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ABSTRACT 

 

Borides are implemented in a range of industrial applications due to their unique 

mechanical, electrical, thermal and catalytic properties. In particular, transition metal diborides 

are of special interest. In the recent years, borides of rhenium (Re), osmium (Os) and iridium (Ir) 

have been studied as for their ultra-hardness and superior stiffness. In this dissertation, a 

mechanochemical method is introduced to produce rhenium diboride (ReB2) powder, a novel 

hexagonal osmium diboride (h-OsB2), and iridium boride powders. Densification by Spark 

Plasma Sintering (SPS), thermal stability and mechanical properties of h-OsB2 were also studied.  

ReB2 was recently reported to exhibit high hardness and low compressibility, which both 

are strong functions of its stoichiometry, namely Re to B ratio. Most of the techniques used for 

ReB2 synthesis reported 1:2.5 Re to B ratio because of the loss of the B during high temperature 

synthesis. However, as a result of B excess, the amorphous boron, located along the grain 

boundaries of polycrystalline ReB2, would degrade the ReB2 properties. Therefore, techniques 

which could allow synthesizing the stoichiometric ReB2 preferably at room temperature are in 

high demand. ReB2 powder was synthesized at low temperature using mechanochemical route by 

milling elemental crystalline Re and amorphous B powders in the SPEX 8000 high energy ball 

mill for 80 hours. The formation of boron and perrhenic acids are also reported after ReB2 

powder was exposed to the moist air environment for a twelve month period of time. 

Hexagonal osmium diboride (h-OsB2), a theoretically predicted high-pressure phase, has 

been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. 

X-ray diffraction (XRD) indicated the formation of h-OsB2 after 2.5 hours of milling, and the 
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reaction reaches equilibrium after 18 hours of milling. The lattice parameters of the h-OsB2 are 

a=2.916Å and c=7.376 Å, with a P63/mmc space group. Transmission electron microscopy 

confirmed the appearance of the h-OsB2 phase. The thermal stability of h-OsB2 powder was 

studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. The 

oxidation mechanism of h-OsB2 has also been proposed. The hexagonal phase partially 

converted to the orthorhombic phase (20 wt.%) after spark plasma sintering of h-OsB2 at 1500°C 

and 50MPa for 5 minutes. Hardness and Young’s modulus of the h-OsB2 were measured to be 31 

± 9 GPa and 574 ± 112 GPa, respectively by nanoindentation method. 

Prior to this research a number of compounds have been prepared in Ir-B system with 

lower than 2 boron stoichiometry, and no IrB2 phases have been synthesized experimentally. In 

this dissertation, three new iridium boride phases, ReB2-type IrB2, AlB2-type IrB2 and IrB have 

been synthesized with a similar mechanochemical method. The formation of these three phases 

has been confirmed by both X-ray diffraction (XRD) and transmission electron microscope 

(TEM) after 30 hours of ball milling and 48 hours of annealing. The IrB2 phases have hexagonal 

crystal structures and the new IrB phase has an orthorhombic crystal structure. The segregation 

of iridium from iridium borides’ lattices has also been studied by high resolution TEM. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

Stiff, incompressible and superhard materials are of great importance and interest for 

science, technology and industrial applications. [1, 2] They can be used as abrasives and where 

wear and oxidation resistance are important design parameters. Modern materials science and 

engineering places a significant emphasis on the rational design and synthesis of new materials 

possessing superior mechanical and functional properties. Novel superhard materials with 

hardness higher than 40 GPa are one of the focal points of such materials’ development [3-9]. 

The methodology and criteria used in searching for these materials were described in a series of 

publications [10, 11]. It was postulated that the structural stability, such as elastic stiffness, 

resistance to plastic deformation as well as resistance to structural changes, is a measure of the 

material’s hardness [12]. The chemical bonding between individual atoms determines hardness, 

the bond strength determines the elastic stiffness, and the mobility of dislocations determines the 

plastic deformation of materials. For the elastic stiffness, both resistance of bonds to stretching 

and bending are important. The resistance to stretching is measured by the elastic bulk modulus 

and resistance to bending is measured by shear modulus. [10] To have high stiffness, both bulk 

and shear moduli have to be maximized. Resistance to plastic deformation should also be high 

for the material to be hard, as the plasticity is determined by the dislocation mobility, which 

should be suppressed as much as possible. 

It has been found that the three dimensional covalent network formed by tetrahedrally 

bonded sp
3
 carbon atoms brings extremely high hardness to diamond. [13] c-BN also has very 
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symmetric covalent bonding structure similar to diamond. Thus, a three-dimensional network 

with strong bonds is required for a material to be superhard. A quest of challenging mechanical 

properties of diamond is always present, and a number of different strategies to search for the 

ultra-hard and ultra-stiff solids are employed and reported [13]. The strategies to design 

compounds with high elastic stiffness are also outlined in [12]. The measures of stiffness of the 

material are (1) bulk modulus, which is resistance to the volume change of the material, and (2) 

shear modulus, which is a resistance to shape change [14-16]. From known materials, diamond 

has the highest bulk modulus and it was postulated that it is unlikely that a material with a lower 

bulk modulus than that of diamond can have higher hardness. [10, 12]. One of the new 

approaches to design superhard and ultra-incompressible materials has been reported by Kaner et 

al. [13], by combining metals that have a high bulk modulus with small, covalent bond-forming 

atoms. The compounds with high bulk modulus have been screened in [12] and it was identified 

that among the first 94 chemical elements in the periodic table, osmium (Os) and carbon (C) 

provide the highest values of bulk moduli – 462 GPa [17] and 443 GPa [12, 14, 18], respectively 

(Figure 1), with rhodium (Rh) – 380 GPa [19], and iridium (Ir) – 383 GPa [19], rhenium (Re) – 

370 GPa [19], following very closely to C and Os values. Ruthenium (Ru) – 348 GPa [19], 

tungsten (W) – 308 GPa [19], platinum (Pt) – 282.7 GPa [20], molybdenum (Mo) – 259.77 GPa 

[21], gold (Au) – 220 GPa [22], and tantalum (Ta) – 189.72 GPa [23] are the next elements with 

high bulk moduli [12]. There is a direct correlation between the reported bulk moduli of different 

materials and their valence-electron volumetric density (VED) [12, 24]. The VED is determined 

by the number of valence electrons divided by the unit cell volume, and C and Os elements have 

the highest VED values reported [10, 12].  
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Figure 1: Bulk moduli of the elements. Note that the modulus scale is logarithmic. (data from 

[19]). Reprinted from International Journal of Refractory Metals and Hard Materials, 24, J.J. 

Gilman, R.W. Cumberland and R.B. Kaner, Design of hard crystals, 1-5, [10] Copyright (2006), 

with permission from Elsevier.  

 

In addition to the bulk modulus, the shear modulus is another key property of material 

determining its hardness. It is an even more important property than the bulk modulus as the 

shear strain at an indentation can reach up to 100% or more, while the volumetric strain can only 

approach 20% for covalent compounds and is much less for metals [10]. Here again diamond has 

the highest shear modulus, namely 580 GPa (octahedral plane), with 210 GPa for Ir following 

next; however, Ir is only about half as stiff as diamond [12, 19]. First principles calculations have 

shown that Os may be stiffer (C44=256 GPa) than Ir in shear [25]. 

While diamond exhibits both high bulk modulus and high hardness, Os has low hardness 

– 3.9 GPa, which is still the highest hardness reported for the metallic materials. The low 

hardness of Os indicates low ability of the metal to resist plastic deformation, while the elastic 

stiffness of the compound is high. A high ductility is determined by the movements of 
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dislocations, which is responsible for plastic deformation and low hardness of the material. The 

dislocation mobility is determined by viscosity associated with conduction electrons, phonons, or 

both and the mobility can be suppressed by the presence of the barriers to impede the movements 

of the core of dislocations. [11] In case of simple metals, where bonding is not directional, non-

localized and a “sea” of the electrons is present, the barriers are low and dislocations move easily 

compromising the resistance of material to plastic deformation [12, 24]. It was realized that the 

crystal structures of simple metals do not have significant static barriers to dislocation motions 

[11, 24]. Thus, in order to improve the resistance to plastic deformation, the barriers to prevent or 

limit the dislocation movement should be very local to the scale of the dislocation core. 

Therefore, local chemical bonding will lead to a low mobility of the dislocations, improved 

resistance to plastic deformation, and, as a result, increased hardness. 

In the past decade, there has been a significant interest in the transition metal boride, 

nitride, and carbide compounds and the number of papers published on the synthesis and 

properties of these materials explored in the past 3 to 5 years [1, 26-50]. While carbides and 

oxides of some transition metals formed highly incompressible materials such as RuO2 [51] and 

WC, borides of transition metals are more likely to form high hardness materials such as ReB2 

[52] and OsB2 [13, 53]. Extensive resources have been dedicated to the synthesis and study of 

OsB2, ReB2, RuB2, IrB1.1, WB4, CrB4, Os1-xRuxB2, RexW1-xB4 and other transition metal borides. 

[52-57]. OsB2 and ReB2 have received special attention, as they were reported to have high 

valence-electron density due to presence of Os and Re ions in the lattice while, at the same time, 

ultra-incompressibility and high stiffness arising from the high degree of B-B and Os(Re)-B 

bond covalency [4, 8, 58]. Unlike ReB2 and OsB2, iridium borides have never been reported with 
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integer iridium to boron ratio. Thus, it is worthwhile to investigate new synthetic routes to 

borides such as IrB2. Herein is a comprehensive review of transition metal borides focusing on 

Re-B, Os-B and Ir-B systems.  

 

1.1 Rhenium Diboride 

 

Rhenium diboride (ReB2) was first synthesized by Placa et al. more than 50 years ago, 

[59] but its interesting mechanical properties were revealed only recently. It was reported that 

ReB2 has a hardness of 48 GPa when the applied load is 0.49 N [52], which means the ReB2 has 

the highest hardness among all the transition metal diborides. ReB2 is an ultra-incompressible 

material with bulk modulus in the range of 334 GPa to 371 GPa. [52, 60-65] The high shear 

modulus of ReB2 (G=276 GPa [64]) makes it suitable for applications in abrasive tools and wear 

resistant coatings. The metallic property of ReB2 as a hard material is also very interesting while 

most of other hard materials are semiconductor or insulator. This new superhard ceramic 

attracted lots attention in the scientific community but brought controversy as well. 

Dubrovinskaia et al. [66] suggested that the hardness of ReB2 was overestimated since the 

indentation size effect exists in the reported load range. Also, Chung et al. reported that the ReB2 

is able to scratch polished diamond [52, 67], but it was not reproduced by Otani et al. [68] In 

another report, much lower hardness (22 GPa) was reported when ReB2 was synthesized under 

high temperature and high pressure, [69] although it was explained that excess boron used in the 

synthesis should be responsible for the degradation of mechanical properties. [70] Regardless of 
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the controversy, it is accepted that ReB2 is a hard and incompressible material. The discovery of 

its excellent mechanical properties is a great success for the new paradigm of designing 

superhard materials. This section will serve as a review on the rhenium boride system but mainly 

focus on the ReB2. 

 

1.1.1 Synthesis of ReB2 

 

ReB2 was first synthesized in 1962 by heating elemental Re and B powders with molar 

ratio of 1:2 under vacuum at 1200 ºC or under helium flow at 1500 ºC [59]. ReB2 has also been 

synthesized with other methods such as spark plasma sintering (SPS) [70, 71], pulsed laser 

deposition (PLD) [45], arc melting [52, 64, 69, 70], zone melting [72] and optical floating 

methods [73]. Polycrystalline ReB2 was synthesized in a DS6×8MN cubic press at 5 GPa and 

1600°C for 60 minutes. [61] In order to measure the intrinsic properties of ReB2, single crystals 

were grown using an aluminum flux at 1400ºC [46], which was the first synthesis of superhard 

material by flux crystal growth under ambient pressure. ReB2 single crystal tends to 

preferentially grow along the (00l) direction [46], which agrees with the results reported using an 

optical floating zone (FZ) furnace [73]. ReB2 films with thickness of 0.3μm were prepared by 

Latini et al. [45] using pulsed laser deposition technique. Hexagonal platelets of ReB2 crystals 

were also prepared using (B3H8)Re(CO)4 molecular precursor through the confined-plume 

chemical deposition technique. [74] In most of the high-temperature syntheses of ReB2, excess 

boron was used to compensate for boron loss during high-temperature sintering [45, 61, 63, 64, 

69]. 1:2.5 molar ratio between Re to B was generally used in their syntheses. However, excess 
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boron located along grain boundaries of polycrystalline ReB2 can degrade the ReB2 properties. 

Thus, a method does not involve the boron loss issue (or does not require excess boron) is 

desired for the synthesis of phase pure ReB2.  

The formation of ReB2 was studied using density functional calculations, which regards 

B atom incorporation into a Re lattice and occupation of interstitial sites. [75] Crystal structure of 

ReB2 and ReB3 were studied based on this model. [75] Other rhenium borides, such as Re2B, 

Re3B, Re7B3 and ReB3, were also successfully synthesized. [71, 76-81] Re2B was only reported 

by Neshpor et al. [76] in 1958, with no further reports. Re3B, Re7B3 and ReB3 were found in arc 

melted rhenium and boron powders [77]. Unfortunately, no details about the experimental 

procedures, such as molar ratio of Re to B and arc melting times, were provided. The appearance 

of different phases is very likely due to inhomogeneous arc melting: Re3B and Re7B3 formed at 

Re rich region, while ReB3 formed at boron-rich region. Impurities such as Re3B7 and Re7B3 

were also observed during the synthesis using SPS technique [71]. In addition to Re7B3, Re3B 

and ReB3 were also observed as byproducts in [78] while the authors were preparing Re and YB6 

alloys. It shows that the stoichiometry of Re-B compounds is dependent on the ratio of raw Re 

and YB6 ratio, which confirmed that inhomogeneous mixed Re and B powders can result in 

formation of other Re-B compounds as byproducts. Atomic ratio between B and Re in Re-B 

compounds increases with increasing amounts of B input. Re7B3 was also observed as an 

impurity when the floating zone method was used for ReB2 synthesis. [73] This was due to 

excess Re metal in the molten zone from the Re rod that was used for the synthesis. Re3B was 

synthesized again in 1996, by arc melting constituents under argon, annealing at 1070 K for 280 

hours in an evacuated sealed quartz tube and quenching into cold water. [79] A series of rhenium 
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borides including Re3B were obtained under high pressure and high temperature (10 GPa, 

1800°C) sintering and quenching with the use of nanocrystalline rhenium and amorphous boron 

precursors. [80] The Re-B phase diagram was reported by Portnoi et al. [82] and is shown in 

Figure 2. Re3B, Re7B3 and ReB2 were also observed when Re and B powders were loaded to 

diamond anvil cell (DAC) for in situ X-ray diffraction analysis at different temperature and 

pressure. [81] Since the B to Re atomic ratio is very low in Re3B, Re2B or Re7B3, there are less 

B-B or Re-B covalent bonds exist in their unit cell compared to the higher borides of rhenium. 

Thus, Re2B, Re3B and Re7B3 are not likely to possess high hardness. That is why ReB2 attracted 

the most attention among all the Re-B compounds. As of yet, phase pure ReB3 has not been 

synthesized. ReB3 may have higher hardness than ReB2, and thus it is meaningful to synthesize 

phase pure ReB3 and study its mechanical properties. 

 

Figure 2: The phase diagram of the Re-B system. [82] Reprinted from Journal of Alloys and 

Compounds, 252, Shigeki Otani, Takashi Aizawa and Yoshio Ishizawa, Preparation of ReB2 

single crystals by the floating zone method, 19-21, [73] Copyright (1997), with permission from 

Elsevier.  
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Another higher rhenium boride, ReB4, has not yet been prepared and its properties have 

been studied using computational methods such as local density approximation (LDA) and 

generalized gradient approximation (GGA). [34] It was predicted that ReB4 would be another 

superhard material. The electronic densities of states and electronic localization function analysis 

confirmed that ReB4 possesses strong B–B and Re–B bonding. [83] However, this phase is still 

awaiting synthesis. Soto et al. modeled the formation of ReBx (x from 0 to 3) using solid state 

reaction with density functional theory. It was proposed that boron atoms are more likely to 

occupy interstitial sites of the parent metal (Re). [75] Structural and magnetic properties were 

also studied computationally by assuming small rhenium boride clusters exist in RemBn (m=1–3, 

n=1–3m). [84] 

 

1.1.2 Crystal structure of ReB2 

 

ReB2 possesses hexagonal crystal structure in the space group P63/mmc, No.194 [59], 

with a ranging from 2.897 Å to 2.9035 Å and c from7.472 Å to 7.485 Å [45, 46, 52, 59, 61, 64, 

69-73] depending on the synthesis methods described in the previous section. The hexagonal 

structure is the only rhenium diboride structure that has been synthesized. Neutron diffraction 

studies indicated that the two Re atoms occupy the sites (1/3, 2/3, 1/4) and (1/3, 2/3, 3/4), and the 

four B atoms occupy the sites (2/3, 1/3, 0.048), (1/3, 2/3, 0.548), (2/3, 1/3, 0.452) and (1/3, 2/3, 

0.952). [56, 85] The ReB2 unit cells are shown in Figure 3. The hexagonal structure consists of 

alternating layers of hexagonally arranged rhenium and boron. Boron forms infinite sheets 

consisting of 6–member rings in a chair configuration. The chair configuration allows close 
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packing of the layers. The shortest and longest B–B bond lengths are 1.820Å and 3.025Å, 

respectively; while the shortest and longest Re–B bond lengths are 2.227 Å and 2.257 Å, 

respectively. [85] Preferred orientation in the (002) direction was observed when a ReB2 film 

was prepared by pulsed laser deposition. [45] The Re lattice expands 5% when B is incorporated 

into interstitial sites of Re, forming ReB2 [52], which results in the shortest metal–metal bonds 

among all the transition metal diborides [86]. First principles calculations show that ReB2 has 

stronger directional bonding between ions than other transition metal borides or nitrides. [87] 

ReB2 has covalent-like Re–B bonds due to hybridization of Re–5d and B–2p states. However, 

there is also some ionic character with electron transfer from rhenium to boron atom and the 

obvious metallic characters. [88]  

 

Figure 3. Schematic presentation of the ReB2 unit cells. B atoms –– small blue spheres; Os atoms 

–– big yellow spheres. 
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1.1.3 Stability of ReB2 

 

First principles calculations have shown that ReB2 is stable in both hexagonal and 

orthorhombic structures, but the hexagonal structure is more stable than the orthorhombic 

structure. [87, 89] An appearance of a pseudogap around the Fermi level helps increase the 

stability of the hexagonal structure of ReB2. [87] Among all the Re–B compounds, ReB2, Re2B3, 

ReB, Re2B and Re7B3 were predicted to be mechanically stable based on density functional 

theory. [90] A different calculation, also based on density functional theory, shows that the boron 

to rhenium molar ratios of 2:1 and 4:3 have the highest stability among all the Re–B compounds. 

[84] 

(1) High temperature stability of ReB2 

The thermal stability and oxidation resistance of ReB2 single crystal and powder was 

studied in dry air up to 1000°C with thermogravimetric analysis. [46] Unlike some other 

transition metal borides [91, 92], ReB2 exhibits weight loss at high temperature in air. Weight 

losses happened at 800°C for ReB2 single crystal and 600°C for ReB2 powder due to formation 

of volatile ReO3. [46] Total of 1.5% and 50% of weight losses were observed to ReB2 single 

crystal and powder, respectively, by the end of the run. [46] The phase stability of ReB2 was 

studied at 2000 K with laser heating diamond anvil cell conjunction with synchrotron X-ray 

diffraction, which shows that no phase transformation was observed. [60] However, during the in 

situ high-temperature XRD studies in [61], ReB2 XRD peaks completely disappeared at 700°C. 

The authors suggested that a phase transition occurred in between 600°C and 700°C. It was also 
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reported that rhenium borides have low oxidation resistance in air [82], suggests that these 

materials should be stored in inert atmosphere.  

(2) High pressure stability of ReB2 

A high-pressure phase transition from the traditional P6/mmc hexagonal structure to 

MoB2-type structure was predicted to occur at 272 GPa according to first principles calculations 

by Zhong et al. [88] Pressure-induced structural transformations of rhenium borides were studied 

using density-functional theory, which shows that ReB2 and Re3B were the most stable phases 

among all the Re–B compounds at high-pressure (up to 90 GPa). [90] The high-pressure stability 

of ReB2 was investigated by in situ measurements performed during the compression of ReB2 

powders. These experiments indicated that ReB2 is stable at least up to 41.8 GPa without phase 

transformation. [61] The phase stability of ReB2 was also studied under pressures up to 30 GPa 

with diamond anvil cell experiments in conjunction with synchrotron X-ray diffraction. No phase 

transformation was observed other than changes of lattice parameters. [93] Even if both pressure 

and temperature were applied up to 7.5 GPa and 1100K, respectively, still no phase 

transformation was observed, proving the high stability of hexagonal ReB2. [60] 

 

1.1.4 Properties of ReB2 

 

(1) Hardness and strength 

The hardness of ReB2 was predicted to be 46 GPa by density functional theory. [85] 

Strong B–B and Re–B bonds play critical roles to its high hardness according to electronic and 

phonon analyses. [85] The calculations show that ReB2 has its highest hardness of 50.3 GPa 
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along the c crystallographic axis. [94] It was also stated that hardness is mainly determined by 

transversely oriented bonds. [94] Numerical estimations of Vickers Microhardness for rhenium 

borides, carbides and nitrides indicate that adding additional small atoms may or may not 

increase its hardness. [95]  

Microindentation was performed on a polished ReB2 ingot. [52] The average hardness 

was measured to be 30.1 ± 1.3 GPa with loading of 4.9N and 48.0 ± 5.6 GPa with loading of 

0.49N. The maximum hardness was reported to be 55.5 GPa under 0.49 N of load. [52] The 

distribution of the hardness values versus indentation load is shown in Figure 4A. In another 

report, a maximum hardness of 49.9 ± 4.6 GPa under a 0.49 N load was reported for a ReB2 film 

prepared by pulsed laser deposition. [45] The (002) plane of ReB2 shows the highest hardness of 

40.5 ± 2.4 GPa at low load when measured with microindentation on ReB2 single crystals. [46] 

Nanoindentation on the (002) plane of ReB2 gives a lower hardness of 36.4±0.2 GPa. [46] ReB2 

was shown to scratch the face of natural diamond parallel to (100) plane [52] (Figure 4B), but it 

was not reproduced [68]. The ReB2 single crystals have shown lower hardness than 

polycrystalline ReB2 samples due to grain boundaries in the polycrystalline sample, which 

inhibit crack growth. [46, 96, 97] Flux-grown ReB2 crystal [46] shows a lower hardness than that 

of the ReB2 crystal produced by tri-arc or zone melting [46, 52, 72, 98]. This is due to the higher 

boron deficiency in flux-grown ReB2 crystals, which leads to the reduction of the number of B–B 

and Re–B bonds. [46] There are more boron vacancies in the flux-grown ReB2 crystals as 

corroborated by the smaller lattice parameters of the flux-grown ReB2 crystal when compared to 

the ReB2 prepared by tri-arc or zone melting methods. [70, 72] In order to develop a route that 

produces the highest hardness, different molar ratios of Re : B and pressure – temperature – time 
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of sintering conditions were tried by Qin et al. [69]. It was reported that preparation under 5 GPa 

and 1600 °C for 60 min with Re and B mixed with a molar ratio of 1:2.5 produced the best 

results. [69] However, the synthesized rhenium diboride still showed a very low Vickers 

hardness of only 20 GPa, which is far from superhard. [69] The excess boron used by Qin et al. 

in their synthesis may be responsible for the low measured hardness according to [70]. Vickers 

microhardness values of ReB2 produced by spark plasma sintering at 20 MPa and 1600 °C for 

34.5 min are in the range of 20.7–31.1 GPa depending on indentation load, and the fracture 

toughness was measured to be 7.36 ± 0.69 MPa⋅m1/2
. [71] Hardness of ReB2 single crystal in 

(101̅0) and (0001) planes at high temperature were measured by Otani et al. [68] A relatively 

high hardness was maintained at 1000°C with Hv = 14.3 ±0.6 GPa in the (101̅0) plane and Hv = 

19.8 ±1.4 GPa in the (0001) plane. [68] It is interesting to note that the melting point of ReB2 is 

lower than other refractory borides such as TaB2, HfB2 or ZrB2, but it has the highest hardness at 

1000°C. [68] 

 

Figure 4: HV of ReB2 plotted as a function of load (A), and a scratch on the surface of a natural 

diamond parallel to the (100) plane created by an ingot of ReB2 (B). From H.-Y. Chung, M. B. 

Weinberger, J. B. Levine, A. Kavner, J.-M. Yang, S. H. Tolbert and Kaner, Richard B., 
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"Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure," Science, 

vol. 316, pp. 436-439, 2007. [52] Reprinted with permission from AAAS. 

 

The simulated Young’s modulus of OsB2 was reported to be between 642 and 725 GPa 

depending on the computational method. [40, 87, 99, 100] The shear modulus of ReB2 was 

reported to be in the range of 289.4 to 310 GPa. [40, 87, 99-101] A high shear strength, 35.3 GPa, 

was predicted for ReB2 from first principles calculations on the indentation strength of ReB2 

[102], which suggests that ReB2 is suitable for applications in abrasive tools and wear resistant 

coatings. [102] ReB2 possesses highly anisotropic elastic constants with the ratio E33/E11 equal to 

1.57, [70] and it is known that significant elastic anisotropy can induce microcracks easily [100, 

103]. Thus, it is disadvantageous for use as an abrasive tool or wear resistant material. The 

anisotropic indentation modulus of ReB2 was measured to be 675 ±7 GPa in the (002) plane and 

significantly lower (510 ±13 GPa) for the perpendicular plane using nanoindentation. [46] The 

elastic moduli of ReB2 increases as temperature decreases from room temperature towards 0 K. 

[104] The Poisson’s ratios ν13 and ν31 are very low, indicating that B–B and B–Re bonds in the c-

axis direction are very strong. [104]  

(2) Compressibility 

In the past decade, many theoretical calculations [40, 87, 100, 101, 105] and experimental 

studies have been performed on the incompressibility of ReB2. [52, 60-65]. Both LDA and GGA 

calculations have shown that ReB2 has a high bulk modulus comparable to diamond. [106] The 

bulk modulus of ReB2 was predicted to be 350 GPa by density-functional theory. [85] Ab initio 

plane-wave pseudo potential density functional theory [101] also predicts that ReB2 should be a 

low-compressible material with a bulk modulus of 359.9 GPa. Hexagonal ReB2 shows 

anisotropy in compressibility with larger compressibility in the c direction than other directions. 
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[101] The shear modulus was calculated to be 298.2 GPa, which is about 54.1% and 70.1% of 

the shear modulus of diamond and superhard c-BN, respectively. [101] The bulk and shear 

moduli of ReB2 were reported to be 356 GPa and 293 GPa, respectively using first-principles 

plane-wave basis pseudopotential calculations. [40] Ab initio density functional theory (DFT) 

calculations by Zhang et al. indicated that ReB2 has a high bulk modulus of 347.7 GPa and 

relatively low shear modulus of 273.5 GPa. [107] The low ratio of shear to bulk moduli indicates 

that ReB2 is intrinsically brittle. [107] In summary, theoretical predictions of the bulk modulus of 

ReB2 range from 335 to 377 GPa [40, 87, 100, 101, 105], showing very good agreement with 

experimental studies that the measured bulk modulus of ReB2 to be in the range of 334 GPa to 

371 GPa [52, 60-65]. 

The compressibility of ReB2 was studied by in situ compression of ReB2 powder up to 

41.8 GPa [61]. Both a and c lattice parameters show nonlinear dependence on pressure [61], 

which is different from previously reports indicating a linear dependent relationship [52, 60]. 

The compressibility of ReB2 was also studied with in situ high-pressure X-ray diffraction under 

quasi-hydrostatically pressure up to 30 GPa in a diamond anvil cell, from which the bulk 

modulus was calculated to be 360 GPa. [52] The same bulk modulus value was obtained in an 

angular dispersive high-pressure X-ray diffraction study by Pellicer-Porres et al. at pressures up 

to 25 GPa. [63] Anisotropic compressibility was found in the a and c axes of ReB2 with the c 

direction less compressible than the a direction. This resulted from greater electronic repulsion 

along the c direction while atoms are all perfectly aligned along c direction. [52] The bulk modus 

of ReB2 at standard temperature and pressure (STP) was found to be 334 ± 23 GPa by 

synchrotron X-ray diffraction analysis, which shows good agreement with other reported values. 
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[60] The compressibility of ReB2 was studied under pressures up to 30 GPa in a diamond anvil 

cell and analyzed using synchrotron X-ray diffraction. [93] Anisotropic expansion was observed 

[93], which is consistent with the theoretical results [101]. The anisotropic and nonhomogeneous 

compressibility are due to the difference of the Re–B and B–B bonds, and also between 

nonequivalent Re–B bonds. [1, 63] Compressibility in the a and c lattice parameters are 1×10
-3

 

GPa
-1

 and 6.2×10
-4

 GPa
-1

, respectively. [63] The elastic moduli of polycrystalline ReB2 were 

measured as a function of temperature (5–325K) using resonant ultrasound spectroscopy (RUS), 

it was found that ReB2 has high bulk (317 GPa) and shear moduli (276 GPa) at room temperature, 

and the moduli increase with decreasing temperature with softening below 50K. [64] The shear 

modulus of ReB2 was reported to be 223 ±11 GPa by surface Brillouin spectroscopy (SBS) [65] 

The complete elastic modulus tensor of ReB2 was measured using resonant ultrasound 

spectroscopy by Levine et al, [70] which shows that the moduli are highly dependent on the 

morphology of samples and also affected by presence of excess boron. [70] The lattice 

vibrational properties of ReB2 were examined in a diamond anvil cell at pressures up to 8 GPa 

using Raman spectroscopy, which shows that both the B–B and Re–B bonds play an important 

role supporting the applied load and the bonds along the c-axis tend to take greater loads. [108] 

Since the B to Re atomic ratio is very low in Re3B, Re2B or Re7B3, there are less B–B or Re–B 

bonds in their unit cells compared to the higher borides. Thus, Re2B, Re3B and Re7B3 are not 

likely to possess high hardness or incompressibility. However, Re7B3 has been reported to have 

even higher incompressibility (B= 483 GPa) than ReB2 (B≈360 GPa). [81] 
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(3) Thermal expansion 

The thermal expansion and heat capacities of ReB2 within the temperature range of 0 to 

2000K, were calculated by first-principles calculations with the plane-wave pseudopotential 

density functional theory method. [109] The calculations indicated that high temperatures lead to 

a larger heat capacity, and a larger coefficient of thermal expansion at a constant pressure. [109] 

The Debye temperature at ambient temperature of ReB2 was reported to be 731K [70], which is 

slightly lower than the calculated value, 744K, by first-principles plane wave pseudopotential 

calculations. [109] Calculations also show that the coefficient of thermal expansion of ReB2 

should be highly isotropic and the volumetric CTE is about 3 times that of the linear CTE. [109] 

The volumetric coefficient of thermal expansion of ReB2 was calculated to be 1.4 ×10
-6

 K
-1

 at 

1000 K [109] and is in good agreement with the measured value [85] of 1.95 ×10
-6

 K
-1

. The 

coefficient of thermal expansion is more sensitive to temperature rather than pressure. [109] The 

higher the temperature, the slower the thermal expansion coefficient increases. [109] 

The thermal expansion behavior of ReB2 was studied [60, 61, 85]. Polycrystalline ReB2 

powder was heated up to 1000°C and the coefficients of thermal expansion (CTEs) of a, c and 

unit cell volume for ReB2 were measured to be 8.5(5)×10
−6

°C
−1

, 8.1(5)×10
−6

°C
−1

 and 2.5 

(1)×10
−5

°C
−1

, respectively. [61] A thermal expansion study by Zhou et al. [85] was performed up 

to about 1750K and the reported CTEs for the lattice parameters of a and c are 6.5×10
−6

K
−1

. 

Both investigations shows that CTEs along the a and c crystallographic directions are almost 

identical, which agrees with the calculated results that ReB2 has isotropic thermal expansion. In 

[60] the thermal equation was given as Equation 1.1 where α is volumetric CTE and T is 

temperature.  
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   𝛼 = 1.33 × 10−5 + 1.48 × 10−8𝑇    (1.1) 

The thermal expansion of ReB2 was also studied at 2000 K by laser heating a diamond anvil cell 

in conjunction with synchrotron X-ray diffraction. It was found that ReB2 is thermally isotropic 

and mechanically anisotropic. [93] The temperature dependence of the c/a ratio is as low as 10
-6

 

K
-1

, while the pressure dependence is about 9×10
-4

 GPa
-1

, which means expansion is more 

affected by pressure rather than by temperature. [93] In addition, the melting point of ReB2 was 

reported as 2400 °C in [68] and 1830 °C in [82]. 

(4) Other properties 

The band structure, according to the first principles calculations, of ReB2 indicates that it 

is a metallic conductor. [87] The resistivity of ReB2 at room temperature was measured to be 

45±15µΩ [46], which agrees well with the theoretical calculations [87, 100]. Levine et al. 

reported that ReB2 does not show superconductivity until cooled down to 2.0K [46], while 

Strukova et al. reported Tc of ReB2 is in the range of 4.5 to 6.3K and Re3B has superconductivity 

at Tc=4.7K [110]. The measured standard enthalpy of formation of ReB2 is -18.4 kJ/g⋅atom by 

calorimetry. [111]  

 

1.2 Osmium Diboride 

 

 Osmium diboride (OsB2) is another hard and ultra-incompressible material with hardness 

of 37 GPa [29] and a bulk modulus of 365-395 GPa [53]. The high hardness is due to the 

existence of short and strong B–B and Os–B bonds in the unique structure. The Os–B bonds 

have high covalent character because of the hybridization between the Os–5d and B–2p states. 
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The formation of orthorhombic OsB2 is considered as boron atoms incorporated into hexagonal 

Os (parent metal) and a distortion of the unit cell to a body centered orthorhombic structure. [53] 

Similar to ReB2, OsB2 also shows metallic character. There are three structures predicted for 

OsB2: orthorhombic, ReB2-type hexagonal and AlB2-type hexagonal structures. [112] First 

principles calculations predicted a high-pressure phase transformation from orthorhombic to 

ReB2-type hexagonal structure was predicted at 2.5 GPa [112] or 10.8 GPa [113], but no phase 

transformation was observed even at pressures up to 32 GPa [53]. The orthorhombic structure 

was the only structure that synthesized before the work by Xie et al., in which a ReB2-type 

hexagonal OsB2 was successfully synthesized for the first time.  

 

1.2.1 Synthesis of OsB2 

 

In 1961, Kempter et al. [114] claimed to have synthesized a hexagonal OsB2 phase, but 

the reported lattice parameters are identical to those of OsB1.1 (JC-PDS 030-0879 reported in 

1978) suggesting that the phase actually produced was OsB1.1. Meanwhile, there was an 

unknown phase observed by Kempter et al. after heating 1Os : 2B, 2Os : 5B or 1Os : 3B 

mixtures above 1300°C. [114, 115] By heating finely divided elements at 1300°C for 6 hours 

followed by arc melting, the unknown phase was finally determined as orthorhombic OsB2 in 

1962, and this is the first synthesis of OsB2. [115] The crystal structure and stoichiometry of 

OsB2 was confirmed again later in 1963 by Aronsson et al. and more accurate lattice parameters 

were reported. [116] 
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Two different methods were used to synthesize OsB2 by Cumberland et al. [53]: 1) the 

self-propagating reaction of OsCl3 and MgB2 mixtures with molar ratio of 2:3 and 2) heating a 

mixture of osmium and boron powders with molar ratio of 1:5 at 1000°C for 3 days. Arc melting 

elemental powders under argon protective environment was also used to synthesize OsB2. [29] 

The phase diagram of Os–B system determined by metallographic investigations is presented in 

Figure 5. [117] The melting point of orthorhombic OsB2 is 1870 ± 20°C, and the solid solubility 

of B in Os was found to be less than 0.5 at% B. [117] The molar ratio and composition of 

elemental powders are very important for the synthesis of pure OsB2. It was very difficult to 

homogenize the arc melted OsB2 samples by annealing even at temperatures up to 1740°C for as 

long as 48h. [117] Thus, re-melting after arc melting was usually performed to ensure 

homogeneity of the OsB2 product. [118] Well-formed orthorhombic OsB2 single crystals with 

flat facets have been grown using a Cu-B eutectic flux at 1450°C. [119] The dimensions of the 

single crystals are about 0.27×0.18×0.15 mm
3
. [119]  
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Figure 5: The phase diagram of the Os-B system. Springer and the original publisher / Journal of 

Thermal Analysis and Calorimetry, 76, 2004, 975-983, Phase diagram investigation and 

thermodynamic study of Os-B system, L. Stuparević and D. Živković, Figure 7, original 

copyright notice is given to the publication in which the material was originally published, by 

adding; with kind permission from Springer Science and Business Media, [117]. 

 

 

1.2.2 Crystal structures of OsB2 and phase transformation 

 

Based on the neutron diffraction analysis, orthorhombic OsB2 belongs to the space group 

Pmmn, No.59, with a= 4.685Å, b= 2.873Å and c = 4.077Å. [56] Orthorhombic OsB2 has layered 

structure as shown in Figure 6A. The boron atoms form boat-like six member rings and the Os 
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atom arrangement is in corrugated hexagonal sheets. [56] The Os–B distances, very important 

parameters that affect mechanical properties of the OsB2, are 2.172(2) Å and 2.293(3) Å, and the 

B–B distances are 1.820(2) Å and 1.899(2) Å. [56] The two Os atom positions are (0.25, 0.25, z) 

and (0.75, 0.75, 𝑧̅) with z = 0.1545. The four B atom positions are (x, 0.25, z), (𝑥̅+0.5, 0.25, z), (𝑥̅, 

0.75, 𝑧̅ ) and (x+0.5, 0.75, 𝑧̅) with x = 0.0557 and z = 0.6325. [56] 

Before the work reported by Xie et al., the orthorhombic structure was the only OsB2 

structure that had been experimentally observed. However, OsB2 can potentially adopt three 

structures: orthorhombic (Figure 6A), ReB2-type hexagonal (Figure 6B) and AlB2-type 

hexagonal (Figure 6C). These structures were predicted by Chen et al. based on the first-

principles theory (local density approximation). [112] The ReB2-type (hexagonal-I) structure is 

in space group P63/mmc (hP6, No. 194) with lattice parameters a= 2.900 Å and c= 7.478 Å. The 

AlB2-type (hexagonal-II) structure is in space group P6/mmm (hP3, No.191) with lattice 

parameters a= 3.005 Å and c= 3.253 Å. By comparing the heats of formation of the three 

structures, the orthorhombic structure is the most stable structure followed by the hexagonal-I 

and then the hexagonal-II structures.  

 

Figure 6: The three predicted crystal structures of OsB2: RuB2-type (orthorhombic) (A); ReB2-

type (hexagonal-I) (B); AlB2-type (hexagonal-II) (C). 
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Calculations also have shown that the transformation from orthorhombic to hexagonal-I 

structure can occur at pressures as low as a 2.5 GPa. [112] The pressure induced phase 

transformation of orthorhombic OsB2 to hexagonal-I type OsB2 was also studied by Ren et al. 

[113] Their enthalpy calculations, using GGA simulation, indicated that the phase transition from 

orthorhombic to hexagonal-I structure of OsB2 happens at 10.8 GPa. Although both theoretical 

studies predicted that phase transitions, orthorhombic OsB2 exhibits a very small anisotropic 

volume compressibility when subjected to pressure up to 32 GPa, in a high-pressure diamond 

anvil cell. No phase changes were observed during hydrostatic compression [53]. Calculations 

also indicated that the phase transformation from orthorhombic to hexagonal is not affected by 

temperature, which means that the transformation can be purely pressure induced. [113] Both 

orthorhombic and hexagonal-I type OsB2 are mechanically stable and the later has a higher bulk 

modulus, which means the hexagonal structure of OsB2 is less compressible than the 

orthorhombic structure. [113] The ReB2-type hexagonal structure of OsB2 shows the lowest 

compressibility along the c axis and it is comparable to diamond. [112] It is also important to 

note that the shear elastic constant C44 of hexagonal OsB2 (209 GPa) is much larger than that of 

orthorhombic structure (80 GPa), which suggests that the hexagonal structure has greater 

resistance in shear deformation in the (100) plane. [113] 

While oP6-type orthorhombic OsB2 has received the most attention, oP12-type 

orthorhombic OsB2 was also predicted to be thermodynamically and mechanically stable. [120] 

The B–B bonds in the oP6-type structure are in layers and the lengths are almost equivalent (1.80 

Å and 1.875 Å), but the B–B bonds in the oP6-type structure are split to alternative long (1.815 Å) 

and short (1.684 Å) chains. [120] The calculated average hardness and Young’s modulus of the 
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oP12-type OsB2 were 24.3 GPa and 471.1 GPa, respectively. The oP12-type OsB2 has a hardness 

slightly higher than that of the oP6-type OsB2 (22.8 GPa). The bulk modulus and shear modulus 

for the oP12-type OsB2 were calculated to be 315.9 GPa and 188.2 GPa, respectively, and for 

oP6-type OsB2 are 339 GPa and 187 GPa, respectively. In addition, the oP12-type OsB2 is 

predicted to be a semiconductor. [120] 

 

1.2.3 Properties of OsB2 

 

(1) Hardness and strength 

The hardness of orthorhombic OsB2 along the b and c crystallographic axes are 42.1 GPa 

and 45.5 GPa, respectively, based on the calculations by Šimůnek et al. [94] However, the 

hardness along the a direction was calculated to be only 25.6 GPa. A computational investigation 

(density functional theory) on the hardness of OsB2, indicated that additional boron results in an 

increase in the valence electron density and the formation of covalent bonds, which increases the 

hardness. [121] Covalent Os–B bonds in OsB2 contribute to the high hardness of OsB2 because 

the highly directional bonding is needed to withstand both elastic and plastic deformations. [122] 

The first report of the hardness of orthorhombic OsB2 shows that OsB2 powder is able to 

scratch sapphire window, which means the OsB2 has a hardness at least higher than 20 GPa. [53] 

Using microindentation, the average Vickers hardness of orthorhombic OsB2 was measured to be 

approximately 37 GPa when the applied load is lowered to 0.245N. [29] The average 

nanoindentation hardness is 21.6 ± 3.0 GPa at the maximum applied load of 0.49 N. [29] At the 

same time, an indentation size effect was observed; the hardness of OsB2 increased significantly 
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when the applied load was decreased. In addition to the indentation size effect, the hardness on 

the grain along the <100> direction is much higher than that along the <001> direction. [29] The 

different measured hardness values along <100> and <001> may be from the anisotropy of the 

OsB2 crystal structure itself because B–B bonds (1.80 Å) exist in <100> direction are shorter and 

stronger than B–B bonds (4.10 Å) in <001> direction, which results in stronger resistance to 

dislocation in the <100> direction. [29] Microhardness measurements of OsB2 were also 

performed on the (001) plane. A Vickers hardness (Hv=36 GPa) was reported with an applied 

load of 0.6-0.8N, and decreased to 30 GPa when the load increased to 1N. [121] In order to 

compare the reported hardness values of orthorhombic OsB2, all the hardness values of 

orthorhombic OsB2 from experimental studies are plotted in Figure 7. By studying the electronic 

and structural properties of orthorhombic OsB2 using first principles calculation with local 

density approximation, it was concluded that Os–B bonds have strong covalent character and that 

the high hardness of OsB2 is due to the covalent bonding between osmium 5d states and boron 

2p states in the orthorhombic structure. [58] First principles calculations by Ji et al. indicated that 

the elastic properties of OsB2 are more anisotropic than other Os–B phases. [123] The ideal 

tensile strength of OsB2 was calculated to be higher than 20 GPa by first principles calculations. 

[124] However, the shear strength of OsB2 ranges from 9.1 GPa to 26.9 GPa, which suggest a 

high anisotropy in shear strength. [124]  



 

 

27 

 

Figure 7: Measured hardness values of orthorhombic OsB2 from different papers: a [29], b [32] 

and c [121].  

 

The Young’s modulus of orthorhombic OsB2 was measured to be 410 ± 35 GPa by 

Chung et al. [29] using nanoindentation with Oliver and Pharr method [125] and the values agree 

with LDA and GGA calculations in [126]. The (101) lattice plane shows the largest strain while 

the (001) lattice plane shows the smallest strain, as measured by radial diffraction in a diamond 

anvil cell under high pressure. [127] It was also determined that larger strain along the a axis 

than the b and c axes, which means that the a axis supports the largest deferential stress. [127] 
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The yield strength of orthorhombic OsB2 was calculated to be 11 GPa under a hydrostatic 

pressure of 27.5 GPa. [127] The interpreted value of the hardness of OsB2 along a axis shows the 

highest hardness to be 25.6 GPa, which is different from the prediction that hardness in c axis is 

the highest. [94] Although OsB2 was reported to have a high hardness and may be used as 

abrasive material, ideal strength calculation indicates that it is susceptible to failure in certain 

direction under shear stresses as low as 9.1 GPa. [124] This is due to the highly anisotropic Os–

Os (001) layers contains no B–Os and B–B bonds. [124] 

 (2) Compressibility 

Using local density approximation, the bulk modulus of orthorhombic OsB2 was 

calculated to be 364.87 GPa. [58] In another study, it was reported that the calculated bulk 

modulus with and without spin-orbit coupling are 364 and 365 GPa, respectively. [122] Hou et al. 

reported the structural parameters, elastic constants, and electronic structures of OsB2, which 

revealed that the c crystallographic direction is the least compressible. [128] Bulk moduli were 

reported to be 336.1 GPa and 303.45 GPa by LDA and GGA calculations, respectively. [128] It 

was also concluded that the strong covalent Os–B bonding and B–B bonding play an important 

role in the incompressibility and hardness of OsB2. [128] The compressibility of orthorhombic 

OsB2 was measured using high-pressure X-ray diffraction in a diamond anvil cell at pressures up 

to 32 GPa, which gives a resulting bulk modulus of 365-395 GPa depending on the fitting 

parameters. [53] Unit cell volume and axes of OsB2 decrease with increasing pressure linearly. 

[53] An anisotropic compression of axes was observed and the b direction of OsB2 crystal is the 

most compressible, while the c direction is the least compressible [53], which is in agreement 

with calculated results [128]. The anisotropic of the compressibility of the crystallographic axes 
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can be explained by the different types of arrangements of atoms between the a-b plane and the c 

direction where strong repulsive forces exist under pressure since atoms are all perfectly aligned 

along the c direction. [53]   

(3) Other properties 

While most of the known hard materials are either insulators or semiconductors, OsB2 is 

a metallic conductor that may be useful for special situations that require high hardness, stiffness 

and conductivity. [122] Similar to ReB2, there is a mixture of metallic, covalent and ionic 

bonding in the orthorhombic OsB2. [126, 128] The ionic character of OsB2 is originated from the 

charge transfer from Os cation to B according to the charge density distribution analysis. [126] 

Additionally, orthorhombic OsB2 was reported to be a superconductor at temperature below 2.1 

K. [118, 119] By comparing the measured transition temperature for OsB1.9 and OsB2.1 (both 

have Tc= 2.1K), one can see that transition temperature of OsB2 does not have a strong 

dependence on boron stoichiometry. [118] The resistivity of orthorhombic OsB2 decreases when 

the temperature decreases from 293K to 50K in both OsB2 single crystal and polycrystalline 

sample. [119] 

 

1.2.4 Other osmium borides 

 

During the synthesis of OsB2, other Os–B phases such as OsB1.1 and Os2B3 were 

observed. [53, 114, 117, 121] The melting point of OsB1.1 is 1820±15°C, which is 50°C lower 

than that of the orthorhombic OsB2. [117] Single-phase crystalline OsB powder with a WC-type 

hexagonal structure was synthesized at a moderate temperature (900°C) using liquid tin as a flux. 
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[129] Four different structures (WC, NaCl, CsCl or ZnS type) for osmium monoboride (OsB) 

were studied using first principles methods, none of them are superhard and it was suggested that 

the weak Os–B bonding is responsible for the low hardness. [130, 131] All the 4 potential OsB 

structures are mechanically stable [130] but the hexagonal WC-type is the most stable. [126, 131] 

The bulk modulus of OsB was reported to be 453 ± 6 GPa, which is close to that of diamond. [32] 

OsB also has metallic characters and a phase transition from a c/a<1 to a c/a>1 was predicted at 

31 GPa. [132] The coefficient of thermal expansion of OsB was calculated to be 1.67×10
-5

/K and 

2.01×10
-5

/K by LDA and GGA, respectively. [133] While the OsB2 shows great anisotropy in 

elastic constants, OsB shows small elastic anisotropy. [132] 

In section 1.1.4, it was mentioned that, adding additional small atoms may or may not 

increase the hardness of rhenium borides, carbides and nitrides. [95] However, it was noticed 

that hardness of osmium borides increases with boron content increasing. [123] Two borides, 

Os2B5 and OsB3, are predicted to have higher hardness (34.4 GPa and 36.9 GPa, respectively) 

than the synthesized OsB2. This result is awaiting experimental verification. [123] Another 

higher boride, osmium tetraboride (OsB4), may have very interesting properties, but has not been 

synthesized. The hardness of OsB4 with WB4-type hexagonal structure (P63/mmc) was reported 

to be 46.2 GPa and 48.5 GPa based on the GGA and LDA calculations, respectively. [34] The 

ground state of OsB4 was reported to be with an orthorhombic Pmmn structure. [134] The 

orthorhombic Pmmn OsB4 has a high shear modulus of 218 GPa and hardness of 28 GPa 

according to the first principles calculations by Zhang et al. [134] The bulk modulus of 

orthorhombic OsB4 was calculated to be 294 GPa [134], which is not as high as that of OsB2 
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(348 GPa) [32]. The Young’s modulus of orthorhombic OsB4 was reported to be 524 GPa [134], 

which is higher than that or OsB2 (410 ± 35 GPa) [29]. 

 

1.3 Iridium Borides 

 

While transition metal borides such as RuB2, ReB2 and OsB2 all have “ideal” structural 

formulas with integer ratios between the transition metal and boron, iridium borides with an ideal 

structural formula have never been reported. Aronsson et al. conducted the first experiments on 

the Ir–B system in 1960. [77] By utilizing arc melting, the first iridium boride was synthesized 

with a stoichiometry of approximately IrB~1.1 and it is isomorphous to ThSi2 (Cc-type). The 

lattice parameters of IrB~1.1 are a=2.81Å and c=10.26Å. [77] After a more comprehensive 

characterization of the powder prepared by arc melting, an iridium boride with a higher boron 

content IrB1.5 was found. It adopts the C2/m monoclinic structure with a=10.523 Å, b=2.910 Å, 

c=6.099 Å and β=91°. [135] IrB1.35 was also synthesized by arc melting. [116] IrB1.35 has a C2/m 

monoclinic structure with a=10.525Å, b=2.910Å, c=6.099Å and β=91°4’. [116] Additionally, 

IrB1.1, IrB1.35 and IrB1.5, IrB0.9 were synthesized by heating mixtures of Ir and B at 1200 °C 

followed by quenching. [136] At temperatures higher than 1200°C, IrB0.9 with WC-type 

structure is the most stable. [136] The lattice parameters of the boron rich and metal rich phases 

of IrB~1.35 were compared, showing that boron rich IrB~1.35 has larger unit cell parameters. [137] 

Although IrB2 was not experimentally synthesized, it is important to know that Mo0.3Ir0.7B2 was 

synthesized by heating powder mixture at 900–1200°C in an argon atmosphere. [138] The 

Mo0.3Ir0.7B2 has a hexagonal structure with lattice parameters of a= 2.92Å and b= 7.48Å. [138] 
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Since the crystal structure and lattice parameters are very similar to that of ReB2, the crystal 

structure of the Mo0.3Ir0.7B2 can be regarded as all Re atoms in ReB2 randomly are replaced by 

30% Mo and 70% Ir atoms. The ReB2-type of IrB2 may not be stable, but the addition of 30 at% 

Mo stabilizes the ReB2-type structure. This may explain why pure IrB2 has not been synthesized. 

Based on the known liquidus and solidus lines from the phase diagram and calculation 

procedures by Rao and Belton et al. [139, 140], compositions of Ir-B system at higher 

temperature, 2800, 2900 and 3000K were also determined by Živković et al. [141] The phase 

diagram of the Ir-B system is shown in Figure 8, and the characteristic reactions, compositions 

and temperatures are presented in Table 1 [141] 

 

Figure 8: The phase diagram of the Ir-B system. [141, 142] Reprinted from Journal of the Less 

Common Metals, 82, H. Ipser and P. Rogl, Constitution diagrams of the binary systems Pd-B and 

Ir-B, 363, Copyright (1981), with permission from Elsevier. 
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Table 1: Characteristic reactions in the Ir-B system according to the Ipser and Rogl [141, 142]. 

Reprinted from Journal of the Less Common Metals, 82, H. Ipser and P. Rogl, Constitution 

diagrams of the binary systems Pd-B and Ir-B, 363, Copyright (1981), with permission from 

Elsevier. 

 

Temperature, °C Reaction B-content (at%) Type of reaction 

1259 ± 4 L → Ir + IrB0.7 37.5 eutectic 

1287 ± 4 L → IrB0.7 38.5 congr.melt. 

1258 ± 4 L → IrB0.7 + IrB0.9 40.0 eutectic 

1333 ± 4 L → IrB0.9 46.5 congr.melt. 

1274 ± 0 L + IrB0.9 → IrB 50.0 peritectic 

1209 ± 3 IrB → IrB0.9 + IrB1.35 50.0 eutectoid 

1248 ± 3 L → IrB + IrB1.35 54.0 eutectic 

1287 ± 5 L → IrB1.35 57.5 congr.melt. 

1255 ± 0 L → IrB1.35 + B 60.0 eutectic 

 

The electronic transition spectrum of iridium monoboride (IrB) was recorded and 

analyzed using a laser vaporization/reaction free jet expansion source and laser induced 

fluorescence spectroscopy by Pang et al. [143] In Pang’s report, the synthesis of IrB was 

performed using iridium rod and 0.5% B2H6 in argon flow. [143] However, there was no phase 

analysis reported, thus, the stoichiometry, purity and composition of the “IrB” are questionable 

especially when no iridium boride with an integer Ir to B ratio was ever reported. Pure IrB1.35 

was synthesized using iridium and crystalline boron elemental powders with a molar ratio of 

1:1.5, melted with electron beam gun under high vacuum. [144] The refined structure data 

confirmed that the IrB1.35 has a monoclinic crystal structure (space group C2/m, No. 12) with 

a=10.523 Å, b=2.898 Å, c=6.100 Å and β=91°143’. [144] The microindentation hardness of 

IrB1.35 was reported to be as high as 49.8 ± 6.0 GPa under the load of 0.49N [144], which is 

much higher than another reported value (13.8 ± 0.8 GPa) in [137]. The unexpected high 

hardness shows that the correlations between hardness and shear or bulk moduli needs further 
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investigation. [144] A 0.4 μm thick IrB1.1 film was prepared by pulsed laser deposition on 

iridium and crystalline boron mixture with molar ratio of 1:1.5. [57] The IrB1.1 has tetragonal 

structure (space group I41/amd, No. 141) with a=b=2.819 Å and c=10.321 Å and a slight 

preferred orientation along the [004] direction. The microindentation hardness of IrB1.1 was 

reported to be 43 ± 5 GPa. [57] 

The hardness of IrB2 was predicted to be about 35 GPa by ab initio density-functional 

theory approach. [145] The orthorhombic Pmmn structure is the most stable structure for IrB2 

with lattice parameters a= 3.152 Å, b= 4.548 Å and c= 4.042 Å. The Ir and B atoms occupy the 

Wyckoff 2a (0, 0, 0.66392) and 4e (0.5, 0.30067, 0.85033) sites, respectively. [4] This structure 

is the same as the orthorhombic OsB2 structure, but the lattice parameters are different. Similar 

to ReB2 and OsB2, theoretical calculation indicates that IrB2 should possess metallic character. 

[146] IrB2 with an orthorhombic Pmmn structure has a bulk modulus of 300 and 276 GPa by the 

LDA and GGA calculations, respectively. [4, 146] The hardness of IrB2 with a Pmmn structure 

was predicted to be 14.97 GPa, which is lower than that of the IrB2 with P63/mmc structure 

(26.65 GPa). [146] The correlation between hardness and C44 indicates that C44 may be a better 

hardness predictor for transition metal diborides. [43, 146] The stability of WB2−type, 

AlB2−type, OsB2−type, and ReB2−type of IrB2 increase with pressure and no phase transition 

were predicted using enthalpy calculations. [4] 

IrB is elastically stable with a hexagonal P63/mmc structure. [146] According to the first 

principles calculations, the bulk modulus of IrB is higher than that of the IrB2, which are 346 

GPa and 309 GPa, respectively, by LDA and GGA calculations. [146] The calculated hardness 

of IrB is 12.36 GPa. [146] Another IrB with orthorhombic crystal structure in the space group 
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Pnma was reported to be dynamically and elastically stable according to the first-principles 

calculations. [4] A high-pressure phase transition of IrB from the Pnma to an anti-NiAs phases 

was predicted to occur at 5 GPa. [4] 

 

1.4 Other important transition metal borides 

 

The superhardness of WB4 was reported only recently in 2011 [54] even though the 

material was synthesized in 1966 [147]. While WB2 has an AlB2-type hexagonal structure in 

space group P6/mmm (hP3, No. 191) with a=3.02Å, c=3.05Å [148], WB4 also has a hexagonal 

structure but in space group P63/mmc with a=5.200Å, c=6.340Å. [147] The crystal structure of 

WB4 is shown in Figure 9. It was believed that, with higher boron content, a higher hardness 

would be achieved for transition metal borides. In the case of tungsten borides, this has been 

verified since the WB2 has a hardness of only ~20 GPa [149] but WB4 has hardness of 43.3 ± 2.9 

GPa when the applied load is 0.49N. [54] As a superhard material, the advantage of WB4 is that 

tungsten metal is most cost effective than other transition metals such as Re, Os, Ru, etc. 

Synthesis of phase pure WB4 is difficult because the WB4 is not a thermodynamically favorable 

material when the B:W molar ratio is lower than 12:1 according to the phase diagram [54, 147]. 

In addition to the high hardness, WB4 shows a bulk modulus of 339 GPa [54] or 304 ± 10 GPa 

[32] measured by high-pressure X-ray diffractions. The boride is stable in air up to 400°C, which 

is lower than that of ReB2 crystals (800°C). [54] 
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Figure 9: The crystal structure of WB4 (A) and the top view of crystal structure (B). [34] 

 

The majority of hexagonal transition metal diborides (TMB2) crystallize in AlB2-type 

structure (TM=Ti, Zr, Hf, V, Nb, Mo, W, Cr, Ta, Ag and Au). [1, 150] As shown in Figure 6C, 

the AlB2-type structure contains alternating layers of transition metal atoms and boron atoms, 
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and the boron atoms are in the same plane. However, the ReB2-type structure has puckered 

hexagonal rings of boron atoms in every boron layer, which results in shorter TM-B bonds (TM 

stands for transition metal atoms). This is one of the most important reasons that ReB2 has 

remarkably higher hardness when compared to other transition metal borides. Thus, looking for 

transition metal borides with this unique ReB2-type structure is of great importance. This is 

similar to c-BN which mimics the structure of diamond. [150, 151]  

Although there is only another binary transition metal boride, TcB2, that adopts a ReB2-

type structure, seven borides with mixed metals (Mo0.3Ru0.7B2, Mo0.3Os0.7B2, W0.3Ru0.7B2, 

W0.3Os0.7B2, V0.4Os0.6B2, Mo0.6Ir0.4B2 and W0.56Ir0.44B2) were reported to crystallize in the ReB2-

type structure. [138, 150, 152, 153] Mixed metal diborides may be another source of superhard 

materials because the mixed metals are barriers to the movement of dislocations. [13] For 

example, the hexagonal ReB2-type Os0.5W0.5B2 synthesized by Gu et al. [32] was reported to 

have a hardness of 40.4 GPa, which is much higher than that of OsB2. [13] The hardness of 

RexW1-xB4 increased to 50 GPa when 1 at.% Re was added to the parent WB4 structure. [54] 

Elastic moduli values decrease when the ReB2 is modified to Re0.5Ir0.5B2 due to the occupation of 

anti-bonding states. [154] In contrast, the elastic moduli values increase when OsB2 is modified 

to Os0.5W0.5B2. [154] The shear modulus is more sensitive to the metal mixing because of the 

bonding changes, but bulk modulus does not change much by mixing metals because the value of 

bulk modulus is more dependent on valence electron densities rather than on bond strength. 

[154] From Lin’s computational results, transition metal mixed diborides with a hexagonal 

structure are generally more stable than those with an orthorhombic structure. [154] Although the 

orthorhombic Os1-xRuxB2 synthesized by Weinberger et al. shows a hardness decreases with Ru 
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content increasing (x from 0 to 1), it was explained that the Ru–B bonds are weaker than that of 

the Os–B bonds, which decreases the hardness of Os1-xRuxB2 with increasing Ru content 

increasing. [55] 

 

1.5 Correlation between hardness and elastic constants 

 

The indentation method is usually used to test the hardness of materials. However, it is 

easily affected by loading and unloading speed, load level, anisotropy of materials, method of 

measurements, defects in sample, and any other factors. [1] The indentation size effect is well 

known in that the measured hardness increases with decreased indentation load. The indentation 

size effect was observed in almost all indentation tests of transition metal borides. It was 

explained that the high values of indentation hardness at low loads are because of the materials’ 

high elastic moduli. [155] However, hardness is related to the plastic deformation. Thus, the low-

load indentation hardness values from materials’ elastic regime are not the true hardness. The 

“absolute” hardness of materials is very difficult to measure, making it difficult to develop 

microscopic theory of hardness. [1] In order to predict new superhard materials, the correlations 

between hardness and other physical parameters are very important. [150] It was suggested that a 

hard material should satisfy three conditions, (1) resist volume decrease under load, (2) resist 

deformation from the direction of applied load and (3) resist plastic deformation. [1, 3, 31] In the 

report by Veprek et al. [155], it was pointed out that high shear strength is also necessary for 

intrinsic superhard materials. 
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It has been proved that high incompressibility does not imply high hardness because bulk 

modulus is used to evaluate elastic strength while hardness is for plastic strength. [94, 150] By 

observing the correlation between hardness and bulk moduli of various osmium borides, carbides, 

nitrides and oxides, it was also confirmed that there is no obvious correlation between hardness 

and bulk modulus [131]. However, a strong linear correlation between hardness and shear 

modulus was observed in three transition metal borides, RuB2, OsB2 and ReB2. [98] In 

comparison, the correlation between hardness and bulk modulus was not obvious. [98] In other 

reports [2, 10, 156, 157], the shear modulus was also regarded as a better indicator of hardness. It 

also has been established that hardness versus shear modulus shows better correlation than the 

hardness versus bulk modulus for the selected materials. [3, 150]  

Another good example is that Os metal has the highest bulk modulus (396–462 GPa) 

among all the metals [17, 158-160] but it has a hardness as low as 4 GPa [32]. The bulk modulus 

is governed by electron concentration while the hardness is determined by elastic and plastic 

properties, which are dependent on structures. [32, 130] A high shear modulus, very important 

for achieving a high hardness, allows the material to resist deformation in directions other than 

that of the applied load. This can explain why Os possesses a high bulk modulus but low 

hardness. [32] Also, it explains the relatively high bulk modulus and low hardness of OsB, and a 

relatively low bulk modulus but high hardness for WB4. [32] Compared to higher borides, OsB 

has a high electron concentration due to its low boron content, which maintained the high bulk 

modulus of Os, but there is no direct B–B bonding in OsB also due to the low boron content. [32] 

It is the opposite for the WB4. By comparing with other transition metal borides, Gu et al. 

concluded that the higher the boron content, the higher the hardness but lower the bulk modulus 
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and vice versa. [32] While the higher borides are difficult to synthesize, and the intermediate 

borides compromise between bulk modulus and hardness, materials such as ReB2, OsB2 and 

Os0.5W0.5B2 may be more promising to be used as abrasive materials. [32] The correlation of 

hardness and bond strength of osmium compounds is presented in Figure 10, which shows a very 

linear relationship between hardness and bond strength. 

 

 
Figure 10: Correlation of hardness and bond strength for the osmium compounds. Reprinted 

from Journal of Physics and Chemistry of Solids, 69, Miao Zhang,Mei Wang,Tian Cui,Yanming 

Ma,Yingli Niu and Guangtian Zou, Electronic structure, phase stability, and hardness of the 

osmium borides, carbides, nitrides, and oxides: First-principles calculations, 2096–2102, 

Copyright (2008), with permission from Elsevier. [131] 
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1.6 Mechanochemistry 

1.6.1 Overview of Mechanochemistry 

 

Mechanochemistry is chemical reactions and phase transformations induced by 

mechanical energy, such as by ball milling. Mechanochemistry is a subject of solid state 

chemistry where intra-molecular bonds are broken by mechanical forces. [161] Solids are 

different from gases and liquids, in that they can support shear strain. [162] Thus mechanical 

forces can trigger chemical reactions. Surface energies increase through the process of attrition. 

This increased surface energy effectively lowers the energy needed to initiate a chemical reaction 

and the low diffusion distances allow synthesis to occur at or near room temperatures.  

The first experimental study involving mechanochemistry was performed as early as the 

4th century BC that quicksilver (mercury) was extracted by grinding cinnabarite (HgS) in a 

copper mortar with presence of vinegar. [163] Carey Lea, the father of mechanochemistry [164], 

was the first scientist mentioned that heat and mechanical forces can introduce different reactions 

for the same materials in his publications during 1892-1894. [165-168] However, Boldyrev 

suggested that the mechanochemical phenomena may be observed even earlier by Michael 

Faraday in 1827. [168-170] He also performed mechanochemical experiments to produce silver 

from AgCl with metals such as Zn and Cu in a set of mortar and pestle. [168, 171] 

Mechanochemistry was not considered a mainstream approach in the past, until recently, more 

and more publications involved this topic. [171] Figure 11 shows the publication number of 

papers that is related to mechanochemistry per year versus time, where a clear exponential 

growth trend can been seen. There are a few reasons suggested that mechanochemical method 
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will become a popular research approach in the future: (1) Mechanochemical method is more 

energetically efficient while compared to traditional high-temperature solid-state synthesis 

methods requiring extended high temperature heating during solid-state chemical reactions. (2) 

The mechanochemical synthesis (mechanosynthesis) represents scalable technologies that can be 

used to produce bulk quantities of polymers, alloys and ceramic materials. For example, the 

shaker mill can produce a minimum of 2 grams of powder while the pebble mill can produce 

more than 1000 kg. [172] (3) It is able to synthesize new nanoscale and non-equilibrium phases. 

For example, solid solution of Fe-Cu system can be obtained only by mechanochemical method. 

[173-175] (4) Most of the mechanochemical syntheses do not require solvents, which reduced 

the production of waste and consumption of fossil derived materials. It is more sustainable 

compare to other methods that depend on solvents. [171] 

 

Figure 11: Publications about mechanochemistry as function of time. [176] 

 

The mechanism of the mechanochemistry or mechanosynthesis is still not very clear and 

remained controversial. Many theories and models [171, 177] were proposed, but they all have 
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their own limitations. The major difficulties are: First of all, there are a variety of different types 

of chemical reactions, which cannot be easily explained by a single model or theory; secondly, 

there is not a way to directly observe the ongoing mechanochemical reactions at microscopic, 

molecular or even atomic level. [171] The hot spot theory suggests that the local friction heat 

plays an important role while surfaces slide on each other, which causes not only plastic 

deformation of the materials, but also brings local temperature up to 1000 °C in a very short 

period of time about 10
-3

~10
-4

 seconds. [171] The magma-plasma model considers only normal 

impacts, which can increase the local temperature to higher than 10
4
 °C. [177] Localized friction 

heating may provide the required thermal energy to complete synthesis of new phases. The 

localized high pressure, high shear events occur without dramatic temperature rises as heat is 

mostly provided by the reaction enthalpies and most reactions involving pure elements to form a 

compound are enthalpically favored. 

Mechanochemistry has been used to produce variety of materials. Mechanical alloying 

was used to produce high performance alloys for aerospace applications in 1960s. [178] 

Mechanochemistry is also used for synthesis or activation of ceramic materials. [179-181] The 

recent research on polymer mechanochemistry shows a promising future for this method to be 

applied in polymer synthesis. [182] Brantley et al. [183] reported the selective scission of 

covalent bonds during mechanochemical process. Besides, mechanical forces are able to stabilize 

reactive intermediates, which provided chances to obtain different kinds of transformations. 

[183] Many solvent free mechanochemical reactions between fullerenes were investigated with 

both high energy and low energy ball milling by Wang et al. [184] It was reported that some 

fullerene derivatives can only be obtained by solvent free high-speed vibration milling. [184] 
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Guo et al reported the prospective applications and mechanisms in pollution remediation and 

waste management. [185] In addition, mechanochemical technologies can also recycle materials 

that are difficult to be recycled by traditional methods, such as waste plastics and rubbers. [185]  

Recently, an in situ XRD instrument has been invented by Halasz1 et al. [186, 187], 

which allows a real-time monitoring of the mechanochemical milling reactions with time 

resolution in seconds. The high-energy and high penetrating X-rays were used as source, and a 

ball mill was customized to couple with the X-ray diffractometer as shown in Figure 12. [186] It 

is believed that this technique can be very helpful for the understanding of the ball milling 

process because the intermediate products can be observed. For example, organic pharmaceutical 

cocrystals have been mechanochemically synthesized with this technique and the intermediate 

cocrystallization of nicotinamide and suberic acid were observed with XRD. [187] 

 

Figure 12: In situ X-ray diffraction with real-time monitoring the mechanochemical process. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry [188], copyright 

(2012).  
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1.6.2 High energy ball milling 

 

Ball milling is a widely used technique as a part of mechanochemical synthesis 

techniques. Ball milling was originally used to produce nickel- and iron-base superalloys for 

applications in the aerospace industry in 1966. [178] Later it was discovered that it is capable to 

synthesize a variety of equilibrium and non-equilibrium phases, such as metastable phases, 

quasicrystalline phases, solid solutions, amorphous alloys and nanostructures. [178] It 

accelerates the kinetics of chemical reactions by creating fresh interfaces between reacting 

phases by dynamic fracturing, deformation and cold welding of the solid particles. [189] The 

schematic of ball milling mechanism is shown in Figure 13. 

 

Figure 13: A schematic of the working mechanism of high energy ball milling. 

 

There are many different milling technologies including planetary mills, shaker mills, 

attrition mills and pebble mills. [172] Shaker mills are the most commonly used mills for 
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laboratory investigations. A typical SPEX 8000D Mixer/Mill with a tungsten carbide (WC) 

milling vial and milling media are shown in Figure 14, which are manufactured by SPEX 

CertPrep, Metuchen, NJ. The specifications of the vial are listed in Table 2. The mill motor 

works at 1425 RPM (at 50Hz) and allow the vial to move 5.9cm back-and-forth, and 2.5cm side-

to-side, which provided very high speed (5m/s) for the balls to move in the vial and thus 

provided very high impact forces. This type of mill is considered as high energy ball mill. The 

SPEX CertPrep also provides a variety of different vial materials, such as hardened steel, 

zirconia, tungsten carbide, alumina, plastic, etc.  

Table 2: Specifications of SPEX tungsten carbide vial. 

 

Diameter 2.25 in 

Height 2.5 in 

Volume 55mL 

Sample Capacity - Grinding 3 - 10 mL 

Sample Capacity - Mixing 25 mL 

Typical Sample Size 10 g 

Durability Long wearing 

Hardness Mohs 8.5+ ; Knoop 1400-1800 

Major Elements W, C, Co 

Minor Elements Ta, Ti, Nb 

Resistance To Abrasion High 

Slurry Grinding Yes 

Comparative Efficiency Very High 

 

Planetary ball mills are able to process a few hundred grams of the powder at one time. 

Its vial movement path is similar to a planet, thus it is called “planetary mill”. The vials also 
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rotate with their own axis, but opposite of support disk rotation direction, so that the centrifuge 

forces are counteracted. Thus, the balls and powder in the vials are free to move, brings both 

friction effect and impact effect. Figure 15 shows a Fritsch planetary mill and a schematic of its 

working mechanism. Attritor is made of a vertical drum and with a series of impellers in side 

(Figure 16), which transfers kinetic energy to the balls. Attritors can mill large quantities of 

powder at one time, in the range of 0.5 to 40 kg. The velocity of milling media is only 0.5 m/s, 

which is much smaller when compared to SPEX high energy ball mill. The laboratory attritor 

works 10 times faster than conventional ball mills. [178] Pebble mill, which is also known as 

roller mill or tumbling mill, is used for industrial applications. It is able to process large 

quantities of materials on the order of hundreds of pounds. [172] Pebble mills are usually used to 

reduce particle size to make finer powder materials rather than for chemical reactions due to the 

low energy impacts. [172] The energy input is lower in attritor and pebble mill when compared 

to shaker mill, which results in slower movement of milling media. However, it may be more 

efficient to use attritor or pebble mill when solvent exists. [172]  
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Figure 14: A SPEX 8000D Mixer/Mill (a), and WC milling vial and media (b). 
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Figure 15: A Fritsch planetary mill (A) and a schematic showing its working mechanism (B). 

[178] 

 

Figure 16: An attritor (A) and the structure of rotating arms on a shaft in the attrition ball mill 

(B).  
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The mechanochemical synthesis is a complex process, and there are many variables that 

may affect the ball milling process. [178] It is important to optimize these parameters to obtain 

desired products, save milling time and energy, reduce contamination, and reduce the wear of 

equipment. Here are the important parameters that have great influence to the ball milling: 

 Milling container 

 Milling medium 

 Ball to powder mass ratio 

 Milling time 

 Milling speed 

 Milling atmosphere 

 Temperature 

 Powder to container volume ratio 

It is important to note that not all the parameters are independent to each other.  

(1) Milling container 

When considered that the materials on the container wall can be dislodged and mixed into 

product powder, it is very important to choose an appropriate container material to avoid the 

most unwanted contaminations. For example, when it requires a metal free environment to 

produce the materials, ceramic vials such yttria-stabilized zirconia (YSZ), silicon nitride (Si3N4), 

sapphire, or hard porcelains are good options. Another factor may affect ball milling is the shape 

of the vial end caps. There are two types of end caps: flat end and round end. The round end caps 

can avoid powder accumulation at corners and provide more shear impacts. In the opposite, the 

flat end design offers stronger and larger counts of normal impacts. It was reported that the 
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mechanical alloying happened much faster when flat end caps were used. [190] 

(2) Milling medium  

Similarly, the materials from milling media are also possible to be chipped off and mixed 

together with the product powder. Thus, the material of milling medium is normally the same as 

that of the milling container to reduce the types of contamination. When high density milling 

medium, such as tungsten carbide or zirconia, is required, the milling medium material will be 

set first and then determine what vial material to use. The size of milling medium is also very 

important. The larger size milling medium carries more energy for single impacts. High energy 

impacts are needed for some mechanochemical reactions, where larger size milling media cannot 

be replaced by larger number of smaller-size milling media. However, when kinetic energy of 

milling media is too high, there are higher chances to introduce contamination. In the extreme 

cases, both vials and milling media can be damaged. 

(3) Ball to powder mass ratio 

Appropriate ball to powder mass ratio is required for a successful ball milling process. 

When the ratio is too low, it takes longer time to finish ball milling. For the purpose of 

introducing chemical reactions by ball milling, this parameter is even more important because a 

low ball to powder mass ratio may not provide sufficient energy to activate the reaction. 

However, when the ball to powder mass ratio is too high, there are higher chances for the powder 

to be contaminated. It also accelerates the wear damage to vials and balls.   

(4) Milling time 

The milling time is dependent on the material of the powder, the type of mill used, 

milling speed, the ball to powder mass ratio, etc. Before the optimized empirical parameters were 
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obtained, the powder material in the mill was sampled every certain time until the desired 

product was obtained. For laboratory mechanochemical synthesis, the newly invented in situ X-

ray diffractometer may be very helpful to shorten this optimization time while the milling 

process is real-time monitored.[186] In order to decrease the vials' temperature and reduce wear 

on the mill's motor, it was suggested that the milling should be interrupted every certain period 

of time. 

(5) Milling speed 

The faster the mill rotates, the faster the milling media move and thus the higher energy 

provided to the powder. However, the maximum milling speed does not only depend on the 

power of the motor, but also depend on the design. When the ball milling rotation is above the 

critical speed, the balls and powder will not fall down due to the high centrifugal force, which 

decreases the milling efficiency. Another disadvantage of high speed milling is that the mill 

produces a lot of heat in a short time, which may damage the vials and the mill itself. Thus, an 

extra cooling system may be required when a mill is customized for high speed milling. 

(6) Milling atmosphere 

Inert vial atmosphere, such as high-purity argon or helium, is desired when ball milling 

air-sensitive materials. The loading and unloading of materials are usually carried on in a 

glovebox. During milling, the particle size is significantly decreased, thus the high surface area 

to volume ratio will make the powder even more air-sensitive. The gaskets in between the vial 

body and caps are very critical at this point. Viton gaskets are usually used to keep the vial 

atmosphere. The SPEX steel vials were very well designed, but their WC carbide vial caps may 

need more improvement, because while tightening the WC vial caps, the gaskets deform along 
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twisting direction and cause displacement of the gasket. This may result in an experimental 

failure that not only the inert vial atmosphere cannot maintain, but also can cause leakage of 

powder! Also, after long time milling, the vials can become loose due to the intensive vibrations. 

This may also lead to air leakage. For reactive metal powders such as, Mg or Al, even a small 

amount of air leakage is not acceptable. Thus, some investigators have tried to put ball mill in a 

glove box with an inert atmosphere. 

(7) Temperature 

During milling, a part of mechanical energy is converted to chemical energy or to break 

chemical bonds. The rest of the energy is converted to heat due to friction or impacts. Depending 

of the types of mill and milling intensity, the amount of heat produced varies, thus the influence 

of heating to the ball milling process also varies. Heating can facilitate diffusion and lower 

energy barrier for chemical reaction. However, high temperature can bring thermal stress and 

fatigue to the vials and thus shorten their life time. In some reactions, low temperature is required 

in order to obtain intermediate metastable phases, thus, a cooling system is needed.  

(8) Powder to container volume ratio 

The powder to container volume ratio determined how much empty space exists in the 

vial that allows powder and milling media to move freely. Especially for high energy ball 

milling, it has to be ensured that the vials are not over filled. Powder to container volume ratio is 

usually lower than 50%, which means the vial is less than half filled. However, when the powder 

is too little, the milling media have more chances to collide on each other or on the walls 

directly, which results in more contamination. 
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Based on the construction features of a mill and its operational regime, the relation 

between pressure and shear can vary in a wide range. [191] There have been investigators use 

software to simulate the ball milling process. The simulations are very helpful to guide the 

experimental design because it enables to obtain the best milling parameters in a shorter time. 

Discrete element models of the milling process were generated using EDEM software by Hick et 

al. [192]. It was reported that the SPEX shake mill can produce compressive force of 0.4 to 3 

GPa and large shear forces by using steel milling vials and balls. [192] By the similar simulation 

using EDEM, the shear stress produced during ball milling with WC balls and vials is presented 

in Figure 17. The red color means the collision produces a shear stress higher than 1000 MPa 

when the contact area is assumed to be 1mm
2
.  

 

Figure 17: EDEM simulation of ball milling using WC balls and vials with a SPEX ball mill. 



 

 

55 

1.6.3 Mechanics in Mechanochemistry 

 

In the mechanochemical process, shear force is more effective than pure isotropic 

compression, because shear changes the symmetry of a solid or molecule. [162] The electronic 

structure of bonds in solids becomes unstable after the breaking of symmetry, which makes the 

solid tend to have chemical reaction. [162] Large strain created by mechanical forces brings 

together the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) to close the gap, which decreased internal stability of the system. [162] The 

bonding electrons delocalize into the anti-bonding states. Electrons move freely and the 

activation energy for the reaction becomes zero, thus, reaction happens. [162, 193]  

Shear strain induced structural changes were thoroughly studied by Levitas et al. [194-

198] In order to explain the mechanochemical phenomena, a continuum thermodynamic model 

of strain-induced nucleation at the tip of a dislocation pile-up has been developed. [196] The 

model regarded the transformation strain as a spherical tensor. As shown in Figure 18, an infinite 

rigid-plastic half-space with normal σn and shear stresses τ on the surface under the plane strain 

condition, the existence of a region with localized plastic shear deformation was assumed. A 

diagram of the chemical reactions in a thin layer due to shear strain is shown in Figure 19. The 

model has also considered the adiabatic heating and the reaction-induced plastic can be such 

significant that result in heating over 1500°C. [194] It explained how the combination of plastic 

shear and high pressure can significantly reduce the phase transformation / chemical reaction 

pressure. It also demonstrated the importance of plastic strain in mechanosynthesis of new 

phases. [196] Recently, strain-induced chemical reactions were observed experimentally in the 
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shear band in both Ti–Si and Nb–Si mixtures [199, 200]. The major equations for describing 

strain-induced phase transformation are listed from Equation 1.1 to Equation 1.17. [194] 

(Reprinted by permission from Taylor & Francis Group LLC - Books, [194], copyright (2003).) 

1. Kinematic decomposition 

𝜺 = 𝜺𝑒 + 𝜺𝑝 + 𝜺𝑡     (1.1) 

where ε, εe, εp and εt are total strain, elastic strain, plastic strain and transformation strain, 

respectively. 

2. Constitutive equations 

2a. Elasticity law and expression for entropy 

𝑻 =
𝜕𝜓(…,𝜉)

𝜕𝜺𝑒
  𝑠 = −

𝜕𝜓(…,𝜉)

𝜕𝜃
    (1.2) 

where T, s, ψ, ξ and θ are stress tensor, entropy, Helmholtz free energy, order parameter, 

temperature. 

2b. Yield condition and plastic flow rule 

𝑓(𝑻, . . . , 𝜉) = 0 𝜺̇𝑝 = 𝒇𝑝(𝑿𝑝, 𝜉) 𝑿𝑝 ≔ 𝑻 −
𝜕𝜓

𝜕𝜺𝑝
   (1.3) 

where Xp is dissipative force conjugated to dissipative rate 𝜺̇𝑝. 

2c. Evolution equation for internal variables 

𝒈̇ = 𝒇𝑔(𝑿𝑔, 𝜉)  𝑿𝑔 ≔ −
𝜕𝜓

𝜕𝒈𝑡    (1.4) 

where 𝑿𝑔 is dissipative force conjugated to dissipative rate 𝒈̇ and g is set of internal variables. 

3. Sliding and fracture conditions at the interface 

If |𝜎𝑛| < 𝜎𝑐 or|𝜏| < 𝜏𝑠 ⟹ 𝒖̇2 − 𝒖̇1 = 𝟎   (coherent interface)  (1.5) 

|𝜏| = 𝜏𝑠⟹  𝒖̇𝑠
2 − 𝒖̇𝑠

1 ≠ 𝟎   (semicoherent interface) (1.6) 
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|𝜎𝑛| = 𝜎𝑐⟹  𝒖̇2 − 𝒖̇1 ≠ 𝟎 (𝜎𝑛 = 𝜏 = 0)    (fracture) (1.7) 

where 𝜎𝑛 and σc are normal stress and critical normal stress, respectively, τ and τs are shear stress 

and critical shear stress, respectively, u and us are displacement and tangential displacement, 

respectively.  

4. Local driving force for structural changes 

𝑋 ∶= ∫ 𝑻 ∶
𝜺2

𝜺1
𝑑𝜺 − (𝜓2 − 𝜓1) − ∫ (𝑠𝜃̇

𝑡+∆𝑡

𝑡
+ 𝑿𝑝: 𝜺̇𝑝 + 𝑿𝑔: 𝒈̇)𝑑𝑡  (1.8) 

where X is local driving force for structural changes. 

5. Global dissipation rate D and global driving force for the structural changes Xv. 

𝐷 = 𝑋𝑣𝜒̇ 𝜒̇ ≔ 1/𝑡𝑠     (1.9) 

𝑋𝑣 ≔ 𝑋̅𝑉𝑛 = ∫ 𝑋
 

𝑉𝑛
𝑑𝑉𝑛 − ∫ 𝛤𝑑𝛴𝑛

 

𝛴𝑛
    (1.10) 

where Xv is generalized driving force for structure change (SC), 𝜒̇  generalized rate, ts is 

structure change duration and Γ is surface energy per unit area. 

6. Time-independent kinetics 

6a. SC criterion 

𝑋̅ = 𝐾      (1.11) 

where K is the experimentally determined dissipation increments during the structure change. 

6b. Extremum principle for the determination of all known parameters b 

𝑋̅(𝒃∗) − 𝐾(𝒃∗) < 0 = 𝑋̅(𝒃) − 𝐾(𝒃)    (1.12) 

where b is Burger’s vector. 

6c. Dissipative threshold K 

𝐾 = 𝐿𝜎𝑦𝜀0     (1.13) 
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where L is the half length of a pill-box nucleus, 𝜎𝑦  is yield stress and 𝜀0 is volumetric 

transformation strain. 

6d. Extremum principle for determination of stable solution (global SC criterion) 

∫ ∫ 𝒑 ∙ 𝑑𝒖𝑑𝑆 ⟹
𝒖2

𝒖1

 

𝑆
min (particular case at prescribed u at S).      (1.14) 

where p is traction vector. 

7. Thermally activated kinetics 

7a. SC criterion 

𝑋̅ ≥ 𝐾0     (1.15) 

where K
0
 is a thermal threshold for structure change. 

7b. Kinetic equation 

𝑡𝑠 = 𝑡0exp(−
(𝑋̅−𝐾0−𝐸𝑎)𝑉𝑛

𝑅𝜃𝑒𝑓

𝑁

𝑛
)  at 0≤ 𝑋̅ − 𝐾0 ≤ 𝐸𝑎   (1.16) 

where Ea is activation energy per unit mass when X = K
0
, Vn is region undergoing the structure 

change, n is number of atoms in volume Vn which undergo thermal fluctuations, N is a number of 

dislocations in a pile-up, R is radius of the anvil, and θef is effective temperature. 

7c. Principle of the minimum of the transformation time 

𝑡𝑠 = 𝑡0exp(−
(𝑋̅(𝒃∗)−𝐾0(𝒃∗)−𝐸𝑎(𝒃∗))𝑚𝑛

∗

𝑅𝜃𝑒𝑓
∗

𝑁

𝑛
) → 𝑚𝑖𝑛   (1.17) 

where m is the mass of small transforming particle. 
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Figure 18: Schematic illustration of structural changes in a shear band: 1, half space; 2, shear 

band with displacement; 3, layer with structural changes. Reprinted by permission from Taylor 

& Francis Group LLC - Books, [194], copyright (2003). 

 

Figure 19: Diagram of a chemical reaction in a thin layer. Reprinted by permission from Taylor 

& Francis Group LLC - Books, [194], copyright (2003). 
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Ji et al. used rotational diamond anvil cell (RDAC) to study pressure induced phase 

transformation of nanocrystalline h-BN to w-BN, where no phase transformation was observed 

under pure hydrostatic pressure up to 52.8 GPa, but only 6.7 GPa of pressure was required to 

cause phase transformation under shear. [201] It was explained that the nucleation occurs at the 

tip of the strain-induced defects where strong pressure and deviatoric stress concentrator exist. 

[201] Also there is additional plastic flow in disordered grain boundaries due to the smaller grain 

size in the nanocrystals. [201] This confirmed that the combination of shear stress and high 

pressure can significantly reduce the phase transformation pressure. [201] 
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CHAPTER 2: MECHANOCHEMICAL SYNTHESIS OF ReB2 POWDER  

This work was previously published as “Mechanochemical synthesis of ReB2 powder” by 

Nina Orlovskaya, Zhilin Xie, Mikhail Klimov, Helge Heinrich, David Restrepo, Richard Blair 

and Challapalli Suryanarayana in Journal of Materials Research, Volume 26, Issue 21 (2011) pp. 

2772-2779 Copyright © 2011 Materials Research Society. Reprinted with the permission of 

Cambridge University Press. http://dx.doi.org/10.1557/jmr.2011.249 

 

2.1 Introduction 

 

Rhenium diboride (ReB2) is a boron-rich ceramic that has been receiving a lot of 

attention in the scientific community because of its unusual properties. It has been reported as a 

superhard material [45, 46, 52]
 
with a hardness of 48 GPa measured at a small applied load 

(0.5N). It was also reported that it exhibits strong and highly covalent bonding, while a strong 

hybridization between the Re 5d and B 2p states indicates that Re-B bonds have also prevalent 

covalent character with some degree of ionic bonding present [40, 85, 99]. Covalent boron-boron 

bonds are significantly stronger than the covalent Re-B bonds [112], and such difference 

between the B-B and Re-B bonds, as well as between nonequivalent Re-B bonds is responsible 

for anisotropic compressibility and rigidity of the structure [202]. The strong directional B-B 

bonding complimented by Re-B covalent bonds are responsible for the high resistance to elastic 

and plastic deformations resulting in high shear, bulk, and Young’s moduli, which are indicative 

of high hardness of the compound [64]. It was also reported that both Re 5d and B 2p states are 
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at the Fermi level and, hence, ReB2 exhibits metallic behavior [46, 107]. There have been 

numerous discussions in regard to the actual hardness of ReB2 which was reported in Science
1
. 

Several reports [66, 68, 69] suggest that the hardness of ReB2 was overestimated since it was 

measured in the region where the indentation size effect (ISE) is known to exist. According to 

different studies [66, 68, 69] the hardness value for ReB2 lies well below the threshold of 40 

GPa, and claims of ReB2 being a super-hard material cannot be justified. However, evidence was 

produced [70] that the measured mechanical properties are strongly compositional dependent, 

where Re to B stoichiometry as well as morphology of the grains play important roles in the 

mechanical behavior of ReB2. In particular, the presence of excess of amorphous boron along the 

grain boundaries of spark plasma sintered ReB2, where 1:2.5 Re to B stoichiometric ratio was 

used to synthesize polycrystalline material, was responsible for the measured lower hardness and 

Young’s modulus values [70]. Another problem, which makes ReB2 very difficult material to 

work with, is that it slowly degrades in the presence of moist air. When ReB2 interacts with 

water in air it becomes covered with a viscous solution within a few months. This property 

becomes especially serious when high surface area powders are exposed to water vapors in air, 

which may complicate ReB2 implementation in industrial applications. 

Although, the stoichiometric compound is ReB2, a phase of highest boron content in the 

Re-B phase diagram [203], it is difficult to synthesize a stoichiometric phase, and excess boron is 

usually required to ensure the formation of ReB2 due to boron loss during the synthesis. Several 

approaches are reported on the synthesis of ReB2 [45, 46, 52, 56, 59, 64, 68, 69, 71, 72, 74, 202, 

203]. In paper [202] ReB2 was prepared using the solid state synthesis in an alumina crucible at 

1300K for 4 hours in vacuum from elemental B and Re taken in a molar ratio of 2.5:1. It was 
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reported that the synthesized material contained 5% impurity. Hexagonal platelets ReB2 crystals 

were synthesized using (B3H8)Re(CO)4 molecular precursor through the confined-plume 

chemical deposition (CPCD) technique [74]. The precursor has a 1:3 Re/B stoichiometry, which 

mitigated the loss of boron during synthesis. Arc melting of the 1:2.5 ratio of elemental Re and 

11
B in Ar atmosphere was used in paper [64] to synthesize a composition of ReB2. Three 

different techniques, all with some excess of B, were reported to be used for the synthesis of 

ReB2. Spark Plasma Sintering, tri-arc crystal growing technique, and arc-melting are reported as 

techniques of choice to produce dense ReB2 [70]. Solid state synthesis from Re and B powders in 

Re/B molar ratio of 1:2.5 under pressure of 5 GPa and high temperature 1600°C for 60 minutes, 

followed by quenching to the room temperature at 100°C/s was reported in paper [69]. ReB2 

crystals have also been synthesized by arc melting [52], zone melting [72] and optical floating 

zone furnace synthesis [68] techniques. Thin ReB2 films were produced by pulsed laser 

deposition (PLD) technique using ReB2 target, which was prepared by electron beam melting of 

the mixture of 1:2.5 Re to B powders [45]. While most of the techniques used to synthesize ReB2 

used excess boron, a few papers [46, 56, 59, 71] utilize a 1:2 stoichiometric ratio for ReB2 

synthesis. In [59] two methods are reported, where one part of spectroscopically pure Re was 

heated with two parts of amorphous B. One method was by heating the powder mixture in sealed 

evacuated silica tubes at 1200°C for 12 hours and another method was by induction heating 

under the atmosphere of helium in vitrified alumina crucibles at 1500°C. Both methods yielded 

ReB2 structure [59]. In [56], the 1:2 mixture of Re to crystalline 
11

B powders were pressed into 

pellets, which were heated in an induction furnace under Ar atmosphere. The pellets were melted 

at 2600K for one hour. After synthesis, ReB2 samples were ground down using a ball mill with 
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WC milling cups and balls. The 1:2 Re to B ratio was also used for synthesis of ReB2, but with 

the significant presence of aluminum as the growth medium [46]. The mixture was heated to 

1400°C and held at temperature for 5 hours, it was slowly cooled to 700°C and then quickly 

cooled to room temperature. After synthesis, the aluminum flux was dissolved in NaOH, and 

ReB2 crystals were washed with deionized water and dried in air [46]. SPS technique was also 

used to sinter dense ReB2 pellets by using 1:2 Re to B powder mixture [71] but besides the ReB2 

phase, Re7B3 phase along with C impurity was also obtained during sintering. All the described 

techniques, used for the synthesis of ReB2, involved using of high temperatures, sometimes as 

high as 2600K. Since the vapor pressure of boron is much higher than that of rhenium, it created 

a problem with the stoichiometry of the ReB2 compound. A technique for ReB2 synthesis at 

nominally room temperature would represent a major advance in the material’s manufacture. The 

discussion in the literature inspired us to examine a new synthetic route to ReB2 powders. These 

powders, as well as those of other boron-rich solids are typically not commercially available; 

therefore, techniques which allow synthesis of boron-rich solids are of high interest, especially if 

synthesis is performed at room or near room temperatures. 

One technique that is highly suitable for producing different powdered materials is 

through mechanochemical methods [178]. This approach allows synthesis of numerous novel 

materials and very complex compounds by applying mechanical force to mixtures of elemental 

powders [191]. It involves repeated cold welding, fracturing, and re-welding of powder particles 

due to heavy deformation. As a result, the microstructure gets refined and the increased 

diffusivity (due to creation of a high density of crystalline defects) and reduced diffusion 

distances (due to refinement of microstructure) allow synthesis to take place at or near room 
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temperature. In a mechanochemical synthesis, attrition results in the reduction of particle size. 

This effectively creates micro reaction regimes where frictional heating can supply the activation 

energy for the production of line compounds from the elements. At this point, the heat of 

reaction can drive the reaction forward and even result in a self-propagating reaction [204]. This 

method has been used to produce intermetallic phases, metallic glasses and composites and 

different borides [178, 205-210]. Here we report the mechanochemical synthesis of ReB2 

powders. 

 

2.2 Experimental 

 

Rhenium metal powder (Cerac Inc, 99.99% pure, -325 mesh,) and boron powder (Alfa 

Aesar, 99% pure, -325 mesh, amorphous) were used as received. A total of 20 grams of a 

stoichiometric amount of rhenium and boron powders were loaded into a SPEX tungsten carbide 

vial with two 12.7mm diameter tungsten carbide balls. The grinding was done by a SPEX 8000 

mixer mill for a total of 80 hours.  

 

2.2.1 Phase Analysis 

 

Every 5 hours, a small sample was removed for phase analysis by X-ray diffraction 

(XRD) method. No protective atmosphere was present during the vial opening and collection of 

small amount of ground powders. A Rigaku D/MAX X-Ray Diffractometer was used to record 

X-ray diffraction patterns of the powder.  
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2.2.2 Microscopy 

 

The morphology and grain size of the powders were examined using a Scanning Electron 

Microscope (Zeiss ULTRA-55 FEG SEM). A Transmission Electron Microscope (FEI Technai 

F30 TEM ) was used to get finer resolution images of the synthesized particles as well as to 

produce an area map distribution of Re, B, and W elements in the material.  

 

2.2.3 Compositional Analysis 

 

Adept 1010 Dynamic SIMS System (Physical Electronics USA) has been used to collect 

mass spectra for the samples. Cs primary beam of 3kV and 25nA or 50nA was rastered over area 

1000×1000μm. Both negative and positive secondary ions were collected. An auxiliary e-gun 

was used for charge neutralization. 

 

2.2.4 Micro-Raman Spectroscopy 

 

A Renishaw InVia Raman spectrometer was used to study the vibrational spectra of ReB2 

powders. The Raman spectrometer system is comprised of two lasers (532nm and 785nm) to 

excite the sample, a single spectrograph fitted with holographic notch filters and a Leica optical 

microscope rigidly mounted and optically coupled to the spectrometer. The generated laser 

power was 25mW. Before collecting spectra of ReB2, the spectrometer was calibrated with a Si 

standard using a Si band position at 520.3cm
-1

. The average collection time for a single spectrum 
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was 300s. Five measurements were performed from different locations of the powder in order to 

obtain the repeatable data. The 50x objective was used for illumination of the spot of 3-4μm in 

diameter.  

 

2.3 Results and discussion 

 

 The synthesis of the desired ReB2 phase out of elemental Re and B was monitored by 

powder X-ray diffraction (XRD). The XRD patterns of metallic Re and B amorphous powders 

used for mechanochemical synthesis of ReB2 are shown in Figure 20 (a) and (b). Figure 20 (c) 

shows the X-ray diffraction patterns of ReB2 powders after different milling times. The quantity 

of ReB2 increased with increased milling time. After 5, 10, 15 or even 20h of milling significant 

amounts of Re metal were still present. After 30 hours of milling a small amount of Re was still 

evident with the ReB2 formed. After 50h of ball milling no Re was detected by XRD. The peaks 

of (002), (100) and (103) ReB2 planes are sharper and have an increased intensity after 50h in 

comparison with 30h of milling, which indicates the presence of a more crystalline product. The 

WC phase was also present due to degradation of the milling media and vial upon contact with 

the abrasive product. Table 3 lists the lattice parameters of the synthesized ReB2 after mechanical 

alloying for 30, 50 and 80h, and lattice parameters of ReB2 reported in the literature (PDF card # 

01-073-1392) are also given for comparison [59]. As one can see from the Table 3, the measured 

lattice parameters match closely to the reported values. It is also noted that the lattice parameters 

slightly decrease with increase in mechanical alloying time, while the c/a ratio increases with 

longer mechanical alloying time approaching the reported value.  
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Figure 20: (a) X-ray diffraction patterns of Re powder, (b) B powder and (c) ReB2 mechanically 

alloyed powders after 30, 50, and 80 hours of milling. The observed broad peak at ~18° 2Ɵ in (b) 

is a common peak seen for amorphous materials. 
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Table 3: Lattice parameters of the synthesized ReB2 after mechanical alloying for 30, 50 and 80 

hours. 

 

Mechanical alloying time (hour) a (Å) c (Å) c/a ratio 

30 2.9176 7.5023 2.5714 

50 2.9057 7.4867 2.5766 

80 2.9018 7.4867 2.5800 

PDF#01-073-1392
 
[59] 2.9000 7.4780 2.5786 

 

 

2.3.1 Microscopies 

 

Figure 21 presents an SEM micrograph of the ReB2 powders after 80h of milling. It can 

be seen that a wide particle size distribution is observed. The size of the largest agglomerates is 

about 1 µm. Along with morphology study of agglomerates by SEM, high resolution 

characterization of selected particles was performed using TEM. A typical particle of 

mechanochemically synthesized ReB2 and its electron diffraction are shown in Figure 22. The 

particle size is about 60nm wide and 150nm long. It consists of a number of crystallites 5-10nm 

in diameter agglomerated together. The selected area electron diffraction pattern of the particle 

shows clearly defined diffraction spots, indicating that the particle is crystalline in nature. The 

maps of the distribution of Re, B, and W (Figure 23) show that the distribution of B is not 

homogeneous and a high concentration of boron can be seen in a location at one side of the 

particle under study. Tungsten was also located on the opposite side of the particle, thus 

confirming the XRD data of contamination of the ReB2 by the material used to make the vial and 

milling media.  
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Figure 21: SEM micrograph of ReB2 powders after ball milling for 80 hours. 

 

 

Figure 22: (a) TEM micrograph of a particle of ReB2 powder after 80 hours of milling, (b) 

Electron diffraction of ReB2 particle, (c) TEM micrograph of ReB2 lattice fringes. 
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Figure 23: Distribution maps of (a) Boron, (b) Rhenium, (c) Tungsten in a ReB2 particle. 

 

2.3.2 SIMS 

 

The presence of a number of impurities was also confirmed by SIMS. It can be seen from 

Figure 24 (a), that oxygen was detected in the mixture after milling for 0.5h since the 
16

O peak 

was present along with other oxygen containing peaks such as O+B, O2, and BO2. The intensity 

of the 
16

O peak increased relative to the intensity of 
10,11

B peak as milling time was increased 

indicating the further O contamination of the powders. The relative intensity of O, BO and BO2 

peaks over the 
10,11

B peak is shown in Table 4 and one can see that the oxygen content increased 

as milling time increased from 0.5h to 40h reaching a saturation point since the oxygen content 

did not increase significantly from 40h to 80h of milling. The Re+O peak intensity was also 

compared to the Re+B peak intensity for all three milling times. The intensity ratios of these 

peaks are presented in Table 4 and it is consistent with the increase in oxygen content after 

milling. Prominent among the other impurities were C, F, and Cl. While it was detected that the 

carbon content decreased with increased milling time, the F and Cl content increased upon 

milling for 40h, but decreased after 80h milling. This indicates that the impurities were not 
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distributed homogeneously in the powder, and the probes that were taken for analysis were not 

homogeneous; otherwise we should see the increase of the impurities content as time of milling 

increased.  
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Figure 24: Negative secondary ion mass spectrometry of ReB2 powders after 0.5h (a, d); 40h (b, 

e); and 80h (c, f) milling time. 

 



 

 

73 

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

10
6

10
7

C
o

u
n
ts

 P
e

r 
S

e
c
o

n
d

Mass

5
9
C

o

3
9
,4

1
K

2
3
N

a

1
6
O

1
0
,1

1
B

1
H

(a)
0.5h

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

5
9
C

o

3
9
,4

1
K

2
3
N

a

1
6
O

1
0
,1

1
B

1
H

C
o

u
n
ts

 P
e

r 
S

e
c
o

n
d

Mass

(b)
40h

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

5
9
C

o

3
9
,4

1
K

2
3
N

a

1
6
O

1
0
,1

1
B

1
H

C
o

u
n
ts

 P
e

r 
S

e
c
o

n
d

Mass

(c)
80h

 

Figure 25: Positive second ion mass spectrometry of ReB2 powders after 0.5h (a); 40h (b); and 

80h (c) milling time. 

 

Interestingly, hydrogen was detected in the powder after 30 minutes as well as after prolonged 

milling. The relative intensity of the H peak was the lowest after 30 minutes of milling and 

increased after longer milling. This could indicate the presence of water in the batch during 

milling. Positive secondary ions are more sensitive to detect metallic contaminations and they 

were used to detect metallic impurities present in Figure 25. Both Na and K were detected and 

their quantity increased upon increase in the milling time. However, their quantity was small 

after 80h of milling in comparison with 40h of milling time, which could be explained by the 
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non-homogeneous distribution of the elements in the batch. Co was also detected, as WC alloy 

contains Co as a soft binder in WC-Co cement composite. 

 

Table 4: Intensity ratio of impurities to boron SIMS peaks. 

 

Intensity Ratio 
Time, hour 

0.5 40 80 

Negative 

secondary 

ions 

BO/
10,11

B 9.6900 138.89 136.99 

BO2/
10,11

B 0.9414 91.743 125.00 

Re+O/Re+B 1.9547 4.9285 5.1546 
12

C/
10,11

B 7.9069 6.5309 4.3346 
19

F/
10,11

B 5.0478 143.95 78.667 
35,37

Cl/
10,11

B 0.2895 3.0687 2.1380 
1
H/

10,11
B 10.666 89.451 29.868 

Positive 

secondary 

ions 

16
O/

10,11
B 0.0007 0.0214 0.0016 

39,41
K/

10,11
B 0.0647 0.3678 0.0496 

59
Co/

10,11
B 0.0018 0.0208 0.0087 

23
Na/

10,11
B 0.0102 0.0441 0.0065 

 

2.3.3 Raman spectroscopy 

 

Raman spectra of ReB2 powders were acquired using two 532nm and 785nm lasers 

(Figure 26). Factor group analysis of ReB2 hexagonal structure results in 2 E1g and 2 E2g Raman 

active phonon modes, where E1g and E2g modes are reported as B-B pair atom vibrations in a-b 

plane of the unit cell as an “out-of-phase” vibrations with a calculated phonon energy of 85.2 

MeV for E1g mode and 90.4 MeV for E2g mode 4. In the spectrum collected with IR 

frequencies, two bands are detected: one at 190 cm
-1

 and another at ~786 cm
-1

. In the spectrum 
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collected using visible laser, two peaks at ~228cm
-1

 and 780 cm
-1

 wave numbers are also 

detected, but in addition two ~1400cm
-1

 and 1580cm
-1

 broad bands are present. These 1400cm
-1

 

and 1580cm
-1

 bands indicate the presence of carbon, which is explained by contamination of the 

ReB2 powders by milling. Due to the current experimental set up of the notch filter in the Invia 

spectrometer, only bands with wave numbers higher than 180 cm
-1

 could be detected.  
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Figure 26: Raman spectra of mechanically alloyed ReB2 powders after 80 hours of ball milling. 
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2.3.4 Reaction of powder ReB2 with O2 and H2O 

 

Upon storing ReB2 powder in air, packed in the plastic bag; it was found that the powders 

formed hard agglomerates. The XRD pattern of the long time stored powder is shown in Figure 

27. This may be due to a sequential attack by oxygen and water. Initially oxygen may react with 

the surface of ReB2 to form Re2O7 and B2O3 (Equation 2.1).  

    2ReB2 + 5O2  Re2O7 + B2O3     (2.1) 

This reaction is thermodynamically favored with a heat of reaction of -1235.3 kJ/mol of 

ReB2. Not only is there a severe lattice mismatch between these oxides and the ReB2 compound 

but they quickly react with atmospheric water to form boric acid (Equation 2.2, -629.3 kJ/mol) 

and perrhenic acid (Equation 2.3, -55.812 kJ/mol).  

B2O3 + 3H2O   2H3BO3      (2.2) 

Re2O7 + H2O   2HReO4     (2.3)  

The net reaction (Equation 2.4) is enthalpically favored by -7.592 kJ/mol. [111, 211] 

2ReB2 + 4H2O   2H3BO3 + 2HReO4    (2.4) 

These acids are hygroscopic and create a liquid layer that allows further degradation of 

the bulk material. In fact, storage of this material in air while in contact with nylon 6,6 results in 

holes in the nylon due to acidic degradation. Equation 2.1 through Equation 2.4 suggest that 

applications of ReB2 will require exclusion of oxygen or water vapors since the reaction 

sequence cannot proceed without both. High surface area powders are more susceptible than 

solid billets. 
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Figure 27: X-ray diffraction patterns of ReB2 powder after 1 year storage in the plastic bag 

without any protective atmosphere. 

 

2.4 Conclusion 

 

We have shown that ReB2 powders can be synthesized mechanochemically from 

elemental crystalline Re and amorphous B powders in the stoichiometric 1:2 ratio. A complete 

reaction was realized after 70-80 hours of milling in a SPEX-8000 high energy ball mill. By 

using this approach we have eliminated the need for excess boron reported by others. The 

synthesized powders were agglomerates of small crystallites as evidenced by SEM. High 

resolution TEM showed that the material had a clear crystalline structure. The batch became 
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contaminated both with WC-Co milling media during milling and with oxygen and hydrogen 

coming from the environment during selection of the intermediate samples for analysis. It is our 

expectation that powders free of excess of boron will facilitate a thorough understanding of the 

role composition on the hardness and elastic moduli of ReB2 ceramics. This is also a scalable 

solution that will ultimately allow larger quantities of this potentially useful material to be 

prepared. 
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CHAPTER 3: NOVEL HIGH PRESSURE HEXAGONAL OsB2 BY 

MECHANOCHEMISTRY 

 

This work was previously published as “Novel high pressure hexagonal OsB2 by 

mechanochemistry” by Zhilin Xie, Moritz Graule, Nina Orlovskaya, E. Andrew Payzant, David 

A. Cullen, and Richard G. Blair in Journal of Solid State Chemistry, Volume 215, (2014) pp. 16-

21 Copyright © 2014 Elsevier Inc. Reprinted with the permission of Elsevier. 

http://dx.doi.org/10.1016/j.jssc.2014.03.020 

 

3.1 Introduction 

 

In the past decade, extensive work has been done on the synthesis and study of OsB2, 

ReB2, RuB2, IrB1.1, and WB4 transition metal borides [52-54, 56, 57]. OsB2 and ReB2 were 

reported to have high valence-electron density due to presence of Os and Re ions in the lattice. 

They also possess ultra-incompressibility and high stiffness that arise from the high degree of B-

B and Os(Re)-B bond covalency [52, 58]. It was reported [52] that upon incorporation of B 

atoms, the Os hexagonal closed packed lattice expands by approximately 10%, forming 

orthorhombic OsB2 Pmmn (NO. 59, oP6-type) with lattice parameters a=4.684 Å, b=2.872 Å and 

c=4.076 Å [116]. ReB2, unlike OsB2, crystallizes in the hexagonal P63/mmc (NO. 194) structure 

with lattice parameters a=2.9Å and c=7.478Å [52]. Incorporation of B into the interstitial 

tetrahedral site of Re lattice produces a 5% expansion of the lattice when ReB2 is formed. This 

smaller expansion results in shorter Re-Re bonds and increased bond strength, which in turn 
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leads to increased stiffness and improvement of other mechanical properties. Hexagonal ReB2 

contains strong covalent B-B and Re-B bonds, which also contribute to the superior mechanical 

properties of the material.  

The pressure stability and stress-strain relationship at large structural deformation of 

OsB2 has been studied by applying density functional theory [124]. The ideal critical stress at 

which a perfect OsB2 lattice becomes unstable under tensile or shear deformation was calculated 

to be 20 GPa in tension and only 9.1 GPa in shear [124]. It has been shown that while interstitial 

boron atoms enhance tensile strength by forming strong directional covalent bonds with Os 

atoms, the Os-Os metallic bonds are prone to deform under applied shear stresses, thus greatly 

reducing the resistance of OsB2 to large shear deformation in certain easy-slip directions [124]. 

Orthorhombic OsB2 exhibits very small anisotropic volume compressibility when subjected to 

pressures up to 32 GPa in a high-pressure diamond anvil cell where no phase changes were 

observed during hydrostatic compression [53]. It was found that the c-direction of the 

orthorhombic lattice is the least compressible and b-direction of the crystal is the most 

compressible [29, 94]. Other high-pressure hydrostatic experiments report the stability of this 

phase up to 34 GPa [32]. It was predicted that hexagonal ReB2 might also be transformed to a 

different metastable phase by applying shear stress, as it has a relatively low ideal shear strength 

(34 GPa), albeit it is much higher than that of OsB2 (9.1 GPa) [212]. Thus, it is not hydrostatic, 

but rather deviatoric stress which significantly affects both the crystal structure and mechanical 

properties of OsB2 and ReB2 components.  

While most published work reports the existence of a thermodynamically stable oP6-type 

OsB2 Pmmn orthorhombic structure[53, 56, 115, 121, 135], other OsB2 structures have also been 
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predicted. Using local density approximation, Hao et al. [120] predicted that OsB2 can adopt an 

oP12 OsB2 Pnma structure. In addition, two pressure-stabilized hexagonal OsB2 phases, 

hexagonal ReB2-type P63/mmc and hexagonal AlB2-type P6/mmm structures were predicted to 

exist by first-principles calculations[112]. These phases have never been reported 

experimentally. In 1960, Kempter et al. [114] claimed to have synthesized a hexagonal OsB2 

phase, but the reported lattice parameters are identical to those of OsB1.1 (JC-PDS 030-0879 

reported in 1978) suggesting that the phase actually produced was OsB1.1. Using local density 

approximation, it was calculated that only 2.5 GPa of pressure is required to transform 

orthorhombic into a hexagonal ReB2-type OsB2 structure[112]. The phase stability and pressure-

induced structural phase transition of OsB2 was also investigated[113], which predicted an 

orthorhombic to ReB2-type hexagonal phase transition pressure of 10.8 GPa. However, in both of 

these studies the authors did not specify what type of stress -- uniaxial, hydrostatic or shear -- 

was required to cause the transition. It was pointed out[113] that hexagonal ReB2-type OsB2 

structure is expected to be a stable phase, as no soft mode at any wave vectors of the phonon 

band structure was found. It was also predicted that the ReB2-type hexagonal OsB2 would have a 

higher bulk and shear moduli than the phase with an orthorhombic structure. [113]  

Mechanochemical syntheses, in a high-energy ball mill, have recently been implemented 

for the production of boron rich solids [178, 213]. A unique feature of this method is the 

appearance of plastic flow with strong stress concentrators caused by the shear stress and strain 

induced by high energy ball milling. This plays a crucial role in facilitating the formation of hard 

and stiff metastable boron rich solids. The strain-induced synthesis of compounds, utilizes both 

strong elastic and plastic shear deformations upon milling, leading to the appearance of new 
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phases by solid-state chemical reactions. This facilitates phase transitions at lower pressure, as 

well as substituting reversible phase transformations with fully irreversible phase transformations 

[195]. The strain-controlled kinetics governs the rate of the chemical reactions for new phase 

formation. Acceleration of chemical reactions is caused by rapid corrugation of reaction 

interfaces triggered by shear stress driven rearrangement instabilities[214]. It was shown in 

elegant rotational diamond anvil cell experiments that structural changes do not happen unless 

plastic shear deformation occurs during hydrostatic compression[215]. While pure hydrostatic or 

axial pressure does not cause plastic flow, the applied shear stress during mechanochemical 

synthesis either significantly lowers the barrier or even generates unhindered barrierless growth 

of the metastable product. High frictional resistance to the radial plastic flow in the particles is 

created during the numerous impact events by ball milling [195, 216]. In the presence of such 

friction stress, equal to the yield strength in shear of the material, the impact pressure can easily 

reach several Mbar in magnitude facilitating chemical processes. It was reported that the rate of 

solid-state chemical reactions increases by factors of 10
2
-10

5
 when shear deformation is present 

and some chemical reactions simply cannot occur unless the shear flow is present[217]. It was 

also proposed that elastic shear strain accelerates chemical reactions by lowering the energy gap 

between the highest occupied bonding and lowest unoccupied anti-bonding molecular 

orbital[162, 193]. Here we report the mechanochemical synthesis of hexagonal ReB2-type OsB2 

phase, which has been predicted to exist, but has never been experimentally prepared. 
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3.2 Experimental 

 

Osmium metal powder (99.95% pure, Heraeus, South Africa) and boron powder (99% 

pure, -325 mesh, a mixture of amorphous and crystalline phases, Alfa Aesar) were used for the 

mechanochemical synthesis of OsB2. Enough Os and B powders (molar ratio 1:3) were loaded 

into a WC vial with two 12.7mm WC balls to produce a ball to powder weight ratio of 2.7:1. The 

balls and vial used in the milling were covered with OsB2 product formed from previous milling 

syntheses. All loading operations were carried out in an argon-filled glovebox. The vials were 

sealed with Viton gaskets to reduce oxygen contamination during milling. The milling was 

performed in a SPEX 8000D mixer mill for a total of 20 hours. Every 30 minutes the milling was 

interrupted and vials were left for 30 minutes without grinding in order to decrease the vials’ 

temperature and reduce wear on the mill’s motor. After every two hours of milling, a small 

amount of sample powder was removed from the vial for X-ray diffraction (XRD) analysis. A 

Rigaku D/MAX X-Ray Diffractometer with a copper source (Cu Kαl =1.5418Å) was used to 

record the powder XRD patterns. After the hexagonal OsB2 powder was synthesized, a small 

quantity was loaded into a fused silica ampule (Figure 28), sealed under vacuum, and annealed 

up to 6 days at 1050 °C. The synthesized OsB2 powder was sintered using fast current assisted 

technique (SPS25–10, Thermal Technologies, CA). The spark plasma sintering (SPS) of the 

powder packed in the graphite die was performed at 1500°C, 50MPa for 5 minutes. The heating 

and loading rates employed were 47°C/min and 10MPa/min, respectively. A high resolution 

powder XRD pattern was collected with synchrotron X-rays (λ=0.4137Å) at the Advanced 

Photon Source (Beamline 11-BM), Argonne National Laboratory. Refinement of the structure 
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was performed using the GSAS EXPGUI [218, 219] and HighScore Plus software. For the 

temperature stability experiment, a PANalytical X'Pert Pro MPD system was used to collect 

XRD patterns at low temperature (using an Oxford PHENiX stage) and at high temperatures 

(using an Anton Paar XRK900 reaction chamber). The OsB2 sample was protected in argon 

atmosphere during high temperature (25 °C to 875 °C) XRD and in vacuo during low 

temperature (-225 °C to 25 °C) XRD experiments. The morphology and particle size of the 

powders were examined in a Zeiss ULTRA-55 FEG scanning electron microscope (SEM) 

equipped with a silicon drift energy dispersive X-ray spectroscopy (EDS) detector capable of 

detecting low Z elements such as B. A JEOL JEM2200FS aberration-corrected scanning 

transmission electron microscope (STEM) was used to obtain high-resolution images of the 

hexagonal OsB2 nanoparticles.  

 

Figure 28: Sealed vacuum quartz ampule with sample pellet loaded in a boron nitride crucible. 

 

3.3 Results and discussion 

 

Figure 29 shows the XRD pattern of the powder after annealing. New ReB2-type 

hexagonal OsB2 structure started forming after 2.5 hours of milling, as detected by X-ray 

analysis. Although two hexagonal structures (ReB2-type and AlB2-type) were predicted for 
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OsB2, only the ReB2-type was produced via mechanochemical synthesis, as the stresses required 

for formation of AlB2-type should be higher than those produced during high energy ball milling. 

The reaction was obviously not complete after 2.5h of milling since elemental Os peaks were 

prevalent in the diffractogram. After grinding for 6 hours, the intensities of peaks from the 

hexagonal OsB2 phase begin to dominate the diffractogram, and after 8 hours of grinding, the 

amount of crystalline Os metal phase decreased drastically. The Os peaks became almost 

undetectable after 12 hours of grinding. After 18 hours of grinding, hexagonal OsB2 became the 

absolutely major phase. While the contamination of OsB2 product with WC phase during milling 

is an issue in the synthesis of a phase pure powder, the low WC ball to raw powder weight ratio 

and coating of OsB2 product on balls and vial from previous milling provided a clear pathway to 

synthesize hexagonal OsB2 powder where no WC phase was detected by XRD. In order to verify 

the high-temperature stability of the hexagonal OsB2 structure as well as to remove strain of the 

particles introduced during high energy milling and increase crystallinity of the powder, the 

OsB2 powder was annealed at 1050 °C in vacuo for 6 days. It was determined that after such 

annealing, the OsB2 maintained its hexagonal structure and did not transform to the 

orthorhombic (Pmmn, No. 59, oP6 type) phase, which shows the relatively high stability of 

hexagonal OsB2 at high temperature in vacuo. After annealing, the crystallinity of the OsB2 

phase increased, as one would expect after such high-temperature exposure. Os2B3 phase might 

also be present as an intermediate product of the Os and B high energy milling, since one extra 

peak, tentatively belonging to Os2B3, was found in the XRD pattern of the synthesized powder 

(Figure 29). While no separate peaks of WC were detected by XRD in synthesized OsB2 powder, 

the minute broadening of the OsB2 peaks at the higher d-spacings might indicate either the 
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existence of the small separate WC phase or formation of the graded WC-OsB2 composition of 

the powder after milling. It is possible that the hkl-dependent peak broadening observed in the 

(103) peak may indicate size/stain anisotropy in the powder, or presence of another phase, or 

both. 

 

Figure 29: The OsB2 XRD pattern from a conventional laboratory X-ray diffractometer. After 

mechanochemical synthesis, the hexagonal OsB2 powder was annealed in vacuo at 1050 °C for 

6days. The unindexed peak around d-spacing=2.5Å (▲) may be due to Os2B3. 

 

While it was impossible to obtain a good fit of the OsB2 pattern of mechanochemically 

synthesized powder by Rietveld refinement because of strain present in the lattice and the 

existence of the extra peak, the sintering of the powder produced a well-defined mixture of two 
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OsB2 structures, both hexagonal and orthorhombic phases were present in the sintered sample 

after SPS. The majority of the structure after SPS was still belonging to the hexagonal OsB2 

lattice (~80wt%), while about 20wt% of the material transformed into orthorhombic phase, thus 

the 80:20 mixture of hexagonal and orthorhombic phases were produced after SPS. No other 

phases were detected and all the peaks were identified in XRD pattern (Figure 30). The lattice 

parameters are reported in Table 5, where lattice parameters of hexagonal ReB2 are also 

presented for comparison in addition to the calculated lattice parameters of the predicted 

hexagonal OsB2 structure [113]. The schematic presentation of the hexagonal OsB2 unit cell 

based on measured lattice parameters is shown in Figure 31. This structure consists of alternating 

layers of hexagonally arranged osmium and boron. The boron forms infinite sheets consisting of 

6-member rings in a chair configuration. In contrast, the boron layers in orthorhombic OsB2 

takes on a boat configuration [56]. The chair configuration allows closer packing of the layers. 

The hexagonal phase consists of boron layers 3.725 Å apart while the orthorhombic phase has 

these layers 4.073 Å apart. As a result the hexagonal phase has a density of 12.91 g/cm
3
 and the 

orthorhombic phase has a slightly lower density of 12.83 g/cm
3
. 

 

Table 5: The lattice parameters of hexagonal OsB2. 

 

Lattice parameters a (Å) c (Å) c/a ratio 

Mechanochemically Synthesized OsB2 2.916 7.376 2.53 

ReB2 PDF#01-073-1392 [59] 2.900 7.478 2.58 

Calculation data (GGA) of OsB2 [113] 2.941 7.338 2. 50 
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Figure 30: Synchrotron XRD pattern of OsB2 after SPS consisting of 80wt% hexagonal and 

20wt% orthorhombic phases. No other phases, such as WC, Os2B3 or crystalline B were found. 

 

 

 

Figure 31: The crystal structure of hexagonal OsB2. Osmium atoms are the larger gray spheres, 

and boron atoms are the smaller black spheres. 
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In order to further investigate the phase stability of hexagonal OsB2, the powder was both 

heated in the temperature range of 25°C to 875°C under argon protective environment and 

cooled down from 25°C to -225°C in vacuo while in situ XRD measurement were 

simultaneously performed. The lattice parameters along with the hexagonal OsB2 unit cell 

volume were calculated as a function of temperature using the obtained data. A change in a and c 

lattice parameters and unit cell volume of hexagonal OsB2 as a function of temperature is 

presented in Figure 32. It was determined that the hexagonal OsB2 structure is stable within the 

entire -225 °C to 875 °C temperature range both upon cooling and heating and the increase of a 

and c lattice parameters with increasing temperature was confirmed. While there is a clear trend 

for an increase in the lattice parameters as the temperature rises, the a lattice parameter shows a 

decrease in the 300°C to 500°C temperature range, indicating a negative thermal expansion of 

the material in this crystallographic direction.  

The particle size and morphology of the agglomerates of mechanochemically synthesized 

hexagonal OsB2 powder was investigated by SEM. The irregular shape of the agglomerates as 

well as the wide agglomerate size distribution is seen in the SEM image of the powder ground 

for 18 hours (Figure 33). Most of the agglomerates are smaller than 10 μm, although some of the 

agglomerates exceed 30 μm in effective diameter. EDS analysis confirmed the presence of Os, B, 

C as well as some oxygen. A peak for tungsten (from tungsten carbide) is present in the EDS 

spectrum, but no peaks for tungsten carbide were evident in the XRD pattern. 
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Figure 32: The a and c lattice parameters of hexagonal OsB2 along with the volume of the unit 

cell in the -225°C to 875°C temperature range. 
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Aberration-corrected scanning transmission electron microscopy (STEM) was also used 

to study the atomic arrangement of the hexagonal OsB2 powder. Characteristic high-angle 

annular dark-field (HAADF) images of OsB2 particles are presented in Figure 34. By sonicating 

the powder in methanol for 1 min, the larger agglomerated particles were broken down into 

smaller aggregates of 100-500 nm in size, as shown in Figure 34a. These aggregates were made 

up of nanocrystallites ranging in size from 1 to 10 nm (Figure 34b). High-resolution STEM 

images of OsB2 nanocrystallites aligned along the major zone axes are presented in Figure 34c-d, 

with the corresponding fast Fourier transform (FFT) presented and simulated diffraction patterns 

in Figure 34e-h. Figure 34c presents OsB2 nanocrystallites aligned along the [001] direction, and 

Figure 34d presents other OsB2 nanocrystallites aligned along the [100] direction. 

Diffractograms of both particles match those of hexagonal OsB2 phase. 

 

Figure 33: A SEM micrograph (a) and EDS (b) of OsB2 powder after 18 hours of milling. 
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Figure 34: HAADF-STEM images of OsB2 powder (a,b), individual OsB2 nanocrystallites (c,d) 

with corresponding fast Fourier transforms (e,g) and simulated diffraction patterns (f,h). 
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3.4 Conclusion 

 

The ReB2-type hexagonal OsB2 structure has been mechanochemically synthesized from 

elemental B and Os powder with shear stress contributed significantly to the synthesis of the new 

high-pressure phase. The lattice parameters of the new phase were measured to be a=2.916Å and 

c=7.376 Å. The stability of the new OsB2 phase was confirmed by high and low temperature 

XRD where it was found that no phase transformation into orthorhombic OsB2 phase occurs up 

to 1050°C, but the negative lattice thermal expansion in a crystallographic direction was 

discovered in hexagonal OsB2 upon heating within 300-500
o
C temperature range. It was also 

found that 20wt% of the hexagonal OsB2 transformed to orthorhombic structure during high-

temperature sintering at 1500°C for 5 minutes. The production of hexagonal OsB2 by 

mechanochemical means demonstrates the value of alternative synthetic methods for producing 

new materials. 
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CHAPTER 4: THERMAL STABILITY OF HEXAGONAL OsB2 UNDER 

ARGON ATMOSPHERE 

This work was previously published as “Thermal stability of hexagonal OsB2” by Zhilin 

Xie, Richard G. Blair, Nina Orlovskaya*, David A. Cullen and E. Andrew Payzant in Journal of 

Solid State Chemistry, Volume 219, (2014) pp. 210-219 Copyright © 2014 Elsevier Inc. 

Reprinted with the permission of Elsevier. http://dx.doi.org/10.1016/j.jssc.2014.07.035 

 

4.1 Introduction 

 

The refractory transition metal boride OsB2 has received special attention due to its ultra-

incompressibility and high stiffness arising from a high degree of B-B and Os-B bond covalency 

[58]. Although three crystal structures, orthorhombic, hexagonal I ReB2-type and hexagonal II 

AlB2-type OsB2, have been predicted to exist by local density approximations [120], only the 

thermodynamically stable oP6-type OsB2 Pmmn orthorhombic structure has been experimentally 

synthesized [53]. Hexagonal ReB2-type OsB2 was reportedly synthesized 50 years ago [114], 

however the lattice parameters of the phase correspond to those of OsB1.1 (JC-PDS 030-0879 

reported in 1978 [220]), suggesting that the phase produced was OsB1.1 and not h-OsB2. No other 

reports on the synthesis of hexagonal OsB2 structure existed until recently [221, 222], but a 

number of theoretical predictions have shown that o-OsB2 can be transformed into hexagonal 

ReB2-type or AlB2-type OsB2 structures upon application of pressure [112, 113]. It was 

calculated that 2.5 to 10.8 GPa was required to induce the orthorhombic to hexagonal ReB2-type 
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OsB2 phase transformation [112, 113], however these predictions did not specify what type of 

stress, uniaxial, hydrostatic or shear stress, was used in the calculations. The pressure stability 

and stress-strain relationship at large structural deformation of orthorhombic OsB2 has been 

studied by applying density functional theory [124]. It was shown that the ideal critical stress at 

which a perfect orthorhombic OsB2 lattice becomes unstable is equal to 20 GPa in tension but 

only 9.1 GPa in shear [124], thus indicating that shear stress might play an important role in 

transforming orthorhombic OsB2 into hexagonal ReB2-type structure. Once formed, hexagonal 

ReB2-type OsB2 is expected to be a stable phase, as no soft mode at any wave vector of the 

phonon band structure was found [113]. Experimentally, though, it was shown that orthorhombic 

OsB2 exhibits very small volume compressibility with anisotropy present in compressibility of a 

and c lattice parameters, when the ceramic was subjected to hydrostatic compression up to 34 

GPa [32, 53], no phase change was observed.  

Recently, a novel high-pressure hexagonal ReB2-type OsB2 ceramic powder has been 

successfully synthesized by high-energy mechanochemical synthesis [221, 222]. It is believed 

that the high shear stress and strain produced during milling played a major role in the formation 

of the hexagonal structure. In such synthesis, both elastic and plastic shear deformation 

facilitated the formation of this new phase by the irreversible Os+2Bh-OsB2 solid-state 

chemical reaction. During high-temperature heating experiments of the h-OsB2 powder in an 

argon environment, a negative thermal expansion of the hexagonal lattice was observed, where 

the a lattice parameter decreased as temperature increased in 276-426ºC temperature range [221]. 

In addition to the unusual shrinkage, extra diffraction peaks appeared in the high temperature 

region, which did not belong to the h-OsB2 phase. As a result of such changes, the lattice 
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parameters of h-OsB2 phase changed significantly during heating to 876 ºC and cooling back to 

room temperature. In this work, the thermal stability is studied in greater detail in order to 

establish the mechanisms driving the lattice contraction and formation of new phases upon 

heating of hexagonal ReB2-type OsB2 ceramic. 

 

4.2 Experimental 

 

Osmium metal and boron powders were used for the mechanochemical synthesis of 

OsB2. Os and B powders with molar ratio of 1:3 were loaded into a tungsten carbide (WC) lined 

vial (2.25” diameter × 2.5” height) with two 0.5” WC balls. The balls and vial used in the milling 

were covered with product formed from previous milling syntheses. Information of raw materials 

and ball milling parameters are shown in Table 6. All loading operations were carried out in an 

argon-filled glovebox. The vials were sealed with Viton gaskets to reduce oxygen contamination 

during milling. The milling was performed in a SPEX 8000D mixer mill. Every 30 minutes the 

milling was interrupted and vials were left for 30 minutes without grinding in order to limit the 

effects of frictional heating and reduce wear on the mill’s motor. After the h-OsB2 powder was 

synthesized, a small quantity was loaded into a fused silica ampule, sealed under vacuum, and 

annealed up to 6 days at 1050 °C. For the temperature stability experiment, a PANalytical X'Pert 

Pro MPD system was used to collect X-ray diffraction (XRD) patterns at high temperatures 

(using an Anton Paar XRK900 reaction chamber) and at low temperatures (using an Oxford 

PHENiX stage). The OsB2 sample was protected by flowing pure (99.995%) argon during high 

temperature (26 °C to 876 °C) XRD experiments and in vacuo during low temperature (-225 °C 
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to 25 °C) XRD experiments. Each scan took about 48 minutes and the scans were collected every 

50°C both at high and at low temperature. While there was no direct indication of the presence of 

oxygen in the high-temperature chamber during the heating experiments, an air leakage was 

detected during the XRD measurements on the following day. Therefore, the conditions of the 

heating OsB2 experiments cannot preclude the availability of an unspecified amount of oxygen in 

the Anton Paar XRK900 reaction chamber. Refinement of the structure was performed using the 

HighScore Plus software. The morphology and particle size of the powders were examined in a 

Zeiss Merlin scanning electron microscope (SEM) equipped with energy dispersive X-ray 

spectroscopy (EDS) detector. A JEOL JEM2200FS aberration-corrected scanning transmission 

electron microscope (STEM) was used to obtain images of the nanoparticles in all powders. 

 

Table 6: Reaction information and ball milling parameters. 

 

Product Boron Osmium 
Milling 

time 

Ball to 

powder mass 

ratio 

Os to B 

molar ratio 

OsB2 with 

~ 5wt% 

Os2B3 

99% pure; mixture of 

amorphous and 

crystalline; Alfa 

Aesar 

99.95% 

pure, 

Heraeus, 

20h 2.7 1:3 

Os2B3 
98% 

11
B enriched; 

crystalline; Ceradyne 

99.95% 

pure, 

Heraeus, 

54h 2.0 1:3 
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4.3 Results 

4.3.1 Phase composition of OsB2 powder after mechanochemical synthesis at room temperature 

 

Room temperature XRD pattern of h-OsB2 collected before heating experiments are 

shown in Figure 35A. All peaks found in the diffraction pattern of the powder collected at room 

temperature before heating were indexed as belonging to hexagonal (P63/mmc, 194) OsB2 with 

an exception of one low intensity single peak, which was assigned as belonging to the Os2B3 

phase. The amount of Os2B3 phase present was calculated by Rietveld refinement to be equal to 

about 5 wt% after 20 hours of milling and it was considered as an intermediate product of solid 

state reaction of OsB2 formation from Os and B raw powders. The presence of Os2B3 compound 

suggests the following possible route for the synthesis of hexagonal ReB2-type OsB2. As Os 

metal possesses a hexagonal P63/mmc crystal lattice [223], it is likely that B atoms diffuse into 

the lattice filling the interstitial sites to first form osmium monoboride, OsB, then OsB1.1, 

followed by Os2B3, until the hexagonal OsB2 is finally formed as a major phase. The presence of 

a small quantity of intermediate Os2B3 phase can possibly be explained by the nature of raw B 

powder used for mechanochemical synthesis of OsB2. The raw B powder contained a mixture of 

amorphous and crystalline boron. While amorphous boron is more reactive, the crystalline boron 

contains icosahedral units with strong covalent bonding between boron atoms which are very 

difficult to break. The breaking of B-B bonds and forming new B-Os bonds was more favorable 

in the case of the amorphous material as opposed to the crystalline boron. Therefore, while 

milling, the amorphous boron readily reacts with Os atoms forming the desired h-OsB2 phase, 

while crystalline boron only forms the Os2B3 phase after 20 hours of milling. As some part of the 



 

 

99 

boron powder existed as a crystalline phase, the formation of OsB2 compound was less favored, 

and a small portion of intermediate Os2B3 phase was detected after 20 hours of milling. The 

bright-field STEM and SEM micrographs of hexagonal OsB2 powder after 20 hours of high 

energy ball milling are shown in Figure 35B and C. The powder consists of small 10-20 nm 

single crystal nanoparticles (Figure 35B) gathered into larger 2-5 µm agglomerates that can be 

easily broken apart (Figure 35C). 

 In order to verify that the hexagonal OsB2 phase can be formed after high-energy ball 

milling using only crystalline B as a raw material, crystalline boron powder instead of a mixture 

of amorphous and crystalline boron was used as a starting material. When crystalline 
11

B powder 

was used as one of the constituents of the mechanochemical synthesis (Figure 36H), the only 

products (after 54 hours of milling) were a mixture of OsB and Os2B3 phases. The X-ray 

diffraction pattern of the powder synthesized by mechanochemistry with a mixture of OsB and 

Os2B3 phases is shown in Figure 35D. After synthesis the powder consisted of 2-5 µm 

agglomerates composed of small 2-5 nm nanoparticles (Figure 35E and 1F). The lattice 

parameters and unit cell volume of Os2B3 phase synthesized using crystalline 
11

B powder as a 

raw material are shown in Table 7. 

Table 7: Lattice parameters of Os-B compounds. 

 

 Structure a (Å) c (Å) V (Å
3
) 

Density 

(g/cm
3
) 

Os-Os distance 

in a-b plane (Å) 

Os-Os distance 

in c direction (Å) 

Os 
Hexagonal, 

P63/mmc 
2.734 4.3197 27.96 22.580 2.734 2.675 

OsB 
Hexagonal, 

P-6m2 
2.876 2.868 20.54 17.102 2.876 2.868 

Os2B3 
Hexagonal, 

P63/mmc 
2.908 12.90 94.47 14.501 2.908 2.811 and 3.968 

h-OsB2 
Hexagonal, 

P63/mmc 
2.916 7.376 54.32 12.966 2.916 4.085 
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Figure 35: The XRD diffractogram, TEM and SEM images of mechanochemically synthesized 

OsB2 (A, B and C) powder at room temperature before heating experiment and Os2B3 (D, E and 

F) produced by ball milling Os and crystalline 
11

B mixture for 54h. More TEM images of OsB2 

and Os2B3 are shown in Appendix B from Figure 88 to Figure 92. 
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The difference in the crystal structure of raw boron powders, such as a mixture of 

amorphous and rhombohedral crystalline phases of B used for synthesis of OsB2 and purely 

rhombohedral crystalline 
11

B (R-3m, No.166) used for synthesis of Os2B3 may be only one factor 

that affects the product composition. Other factors might contribute to the formation of OsB2 or 

Os2B3 reaction products. As in the first case raw boron powder contained a mixture of 
10

B and 

11
B isotopes, but in the second case enriched 

11
B isotope was used as a source, the bond strength 

between B atoms in the two compounds is different, because of differences in the mass of the 
10

B 

and 
11

B isotopes, thus different energy would be required to break B-B bonds to form new 

compounds during mechanochemistry. In addition, while the same Os powder (Figure 36 A-C) 

was used for synthesis in both cases, the B powders were not only different isotopes, but also had 

different particle sizes. While the mixture of amorphous and crystalline B powder consists of 

relatively small and soft agglomerates with an average particle size of 0.2-1 µm (Figure 36D-F), 

the 
11

B powder consists of large and hard agglomerates with irregular shape, which are difficult 

to break, with an average particle size of 50-100µm (Figure 36G-I). Therefore, not only the 

stronger crystalline bonds but also the diffusion pathway for mechanochemical formation of 

OsB2 is much longer for 
11

B powder, thus preventing the complete reaction from occurring and 

allowing only the Os2B3 intermediate phase synthesis to complete. It is also important to note 

that the ratio of the WC balls to the powder under milling was lower in the case where crystalline 

11
B was used as a source of B in comparison with the synthesis where a mixture of amorphous 

and crystalline B was used as a raw material. As the ball weight decreases, it contributes to a 

decrease in the kinetic impact energy that the balls provided to the powder during milling. All of 

these differences during the synthesis might be contributing factors to the formation of the 
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intermediate product with 1:1.5 Os to B stoichiometry instead of formation of the desired 

hexagonal OsB2 in the case when crystalline 
11

B isotope powder was used as a raw boron source. 

 

Figure 36: The XRD diffractogram, SEM and bright-field STEM images of osmium metal (A, B 

and C), amorphous and crystalline boron (D, E and F) and crystalline 
11

B (G, H and I). More 

TEM images of Os, amorphous and crystalline boron, and 
11

B are shown in Appendix B from 

Figure 82 to Figure 87. 
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4.3.2 High temperature stability and phase composition of hexagonal OsB2 under Ar 

 

The 2D XRD contour plot along with XRD patterns of h-OsB2 collected at selected 

temperatures upon heating and cooling under argon are presented in Figure 37. As it was 

presented in the previous section, the XRD pattern at room temperature contained h-OsB2 and 

only a small quantity (~5 wt%) of Os2B3 intermediate phase. The powder composition was 

retained upon heating up to 376ºC. However, at 426 ºC small quantities of pure metallic Os 

started to appear (Figure 38). Upon further heating, an increasing amount of Os was detected 

until 726 ºC, where it remained almost constant at 26.6 wt% through heating to 876 ºC (Figure 

38). While the Os content increased from 2.0 wt% at 426 ºC, when it first was detected by XRD, 

to 26.6 wt% at 876 ºC, the OsB2 content decreased respectively to 68.3 wt% at 876 ºC. The 

Os2B3 phase maintained the same weight percentage (~5 wt%) upon heating and cooling under 

an argon atmosphere. Once the Os and OsB2 phases came to some equilibrium at 876 ºC, their 

quantities remained almost constant on cooling with the exception that a small amount of the 

OsB phase appearing at 826 ºC upon cooling (Figure 38). As one can see from the expanded 

portion of the XRD contour plot (Figure 39A), highlighted by a dash line in Figure 37A, the 

intensity of the (100) OsB peak can be clearly identified in the XRD pattern (Figure 39B). For 

comparison, the pattern collected at 876 ºC is also provided (Figure 39B) where no traces of 

(100) OsB peak can be detected, Rietveld refinement indicated a 2.3 wt% of OsB present at 826 

ºC and, once formed, it remained unchanged on cooling to room temperature. 
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Figure 37: The in situ high-temperature XRD contour plot (A) and XRD patterns (B) of h-OsB2 

upon heating and cooling under an argon atmosphere. 

 

 

Figure 38: The weight percentage of OsB2 (♦ or ◊), Os2B3 (■ or □), OsB (Δ) and Os (● or○) 

as function of temperature upon heating (filled symbol) and cooling (open symbol) under an 

argon atmosphere. 
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Figure 39: An expanded view (A) of the dash-line box in Figure 37A and the corresponding 

XRD patterns (B) at 876 °C and 826 °C upon cooling. 

 

4.3.3 Phase composition of OsB2 powder after mechanochemical synthesis at room temperature 

 

The calculated a and c lattice parameters as well as a unit cell volume of h-OsB2 upon 

heating and cooling under Ar is shown in Figure 40. Upon heating, both lattice parameters and 

unit cell volume of h-OsB2 increased, as expected due to thermal expansion, however the 

expansion of the a lattice parameter continued only to 276 ºC, where a noticeable shrinkage 
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occurred upon further heating all the way up to 426 ºC. While the c lattice parameter of h-OsB2 

did not contract in this temperature range, the slope of its expansion became steeper for the c 

direction of the lattice starting from 426 ºC. The volume of the OsB2 unit cell decreased in the 

326-426 ºC temperature range, since the volume is affected by changes both in a and c lattice 

parameters, such that shrinkage of a lattice parameter contributed to a decrease in the volume of 

the unit cell. However, above 426 ºC both a and c lattice parameters along with unit cell volume 

showed a significant expansion upon further heating. While the slope of expansion of a lattice 

parameter was similar in the high temperature 426-876ºC range to that at the sub 276ºC range, 

the expansion in c direction was significantly higher above 376ºC in comparison with expansion 

below 376ºC. The increase of the a lattice parameter as well as the volume of the unit cell of h-

OsB2 at 426ºC coincides with the appearance of pure Os metal detected in the XRD pattern upon 

heating. 

The a and c lattice parameters as well as the unit cell volume of the h-OsB2 phase 

decreased upon cooling almost linearly with two different slopes measured both for the a and c 

lattice parameters (Figure 40ABC). It was found that the a direction of the hexagonal structure 

shrank faster at higher temperature in comparison with lower temperatures, but the c direction of 

the lattice shrank slower at higher temperatures range in comparison with lower temperatures. 

The unit cell volume decreased linearly upon cooling as shrinkages of both a and c lattice 

parameters contributed uniformly to the volume shrinkage of h-OsB2. 

The appearance of detectable quantities of pure Os metal began at 426 ºC with an 

increasing amount detected until 726ºC where its quantity remained almost constant at ~ 26.6 

wt% up to 876 ºC. Above 676ºC, the Os content was high enough to refine the lattice parameters 
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for the Os phase and the a and c lattice parameters along with the unit cell volume of newly 

formed h-Os metal are shown in Figure 41. 

 

Figure 40: The lattice parameters a (A), c (B) and unit cell volume V (C) of OsB2 together with 

CTCE of a (D), c (E) and V (F) as function of temperature upon heating (■) and cooling(□) 

under an argon atmosphere. 



 

 

108 

 

Figure 41: The lattice parameters a (A), c (B) and unit cell volume V (C) of Os as function of 

temperature upon heating (■) and cooling (□) under an argon atmosphere. 
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A nearly linear expansion was measured during heating for the a and c lattice parameters 

along with the volume of h-Os metal, and decreased linearly upon cooling. The difference 

between coefficients of thermal expansion (CTE) of Os metal upon heating and cooling could 

possibly be explained by stresses between Os and OsB2 phases which might appear because of 

the lattice mismatch between the two phases. The lattice parameters of h-OsB2 changed 

dramatically after the other phases formed upon heating and cooling under Ar. The coefficients 

of thermal expansion of h-Os in a, c and V upon heating and cooling are shown in Table 8. It can 

be seen in Figure 40A, B and C, while the a lattice parameter exhibits a thermal shrinkage upon 

heating, upon cooling it does not exhibit the same behavior, but decreases in an almost linear 

manner. There is a difference between a values of h-OsB2 for the material before and after 

heating with Δa=6.38×10
-3

 Å between the calculations. The c lattice parameter exhibits even 

more dramatic changes, and while the a lattice parameter becomes smaller after heating/cooling, 

the c lattice parameter increases by a significant amount. The c lattice parameter does not show a 

decrease, as it was observed for the a lattice parameter values, but there is a change in the slope 

for the expansion of c in between 300°C to 400°C temperature range upon heating where at 

lower temperatures the material expands at a much slower rate in comparison with the expansion 

above 400°C upon heating. However upon cooling, the thermochemical expansion/shrinkage 

along c direction is very different from those observed upon heating. The Δc for the lattice 

parameter measured before and after heating/cooling experiment was equal to 6.06×10
-2

 Å, 

which suggests that a significant expansion was observed along the c direction of h-OsB2 when 

the phase separation and reduction to Os and osmium monoboride (OsB) occurred. As a result of 

different shrinkage/expansion behavior of the a and c lattice parameters, the difference in the 
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volume of the unit cell of h-OsB2 was observed, but the ΔV=0.6145 Å
3
 for the volumes of the 

material before and after heating was not as large as the difference in the c lattice parameter. The 

calculated density of h-OsB2 as a function of temperature is shown in Figure 42. Due to negative 

thermochemical expansion, the density of h-OsB2 slightly increased in 300-450°C temperature 

range, but in general at higher temperatures it decreased from 12.97 g/cm
3
 at room temperature 

before heating to 12.68 g/cm3 at 876°C. As the lattice parameters of h-OsB2 changed after 

cooling, the room temperature density of h-OsB2 was calculated to be 12.92 g/cm
3
. 

 

Figure 42: Density of h-OsB2 as function of temperature upon heating (■) and cooling (□) 

under an argon atmosphere. 
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Figure 40D, E, F shows the calculated coefficient of thermochemical expansion (CTCE) 

upon heating and cooling of h-OsB2. Indeed, the negative coefficient of thermochemical 

expansion is observed along the a direction of the lattice upon heating from 276-426 °C. It is 

also important to note that the thermochemical contraction of the structure along the c direction 

of the lattice was much slower at high temperatures than those observed at lower temperatures 

upon cooling and that is why the CTCE calculated for thermochemical expansion along the c 

direction is higher at lower (200-300°C) temperatures than those obtained at higher (600-800°C) 

temperature. The volumetric CTCE did not show negative values, and was rather small in the 

276-426°C temperature range with a minimum value of 5.6×10
-6

/°C at 326°C. While CTCEs of 

OsB2 measured along the a and c crystallographic directions reached 17 and 23×10
-6

/°C at 

~700°C, the volumetric CTCE of the material exhibited much higher values at ~700 °C, with a 

maximum of 56×10
-6

/°C at 700°C. Such high volumetric expansion upon heating suggests that 

the practical usage of OsB2 at high temperature may be limited, as the material might be 

sensitive to the tensile thermal residual stresses when in contact with other material and also 

susceptible to crack growth and spontaneous cracking as it should also be very brittle. Once the 

stoichiometry of OsB came to the equilibrium upon heating, the CTCEs of the resulting phase 

exhibited much smaller values both for the a and for c lattice parameters along with CTCE of the 

unit cell volume. 

 

Table 8: CTEs of Os metal in a, c and V upon heating and cooling under an argon atmosphere. 

 

 CTE of a (×10
-6

/°C) CTE of c (×10
-6

/°C) CTE of V (×10
-6

/°C) 

Heating 13.52 15.69 43.33 

Cooling 6.38 8.59 21.59 
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4.3.4 Low temperature stability of hexagonal OsB2 in vacuo 

 

Although high-temperature experiments under an argon atmosphere showed the 

formation of new phases, such as h-Os and h-OsB, the h-OsB2 phase remained stable during 

cooling to -225°C in vacuo. The a and c lattice parameters along with the unit cell volume of 

OsB2 upon cooling are shown in Figure 43. A linear dependence can be seen for all three 

parameters on cooling, The calculations of coefficients of thermal expansion provided almost 

identical values for the a lattice parameters upon cooling to -225°C and heating back to RT (αa 

cool=2.41×10
-6

 °C
−1

 and αa heat=2.22×10
-6

 °C
−1

), but the values of CTEs along the c direction as 

well as the unit cell volume of hexagonal lattice have small differences for the cooling and 

heating parts of the experiment. The CTEs calculated from the contraction/expansion of the c 

direction were equal to αc cool=2.99×10
-6

 °C
−1

 and αc heat=2.86×10
-6

 °C
−1

 and CTEs calculated 

from contraction/expansion of the unit cell volume were equal to αV cool=7.82×10
-6

 °C
−1

 and αV 

heat=7.30×10
-6

 °C
−1

. Similar to the calculations performed for the high-temperature experiments, 

the CTE of the unit cell volume of the h-OsB2 was significantly higher in comparison with each 

lattice parameter. 
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Figure 43: The lattice parameters a (A), c (B) and the unit cell volume V (C) of h-OsB2 as 

function of temperature upon cooling (■) and heating (□) in vacuo. 
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4.4 Discussion 

 

The cooling, to -225°C in vacuo, experiments showed no changes in phase composition 

or crystal structure of h-OsB2 powder, indicating the stability of the hexagonal ReB2-type OsB2 

in the low temperature range. The heating experiments of h-OsB2 under Ar indicated that the 

phase composition changed during heating as pure metallic Os appeared upon heating and OsB 

formed upon cooling from high temperature (Figure 38). The appearance of small quantities of 

pure Os phase upon heating of h-OsB2 can be explained by the presence of small quantities of 

oxygen in the environment of the heating chamber and the consequent chemical reaction of 

boron atoms in the h-OsB2 lattice with trace oxygen in the cover gas. The powder produced by 

ball milling has very high surface area and it is susceptible to oxidation even in the presence of 

small quantities of oxygen. When a small quantity of O2 is present, then the following sacrificial 

reaction can take place where the nanocrystalline and metastable OsB2 compound is reduced to 

Os metal and boron oxide, with a possible route for such reduction shown in the Equation 4.1. 

2 OsB2 + 3 O2 = 2 Os + 2 B2O3    (4.1) 

A similar sacrificial reaction was used to produce fine Co particles by oxidizing Co2B with the 

formation of Co particles and B2O3 [224]. 

In the reaction between OsB2 and O2, it is thermodynamically favorable for oxygen to 

combine with boron, forming B2O3, which is very difficult to detect as the mass absorption 

coefficient of B2O3 is 8.26 cm
2
/g and it readily forms an amorphous phase, such that small 

quantities of B2O3 are not detectable by powder X-ray diffraction. The disproportionate 

shrinkage of the a lattice parameter upon heating can be explained by the formation of boron 
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oxide in the 276°C - 426°C temperature range by the preferred oxidation of boron atoms in the 

OsB2. When boron atoms are removed from the h-OsB2 lattice to form the B2O3 phase, boron 

vacancies are left in the h-OsB2 lattice leading to the shrinkage along the a direction within the 

276°C - 426°C temperature range. The confirmation of decreasing of the a lattice parameter in 

the hexagonal Os-B system as a function of boron stoichiometry is provided in Table 7, where 

the decrease in the a lattice parameter is reported when the stoichiometry change from 1:2 Os to 

B in OsB2, to 1:1.5 Os to B ratio in Os2B3, to 1:1 Os to B ratio in OsB to 1:0 Os to B ratio in pure 

Os metal. Therefore, lattice parameters of OsB2 are affected by both thermal expansion and by 

chemical expansion by change in the stoichiometry of the compound and formation of boron 

vacancies under high temperature. The traces of oxygen or water vapor enabling the changes in 

the stoichiometry of OsB2 lead to the formation of OsB2-x compounds, where if x=0.5 then Os2B3 

boride, if x=1.0 then OsB monoboride and if x=2.0 then pure metallic Os phase will form during 

the sacrificial chemical reaction between OsB2 ceramic powder and O2 molecules. Therefore, it 

is not that h-OsB2 has an inherent negative CTE, but instead exhibits changes in the 

stoichiometry leading to formation of OsB2-x compounds. The c lattice parameter does not show 

such “negative” thermochemical expansion upon heating. The reason for this could be found 

upon examination of the ReB2-type h-OsB2 lattice [221], which has a layered structure with 

layers packed along c direction [221] and, therefore, thermal expansion is much larger along the 

c direction in comparison with the a direction. As thermal expansion plays a significant role in 

increasing the unit cell parameters of h-OsB2 upon heating, the c lattice parameter is less affected 

by removal of B atoms from the lattice in comparison with the much shorter a lattice parameter, 

where the shrinkage of the bond length is visible and the influence of formation of B vacancies 
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prevails over thermal expansion in a certain temperature range. Upon reaching a critical number 

of B vacancies due to leaching/removal of B atoms, the hexagonal P63/mmc OsB2 structure has a 

significant excess of Os atoms in the lattice which are not bound to B atoms, these Os atoms 

precipitate out of the h-OsB2 lattice and a pure metallic Os phase is formed, as detected by XRD 

starting at 426 °C. As h-Os metal amount increases from 2.0 wt % at 426°C to 26.6 wt % at 

776°C, as the remaining OsB2 becomes more stoichiometric. Upon further heating from 426°C to 

876°C a large expansion of both a and c lattice parameters was observed. The removal of atoms 

from h-OsB2 lattice upon heating resulted in very different lattice behavior of the material upon 

cooling. The shrinkage of the a and c lattice parameters was observed upon cooling from high 

temperature to room temperature. The a lattice parameter becomes smaller but the c lattice 

parameter of h-OsB2 becomes significantly larger after cooling in comparison to that observed 

before the heating experiments. 

 

4.5 Conclusion 

 

The phase stability and thermal behavior of novel hexagonal ReB2-type OsB2 powder 

was studied in the broad temperature range upon heating up to 876 °C under Ar and cooling to -

225°C in vacuo. It was found that the h-OsB2 was the major phase in the powder after 

mechanochemical synthesis with a small quantity (~5 wt%) of h-Os2B3 also present at room 

temperature before heating experiments. Os2B3 was identified as an intermediate product of 

mechanochemical synthesis, where presence of crystalline B in the reagent used for 

mechanochemical synthesis prevented the formation of pure final product h-OsB2 and small 
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quantities of Os2B3 compound formed during milling. The formation of Os2B3 and OsB phases, 

but not h-OsB2, was confirmed when coarse crystalline 
11

B powder was used as a raw B material 

in high energy ball milling instead of a mixture of amorphous and crystalline B. It was shown 

that, once synthesized, the h-OsB2 phase was stable upon cooling to -225°C where no structure 

changes were observed and linear thermal expansion was measured. However, upon heating, the 

sacrificial chemical reaction between h-OsB2 powder and traces of oxygen and/or water vapor in 

the heating chamber took place, where B atoms reacted with O2 molecules leaving the h-OsB2 

lattice, forming B2O3. This, in turn, lead to the formation of boron vacancies in OsB2 lattice 

producing overall B deficiencies and precipitation of a metallic Os phase detectable by X-ray 

diffraction. Such phase changes lead to the lattice shrinkage and what appeared to be a negative 

coefficient of thermal expansion of h-OsB2 in the a crystallographic direction. As the changes 

brought to the shrinkage/expansion of the h-OsB2 lattice were caused not only by the change in 

the temperature, but also by the change in the stoichiometry of the compound, thus we termed it 

“thermochemical expansion” to emphasize the effects of both temperature and stoichiometry on 

the phase changes. In addition, the OsB phase was detected upon cooling of the powder. The 

phase changes of h-OsB2 were the reason for the appearance of very different room temperature 

lattice parameters of h-OsB2 phase after heating experiments. High values of coefficient of 

thermochemical expansion of h-OsB2, especially at 700- 800 °C temperature range, might cause 

stability and reliability problem for practical applications of this novel material recently 

synthesized by mechanochemistry. 
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CHAPTER 5: HEXAGONAL OsB2 REDUCTION UPON HEATING IN H2 

CONTAINING ENVIRONMENT 

This work was previously published as “Hexagonal OsB2 reduction upon heating in H2 

containing environment” by Zhilin Xie, Richard Blair, Nina Orlovskaya and E. Andrew Payzant 

in Advances in Applied Ceramics, 2014, Copyright © 2014. 

 http://dx.doi.org/10.1179/1743676114Y.0000000212 

5.1 Introduction 

 

The synthesis of novel and unreported materials as well as studies of their thermal, 

physical and chemical properties is of high importance because of the unique properties, which 

might produce significant improvements in many industrial technologies. [225, 226] Boride 

ceramics are an important class of the material used in many applications where hardness, high 

stiffness, oxidation and wear resistance are of utmost importance. Although a wide array of 

borides has been synthesized [227-229], many compositions are still unknown or poorly 

investigated and their important properties and behaviors are unknown. There are many metal 

borides which are synthesized by combining metallic boron with less electronegative metallic or 

metalloid elements using various techniques such as reduction of metal oxides, electrolysis and 

direct reaction of the elements. [230-236] Recently significant attention was drawn on the 

synthesis of ReB2 and OsB2 compounds [29, 46, 52, 53, 121, 213, 221], which showed ultra-high 

stiffness with low lattice compressibility along with remarkable hardness values. While ReB2 has 

been reported to exist in a hexagonal (P63/mmc, No.194) ReB2-type structure, most OsB2 
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syntheses produce an orthorhombic (Pmmn, No.59) phase. A theoretically predicted high-

pressure hexagonal ReB2-type OsB2 might exhibit even better physical properties in comparison 

with an orthorhombic OsB2 phase as it is expected to have a higher packing density of atoms, 

stronger B-B and stronger B-Os bonds, thus, exhibiting improved properties when compared to 

orthorhombic OsB2. This hexagonal ReB2-type OsB2 ceramic was recently synthesized using 

high energy mechanochemical synthesis [221, 222], which is a technique well suited to the 

production of difficult to synthesize metal-boron alloys [237]. The stability of hexagonal OsB2 

was investigated upon heating in Ar containing atmosphere [238]. It was discovered that the 

hexagonal hP6 structure of OsB2 is stable upon heating to 900-1050°C in vacuum or Ar inert 

atmosphere. However, the presence of small quantities of oxygen led to the occurrence of a 

sacrificial reaction (Equation 5.1). 

2 OsB2 + 3 O2   2 Os + 2 B2O3      (5.1) 

This reaction produced changes in the stoichiometry of the parent OsB2 upon heating. 

During such a sacrificial reaction, oxygen reacts with OsB2 and a removal of B atoms from the 

lattice is realized through the formation of B2O3 followed by the precipitation of pure Os metal. 

This reaction was observed in the temperature range of 426-726°C. Such changes in phase 

composition upon heating in an Ar protective atmosphere with traces of oxygen presents resulted 

in the appearance of negative thermochemical expansion of a lattice parameter upon heating as 

well as significant changes of both a and c lattice parameters and the unit cell volume after 

cooling of the material from high-temperature experiments. It was also reported that while it was 

possible to retain the hexagonal structure upon heating of OsB2 powder in vacuum, upon 

sintering of material using spark plasma sintering about 20 wt% of hexagonal structure 
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transformed into the thermodynamically favored orthorhombic OsB2 phase. After sintering at 

1500°C, 50 MPa for 5 minutes of isothermal dwelling, the spark plasma sintered porous OsB2 

consisted of a mixture of 80 wt% hexagonal and 20 wt% orthorhombic phases. [221] The 

stability of newly synthesized hexagonal OsB2 upon heating in a hydrogen containing 

environment has never been investigated, but is important for understanding of the OsB2 thermal 

behavior, which might have significant implications for industrial usage of this material. Here we 

report our preliminary findings on the stability of ReB2-type hexagonal OsB2 powder upon 

heating in a 4 vol% H2/Ar environment. 

 

5.2 Experimental 

 

OsB2 powder was synthesized using mechanochemical method as described in [221, 

238]. After the h-OsB2 powder was synthesized, 3.5 grams of h-OsB2 was loaded into a 6.35mm 

diameter fused silica ampule in an Ar filled glovebox, sealed under vacuum (~7 Pa), and 

annealed for 144 hours at 1050 °C. Anton Paar XRK900 reaction chamber was used to heat up 

OsB2 powder sample for the high temperature (25°C to 875°C) X-ray diffraction (XRD) 

experiments. A PANalytical X'Pert Pro MPD system was used to collect XRD patterns at high 

temperatures. The OsB2 sample was kept under flowing Ar with 4 vol.-% H2 reforming gas 

atmosphere. XRD patterns were collected from 15° to 135° 2θ range with step size of 0.017°. 

Each scan took about 48 minutes and the scans were collected every 25°C upon heating and 

cooling. The experiment was stopped at 325°C upon cooling. While there was no indication of 

presence of oxygen in the high-temperature chamber during the heating experiments, the air 
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leakage was detected during the following XRD measurements. Small amount of water may also 

exist due to physisorption and/or chemisorption by the high surface area OsB2 powder. 

Therefore, the conditions of the heating OsB2 experiments cannot preclude the availability of 

certain unspecified amount of oxygen and water vapor in the Anton Paar XRK900 reaction 

chamber. After collection of X-ray diffraction patterns, refinement of the structure was 

performed using the HighScore Plus software. 

 

5.3 Results and discussion 

 

The in situ XRD results obtained during heating of hexagonal OsB2 in H2/Ar reforming 

gas are presented in Figure 44. 2D contour plot (Figure 44A) shows the presence of hexagonal 

ReB2-type OsB2 structure as a major phase at the beginning of heating, where only OsB2 peaks 

are present both at room temperature and at all diffraction patterns obtained upon heating up to 

400°C. In addition to OsB2 peaks, one extra peak at 2θ=36° belonging to Os2B3 structure was 

also identified (Figure 44B). However, at 450°C, the (002) peak belonging to pure metallic Os 

appeared and upon further heating the quantity of Os phase increased up to 725°C, where OsB2 

and Os2B3 phases were undetectable and only the Os phase could be detected. Once formed, the 

metallic Os phase remains stable up to 875°C upon heating and the phase was retained all the 

way down to the 325°C upon cooling. Therefore, it was found that upon heating of hexagonal 

OsB2 ceramic in the reducing environment of H2/Ar reforming gas, the complete reduction of 

OsB2 to metallic hexagonal Os phase takes place in the 375 - 725°C temperature range.  
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The results of the quantitative phase analysis of high-temperature XRD data are presented 

in Figure 45. As one can see from Figure 45, only hexagonal OsB2 and a small quantity of ~5 wt-

% of Os2B3 phases were present in the 25-350 °C temperature range. Above 350 °C, the 

quantities of boron rich OsB2 and Os2B3 phases began decreasing, while the quantity of the Os 

phase, which peaks first appeared at 450°C, continuously grew. The Os2B3 phase completely 

disappeared at 575°C while no quantities of hexagonal OsB2 phases could be detected above 

725°C. Once heated above 725 ˚C, only the Os phase was retained even upon cooling.  

 

Figure 44: In situ high-temperature XRD contour plot (A) and XRD patterns (B) of h-OsB2 upon 

heating and cooling under 4 vol% H2/Ar reforming gas atmosphere. 

 

The a and c lattice parameters along with the unit cell volume of hexagonal OsB2 phase 

as a function of temperature upon heating in 4vol.-% H2/Ar reforming gas are shown in Figure 
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46. Similarly to the results upon heating of OsB2 in Ar with traces of oxygen [221], the lattice 

expansion both in a and c direction along with volumetric expansion occurred upon heating from 

room temperature to about 300°C, however, upon reaching 325°C, the shrinkage of a lattice 

parameter began with a significant decrease from 325°C, where a was equal to 2.915Å, to 

425°C, where a became equal to 2.912Å. Then, upon further temperature increase from 425°C 

the a lattice parameter of OsB2 started increasing again until 625°C where the OsB2 phase could 

still be identified by XRD. Such shrinkage of the a lattice parameter was responsible for the 

negative coefficient of thermochemical expansion (CTCE) in the 300 - 425°C temperature range 

(Figure 46D and F). The smallest value of the CTCE measured at 375°C was equal to -7.0×10
-

6
/K in a crystallographic direction of the lattice as shown in Figure 46D. The c lattice parameter 

does not decrease upon heating, however, as one can see from Figure 46B, it expands much 

faster at higher temperatures (400 - 675°C) in comparison with its expansion in RT- 300°C 

temperature range. The lowest value of CTCE in c crystallographic direction was equal to 

3.9×10
-6

/K at 225°C, while the largest was equal to 25.0×10
-6

/K at 525°C (Figure 46E). The 

volume of the unit cell of OsB2 decreases in 325 - 400°C temperature range, but the shrinkage is 

not such significant as in a direction of the lattice, therefore the coefficient of thermochemical 

expansion does not reach such high negative values as the shrinkage in a direction brings (Figure 

46F). Yet, the changes in the volume of hexagonal OsB2 upon heating in H2/Ar are the most 

dramatic as coefficient of thermochemical expansion varies from -1.8×10
-6

/K at 325°C to 

43.5×10
-6

/K at 550°C. Such difference in CTCE of OsB2 at different temperatures would be a 

significant problem for practical applications of the material, unless the effect will find an 

advantageous use. 
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The calculated lattice parameters along with the unit cell volume of newly formed 

hexagonal Os metallic phase are shown in Figure 47. No dramatic changes of lattice parameters, 

such as in hexagonal OsB2, can be detected upon Os heating in H2/Ar reforming gas and almost 

linear thermal expansion is observed during both heating and cooling of the phase. The 

calculated CTEs of Os metal are presented in Table 9. 

 

Figure 45: Weight percentage of OsB2 (♦), Os2B3 (▲) and Os (●) as function of temperature upon 

heating under 4 vol% H2/Ar reforming gas atmosphere. 

  

Table 9: CTEs of Os metal in a, c and V upon heating and cooling under 4 vol% H2/Ar 

reforming gas atmosphere. 

 

 CTE of a (×10
-6

/°C) CTE of c (×10
-6

/°C) CTE of V (×10
-6

/°C) 

Heating 9.781 14.262 34.221 

Cooling 5.795 8.694 20.546 
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Figure 46: Lattice parameter a (A), c (B) and unit cell volume V (C) of OsB2 together with 

CTCEs of a (D), c (E) and V (F) as function of temperature upon heating under 4 vol% H2/Ar 

reforming gas atmosphere. 
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Figure 47: Lattice parameter a, c and unit cell volume V of Os as function of temperature upon 

heating (A, B, C) and cooling (D, E, F) under 4 vol% H2/Ar reforming gas atmosphere. 
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Because of the possibility of leakage into the high-temperature stage during the heating 

experiments under H2/Ar reforming gas there is a possibility of O2 molecules from air to enter 

the chamber, the exact reason for such complete reduction of OsB2 to metallic Os is unknown. 

However, if O2 molecules are present, then, similar to [238], the disappearance of OsB2 with its 

complete reduction to metallic Os could be explained by oxygen presence, where the sacrificial 

reaction (1) can take place leading to complete disappearance of OsB2 and appearance of Os and 

B2O3 as reaction products. While Os metal was detected and become the only phase detected 

upon heating of OsB2 under reforming gas, no traces of B2O3 phase were detected by XRD. B2O3 

is very difficult to detect by X-ray because it could also exist in the amorphous state after 

melting and it also evaporates out of the hot zone. The appearance of the O2 leak during the 

experiment would explain the phase changes and appearance of negative thermochemical 

expansion of a lattice parameter of OsB2. The enthalpy of formation and redox potential 

considerations support formation of Os by interaction of OsB2 with presence of O2 in H2/Ar 

reforming gas. While the oxygen can easily react with available hydrogen molecules, the 

enthalpy of formation for gaseous water is -241.8 kJ/mol [239], which is much less than that of 

B2O3 (-1273.5 kJ/mol) [239] and also less than that for osmium (IV) oxide (-337.2 kJ/mol) [239]. 

The enthalpy considerations support the fact that boron would get oxidized first before hydrogen 

and osmium reactions with oxygen forming a liquid with a melting point of 450 °C and 

evaporation temperature of 1860 °C, thus making reaction (3) entropically favored as well. Os 

would be oxidized to OsO4 with enough oxygen molecules present but B2O3 must to be formed 

first since its formation is enthalpically favored. In a hydrogen environment the reduction of 

OsO4 by hydrogen (Equation 5.2) is favored by -630 kJ/mol.  



 

 

128 

OsO4+4H2Os+4H2O       (2) 

Therefore, one can write the sacrificial reaction of OsB2 with H2 in O2 presence as consisting of 

two reaction steps (Equations 5.3 and 5.4). [112] 

OsB2+3.5O2OsO4+B2O3   (-1566.7 kJ/mol)  (3) 

OsO4+4H2Os+4H2O   (-630 kJ/mol)    (4) 

The overall sacrificial reaction is presented in Equation 5.5.  

OsB2+3.5O2+4H2Os+B2O3+4H2O  (-2195.7 kJ/mol)   (5) 

If boron monoxide (BO) is formed instead to B2O3, the reaction is less favored (Equation 5.6). 

OsB2+3O2+4H2Os+2BO+4H2O (-902.6 kJ/mol [240])  (6).  

The schematic of the steps of OsB2 reduction are presented in Figure 48. Previous work has 

suggested that BO is a transient species responsible for the oxygen etching of boron and is 

formed from B2O3. [231, 241] Similarly metal diborides such as OsB2 could be oxidatively 

etched by the formation and partial sublimation of B2O3 (Equations 5.7-5.10). 

OsB2 + (3x/4)O2  OsB(2-x) + (x/2)B2O3     (7) 

B2O3 + OsB2  3BO + OsB       (8) 

B2O3 + OsB  3BO + Os       (9) 

4BO + 3O2  2B2O3      (10) 

  



 

 

129 

 

Figure 48: The schematic of the steps of OsB2 reduction to metallic Os upon heating in H2 and 

O2 containing environment. 
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Previous studies have shown that the valence state of Os in OsB2 compound [242] is 0 

while the boron atoms are both oxidized and reduced from elemental boron to become half B
3+

 

and half B
3-

 for unit cell neutrality. The existence of zero valent osmium in h-OsB2 is possible 

because of the layered nature of the crystal structure of OsB2 where layers of Os atoms not 

carrying charges are sandwiched between sheets of B layers which are charged positively and 

negatively in both sides of Os sheets. If one would remove, by etching or other means, the layers 

of Os atoms from the lattice, it would be possible to obtain 2D B sheets. With such arrangements 

of the distribution of charges in OsB2, the reaction 2OsB2+3O22Os+2B2O3 requires six oxygen 

atoms to be reduced (12e
-
) and 2 B (3-) atoms to get oxidized to B (3+) state (12e

-
). 

 

5.4 Conclusions 

 

The thermal stability of novel hexagonal ReB2-type OsB2 phase upon heating in 4 vol.-% 

H2/Ar reforming gas was investigated. It was found the OsB2 was very easily and totally reduced 

to the pure Os metallic phase in the 375-725°C temperature range, where the first peaks of 

metallic Os were detected at 450°C and the h-OsB2 phase completely disappeared upon heating 

above 725°C. Although significant negative coefficient of thermochemical expansion of OsB2 

phase was observed, it can be explained by presence of oxygen in the thermal chamber. 
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CHAPTER 6: THERMAL ANALYSIS OF HEXAGONAL OsB2 

 

6.1 Introduction 

 

Boron rich solids play an important role in many industrial applications. Many of them 

have superior mechanical properties [243, 244], high wear resistance [245, 246], high catalytic 

activity [247], and excellent electron emission properties (LaB6) [248, 249], while some of the 

borides are rather stable in oxygen containing environment at room temperature (B4C, TiB2, etc) 

[243, 244, 250] or even at high temperatures [226, 228, 232, 233, 235], however for many 

borides the presence of oxygen molecules possess a significant treat because they are prone to 

the oxidation and form very easily volatile B2O3 and BO compounds that significantly decrease 

their useful applications. Recently a number of publications appeared on synthesis and properties 

of ReB2 and OsB2 compounds, which were reported to have remarkable mechanical properties, 

such as hardness and stiffness, but the stability of the compounds upon the contact with oxygen 

molecules was very questionable. It was reported that interaction of ReB2 with water moisture 

present in air at the room temperature led to formation of the perrhenic acid with a complete 

degradation of properties of the material [213]. The minor presence of oxygen molecules upon 

heating of hexagonal OsB2 nanopowder induced an interaction of O2 with boron atoms in OsB2 

lattice resulting in the formation of boron vacancies, negative thermochemical expansion, 

formation of boron oxides, and even precipitation of metallic Os [251]. A schematic of O2 

interactions with OsB2 lattice upon heating in Ar where a minor presence of oxygen was detected  
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Figure 49: A schematic of O2 interactions with OsB2 lattice at different temperature upon heating 

in Ar where a minor presence of oxygen. 

 

is shown in Figure 49. Even when the presence of strongly reducing H2 containing environment 

was used upon heating, the traces of oxygen helped facilitating the complete reduction of OsB2 
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to metallic Os [252], thus rising many questions about usefulness of the compound when O2 

molecules are present even in non-significant quantities. Yet, while certain progress are achieved 

in understanding of thermal stability of hexagonal OsB2 phase upon heating when O2 molecules 

were present, still many questions remained opened, such as what would be the stability of OsB2 

in the low oxygen partial pressure environment, such as high vacuum microscope column or if 

there is any specific O2–OsB2 surface interactions upon heating. This paper will present our 

results of studying the thermal behavior of hexagonal OsB2 nanopowder upon heating as studied 

by thermogravimetry (TG), coupled with mass spectroscopy (MS), differential scanning 

calorimetry (DSC), and high temperature transmission electron microscopy (TEM), while the 

characterization of the nanopowder was also performed by secondary ion mass spectroscopy 

(SIMS) to identify the impurity present in the nanopowder before heating. 

 

6.2 Experimental 

 

The hexagonal OsB2 powder was synthesized with mechanochemical method as 

described in section 3.2 and 4.2. After synthesis, the powder was annealed at 1050°C for 144 

hours in vacuo. Adept 1010 Dynamic SIMS System (Physical Electronics USA) has been used to 

collect mass spectra for the samples. Cs primary beam of 3kV and 25nA or 50nA was rastered 

over area 1000×1000μm. Both negative and positive secondary ions were collected. An auxiliary 

e-gun was used for charge neutralization. A thermogravimetric (TG, TA Instruments) - mass 

spectrometer (MS, ThermoStar) system was used to measure the weight changes of the sample 

upon heating up to 1000°C and also to monitor the off-gas composition while heating. A 
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differential scanning calorimetry (DSC, TA Instruments) was also used to study the thermal 

stability of hexagonal OsB2 with 2 heating runs up to 500 °C and 1 cooling run to room 

temperature. Both TG and DSC were performed with a helium flow. A JEOL JEM2200FS 

aberration-corrected scanning transmission electron microscope (STEM) was used to obtain 

images of the nanoparticles while the powder was under heating in the column. 

 

6.3 Results and Discussion 

 

The hexagonal OsB2 nanopowder was synthesized using mechanochemistry. [221, 251] 

To remove the strain introduced during high energy ball milling the powder was annealed at 

1050°C for 144 hours in vacuo. After annealing, it consisted mostly of hexagonal OsB2 phase 

(95 wt%), but small quantities of Os2B3 phase (5 wt%) has also been detected by XRD. A 

number of impurities, such as Li, Mg, Al, Si, K, Cr, Fe, Co, Ce positive ions as well as F, Cl, O 

and H negative ions have been identified by SIMS as present in hexagonal OsB2 powder after 

synthesis and annealing (Figure 50). Co may be from the milling vial and milling media, in 

which the Co is used as binder. Other metal impurities may be from the raw Os metal powder, 

which was used for the synthesis. The existence of O and H suggested that the powder was 

partially oxidized and absorbed moisture. 
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Figure 50: Positive secondary ion mass spectroscopy (A, B and C) and negative secondary ion 

mass spectroscopy (D). 

 

Upon heating of OsB2 powder in flowing the gas the weight changes were recorded by 

TG and the off-gasses are analyzed by the attached mass spectrometer (Figure 51A and B). A 

significant decrease in the weight of the powder was observed at the beginning of the heating up 

to 255°C, where the weight continued to stay more or less stable until the increase of the weight 

of the powder initiated at the 378 °C. The weight increase continued up to 1000 °C where it 
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facilitated even further, as one can see in the change of the slope of weight–temperature plot. The 

analysis of off-gas by the mass spectrometer indeed revealed a presence of both oxygen 

molecules and atoms, along with water vapors, as well as N2, CO2 gases, indicative the presence 

of air gas during the annealing in flowing He (Figure 51B). To detect possible chemical reactions 

or phase transitions which might occur upon heating of hexagonal OsB2 nanoparticles, the DSC 

scanning of OsB2 powder was also performed. Two endothermic peaks appeared at low 

temperatures upon heating of the powder. The onset of the first peak occurred at 100 °C due to 

boiling of water absorbed on the surface of nanopowder. The second smaller peak was associated 

with a decomposition of boric acid (H3BO3), which occurred at 145.8 °C. What is interesting that 

after first heating till 500°C, no peaks were detected to occur both upon cooling of the hexagonal 

OsB2 powder and upon heating of the powder till 500 °C for a second time. Thus, one can 

conclude that the weight loss at the beginning of heating was associated with the desorption, 

decomposition and removal of the H2O and H3BO3 from the surface, which the weight gain upon 

further heating was initiated by the surface oxidation of OsB2 nanopowder as oxygen species 

were present in the environment when TG experiment was running. 
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Figure 51: The thermogravimetric analysis and differential scanning calorimetry (A) and the 

mass spectra of off-gas (B). 
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The in situ high temperature TEM has recorded the changes for a few hexagonal OsB2 

crystallites versus temperature upon heating. As shown in Figure 52, the distances between 

lattice fringes increase with temperature increased. It can be clearly seen from Figure 53 that the 

distances between lattice fringes increased slowly before 300 °C, but the slope changed 

significantly after the temperature is higher than 300 °C. At the maximum measured temperature, 

900°C, the distance of lattice fringe has changed to 0.417 nm from 0.396 nm at room 

temperature. The increase of the distances between lattice fringes is due to the thermal expansion 

of the hexagonal OsB2 lattice. Here the powder did not show negative thermochemical expansion 

as observed in [221, 251] is because the high vacuum in the TEM column eliminated the 

possibility of oxidation of the hexagonal OsB2. Thus the negative thermochemical expansion 

does not exist. From Figure 52, the crystallite sizes have also been measured and presented 

statistically in Figure 53. The changes on the left side of images in Figure 52 have shown that the 

crystallite size increases and the crystallite number decreases with temperature increases. From 

the crystallite sizes versus temperature curve (Figure 53), the obvious slope change started from 

700 °C, where crystallite size increased tremendously. At the maximum measured temperature, 

the average crystallite area has changed to ~68 nm
2
 from ~5 nm

2
 at room temperature. The 

changes in other particles are also shown from to Figure 54 to Figure 55.  
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Figure 52: In situ high temperature TEM micrographs of hexagonal OsB2 at 25°C (A), 300°C 

(B), 700°C (C) and 900°C (D). 
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Figure 53: Lattice fringes and average grain area as function of temperature and grain area 

distribution of OsB2 at 25°C (A), 300 °C (B) 700°C (C) and 900 °C (D). 
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Figure 54: In situ high temperature TEM micrographs of hexagonal OsB2 at 25°C (A), 300°C 

(B), 700°C (C) and 900°C (D). 
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Figure 55: In situ high temperature TEM micrographs of hexagonal OsB2 at 25°C (A), 300°C 

(B), 700°C (C) and 900°C (D). More in situ high temperature TEM micrographs are shown in 

Appendix B from Figure 93 to Figure 97. 
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6.4 Conclusions 

 

The purity of synthesized hexagonal OsB2 was studied with secondary ion mass 

spectroscopy. Metal impurities such as Li, Mg, Al, Si, K, Cr, Fe, Co and Ce, as well as non-

metal impurities such as F, Cl, O and H were observed. The presence of O and H suggested that 

the powder was partially oxidized and absorbed moisture. This is consistent with the appearance 

of the 2 peaks in first heating cycle of the DSC curve, due to the evaporation of water and 

decomposition of boric acid. The weight loss part in the TG curve is due to evaporation of water, 

and the weight gain part is due to the oxidation of the powder. The sintering process of the 

hexagonal OsB2 particles has also been studied by in situ high temperature TEM. The thermal 

expansion of hexagonal OsB2 was reflected in the expansion of the lattice fringes. 

 

 

 

 

 

 

  



 

 

144 

CHAPTER 7: HEXAGONAL OsB2: SINTERING, MICROSTRUCTURE 

AND MECHANICAL PROPERTIES 

 

7.1 Introduction 

 

Modern materials science and engineering places a significant emphasis on the rational 

design and processing of new materials possessing superior mechanical and functional 

properties, and novel hard materials are one of the focal points of this development [4-9, 146]. 

The synthesis and discovery of novel metastable ceramic compounds are of the major 

importance both from a fundamental science point of view and for the advances in industrial 

applications. Borides are an important class of the ceramic materials exhibiting many unique 

properties [29, 52, 53, 244, 253] and, therefore, much research has been performed to design and 

develop new boride compositions by different routes [29, 45, 53, 57, 71-73, 144]. Recently, the 

mechanochemical synthesis of hexagonal ReB2-type OsB2 ceramics has been reported [221, 

222]. The synthesis was done utilizing high energy ball milling of elemental Os and B powder by 

WC balls, where the presence of severe shear stress facilitated the solid state formation of 

previously unknown metastable hexagonal P63/mmc phase of OsB2 during mechanochemical 

synthesis. The obtained hexagonal OsB2 powder with a=2.916Å and c=7.376 Å lattice 

parameters was studied for high-temperature stability in different environments and it was 

concluded that its structure was stable upon heating at 1050°C for a significant period of time in 

vacuo. It was reported that the crystallite size of hexagonal OsB2 increased from 5.1 nm to 19.8 
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nm after annealing at 1050°C for 6 days in vacuo as measured by FWHM of (101) peak from X-

ray diffraction pattern [221], and the crystalline grain size increased from 4.8 nm at RT to 8.2 nm 

at 900°C after heating the powder in a TEM microscope column for about 1 hour. [254] It was 

also possible to retain the ReB2-type hexagonal structure after densification of OsB2 powder 

using spark plasma sintering. The SPS was performed at 1500°C for 5 minutes, where a porous 

bulk OsB2 ceramic was produced containing a mixture of ~80wt% hexagonal OsB2 (h-OsB2) and 

~20wt% orthorhombic OsB2 (o-OsB2) phases. [221]  

The mechanical behavior of orthorhombic OsB2 was studied to some extent in the past. 

[29, 32, 53, 94, 114, 115, 121, 124, 126] In one of the first publications, the remarkably high 

resistance to bond shrinkage in orthorhombic OsB2 at applied compressive stresses was reported 

[53]. The bulk modulus of orthorhombic OsB2 measured using high-pressure X-ray diffraction 

was calculated to be in the range of 365-395 GPa depending on fitting parameters. It was also 

shown that b-direction of the lattice is most compressible, while the c-direction is the least 

compressible in o-OsB2. It was noticed that compressibility along c-axis (001) was even less than 

the analogous linear compressibility of diamond. Furthermore, it was suggested that o-OsB2 has 

hardness higher than that of sapphire, as it was possible to scratch sapphire windows with the o-

OsB2 powder [53]. The hardness of (001) plane of o-OsB2, produced by arc-melting, was 

reported to be equal to 36 GPa in the 0.6-0.8N loading range and it decreased to 30 GPa when 

the load increased to 1N [121]. In another paper, Vickers hardness of o-OsB2 was also reported 

to be about 37 GPa with the applied load at 0.245N [29], but decreased to less than 20 GPa when 

applied load increased to 2N. The anisotropy in hardness value was also reported with an average 

hardness along <001> crystallographic direction measured to be equal to 12.5 GPa and along 
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<100> direction measured to be equal to 23.2 GPa at 1.96N maximum applied load. Such 

anisotropy in hardness was explained by highly covalent bonding with a very short bond length 

of 1.80 Å in the <100> direction and, in contrast, the absence of meaningful B-B bonds in <001> 

direction with the closest B-B distance equal to 4.10 Å. In the same paper the average 

nanoindentation hardness using Berkovich indenter was reported to be equal to 21.6 ± 3.0 GPa at 

the maximum load of 490mN. The Young’s modulus of o-OsB2 was measured to be 410 ± 35 

GPa by nanoindentation [29]. The ideal shear strength of OsB2 was estimated in [124] and it was 

reported to be rather low (9.1 GPa), which means that o-OsB2 might not be suitable for the 

practical applications where shear stress plays a significant role. In addition to the experimental 

work on measuring of hardness and Young’s modulus, a few papers have been published on the 

mechanical properties of o-OsB2 estimated by first-principles calculations [58, 94, 112, 123, 126, 

131] The hardness along the c axis was reported to be estimated as 45.5 GPa, along the a axis 

was reported as 25.6 GPa, and along the b axis was equal to 37 GPa for o-OsB2 [94]. The model 

used in [94] was based on the bond strengths of the nearest neighboring atoms and on the 

projections of the direction of these bonds into the plane of indentation. The highest value of 

hardness along the c-axis was explained by high concentration of B-B bonds, which form 

hexagonal B rings perpendicular to the c axis with the large electron densities in short and highly 

directional strong B-B bonds. Such availability of B-B bonds results in the highest value of 

hardness along the c-axis in o-OsB2 [94]. It was shown that transversely oriented bonds are the 

key factor determining hardness and it was also shown that no clear relationship exists between 

hardness and bulk modulus of a material. The estimated hardness of o-OsB2 equal to 27.9 GPa 

was reported in [126]. In the same paper the calculations of Young’s, shear and bulk moduli 
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were reported along with hardness. For the calculations, the experimentally determined structural 

data were used as input parameters in the model [114, 115]. One of the structures reported in 

[114] was wrongfully identified as h-OsB2, while most likely the phase under investigation was 

OsB1.1; that is why no report on experimentally produced ReB2-type OsB2 material can be found. 

Thus, mechanical properties of o-OsB2 have been reported in a number of publications [29, 32, 

53, 94, 121, 126, 255], however the mechanical behavior of the newly synthesized h-OsB2 phase 

is unknown. It is fair to expect that the mechanical properties, namely H and E, could be higher 

for h-OsB2 than those of o-OsB2 structure, as the density of hexagonal OsB2 is higher, the unit 

cell is smaller, and, therefore, the bonds are stronger in this ceramic compound, thus giving 

advantage in improvement of mechanical properties of hexagonal over orthorhombic OsB2 

phase. In this paper we report the details of the processing of bulk OsB2, its microstructure and 

some of its mechanical properties, namely hardness, Young’s modulus and indentation stress – 

indentation strain deformation behavior as measured by nanoindentation. 

 

7.2 Experimental 

 

Osmium metal powder (99.95% pure, Heraeus, South Africa) and boron powder (99% 

pure, -325 mesh, a mixture of amorphous and crystalline phases, Alfa Aesar) were used for the 

mechanochemical synthesis of OsB2. Enough Os and B powders (molar ratio 1:3) were loaded 

into a WC vial with two 12.7mm WC balls to produce a ball to powder weight ratio of 2.7:1. The 

balls and vial used in the milling were covered with OsB2 product formed from previous milling 

syntheses. All loading operations were carried out in an argon-filled glovebox. The vials were 
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sealed with Viton gaskets to reduce oxygen contamination during milling. The milling was 

performed in a SPEX 8000D mixer mill for a total of 20 hours. Every 30 minutes the milling was 

interrupted and vials were left for 30 minutes without grinding in order to decrease the vials’ 

temperature and reduce wear on the mill’s motor. The synthesized OsB2 powder was sintered 

using fast current assisted technique (SPS25–10, Thermal Technologies, CA). The sintering of 

the powder packed in the graphite die was performed at 1500°C, 50MPa for 5 minutes with the 

heating and loading rates of 47°C/min and 10MPa/min, respectively. A PANalytical X'Pert Pro 

MPD system was used to collect XRD pattern of the bulk OsB2 sample after SPS. The polished 

sample surface was examined in a Zeiss Merlin scanning electron microscope (SEM) equipped 

with energy dispersive X-ray spectroscopy (EDS) detector. Electron backscatter diffraction 

(EBSD) analysis was performed in a JEOL JSM 6500F equipped with an EDAX EBSD system. 

The specimens were prepared for EBSD by mounting in epoxy and mechanically polishing the 

surface, with a final polish using colloidal silica. Electron transparent cross sections were 

prepared for transmission electron microscopy (TEM) analysis by focused ion beam (FIB) 

milling. An image was taken during the FIB milling, as shown in Figure 56. Additional thinning 

was performed using a Fishione Nanomill. Electron diffraction patterns were acquired in an FEI 

Tecnai operated at 200kV and bright-field scanning transmission electron microscopy (STEM) 

images were recorded in a JEOL 2200FS. Nanoindentation tests were performed using Hysitron 

nanoindenter equipped by a conical indenter with a tip radius of 0.222µm at École Polytechnique 

Fédérale de Lausanne (EPFL), Switzerland. Micrographs of the impressions were taken with 

SEM. 
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Figure 56: An image of the sintered OsB2 sample during FIB milling (TEM sample preparation). 

 

7.3 Results and discussion 

7.3.1 SPS of OsB2 

 

The temperature and pressure applied during SPS of hexagonal OsB2 powder along with 

the powder shrinkage measured during sintering are presented in Figure 57. As one can see from 

Figure 57 at the beginning of the heating, the small expansion of the material was observed, 

which is explained by the thermal expansion of the lattice as temperature rises. The temperature 
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was not high enough at the beginning of heating to initiate diffusion and start the densification of 

the powder, therefore it is not expected that a sintering process accompanied by shrinkage would 

occur at such low temperatures upon heating. Only expansion of the sample due to thermal 

expansion of the material’s lattice can be detected upon heating from room temperature to 

around 685°C before the pressure was applied. Upon further increase of the temperature from 

685°C to 1000°C the sintering process slowly started as a small shrinkage of the material can be 

seen in this temperature range. At 1000°C the pressure was applied, reaching 50MPa maximum 

pressure at 1220°C resulting in a significant densification of the whole powder (Figure 57). Upon 

further temperature increase, a small shrinkage was observed in 1425-1500°C temperature range 

and then slow densification continued upon isothermal dwell at 1500°C for 5 minutes. While a 

certain non-significant amount of shrinkage occurred during the isothermal dwell, the process 

did not come to the finish and therefore the material did not become fully dense. After 5 minutes 

dwell time, the cooling of material was initiated and, as the temperature started decreasing, the 

further shrinkage of the bulk sample occurred mainly because of the shrinkage of the lattice upon 

temperature decrease. Thus, as a result of incomplete densification of h-OsB2, a rather porous 

bulk material was produced. The OsB2 pellet after spark plasma sintering is shown in Figure 58. 

The X-ray analysis of the bulk OsB2 revealed that while before sintering only h-OsB2 with small 

(5 wt%) amount of Os2B3 was present, after sintering no Os2B3 phase was identified in the 

material. However, a part of the hexagonal OsB2 lattice transformed into orthorhombic structure 

(Figure 59). The bulk material after sintering consisted of 80 wt% of hexagonal (P63/mmc) OsB2 

and 20 wt% of orthorhombic (Pmmn) OsB2 phase, as identified by Rietveld refinement of XRD 

pattern, and no any other phase was found as all peaks were assigned to h-OsB2 or o-OsB2 
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structures. The similar phase composition of the spark plasma sintered OsB2 was identified by 

electron backscatter diffraction (EBSD), where 77.3 wt% of the grains were identified as 

belonging to the hexagonal OsB2 structure and the rest 22.7 wt% were identified as an 

orthorhombic OsB2 (Figure 59). Some areas presented as a black phase on EBSD map might 

belong to the rhombohedral B (r-B), however, the possible r-B regions did not generate enough 

signal to be positively indexed as elemental B. Thus, the locations are identified as either pores 

or r-B in the EBSD phase map. The EBSD map showing grains misorientation after sintering is 

presented in Figure 59. The measured density of the sintered material was equal to 9.46 g/cm
3
, 

thus the simple calculations revealed that material contained 26.9% of porosity. In the density 

calculations the 12.97 g/cm
3
 theoretical density of h-OsB2 [221] and 12.83 g/cm

3
 theoretical 

density of o-OsB2 [115] were used. 

7.3.2 Microstructure of sintered OsB2 

 

The optical micrograph of a polished surface of OsB2 ceramic after SPS is shown in 

Figure 60A. As one can see from Figure 60A, the OsB2 sample has macroscopically very 

inhomogeneous regions after sintering where areas with high level of porosity are adjusted to the 

areas with lower porosity. The more dense regions, with an average size of 105 µm are typically 

surrounded by large pores and other highly defective areas. The STEM micrograph of OsB2 after 

FIB followed by ion milling is shown in Figure 60B, where porous regions along with ceramic 

grains can be seen. The SEM images of the polished surface were taken both with secondary 

(Figure 60C) and backscattered (Figure 60D) electron detectors showing some non-

homogeneous distribution of elements as well as presence of the porosity. The different contrast 
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between grains in Figure 60D taken by the back-scattered electron detector could be explained 

both by difference in the content of elements and also difference in crystallographic orientation 

of the grain. Both the TEM (Figure 60B) and EBSD (Figure 60B) along with SEM (Figure 60C 

and D) images were used to calculate an average grain size of OsB2 after sintering. The obtained 

results with a distribution of grain sizes are presented in Figure 61, where the average grain size 

of OsB2 was calculated to be equal to 0.56 µm. The TEM micrographs with corresponding 

electron diffractions as well as images of lattice fringes of typical hexagonal and orthorhombic 

OsB2 grains are shown in Figure 62. Both hexagonal and orthorhombic grains have rather sharp 

and well defined facets, clear grain boundaries. Electron diffraction shows that the grain 

presented in Figure 62A has a hexagonal structure and is oriented along [110] direction as shown 

in Figure 62B, and the grain presented in Figure 62D has an orthorhombic structure with 

orientation of along [100] direction as presented in Figure 62E. The corresponding lattice fringes 

of the two grains are presented in Figure 62C and F along with FFT patterns of the 

corresponding structures. As one can see in Figure 62A, the hexagonal grain exhibits the 

presence of well-defined linear defects, which could be either dislocations or even tiny micro-

cracks present along the length of the grain. One of the possible reasons that such defects exist 

inside grains of OsB2 is the damage by focused ion beam during sample’s preparation for TEM 

study, but regardless of the reason, the presence of such defects is indication of the brittle nature 

of OsB2 since such defects might easily facilitate the brittle failure of the grain and be 

responsible for high overall brittleness of the OsB2. 
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Figure 57: A sintering regime used for densification of hexagonal OsB2 powder. Both 

temperature, pressure, and shrinkage data were collected during spark plasma sintering as a 

function of time. 

 

 
 

Figure 58: The OsB2 sample after spark plasma sintering (left), and a US quarter coin (right) for 

comparison of the sizes. 
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Figure 59: X-ray diffraction pattern of sintered OsB2 ceramics (A), along with a phase 

composition map (B) and corresponding EBSD map (C) where the phase content (A and B) as 

well as crystallographic orientation of each individual OsB2 grain could be identified (C). 
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Figure 60: Microstructure of OsB2 after SPS (A). The optical micrograph shows a 

nonhomogeneous densification. (B) TEM micrograph of OsB2 where the grains are clearly 

visible but also quite a high numbers of pores are also present. (C) SEM micrograph of OsB2 

polished surface taken using InLens detector and (D) the SEM micrograph of the same OsB2 

surface as in (C) but produced using backscattered ESB detector. 

 
Figure 61: Grain size distribution of OsB2 ceramics after SPS calculated from the results 

presented in Figure 59C, Figure 60B and D. The average grain size is equal to 0.56µm thus the 

produced OsB2 is a submicron ceramics. 
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Figure 62: TEM micrographs of hexagonal (A) and orthorhombic (D) OsB2 grains with the 

corresponding electron diffraction patterns (B and E, respectively), along with their high 

resolution images and the corresponding FFT patterns (C and F). 
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The distribution of elements in the OsB2 ceramics after sintering was studied by EDS. 

Figure 63 shows the overlapping EDS spectra collected from the area 1 (within a pore) and 2 (at 

the surface of material surrounding a pore) where it is shown that the high B concentration 

within the pore with some amount of O and no Os present in area 1, while the Os and some 

quantity of B along with O and W peaks can be detected from area 2 of the polished surface. 

Thus, it was detected that certain B and O rich phase(s) exist inside pores. The Os, B and O maps 

of OsB2 ceramic were also created and they are shown in Figure 64. The maps show that the 

separation of Os and B was observed in OsB2 ceramics, as it was found that the high 

concentration of B has always been detected in the grains where Os was deficient (Figure 64 a, b 

and c), similar to the results presented in Figure 63. The boron concentration within the 

identified locations was much higher in comparison with the rest of the area mapped by EDS. 

Some oxygen was also detected within pores (Figure 64d), but locations did not overlap 

regularly with Os or B signals.  

TEM of the phases located within pores of sintered OsB2 was performed (Figure 65), and 

suggested the presence of two types of phases. One phase (Figure 65A) was identified as 

rhombohedral elemental B, as shown in the corresponding electron diffraction (Figure 65B). The 

presence of small grains (Figure 65D) with an average grain size of 188nm in another examined 

pore (Figure 65C) was also discovered, which based on EDS analysis, was assigned to the B2O3 

phase. As the quantity of both r-B and B2O3 was not sufficient to be detected by X-ray analysis, 

XRD pattern did not show their presence, as only h- and o-OsB2 phases were detected (Figure 

59A). 
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Figure 63: SEM micrograph of the polished OsB2 ceramics with corresponding EDS spectra 

collected at two different areas on the surface. The area 1 highlighted within dark field (a pore), 

enriched in B while no Os can be detected, while the area 2 highlighted at the surface of OsB2 

ceramics surrounding the pore is enriched in Os. 
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Figure 64: SEM micrograph of the polished surface of OsB2 ceramics after sintering with 

corresponding distribution of Os (B), B (C), and O (D) elements collected as EDS maps. 
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Figure 65: TEM image of the material present within a pore in OsB2 sample after sintering (A); 

the corresponding electron diffraction pattern of the area highlighted with a dashed circle (B); 

TEM micrograph of the material located in a different pore (C); along with higher resolution 

image of the selected location with a pore highlighted with a dashed rectangle (D). 
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7.3.3 Mechanical behavior of OsB2 

 

(1) Calculation of hardness, Young’s modulus, indentation stress – indentation strain 

deformation behavior, elasticity and ductility indices 

The nanoindentation load-displacement plots obtained by using both spherical and 

Berkovich sharp indenters were used for the calculation of both hardness and Young’s modulus 

of OsB2 and for conversion of load-displacement into indentation stress – indentation strain 

plots. The Oliver and Pharr method [125] was used for the extraction of hardness and Young’s 

modulus values, where Er is a so called reduced modulus of the indenter and the specimen 

system is expressed as  

i

i

s
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r
EEE

22
111  




      (6.1) 

for the case if the indenter is assumed to behave as an elastic solid and ν is the Poisson’s ratio, E 

is the Young’s modulus, and the subscripts s and i refer to the specimen and the indenter, 

respectively. From the unloading part of the load-displacement curve the effective Er can be 

estimated as 

A

S
Er

2


       (6.2) 

where S is taken as the slope of the unloading curve at the beginning of unloading and A is the 

projected contact area. A is determined from a nanoindenter area function A(hc), where hc is the 

distance from the contour of contact to the maximum penetration depth. The following 

expression was proposed for the computation of hc [125] 
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S
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        (6.3) 

where h and P are the displacement and the load from measured nanoindentation diagram. It was 

determined that the area function A(hc) was presented by the following equations 

ccc hhhA 139714.3)(
2  [nm

2
]     (6.4) 

for spherical diamond nanoindenter used in the present studies. The hardness of the material was 

determined using the following standard equation: 

A

P
H         (6.5) 

where P is the maximum load of nanoindentation, A can be found using Eq. (4) or from SEM 

image of corresponding impression. From the contact area A the radius of contact for certain h 

and P can be calculated as  



A
a         (6.6). 

Once the radius is calculated, then the following equations were used for conversion of load-

displacement into indentation stress-indentation strain plots [256] 

2
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           (6.7)  

and 

a

h
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

3

4
        (6.8). 

By converting load-displacement data into indentation stress-indentation strain plots the elastic 

part 

indrind E          (6.9)  
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of the loading segment of nanoindentation diagram can be revealed as well as a yield point, 

where the deviation from the linear behavior and the onset of plastic deformation can be 

visualized.  

The material can be also characterized by elasticity and ductility indices. The elasticity 

index is defined as  

rE EHI / ,      (6.10),  

where H  is the hardness and *E  is the reduced modulus [257-259]. The elasticity index of the 

most brittle ceramics ranges from 0.3 to 0.05 and of ductile metals from 0.005 to 0.001 [257, 

258]. The indentation ductility index was defined as follows [257]: 

maxh

h

U

U
D r

t

r  ,     (6.11) 

where 
rU  is the consumed energy for creating the residual impression, tU  is the total 

work at maximum load, 
rh  is the residual depth of indentation, maxh  is the maximum depth of 

indentation at maximum load. The ductility index must be 1 for a purely plastic (purely ductile) 

body without elastic recovery during unloading and 0 for a purely elastic body exhibiting a 

complete unloading recovery in an elastic manner. With the increase in the elasticity index, the 

ductility index decreases from 1 to 0. [257] 
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Figure 66: SEM micrograph of the two impressions produced by nanoindentation of polished 

OsB2 surface with a spherical indenter with a load of 8 mN. 
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(2) Hardness, Young’s modulus, indentation stress – indentation strain behavior, elasticity and 

ductility indices of OsB2 

The direct measurements of the OsB2 hardness after SPS were performed using equation 

(5). The nanoindentation was performed with a spherical diamond indenter to the maximum load 

of 8mN and the area of the residual impressions was estimated from the SEM micrographs. The 

average hardness value obtained by direct measurements of the projected area of the impressions 

was equal to 34.24±3 GPa. The typical impression is shown in Figure 66A. It is visible from the 

image that, while the hardness of the material is rather high in this location, the radial cracks 

have been formed even at such low maximum load as 8mN. The formation and propagation of 

the radial cracks during the indentation is an indication of the brittleness of the OsB2 ceramics. 

While most of the impressions produced during the indentation using conical indenter at 8mN 

maximum load looked like the one presented in Figure 66A, one of the 25 impressions had a 

very different pattern with a number of layers squeezed out of the material during indentation 

(Figure 66B). The diameter of the impression was much bigger in comparison to the average 

value of other impressions, providing the hardness values of only 22.8 GPa. It is possible that, 

since material is not homogenous and some phases do not belong to OsB2 and are non-detectable 

by XRD, the indentation was made into B grain presents or even in B2O3 phases, thus showing 

lower value of hardness. 

To estimate hardness and Young’s modulus of OsB2 [125], the nanoindentation was 

performed in the displacement control mode with the maximum depth of penetration not to 

exceeding 70nm. The total of 50 impressions has been made and 50 load-displacement diagrams 

have been collected, which were used for the calculation of hardness and Young’s modulus from 
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the beginning portion of the unloading curve, as well as for the conversion of load - displacement 

into indentation stress - indentation strain plots. For the calculation of Young’s modulus by 

Oliver and Pharr’s technique, the value of Poisson’s ratio of material is required. However, as no 

measured values of Poisson’s ratio were found in the literature for hexagonal OsB2, the 0.18 

value were taken for the calculations, as the compound is very stiff and rather hard. In one of the 

publications [126], 0.27 was provided as a calculated Poisson’s ratio for the orthorhombic OsB2 

phase, however, such relatively high values are more characteristic for more soft ceramics, while 

stiff ceramics, such as B4C, TiB2 and ZrB2 are all reported as having 0.14-0.18 values of 

Poisson’s ratio. Thus, for the estimation of Young’s modulus of OsB2 using nanoindentation 

load-displacement diagrams, the arbitrary 0.18 value for Poisson’s ratio was used. The difference 

in estimated Young’s modulus values is not significant, as when Poisson's ratio is 0.18 ± 0.018, 

relative error for Young modulus is only 0.7%. By analyzing the available load-displacement 

plots, it was found that the majority of the diagrams (36 out of 50) contained the so called “pop-

in” events at the loading portion of the plots. The example of such diagram and its conversion to 

the indentation stress – indentation strain plot is shown in Figure 67. The hardness calculated 

from such diagrams was equal to 31 ± 9 GPa and Young’s modulus was calculated to be equal to 

574 ± 112 GPa. Upon conversion of the load – displacement diagram (Figure 67A) into 

indentation stress – strain diagram (Figure 67B), one can see that a very high stress level exists 

below the spherical diamond indenter during indentation. In addition to the possibility of 

estimation of level of stress and strain during nanoindentation, another advantage of the 

conversion of load – displacement into stress – strain data is a possibility to estimate a “yield” 

stress of the material, as it is typical that at the beginning of loading the indentation stress is 
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directly proportional to the indentation strain and it is only after achieving certain “yield” stress 

that the deviation from the linear deformation starts taking place. An example of the “yield” 

stress σy estimation is presented in Figure 67B. The σy calculated using all 36 indentation plots 

provided the 23 ± 7 GPa average value. Thus, the nanoindentation experiments indicated that 

both hexagonal and orthorhombic OsB2 phases are relatively hard and rather stiff with a high 

yield stress values, as determined by hardness, Young’s modulus, “yield” stress and indentation 

stress – indentation strain deformation behavior. As it was measured the average grain size of 

OsB2 ceramics after SPS was equal to 0.56µm, most likely that the measured values of hardness 

and Young’s modulus have been obtained from indentations in single grains with their unique 

crystallographic orientations. However, since as many as 36 grains were indented, the average 

values of E and H can provide the reliable data on the properties of OsB2 ceramics. While the 

measured E and H values could be obtained from grains belonging both to hexagonal and to 

orthorhombic OsB2 phases, as it was not possible to discriminate the phases in the 

measurements, however the objective lenses of the microscope allowed avoiding of performing 

nanoindentation in the pores and other defective areas visible optically.  

In addition to the 36 load – displacement diagrams, where pop-in events were present, 

different type of indentation behavior was found, where no pop-in events were found upon 

loading or low mechanical properties were obtained. An example of such diagram is shown in 

Figure 68. The hardness and Young’s modulus calculated from these 14 load – displacement 

diagrams were significantly lower in comparison with 36 diagrams where pop-in events were 

present. The reported average hardness and Young’s modulus values were equal to 16 ± 3 GPa 

and 368 ± 91 GPa, respectively. The estimated average “yield” stress of such indents was equal 
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to 17 ± 7 GPa and the maximum indentation stress was calculated to be equal to ~30 GPa, while 

the indentation stress could easily reach up to 50 GPa at the maximum load when indenting more 

hard OsB2 phases present in the material. The scanning probe micrograph (SPM) images of the 

OsB2 surfaces before and after indentation where the spherical impression was visible are 

presented in Figure 69. Thus, it is possible to estimate that a mixture of hard and relatively soft 

phases exist in the OsB2 sample indicating an inhomogeneous nature of the material after 

densification by SPS.  

In addition to the hardness, Young’s modulus, indentation yield stress as well as stress-

strain deformation behavior, the elasticity and ductility indices of OsB2 ceramics have also been 

calculated using nanoindentation results. It was calculated that according to the Equations (10) 

and (11), the elasticity index was equal to 0.07 and the ductility index was equal to 0.44. For 

comparison, the elasticity and ductility indices of copper (Cu) are equal to 0.02 and 0.95, 

respectively [257], while the elasticity indices of Al2O3, SiC and Si3N4 ceramics are equal to 

0.08, 0.13 and 0.175, respectively and their ductility indices are equal to 0.68, 0.57 and 0.59, 

respectively [257]. The elasticity and ductility indices of glass are equal to 0.19 and 0.54, 

respectively [257]. Thus, the elasticity index of OsB2 ceramics is in the lower range of traditional 

Al2O3, SiC, Si3N4, and glass materials, while the ductility index is much lower in comparison 

even with a glass, such low values of both indices give an indication of the highly brittle nature 

of OsB2 ceramics. 
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Figure 67: Load–displacement (A) and recalculated indentation stress – indentation strain (B) 

diagrams produced by nanoindentation of polished OsB2 surface where “pop-in” events were 

present during the loading portion of the load-displacement curve. 
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Figure 68: Load – displacement (A) and recalculated indentation stress – indentation strain (B) 

diagrams produced by nanoindentation of polished OsB2 surface where no pop-in event was 

present during loading or unloading portions of the load-displacement curve. 
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Figure 69: The scanning probe micrographs of the OsB2 surfaces before (A, D) and after (B, C, E 

and F) indentation. 
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7.4 Conclusions 

 

The ReB2-type OsB2 powder synthesized by mechanochemistry was densified by spark 

plasma sintering for the first time. The obtained bulk material contained a significant amount of 

porosity and, also, it was discovered that during the direct current sintering the transformation 

from hexagonal (P63/mmc) to orthorhombic (Pmmn) structure has occurred. Thus, the ceramics 

after sintering contained 26.9% of porosity and a mixture of ~80 wt% hexagonal and ~20 wt% of 

orthorhombic phases as it was detected both by X-ray and EBSD analysis.  

The average grain size of the OsB2 ceramics after sintering was equal to 0.56 µm and the 

TEM analysis allowed to identify the hexagonal and orthorhombic grains. It was discovered that 

much higher concentration of B was observed within separate locations. The EDS maps showed 

that the concentrations of Os and B do not coincide, and there were separate areas found on the 

maps that were enriched in B content, while Os were practically absent in those locations. At the 

same time, there were other areas which showed Os deficiency, but they were enriched in 

oxygen. It was suggested that such boron enriched area might contain rhombohedral B, while 

those areas enriched in O might be the residues of B2O3 or BO phase.  

An attempt was made to probe the mechanical behavior of the SPSed OsB2 ceramics 

using nanoindentation. It was calculated that the average hardness and Young’s modulus of the 

indented material was equal to 31±9 GPa and 574±112 GPa, respectively, while the highest 

value of hardness and Young’s modulus measured reached 45 GPa and 773 GPa, respectively. 

Such differences could be explained that the indentations have mostly been made in separate 

grains thus each individual grain’s crystallographic orientation affected the measured values. 
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However, because of a significant number of the indentations have been made in different grains, 

the average values might lie rather close to the true values of hardness and Young’s modulus of 

the ceramic. It was also measured that certain area of the material exhibited lower values of 

hardness and Young’s modulus. 

The produced bulk OsB2 ceramics was not dense and homogeneous and its mechanical 

properties varied significantly depending on the location of indentation. Therefore, the 

conclusion is that it is possible to retain metastable high-pressure ReB2-type hexagonal OsB2 

during sintering and the potential for the structure to exhibit superior hardness and stiffness is 

rather high. More studies are needed to find and optimize the sintering regime to produce dense 

and homogeneous hexagonal OsB2, which would exhibit superior hardness and stiffness. 
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CHAPTER 8: SYNTHESIS OF NEW IrB2 PHASES AND Ir 

SEGREGATION AT HIGH TEMPERATURE 

8.1 Introduction 

 

Borides are utilized in a range of industrial applications due to their unique electrical, 

thermal, mechanical and catalytic properties. In particular, transition metal diborides are of 

special interest. Titanium diboride (TiB2) ceramics have a very high Young’s modulus of 565 

GPa [243], zirconium and hafnium diboride (ZrB2 and HfB2, respectively) composites exhibit 

high oxidation resistance [232, 260], magnesium diboride (MgB2) is a superconducting phase 

with a Tc among the highest of the conventional superconductors [261] and niobium diboride 

(NbB2) nanoparticles have applications in catalysis as well as reversible hydrogen storage [247]. 

While many of the diborides find practical uses as abrasion and oxidation resistant coatings, 

there is an ongoing search for new phases and compositions that might possess interesting and 

useful properties. In the recent years, Re, Os, Rh, Cr, and W borides have been studied as for 

their ultra-hardness and superior stiffness [29, 52-54, 57, 262]. Interestingly, no experimental 

evidence exists for IrB2 even though the other elements in the group readily form diborides. 

Although, first principles calculations have predicted that IrB2, which is expected to adopt an 

orthorhombic OsB2-type structure, would be a thermodynamically stable form, no IrB2 phases 

have been synthesized experimentally [263], however, a number of compounds have been 

prepared in the Ir-B system with lower than a 1:2 metal: boron stoichiometry. Phases such as 

IrB1.35 and IrB1.1 as well as the metal-rich phases IrB0.9 and IrB0.7 have been reported in a number 
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of publications [77, 116, 135, 136, 264] and some of their properties were investigated [43, 57, 

141, 144]. Very high Vickers hardness of 49.8 GPa at 0.49N load was reported for IrB1.35 [57]. It 

has been predicted [123, 265] that the mechanical properties of borides could be improved by 

increasing the concentration of boron atoms in the sublattice of the transition metals, as increase 

in boron atom concentration in a boride's unit cell would increase the amount of the covalent 

bonding in the lattice, which would improve the strength, hardness and stiffness of the ceramics. 

Therefore, increasing the boron content in the iridium sublattice should produce a material with 

superior mechanical properties coupled with the chemical stability of iridium. 

Recently mechanochemical syntheses have been successfully employed in the 

preparation of such difficult to process boron rich solids as ReB2 and OsB2 ceramics. [213, 221] 

High energy ball milling of rhenium and osmium metal powders with an elemental boron 

powders for an extended periods of time using WC media and balls allowed production of 

hexagonal ReB2 and OsB2 phases. In fact, this approach is the only currently known route to 

hexagonal OsB2 – a metastable high-pressure phase that had never been experimentally reported 

before. [221] The strain driven solid state chemical reactions were driven by high impacts 

produced by the grinding media during milling [162, 178, 194, 266]. Both axial and shear 

stresses contribute to the fracture of particles followed by solid state diffusion reactions leading 

to the formation of new compounds (Figure 70A). Shear stress and strain play a major role in the 

mechanochemical synthesis as shear strength of many compounds is much lower in comparison 

with compressive strength, thus if shear deformations are present, the solid state synthesis could 

be favored over approaches where only axial or hydrostatic pressure is acting alone. The 

estimated maximum macroscopic axial and shear stresses present during mechanochemical 
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synthesis of Os-B compound as a function of contact area are shown in Figure 70B. Macroscopic 

axial stresses will result in atomic level shear stress through plastic information. The yield 

strength of iridium is approximately 100 MPa. A majority of the impacts generated in the mill 

are above this value. A movie illustrating the ball movement and shear stresses during high 

energy ball milling can be found in the online supporting information. Mechanochemical 

approaches to synthesis represent a very promising route to production of difficult to synthesize 

ceramics. Additionally, this method has the capability of producing metastable compounds that 

cannot be such easily processed by other available means. Thus, it is very appealing to utilize the 

high energy ball milling technique to produce high borides in Ir-B system, such as IrB2 phases.  

 

Figure 70: Mechanism of high energy ball milling (A) and maximum axial and shear stresses 

present during mechanochemical synthesis of Os-B compound as a function of contact area (B). 
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While ReB2, OsB2, and IrB1.1 and IrB1.35 have been reported as ceramics with high 

mechanical properties, the stability issues of these materials was immediately of a concern. Thus, 

for example, the results on hardness of hexagonal ReB2 [52] were questioned in [66], where the 

statement on low hardness of ReB2 was expressed. However in both publications, the time 

dependent exposure of ReB2 ceramics to oxygen/water vapor containing species was not 

addressed at all. However such exposure has a detrimental effect on properties and might explain 

the discrepancies in the reported results, as it is well known that when ReB2 or OsB2/Ir-B 

compounds are not properly stored in the protective environment and exposed to oxygen 

containing species even at ambient, they react with oxygen or water molecules present in the 

atmosphere. The products of such reactions could be perrhenic acid, which formed after one year 

storage of ReB2 powered inside the plastic bag without protective atmosphere of glovebox at 

ambient conditions [213], or when the total reductions of OsB2 nanopowder to metallic Os upon 

heating in the H2 containing reducing atmosphere where O2 molecules present [251, 252]. Thus, 

if the indentations and measurements of hardness and Young’s modulus of the ReB2 or OsB2 

ceramics were made immediately after processing then the reported high values might well 

correspond to the intrinsic ReB2 or OsB2 behavior.  

In case where samples were allowed to dwell at ambient without proper storage 

procedure in Ar or N2 protective atmosphere with low oxygen partial pressure concentrations, 

then the surface properties of the compound would degrade, because of the formation of the 

products of the absorption or/and chemical reactions between a boride and oxygen containing 

species in the atmosphere, leading to a significant degradation in measured values of hardness 

and Young’s modulus simply because the measured values represent the behavior of degraded 
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surface layer species and not pure ReB2 or OsB2 compounds. Thus it was established that the 

oxygen containing species available in the environment even at ambient affect not only the 

chemical and phase compositions of the borides, but also their properties. One of the conclusions 

of the work on thermal stability issues of OsB2 was that oxygen react with boron atoms in the 

lattice of the compound thus creating boron vacancies and bringing changes to the stoichiometry 

of OsB2 to the extent that Os atoms are induce to segregate out of lattice forming Os metal 

precipitates in a significant quantities detectable by X-ray analysis. 

The previous work on stability of ReB2 and OsB2 ceramics and their interactions with 

oxygen containing species in the surrounding atmosphere brought a guest on possibility of 

synthesis of IrB2 compounds as well as other possible phases in Ir-B system. Of course, once 

formed for example by mechanochemistry, the stability of the Ir-B phases would be of high 

interest, as their interaction with oxygen might be one of the reasons as to why lower content 

borides, such as IrB1.1 and IrB1.35 have always been reported in the past, and no IrB2 compounds 

synthesized. Here we report by our attempt to produce Ir-B compounds by mechanochemistry as 

well as study the effect of high temperature annealing on phase composition and microstructure 

of Ir-B after mechanochemical synthesis. 

 

8.2 Experimental 

 

Iridium metal powder (Precious Metal Purchase, 99.9% pure) and boron powder (Alfa 

Aesar, 99% pure, -325 mesh, amorphous and crystalline) were used as received. A total of 11.7 

grams of iridium and boron powders (molar ratio Ir:B=1:3) were loaded into a Spex tungsten 
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carbide vial with two 12.7mm diameter tungsten carbide balls as milling media, which produced 

a ball to powder weight ratio about 2.74. All loading operations were carried out in an argon-

filled glovebox. The milling vial and media were coated with Iridium boron (boride) powders 

from the previous milling. The grinding was done by a Spex 8000 Mixer/Mill for a total of 90 

hours. Every 30 minutes the milling was interrupted and vials were left for 30 minutes without 

grinding in order to decrease the vials’ temperature and reduce wear on the mill’s motor. Every 

5, 10 or 20 hours, a small amount of sample was removed for phase analysis by X-ray diffraction 

(XRD) method. After 30 hours of milling, 1 gram of powder was annealed in vacuo at 1050°C 

for 48 hours. After 90 hours of milling, another 1 gram of powder was annealed under the same 

condition but for 72 hours. All the collections of ground powder were done in the argon filled 

glovebox. A PANalytical X’Pert Pro MPD system with a copper source (Cu Kαl =1.5418Å) was 

used to record X-ray diffraction patterns of the powder. Refinement of the structure was 

performed using the HighScore Plus software. The morphology and particle size of the powders 

were examined in a Zeiss Merlin scanning electron microscope (SEM) equipped with a silicon 

drift energy dispersive X-ray spectroscopy (EDS) detector capable of detecting low Z elements 

such as B. A JEOL JEM2200FS aberration-corrected scanning transmission electron microscope 

(STEM) was used to obtain high-resolution images of the iridium boride nanoparticles. 

 

8.3 Results and Discussion 

 

The X-ray diffraction patterns of Ir and B powders used for mechanochemical synthesis 

of Ir-B compounds are shown in Figure 71A and Figure 72A, respectively. The Ir metal used as a 
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reactant for the synthesis was crystallized in cubic symmetry (Fm-3m, #225, a=3.8394) and a 

boron source used in the synthesis was a mixture of amorphous and crystalline rhombohedral R-

3m structure (#166, a=10.925 and c=23.814) phases. The representative scanning electron 

micrographs of the Ir and B powders are shown in Figure 71B and Figure 72B, respectively. The 

average particle size of Ir powder was measured to be 21 µm, and the average particle size of B 

powder was 44 µm where a bimodal distribution of grain sizes was present. High resolution 

high-angle annular dark-field (HAADF) STEM images with atomic resolution of B lattice 

fringes are shown in Figure 72C. The lamella type features appear as light stripes (Figure 72C) 

separated between each other with a less dense packing of B atoms in direction. The different 

ordering of the stripes in the nearby from each location can often be observed too (Figure 72C).  

 

Figure 71: XRD pattern (A), SEM (B) micrographs of raw iridium powder. 
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Figure 72: XRD pattern (A), SEM (B) and TEM (C) micrographs of raw boron powder. 
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The product of Ir and B powder mixture milling was analyzed by X-ray diffraction after 

high energy grinding of the defined periods of time (Figure 73). After the first 5 hours of 

grinding the XRD pattern of the Ir and B batch still showed the presence of significant amount of 

Ir metal (85.5 wt.%) but also small peaks associated with IrB1.1 phase appeared. The estimated 

content of IrB1.1 phase was equal to 14.5 wt.% as calculated by Rietveld refinement (Figure 73). 

After 10 hours of grinding the amount of IrB1.1 phase increased significantly to 48 wt.%, while 

the amount of Ir phase decreased, but also the peaks associated with IrB1.35 phase appeared. After 

15 and 20 hours of milling the amount of Ir metal phase decreased dramatically, while the 

amount of IrB1.1 and IrB1.35 phases increased. After 30 hours of grinding the Ir peaks were 

completely absent and only Ir-B phases were present in the batch. As during the milling the 

severe plastic deformation become stored in the powder, a significant broadening of the peaks 

occurred leading to the peaks’ overlapping and thus difficulties in the phase refinement. A 

significant broadening of the peaks prevented the authors from quantitative identification of the 

phases present by Rietveld refinement of the XRD patterns after 15 hours of milling as well as 

for a longer milling time, and therefore no definite presence of IrB2 or other non-reported 

structures could be confirmed by XRD in the Ir-B system after mechanochemical synthesis.  
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Figure 73: XRD patterns of Ir and B powder mixture at different milling time. 
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While it was difficult to identify the presence of hexagonal IrB2 structure after 90 hours 

of milling by XRD, however, the high resolution TEM analysis has definitely identified the 

formation of IrB2 nanoparticles that crystallized in the hexagonal structure. The micrograph of 

the typical aggregate of Ir-B powder after 90 hours of ball milling is shown in Figure 74A. It 

consists of the tiny crystallites and each of them being a single crystalline phase (Figure 74B and 

C). Some of the particles present in the Ir-B batch after 90 hours of ball milling resemble the 

structure of pure boron particles used as raw material for the milling. The micrograph with one 

of such particles is presented in Figure 74D. The particle in Figure 74D image most likely 

represents the small quantity of the non-reacted B. There were a number of tiny ~2nm particles 

found by TEM analysis that show a hexagonal symmetry (Figure 74E.). Such hexagonal shaped 

crystallites belong to IrB2 phase which is predicted to crystalize in hexagonal ReB2- or AlB2-type 

structures [43, 263]. The FFT pattern of the particle presented in Figure 74E show the 

correspondence to AlB2-type IrB2 lattice oriented in [011] zone axis. At the same time, another 

Ir-B phase is also present in the batch in a significant quantity where FFT simulation revealed an 

existence of a tetragonal symmetry and it has been confirmed that the particle is IrB1.1 phase.  
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Figure 74: TEM of the Ir and B mixture after 90 hours of ball milling. 
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The SEM image of the Ir-B powder after 90 hours of high energy ball milling along with 

corresponding EDS pattern is shown in Figure 75. As one can see from Figure 75A the powder is 

agglomerated in the small almost spherical particles with sizes of agglomerates range in between 

0.1 to 1.2 µm. These agglomerates consist of the number of small aggregate and crystallites. 

While both Ir and B existence was confirmed by EDS analysis, a presence of rather significant 

quantities of oxygen was also detected (Figure 75B). Such presence of oxygen can play a 

detrimental role on the stability of Ir-B ceramics. It was hypothesized that by reacting with B 

atoms in the Ir-B lattice the oxygen can eventually alter the stoichiometry of Ir-B phase by 

forming boron monoxide (BO) and boron oxide (B2O3) phases, with a corresponding decrease of 

the number of boron atoms retained in Ir-B structure. Similar stability issues in the presence of 

oxygen molecules were reported in another hard to synthesize metastable OsB2 ceramics also 

produced by mechanochemistry [221, 251]. In [251], it was found that oxygen molecules attack 

boron atoms in the OsB2 crystal forming highly volatile BO and B2O3 oxides and, 

simultaneously, leaving boron vacancies in the OsB2 lattice upon B atoms departure. This 

formation of boron vacancies led to the stability problems with an excess of Os atoms in OsB2 

lattice followed by segregation (precipitation) of metallic Os from the lattice. Similar reactions 

between oxygen and boron atoms in IrB2 lattice upon exposure of iridium diboride to O2 

molecules might be one of the reasons why IrB2 structures have not been experimentally reported 

up to date and only IrB1.1 and IrB1.35 phases are known to exist, as both chemical and phase 

compositions of IrB2 phases are changed when boron atoms are removed from IrB2 lattice. A 

schematic of a possible removal process of B atoms from ReB2-type or AlB2-type IrB2 ceramics 
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is shown in Figure 76, which leads to the formation of thermodynamically stable IrB1.1 and 

IrB1.35 phases.  

 

Figure 75: SEM (A) and EDS (B) of Ir and B powder mixture after 90 hours of ball milling. 
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Figure 76: Schematic of oxidation of higher iridium borides to lower borides: ReB2-type IrB2 

(A), AlB2-type IrB2 (B), IrB1.35 (C) and IrB1.1 (D). The larger yellow spheres are iridium atoms, 

and the smaller blue or pink spheres are boron atoms. The boron vacancies can only exist at the 

blue sphere sites. 

 

After the Ir-B powder was ball-milled for 30 hours, the annealing of the powder was 

performed at 1050 °C in vacuo in a sealed quartz tube for 48 hours. After annealing, the phase 
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compositions of the powders were analyzed by X-ray diffraction with diffraction patterns of the 

products presented in Figure 77A. As one can see from Figure 77A, a mixture of four Ir-B 

phases is present in the batch after 30 hours of milling and 48 hours of annealing. Along with 

IrB1.35 structure two previously non-reported ReB2-type and AlB2-type structures as well as a 

new orthorhombic iridium monoboride (IrB) structure have been identified. Rietveld refinement 

of the XRD pattern showed that the Ir-B batch after 30 hours of milling and 48 hours of 

annealing consisted of 73.1 wt% of IrB1.35 phase, 7.2 wt% of ReB2-type and 4.6 wt% of AlB2-

type IrB2 phases, and 15.1 wt% of a new IrB phase. The lattice parameters of all four phases are 

presented in Table 10 along with the lattice parameters of the phases predicted in the literature. 

While IrB1.35 and the two IrB2 structures show a good correspondence between measured 

predicted lattice parameters, the IrB phase, while possess the structure predicted in [263], 

possesses lattice parameters significantly different from the ones predicted. 

Table 10: Crystal structures and lattice parameters of iridium borides. 

Compound Structure a (Å) b (Å) c (Å
3
) 

IrB1.1 Tetragonal, I41/amd 2.807 2.807 10.245 

IrB1.35 Monoclinic, C12/m1 10.524 2.897 6.085 

IrB Orthorhombic, Pnma 5.540 3.238 6.239 

P1-IrB [263] Orthorhombic, Pnma 4.428 2.870 7.021 

 

After the Ir-B powder was ball milled for 90 hours, the annealing of the Ir-B powder was 

performed at 1050 °C in vacuo in a sealed quartz tube for 72 hours. After annealing, the phase 

compositions of the powders were analyzed by regular laboratory X-ray diffraction with 

diffraction patterns of the products presented in Figure 77B. As one can see from Figure 77B, a 

mixture of three Ir-B phases is present in the powder after 90 hours of milling and 72 hours of 

annealing. Along with IrB1.35 and IrB1.1 structure, the orthorhombic iridium monoboride (IrB) 

structure has also been identified. Rietveld refinement of the XRD pattern showed that the Ir-B 
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batch after 90 hours of milling and 72 hours of annealing consisted of 51.9 wt% of IrB1.35 phase, 

34.0 wt% of IrB1.1 and 14.1 wt% of the new IrB phase.  

 

Figure 77: XRD patterns of Ir and B powder mixture after 30 hours of ball milling and 48 hours 

of annealing (A), and 90 hours of ball milling and 72 hours of annealing (B). 
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The TEM analysis was also performed on the Ir-B powder after 90 hours of ball milling 

and 72 hours of annealing at 1050°C in vacuo. After the annealing, the size of the crystallites 

grown significantly in comparison with the size of the powder after 90 hours of milling without 

annealing. The average crystallite size of the powder after annealing was 60.7±18.2 nm as 

measured from TEM Figure 78A. Not a single hexagonal shaped particle was observed in this 

batch, but what was found, that after annealing the segregation of Ir atoms either along the 

domain boundaries of the particles or in separate rounded clusters were observed (Figure 79). 

The segregation of individual Ir atoms along disordered highly defective stripes was revealed by 

high resolution TEM (Figure 79 A-D). While the bright field images of the areas of interest 

showed the appearance of such disordered thin and long areas inside the grains (Figure 79A and 

C), the use of Z contrast allowed to confirm the segregation of Ir individual atoms inside of these 

disordered long stripes (Figure 79 B and D) and determine the precise/exact location of each 

individual atom (Figure 80). Another example of the segregation of the triplets’ Ir atoms along 

the defect is shown in Figure 81. In addition to such “line” segregation of Ir atoms, the metal 

clustering occurred (Figure 79 E and F). During the annealing the segregation of Ir into high 

concentration areas of individual atoms might create an opportunities for designing of excellent 

catalysts as such less than 2 nm nanoclusters might exhibit superior catalytic properties, as it is 

known that Ir metal is a very good catalyst for many chemical and electrochemical reactions. 
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Figure 78: TEM of the Ir and B mixture after 90 hours of ball milling and 72 hours of annealing. 

 



 

 

193 

 

Figure 79: STEM images of the Ir and B mixture after 90 hours of ball milling and 72 hours of 

annealing. (A), (C) and (E) are bright field micrographs; (B), (D) and (F) are high angle annular 

dark field micrograph. 
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Figure 80: High resolution STEM bright field micrographs showing the identified locations of 

individual Ir atoms. (A) is an expanded view of the area highlighted with a box in Fig 9 (A); (B) 

is an expanded view of the area highlighted with a box in Fig 9 (C). 
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Figure 81: Ir atoms segregation along the disordered defective domain out of IrB2 lattice after 

annealing at 1050 °C for 72 hours. Bright field high resolution STEM micrograph (A); high 

angle annular dark field STEM micrograph (B); magnified image of lattice fringes (C) of the 

area selected in (A); magnified image of triplets of Ir atoms (D) of the area selected in (B); the 

marked locations of Ir atoms where the central atom of the each triplet located inside of the 

lattice fringe (E). The magnification is identical for (C), (D) and (E) images 

 

There is a high likelihood that such segregation of Ir into a separate lines or clusters’ 

areas caused by the reaction of Ir-B phases with the oxygen present in atmosphere during 

annealing in small quantities. As it was established in a previous study of thermal stability of 

hexagonal OsB2 [251], that oxygen molecules react with boron residing in OsB2 lattice forming 

boron oxides, which lead to occurrence of sacrificial reactions between OsB2 and O2 leading to 

the reduction of OsB2 to metallic Os and formation of B2O3. As both hexagonal OsB2 and a 

mixture of Ir-B phases were produced by high energy ball milling, both of these powders have 

very high surface areas and they both should be highly susceptible to oxidation when in the 

presence of small quantities of oxygen. As in the sacrificial reaction between OsB2 and O2, it is 



 

 

196 

thermodynamically favorable for oxygen to react with boron forming boron oxides, creating 

boron vacancies in OsB2 hexagonal lattice and eventually pushing Os atoms out of the structure. 

The similar effect of oxygen can exist in case when IrB2 hexagonal lattices are formed by 

mechanochemistry. The small quantities of oxygen present in the atmosphere during high 

temperature annealing cause chemical reactions with boron atoms residing in the IrB2 lattice, 

which lead to formation of boron oxides and at the same time cause a segregation of Ir in the 

highly defective and disordered lattice spaces. The differences in sacrificial reactions between 

hexagonal OsB2 and IrB2 might lie in the fact that OsB2 react with O2 more easily in comparison 

with IrB2 and, in addition, OsB2 does not have thermodynamically stable OsBx (where 1<x<2) 

phases. Therefore the sacrificial reactions between OsB2 and O2 leads to the formation of Os 

metal in quantities detectable by X-ray analysis, while in the case of IrB2 the sacrificial reaction 

leads to 1) a formation of thermodynamically stable IrB1.1 and IrB1.35 phases and 2) a segregation 

of Ir atoms in a separate areas/clusters thus leaving behind the area with the lattice of pure boron. 

After such separation of Ir atoms in line defects in Ir-B phases, the large areas of the particles left 

without Ir metal atoms in the lattice, thus forming enriched boron or pure boron atoms domains, 

the microstructure of which closely resemble the microstructure of pure B powder (Figure 72C). 

 

8.4 Conclusions 

 

The Ir-B ceramic nanopowder was synthesized by mechanochemical synthesis. Ir and B 

elemental powder were milled in a high energy ball milling for 90 hours using WC grinding 

media. After 30 hours of milling, 1 gram of powder was annealed at 1050 °C for 48 hours, and 
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another 1 gram of powder were annealed at 1050 °C for 72 hours to remove the strain induced by 

grinding and also to improve the crystallinity of the powder. The products of solid state reactions 

between Ir metal and B powders before and after annealing were analyzed by X-ray diffraction 

and TEM. 

The formation of new orthorhombic IrB, AlB2-type and ReB2-type of IrB2 after 30 hours 

of ball milling and 48 hours of annealing were identified by XRD. While only IrB1.35, IrB1.1 and 

IrB phases were identified by XRD after 90 hours of grinding, however, the presence of AlB2-

type IrB2 particles was confirmed by high resolution TEM. The presence of O impurities was 

confirmed by EDS analysis in the powder after 90 hours of milling and such oxygen impurities 

were identified as responsible for leaching of B atoms from the IrB2 lattice and formation of Ir-B 

phases with lower than 2 content of boron. The more thermodynamically stable phases, where 

oxygen is present, are IrB1.35, IrB1.1 and IrB. After annealing of the synthesized powder the 

IrB1.35, IrB1.1 and IrB phases were identified as present in the batch. The significant increase of 

the particle size of the powder was detected that the average particle size before annealing was 

equal to 9.0 ± 2.2 nm, but after annealing for 72 hours it increased to 60.7±18.2 nm. The Ir 

segregation along the disordered domains was observed forming the rows of Ir single atoms in 

between boron lattice, Ir segregation in separate clusters was also confirmed. It is expected that 

such Ir segregated out of boron lattice Ir-B nanopowders could be a very active catalyst material 

that can be utilized in many chemical and electrochemical reactions used for example in 

combustion and fuel cells to promote oxygen reduction reactions or fuel oxidation process. 
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

 

Great success has been achieved in the synthesis of Re, Os and Ir diborides with 

mechanochemical approach, i.e., high energy ball milling. It has shown that ReB2 powders can 

be synthesized mechanochemically from elemental crystalline Re and amorphous B powders in 

the stoichiometric 1:2 ratio. A complete reaction was realized after 70-80 hours of milling in a 

SPEX-8000 high energy ball mill. By using this approach we have eliminated the need for excess 

boron reported by others. The synthesized powders were agglomerates of small crystallites as 

evidenced by SEM. High resolution TEM showed that the material had a clear crystalline 

structure. It is our expectation that powders free of excess of boron will facilitate a thorough 

understanding of the role composition on the hardness and elastic moduli of ReB2 ceramics. This 

is also a scalable solution that will ultimately allow larger quantities of this material to be 

prepared. 

The ReB2-type hexagonal OsB2 structure also has been mechanochemically synthesized 

from elemental B and Os powder with shear stress contributed significantly to the synthesis of 

the new high-pressure phase. The lattice parameters of the new phase were measured to be 

a=2.916Å and c=7.376 Å. The production of hexagonal OsB2 by mechanochemical means 

demonstrates the value of alternative synthetic methods for producing new materials. The phase 

stability and thermal behavior of novel hexagonal ReB2-type OsB2 powder was studied in the 

broad temperature range upon heating up to 876 °C under Ar and cooling to -225°C in vacuo. It 

was found that the h-OsB2 was the major phase in the powder after mechanochemical synthesis 

with a small quantity (~5 wt%) of h-Os2B3 also present at room temperature before heating 
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experiments. Os2B3 was identified as an intermediate product of mechanochemical synthesis, 

where presence of crystalline B in the reagent used for mechanochemical synthesis prevented the 

formation of pure final product h-OsB2 and small quantities of Os2B3 compound formed during 

milling. The formation of Os2B3 and OsB phases, but not h-OsB2, was confirmed when coarse 

crystalline 
11

B powder was used as a raw B material in high energy ball milling instead of a 

mixture of amorphous and crystalline B. It was shown that, once synthesized, the h-OsB2 phase 

was stable upon cooling to -225°C where no structure changes were observed and linear thermal 

expansion was measured. However, upon heating, the sacrificial chemical reaction between h-

OsB2 powder and traces of oxygen and/or water vapor in the heating chamber took place, where 

B atoms reacted with O2 molecules leaving the h-OsB2 lattice, forming B2O3. This, in turn, lead 

to the formation of boron vacancies in OsB2 lattice producing overall B deficiencies and 

precipitation of a metallic Os phase detectable by X-ray diffraction. Such phase changes lead to 

the lattice shrinkage and what appeared to be a negative coefficient of thermal expansion of h-

OsB2 in the a crystallographic direction. As the changes brought to the shrinkage/expansion of 

the h-OsB2 lattice were caused not only by the change in the temperature, but also by the change 

in the stoichiometry of the compound, thus we termed it “thermochemical expansion” to 

emphasize the effects of both temperature and stoichiometry on the phase changes. In addition, 

the OsB phase was detected upon cooling of the powder. The phase changes of h-OsB2 were the 

reason for the appearance of very different room temperature lattice parameters of h-OsB2 phase 

after heating experiments. High values of coefficient of thermochemical expansion of h-OsB2, 

especially at 700- 800 °C temperature range, might cause stability and reliability problem for 

practical applications of this novel material recently synthesized by mechanochemistry. 
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The thermal stability of novel hexagonal ReB2-type OsB2 phase upon heating in 4 vol. % 

H2/Ar reforming gas was investigated. It was found that the OsB2 was very easily and totally 

reduced to the pure Os metallic phase in the 375-725°C temperature range, where the first peaks 

of metallic Os were detected at 450°C and the h-OsB2 phase completely disappeared upon 

heating above 725°C. Although significant negative coefficient of thermochemical expansion of 

OsB2 phase was observed, it can be explained by presence of oxygen in the thermal chamber. 

The purity of synthesized hexagonal OsB2 was studied with secondary ion mass spectroscopy. 

Metal impurities such as Li, Mg, Al, Si, K, Cr, Fe, Co and Ce, as well as non-metal impurities 

such as F, Cl, O and H were observed. The presence of O and H suggested that the powder was 

partially oxidized and absorbed moisture. This is consistent with the appearance of the 2 peaks in 

first heating cycle of the DSC curve, due to the evaporation of water and decomposition of boric 

acid. The weight loss part in the TG curve is due to evaporation of water, and the weight gain 

part is due to the oxidation of the powder. The sintering process of the hexagonal OsB2 particles 

has also been studied by in situ high temperature TEM. The thermal expansion of hexagonal 

OsB2 was reflected in the expansion of the lattice fringes. 

The ReB2-type OsB2 powder synthesized by mechanochemistry was densified by spark 

plasma sintering for the first time. The obtained bulk material contained a significant amount of 

porosity and, also, it was discovered that during the direct current sintering the transformation 

from hexagonal (P63/mmc) to orthorhombic (Pmmn) structure has occurred. Thus, the ceramics 

after sintering contained 26.9% of porosity and a mixture of ~80 wt% hexagonal and ~20 wt% of 

orthorhombic phases as it was detected both by X-ray and EBSD analysis.  
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The average grain size of the OsB2 ceramics after sintering was equal to 0.56 µm and the 

TEM analysis allowed to identify the hexagonal and orthorhombic grains. It was discovered that 

much higher concentration of B was observed within separate locations. The EDS maps showed 

that the concentrations of Os and B do not coincide, and there were separate areas found on the 

maps that were enriched in B content, while Os were practically absent in those locations. At the 

same time, there were other areas which showed Os deficiency, but they were enriched in 

oxygen. It was suggested that such boron enriched area might contain rhombohedral B, while 

those areas enriched in O might be the residues of B2O3 or BO phase.  

An attempt was made to probe the mechanical behavior of the SPSed OsB2 ceramics 

using nanoindentation. It was calculated that the average hardness and Young’s modulus of the 

indented material was equal to 31±9 GPa and 574±112 GPa, respectively, while the highest 

value of hardness and Young’s modulus measured reached 45 GPa and 773 GPa, respectively. 

Such differences could be explained that the indentations have mostly been made in separate 

grains thus each individual grain’s crystallographic orientation affected the measured values. 

However, because of a significant number of the indentations have been made in different grains, 

the average values might lie rather close to the true values of hardness and Young’s modulus of 

the ceramic. It was also measured that certain area of the material exhibited lower values of 

hardness and Young’s modulus. 

The produced bulk OsB2 ceramics was not dense and homogeneous and its mechanical 

properties varied significantly depending on the location of indentation. Therefore, the 

conclusion is that it is possible to retain metastable high-pressure ReB2-type hexagonal OsB2 

during sintering and the potential for the structure to exhibit superior hardness and stiffness is 
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rather high. More studies are needed to find and optimize the sintering regime to produce dense 

and homogeneous hexagonal OsB2, which would exhibit superior hardness and stiffness. 

The Ir-B ceramic nanopowder was synthesized by mechanochemical synthesis as well. Ir 

and B elemental powder were milled in a high energy ball milling for 90 hours using WC 

grinding media. The formation of new orthorhombic IrB, AlB2-type and ReB2-type of IrB2 after 

30 hours of ball milling and 48 hours of annealing were identified by XRD. While only IrB1.35, 

IrB1.1 and IrB phases were identified by XRD after 90 hours of grinding, however, the presence 

of AlB2-type IrB2 particles was confirmed by high resolution TEM. The presence of O impurities 

was observed by EDS analysis in the powder after 90 hours of milling and such oxygen 

impurities were identified as responsible for leaching of B atoms from the IrB2 lattice and 

formation of Ir-B phases with lower than 2 content of boron. The more thermodynamically stable 

phases, where oxygen is present, are IrB1.35, IrB1.1 and IrB. After annealing of the synthesized 

powder the IrB1.35, IrB1.1 and IrB phases were identified as present in the batch. The significant 

increase of the particle size of the powder was detected that the average particle size before 

annealing was equal to 9.0 ± 2.2 nm, but after annealing for 72 hours it increased to 60.7±18.2 

nm. The Ir segregation along the disordered domains was observed forming the rows of Ir single 

atoms in between boron lattice, Ir segregation in separate clusters was also confirmed. It is 

expected that such Ir segregated out of boron lattice Ir-B nanopowders could be a very active 

catalyst material that can be utilized in many chemical and electrochemical reactions used for 

example in combustion and fuel cells to promote oxygen reduction reactions or fuel oxidation 

process. 
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The production of new hexagonal OsB2, IrB2 and the orthorhombic IrB by 

mechanochemical means demonstrated the value of alternative synthetic methods for producing 

new materials. It is believed that other transition metal boride may be synthesized with this 

method. Thus, it is very worthwhile to try this method in the synthesis of other predicted 

materials in the future. One of the biggest disadvantages of the high energy ball milling method 

is that it introduces contamination from milling vial or milling media. Besides, it consumes a lot 

of time and raw materials by trial and error to find out the appropriate milling parameters, such 

as milling time, ball to powder ratio, number of balls, etc. Thus, these problems are to be solved 

in the future. Since the new hexagonal OsB2 has been produced, which has the same crystal 

structure as ReB2 but only slightly different lattice parameters, it is possible to make hexagonal 

Re-Os diboride solid solution. The mechanical properties of the solid solution may be more 

superior to any of the osmium or rhenium diborides. While the segregation of the Ir atoms in the 

iridium borides was observed, the catalytic behavior of the materials may be very interesting 

because the individually scattered iridium atoms should have very high catalytic activity.     
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APPENDIX A: COPYRIGHT PERMISSION LETTERS 
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APPENDIX B: TRANSMISSION ELECTRON MICROGRAPHS 

 
 

Figure 82: Bright field (A, C and E) and dark field (B, D and F) STEM images of pure Os metal. 
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Figure 83: Bright field (A, C and E) and dark field (B, D and F) STEM images of pure Os metal. 
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Figure 84: Bright field (A, C and E) and dark field (B, D and F) STEM images of pure Os metal. 
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Figure 85: Bright field (A, C and E) and dark field (B, D and F) STEM images of amorphous and 

crystalline boron. 
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Figure 86: Bright field (A, C and E) and dark field (B, D and F) STEM images of crystalline 
11

B. 
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Figure 87: Bright field (A and C) and dark field (B and D) STEM images of crystalline 
11

B. 
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Figure 88: Bright field (A, C and E) and dark field (B, D and F) STEM images of hexagonal 

OsB2. 
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Figure 89: Bright field (A, C and E) and dark field (B, D and F) STEM images of hexagonal 

OsB2. 
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Figure 90: Bright field (A, C and E) and dark field (B, D and F) STEM images of hexagonal 

OsB2. 
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Figure 91: Bright field (A, C and E) and dark field (B, D and F) STEM images of Os2B3. 
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Figure 92: Bright field (A, C and E) and dark field (B, D and F) STEM images of Os2B3. 
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Figure 93: High temperature TEM images of h-OsB2 particles at different temperature. 
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Figure 94: High temperature TEM images of h-OsB2 particles at different temperature. 
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Figure 95: High temperature TEM images of h-OsB2 particles at different temperature. 
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Figure 96: High temperature TEM images of h-OsB2 particles at different temperature. 
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Figure 97: High temperature TEM images of h-OsB2 particles at different temperature. 
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