk

1(t).xk(p)] 1 ≤ j ≤ J

yj
2(p) = g(neti

2(p)) = g[Σj=0
Jwij

2(t).yj
1(p)] 1 ≤ i ≤ I

4. Check to see if the actual output is equal to the desired output.

a. If yes, move to step 7.

b. If no, proceed with step 5.

5. Calculate the error terms associated with output and hidden layers.

σi
2(p) = g’(neti

2(p))[di
2(p) – yi

2(p)] 1 ≤ i ≤ I

σj
1(p) = g’(netj

1(p)) Σi=1
Iwij

2(t). σi
2(p) 1 ≤ j ≤ J

6. Change the weights according to the error-correction rule.

∆ wij
2(t) = η. σi

2(p). yj
1(p) + α . ∆ wij

2 (t-1) 1 ≤ i ≤ I, 0 ≤ j ≤ J

∆ wjk
1(t) = η. Σj

1(p). xk(p) + α . ∆ wjk
1(t-1) 1 ≤ j ≤ J, 0 ≤ k ≤ K

7. Check to see if this pattern is the last in the set.

a. If no, go to step 2 and present the next pattern in the sequence.

b. If yes, check if the convergence criteria are satisfied.

i. If yes, the training is complete.

ii. If no, go to step 2 and present the first pattern from the training set.

Fuzzy ARTMAP Algorithm

Fuzzy ARTMAP uses incremental supervised learning of recognition categories and

multidimensional maps in response to an arbitrary sequence of analog or binary input patterns.

Fuzzy ARTMAP realizes a new minimax learning rule that cojointly minimizes the predictive

error and maximizes the code generalization. This is achieved by a match tracking process that

sacrifices the minimum amount of generalization necessary to correct a predictive error [11].

During the training, ARTa and ARTb modules receive a stream of input and output

patterns. The interART module receives inputs from both ARTa and ARTb modules. If a match is

found; i.e. the network’s prediction is confirmed by the selected target category, the network will

learn by modifying the prototype stored patterns of the selected ARTa and ARTb categories with

the new information. A mismatch results in a memory search leading to the selection of a new

ARTa category that better predicts the current ARTb category. The process continues till a better

prediction is found or a new ARTa category is created. In the later case, the network will learn by

storing a prototype pattern of the newly learned category.

The following notations are used in the description of the algorithm below.

ARTa ART Module for inputs

ARTb ART Module for outputs

F1
a matching layer in ARTa

F1
b matching layer in ARTb

F2
a choice layer in ARTa

F2
b choice layer in ARTb

Na number of nodes in F2
a

Nb number of nodes in F2
b

Ir input pattern r

Or output pattern r

^ fuzzy min operator performed on vectors and the result is the minimum of

the corresponding components

|x| size of the vector x which is equal to the sum of its components

Tj
a(Ir) bottom up input from node j in F1

a for pattern Ir

Tk
b(Or) bottom up input from node j in F1

b for pattern Or

wj
a top down weight to node j in F1

a from F2
a

wk
b top down weight to node k in F1

b from F2
b

βa ARTa choice parameter

βb ARTb choice parameter

jmax current winner node in ARTa

kmax current winner node in ARTb

wjmax
a top down weights corresponding to winner node jmax in ARTa

wkmax
b down weights corresponding to winner node kmax in ARTb

ρa vigilance parameter for ARTa

ρb vigilance parameter for ARTb

ε increment in the vigilance parameter

The fuzzy ARTMAP algorithm as a step by step procedure is presented as follows:

1. Initialize the weight vectors corresponding to the uncommitted nodes in F2
a and F2

b to all-

ones.

2. Present the input/output pair to the network and set the vigilance to base-line vigilance.

3. Calculate the bottom up inputs to all the Na nodes in F2
a.

Tj
a(Ir) = (| Ir ^ wj

a |) / (βa + | wj
a |)

4. Choose the node in F2
a that receives the maximum input from F1

a. Assume its index is

jmax. Check to see if it satisfies the vigilance criteria. We now distinguish three cases:

a. If node jmax is uncommitted node, it satisfies the vigilance criteria in ARTa. Go to

step 5.

b. If node jmax is commited node and it satisfies the vigilance criteria, go to step 5. A

node jmax satisfies the vigilance criteria if,

| Ir ^ wjmax
a | / | Ir | ≥ ρa

c. If node jmax does not satisfy the vigilance criteria, disqualify this node and go to

step 4.

5. Now consider three cases:

a. If node jmax is an uncommitted node, designate the mapping of jmax in F2
a to kmax

in F2
b. kmax is found by executing the following steps:

i. Calculate the bottom up inputs to all the Nb nodes in F2
b.

Tk
b(Or) = (| Or ^ wk

b |) / (βb + | wk
b |)

ii. Choose the node in F2
b that receives the maximum input from F1

b. Assume

its index is kmax. Check to see if it satisfies the vigilance criteria. We now

distinguish three cases:

1. If kmax is an uncommitted node, it satisfies the vigilance criteria.

Increase Nb by one by introducing a new uncommitted node in F2
b

and initialize its top down weights to all-ones. Go to step 5(a) ii-4.

2. If kmax is commited node and it satisfies the vigilance criteria, go to

step step 5(a)ii-4. A node kmax satisfies the vigilance criteria if.

| Or ^ wkmax
b | / | Or | ≥ ρb

3. If kmax is commited node and it does not satisfy the vigilance

criteria, disqualify this node by setting Tkmax(Or) = -1 and go to

step 5(a) ii.

4. Now node jmax in F2
a is mapped to node kmax in F2

b. The top-down

weights in ARTa and ARTb are updated.

wjmax
a = Ir ^ wjmax

a

wkmax
b = Or ^ wkmax

b

b. If node jmax is a commited node and due to prior learning this node is mapped to

node kmax and kmax satisfies the vigilance criteria, correct mapping is achieved and

weights in ARTa and ARTb are updated. If this is the last pattern in the training

set, go to step 6, otherwise go to step 2 and present the next in sequence pattern.

c. If node jmax is a commited node and due to prior learning this node is mapped to

kmax and kmax does not satisfy vigilance criteria, disqualify jmax by setting Tjmax(Ir)

= -1, increase the vigilance criteria in ARTa and go to step 4.

| Ir ^ wjmax
a | / | Ir | + ε

6. After all the patterns are presented, consider two cases:

a. If in the previous list presentation, at least one component of the top-down weight

vectors was changed, go to step 2 and present the first pattern in the training set.

b. If in the previous list presentation, no weight changed occurred, the training is

finished.

Intrusion Detection using Neural Networks

Neural networks have proven to be a promising modus operandi for intrusion detection.

A wide variety of intrusion detection systems are using neural networks to address the intrusion

detection problem. The primary reason for using the neural networks as the analysis engine in

IDS is their generalization ability which makes is suitable to detect unknown attacks.

The most common neural network architecture, used in the intrusion detection systems, is

the MLP architecture using a backpropagation algorithm or some variation of it. The earlier

works were mostly focused on anomaly detection on user behavior analysis. Later on, MLP were

used for misuse detection also as an alternative to other, rule-based, signature detection systems.

More recent work is focused on using unsupervised learning techniques to classify user behavior

analysis for anomaly detection. Among the most promising IDS architectures based upon neural

networks are those which use neural networks in conjunction with other detection engines to

improve efficiency and generalization.

The following is a list of several prominent research projects using neural networks for

intrusion detection, along with a brief description of each. [12].

Neural Network Intruder Detector (NNID)

This system uses an MLP for user behavior analysis [49]. The data on which it operates

represents a set of commands a user executes. At fixed intervals, the collected data was used to

train the network. Once trained, the system monitors for user activities and detect any anomalous

behavior. The reported false positive rate of the system was 7%, while the false negative rate was

4%.

Application of Neural Networks to UNIX Security

This project is one of the earliest systems to use neural networks for user anomaly

detection [53]. The system uses an MLP to attempt, in real time, to train and detect anomalies.

The system was designed is such a way that after a brief training session, it continuously modify

and adapt to the user behaviors in real time.

Anomaly Detection using Neural Networks

This project uses an MLP network to examine applications at process level to detect an

anomalous behavior [54]. The system uses the notion that regardless of user characteristics, an

anomalous behavior at the application level will generate activities at the process level that can

be deemed as anomalous. The false positive rate was 0% while the false negative rate was 20%.

Hierarchical Anomaly Network IDS using NN Classification

This system uses an MLP neural network in conjunction with a statistical analysis engine

[55]. In addition the system consists of modules organized in different layers, with a module in

lower layer reporting to the next one in higher layer.

The different modules in the system are:

• Probe to collect network traffic and abstract it into statistical variables.

• Event preprocessor collects data from probes and other agents and format it for

statistical analyzer.

• Statistical model compares the data to the reference model describing the

system’s normal behavior. A stimulus vector was created of the discrepancy and

forwarded to the neural network for further analysis.

• Neural network analyzes the stimulus vector for a normal or anomalous activity.

Artificial Neural Networks for Misuse Detection

This project was one of the first attempts to use neural networks for misuse detection

[56]. The system uses an MLP neural network to analyze network traffic data. Some

preprocessing was involved before the data is fed to the neural network. Certain fields of the

packets were selected, normalization was done and data fields were grouped and converted to

neural network readable format. In addition data was also marked as normal or attack.

Anomaly and Misuse Detection using Neural Networks

This system was the first that shifted focus in anomaly detection from user behavior

analysis to program behavior analysis [57]. In this system individual MLP networks were trained

on the normal behavior of the varying programs. The goal of the system was to generalize from

incomplete data and classify data as anomalous or normal.

At operation time, the system was monitored per session. During each session, several

programs were run with different input parameters. The processes resulting from these events

were fed to various neural networks and an anomaly grade was determined for each. A post

processing leaky bucket algorithms gather all the anomaly scores for all the events and a

threshold value decides for different combinations of accuracy levels.

UNIX Host based User Anomaly Detection using SOM

This system uses a self organizing map (SOM) for detection and analysis of user’s

activities over an extended period of time for an anomalous behavior [58]. It uses the assumption

that normal behavior is consistent and concentrated in a limited feature space. Conversely,

scattered and irregular behavior will signal an anomalous activity.

Features describing a user or an object were collected, normalized and reduced. An SOM

was trained on this data and the resulting network was assumed to be representing valid feature

space for legitimate use.

Host Based Intrusion Detection using SOM

This system uses a self organizing map (SOM) to examine session data by users in UNIX

bases environment to search for anomalous behavior [59]. The system collects the following

session data for analysis:

• User group

• Connection type

• Connection source

• Connection time

The analysis engine consists of two levels, a 3-map tier which summarizes the first three

input domains with respect to time, and the second aggregates and correlates the results of the

first level. The analysis engine groups the session with respect to the variables examined. Each

group can then be examined and associated with a particular user behavior – whether it is normal

or anomalous.

Elman Networks for Anomaly Detection

This system uses Elman network [61] to detect anomalous behavior [60]. Elman

networks are recurrent neural network with the ability to maintain a state of the system.

The Elman network works by predicting the next sequence given a present input and the

context. The actual next sequence is compared to the predicted sequence, and the difference

between them represents a measure of the anomaly.

CHAPTER 3: OUR APPROACH

In recent times, data is collected in various forms and methods. With the recent progress

in automated data gathering, the availability of cheap storage, database and emergence of web

technologies, the volume of data, many organizations and individual deal with, has increased

manifolds. There are millions of transactions taking place everyday and the same are being

stored into databases. Until recent past, this data was only used to archive information. However

it was realized that this information can be used in several other ways, besides being used as an

archive. A digging into this data can give interesting patterns and information which was

previously unknown. Since this data was initially stored in the databases, the process was called

Knowledge Discovery in Databases (KDD). Recent progress in information technology reveals

more sources for the data, especially the web. So the process is termed now simply as Data

Mining.

Mining these huge volumes of available data for hidden patterns is a tedious process that

requires a lot of computation time and resources. Traditional data mining and learning algorithms

are overwhelmed by the bulk volume and complexity of available data. They have become

computationally expensive with larger execution times, which often depend upon the volume of

the dataset in question. There are many time critical tasks which may not be able to stand these

large execution times. Intrusion detection is one such operation. The ultimate goal of an intrusion

detection system is to catch an intrusion when it is happening. Detecting an intrusion once it has

happened might not be adequate in certain cases. An unreasonably high execution time will

make a certain data mining algorithm, having an excellent prediction capability, unappealing for

practical purposes.

High Performance Data Mining

The information sources used for intrusion detection are mostly system audit logs and

network traffic data. These logs and traffic datasets consists of huge amount of information. The

system logs contain records of system events as generated by operating system or some

application software, while network traffic data contains network packet information. Data

mining provides a solution to extract useful information from this huge bank of knowledge. But

one of the major obstacles of using the traditional data mining algorithms towards intrusion

detection is that they are only able to deal with moderate amounts of data. Extracting patterns of

useful information for intrusion detection purposes from the huge audit files is not a trivial task.

The amount of audit data to be analyzed and its complexity is increasing dramatically. This

raises the issue of how to increase the computational capacity of data mining systems.

High performance computing approach

High performance data mining has arisen as an interdisciplinary response to this

situation, merging ideas and techniques drawn from disciplines such as statistics, pattern

recognition, machine learning, databases, and high performance computing. High performance

data mining tries to exploit the parallelism in the data mining algorithm and the underlying

hardware to cope with the increasing demand of lower execution times and higher volumes of

data. Current parallel processor and computing technologies can be used to make the data mining

process capable of dealing with massive databases in reasonable time. High performance

computing makes it possible to scale the existing data mining algorithm over various platforms.

Faster processing also means that users can experiment with more models to understand complex

data.

The approaches taken towards the scalable data mining algorithms include parallel

decision tree classifiers, parallel association rules, parallel instance-based learning, parallel

genetic algorithms and parallel neural networks [13].

Motivation behind the work

Previous and current research [14, 15, 16] shows that numerous approaches have been

taken to use different data mining algorithms for intrusion detection. However, not much

attention has been paid to the scalability and high performance issues of these algorithms. Most

of these algorithms are applied to a fraction of a large dataset. Larger execution times make it

infeasible to apply these algorithms to a dataset with millions of records in it.

We introduced a new strategy to address the issue of scalability of learning algorithms for

intrusion detection. The motivation behind the work was the fact that most of the research in the

area of intrusion detection is focused on classification accuracy and not much attention has been

paid to the learning times of the algorithms. As a result, smaller datasets with less than a million

records were used to perform the experiments which may not represent a real world scenario of a

log file containing more than 10 million or more records.

[26] presented a survey of various intrusion detection techniques including support vector

machines (SVMs), artificial neural networks (ANNs), multivariate adaptive regression splines

(MARS) and linear genetic programs (LGPs). The study used a dataset with less than 500,000

records and reported LGP to be the best classifier at the expense of time. Neural networks also

performed well but suffered the larger training times. Our approach solves the problem of large

training times. Faster learning also makes it possible to use real datasets in the experiments

instead of using a sample data.

High performance approach for intrusion detection

We used high performance data mining techniques to expedite the process by exploiting

the parallelism in the existing data mining algorithms and the underlying hardware. We showed

that how high performance parallel computing can be use to scale the data mining algorithms to

handle large datasets, allowing the data mining component to search a much larger set of patterns

and models than traditional computational platforms and algorithms would allow.

We used the anomaly detection approach for detecting intrusions in network traffic data.

Anomaly detection approach is based upon extraction of the normal behavior patterns out of a

huge datasets that we may not have any prior knowledge about. This extraction creates a model

of a normal system behavior and any deviation from it is considered as intrusion. Neural

networks are a natural choice for such an operation because of their generalization and prediction

capabilities. But neural networks suffer from the drawback of large training times. Considering

the amount of the data we have and the numbers of feature we need to define normal profiles

from the traffic data, traditional neural networks are not feasible option. We approached this

problem by employing parallelism in the classical neural networks learning algorithms. Among

the various available algorithms we chose backpropagation learning and fuzzy ARTMAP. Both

of these algorithms are well suited to identify patterns in the data and therefore are mainly used

for prediction and forecasting operations.

We implemented the parallel neural networks on a cluster computing environment.

Cluster computing is a process in which a set of computers connected by a network are used

collectively to solve a single large problem. Using a cluster of workstations has become a

popular method of solving both large and small scientific problems. The most important factor in

the success of cluster computing is cost. Massively parallel processors (MPP) cost more than $10

million while there is little cost involved in setting up a cluster of existing machines [32]. Early

supercomputers used distributed computing and parallel processing to link processors in a single

machine, often called a mainframe. Exploiting the same technology, cluster computing produces

computers with supercomputer performance for less than $40,000 [33]. Given this new

affordability, a number of universities and research laboratories are experimenting with installing

such systems in their facilities. These systems are termed as Beowulf clusters.

Beowulf is an approach to building a supercomputer as a cluster of commodity off-the-

shelf personal computers interconnected by widely available networking technology running any

one of several open-source Unix-like operating systems. Beowulf programs are usually written in

C or FORTRAN, adopting a message passing model of parallel computation but other open,

standards based approaches are possible, including process level parallelism, shared memory

(OpenMP, BSP), other languages (Java, LISP, FORTRAN90), and other communication

strategies (RPC, RMI, CORBA) [34].

The Beowulf idea is said to enable the average university computer science department or

small research company to build its own small supercomputer that can operate in the gigaflop

(billions of operations per second) range. Since Beowulf is mechanism of establishing a general

purpose loosely coupled parallel computing environment, it is not only cost effective but it also

decrease the dependency on particular hardware and software vendors. As off-the-shelf

technology evolves, a Beowulf can be upgraded to take advantage of it [34].

Our idea combines the potential of high performance approach with the cost effectiveness

and wide availability of cluster computing to scale the existing machine learning algorithms to

deal with much larger datasets in intrusion detection than traditional algorithms would allow.

High performance makes it practical for users to analyze greater quantities of data that, in turn,

yield improved predictions. We showed that how high performance computing can be used to

overcome performance limitations of the available hardware. The work will serve as a precursor

to the researchers in intrusion detection whose experiments are hindered by the high volumes of

data.

Parallel Neural Networks

Research in artificial neural networks was started almost 50 years ago with the famous

publication by McCulloch and Pitts [8]. Since then the eclectic nature of this field has inspired

researchers from such diverse disciplines as neuroscience, engineering, physics, computer

science and biology. Neural networks have been proven successful in solving a variety of

learning tasks including function approximation, association, pattern classification, prediction

and clustering [10].

Large training time

Neural networks involve a learning phase in which they are trained on a set of examples

of a problem. The trained network is then used in a real environment to solve instances of

problems not present in the training examples. The learning phase usually takes a large amount

of computing time. For a real world problem training time in the order of days and weeks is not

uncommon on serial machines [27, 28, 29]. This has been a major obstacle in using neural

networks in real world applications and has impeded its wider acceptability.

Approaches to improve efficiency

This problem of large training times can be overcome by devising faster and more

efficient algorithms or by implementing the current algorithms on parallel computing

architectures. Improving the algorithm is in itself an area of research and is discussed in [30, 31].

Our work is focused on modifying the current algorithms to introduce parallelism in them. One

major reason of this approach is that an improved faster learning algorithm can further take

advantage of parallel implementation.

Parallel implementation of neural networks

A neural network is intrinsically a massively parallel distributed processor that is capable

of learning through a process of trail and error [9]. Parallel neural networks exploit this parallel

distributed architecture of the neural networks to implement it over a high performance

computing environment. A neural network can be implemented sequentially on a single stand

alone machine or it can be made parallel to benefit from a general purpose parallel machine or

some special purpose hardware. Although sequential implementations are widespread and offer

solution for a wide variety of problems, the computational needs of realistic time critical

applications have exceeded the capabilities of sequential computers. Parallelization was thus

viewed as an answer to meet the high computational demands of the current applications.

Our implementation environment

We implemented the parallel neural networks on a Beowulf Linux cluster. A Linux

cluster involves a network of workstations running Linux operating system and a robust message

passing software to utilize and manage the cluster. This message passing software is the means

of communication between processors. We employed two different message passing tools for our

experiments. These include MPI and CRLib.

MPI

MPI [35] is Message Passing Interface, a de facto standard for communication among the

nodes running a parallel program on a distributed memory system. MPI is a library of routines

that can be called from both Fortran and C programs. MPI's advantage over older message

passing libraries e.g. PVM is that it is both portable (because MPI has been implemented for

almost every distributed memory architecture) and fast (because each implementation is

optimized for the hardware it runs on).

CRLib

Computational Resiliency Library, CRLib [19, 20] is a concurrent programming software

tool to support heterogeneous computing environment, fault tolerance, and dynamic load

balancing for parallel applications. CRLib is based upon message passing paradigm similar to

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) [36]. MPI and PVM have

been a successful solution for message passing based parallel processing. However, these tools

are not efficient in supporting heterogeneous computing environments comprising of various

shared memory multiprocessor and uni-processor machines with different types of operating

systems, processor types, and memory and storage capacity. CRLib offers a solution that

seamlessly integrates those computing resources without causing additional overhead to the

application programmers.

Neural networks architectures used

We used two neural network architectures which employ algorithms from two different

learning paradigms. One of them is backpropagation, which uses error based learning while the

other is a match based learning algorithm called fuzzy ARTMAP. Classically both of these

algorithms were designed for sequential access, but we modified them to fit our needs.

Backpropagation is one of the most widely used learning algorithms for neural networks.

Its popularity is related to its ability to deal with complex multidimensional mappings [37].

Werbos [38] describes the algorithm as “Beyond Regression” because the learning in the

backpropagation is actually a search in the function space unlike a linear regression that

establishes a basic linear relationship between inputs and outputs. As a modeling technology,

backpropagation distinguishes itself by its ability to approximate any continuous function. This

makes it a universal solution for problems ranging from forecasting interest rates to improve the

active suspension in the cars. In classification applications, backpropagation exhibits similar

distinguishing traits. It detects fraudulent credit card transactions, decides which customized

banner ad should appear on a website and diagnose skin problems [39].

With all its power and might, backpropagation suffers from stability plasticity dilemma;

namely how to design a learning system that will remain plastic, or adaptive, in response to

significant events and yet remain stable in response to irrelevant events [40]. Fuzzy ARTMAP

with its unique match based learning allow the learning of new information without destroying

the old one. This single reason was strong enough to use fuzzy ARTMAP in a task like intrusion

detection where new patterns are available everyday.

Parallel Backpropagation

The basic Backpropagation algorithm, though very popular, is very slow to converge and

takes large amount of training time. One way to reduce this time is to modify the basic algorithm

and use some faster training technique like Resilient Backpropagation commonly called as

RProp [17]. Several other variations can also be found for faster convergence. Another way to

reduce the training time, especially for large data sets is to employ parallelism.

Parallelism in the BP Algorithm

Parallelism in neural networks can be divided into two broad categories. Training set

parallelism and Network based parallelism [18]. The training set parallelism uses batch learning

method and requires less communication. Due to batch learning the convergence may be slow

but there is less communication overhead. In the network based parallelism online learning is

used due to which the convergence is faster but there is more communication overhead.

Network based Parallelism

In network based parallelism the neural network is partitioned amongst the processors so

that each processor simulates a portion of the neural network. There are essentially two methods

for achieving network based parallelism. Algebraic partitioning in which the algebraic operations

performed by the network are partitioned among the processors, and topological partitioning in

which the network is sliced horizontally or vertically to be distributed among the processors.

Algebraic Partitioning

In this approach the algebraic operations carried out by the nodes of neural network are

partitioned. These operations are performed on vectors and matrices and can be represented by a

directed graph which can be mapped to an array of processing elements.

Topological Partitioning

In this approach the topology of the neural network is partitioned among the processors.

The network is either sliced horizontally with layers of the network constituting slices or

vertically with each slice getting neurons from each layer. Each processor gets a subset of

neurons from one layer in horizontal case or from each layer in vertical case.

Figure 10 displays the vertical slicing approach for topological partitioning of the neural

network. The neurons falling under one slice are fed to once processor along with their

connection weights.

Figure 10: Network partitioning using vertical slicing scheme.

Training Set Parallelism

In the training set parallelism, the training set is partitioned amongst the processors

instead of the network itself. Each processor keeps a complete copy of the whole network. Batch

learning is used to minimize the communication overhead. The processors only need to

communicate with each other when the weights are updated throughout the network after each

epoch.

Figure 11 displays the training set partitioning scheme for English alphabets. The 26

alphabets are divided into three sets and distributed amongst the three processors.

Figure 11: Training set partitioning of English alphabets.

Parallel Backpropagation

Our parallel backpropagation system runs on a Beowulf cluster using CRLib [19, 20].

Because of the fast processors but slower I/O we had to choose such scheme for parallelism

which uses lesser interaction between processors in order to keep the communication overhead

low. Therefore we adopted training set partitioning scheme.

Algorithm

In the CRLib program one process is chosen as the root process. Besides usual

calculations for the neural network, the responsibilities of the root include:

• Reading the input data file and partitioning it amongst the processors.

• Receiving weight updates and errors from all the processes and adding them up to

get the total weight update.

• Broadcasting the update weights to all the processes.

• Checking for defined stopping criteria and sending the done signal to all the

processes in case training is finished.

The basic algorithm can be divided into two phases; setup and training.

• The setup phase consists of reading the input file and distributing data amongst

the processors. This time was observed to be almost constant with a slight

increase as the number of processors was increased.

• Training phase was the major phase that dominates the total execution time of the

algorithm.

The following notations are used in the description of the algorithm below.

PT total number of patterns

N total number of processors

K number of nodes in the input layer

J number of nodes in the hidden layer

I number of nodes in the output layer

xk(p) input for pattern p

yj
2(p) calculated output for pattern p

di
2(p) desired output for pattern p

yj
1(p) hidden layer output for pattern p

wij
2(t) current output layer weights

wjk
1(t) current hidden layer weights

σi
2(p) output layer error term for pattern p

σj
1(p) hidden layer error term for pattern p

∆ wij
2(t) current change in weight for output layer

∆ wjk
1(t) current change in weight for hidden layer

∆ wij
2(t-1) previous change in weight for output layer

∆ wjk
1(t-1) previous change in weight for hidden layer

η learning rate

α momentum term

e(p) mean squared error for pattern p

ρ wij
2(t) accumulated weight updates for output layer for current epoch

ρ wjk
1(t) accumulated weight updates for hidden layer for current epoch

E(p) accumulated mean squared error for current epoch

∆ Wij
2(t) total weight update for output layer at root for current epoch

∆ Wjk
1(t) total weight update for hidden layer at root for current epoch

σ(t) total mean squared error at root for current epoch

The algorithm can be described as a step by step procedure as follows:

1.

a. If this is the root processor

i. Read the input file.

ii. Distribute the data amongst the processors

b. If this is not the root processor

i. Receive the data from root processor

2. Initialize the weights on each processor

3. Present the input pattern x(p) to the input layer.

4. Calculate the outputs at the hidden and output layers.

yj
1(p) = g(neti

1(p)) = g[Σk=0
Kwjk

1(t).xk(p)] 1 ≤ j ≤ J

yj
2(p) = g(neti

2(p)) = g[Σj=0
Jwij

2(t).yj
1(p)] 1 ≤ i ≤ I

5. Calculate the error terms associated with output and hidden layers.

σi
2(p) = g’(neti

2(p))[di
2(p) – yi

2(p)] 1 ≤ i ≤ I

σj
1(p) = g’(netj

1(p)) Σi=1
Iwij

2(t). σi
2(p) 1 ≤ j ≤ J

6. Calculate the weight updates for this pattern

∆ wij
2(t) = η. σi

2(p). yj
1(p) + α . ∆ wij

2 (t-1) 1 ≤ i ≤ I, 0 ≤ j ≤ J

∆ wjk
1(t) = η. Σj

1(p). xk(p) + α . ∆ wjk
1(t-1) 1 ≤ j ≤ J, 0 ≤ k ≤ K

7. Calculate the MSE for this pattern

e(p) = ½ [di
2(p) – yi

2(p)]2

8. We distinguish two cases here

a. If p = PT

i. go to step 9

b. If p ≠ PT

i. Increase p

ii. Accumulate the weight update for this epoch

ρ wij
2(t) = ρ wij

2(t) + ∆ wij
2(t)

ρ wjk
1(t) = ρ wjk

1(t) + ∆ wjk
1(t)

iii. Accumulate the MSE for this epoch

E(p) = E(p) + e(p)

iv. Go to step 3

9.

a. If this is not the root processor

i. Send the calculated MSE and weight updates to the root processor.

b. If this is the root processor

i. Receive the MSE and weight updates from all the processors.

If this is the root processor perform steps 10 - 14, otherwise move to step 15

10. Calculate the total weights by adding all the weights received from each processor.

∆ Wij
2(t) = Σn=1

N ρ wij
2(t)

∆ Wjk
1(t) = Σn=1

N ρ wjk
1(t)

11. Calculate the total error

σ(t) = 1/N Σn=1
N E(p)

12. Check to see if the total MSE is less than the required MSE

a. If yes

i. Set the done signal

ii. Go to step 15

b. If no

i. Go to step 13

13. Update the weights.

wij
2(t) = wij

2(t) + ∆ Wij
2(t) 1 ≤ i ≤ I, 0 ≤ j ≤ J

wik
1(t) = wik

1(t) + ∆ Wjk
1(t) 1 ≤ j ≤ J, 0 ≤ k ≤ K

14.

a. If this is the root processor

i. Broadcast the updated weights and done signal.

b. If this is not the root processor

i. Receive the updated weights and done signal from the root.

15. We now distinguish two cases

a. If done is set, training is considered complete.

b. If done is not set

i. Set p = 0

ii. Go to step 3.

Parallel Fuzzy ARTMAP

Fuzzy ARTMAP use fast match based learning as compared to the slow mismatch

learning by backpropagation [24]. In fast learning adaptive weights converge to equilibrium in

response to each input pattern [21]. As we discussed earlier a fast learning algorithm can further

benefits from applying high performance techniques, we parallelize the fuzzy ARTMAP

algorithm to acquire improved efficiency regarding the training time.

The same Beowulf cluster was used for experimentations with the parallel fuzzy

ARTMAP. Training set partitioning scheme was chosen to reduce the communication between

processes.

Our parallel implementation of the fuzzy ARTMAP algorithm take advantage of the

match based learning capability of the ART systems [21]. A central feature of all the ART

systems is a pattern matching process that compares an external input with the internal memory

of the system which represents some prototype stored patterns from a previous learning. Our

algorithm consists of two major steps. In the first step, each processor on the system is trained

with portion of the data it is assigned with. There is no communication between processors in

this step. When the training is complete, each processor has a set of stored patterns which are

learned during the training phase. In the second step, each processor sends its stored patterns to

one processor (root). Root is then trained on these stored patterns from every processor including

its own. The patterns learned at the end of the training at root are the prototype patterns

representing the whole dataset.

The basic algorithm can be divided into two sections; setup and training.

• The setup part consists of reading the input file and distributing data amongst the

processors. The file reading time was constant while the distribution time

increases with the number of processors.

• The second part was the training part. Since fuzzy ARTMAP is a fast learning

algorithm which is further speeded up by parallelization, training time was not the

major dominating phase of the total execution time for every case.

Algorithm

The following notations are used in the description of the algorithm below.

ARTa ART Module for inputs

ARTb ART Module for outputs

F1
a matching layer in ARTa

F1
b matching layer in ARTb

F2
a choice layer in ARTa

F2
b choice layer in ARTb

Na number of nodes in F2
a

Nb number of nodes in F2
b

Ir input pattern r

Or output pattern r

^ fuzzy min operator performed on vectors and the result is the minimum of

the corresponding components

|x| size of the vector x which is equal to the sum of its components

Tj
a(Ir) bottom up input from node j in F1

a for pattern Ir

Tk
b(Or) bottom up input from node j in F1

b for pattern Or

wj
a top down weight to node j in F1

a from F2
a

wk
b top down weight to node k in F1

b from F2
b

βa ARTa choice parameter

βb ARTb choice parameter

jmax current winner node in ARTa

kmax current winner node in ARTb

wjmax
a top down weights corresponding to winner node jmax in ARTa

wkmax
b down weights corresponding to winner node kmax in ARTb

ρa vigilance parameter for ARTa

ρb vigilance parameter for ARTb

ε increment in the vigilance parameter

The modified fuzzy ARTMAP algorithm in a step by step procedure can be described as:

1.

a. If this is the root processor

i. Read the input file.

ii. Distribute the data amongst the processors

b. If this is not the root processor

i. Receive the data from root processor

2. Initialize the weight vectors corresponding to the uncommitted nodes in F2
a and F2

b to all-

ones on each processor.

3. Present the input/output pair to the network and set the vigilance to base-line vigilance.

4. Calculate the bottom up inputs to all the Na nodes in F2
a.

Tj
a(Ir) = (| Ir ^ wj

a |) / (βa + | wj
a |)

5. Choose the node in F2
a that receives the maximum input from F1

a. Assume its index is

jmax. Check to see if it satisfies the vigilance criteria. We now distinguish three cases:

a. If node jmax is uncommitted node, it satisfies the vigilance criteria in ARTa. Go to

step 6.

b. If node jmax is commited node and it satisfies the vigilance criteria, go to step 6. A

node jmax satisfies the vigilance criteria if

| Ir ^ wjmax
a | / | Ir | ≥ ρa

c. If node jmax does not satisfy the vigilance criteria, disqualify this node and go to

the beginning of step 5.

6. Now consider three cases:

a. If node jmax is an uncommitted node, designate the mapping of jmax in F2
a to kmax

in F2
b. kmax is found by executing the following steps:

i. Calculate the bottom up inputs to all the Nb nodes in F2
b.

Tk
b(Or) = (| Or ^ wk

b |) / (βb + | wk
b |)

ii. Choose the node in F2
b that receives the maximum input from F1

b. Assume

its index is kmax. Check to see if it satisfies the vigilance criteria. We now

distinguish three cases:

1. If kmax is an uncommitted node, it satisfies the vigilance criteria.

Increase Nb by one by introducing a new uncommitted node in F2
b

and initialize its top down weights to all-ones. Go to step 6(a) ii-4.

2. If kmax is commited node and it satisfies the vigilance criteria, go to

step step 6(a)ii-4. A node kmax satisfies the vigilance criteria if,

| Or ^ wkmax
b | / | Or | ≥ ρb

3. If kmax is commited node and it does not satisfy the vigilance

criteria, disqualify this node by setting Tkmax(Or) = -1 and go to the

beginning of step 6(a) ii.

4. Now node jmax in F2
a is mapped to node kmax in F2

b. The top-down

weights in ARTa and ARTb are updated.

wjmax
a = Ir ^ wjmax

a

wkmax
b = Or ^ wkmax

b

b. If node jmax is a commited node and due to prior learning this node is mapped to

node kmax and kmax satisfies the vigilance criteria, correct mapping is achieved

and weights in ARTa and ARTb are updated. If this is the last pattern in the

training set, go to step 7, otherwise go to step 3 and present the next in sequence

pattern.

c. If node jmax is a commited node and due to prior learning this node is mapped to

kmax and kmax does not satisfy vigilance criteria, disqualify jmax by setting Tjmax(Ir)

= -1, increase the vigilance criteria in ARTa and go to step 5.

| Ir ^ wjmax
a | / | Ir | + ε

7. After all the patterns are presented, consider two cases:

a. If in the previous list presentation, at least one component of the top-down weight

vectors was changed, go to step 3 and present the first pattern in the training set.

b. If in the previous list presentation, no weight changed occurred, the training is

finished. We now distinguish two cases.

i. If the training set was original patterns go to step 8.

ii. If the training set was stored patterns from all the processors and this

processor is root go to step 12.

8.

a. If this is the root processor

i. Receive the stored patterns from all the processors

b. If this is not the root processor

i. Send the stored patterns to the root processor

Steps 9-12 are only performed on the root processor.

9. Set the inputs and outputs to the stored pattern and their corresponding outputs

10. Initialize the weights vectors to all-ones and reset the F2
a and F2

b layers.

11. Go to step 3.

12. Training is considered finished and the stored patterns represent the prototype patterns

from the whole dataset.

CHAPTER 4: EXPERIMENTAL RESULTS

The experiments were performed on the network traffic data generated by the MIT

Lincoln Labs for the 1998 DARPA Intrusion Detection Evaluation program. A version of this

data was also used in the 1999 KDD Intrusion Detection contest and is available from the UCI

KDD Archive [22]. Lincoln Labs artificially generated this data by simulating a military LAN

environment infused with different attacks. The data consists of network connection records

generated by TCP dump.

A network connection record is a set of information, such as duration, protocol type,

number of transmitted bytes etc, which represents a sequence of data flow to and from a well

defined source and target.

Each record in this data carry 41 different attributes and was marked as normal or attack,

with exact specification about the attack type. All the attacks fall into four main categories.

• DOS: denial-of-service, e.g. syn flood;

• R2L: unauthorized access from a remote machine, e.g. guessing password;

• U2R: unauthorized access to local superuser (root) privileges, e.g., various

buffer overflow attacks;

• probing: surveillance and other probing, e.g., port scanning.

The training dataset contains 4848429 records while the test dataset had 311029 records.

Running the full dataset on a single processor suffers from memory problems and the speed

further slowed down. To encounter this problem we used a reduced 10% dataset of the original

dataset also for our experiments to measure the training times especially for one processor. The

reduced dataset has 494020 patterns and this dataset is the most widely used dataset for intrusion

detection research. There were 24 different types of attacks along with the normal patterns in the

training data. Test data has 14 additional attacks that were not found in the training data.

The 24 attack types found in the training dataset are:

Table 1: Attack types in the training data set

S.No Attack Name Category
1 Back DoS
2 buffer_overflow U2R
3 ftp_write R2L
4 guess_passwd R2L
5 imap R2L
6 ipsweep Probe
7 land DoS
8 loadmodule U2R
9 multihop R2L
10 neptune DoS
11 nmap Probe
12 perl U2R
13 phf R2L
14 pod DoS
15 portsweep Probe
16 rootkit U2R
17 satan Probe
18 smurf DoS
19 spy R2L
20 teardrop DoS
21 werezclient R2L
22 werezmaster R2L
23 snmpgetattack R2L
24 xlock R2L

The training data consists of 41 features which can be divided into 3 categories.

1. Basic features of individual TCP connections.
2. Content features within a connection suggested by domain knowledge.

3. Traffic features computed using 2 second time window.
A complete listing of the set of features defined for the connection records is given in the

three tables below.

Table 2: Basic features of individual TCP connections

feature name description type
duration length (number of seconds) of the connection continuous
protocol_type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http, telnet, etc. discrete
src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong_fragment number of ``wrong'' fragments continuous
urgent number of urgent packets continuous

Table 3: Content features within a connection suggested by domain knowledge

feature name description type
hot number of ``hot'' indicators continuous
num_failed_logins number of failed login attempts continuous
logged_in 1 if successfully logged in; 0 otherwise discrete
num_compromised number of ``compromised'' conditions continuous
root_shell 1 if root shell is obtained; 0 otherwise discrete
su_attempted 1 if ``su root'' command attempted; 0 otherwise discrete
num_root number of ``root'' accesses continuous
num_file_creations number of file creation operations continuous
num_shells number of shell prompts continuous
num_access_files number of operations on access control files continuous
num_outbound_cmds number of outbound commands in an ftp session continuous
is_hot_login 1 if the login belongs to the ``hot'' list; 0 otherwise discrete
is_guest_login 1 if the login is a ``guest''login; 0 otherwise discrete

Table 4: Features computed using a two-second time window.

feature name description type

count number of connections to the same host as the current connection
in the past two seconds continuous

 Note: The following features refer to these same-host
connections.

serror_rate % of connections that have ``SYN'' errors continuous
rerror_rate % of connections that have ``REJ'' errors continuous
same_srv_rate % of connections to the same service continuous
diff_srv_rate % of connections to different services continuous

srv_count number of connections to the same service as the current
connection in the past two seconds continuous

 Note: The following features refer to these same-service
connections.

srv_serror_rate % of connections that have ``SYN'' errors continuous
srv_rerror_rate % of connections that have ``REJ'' errors continuous
srv_diff_host_rate % of connections to different hosts continuous

Data preprocessing

Data preprocessing can be described as any type of processing performed on the raw data

to prepare it for any other processing procedure. Data preprocessing is an important step in data

mining. It transforms the data into a format that is acceptable to the actual data processing

algorithm e.g. a neural network.

The KDD dataset has two types of attribute; discrete and symbolic. The discrete attributes

can be in the form of a Boolean value or it might represent a symbolic denomination like

protocol type can have tcp or udp as its values. These symbolic values were transformed into

appropriate numerical representations. A requirement for fuzzy ARTMAP is that the input values

should be in the range 0-1. To achieve this, the continuous attributes of the data were processed

using a vertical unit normalization method that scales down all the values in that attribute in the

required range. The operation was performed on each column separately.

Experiments

The computing environment used for experiments was composed of a cluster of 32 PCs

running LINUX. Each of these machines was equipped with a 900 MHz AMD Athlon processor

with 1 GB memory and 100BT networking. Two different machine learning algorithms were

parallelized using different message passing tools for mining the KDD data. The programming

tool used to implement parallel backpropagation was CRLib while fuzzy ARTMAP was

parallelized using MPI. Since different message passing programs were used for parallelization

so a comparison study was not made for the results of these two algorithms. The purpose was to

test parallelization under different message passing paradigms.

Experiments with backpropagation

As discussed earlier, the parallel backpropagation was implemented using CRLib in a

manager-worker model. The manager reads the input data and distributes it amongst the workers,

receives weight updates from the workers and broadcast the updated weights back and checks for

stopping criteria. The backprogapation neural network has 41 input nodes corresponding to 41

attributes of the given data, 40 hidden nodes and 3 output nodes to specify normal or any of the

four attack types. Same initial weights were used for all the experiments to keep the number of

epochs needed for converging same. The parallel backpropagation algorithm converged after 152

epochs with a 0.05 acceptable mean squared error (MSE). The execution time for the sequential

version was 68 hours and 37 minutes while the parallel version reduced this time to 1 hour and

33 minutes using a 32 node cluster. The speedup achieved was 43.9 which is a linear gain. As a

measure of performance, we are reporting execution time for single epoch, as this is the most

common way to report the speedup of a parallel neural network.

Table 5: Training times for a single epoch for parallel backpropagation for full dataset

No of processors 1 2 4 8 16 32

Execution time (sec) 1625 587 298 150 76 38

1

10

100

1000

10000

1 2 4 8 16 32
No of Processors

Ex
ec

ut
io

n
tim

e
(s

ec
)

Figure 12: Execution times for backpropagation for a single epoch in logarithmic scale for full dataset.

There is a setup time also involved as discussed previously in the parallel algorithm that

consists of input data reading and distribution times. This setup time was observed to be almost

constant regardless of the number of processors with the exception of the serial version with only

one processor. The reason for constant time is that the root processor read the data and

distributed it amongst the processors. If the number of processors is small, larger partitions were

transferred over the network to small number of processors. If the number of processors is large,

smaller partitions were transferred to a large number of processors. In any case the total amount

of data transferred over the network remains the same.

Table 6: Setup times for parallel backpropagation for full dataset

No of processors 2 4 8 16 32

Execution time (sec) 625 433 422 415 432

Training the network with the full dataset on a single machine suffers from memory

problems. Loading the full dataset into memory resulted in segmentation faults. We had to

partition the dataset and load each partition one at a time into memory during the training.

Table 6 doesn’t include the setup time for one processor for this reason. The input file

was read continuously for each epoch. This also explains the relatively larger value for execution

time for one processor in table 5. In this case execution time includes both setup time and

training time.

To remedy this problem we used the 10% dataset to have a fairer speed comparison as the

number of processors is increased. Nevertheless it again proves the limitation of hardware and

advantages of using parallel computing for our work.

Table 7: Training times for a single epoch for parallel backpropagation for 10% dataset

No of processors 1 2 4 8 16 32

Execution time (sec) 110 59 30 15 8 4

1

10

100

1000

1 2 4 8 16 32
No of Processors

Ex
ec

ut
io

n
tim

e
(s

ec
)

Figure 13: Execution times for backpropagation for a single epoch in logarithmic scale for 10% dataset

The setup times for 10% dataset are documented in table 8.

Table 8: Setup times for parallel backpropagation for 10% dataset

No of processors 1 2 4 8 16 32

Setup time (sec) 42.1 42.1 41.9 41.9 41.7 41.8

For the training dataset, the backpropagation network demonstrated 98.36% classification

rate. The false positive rate was 1.26% and the false negative rate was 0.38%.

The testing dataset contained 14 new attacks which were not present in the training

dataset. This would test the system in a real time scenario with unknown attacks. The neural

network generalization capability enabled it to predict 81.37% of the patterns correctly. False

positive rate was 1.28% while the false negative rate was 17.35%. The negative false alarm rate

indicates that most of the unknown attacks were going unnoticed. Usually a neural network is

retrained when new patterns are discovered to include those patterns into its learning paradigm.

Table 9: Performance of parallel backpropagation algorithm

 Training Data Test Data
Classification Rate 98.36% 81.37%
False Negatives 0.38% 17.35%
False Positives 1.26% 1.28%

Experiments with fuzzy ARTMAP

The fuzzy ARTMAP system also follows the manager-worker model as

backpropagationas does. The manager duties include reading and distributing the input data,

receiving stored patterns from workers when they finished their training, and training on stored

patterns. In addition manager also performs worker operations.

The fuzzy ARTMAP system consists of two ART modules; ARTa and ARTb. The 41

input features were fed to the ARTa module while the corresponding output was given to the

ARTb module. To achieve parallelization, training set partitioning scheme was used. Fuzzy

ARTMAP uses fast match based learning and it usually converges in few epochs.

The parallel algorithm has two phases. In the first phase each network is trained

separately on its assigned partition of the full dataset. The second phase consists of training one

network with the prototype patterns learned in the first phase by all the networks. With

appropriately chosen parameters, the first phase always dominates the execution time. Since

separate networks are trained with separate datasets in the first phase we consider average

training time as a measure of the execution time.

The algorithm converged in just 2 epochs with the average training time of 92 seconds on

a 32 node cluster.

Table 10: Training times for a single epoch on parallel fuzzy ARTMAP for full dataset

No of processors 1 2 4 8 16 32

Execution time (sec) 1851 805 392 192 95 46

1

10

100

1000

10000

1 2 4 8 16 32
No of Processors

Ex
ec

ut
io

n
tim

e
(s

ec
)

Figure 14: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for full dataset

The setup time on fuzzy ARTMAP was slightly different from the backpropagation

implementation because it uses a different manager-worker approach. Since manager performs

worker operations also in addition to its duties, the distribution time varies as the number of

processors varies. The amount of data to be distributed, increases as the number of processor

increases. The reason being the manager keeps its partition of data and distribute the rest

amongst the workers. As the number of workers increases, the partitions become small so

manager keep a small partition and distribute the rest.

Table 11: Setup times for fuzzy ARTMAP for full dataset.

No of processors 2 4 8 16 32

Setup time (sec) 330 368 397 402 405

Again, single machine suffers from memory problems with the full dataset. Segmentation

faults were observed while loading the full dataset into memory. So, we partitioned the dataset

and loaded each partition one at a time into memory during the training.

Table 11 doesn’t include time for one processor because execution time for an epoch

includes setup time in addition to the training time. This also explains the large value for epoch

execution time for one processor in table 10.

We performed experiments with the 10% dataset on the fuzzy ARTMAP also to get a

balanced view of training times without memory problems. This showed that an almost linear

speedup was obtained as the number of processors was increased. The times reflected in the table

are average times for one epoch. We used the notion of average time here because in such a

parallel fuzzy ARTMAP system, not every processor is executing the same number of steps

every time. A closer look at the algorithm revealed that winner node selection step might take

more iteration on some processor depending upon the dataset it received. This iteration is nested

within the operation of each epoch and hence a change in its value will result in a variation in the

epoch time.

Table 12: Training times for a single epoch on parallel fuzzy ARTMAP for 10% dataset

No of processors 1 2 4 8 16 32

Execution time (sec) 157 74 36 18 8 4

1

10

100

1000

1 2 4 8 16 32
No of Processors

Ex
ec

ut
io

n
tim

e
(s

ec
)

Figure 15: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for 10% dataset

For the 10% dataset the total execution time for the algorithm was dominated by the

setup time as the number of processors increases as indicated by table 13. The setup time

includes input file reading and data distribution times.

Table 13: Distribution times on parallel fuzzy ARTMAP for 10% dataset

No of processors 1 2 4 8 16 32

Setup time (sec) 26 33 37 39 41 41

Testing on the training data gives 80.14 % classification rate. The false positive and

negative rates were 0%. Test data gave an 80.52% success rate with 0.0% false negative rate and

19.48% false positive rate. A high false positive rate indicates that a number of normal patterns

were detected as attacks. Detection algorithms of all kind have a tendency to create false

positives and negatives. A false negative is a more serious concern than a false positive because

a false negative means that an attack has gone unnoticed while false positive flags a normal

activity as attack which is not considered a security threat.

Table 14: Performance of parallel fuzzy ARTMAP algorithm

 Training Data Test Data
Classification Rate 80.14% 80.52%
False Negatives 0.0% 0.0%
False Positives 19.86% 19.48%

CHAPTER 5: CONCLUSIONS

We introduced a new strategy to address the issue of scalability of learning algorithms for

intrusion detection. Our research focuses on using high performance distributed computing

techniques to scale existing data mining algorithms to deal with large datasets for problems in

intrusion detection. The scalability issue is widely ignored in the intrusion detection research. As

a result most of the research projects are restricted to use smaller datasets which may not reflect

real-world scenario of dealing with ever increasing audit files.

We developed parallel backpropagation and parallel fuzzy ARTMAP algorithms to

analyze network traffic data. With the help of our parallel algorithms we were able to investigate

much larger set of patterns than their sequential versions would allow. Out experimental results

showed that the developed parallel model can significantly reduce training time in the neural

networks algorithms, achieving a linear speedup using a cluster computing environment, without

sacrificing accuracy in classification and prediction rate.

We showed how intrusion detection can benefit from high performance data mining

techniques. For our experiments we came up with a parallelized version of the fuzzy ARTMAP

algorithm for cluster environment.

Improving the parallel fuzzy ARTMAP algorithm we developed is an open area for

future research. Experiments with other datasets can be performed using our parallel models.

Further research can be done in this area by applying the same parallel computing techniques to

other data mining algorithms.

LIST OF REFERENCES

[1] CERT/CC Statistics 1988-2003, http://www.cert.org/stats/cert_stats.html

[2] Jones, Anita K., Sielken, Robert S., “Computer system intrusion detection: A survey”,

Technical Report, Computer Science Dept., University of Virginia, 1999.

[3] Koziol, Jack, “Intrusion detection with Snort”, Sams Publishing, 2003.

[4] Bace, Rebecca Gurley, Intrusion detection”, Macmillan Technical Publishing, 2000.

[5] Crothers, Tim, “Implementing intrusion detection systems”, Wiley Publishing, Inc., 2003.

[6] Mohammadian, M., “Intelligent Agents for Data Mining and Information Retrieval,”

Hershey, PA Idea Group Publishing, 2004

[7] Wang, J., “Data mining: Opportunities and challenges,” Idea Group Publishing, September,

2003.

[8] McCulloch, W.S., and Pitts, W., “A logical calculus of the ideas immanent in nervous

activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[9] Haykin, Simon, “Neural networks, A comprehensive foundation”, Macmillan College

Publishing Company, Inc.

[10] Christodoulou, C., Georgiopoulos, M., “Applications of Neural Networks in

Electromagnetics”, Artech House.

[11] Carpenter, Gail A. Grossberg, S., Markuzon, N., Reynolds, John H., Rosen, David B.,

“Fuzzy ARTMAP: An adaptive resonance architecture for incremental learning of analog maps”,

International Joint Conference on Neural Networks, vol. 3, pp. 302-314, June 1992.

http://www.cert.org/stats/cert_stats.html

[12] Hussam, O. Mousa, “A survey and analysis of Neural Network approaches to Intrusion

Detection” November 2002.

[13] Lee, J., Siddiqui, M., “High performance data mining for intrusion detection”, submitted to

IEEE International Symposium on High-Performance Distributed Computing, 2004.

[14] Lee, W., Stolfo, Salvatore J., “Data mining approaches for intrusion detection”, Proceedings

of the 2nd USENIX Security Symposium, 1998.

[15] Ye, N., Emran, S. M., Chen, Q., Vilbert, S. “Multivariate statistical analysis of audit trails

for host-based intrusion detection”, IEEE Transactions on Computers, vol. 51, no. 7, pp. 810-

820, 2002.

[16] Lee, W., “Applying data mining to intrusion detection: the quest for automation, efficiency

and credibility”, ACM SIGKDD Explorations Newsletter, vol. 4 no. 2, pp. 35-42.

[17] Riedmiller, M., Braun, H., “RProp – A fast adaptive learning algorithm”, Proceedings of

ISCIS VII.

[18] Saratchandran, P., Sundarajan, N., Foo, Shou King, “Parallel implementations of

backpropagation neural networks on transputer – A study of training set parallelism”, Progress in

Neural Processings 3.

[19] Lee, J., Chapin, S. J., Taylor, S., “Computational Resiliency”, Journal of Quality and

Reliability Engineering International, vol. 18, no. 3, pp 185-199, 2002.

[20] Lee, J., Chapin, S., Taylor, S., “Reliable heterogeneous applications”, IEEE Transactions on

Reliability, vol. 52, no. 3, pp. 330-339, 2003.

[21] Carpenter, G. A., Grossberg, S., “Adaptive resonance theory”, The Handbook of Brain

Theory and Neural Networks, 2nd ed. MIT press, April, 2002.

[22] KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[23] Torresen, J. and Tomita, S., “A Review of Parallel Implementations of Backpropagation

Neural Networks”. Chapter 2 in the book by N. Sundararajan and P. Saratchandran (editors):

Parallel Architectures for Artificial Neural Networks, IEEE CS Press, 1998.

[24] Carpenter, G. A., Grossberg, S., and Reynolds, J., “ARTMAP: A self-organizing neural

network architecture for fast supervised learning and pattern recognition,” Proceedings of

International Joint Conference on Neural Networks, vol. 1, pp. 863-868.

[25] Axelsson, S., “Intrusion detection systems: A survey and taxonomy”, Technical Report, 99-

15 Dept. of Computer Engineering, Chalmers University, March 2000.

[26] Mukkamala, S. and Sung, A. H., “A comparative study of techniques for intrusion

detection,” 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'03),

November 03 - 05, 2003, Sacramento, California, USA, pp 570.

[27] Drucker, H. and Cun, Y. L., “Improving generalization performance using double

backpropagation,” IEEE Transactions on Neural Networks, vol. 3, no. 6, pp. 991-997, 1992.

[28] Cun, Y. L. et. al., “Backpropagation applied to handwritten zip code recognition,” Neural

Computation, vol. 1, no. 4, pp. 541-551, 1989.

[29] Waibel, A., “Consonant recognition by modular construction of large phonetic time-delay

neural networks,” Advances in Neural Information Processing Systems, pp. 215-223, 1989.

[30] Sheng Ma, C. J. and Farmer, J., “An efficient EM-based training algorithm for feed forward

neural networks,” Neural Networks, vol. 10, no. 2, pp. 243-256, 1997.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[31] Osowski, P. B. S., and Stodoloski, M., “Fast second order learning algorithms for

feedforward neural networks and its applications,” Neural Networks, vol. 9, no. 9, pp. 1583-

1596, 1996.

[32] Geist, G. A., “Cluster computing: The wave of the future?”, Oak Ridge National

Laboratory, May 17, 1994.

[33] Sterling, T., Salmon, J., Becker, D. J., Savarese, D. S., “How to build a Beowulf: A Guide to

the Implementation and Application of PC Clusters,” The MIT press, May 1999.

[34] Sterling, T. L., “How to Build a Beowulf: A Guide to the Implementation and Application

of PC Clusters,” Cambridge, Mass MIT Press, 1999.

[35] Message passing interface forum, “MPI: A Message-Passing Interface Standard,” Technical

Report, University of Tennessee, Knoxville, Tennessee, May 1994.

[36] Sunderam, V. S., “PVM: A framework for parallel distributed computing,” Concurrency:

Practice and Experience, vol. 2, no. 4, pp. 315-339, Dec, 1990.

[37] Frasconi, P., Gori, M., and Tesi, A., “Successes and failures of backpropagation: A

theoretical investigation,” In Omidvar, O., editor, Progress in Neural Networks, pp. 205-242.

Ablex Publishing.

[38] Werbos, P. J., “Beyond regression: New tools for prediction and analysis in the behavioral

sciences,” PhD Dissertation, Committee on Applied Mathematics, Harvard University,

Cambridge, MA, November 1974.

[39] Klimasauskas, C., “Taking backpropagation to the extreme: A master shares his secrets,”

PC AI magazine, vol. 16, no. 1, pp. 31-35 Jan/Feb 2002.

[40] Carpenter, G. A., Grossberg, S., “The art of adaptive pattern recognition by a self-

organizing neural network,” IEEE Computer, vol. 21, no. 3, pp. 77-88, March 1988.

[41] Porass, P. A., Neumann, P. G., “EMERALD, Event monitoring enabling responses to

anomalous live disturbances,” Proceedings of the 20th National Information Systems Security

Conference, pp. 353-365, October, 1997.

[42] Lunt, T. F., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D. L., Neumann, P. G., Javitz,

H. S., and Valdes A., “IDES: The enhanced prototype, A real time intrusion detection system,”

Technical Report, SRI Project 4185-010, SRI-CSL-88-12, October 1988.

[43] Anderson, D., Frivold, T., Valdes, A., “Next-generation intrusion-detection expert system

(NIDES),” Technical Report, SRI-CSL-95-07, May 1995.

[44] Sebring, M. M., Shellhouse, E., Hanna, M. E., Whitehurst, R. A., “Expert systems in

intrusion detection: A case study,” Proceedings of the 11th National Computer Security

Conference, pp 74-81, October 17-20, 1988.

[45] Kim, G. H., Spafford, E. H., “The design and implementation of Tripwire: A file system

integrity checker,” Proceedings of the 2nd ACM Conference on Computer and Communication

Security, pp. 18-29, 1994.

[46] White, G., Pooch, V., “Cooperating security managers: Distributed intrusion detection

systems,” Computer and Security, vol. 15, no. 5, pp. 441-450, 1996.

[47] Chen, S. S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Haogland, J., Levitt, K., Wee,

C., Yip, R., Zerkle, D., “GrIDS – A graph based intrusion detection system for large networks,”,

Proceedings of the 19th National Information Systems Security Conference, 1996.

[48] Heberlein, T,. Dias, G., Levitt, K., Mukherjee, B., Wood, J., Wolber, D., “A network

security monitor,” Proceedings of the 1990 IEEE Symposium on Research in Security and

Privacy, pp. 296-304, 1990.

[49] Ryan, J., Lin, M-J., Miikkulainen, R., “Intrusion detection with neural networks,” Advances

in Neural Information Processing Systems 10, Cambridge, MA: MIT Press.

[50] Lee, W., Stolfo, S. J., “Combining Knowledge Discovery and Knowledge Engineering to

Build IDSs,” Proceedings of the Second International Workshop on the Recent Advances in

Intrusion Detection (RAID'99), October 1999.

[51] Barbara, D., Couto, J., Jajodia, S., Popyack, L., Wu, N., “ADAM: Detecting intrusions by

data mining,” Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,

June, 2001.

[52] Vaccaro, H. S., Liepins, G. E., “Detection of anomalous computer session activity,”

Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 280-289, May, 1989.

[53] Tan, K., “The application of neural networks to Unix computer security,” Proceedings of the

International Conference on Neural Networks, 1995.

[54] Charron, F., Ghosh, A., Wanken, J., “Detecting anomalous and unknown intrusions against

programs,” Proceedings of 14th Annual Computer Security Applications Conference, pp. 259-

267, 1998.

[55] Jorgensen, J., Manikopolous, C., Li, J., Zhang, Z., “A hierarchical anomaly network

intrusion detection system using neural network classification,” Proceedings of the 2001 IEEE

Workshop on Information Assurance and Security, June 2001.

[56] Cannady, J., “Artificial neural networks for misuse detection,” Proceedings of the 1998

National Information Systems Security Conference (NISSC'98) October, 1998.

[57] Ghosh, A., Schwartzbard, A., “A study in using neural networks for anomaly and misuse

detection,” Proceedings of the 8th USENIX Security Symposium, pp. 141151, 1999.

[58] Hatonen, K., Hoglund, A., Sorvari, A., “A computer hosed-based user anomaly detection

system using the self-organizing maps,” Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks, vol. 5, pp 411-416, 2000.

[59] Heywood, M., Lichodzijewski, P., Zincir-Heywood, N., “Host-based intrusion detection

using self-organizing maps,” IEEE International Joint Conference on Neural Networks, May

2002.

[60] Ghosh, A., Schatz, M., Schwartzbard, A., “Learning program behavior profiles for intrusion

detection,” Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network

Monitoring, pp. 51-62, April, 1999.

[61] Elman, J. L., “Finding structure in time,” Cognitive Science, vol. 14, pp. 179-211, 1990.

	High Performance Data Mining Techniques For Intrusion Detection
	STARS Citation

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: RELATED RESEARCH
	Intrusion Detection
	Intrusion
	Intrusion Detection
	Intrusion Detection System
	Classification of intrusion detection
	A survey of intrusion detection research

	Data Mining
	A survey of intrusion detection research using data mining

	Neural Networks
	Neural Network Architectures
	Learning Procedures
	Learning Algorithms
	Intrusion Detection using Neural Networks

	CHAPTER 3: OUR APPROACH
	High Performance Data Mining
	High performance computing approach
	Motivation behind the work
	High performance approach for intrusion detection

	Parallel Neural Networks
	Large training time
	Approaches to improve efficiency
	Parallel implementation of neural networks
	Our implementation environment
	Neural networks architectures used
	Parallel Backpropagation
	Parallelism in the BP Algorithm
	Parallel Backpropagation
	Parallel Fuzzy ARTMAP

	CHAPTER 4: EXPERIMENTAL RESULTS
	Data preprocessing
	Experiments
	Experiments with backpropagation
	Experiments with fuzzy ARTMAP

	CHAPTER 5: CONCLUSIONS
	LIST OF REFERENCES

