
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Off-chip Communications Architectures For High Throughput Off-chip Communications Architectures For High Throughput

Network Processors Network Processors

Jacob Engel
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Engel, Jacob, "Off-chip Communications Architectures For High Throughput Network Processors" (2005).
Electronic Theses and Dissertations, 2004-2019. 550.
https://stars.library.ucf.edu/etd/550

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/550?utm_source=stars.library.ucf.edu%2Fetd%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

OFF-CHIP COMMUNICATIONS ARCHITECTURES FOR HIGH THROUGHPUT
NETWORK PROCESSORS

by

JACOB ENGEL
BSCpE University of Central Florida, 2001
MSCpE University of Central Florida, 2003

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2005

Major Professor:
Dr. Taskin Kocak

© 2005 Jacob Engel

ii

ABSTRACT

In this work, we present off-chip communications architectures for line cards to

increase the throughput of the currently used memory system. In recent years there is a

significant increase in memory bandwidth demand on line cards as a result of higher line

rates, an increase in deep packet inspection operations and an unstoppable expansion in

lookup tables. As line-rate data and NPU processing power increase, memory access time

becomes the main system bottleneck during data store/retrieve operations. The growing

demand for memory bandwidth contrasts the notion of indirect interconnect

methodologies. Moreover, solutions to the memory bandwidth bottleneck are limited by

physical constraints such as area and NPU I/O pins. Therefore, indirect interconnects are

replaced with direct, packet-based networks such as mesh, torus or k-ary n-cubes. We

investigate multiple k-ary n-cube based interconnects and propose two variations of 2-ary

3-cube interconnect called the 3D-bus and 3D-mesh.

All of the k-ary n-cube interconnects include multiple, highly efficient techniques

to route, switch, and control packet flows in order to minimize congestion spots and

packet loss. We explore the tradeoffs between implementation constraints and

performance. We also developed an event-driven, interconnect simulation framework to

evaluate the performance of packet-based off-chip k-ary n-cube interconnect architectures

for line cards. The simulator uses the state-of-the-art software design techniques to

provide the user with a flexible yet robust tool, that can emulate multiple interconnect

architectures under non-uniform traffic patterns. Moreover, the simulator offers the user

with full control over network parameters, performance enhancing features and

iii

simulation time frames that make the platform as identical as possible to the real line card

physical and functional properties.

By using our network simulator, we reveal the best processor-memory

configuration, out of multiple configurations, that achieves optimal performance.

Moreover, we explore how network enhancement techniques such as virtual channels and

sub-channeling improve network latency and throughput. Our performance results show

that k-ary n-cube topologies, and especially our modified version of 2-ary 3-cube

interconnect - the 3D-mesh, significantly outperform existing line card interconnects and

are able to sustain higher traffic loads. The flow control mechanism proved to extensively

reduce hot-spots, load-balance areas of high traffic rate and achieve low transmission

failure rate. Moreover, it can scale to adopt more memories and/or processors and as a

result to increase the line card's processing power.

iv

To my parents,

v

ACKNOWLEDGMENTS

I would like to dedicate this to my parents, Aaron & Ofra Engel, who always

encouraged me to aim high and succeed in life. Without their support none of this would

be possible. I am also grateful to my wife, April, who inspires me to do my best and has

given me the emotional support to accomplish my goals.

I would like to thank my advisor, Taskin Kocak, who taught me the methodology,

discipline, and direction to do my work. Dr. Kocak urged me to always excel and to focus

on what is most important. I am also very appreciative to my committee members, Dr.

Georgiopoulos, Dr. Chatterjee, Dr. Zhou and Dr. Necati for their suggestions and

comments which helped me improve my work.

I would like to thank Danny Lacks, my close friend and former UCF Engineering

student, who gave up a lot of his valuable time to assist me with implementing the

network simulator used in this research. Danny was very dedicated to making sure that

the simulator would result in the most accurate and quality product.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES.. xvii

LIST OF ACRONYMS/ABBREVIATIONS.. xviii

CHAPTER 1: INTRODUCTION... 1

1.1 Motivation ... 3

1.2 Design constraints issues (off-chip vs. on-chip) ... 4

1.3 Interconnect systems ... 7

1.3.1 State-of-the-art in interconnect networks ... 9

1.4 Related work.. 11

1.4.1 K-ary n-cube network... 11

1.4.2 Switching.. 13

1.4.3 Routing mechanism.. 15

1.4.4 Deadlock and livelock .. 16

1.4.5 Adaptive routing algorithms... 18

1.4.6 Cray 3TE and Caltech cosmic cube ... 20

1.4.7 NS-2, Qualnet and OPNET network simulation frameworks………….....21

CHAPTER 2: NETWORK PROCESSOR BACKGROUND .. 24

2.1 Architectural design approaches ... 24

2.1.1 Hardware-oriented techniques.. 25

2.1.2 Software-oriented techniques ... 28

vii

2.1.3 NPU comparison tables .. 29

CHAPTER 3: K-ARY N-CUBE BASED ARCHITECTURES…………………………32

3.1 K-ary n-cube interconnect structures .. 32

3.1.1 Routing mechanism.. 33

3.1.2 Switching mechanism... 38

3.1.3 The traffic controller .. 40

3.2 3D-mesh interconnect architecture.. 44

3.3 The 3D-bus architecture…….…………………………………………………..48

3.3.1 Bus interfaces ... 49

CHAPTER 4: ANALYTICAL PERFORMANCE ANALYSIS 51

4.1 Performance metrics.. 51

4.1.1 Distribution of IP-packet length in core routers ... 52

4.2 K-ary n-cube latency equation under uniform traffic load.................................. 53

4.3 Latency of packet switched multi-processor shared-bus..................................... 55

4.3.1 M/D/1 queue characteristic equations .. 58

4.4 Performance results k-ary n-cube interconnect vs. shared-bus 60

4.5 Average distance of 8-ary 2-cube network and 4-ary 3-cube interconnects

 with multiple configurations......................……………………………………..62

4.6 Analytical model of k-ary n-cube interconnect with hot-spot traffic...................66

4.7 Performance results of k-ary n-cube interconnect with hot-spot traffic...............71

4.8 3D-mesh performance analysis ... 75

4.8.1 Cube notation ... 75

4.8.2 3D-mesh average distance analysis under non-uniform traffic.................. 76

viii

4.8.3 3D-mesh latency equation .. 80

4.8.4 3D-mesh interconnect vs. shared-bus... 81

4.8.5 3D-mesh interconnect vs. folded-torus network .. 86

4.9 3D-bus performance analysis .. 90

4.9.1 3D-bus vs. shared-bus .. 90

4.10 Memory bandwidth ... 91

4.11 Area analysis…………………………………………………………………..92

CHAPTER 5: EXPERIMENTAL RESULTS…………………………………………...95

5.1 K-ary n-cube simulation framework……………………………..……………..95

 5.1.1 K-ary n-cube interconnect simulator architecture…………………………96

5.1.2 Simulator modeling approach…………………………………………….98

5.1.3 Software components……………………………………………………103

5.1.4 Optimization strategies…………………………………………………..106

5.1.4.1 The singleton class………………………………………………..106

5.1.4.2 Pure virtual functions……………………………………………..108

5.1.4.3 System design with Standard Template Library (STL) functions..109

5.1.5 Simulator parameters…………………………………………………….111

5.2 3D-mesh, 4-ary 3-cube, & 8-ary 2-cube simulation results…………………...115

5.2.1 Latency and thorughput analysis………………………………………...115

5.2.2 Worm allocation and distribution………………………………………..118

5.2.3 Routing accuracy………………………………………………………...121

5.2.4 Interconnect and bandwidth utilization………………………………….125

5.2.5 Failure rate……………………………………………………………….127

ix

5.2.6 Routing accuracy vs. hot-spot nodes…………………………………….131

5.2.7 K-ary n-cube interconnects performance comparison with common

interconnects……………………………………………………………..133

5.3 3D-bus Simulation Results…………………………………………………….135

5.3.1 Latency of 3D-bus vs. shared-bus……………………………………….135

5.3.2 Throughput of 3D-bus vs. shared-bus………………………………...…136

5.3.3 3D-bus routing accuracy………………………………………………...137

5.3.4 3D-bus failure rate………………………………………………………138

5.3.5 3D-bus latency with memory and PE interfaces………………………...140

5.3.6 3D-bus performance comparison with common interconnects………….141

CHAPTER 6: RESEARCH CONTRIBUTIONS & FUTURE WORK………………..143

APPENDIX: NETWORK SIMULATOR MANUAL...146

 Simulator menus….…………………………………………………………….148

Choosing interconnect type……………………………………………………..151

Setting network properties……………………………………………………...152

Running simulation……………………………………………………………..153

Managing input/output files…………………………………………………….155

LIST OF REFERENCES……………………………………………………………….163

x

LIST OF FIGURES

Figure 1.1: a) 4-ary 1-cube network b) 4-ary 2-cube network c) 4-ary 3-cube network 11

Figure 2.1: Block diagram for a pipeline based packet processing 26

Figure 2.2: Task-level parallelism...27

Figure 2.3: Packet-level parallelism..27

Figure 3.1: K-ary n-cube architecture on the line card..32

Figure 3.2: Message segmentation...34

Figure 3.3: Message timing (wormhole routing vs. parallel bus)......................................36

Figure 3.4: a) Routing directions and coordinates b) Node connectivity..........................37

Figure 3.5: Omega switch configuration...39

Figure 3.6: Cyclic deadlock prevention...39

Figure 3.7: Traffic controller...41

Figure 3.8: PE and Memory interfacing the TC..42

Figure 3.9: Channel partitioning to 4 sub-channels……………………………………...43

Figure 3.10: Virtual channels.....................………………………………………………43

Figure 3.11: 3D-mesh structure on the network line card...44

Figure 3.12: 3D-bus structure on the network line card..48

Figure 3.13: PE interface...…………………………49

Figure 3.14: Memory interface…………………………………………………………..50

Figure 4.1: IP packet length distribution..52

Figure 4.2: Shared-bus multiple processors with arbitration...56

Figure 4.3: Shared-bus arbitration...57

xi

Figure 4.4: Latency comparison between 4-ary 3-cube and 8-ary 2-cube.........................61

Figure 4.5: Latency comparison between 4-ary 3-cube and shared-bus............................62

Figure 4.6: 8-ary 2-cube: a) Configuration 1 b) Configuration 2......................................63

Figure 4.7: 8-ary 2-cube: a) Configuration 3 b) Configuration 4 c) Configuration 5........63

Figure 4.8: 4-ary 3-cube network...64

Figure 4.9: 4-ary 3-cube: a) configuration 1 b) configuration 2 c) configuration 3..........64

Figure 4.10: 4-ary 3-cube: d) configuration 4 e) configuration 5.....................................65

Figure 4.11: 4-ary 3-cube: f) configuration 6 g) configuration 7......................................65

Figure 4.12: Latency comparison between SB and 8-ary 2-cube......................................71

Figure 4.13: 8-ary 2-cube with HS..72

Figure 4.14: 8-ary 2-cube with HS vs. shared-bus...73

Figure 4.15: 8-ary 2-cube vs. 4-ary 3-cube vs. shared bus (32 bits)..................................73

Figure 4.16: Latency comparison between 8-ary 2-cube and 4-ary 3-cube HS

traffic with different Dave ………………………………………………………………..74

Figure 4.17: 3D-mesh interconnection notation..75

Figure 4.18: 3D-Mesh faces...76

Figure 4.19: Non-uniform traffic for PEs in configuration 1...78

Figure 4.20: Non-uniform traffic for M in configuration 1...78

Figure 4.21: 3D-mesh: a) Configuration 1 b) Configuration 2..79

Figure 4.22: 3D-mesh: a) Configuration 3 b) Configuration 4..79

Figure 4.23: 3D-mesh: a) Configuration 5 b) Configuration 6…......................................79

Figure 4.24: Latency SB vs. 3D-mesh with ch =32b (1 inch spacing)….........................82 w

Figure 4.25: Latency SB vs. 3D-mesh with ch =64b (1 inch spacing)….………………83 w

xii

Figure 4.26: Latency comparison SB vs. 3D-mesh for ch =32b, 64b (1 inch spacing)...83 w

Figure 4.27: Latency ratio SB/3D-mesh for chw=32b, 64b (1 inch spacing).....................84

Figure 4.28: Latency SB vs. 3D-mesh with chw=32b (0.5 inch spacing)…......................85

Figure 4.29: Latency SB vs. 3D-mesh with chw=64b (0.5 inch spacing)………………..85

Figure 4.30: Latency ratio SB/3D-mesh for ch =32b, 64b (0.5 inch spacing)…..............86 w

Figure 4.31: 3-Dimensional Torus network...87

Figure 4.32: 4-Dimensional Torus network...87

Figure 4.33: Latency Ratio 3D-mesh vs. folded Torus..89

Figure 4.34: 3D-bus latency vs. shared-bus...91

Figure 5.1: Simulation control modules...96

Figure 5.2: Class relationship diagram…………………………......................................99

Figure 5.3: Cyclical relationship………………………………………………………..100

Figure 5.4: Simulation setup..100

Figure 5.5: UML class diagram of interconnect architecture..102

Figure 5.6: Dynamic model of routing algorithm..104

Figure 5.7: Sequence diagram of user-simulator interaction...105

Figure 5.8: WormManager singleton...107

Figure 5.9: Interconnect singleton...107

Figure 5.10: Structural hierarchy of classes: face, node, port...110

Figure 5.11: Generation rate..113

Figure 5.12: Maximum worms in the interconnect (MWII)..114

Figure 5.13: Generation rate and maximum worms in the interconnect..........................115

Figure 5.14: Latency comparison..116

xiii

Figure 5.15: Latency vs. offered-load…………………………………………………..117

Figure 5.16: Throughput comparison..118

Figure 5.17: Worm allocation & distribution..119

Figure 5.18: Worm allocation & distribution with VC=8KB..120

Figure 5.19: Worm allocation & distribution with SC=4..121

Figure 5.20: 3D-mesh worm deviation from shortest path..122

Figure 5.21: 3D-mesh routing accuracy with VC=8KB and SC=2.................................123

Figure 5.22: 8-ary 2-cube routing accuracy with VC=8KB and SC=2...........................124

Figure 5.23: 4-ary 3-cube routing accuracy with VC=8KB and SC=2...........................124

Figure 5.24: Bandwidth utilization rate...125

Figure 5.25: Interconnect utilization rate...126

Figure 5.26: Failure rate comparison with VC switched on/off......................................128

Figure 5.27: Worm failure rate with SC=2 switched on/off..129

Figure 5.28: Worm failure rate with SC=4 switched on/off..130

Figure 5.29: Failure rate vs. VC size...130

Figure 5.30: 3D-mesh routing accuracy vs. hot-spot nodes...131

Figure 5.31: 4-ary 3-cube routing accuracy vs. hot-spot nodes.......................................132

Figure 5.32: 8-ary 2-cube routing accuracy vs. hot-spot nodes.......................................133

Figure 5.33: Throughput comparison: k-ary n-cube interconnects vs. common

interconnect technologies...134

Figure 5.34: Latency of 3D-bus vs. shared-bus...135

Figure 5.35: Throughput of 3D-bus vs. shared-bus...137

Figure 5.36: 3D-bus average routing accuracy..138

xiv

Figure 5.37: 3D-bus worm failure rate..139

Figure 5.38: 3D-bus latency with interfaces attached...141

Figure 5.39: 3D-bus throughput comparison with common interconnects......................142

Figure A1: a) Main simulator window b) The view menu…………………………….148

Figure A2: a) Selecting the properties menu b) Selecting the simulation menu………149

Figure A3: a) Selecting the help menu b) Help menu content…………………………150

Figure A4: a) Worms manual settings b) Source/destination settings…………………150

Figure A5: a) Network type selection b) Network type and configuration……………151

Figure A6: a) 3D-mesh b) 4-ary 3-cube c) 8-ary 2-cube……………………………...151

Figure A7: a) Network properties selection b) Network properties menu…………….153

Figure A8: a) Selecting the sampling menu b) Sampling menu content………………154

Figure A9: a) Simulation pacing menu b) Simulation pacing setup…………………...155

Figure A10: a) Simulation pacing overdrive b) Simulation pause on/off……………...155

Figure A11: a) Import worms from file b) Export worms to a file…………………….156

Figure A12: a) Worm modeling data b) Simulation properties………………………..157

Figure A13: Worm run-time data………………………………………………………158

Figure A14: Worm run time data – cont………………………………………………..158

Figure A15: Worm run time data – cont………………………………………………..158

Figure A16: Modeled worms data……………………………………………………...159

Figure A17: Modeled worms data - cont……………………………………………….160

Figure A18: Modeled worms data - cont……………………………………………….160

Figure A19: Interconnects configuration file…………………………………………...161

Figure A20: Interconnects configuration file - cont……………………………………162

xv

Figure A21: Simulator configuration file - cont………………………………………..162

xvi

LIST OF TABLES

Table 1.1: Interconnect Technology Overview .. 10

Table 2.1: NPU system architecture comparison...30

Table 2.2: NPU performance comparison...31

Table 3.1: Comparison between shared-bus, crossbar & 3D-mesh...................................46

Table 4.1: Average distance of 8-ary 2-cube for different configurations........................63

Table 4.2: Average distance of 4-ary 3-cube for different configurations........................65

Table 4.3: Average distance of 3D-mesh for different configurations..............................80

xvii

LIST OF ACRONYMS/ABBREVIATIONS

NPU network processor unit

PE processing element

VC virtual channels

g generation rate

MWII maximum worms in the interconnect

GPP general purpose processor

TC traffic controller

CDG channel dependence graph

VLIW very long instruction word

Co-P co-processor

TM traffic manager

HWA hardware accelerator

QoS quality of service

LRU least recently used

RDC rotating daisy chain

FCFS first comes first served

xviii

CHAPTER 1: INTRODUCTION

Today, routers and switches are the fundamental equipments for the overall

network infrastructure. These devices provide the functionality to receive, decode,

repack, and switch packets of data within the network. The basic hardware building block

for a mid-end to high-end router or switch is the line card. On one end, the line card is

linked to incoming traffic through a port, and on the other end, it is linked to central

processor cards and/or line cards via the backplane. Currently, two major trends are

impacting the architecture and design of line cards. First, line cards are handling more

functions to support new services such as quality of service (QoS) and policy

management, which increases the traffic overhead to incoming line rates by 40%-100%.

This, in turn, raises memory, chip interconnect and back plane bandwidth requirements.

Second, ever increasing memory capacity requirements which are due to higher link rates

and unstoppable expansion in lookup tables.

Network line rates are constantly increasing, currently reaching 40 Gb/sec. For

example, at this rate, a 40 byte packet arrives every 8 ns. At higher rates developers will

face new memory challenges for packet buffering, network parameters storage in the

form of long memory access times also known as the “memory wall”. The nature of

packet transmission (such as randomness of arrival, variable packet size, and out of order

transmission) has surpassed the I/O bandwidth capabilities of most conventional high

speed DRAM chips.

Current network processors or network processing units (NPUs) use

multithreading to hide memory latency. However, it is not clear whether this technique

1

will scale well at higher line rates. This is especially questionable for deep packet

processing required by security and active networking applications. Stateful networking

applications aggravate the problem since per-flow state information needs to be

maintained through buffers to achieve per-flow bandwidth and delay guarantees.

The trend in network processing is towards layer 4-7 processing in the routers and

switches. Seven-layer processing places a heavy strain on memory usage and aggravates

the gap between the network and memory performance. Deep packet processing implies

reading and writing significantly more data from/to the memory. More fields and headers

are processed to access higher layers and more data are processed within each layer. The

heavily stressed memory is used by network processors for two main tasks: packet

storage (buffering) and lookup table searches. Packet buffer memory is accessed at least

four times per packet. Therefore, in order to sustain wire-speed performance the buffer

memory should be able to provide at least four times the bandwidth of the network link.

Theoretical bandwidth of memory devices is commonly accepted to be twice the

effective bandwidth. This is mainly a result of using bursts for memory access and

consequently, using bandwidth on irrelevant information. With DRAM technology, clock

cycles may also be under utilized due to its refresh cycles. Accordingly, buffer memory

should provide not four, but eight times the link bandwidth. In 10 Gigabit/OC-192

environments this implies a required buffer memory bandwidth of 80 Gbps. Yet, as

networks are full duplex by nature, generating a total of 20 Gbps traffic, the total memory

bandwidth needed for sustaining wire-speed is 160 Gbps [89]. Since network processors

use memory for both packet storage and lookup tables searches, the total memory

bandwidth required for 10 Gbps 7-layer packet processing is therefore approximately 320

2

Gbps (160 Gbps + 160 Gbps), presenting a tremendous challenge for network processor

designs.

In this work, we present a network-on-a-board (NOB) to increase the bandwidth

for chip-to-chip communications on printed circuit boards. Network line cards are chosen

to demonstrate the application of the proposed scheme since a line card, probably,

requires the fastest interconnect among its chips. NOB in this work is based on well-

known k-ary n-cube interconnection networks. The originality of this work is the

application of this class of networks on to boards. Mapping this type of networks into two

dimensional board domain is not a straightforward task. Moreover, board-level

implementation brings a lot of constraints such as space, wire length, manufacturability

of small communications controllers or switches at the nodes, which are not considered

in designing k-ary n-cube networks for multi computers.

1.1 Motivation

Our research deals with an off-chip interconnect that provides an effective

solution, under certain constraints, to the increasing demand for memory bandwidth on

line cards. In most line card architectures there exist a direct interconnect, such as busses

or switches that connects different processing elements to memory modules. The heart of

the line card is the network processor which performs different operations in order to

analyze the flow of incoming packets. The nature of packet processing requires frequent

read/write operations to memories which are distributed around the NPU.

3

As line-rate data and NPU processing power increase, memory access time

becomes the main system bottleneck during data store/retrieve operations. The growing

demand for memory bandwidth contrasts the notion of indirect interconnect

methodologies and requires them to be replaced with direct, packet-based networks such

as mesh, Torus or k-ary n-cubes.

A shared bus cannot scale well as the number of modules (processing elements or

memories) connected to it increases. In addition, it requires an arbitration mechanism that

becomes distributed (rather than centralized) as the number of modules connected to the

bus grows. Solutions to the memory bandwidth bottleneck are limited by area on the line

card and NPU I/O pins. Pin constraints bound the bus size that can be interfaced with the

NPU. Hence, only a packet-based network-on-board can provide the required

performance improvement between the NPU and off-chip memory modules.

1.2 Design constraints issues (off-chip vs. on-chip)

 On- and off-chip interconnects are attracting more attention as chip scaling

continues to shrink. Protocols, signaling and scaling technologies facilitate system-on-

chip designs which can be incorporated into on-chip communication networks. Because

multiprocessor networks require different network functionalities, tasks and data transfer

properties, design space for new architectures is explored. On-chip networks have been

researched substantially. Off-chip interconnects, on the other hand, lack innovative

methods and performance analysis results that can improve and abbreviate their

integration into large, scalable, network components such as core routers. Off-chip

4

interconnects are as crucial as on-chip networks for achieving high-performance, low-

cost networks.

 The area on PCB is limited by the physical dimensions and data lines routing and

therefore, the total number of bus lines for any bus interconnect (or bus width in bits) has

space limitations. Processing elements such as traffic manager, classification engine or

the NPU itself are limited by their available I/O pins. Hence there exists an upper limit on

the bus width (in bits) that can be connected to these chips. The physical and electrical

characteristics of wires routed on PCB for off-chip communications are different than

those of wires routed on-chip. Wires routed on board are longer and larger in size than

those which are laid out on chip. Off-chip wires have higher capacitance and that results

in higher latency.

 All interconnects require switching elements that enable the connection of input

to output devices. Switching elements are usually CMOS transistors embedded on a chip

or as a stand alone chip. An on-chip switching mechanism takes less space and allows

more switching elements than off-chip. Off-chip switches take more space since it cannot

be embedded directly on the board and requires a separate package. In addition, adding

switching modules will increase manufacturing costs to the design.

 On-chip interconnects differ from off-chip networks mainly in their resource

constraints (tighter on chip) and synchronization. In a network, data sent from a source to

a destination may arrive out of order due to reordering in network nodes, following

different routes, or retransmission after dropping. For off-chip networks out-of-order data

delivery is typical. However, for on-chip network where no data is dropped, data can be

forced to follow the same path between a source and a destination (deterministic routing)

5

with no reordering [44]. Off-chip networks typically use packet switching and offer best-

effort services. When no flow control is provided, messages are dropped when buffers

overflow. Multiple policies of dropping messages are possible such as the oldest message

is dropped or the newest message is dropped.

 Performance measures, in terms of latency and throughput, play a major role in

selecting an off-chip interconnect. The interconnect is required to transfer large amount

of data without incurring additional delays as a result of wire propagation, switching

latency and contention among devices. Another factor in interconnect performance is

choosing a routing algorithm that will select the best path for the packet flow to minimize

latency. Under any design constraints, latency should not have a higher value than the

memory access time.

 Line cards are required to keep up with increasing data line rates and deep packet

processing of incoming data. As a result, the line card continuously needs an upgrade in

order to scale the system to growing performance demands. Scalability is not possible on-

chip since the layout is set at the time of manufacturing. An off-chip interconnect can

better scale in order to increase the number of modules connected to it. Scalability in an

off-chip design is possible since the interconnect and its routing algorithm can

dynamically be configured to adopt new devices and change its configurability to add

new local bus links and switches.

6

1.3 Interconnect systems

 Before we discuss the current interconnect systems, let us give a brief definition

of terms. We follow the terminology given in [64]. There are four major characteristics of

interconnect networks. The first is the interconnect topology. Topology is the physical

structure of the network and depicts how nodes are being connected. Nodes can be

connected directly, to every switch in the network, or indirectly, which means that a

certain node is connected only to specific number of nodes.

 The second interconnect characteristics is the network switching strategy.

Switching strategy defines how a message traverses a route. Switching is the process of

determining how source and destination will be coupled to allow data transfer between

them through the interconnect structure. There are three types of switching mechanisms

of data from source to destination: circuit-switching, message-switching and packet-

switching flow control. In circuit-based switching the system reserves a dedicated circuit

(path) and then transmits data through it. In message-based switching the system stores

the complete message at each node (switch) and then continues to forward it to the next

intermediate switch until the message reaches its destination. In packet-based switching,

the message is partitioned into smaller, fixed size packets and sends them independently.

Packets comprised of the same message follow the same path determined by the routing

algorithm. Packets of the same message move in a pipelined-fashion through the

interconnect switches. The main advantage that a packet-switching mechanism has over

other methods is that it uses the available bandwidth efficiently by sharing the

interconnect links at all times with packets of other messages.

7

 Routing algorithm is the third characteristics of an interconnect network. Routing

is the mechanism of forwarding packets inside the interconnect following certain paths or

patterns. The availability of paths within the interconnect network determines its

performance factors such as latency and throughput and is influenced by factors such as

rate of packets delivered into the interconnect, total number of channels, channel width,

number of nodes and more.

 The fourth characteristics of an interconnect network is its flow control

mechanism. Flow control mechanism defines the operations taken when the flow of

packets encounters a deadlock, points of heavy traffic or link fault. Examples of major

flow control processes include virtual channels (VC), deadlock avoidance mechanisms,

and throttling.

 Interconnects may be classified into three categories based on their purpose and

where they reside: Processor, mezzazine, and local area. The processor interconnect is

typically used to connect the processor to another component that contains a memory

controller and one or more mezzanine level interconnection ports. A mezzanine

interconnect generally employs an address/data read/write data model with memory-like

semantics and is targeted for simple translation between processor bus memory

operations and mezzanine interconnects transactions [37]. PCI bus is the most well

known example to this category. Local area interconnects are used between the public

access networks and mezzanine interconnects. In this work, we are primarily interested in

mezzanine interconnects (MIs). There are three types of MIs: Shared parallel, switched

parallel, and switched serial. The difference between shared and switched is based on an

interface's support for multi-drop capability or point-to-point connection, respectively.

8

The difference between serial and parallel is based on whether an interconnect is self

clocked or source clocked, respectively. Shared parallel interconnects are relatively easy

to implement, however they pose major problems such as electrical limitation, speed,

reliability, scalability, and physical distance (clock skew). Examples to this category

include VME [14] and PCI [69]. Most of these problems except the signal skew can be

addressed by switched parallel interconnects. Several new standards supporting this mode

are introduced recently such as HyperTransport [72] and RapidIO [74]. Migration from

parallel to serial solves one important issue, the physical reach. Infiniband [70] and PCI

Express (PCIe) [73] are major examples to this category.

1.3.1 State-of-the-art in interconnect networks

 In this work, we are primarily interested in interconnect systems that are used for

network line card applications. In Table 1.1, we give an overview of current interconnects

for these applications along with a comparison to one of our interconnect candidates, the

3D-mesh architecture. Note that we exclude RapidIO and SPI in this table. RapidIO is

mostly used for signal processing and control-plane applications, and SPI [71] is a

network interface but not a system interconnect. Also, Network Processing Forum is

introducing several interfaces and interconnects which are built on CSIX [24]. Hence, we

only cover CSIX in the table.

9

Table 1.1: Interconnect Technology Overview

Technology

Hypertransport

PCI Express

CSIX

3D-mesh

Channel width (bits)

2, 4, 8, 16, 32

1, 2, 4, 8, 16, 32

8, 16, 32

1, 8, 16, 32

Bandwidth

102.4 Gbps

128 Gbps

10 Gbps

452 Gbps

Signaling

Differential

LVDS

LVTTL

LVDS

Layers

Not layered

architecture

Physical, link,

transaction

Physical, link,

logical

Physical, link,

logical

PCI transparency

No

Yes

Yes

No

Switched arch.

No

Yes

Yes

Yes

Packet based

Yes

Yes

Yes

Yes

Payload size

4-64 B

1 KB

256 B

40 B-2 KB

Pins/channel (w=16b)

103

90

35

35

10

1.4 Related work

 The type of interconnect networks we include in this work are classified as direct

networks. A direct network is defined as a network in which all nodes are connected

together by links. Direct networks are classified according to their topologies and

communication techniques (switching, routing, flow control).

1.4.1 K-ary n-cube network

A k-ary n-cube network is a directed network topology. It consists of N = kn nodes

where n is the dimension of the network and k represents the number of nodes in each

dimension of the structure. Each node in k-ary n-cube interconnect is uniquely labeled

and elements of the same plane are connected to each other.

Figure 1.1: a) 4-ary 1-cube network b) 4-ary 2-cube network c) 4-ary 3-cube network

 One of the most intriguing tasks in designing these networks is to find the optimal

value of n and k to achieve the best performance. The optimal choice depends on many

design constraints such as channel width/density, number of elements connected to the

11

network, and cost. The network's wire bisection width is defined as the minimum number

of wires to be cut when the network is divided into two equal parts. The network wire

bisection width is depended on the channel width and network size. Moreover, the wire

bisection width factor has a great importance in determining the cost of the network since

it is depended on the layout technology, power dissipation, and system cost.

 For a k-ary n-cube network the wire bisection width is B = k(n - 1). For example, in

4-ary 2-cube network the wire bisection width equals 4. It means that the number of wires

cut when dissecting the network into two equal parts is 4 (assuming there is only one wire

connecting two adjacent nodes). If the number of wires connecting two adjacent nodes is

higher than one then it is defined as channel width. Practically, channel width size is

constrained by multiple factors such as node size, network dimensions, number of pins

available and layout size. The bisection width of 3D interconnect proposed in this work is

equal to B=2(3-1)=4. This is based on the fact that the interconnect is a 2-ary 3-cube

network. In addition, in this particular calculation we assume that the channel size is only

1-bit. The interconnect model includes an option which allows variable channel widths

(1, 8, 16, 32, 64, 128). The channel width is pre-configured by the user. For example, the

bisection width for an 8-bit channel width is B=4*8=32. As the bisection width increases,

routability and performance increase as well.

 Torus network is an implementation of k-ary n-cube network with wraparound

channels. Torus networks are symmetrical. The wraparound paths of Torus networks

reduce channel congestion and average distance while introducing additional wiring and

more chances for deadlock occurrences. Mesh networks are another type of k-ary n-cube

interconnects. Mesh networks are structured with or without wraparound channels and

12

are simpler than Torus. In mesh networks not all edges are connected to neighbor nodes

and therefore it allows easier integration to external processing elements. Channel

utilization in mesh networks is lower than Torus since channels in the center of the mesh

network are used more than corner nodes. Hypercubes are another instance of k-ary n-

cube networks in which k=2. Hypercubes increase only in network dimensions, n.

 A study done by Dally in [12], demonstrated that low-dimensional networks

provide better performance than high-dimensional networks. It also stated that low-

dimensional networks are favored since wire length increases with the network

dimension. Dally introduced a low-dimensional k-ary n-cube structure called express

cube [9]. Express cube is a superposition of mesh and Torus networks. Express cube

provide short cuts for messages traveling long distances. A message destined to a far

node is routed through high-level channels instead of being routed through intermediate

nodes and as a result reduces the latency significantly. The main disadvantage of express

cube is its reduced bisection bandwidth which affects its performance by locality of

applications.

1.4.2 Switching

 Switching is the mechanism which determines when a message flow along a

certain path changes direction to new route with more available resources. The main

switching techniques include circuit switching, message switching and packet switching.

 In circuit switching the entire path from source to destination is reserved until the

complete message has reached its destination. Circuit switching guarantees full

13

bandwidth usage per flow but increases latency and wastes network bandwidth when

source/destination modules are idle. Message switching (also known as store-and-

forward) each message contains its routing information. A message is a single entity

which moves from one intermediate node to another until it reaches destination. This

technique increases network latency since it requires a complete storage space for the

message in each node. To overcome this, another switching technique was developed

called: packet switching.

 Packet switching scheme delivers a message in smaller units called packets.

Packets of the same flow follow each other in a pipeline fashion following the first packet

(header) which holds source/destination data. Multiple hybrid schemes were developed as

well to utilize the advantages of two or more switching techniques. An example is the

virtual-cut-through switching scheme presented by Kermani and Kleinrock [30]. In

virtual-cut-through when a message arrives at a node where one or more of its output

channels is available the message will not be buffered at all and will be immediately

forwarded to continue without buffering overhead. Dally and Seitz [28] developed

wormhole routing technique which reduces storage requirements even more. The main

difference between virtual-cut-through and wormhole routing scheme is when a message

path is blocked wormhole routing stops the message in place and does not buffer the

complete message. More details about wormhole routing are given in chapter 3.

14

1.4.3 Routing mechanism

Routing algorithm is a restricted set of paths packets may follow in order to reach

destination. There are two main types of routing techniques, adaptive and deterministic

(non-adaptive) routing. In deterministic routing packets follow a fixed path between

source and destination. This technique usually chooses minimal path to reduce latency

and is deadlock free. The main disadvantage of this method is its inability to adapt to

changes in traffic load. It is more prone to contention of flows from different sources and

its performance degrades as more sources and destinations are added to the system. An

example for deterministic routing is the e-cube routing (also called dimension-order

routing) in which each message is routed in order of dimension. Change in dimension can

be viewed as a change in 3D cube along different axis. Adaptive routing, on the other

hand, is a dynamic technique of forwarding packets through multiple switches. Adaptive

routing is further classified into minimal or non-minimal paths and maneuvers packets to

avoid heavy congested spots. Its main disadvantage is that it has a potential to create

deadlocks. Certain methods are using partially adaptive routing which limits the degree

of algorithm adaptivity. Fully adaptive routing algorithms allows complete adaptivity

(can select any path) to resource utilization within the network.

 Dally's 2D mesh adaptive router [6] utilizes a fully adaptive routing scheme. By

assigning virtual channels for each y-dimensional link and physical channels for x-

dimension channels the network was virtually divided into two 2D mesh networks.

Messages moving in the positive x-axis were labeled as eastbound messages and

messages moving in the negative x-axis were labeled as westbound messages. Messages

15

were separately routed in each of the virtual channels. Since messages in each virtual

network were routed in +x or -x directions there was no cyclic channel dependency and

therefore it avoids deadlock.

 The turn-model, introduced by Ni and Glass [8], is an example of partially-

adaptive routing algorithm. An adaptive routing algorithm performance and behavior on

k-ary n-cube networks was made. The conclusion was that prohibiting some turns on the

k-ary n-cube network prevent channel dependency cycles. Wormhole routing was used

with little addition, it used misrouting to avoid deadlocks and livelocks. Its main

disadvantage is that it creates uneven channel utilization and causes degradation of

performance.

1.4.4 Deadlock and livelock

 Deadlock is the situation in which a message is stuck forever within the network

and is unable to obtain the required resources. Deadlock occurs when a set of messages

require a portion of network resources which is held by other messages in the set.

Livelock occurs when messages are routed over the channels without deadlock but can

never reach their destinations.

 Most common deadlock avoidance methodologies include: abort-and-retry, the

“connection-machine”, and multistage interconnect networks. Abort-and-retry

methodology aborts messages which reach deadlock and resend them into the network

after a certain delay. The “connection-machine” is similar to virtual cut-through in which

packets are stored and therefore removed from the network for a limited time until

16

deadlock is cleared. Multistage interconnect networks outperform grids and hypercubes

but incorporate more implementation restrictions (physical wiring). The main techniques

used to avoid deadlocks include using virtual channels (VC), channel dependence graphs

(CDG) and message flow misrouting to break the message cyclic nature.

 Dally [1] created a routing function on Torus network which uses minimal paths

and virtual channels. The deadlock avoidance approach eliminates arcs which make a

packet movement acyclic and hence it prevents deadlock. If packet forwarding is

discontinued as a result of its deadlock avoidance mechanism, then it duplicates the links

and uses virtual channels instead. Duato [2] methodology is pretty similar to Dally's

approach but works for any topology. First, the routing mechanism used is deadlock-free

which can duplicate all channels by using virtualization. The routing algorithm can use

the original (physical) channel or can take a new path (one of the virtual channels). Once

a flow uses one of the paths available (physical or virtual) it cannot revert to new

channels. The network eventually reaches a steady-state status where all channels are

occupied.

 Dally and Seitz [27] introduced another technique which utilizes channel

dependency graphs to develop deadlock-free network based on wormhole routing. The

channel dependence graph is a directed graph where vertices of the graphs are the

communication channels of the network. Deadlock is avoided by breaking cyclic channel

dependencies and using virtual channels wherever a channel is broken.

 Another popular technique to avoid deadlocks is to allow misrouting of a message

in order to break its cyclic movement. A waiting message takes an alternative arbitrary

17

route which does not conform to its usual routing mechanism. Misrouting has one major

disadvantage, it can cause livelock.

 Livelock avoidance techniques include a mix of deterministic and adaptive

routing algorithms. The use of minimal routing helps to keep the network free from the

livelock. For example, in [22], a model for designing livelock-free adaptive routing

algorithm for meshes without virtual channels is presented. Chiu [22] proposed the odd-

even turn model which restricts the locations where some types of turns can take place

such that the algorithm remains deadlock as well as livelock free. The odd-even routing

prohibits the east-to-north and east-to-south turns at any tiles located in an even column.

It also prohibits the north-to-west and south-to-west turns at any tiles located in an odd

column.

 Glass and Ni [8], turn-model, provides deadlock and livelock free routing and was

discussed in the routing mechanism sub-section.

1.4.5 Adaptive routing algorithms

 Adaptive routing algorithms are based on the following characteristics: deadlock

and livelock free, minimal hardware requirements and simple to implement. Many

adaptive routing algorithms were developed the most successful ones are briefly

explained here.

 Priority-based non-minimal adaptive routing algorithm was introduced by Ngai

and Seitz [7]. Packets are assigned priority based on their “age” (time the packets are

routed within the network). Priority changes dynamically as the packet is traveling

18

through the network on its way to destination. Since packets may be rerouted and as a

result must remain in the network longer they are assigned a greater priority and

therefore, they are given higher forwarding priority than new packets. The disadvantage

of this routing algorithm is its slow speed and complicated priority assignment to packets.

 Chaos routing [31] is another non-minimal adaptive routing algorithm in which a

packet is randomly selected at the node when misrouting is required. There is no

guarantee that packets will reach destination in finite time.

 Deflection adaptive routing algorithm [43] guarantees that packet arriving at a

node will leave the node within the next routing cycle. It assigns preference to channels

which are closer to destination but if the channels are busy it uses misrouting. Its main

disadvantage is that it misroute more frequently than Chaos routing.

 The *-channel algorithm is an example of minimal adaptive algorithm [5]. The *-

channel algorithm was implemented in n-dimensional mesh or Torus networks. Each

physical channel is associated with two virtual channels: *-channel and non *-channel.

The *-channel is in the ith dimension only and is used by messages which are moving

along i dimensions. The non *-channel is used for adaptive routing in higher dimensions.

If none of the channels are free it waits unconnected. The routing scheme is more

complicated but significantly reduces buffer requirements.

 The packet-based routing algorithms reviewed resolve deadlock by two methods:

voluntary misrouting and virtual channels. In order for routing algorithm to prevent

livelock conditions, it utilizes randomization of channel selection. Wormhole routing

makes deadlock prevention more difficult because of resource coupling. The most

19

common technique used to avoid deadlocks is to split the network into several virtual

networks or utilize virtual channels.

1.4.6 Cray 3TE and Caltech cosmic cube

 Caltech cosmic cube is a high-speed network characterized by 64-nodes, point-to-

point, packet-based, multi processor-memory interconnect infrastructure which utilizes

message passing mechanism. Nodes are modeled by 64 small computers interconnected

as a 6-dimensional hypercube. Each node is connected through a bidirectional,

asynchronous, point-to-point communication channels. Each node there is an operating

system kernel which allows to initiate transmission or reception of messages as well as

forwarding messages to other nodes. The network does not employ any switching

mechanism between nodes (processing nodes to storage nodes). The message passing

mechanism is based on store-and-forward protocol. Messages do not “block” the channel

but remain pending until the channel becomes idle. In addition, the volume of the system

is 6 cubic feet, the power consumption is 700 watts and manufacturing costs were

$80,000 [21]. The Caltech high-throughput network [20] is a distributed grid-based

system employing Cisco's 7600 and 6500 series switch routers connected to each other

via 10 Gbps dedicated lines. The Caltech network communicates via new fast TCP

algorithm developed at Caltech Netlab.

 There are two well-known architectures that conceptually and structurally

resemble somewhat the work we propose here: Cosmic Cube [21] and Cray 3TE [19].

However, there are a couple of major differences. First, the scope of the interconnect

20

architectures is different. Nodes in our case are at the chip-level (i.e., processors and

memory devices), not boards or cases (i.e., computers). The physical dimensions of our

interconnect must be smaller since area on the line card is limited. Second, the

application workload shows very different behavior. Unlike data traffic generated in

supercomputers, the network traffic is proven to be self-similar and exhibits burstiness.

Third, the cost of implementing the interconnect architecture is lower, since its

performance superiority and reliability are primarily depend on its routing algorithm and

message flow-control not its hardware. This allows us to use simple logic and bus lines

between chips making it an inexpensive interconnect to fabricate.

1.4.7 NS-2, Qualnet and OPNET network simulation frameworks

There are many discrete event network simulation and modeling tools available

that contain some of the architectural features and functionalities we incorporate in our

model. However, to the best of our knowledge, none of these simulation frameworks is

capable of delivering the physical and functional attributes required to emulate off-chip

communications on line cards. We would like to consider three of these simulators (NS-

2, Qualnet and OPNET) and make the distinction between their applications and

ours.

NS-2 is an object-oriented, discrete, event-driven network simulator developed at

UC Berkeley, written in C++ and OTcl. NS2 is primarily useful for simulating local and

wide area networks and supports simulation of TCP, UDP, routing, and multicast

protocols over wired and wireless networks [91][92].

21

The Qualnet is a real-time simulation framework, developed by Scalable Network

Technologies (SNT), to emulate the communications of multiple network models.

Qualnet includes a rich 3D-visualization interface to provide the user with control over

data packets, network topology and performance evaluation. Qualnet supports wireless

and Ad-hoc networks as well as parallel and distributed architectures [93]. In addition, it

supports multiple routing protocols such as BGP, SIP, RIP, ARP, and BRP. Some related

applications that can benefit by using this network simulator include: microwave

technologies, high frequency radio communications or satellite communications.

OPNET's network modeling and simulation environment delivers a scalable

simulation engine that can emulate wireless, point-to-point and multi-point network links.

It has the capability to support routing protocols such as voice, HTTP, TCP, IP, Ethernet,

frame relay and more [94]. Some of the application best suit for this simulator are mobile,

cellular, Ad-hoc, wireless LAN, and satellite networks. The OPNET simulator allows the

user to custom design traffic models since it supports FSMs and object-oriented modeling

[95].

These network simulators are not designed to emulate off-chip communication

environment required for our application based on the following differentiations:

• Physical attributes: none of these simulators include specific PCB physical

properties which have a great effect on the interconnect performance. Physical

properties are crucial to meet the stringent area restrictions on line cards.

• Applications: all three simulators fit better for LAN, WAN, mobile and Ad-hoc

communications, not small scale interconnects which require different routing

22

algorithms and flow control mechanisms. The line card simulator must include

message flow enhancement features such as virtual channels and sub channeling.

• Message control: our interconnect simulator provides control of how to deliver

messages, perform statistics, gather data, route the packets through the network

and run auto test cases. Furthermore, the user has more control of how to save and

re-run data using the simulator options menus, rather than learning OTcl or

Parsec.

• Participants: while our simulator models communication among PEs and

memories, the other simulators include other participants such as PCs, satellite

communication, routers or other moving objects.

• Communication medium: most of communication mediums used in these

simulators have different signal propagation characteristics and performance. Our

off-chip interconnect model is a small scale network in which packets propagate

from point-to-point via PCB buses no longer than 1 inch in length.

23

CHAPTER 2: NETWORK PROCESSOR BACKGROUND

This section provides an overview of network processor technology and

architectures. In this work, we adopt the following definition: a network processor is a

programmable processor that is optimized to perform one or more of the following

functions: packet classification, packet modification, buffer management and scheduling,

and packet forwarding. Note that this is not an all encompassing definition and excludes

General Purpose Processors (GPP), which are still being used for packet forwarding in

routers. It is expected that GPPs will be replaced by programmable network components

for packet processing. However, GPPs will still find use for initializing, configuring and

orchestrating the NPU control path. There is also a notion of specialized co-processor,

which is being used hand-in-hand with a network processor. In general, a co-processor is

used for more specialized tasks, and is more likely to be shared among multiple

processing elements. Common networking functions that are implemented as co-

processors are search engine, classification, buffer management, encryption/decryption,

and traffic management.

2.1 Architectural design approaches

 Most of the currently available NPU designs employ such hardware-oriented

techniques as pipelining and parallel processing, as well as software-oriented techniques

such as multi-threading and special-purpose instructions. In this section, we will

summarize important features of these techniques and point out NPUs from industry that

employ them [39][40].

24

 Network processor designs can be historically divided into three main

architectural trends: A general RISC-based processor, an augmented RISC processor /

ASIC network-specific processor, and a programmable network processor.

Programmable network processors are better suited for today's Gigabit/s data processing

with many protocols, since they can cope with specialized data handling tasks, and adapt

high data rates and packet diversity. Recently, networking products have become more

modular and also more software-intensive. As a result, system tasks are divided such that

a core processor manages complex global tasks, while single or multiple low-level

processor(s) (i.e., NPUs) perform packet-processing operations.

2.1.1 Hardware-oriented techniques

 A network processor may contain many individual processor cores, which range

in complexity. This multi-processor type architecture can increase the speed and

bandwidth capability of packet processing units. Currently available NPU designs are

based on either highly parallel multi-processor (e.g., Clearspeed [76], IBM [77], Vitesse

[78], etc.), or highly pipelined multi-stage architectures (e.g., Cisco [79], Mindspeed [80],

etc.). In all cases, at least a RISC core is combined with specialized software to support

packet-oriented functions. In the pipelined approach, shown in Fig. 2.1, packet processing

is divided into stages. Each stage is responsible for performing a single task and takes the

same amount of time. It is hard to load-balance the pipeline, since the pipeline rate is

determined by the slowest stage. The advantage of this architecture is that specific

processing tasks can be optimized for each stage. Examples of this architectural

25

technique include the NPUs from Vitesse [78], Cisco [79], and Xelerated Packet Devices

[81].

Figure 2.1: Block diagram for a pipeline based packet processing

 In the parallel processing approach, multiple processor cores are embedded into

one packet-processing unit to exploit the parallelism in networking functions. One

significant limitation of this approach is the packet order management, which is

concerned with packets leaving the processing unit in the same order in which they

arrive. There are two common parallel packet processing architectures as illustrated in

Fig. 2.2-2.3. The first is task-level parallelism, in which a packet is divided into smaller

units and processed by multiple engines. Each unit requires a different task and includes a

task-specific processing engine, which performs a unique operation to extract information

from the particular components. All processed units are then integrated back and

prepared for departure. This approach is used in the NPU designs from Clearspeed [76],

Vitesse [78], Agere [82], Motorola [83], and Virata [84].

26

Figure 2.2: Task-level parallelism

Figure 2.3: Packet-level parallelism

27

The second parallel architecture is called packet-level parallelism, which allows

the processing of whole packets by many different engines. In this approach, multiple

incoming packets can be processed at the same time like a super-scalar architecture.

Companies that implement this approach in their NPUs include Mindspeed [80],

Xelerated Packet Devices [81], Broadcom [85], EZchip [86], Juniper [87], Paion [88],

and AMCC [90].

2.1.2 Software-oriented techniques

 Many network processors are implemented by utilizing special software

techniques that not only allow high performance, but also reduce the need for hardware.

In VLIW (very long instruction word) architecture, for instance, the compiler can handle

many functions such as instruction issue and scheduling, which would otherwise require

additional hardware. This facilitates opportunities for low-power design; however, as a

tradeoff, it requires sophisticated compiler technology. VLIW architectures are used in

some of the example NPUs from Vitesse [78], Mindspeed [80], Agere [82], Broadcom

[85], and Juniper [87].

 Memory management and optimization techniques are employed to tolerate the

latency of longer accesses. Most common is multithreading, which keeps multiple

processing units busy at all times. While retrieving data from memory, packets are

assigned to functional units that are free so that a particularly slow lookup does not create

a bottleneck in the packet processing. Multithreading enables context to be switched from

one packet to another while waiting for slower memory devices such as off-chip Content

28

Addressable Memory (CAM) and SRAM chips. Companies that use multithreading in

their products include Clearspeed [76] and Vitesse [78]. A variety of techniques are also

deployed both in hardware and software to reduce the number of memory accesses for

lookup [38].

2.1.3 NPU comparison tables

Tables 2.1-2.2 compare NPUs from different manufacturers both from system

architecture and system performance point of view. Some companies include their

custom made NPU as part of a line card. The line card includes an NPU “block” that is an

integrated unit within the system, which performs packet processing. On the other hand,

some companies developed a stand alone NPU that can be easily integrated in a variety of

network equipment, which requires packet processing and includes more functionality

(switch fabric, packet processors, table lookup, buffers and more). Moreover, there are

network-processing chips that perform tasks such as DSP functions required in wireless

communication systems. For example, the Chameleon CS2112 is a reconfigurable

communication processor, optimized for DSP applications. Application-specific network

processors, like the CS2112, were not included in the tables.

NPU future designs will continue to be based on multiple processing engines, task

specialized software, superscalar and/or superpipelined architectures. New techniques

that were developed to cross the OC-192 line will be used to reach a greater scalability.

Parallel packet processing among multiple processing engines together with software

pipeline technology accelerated packet-processing rate dramatically. In addition, cache

29

memory is added to each processing engine for fast data and instructions storage.

Technological developments in fabrication process, currently 0.09 μm, allow better

utilization of wafer space and therefore, more transistors can be fabricated in a given

area. As a result, more processing engines can be used and therefore, more packet

processing power. The interconnects developed in this work maintain close coupling

between processing engines. This allows high-speed packet data sharing among

processing engines.

Table 2.1: NPU system architecture comparison

30

Table 2.2: NPU performance comparison

31

CHAPTER 3: K-ARY N-CUBE BASED ARCHITECTURES

 In this chapter we present the k-ary n-cube architectures that we propose to be

used as off-chip communication architectures for high-speed packet processing. We start

with general k-ary n-cube structures and later present 3D-mesh interconnect, a specific

type of k-ary n-cube (2-ary 3-cube), which might better suit to our needs.

3.1 K-ary n-cube interconnect structures

Figure 3.1: K-ary n-cube architecture on the line card

 The k-ary n-cube architecture shown in Fig. 3.1 is a packet-based multiple paths

interconnect that allows network packets to be shared by different processing elements

(PE) and memory modules (M) on the network line card. Memories are distributed

32

around processing elements, such as traffic manager, QoS co-processor, classification

processor, to allow data sharing among modules and direct processor memory storage. If

a link goes down, not only should the fault be limited to the link, the additional links

from the intermediate nodes should ensure the connectivity continues.

3.1.1 Routing mechanism

 The routing algorithm routes a packet from a source device s=s1, s2,..., sm to a

destination module d=d1, d2,..., dn, by choosing a direction to travel in each of the n-

dimensions to balance the channel load. A memory packet sent by a processing element

will always attempt to take the shortest path as long as packets are admissible (accepted

by ideal nodes). If a node is oversubscribed (i.e., all ports are occupied), packets in transit

will take a different route using the traffic controller (TC) in each corner (node). The

architecture protocol utilizes an efficient message-passing structure to transfer data. The

architecture path diversity offers alternative paths between source and destination

modules.

 Before a node forwards a packet to one of its adjacent nodes, it polls the status of

each node. The traffic controller at each node has a “sensor status” flag which determines

if the node is currently processing a packet (i.e., busy), or if the node is idle and ready to

accept a new packet (i.e., not busy). Depending on its direction preferences (some nodes

may get higher preference than others if they are located closer to the packet's

destination), TC will choose an admissible node to forward the packet. If at least one

33

adjacent node is available to forward a packet, it will require only one clock cycle to do

so.

 Wormhole routing is used since it is known for its improved latency and

throughput measures. The message required to be sent to or from a memory module is

segmented into smaller size packets, flow control digits (flits), as shown in Fig. 3.2.

Figure 3.2: Message segmentation

 In wormhole routing, the header flit is sent first. While the header propagates

through the interconnect, it sets the node switches in a certain position corresponding to

the traffic load on the node's channels. The rest of the packets comprising the message do

not wait, but are transmitted in a pipeline manner following the message header

(resembles a worm movement). The main advantage in using wormhole routing is that it

diminishes the latency as the size of the message increases while increasing its

throughput. The major part of the latency is hidden in the transfer of the first packet. The

rest of the packets follow it and introduce only wire transfer delay. As the message size

increases, the ratio of consecutive latencies decreases.

 From a throughput viewpoint, packets can travel with every Tw + Ts +Tr psec

following their header. Where Tw is the propagation delay of one bit in a unit length

which is equal to 254 psec per 1 inch using the current manufacturing technology [35]. Ts

34

is the switching delay within a node. Switching delay equals 100 psec and can increase if

the message is required to be queued (if all node outputs are blocked). Tr is the routing

decision latency and is equal to 500 psec. Therefore, ideally, without considering any

extra queuing delays, the maximum throughput that can be achieved is equal to 90 Gbps

per node.

 Throughput is calculated by dividing the channel size by the sum of latencies per

link (Tw + Ts + Tr) and then, it is multiplied by 2 since there can be two message flows

transferred simultaneously through a single node. The aggregate throughput is a function

of the number of PEs as well. The configuration of PE vs. memories within the k-ary n-

cube architecture increases the network load since more communicating modules are

available. This becomes a great advantage in achieving high throughput while a parallel

bus can only send those packets like a store and forward type architecture (see Fig. 3.3).

 Routing decisions are made for each message (also called a “worm”) at each

node. A worm always tries to take the shortest path to its destination, if traffic conditions

will allow it, otherwise, it takes an alternative route as close as possible to its original

shortest path. Routing directions in a node are referenced along 3-dimensional axes, as

shown in Fig. 3.4a. The default packet direction is straight forward to the next node

(corner) or x-axis. When an alternative path is taken, the other two directions possible are

the y or z axes. Any combination of movement along the z axis following a y movement,

and vice versa, is called south/north turns. Fig. 3.4b depicts a node connecting multiple

channels. RF and LF denote a movement from one face to another. In addition, each node

contains virtual channels (resembles a long buffer within the node) and a message port

(virtual port holding the incoming message).

35

Figure 3.3: Message timing (wormhole routing vs. parallel bus)

The routing algorithm is a combination of previously developed algorithms [17], [22],

and [23]. It tries to merge the best of each algorithm to achieve high maneuverability and

adaptivity to traffic conditions within the interconnect. The following rules must be

satisfied:

• Ensures the shortest path first, by comparing source and destination vectors (in

terms of x, y, and z coordinates) and move forward by evaluating the variance in

each dimension.

36

• If one of the chosen output ports is occupied (busy transferring other message), it

samples the status of other ports in the following order (Fig. 3.4a): EW (East-

West) a movement from one face to another, NS (North-South also up-down)

resembles a clockwise vs. counter-clockwise movement on an individual face.

• Avoid certain consecutive turns. This rule seeks to avoid deadlocks. A worm

following an EN, ES will not take west movement as the third direction.

Similarly, if WN, WS movements are taken then, it will not take an east

movement as the third direction.

• Since worms are generated either from PEs to memories and vice versa then the

worm's relative direction is always towards its destination and will never move

backward (towards its source). This step attempts to avoid livelocks.

Figure 3.4: a) Routing directions and coordinates b) Node connectivity

The most common disadvantage of wormhole message passing mechanism is its

tendency to form deadlocks and livelocks. There are multiple methods to minimize these

adverse states. In our model, we deploy various techniques to reduce deadlocks/livelocks

and avoid their occurrence. These techniques include virtual channels, adaptive routing

37

algorithm with turn prohibitions, node switch state control, channel partitioning and

message retransmission management.

3.1.2 Switching mechanism

A channel to channel switching mechanism is required to toggle packets in

different directions (i.e. to move from one channel to another). There are two common

switching mechanisms used in networking components to switch the channel wires: a

crossbar and a multistage Omega network.

A crossbar interconnect can simultaneously route any permutation of I/O pins.

The main disadvantages of a crossbar switch are its physical dimensions and hardware

resources it consumes. An Omega switch uses less hardware but it is limited in its

switching flexibility. When we compare their switching complexity, a crossbar uses n2

switches while omega network uses log
2 k
n n switch boxes, where n is the number of

channels and k is the number of switches in each box. The wiring complexity associated

with a crossbar switch is O(n2w) while the Omega switch box is O() [13].

Hence, the tradeoff between an Omega network switch and a crossbar is hardware

resources vs. switching flexibility. We decided to use Omega switches to implement the

interconnect architecture since space is very limited on the line card.

logknw n

There are three configurations that a switch can have for a 4-channel node in the

k-ary n-cube structure as illustrated in Fig. 3.5. However, an Omega switch, shown next

to it, can accommodate only two of these configurations. This will minimize the number

38

of Omega switches in expense of restricted routing. An incoming packet from input A

can be switched to output C or D and input B can be switched to C or D.

Figure 3.5: Omega switch configuration

 Figure 3.6 shows a scenario of packets from two different messages traverse in

2D-mesh network. Here, the Omega switches can only be set in configurations I and III.

Figure 3.6: Cyclic deadlock prevention

39

Packets A and B enter node 1 which is set to configuration III. Therefore, packet

A moves straight to right and B moves down. Nodes 2, 3 and 4 are set to configuration I.

Note that node 4 would have started a cyclic movement if it was set to configuration II.

Since it is set to configuration I, packet A is routed to the right direction, while packet B

is routed down. This configuration avoids packets collision and cyclic movement by

forcing the packets to take opposite routes.

3.1.3 The traffic controller

Each node employs a traffic controller (TC) to forward messages. The TC

includes five components: the routing algorithm, multi-port switch, channel sampler,

channel partitioning mechanism and virtual channels (Fig. 3.7) [18]. Each cycle, the

channel sampler samples each port to determine its status (total of 4 ports). If a port is

currently busy transferring a message, the channel sampler will not allow any new

messages to be routed to it.

Fig. 3.8 shows the connectivity of memories and PEs using the TCs. Packets are

transmitted between two communicating devices where they utilize nodes that are

directly connected to a memory module. The PEs/memories are not responsible to

forward the packets, the traffic controller resides within each node is. The memories

and/or PEs (Fig. 3.8) are connected to only one port (out of 4 ports) available per node.

40

Figure 3.7: Traffic controller

The memory/PE can transmit data while the node, which contains micro switches, allows

packet of different flow (different message) to pass through it to a different port, as long

as there is no contention over that specific port.

The channel partitioning module can divide a unidirectional channel into two or

four bidirectional sub-channels, as shown in Fig. 3.9. For example, a channel of 32 bits

can be partitioned into 4 sub-channels of 8 bits each, and transfer 4 different messages

simultaneously. It receives channel configuration information from the user interface and

sets the TC's internal parameters accordingly. Each of the channels (connecting two

41

nodes) can be partitioned into smaller channel widths to allow more packets (each packet

belongs to a different message) to share the same channel. As a result, the packet size of

each message will decrease while its latency increases.

Figure 3.8: PE and Memory interfacing the TC

 The main advantage of channel partitioning is the additional path selection

flexibility which institutes a tradeoff between lower message failure rate to increasing

message latency. Channels can be configured to one of the following partitions: single

unpartitioned unidirectional channel, two bidirectional subchannels (the channels can

contain two packets simultaneously) and four multidirectional subchannels.

The system load balances itself to handle momentary channel overloads and

provides data transfer stability by highly utilizing the TC functionality in cooperation

with its message passing mechanism and routing algorithm. System stability is measured

by the routing mechanism's ability to perform when the system reaches saturation. A

stable routing protocol does not degrade at saturation point, while an unstable routing

42

protocol does. The routing algorithm dynamically ensures that connectivity continues

without significant performance degradation.

Figure 3.9: Channel partitioning to 4 sub-channels

Virtual channels (VC) are used when an incoming message cannot be routed to

any output port since all output ports are busy transferring other messages. Fig. 3.10

depicts a situation where two messages compete over the same output port (West port).

Since message 1 is granted permission to continue in its path, message 2 will have to be

queued in one of the available VCs.

Figure 3.10: Virtual channels

43

Practically, a propagating message occupies two ports (out of four ports available in one

node) when moving from input port to output port. There are only two VCs per node,

since in the worst case only two messages can arrive and compete over the same output

port. The VC module, within the TC, sets virtual channels to enabled/disabled status and

if enabled, it also allocates its buffer size (in KB).

3.2 3D-mesh interconnect architecture

The 3D-mesh architecture shown in Fig. 3.11 is a packet-based multiple paths

interconnect that allows packets to be shared and transferred by different processor and

memory modules on the network line card simultaneously.

Figure 3.11: 3D-mesh structure on the network line card

44

Fig. 3.11 portrays a general line card architecture in which processing,

communication and memory components can communicate via 3D-mesh interconnect.

Besides the NPU several processing components are shown in the figure, such as co-

processor (Co-P), traffic manager (TM), hardware accelerator (HWA), and quality of

service (QoS) co-processor. The memory banks are distributed over the interconnect

structure to allow data sharing among modules and direct processor memory storage. The

fabric and physical interfaces handle incoming/outgoing traffic.

Each component, which requires memory access, sends its data encapsulated in

packets. If there is a congested area (hot spot), packets in transit will take a different

route, using predetermined and prioritized set of directions using the traffic controller

(TC) located in each node. The proposed architecture protocol utilizes an efficient

message-passing mechanism to transfer data. A faulty link will not discontinue the

transmission of a message to its destination since packets will be rerouted through

alternative paths using other available nodes. Routing ensures that a faulty link will be

limited only locally and other links from the intermediate nodes should ensure that

connectivity continues.

Each node contains two bidirectional VCs. VCs are used to avoid transmission

failure. Transmission failure can occur when a packet (fraction of message) cannot take

any of the output ports. Another feature in our model includes channel width partitioning.

This feature allows a unidirectional channel to become bidirectional so that more than

one message can share each channel. There are three available settings to channel

partitioning, unidirectional channels (one message occupies the complete channel width),

bidirectional channels (two messages can share the same channel and can move in either

45

direction), quad-directional channels which partition channels into four (each channel can

contain four simultaneous messages in either direction). As a result of channel

partitioning, the packet size of each message will decrease. The main advantage of

channel partitioning is the additional freedom in paths that can be selected by propagating

messages. Table 3.1 presents a comparison between 3D-mesh, crossbar and shared-bus.

Other performance comparisons will be given in performance analysis section.

Table 3.1: Comparison between shared-bus, crossbar & 3D-mesh

46

Bus performance, in terms of latency and throughput, of a shared bus is affected

by the following factors: 1. Number of processors or memories connected to it (as the

number of modules connected to the shared-bus increase, performance degrades). 2. The

shared-bus length (average is between 5-12 inches). 3. Shared-bus width (increasing

width results in higher cost). Most shared bus systems do not have more than 30

processors / memories. Traffic on the shared bus is ideal when exactly one message is

directed at each output. Communication protocol is trivial and is based on simple

connection oriented mechanism. In addition, shared bus systems require arbitration

mechanism to send/receive data from multiple modules. Bus arbitration adds delay to the

overall system latency. Some systems use multiple buses to reduce the effect of the

factors mentioned above. Although the bandwidth of the multiple bus architecture is

higher than that using a single shared bus, the system is more costly and requires complex

bus arbitration logic. As a result of the shared bus disadvantages many multi processor-

memory systems include multiple shared buses and/or other type of interconnects.

A crossbar can support multiple simultaneous connections (up to the number of

devices) as long as no contentions occur. Once contention occurs its performance

degrades (can reach lower limit equal to single shared-bus). If the destination node is

currently receiving a message, the request to this destination must wait until it becomes

idle.

47

3.3 The 3D-bus architecture

The 3D-bus interconnect is a variation of the 3D-mesh. Processing modules as

well as memories are not distributed in different locations on the interconnect, but placed

on both sides of it. The interconnect switching and routing mechanisms are similar. The

3D-bus architecture shown in Fig. 3.12 is a packet-based multiple paths interconnect that

allows network packets to be shared by different processor and memory modules on the

network line card. In Fig. 3.12, the line card processing and communications components

which have access or require access to the memory banks are shown on the left. The

components in the figure are given as an example, and other functional components can

be also interfaced to this bus. The memory banks are located on the other side of the 3D

bus structure.

Figure 3.12: 3D-bus structure on the network line card

48

Each component, which requires memory access, sends its data encapsulated in

packets. The default route is the x-axis direction. If there is a congested area (hot spot),

packets in transit will take a different route in y-axis or z-axis directions using the traffic

controller (TC) in each corner (node). The proposed architecture protocol utilizes an

efficient message-passing mechanism to transfer data. If a link goes down, not only

should the fault be limited to the link, the additional links from the intermediate nodes

should ensure the connectivity continues.

3.3.1 Bus interfaces

The 3D interconnect system requires two interfaces from both end points (i.e.,

functional units and memory banks). Both interfaces are required to perform the

following operations: distribute packets coming from PE/memory to bus interface and

vice versa, congestion detection and control at the endpoints, handle arbitrary data

transfer requests.

Figure 3.13: PE interface

49

The PE interface shown in Fig. 3.13 repeatedly samples the four input nodes to

the bus and keeps track of which node is busy. Simultaneously, PEs send requests to the

interface to allow data to be sent to memory. The interface must allow data transmission

through the bus as soon as one of the nodes is idle. Moreover, during heavy traffic and

congestion, the interface must balance the data request load.

Figure 3.14: Memory interface

PEs requesting data from memory need to wait until the data return from memory.

The interface must keep track of the PE which requested the data. When data are ready it

signals the same PE to allow data load.

On the memory side, the interface performs same basic operations with little

deviation (see Fig. 3.14). Data packets coming from the bus side must be stored in their

destination memory banks. The memory interface monitors the utilization of the banks to

avoid bank overflow. It also balances the traffic load to avoid congestion and collisions.

Before any packet is placed on the bus interconnect the memory interface continuously

samples the status of the bus nodes.

50

CHAPTER 4: ANALYTICAL PERFORMANCE ANALYSIS

4.1 Performance metrics

We use standard performance metrics such as latency and throughput. Each of

these measures has different effect on system performance and is influenced by the

network physical structure such as network dimensions, channel width, and switching

delay. Latency is defined as the time it takes for a complete message to reach its

destination. Latency can be determined using an analytical model and verified by using a

network simulator. Throughput is defined as the rate in which the packets are exiting the

bus for a certain message size per unit time. Throughput will be measured by simulating

the entire system. Measuring throughput during simulation can demonstrate how it is

being affected by the interconnect load, message size and deadlocks.

The load or offered-load is the number of packets injected into the interconnect

network per second and depends on the processing elements which are generating them.

The load can vary from starvation (small number of packets enter the network, while the

network is empty, and as a result take only minimal paths) to saturation (the network is

congested). Throttling is a method of slowing down packet transmission by placing a

limit on the rate of injected packets. This limits the maximal network throughput but

prevents excessive congestion.

The number of worm transmission failures is another routing measure. The

number of faults sums the number of worms which were not able to reach their

destination. A worm transmission failure can be a result of heavy congestion within the

51

interconnect in which all routes are busy and new worms cannot complete their path. The

number of failed transmission attempts will be recorded and compared with offered load.

4.1.1 Distribution of IP-packet length in core routers

The k-ary n-cube interconnect will be an integrated part of a line card. It will need

to perform under variable line rates and packet sizes. In order to design the interconnect

to achieve highest performance, it is required to explore some statistics about IP packets

such as average packet size and the distribution of its length. Fig. 4.1 describes the

distribution of IP packet lengths in core routers. It illustrates that there are four types of

common IP packet lengths: 40B, 52B, 576B and 1500B. 40B packets are most frequently

used (56%) [66]. The same IP-packet length distribution will be further utilized, as the

message length (M), when analyzing the performance of different interconnect

architectures.

Figure 4.1: IP packet length distribution

52

4.2 K-ary n-cube latency equation under uniform traffic load

The latency model for k-ary n-cubes was initially modeled by M. O. Khaoua in

[48] and was developed also in [50][51][52]. Under uniform traffic pattern, a message

passes on average k hops across the network

 (1)
2

kk −
= (4.1)

The average distance of this message is

 *d n k= (4.2)

The mean message latency consists of two parts, the delay due to message transmission

and the time a message spends if blocking occurs. For an average of d hops from source

to destination, latency can be expressed as

,
1

d

k ary n cube i ej
i

Latency M d B W− −
=

= + + +∑ (4.3)

The first term, M, is the message length in flits. BBi is the average blocking time seen by a

message at any i hop, where th 1 i d≤ ≤ . Wej represents the mean waiting time between

message transmissions at the ejection node. In this equation, it is assumed that channel to

channel transfer time is 1 unit cycle. V virtual channels are used per physical channel in

the model introduced by [49][63]. Although virtual channels are divided into two types

adaptive and deterministic, there is no distinction between them when computing virtual

channels occupancy probabilities [62].

53

A message is blocked at any ith hop channel when all virtual channels are busy. If

Wb denote the average waiting time due to blocking and Pb represents the probability of

blocking then the mean blocking time expression is

*
ii b bB P W= (4.4)

The blocking probability, Pb, is determined by calculating the probability that all virtual

channels are busy. Virtual channels analysis and analytical model is discussed in [48].

Since multiple virtual channels share the bandwidth of the same physical channel, a

multiplexer is required to select which virtual channel will use the physical channel. This

multiplexer functions in a TDM manner and adds the following component to the latency

equation

2

0

0

*

*

V

i
i

V

i
i

i P
V

i P

=

=

=
∑

∑
 (4.5)

The mean waiting time at any node within the message's path is given as

2
2

2
()* *(1)

2*(1 *)

c

b
c

S Mm S
SW

m S

−
+

=
−

 (4.6)

where, the latency of the k-ary n-cube network, S, is measured in cycles and mc is the

traffic rate on a given channel and is expressed as

*g
c

m d
m

n
= (4.7)

The mean waiting time of a message at any ejection channel is given as

54

2*
2*(1 *)

g
ej

g

m M
W

m M
=

−
 (4.8)

The mean waiting time in a source node is determined by modeling the injection channel

at the source node as an M/G/1 queue gives

2
2

2
()* *(1)

2*(1 *)

g

s
g

m S MS
V SW m

S
V

−
+

=
−

 (4.9)

The term gm
V

 denotes the mean arrival rate.

The overall message latency is composed of the sum of the mean network latency,

S, and the mean waiting time at the source node, Ws, multiplied by the multiplexing factor

V to account for the virtual channels multiplexing that takes place over the physical

channel. Thus,

()*msg sL S W= + V (4.10)

4.3 Latency of packet switched multi-processor shared-bus

The system illustrated in Fig. 4.2 describes a multiple-processor (multiple-

memory) packet-based shared bus. A processor-memory communication is only allowed

when the bus is not in use by other devices.

55

Figure 4.2: Shared-bus multiple processors with arbitration

A processor wishes to communicate with a memory receives permission to send

data from the arbiter. The data is transferred using flits. The bus width determines the flit

size. When multiple processors wish to use the bus it can cause contention. Therefore, the

bus is being monitored (process called also “snooping”) by the arbiter and only the arbiter

grants processors access to the bus. Bus of this type fabricated on a PCB line card has an

average length between 5 inches to 12 inches. The bus length is an important factor in

determining the packet propagation delay through the bus (not including queuing,

arbitration or transfer time).

*sb w r
M

qL T T T
w

= + + (4.11)

Equ. 4.11 represents the latency of a shared bus (more detailed analysis will

follow). The first component represents the delay associated with packet propagation

from source to destination through the bus. M
w

 represents the number of packets to send,

Tw is the time it takes for a packet to propagate in 1 inch = 254 psec). Tr represents the

56

arbitration delay. Arbitration latency is determined by the arbitration algorithm used and

can vary for each scheme. The most common arbitration schemes include Least Recently

Used (LRU) in which arbitration = (N-1) bus cycles, Rotating Daisy Chain (RDC) has the

same arbitration latency as LRU and last, FCFS scheme (First-Comes First-Served) with

arbitration = (N-1) [54]. The arbitration component must be multiplied by the average

time a packet spends within the processor queue before it is being transmitted (Fig. 4.3).

Both components provide the queuing latency. For example, in FCFS scheme the

queuing latency is equal to (N-1)*r. The value of r varies in each system depending on

the queuing model which represents the bus type and communicating modules connected

to it. A packet-based multiple processors shared bus such as the one depicted above can

be modeled as M/D/1 queue.

Figure 4.3: Shared-bus arbitration

57

M/D/1 queue model has a Poisson input (random bus access requests by

processors) to a single-server queue with constant service times (this is the bus

throughput), unlimited capacity and FIFO queue discipline (Fig. 4.3). Now that

arbitration and queuing issues are covered, we can provide a more detailed latency

equation:

* *(2 1) (1)*sb w
ML T n n
w

= − + − r (4.12)

Equ. 4.12 includes the arbitration cycles (n-1 cycles to wait) multiplied by the average

queuing time per message. In addition, it incorporates the factor (2n-1) which counts for

the spacing required (as a function of bus segments) between modules connected to the

bus.

4.3.1 M/D/1 queue characteristic equations

The characteristic equations of M/D/1 queue are given below:

2

2* *()qL λ
μ μ λ

=
−

 (4.13)

λρ
μ

= (4.14)

2* *(1)sW ρ
μ ρ

=
−

 (4.15)

58

Equ. 4.13 represents the average queue length, equ. 4.14 symbolizes the queue utilization

and equ. 4.15 corresponds to the message waiting time in the queue.

Arrival rate, λ , is the rate in which processor requires memory access. The arrival rate is

a function of the incoming packet rate (line rate) and the number of memory accesses

performed by the processors in order to complete all the packet analysis operations. To

determine the arrival rate, we need to utilize the following data: message size = 40 Bytes

(we use the lowest IP packet length for worst-case analysis) and line rate = 40 Gbps.

Therefore, if the line rate is 40 Gbps it takes 25 psec per bit to arrive which converts into

0.2 nsec per Byte of data and therefore, 8.8 nsec per packet. This implies that every 8.8

nsec a new packet arrives.

81 1.1*10
8.8 secn

λ = =

Service rate, μ , is the rate in which the bus can service a packet once a processor granted

access to the bus. This rate is determined by the bus throughput (bits per second). For

example, if the bus length is 10 inches and bus width is 64 bits, the service rate is equal to

(message size = 40 Bytes),

91 1 sec 0.157*1040*8 5*100 sec*2.54*5
64

n
p

μ = = =

Note that,

1

PE

i
i

λ μ
=

<∑ (4.16)

59

The sum of all arrival rates cannot exceed the service rate of the system. Moreover, λ is

used in our model as an aggregate value of all issued communications by PEs to the

shared-bus. Using previous example values, system utilization is equal to:

8

9

1.1*10 0.7
0.157*10

λρ
μ

= = = (70% utilization)

Therefore, the average wait time in the queue is equal to:

8

0.70 5.833
2*2*10 (1 0.70)

W = =
−

The average packet waiting time in queue (W) is multiplied by (N-1), where N = # proc.

(N=4, for example), to calculate the sum of arbitration latency + queue waiting time.

Thus,

40 40*100 sec*2.54 (1)* *100 sec (4 1)*5.833 sec 18.877 sec
64 64

B BL p N W p n= + − = + − = n

4.4 Performance results k-ary n-cube interconnect vs. shared-bus

Performance of k-ary n-cube is compared against a shared-bus. Since line cards

contain multiple network processing elements, which can reach 64 co-processors

(including memory modules), we chose two combinations of k-ary n-cubes which

comprised of 64 nodes and evaluate their performance. Both shared-bus and the k-ary n-

cube have 32 bits channel width. Fig. 4.4 compares the latency of 8-ary 2-cube network

with 4-ary 3-cube network while traffic load increases. Moreover, performance for both

types of k-ary n-cubes were analytically computed using 32-flit and 64-flit messages.

60

Figure 4.4: Latency comparison between 4-ary 3-cube and 8-ary 2-cube

Fig. 4.4 depicts that 4-ary 3-cube network is superior to 8-ary 2-cube network

with respect to load vs. latency for both 32 and 64 flits message. Once the better k-ary n-

cube was chosen we compared its performance against a shared-bus (Fig. 4.5).

Fig. 4.5 portrays latency comparison results for shared bus vs. 4-ary 3-cube

network. In both interconnects the channel width is 32-bits. 4-ary 3-cube network was

able to sustain much higher traffic rate while keeping lower latency than its competitor

the shared-bus. Moreover, the 4-ary 3-cube network maintained its exceptional latency

for both low as well as high traffic loads.

61

Figure 4.5: Latency comparison between 4-ary 3-cube and shared-bus

4.5 Average distance of 8-ary 2-cube network and 4-ary 3-cube interconnects with
multiple configurations

Previous average distance was given for standard k-ary n-cube networks.

However, for our application we need to consider certain type of configurations based on

the PE and M locations. The average distance, d , is calculated for both the 8-ary 2-cube

and 4-ary 3-cube networks. The goal is to find which network will result in lower average

distance. Moreover, after such network is explored a certain configuration will be chosen

within the k-ary n-cube network with the lowest average distance.

62

Figure 4.6: 8-ary 2-cube: a) Configuration 1 b) Configuration 2

Figure 4.7: 8-ary 2-cube: a) Configuration 3 b) Configuration 4 c) Configuration 5

Since the latency of k-ary n-cube is dependent on the average distance, d , as d

decreases the average latency should decrease as well (Equ. 4.37). The magnitude of the

effect which d has on the k-ary n-cubes will be investigated and presented visually later

on.

Table 4.1: Average distance of 8-ary 2-cube for different configurations

63

First the average distance for 8-ary 2-cube network is calculated, the results are

summarized in table 4.1. In the figures, squares represent PEs and circles represent

memories. Fig. 4.8 shows a 4-ary 3-cube network nodes structure. Each face includes 4-

by-4 nodes in 3-dimensions module. Each node is connected to its adjacent nodes with 4

I/O ports.

Figure 4.8: 4-ary 3-cube network

Average distance of 4-ary 3-cube network was calculated using the following

configurations (Figs. 4.9-4.11). The first configuration includes 4 faces (4-ary) with the

same structure as shown in Fig. 4.9a. The second configuration (Fig. 4.9b) has two faces

of each of the shown structures. Same connectivity occurs in Fig. 4.9c, Fig. 4.10d, Fig.

4.10e and Fig. 4.11f. Configuration Fig. 4.11g has one face of each.

Figure 4.9: 4-ary 3-cube: a) configuration 1 b) configuration 2 c) configuration 3

64

Figure 4.10: 4-ary 3-cube: d) configuration 4 e) configuration 5

Figure 4.11: 4-ary 3-cube: f) configuration 6 g) configuration 7

Comparing table 4.1 with table 4.2 we conclude that the average distance

diminishes as the dimensions of the k-ary n-cube network increase. Moreover, for each k-

ary n-cube type, different configurations show very close d value. Therefore, there is

higher flexibility of choosing any one of the configurations to satisfy system needs and

constraints.

Table 4.2: Average distance of 4-ary 3-cube for different configurations

65

4.6 Analytical model of k-ary n-cube interconnect with hot-spot traffic

Hot-spot traffic refers to network nodes which experience high traffic load. A hot-

spot is created in two scenarios. First, when multiple sources transmit messages to the

same destination node, second, when multiple messages adaptively route itself through

the same node increasing the traffic and result in local congestion. The latency model for

k-ary n-cubes was initially modeled by M. O. Khaoua [48]. The traffic load level of a

node, or hot-spot, is measured in terms of probability. Each generated message has a

certain and finite probability, α , of being directed to a hot-spot node and probability of

(1-α) to be directed elsewhere (through other nodes). The latency equation under hot-

spot traffic is given as

 ()*sLatency S W V= + (4.17)

where S is the mean network latency, sW represents the mean waiting time seen by the

message and V captures the effect of channel multiplexing through virtual channels at

each node.

 Regular and hot-spot messages see different network latencies as they pass

through different channels since each experience different traffic rate and as a result

different blocking latency depending from its distance from high traffic load, thus hot-

spot. The mean network latency, while taking into account both message types (hot-spot

and regular) is equal to,

 (1)* *rLatency S Shsα α= − + (4.18)

66

where represents the latency seen by regular messages which do not experience hot-

spot traffic and symbolizes message latency as a result of hot-spot traffic. Given that

N-nodes in k-ary n-cube are generating

rS

hsS

*α λ hot-spot messages per cycle, the rate of hot-

spot traffic is

 * * *hj hjN Pλ α λ= (4.19)

where represents the probability that a message has used during its network journey a

particular channel located j hops away from hot-spot node.

hjP

(1)1

0

n kj

ll
l jl

hj
j j

Dn D
P

C N C N

−−

==

−
= =

∑∑
 (4.20)

Unlike regular message, a hot-spot message encounters different blocking times at

different channels due to non-uniform traffic rates. A hot-spot message may visit

1,2,...n(k-1) channels to reach the hot-spot node. Thus, jC corresponds to the total

number of channels which are j hops away from a given node, jC , as

1

0 0

(1) 1
(1) ()()()()

1

n n l
t

j
l t

n n l j t k
C n l

l t n l

− −

= =

− − − −
= − −

− −∑∑ (4.21)

lD represents the number of nodes that are i hops away from a given node and is

calculated by

0

1
(1) ()()

1

n
l

i
l

n i lk n
D

l n=

− + −
= −

−∑ (4.22)

67

The network latency seen by hot-spot message j hops away from the hot-spot node, is

given by

1

mj

j

hj h
m

S M j B
=

= + +∑ (4.23)

where symbolizes the blocking time of a j-hop hot-spot message at its m
mjhB th hop

channel. In order to obtain the probability that a node is j hops away from a given hot-

spot node, we divide the total number of nodes that are j hops away from a hot-spot node

by the total number of nodes in the network, that is

1j

D
N

θ =
−

 (4.24)

Hence, when averaging the network latency over all possible hops seen by a hot-spot

message, Sh can be expressed as

(1)

1
j

n k

h
j

S θ
−

=

= ∑ j hS (4.25)

When the message reaches the mth hop channel, it is (j-m+1) hops away from the hot spot

node. Therefore, the mean blocking time is written as

 () ()(1) (1)
mjh k kB j m j mϕ ω ϕ ω= − + − + = (4.26)

This expression is comprised of the probability of blocking, (j m 1)ϕ − + and the average

waiting time, (j m 1)ω − + , for hot-spot message.

The mean waiting time is given by

68

2
2

2

()
(1)

2(1)

j
j j

j
j

j j

S M
S

S
S

λ
ω

λ

−
+

=
−

 (4.27)

where jλ represents the rate of messages (both regular and hot-spot) arriving at the

channel and jS corresponds to the mean service time of a node located j-hops away from

a hot-spot message. Both parameters can be determined by

jj r hλ λ λ= + (4.28)

 j

j

hr
j r

j j

S S hS
λλ

λ λ
= + (4.29)

By modeling a source node as M/G/1 queue we can extract the mean waiting time of

messages at the source node (with mean arrival rate
V
λ , where V is the number of virtual

channels)

2
2

2

()
(1)

2(1)

j

j

j

J

j

s
s

s
S

s

S M
S

V S
W

S
V

λ

λ

−
+

=
−

 (4.30)

The mean network latency for a message that originates at a source node that is located j

hops away from a hot-spot node,
jsS is

 (1)
j js rS S hSα α= − + (4.31)

69

Averaging over all possible values of j (1 (1))j n k≤ ≤ − gives the mean waiting time in a

source node as

(1)

1
j

n k

s j s
j

W θ
−

=

= ∑ W (4.32)

The probability, , that v virtual channels are busy at the physical channel that is j hops

away from hot-spot node is based on using a Markovian model. In the steady-state, the

model yields the following probabilities

vjp

1
j

v v
j j
v v

v j j
v v
j j

S
Q S

S

λ

λ
λ

⎧
⎪

= ⎨
⎪ −⎩

0 ≤ v ≤ V-1

 v=V

1

0

0

()
j

j j

V

ij
iv

v

Q
P

P Q

−

=

⎧
⎪= ⎨
⎪
⎩

∑

 v=0

1 ≤ v ≤ V

In virtual channel flow control multiple virtual channels share the bandwidth of a

physical channel in a time multiplexed manner. The average degree of multiplexing of

virtual channels (over all possible values of j) and which takes place at the physical

channel is provided by

2
(1)

1

1

1

j

j

V

vn k
v

j V
j

v
v

v p
V

vp
θ

−
=

=

=

=
∑

∑
∑

 (4.33)

70

4.7 Performance results of k-ary n-cube interconnect with hot-spot traffic

In this section we provide performance results of k-ary n-cube interconnects with

or without hot-spots and compare it against shared-bus. Our goal is to evaluate the effect

of hot-spots on the interconnect latency and to find which traffic load level brings the

interconnect to complete saturation where it is unable to sustain higher traffic load and as

a result its latency becomes infinite.

Figure 4.12 compares the latency between 8-ary 2-cube network with and without

hot-spots vs. 32-bits shared bus. Although hot-spots increase the latency of the 8-ary 2-

cube network, the network was able to sustain higher traffic rate than shared-bus.

Figure 4.12: Latency comparison between SB and 8-ary 2-cube

71

Figure 4.13: 8-ary 2-cube with HS

Figure 4.13 depicts the effect of hot-spot traffic on latency as the hot-spot

probability, α , increases. This figure depicts that as hot-spots probability increases the

interconnect latency increases as well. Moreover, there is an upward shift in the latency

curve with respect to the hot-spots rate increase.

Figure 4.14 is a comparison between 8-ary 2-cube network latency with different

levels of hot-spot traffic vs. shared bus (32 bits). We conclude that at low traffic rates

shared bus latency is lower and therefore better. The reasoning behind this is that

blocking has more influence on latency, in 8-ary 2-cube, at low rates while blocking

latency does not exist in shared bus.

72

4.14: 8-ary 2-cube with HS vs. shared-bus

Figure 4.15: 8-ary 2-cube vs. 4-ary 3-cube vs. shared bus (32 bits)

73

As traffic rate increases, shared-bus reaches its maximum throughput and

arbitration latency becomes dominant, while its counterpart, the 8-ary 2-cube network,

sustains higher traffic rate at lower network latency.

Figure 4.15 includes the latency of 4-ary 3-cube network under non-uniform

traffic. We chose 4-ary 3-cube network and 8-ary 2-cube network since both have 64

total nodes but different dimensions. The figure portrays that 8-ary 2-cube network

sustained higher traffic rates than 4-ary 3-cube network. In addition, 4-ary 3-cube

network has slightly higher latency than the 8-ary 2-cube. Both networks sustain higher

traffic rates even with hot-spots than shared bus.

Figure 4.16: Latency comparison between 8-ary 2-cube and 4-ary 3-cube HS

traffic with different Dave

74

Figure 4.16 depicts the latency differences as dave changes. The dotted lines

represent the latency as dave decreases. Dave can be calculated by using the standard k-ary

n-cube equation, *d n k= , or the configured value which we obtain by configuring the

placement of memories and processors within the network. Dconf, which represents the

average distance for different M/PE configurations, is lower than the theoretical value

since we do not assume communication between memories under non-uniform traffic.

Moreover, dave for different configurations was very close in value and therefore,

provides us with the flexibility of choosing one configuration that will best meet our

constraints.

4.8 3D-mesh performance analysis

4.8.1 Cube notation

Cubes are connected in series to form the 3D-mesh. Each vertical cube plane is

denoted by i and it is incremented along the right-hand side of the x-axis direction as

depicted in Fig. 4.17.

Figure 4.17: 3D-mesh interconnection notation

75

Within each ith plane there are four corners denoted by j, moving in a clockwise

direction. The k notation is used to distinguish the links on the cube and is formed by

combining two js. We use minimal routing algorithm which favors shortest path for each

packet.

4.8.2 3D-mesh average distance analysis under non-uniform traffic

Our goal is to find which processor-memory configuration will result in minimum

average distance. One important issue is that communications are non-uniformly

distributed within the cube-interconnect and as a result create more processor-memory

traffic (vs. memory to memory). Each processor can communicate with all memories

connected to it directly or indirectly (not adjacent to it). Memories, on the other hand,

communicate with all processors and communication between memories is allowed only

through a processor. Therefore, traffic is distributed non-uniformly creating “hot spots”

in areas of higher congestion. The average distance equation must be adjusted to

emphasize this property. The 3D-mesh interconnect consists of multiple faces (i = 1, 2,

3...)

Figure 4.18: 3D-Mesh faces

76

Each face has a unique binary address starting at “000...0”. The number of bits

representing this address is equal to log2(#faces). Within each face there are four nodes

with addresses “00”, “01”, “10”, “11” assigned in clockwise direction. Average distance

for different processor-memory configurations is calculated by comparing the source

node address and destination node address in two steps. First, the two lower bits of the

address, which represent the node address (location) within the face, are compared. The

number of 1's resulting from XOR(source,destination) of the last two binary digits is

summed up and stored in temporary variable. In the second step, the addresses of the two

faces are subtracted from each other and the binary result (converted to integer) is added

to the previously stored temporary value.

Equ. 4.34 is the general case of calculating average distance. Equ. 4.35 and Equ.

4.36 show the average case for PEs and memories respectively.

 iE
Nσ
σ

=∑ (4.34)

()i

PEE
P M

jσ σ+
=

+
∑ ∑ (4.35)

()i

ME
P

jσ σ+
= ∑ ∑ (4.36)

77

Figure 4.19: Non-uniform traffic for PEs in configuration 1

Figure 4.20: Non-uniform traffic for M in configuration 1

 Under non-uniform communication all PEs can communicate with all other

modules (PEs as well as memories). On the other hand, memories communicate only

with PEs and therefore, it results in different average distance for memories.

 The PEs average distance is equal to the sum of all distances from each one of the

PEs to all other nodes divided by the total number of nodes in the interconnect. The

memories average distance is equal to the sum of distances from each memory to each

PE. This sum is divided by the total number of PEs in the interconnect.

78

Figure 4.21: 3D-mesh: a) Configuration 1 b) Configuration 2

Figure 4.22: 3D-mesh: a) Configuration 3 b) Configuration 4

Figure 4.23: 3D-mesh: a) Configuration 5 b) Configuration 6

The number of memories in each configuration is always higher than the number

of PEs to allow better distribution of data and reduce the load (and the bandwidth) per

memory when peak traffic is achieved. The following figures illustrate the PE-Memory

structure in each configuration.

Table 4.3 depicts that there are two configurations which can compete in order to

reach lowest average distance, configuration 3 and configuration 4. Those configurations

will be used to calculate latency in the following subsection.

79

Table 4.3: Average distance of 3D-mesh for different configurations

4.8.3 3D-mesh latency equation

Our latency equation is based on five factors: routing algorithm (wormhole -

packet based switching), interconnect physical characteristics (such as channel width,

wire length, propagation delay, switching mechanism and switching delay), Message

length, buffering scheme and average distance between nodes using non-uniform

communication patterns.

3 *() ()*D s w r s w
LLatency D T T T T T
w

= + + + + (4.37)

The first term multiplies the average distance, D, calculated earlier by the sum of

propagation delay (Tw), switching delay, (Ts, also queuing if required) and routing delay

(Tr). It assumes an input buffer in each node used to handle deadlocks by buffering the

packets. Each additional queuing will result in additional delay of Ts.
L
w

 is the message

length divided by the channel-width. This term determines the number of packets

80

required to be sent in order to complete the message transmission. Channel width can

vary between 8-32 bits depending on chip I/O pins but it is also limited and should not

exceed 32 bits per channel. A wider than 32 bits channel-width will increase the channel

layout density on the PCB. The term (s wT T+) represents the minimum cycle delay of

transmitting a new packet.

4.8.4 3D-mesh interconnect vs. shared-bus

Performance evaluation of 3D-mesh is compared against a shared-bus. Our

performance model includes statistical data (such as IP distribution) and physical

measures (like PCB placement and spacing) in order to increase the accuracy of our

calculations. since IP packet length distribution shows that most packets have 40B length,

we use this data to evaluate our interconnect with the same packet length. Spacing and

placement are another aspect affecting performance. The spacing between modules must

include the physical dimensions of each module plus the routing of the interconnect

among modules to reach every node connected to it. We are using two possible spacing

values (1 inch and 0.5 inch) between modules and check the effect it makes on the

interconnect performance.

81

Figure 4.24: Latency SB vs. 3D-mesh with chw=32b (1 inch spacing)

Fig. 4.24-4.25 show the latency of shared-bus vs. 3D-mesh interconnect with

packet size 40B, channel width of 32 bits and 64 bits and spacing width of 1 inch among

adjacent modules. Both figures show that shared-bus (SB) latency is much higher than

that of the 3D-mesh interconnect.

Fig. 4.26 depicts a different view of latency comparison between 3D-mesh and

shared-bus with 32b and 64b channel width. As the number of faces increase, shared-bus

latency rapidly increases while 3D-mesh keeps almost constant latency. Fig. 4.27

emphasizes the differences in latencies by illustrating the latency ratio of 3D-mesh vs.

shared-bus for both 32b and 64b channel width.

82

Figure 4.25: Latency SB vs. 3D-mesh with chw=64b (1 inch spacing)

Figure 4.26: Latency comparison SB vs. 3D-mesh for chw=32b, 64b (1 inch spacing)

83

Figure 4.27: Latency ratio SB/3D-mesh for chw=32b, 64b (1 inch spacing)

The latency calculations were repeated for channel width of 0.5 inches among

adjacent modules. Fig. 4.28 shows that 3D-mesh latency slightly increased while the

shared-bus latency decreased. For low number of faces, shared-bus had lower latency

than 3D-mesh. As a result the ratio in latencies between shared-bus to 3D-mesh was

reduced significantly (Fig. 4.30).

Moreover, both Figs. 4.27-4.28 show that even for closer placement (0.5 inch vs.

1 inch) between modules, shared-bus (SB) latency is higher than that of the 3D-mesh

interconnect.

84

Figure 4.28: Latency SB vs. 3D-mesh with chw=32b (0.5 inch spacing)

Figure 4.29: Latency SB vs. 3D-mesh with chw=64b (0.5 inch spacing)

85

Figure 4.30: Latency ratio SB/3D-mesh for chw=32b, 64b (0.5 inch spacing)

4.8.5 3D-mesh interconnect vs. folded-Torus network

The closest interconnect structure to our 3D-mesh is the folded Torus network. A

folded 3D Torus is a k-ary 3-cube interconnect. The folded Torus includes additional

connections linking the ends of each row and column of the 3-dimensional cube (see Fig.

4.31). It can be easily noticed that the shortest path of the folded Torus network is 2 bus

links and the longest path takes maximum of 5 links from source to destination when

compared with three 3D cubes connected in series. In Fig. 4.32 the number of cubes is

based on the number of 3D-cubes appear in different dimensions of the Torus network.

For example, in a 4-dimensional Torus network there are 2 3D-cubes connected as shown

86

in Fig. 4.32. Since our 3D-interconnect resembles 3D-cubes connected in series to each

other, 3D-interconnect performance calculations use 3 cubes vs. 2 cubes for Torus. The

same ratio was used for higher dimensions of Torus network vs. 3D-interconnect.

Figure 4.31: 3-Dimensional Torus network

Based on PCB layout model, we map the Torus network in 2D and calculate the

additional wire lengths that are connecting the 3D cubes in Torus network with 3, 4 and 5

dimensions. Wire links connecting one pair of 3D cubes to another incorporate additional

delay which can be calculated based on the wire delay cost model. This model states that

the delay on wire increases logarithmically with the wire length while the channel width

size is held constant [12].

Figure 4.32: 4-Dimensional Torus network

87

The logarithmic nature of the propagation delay is based on the wire capacitance.

As the degree of Torus network dimension increases, the propagation delay (Tc) on the

wires connecting remote cubes rises.

 1 log 1 (1) log
2c
dT l∝ + = + − k (4.38)

where l represents the units of wire length and log l signifies the supplementary

delay per additional unit length [11]. Consequently, the additional wire length required to

connect 3D cubes in Torus network increases by 1 unit length for each additional

dimension, when implemented on the printed circuit board [10]. Due to space constraints

on the line card, we do not consider more than 16 cubes. We compare the Torus network

with our interconnect assuming there is 1 cm difference between all nodes in each cube.

This is not including the long lines connecting cubes in multiple dimensions in Torus

network. There are three wire lengths which entail longer routing than 1 cm in Torus

network as we increase its dimensions. These wires have the notations T', T'' and T'''.

Increasing l by 1 unit length provides the following further delays: T' = 63.7 ps, T'' = 64

ps, and T''' = 64.31ps (with respect to 100 psec propagation delay per 1 cm of wire).

Performance comparison between a folded Torus network to our 3D-mesh

interconnect shows that for lower number of faces (up to 15) 3D-mesh has lower latency.

As the number of faces surpasses 15 faces, Torus network has slightly lower latency than

our interconnect (shown in Fig. 4.33). The difference in latencies results from the

dominance of D (average distance) for the 3D-mesh over the T', T'' and T''' terms as the

number of faces increases. Above 15 faces (in the 3D-mesh case) D is much larger in

magnitude than the effect of T', T'' and T''' on the Torus latency.

88

Figure 4.33: Latency Ratio 3D-mesh vs. folded Torus

The tradeoff between number of faces and the latency supports our model over

the Torus network. Our 3D-mesh interconnect is used as a chip-to-chip communication

network embedded onto a line card. Since there is limited space on the PCB board, the

interconnect which consumes less space will be preferred given minimal performance

differences. Our 3D-interconnect, if viewed in 2D, uses N straight bus segments in

sequence which resemble a parallel bus with multiple switches. On the other hand, folded

Torus network requires double the bus width to connect source device to destination

which increases the cost and wire density of the interconnect layout. 3D-interconnect is

more feasible choice and provides high performance for its application under strict

physical constraints.

89

4.9 3D-bus performance analysis

We adopt Dally's basic equation for k-ary n-cube interconnects [12] and modified

it on our design. The resulting latency (L) equation is

 3 (1)* *D n
ML D T D T
w

= − + + (4.39)

where M is the message size, w is the channel width, D is the Manhattan distance, T

represents the propagation delay of one bit in one unit length which is equal to 62.5ps

(per 1 cm), and Tn is the node processing (switching) time. For the best case, D=c and for

the worst case, D=4*c. The header latency is larger than the rest of the message (1M
w
−)

since it sets the nodes direction in time Tn. The rest of the message just requires to

propagate through the channels in T time per unit length.

Throughput is defined as the rate in which the packets are exiting the bus for a certain

message size per second. The resulting throughput (Tp) equation is

 3

[*((1)) *]
D

n

MTp MT D D
w

=
− + + T

 (4.40)

4.9.1 3D-bus vs. shared-bus

We use equation 4.39 to calculate the latency. In addition, we are interested in

determining the optimal number of cubes that are needed in order to outperform the

shared-bus.

90

Figure 4.34: 3D-bus latency vs. shared-bus

Fig. 4.34 depicts the latency for different message lengths. Both the shared bus and the

3D-bus have the same length (C=8). Fig. 4.34 portrays that latency increases with

message size. For messages larger than 256 B, 3D-bus has lower latency compared to

shared bus with the same channel width. Moreover, for large message size the latency of

3D-bus with channel width of 16 and 32 bits is lower than shared bus.

4.10 Memory bandwidth

Current DRAM speeds are not enough to handle the requirements associated with

equivalent access frequencies of 5 GHz per node (this rate is based on maximum bit

transfer per line of 100 psec plus one switching delay 100 psec). SRAM arrays are

expensive and have high power consumption but their current latencies make it a good

candidate if a buffering scheme is used. SRAM double-buffer, for example, could receive

91

data at full speed when writing to memory. This double buffer could then be interfaced

with a large DRAM array for mass storage. As DRAM speeds increase, this further

reduces the stress and demands on the buffering system [33].

Memory modules employed in our interconnect need to be compatible with the

interconnect throughput rate. Memory devices such as QDR SRAM that can reach 10.22

Gbps [34], DDR2 SDRAM, which taps 4.15 Gbps [26] (1.0375 Gbps per bank), or

RLDRAM-II with data rate of 28.8 Gbps [65] (3.6 Gbps per bank) are good candidates

for our interconnect. There are new memory technologies that exceed fast memories and

could be utilized as well if multiple memories and buffering scheme are used. Providing

that cost is not the major factor in a cutting-edge, high-speed design, it seems very likely

that these technologies could be employed to create SRAM capable of operating at 5

GHz. SRAM technologies such as pure silicon SRAM was demonstrated at speeds

exceeding 4 GHz. Other technologies, such as MRAM, GaAs, SiGe, and InP could

provide speeds far exceeding those of current Silicon SRAM [68].

4.11 Area analysis

Area constraint is a crucial factor in selecting an interconnect design that can

provide high-performance and at the same time fits into the physical dimensions available

on the line card printed circuit board (PCB). The interconnect must compromise its

channel width size, number of nodes and additional hardware elements (buffers, switches

etc.) in order to meet space limitations. Current multi-layer PCB technology allows the

92

implementation of higher dimensional networks. The area consumed by the layout of a k-

ary n-cube network can be expressed [96]:

2 2

2 2 2 2

16
(1)

N NO
Y k Y k

⎛ ⎞
+ ⎜− ⎝ ⎠

⎟ (4.41)

where, N represents the number of nodes forming the network and Y signifies the number

of layers. Assuming that the implementation is done using dual layer, for the example 8-

ary 2-cube, 4-ary 3-cube and 3D-mesh, each having 64 nodes we get:

2

4 ,3 2 2

16*64 1365
(2 1)*4ary cubeArea − − ≅ ≅

−

2

8 ,2 2 2

16*64 341
(2 1)*8ary cubeArea − − ≅ ≅

−

2
3

3 2 2

16*8 *8 8 *7 697
(2 1)*2D meshArea − ≅ +

−
≅

Note that these values do not show exact occupied areas in real units. They are

used to compare one topology to another one. The 3D-mesh area equation uses 2-ary 3-

cube network parameters, then it is multiplied by 8, since there are 8 cubes in 16 faces (2

faces comprise 1 cube) that are connected to each other through physical channels. Since

4 channels connecting one cube to another, it requires 7 groups of 4 channels each to

connect those cubes. The term 3 N represents the additional wire length connecting one

cube to another with respect to the number of nodes in the network [97].

The calculations above show that if implemented on the PCB 3D-mesh will

consume more area then 8-ary 2-cube but less than the 4-ary 3-cube. Although area is a

primary concern but it is not the only design parameter. In fact, as long as the

93

performance figures are comparable, the 3D-mesh might be chosen because of its easy

scalable structure. That is, inserting more nodes in the example 3D-mesh is only a

multiple of 4 nodes to any side of the structure, while the other interconnects require

symmetry in the number of PE or memories that are added. Second, the 3-dimensions of

the interconnect provides higher routing flexibility, a characteristic of high-dimensional

networks, while consumes less space (as shown with respect to the 4-ary 3-cube). Thus, it

makes sense to explore variations of k-ary n-cube architectures along with the standard

ones.

94

CHAPTER 5: EXPERIMENTAL RESULTS

5.1 K-ary n-cube simulation framework

We developed an event-driven, custom-designed interconnect simulation

environment to evaluate the performance of packet-based off-chip k-ary n-cube

interconnect architectures for line cards. The simulator uses the state-of-the-art software

design techniques to provide the user with a flexible yet robust tool, that can emulate

multiple interconnect architectures under non-uniform traffic patterns. Moreover, the

simulator offers the user with full control over network parameters, performance

enhancing features and simulation time frames that make the platform as identical as

possible to the real line card physical and functional properties. The objective of this

simulator is to compare among different off-chip interconnect architectures for network

line cards and determine which interconnect can significantly increase the memory

bandwidth and the overall system throughput.

Our simulation model includes statistical data such as IP length distribution and

physical measures of PCB placement and spacing, as well as network properties such as

IP packet size, in order to increase the accuracy of our calculations. In addition, we apply

true IP network properties such as switching, propagation and routing latencies. The

simulator provides real time performance analysis with detailed metrics on packets

processed at each simulation cycle and overall detailed results at the end of each

simulation. The user input parameters using an easy to use GUI or command line

interface.

95

5.1.1 K-ary n-cube interconnect simulator architecture

Figure 5.1: Simulation control modules

The simulator architecture, shown in Fig. 5.1, depicts the interconnect interaction

with the control modules which adjust, collect and modify the interconnect settings,

dataflow, and performance metrics. The simulator configuration manager sets the

interconnect type, its properties (wire propagation delay, switching delay or routing

delay) and enable/disable enhanced features such as channel width, VC on/off,

bidirectional channel. The interconnect properties are set by the user interface and

96

recorded to allow the configuration manager to be updated via the worm manager. The

worm manager utilizes interconnect properties and configuration parameters in order to

set accordingly, other modules in the system that participate in the simulation. The traffic

sampler continuously records performance data such as throughput, latency, routing

accuracy, interconnect bandwidth utilization and interconnect resource utilization. This

information is feedback to the worm manager which accordingly adjusts worm

generation rate and load balances the traffic. The routing algorithm receives each

individual worm location and its destination node from the worm manager. Then, it

determines for each worm the shortest route possible by avoiding spots of heavy traffic.

The worm jar is a storage module that contains all the generated worms waiting to

enter the interconnect. The total number of worms during simulation are initially

determined by the user. The simulator generates worms randomly, but since not all

worms can immediately enter the interconnect (when the interconnect reaches its full

capacity) they are being stored in the worm jar. On the other side, there is another worm

jar which contains all the worms that reached their destination. The scheduler is

responsible to inject worms into the interconnect taking into account the total network

capacity and traffic load. Since the worm manager knows the total number of worms that

are modeled throughout the simulation, it must inform the scheduler the end of the

simulation (no more worms to model).

The simulator accounts for all practical parameters characterizing off-chip

interconnect architectures such as, switching delays (Ts), routing delays (Tr) and

propagation delays (Tw) as well as the complete functionality of each system components

(nodes, links, PE/Memory, interfaces, virtual channels, and channel partitioning). The

97

user has the option to change each one of these parameters in case new technology

introduces higher standards. Simulation time is based on a unit cycle which is equal to

one clock cycle (Tw+Tr). All other delays are calculated as multiples of it. That provides

the advantage of having single uniform simulation clock.

Message size in bytes and message generation-time are obtained using pseudo-

random number generator, which is utilized to resemble the randomness of packet

transmission by both processors and memories. Each worm is linked to performance-

bookkeeping function, which records its latency, throughput, simulation cycles, failures,

and route-taken from the moment the worm enters the interconnect until it completely

reaches its destination. A comprehensive performance results are provided at the end of

each simulation.

5.1.2 Simulator modeling approach

There are three important system components which are closely coupled, interact

and affect each other (Fig. 5.2). It includes, the user interaction with the system through

the user interface and its relations with the worm manager, the interconnect and the worm

classes. The user creates the interconnect type and worms, determines the worms' routes

and sizes, and instructs the worm manager when to model the simulation. The

interconnect class is the main physical structure that the worm is using in order to

propagate from source node to its destination. The interconnect properties may change,

which affect the worm routing flexibility and resources it can use (such as virtual

channels) to avoid deadlock and thus, a retransmission.

98

Figure 5.2: Class relationship diagram

The worm manager class records worm data, determines arrival and departure of

worms using the worm generation algorithm to load balance the number of worms

processed simultaneously within the interconnect. In the center, the worm class routes

itself through the interconnect and flags the worm manager when it is completely

modeled or if has entered deadlock/livelock and needs to be retransmitted. The routing

algorithm, used by the worm, adaptively enables the worm to find its best path possible to

its destination as network traffic increases and the interconnect resources become

occupied.

The cyclic diagram (Fig. 5.3) depicts the relationship between the interconnect

architecture, the simulator and the physical properties of resources available. The

interconnect architecture represents the physical structure and includes all the hardware

required to implement it. The properties represent two types of parameters: physical

parameters of electrical components comprising the interconnect (such as wire delays,

switching delays, routing delays), and parameters of additional features, which enhance

the interconnect performance (for example, channel partitioning, virtual channels,

99

interconnect configuration). The simulator emulates the interconnect functionality in

order to evaluate and compare different configurations and settings.

Figure 5.3: Cyclical relationship

The simulation setup (Fig. 5.4) is an abstract view of high level system

components and their interaction in order to initialize and execute simulation. First, the

simulation properties are set for the simulation.

Figure 5.4: Simulation setup

The properties are set by the user and are crucial for worm generation, timing

delays, and other simulation aspects. Then, the messages (worms) are created and are

placed in a data structure (jar). Since the interconnect can change configurations, PEs and

100

memories change their location accordingly, and therefore, source/destination addresses

must be correctly set before the worms can be generated. When the user chooses to run

the simulation, the properties and the data of the worms in the jar are recorded in separate

files. The interconnect receives worms from the jar of generated worms according to a

probability called worm generation rate (GR) which is controlled by the user. In addition,

the user can determine how many worms can occupy the interconnect at all simulation

cycles by changing the value of the max worms in interconnect variable (MWII). If no

value is set for this variable, the default value is unlimited number of worms. The worms

that enter the interconnect are modeled until they reach their destination. All runtime

worm data is collected in a separate output file which provides individual details about

each worm. After the complete simulation is modeled, a file is generated recording the

performance of the simulation.

Fig. 5.5 shows a UML class diagram of the interconnect architecture. A single

type of interconnect is a set of faces which each comprise of multiple nodes. Within each

node there are multiple ports. A node can be modeled as either a memory or a PE. Hence,

the node still possess the same structure and functionality as any node, but it reserves one

port as an I/O port to the device. Interconnect properties affect worm routing flexibility

and resources it can use, while propagating through the interconnect, such as virtual

channels (VC) and/or sub-channeling (SC). The port class contains VCs and SCs which

are modeled as logical topologies on top of the physical network architecture. VCs as

well as SCs have a great effect on the worms transmission success/failure rates and

deadlock/livelock avoidance. Although VCs improve routing accuracy and reduce worm

101

transmission failure rate, it also increases worm latency and interconnect implementation

costs.

Figure 5.5: UML class diagram of interconnect architecture

The worm manager class records worm data, arrival and departure time stamps of

worms, and controls the worm generation rate in order to load balance the number of

worms processed simultaneously within the interconnect. The worm class encapsulates

the properties of a worm such as a header with source/destination fields and shortest path

coordinates. The worm class shares data and collaborates with all other classes. It routes

itself through the interconnect, while continuously being monitored by the worm

manager. The adaptive routing algorithm is used by the worm to determine the best

102

available path that it can take to reach destination. The worm updates its shortest path

coordinates with each movement to ensure its optimal path even when it is required to

take a detour as a result of hot-spot node.

5.1.3 Software components

Fig. 5.6 portrays a dynamic model (action oriented) of the routing algorithm class

and its subclasses with interconnect system components and the worm manager class.

This model determines the actions performed by the routing algorithm in order to

maneuver each worm within the interconnect with respect to its current position, its

destination and traffic conditions [56]. The routing algorithm is closely coupled with the

worm manager since the worm manager controls worms entering and leaving the

interconnect while the routing algorithm controls the worms within the interconnect.

First, the routing algorithm analyzes the source node type (where the worm is generated)

and the enabled interconnect features such as virtual channels, bidirectional channels and

PE-M configuration. Then, it checks the preferred (shortest path) direction in which the

worm needs to move. The routing algorithm scans each node's port and dictates the

movement of the worm giving priority to ports which are pointing in direction towards its

destination. If none of the ports are available, the routing algorithm will check the

availability of virtual channels. If enabled, the worm is queued into one of the virtual

channels until one of the ports clears. If virtual channels are not available then the routing

algorithm notifies the worm manager of a worm failure. This will result in a

103

retransmission of the same worm to/from the same source/destination in order to lower

any data lose.

Figure 5.6: Dynamic model of routing algorithm

Fig. 5.7 depicts a sequence diagram of the user interaction with the simulator

classes/objects. The sequence chart is used to determine which data to automate in the

simulator and which must be input exclusively by the user [56][58]. User input data is

used/shared by two other classes: the file class and the worm manager class. The user has

104

two choices, using default settings or change settings/properties in order to simulate the

interconnect with different configuration.

Figure 5.7: Sequence diagram of user-simulator interaction

Once the interconnect type and configuration are defined the user must complete

the following steps before simulation executes: select if new worms will be generated or

worms should be restored from an existing file, determine the number of worms to

105

simulate, decide if worms are generated randomly or manually, input the number of

sampled throughput points (include the initial sampling point and the number of

simulation cycles between samples) and select if the newly generated worms will be

saved or not.

5.1.4 Optimization strategies

5.1.4.1 The singleton class

The singleton classes [60], such as WormManager and Interconnect, guarantee

that only one class instantiation is created (Figs. 5.8-5.9). The single instance is held as a

static variable as a private member of the class. These singleton classes are not

automatically initialized. Instead, initialization occurs the first time that singleton class'

create() method is called by the client. The create() method also allows the callers to

access methods of that singleton class. In the same manner it can destroy the object. The

interconnect is a singleton class: only one interconnect is created per simulation. The

WormManager creates a new interconnect for each simulation and destroys it when done.

The reason for this is that there might be different configurations which require

construction of the object in different ways. The following figures show all the objects

and functions (public and private) included in each of these singleton classes.

106

Figure 5.8: WormManager singleton

Figure 5.9: Interconnect singleton

107

5.1.4.2 Pure virtual functions

The SaveRestoreInterface class provides save and restore functions which are

pure virtual functions which forces derived classes to override [61]. The following is an

example of pure virtual function signatures:

class SaveRestoreInterface{}

 public:

 virtual File &save(File&file)=0;

 virtual File &restore(File &file)=0;

In the save/restore functionality, we utilize a sentinel as a safeguard to assure that

the correct version of code is used. The sentinel is recorded in the save file. Upon restore,

it is verified that the saved file matches the current software version.

const int save_restore_sentinel = 3;

File &WormManager::save(File &file){

 file.save(save_restore_sentinel);

 Properties::save(file);

 return file.save(worms_to_process);}

File &WormManager::restore(File &file){

 int tmp_save_restore_sentinel;

 file.restore (tmp_save_restore_sentinel);

 if (tmp_save_restore_sentinel !=save_restore_sentinel){

 std::cerr<<”cannot restore file<<

 tmp_save_restore_sentinel<<std::endl;

108

 restored = false;

 else{

 Properties::restore(file);

 Interconnect::create();

 file.restore(worms_to_process);

 restored = true;

 return file;}

5.1.4.3 System design with Standard Template Library (STL) functions

The STL is a general purpose library of algorithms and data structures. The STL

enables generic programming where reusable functions, data structures and algorithms

are available for the programmer [59]. The ability to achieve composition was attained by

using the Standard Template Library (STL) map class, as shown in the following code

[59]. The interconnect is basically constructed of three main components: a face, node,

and port. The interconnect has a map of faces, which has a map of nodes, etc. By creating

this type of relationship, the location of worms in the interconnect is accessed as if the

interconnect and its composed parts are arrays. The same effect could have been traded

off with the STL vector class; the map class offers safer memory management though

degrades the performance.

109

Figure 5.10: Structural hierarchy of classes: face, node, port

For the 3D-mesh interconnect, each face has four nodes at the corners. Each node

has 4 ports. Therefore, a map is created for each component to organize the connectivity

and construct the interconnect structure (shown in Fig. 5.10). Each component has an ID

and an integer variable which represents the number of instances available [57].

Face #ID to face map:

typedef std::map <int, Face> FaceMap;

Node #ID to node map:

typedef std::map <int, Node> NodeMap;

Port #ID to port map:

typedef std::map <int, Port> PortMap;

VC #ID to VC map:

typedef std::map <int, VirtualChannel> MemoryManager;

110

5.1.5 Simulator parameters

The simulator generates worms at a certain pace and monitor their performance

from the moment they enter the interconnect. Worm generation is depended on a random

generator, which randomly generates worms with variable size and source/destination

addresses, and worm manager, which monitors the number of worms entering the

interconnect and the number of worms currently in the interconnect. First the random

generator determines the maximum number of worms that can be generated by checking

the interconnect type. Each interconnect type has a different number of PE/memory

modules.

The maximum number is the total number of message generating elements within

the interconnect, thus PEs + memories. The random generator generates worms without

considering the status of worm currently propagating through the interconnect. It places

all the worms it generates, arbitrarily within each cycle, in a Jar. Jar is a class type (C++)

which cooperates with the worm manager to synchronize the placement of worms from

the Jar into the interconnect. The rate in which worms are placed in the interconnect is

determined by the worm manager and not the random generator since the worm manager

closely monitors the status of all processed worms. The random generator can be adjusted

so that the number of worms generated will increase or decrease. This variable is called

Generation Rate (GR) and it is represented as a percentage rate. For example, 90%

generation rate, means that there is a 90% chance that some worms will enter the

interconnect within the next cycle. The worm manager, on the other hand, contains a

variable called Worms In the Interconnect (WII) which controls the maximum number of

111

worms that can be transferred in the interconnect at any simulation cycle. For example, if

WII =50% then only 50% of the maximum number of worms possible (PEs+memories)

will be occupying the interconnect at any simulation cycle. Both parameters, GR and

WII, have a major effect on simulation performance. High value of GR and WII can

overflow the interconnect with worms, thus significantly reducing throughput/goodput,

increasing latency and creating many deadlocks. On the other hand, if GR and WII have a

very low value the utilization rate of the interconnect bandwidth and resources will be

low, since only few worms will be generated and since the interconnect occupancy is

low, then they will quickly get to their destination. The disadvantage of low GR and WII

is that it reduced performance since only few worms are being generated and transferred.

As a result, there must be an equilibrium point between GR and WII that will result in

peak performance without over-utilizing or under-utilizing the interconnect.

Another perspective is the worm failure rate. We want to keep failure rate as low

as possible, since retransmission of worms requires more bookkeeping and consumes

more resources. High failure rate is bad and indicates that worms are able to reach their

destination with a very low success rate. One of the performance measures during

simulation, using variable GR and WII, is to find the best value for both GR and WII to

keep high throughput, low latency and reduce failure rate to almost 0. The following

simulation results and figures depict this relationship.

112

Figure 5.11: Generation rate

 Figure 5.11 shows performance of the 3D-mesh interconnect (configuration 3) as

generation rate decreases. Intuitively as GR decreases, both throughput and latency will

decrease as well. The goodput is kept steady since the goodput is an average measure of

bits processed throughout the simulation. GR has a major effect on failure rate.

 As GR decreases, the failure rate decreases significantly since less worms occupy

the interconnect and now it is easier for worms to route their way, in the shortest path, to

their destination. The variable worms in the interconnect has a lesser influence on

performance results.

113

Figure 5.12: Maximum worms in the interconnect (MWII)

Fig. 5.12 portrays that although throughput and latency were reduced as the

maximum WII was decreasing, the effect was not that significant as GR had. Only failure

rate was reduced significantly from the same reason above.

 Fig. 5.13 depicts the tradeoff between GR and max WII. In general, as GR and

WII rate was reduced, the failure rate was reduced to 0. We see that the advantage of

adjusting both the GR and WII is that we can reduce failure rate to almost 0, while

keeping high throughput and low latency in tact.

114

Figure 5.13: Generation rate and maximum worms in the interconnect

5.2 3D-mesh, 4-ary 3-cube & 8-ary 2-cube simulation results

5.2.1 Latency and throughput analysis

Latency represents the time it takes for a worm to reach destination. Depending

on the worm movement, latency sums wire transfer, switching and routing delays at each

cycle. The resulting latency is an average of latencies collected from all worms

generated, at the end of the simulation. We chose three representative k-ary n-cube

interconnects for our simulations: 8-ary 2-cube, 4-ary 3-cube and 3D-mesh (all three

interconnects have 64 nodes).

115

Figure 5.14: Latency comparison

Fig. 5.14 shows a comparison among all three interconnects with VC and channel

partitioning enabled. The results shown are an average of 10 different simulations with

both short (128B-1KB) and long (1KB-8KB) worms and identical interconnect settings.

The lowest latency was recorded for the 3D-mesh, while the 4-ary 3-cube network has

slightly higher latency than the 3D-mesh.

Fig. 5.15 portrays the latency of each interconnect with respect to the offered

load. Offered load determines the probability that each node comprising the interconnect

will generate a message within each simulation cycle.

116

Figure 5.15: Latency vs. offered load

For example, if the offered load is set to 0.1 there is a chance that 10% of the total nodes

in the interconnect will generate a message at each simulation cycle. Fig. 5.15 shows that

as offered load increases the latency increases exponentially for all interconnects. 3D-

mesh interconnect is able to sustain the highest offered load out of the three

interconnects.

Throughput is measured by taking samples of the total bits processed within the

interconnect at each cycle. Throughput significantly increases when VC are enabled since

VC allow more worms to occupy the interconnect without transmission failures. Fig. 5.16

117

shows that the highest throughput was reached by the 3D-mesh interconnect for both

short and long messages.

Figure 5.16: Throughput comparison

5.2.2 Worm allocation and distribution

Worm allocation and distribution, depict in Fig. 5.17, shows three groups of

worms: worms currently propagating in the interconnect, worms waiting in jar to be

modeled and worms that finished and reached destination.

118

Figure 5.17: Worm allocation & distribution

Fig. 5.17 provides a good indication of the worm manager functionality. The

figure shows that the number of currently modeled worms (worms in the interconnect)

increases as the number of worms waiting in the jar and the number of already modeled

worms (finished) decreases. When VC are enabled more worms occupy the interconnect

and with faster rate than presented in Fig. 5.17. Fig. 5.18 depicts that since more worms

are modeled, the number of worms waiting to be modeled diminished. It is also

noticeable that when VC are enabled more simulation cycles are required. Fig. 5.19

portrays worm allocation and distribution when SC=4. The result show that worms being

119

modeled are reaching a flat saturation point in which the same number of worms occupies

the interconnect as long as there are more worms to model in the jar.

Figure 5.18: Worm allocation & distribution with VC=8KB

 Worms are utilizing every channel available until the interconnect reaches

saturation. However, simulation cycles are less than those taken when VC were enabled.

120

Figure 5.19: Worm allocation & distribution with SC=4

5.2.3 Routing accuracy

Routing accuracy measures how close the actual path of each worm is to its

shortest path. Routing accuracy is calculated by taking the ratio between the shortest path

possible to the actual path taken, which signifies the worm's deviation from its shortest

path. Fig. 5.20 shows simulation of 100 worms using 3D-mesh interconnect with VC

disabled and no sub-channeling. At the top of the figure the line portrays the number of

additional links passed by each worm until it reached its destination. On the bottom part

121

we see the deviation of each worm (top line) from its shortest path (bottom line). If both

lines overlap, then the worm took its shortest path. The path a worm takes depends on the

traffic load at certain nodes of the interconnect. As the load increases, most worms

deviate from their shortest path and adaptively propagate to their destination avoiding

areas of hot-spots.

Figure 5.20: 3D-mesh worm deviation from shortest path

Fig. 5.20 shows the number of channels passed for each worm modeled using 3D-

mesh interconnect. The top line shows the percentage of deviation from the shortest path.

For example, if the top line points for a certain worm #ID to 100, that means the worm

took the shortest path possible. If the value of the line is equal to 20, the worm deviated

from its shortest path by 80% (more channel links). At the bottom of the figure there are

122

two overlapping lines. The thin line represents the actual path taken (measured in channel

links). The thick line represents the shortest path. Therefore, when both line completely

overlapping each other for a certain worm, that worm took the shortest path. As the

number of channel links passed increases with respect to the shortest path possible, the

thin line becomes further apart from the thick line.

Figure 5.21: 3D-mesh routing accuracy with VC=8KB and SC=2

 In Fig. 5.20 neither VC nor SC were enabled. Therefore, more worms deviated

from their shortest path due to high traffic load at certain interconnect nodes. Fig. 5.21

shows the routing accuracy of all worm modeled using 3D-mesh. In this simulation 100

short worms (40B) were generated and both VC/SC were enabled. That resulted in a very

high routing accuracy (96.5%) and no failures.

123

Figure 5.22: 8-ary 2-cube routing accuracy with VC=8KB and SC=2

Figure 5.23: 4-ary 3-cube routing accuracy with VC=8KB and SC=2

124

The same simulation setup was used to evaluate routing accuracy of 8-ary 2-cube

(Fig. 5.22) and 4-ary 3-cube (Fig. 5.23). All routing accuracy figures prove that the

routing algorithm, with additional features such as VC and SC, is highly effective and on

average provides above 80% routing accuracy with very low failure rate.

5.2.4 Interconnect and bandwidth utilization

Interconnect bandwidth utilization measures the number of occupied channels (or

sub-channels) with respect to the total number of channels available in the interconnect.

Figure 5.24: Bandwidth utilization rate

125

Fig. 5.24 portrays that the highest bandwidth utilization is achieved by using the

4-ary 3-cube network, while the 8-ary 2-cube has the lowest utilization rate. Sub-

channeling improves bandwidth utilization as channel are partitioned into more sub-

channels. The combination of VC and SC bring all interconnects close to their full

capacity.

Interconnect utilization counts the number of busy ports within each traffic

controller per simulation cycle. At the end of simulation it provides the average of ports

that were set to busy status out of the total number of ports available in the interconnect

throughout simulation. The results of interconnect utilization show very close

relationship to bandwidth utilization (Fig. 5.25).

Figure 5.25: Interconnect utilization rate

126

Again, 4-ary 3-cube ports are set to busy status more often than the 3D-mesh or 8-

ary 2-cube. Although interconnect utilization seems an equivalent measure to bandwidth

utilization, it is a little different since ports status is not directly related to the channel

usage.

An output ports can stay in not-busy state if a worm that intend to use it is

buffered into virtual channels. Since each traffic controller has four ports the channel

connected to the non-busy port can be utilized by a worm entering from a different

direction.

5.2.5 Failure rate

 Failure rate is a measure of the number of worms, out of the total worms

generated, that were retransmitted during simulation. Retransmission takes place when a

worm is blocked and cannot obtain the resources it required to maintain an active status

within the interconnect. For example, when VCs are disabled, then a worm will require

retransmission if it cannot be routed to any output port within a certain node for more

than one simulation cycle.

Fig. 5.26 depicts a failure rate comparison for all interconnect types with VC

switched to enabled/disabled. This figure shows that VC significantly reduces failure

rate. Moreover, the size of VC has a major effect on failure rate as well (Fig. 5.29). As

the size of VC increases more worms can be buffered for longer periods of time within

each node instead of failing and being retransmitted.

127

Figure 5.26: Failure rate comparison with VC switched on/off

 Failure rate significantly decreases when sub-channeling is enabled. Figs. 5.27-

5.28 show that failure rate was reduced to single digit rates when SC=2 or SC=4. Since

SC divides the physical channel into two (or four) sub channels, it provides worms with

additional paths that can be taken while propagating to their destination. With SC, worms

share the same channel and are able to propagate in different directions within each

channel. Therefore, routing flexibility increases dramatically, contention and hot-spots

diminish and failure rate is reduced.

At each cycle there is a random number of worms generated in which only a

fraction of those worms enter the interconnect. The software interface provides the user

with a variable called generation rate (in units of %) which determines what percent of

128

worms, which are generated at each cycle, will enter the interconnect. The rest of the

worms will be discarded.

Figure 5.27: Worm failure rate with SC=2 switched on/off

For example, if at a certain simulation cycle 10 worms were generated and the

parameter g is set to 70% then only 7 of them will enter the interconnect. The value of g

is shown in Figs. 5.26-5.28 as the x-axis. The combination of VCs and SCs reduce failure

rate dramatically, on average, to less than 10% for all interconnects. This is a 75%

reduction since VCs allow worms to be buffered within a node until one of the ports

becomes available. SCs provide worms with additional alternative paths to surpass areas

of traffic congestion.

129

Figure 5.28: Worm failure rate with SC=4 switched on/off

Figure 5.29: Failure rate vs. VC size

130

Fig. 5.29 shows that the size of VCs (in KB) influences failure rate as well. Small

size VCs will become fully occupied quicker than a large size VC. If a worm is buffered

more than few simulation cycles and still cannot find an available output port then it will

result in a transmission failure.

5.2.6 Routing accuracy vs. hot-spot nodes

 In this simulation the paths taken by all worms, using 3D-mesh, 8-ary 2-cube and

4-ary 3-cube interconnects, were recorded. Then, the paths were analyzed to collect the

nodes which were most frequently used and as a result, caused other worms to deviate

from their shortest path to avoid transmission failure.

Figure 5.30: 3D-mesh routing accuracy vs. hot-spot nodes

131

 Results for all interconnects show (Figs. 5.30-5.32) that some hot-spot nodes

caused approaching worms to deviate from their shortest path by 50%-60% more channel

links. For example, Fig. 5.30 depicts that hot-spot in face 11 node 3 (F[11], n[3]) caused

6 approaching worms to deviate from their shortest path by 62.5%. Hot-spots patterns are

not repeated in the same locations. Traffic is randomly generated with random message

lengths and from random nodes. Moreover, since an adaptive routing algorithm changes

the path worms take in each simulation every simulation creates hot-spots in different

location and in different frequency. Fig. 5.31 shows a hot-spot which occurred in face 3

node 6 (F[3], n[6]), that caused approaching worms to deviate from their shortest path by

an average of 85%. In Fig. 5.32 one of the hot-spots, located on face 0 node 43 (F[0],

n[43]) caused approaching worms to deviate from their shortest path by as much as 66%.

Figure 5.31: 4-ary 3-cube routing accuracy vs. hot-spot nodes

132

 Although only few hot-spots occur per simulation, their effect on performance

was significant. As the rate of hot-spot increases (a function of traffic load), worms tend

to deviate from their shortest path more frequently and, as a result, the overall

interconnect latency increases.

Figure 5.32: 8-ary 2-cube routing accuracy vs. hot-spot nodes

5.2.7 K-ary n-cube interconnects performance comparison with common interconnects

 In this simulation we evaluate our 3D-mesh, 8-ary 2-cube, and 4-ary 3-cube

interconnects with other currently used high-performance interconnect technologies such

as Infiniband [70], Hypertransport [72] and PCI-Express [73]. We used reported results

133

provided by each individual vendor to compare with our results. In addition, the

performance properties of these technologies takes into account a constant channel size of

32-bits and a single communication link.

Figure 5.33: Throughput comparison: k-ary n-cube interconnects vs. common

interconnect technologies

 For the 3D-mesh interconnect the settings are: channel width is 32 bits,

interconnect size is 16 cubes, number of worms generated is 10, each worm is 1KB in

size. Virtual channels as well as channel partitions were enabled. The throughput

comparison results are shown in Fig. 5.33. The throughput values of the 3D-mesh, 8-ary

2-cube and 4-ary 3-cube interconnects represent the average throughput of each

interconnect. 3D-mesh shows superior results compared to all of its competitors reaching

134

a peak throughput of 452 Gbps (about twice the throughput of the best interconnect

available not including the other types of k-ary n-cubes tested).

5.3 3D-bus Simulation Results

5.3.1 Latency of 3D-bus vs. shared-bus

 Shared-bus is commonly used as a communication link between network

processor and multiple memories. Our goal is to explore the limitations of shared bus and

its capability to scale for higher line rates. In this simulation we compared shared-bus

with 3D-bus (both with channel width=16b). The shared-bus length is equal to the 3D-

bus length.

Figure 5.34: Latency of 3D-bus vs. shared-bus

135

 Comparing the shared-bus with the 3D-bus (Fig. 5.34) shows that while message

size is small, shared-bus has lower or equal latencies compared to its counterpart. The

results portray that switching latency becomes dominant in the 3D-bus when short

messages are generated, while there is no switching incorporated in the shared-bus. As

messages become longer, only the header of each message introduces switching delay

while the rest of the data (larger size) propagates through the interconnect following the

header. Shared-bus, on the other hand, copes with queuing of message generating

modules and fair bus access grants, each module “holds” the bus longer and therefore,

queuing becomes a bottleneck.

5.3.2 Throughput of 3D-bus vs. shared-bus

 Throughput measures the number of bits transmitted per unit of time. The

interconnect settings of this simulation resembles the one for latency. Message size

increases in multiples of two and the channel width varies from 1b to 32b. The number of

cubes composing the interconnect is 8. The shared bus settings are 16b channel width and

the same length as the 8 cubes measured in series.

 Fig. 5.35 portrays that shared bus throughput outperformed 3D-bus throughput for

small size messages, since switching delays become dominant for short messages. For

long messages, only the header of each message introduces switching delay while the rest

of the packets propagate through the interconnect (following the header) in one

propagation delay per channel.

136

Thus, once the header reaches destination the rest of the message is transmitted

with lower latency and higher throughput. Long messages generated by modules

connected to shared bus cause large arbitration latencies and therefore, performance

degradation. 3D-bus peak throughput reached 405 Gbps. Another observation shows that

throughput increases with higher intervals as the channel width doubles in size.

Figure 5.35: Throughput of 3D-bus vs. shared-bus

5.3.3 3D-bus routing accuracy

 Routing accuracy measures how close the actual path taken by all worms

generated within one simulation to the ideal (shortest) path. If the actual path taken is

equal to the shortest path then routing accuracy equals 100%. In this simulation our goal

is to investigate the effect of VC and SC on routing accuracy.

137

Figure 5.36: 3D-bus average routing accuracy

 Fig. 5.36 portrays that both VC and SC significantly increase the average routing

accuracy. When SC were enabled routing accuracy increased by 16% while VC

contribute a 10% increase.

5.3.4 3D-bus failure rate

Failure rate measures the number of worms that were retransmitted as a result of

their inability to reach destination. This scenario can occur in multiple situations. First, if

a worm at a current node cannot be forwarded to an output port and virtual channels are

not enabled then it causes a failure and it will result in retransmission of the worm.

138

Figure 5.37: 3D-bus worm failure rate

 Second, when a virtual channel is enabled but reaches its max capacity (and all

ports are still busy) then it requires a retransmission of the worm. Simultaneously, the

virtual channel is flushed so that a new worm can occupy it. Failure rate is measured as

the number of retransmitted worms vs. the total number of worms generated (Fig. 5.37).

 Simulation results portray that failure rate diminished when virtual channels as

well as sub-channeling were used. The highest failure rate was reached when there were

no virtual channels and no channel partitioning. Since many worms collide due to heavy

congestion and deadlocks, many worms need to be retransmitted. Virtual channels lessen

the number of retransmissions by allowing worms to be queued until the path is cleared.

The size of the virtual channels determines the number of packets that can be queued. If a

virtual channel becomes full as a result of a worm overflowing it, then the same worm is

139

retransmitted. Sub-channeling, on the other hand, significantly reduced retransmissions

due to the fact that worms have more flexibility in choosing a route.

5.3.5 3D-bus latency with memory and PE interfaces

 3D-bus interconnect can connect more than 4 PEs and 4 memories on each of its

sides by adding two interfaces: memory interface and PE interface. Modules connected to

each interface cannot sent messages simultaneously since there are only four input nodes

on each of the interconnect sides. Therefore, at each simulation only eight modules can

transmit data into the interconnect while the other modules have to wait in a round robin

process scheduling. In addition, if the interfaces are enabled, any module being selected

to transmit data at a certain simulation cycle will incorporate additional switching delay

in order to count for the delay the interface introduces when connected to the 3D-bus

interconnect.

 Fig. 5.38 shows that, as the number of modules (PEs and/or memories) on each

side of the interconnect increases latency increases, almost exponentially, as well. As

more PEs/memories are connected the time that each element is required to wait

increases rapidly and as a result latency reaches almost 1msec (about 10 times higher that

the latency recorded with peak throughput of 308 Gbps). Latency at this level reduces the

throughput dramatically (from PE=16/M=16 and above).

140

Figure 5.38: 3D-bus latency with interfaces attached

 The figure emphasizes the effect of worm size on latency as well. Long worms

means that messages are longer which requires extended transmission time. Hence, other

modules are required to wait significantly longer for their turn to transmit data.

5.3.6 3D-bus performance comparison with common interconnects

 In this simulation we evaluate our 3D-bus with other currently used high-

performance interconnect technologies such as Infiniband [70], Hypertransport [72] and

PCI-express [73].

141

Figure 5.39: 3D-bus throughput comparison with common interconnects

 To be accurate, 3D-bus is set to resemble all same parameters used for each of the

compared interconnects. The following values are used: channel width is 32b,

interconnect size is 8 cubes, Number of worms generated is 10, each worm is 1KB in

size. Virtual channels and channel partitions are not used. The results are shown in Fig.

5.39. From Fig. 5.39 we see that 3D-bus shows superior results compared to all of its

competitors although none of the enhanced features were used (VC, sub-channeling)

which can enhance its performance even further.

142

CHAPTER 6: RESEARCH CONTRIBUTIONS & FUTURE WORK

 In this work, we explored the characteristics of different types of interconnect

architectures to increase the off-chip memory bandwidth on line cards. In addition, we

provided a thorough performance analysis for multiple interconnect architectures using

real incoming traffic characteristics such as randomness of packets generation with

variable IP packet lengths. We developed a state-of-the-art simulation framework which

can simulate multiple k-ary n-cube interconnects with different processor-memory

configurations to adopt non-uniform traffic. We developed two variations of k-ary n-cube

interconnects called 3D-mesh and 3D-bus. The 3D-mesh interconnect provides a multi-

path off-chip linkage between processing elements and memory modules and allows

packets to be shared and transferred by different processor and memory modules on the

network line card simultaneously. 3D-mesh outperforms all of its competitors, whether

they are k-ary n-cube based interconnects or other commercial interconnect technologies.

Moreover, it can physically and functionally fit into the stringent line card area

limitations and thus, provides the optimal interconnect architecture that is feasible to be

manufactured on the line card's PCB.

 The result of this work has the potential of changing interconnect architectures

permanently not only on line cards but also for the bus mechanisms used in PC

architectures and on-chip communications mechanism used within the network

processors. Network processing hardware design is the fastest growing field in the

networking industry. This research provides additional depth into off-chip

communications mechanisms in multi-processing environments (such as network

143

processors), especially, for implementing it on line cards. Our contributions are not only

centered in the research of interconnects architectures and their applications, but also in

developing new alternative designs that can replace current interconnects, such as the

shared bus which is currently experiencing a memory access bottleneck. Moreover, the

optimal interconnect - the 3D-mesh is a scalable, cost-effective, high-throughput low-

latency interconnect, that, based on our results, provides significantly better performance

than all of its counterparts.

 The interconnect architecture is an integrated part of a line card. It needs to

perform under constantly increasing line rates and variable packet sizes. Thus, we

enhanced it with cutting-edge packet flow control mechanisms, such as virtual channels,

sub-channeling and traffic controllers to reduce the effect of hot-spots and heavy traffic

congestion. Moreover, our wormhole message passing mechanism combines multiple

routing techniques to avoid message deadlocks and livelocks. The routing algorithm

transfers messages through the interconnect, adaptively, with the least number of

channels crossed (shortest path possible) and message failure rate. Our simulation results

proved that those techniques are highly effective and will perform well with higher

incoming line rates.

 Our visual, custom-designed, event-driven, network-simulator emulates off-chip,

k-ary n-cube interconnects and is the only simulator, to the best of our knowledge, that

can evaluate k-ary n-cube interconnects with different processor-memory configurations

and with real network physical characteristics (such as propagation delays, switching,

enhancements etc.). The simulator is using state-of-the-art software optimization

techniques such as STLs, singleton classes, pure virtual functions and more, to deliver the

144

most accurate, modular, and user friendly product. The simulator is available in two

versions, a visual version and user interface version. Thus, the user can view the

functionality and the movement of different worms (messages) through the interconnect

and collect information about areas of heavy traffic loads, hot-spots and more.

 Future work will include the implementation (layout and fabrication) of the

interconnect on the line card's PCB. We would also like to expand our network simulator

to include different Internet traffic workloads and to modify the simulator to enable it to

simulate all types of k-ary n-cube interconnects, not only the ones with small dimensions.

145

APPENDIX: NETWORK SIMULATOR MANUAL

146

The network simulator provides the user with an easy to use visual representation of k-ary

n-cube interconnects. The main features of this simulator include:

• Full control over interconnect performance enhancing elements and

deadlock/livelock or hotspots avoidance techniques (MWII, VC, SC).

• Complete control over message generation and message length (GR, min, max,

source and destination data in face-node-port format).

• Visual representation of the interconnect, its settings and message flow during

simulation. The visual model dynamically changes its characteristics, such as size

of channels and color depth, to adapt to changes in interconnect structure, traffic

load and nodal occupancy. In addition, the user can change 3D-view of the

interconnect and zoom in/out.

• Supports multiple configurations per interconnect type. For each configuration the

user can set up the channel width, interconnect latencies, and scalability.

• Total user control during simulation to increase/decrease/pause simulation and to

change pacing and sampling rate.

• Complete runtime data of simulation performance and detailed, per worm,

performance metrics output files.

• Worms import/export to enable multiple simulations with same workload.

Moreover, default values for all parameters can be modified by utilizing two

configuration files.

147

Simulator menus

 In order to run the simulator, the user has to run the executable file:

“3DInterconnectSimulation.exe”. The initial window (Fig. A1a) shows a 3D-mesh

(default type) interconnect. For each interconnect, a sphere represents a memory module

and a 3D-cube represents a PE. All memories and PEs are connected via channels (thin

lines). The user can change the interconnect orientation by pointing the mouse on the

object and then click-and-hold the mouse while pulling it to any direction. As a results,

the interconnect will change its 3D-view (angle). In order to move the interconnect

up/down or right/left use the keyboard arrows to do so. In addition, the interconnect view

can be zoom in/out. This can be achieved by using the “Page Up”, “Page Down”

keyboard buttons.

 At the top of the window is the simulator menu (Fig. A1a). The user can choose

among the following tabs: File, View (Fig. A1b), Properties, Simulation and Help. The

file menu allows the user to load worms from a saved file or quit simulation.

Figure A1: a) Main simulator window b) The view menu

148

 The view menu has three options: “Toggle full screen” will adjust the simulator

window to full monitor size view, “Original perspective” sets the interconnect to its

original orientation and “View runtime data” will turn on a smaller window which

includes simulation run time data.

Figure A2: a) Selecting the properties menu b) Selecting the simulation menu

 The “Properties” menu, shown in (Fig. A2a), sets the interconnect type (type and

configuration) as well as interconnect properties, which include different system delays,

worms data, and to enable/disable enhancement features. The “Simulation” menu, shown

in (Fig. A2b), includes run simulation button, pacing (simulation speed) and sampling

(performance sampling). The last menu is the “Help” menu to assist the user with

different buttons and their functionalities (Fig. A3).

The user can determine if he/she wishes to generate random worms (worms

characteristics are determined randomly by the system) or user worms which require the

user to input the number of worms to simulate and, in addition, for each worm to

determine its source/destination locations and message size. Worm generation is set via

the simulation menu. Figs. A4a and A4b show the worm generation menus.

149

Figure A3: a) Selecting the help menu b) Help menu content

 First the user must select if the worms are randomly generated or manually

configured by the user. If worms are manually set (user worms) then the user will have to

input the worms data. Whether worms are randomly generated or user worms, there is an

option to save them into a file for future use. If the user wishes to load saved worms in

order to run simulation with different settings, he/she must do so via the File menu.

Figure A4: a) Worms manual settings b) Source/destination settings

150

Choosing interconnect type

Figure A5: a) Network type selection b) Network type and configuration

 The user can choose among three different types of interconnects: 3D-mesh, 4-ary

3-cube and 8-ary 2-cube. In order to select the interconnect type follow the next steps: in

the “Properties” menu select “Set Network Type” (Fig. A5a). The “Network Types” will

open and allow the user to change the interconnect type and configuration (Fig. A5b).

The following figures (A6a-A6c) show a single configuration of each interconnect type.

Interconnect configuration will be updated only after the OK button is clicked.

Figure A6: a) 3D-mesh b) 4-ary 3-cube c) 8-ary 2-cube

151

Setting network properties

 The interconnect properties menu contains a vast number of system parameters,

latencies and performance enhancement settings. Changing interconnect properties is

done by selecting the “Properties” tab, then “Network properties” (Fig. A7a). The

interconnect properties window is shown in Fig. A7b. Explanation of the interconnect

properties inputs:

• Number of faces (applicable only to 3D-mesh): determines the number of faces

comprising the interconnect. This input parameter is useful to evaluate

performance vs. interconnect scalability.

• Channel width: sets the channels size (in bits).

• Max number of Worms: this parameter limits the number of worms being

modeled during simulation. This feature can provide indication on interconnect

saturation point.

• Generation rate: determines the percentage of worms entering the interconnect, at

a certain simulation cycle, out of the total number of worms generated.

• Virtual channels (on/off and size): sets virtual channels to on/off and their size in

KB. The default size is 1KB.

• Number of sub-channels: sets the number of sub-channels. Default value is 1

which means that channels are not partitioned.

• Delays: setting system delays which include propagation, switching and routing

delays.

152

• Message size limits: the high and low limits of message size. This feature is

useful if the user wishes to use random worm generation but wants to keep worm

size within a certain range.

Figure A7: a) Network properties selection b) Network properties menu

Running simulation

 Before running simulation there are two more features to get familiar with: pacing

and sampling. The pacing window allows the user to change simulation speed (+ increase

/ - decrease). The overdrive button will run simulation in the fastest speed and will

increase the simulation cycle intervals. The pause button will pause simulation. A second

press on the pause button will resume simulation.

 Throughput can be measured in two methods. One is without sampling and

therefore, results in an average throughput calculated from all simulation cycles and

presented to the user at the end of the simulation. Second, throughput can be sampled

within certain intervals during simulation and then the average of those samples is

153

calculated. The sampling window provides this functionality. If enabled, the user must

specify the number of samples and the intervals between samples. The default settings are

1,000,000 samples with interval of 1 cycle. Thus, if the user enables sampling but does

not change the default values it will result in the average throughput.

 When all interconnect settings and parameters are updated simulation can start.

To perform simulation select the “Simulation” tab of the main menu. Then, to allow

sampling click on the sampling tab (Figs. A8a-A8b), otherwise choose the “Run

Simulation” function.

Figure A8: a) Selecting the sampling menu b) Sampling menu content

While simulation is running the user can change its pace by selecting the pacing tab in the

simulation menu (Fig. A9a).

The pacing window pops-up as shown in Fig. A9b and the user can slide the bar

to increase or decrease simulation speed. Fig. A10a portrays the pacing window with the

overdrive option enabled. Fig. A10b depicts simulation pause.

154

Figure A9: a) Simulation pacing menu b) Simulation pacing setup

Figure A10: a) Simulation pacing overdrive b) Simulation pause on/off

Managing input/output files

 In each simulation the user has the option to save/restore worms that are

generated (user worms or random generated worms). If the user wishes to save the worms

to allow future reuse of these worms, he/she can save it by checking the “Save Worms To

File” box in the simulation page. In this case the user will be asked to input the file name

155

and the file will be saved into the simulator directory (Fig. A11b). The option to restore

saves worms is provided in the “File” menu under “Load worms” (Fig. A11a).

The simulator generates multiple output files to provide a deeper insight into

performance data and to facilitate simulation verification. The simulator generates four

Excel-based files, stored in “Data Output” folder, at the end of each simulation.

Figure A11: a) Import worms from file b) Export worms to a file

 These files contain simulation records of: worm data, routing, hot-spots, routing

accuracy, failure rate, distribution of worms waiting to be modeled, currently modeled

worms and worms done, as well as general interconnect statistics, which includes

bandwidth and resource utilization, interconnect user settings and comprehensive

performance analysis. The files names are: modeling_data.xls, properties.xls,

runtime_data.xls and worm_data.xls.

 The “modeling_data.xls” file (Fig. A12a) provides the final simulation results. It

includes statistical data such as the number of worms modeled, total number of bytes

processed and the number of simulation cycles and performance metrics, for example,

throughput, latency, utilization, routing accuracy and failure rate.

156

 The file “properties.xls” (Fig. A12b) presents the interconnect physical properties

and simulation settings. Interconnect physical settings include the interconnect type,

channel width, virtual channels, sub-channels, scalability, latencies, and configuration.

Simulation settings contain worm generation rate, maximum number of worms in the

interconnect, and the range of worm's length.

Figure A12: a) Worm modeling data b) Simulation properties

 The file “Runtime_data.xls” (Figs. A13-A15) gives per-cycle performance

parameters. This file shows how performance metrics are changing values from one

simulation cycle to another. For example, it can indicate the distribution of worms

(controlled by the worm manager) within the interconnect. The user can view at which

simulation cycle the interconnect was saturated and the min/max values of each

performance parameter. In Figs. A14 and A15 the following fields: sample throughput,

latency, failure rate and route accuracy are set to 0 since the worm manager does not

collects those performance metrics while the interconnect is being populated with worms.

This is typically happening in the first 20-30 cycles of simulation. Sampled throughput is

157

showing, N/A values, since it has not sampled the interconnect throughput yet. It is

depended upon the sampling rate, set by the user, before simulation has started.

Figure A13: Worm run-time data

Figure A14: Worm run time data – cont.

Figure A15: Worm run time data – cont.

158

The file “Worm_data.xls” presents detailed information about each modeled

worm (Figs. A16-A18). Each worm has an ID (worm number), length (in bits), source

(initial position) and destination (final position). Based on its source and destination

addresses the simulator calculates the shortest path(s) that the worm can take (column:

Best Case Number of Links).

The column: Number of Links on Successful Run, is the actual number of links

(channels) the worm took in order to reach destination. This number is affected by

network traffic load. Routing accuracy is calculated by taking the ratio between these two

columns. Throughput and latency are given in two forms: best case and actual recorded

values. The best case values are based on the assumption that the worm is taking the

shortest path. The actual values of throughput and latency are based on the sampled

values recorded at different simulation intervals.

Figure A16: Modeled worms data

159

Figure A17: Modeled worms data - cont.

Figure A18: Modeled worms data - cont.

The simulator imports two configuration files (“3DInterconnect.cfg” and

“3DInterconnectSimulation.cfg”) which contain the default values of system parameters

required to perform simulation (their default values). Before starting a new simulation,

the user can change those parameters by changing the corresponding values in the

configuration file. After the configuration change is saved, the simulator will update its

default values with the new ones. The interconnect configuration file (Figs. A19-A20)

contains the interconnect default values of physical properties, such as channel width,

number of sub-channels, delays, generation rate, etc. The simulator configuration file

160

(Fig. A21) contains the values of simulation parameters. For example, pacing rate (in

cycles) and initial number of simulation cycles.

Figure A19: Interconnects configuration file

161

Figure A20: Interconnects configuration file - cont.

Figure A21: Simulator configuration file - cont.

162

LIST OF REFERENCES

1. W. J. Dally, A. Singh, B. Towels, and A. K. Gupta, “Globally Adaptive Load-

Balanced Routing on Tori”, Computer Architecture Letters, vol.3, Mar. 2004.

2. J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in Wormhole

Networks”, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 12,

pp. 1320-1331, December 1993.

3. A. Agarwal, “Limits on Interconnection Network Performance”, IEEE Transactions

on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398-412, 1991.

4. J. H. Kim, “Planar Adaptive Routing (PAR): Low-cost Adaptive Networks for

Multiprocessors”, MS Thesis, University of Meryland College Park, 1990.

5. P. Berman, L. Gravano, G. Pifarre, and J. Sanz, “Adaptive Deadlock and Livelock

Free Routing with All Minimal Paths in Torus Networks”, IEEE Transactions on

Parallel and Distributed Systems, vol. 5, issue 12, pp. 1233-1251, Dec. 1994.

6. W. J. Dally, “Fine-grain Message-Passing Concurrent Computers”, Proceedings of

the Third Conference on Hypercube Computers, pp. 2-12. ACM press, January 1988.

7. J. Y. Ngai and C. L. Seitz. “A Framework for Adaptive Routing in Multicomputer

Networks”, Proceedings of the 1st Annual ACM Symp. on Parallel Algorithms and

Architectures, pp. 1-9. ACM Press, June 1989.

8. L. M. Ni and C. J. Glass, “The Turn Model for Adaptive Routing”, Proceedings of

the 19th annual international symposium on Computer architecture, pp. 278-287,

1992.

163

9. W. J. Dally, “Express Cubes: Improving the Performance of k-ary n-cube

Interconnection Networks”, IEEE Transactions on Computers, vol. 40, issue 9, pp.

1016-1023, 1991.

10. Grübl Andreas, “Distributed HAGEN The Hardware side”, Kirchhoff Institute of

Physics.(web:www.kip.uni-heidelberg.de/vision/public/techreport_gruebl.pdf)

11. Jantsch Axel, “Communication Performance in Network on Chips”, Royal Institute of

Technology, Stockholm, November 2003. (web: http://www.imit.kth.se/ courses /2B1

447/ NetworkOnChips.pdf)

12. W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks”, IEEE

Transactions on Computers, vol. 39, no. 6, pp. 775-785, 1990.

13. K. Hwang, Advanced Computer Architecture, McGraw-Hill, 1993.

14. J. Zalewski, Advanced Multimicroprocessor Bus Architectures, IEEE Computer

Society Press, 1995.

15. W. J. Dally and H. Aoki, “Deadlock-free Adaptive Routing in Multicomputers

Networks using Virtual Channels”, IEEE Transactions on Parallel and Distributed

Systems, vol. 4, Issue 4, April 1993, pp. 466-475.

16. A. Folkestad and C. Roche, “Deadlock probability in unrestricted wormhole routing

networks”, Proceedings of the International Conference on Communications (ICC),

pp. 1401-1405, 1997.

17. W. J. Dally, “Virtual Channel Flow Control”, IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 2, pp. 194-205, 1992.

18. Dally, W. J. and Towles, B., “Route packets, not wires: on-chip interconnection

networks”, Proceedings of the Design Automation Conference, pp. 684 - 689, 2001.

164

19. S. Scott and G. Thorson, “The Cray T3E Network: Adaptive Routing in a High

Performance 3D Torus”, Proc. of Hot Interconnects IV, Stanford University, August

1996.

20. Cisco corp., “Caltech and Partners Build a High-speed Network for Global High-

energy Physics Collaboration”, customer success story, 2005.

21. C. L. Seitz, “The cosmic cube”, ACM Trans. on Communications, pp. 23-33, vol. 1,

1985.

22. G. Ming Chiu, “The Odd-Even Turn Model for Adaptive Routing”, IEEE

Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, 2000.

23. O. Lysne, “Deadlock Avoidance for Switches based on Wormhole Networks”,

Proceedings of the Annual International Conference of Parallel Processing, pp. 68 -

74, 1999.

24. C. Mick, R. Johnson, and P. Kumar, “Common switch interface for fabric

independence and scalable switching”, IEEE 802 Plenary Tutorials, 1998.

25. O. Lysne, “Deadlock avoidance for switches based on wormhole networks”,

Proceedings of the International Conference on Parallel Processing, September

1999.

26. B. Davis and B. Jacob, “DDR2 and low latency variants”, Proc. of the Memory Wall

Workshop, at the International Symposium on Computer Architecture, 2000.

27. W. J. Dally and C. Seitz, “The Torus Routing Chip”, Journal of Distributed

Computing, vol. 1, no. 3, pp. 187-196, 1986.

28. W. J. Dally, Message-Passing Concurrent Computers, Chapter 7. Addison-Wesley.

165

29. Cypress Semi. Corp., “Quad data rate (QDR) SRAM clocking scheme”, White paper,

2000.

30. P. Kermani and L. Kleinrock, “Virtual Cut-through: A New Computer

Communications Switching Technique”, Computer Networks, vol. 3, no. 4, pp. 267-

286, 1979.

31. S. Konstantinidou and L. Snyder, “Chaos Router: Architecture and Performance”,

Proceedings of the International Symposium on Computer Architecture, pp. 212-221,

1991.

32. D. Linder and J. Harden, “An Adaptive and Fault Tolerant Wormhole Routing

Strategy for k-ary n-cubes”, IEEE Transactions on Computers, vol. 40, no. 1, pp. 2-

12, January 1991.

33. Rambus Inc., “Rambus technologies for the network communications market”, White

paper, Jan 2001.

34. Cypress Semi. Corp., “Interfacing the QDR to the Delta39K”, White paper, July 10,

2001.

35. Y. Zhang, “Microstrip-multilayer delay line on printed-circuit board”, Technical

Report, University of Nebraska, Lincoln, April, 2003.

36. P. Sassone, “Commercial trends in off-chip communication”, Technical Report,

Georgia Institute of Technology, May 2003.

37. D. Halliday, “The evolution of mezzanine modules for next-generation telecom

architectures”, CompactPCI-Systems, June 2003.

166

38. P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access

speeds”, Proceedings of IEEE INFOCOM, pp. 1240-1247, San Francisco, CA, April

1998.

39. N. Shah, “Understanding Network Processors”, M.S. thesis, UC. Berkeley, 2001.

40. T. Kocak and J. Engel, “A survey on network processors”, Technical Report, School

of EECS, Univ. of Central Florida, Sept., 2002. (web: http://www.cs.ucf.edu

/~{}tkocak/TR/NPsurvey.ps)

41. G. M. Chiu, “The odd-even turn model for adaptive routing”, IEEE Transactions on

Parallel and Distributed Systems, vol. 11, no. 7, pp.729-738, July 2000.

42. S. Konstantinidou and L. Snyder, The Chaos Router, IEEE Transactions on

Computers, vol. 43, No. 12, December 1994.

43. A. Bar-Noy, P. Raghavan, B. Schieber and H. Tamaki, “Fast deflection routing for

packets and worms”, Proceedings of the twelfth annual ACM symposium on

Principles of distributed computing, pp. 75-86, 1993.

44. A. R¢adulescu and K. Goossens, “Communication Services for Networks on Chip”,

Philips Research Laboratories, 2002.

45. “Interconnects: Classification of Parallel Architectures”, Lecture slides, Computer

Architecture-Univ. of Erlangen-Nürnberg, Germany. (web: www3.informatik.uni-

erlangen.de/Lehre/RA/SS2001/Skript/05a-interconn1.pdf)

46. A. Lebeck, “Interconnection Networks”, Lecture slides, CPS220 - Advanced

Computer Architecture - Duke University. (web: http://www.cs.duke.edu/courses/

fall01/cps220/lectures/icn1-6up.pdf)

167

47. W. L. Bain and S. R. Ahula, “Performance Analysis of High-speed Digital Buses for

Multiprocessing Systems”, Proceedings of the 8th annual symposium on Computer

Architecture, pp. 107-133, 1981.

48. M. O. Khaoua, “A Performance Model for Duato's Fully Adaptive Routing Algorithm

in k-Ary n-Cubes”, IEEE Transactions on Computers, vol. 48, no. 12, pp. 1297-1304,

1999.

49. W. J. Dally, “Virtual-Channel Flow Control”, IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 2, pp. 194-199, 1992.

50. J. Kim and C. R. Das, “Hypercube Communication Delay with Wormhole Routing”,

IEEE Transactions on Computers, vol. 43, no. 7, pp. 806-813, 1994.

51. A. Agarwal, “Limits on Interconnection Network Performance”, IEEE Transactions

on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398-412, 1991.

52. W. A. Najjar, A. Lagman, S. Sur and P. K. Srimani, “Analytical Models of Adaptive

Routing Strategies”, Department of Computer Science, Colorado State University,

August 10, 1994.

53. K. Hwang, Advanced Computer Architecture, McGraw-Hill, 1993.

54. W. L. Bain and S. R. Ahuja, “Performance Analysis of High-Speed Digital Buses for

Multiprocessing Systems”, Proceedings of the 8th annual symposium on Computer

Architecture, pp. 107-133, 1981.

55. Y. Zhang, “Microstrip-multilayer delay line on printed-circuit board”, Technical

Report, University of Nebraska, Lincoln, April, 2003.

56. S. R. Schach, Classical and Object-Oriented Software Engineering, 3rd edition, Irwin

group, 1996.

168

57. S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard

Template Library, Addison-Wesley, Boston, Mass., 2001.

58. D. G. Fritz, R. G. Sargent, “An overview of hierarchical control flow graph models”,

Proceedings of the IEEE Simulation conference, pp. 1347 - 1355, 1995.

59. “Introduction to the Standard Template Library”, SGI, white paper, 2003 (web: http://

www.sgi.com/tech/stl/stl_introduction.html)

60. M. Townsend, “The Singleton Desing Pattern”, Microsoft corp., MSDN library, Feb.

2002. (web:http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/ht

ml/singletondespatt.asp)

61. “Pure Virtual Functions and Abstract Classes”, Microsoft corp., MSDN library, 2005.

(web:http://msdn.microsoft.com/library/default.asp?url=/library/en-s/vccore98/html/_

langref_pure_virtual_functions_and_abstract_classes.asp)

62. H. S. Azad and M. O. Khaoua, “A Simple Mathematical Model of Adaptive Routing

in Wormhole k-ary n-cubes”, Proceedings of the 2002 ACM symposium on Applied

computing, pp. 835-839, 2002.

63. Y. M. Boura and C. R. Das, “Modeling Virtual Channel Flow in Hypercubes”,

Proceedings of the First IEEE Symposium on High Performance Computer

Architecture, pp. 166-175, 1995.

64. D. Mayhew and V. Krishnan, “PCI express and advanced switching: Evolutionary

path to building next generation interconnects”, Proceedings of the 11th Symposium

on Hot Interconnects, Stanford, CA, 2003.

65. Micron, 288MB CIO Reduced Latency (RDLRAM-II), white paper, (web:

http://www.RLDRAM.com)

169

66. Test Procesdures, March. 5, 2001. (web: http://www.lightreading.com)

67. T. Dinkelman, “Going to the max on bus efficiency”, EE Times UK, Dec. 16, 2003.

(web: http://www.eetuk.com/story/OEG20031216S0015)

68. “Experimental Design Runs at Five Times the Speed of Current Fastest Chips; Could

Cut Power Consumption in Half”, IBM Research News, Feb. 7, 2000. (web: www.

research.ibm.com/resources/news/20000207_fact_circuits.shtml)

69. PCI Special Interest Group, “PCI local bus specification, revision 2.2”, Dec. 1998.

70. Infiniband Trade Association, “Infiniband architecture specification, rev. 1.0”, Oct.

2000 (web: http://www.infinibandta.org)

71. K. Marquardt, “Hitting the 10-Gbit mark with SPI-4.2”, CommsDesign, Sept. 10,

2002. (web:www.commsdesign.com/design_corner/OEG20020910S0010).

72. HyperTransport Consortium, “HyperTransport technology: Simplifying system

design”, Oct. 2002 (web: http://www.hypertransport.org).

73. PCI Special Interest Group, “PCI express base specification rev. 1.0a”, Apr. 2003.

HyperTransport Consortium, “HyperTransport Technology Specifications”, 2005.

(web: http://www.hypertransport.org/tech/index.cfm)

74. RapidIO Trade Association, “RapidIO rev. 3”, (web: http://www.rapidio.org)

75. AD8152 X-stream digital crosspoint switch data sheet, Analog Devices, Inc. (web:

www.analog.com/Analog_Root/productPage/productHome/0,,AD8152,00.html)

76. Clearspeed Technology Inc., (web: http://www.clearspeed.com)

77. IBM PowerNP Network Processors, (web:http://www-3.ibm.com/chips/products/

wired/products/network_processors.html)

170

78. Vitesse Semiconductor Corp., (web: http://www.vitesse.com)

79. Cisco Systems, Product Briefs and Press Releases, (web: http://www.cisco.com)

80. Mindspeed Technologies, (web: http://www.mindspeed.com)

81. Xelerated Packet Devices, (web: http://www.xelerated.com)

82. Agere Systems, (web: http://www.agere.com/enterprise_metro_access/network_proc

essors.html)

83. Motorola C-5 Network Processors, (web: http://e-www.motorola.com/webapp/sps/

site/prod_summary.jsp?code=C-5)

84. GlobespanVirata, Inc., (web: http://www.virata.com/comprocessors.html)

85. Broadcom Corp., (web: http://www.broadcom.com)

86. EZchip Technologies, (web: http://www.ezchip.com)

87. Juniper Networks, Inc., (web: http://www.juniper.net)

88. Paion Corp. (web: http://www.paion.com)

89. EZCHIP, “7-Layer packet processing : A Performance Analysis”, White paper, (web:

http://www.ezchip.com/images/pdfs/ezchip_7layers.pdf)

90. Applied Micro Circuits Corp., (web: http://www.amcc.com)

91. J. W. Jung, R. Mudumbai, D. Montgomery, and H. K. Kahng, “Performance

evaluation of two layered mobility management using mobile IP and session initiation

protocol”, Proceedings of the Global Telecommunications Conference, Vol. 3, pp.

1190 - 1194, 2003.

92. R. Kornblit and E. Schwartzmann, “Multicast Protocols Evaluation in Wireless

Domains”, Project report, Technion, Israel.

171

http://www.amcc.com/

93. J. Hsu, S. Bhatia, M. Takai, R. Bagrodia, M. J. Acriche, “Performance of Mobile Ad

Hoc Networking Routing Protocols in Realistic Scenarios”, Proceedings of the

Military Communications Conference, Vol. 2, pp. 1268 - 1273, 2003.

94. H. Wu, R. M. Fujimoto and G. Riley, “Experiences Parallelizing A Commercial

Network Simulator”, Proceedings of the 2001 Winter Simulation Conference, pp.

1353-1360, 2001.

95. X. Chang, “Network Simulations with OPNET”, Proceedings of the 1999 Winter

Simulation Conference, pp. 307-314, 1999.

96. C. H. Yeh, B. Parhami, and E. A. Varvarigos, “Multilayer VLSI Layout for

Interconnection Networks”, Proceedings of the 2000 Int'l Conf. on Parallel

Processing, pp. 33-40, 2000.

97. A. DeHon, “Robust, high-speed network design for large scale multiprocessing”,

Technical Report, No. 1445, MIT, Sep. 1993.

172

	Off-chip Communications Architectures For High Throughput Network Processors
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Design constraints issues (off-chip vs. on-chip)
	1.3 Interconnect systems
	1.3.1 State-of-the-art in interconnect networks

	1.4 Related work
	1.4.1 K-ary n-cube network
	1.4.2 Switching
	1.4.3 Routing mechanism
	1.4.4 Deadlock and livelock
	1.4.5 Adaptive routing algorithms
	1.4.6 Cray 3TE and Caltech cosmic cube
	1.4.7 NS-2, Qualnet and OPNET network simulation frameworks

	CHAPTER 2: NETWORK PROCESSOR BACKGROUND
	2.1 Architectural design approaches
	2.1.1 Hardware-oriented techniques
	2.1.2 Software-oriented techniques
	2.1.3 NPU comparison tables

	CHAPTER 3: K-ARY N-CUBE BASED ARCHITECTURES
	3.1 K-ary n-cube interconnect structures
	3.1.1 Routing mechanism
	3.1.2 Switching mechanism
	3.1.3 The traffic controller

	3.2 3D-mesh interconnect architecture
	3.3 The 3D-bus architecture
	3.3.1 Bus interfaces

	CHAPTER 4: ANALYTICAL PERFORMANCE ANALYSIS
	4.1 Performance metrics
	4.1.1 Distribution of IP-packet length in core routers

	4.2 K-ary n-cube latency equation under uniform traffic load
	4.3 Latency of packet switched multi-processor shared-bus
	4.3.1 M/D/1 queue characteristic equations

	4.4 Performance results k-ary n-cube interconnect vs. shared-bus
	4.5 Average distance of 8-ary 2-cube network and 4-ary 3-cube interconnects with multiple configurations
	4.6 Analytical model of k-ary n-cube interconnect with hot-spot traffic
	4.7 Performance results of k-ary n-cube interconnect with hot-spot traffic
	4.8 3D-mesh performance analysis
	4.8.1 Cube notation
	4.8.2 3D-mesh average distance analysis under non-uniform traffic
	4.8.3 3D-mesh latency equation
	4.8.4 3D-mesh interconnect vs. shared-bus
	4.8.5 3D-mesh interconnect vs. folded-Torus network

	4.9 3D-bus performance analysis
	4.9.1 3D-bus vs. shared-bus

	4.10 Memory bandwidth
	4.11 Area analysis

	CHAPTER 5: EXPERIMENTAL RESULTS
	5.1 K-ary n-cube simulation framework
	5.1.1 K-ary n-cube interconnect simulator architecture
	5.1.2 Simulator modeling approach
	5.1.3 Software components
	5.1.4 Optimization strategies
	5.1.4.1 The singleton class
	5.1.4.2 Pure virtual functions
	5.1.4.3 System design with Standard Template Library (STL) functions

	5.1.5 Simulator parameters

	5.2 3D-mesh, 4-ary 3-cube & 8-ary 2-cube simulation results
	5.2.1 Latency and throughput analysis
	5.2.2 Worm allocation and distribution
	5.2.3 Routing accuracy
	5.2.4 Interconnect and bandwidth utilization
	5.2.5 Failure rate
	5.2.6 Routing accuracy vs. hot-spot nodes
	5.2.7 K-ary n-cube interconnects performance comparison with common interconnects

	5.3 3D-bus Simulation Results
	5.3.1 Latency of 3D-bus vs. shared-bus
	5.3.2 Throughput of 3D-bus vs. shared-bus
	5.3.3 3D-bus routing accuracy
	5.3.4 3D-bus failure rate
	5.3.5 3D-bus latency with memory and PE interfaces
	5.3.6 3D-bus performance comparison with common interconnects

	CHAPTER 6: RESEARCH CONTRIBUTIONS & FUTURE WORK
	APPENDIX: NETWORK SIMULATOR MANUAL
	Simulator menus
	Choosing interconnect type
	Setting network properties
	Running simulation
	Managing input/output files

	LIST OF REFERENCES

