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ABSTRACT 

Automated data collection, simulation and visualization can substantially enhance the 

process of designing, analysis, planning, and control of many engineering processes. In 

particular, managing processes that are dynamic in nature can significantly benefit from 

such techniques. Construction projects are good examples of such processes where a 

variety of equipment and resources constantly interact inside an evolving environment. 

Management of such settings requires a platform capable of providing decision-makers 

with updated information about the status of project entities and assisting site personnel 

making critical decisions under uncertainty. To this end, the current practice of using 

historical data or expert judgments as static inputs to create empirical formulations, bar 

chart schedules, and simulation networks to study project activities, resource operations, 

and the environment under which a project is taking place does not seem to offer reliable 

results. 

The presented research investigates the requirements and applicability of a data-driven 

modeling framework capable of collecting and analyzing real time field data from 

construction equipment. In the developed data collection scheme, a stream of real time 

data is continuously transferred to a data analysis module to calculate the input 

parameters required to create dynamic 3D visualizations of ongoing engineering 

activities, and update the contents of a discrete event simulation (DES) model 

representing the real engineering process. The generated data-driven simulation model is 
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an effective tool for projecting future progress based on existing performance. 

Ultimately, the developed framework can be used by project decision-makers for short-

term project planning and control since the resulting simulation and visualization are 

completely based on the latest status of project entities. 
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CHAPTER 1: INTRODUCTION 

1.1 Thesis Statement 

The efficiency of various construction tasks including the planning and control of 

equipment operations can significantly increase if adequate operational data is collected 

in real time, analyzed, and effectively integrated into the decision-making process. This 

real time filed data stream can be used as a reliable source to modify project plans, 

validate and improve existing control metrics, and update the underlying parameters of 

computer models (e.g. simulation and visualization) describing the interactions between 

different project resources, all in an effort to assist project personnel in predicting the 

future performance given the current conditions of resources on the ground.  

1.2 Research Motivation 

Resource planning and control at the operations level are critical components of 

managing the performance of ongoing activities in a construction site [1]. A 

comprehensive operations level plan can help project decision-makers and site personnel 

foresee potential problems such as spatial conflicts and resource underutilization even 

before the actual operation takes place. This will also help save effort that would have 

otherwise been put on reworks, resolving conflicts, and performing change orders, which 
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will ultimately translate into significant savings in project time and cost. For example, 

Cox et al. [2] suggested that rework is typically responsible for 6-12% of the overall 

expenditure for a typical construction project. Construction Industry Dispute Avoidance 

Task Force (DART) reported that annually, more than $60 billion was spent on change 

orders in the United States [3]. Also, according to the Federal Facilities Council (FFC), in 

10-30% of all construction projects serious disputes are estimated to arise with a total 

cost of resolution between $4-12 billion each year [4]. One of the major impediments of 

effective project planning is managing a large volume of information including inputs 

from alternative designs, material properties, labor productivity, equipment 

specifications, and work schedules. This will become even more sophisticated when the 

dynamics of the construction project creates several layers of uncertainty that can range 

from internal factors (e.g. project time and cost variations, equipment breakdowns, 

contractor claims) to external events (e.g. weather conditions, financial market stability). 

Computer applications have thus evolved during the past several years to facilitate the 

process of project planning by providing a convenient and reliable means for modeling, 

simulating, and visualizing project activities [5, 6, 7, 8, 9, 10, 11]. In order to create 

reliable computer models of a future construction project during the planning stage, one 

needs to carefully examine every detail of the operations within that project, and identify 

major events and processes that will potentially impact the outcome of each operation. 

Once such events and processes are identified, attributes such as resource consumption 

levels and activity durations should be determined. For a small operation, this can be 

done in a relatively short period of time using existing numerical tools and statistical data 
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from past projects. However, as the size of the operation increases and with the 

introduction of more resources and activities, creating a simulation model that 

realistically represents the actual operation becomes a tedious if not an impossible task 

[12]. This is mainly due to the fact that collecting accurate and reliable field data from 

ongoing activities and resource operations, and integrating the collected data into the 

planning process turns into a challenging task. In addition, the uncertainties caused by 

unforeseen site conditions, equipment breakdowns, work delays, and the evolving nature 

of a construction project may slow down or interrupt the progress of data collection. Even 

if all such data is collected, handling a large volume of information in a single platform 

can prove to be time and labor intensive. As a result, it is very likely that the modeler 

uses strict rules, simplifying assumptions, and rigid design parameters inside the model to 

streamline the modeling process. These may seriously impact the accuracy of the model 

in representing the dynamics of the project which will ultimately be detrimental to the 

reliability of the model for verification and validation purposes [13]. 

1.3 Research Contributions 

Traditional simulation paradigms employ static data and information available from 

similar projects and operate under a given set of system design parameters (e.g. activity 

precedence relationships, duration distributions) [14]. In the absence of a methodology 

that facilitates real time field data collection, most project decision-makers rely on readily 

available project information and subjective personal judgments when evaluating 

uncertainties and forecasting future project performance [12]. Recently, advances in 
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automation and information technology resulted in new approaches for collecting and 

managing construction work data. In particular, automated tracking systems have been 

evolved to collect necessary information about the position of construction resources for 

different purposes [15, 16, 17]. Timely use of field data to determine the location and 

status of resources (e.g. construction equipment and personnel) helps in describing the 

context surrounding the operations and therefore is valuable for monitoring the workflow 

of activities during these operations. Also, field data supports operational decisions and 

helps predict the performance of a construction system based on the latest project status. 

Another valuable implication of field data acquisition is the application of the collected 

data in creating visual representations at different levels of detail corresponding to 

various operations on a construction site. Visualizing field data has been demonstrated to 

have many applications such as maintenance crew training [18], safety management [19], 

and damage prevention [20]. But from the point of view of planning, monitoring, and 

control, 3D visualization not only does offer a convenient tool for decision-makers to get 

a real insight of what is exactly happening in a jobsite (particularly for operations that are 

hard to quantify or represent in a parametric model), but also is a of substantial value for 

verification and validation of the underlying simulation model(s). This is especially 

important because decision-makers often do not have the time and knowledge to confirm 

the accuracy and validity of simulation models and thus do not usually rely on the results 

obtained from such models [10]. In addition, visualization assists in investigating events 

that are hard to be quantified in a definitive manner, but yet can affect the final outcome. 

Examples of such events include work zone overcrowding due to simultaneous execution 
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of different trades in building construction, safety problems, and potential for physical 

collisions. 

The benefits of construction field data collection, simulation, and visualization have been 

investigated in isolated cases in the past. However, the potential of these three promising 

techniques when integrated in a single framework that facilitates the process of short-

term planning and control of construction projects in operations level has not yet been 

explored [21]. Hence, the presented research is mainly motivated by this need and is 

aimed to fill this gap by investigating the requirements and applicability of an integrated 

framework that uses the paradigm of dynamic data-driven simulation to address the 

problem of short-term operational level planning and control. The underlying concepts 

and applications of dynamic data-driven simulation, which is also referred to as dynamic 

data-driven application system (DDDAS) are introduced in Chapter 3. 

1.4 Research Objective and Project Tasks 

The overall objective of this study is to design a framework for integrating field data 

collection, data analysis, visualization and simulation for short-term decision-making in 

construction projects. In order to achieve this objective, the following research tasks were 

identified and successfully completed: 

 Investigate the requirements and design a functional system to collect real time 

data from equipment involved in different construction processes. 
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 Build data classification and analysis methods to provide orderly data and link 

them to specific activities describing the status of construction equipment. 

 Develop an algorithm for creating 3D pre-processed visualizations of concurrent 

construction equipment activities. 

 Conduct statistical analysis on data to obtain and update the probabilistic 

distributions describing the duration of individual field activities within a 

simulation model corresponding to the actual operations. 

1.5 Organization of the Thesis 

The following Chapters of this Thesis are shaped around the concepts, details, and 

implementation of the research tasks listed above. This Thesis is divided into seven 

Chapters.  In particular: 

 Chapter 1: Introduction – This Chapter contains the Thesis statement, identified 

gaps that motivated this research, the novel approach that this study adopts to 

address the identified gaps, and the overall objective and tasks defined and 

accomplished in this project. 

 Chapter 2: Literature Review – A review of previous related research and state-of-

the-art studies in the realm of automated data collection, simulation in 

construction, visualization in construction, and using the advantages of real time 

simulation in construction projects is presented in this Chapter. 
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 Chapter 3: Dynamic data-driven application system (DDDAS) – This Chapter 

introduces the basic concept of a relatively new paradigm for data-driven 

simulation and outlines its application in various field of science and engineering 

and emphasis on its application in the context of presented study. 

 Chapter 4: Visualization with OpenSceneGraph (OSG) – Detailed description and 

technical aspects of the visualization toolkit that has been used in this research is 

presented in this Chapter and it is shown that how the proposed methodology 

benefits from employing these concepts. 

 Chapter 5: Developed Framework – The overall system architecture of the 

developed framework is introduced in this Chapter and individual components of 

the system and their tasks are discussed in detail. 

 Chapter 6: Laboratory Scale Experiments and Results – This Chapter 

demonstrates the validity and applicability of the presented methodology by 

presenting preliminary laboratory scale experiments and resulted outcomes. 

 Chapter 7: Conclusions and Future Work – A discussion about the identified gaps 

in knowledge and the developed research methodology for addressing these gaps 

is presented in this Chapter and future research for further development of the 

presented framework is described. 
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CHAPTER 2: LITERATURE REVIEW 

In Chapter 1, a general introduction to the research was presented and the motivation, 

potential contributions, research objective, and project tasks were described in details. 

The presented research aims to address the gaps identified in the current body of 

knowledge (as described in Chapter 1) through investigating the potentials and 

opportunities provided by emerging innovations in engineering instrumentation and 

computation. In this Chapter, a comprehensive review of recent research efforts and 

current demands in the areas of automated data collection, and visualization and 

simulation within the construction engineering and management domain will be 

conducted, in an effort to put the presented work into context and demonstrate its 

potentials in addressing some of the longstanding challenges faced by the construction 

research community.  

2.1 Automated Data Collection 

Collecting accurate and reliable data is one of the most critical components of every 

decision support system. Data captured manually using traditional onsite data collection 

techniques can be outdated, inaccurate, or missing certain pieces [22, 23, 24, 25, 26]. 

McCullouch indicated that field supervisory personnel spend on average 30%-50% of 

their time on recording and analyzing filed generated data[23]. Saidi et al. [27] stated that 

despite the recent advancements in construction measurement and sensing technologies, 

having accurate and updated information about the status of construction operations 
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remains an issue in the construction industry. As a result, automated data collection and 

resource location tracking techniques have received credibility over the past several 

years, as they facilitate processes including but not limited to resource management, 

productivity analysis, quality control, and monitoring workflow processes. To this end, 

work still needs to be done in order to take advantage of such technologies when 

planning activities at early stages of a project where the scope of the work and the 

dynamics of the project environment are still evolving.  

Automated resource (personnel, equipment, materials) tracking has been the subject of 

many studies in construction and facility management [15, 28, 29, 30, 31, 32]. Resource 

location tracking applications use different techniques for indoor and outdoor 

environments. A variety of outdoor and indoor location tracking technologies exist with 

significantly different characteristics, infrastructure, and device requirements [16]. Radio 

Frequency Identification (RFID), for example, has been increasingly used for tracking 

purposes in construction jobsites. RFID systems use tags and a reader which sends radio 

frequency signals to read data from the tags. One of the early attempts in using of RFID 

in construction industry was made by Jaselskis et al. [33]. They proposed RFID for 

tracking high-valued materials on construction jobsites. Song et al. [28] used RFID to 

automate the task of tracking the delivery and receipt of fabricated pipe spools in lay 

down yards and under shipping portals. Since RFID readers and tags do not require line-

of-sight, the readers can detect several tags at a time, and the tags can function properly 

in harsh conditions. However, the short reading range which mostly is a function of the 

communication frequency can be an obstacle for the use of RFID systems in large 
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construction sites [34]. Researchers have also used the Global Positioning System (GPS) 

for its capability in tracking construction labor and equipment in outdoor environments 

and construction sites [16, 35, 36]. GPS is an outdoor satellite-based worldwide radio-

navigation system formed by a constellation of 24 satellites, ground control stations, and 

end users [37]. To address the challenge faced by equipment operators who have limited 

field view and depth perception when they control equipment remotely with video 

cameras, Oloufa et al. [35] developed a system for collision detection and vehicle 

tracking by using differential GPS, wireless, and web-based technologies. The most 

important impediment in using GPS is that its functionality is to the most extent, limited 

to outdoor environments since a clear line-of-sight between the satellites and the GPS 

receiver is always needed. More recently, there have also been some attempts in 

combining RFID with GPS technology [31, 38]. Jang et al. [15] introduced an Automated 

Material Tracking (AMTRACK) system based on ZigBee localization technology to 

overcome the drawbacks of GPS and RFID systems in terms of accuracy and cost. 

Another technology that has been studied for automated tracking is Ultra Wide Band 

(UWB). Teizer et al. [39] developed an UWB data collection tool for work zone safety 

management and location tracking. In an indoor environment, where Global Navigation 

Satellite System (GNSS) data is not available, indoor positioning technologies are used. 

RFID and UWB can be used in both indoor and outdoor environments. GPS, as stated 

before, has generally developed only for outdoor environments. However, another 

technology called indoor GPS has recently emerged which is not satellite-based [32]. 

Wireless Local Area Network (WLAN) is another technology used for indoor tracking 
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and localizations [32]. Inertial Navigation Systems (INS) such as accelerometers and 

other systems such as Bluetooth, Infrared, and Ultrasonic are other examples of indoor 

localization technologies [40]. 

Another category of localization and tracking technologies is motion-based. Generally, 

motion-based devices sense motion and its attributes such as velocity, acceleration, and 

heading directions. For position sensing, inertial navigation systems (INS) or inertial 

measurement unit (IMU) are constructed using a combination of gyroscopes, 

accelerometers, and magnetometers [41]. Using IMU the current state of the target in 

terms of location, speed, and heading direction can be determined by using state 

estimation algorithms using the information provided by gyroscopes and accelerometers. 

Behzadan et al. [42] developed an augmented reality (AR) hardware framework in which 

they used orientation trackers capable of measuring compass heading using magnetic 

field sensors. 

In addition to the sensor-based data acquisition technologies described above, vision-

based tracking has lately started to gain credibility among researchers. In a recent study, 

Brilakis et al. [43] presented an automated framework for vision based tracking using two 

cameras. Although this method seems to overcome the disadvantages of existing sensor-

based techniques such as limited coverage area and dependence on preinstalled tags on 

the objects, it is still much costly and requires a more involved maintenance and 

calibration. Table 1 summarizes the existing tracking and localization techniques. As 

Table 1 suggests and to the author’s best knowledge, the application of real time data 
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collection for the purpose of planning and monitoring of equipment motions has not yet 

been investigated. 

Table  2.1: 

Previous research on remote data collection applications in construction jobsites 

Study Application Technology 

Ergen et al. 2007 Material Tracking RFID 

Song et al. 2006a Material Tracking RFID 

Behzadan et al. 2008 Personnel Tracking GPS 

Caldas et al. 2006 Material Tracking GPS 

Grau and Caldas 2009 Material Tracking RFID + GPS 

Ergen et al. 2007 Material Tracking RFID + GPS 

Jang et al. 2007 Material Tracking ZigBee 

Teizer et al. 2007 Safety UWB 

Khoury and Kamat 2009 Tracking Mobile Users 

UWB/Indoor 

GPS/WLAN/ 

Behzadan et al. 2008b Mobile AR Hardware  IMU 

Brilakis et al. 2010 Project Entities Vision Based 
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2.2 Simulation in Construction 

Simulation is a valuable tool for effective construction planning and management mainly 

due to the presence of operational and decision-making uncertainties in most construction 

processes. However, a large amount of research previously conducted in construction 

simulation have one thing in common: almost all of them assume that when the 

simulation model is created,  sufficient data with adequate level of detail is readily 

available mainly in form of  historical records from similar projects or expert thoughts 

and judgments (which may prove to be subjective). It is clear that providing such input, 

there is almost no guarantee that the generated output reliably reflects the expected 

performance of project entities, since the bulk of the data do not particularly belong to 

that project.  

Among several existing methods for modeling construction operations, discrete-event 

simulation (DES) has gained a lot of interest by researchers since almost every 

construction operation can be effectively broken down to and modeled as a network of 

discrete activities, each consuming resources (personnel, material, and equipment) to be 

completed [44]. DES models provide an effective means to establish logical relationships 

between activities within a project which compete over and make use of available and 

often scarce resources. The introduction of CYCLONE [45], marked the beginning of a 

new era in modern construction simulation research. CYCLONE aimed to simplify the 

modeling of processes that are cyclic in nature. Subsequently, many attempts were made 

to develop different simulation systems based on CYCLONE. Examples include 
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INSIGHT [6] that enabled videotaping of field operations, and extracting and analyzing 

videotaped data to obtain estimated values for the productivity of the system and its 

components. Further studies explored the applicability of object-oriented and modular 

programming in developing simulation systems. Examples of such efforts include 

MODSIM [46] capable of translating a simulation code to the C language for compilation 

and linking. In another effort, STROBOSCOPE [47] an extensible programmable system 

capable of modeling complex construction operations was introduced. Later, an activity-

based construction modeling and simulation method called ABC [9] was developed. 

A DES system called COOPS was introduced by Liu and Ioannou [7] which used object-

oriented design for simulation. Martinez and Ioannou [44] examined DES systems based 

on three characteristics: application breadth (general or special purpose), modeling 

paradigm (process interaction versus activity scanning), and flexibility (i.e. 

programmability). Also, a new simplified DES approach or SDESA was developed by Lu 

[48] for planning construction operations which can be used as a general-purpose 

construction planning tool to track the performance of individual resources and handle 

cyclic or looped processes.  

2.3 Real Time Simulation 

Real time simulation has been explored by researchers in several engineering and 

scientific fields. For example, Hunter et al. [49] developed a simulation model based on 

inflow data aggregated over a short time interval to create an accurate estimate of the 

evolving state of transportation systems. In another example, Tavakoli et al. [50] 
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suggested a generic simulation platform for real time DES modeling in healthcare and 

manufacturing applications. Also, a yard crane dispatching algorithm based on real time 

data driven simulation was proposed by Guo et al. [51] to solve the problem of yard crane 

job sequencing by minimizing the average vehicle waiting time. In the construction 

domain, however, despite previous work in real time data collection and processing, very 

limited amount of research has been done in effectively incorporating field data into an 

existing simulation model for short-term planning and control of the same operations. 

Chung et al. [52] suggested using Bayesian techniques to update the distributions of input 

parameters for tunnel simulation by “manually” collecting project data from a tunneling 

project on a bi-weekly basis and using the collected data to improve simulation input 

models. Also, Song et al. [12] described a framework of real time simulation for short-

term scheduling of heavy construction operations and developed a prototype system for 

asphalt hauling and paving projects. 

To this date, only a limited number of previous projects investigated the planning and 

control of engineering systems through real time simulation using the latest changes in 

activity patterns and interactions. In the absence of a simulation system that is not using 

an accurate input data, the resulting output should be evaluated with prudence. Abourizk 

et al. [53] discussed that random input tends to propagate to the output of the simulation 

model. They warned of using improper molding of input data through demonstration of 

the sensitivity of the output parameters as well as resource utilization to the input model 

utilized. 
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2.4 Visualization in Construction 

The role of visualization in construction engineering and management has been generally 

limited to the design of construction products using 3D CAD modeling or the 

demonstration of how an entity evolves over time using 4D CAD applications. 

Visualizing the actual interactions between resources (including personnel, equipment, 

and materials) that result in a constructed facility has received a very little attention [54, 

55]. Almost all of the efforts in this area concentrated on visualization of “simulated” 

construction operations. Schematic modeling such as DISCO, iconic animation [56], and 

2D system visualizations such as PROOF [57] are some of the first generation systems 

intended for visualizing simulated construction operations. More recently, Kamat and 

Martinez [10] presented VITASCOPE as a general-purpose, user-extensible 3D 

animation system for visualizing simulated processes in smooth, continuous, 3D virtual 

worlds. Behzadan and Kamat [11] designed and implemented ARVISCOPE, an 

augmented reality (AR)-based mobile visualization system that allowed dynamic 

visualization of simulated operations in outdoor environments using an external scripting 

language. 

Confirming the veracity and validity of the simulated construction operation is a major 

goal in creating post-processed visualization systems [54]. Nevertheless, verification and 

validation of the simulation model can be conveniently performed if a similar, yet pre-

processed animation representing the actual ongoing activities exists. Having both pre- 
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and post-processed animations in a similar visualization environment side by side, 

facilitates the comparison between the real world systems and the model. 
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CHAPTER 3: DYNAMIC DATA-DRIVEN APPLICATION SYSTEM 

(DDDAS) 

3.1 Overview 

As described in previous Chapters, a major requirement of a robust decision support 

system capable of offering real time analysis of concurrent construction operations is the 

ability to provide decision-makers with a reliable basis to predict upcoming system 

performance by using the incoming data streams to simulate the actual operations. To 

achieve this, the concept of a relatively new simulation paradigm often referred to as 

dynamic data-driven application system (DDDAS) and its potentials in the realm of 

construction engineering and management was investigated in this research.  

A DDDAS model is sought to dynamically measure site data in form of a new 

information layer, integrate the collected data with the corresponding simulation model to 

constantly adapt the model to the dynamics of the construction system, and constantly 

update it based on the latest collected operational data [58]. Although the dynamic nature 

of many complex systems such as those in construction requires simultaneous injection of 

collected data into the simulation model in response to the evolving conditions, many 

computational models used to date only allow fixed data inputs while the simulation is 

launched [14].  

Initially, DDDAS was conceived by the National Science Foundation (NSF) in 2000 

following two catastrophic events. The first was the missed prediction of the track and 
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magnitude of a storm that blanketed a number of cities from South Carolina to New 

England in January 2000, and the other was the failure of a simulation model to predict 

the propagation and behaviors of a fire near Los Alamos National Laboratory in May 

2000 mainly due to the changing nature of fire and consequently, the inability of 

emergency response agencies to take appropriate actions to limit its propagation [59]. 

Scientists believed that such miscalculations were due to computer simulation models 

that were unable to incorporate real time changing conditions on the ground [59].  

Recently, advances in computational technologies for data collection, analysis, and 

modeling provided the necessary tools for accurate measurement and injection of 

necessary data into corresponding simulation models and enabled the development of the 

DDDAS. Figure 3.1 is a schematic diagram showing the basic components of a DDDAS 

(as introduced by the NSF) consisting of the following modules: data acquisition tools, 

simulation model, dynamic data control and acquisition, and visualization and human 

interface. 

 

Figure 3.1: Basic Concepts of DDDAS 
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Data acquisition tools refer to field equipment used for remote data collection such as 

wireless sensors and instruments. Simulation model represents those models that need to 

be updated based on the stream of the incoming data. Dynamic data control and 

acquisition includes algorithms for data analysis used to prepare data for representation 

and input modeling. Finally, visualization and human interface refers to the human expert 

interaction to steer the model (if needed) and determine answers to critical decision-

making problems based on the simulation results. These components and their 

interactions, as stated before, symbolize a rudimentary representation of the DDDAS 

concept and most of the platforms, including what was developed in this research are 

built upon this basic premise. 

3.2 General Applications 

As an emerging and promising area of research, DDDAS is gaining credibility among 

scientists and researchers in various fields of study while posing challenges in 

mathematical algorithms, systems software and data collection. Nevertheless, engineering 

problem solving in general and construction engineering and management in particular, 

are yet to benefit from the opportunity offered through employing this concept. 

In a research aimed at forecasting the wildfire behavior, Mandel et al. [60] proposed a 

DDDAS that included coupled weather and fire numerical models, an automated data 

acquisition and control module, visualization and user interface module, and a 

communication infrastructure. In their developed system, data acquisition and control 

module directs data to the numerical models where multiple simulations are running. 
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Synchronously, the simulation inputs are adjusted based on the actual measurements of 

the field. Also, simulation results are presented through visualization and user interface 

module to the user in order to determine alternative firefighting scenarios. In this 

example, data collection was performed using wireless network sensors and cameras 

mounted on airplanes. Personal digital assistant (PDA) devices were also used as 

convenient visualization and user interface tools while numerical model ran on a remote 

supercomputer. Figure 3.2 shows how this particular application has been built upon the 

basic DDDAS concept previously shown in Figure 3.1.  

 

Figure 3.2: Mandel et al. Developed DDDAS for real time modeling of Wildfire 

In another research, Douglas et al. [61] investigated the application of a DDDAS in an 

environmental engineering set up. They considered the case of a contaminant spill 

occurring near a clear water aquifer. Sensors were used to measure where the 

contaminant was, how and in what direction it was moving, and to monitor the 

environmental impacts of the spill. Numerical simulation procedures for multi-scale 

interpolation were used in order to map sensor data and to continuously update the 
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simulation model. The study demonstrated that frequent updating of the sensor data in the 

simulation considerably improved the prediction results. 

Gaylor et al. [62] indicated that in case of a crisis, management should make decisions in 

order to react to dynamic uncertain conditions. In this regard, having access to real time 

data in a format, that can be readily understood and acted upon, is critical. Therefore, 

they applied the concept of DDDAS to support emergency medical treatment decisions in 

crisis conditions. Their complex dynamic environment fed and responded to a stream of 

real time data coming including positional data coming from GPS trackers mounted on 

ambulances and vital signs sensors mounted on patient body.  

The NSF has also proposed some applications in workshops held for introducing 

DDDAS. An interesting DDDAS application is traffic light control, since there are 

always two significant variants: whether the plan is to minimize or to maximize the 

number of red lights encountered. As stated by NSF 2000 [59], the ultimate goal should 

be to continuously optimize the timing of the traffic lights. Using DDDAS and based on a 

sophisticated model, data generated by sensors embedded under streets and also other 

factors such as weather conditions can assist in predicting and optimizing the flow of 

vehicle movements [59]. 

3.3 Developed Framework Based on DDDAS 

Unlike several other scientific fields, the idea of DDDAS has been given very little 

attention in engineering simulation in general, and has not been widely applied to 



23 

 

construction research in particular. DDDAS enables a more accurate prediction of how a 

dynamic construction system will behave in the future based on the current status of its 

constituents (i.e. resources). Therefore, construction projects can benefit from this novel 

paradigm if necessary infrastructure, algorithms, and tools to launch robust DDDAS 

platforms are effectively designed and implemented. 

Traditionally, there has been a major disconnect between DES modeling (which is mainly 

conducted at the planning stage) and the actual site dynamics (during the construction 

phase). Incorporating the concept of DDDAS into the modeling process can help 

significantly improve conventional DES modeling. For example, more realistic activity 

parameters (e.g. probabilistic duration distributions, dependencies) can be obtained by 

measuring data collected from different pieces of equipment involved in that activity. In 

short, DDDAS facilitates the process of tailoring an existing DES model to better meet 

the evolving conditions of the real system using the latest data as input to the 

corresponding simulation model. 

The DDDAS technique designed and implemented in this research captures sensor-based 

real time data from resources on a jobsite, classifies and analyzes the collected data to a 

meaningful format for the following modules, incorporates the analyzed data to update 

the corresponding DES model, and creates an exact dynamic 3D visualization of the 

ongoing operations using the collected data, all in an effort to assist project decision-

makers in short-term operations planning and control [63]. Figure 3.3 illustrates a 

simplified diagram of the developed DDDAS in this research. 
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Figure 3.3: Developed DDDAS in the Presented Research 

As shown in this Figure, the framework built upon the general concept of DDDAS. Real 

time collected data from ongoing construction operation move through a data analysis 

module to provide required information for updating the data-driven simulation model. 

Also, a visualization system providing a concurrent 3D animation of ongoing activities 

serves as the human interface module. Detailed description and system architecture of the 

developed framework can be found in Chapter 5. 
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CHAPTER 4: VISUALIZATION WITH OPENSCENEGRAPH (OSG) 

4.1 Overview 

In this research, OpenSceneGraph (OSG) which is built upon the industry standard 

OpenGL graphics library is used inside the .NET environment to create pre-processed 

animations of ongoing equipment activities and to link each and every object motion 

inside the animation to the collected field data that represent the actual motion of that 

object. This Chapter provides technical details about the algorithms developed to create 

3D animations using CAD models of construction equipment. 

A scene assembled from discrete components that can be dynamically manipulated, 

provides essential means for creating a contextual animation. To facilitate the creation 

and manipulation (i.e. positioning, orienting, and scaling) of objects in an assembled 

scenes, the concept of scene graphs were implemented in this research. Generally, a scene 

graph is a hierarchical organization of shapes, groups of shapes, and groups of groups 

that together construct a scene [64]. Computer graphics implementations build upon the 

concept of scene graphs release the end user from implementing and optimizing low level 

graphical programming and complexities involved in rendering process of 3D objects in a 

scene [41]. The scene graph application programming interface (API) provides a means 

for constructing scenes that follow a hierarchical data structure of objects. 
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OSG is a collection of open-source libraries that provide scene management and graphics 

rendering optimization functionality to applications. It has been written in ANSI C++ and 

uses the industry standard OpenGL low-level graphics API [65]. Although there are a few 

other scene graph-based libraries such as Performer, Open Inventor, and Java3D, this 

research used OSG due to the fact that it is capable of reading various image file formats 

which supports the prospect of designing a more generalizable visualization platform. At 

the same time, OSG provides the functionalities required to describe a complex scene 

using an object-oriented representation which releases the user from implementing and 

optimizing low level graphical programming and facilitates rapid development of graphic 

applications. 

In OSG terminology, a node is an object that can be part of or entirely comprise a scene 

graph. Each node as a collection of one or more values and methods compresses what is 

required to be drawn. Root node is the highest level node to which all the elements of a 

scene graph (directly or indirectly) are connected [66]. Each scene graph comprised of 

nodes in a graph structure that are connected together via individual child-parent 

relationships. The edges that connect the nodes describe a meaningful relationship that 

exists between them. The root node is usually connected to intermediate grouping nodes 

called internal or group nodes. These nodes commonly are responsible for 3D 

transformations performing positioning (translation), orientation (rotation) and size 

(scaling). Leaf nodes are the lowest level nodes that contain the geometrical description 

of the components and are located at the terminus of a branch [67]. Figure 4.1 shows a 

sample scene graph in which Jobsite is the root node. Scene sub-graphs are created and 



27 

 

attached to the root node to complete the scene structure by encapsulating the entire 

jobsite. In Figure 4.1, sub-graphs Truck, Excavator and Terrain are all child nodes of 

Jobsite. Also, nodes Excavator and Truck have their own child nodes at the lowest level 

of the hierarchy. 

 

Figure 4.1: A Sample Scene Graph Hierarchy 

Using transformation nodes, each geometrical model is created in its own local 

coordinate frame, stored as a leaf node in the scene graph, and appropriate placement of 

the model in terms of position and orientation will be made inside the coordinate frame of 



28 

 

its parent node. Scene graph developers can manipulate the translation, rotation, and 

(scale) of different nodes using transformation nodes. 

The overall transformation of a child object relative to its parent node is obtained by 

multiplying the individual matrices as follows: 
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Where the first matrix shows the transformation of the child note with respect to its 

parent node, the second, third, and fourth matrices, are the rotation about the local X, Y, 

and Z axes, respectively, and the fifth matrix is the scale matrix. Considering a scene 

consisting of a loader and a truck, Figure 4.2 shows the hierarchical scene graph and 

relationships between different nodes. 
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Figure 4.2. Hierarchical Scene Graph and Relationships between Different Nodes 

Using the concept of scene graphs, if the angle of rotation of a child node about the X 

axis of its parent node is γ, the default value for this angular motion can be set to zero to 

represent the initial rotation matrix of the child node relative to the parent node, as 

follows, 
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If a motion sensor capable of detecting angular motions is connected to the real object 

being represented by the child node in the scene graph, as soon as the rotation angle 

about the local X axis (also called the pitch angle) changes due to a change in the real 
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object’s orientation, the sensor determines the change, the collected value is used to 

update the value of γ, and consequently the above rotation matrix is updated. For 

example, the truck bed shown in Figure 4.2 is rotated upward by 45˚ from its initial 

orientation. When this change is detected, the new pitch angle is used to update the 

corresponding rotation matrix as follows, 
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This new rotation matrix will be then used to update the overall transformation matrix of 

the child (bed) node relative to its parent (truck) node (
Parent

Child
T ). The animation is updated 

in each frame according to the overall transformation matrices of all the objects exist in 

the scene. 

One of the important requirements of any visualization system is providing a suitable 

view of the described scene. OSG provides several utilities to arrange desired viewpoints 

from which the viewer can watch the scene. The position and orientation of a viewpoint 

can be manipulated while the scene is being displayed to achieve the desired view of a 

scene graph or different views of the same scene graph. Moreover, it is possible to set 

several viewpoints with different positions and angles to have various views of the same 

scene graph as if depicting a single scene with different cameras installed in distinct 
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places [68]. In OSG, viewpoint definition is independent from the actual scene graph 

representation and as such, there is no nodal representation for viewpoints. 

Creating an animation of the scene objects requires that a dynamic relationship between 

scene graph components is first established. Such relationship can be obtained through 

dynamically manipulating the values of the transformation matrices in the scene graph. 

Although the increments by which values in a transformation matrix change is discrete 

over time, a realistic animation showing exact movements of real world objects need a 

smooth transition between discrete points with the passage of animation time. OSG 

provides complex mechanisms to achieve this goal through constant monitoring and 

updating of all moving objects using frame updating algorithms [66]. Technical details of 

these algorithms are beyond the scope of this study but can be found in [64, 67]. 

4.2  Implementation in This Research  

Since OSG is a free open source toolkit, it allows access to code internals, thus providing 

the opportunity to manipulate and modify the original content of the code to supplement 

the rest of the framework developed in the .NET environment for the specific purposes of 

this research. 

Each of the articulated components depicted in the scene consists of separate parts 

(nodes) created within different modeling packages such as 3D Studio™ (.3ds), 

AutoCAD™ (.dxf), MicroStation™ (.dwg), and VRML (.wrl) that are stored in the user 

computer. By connecting these nodes through assigning a special coordination relative to 
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the main origin of the scene, and also creating a meaningful child-parent relationship 

between separate parts, each single component of the scene is created as a standalone 

model that can be moved inside the animation as necessary. Also, the animation speed 

which is the rate of dynamic increase/decrease of the values of transformation matrices, 

and a desired coordination for the viewpoint should be specified.  

Using the real time positional and orientation data from the sensors mounted on the target 

objects (in real world), the developed algorithm stores the data in form of vectors as the 

animation path for each solid, yet articulated entity in the scene. Thus, the animated scene 

is capable of showing the actual movements of every real object using real time data 

representing the translation and/or orientation of that object’s articulated parts, or the 

object as a whole. 
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CHAPTER 5: DEVELOPED FRAMEWORK 

5.1 System Architecture 

In Chapters 3 and 4, the technologies, concepts, and tools necessary to address the 

challenges described in Chapter 1 were discussed in detail. The need for the presented 

research was further justified by an extensive review of previously conducted studies in 

Chapter 2. This Chapter outlines a detailed account of the individual components of the 

framework and their interconnection in the context of the developed research 

methodology. 

Figure 5.1 depicts the higher level system architecture of the developed framework in 

which the relationship between major building elements, as well as an overall view of 

how raw operational data flows through the system, is eventually transformed into a 

meaningful format, and used in different processes are illustrated. As previously 

described in Chapter 3, the framework is built around the concept of dynamic data-driven 

application system (DDDAS) and thus contains major components (modules) that were 

previously illustrated in Figure 3.3. The following Subsections provide more details 

about these components. 



34 

 

 

Figure 5.1: System Architecture of the Developed DDDAS Framework 

5.2 Real Time Data Collection 

Banks [14] summed up the simulation environment from a data collection point of view 

by indicating that data are rarely readily available and data collection is one of the most 

important and difficult problems in simulation modeling. Given a dynamic simulation 

modeling system, the problem could even get more complicated since the system 

requires real time field data collection and integration. As a result, data acquisition is one 

of the most challenging and computing intensive parts of a DDDAS given that it is 

almost impossible to manually collect real time data in large projects. Depending on the 

extent and complexity of a project, designing and implementing a reliable means to 

acquire, communicate, and synchronize data from multiple sources may itself be a major 

challenge. Real time data is used not only for updating and fine-tuning the model with the 
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latest changes occurring in the real system, but it also serves as the basis for model 

validation and verification. Since the model needs to be continually updated, an 

uninterrupted flow of input data is needed to reflect the latest changes in the status of 

activities and resources. Therefore, developing and implementing a robust and automated 

data collection infrastructure including sensing and communication technologies is 

necessary. 

In many construction projects, resources are in constant motion. Examples include dump 

trucks transferring soil from a cut area to a fill location, crews laying reinforced concrete 

rebars on a floor slab, and a tower crane lifting steel sections from a flatbed truck. As a 

result, from a modeling perspective, capturing these changes in resource (e.g. equipment, 

personnel, and material) positions is necessary. In addition to the positional data, most 

construction equipment (e.g. cranes, excavators, shovels, loaders) have hinged moving 

parts and thus, collecting the angles of orientation for these parts is also essential in order 

to describe their motions. Such data can be acquired using orientation sensors that capture 

three angles of rotation (i.e. yaw, pitch, and roll). In the presented research, orientation 

data are captured and transmitted to the system in order to simulate and animate the body 

configuration of construction equipment in real time. 

In the course of this study, the data collection procedure was developed in two different 

environments. Since both the manufacturer sample algorithms for the data collection 

device and the open source code visualization toolkit, OpenSceneGraph (OSG), were 

written in a .NET environment, a data collection system was initially designed by 
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creating an object-oriented platform in .NET environment. Later, due to the flexibility of 

LabVIEW graphical programming for more sophisticated data analysis and processing 

required in this research, a more efficient data collection procedure was developed in 

LabVIEW using almost the same principles and algorithms originally created in .NET 

environment. In this Section, first the overall functions and classes of the developed data 

collection system in C++ are described. Subsequently, a general description of 

implementing these functions in the graphical programming environment of LabVIEW 

will be presented. 

5.2.1 Serial Port Communication in .NET Environment 

Serial is a standard device communication protocol used for transferring data to or from a 

peripheral devices via computer serial ports  [69]. In order to communicate with the data 

collection devices used in this research, a serial port communication algorithm was 

developed. A major factor in designing this algorithm was generalizability which in the 

context of this research, is defined as the ability of the framework to communicate with a 

variety of data collection devices without the need to significantly modify the 

communication algorithms. Although the developed algorithm is to certain extents, 

unique and has been tested with the PNI TCM Prime 3D orientation tracker, it benefits 

from a generic structure that can be easily used to communicate with other data collection 

devices that transmit data using the RS-232 protocol. RS-232 is a specification for serial 

communication and is one of the most popular for sensor connections [69]. Since the 

collected tracker data is in a binary format, the developed serial port communication 
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algorithm contains methods to decode the transmitted data and convert them to a 

computer interpretable format. 

The developed algorithm uses the advantages of object oriented programing in Microsoft 

Visual C++ .NET environment. Using serial communication libraries, the initial 

communication with the port is established, the port is opened, data (i.e. three orientation 

angles) is received through the port, and the port is closed at the end of the experiment.  

The orientation data coming through different brands of orientation trackers follow 

different data transmission standards. The orientation tracker sensor, PNI TCM Prime 

module, utilizes a binary data transmission protocol to obtain and extract the tracker data 

that is transmitted over an RS-232 interface. Each data packet contains a component 

called Frame Type ID that describes the content of the packet. Based on this ID, the 

packet may contain each of the 3D rotational angles as well as the current temperature 

(ranging from -40 ºC to +85 ºC). These values are stored in the packet Payload [70]. The 

datagram structure of the PNI TCM Prime module is shown in Figure 5.2. 

 

Figure 5.2: Datagram Structure of the PNI TCM Prime Orientation Tracker 
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Using the binary data provides the system with the advantage of fast data transmission. 

However, this will in turn make the communication very sensitive to data corruption. As 

a result, a mathematical transformation method called the Cyclic Redundancy Check 

(CRC) is used to separate useful and corrupted binary data packets. CRC is applied to a 

series of bytes and produces an integer result that can be used for error detection. After 

data is received from the orientation tracker, the tracking application computes the CRC 

value using the existing contents of the data packet and compares this value to the one 

originally calculated when the packet was being constructed prior to transmission. If the 

two values are not identical, the packet is considered as corrupted and will be disregarded 

and the application waits for the next data packet. If the two values are equal, the data is 

safe to be used and extracted into its components. Using a set of binary data manipulation 

statements provided in the application programming interface (API) of the tracker device, 

the numerical values for each of the orientation angles are obtained. The main 

functionalities of the managed C++ class developed for acquiring orientation tracker data 

through a serial port is shown in Figure 5.3. 
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Figure 5.3: C++ Orientation Tracker Serial Communication Class 

The PRIME::Initialize() function is called first to open the serial port and set up the port 

properties (e.g. baud rate, data bits). Then, PRIME::Control() extracts the Payload piece 

by piece. The number of requested angles (up to three) should be defined in this function. 

Based on the number of requested data pieces, this function will be called consecutive 

times and each time sends a control command to the tracker. In response, the tracker 

sends a single packet containing binary values of the requested angles. For example, if all 

three orientation angles (yaw, pitch, and roll) are required, the function will be called 

three times and in return, the tracker sends binary values of three angles. Next, 

PRIME::ReceivePacket() is called to receive the binary data packet. This is followed by a 

call to PRIME::CRC() to check if the received data is error-free. If the data is not 

corrupted, the contents of the packet will be extracted by PRIME::ParsePrimePacket(). 

This function stores the numerical value of the required angles in numerical variables 

which will later be used to construct and display the real time animation of moving parts. 

Finally, the PRIME::Shutdown() class will close the port. The flowchart in Figure 5.4 

shows major steps in acquiring orientation data using the PRIME class introduced in 
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Figure 5.3. More information about all other functions and classes developed  using 

Microsoft Visual C++ can be found in Appendix A. 

 

Figure 5.4: Flowchart of 3D Orientation Tracker Serial Communication Process 

5.2.2 Data Collection Using LabVIEW  

The presented methodology for data collection takes advantages of LabVIEW graphical 

programming environment developed by the National Instruments (NI). This essentially 
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enables the creation of a standalone data collection and analysis framework that uses the 

same functionalities employed in C++ but in a more efficient manner. LabVIEW, in 

essence, is a system design platform that enables automating data collection and 

measurements supporting a wide variety of sensors. As a powerful data collection tool, 

LabVIEW abstracts much of the administrative complexity of computer programming 

such as memory allocation and language syntax [71]. It was used  in this research in order 

to create a single platform that provides more control and flexibility as far as data 

collection and analysis, and displaying the results in a highly interactive (i.e. visual) 

environment are concerned. Figure 5.5 shows a sample snapshot of the LabVIEW 

graphical environment. Each program written in LabVIEW is called a Virtual Instrument 

(VI) which consists of a graphical user interface (i.e. Front Panel) and a graphical code 

(i.e. Block Diagram). Each node in a Block Diagram performs a specific task and is 

connected to other nodes via wires. More information about LabVIEW graphical 

programming can be found in Appendix B. 
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Figure 5.5: A VI Consists of a Front Panel and a Block Diagram 
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In this research, a real time data acquisition VI was designed and implemented to 

customize and append an instrument driver for the PNI TCM orientation tracker.. To 

create an interface between the instrument driver and the data collection device, the NI 

Virtual Instrumentation Software Architecture (VISA) API was used for serial 

communication. VISA, basically provides users with the ability to open, configure (i.e. 

setting baud rate, flow control, parity), write to and read from, and close any type of 

interfaces such as GPIB, TCP/IP, Ethernet/LAN, IEEE 1394, USB, and serial, and handle 

errors in a fast and easier way in comparison with the same functions developed in a text-

based programming environment (e.g. C++). Figure 5.6 shows a rudimentary structure of 

the VISA implemented in the developed framework. 

 

Figure 5.6: Developed VISA Interface Structure 

As shown in this Figure, VISA Resource Name passes session information between 

instrument driver and SubVIs and is a unique identifier reference to the data collection 

device (e.g. COM1, COM2). VISA Open essentially opens a session to communicate with 
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the device specified by the VISA Resource Name and returns a session identifier that can 

be used to invoke operations on that device. This is equivalent to the function 

PRIME::Initialize() in the Figure 5.3. Serial Configuration, as stated before, sets the port 

configuration parameters specific to the device such as baud rate which is a measurement 

for communication speed equal to 38,400 HZ for the PNI TCM module. VISA Write has a 

performance similar to  PRIME::Control() in the Figure 5.3. It extracts the Payload and 

requests needed angle measurements. Subsequently, VISA Read reads the requested data 

based on what was defined in VISA Write. The CRC will be performed to detect 

corrupted data packets by calculating the CRC-16 of the output string from the tracker 

and comparing it to the checksum at the end of the output string. In essence, this 

procedure is identical to what was described in Subection 5.2.1. Finally, similar to 

function PRIME::Shutdown(), VISA Close shuts down the port and terminates the 

software connection to the device. 

The advantage of real time automated data collection is that it enables the simulation 

model to update itself in response to changes in the project environment. This can be 

achieved by continually collecting time-stamped data. However, before the raw data 

stream enters the simulation model or is used as input for visualization, it should be 

classified, analyzed, and converted to a format that defines the state and the context of the 

entity for which the data is collected. As such anda s shown in Figure 5.1, the raw data 

collected using either the .NET or LabVIEW operational environments is passed onto the 

data classification and analysis module of the developed DDDAS framework. The 

following Subsection provides more details about this module. 
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5.3 Automated Data Classification and Analysis 

One of the major challenges in collecting a large volume of heterogeneous information is 

that unnecessary data may also be inevitably collected. For example, in order to 

mathematically describe the motion of a loader’s boom within the context of an 

earthmoving operation, a 3D orientation tracker mounted on the boom would capture 

three angular values namely yaw, pitch, and roll. However, given that the boom must be 

raised or lowered to load or unload a truck, the main piece of information needed to 

determine the start and end times of load or unload activities is the pitch angle. As such, 

potential trembles resulting in small changes in the roll angle and also possible motions 

such as sidewise movements and maneuvering of the loader leading to a change in the 

yaw value are to the most extent, redundant as far as detection the beginning and end of 

load and unload activities for the simulation model and having a smooth animation for 

visualization are concerned. Therefore, collected data must be carefully classified so that 

only relevant and useful information is passed onto the next steps. 

Classified data also needs to be transformed into a proper format interpretable by the 

simulation model. One such format is a numerical representation of activity durations 

using probabilistic distributions. Since discrete events mark the beginning and end of 

each activity, identifying the duration of individual activities can be achieved by 

detecting time-stamped events corresponding to the beginning and end of that activity. 

Therefore, activity durations can be derived from the pool of classified collected raw data 

and suitable probability distributions will be then fit to the calculated duration values. In 
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the earthmoving example described above, the angle of the boom and the truck bed 

relative to the horizontal line can be used to identify the start and end points of load and 

unload activities and determine activity durations. For example, in the operation depicted 

in Figure 5.7, activity durations can be calculated by comparing the time stamps 

corresponding to when each event (i.e. raise boom, load truck , lower boom, haul, raise 

bed to dump, lower bed, return) occurs based on the orientation data (i.e. angles) received 

from sensors mounted on the equipment. 

 

Figure 5.7: Simplified Layout of an Earthmoving Operation 

An example of how a series of time-stamped data can be used to extract certain activities 

and their durations is illustrated in Figure 5.8. 
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Figure 5.8: Activity Durations Based on the Variation of Equipment Body Orientation 

with Respect to Time 
(RB = Raise Bucket, LT = Load Truck, LB = Lower Bucket, RTB = Raise Truck Bed, P = Put, LTB = 

Lower Truck Bed) 

In this Figure, the first diagram shows changes of angle α (loader boom angle relative to 

the horizontal line) and the second diagram shows angle β (truck bed angle relative to the 

horizontal line) over time. Considering angular variation histograms displayed in these 

two diagrams, a timeline representing the duration of each activity can be generated. For 

example, an increasing angle α and a constant angle β (close to zero) indicate that the 

loader is raising its boom while the truck is waiting to be loaded (RB in Figure 5.8). A 

near constantan angle α (close to its peak value) and a constant angle β (close to zero) 

indicate that the loader is putting soil into the truck (LT in Figure 5.8). A decreasing 
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angle α and a constant angle β (close to zero) indicate that the loader is lowering its boom 

while the truck is preparing to move (LB in Figure 5.8). An instance of “Load” activity is 

completed when all three (RB, LT, and LB) processes are completed. 

A similar analysis can be done to isolate instances of “Haul”, “Dump”, and “Return” 

activities. For instance, given that angle α is constant (at a value close to zero), if angle β 

is increasing from zero, the truck bed is being raised (RTB in Figure 5.8), if angle β is 

almost constant (close to its peak value), soil is being dumped (P in Figure 5.8), and if 

angle β is decreasing, the truck bed is being lowered (LTB in Figure 5.8). These three 

processes, put together, will constitute an instance of “Dump” activity. Since histogram 

data is time-stamped, duration values can be easily determined for all such instances. 

Mathematical models will then be applied to a well-populated pool of these calculated 

durations to determine a distribution function that best represents the duration of that 

activity. This distribution function is then used to describe the duration of that activity in 

the corresponding DES model [63]. 

It is worth mentioning that given the unavailability of GPS to obtain time-stamped 

positional data in an indoor environment (e.g. laboratory setting where the components of 

this framework was tested), a number of simplifying assumptions had to be made when 

developing the methodology for extracting the duration of activities. For example, it was 

assumed that the haul activity would not start until the loader lowers its boom and would 

not finish until the truck raises its bed. Likewise, return activity starts when truck’s β 

angle reaches zero and finishes at the beginning of the load activity, when the loader 
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starts raising its boom. It is clear that incorporating positional data into the proposed 

algorithms for calculating activity durations not only does eliminate the need to consider 

these and similar simplifying assumptions, but also enhances the accuracy of the 

algorithm. As such, future work in this research will include activities specifically 

targeting this need. 

The classification and analysis module accepts input from data collection devices, outputs 

the classified data for pre-processed animation, and also analyzes data to be passed onto 

the simulation model. This guarantees that only relevant data is used and that the 

simulation model is not only the receiving end of the process but also can steer the data 

collection process by requesting additional field data to be collected, if necessary. The 

classification and analysis process also includes statistical analysis algorithms to 

categorize the activities based on the trend of the collected data and to remove the 

outliers and eliminate the non-relevant data. The next Subsection describes the developed 

system for implementing such algorithms. 

5.3.1 VI Structure for Data Analysis Module  

In order to create a standalone platform consisting of both data collection and data 

analysis modules, all mathematical and logical functions for data classification, extraction 

of activity durations, and statistical analysis were appended to the same VI. Figure 5.9 

shows the VI structure. 
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Figure 5.9: Single VI Containing Data Acquisition and Data Analysis Functions 

A cluster of real time orientation data enters the VISA interface and undergoes steps 

depicted both in Figure 5.6 and by a dashed outline in Figure 5.9. This is followed by raw 

data being classified and time-stamped. The time-stamped data will then be used to 

calculate activity durations using several mathematical and logical commands built into 

the VI. Statistical analysis will be also performed on the well-populated pool of duration 

to calculate mean, standard deviation and other parameters required to describe activities 

in a data-driven simulation model. 

5.4 Data-Driven Simulation 

As far as the system architecture illustrated in Figure 5.1 is concerned, once the data is 

available after the classification and analysis step, input parameters for simulation model 
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are determined. Construction operations can be broken down into and modeled as a 

system of discrete activities which makes DES a viable method for simulating such 

operations. One of the most commonly used DES systems is STROBOSCOPE [47]. 

STROBOSCOPE, initially designed for construction operations, is an open-design 

programming language that enables users to make complex dynamic decisions and thus, 

control the simulation at run-time. The advantage of STROBOSCOPE over many other 

existing DES modeling platforms is that it considers the diversity of resources and their 

characterizations. In addition, it has been built upon the concept of traditional activity 

cycle diagram (ACD) which makes it suitable for modeling a large group of construction 

operations that are cyclic in nature. STROBOSCOPE models are based on a graphical 

network of interconnected modeling elements. A DES model of a sample earthmoving 

operation is illustrated in Figure 5.10.  

 

Figure 5.10: DES Model of a Typical Earthmoving Operation 

In this Figure, SoilInPlace, LoadersWait, TrucksWait, and MovedSoil are queues where 

resources wait before being drawn to activities (if needed). Also, Load is called a combi 
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activity since it immediately follows a queue, and Haul, Unload, and Return are normal 

activities. In order for a STROBOSCOPE model to describe a real system, attributes such 

as activity durations, number of entities, and resource capacities must be known. In the 

absence of collected field data, assumptions and personal judgment is normally used to 

quantify such parameters. As previously stated, one of the main motivations behind this 

research was to investigate if further improvements can be made to the existing approach 

of assigning values to simulation parameters by designing a methodology that 

incorporates field data  to obtain more realistic simulation parameters. 

STROBOSCOPE models consist of a series of programming statements written in a 

script input file. All parameters pertinent to the characteristics of each model element 

should be defined through those programming statements. Therefore, once the 

appropriate simulation parameters are determined from the collected data, the simulation 

script is opened and updated based on the calculated parameters. 

5.5 Pre- and post-processed Animations 

Chapter 4 illustrated a detailed description about OSG, the visualization toolkit used in 

this study. Following the data flow illustrated in Figure 5.1, as soon as appropriate field 

data is collected and classified, a concurrent 3D dynamic animation of ongoing activities 

is created. This pre-processed (i.e. generated before data is fed into the simulation model) 

animation can assist in detecting potential conflicts and enhancing safety and monitoring 

of the project. The other benefit of this animation is that unlike many existing site 

monitoring systems which mainly rely on video streaming, finding the best spots to 
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install cameras such that every action can be monitored with a free line-of-sight is no 

longer an issue. This is due to the fact that once the animation is rendered on the screen, 

the user has complete control over the viewpoints and can change their locations and 

directions of look, if necessary. For example, the user can zoom in an out or navigate 

around the animated scene to gain a better visual perspective of certain parts of the 

operation since as stated in Chapter 4, OSG provides the opportunity to change the 

viewpoint to observe the scene from any desired angle. 

In addition to the pre-processed animation, the results of the DES model can be used to 

create a post-processed animation. As demonstrated in literature, providing  visualized 

output of a simulation model is preferred by many construction planners and analysts 

since very often,  making decisions solely based on the textual output of conventional 

simulation systems is time consuming and prone to unwanted biases and mistakes [54, 

72]. However, in addition to the benefits that general visualization of simulation models 

has, providing decision-makers with two identical animations, one based on the exact real 

movements occurring on the jobsite and the other based on the output of the updated 

simulation model with the latest data obtained from the field provides an extremely 

convenient way to evaluate and compare different scenarios with the concurrent filed 

configuration and make more realistic decisions. For example, since each construction 

project is unique in terms of requirements and usage of its working space, having a real 

time data from the project and evaluating different scenarios based on the transformation, 

requirements, and limitations of the working space (e.g. maneuverability issues for 

loading and dumping activates in earthmoving operations, visibility problems for the 
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crane operator in steel girder erection, safety problems and detecting potential collision, 

overcrowding in particular work zones), prevent decision-makers from making general 

assumptions based on historical data or their expert eye on the work. Hence, displaying 

the pre-processed animation side-by-side the simulation-based post-processed animation 

enables decision-makers to see first-hand how current trends on the jobsite (reflected in 

the pre-processed animation) and the expected performance of resources (as displayed in 

the post-processed animation) are related, and hence effectively serves this purpose. 

Finally, another major advantage of having pre- and post-processed animations is that 

comparing the two animations greatly facilitates the validation and verification of the 

simulation model. In this case, the modeler can intuitively make sure whether the model 

contains any modeling flaws or whether it performs as intended (i.e. verification). Also, it 

can be visually determined by people who are not construction experts whether the 

simulation model accurately represents the real word.  

Creating realistic post-processed 3D animations of a simulated construction processes is a 

complicated task that has been previously studied by a number of researchers. A recent 

example of a post-processed 3D visualization platform is VITASCOPE. VITASCOPE is 

a general purpose 3D animation system for visualizing simulated processes modeled in 

simulation tools such as STROBOSCOPE, capable of writing formatted output during a 

simulation run. Based on the logged simulation model runtime data, VITASCOPE 

graphically illustrates modeled operations by processing sequential, time-ordered 

animation commands in an ASCII text file [10]. While VITASCOPE is a great tool for 
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creating post-processed (simulation-based) animations of construction activities, the 

existing visualization capabilities of the framework developed in this research enable the 

generation of a pre-processed animation using the same OSG-based environment and 3D 

CAD models of construction equipment. As described earlier, these two animation 

streams, when simultaneously displayed, can facilitate the process of validation and 

verification of the simulation model while providing a means to intuitively compare 

different scenarios tried in the simulation model. 

It is worth mentioning that since the designed framework is intended to function in an 

automated manner, and since the OSG visualization toolkit is written and extended using 

the C++ programming environment, a middleware for linking LabVIEW (i.e. containing 

data collection and analysis functionalities) to Microsoft Visual C++ (i.e. containing OSG 

visualization platform) had to be designed. To this end, ActiveX Automation technology 

was used in this research. ActiveX has an interface that allows individual programs to be 

linked together to suit for specific computing needs [73]. 

5.6 What-If Analysis 

Another building block of the framework as shown in Figure 5.1 is the “What-If 

Analysis” module. In order for a construction engineer to make necessary decisions 

regarding the complex processes, different scenarios need to be assessed and the cost and 

time associated with each scenario must be determined. For example, a decision 

regarding equipment fleet to be used in an earthmoving operation could be the one 

associated with the minimized expected cost [47]. Considering all possible configurations 
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in terms of crew sizes, number of equipment and their arrangements, operations logic, 

and construction methods, a decision-maker may end up having to choose from several 

combinations to perform a certain task. Using simple methods such as subjective 

mathematical comparisons or more complex optimization models, the engineer can then 

determine the best configuration that satisfies the predefined criteria (e.g. objective 

function, time, cost). 

5.7 Decision-Making and Dynamic Feedback 

The last component of the system architecture presented in Figure 5.1 is Decision-

Making and Dynamic Feedback. The developed algorithms for data collection, 

classification and analysis, simulation and visualization, will be best used in the presence 

of a human decision-maker or a team of decision-makers who will be ultimately 

responsible for making the required modifications to the target construction process. As 

stated earlier, presented data to the user contains two juxtaposed animations; one 

identical to the actual process taking place in the jobsite (pre-processed), and the other, 

resulted from simulating alternative scenarios (post-processed). Also, the user is provided 

with the results of the simulation model and the output of the what-if analysis in order to 

decide which alternative solution is the most appropriate. Therefore, not only by 

intuitively watching side-by-side animations, but also through intelligently interpreting 

performance attributes (e.g. productivity rates) from the simulation output and various 

alternative scenarios, the decision-maker(s) will have the ability to further adjust future 

processes. Ultimately, and due to the dynamic nature of construction projects, the cycle 



57 

 

presented in Figure 5.1 will repeat to reflect any further changes occurring in the process. 

In other words, the next phase of data collection starts after expert modifications are 

applied to the construction resources, and activities and a new set of data will be 

classified, analyzed, simulated, and visualized. This guarantees that through continues 

data collection from the equipment involved in a construction process, at any given time, 

the system will be functioning at its best performance level. 
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CHAPTER 6: LABORATORY SCALE EXPERIMENTS AND 

RESULTS 

Chapter 5 outlined the individual components of the developed framework and their 

relationships in the context of the overall system. In this Chapter, results of preliminary 

proof-of-concepts experiments conducted in the Decision Support, Information 

Management, and Automation Laboratory (DESIMAL) at the University of Central 

Florida are provided to demonstrate the validity and applicability of the developed 

methodology and algorithms for data collection, data analysis, visualization, and data-

driven simulation. In particular, the validation phase included a number of laboratory-

scale equipment operations scenarios designed and implemented to test certain aspects of 

the developed framework. In addition, a comprehensive experiment was carried out in 

which the robustness, applicability, and overall functionality of the framework in terms of 

data collection and classification capabilities, ability to generate realistic pre-processed 

animations, and effectiveness to create data-driven simulation was validated. The 

following Subsections provide more insight about the details and outcomes of each of the 

validation experiments.  

6.1 Preliminary Results 

6.1.1 Experiment Tools and Peripheral Devices 

Preliminary experiments were performed on a laboratory-scale Construction Equipment 

Automation Platform (CEAP) using remotely-controlled model construction equipment. 
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A NetCam XL IP-addressable camera and a Dell
TM

 Precision T1500 desktop system were 

also deployed. The camera was used to demonstrate the correctness and precision of the 

pre-processed visualization and the desktop system was the main computing platform. 

Figure 6.1 illustrates the overall arrangement of the tools and peripheral devices namely 

the CEAP, model construction equipment, IP-addressable camera, and the computer 

system.  

 

Figure 6.1: Overall Arrangement of Experiment Tools and Devices  

In order to collect equipment motion data several PNI TCM 3D orientation trackers were 

used. These modules were mounted on model construction equipment to capture and 
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transmit three angular values namely yaw (heading), pitch (tilt), and roll. Figure 6.2 

shows a PNI TCM 3D orientation tracker mounted on a model excavator with definitions 

of yaw, pitch, and roll angles. Also manufacturer’s specifications of this orientation 

tracker are listed in Table 6.1. 

 

Figure 6.2: A Prime 3D Orientation Tracker Mounted on a Model Excavator with 

Definitions of Yaw, Pitch and Roll Angles 

Table  6.1: Manufacturer’s Specifications of Prime 3D Orientation Tracker 

Angle Parameter Value 

Heading 

Range 360° 

Accuracy (tilt ≤ 45°) 1° rms 

Resolution 0.1° 

Tilt (Pitch/Roll) 

Range  
Pitch ±90° 

Roll ±180° 

Accuracy 1° rms 

Resolution 0.1° 
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6.1.2 Single Object Data Collection and Visualization 

Initially, a series of small-scale validation tests were conducted using data collected from 

only one model construction equipment. Later, data collection, data analysis, and 

visualization algorithms were modified to enable data capturing and processing from 

multiple objects. 

The first in a series of these experiments was conducted using an orientation tracker 

mounted on a model loader [74]. Figure 6.3 shows the loader on the CEAP and the 

orientation tracker attached to the boom of the loader. 

 

Figure 6.3: Orientation Tracker Mounted on a Loader's Boom 

The first step in conducting each experiment was to collect and classify equipment 

motion data to provide necessary input for visualization and data-driven simulation. As 

stated in Chapter 5, data collection and analysis is performed using LabVIEW. Figure 6.4 

shows the Front Panel (i.e. user interface) of the data collection system for the validation 

experiment using a single model loader. As shown in this Figure, the interface of the 

developed VI enables a user to specify a communication port to receive data from the 
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orientation tracker, start and stop the data collection task, and view the numerical values 

of the collected orientation angles. 

 

Figure 6.4: Front Panel of Data Collection VI for a Single Loader 

Once the VI is launched the data collection task begins. This is followed by  a continuous 

stream of real time classified angular data displayed in the three indicators designed to 

show yaw, pitch, and roll values. These indicators are marked as YawLoader, 

PitchLoader, and RollLoader in Figure 6.4, respectively. As soon as the user switches off 

the data collection using the “Stop Data Collection” button the data stream stops. By 

clicking on “Start Animation”, an animation of the exact same movements of the loader’s 

boom will appear on the screen. Figure 6.5 shows snapshots from this test. In this Figure, 

several frames of the live video streams of the real system captured using the IP-
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addressable camera are displayed next to the corresponding 3D animation frames 

generated by the developed framework in real time. 

 

Figure 6.5: Real Time Display of Loader's Boom Movements and Corresponding 3D 

Animation Generated in Real Time 
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6.1.3 Double Object Data Collection and Visualization 

In order to validate the generalizability of the overall framework and to demonstrate that 

the developed methods will properly function in situations where operational data from 

more than one piece of equipment has to be collected, the data collection algorithms in 

LabVIEW as well as the visualization methods (created in .NET using OpenSceneGraph) 

were slightly modified. In doing so, the major issue that was successfully addressed was 

to update the processes inside the data analysis module to be able to identify individual 

activities from a large pool of raw motion data collected from several pieces of 

equipment using multiple data collection devices (i.e. 3D orientation trackers), determine 

the logical relationships and interactions between a group of equipment, and 

consequently extract activity durations [63]. To validate the newly developed methods, a 

laboratory-scale experiment was set up where operational data was collected from two 

models, and the collected data was processed to generate a live 3D animation as well as 

the calculate the main input parameters needed by the data-driven simulation module to 

describe equipment activities in a meaningful format. In this experiment, two orientation 

trackers were mounted on a model loader and a model truck. Figure 6.6 shows these 

equipment placed on the CEAP while the orientation sensors are mounted on the loader’s 

boom and the truck’s bed. 
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Figure 6.6: Orientation Trackers Mounted on a Loader's Boom and a Truck’s Bed 

Similar to the validation experiment using only one object, a VI was created and 

implemented for data collection. However, this time not only the three angular data are 

shown, but also two diagrams containing a series of time-stamped data to extract activity 

durations are illustrated in the Front Panel. Each of these histograms shows the how 

incoming data collected from the orientation tracker changes over time. For example, the 

trend of data corresponding to the loader’s boom indicates that the boom is first lowered 

from its initial state, raised and remained in a steady state for some time, lowered again 

and remained in a steady state for a while, and finally raised. By observing this data 

trend, one can conclude that the loader was involved in a cycle of digging soil (boom 

down position) followed by loading a truck (boom up position). Based on the collected 

data and using the developed algorithms for detecting individual activities from a series 

of angular data, mean and standard deviation of durations were calculated and displayed. 

Figure 6.7 shows the Front Panel used in this experiment. 
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Figure 6.7: Front Panel of Data Collection VI for a Double Object Experiment 

Similar to the scenario in which only one object was used, a real time stream of motion 

data is captured and displayed in the specific indicators on the Front Panel. 

Simultaneously, each activity is detected by the VI based on the existing data trends and 

activity duration is calculated using mathematical algorithms inside the corresponding 

Block Diagram. Figure 6.8 illustrates a portion of the extensive Block Diagram 

developed for data collection and analysis purposes. 
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Figure 6.8: Partial View of the Extensive Block Diagram Developed in this Research 

Individual activity durations are calculated as long as equipment motion data is 

streaming. The calculated values are used to populate numerical arrays. The content of 

each numerical array corresponding to a certain activity (e.g. load, dump) is evaluated in 

real time using statistical methods to determine the mean and standard deviation of the 

probabilistic normal duration that best fits all values. 

Once the data collection is stopped by the user, and the start animation command is 

triggered, a 3D animation showing the exact same equipment movements appears on the 

screen. Figure 6.9 shows snapshots from the live video stream of the real system as well 

as the corresponding 3D animation created in real time.  
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Figure 6.9: Real Time Display of Loader's Boom and Truck’s Bed Movements and 

Corresponding Animations 
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6.2 Comprehensive Example: Data-Driven Simulation 

In order to demonstrate the ability of the developed framework in supporting the prospect 

of data-driven simulation by collecting, processing, and integrating real time operational 

data with simulation modeling, a simplified yet comprehensive operational scenario was 

designed and carried out. In this experiment, the goal was to move 200 pieces of model 

rocks from a loading area (i.e. Area #1) to a dumping site (i.e. Area 2) for a dam 

construction project. A model loader was used to load a model truck. The truck would 

haul the rocks from the loading area to the dumping site. It was assumed that pieces of 

rock are so big and heavy that each truck can carry only one rock in each hauling cycle. 

In order to collect field data, two orientation trackers were mounted on the model 

equipment; one on the loader’s boom, and the other on the truck’s bed. Figure 6.10 shows 

the layout of the experiment conducted on the CEAP. 

 

Figure 6.10: Experiment Layout of a Model Dam Construction Scenario 
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Figure 6.11 shows the DES network of this operation. In this Figure, RocksToMove, 

LoadersWait, TrucksWait, and MovedRocks are queues, Load is a combi activity (i.e. it 

immediately follows a queue), and Haul, Dump, and Return are normal activities. Also, 

all network elements (i.e. activities and queues) are connected by links. Each link has a 

specific name and can carry a certain type of resource (i.e. Rock, Loader, Truck) from 

one element to the other. For example, RK2 is defined as a link connecting Load and 

Haul activities which carries the Rock resource.  

 

Figure 6.11: DES Model of Rock Hauling Activity 

As stated before, during the planning stages of a project, simulation modelers generally 

rely on expert judgments or field reports from similar past projects to determine model 

parameters such as activity durations. Following the same logic and as shown in Figure 

6.12, a DES script was initially created in STROBOSCOPE for the dam construction 
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scenario where activity durations were approximated based on the overall arrangement of 

resources and considering the motion speed of model equipment. 

 

Figure 6.12: STROBOSCOPE Simulation Input File 
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In this Figure, statements used to describe activity durations inside the simulation script 

are highlighted. In addition, necessary statements were added to assess and report the 

total completion time of the project. The output of this simulation model is shown in 

Figure 6.13. In this Figure, average waiting time of resources inside their corresponding 

queues is highlighted. Since the simulation parameter (i.e. activity durations) were 

approximated in the first place, the resulting waiting times may or may not represent the 

actual idle time of resources during the course of the real world project.  

 

Figure 6.13: STROBOSCOPE Simulation Output File 
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Hence, it was decided to incorporate real time operational data collected from the model 

equipment into the DES model to create a more accurate and realistic output that better 

serve the decision-making process. To do so, data was collected from several complete 

operational cycles including Load, Haul, Dump, and Return activities. The collected data 

was further processed to determine and display  the statistical mean and the standard 

deviation of each activity as identified in the corresponding VI by establishing rules 

relating equipment motions to the beginning and end events of individual activities. 

Figure 6.14 shows the VI and the results obtained for activity durations. 

These statistical parameters were used to replace the approximate duration values by 

assigning more realistic Normal distributions to individual activity durations and update 

the DES model. The revised STROBOSCOPE simulation script is shown in Figure 6.15 

where newly calculated activity durations are highlighted. The updated simulation model 

was then run and results were collected as illustrated in Figure 6.16. 
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Figure 6.14: Developed VI for Data Collection and Analysis for Rock Hauling Example
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Figure 6.15: STROBOSCOPE Simulation Input File Containing Updated Activity 

Durations 
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Figure 6.16: STROBOSCOPE Simulation Output File Based on the Updated Durations 

Comparing the output of the revised simulation model (Figure 6.16) with that of the 

original model (Figure 6.13), it is clearly seen that incorporating field data into the 

simulation modelling has resulted the average waiting time of the loader to significantly 

decrease from 72.21 seconds to 44.77 seconds. Also, the overall project completion time 

is noticeably improved as a result of using real equipment data to update activity 

durations. These improvements can potentially affect the outcome of the planning of 

projects tasks scheduled for the immediate future tasks as far as resource arrangements 
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and combinations are concerned. Table 6.2 summarizes the results of this comparative 

validation example. 

Table 6.2: 

Comparison between Estimated Durations and Actual Durations Based on Real Time 

data 

Simulation Element 
Approximated Duration 

(sec.) 

Data-Driven Duration 

(sec.) 

Load  N[40,5] N[55,3.63] 

Haul N[35,5] N[25.57,1.96] 

Dump N[3,0.5] N[8.6,1.15] 

Return N[35,5] N[22.52, 2.18] 

Loader’s Avg. Idle  72.21 44.77 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

Operations level planning and control is one of the most critical components of managing 

ongoing activities in a construction site. Proper resource planning and control can 

guarantee that the best possible arrangement of resources are deployed which will in turn, 

result in substantial savings in project completion time and cost. To this end, simulation 

modeling as a powerful tool for analyzing complex construction operations has gained 

significant credibility during the past several years. Commonly, many simulation 

paradigms use static or historical data to create computer interpretable representations of 

real engineering systems. The suitability of this approach for modeling construction 

operations, however, has always been a challenge since most construction projects are 

unique in nature, and every project is different in design, specifications, methods, and 

standards. Therefore, there is a significant need for a methodology that not only does 

enable the modeling of main entities and logical relationships in a real system, but also 

allows that real time changes be incorporated into the simulation model. 

The major requirement of a modeling platform capable of precisely representing the real 

world construction system is a data collection scheme capable of providing the simulation 

model with the latest information about the status of underlying processes and project 

entities. Given the dynamic nature and complexity of many construction processes, 

manually gathering the information necessary to create the corresponding simulation 
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model is a tedious if not an impossible task and thus, it is necessary to employ an 

automated system for collecting required data and convert them to a format 

understandable by and useful  for the simulation model. 

This Thesis document reported on a study conducted to investigate the requirements and 

applicability of a data-driven decision support system based on the relatively new 

simulation paradigm of dynamic data-driven application system (DDDAS). This 

paradigm was integrated with the traditional discrete-event simulation (DES) modeling to 

create a single decision-making framework for short-term scheduling and system control. 

The framework is capable of automatically collecting real time operational data from 

construction equipment and subsequently sorting, analyzing, and using them to create 

real time 3D animations of the concurrent construction processes, and also updating the 

simulation model describing the real operations based on the latest trends in the data 

stream collected from the construction jobsite. 

The developed methodology was validated inside a .NET object-oriented environment 

along with a graphical programming and data collection platform, LabVIEW. To validate 

the functionality and robustness of the developed algorithms, 3D orientation trackers 

were used to collect motion data from moving parts of model construction equipment, 

and the collected data was analyzed and transformed into a format meaningful for the 

decision-making process. All preliminary experiments were performed in an indoor 

laboratory setting at the University of Central Florida. 
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The following summarizes the main milestones of this research that have been 

successfully achieved: 

 A data collection platform was developed in LabVIEW for collecting angular data 

from 3D orientation trackers that transmitted data over an RS-232 serial port 

interface. 

 Data classification and analysis algorithms were developed in LabVIEW for real 

time analysis of raw data and to convert them to proper format for use as input by 

the simulation model and visualization system. 

 Dynamic concurrent animations of ongoing activities in real system were created 

inside the .NET environment using the OpenSceneGraph visualization toolkit. 

 Necessary communication interfaces were created to facilitate data 

interoperability between the data collection and analysis module, the object-

oriented programming platform used for visualization, and the discrete event 

simulation used to model ongoing construction activities. 

  Laboratory-scale validation experiments were successfully  conducted and results 

were documented to demonstrate the applicability and reliability of the developed 

data-driven decision support framework. 
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7.2 Future Work 

The presented research is part of a much larger ongoing project which aims to facilitate 

the integration of real time operational data into the construction decision-making 

process. The next step in developing the current system will contain communication 

methods to capture Real Time Kinematics (RTK) GPS data for location tracking of 

construction equipment and also the deployment of more efficient orientation trackers 

that can adequately handle specific conditions of the jobsite in terms of communication 

range, accuracy, and ambient noise. In addition to spatio-temporal data (i.e. position, 

orientation), payload information is another potential source of data that can be collected 

and used to determine the state of equipment involved in operations such as earthmoving 

or steel erection where material is transported from one location to another. There are 

also other types of data that are not necessarily related to construction resources but can 

potentially affect the progress of field activities. Examples include weather-related (e.g. 

temperature, humidity) data and soil and topography data. To this end, future work in this 

research will include the design and implementation of robust algorithms to collect, 

process, and fuse such multiple-source heterogeneous data [75, 76]. 

Also, there is a need to examine the developed pre-processed visualization module in the 

presence of a post-processed (simulation-based) 3D visualization platform to highlight 

the advantages and identify potential shortcomings of the current framework. In addition, 

work needs to be done to improve the mathematical efficiency and statistical accuracy of 

the framework in order to more effectively handle, fuse, and process large volumes of 
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raw incoming data especially when multiple heterogeneous data collection devices are 

used. 

Automating and optimizing equipment operations is another potential area for future 

work in this research. To achieve this, machine learning methods will be investigated to 

develop a self-learning system capable of observing activities that involve resource (i.e. 

equipment, material, personnel) interactions, extracting information by identifying data 

trends and cyclic motions, and subsequently generating knowledge-based action plans to 

streamline process flows on the jobsite. 
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APPENDIX A: C++ ALGOTIRHMS FLOWCHARTS  
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As stated in Chapter 5, the computing platform developed in this research takes 

advantage of a .NET object-oriented design as well as a graphical user interface (GUI) 

developed in LabVIEW. Platform interoperability features that facilitate the 

communication of information between the .NET environment and the LabVIEW 

interface are provided using the ActiveX automation interface. 

In this Appendix, a detailed description of the .NET functionalities is presented by using 

flowcharts that describe how different programming modules communicate and what 

type of data is transferred between these modules The illustrated flowcharts are only 

intended to supplement the discussion of the topics introduced in previous Chapters and 

to help interested readers gain a better understanding of the data flow in the developed 

platform. 

There are four major C++ functions used inside the .NET environment. These functions 

include, 

CreateAnimationPath() 

This function plays the most critical role since it facilitates communication between C++ 

and LabVIEW to capture and store angular data as vectors and create and return an 

animation path. 

CreateMovingModel() 

This function imports 3D CAD files of articulated parts of model construction equipment 

and defines the parent-child hierarchical relationships between different nodes 
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constructing each object in the scene. This function creates and returns an intermediate or 

group node including all objects called model. 

CreateModel() 

This function defines the origin of the coordination system used to create the 

visualization scene. It also attaches the group node model to the root node and returns 

root as the highest point of the hierarchy. 

Main() 

This function initializes a LabVIEW interface, tilts the scene to arrive at the desired 

viewpoint, set the scene to render, and finally runs the animation. 

Figures a.1 through A.4 illustrates detailed flowcharts of the above function. 
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Figure A. 1: CreateAnimationPath() Function Flowchart 
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Figure A. 2: CreateMovingModel() Function Flowchart 
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Figure A. 3: CreateModel() Function Flowchart 
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Figure A. 4: Main() Function Flowchart 
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APPENDIX B: LabVIEW GRAPHICAL PROGRAMMING AND 

ALGORITHMS 
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LabVIEW
1
 (i.e. Laboratory Virtual Instrument Engineering Workbench) is a product of 

National Instrument (NI) and is a platform for designing engineering and scientific 

measurement and control systems. LabVIEW uses graphical programming (G) as a data 

flow language in which nodes, as operations or functions, operate on data received 

through “wires”. This approach provides an efficient way of handling and processing data 

especially when compared to most text-based programming languages which operate 

based on a sequential line by line manner. LabVIEW has built-in tools designed 

specifically for data collection, analysis, and presentation. 

LabVIEW programs are called virtual instruments (VIs). Each VI has two windows: the 

user interface which is called the Front Panel, and the graphical code called the Block 

Diagram. The Front Panel provides users with interactive controls such as buttons, gages, 

graphs, and tables as well as tools to save data files or automatically generating reports. 

The Block Diagram, on the other hand, consists of icons and nodes that are connected 

together via wires. Figure B.1 shows a customized Front Panel and the corresponding 

Block Diagram. 

  

                                                 
1
 LabVIEW is a registered trademark of National Instruments (NI). 
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Figure B. 1: A Customized VI - The Upper Window is the Front Panel and the Bottom 

Window is the Block Diagram  
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Algorithms for data collection and data analysis components of the presented framework 

were developed using LabVIEW. To this end, a Plug and Play (P&P) instrument driver 

initially developed by the NI was modified, customized and appended to meet the 

required functionalities needed in this research. An instrument driver is a library of VIs 

that controls a programmable instrument. NI instrument drivers are provided as open-

source well-documented libraries and can be customized by the end user to perform 

specific tasks. In this research, an instrument driver was used for communication with 

orientation trackers employed for data collection via RS-232 protocol for serial 

communication.    

As stated in Chapter 5, Virtual Instrumentation Software Architecture (VISA), a standard 

I/O language and an application programming interface (API) for sensor programming 

was used in this research. VISA basically facilitates port communication by providing 

needed operations such as opening, writing to, reading from, and closing a port. Figures 

B.2 through B.5 show special nodes in LabVIEW for each of the indicated tasks. 

 

Figure B. 2: VISA Open Opens the Specified Port by the VISA Resource Name 
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Figure B. 3: VISA Write Writes Data to the Specified Port by the VISA Resource Name 

 

Figure B. 4: VISA Read Reads Data from the Specified Port by the VISA Resource Name 

 

Figure B. 5: VISA Close Closes the Specified Port by the VISA Resource Name 

Also, Figure B.6 illustrates a simplified layout of how these VISA functions are 

connected to each other via wires in the developed data collection system. 

 

Figure B. 6: A Series of VISA Functions and Their Connections as Used in this Research 
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Data classification and analysis algorithms were also designed in the same VI. Figures 

B.7 through B.12 show built-in functions that were used to configure a relatively 

sophisticated graphical code capable of real time extraction of activity durations from 

angular raw data. Necessary information has been provided in each Figure caption. 

 

Figure B. 7: Requested Data Classified from Cluster of Real Time Orientation Data 

 

Figure B. 8: Unbundled By Name Function that Returns Cluster Elements Whose Names 

Have Been Specified 
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Figure B. 9: Greater? Function Returns True If x Is Greater than Y - This Function Was 

Used to Detect Data Exceeding a Specified Threshold 

 

Figure B. 10: Tick Count Function That Returns the Value of a Timer – This Function 

Was Used to Measure the Duration of Each Activity 

 

Figure B. 11: Build Array Function to Store Activity Durations in a Numerical Array 
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Figure B. 12: Statistics Tool Returns the Specified Statistical Characteristics of Input 

Arrays 

In addition to the VI elements described above, there are a number of other functions, 

tools, and controls that were also developed and used for constructing the VI. For 

example Case Structures, While Loops, or PointByPoint Analysis functions that each one 

of which perform specific tasks under different conditions. The descriptions and technical 

details of these elements are, however, beyond the scope of this document. Interested 

readers are encouraged to contact the author or the DESIMAL research group at the 

University of Central Florida for more information. 
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