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ABSTRACT 

The rapid growth of computers transformed the way in which information and data was 

stored. With this new paradigm of data access, comes the threat of this information being 

exposed to unauthorized and unintended users. Many systems have been developed which 

scrutinize the data for a deviation from the normal behavior of a user or system, or search for a 

known signature within the data. These systems are termed as Intrusion Detection Systems 

(IDS). These systems employ different techniques varying from statistical methods to machine 

learning algorithms. 

Intrusion detection systems use audit data generated by operating systems, application 

softwares or network devices. These sources produce huge amount of datasets with tens of 

millions of records in them. To analyze this data, data mining is used which is a process to dig 

useful patterns from a large bulk of information. A major obstacle in the process is that the 

traditional data mining and learning algorithms are overwhelmed by the bulk volume and 

complexity of available data. This makes these algorithms impractical for time critical tasks like 

intrusion detection because of the large execution time. 

Our approach towards this issue makes use of high performance data mining techniques 

to expedite the process by exploiting the parallelism in the existing data mining algorithms and 

the underlying hardware. We will show that how high performance and parallel computing can 

be used to scale the data mining algorithms to handle large datasets, allowing the data mining 

component to search a much larger set of patterns and models than traditional computational 

platforms and algorithms would allow. 



We develop parallel data mining algorithms by parallelizing existing machine learning 

techniques using cluster computing. These algorithms include parallel backpropagation and 

parallel fuzzy ARTMAP neural networks. We evaluate the performances of the developed 

models in terms of speedup over traditional algorithms, prediction rate and false alarm rate. Our 

results showed that the traditional backpropagation and fuzzy ARTMAP algorithms can benefit 

from high performance computing techniques which make them well suited for time critical 

tasks like intrusion detection. 
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CHAPTER 1: INTRODUCTION 

Computers have become an essential component of our daily lives. The World Wide Web 

has transformed the world into a global village. Everyday there are millions of transactions on 

the Internet. A tremendous amount of information and data is shared by the World Wide Web 

users all over the world. The problem of protecting this information and data has become more 

important, as the size of this network of interconnected machines is increasing dramatically 

everyday. The number of security incidents reported in 2002 by CERT is 833% more than in 

1999 [1]. The number of incidents in the first three quarters of 2003 outnumbered the previous 

year figure. 

Many methods have been developed to secure the infrastructure and communication over 

the Internet. These techniques include firewalls, data encryption and virtual private networks. 

Intrusion detection is relatively newer addition to this family of cyber guards. Intrusion detection 

systems first appeared in early 1980s but they were limited for mostly military purposes. 

Although commercial products became available in late 1980s, it was not until mid and late 

1990s that intrusion detection systems started enjoying popularity with the explosion of the 

Internet [5]. 

Intrusion detection systems are the systems designed to monitor computer and network 

activities for security violations. These activities are observed by scrutinizing the audit data 

generated by the operating system or some other application programs running on the computer. 

With the availability of microprocessors that perform billions of operations in a second and high 

speed network connections, the size of the file recording all these events usually reach in the 



order of gigabytes. Dealing with such a huge amount of data is not a trivial task and specialized 

methods are needed to process its information contents. To unearth useful patterns of previously 

unknown information from a data source is a process, termed as data mining. Data mining is an 

information extraction activity whose goal is to discover hidden facts contained in a database.  

Mining the large volumes of intrusion detection audit data requires a lot of computational 

time and resources. Traditional data mining algorithms are overwhelmed by the sheer complexity 

and bulkiness of the available data. They have become computationally expensive and their 

execution times largely depend on the size of the data they are dealing with. 

In this research we are presenting a high performance data mining approach to deal with 

the high volumes of intrusion detection data. Our work makes use of high performance 

distributed computing techniques to scale the existing data mining algorithms, making them 

practical to use in time critical applications like intrusion detection. We used machine learning 

algorithms to extract normal behavior patterns and attacks from network traffic data. Among the 

various learning approaches, we chose backpropagation and fuzzy ARTMAP neural networks. 

Neural networks are well suited for intrusion detection because of their prediction and 

generalization capabilities, which makes them able to identify known and unknown intrusions. 

We developed parallel versions of backpropagation and fuzzy ARTMAP algorithms that allowed 

them to search a much larger set of patterns and models than traditional algorithms would allow. 

We evaluated their performances in terms of speedup over sequential algorithms and negative 

and false positive rates. The speedup gave the measure of the high performance part while 

negative and false positive rates represent the classification efficiency of the algorithms. 



CHAPTER 2: RELATED RESEARCH 

Intrusion Detection 

The word intrusion as defined in the Webster’s dictionary means 

1. The act of intruding or the condition of being intruded on.  

2. An inappropriate or unwelcome addition.  

3. Law. Illegal entry upon or appropriation of the property of another. 

Where intrude means  

To put or force in inappropriately, especially without invitation, fitness, or permission 

Intrusion 

Based upon the above definitions, intrusion in the terms of information can be defined as 

when a user of information tries to access such information for which he/she is not authorized, 

the person is called intruder and the process is called intrusion.  

Intrusion Detection 

Intrusion detection is the process of determining an intrusion into a system by the 

observation of the information available about the state of the system and monitoring the user 

activities. Detection of break-ins or attempts by intruders to gain unauthorized access of the 

system is intrusion detection. 

 



The intruders may be an entity from outside or may be an inside user of the system trying 

to access unauthorized information. Based upon this observation intruders can be widely divided 

into two categories; external intruders and internal intruders. [2] 

 
• External intruders are those who don’t have an authorized access to the system 

they are dealing with.  

• Internal intruders are those who have limited authorized access to the systems 

and they overstep their legitimate access rights.  

 
Internal users can be further divided into two categories; masqueraders and clandestine 

users. 

• Masqueraders are those who use the identification and authorization of other 

legitimate users. 

• Clandestine users are those who successfully evade audit and monitoring 

measures. 

Intrusion Detection System 

An intrusion detection system or IDS is any hardware, software or combination of both 

that monitors a system or network of systems for a security violation [3].An IDS is often 

compared with a burglar alarm system. Just like a burglar alarm system monitors for any 

intrusion or malicious activity in a building facility, IDS keeps an eye on intruders in a computer 

or network of computers [4].  



Figure 1 displays a generic intrusion detection system. From the audit data source the 

information goes to the pattern matching module for misuse detection and a profile engine to 

compare current profile with the normal behavior defined for the system. Pattern matching 

module interacts with policy rules to look for any signature defined in the policy. An anomaly 

detector distinguishes an abnormal behavior using the profile engine.  

Audit Data Source 
 

Pattern 
Matcher 

Profile 
Engine 

Anomaly 
Detector 

Policy 
Rules 

Alarm/Report 
Generator 

 

Figure 1: A generic intrusion detection system. 

Classification of intrusion detection 

There are many strategies to detect intrusions. Some of them involve monitoring user 

activities while some involve examining system logs or network traffic for some specific 

patterns. There are some attributes that classify these strategies for intrusion detection. These 

attributes are architecture, information source, analysis type and timing [5].  



Architecture 

There are two types of intrusion detection systems according to the architecture. One 

which are implemented on the system they are monitoring and others which are implemented 

separately. This separate implementation has several advantages over the other approach. 

 
• It keeps a successful intruder from disabling the intrusion detection system by 

deleting or modifying the audit records on which the system is based. 

• It lessens the load associated with running the intrusion detection system on the 

monitored system. 

 
The only disadvantage with this scheme is that it requires secure communication between 

the monitoring and monitored system.  

Information Source 

The first and foremost source for intrusion detection is the data source. Data can be 

obtained from system logs or packet sniffers or some other source. Depending upon the origin of 

data source, intrusion detection can be classified into four categories; host based, network based, 

application based and target based systems.  

Host based intrusion detection involves the data that is obtained from sources internal to 

a system. These include the operating system audit trails and system logs.The operating system 

audit trails is a record of system events generated by the operating system. These system events 

results from user actions and the process invoked on behalf of the user, whenever either makes a 

system call or execute a command. A system log is a file of system events and settings. It is 



different from audit trails in the sense that it is generated by a log-generation software within the 

operating system and it is stored as a file. 

Network based intrusion detection uses the data collected from the network traffic stream. 

It is the most common information source in the intrusion detection systems because of the three 

reasons. First, it can be accomplished by placing the network interface card in promiscuous mode 

which has a very low or even no affect on the performance on the system being monitored. 

Second, it can be transparent to the users on the network. And the third, there are some very 

common types of attacks that are not easily detected by the host based systems. These include 

various denial of service attacks. 

Application based intrusion detection uses the data obtained from application softwares 

such as web servers or some security devices. Many firewalls, access control systems and other 

security devices generate their own event logs which contain information of security 

significance. 

Target based intrusion detection doesn’t require event data from any internal or external 

source. Instead this scheme provides means of determining if the existing data in the system has 

been modified in some fashion. Target based monitors use cryptographic hash functions to detect 

alterations to the system objects and then compare these alterations to some defined policy to 

detect any intrusion. 



Analysis Type 

Once the data is obtained, the next step is to analyze the data. There are two broad 

categories into which intrusion detection can be classified according to the analysis performed; 

anomaly detection and misuse detection. 

Anomaly detection looks for any abnormal or unusual patterns in the data. It involves 

defining and characterizing a normal behavior of the system in the static form or dynamic and 

then flagging any event that deviates from the defined behavior. Since anomaly detection looks 

for unusual pattern, therefore any unseen pattern that was not defined in the base profile of the 

system will flag an intrusion. For this reason anomaly detection will suffer false positives. 

(Normal behavior detected as abnormal) To combat this certain techniques are devised. Instead 

of using a yes/no approach, intrusion detection systems use some statistical measures to figure 

out the degree of anomalousness and a threshold value then gives the final decision. Anomaly 

detection can be divided into two classes; static anomaly detection and dynamic anomaly 

detection. 

Static anomaly detection checks for data integrity in the system. A system normal state is 

defined which represents the system code and a portion of the system data that should remain 

constant. This state is then compared with any other state defined later to check for any alteration 

which flags an intrusion if found positive. 

Dynamic anomaly detection creates a base profile of the system’s normal behavior and 

checks it against any new profile created. For each feature selected to define the base profile, a 

list of observed values is recorded and inserted into the profile. Any new profile that 

characterizes the system observed behavior is compared against the base profile. 



Misuse detection is also called signature detection as it looks for specific signature 

patterns in the data. Misuse detection searches for known intrusions in the data regardless of the 

system normal behavior. The signature patterns misuse detection is looking for can be a static bit 

string e.g. a virus or it can be a set of events or actions a user might take. In either case, the 

searched patterns are already defined to be bad. Since misuse detection looks for only known 

intrusions, it suffers from false negatives (Attacks identified as normal patterns), if the pattern in 

question was not defined to be bad previously. 

Timing 

Based upon the timing intrusion detection can be classified roughly into two categories; 

real time intrusion detection and interval/batch intrusion detection. 

 
Real time intrusion detection means that the information source is analyzed in real-time. 

This is the most desirable form of intrusion detection because the ultimate goal of intrusion 

detection is to prevent an attack before it happens. But there are certain types of attacks which 

can only be detected by observing the data for a certain period of time. Most commercial systems 

employing real-time intrusion detection actually define a window size of 5 to 15 minutes. 

Batch mode analysis means that the information source is analyzed in a batch fashion. 

Data for a large interval of time, e.g. a day, is monitored at the end of the interval (in this case, 

end of the day).  



A survey of intrusion detection research 

As described earlier, an intrusion detection system is a system that tries to detect break-

ins or break-in attempts into a computer system or network by monitoring network packets, 

system files or log files. This section describes a survey of research in the intrusion detection 

systems. The survey classifies all the systems covered according to the classification criteria 

described in the previous section. In addition it also describes the basic approach taken by each 

system to detect intrusions. These include rule based systems, statistical analysis, neural 

networks and data mining approaches. All the systems described here focuses on the 

classification accuracy and none of them address the issue of learning time though some [50, 51] 

report large volumes of data to be a factor hindering in research. 

EMERALD – Event Monitoring Enabling Responses to Anomalous Live Disturbances 

EMERALD [41] is a real-time hybrid analysis type intrusion detection system employing 

both anomaly and misuse detection. It is intended to be a framework for scalable, distributed, 

interoperable computer and network intrusion detection. It uses a three layer approach to large 

scale intrusion detection. Each of these layers has monitors. The lowest layer called service layer 

monitors a single domain. The middle layer called domain-wide accepts inputs from the lowest 

layer and detects intrusion across multiple single domains. Similarly the topmost layer called 

enterprise-wide accepts inputs from middle layer and detects intrusion across the entire system. 



IDES – Intrusion Detection Expert System 

IDES [42] is a real-time host based anomaly detection system. It is considered to be the 

pioneer in the anomaly detection approach. The basic motivation behind IDES approach was that 

the users behave in a consistent manner from time to time, when performing their activities on 

the computer. The manner in which they behave can be summarized by calculating various 

statistics for their behavior. IDES applied a rule based approach to determine user’s behavior. 

NIDES – Next Generation Intrusion Detection System 

NIDES [43] is an extension to IDES which was a rule based anomaly detection system. 

NIDES is a real-time host based system with a misuse detection component in addition to the 

anomaly detection engine. The rule based component was based upon Product-Based Expert 

System Toolset (P-BEST) which is a forward-chaining LISP based environment. Four major 

versions were released for NIDES each with refinements as a result of further research and users 

inputs. In these versions the misuse detection part used the older rule based approach while the 

anomaly detection functionality was changed to statistical based analysis. NIDES builds 

statistical profile of users, though the entities monitored can also be workstations, network of 

workstations, remote hosts, groups of users, or application programs. A statistical unusual 

behavior from the user flags an intrusion into the system. 

MIDAS – (Multics Intrusion Detection and Alerting System) 

MIDAS [44] is a real-time host based system employing both anomaly and misuse 

detection. The basic concept behind MIDAS was heuristic intrusion detection. MIDAS rules 



were divided into two parts; primary rules and secondary rules. Primary rules describe some pre-

defined action when an intrusion is detected while secondary rules determine the type of action 

that should be taken by the system. MIDAS is considered to be the first system employing 

misuse detection. 

Tripwire 

Tripwire [45] is a static anomaly detector that uses a target based information source. It is 

a file integrity checker that uses signatures as well as Unix file meta-data. It calculates 

cryptographic checksum of critical files. The information is stored in a file called tw.config. 

Periodically, Tripwire re-calculates the checksum. Any change to a file results in a checksum 

change which indicates an abnormal activity. 

CSM – Cooperative Security Manager 

CSM [46] is a real-time, host based, distributed intrusion detection system. Each 

computer on the network runs a copy of the security manager. This manager is responsible of 

detecting anomaly and misuse detection on the local system as well as intrusive behavior 

originating from the original user of the machine. When a user accesses a host from another host, 

the managers exchange information about the user and the connection. The site security officer 

can trace a connection request. An alarm is raised if the same user is trying to connect from two 

different locations. 



GrIDS – Graph based Intrusion Detection System 

GrIDS [47] is a graph based intrusion detection system for large networks. It operates in 

batch mode on both host and network traffic data. The graph based approach considers host as 

nodes and the connections between hosts and edges on a graph. It uses a decentralized approach 

and the system being observed is broken down into hierarchical domains. Each domain 

constructs its own graph and sends its analysis to its parent domain. A rule set is used to build 

graphs from incoming and previous information. A possible intrusion is determined again by a 

set of rules. 

NSM – Network Security Monitor 

NSM [48] is a real-time network based intrusion detection system with a strong tendency 

towards misuse detection. It was the first system to use raw network traffic as information 

source. As a result NSM can monitor for a network of heterogeneous hosts without having to 

convert the data into some canonical form. Since NSM is implemented on a separate system it 

doesn’t consume resources from the monitored host. 

NNID – Neural Network Intruder Detector 

NNID [49] is a batch-mode host based anomaly detection system. It defines a normal 

behavior of a user by using the distribution of commands he/she executes. This system uses a 

backpropagation neural network for user behavior analysis. At fixed intervals, the collected data 

is used to train the network. Once trained, the system monitors for user activities and detect any 

anomalous behavior.  



MADAM ID – Mining Audit Data for Automated Models for Intrusion Detection 

MADAM ID [50] is a network based intrusion detection system that uses a data mining 

approach to detect anomaly as well as misuse detection. The main components of MADAM ID 

are classification and meta-classification programs, association rules and frequent episodes 

programs, a feature construction system, and a conversion system that translates off-line learned 

rules into real-time modules.  

ADAM – Audit Data Analysis and Mining 

ADAM [51] is a real-time network based anomaly detection system. It employs data 

mining to extract association rules from the audit data. ADAM works by creating a customizable 

profile of rules of normal behavior and it contains a classifier that distinguishes the suspicious 

activities, classifying them into real attacks and false alarms. 

Data Mining 

Data mining, also known as Knowledge Discovery in Databases (KDD) has been 

recognized as a rapidly emerging research area. This research area can be defined as efficiently 

discovering human knowledge and interesting rules from large databases. Data mining involves 

the semiautomatic discovery of interesting knowledge, such as patterns, associations, changes, 

anomalies and significant structures from large amounts of data stored in databases and other 

information repositories [6]. 

Data mining is an information extraction activity whose goal is to discover hidden facts 

contained in databases. Using a combination of machine learning, statistical analysis, modeling 



techniques and database technology, data mining finds patterns and subtle relationships in data 

and infers rules that allow the prediction of future results. 

Artificial 
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Data 
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Machine Learning 

Data Mining 

 

Figure 2: Data mining 

Figure 2 displays how database theory, statistics and artificial intelligence approaches are 

used in data mining. 

Data mining sorts through data to identify patterns and establish relationships. Data 

mining parameters include: association, sequence analysis, classification, clustering, forecasting  

• Association - looking for patterns where one event is connected to another event.  

• Sequence or path analysis - looking for patterns where one event leads to another 

later event.  



• Classification - looking for new patterns (May result in a change in the way the 

data is organized but that's ok).  

• Clustering - finding and visually documenting groups of facts not previously 

known. 

• Forecasting - discovering patterns in data that can lead to reasonable predictions 

about the future. 

For every data mining system, a data preprocessing step is one of the most important 

aspects. Data preprocessing consumes 80% time of a typical, real world data mining effort. Poor 

quality of data may lead to nonsensical data mining results which will subsequently have to be 

discarded. Data preprocessing concerns the selection, evaluation, cleaning, enrichment, and 

transformation of the data. Data preprocessing involves the following aspects: [7] 

Data cleaning is used to ensure that the data are of a high quality and contain no 

duplicate values. The data-cleaning process involves the detection and possible elimination of 

incorrect and missing values. 

Data integration. When integrating data, historic data and data referring to day-to-day 

operations are merged into a uniform format. 

Data selection involves the collection and selection of appropriate data. The data are 

collected to cover the widest range of the problem domain. 

Data transformation involves transforming the original data set to the data 

representations of the individual data mining tools. 



A survey of intrusion detection research using data mining 

Over the past few years a growing number of research projects have applied data mining 

for intrusion detection. The research could date back to 1984 when the development of Wisdom 

& Sense [52] started and then published in 1989. Wisdom & Sense was the first work to mine 

association rules from audit data. But it was not until recently that researchers started realizing 

that the data size they are dealing with is getting larger and larger and to analyze data manually is 

not possible anymore for extracting patterns of information. Data mining was viewed as a 

solution to this problem. Our work in this thesis is also driven by the same motivation. 

This section presents a survey of research in applying data mining techniques for 

intrusion detection. 

W&S – Wisdom & Sense 

Wisdom & Sense [52] (W&S) is a host based anomaly detection system. W&S studies 

audit data to mine association rules that describes the normal behavior. This is called the 

Wisdom part of W&S. The Sense part of W&S comprises of an expert system that analyze recent 

audit data to monitor for any violation based upon the rules produced by the Wisdom part. 

MADAM ID – Mining Audit Data for Automated Models for Intrusion Detection 

MADAM ID [50] is considered to be one of the best data mining projects in intrusion 

detection. It applies data mining programs to network audit data to compute misuse and anomaly 

detection models, according to the observed behavior in the data. MADAM ID consists of 

several components to construct concise and intuitive rules that can detect intrusions. MADAM 



ID has a meta- learning component that constructs a combined model that incorporates evidence 

from multiple models. A basic association rules and frequent episode algorithms component to 

accommodate the special requirements in analyzing audit data. A feature construction system 

and a conversion system that translates off-line learned rules into real-time modules. 

ADAM – Audit Data Analysis and Mining 

ADAM [51] is the second most widely known and published worked amongst the data 

mining projects in intrusion detection. ADAM is a network anomaly detection system. The 

ADAM approach includes detecting events and patterns explicitly defined by the system 

operator, mining exclusively within a limited time window to detect recent “hot” associations, 

comparing currently mined rules with a repository of aggregated past rules, testing rules with a 

multi-algorithm classification engine, and applying post-processing filtering and prioritization of 

alarms. 

Neural Networks 

Artificial Neural Networks, commonly known as “neural networks” have been an 

academic disciple since the advent of the notion that brain computes in an entirely different 

fashion from the conventional digital computer. The research was started over 50 years ago with 

the publication by McCulloch and Pitts [8] of their famous result that any logical problem can be 

solved by a suitable network composed of so-called binary decision nodes. 

A neural network is a set of interconnected processing elements that has the ability to 

learn through trial and error. 

A neural network resembles the brain in two respects: [9] 



• Knowledge is acquired by the network through a learning process. 

• Connection strengths between the processing elements known as synaptic weights 

are used to store the knowledge. 

Figure 3 displays a feed forward neural network architecture with 4 input, 3 hidden and 2 

output nodes. 

Output nodes Hidden nodes Input nodes  

Figure 3: A 4 input, 3 hidden and 2 output nodes neural network. 

The processing elements in the neural network are called neurons. There are essentially 

three basic elements of a neuron. 

• A set of weighted connection links or synapses. 

• An adder for summing the input signals, weighted by the respective synapses of 

the neurons. 



• An activation function for limiting the output of the neuron. 

Figure 4 displays a neuron with its 3 components. Connection weights coming from other 

neurons. An adder which receives inputs using the connection weights. The last is the activation 

function that receives input from the adder to give the final output. 
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Figure 4: Model of a neuron 

The model of a neuron in Figure 4 includes another parameter θ that is an externally 

applied threshold (also referred as the bias input). In order for the neuron to be fired the 

cumulative effect of all the neuron connected to it should be greater than θ [10]. 

In mathematical terms a neuron can be described with the following two equations. 

 

xjK
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netj = Σk=1
K

 wjkxk - θj 

and 
 

yj = g(netj) 

where x1, x2, …, xk are the input signals, wj1, wj2, …, wjk are the synaptic weights 

converging to neuron j, netj is the cumulative effect of all the neurons connected to neuron j and 

the internal threshold of neuron j, g(.) is the activation function and yj is the output of the neuron. 

 

Neural Network Architectures 

The architecture of the neural network can be defined as the manner in which the neurons 

and their interconnection links are arranged in the network. Neural networks need a learning 

algorithm to train the neurons. The architecture of the network also depends upon the underlying 

learning algorithm.  

Keeping within the scope of our work we are only defining 3 neural network 

architectures. First the simplest architecture found in the neural networks literature and the other 

two are those that we used in our experiments.  

Single Layer Feed Forward Networks 

The neurons in a neural network are essentially arranged in the form of layers.  The 

simplest possible arrangement is the single layer feed forward network that has one input layer 

and one output layer. It is called single layer because only output layer has neurons. Input layer 

nodes just register the input patterns applied to neural network. 



… …

 

Figure 5: Single layer feed forward neural network 

Figure 5 depicts a single layer feed forward network with K input nodes and I output 

nodes. In the figure, input layer is termed as layer 0 and output layer is termed as layer 1. The 

interconnection links are emanating from layer 0 and converging to layer 1. The links are only 

going from a layer of lower index to a layer of higher index. There are no interconnections 

within the same layer and no links from a layer of higher index to a layer of lower index. These 

are special type of connections and are termed as feed forward connections and that is the reason 

these architectures are called Single Layer Feed Forward Neural Networks. Another name for 

this architecture is Single Layer Perceptron Neural or SLP. 
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Multi Layer Feed Forward Networks 

The multi layer feed forward network is an extension to the single layer feed forward 

network as it contains one or more layers in addition to the input and output layers. These layers 

are called hidden layers and they are situated between input and output layers. 

 
 

 

Figure 6: Multi layer feed forward network 
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Figure 6 depicts a multi layer feed forward network with one hidden layer. Input layer 

with K nodes is designated as layer 0, hidden layer with J nodes is designated as layer 1 and 

output layer with I nodes is designated as layer 2. As in single layer feed forward network 

interconnections links are only from a layer of lower index to a layer of higher index. Signals are 

propagated from input layer to hidden layer and then from hidden layer to output layer. This type 

of connectivity is called standard connectivity and the connections are called feed forward 

connections. That is the reason these architectures are called Multi Layer Feed Forward Neural 

Networks or Multi Layer Perceptron (MLP). 

Fuzzy ARTMAP Neural Networks 

The third type of neural network architecture we are discussing is the fuzzy ARTMAP 

which belongs to a special class of neural networks called Adaptive Resonance Theory (ART) 

Neural Networks. [21] 

Fuzzy ARTMAP neural network consists of two fuzzy ART modules designated as ARTa 

and ARTb and as well as an interART module. Inputs are presented at the ARTa module while 

ARTb module receives their corresponding outputs. The purpose of the interART module is to 

establish a mapping between inputs and outputs. 

Figure 7 displays a block diagram of the fuzzy ARTMAP system. The fuzzy ART 

modules ARTa and ARTb are connected through an interART module Fab. An internal controller, 

controls the creation of mapping between inputs and outputs patterns at Fab.  
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Figure 7: A block diagram of the fuzzy ARTMAP architecture. 

Each of the ARTa and ARTb modules consists of three layers, input layer F0 (not shown 

in the figure), choice layer F1 and matching layer F2.  

 
The purpose of the input layers F0 in ARTa and ARTb modules is to preprocess the input 

and output patterns presented to these modules respectively. The processing involved is called 

complement coding and it converts an M dimensional vector a = (a1, …, aM) to 2M dimensional 

vector I such that 

 
I = (a, ac) = (a1, …, aM, a1

c, …, aM
c) 

 
Where, 
 



ai
c = 1 – ai 1 ≤ i ≤ M 

 
Choice layer F1a in ARTa contains 2Ma nodes where Ma is the input dimensionality. 

Similarly F2b in ARTb has 2Mb nodes where Mb is the output dimensionality. Matching layer F2a 

and F2b have Na and Nb nodes respectively. Nx corresponds to the number of commited nodes 

plus one uncommitted node. Commited nodes are the nodes in ARTa and ARTb modules which 

have established a mapping. Each node in F1 is connected via a bottom up weight to each node in 

F2. Similarly each node in F2 is connected via top down weights to each node in F1. These top 

down weights are called ARTa and ARTb templates for the ARTa and ARTb modules respectively. 

The interART module has one layer Fab of Nb nodes and has weights converging to its every 

node from the F2a layer in ARTa module. 

Learning Procedures 

There are essentially two types of learning procedures involved with the neural networks; 

supervised learning and unsupervised learning. Sometimes a third type of learning is also 

employed which is the hybrid of the above two types and is called hybrid learning. 

 
• Supervised learning, as the name implies, is the form of learning which is 

managed by an external teacher. The learning patterns are applied to the network 

and the teacher steers the process by providing the network, the target response to 

the input patterns. 
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Figure 8: Illustration of supervised learning 

• Unsupervised learning doesn’t employ an external teacher for the learning 

procedure. A desired response cannot be provided to the network, in the absence 

of a teacher. Instead unsupervised learning uses another procedure called self-

organizing to learn the training patterns. 

Learning System 

Desired Response

Vector 
describing state 

of the 
environment  

Actual Response + 

Σ 

- 

Error Signal 



Environment Teacher 

 

 

Figure 9: Illustration of unsupervised learning. The cross marks (designated by the letter X) indicate that the 

corresponding blocks are not available. 

Learning Algorithms 

Learning algorithms in neural networks can be classified based upon the learning method 

they use. This thesis covers two types of learning. Match based learning and error based 

learning. 

Match based learning uses a pattern matching process that compares the external input 

with the internal memory of an active code. Match based learning allows memory to change only 

when external input is close enough to internal expectations, or when something completely new 

occurs. The ART architectures, including fuzzy ARTMAP use match based learning. 
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Error based learning responds to a mismatch by changing memories so as to reduce the 

difference between a target output and the actual output, rather than by searching for a better 

match. The difference between target output and actual output represents the error of the system 

and error based learning tries to minimize this error. The famous backpropagation algorithm 

employs error based learning. 

Backpropagation Algorithm 

Backpropagation algorithm is based on the error-correction learning rule under a 

supervised learning environment. Backpropagation consists of two passes; a forward pass and a 

backward pass. In the forward pass the inputs are applied to a multilayer perceptron and the 

resulting signals are propagated forward layer by layer. Finally an actual response is produced as 

the output of the network. The weights of the network remain unchanged in this pass. During the 

backward pass, on the other hand, the synaptic weights are changed according to the error-

correction rule. Specifically, the actual response is subtracted from the desired response of the 

network to produce an error signal. This error signal is then propagated backward through the 

layers of the network, hence the name error backpropagation. The synaptic weights are adjusted 

so as to make the actual response of the network move closer to the desired response. 

The following notations are used in the description of the algorithm below. 

PT  total number of patterns 

N  total number of processors 

K  number of nodes in the input layer 

J  number of nodes in the hidden layer 



I  number of nodes in the output layer 

xk(p)  input for pattern p 

yj
2(p)  calculated output for pattern p 

di
2(p)  desired output for pattern p 

yj
1(p)  hidden layer output for pattern p 

wij
2(t)  current output layer weights 

wjk
1(t)  current hidden layer weights 

σi
2(p)  output layer error term for pattern p 

σj
1(p)  hidden layer error term for pattern p 

∆ wij
2(t) current change in weight for output layer 

∆ wjk
1(t) current change in weight for hidden layer 

∆ wij
2(t-1) previous change in weight for output layer 

∆ wjk
1(t-1) previous change in weight for hidden layer 

η  learning rate 

α  momentum term 

The backpropagation algorithm as a step by step procedure is presented as follows: 

 
1. Initialize the weights in the MLP-NN architecture. 

2. Present the input pattern x(p) to the input layer. 

3. Calculate the outputs at the hidden and output layers. 

yj
1(p) = g(neti

1(p)) = g[Σk=0
Kwjk

1(t).xk(p)]  1 ≤ j ≤ J 

yj
2(p) = g(neti

2(p)) = g[Σj=0
Jwij

2(t).yj
1(p)]  1 ≤ i ≤ I 

4. Check to see if the actual output is equal to the desired output. 



a. If yes, move to step 7. 

b. If no, proceed with step 5. 

5. Calculate the error terms associated with output and hidden layers. 

σi
2(p) = g’(neti

2(p))[di
2(p) – yi

2(p)]  1 ≤ i ≤ I 

σj
1(p) = g’(netj

1(p)) Σi=1
Iwij

2(t). σi
2(p)  1 ≤ j ≤ J 

6. Change the weights according to the error-correction rule. 

∆ wij
2(t) = η. σi

2(p). yj
1(p) + α . ∆ wij

2 (t-1) 1 ≤ i ≤ I, 0 ≤ j ≤ J 

∆ wjk
1(t) = η. Σj

1(p). xk(p) + α . ∆ wjk
1(t-1) 1 ≤ j ≤ J, 0 ≤ k ≤ K  

7. Check to see if this pattern is the last in the set. 

a. If no, go to step 2 and present the next pattern in the sequence. 

b. If yes, check if the convergence criteria are satisfied. 

i. If yes, the training is complete. 

ii. If no, go to step 2 and present the first pattern from the training set. 

Fuzzy ARTMAP Algorithm 

Fuzzy ARTMAP uses incremental supervised learning of recognition categories and 

multidimensional maps in response to an arbitrary sequence of analog or binary input patterns. 

Fuzzy ARTMAP realizes a new minimax learning rule that cojointly minimizes the predictive 

error and maximizes the code generalization. This is achieved by a match tracking process that 

sacrifices the minimum amount of generalization necessary to correct a predictive error [11]. 

During the training, ARTa and ARTb modules receive a stream of input and output 

patterns. The interART module receives inputs from both ARTa and ARTb modules. If a match is 



found; i.e. the network’s prediction is confirmed by the selected target category, the network will 

learn by modifying the prototype stored patterns of the selected ARTa and ARTb categories with 

the new information. A mismatch results in a memory search leading to the selection of a new 

ARTa category that better predicts the current ARTb category. The process continues till a better 

prediction is found or a new ARTa category is created. In the later case, the network will learn by 

storing a prototype pattern of the newly learned category. 

The following notations are used in the description of the algorithm below. 

ARTa  ART Module for inputs 

ARTb  ART Module for outputs 

F1
a  matching layer in ARTa

F1
b  matching layer in ARTb

F2
a  choice layer in ARTa

F2
b  choice layer in ARTb

Na  number of nodes in F2
a

Nb  number of nodes in F2
b

Ir  input pattern r 

Or  output pattern r 

^ fuzzy min operator performed on vectors and the result is the minimum of 

the corresponding components 

|x|  size of the vector x which is equal to the sum of its components 

Tj
a(Ir)  bottom up input from node j in F1

a for pattern Ir

Tk
b(Or)  bottom up input from node j in F1

b for pattern Or



wj
a  top down weight to node j in F1

a from F2
a

wk
b  top down weight to node k in F1

b from F2
b

βa  ARTa choice parameter 

βb  ARTb choice parameter 

jmax  current winner node in ARTa

kmax  current winner node in ARTb

wjmax
a  top down weights corresponding to winner node jmax in ARTa 

wkmax
b  down weights corresponding to winner node kmax in ARTb

ρa  vigilance parameter for ARTa

ρb  vigilance parameter for ARTb

ε  increment in the vigilance parameter 

The fuzzy ARTMAP algorithm as a step by step procedure is presented as follows: 

1. Initialize the weight vectors corresponding to the uncommitted nodes in F2
a and F2

b to all-

ones. 

2. Present the input/output pair to the network and set the vigilance to base-line vigilance. 

3. Calculate the bottom up inputs to all the Na nodes in F2
a. 

Tj
a(Ir) = (| Ir ^ wj

a | ) / (βa + | wj
a |) 

4. Choose the node in F2
a that receives the maximum input from F1

a. Assume its index is 

jmax. Check to see if it satisfies the vigilance criteria. We now distinguish three cases: 

a. If node jmax is uncommitted node, it satisfies the vigilance criteria in ARTa. Go to 

step 5. 



b. If node jmax is commited node and it satisfies the vigilance criteria, go to step 5. A 

node jmax satisfies the vigilance criteria if, 

| Ir ^ wjmax
a |  / | Ir | ≥ ρa

c. If node jmax does not satisfy the vigilance criteria, disqualify this node and go to 

step 4. 

5. Now consider three cases: 

a. If node jmax is an uncommitted node, designate the mapping of jmax in F2
a to kmax 

in F2
b. kmax is found by executing the following steps: 

i. Calculate the bottom up inputs to all the Nb nodes in F2
b. 

Tk
b(Or) = (| Or ^ wk

b | ) / (βb + | wk
b |) 

ii. Choose the node in F2
b that receives the maximum input from F1

b. Assume 

its index is kmax. Check to see if it satisfies the vigilance criteria. We now 

distinguish three cases: 

1. If kmax is an uncommitted node, it satisfies the vigilance criteria. 

Increase Nb by one by introducing a new uncommitted node in F2
b 

and initialize its top down weights to all-ones. Go to step 5(a) ii-4. 

2. If kmax is commited node and it satisfies the vigilance criteria, go to 

step step 5(a)ii-4. A node kmax satisfies the vigilance criteria if. 

| Or ^ wkmax
b |  / | Or | ≥ ρb

3. If kmax is commited node and it does not satisfy the vigilance 

criteria, disqualify this node by setting Tkmax(Or ) = -1 and go to 

step 5(a) ii. 



4. Now node jmax in F2
a is mapped to node kmax in F2

b. The top-down 

weights in ARTa and ARTb are updated. 

wjmax
a = Ir ^ wjmax

a

wkmax
b = Or ^ wkmax

b

b. If node jmax is a commited node and due to prior learning this node is mapped to 

node kmax and kmax satisfies the vigilance criteria, correct mapping is achieved and 

weights in ARTa and ARTb are updated. If this is the last pattern in the training 

set, go to step 6, otherwise go to step 2 and present the next in sequence pattern. 

c. If node jmax is a commited node and due to prior learning this node is mapped to 

kmax and kmax does not satisfy vigilance criteria, disqualify jmax by setting Tjmax(Ir ) 

= -1, increase the vigilance criteria in ARTa and go to step 4. 

| Ir ^ wjmax
a |  / | Ir | + ε 

6. After all the patterns are presented, consider two cases: 

a. If in the previous list presentation, at least one component of the top-down weight 

vectors was changed, go to step 2 and present the first pattern in the training set. 

b. If in the previous list presentation, no weight changed occurred, the training is 

finished. 

Intrusion Detection using Neural Networks 

Neural networks have proven to be a promising modus operandi for intrusion detection. 

A wide variety of intrusion detection systems are using neural networks to address the intrusion 



detection problem. The primary reason for using the neural networks as the analysis engine in 

IDS is their generalization ability which makes is suitable to detect unknown attacks. 

The most common neural network architecture, used in the intrusion detection systems, is 

the MLP architecture using a backpropagation algorithm or some variation of it. The earlier 

works were mostly focused on anomaly detection on user behavior analysis. Later on, MLP were 

used for misuse detection also as an alternative to other, rule-based, signature detection systems. 

More recent work is focused on using unsupervised learning techniques to classify user behavior 

analysis for anomaly detection. Among the most promising IDS architectures based upon neural 

networks are those which use neural networks in conjunction with other detection engines to 

improve efficiency and generalization. 

The following is a list of several prominent research projects using neural networks for 

intrusion detection, along with a brief description of each. [12]. 

Neural Network Intruder Detector (NNID) 

This system uses an MLP for user behavior analysis [49]. The data on which it operates 

represents a set of commands a user executes. At fixed intervals, the collected data was used to 

train the network. Once trained, the system monitors for user activities and detect any anomalous 

behavior. The reported false positive rate of the system was 7%, while the false negative rate was 

4%. 

Application of Neural Networks to UNIX Security 

This project is one of the earliest systems to use neural networks for user anomaly 

detection [53]. The system uses an MLP to attempt, in real time, to train and detect anomalies. 



The system was designed is such a way that after a brief training session, it continuously modify 

and adapt to the user behaviors in real time. 

Anomaly Detection using Neural Networks 

This project uses an MLP network to examine applications at process level to detect an 

anomalous behavior [54]. The system uses the notion that regardless of user characteristics, an 

anomalous behavior at the application level will generate activities at the process level that can 

be deemed as anomalous. The false positive rate was 0% while the false negative rate was 20%. 

Hierarchical Anomaly Network IDS using NN Classification 

This system uses an MLP neural network in conjunction with a statistical analysis engine 

[55]. In addition the system consists of modules organized in different layers, with a module in 

lower layer reporting to the next one in higher layer. 

The different modules in the system are: 

• Probe to collect network traffic and abstract it into statistical variables. 

• Event preprocessor collects data from probes and other agents and format it for 

statistical analyzer. 

• Statistical model compares the data to the reference model describing the 

system’s normal behavior. A stimulus vector was created of the discrepancy and 

forwarded to the neural network for further analysis. 

• Neural network analyzes the stimulus vector for a normal or anomalous activity. 



Artificial Neural Networks for Misuse Detection 

This project was one of the first attempts to use neural networks for misuse detection 

[56]. The system uses an MLP neural network to analyze network traffic data. Some 

preprocessing was involved before the data is fed to the neural network. Certain fields of the 

packets were selected, normalization was done and data fields were grouped and converted to 

neural network readable format. In addition data was also marked as normal or attack. 

Anomaly and Misuse Detection using Neural Networks 

This system was the first that shifted focus in anomaly detection from user behavior 

analysis to program behavior analysis [57]. In this system individual MLP networks were trained 

on the normal behavior of the varying programs. The goal of the system was to generalize from 

incomplete data and classify data as anomalous or normal. 

At operation time, the system was monitored per session. During each session, several 

programs were run with different input parameters. The processes resulting from these events 

were fed to various neural networks and an anomaly grade was determined for each. A post 

processing leaky bucket algorithms gather all the anomaly scores for all the events and a 

threshold value decides for different combinations of accuracy levels. 

UNIX Host based User Anomaly Detection using SOM 

This system uses a self organizing map (SOM) for detection and analysis of user’s 

activities over an extended period of time for an anomalous behavior [58]. It uses the assumption 



that normal behavior is consistent and concentrated in a limited feature space. Conversely, 

scattered and irregular behavior will signal an anomalous activity.  

Features describing a user or an object were collected, normalized and reduced. An SOM 

was trained on this data and the resulting network was assumed to be representing valid feature 

space for legitimate use. 

Host Based Intrusion Detection using SOM 

This system uses a self organizing map (SOM) to examine session data by users in UNIX 

bases environment to search for anomalous behavior [59]. The system collects the following 

session data for analysis: 

• User group 

• Connection type 

• Connection source 

• Connection time  

The analysis engine consists of two levels, a 3-map tier which summarizes the first three 

input domains with respect to time, and the second aggregates and correlates the results of the 

first level. The analysis engine groups the session with respect to the variables examined. Each 

group can then be examined and associated with a particular user behavior – whether it is normal 

or anomalous. 



Elman Networks for Anomaly Detection 

This system uses Elman network [61] to detect anomalous behavior [60]. Elman 

networks are recurrent neural network with the ability to maintain a state of the system. 

The Elman network works by predicting the next sequence given a present input and the 

context. The actual next sequence is compared to the predicted sequence, and the difference 

between them represents a measure of the anomaly. 



CHAPTER 3: OUR APPROACH 

In recent times, data is collected in various forms and methods. With the recent progress 

in automated data gathering, the availability of cheap storage, database and emergence of web 

technologies, the volume of data, many organizations and individual deal with, has increased 

manifolds. There are millions of transactions taking place everyday and the same are being 

stored into databases. Until recent past, this data was only used to archive information. However 

it was realized that this information can be used in several other ways, besides being used as an 

archive. A digging into this data can give interesting patterns and information which was 

previously unknown. Since this data was initially stored in the databases, the process was called 

Knowledge Discovery in Databases (KDD). Recent progress in information technology reveals 

more sources for the data, especially the web. So the process is termed now simply as Data 

Mining. 

Mining these huge volumes of available data for hidden patterns is a tedious process that 

requires a lot of computation time and resources. Traditional data mining and learning algorithms 

are overwhelmed by the bulk volume and complexity of available data. They have become 

computationally expensive with larger execution times, which often depend upon the volume of 

the dataset in question. There are many time critical tasks which may not be able to stand these 

large execution times. Intrusion detection is one such operation. The ultimate goal of an intrusion 

detection system is to catch an intrusion when it is happening. Detecting an intrusion once it has 

happened might not be adequate in certain cases. An unreasonably high execution time will 



make a certain data mining algorithm, having an excellent prediction capability, unappealing for 

practical purposes. 

High Performance Data Mining 

The information sources used for intrusion detection are mostly system audit logs and 

network traffic data. These logs and traffic datasets consists of huge amount of information. The 

system logs contain records of system events as generated by operating system or some 

application software, while network traffic data contains network packet information. Data 

mining provides a solution to extract useful information from this huge bank of knowledge. But 

one of the major obstacles of using the traditional data mining algorithms towards intrusion 

detection is that they are only able to deal with moderate amounts of data. Extracting patterns of 

useful information for intrusion detection purposes from the huge audit files is not a trivial task. 

The amount of audit data to be analyzed and its complexity is increasing dramatically. This 

raises the issue of how to increase the computational capacity of data mining systems. 

High performance computing approach 

High performance data mining has arisen as an interdisciplinary response to this 

situation, merging ideas and techniques drawn from disciplines such as statistics, pattern 

recognition, machine learning, databases, and high performance computing. High performance 

data mining tries to exploit the parallelism in the data mining algorithm and the underlying 

hardware to cope with the increasing demand of lower execution times and higher volumes of 

data. Current parallel processor and computing technologies can be used to make the data mining 

process capable of dealing with massive databases in reasonable time. High performance 



computing makes it possible to scale the existing data mining algorithm over various platforms. 

Faster processing also means that users can experiment with more models to understand complex 

data.  

The approaches taken towards the scalable data mining algorithms include parallel 

decision tree classifiers, parallel association rules, parallel instance-based learning, parallel 

genetic algorithms and parallel neural networks [13]. 

Motivation behind the work 

Previous and current research [14, 15, 16] shows that numerous approaches have been 

taken to use different data mining algorithms for intrusion detection. However, not much 

attention has been paid to the scalability and high performance issues of these algorithms. Most 

of these algorithms are applied to a fraction of a large dataset. Larger execution times make it 

infeasible to apply these algorithms to a dataset with millions of records in it. 

We introduced a new strategy to address the issue of scalability of learning algorithms for 

intrusion detection. The motivation behind the work was the fact that most of the research in the 

area of intrusion detection is focused on classification accuracy and not much attention has been 

paid to the learning times of the algorithms. As a result, smaller datasets with less than a million 

records were used to perform the experiments which may not represent a real world scenario of a 

log file containing more than 10 million or more records.  

[26] presented a survey of various intrusion detection techniques including support vector 

machines (SVMs), artificial neural networks (ANNs), multivariate adaptive regression splines 

(MARS) and linear genetic programs (LGPs). The study used a dataset with less than 500,000 



records and reported LGP to be the best classifier at the expense of time. Neural networks also 

performed well but suffered the larger training times. Our approach solves the problem of large 

training times. Faster learning also makes it possible to use real datasets in the experiments 

instead of using a sample data. 

High performance approach for intrusion detection 

We used high performance data mining techniques to expedite the process by exploiting 

the parallelism in the existing data mining algorithms and the underlying hardware. We showed 

that how high performance parallel computing can be use to scale the data mining algorithms to 

handle large datasets, allowing the data mining component to search a much larger set of patterns 

and models than traditional computational platforms and algorithms would allow. 

We used the anomaly detection approach for detecting intrusions in network traffic data. 

Anomaly detection approach is based upon extraction of the normal behavior patterns out of a 

huge datasets that we may not have any prior knowledge about. This extraction creates a model 

of a normal system behavior and any deviation from it is considered as intrusion. Neural 

networks are a natural choice for such an operation because of their generalization and prediction 

capabilities. But neural networks suffer from the drawback of large training times. Considering 

the amount of the data we have and the numbers of feature we need to define normal profiles 

from the traffic data, traditional neural networks are not feasible option. We approached this 

problem by employing parallelism in the classical neural networks learning algorithms. Among 

the various available algorithms we chose backpropagation learning and fuzzy ARTMAP. Both 



of these algorithms are well suited to identify patterns in the data and therefore are mainly used 

for prediction and forecasting operations. 

We implemented the parallel neural networks on a cluster computing environment. 

Cluster computing is a process in which a set of computers connected by a network are used 

collectively to solve a single large problem. Using a cluster of workstations has become a 

popular method of solving both large and small scientific problems. The most important factor in 

the success of cluster computing is cost. Massively parallel processors (MPP) cost more than $10 

million while there is little cost involved in setting up a cluster of existing machines [32]. Early 

supercomputers used distributed computing and parallel processing to link processors in a single 

machine, often called a mainframe. Exploiting the same technology, cluster computing produces 

computers with supercomputer performance for less than $40,000 [33]. Given this new 

affordability, a number of universities and research laboratories are experimenting with installing 

such systems in their facilities. These systems are termed as Beowulf clusters. 

Beowulf is an approach to building a supercomputer as a cluster of commodity off-the-

shelf personal computers interconnected by widely available networking technology running any 

one of several open-source Unix-like operating systems. Beowulf programs are usually written in 

C or FORTRAN, adopting a message passing model of parallel computation but other open, 

standards based approaches are possible, including process level parallelism, shared memory 

(OpenMP, BSP), other languages (Java, LISP, FORTRAN90), and other communication 

strategies (RPC, RMI, CORBA) [34]. 

The Beowulf idea is said to enable the average university computer science department or 

small research company to build its own small supercomputer that can operate in the gigaflop 



(billions of operations per second) range. Since Beowulf is mechanism of establishing a general 

purpose loosely coupled parallel computing environment, it is not only cost effective but it also 

decrease the dependency on particular hardware and software vendors. As off-the-shelf 

technology evolves, a Beowulf can be upgraded to take advantage of it [34]. 

Our idea combines the potential of high performance approach with the cost effectiveness 

and wide availability of cluster computing to scale the existing machine learning algorithms to 

deal with much larger datasets in intrusion detection than traditional algorithms would allow. 

High performance makes it practical for users to analyze greater quantities of data that, in turn, 

yield improved predictions. We showed that how high performance computing can be used to 

overcome performance limitations of the available hardware. The work will serve as a precursor 

to the researchers in intrusion detection whose experiments are hindered by the high volumes of 

data.  

Parallel Neural Networks 

Research in artificial neural networks was started almost 50 years ago with the famous 

publication by McCulloch and Pitts [8]. Since then the eclectic nature of this field has inspired 

researchers from such diverse disciplines as neuroscience, engineering, physics, computer 

science and biology. Neural networks have been proven successful in solving a variety of 

learning tasks including function approximation, association, pattern classification, prediction 

and clustering [10].  



Large training time 

Neural networks involve a learning phase in which they are trained on a set of examples 

of a problem. The trained network is then used in a real environment to solve instances of 

problems not present in the training examples. The learning phase usually takes a large amount 

of computing time. For a real world problem training time in the order of days and weeks is not 

uncommon on serial machines [27, 28, 29]. This has been a major obstacle in using neural 

networks in real world applications and has impeded its wider acceptability. 

Approaches to improve efficiency 

This problem of large training times can be overcome by devising faster and more 

efficient algorithms or by implementing the current algorithms on parallel computing 

architectures. Improving the algorithm is in itself an area of research and is discussed in [30, 31]. 

Our work is focused on modifying the current algorithms to introduce parallelism in them. One 

major reason of this approach is that an improved faster learning algorithm can further take 

advantage of parallel implementation. 

Parallel implementation of neural networks 

A neural network is intrinsically a massively parallel distributed processor that is capable 

of learning through a process of trail and error [9]. Parallel neural networks exploit this parallel 

distributed architecture of the neural networks to implement it over a high performance 

computing environment. A neural network can be implemented sequentially on a single stand 

alone machine or it can be made parallel to benefit from a general purpose parallel machine or 



some special purpose hardware. Although sequential implementations are widespread and offer 

solution for a wide variety of problems, the computational needs of realistic time critical 

applications have exceeded the capabilities of sequential computers. Parallelization was thus 

viewed as an answer to meet the high computational demands of the current applications. 

Our implementation environment 

We implemented the parallel neural networks on a Beowulf Linux cluster. A Linux 

cluster involves a network of workstations running Linux operating system and a robust message 

passing software to utilize and manage the cluster. This message passing software is the means 

of communication between processors. We employed two different message passing tools for our 

experiments. These include MPI and CRLib. 

MPI 

MPI [35] is Message Passing Interface, a de facto standard for communication among the 

nodes running a parallel program on a distributed memory system. MPI is a library of routines 

that can be called from both Fortran and C programs. MPI's advantage over older message 

passing libraries e.g. PVM is that it is both portable (because MPI has been implemented for 

almost every distributed memory architecture) and fast (because each implementation is 

optimized for the hardware it runs on). 

CRLib 

Computational Resiliency Library, CRLib [19, 20] is a concurrent programming software 

tool to support heterogeneous computing environment, fault tolerance, and dynamic load 



balancing for parallel applications. CRLib is based upon message passing paradigm similar to 

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) [36]. MPI and PVM have 

been a successful solution for message passing based parallel processing. However, these tools 

are not efficient in supporting heterogeneous computing environments comprising of various 

shared memory multiprocessor and uni-processor machines with different types of operating 

systems, processor types, and memory and storage capacity. CRLib offers a solution that 

seamlessly integrates those computing resources without causing additional overhead to the 

application programmers. 

Neural networks architectures used 

We used two neural network architectures which employ algorithms from two different 

learning paradigms. One of them is backpropagation, which uses error based learning while the 

other is a match based learning algorithm called fuzzy ARTMAP. Classically both of these 

algorithms were designed for sequential access, but we modified them to fit our needs.  

Backpropagation is one of the most widely used learning algorithms for neural networks.  

Its popularity is related to its ability to deal with complex multidimensional mappings [37]. 

Werbos [38] describes the algorithm as “Beyond Regression” because the learning in the 

backpropagation is actually a search in the function space unlike a linear regression that 

establishes a basic linear relationship between inputs and outputs. As a modeling technology, 

backpropagation distinguishes itself by its ability to approximate any continuous function. This 

makes it a universal solution for problems ranging from forecasting interest rates to improve the 

active suspension in the cars. In classification applications, backpropagation exhibits similar 



distinguishing traits. It detects fraudulent credit card transactions, decides which customized 

banner ad should appear on a website and diagnose skin problems [39].  

With all its power and might, backpropagation suffers from stability plasticity dilemma; 

namely how to design a learning system that will remain plastic, or adaptive, in response to 

significant events and yet remain stable in response to irrelevant events [40]. Fuzzy ARTMAP 

with its unique match based learning allow the learning of new information without destroying 

the old one. This single reason was strong enough to use fuzzy ARTMAP in a task like intrusion 

detection where new patterns are available everyday. 

Parallel Backpropagation 

The basic Backpropagation algorithm, though very popular, is very slow to converge and 

takes large amount of training time. One way to reduce this time is to modify the basic algorithm 

and use some faster training technique like Resilient Backpropagation commonly called as 

RProp [17]. Several other variations can also be found for faster convergence. Another way to 

reduce the training time, especially for large data sets is to employ parallelism.  

Parallelism in the BP Algorithm 

Parallelism in neural networks can be divided into two broad categories. Training set 

parallelism and Network based parallelism [18]. The training set parallelism uses batch learning 

method and requires less communication. Due to batch learning the convergence may be slow 

but there is less communication overhead. In the network based parallelism online learning is 

used due to which the convergence is faster but there is more communication overhead.  



Network based Parallelism 

In network based parallelism the neural network is partitioned amongst the processors so 

that each processor simulates a portion of the neural network. There are essentially two methods 

for achieving network based parallelism. Algebraic partitioning in which the algebraic operations 

performed by the network are partitioned among the processors, and topological partitioning in 

which the network is sliced horizontally or vertically to be distributed among the processors. 

Algebraic Partitioning 

In this approach the algebraic operations carried out by the nodes of neural network are 

partitioned. These operations are performed on vectors and matrices and can be represented by a 

directed graph which can be mapped to an array of processing elements. 

Topological Partitioning 

In this approach the topology of the neural network is partitioned among the processors. 

The network is either sliced horizontally with layers of the network constituting slices or 

vertically with each slice getting neurons from each layer. Each processor gets a subset of 

neurons from one layer in horizontal case or from each layer in vertical case. 

Figure 10 displays the vertical slicing approach for topological partitioning of the neural 

network. The neurons falling under one slice are fed to once processor along with their 

connection weights. 



 

Figure 10: Network partitioning using vertical slicing scheme. 

Training Set Parallelism 

In the training set parallelism, the training set is partitioned amongst the processors 

instead of the network itself. Each processor keeps a complete copy of the whole network. Batch 

learning is used to minimize the communication overhead. The processors only need to 

communicate with each other when the weights are updated throughout the network after each 

epoch. 

Figure 11 displays the training set partitioning scheme for English alphabets. The 26 

alphabets are divided into three sets and distributed amongst the three processors. 



 

Figure 11: Training set partitioning of English alphabets. 

Parallel Backpropagation 

Our parallel backpropagation system runs on a Beowulf cluster using CRLib [19, 20]. 

Because of the fast processors but slower I/O we had to choose such scheme for parallelism 

which uses lesser interaction between processors in order to keep the communication overhead 

low.  Therefore we adopted training set partitioning scheme. 

Algorithm 

In the CRLib program one process is chosen as the root process. Besides usual 

calculations for the neural network, the responsibilities of the root include: 

• Reading the input data file and partitioning it amongst the processors. 

• Receiving weight updates and errors from all the processes and adding them up to 

get the total weight update. 

• Broadcasting the update weights to all the processes. 



• Checking for defined stopping criteria and sending the done signal to all the 

processes in case training is finished. 

 
The basic algorithm can be divided into two phases; setup and training. 

• The setup phase consists of reading the input file and distributing data amongst 

the processors. This time was observed to be almost constant with a slight 

increase as the number of processors was increased. 

• Training phase was the major phase that dominates the total execution time of the 

algorithm. 

 
The following notations are used in the description of the algorithm below. 

PT  total number of patterns 

N  total number of processors 

K  number of nodes in the input layer 

J  number of nodes in the hidden layer 

I  number of nodes in the output layer 

xk(p)  input for pattern p 

yj
2(p)  calculated output for pattern p 

di
2(p)  desired output for pattern p 

yj
1(p)  hidden layer output for pattern p 

wij
2(t)  current output layer weights 

wjk
1(t)  current hidden layer weights 

σi
2(p)  output layer error term for pattern p 



σj
1(p)  hidden layer error term for pattern p 

∆ wij
2(t) current change in weight for output layer 

∆ wjk
1(t) current change in weight for hidden layer 

∆ wij
2(t-1) previous change in weight for output layer 

∆ wjk
1(t-1) previous change in weight for hidden layer 

η  learning rate 

α  momentum term 

e(p)  mean squared error for pattern p 

ρ wij
2(t) accumulated weight updates for output layer for current epoch 

ρ wjk
1(t) accumulated weight updates for hidden layer for current epoch 

E(p)  accumulated mean squared error for current epoch 

∆ Wij
2(t) total weight update for output layer at root for current epoch 

∆ Wjk
1(t) total weight update for hidden layer at root for current epoch 

σ(t)  total mean squared error at root for current epoch   

The algorithm can be described as a step by step procedure as follows: 

1.  

a.  If this is the root processor 

i. Read the input file. 

ii. Distribute the data amongst the processors 

b. If this is not the root processor 

i. Receive the data from root processor 

2. Initialize the weights on each processor 



3. Present the input pattern x(p) to the input layer. 

4. Calculate the outputs at the hidden and output layers. 

yj
1(p) = g(neti

1(p)) = g[Σk=0
Kwjk

1(t).xk(p)]  1 ≤ j ≤ J 

yj
2(p) = g(neti

2(p)) = g[Σj=0
Jwij

2(t).yj
1(p)]  1 ≤ i ≤ I 

 

5. Calculate the error terms associated with output and hidden layers. 

σi
2(p) = g’(neti

2(p))[di
2(p) – yi

2(p)]  1 ≤ i ≤ I 

σj
1(p) = g’(netj

1(p)) Σi=1
Iwij

2(t). σi
2(p)  1 ≤ j ≤ J 

6. Calculate the weight updates for this pattern 

∆ wij
2(t) = η. σi

2(p). yj
1(p) + α . ∆ wij

2 (t-1) 1 ≤ i ≤ I, 0 ≤ j ≤ J 

∆ wjk
1(t) = η. Σj

1(p). xk(p) + α . ∆ wjk
1(t-1) 1 ≤ j ≤ J, 0 ≤ k ≤ K  

7. Calculate the MSE for this pattern 

e(p) = ½  [di
2(p) – yi

2(p)]2

8. We distinguish two cases here 

a. If p = PT  

i. go to step 9 

b. If p ≠ PT  

i. Increase p 

ii. Accumulate the weight update for this epoch 

ρ wij
2(t) = ρ wij

2(t) + ∆ wij
2(t) 

ρ wjk
1(t) = ρ wjk

1(t) + ∆ wjk
1(t) 

iii. Accumulate the MSE for this epoch 



E(p) = E(p) + e(p) 

iv. Go to step 3 

9.   

a. If this is not the root processor  

i. Send the calculated MSE and weight updates to the root processor. 

b. If this is the root processor 

i. Receive the MSE and weight updates from all the processors. 

If this is the root processor perform steps 10 - 14, otherwise move to step 15 

10. Calculate the total weights by adding all the weights received from each processor. 

∆ Wij
2(t) = Σn=1

N ρ wij
2(t) 

∆ Wjk
1(t) = Σn=1

N ρ wjk
1(t) 

11. Calculate the total error 

σ(t) = 1/N Σn=1
N E(p) 

12. Check to see if the total MSE is less than the required MSE 

a. If yes  

i. Set the done signal 

ii.  Go to step 15 

b. If no  

i. Go to step 13 

13. Update the weights. 

wij
2(t) = wij

2(t) + ∆ Wij
2(t)  1 ≤ i ≤ I, 0 ≤ j ≤ J 

wik
1(t) = wik

1(t) + ∆ Wjk
1(t)  1 ≤ j ≤ J, 0 ≤ k ≤ K 



14.   

a. If this is the root processor 

i. Broadcast the updated weights and done signal. 

b. If this is not the root processor 

i. Receive the updated weights and done signal from the root. 

15. We now distinguish two cases 

a. If done is set, training is considered complete. 

b. If done is not set 

i. Set p = 0 

ii. Go to step 3. 

Parallel Fuzzy ARTMAP 

Fuzzy ARTMAP use fast match based learning as compared to the slow mismatch 

learning by backpropagation [24]. In fast learning adaptive weights converge to equilibrium in 

response to each input pattern [21]. As we discussed earlier a fast learning algorithm can further 

benefits from applying high performance techniques, we parallelize the fuzzy ARTMAP 

algorithm to acquire improved efficiency regarding the training time. 

The same Beowulf cluster was used for experimentations with the parallel fuzzy 

ARTMAP. Training set partitioning scheme was chosen to reduce the communication between 

processes. 

Our parallel implementation of the fuzzy ARTMAP algorithm take advantage of the 

match based learning capability of the ART systems [21]. A central feature of all the ART 



systems is a pattern matching process that compares an external input with the internal memory 

of the system which represents some prototype stored patterns from a previous learning. Our 

algorithm consists of two major steps. In the first step, each processor on the system is trained 

with portion of the data it is assigned with. There is no communication between processors in 

this step. When the training is complete, each processor has a set of stored patterns which are 

learned during the training phase. In the second step, each processor sends its stored patterns to 

one processor (root). Root is then trained on these stored patterns from every processor including 

its own. The patterns learned at the end of the training at root are the prototype patterns 

representing the whole dataset. 

The basic algorithm can be divided into two sections; setup and training. 

• The setup part consists of reading the input file and distributing data amongst the 

processors. The file reading time was constant while the distribution time 

increases with the number of processors. 

•  The second part was the training part. Since fuzzy ARTMAP is a fast learning 

algorithm which is further speeded up by parallelization, training time was not the 

major dominating phase of the total execution time for every case.  

Algorithm 

The following notations are used in the description of the algorithm below. 

ARTa  ART Module for inputs 

ARTb  ART Module for outputs 

F1
a  matching layer in ARTa



F1
b  matching layer in ARTb

F2
a  choice layer in ARTa

F2
b  choice layer in ARTb

Na  number of nodes in F2
a

Nb  number of nodes in F2
b

Ir  input pattern r 

Or  output pattern r 

^ fuzzy min operator performed on vectors and the result is the minimum of 

the corresponding components 

|x|  size of the vector x which is equal to the sum of its components 

Tj
a(Ir)  bottom up input from node j in F1

a for pattern Ir

Tk
b(Or)  bottom up input from node j in F1

b for pattern Or

wj
a  top down weight to node j in F1

a from F2
a

wk
b  top down weight to node k in F1

b from F2
b

βa  ARTa choice parameter 

βb  ARTb choice parameter 

jmax  current winner node in ARTa

kmax  current winner node in ARTb

wjmax
a  top down weights corresponding to winner node jmax in ARTa 

wkmax
b  down weights corresponding to winner node kmax in ARTb

ρa  vigilance parameter for ARTa

ρb  vigilance parameter for ARTb



ε  increment in the vigilance parameter 

The modified fuzzy ARTMAP algorithm in a step by step procedure can be described as: 

 
1.   

a. If this is the root processor 

i. Read the input file. 

ii. Distribute the data amongst the processors 

b. If this is not the root processor 

i. Receive the data from root processor 

2. Initialize the weight vectors corresponding to the uncommitted nodes in F2
a and F2

b to all-

ones on each processor. 

3. Present the input/output pair to the network and set the vigilance to base-line vigilance. 

4. Calculate the bottom up inputs to all the Na nodes in F2
a. 

Tj
a(Ir) = (| Ir ^ wj

a | ) / (βa + | wj
a |) 

5. Choose the node in F2
a that receives the maximum input from F1

a. Assume its index is 

jmax. Check to see if it satisfies the vigilance criteria. We now distinguish three cases: 

a. If node jmax is uncommitted node, it satisfies the vigilance criteria in ARTa. Go to 

step 6. 

b. If node jmax is commited node and it satisfies the vigilance criteria, go to step 6. A 

node jmax satisfies the vigilance criteria if 

| Ir ^ wjmax
a |  / | Ir | ≥ ρa  

c. If node jmax does not satisfy the vigilance criteria, disqualify this node and go to 

the beginning of step 5. 



6. Now consider three cases: 

a. If node jmax is an uncommitted node, designate the mapping of jmax in F2
a to kmax 

in F2
b. kmax is found by executing the following steps: 

i. Calculate the bottom up inputs to all the Nb nodes in F2
b. 

Tk
b(Or) = (| Or ^ wk

b | ) / (βb + | wk
b |) 

ii. Choose the node in F2
b that receives the maximum input from F1

b. Assume 

its index is kmax. Check to see if it satisfies the vigilance criteria. We now 

distinguish three cases: 

1. If kmax is an uncommitted node, it satisfies the vigilance criteria. 

Increase Nb by one by introducing a new uncommitted node in F2
b 

and initialize its top down weights to all-ones. Go to step 6(a) ii-4. 

2. If kmax is commited node and it satisfies the vigilance criteria, go to 

step step 6(a)ii-4. A node kmax satisfies the vigilance criteria if, 

| Or ^ wkmax
b |  / | Or | ≥ ρb

3. If kmax is commited node and it does not satisfy the vigilance 

criteria, disqualify this node by setting Tkmax(Or ) = -1 and go to the 

beginning of step 6(a) ii. 

4. Now node jmax in F2
a is mapped to node kmax in F2

b. The top-down 

weights in ARTa and ARTb are updated. 

wjmax
a = Ir ^ wjmax

a

wkmax
b = Or ^ wkmax

b



b. If node jmax is a commited node and due to prior learning this node is mapped to 

node kmax and kmax satisfies the vigilance criteria, correct mapping is achieved 

and weights in ARTa and ARTb are updated. If this is the last pattern in the 

training set, go to step 7, otherwise go to step 3 and present the next in sequence 

pattern. 

c. If node jmax is a commited node and due to prior learning this node is mapped to 

kmax and kmax does not satisfy vigilance criteria, disqualify jmax by setting Tjmax(Ir ) 

= -1, increase the vigilance criteria in ARTa and go to step 5. 

| Ir ^ wjmax
a |  / | Ir | + ε 

7. After all the patterns are presented, consider two cases: 

a. If in the previous list presentation, at least one component of the top-down weight 

vectors was changed, go to step 3 and present the first pattern in the training set. 

b. If in the previous list presentation, no weight changed occurred, the training is 

finished. We now distinguish two cases. 

i. If the training set was original patterns go to step 8. 

ii. If the training set was stored patterns from all the processors and this 

processor is root go to step 12. 

8.  

a. If this is the root processor 

i. Receive the stored patterns from all the processors 

b. If this is not the root processor 

i. Send the stored patterns to the root processor 



Steps 9-12 are only performed on the root processor. 

9. Set the inputs and outputs to the stored pattern and their corresponding outputs 

10. Initialize the weights vectors to all-ones and reset the F2
a and F2

b layers. 

11. Go to step 3. 

12. Training is considered finished and the stored patterns represent the prototype patterns 

from the whole dataset. 



CHAPTER 4: EXPERIMENTAL RESULTS 

The experiments were performed on the network traffic data generated by the MIT 

Lincoln Labs for the 1998 DARPA Intrusion Detection Evaluation program. A version of this 

data was also used in the 1999 KDD Intrusion Detection contest and is available from the UCI 

KDD Archive [22]. Lincoln Labs artificially generated this data by simulating a military LAN 

environment infused with different attacks. The data consists of network connection records 

generated by TCP dump.  

A network connection record is a set of information, such as duration, protocol type, 

number of transmitted bytes etc, which represents a sequence of data flow to and from a well 

defined source and target.  

Each record in this data carry 41 different attributes and was marked as normal or attack, 

with exact specification about the attack type. All the attacks fall into four main categories. 

• DOS: denial-of-service, e.g. syn flood;  

• R2L: unauthorized access from a remote machine, e.g. guessing password;  

• U2R:  unauthorized access to local superuser (root) privileges, e.g., various 

buffer overflow attacks;  

• probing: surveillance and other probing, e.g., port scanning.  

The training dataset contains 4848429 records while the test dataset had 311029 records.   

Running the full dataset on a single processor suffers from memory problems and the speed 

further slowed down. To encounter this problem we used a reduced 10% dataset of the original 

dataset also for our experiments to measure the training times especially for one processor. The 



reduced dataset has 494020 patterns and this dataset is the most widely used dataset for intrusion 

detection research. There were 24 different types of attacks along with the normal patterns in the 

training data. Test data has 14 additional attacks that were not found in the training data. 

The 24 attack types found in the training dataset are: 

Table 1: Attack types in the training data set 

S.No Attack Name Category
1 Back DoS 
2 buffer_overflow U2R 
3 ftp_write R2L 
4 guess_passwd R2L 
5 imap R2L 
6 ipsweep Probe 
7 land DoS 
8 loadmodule U2R 
9 multihop R2L 
10 neptune DoS 
11 nmap Probe 
12 perl U2R 
13 phf R2L 
14 pod DoS 
15 portsweep Probe 
16 rootkit U2R 
17 satan Probe 
18 smurf DoS 
19 spy R2L 
20 teardrop DoS 
21 werezclient R2L 
22 werezmaster R2L 
23 snmpgetattack R2L 
24 xlock R2L 

 
The training data consists of 41 features which can be divided into 3 categories.  

1. Basic features of individual TCP connections. 
2. Content features within a connection suggested by domain knowledge. 



3. Traffic features computed using 2 second time window. 
A complete listing of the set of features defined for the connection records is given in the 

three tables below.  

Table 2: Basic features of individual TCP connections 

feature name description  type 
duration  length (number of seconds) of the connection  continuous
protocol_type  type of the protocol, e.g. tcp, udp, etc.  discrete 
service  network service on the destination, e.g., http, telnet, etc.  discrete 
src_bytes  number of data bytes from source to destination  continuous
dst_bytes  number of data bytes from destination to source  continuous
flag  normal or error status of the connection  discrete  
land  1 if connection is from/to the same host/port; 0 otherwise  discrete 
wrong_fragment  number of ``wrong'' fragments  continuous
urgent  number of urgent packets  continuous

   

Table 3: Content features within a connection suggested by domain knowledge 

feature name description  type 
hot  number of ``hot'' indicators continuous
num_failed_logins  number of failed login attempts  continuous
logged_in  1 if successfully logged in; 0 otherwise  discrete 
num_compromised  number of ``compromised'' conditions  continuous
root_shell  1 if root shell is obtained; 0 otherwise  discrete 
su_attempted  1 if ``su root'' command attempted; 0 otherwise  discrete 
num_root  number of ``root'' accesses  continuous
num_file_creations  number of file creation operations  continuous
num_shells  number of shell prompts  continuous
num_access_files  number of operations on access control files  continuous
num_outbound_cmds number of outbound commands in an ftp session  continuous
is_hot_login  1 if the login belongs to the ``hot'' list; 0 otherwise  discrete 
is_guest_login  1 if the login is a ``guest''login; 0 otherwise  discrete 



  

Table 4: Features computed using a two-second time window. 

feature name description  type 

count  number of connections to the same host as the current connection 
in the past two seconds  continuous

 Note: The following  features refer to these same-host 
connections.  

serror_rate  % of connections that have ``SYN'' errors  continuous
rerror_rate  % of connections that have ``REJ'' errors  continuous
same_srv_rate  % of connections to the same service  continuous
diff_srv_rate  % of connections to different services  continuous

srv_count  number of connections to the same service as the current 
connection in the past two seconds  continuous

 Note: The following features refer to these same-service 
connections.  

srv_serror_rate  % of connections that have ``SYN'' errors  continuous
srv_rerror_rate  % of connections that have ``REJ'' errors  continuous
srv_diff_host_rate  % of connections to different hosts  continuous 
 

Data preprocessing 

Data preprocessing can be described as any type of processing performed on the raw data 

to prepare it for any other processing procedure. Data preprocessing is an important step in data 

mining. It transforms the data into a format that is acceptable to the actual data processing 

algorithm e.g. a neural network.  

The KDD dataset has two types of attribute; discrete and symbolic. The discrete attributes 

can be in the form of a Boolean value or it might represent a symbolic denomination like 

protocol type can have tcp or udp as its values. These symbolic values were transformed into 

appropriate numerical representations. A requirement for fuzzy ARTMAP is that the input values 



should be in the range 0-1. To achieve this, the continuous attributes of the data were processed 

using a vertical unit normalization method that scales down all the values in that attribute in the 

required range.  The operation was performed on each column separately. 

Experiments  

The computing environment used for experiments was composed of a cluster of 32 PCs 

running LINUX. Each of these machines was equipped with a 900 MHz AMD Athlon processor 

with 1 GB memory and 100BT networking. Two different machine learning algorithms were 

parallelized using different message passing tools for mining the KDD data. The programming 

tool used to implement parallel backpropagation was CRLib while fuzzy ARTMAP was 

parallelized using MPI. Since different message passing programs were used for parallelization 

so a comparison study was not made for the results of these two algorithms. The purpose was to 

test parallelization under different message passing paradigms. 

Experiments with backpropagation 

As discussed earlier, the parallel backpropagation was implemented using CRLib in a 

manager-worker model. The manager reads the input data and distributes it amongst the workers, 

receives weight updates from the workers and broadcast the updated weights back and checks for 

stopping criteria. The backprogapation neural network has 41 input nodes corresponding to 41 

attributes of the given data, 40 hidden nodes and 3 output nodes to specify normal or any of the 

four attack types. Same initial weights were used for all the experiments to keep the number of 

epochs needed for converging same. The parallel backpropagation algorithm converged after 152 

epochs with a 0.05 acceptable mean squared error (MSE). The execution time for the sequential 



version was 68 hours and 37 minutes while the parallel version reduced this time to 1 hour and 

33 minutes using a 32 node cluster. The speedup achieved was 43.9 which is a linear gain. As a 

measure of performance, we are reporting execution time for single epoch, as this is the most 

common way to report the speedup of a parallel neural network. 

Table 5: Training times for a single epoch for parallel backpropagation for full dataset 

No of processors 1 2 4 8 16 32 

Execution time (sec) 1625 587 298 150 76 38 
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Figure 12: Execution times for backpropagation for a single epoch in logarithmic scale for full dataset. 



There is a setup time also involved as discussed previously in the parallel algorithm that 

consists of input data reading and distribution times. This setup time was observed to be almost 

constant regardless of the number of processors with the exception of the serial version with only 

one processor. The reason for constant time is that the root processor read the data and 

distributed it amongst the processors. If the number of processors is small, larger partitions were 

transferred over the network to small number of processors. If the number of processors is large, 

smaller partitions were transferred to a large number of processors. In any case the total amount 

of data transferred over the network remains the same. 

Table 6: Setup times for parallel backpropagation for full dataset 

No of processors 2 4 8 16 32 

Execution time (sec) 625 433 422 415 432 

 

Training the network with the full dataset on a single machine suffers from memory 

problems. Loading the full dataset into memory resulted in segmentation faults. We had to 

partition the dataset and load each partition one at a time into memory during the training.  

Table 6 doesn’t include the setup time for one processor for this reason. The input file 

was read continuously for each epoch. This also explains the relatively larger value for execution 

time for one processor in table 5. In this case execution time includes both setup time and 

training time. 



To remedy this problem we used the 10% dataset to have a fairer speed comparison as the 

number of processors is increased. Nevertheless it again proves the limitation of hardware and 

advantages of using parallel computing for our work. 

Table 7: Training times for a single epoch for parallel backpropagation for 10% dataset 

No of processors 1 2 4 8 16 32 

Execution time (sec) 110 59 30 15 8 4 
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Figure 13: Execution times for backpropagation for a single epoch in logarithmic scale for 10% dataset 

The setup times for 10% dataset are documented in table 8. 



Table 8: Setup times for parallel backpropagation for 10% dataset 

No of processors 1 2 4 8 16 32 

Setup time (sec) 42.1 42.1 41.9 41.9 41.7 41.8 

 

For the training dataset, the backpropagation network demonstrated 98.36% classification 

rate. The false positive rate was 1.26% and the false negative rate was 0.38%. 

The testing dataset contained 14 new attacks which were not present in the training 

dataset. This would test the system in a real time scenario with unknown attacks. The neural 

network generalization capability enabled it to predict 81.37% of the patterns correctly. False 

positive rate was 1.28% while the false negative rate was 17.35%. The negative false alarm rate 

indicates that most of the unknown attacks were going unnoticed. Usually a neural network is 

retrained when new patterns are discovered to include those patterns into its learning paradigm. 

Table 9: Performance of parallel backpropagation algorithm 

 Training Data Test Data 
Classification Rate 98.36% 81.37% 
False Negatives 0.38% 17.35% 
False Positives 1.26% 1.28% 

 

Experiments with fuzzy ARTMAP 

The fuzzy ARTMAP system also follows the manager-worker model as 

backpropagationas does. The manager duties include reading and distributing the input data, 



receiving stored patterns from workers when they finished their training, and training on stored 

patterns. In addition manager also performs worker operations. 

The fuzzy ARTMAP system consists of two ART modules; ARTa and ARTb. The 41 

input features were fed to the ARTa module while the corresponding output was given to the 

ARTb module. To achieve parallelization, training set partitioning scheme was used. Fuzzy 

ARTMAP uses fast match based learning and it usually converges in few epochs.  

The parallel algorithm has two phases. In the first phase each network is trained 

separately on its assigned partition of the full dataset. The second phase consists of training one 

network with the prototype patterns learned in the first phase by all the networks. With 

appropriately chosen parameters, the first phase always dominates the execution time. Since 

separate networks are trained with separate datasets in the first phase we consider average 

training time as a measure of the execution time. 

The algorithm converged in just 2 epochs with the average training time of 92 seconds on 

a 32 node cluster.  

Table 10: Training times for a single epoch on parallel fuzzy ARTMAP for full dataset 

No of processors 1 2 4 8 16 32 

Execution time (sec) 1851 805 392 192 95 46 
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Figure 14: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for full dataset 

The setup time on fuzzy ARTMAP was slightly different from the backpropagation 

implementation because it uses a different manager-worker approach. Since manager performs 

worker operations also in addition to its duties, the distribution time varies as the number of 

processors varies. The amount of data to be distributed, increases as the number of processor 

increases. The reason being the manager keeps its partition of data and distribute the rest 

amongst the workers. As the number of workers increases, the partitions become small so 

manager keep a small partition and distribute the rest. 



Table 11: Setup times for fuzzy ARTMAP for full dataset. 

No of processors 2 4 8 16 32 

Setup time (sec) 330 368 397 402 405 

 

Again, single machine suffers from memory problems with the full dataset. Segmentation 

faults were observed while loading the full dataset into memory. So, we partitioned the dataset 

and loaded each partition one at a time into memory during the training.  

Table 11 doesn’t include time for one processor because execution time for an epoch 

includes setup time in addition to the training time. This also explains the large value for epoch 

execution time for one processor in table 10. 

We performed experiments with the 10% dataset on the fuzzy ARTMAP also to get a 

balanced view of training times without memory problems. This showed that an almost linear 

speedup was obtained as the number of processors was increased. The times reflected in the table 

are average times for one epoch. We used the notion of average time here because in such a 

parallel fuzzy ARTMAP system, not every processor is executing the same number of steps 

every time. A closer look at the algorithm revealed that winner node selection step might take 

more iteration on some processor depending upon the dataset it received. This iteration is nested 

within the operation of each epoch and hence a change in its value will result in a variation in the 

epoch time. 



Table 12: Training times for a single epoch on parallel fuzzy ARTMAP for 10% dataset 

No of processors 1 2 4 8 16 32 

Execution time (sec) 157 74 36 18 8 4 
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Figure 15: Training times for fuzzy ARTMAP for a single epoch in logarithmic scale for 10% dataset 

For the 10% dataset the total execution time for the algorithm was dominated by the 

setup time as the number of processors increases as indicated by table 13. The setup time 

includes input file reading and data distribution times. 

 



Table 13: Distribution  times on parallel fuzzy ARTMAP for 10% dataset 

No of processors 1 2 4 8 16 32 

Setup time (sec) 26 33 37 39 41 41 

 

Testing on the training data gives 80.14 % classification rate. The false positive and 

negative rates were 0%. Test data gave an 80.52% success rate with 0.0% false negative rate and 

19.48% false positive rate. A high false positive rate indicates that a number of normal patterns 

were detected as attacks. Detection algorithms of all kind have a tendency to create false 

positives and negatives. A false negative is a more serious concern than a false positive because 

a false negative means that an attack has gone unnoticed while false positive flags a normal 

activity as attack which is not considered a security threat.  

Table 14: Performance of parallel fuzzy ARTMAP algorithm 

 Training Data Test Data 
Classification Rate 80.14% 80.52% 
False Negatives 0.0% 0.0% 
False Positives 19.86% 19.48% 



CHAPTER 5: CONCLUSIONS 

We introduced a new strategy to address the issue of scalability of learning algorithms for 

intrusion detection. Our research focuses on using high performance distributed computing 

techniques to scale existing data mining algorithms to deal with large datasets for problems in 

intrusion detection. The scalability issue is widely ignored in the intrusion detection research. As 

a result most of the research projects are restricted to use smaller datasets which may not reflect 

real-world scenario of dealing with ever increasing audit files. 

We developed parallel backpropagation and parallel fuzzy ARTMAP algorithms to 

analyze network traffic data. With the help of our parallel algorithms we were able to investigate 

much larger set of patterns than their sequential versions would allow. Out experimental results 

showed that the developed parallel model can significantly reduce training time in the neural 

networks algorithms, achieving a linear speedup using a cluster computing environment, without 

sacrificing accuracy in classification and prediction rate. 

We showed how intrusion detection can benefit from high performance data mining 

techniques. For our experiments we came up with a parallelized version of the fuzzy ARTMAP 

algorithm for cluster environment. 

Improving the parallel fuzzy ARTMAP algorithm we developed is an open area for 

future research. Experiments with other datasets can be performed using our parallel models. 

Further research can be done in this area by applying the same parallel computing techniques to 

other data mining algorithms. 
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