
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2004

Image Quality Analysis Using GLCM Image Quality Analysis Using GLCM

Dhanashree Gadkari
University of Central Florida

 Part of the Other Psychology Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gadkari, Dhanashree, "Image Quality Analysis Using GLCM" (2004). Electronic Theses and Dissertations,
2004-2019. 187.
https://stars.library.ucf.edu/etd/187

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/415?utm_source=stars.library.ucf.edu%2Fetd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/187?utm_source=stars.library.ucf.edu%2Fetd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

IMAGE QUALITY ANALYSIS USING GLCM

by

DHANASHREE GADKARI
B.S.E.E. University of Pune, 2000

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Modeling and Simulation

in the College of Arts and Sciences
at the University of Central Florida

Orlando, Florida

Fall Term
2004

ABSTRACT

Gray level co-occurrence matrix has proven to be a powerful basis for use in texture

classification. Various textural parameters calculated from the gray level co-occurrence matrix

help understand the details about the overall image content.

The aim of this research is to investigate the use of the gray level co-occurrence matrix

technique as an absolute image quality metric. The underlying hypothesis is that image quality

can be determined by a comparative process in which a sequence of images is compared to each

other to determine the point of diminishing returns. An attempt is made to study whether the

curve of image textural features versus image memory sizes can be used to decide the optimal

image size. The approach used digitized images that were stored at several levels of

compression. GLCM proves to be a good discriminator in studying different images however no

such claim can be made for image quality. Hence the search for the best image quality metric

continues.

 ii

To Vishal, Dr. Clarke, Brian Goldiez

 iii

ACKNOWLEDGMENTS

I would like to acknowledge and thank my advisor, Dr. Thomas L. Clarke, for his

continuous guidance and patience throughout my thesis studies. His support and understanding is

greatly appreciated. I would like to thank Brian Goldiez for his technical contributions to this

work, and for the additional help that he willingly provided. I would also like to express my

gratitude towards Dr. Kincaid who has been a great person to work with.

Finally, I would like to thank my husband for his tremendous love, support and

encouragement while bringing this thesis to a final conclusion.

 iv

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

CHAPTER 1 - INTRODUCTION..1

1.1 Objective quality measurement ... 1
1.2 Subjective quality measurement.. 2
1.3 Perceptual quality measurement ... 3

CHAPTER 2 - GLCM BACKGROUND...8

2.1 Choice of radius δ.. 10
2.2 Choice of angle θ ... 10
2.3 Choice of quantized gray levels (G)... 11

CHAPTER 3 - VARIOUS APPLICATIONS OF GLCM..17

3.1 Texture Analysis of SAR Sea Ice Imagery.. 17
3.2 Synthesis of Textures .. 18
3.3 Texture Defect Detection.. 19
3.4 Circular GLCM .. 20
3.5 Object Recognition and Matching... 21
3.6 Image Segmentation and Edge Detection ... 22
3.7 Color texture classification by integrative co-occurrence matrices 23

CHAPTER 4 EXPERIMENTATION..24

CHAPTER 5 OPTIMIZATION TECHNIQUES ...80

5.1 Gray level quantization .. 80
5.2 Windowing Technique.. 81
5.3 Gray level Co-occurrence link list (GLCLL) ... 81
5.4 Gray level co-occurrence hybrid structure (GLCHS)....................................... 82

CONCLUSION AND FUTURE WORK ...84

APPENDIX: C/OPENGL CODE ..85

REFERENCES...110

 v

LIST OF FIGURES

Figure1a-b. Test image, general form of GLCM ... 9
Figure 2a-b. GLCM for δ=1 and θ=0°, 45°, 90°, 135°.. 9
Figure 3. Texture defect detection example.. 19
Figure 4. Circular GLCM example... 20
Figure 5a-e. Carpet image Quality level 1-5... 26
Figure 6a-e. Plant image Quality level 1-5.. 27
Figure 7a-e. Water image Quality level 1-5 .. 28
Figure 8a-e. Student Union image Quality level 1-5 .. 29
Figure 9a-e. Grass image Quality level 1-5... 30
Figure 10a-e. Flowers image Quality level 1-5 ... 31
Figure 11a-b. Dataset 1 Energy ... 32
Figure 12a-b. Datset 1 Contrast... 33
Figure 13a-b. Datset 1 Entropy.. 34
Figure 14a-b. Dataset 1 Homogeneity ... 35
Figure 15a-d. Dataset 2 images .. 37
Figure 16. Dataset 2 Contrast .. 37
Figure 17. Dataset 2 Entropy ... 38
Figure 18. Dataset 2 Homogeneity... 39
Figure 19. Dataset 2 Energy... 39
Figure 20a-c. FACE image quality level 1, 3, 5 .. 40
Figure 21a-h. FACE image Energy .. 43
Figure 22a-h. FACE image Contrast .. 47
Figure 23a-h. FACE image Entropy .. 52
Figure 24a-h. FACE image Homogeneity... 56
Figure 25a-e. CERTIFICATE image quality level 1-5 .. 60
Figure 26a-h. CERTIFICATE image Energy .. 63
Figure 27a-h. CERTIFICATE image Contrast.. 67
Figure 28a-h. CERTIFICATE image Entropy ... 71
Figure 29a-h. CERTIFICATE image Homogeneity .. 75

 vi

LIST OF TABLES

Table 1. Dataset 1...25

Table 2. Dataset 3 FACE image..42

Table 3. Dataset 3 CERTIFICATE image..63

 vii

CHAPTER 1 - INTRODUCTION

Images play a crucial role in today’s age of succinct information. The field of

image processing has exhibited enormous progress over past few decades. Generally, the

images dealt in virtual environments or entertainment applications possess high fidelity

resulting in large storage requirements. Images may undergo distortions during

preliminary acquisition process, compression, restoration, communication or final

display. Hence image quality measurement plays a significant role in several image-

processing applications. Image quality, for scientific and medical purposes, can be

defined in terms of how well desired information can be extracted from the image. An

image is said to have acceptable quality if it shows satisfactory usefulness, which means

discriminability of image content, and satisfactory naturalness, which means

identifiability of image content. Digital storage of images has created an important place

in imaging. Image quality metrics are important performance variables for digital

imaging systems and are used to measure the visual quality of compressed images. The

three major types of quality measurements are [Joon01]:

1.1 Objective quality measurement

 The objective image quality measurement seeks to measure the quality of images

algorithmically. A good objective measure reflects the distortion on image due to

blurring, noise, compression and sensor inadequacy. Objective analysis involves use of

image quality/distortion metrics to automatically perceive image quality; the most widely

being used are “Peak Signal-to-noise Ratio PSNR” and “Mean Squared Error MSE”.

 1

These methods provide mathematical deviations between original and processed images.

The analysis depends on the number of images used in the measurement and the nature or

type of measurement using the pixel elements of digitized images. Metrics have been

defined either in spatial or frequency domain. These measurement techniques are easy to

calculate, however they do not consider human visual sensitivities. They do not

adequately predict distortion visibility and visual quality for images with large luminance

variations or with varying content. It is believed that a combination of numerical and

graphical measures may prove useful in judging image quality.

1.2 Subjective quality measurement

 For several years, the image quality assessment (QA) has been performed

subjectively using human observers based on their satisfaction. It depends on the type,

size, range of images, observer’s background and motivation and experimental conditions

like lighting, display quality etc. The human visual system (HVS) is enormously complex

with optical, synaptic, photochemical and electrical phenomena. The International

Telecommunication Union (ITU) has recommended a 5-point scale using the adjectives

bad, poor, fair, good and excellent. A numerical category scaling also can be used as an

alternative, which is linear and hence more convenient to use. Subjective quality

measurement techniques provide numerical values that quantify viewer’s satisfaction,

however are time-consuming and observer responses may vary. They provide no

constructive methods for performance improvement and are difficult to use as a part of

design process.

 2

1.3 Perceptual quality measurement

 The perceptual quality measurement techniques are based on models of human

visual perception like image discrimination models and task performance based models.

Ideally, they should be able to characterize spatial variations in quality across an image.

 Image quality measures (IQM) are figures of merit used for the evaluation of

imaging systems or coding/processing techniques. Image quality measurement is still an

unsolved problem today. There are at least two factors, which contribute to difficulty in

finding a complete algorithm for image quality measurement. First factor being that there

are many different kinds of noises and each can affect the quality of image differently.

Secondly it is not simple to mathematically prove the quality of an image without human

judgment. Image QA algorithms can as well be classified as “Full-reference” or bivariant,

in which the algorithm has access to the perfect image, “No-reference” or univariant, in

which the algorithm has access only to the distorted image and “Reduced-reference”, in

which the algorithm has partial information regarding the perfect image. All algorithms

try to map the reconstructed image to some quantity that is positive and zero only when

original and modified images are identical and also increases monotonically as the

modified image looks worse. It is very useful to be able to automatically assess the

quality of images when the number of images to be evaluated is large. Daly’s visual

difference predictor (VDP) is a popular bivariant tool to assess image quality [Daly93]. It

computes a map of visible differences between a degraded image and the reference. The

Karunasekera and Kingsbury (KK) model gives a quality mark to the degraded image

compared to the reference for the assessment of visual quality of the JPEG compressed

 3

image [Karu96]. The KK model gives an image quality assessment that corresponds to

the visibility of the blocking artifacts. The visibility is evaluated by the reaction time

required by an observer to identify the degraded image. The results match those of the

human visual system. Some other quality criteria simply compute a distance between the

degraded image and the reference. When two images are compared in terms of quality,

one desires a measure that parallels human visual system with the expectations that the

differences in quality judged by human eye to be large are also mathematically large and

if the differences are insignificant to human eye, the error size should be small. Dung and

others [Dung98] proposed the Image Quality Measure Error (IQME), which supports

measuring image quality locally as well as globally. It takes into consideration the effect

of the change of each pixel value to the local area, which contains that pixel and the

effect of that area to the whole image. The number of pixels changed is also taken into

consideration since the overall quality of the image depends on it as well. IQMs based on

pixel-difference, correlation, spectral, context and human visual system are studied

comprehensively using analysis of variance.

Texture happens to be an important characteristic for the automated or semi

automated interpretation of digital images. Texture analysis has history of more than

three decades. During the 1970s and early 1980s, the algorithms have been mainly based

on first and second order statistics of the image pixel gray level values as spatial domain

gray level co-occurrence matrix (SDCM) and neighboring gray level dependence matrix

(NGLDM). In the mid 1980s, model based methods such as Markov Random Fields

(MRF) and simultaneous autoregressive (SAR) appeared. Wavelets gained importance in

late 1980s. Texture analysis is a crucial problem since it conditions the quality of

 4

segmentation and interpretation in lots of applications such as in the textile industry or for

satellite imaging. Texture analysis has applications in image segmentation and

classification, biomedical image analysis, and automatic detection of surface defects.

When describing the content of a region, textures give a better understanding about the

region as compared to intensity descriptors such as average gray-level, minimum and

maximum gray level. The three common ways of analyzing textures are statistical,

structural and spectral approaches. Each of these approaches is explained below

[Gonz02].

• Structural approach:

 This approach defines a grammar for the way that the pattern of the texture

produces structure. The texture is parsed to see if it matches the grammar. The parse tree

for a pattern in a particular region is used as a descriptor.

• Spectral approach:

 If textures are periodic patterns, another useful way to analyze them is the use of

the frequency domain. The entire frequency domain has as much information as the

image itself. The frequency domain contains information from all parts of the image and

is useful for global texture analysis. Information can be condensed either by collapsing a

particular frequency across all orientations or by collapsing all frequencies in a particular

direction. This technique referred to as collapsed frequency domains gives two one-

dimensional descriptors useful for discriminating textures. Local frequency content can

be defined by using some form of co-joint spatial frequency representation. One of the

ways is to examine the N x N neighborhood around a point and compute its Fourier

transform. Moving from one textured region to other region changes the frequency

 5

content of the window. Differences in the frequency content of each window are used as

a means of segmentation. They are normally used to discriminate between different

regions or to classify them, to produce descriptions so that we can reproduce textures and

to segment an image based on textures. It is difficult to know which attributes might be

used for an application because the efficiency of each type of attribute is often badly

known. A study [Rose01] showed that classical attributes are relatively complementary

and provide good recognition rate if they are combined.

• Statistical approach:

 Textures are generally random however possess consistent properties. Hence an

obvious way to describe texture is their statistical properties. Various moments based on

the gray level histogram computed from a digital image can be used to describe statistical

properties such as mean, variance, skewness and flatness. The first four moments are

easier to describe intuitively, beyond which the description becomes harder. The first

moment is the mean intensity; the second central moment is the variance describing how

similar the intensities are within the region. The third central moment, skew, describes

how symmetric the intensity distribution is about the mean and the fourth central

moment, kurtosis, describes how flat the distribution is. Given a sufficient number of

moments, it is possible to reconstruct an image. The histogram-based measurements

suffer from the limitation that they carry no information regarding the relative spatial

position of pixels with one another. The spatial dependence relationship can be

incorporated by considering the distribution of intensities as well as the position of pixels

with equal or nearly equal intensity values. The technique involves statistically sampling

the way certain gray levels occur in relation to other gray levels. This method obtains the

 6

gray level co-occurrence matrix (GLCM) of specified texture, which further gives various

descriptors by measuring texture properties. Gray level co-occurrence matrices are

widely used to discriminate texture images and are studied in greater depth in the next

chapter.

The research is presented in four main chapters: Chapter 2 provides the

fundamental background of GLCM technique and the traditional applications of GLCM

have been described in chapter 3. The experimental methodology has been discussed in

chapter 4 whereas chapter 5 briefs the optimization techniques that can be incorporated in

GLCM processing.

 7

CHAPTER 2 - GLCM BACKGROUND

Texture is one of the important characteristics used in identifying objects or

regions of interest in an image. Texture contains important information about the

structural arrangement of surfaces. The textural features based on gray-tone spatial

dependencies have a general applicability in image classification. The three fundamental

pattern elements used in human interpretation of images are spectral, textural and

contextual features. Spectral features describe the average tonal variations in various

bands of the visible and/or infrared portion of an electromagnetic spectrum. Textural

features contain information about the spatial distribution of tonal variations within a

band. The fourteen textural features proposed by Haralick et all [Hara73] contain

information about image texture characteristics such as homogeneity, gray-tone linear

dependencies, contrast, number and nature of boundaries present and the complexity of

the image. Contextual features contain information derived from blocks of pictorial data

surrounding the area being analyzed.

 Haralick et all first introduced the use of co-occurrence probabilities using GLCM

for extracting various texture features. GLCM is also called as Gray level Dependency

Matrix. It is defined as “A two dimensional histogram of gray levels for a pair of pixels,

which are separated by a fixed spatial relationship.” GLCM of an image is computed

using a displacement vector d, defined by its radius δ and orientation θ. Consider a 4x4

image represented by figure 1a with four gray-tone values 0 through 3. A generalized

GLCM for that image is shown in figure 1b where #(i,j) stands for number of times gray

 8

tones i and j have been neighbors satisfying the condition stated by displacement vector

d.

0 0 1 1

0 0 1 1

0 2 2 2

2 2 3 3

 Figure1a. Test image

Gray tone 0 1 2 3

0 #(0,0) #(0,1) #(0,2) #(0,3)

1 #(1,0) #(1,1) #(1,2) #(1,3)

2 #(2,0) #(2,1) #(2,2) #(2,3)

3 #(3,0) #(3,1) #(3,2) #(3,3)

Figure 1b. General form of GLCM

The four GLCM for angles equal to 0°, 45°, 90° and 135° and radius equal to 1

are shown in figure 2 a-d.

4 2 1 0

2 4 0 0

1 0 6 1

0 0 1 2

Figure 2a. GLCM for δ=1 and θ=0°

4 1 0 0

1 2 2 0

0 2 4 1

0 0 1 0

Figure 2b. GLCM for δ=1 and θ=45°

6 0 2 0

0 4 2 0

2 2 2 2

0 0 2 0

Figure 2c. GLCM for δ=1 and θ=90°

2 1 3 0

1 2 1 0

3 1 0 2

0 0 2 0

Figure 2d. GLCM for δ=1 and θ=135°

 9

These are symmetric matrices hence evaluation of either upper or lower triangle

serves the purpose. Frequency normalization can be employed by dividing value in each

cell by the total number of pixel pairs possible. Hence the normalization factor for 0°

would be (Nx-1) x Ny where Nx represents the width and Ny represents the height of the

image. The quantization level is an equally important consideration for determining the

co-occurrence texture features. Also, neighboring co-occurrence matrix elements are

highly correlated as they are measures of similar image qualities. Each of these factors is

discussed ahead in detail.

2.1 Choice of radius δ

Various research studies show δ values ranging from 1, 2 to 10. Applying large

displacement value to a fine texture would yield a GLCM that does not capture detailed

textural information. From the previous studies, it has been concluded that overall

classification accuracies with δ = 1, 2, 4, 8 are acceptable with the best results for δ = 1

and 2. This conclusion is justified, as a pixel is more likely to be correlated to other

closely located pixel than the one located far away. Also, displacement value equal to the

size of the texture element improves classification.

2.2 Choice of angle θ

Every pixel has eight neighboring pixels allowing eight choices for θ, which are

0°, 45°, 90°, 135°, 180°, 225°, 270° or 315°. However, taking into consideration the

definition of GLCM, the co-occurring pairs obtained by choosing θ equal to 0° would be

similar to those obtained by choosing θ equal to 180°. This concept extends to 45°, 90°

 10

and 135° as well. Hence, one has four choices to select the value of θ. Sometimes, when

the image is isotropic, or directional information is not required, one can obtain isotropic

GLCM by integration over all angles.

2.3 Choice of quantized gray levels (G)

The dimension of a GLCM is determined by the maximum gray value of the

pixel. Number of gray levels is an important factor in GLCM computation. More levels

would mean more accurate extracted textural information, with increased computational

costs. The computational complexity of GLCM method is highly sensitive to the number

of gray levels and is proportional to O(G2) [Clau02].

 Thus for a predetermined value of G, a GLCM is required for each unique pair of

δ and θ. GLCM is a second-order texture measure. The GLCM’s lower left triangular

matrix is always a reflection of the upper right triangular matrix and the diagonal always

contains even numbers. Various GLCM parameters are related to specific first-order

statistical concepts. For instance, contrast would mean pixel pair repetition rate, variance

would mean spatial frequency detection etc. Association of a textural meaning to each of

these parameters is very critical. Traditionally, GLCM is dimensioned to the number of

gray levels G and stores the co-occurrence probabilities gij. To determine the texture

features, selected statistics are applied to each GLCM by iterating through the entire

matrix. The textural features are based on statistics which summarize the relative

frequency distribution which describes how often one gray tone will appear in a specified

spatial relationship to another gray tone on the image.

 11

Following notations are used to explain the various textural features:

gij = (i, j)th entry in GLCM

gx(i) = ith entry in marginal probability matrix obtained by summing rows of

∑
=

=
gN

j
ij jigg

1
),(

Ng = Number of distinct gray levels in the image

∑
i

 = ∑
=

gN

i 1

∑
j

 = ∑
=

gN

j 1

gy(i) = ∑
=

gN

i
jig

1
),(

gx+y(k) = where i+j = k = 2, 3, …, 2 N∑∑
= =

g gN

i

N

j
jig

1 1
),(g

gx-y(k) = where |i-j| = k = 0, 1, …, Ng-1 ∑∑
= =

g gN

i

N

j
jig

1 1
),(

 Few of the common statistics applied to co-occurrence probabilities are discussed

ahead.

1) Energy:

Energy (ene) = ∑∑
i j

jig 2

 This statistic is also called Uniformity or Angular second moment. It measures the

textural uniformity that is pixel pair repetitions. It detects disorders in textures. Energy

reaches a maximum value equal to one. High energy values occur when the gray level

 12

distribution has a constant or periodic form. Energy has a normalized range. The GLCM

of less homogeneous image will have large number of small entries.

2) Entropy:

Entropy (ent) = ∑∑−
i j

ijij gg 2log

 This statistic measures the disorder or complexity of an image. The entropy is

large when the image is not texturally uniform and many GLCM elements have very

small values. Complex textures tend to have high entropy. Entropy is strongly, but

inversely correlated to energy.

3) Contrast:

Contrast (con) = ∑∑ −
i j

ijgji 2)(

 This statistic measures the spatial frequency of an image and is difference

moment of GLCM. It is the difference between the highest and the lowest values of a

contiguous set of pixels. It measures the amount of local variations present in the image.

A low contrast image presents GLCM concentration term around the principal diagonal

and features low spatial frequencies.

4) Variance:

Variance (var) = ∑∑ −
i j

ijgi 2)(µ where µ is the mean of gij

 This statistic is a measure of heterogeneity and is strongly correlated to first order

statistical variable such as standard deviation. Variance increases when the gray level

values differ from their mean.

 13

5) Homogeneity:

Homogeneity (hom) = ∑∑
−+i j

ijg
ji 2)(1

1

This statistic is also called as Inverse Difference Moment. It measures image

homogeneity as it assumes larger values for smaller gray tone differences in pair

elements. It is more sensitive to the presence of near diagonal elements in the GLCM. It

has maximum value when all elements in the image are same. GLCM contrast and

homogeneity are strongly, but inversely, correlated in terms of equivalent distribution in

the pixel pairs population. It means homogeneity decreases if contrast increases while

energy is kept constant.

6) Correlation:

Correlation (cor) =
yx

yx
i j

ijgij

σσ

µµ−∑∑)(
 where µx, µy, σx and σy are

the means and standard deviations of gx and gy

 The correlation feature is a measure of gray tone linear dependencies in the

image.

 The rest of the textural features are secondary and derived from those listed

above.

7) Sum Average:

Sum Average (sa) = ∑
=

+

gN

i
yx iig

2

2
)(

 14

8) Sum Entropy:

Sum Entropy (se) = -)}(log{)(
2

2
igig yx

N

i
yx

g

+
=

+∑

9) Sum Variance:

Sum Variance (sv) = ∑
=

+−
gN

i
yx igsai

2

2

2)()(

10) Difference Variance:

Difference Variance = variance of gx-y

11) Difference Entropy:

Difference Entropy = -)}(log{)(
1

0
igig yx

N

i
yx

g

−

−

=
−∑

12) Maximum Correlation Coefficient:

Maximum Correlation Coefficient (MCC) = (second largest eigen value of Q)0.5

Where Q(I,j) = ∑
k yx kgig

kjgkig
)()(
),(),(

13) , 14) Information Measures of Correlation:

Information measure of correlation 1 (IMC1) =
},max{
1

HYHX
HXYHXY −

Information measure of correlation 2 (IMC2) =)]2(0.2exp[1(HXYHXY −−−

HXY = where HX and HY are entropies of g∑∑−
i j

ijij gg 2log x and gy

HXY1 = ∑∑−
i j

yxij jgigg)}()({log2

HXY2 =)}()({log)()(2 jgigjgig y
i j

xyx∑∑−

 15

The question what exactly the textural features represent from a human perception

point of view can be a subject for a thorough experimentation. Of the textural features

described above, the angular second moment, the entropy, the sum entropy, the difference

entropy, the information measure of correlation and the maximal correlation features

have the invariance property. Earlier studies [Wang02] cite “Energy” and “Contrast” to

be the most efficient parameters for discriminating different textural patterns. The general

thumb rules used in the selection of the textural features can be stated as follows:

• Energy is preferred to entropy as its values belong to normalized range.

• Contrast is associated with the average gray level difference between

neighbor pixels. It is similar to variance however preferred due to reduced

computational load and its effectiveness as a spatial frequency measure.

• Energy and contrast are the most significant parameters in terms of visual

assessment and computational load to discriminate between different

textural patterns.

 16

CHAPTER 3 - VARIOUS APPLICATIONS OF GLCM

 GLCM has been used extensively in the field of image processing. It has been

applied from a range of applications like texture analysis to synthesis including gray scale

as well as color texture recognition. A few of its popular applications are discussed

ahead.

3.1 Texture Analysis of SAR Sea Ice Imagery

 This application uses GLCM to quantitatively evaluate textural parameters and

determine which parameter values are best for mapping sea ice textures. The importance

of gray-level quantization, displacement and orientation factors for representing sea ice in

synthetic aperture radar (SAR) imagery is studied [Soh99]. The theory is based on a

computationally efficient expression χ2 = N {∑∑
i j

jig 2(/ ricj) – 1} where ri =

),(
1

jig
N

j
∑

=

and cj = ∑),(
1

jig
N

i=
and N = . Here g(i, j) represents the GLCM and

N

),(
11

jig
Ng

j

Ng

i
∑∑

==

g represents the total number of gray values. Finally the matrix yielding highest value of

χ2 is supposed to be optimal. Three types of co-occurrence matrices were studied as

follows:

• Mean Displacement Mean Orientation (MDMO): It assumes that every matrix of

specific displacement and orientation is partially and cumulatively representative

for the sample. Feature measures of matrices of the four orientations of 0°, 45°,

90° and 135° are averaged and then further averaged over displacement range.

 17

• Optimal Displacement Mean Orientation (ODMO): It assumes that only the

matrix whose χ2 value is the highest with a specific displacement value is truly

and sufficiently representative for the sample.

• Optimal Displacement Optimal Orientation (ODOO): It assumes that only the

matrix whose χ2 value is the highest with a specific displacement and orientation

is truly and sufficiently representative for the sample.

Few of the important conclusions drawn from the experiments were that MDMO

implementation is better, ODMO and ODOO have almost same performances indicating

insignificance of orientation, range of displacement values is more representative than

single value, and 64 gray level representation is efficient and sufficient for analysis of

SAR images.

3.2 Synthesis of Textures

An algorithm for generating synthetic textures based on GLCM is presented,

[Lohm95] which is used to imitate real textures taken from satellite images. A histogram

is computed from the desired GLCM. Then an initial image that has the desired

histogram is randomly generated. Further, a chain of images is iteratively produced such

that the new image is improvement over the initial in terms of error of distance of current

co-occurrences from desired co-occurrences. The iteration stops when the error goes

below a pre-specified threshold value. The algorithm converges only if a solution exists.

The difference between the real and synthetic textures is indistinguishable by the human

eye, which implies that co-occurrence features are well suited for characterizing these

types of images.

 18

3.3 Texture Defect Detection

A combination of wavelet theory and co-occurrence matrices [Lati00] is used to

detect defects in textile images. Texture defect detection can be defined as the process of

determining the location and/or extent of collection of pixels in a textured image with

remarkable deviation in their intensity values or spatial arrangement with respect to the

background texture. The algorithm comprises of four main steps, which are

decomposition of the gray level image into sub-bands, partitioning the textured image

into non-overlapping sub-windows, extracting co-occurrence features and finally

classifying each sub-window as defective or non-defective. Wavelet filter coefficients are

used to obtain images ILL, ILH, IHL and IHH where L and H represent low-pass and high-

pass bands respectively.

Figure 3. Decomposition of image I of size 2N x 2N

The study concludes that focusing on a particular band with high discriminatory

power improves the detection performance and increases computational efficiency as

well.

 19

3.4 Circular GLCM

GLCM can be used to study the short wavelength anomalies in the Earth’s

gravitational field [Coop04]. In this case, the GLCM textural measures use a vector that

connects pairs of pixels within a kernel that is moved over the image. This is a unique

method as it deals with circular features to enhance the elusive details. The vectors

connect points that lie on the perimeter of circles of different radii. A mid-point algorithm

is used to select the points that lay on each circle. The circle’s radius within the kernel

ranges from one to a user-specified maximum size. A rose diagram is used to show the

directions of the vectors in the kernel. This unique kernel is useful for the analysis of

anisotropic textures. Inverse difference moment has been specifically used which yields a

strong response at the central locations of the features of interest.

Figure 4. Circular GLCM vectors and corresponding Rose diagram

 20

Thus the use of GLCM vectors that follow circular contours that occur in gravity

data due to its inherently monopolar nature helps detecting circular features as well as

enhance linear features that lie at any orientation. Moreover this method is inexpensive as

compared to other existing geophysical methods.

3.5 Object Recognition and Matching

 This application discusses a novel method based on quantitative estimation of

relations between some elementary image structures, which are represented by elements

of special multidimensional co-occurrence matrices (MDCM) [Kova96]. An image of

any object can be considered as a composition of elementary structures, the elements of

which carry some attributes (e.g. gray level value, gradient magnitude, orientation) and

have some relations (e.g. gray level difference, relative gradient orientation). An M-

dimensional co-occurrence matrix is used where each of the attributes and relations

correspond to different axis of the matrix. Object is made recognizable due to the

balanced presence of some specific elementary structures in it. A MDCM is an M-

dimensional array, the elements of which have the general form of (a1, a2, …aM1; b1, b2,

… bM2) where M1 + M2 = M and ai takes all possible values a certain attribute could take

for an elementary structure, while bj takes all possible values a certain relation could take.

GLCM is used as a powerful way of representing the properties of the elementary

geometric structures. Such features, when identified, lead to linearly separable classes

and then a simple classifier identifies a certain object. This approach, as compared to

clustering method, uses ratio of matrix/histogram elements, eliminating the need to

specify a metric and the measuring units. The success of the method depends on the

 21

correct choice of the attributes and relations and the availability of sufficient number of

examples.

3.6 Image Segmentation and Edge Detection

The field of image analysis has been researched for several years. It involves the

process of extracting information from an image and analyzing it to achieve a specific

goal. The two main steps involved are:

• Image segmentation: segmentation of an image into homogeneous regions

with respect to certain image characteristic, example – regions of uniform

grey level.

• Edge detection: the extraction of the locations in the image having

changes in intensity.

The differences between the key image features are emphasized using adaptive

transforms [Hadd93]. The Sobel edge operator E is a square matrix with 3x3 dimensions

and elements [1, 0, -1; 2, 0, -2; 1, 0, -1]. Convolving the Sobel edge operator E with the

image in the neighborhood of a pixel yields good results as vertical edge strength image.

It is referred to as edge co-occurrence matrix. The parameters of the peak along the

leading diagonal are determined using correlation techniques. The matrix is further

labeled in a way to reflect the content of the image. Labeling of the matrix requires

detailed knowledge about the distributions in the matrix. The labeled matrix is used as a

look-up table for simultaneously segmenting the regions of an image and for detecting

the prominent edges for a particular edge operator. Using results of several transforms, it

is possible to detect edges of all orientations.

 22

3.7 Color texture classification by integrative co-occurrence matrices

Color is an important issue in digital image processing. It is a vectorial feature

assigned to each pixel. Color information improves the results of gray scale texture

features. Two categories of co-occurrence matrices (CMs) are proposed for color texture

classification [Palm03]:

• Single channel co-occurrence matrices (SCMs): They consist of gray scale

CMs successively applied to separated color channels.

• Multi channel co-occurrence matrices (MCMs): These capture correlation

between textures of different color channels. They provide the opportunity to

study the effect of texture and pure color analysis in one unified framework.

No spatial adjacency but channel adjacency is regarded.

The studies show that several experiments were conducted on various specific

databases. This is a novel approach in the field of color texture recognition.

 23

CHAPTER 4 EXPERIMENTATION

Earlier literature shows that GLCM textural features are used for category-

identification of images representing different content [Hara73]. For instance the energy

parameter can be used as a measure of homogeneity for comparison of two images, one

representing grasslands and the other is representing water body. Since the water body

image will have fewer gray tone transitions, its energy value is expected to be lower than

that of the grasslands image. Similarly, the contrast feature, which represents local

variation present in an image, would be higher for grasslands image as compared to the

other image. The various kinds of datasets relevant for analysis may include

photomicrographs, aerial photographs of natural or man-made scenes, high altitude

satellite pictures.

 The primary objectives of the study were as follows:

• Objective 1: To study if the textural features followed some specific trend as the

quality of images increased.

• Objective 2: To study if the orientation of the overall image content can be used

to speculate the most appropriate choice of GLCM angle

This study focuses on digital images representing content ranging from simple

text, periodic patterns, natural scenes, plants to human faces. Each dataset was formed by

storing an image at five quality levels using jpeg compression technique and maintaining

constant pixel resolution. This study is in a way unique from the earlier GLCM research

works because it analyses different compressed versions of the same image. Quality level

 24

1 signifies the poorest quality while quality level 5 is the best. The Irfanview application

was used for this purpose, which is freely downloadable [Irfa04].

The first dataset comprised of six different images stored at five compression

levels. The following table gives the memory sizes of each image:

Image Quality

level 1

Quality level

2

Quality level

3

Quality level

4

Quality level

5

Carpet (Figure

5a-5e)

6KB 7KB 8KB 9KB 13KB

Plant

(Figure 6a-6e)

5KB 6KB 7KB 8KB 11KB

Water

(Figure 7a-7e)

5KB 7KB 7KB 8KB 12KB

Student Union

(Figure 8a-8e)

6KB 7KB 8KB 9KB 12KB

Grass

(Figure 9a-9e)

12KB 12KB 13KB 15KB 20KB

Flowers

(Figure 10a-10e)

10KB 12KB 14KB 16KB 21KB

Table 1. Dataset 1

A Sony digital camera DSC-F717, set at pixel resolution of 640x480, was used to

take the pictures. Using the Irfanview application, all pictures were resampled at 160x120

 25

sizes for faster computation. The lanczos filter was used for resampling which offers

better quality at the cost of higher processing time.

A) CARPET Image:

Figure 5a. Quality level 1

Figure 5b. Quality level 2

Figure 5c. Quality level 3

Figure 5d. Quality level 4

Figure 5e. Quality level 5

 26

B) PLANT Image:

Figure 6a. Quality level 1

Figure 6b. Quality level 2

Figure 6c. Quality level 3

Figure 6d. Quality level 4

Figure 6e. Quality level 5

 27

C) WATER Image:

Figure 7a. Quality level 1

Figure 7b. Quality level 2

Figure 7c. Quality level 3

Figure 7d. Quality level 4

Figure 7e. Quality level 5

 28

D) STUDENT UNION Image:

Figure 8a. Quality level 1

Figure 8b. Quality level 2

Figure 8c. Quality level 3

Figure 8d. Quality level 4

Figure 8e. Quality level 5

 29

E) GRASS Image:

Figure 9a. Quality level 1

Figure 9b. Quality level 2

Figure 9c. Quality level 3

Figure 9d. Quality level 4

Figure 9e. Quality level 5

 30

F) FLOWERS Image:

Figure 10a. Quality level 1

Figure 10b. Quality level 2

Figure 10c. Quality level 3

Figure 10d. Quality level 4

Figure 10e. Quality level 5

As discussed in the previous chapter, radius and angle happen to be the crucial

parameters for GLCM processing. In this experimentation, the radius was set to 1 and

 31

angle was set to 0°, and textural parameters for all the thirty images were calculated.

Each run took approximately 2 minutes of processing time.

Following plots were obtained for the six images. It is observed that the values of

the textural parameters for the grass and flowers images lie in a different range as

compared to the rest of the images. Hence each of the textural plots has been grouped

into two for better readability.

Energy

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Image size

En
er

gy

carpet
plant
water
student union

carpet 0.102886 0.002737 0.002211 0.001757 0.001476

plant 0.051989 0.008506 0.003426 0.002214 0.001441

water 0.1262 0.003028 0.002334 0.00177 0.001292

student union 0.016295 0.002632 0.001708 0.001295 0.001167

1 2 3 4 5

Figure 11a. Energy (carpet, plant, water, student union images)

 32

Energy

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

Image size

En
er

gy grass
flowers

grass 0.000274 0.000228 0.000214 0.000207 0.000201

flowers 0.000331 0.000287 0.000271 0.000259 0.000244

1 2 3 4 5

Figure 11b. Energy (grass, flowers images)

Contrast

0

50

100

150

200

250

300

350

400

450

Image size

C
on

tr
as

t carpet
plant
water
student union

carpet 55.09717 113.590671 150.896855 224.319706 293.362159

plant 189.30629 215.754194 239.403565 273.152622 318.245075

water 28.436688 64.825681 79.04696 102.456394 159.59371

student union 213.606395 301.669708 344.010065 351.473272 381.208912

1 2 3 4 5

Figure 12a. Contrast (carpet, plant, water, student union images)

 33

Contrast

0

500

1000

1500

2000

2500

Image size

C
on

tr
as

t

grass
flowers

grass 1033.703043 1504.893611 1796.189315 2001.965207 2130.312062

flowers 830.324846 1044.374008 1223.481033 1366.730614 1368.976107

1 2 3 4 5

Figure 12b. Contrast (grass, flowers images)

Entropy

0

2

4

6

8

10

12

14

Image size

En
tr

op
y carpet

plant
water
student union

carpet 7.406133 10.069191 10.333392 10.647961 10.815329

plant 9.933953 11.102696 11.438641 11.591306 11.761552

water 6.375845 10.05058 10.317378 10.627258 10.989184

student union 10.33714 11.531338 11.70637 11.796799 11.927477

1 2 3 4 5

Figure 13a. Entropy (carpet, plant, water, student union images)

 34

Entropy

12.7

12.8

12.9

13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Image size

En
tr

op
y

grass
flowers

grass 13.201722 13.42862 13.523802 13.576668 13.59786

flowers 13.064528 13.192994 13.259115 13.301351 13.310903

1 2 3 4 5

Figure 13b. Entropy (grass, flowers images)

Homogeneity

0

0.2

0.4

0.6

0.8

1

1.2

Image size

H
om

og
en

ei
ty carpet

plant
water
student union

carpet 0.77259 0.269093 0.213785 0.172889 0.145548

plant 0.64665 0.529999 0.460994 0.417791 0.329586

water 1.110717 0.380352 0.309926 0.247085 0.186674

student union 0.702435 0.447129 0.383845 0.351082 0.299706

1 2 3 4 5

Figure 14a. Homogeneity (carpet, plant, water, student union images)

 35

Homogeneity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Image size

H
om

og
en

ei
ty

grass
flowers

grass 0.081491 0.066321 0.060881 0.058711 0.055382

flowers 0.127861 0.103929 0.089279 0.084295 0.0838

1 2 3 4 5

Figure 14b. Homogeneity (grass, flowers images)

The analysis showed that energy and homogeneity decrease with increasing image

quality, whereas contrast and entropy showed consistent increase with increasing image

quality for all the images. There is no change in the sign of first derivative.

The next task was to study the effect of the values of angle on the textural

parameters. Hence, four images were generated having orientations in the vertical,

horizontal, front diagonal and back diagonal directions. Each image was processed for

four combinations of radius and angle that is 1 and 0°, 1 and 45°, 1 and 90° and finally 1

and 135°.

 36

Figure 15a. Dataset 2 Vertical strips

Figure 15b. Dataset 2 Horizontal strips

Figure 15c. Dataset 2 Front diagonal strips

Figure 15d. Dataset 2 Back diagonal strips

The objective was to observe whether the selected value of angle of GLCM had

any specific relationship with the orientation of image content, for instance, to observe

whether textural parameter of vertical strip image showed maximum/minimum value for

90° as compared to 0°, 45° and 135°.

Contrast

0

100

200

300

400

500

600

Angle

C
on

tr
as

t vertical strips
horizontal strips
front diagonal strips
back diagonal strips

vertical strips 538.20202 538.20202 0 538.20202

horizontal strips 0.16 559.839608 559.878787 559.837159

front diagonal strips 24.6 2.886032 24.550707 88.455056

back diagonal strips 17.187071 62.564024 17.247071 3.098663

0 45 90 135

Figure 16. Dataset 2 Contrast

 37

It can be seen that contrast value is least at 90° for vertical strips image, at 0° for

horizontal image, at 45° for front diagonal image and at 135° for back diagonal image.

Entropy

0

1

2

3

4

5

6

7

8

9

Angle

En
tr

op
y vertical strips

horizontal strips
front diagonal strips
back diagonal strips

vertical strips 7.912039 7.912039 4.823745 7.912039

horizontal strips 3.67355 5.683667 5.683781 5.683891

front diagonal strips 5.215191 4.927052 5.215069 5.676083

back diagonal strips 6.273923 6.798112 6.267143 6.09746

0 45 90 135

Figure 17. Dataset 2 Entropy

It can be seen that entropy value is least at 90° for vertical strips image, at 0° for

horizontal image, at 45° for front diagonal image and at 135° for back diagonal image.

 38

Homogeneity

0

0.5

1

1.5

2

2.5

Angle

H
om

og
en

ei
ty vertical strips

horizontal strips
front diagonal strips
back diagonal strips

vertical strips 0.585887 0.585887 2 0.585887

horizontal strips 1.92 1.055569 1.055567 1.055565

front diagonal strips 1.334943 1.501734 1.335843 1.179508

back diagonal strips 1.221607 1.082696 1.224169 1.413701

0 45 90 135

Figure 18. Dataset 2 Homogeneity

It can be seen that homogeneity value is maximum at 90° for vertical strips image,

at 0° for horizontal image, at 45° for front diagonal image and at 135° for back diagonal

image.

Energy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Angle

En
er

gy

vertical strips
horizontal strips
front diagonal strips
back diagonal strips

vertical strips 0.05224 0.05224 0.2304 0.05224

horizontal strips 0.6628 0.351395 0.351393 0.351391

front diagonal strips 0.735782 0.706329 0.735808 0.627442

back diagonal strips 0.466964 0.411665 0.477322 0.435488

0 45 90 135

Figure 19. Dataset 2 Energy

 39

It can be seen that energy value is maximum at 90° for vertical strips image and at

0° for horizontal image. However these trends are not followed for front diagonal image

and back diagonal image! As it can be observed that the energy value is not maximum for

the front diagonal image for 45° as well as for the back diagonal image for 135°. This

helps in concluding that it would be difficult to use the orientation of the overall image

content in deciding the most appropriate value of angle for GLCM processing.

Hence in the final part of experimentation it was decided to do exhaustive runs for

all combinations of radius and angle. A dataset called FACE was used which comprises

of images of human faces. To start of with, this image was saved at quality levels 1, 3 and

5 using standard jpeg compression. The FACE dataset consisted a total of 48 runs, each

requiring approximately processing time of 2 minutes.

Figure 20a. FACE quality level 1 (6KB)

Figure 20b. FACE quality level 3 (7KB)

Figure 20c. FACE quality level 5 (6KB)

 40

 41

 Image
size Radius Angle Energy Contrast Entropy Homogeneity
6KB 1 0 0.02407 171.761 10.26177 0.617437
7KB 1 0 0.003771 202.8114 11.07969 0.456161
11KB 1 0 0.002214 237.0179 11.19007 0.393059

6KB 1 45 0.019735 377.2859 10.88752 0.414932
7KB 1 45 0.002648 395.5287 11.6069 0.282185
11KB 1 45 0.001759 422.8177 11.57984 0.267074

6KB 1 90 0.02235 347.0806 10.5414 0.552665
7KB 1 90 0.003593 361.9449 11.34828 0.400357
11KB 1 90 0.002261 397.3172 11.36973 0.377045

6KB 1 135 0.019751 387.3405 11.00565 0.411819
7KB 1 135 0.002609 411.6924 11.72667 0.274801
11KB 1 135 0.001726 442.775 11.69309 0.269048

6KB 2 0 0.022135 469.401 10.69552 0.526195
7KB 2 0 0.002805 502.9805 11.56605 0.358082
11KB 2 0 0.001695 529.2688 11.59099 0.31164

6KB 2 45 0.015361 969.8808 11.37108 0.312272
7KB 2 45 0.001908 972.4885 12.01651 0.203788
11KB 2 45 0.001374 986.6043 11.98389 0.209876

6KB 2 90 0.018862 896.1711 11.15472 0.452017
7KB 2 90 0.002565 946.5845 11.96345 0.297973
11KB 2 90 0.00167 977.4247 11.96004 0.281211

6KB 2 135 0.015742 1021.588 11.59683 0.30791
7KB 2 135 0.001943 1027.106 12.24931 0.200889
11KB 2 135 0.001325 1040.207 12.21975 0.212727

6KB 4 0 0.017697 1039.107 11.09772 0.428483
7KB 4 0 0.002064 1008.678 11.88342 0.278374
11KB 4 0 0.001365 1025.913 11.86913 0.248683

6KB 4 45 0.008784 2067.087 11.79518 0.209122
7KB 4 45 0.001269 2042.199 12.33174 0.144673
11KB 4 45 0.001014 2068.228 12.2902 0.146804

6KB 4 90 0.012794 2063.425 11.81806 0.335178
7KB 4 90 0.001826 2082.977 12.55724 0.213546

11KB 4 90 0.00131 2108.965 12.55691 0.208584

6KB 4 135 0.009972 2310.118 12.27307 0.212055
7KB 4 135 0.001317 2266.555 12.82502 0.143375
11KB 4 135 0.000971 2287.544 12.79987 0.143962

6KB 8 0 0.010675 1780.929 11.46861 0.28607
7KB 8 0 0.001317 1730.349 12.09104 0.194486
11KB 8 0 0.00109 1758.263 12.04626 0.188907

6KB 8 45 0.002938 3954.321 12.01462 0.108293
7KB 8 45 0.000767 3948.928 12.48789 0.090927
11KB 8 45 0.000737 3983.652 12.41357 0.090491

6KB 8 90 0.005912 4229.268 12.62757 0.164786
7KB 8 90 0.001249 4187.663 13.26445 0.123869
11KB 8 90 0.001173 4213.264 13.17731 0.14189

6KB 8 135 0.006251 4696.982 12.98565 0.124847
7KB 8 135 0.000964 4594.344 13.45011 0.090663
11KB 8 135 0.000713 4641.184 13.38461 0.084786

Table 2. Dataset 3 FACE image

All the four parameters, energy, contrast, entropy and homogeneity were studied.

The study starts with the energy feature for which eight graphs were plotted. The set of

first four graphs depicts variation in radius for specific angles:

 42

Energy (angle=0)

0

0.005

0.01

0.015

0.02

0.025

0.03

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.02407 0.003771 0.002214

radius=2 0.022135 0.002805 0.001695

radius=4 0.017697 0.002064 0.001365

radius=8 0.010675 0.001317 0.00109

6KB 7KB 11KB

Figure 21a. Energy angle=0

Energy (angle=45)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.019735 0.002648 0.001759

radius=2 0.015361 0.001908 0.001374

radius=4 0.008784 0.001269 0.001014

radius=8 0.002938 0.000767 0.000737

6KB 7KB 11KB

Figure 21b. Energy angle=45

 43

Energy (angle=90)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.02235 0.003593 0.002261

radius=2 0.018862 0.002565 0.00167

radius=4 0.012794 0.001826 0.00131

radius=8 0.005912 0.001249 0.001173

6KB 7KB 11KB

Figure 21c. Energy angle=90

Energy (angle=135)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.019751 0.002609 0.001726

radius=2 0.015742 0.001943 0.001325

radius=4 0.009972 0.001317 0.000971

radius=8 0.006251 0.000964 0.000713

6KB 7KB 11KB

Figure 21d. Energy angle=135

 44

The set of next four graphs depicts variation in angle for specific values of radius.

Energy (radius=1)

0

0.005

0.01

0.015

0.02

0.025

0.03

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.02407 0.003771 0.002214

angle=45 0.019735 0.002648 0.001759

angle=90 0.02235 0.003593 0.002261

angle=135 0.019751 0.002609 0.001726

6KB 7KB 11KB

Figure 21e. Energy radius=1

Energy (radius=2)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.022135 0.002805 0.001695

angle=45 0.015361 0.001908 0.001374

angle=90 0.018862 0.002565 0.00167

angle=135 0.015742 0.001943 0.001325

6KB 7KB 11KB

Figure 21f. Energy radius=2

 45

Energy (radius=4)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.017697 0.002064 0.001365

angle=45 0.008784 0.001269 0.001014

angle=90 0.012794 0.001826 0.00131

angle=135 0.009972 0.001317 0.000971

6KB 7KB 11KB

Figure 21g. Energy radius=4

Energy (radius=8)

0

0.002

0.004

0.006

0.008

0.01

0.012

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.010675 0.001317 0.00109

angle=45 0.002938 0.000767 0.000737

angle=90 0.005912 0.001249 0.001173

angle=135 0.006251 0.000964 0.000713

6KB 7KB 11KB

Figure 21h. Energy radius=8

 46

The study of the graphs shows that for all the combinations of radius (1, 2, 4, 8)

and angle (0°, 45°, 90°, 135°), energy always decreases with increase in image quality.

 On similar basis, the contrast feature was studied:

Contrast (angle=0)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 171.761007 202.811426 237.017926

radius=2 469.400951 502.980488 529.268779

radius=4 1039.10653 1008.677683 1025.912834

radius=8 1780.929207 1730.348944 1758.262542

6KB 7KB 11KB

Figure 22a. Contrast angle=0

 47

Contrast (angle=45)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Image size

C
on

tr
as

t 1
2
4
8

1 377.285878 395.528677 422.817722

2 969.880824 972.488526 986.604274

4 2067.087458 2042.198973 2068.228261

8 3954.321468 3948.928257 3983.652054

6KB 7KB 11KB

Figure 22b. Contrast angle=45

Contrast(angle=90)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 347.080573 361.944858 397.317233

radius=2 896.171074 946.584524 977.424672

radius=4 2063.424566 2082.976612 2108.964541

radius=8 4229.268472 4187.663221 4213.264236

6KB 7KB 11KB

Figure 22c. Contrast angle=90

 48

Contrast (angle=135)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Image size

C
on

tr
as

t 1
2
4
8

1 387.340526 411.692411 442.775018

2 1021.587862 1027.105991 1040.207042

4 2310.11774 2266.554523 2287.543581

8 4696.98196 4594.344495 4641.184478

6KB 7KB 11KB

Figure 22d. Contrast angle=135

Contrast(radius=1)

0

50

100

150

200

250

300

350

400

450

500

Image size

C
on

tr
as

t angle=0
angle=45
angle=90
angle=135

angle=0 171.761007 202.811426 237.017926

angle=45 377.285878 395.528677 422.817722

angle=90 347.080573 361.944858 397.317233

angle=135 387.340526 411.692411 442.775018

6KB 7KB 11KB

Figure 22e. Contrast radius=1

 49

Contrast(radius=2)

0

200

400

600

800

1000

1200

Image size

C
on

tr
as

t angle=0
angle=45
angel=90
angle=135

angle=0 469.400951 502.980488 529.268779

angle=45 969.880824 972.488526 986.604274

angel=90 896.171074 946.584524 977.424672

angle=135 1021.587862 1027.105991 1040.207042

6KB 7KB 11KB

Figure 22f. Contrast radius=2

Contrast (radius=4)

0

500

1000

1500

2000

2500

Image size

C
on

tr
as

t 0
45
90
135

0 1039.10653 1008.677683 1025.912834

45 2067.087458 2042.198973 2068.228261

90 2063.424566 2082.976612 2108.964541

135 2310.11774 2266.554523 2287.543581

6KB 7KB 11KB

Figure 22g. Contrast radius=4

 50

Contrast(radius=8)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0
45
90
135

0 1780.929207 1730.348944 1758.262542

45 3954.321468 3948.928257 3983.652054

90 4229.268472 4187.663221 4213.264236

135 4696.98196 4594.344495 4641.184478

6KB 7KB 11KB

Figure 22h. Contrast radius=8

 51

These are the plots for Entropy feature:

Entropy (angle=0)

9

9.5

10

10.5

11

11.5

12

12.5

Image size

En
tr

op
y 1

2
4
8

1 10.261771 11.079689 11.190067

2 10.69552 11.566054 11.590993

4 11.097724 11.883416 11.869126

8 11.468614 12.091036 12.046262

6KB 7KB 11KB

Figure 23a. Entropy angle=0

Entropy (angle=45)

10

10.5

11

11.5

12

12.5

13

Image size

En
tr

op
y 1

2
4
8

1 10.88752 11.606898 11.579838

2 11.37108 12.016512 11.983893

4 11.795176 12.331737 12.290202

8 12.014623 12.487885 12.413572

6KB 7KB 11KB

Figure 23b. Entropy angle=45

 52

Entropy (angle=90)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y 1

2
4
8

1 10.541404 11.348283 11.369725

2 11.154722 11.963453 11.96004

4 11.81806 12.557238 12.556908

8 12.627572 13.264453 13.17731

6KB 7KB 11KB

Figure 23c. Entropy angle=90

Entropy (angle=135)

0

2

4

6

8

10

12

14

16

Image size

En
tr

op
y 1

2
4
8

1 11.005651 11.726671 11.693091

2 11.596834 12.249311 12.219745

4 12.273067 12.825015 12.799867

8 12.985645 13.45011 13.384607

6KB 7KB 11KB

Figure 23d. Entropy angle=135

 53

Entropy (radius=1)

9.5

10

10.5

11

11.5

12

Image size

En
tr

op
y 0

45
90
135

0 10.261771 11.079689 11.190067

45 10.88752 11.606898 11.579838

90 10.541404 11.348283 11.369725

135 11.005651 11.726671 11.693091

6KB 7KB 11KB

Figure 23e. Entropy radius=1

Entropy (radius=2)

9.5

10

10.5

11

11.5

12

12.5

Image size

En
tr

op
y 0

45
90
135

0 10.69552 11.566054 11.590993

45 11.37108 12.016512 11.983893

90 11.154722 11.963453 11.96004

135 11.596834 12.249311 12.219745

6KB 7KB 11KB

Figure 23f. Entropy radius=2

 54

Entropy (radius=4)

10

10.5

11

11.5

12

12.5

13

Image size

En
tr

op
y 0

45
90
135

0 11.097724 11.883416 11.869126

45 11.795176 12.331737 12.290202

90 11.81806 12.557238 12.556908

135 12.273067 12.825015 12.799867

6KB 7KB 11KB

Figure 23g. Entropy radius=4

Entropy (radius=8)

10

10.5

11

11.5

12

12.5

13

13.5

14

Image size

En
tr

op
y 0

45
90
135

0 11.468614 12.091036 12.046262

45 12.014623 12.487885 12.413572

90 12.627572 13.264453 13.17731

135 12.985645 13.45011 13.384607

6KB 7KB 11KB

Figure 23h. Entropy radius=8

 55

The plots for homogeneity feature:

Homogeneity (angle=0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Image size

H
om

og
en

ei
ty 1

2
4
8

1 0.617437 0.456161 0.393059

2 0.526195 0.358082 0.31164

4 0.428483 0.278374 0.248683

8 0.28607 0.194486 0.188907

6KB 7KB 11KB

Figure 24a. Homogeneity angle=0

Homogeneity (angle=45)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Image size

H
om

og
en

ei
ty 1

2
4
8

1 0.414932 0.282185 0.267074

2 0.312272 0.203788 0.209876

4 0.209122 0.144673 0.146804

8 0.108293 0.090927 0.090491

6KB 7KB 11KB

Figure 24b. Homogeneity angle=45

 56

Homogeneity (angle=90)

0

0.1

0.2

0.3

0.4

0.5

0.6

Image size

H
om

og
en

ei
ty 1

2
4
8

1 0.552665 0.400357 0.377045

2 0.452017 0.297973 0.281211

4 0.335178 0.213546 0.208584

8 0.164786 0.123869 0.14189

6KB 7KB 11KB

Figure 24c. Homogeneity angle=90

Homogeneity (angle=135)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Image size

H
om

og
en

ei
ty 1

2
4
8

1 0.411819 0.274801 0.269048

2 0.30791 0.200889 0.212727

4 0.212055 0.143375 0.143962

8 0.124847 0.090663 0.084786

6KB 7KB 11KB

Figure 24d. Homogeneity angle=135

 57

Homogeneity (radius=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Image size

H
om

og
en

ei
ty 0

45
90
135

0 0.617437 0.456161 0.393059

45 0.414932 0.282185 0.267074

90 0.552665 0.400357 0.377045

135 0.411819 0.274801 0.269048

6KB 7KB 11KB

Figure 24e. Homogeneity radius=1

Homogeneity (radius=2)

0

0.1

0.2

0.3

0.4

0.5

0.6

Image size

H
om

og
en

ei
ty 0

45
90
135

0 0.526195 0.358082 0.31164

45 0.312272 0.203788 0.209876

90 0.452017 0.297973 0.281211

135 0.30791 0.200889 0.212727

6KB 7KB 11KB

Figure 24f. Homogeneity radius=2

 58

Homogeneity (radius=4)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Image size

H
om

og
en

ei
ty 0

45
90
135

0 0.428483 0.278374 0.248683

45 0.209122 0.144673 0.146804

90 0.335178 0.213546 0.208584

135 0.212055 0.143375 0.143962

6KB 7KB 11KB

Figure 24g. Homogeneity radius=4

Homogeneity (radius=8)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Image size

H
om

og
en

ei
ty 0

45
90
135

0 0.28607 0.194486 0.188907

45 0.108293 0.090927 0.090491

90 0.164786 0.123869 0.14189

135 0.124847 0.090663 0.084786

6KB 7KB 11KB

Figure 24h. Homogeneity radius=8

 59

The analysis of the results showed that the curves of the textural features did not

follow a specific trend for all the combinations of radius and angle. For instance, the

contrast and entropy curves change the sign of first derivative for radius equal to 8 and

angle equal to 0°.

Similar exhaustive analysis was performed on the second dataset,

CERTIFICATE, representing simple text. Quality levels 1 through 5 were used. A total

of 80 runs were performed to analyze the features.

Dataset 3 CERTIFICATE images:

 Figure 25a. CERTIFICATE quality level 1

(6KB)
Figure 25c. CERTIFICATE quality level 3

(8KB)

 Figure 25b. CERTIFICATE quality level 2

(7KB) Figure 25d. CERTIFICATE quality level 5

(11KB)

 60

Figure 25e. CERTIFICATE quality level 4 (9KB)

These were the results obtained:

Image
size Radius Angle Energy Contrast Entropy Homogeneity
6KB 1 0 0.027379 287.2065 9.783876 0.510128
7KB 1 0 0.007715 335.0582 10.78946 0.464195
8KB 1 0 0.004008 421.4891 11.07274 0.420977
9KB 1 0 0.003586 430.4905 11.05674 0.410885

6KB 1 45 0.021091 463.181 10.28181 0.2892
7KB 1 45 0.005217 637.521 11.21314 0.244366
8KB 1 45 0.002328 746.0709 11.45729 0.234125
9KB 1 45 0.002308 754.4606 11.41144 0.241451

6KB 1 90 0.032086 443.7578 9.230447 0.790542
7KB 1 90 0.007033 596.3367 10.62541 0.451566
8KB 1 90 0.003731 645.5999 10.92591 0.415467
9KB 1 90 0.00331 665.5436 10.98611 0.394092

6KB 1 135 0.021021 475.4983 10.39187 0.285888
7KB 1 135 0.005151 642.326 11.30022 0.247777
8KB 1 135 0.002385 758.9157 11.55252 0.235528
9KB 1 135 0.002297 762.8987 11.51412 0.239714

 61

6KB 2 0 0.024476 694.4235 10.06599 0.441217
7KB 2 0 0.006366 764.2224 11.12403 0.387998
8KB 2 0 0.003372 828.6582 11.33644 0.354863
9KB 2 0 0.002793 828.5843 11.33926 0.335974

6KB 2 45 0.016733 1052.688 10.62079 0.221683
7KB 2 45 0.004043 1150.561 11.45675 0.189758
8KB 2 45 0.001778 1193.276 11.6344 0.180653
9KB 2 45 0.001777 1190.999 11.5753 0.198746

6KB 2 90 0.027324 921.1234 9.801897 0.678564
7KB 2 90 0.00567 1027.203 11.14337 0.347361
8KB 2 90 0.002697 1064.571 11.41439 0.321483
9KB 2 90 0.002427 1094.404 11.42713 0.305335

6KB 2 135 0.016377 1082.483 10.83886 0.21717
7KB 2 135 0.003914 1181.906 11.64734 0.18922
8KB 2 135 0.001773 1230.544 11.83341 0.183591
9KB 2 135 0.001846 1233.883 11.77956 0.19612

6KB 4 0 0.018525 1017.375 10.34188 0.381935
7KB 4 0 0.004871 1049.382 11.29839 0.326618
8KB 4 0 0.002522 1118.893 11.4781 0.292997
9KB 4 0 0.002135 1117.56 11.48222 0.268608

6KB 4 45 0.010575 1526.242 10.89026 0.178823
7KB 4 45 0.002908 1617.764 11.56614 0.166107
8KB 4 45 0.001354 1671.662 11.70695 0.144582
9KB 4 45 0.00143 1678.077 11.6497 0.157295

6KB 4 90 0.019759 1531.76 10.47997 0.551872
7KB 4 90 0.004195 1639.605 11.56554 0.29527
8KB 4 90 0.00205 1653.875 11.78932 0.258164
9KB 4 90 0.002004 1691.017 11.7834 0.234682

6KB 4 135 0.009319 1603.564 11.31929 0.172967
7KB 4 135 0.002503 1695.924 11.96369 0.155629
8KB 4 135 0.001362 1754.898 12.12374 0.143635
9KB 4 135 0.001479 1773.781 12.05537 0.154013

6KB 8 0 0.00949 1561.06 10.69729 0.283164
7KB 8 0 0.003076 1549.745 11.38525 0.226056
8KB 8 0 0.001688 1627.402 11.51916 0.195653
9KB 8 0 0.00161 1635.994 11.47102 0.205251

6KB 8 45 0.005472 2504.095 10.96345 0.135835
7KB 8 45 0.001925 2553.321 11.53527 0.131247
8KB 8 45 0.001093 2640.996 11.65373 0.106359

Table 3. Dataset 3 CERTIFICATE image

The corresponding plots are listed below. The sequence follows eight graphs for

energy, contrast, entropy and homogeneity respectively, which is similar to that of FACE

image:

Energy (angle=0)

0

0.005

0.01

0.015

0.02

0.025

0.03

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.027379 0.007715 0.004008 0.003586

radius=2 0.024476 0.006366 0.003372 0.002793

radius=4 0.018525 0.004871 0.002522 0.002135

radius=8 0.00949 0.003076 0.001688 0.00161

6KB 7KB 8KB 9KB

Figure 26a. Energy angle=0

 63

Energy (angle=45)

0

0.005

0.01

0.015

0.02

0.025

Iamge size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.021091 0.005217 0.002328 0.002308

radius=2 0.016733 0.004043 0.001778 0.001777

radius=4 0.010575 0.002908 0.001354 0.00143

radius=8 0.005472 0.001925 0.001093 0.001128

6KB 7KB 8KB 9KB

Figure 26b. Energy angle=45

Energy (angle=90)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.032086 0.007033 0.003731 0.00331

radius=2 0.027324 0.00567 0.002697 0.002427

radius=4 0.019759 0.004195 0.00205 0.002004

radius=8 0.008794 0.002318 0.001584 0.00161

6KB 7KB 8KB 9KB

Figure 26c. Energy angle=90

 64

Energy (angle=135)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

radius=1
radius=2
radius=4
radius=8

radius=1 0.021021 0.005151 0.002385 0.002297

radius=2 0.016377 0.003914 0.001773 0.001846

radius=4 0.009319 0.002503 0.001362 0.001479

radius=8 0.00298 0.001413 0.001093 0.001211

6KB 7KB 8KB 9KB

Figure 26d. Energy angle=135

Energy (radius=1)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.027379 0.007715 0.004008 0.003586

angle=45 0.021091 0.005217 0.002328 0.002308

angle=90 0.032086 0.007033 0.003731 0.00331

angle=135 0.021021 0.005151 0.002385 0.002297

6KB 7KB 8KB 9KB

Figure 26e. Energy radius=1

 65

Energy (radius=2)

0

0.005

0.01

0.015

0.02

0.025

0.03

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.024476 0.006366 0.003372 0.002793

angle=45 0.016733 0.004043 0.001778 0.001777

angle=90 0.027324 0.00567 0.002697 0.002427

angle=135 0.016377 0.003914 0.001773 0.001846

6KB 7KB 8KB 9KB

Figure 26f. Energy radius=2

Energy (radius=4)

0

0.005

0.01

0.015

0.02

0.025

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.018525 0.004871 0.002522 0.002135

angle=45 0.010575 0.002908 0.001354 0.00143

angle=90 0.019759 0.004195 0.00205 0.002004

angle=135 0.009319 0.002503 0.001362 0.001479

6KB 7KB 8KB 9KB

Figure 26g. Energy radius=4

 66

Energy (radius=8)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.00949 0.003076 0.001688 0.00161

angle=45 0.005472 0.001925 0.001093 0.001128

angle=90 0.008794 0.002318 0.001584 0.00161

angle=135 0.00298 0.001413 0.001093 0.001211

6KB 7KB 8KB 9KB

Figure 26h. Energy radius=8

Contrast (angle=0)

0

200

400

600

800

1000

1200

1400

1600

1800

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 287.206499 335.058176 421.489099 430.490462

radius=2 694.423525 764.222363 828.658229 828.584283

radius=4 1017.375335 1049.381853 1118.893393 1117.559954

radius=8 1561.059786 1549.744989 1627.402009 1635.994116

6KB 7KB 8KB 9KB

Figure 27a. Contrast angle=0

 67

Contrast (angle=45)

0

500

1000

1500

2000

2500

3000

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 463.181022 637.520962 746.070934 754.460555

radius=2 1052.68838 1150.560728 1193.276239 1190.998831

radius=4 1526.242166 1617.764163 1671.662376 1678.076945

radius=8 2504.0952 2553.321349 2640.996035 2658.900167

6KB 7KB 8KB 9KB

Figure 27b. Contrast angle=45

Contrast (angle=90)

0

500

1000

1500

2000

2500

3000

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 443.757782 596.336667 645.599904 665.543604

radius=2 921.1234 1027.203492 1064.57107 1094.404224

radius=4 1531.760234 1639.604957 1653.874998 1691.016699

radius=8 2628.423134 2731.525042 2767.371469 2809.856077

6KB 7KB 8KB 9KB

Figure 27c. Contrast angle=90

 68

Contrat (angle=135)

0

500

1000

1500

2000

2500

3000

3500

Image size

C
on

tr
as

t radius=1
radius=2
radius=4
radius=8

radius=1 475.498341 642.325993 758.91571 762.898692

radius=2 1082.482524 1181.905505 1230.543886 1233.883084

radius=4 1603.563894 1695.924199 1754.898011 1773.780747

radius=8 2778.297742 2862.48641 2945.791859 2981.715136

6KB 7KB 8KB 9KB

Figure 27d. Contrast angle=135

Contrast (radius=1)

0

100

200

300

400

500

600

700

800

900

Image size

C
on

tr
as

t angle=0
angle=45
angle=90
angle=135

angle=0 287.206499 335.058176 421.489099 430.490462

angle=45 463.181022 637.520962 746.070934 754.460555

angle=90 443.757782 596.336667 645.599904 665.543604

angle=135 475.498341 642.325993 758.91571 762.898692

6KB 7KB 8KB 9KB

Figure 27e. Contrast radius=1

 69

Contrast (radius=2)

0

200

400

600

800

1000

1200

1400

Image size

C
on

tr
as

t angle=0
angle=45
angle=90
angle=135

angle=0 694.423525 764.222363 828.658229 828.584283

angle=45 1052.68838 1150.560728 1193.276239 1190.998831

angle=90 921.1234 1027.203492 1064.57107 1094.404224

angle=135 1082.482524 1181.905505 1230.543886 1233.883084

6KB 7KB 8KB 9KB

Figure 27f. Contrast radius=2

Contrast (radius=4)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Image size

C
on

tr
as

t angle=0
angle=45
angle=90
angle=135

angle=0 1017.375335 1049.381853 1118.893393 1117.559954

angle=45 1526.242166 1617.764163 1671.662376 1678.076945

angle=90 1531.760234 1639.604957 1653.874998 1691.016699

angle=135 1603.563894 1695.924199 1754.898011 1773.780747

6KB 7KB 8KB 9KB

Figure 27g. Contrast radius=4

 70

Contrast (radius=8)

0

500

1000

1500

2000

2500

3000

3500

Image size

C
on

tr
as

t angle=0
angle=45
angle=90
angle=135

angle=0 1561.059786 1549.744989 1627.402009 1635.994116

angle=45 2504.0952 2553.321349 2640.996035 2658.900167

angle=90 2628.423134 2731.525042 2767.371469 2809.856077

angle=135 2778.297742 2862.48641 2945.791859 2981.715136

6KB 7KB 8KB 9KB

Figure 27h. Contrast radius=8

Entropy (angle=0)

8.5

9

9.5

10

10.5

11

11.5

12

Image size

En
tr

op
y radius=1

radius=2
radius=4
radius=8

radius=1 9.783876 10.789461 11.072739 11.056743

radius=2 10.065986 11.124033 11.336444 11.339262

radius=4 10.341884 11.298388 11.478102 11.482219

radius=8 10.697286 11.385251 11.519159 11.471015

6KB 7KB 8KB 9KB

Figure 28a. Entropy angle=0

 71

Entropy (angle=45)

9.5

10

10.5

11

11.5

12

Image size

En
tr

op
y radius=1

radius=2
radius=4
radius=8

radius=1 10.281809 11.213141 11.457288 11.411438

radius=2 10.620786 11.456754 11.634402 11.575302

radius=4 10.890255 11.566135 11.706951 11.649701

radius=8 10.963454 11.535274 11.653734 11.607474

6KB 7KB 8KB 9KB

Figure 28b. Entropy angle=45

Entropy (angle=90)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y radius=1

radius=2
radius=4
radius=8

radius=1 9.230447 10.625411 10.925911 10.986112

radius=2 9.801897 11.14337 11.414391 11.427129

radius=4 10.479971 11.565541 11.789318 11.7834

radius=8 11.465917 12.216174 12.36948 12.328731

6KB 7KB 8KB 9KB

Figure 28c. Entropy angle=90

 72

Entropy (angle=135)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y radius=1

radius=2
radius=4
radius=8

radius=1 10.391874 11.300219 11.552524 11.514122

radius=2 10.838859 11.647343 11.833408 11.779559

radius=4 11.319291 11.963691 12.123741 12.055369

radius=8 11.849242 12.386319 12.515609 12.451726

6KB 7KB 8KB 9KB

Figure 28d. Entropy angle=135

Entropy (radius=1)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y angle=0

angle=45
angle=4
angle=135

angle=0 9.783876 10.789461 11.072739 11.056743

angle=45 10.281809 11.213141 11.457288 11.411438

angle=4 9.230447 10.625411 10.925911 10.986112

angle=135 10.391874 11.300219 11.552524 11.514122

6KB 7KB 8KB 9KB

Figure 28e. Entropy radius=1

 73

Entropy (radius=2)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y angle=0

angle=45
angle=90
angle=135

angle=0 10.065986 11.124033 11.336444 11.339262

angle=45 10.620786 11.456754 11.634402 11.575302

angle=90 9.801897 11.14337 11.414391 11.427129

angle=135 10.838859 11.647343 11.833408 11.779559

6KB 7KB 8KB 9KB

Figure 28f. Entropy radius=2

Entropy (radius=4)

9

9.5

10

10.5

11

11.5

12

12.5

Image size

En
tr

op
y angle=0

angle=45
angle=90
angle=135

angle=0 10.341884 11.298388 11.478102 11.482219

angle=45 10.890255 11.566135 11.706951 11.649701

angle=90 10.479971 11.565541 11.789318 11.7834

angle=135 11.319291 11.963691 12.123741 12.055369

6KB 7KB 8KB 9KB

Figure 28g. Entropy radius=4

 74

Entropy (radius=8)

9.5

10

10.5

11

11.5

12

12.5

13

Image size

En
tr

op
y angle=0

angle=45
angle=90
angle=135

angle=0 10.697286 11.385251 11.519159 11.471015

angle=45 10.963454 11.535274 11.653734 11.607474

angle=90 11.465917 12.216174 12.36948 12.328731

angle=135 11.849242 12.386319 12.515609 12.451726

6KB 7KB 8KB 9KB

Figure 28h. Entropy radius=8

Homogeneity (angle=0)

0

0.1

0.2

0.3

0.4

0.5

0.6

Image size

H
om

og
en

ei
ty radius=1

radius=2
radius=4
radius=8

radius=1 0.510128 0.464195 0.420977 0.410885

radius=2 0.441217 0.387998 0.354863 0.335974

radius=4 0.381935 0.326618 0.292997 0.268608

radius=8 0.283164 0.226056 0.195653 0.205251

6KB 7KB 8KB 9KB

Figure 29a. Homogeneity angle=0

 75

Homogeneity (angle=45)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iamge size

H
om

og
en

ei
ty radius=1

radius=2
radius=4
radius=8

radius=1 0.2892 0.244366 0.234125 0.241451

radius=2 0.221683 0.189758 0.180653 0.198746

radius=4 0.178823 0.166107 0.144582 0.157295

radius=8 0.135835 0.131247 0.106359 0.118563

6KB 7KB 8KB 9KB

Figure 29b. Homogeneity angle=45

Homogeneity (angle=90)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Image size

H
om

og
en

ei
ty radius=1

radius=2
radius=4
radius=8

radius=1 0.790542 0.451566 0.415467 0.394092

radius=2 0.678564 0.347361 0.321483 0.305335

radius=4 0.551872 0.29527 0.258164 0.234682

radius=8 0.30041 0.187681 0.164257 0.176214

6KB 7KB 8KB 9KB

Figure 29c. Homogeneity angle=90

 76

Homogeneity (angle=135)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Image size

H
om

og
en

ei
ty radius=1

radius=2
radius=4
radius=8

radius=1 0.285888 0.247777 0.235528 0.239714

radius=2 0.21717 0.18922 0.183591 0.19612

radius=4 0.172967 0.155629 0.143635 0.154013

radius=8 0.096075 0.107561 0.105065 0.115594

6KB 7KB 8KB 9KB

Figure 29d. Homogeneity angle=135

Homogeneity (radius=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Image size

H
om

og
en

ei
ty angle=0

angle=45
angle=90
angle=135

angle=0 0.510128 0.464195 0.420977 0.410885

angle=45 0.2892 0.244366 0.234125 0.241451

angle=90 0.790542 0.451566 0.415467 0.394092

angle=135 0.285888 0.247777 0.235528 0.239714

6KB 7KB 8KB 9KB

Figure 29e. Homogeneity radius=1

 77

Homogeneity (radius=2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Image size

H
om

og
en

ei
ty angle=0

angl45
angle=90
angle=135

angle=0 0.441217 0.387998 0.354863 0.335974

angl45 0.221683 0.189758 0.180653 0.198746

angle=90 0.678564 0.347361 0.321483 0.305335

angle=135 0.21717 0.18922 0.183591 0.19612

6KB 7KB 8KB 9KB

Figure 29f. Homogeneity radius=2

Homogeneity (radius=4)

0

0.1

0.2

0.3

0.4

0.5

0.6

Iamge size

H
om

og
en

ei
ty angle=0

angle=45
angle=90
angle=135

angle=0 0.381935 0.326618 0.292997 0.268608

angle=45 0.178823 0.166107 0.144582 0.157295

angle=90 0.551872 0.29527 0.258164 0.234682

angle=135 0.172967 0.155629 0.143635 0.154013

6KB 7KB 8KB 9KB

Figure 29g. Homogeneity radius=4

 78

Homogeneity (radius=8)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Image size

H
om

og
en

ei
ty angle=0

angel=45
angle=90
angle=135

angle=0 0.283164 0.226056 0.195653 0.205251

angel=45 0.135835 0.131247 0.106359 0.118563

angle=90 0.30041 0.187681 0.164257 0.176214

angle=135 0.096075 0.107561 0.105065 0.115594

6KB 7KB 8KB 9KB

Figure 29h. Homogeneity radius=8

The analysis of all the 32 graphs shows that the expected trend is not observed for

all the combinations of radius and angle. For instance, the homogeneity curve for 135°

for all values of radius shows a change in the sign of first derivative. However there

exists at least one single combination (in this case 2 and 90°) when all the textural

parameters follow the desired trend. So the best way to analyze would be considering all

the relevant combinations of radius and angle, and plotting the curves of textural features.

 79

CHAPTER 5 OPTIMIZATION TECHNIQUES

Normally a typical GLCM would be a sparse matrix containing a few number of

non-zero elements. Calculating GLCM is computationally intensive due to the

humungous sizes of matrix involved. It leads to unnecessary calculations involving zero

probabilities. Various optimization techniques have been proposed to overcome this

problem and are discussed ahead in detail.

5.1 Gray level quantization

 The number of gray levels is an important factor in the computation of GLCM as

the dimensions of matrix equals the number of gray levels. The fewer the number of gray

levels, faster would be the computation. The crucial decision is to decide how many

levels are needed to represent a texture successfully. Some of the major quantization

schemes are uniform quantization, Gaussian quantization and equal probability

quantization. The uniform quantization scheme is the simplest in which gray levels are

quantized into separate bins with uniform tolerance limits with no regard to the gray level

distribution of the image. The Gaussian quantization technique finely quantizes a

particular range of gray levels which might occur more frequently than others. In the

equal probability quantization scheme, each bin has similar probability and it has been

shown to represent accurate representation of the original image in terms of textural

features based on GLCM [Conn78].

 80

5.2 Windowing Technique

This method directly calculates the co-occurrence matrix parameters from the

image and is slightly mathematically intensive [Arge90]. It is based on the fact that

windows relative to adjacent pixels are mostly overlapping, so the features related to a

pixel can be obtained by updating values already calculated. Consider w(m, n) to be

window relative to pixel (k, l) and w1(m, n) to be relative to pixel (k+1, l). Most

occurrences of pixels separated by displacement δ in w can also be found in w1. The co-

occurrence matrix relative to w1 is obtained by updating w. For instance, if δ = 1 and θ =

135°, g(i, j) corresponding to w1 is obtained by decrementing by one the entries of g(i, j)

corresponding to w, due to the pairs on the left hand side and incrementing by one due to

the pairs on the right hand column. This algorithm is twice as fast as classical methods.

5.3 Gray level Co-occurrence link list (GLCLL)

Storing GLCM in a linked list can considerably reduce computation time

[Zhao01]. A GLCLL stores only the non-zero co-occurring probabilities. A linked list is a

data structure that allows rapid access from node to node using pointers. Each node of the

GLCLL would consist of a pointer to the previous node, information node containing the

co-occurring pair (i, j) and it’s probability and a pointer to the next node. Hence, double

summations over the entire GLCM are avoided and only single summations over the

length of the linked list are required. Since the linked list length L is much smaller than

the matrix size Ng x Ng, tremendous gains are achieved. The list needs to be kept sorted

according to gray level pairs (i, j) for rapid searching of a co-occurring pair which

compromises the efficiency of GLCLL. If the co-occurring pair is represented on the

 81

linked list, its probability value is updated. If the pair is not represented, then a node is

inserted and initialized at the proper location in the list. Without a sorted list, it would be

necessary to search the entire list for a particular gray level pair, which would be more

time consuming. The major advantage of this technique is reduction in computational

demands as compared to GLCM, although it results in additional computational overhead

to sort the list.

5.4 Gray level co-occurrence hybrid structure (GLCHS)

GLCHS is based on an integrated hash table and linked list approach. It is faster

as compared to GLCM as well as GLCLL [Zhao02]. The listnode structure defines two

integer members to store the gray level pairs and two self-referential pointers to access

previous and next listnode. In the hash table structure, one float member stores the gray-

level co-occurrence probability and the other stores the linked list pointer. The hash table

is dimensioned to the lower triangle size. Access to the hash table is provided using (i, j)

as a unique key. Each entry in the hash table contains a pointer. A null pointer indicates

that a particular co-occurring pair (i, j) does not have a representative node.

Consequently, a new node would be created, inserted at the end of the linked list and its

gray level values would be set. If the pointer is not null, then the probability of the

existing corresponding node on the linked list is incremented. The GLCHS is built in the

order in which the co-occurring pairs are encountered. The hash table allows rapid access

to an (i, j) pair and the linked list provides a fast means to apply the statistics. The two

main advantages are that there is no need of sorted linked list which allows easier

addition, deletion and modification of probability associated with a node and lower

 82

computation time as compared to GLCLL. However it results in increased complexity in

implementation due to a two dimensional hash table with longer linked list.

 83

CONCLUSION AND FUTURE WORK

 The research work attempted to investigate the use of GLCM textural parameters

as an image quality metric. The proposed method discussed the relevance of radius and

angle which happen to be the most crucial input parameters in GLCM processing. It can

be concluded that the most appropriate value of radius for analysis would be one as

closely spaced pixels are more likely to be correlated than those which are spaced far

away. The radius which must be used in computing the GLCM may be obtained from the

autocorrelation function of the image. The radius value at which the normalized

autocorrelation function of the image becomes too small can serve as an upper bound on

the value which may be used for computing the GLCM. No definite conclusion can be

drawn regarding the value of angle. For most of the studies, it might be appropriate to

calculate the textural parameters for all the four values of angle and use the average

value. Thus GLCM happens to be a good discriminator in studying different images

however no such claim can be made for image quality. The analysis of the results shows

that the nature of the curve of textural parameter versus image size may not always

follow a specific trend for chosen values of radius and angle. Performing exhaustive

processing for all possible radius and angle values could be considered as an option and

then choosing the most appropriate set of graphs. This however reduces the chances of

automating the entire process. Hence the search for the best image quality metric

continues.

 84

Future research will include datasets that represent texture classes that differ more

subtlely. Furthermore, it will be interesting to establish whether this finding holds true for

computer generated images as well.

 85

APPENDIX: C/OPENGL CODE

 86

1) main.cpp: This file is used to loading the image and setting the opengl parameters.

// This is a compiler directive that includes libraries (For Visual Studio)

#pragma comment(lib, "opengl32.lib")

#pragma comment(lib, "glu32.lib")

#pragma comment(lib, "jpeg.lib")

#include "main.h"

#include "assert.h"

#include <math.h>

bool g_bFullScreen = TRUE; // Set full screen as default

HWND g_hWnd; // This is the handle for the window

RECT g_rRect; // This holds the window dimensions

HDC g_hDC; // General HDC - (handle to device context)

HGLRC g_hRC; //General OpenGL_DC - Our Rendering Context for OpenGL

HINSTANCE g_hInstance; // Holds the global hInstance for UnregisterClass() in DeInit()

UINT g_Texture[MAX_TEXTURES];

 // This will reference to our texture data stored with OpenGL UINT is an unsigned

int (only positive numbers)

void Init(HWND hWnd)

{

 g_hWnd = hWnd; // Assign the window handle to a global window handle

GetClientRect(g_hWnd, &g_rRect); // Assign the windows rectangle to a global RECT

InitializeOpenGL(g_rRect.right, g_rRect.bottom); // Init OpenGL with the global rect

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *

 87

/******** Load "Image.jpg" into OpenGL as a texture********************/

CreateTexture(g_Texture, "C:\\clarke\\harshal\\dataset1\\studentunion30.jpg", 0);

}

///////////////////////////////// MAIN GAME LOOP *

WPARAM MainLoop()

{

 MSG msg;

 while(1) // Do our infinite loop

 { // Check if there was a message

 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

 {

 if(msg.message == WM_QUIT) // If the message wasnt to quit

 break;

 TranslateMessage(&msg); // Find out what the message does

 DispatchMessage(&msg); // Execute the message

 }

 else // if there wasn't a message

 {

 RenderScene(); // Redraw the scene every frame

 }

 }

 DeInit(); // Free all the app's memory allocated

 return(msg.wParam); // Return from the program

 88

}

// This function renders the entire scene.

void RenderScene()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The

Screen And The Depth Buffer

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix

 glLoadIdentity(); // Reset The Projection Matrix

 glOrtho(-1,1,-1,1,-1,1);

 glMatrixMode(GL_MODELVIEW); // Reset The matrix

 // Position View Up Vector

 // Bind the texture stored at the zero index of g_Texture[]

 glBindTexture(GL_TEXTURE_2D, g_Texture[0]);

 glBegin(GL_QUADS); // Display a quad texture to the screen

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0, 1.0, 0); // Display the top left vertice

glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0, -1.0, 0); // Display the bottom left vertice

glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0, -1.0, 0); // Display the bottom right vertice

glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0, 1.0, 0); // Display the top right vertice

glEnd(); // Stop drawing QUADS

 SwapBuffers(g_hDC); // Swap the backbuffers to the foreground

}

// This function handles the window messages.

 89

LRESULT CALLBACK WinProc(HWND hWnd,UINT uMsg, WPARAM wParam,

LPARAM lParam)

{

 LONG lRet = 0;

 PAINTSTRUCT ps;

 switch (uMsg)

 {

 case WM_SIZE: // If the window is resized

 if(!g_bFullScreen) // Do this only if we are NOT in full screen

 {

SizeOpenGLScreen(LOWORD(lParam),HIWORD(lParam)); //LoWord=Width,

HiWord=Height

GetClientRect(hWnd, &g_rRect); // Get the window rectangle

 }

 break;

 case WM_PAINT: // If we need to repaint the scene

 BeginPaint(hWnd, &ps); // Init the paint struct

 EndPaint(hWnd, &ps); // EndPaint, Clean up

 break;

case WM_KEYDOWN:

 switch(wParam) { // Check if we hit a key

 case VK_ESCAPE: // If we hit the escape key

 PostQuitMessage(0); // Send a QUIT message to the window

 90

 break;

 }

 break;

 case WM_CLOSE: // If the window is being closes

 PostQuitMessage(0); // Send a QUIT Message to the window

 break;

 default: // Return by default

 lRet = DefWindowProc (hWnd, uMsg, wParam, lParam);

 break;

 }

 return lRet; // Return by default

}

2) init.cpp: This file contains the code for GLCM processing and calculation of

textural parameters.

#include "main.h"

// This decodes the jpeg and fills in the tImageJPG structure

void DecodeJPG(jpeg_decompress_struct* cinfo, tImageJPG *pImageData)

{ // Read in the header of the jpeg file

jpeg_read_header(cinfo, TRUE); // Start to decompress the jpeg file

jpeg_start_decompress(cinfo);

 // Get the image dimensions and row span to read in the pixel data

 pImageData->rowSpan = cinfo->image_width * cinfo->num_components;

 pImageData->sizeX = cinfo->image_width;

 91

 pImageData->sizeY = cinfo->image_height;

 // Allocate memory for the pixel buffer

pImageData->data = new unsigned char[pImageData->rowSpan * pImageData->sizeY];

// Here we use the library's state variable cinfo.output_scanline as the

// loop counter, so that we don't have to keep track ourselves.

// Create an array of row pointers

 unsigned char** rowPtr = new unsigned char*[pImageData->sizeY];

 for (int i = 0; i < pImageData->sizeY; i++)

 rowPtr[i] = &(pImageData->data[i*pImageData->rowSpan]);

 // Now comes the juice of our work, here we extract all the pixel data

 int rowsRead = 0;

 while (cinfo->output_scanline < cinfo->output_height)

 { // Read in the current row of pixels and increase the rowsRead count

rowsRead += jpeg_read_scanlines(cinfo, &rowPtr[rowsRead], cinfo->output_height -

rowsRead);

 }

delete [] rowPtr; // Delete the temporary row pointers

jpeg_finish_decompress(cinfo); // Finish decompressing the data

}

// This loads the JPG file and returns it's data in a tImageJPG struct

tImageJPG *LoadJPG(const char *filename)

{

 struct jpeg_decompress_struct cinfo;

 92

 tImageJPG *pImageData = NULL;

FILE *pFile; // Open a file pointer to the jpeg file and check if it was found and opened

 if((pFile = fopen(filename, "rb")) == NULL)

 { // Display an error message saying the file was not found, then return NULL

 MessageBox(g_hWnd, "Unable to load JPG File!", "Error", MB_OK);

 return NULL;

 }

 jpeg_error_mgr jerr; // Create an error handler

 // Have our compression info object point to the error handler address

 cinfo.err = jpeg_std_error(&jerr);

 jpeg_create_decompress(&cinfo); // Initialize the decompression object

 jpeg_stdio_src(&cinfo, pFile); // Specify the data source (Our file pointer)

 // Allocate the structure that will hold our eventual jpeg data (must free it!)

 pImageData = (tImageJPG*)malloc(sizeof(tImageJPG));

 // Decode the jpeg file and fill in the image data structure to pass back

 DecodeJPG(&cinfo, pImageData);

 // This releases all the stored memory for reading and decoding the jpeg

 jpeg_destroy_decompress(&cinfo);

 fclose(pFile); // Close the file pointer that opened the file

 return pImageData; // Return the jpeg data

}

// This creates a texture in OpenGL that we can use as a texture map

 93

void CreateTexture(UINT textureArray[], LPSTR strFileName, int textureID)

{

 if(!strFileName) // Return from the function if no file name was passed in

 return;

tImageJPG *pImage = LoadJPG(strFileName); //GET PIXEL INFO OF JPEG IN pImage

FILE *target, *source; int i,j,k; unsigned char * gray;

gray = (unsigned char *) malloc (pImage->sizeX * pImage->sizeY);

target = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\grayinfo.xls","w");

fprintf(target,"width=%d,\t height=%d rowspan=%d\n",pImage->sizeX, pImage->sizeY,

pImage->rowSpan);

short signed int radiusrow, radiuscol, radius, angle, width, height;

int x, y, graylevels, xstretch, ystretch, row, col; //*image,

float tempf;//, energy_nor, homogeneity_nor, inertia_nor, entropy_nor;

float *glcm, *buff, no_of_pairs, counter=0.0;

double entropy, inertia, homogeneity, energy;

angle = 0; // SET INPUT PARAMETERS

radius = 1; height = pImage->sizeY; width = pImage->sizeX;

switch(angle)

 {

 case 0:

 radiusrow = 0; radiuscol = radius;

 no_of_pairs = (float)(width-radius) * height;

 break;

 94

 case 180:

 radiusrow = 0; radiuscol = radius;

 no_of_pairs = (float)(width-radius) * height;

 break;

case 45:

 radiusrow = 0-radius; radiuscol = radius;

 no_of_pairs = (float)(height-radius) * (width-radius);

 break;

 case 225:

 radiusrow = 0-radius; radiuscol = radius;

 no_of_pairs = (float)(height-radius) * (width-radius);

 break;

 case 90:

 radiusrow = radius; radiuscol = 0;

 no_of_pairs = (float)(height-radius) * width;

 break;

 case 270:

 radiusrow = radius; radiuscol = 0;

 no_of_pairs = (float)(height-radius) * width;

 break;

 case 135:

 radiusrow = 0 - radius; radiuscol = 0 - radius;

 no_of_pairs = (float)(height-radius) * (width-radius);

 95

 break;

 case 315:

 radiusrow = 0 - radius; radiuscol = 0 - radius;

 no_of_pairs = (float)(height-radius) * (width-radius);

 break;

 }

 for(i=0; i<pImage->sizeY; i++)

 {

 for(k=0,j=0; k<pImage->rowSpan/3; k++, j=j+3)

 {

* (gray+i*pImage->sizeX+k) = (pImage->data[(i*pImage->rowSpan)+j] + pImage-

>data[(i*pImage->rowSpan)+j+1] + pImage->data[(i*pImage->rowSpan)+j+2]) / 3;

 fprintf(target,"%d\t", *(gray+i*pImage->sizeX+k));

 }

 fprintf(target,"\n");

 }

 fclose(target);

 xstretch = ystretch = graylevels = 256;

 glcm = (float *) malloc (8*graylevels * graylevels);

 buff = (float *) malloc (8*graylevels * graylevels);

 for(x=0; x<xstretch; x++) //CLEARING BUFF AND GLCM MATRICES

 {

 for(y=0; y<ystretch; y++)

 96

 {

 *(buff+x+y*xstretch) = 0; *(glcm+x+y*xstretch) = 0;

 }

 }

for(row=0; row<xstretch ; row++)

 {

 for(col=row; col<ystretch; col++)

 {

 counter = 0.0;

 for(x=0; x<height ; x++)

 {

 for(y=0; y<width; y++)

 {

if((x+radiusrow)<0 || (x+radiusrow)>=width || (y+radiuscol)<0 || (y+radiuscol)>=height)

//BOUNDARY CONDITION

 {

 }

 else

 {

if(*(gray+x*width+y) == row && *(gray+((x+radiusrow)*width)+(y+radiuscol)) == col

|| *(gray+x*width+y) == col && *(gray+((x+radiusrow)*width)+(y+radiuscol)) == row)

 {

 counter++;

 97

 }

 }

 }

 }

 if(row==col) *(buff+row*xstretch+col) = 2*counter;

 else *(buff+row*xstretch+col) = counter;

 counter = 0.0;

 }

 }

for(row=0; row<xstretch ; row++) //FILL LOWER TRIANGLE OF GLCM

 {

 for(col=0; col<row; col++)

 {

 *(buff+row*xstretch+col) = *(buff+col*xstretch+row);

 }

 }

target = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\glcm.xls","w");

 for(i=0; i<ystretch; i++)

 {

 for(j=0; j<xstretch; j++)

 {

 *(glcm+i*xstretch+j) = ((*(buff+i*xstretch+j))/no_of_pairs);

 fprintf(target,"%f\t", *(buff+i*xstretch+j));

 98

 }

 fprintf(target,"\n");

 }

 fclose(target);

energy = 0.0; //ENERGY COMPUTATION

for(x=0; x<xstretch; x++)

 {

 for(y=0; y<ystretch; y++)

 {

 energy = energy + pow(*(glcm+x+y*xstretch),2);

 }

 }

inertia = 0.0; //INERTIA/CONTRAST COMPUTATION

for(x=0; x<xstretch; x++)

 {

 for(y=0; y<ystretch; y++)

 {

 inertia = inertia + (pow((x-y),2) * (*(glcm+x+y*xstretch)));

 }

 }

double tempdouble = 0.0; //ENTROPY COMPUTATION

entropy = 0.0;

 for(x=0; x<xstretch; x++)

 99

 {

 for(y=0; y<ystretch; y++)

 {

 if(*(glcm+x+y*xstretch) != 0.0)

 {

 tempdouble = (double)*(glcm+x+y*xstretch);

 tempdouble = log(tempdouble) * tempdouble;

 entropy = entropy + tempdouble;

 tempdouble = 0.0;

 }

 }

 }

 entropy = 0 - entropy;

tempf = 0.0; // HOMOGENEITY COMPUTATION

homogeneity = 0.0;

 for(x=0; x<xstretch; x++)

 {

 for(y=0; y<ystretch; y++)

 {

 tempdouble = pow((x-y),2) + 1;

 tempdouble = 1 / tempdouble;

 tempdouble = tempdouble * (*(glcm+x+y*xstretch));

 homogeneity = homogeneity + tempdouble;

 100

 tempdouble = 0.0;

 }

 }

source = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\glcminfo.txt",

"w");

fprintf(source, "\n\n ENERGY = %lf \n INERTIA/CONTRAST = %lf \n ENTROPY =

%lf \n HOMOGENEITY = %lf", energy, inertia, entropy, homogeneity);

fclose(source);

fclose(target);

if(pImage == NULL) // If we can't load the file, quit!

 exit(0);

glGenTextures(1, &textureArray[textureID]); // Generate a texture with the associative

texture ID stored in the array

// Bind the texture to the texture arrays index and init the texture

glBindTexture(GL_TEXTURE_2D, textureArray[textureID]);

// Build Mipmaps (builds different versions of the picture for distances - looks better)

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, pImage->sizeX, pImage->sizeY, GL_RGB,

GL_UNSIGNED_BYTE, pImage->data);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MI

PMAP_NEAREST);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MI

PMAP_LINEAR);

// Now we need to free the image data that we loaded since OpenGL stored it as a texture

 101

if (pImage) // If we loaded the image

 {

 if (pImage->data) // If there is texture data

 {

 free(pImage->data); // Free the texture data, we don't need it anymore

 }

 free(pImage); // Free the image structure

 }

}

// This changes the screen to FULL SCREEN

void ChangeToFullScreen()

{

 DEVMODE dmSettings; // Device Mode variable

memset(&dmSettings,0,sizeof(dmSettings)); // Makes Sure Memory's Cleared

// Get current settings -- This function fills our the settings

// This makes sure NT and Win98 machines change correctly

if(!EnumDisplaySettings(NULL,ENUM_CURRENT_SETTINGS,&dmSettings))

 { // Display error message if we couldn't get display settings

 MessageBox(NULL, "Could Not Enum Display Settings", "Error",

MB_OK);

 return;

 }

dmSettings.dmPelsWidth = SCREEN_WIDTH; // Selected Screen Width

 102

dmSettings.dmPelsHeight = SCREEN_HEIGHT;// Selected Screen Height

 // This function actually changes the screen to full screen

 // CDS_FULLSCREEN Gets Rid Of Start Bar.

 // We always want to get a result from this function to check if we failed

 int result = ChangeDisplaySettings(&dmSettings,CDS_FULLSCREEN);

 // Check if we didn't recieved a good return message From the function

 if(result != DISP_CHANGE_SUCCESSFUL)

 { // Display the error message and quit the program

 MessageBox(NULL, "Display Mode Not Compatible", "Error", MB_OK);

 PostQuitMessage(0);

 }

}

// This function creates a window, but doesn't have a message loop

HWND CreateMyWindow(LPSTR strWindowName, int width, int height, DWORD

dwStyle, bool bFullScreen, HINSTANCE hInstance)

{

 HWND hWnd;

 WNDCLASS wndclass;

memset(&wndclass, 0, sizeof(WNDCLASS)); // Init the size of the class

wndclass.style = CS_HREDRAW | CS_VREDRAW; // Regular drawing capabilities

wndclass.lpfnWndProc = WinProc; // Pass our function pointer as the window procedure

wndclass.hInstance = hInstance; // Assign our hInstance

wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // General icon

 103

wndclass.hCursor = LoadCursor(NULL, IDC_ARROW); // An arrow for the cursor

wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW+1); // A white window

wndclass.lpszClassName = "GameTutorials"; // Assign the class name

RegisterClass(&wndclass); // Register the class

 if(bFullScreen && !dwStyle) // Check if we wanted full screen mode

 { // Set the window properties for full screen mode

 dwStyle = WS_POPUP | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;

 ChangeToFullScreen(); // Go to full screen

 ShowCursor(FALSE); // Hide the cursor

 }

 else if(!dwStyle) // Assign styles to the window depending on the choice

dwStyle = WS_OVERLAPPEDWINDOW | WS_CLIPSIBLINGS |

WS_CLIPCHILDREN;

 g_hInstance = hInstance;// Assign our global hInstance to the window's hInstance

 RECT rWindow;

rWindow.left = 0; // Set Left Value To 0

 rWindow.right = width; // Set Right Value To Requested Width

 rWindow.top = 0; // Set Top Value To 0

 rWindow.bottom = height; // Set Bottom Value To Requested Height

AdjustWindowRect(&rWindow, dwStyle, false); // Adjust Window To True Requested

Size

// Create the window

hWnd = CreateWindow("GameTutorials", strWindowName, dwStyle, 0, 0,

 104

rWindow.right - rWindow.left, rWindow.bottom - rWindow.top, NULL, NULL,

hInstance, NULL);

if(!hWnd) return NULL; // If we could get a handle, return NULL

ShowWindow(hWnd, SW_SHOWNORMAL); // Show the window

 UpdateWindow(hWnd); // Draw the window

 SetFocus(hWnd); // Sets Keyboard Focus To The Window

 return hWnd;

}

// This function sets the pixel format for OpenGL.

bool bSetupPixelFormat(HDC hdc)

{

 PIXELFORMATDESCRIPTOR pfd;

 int pixelformat;

 pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);// Set the size of the structure

 pfd.nVersion = 1; // Always set this to 1

// Pass in the appropriate OpenGL flags

pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |

PFD_DOUBLEBUFFER;

pfd.dwLayerMask = PFD_MAIN_PLANE;// We want the standard mask

pfd.iPixelType = PFD_TYPE_RGBA; // We want RGB and Alpha pixel type

pfd.cColorBits = SCREEN_DEPTH;// Here we use our #define for the color bits

pfd.cDepthBits = SCREEN_DEPTH;// Depthbits is ignored for RGBA

pfd.cAccumBits = 0; // No special bitplanes needed

 105

pfd.cStencilBits = 0; // We desire no stencil bits

// This gets us a pixel format that best matches the one passed in from the device

 if ((pixelformat = ChoosePixelFormat(hdc, &pfd)) == FALSE)

 {

 MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);

 return FALSE;

 }

 // This sets the pixel format that we extracted from above

 if (SetPixelFormat(hdc, pixelformat, &pfd) == FALSE)

 {

 MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);

 return FALSE;

 }

 return TRUE; // Return a success!

}

// This function resizes the viewport for OpenGL.

void SizeOpenGLScreen(int width, int height) // Initialize The GL Window

{

 if (height==0) // Prevent A Divide By Zero error

 {

 height=1; // Make the Height Equal One

 }

 glViewport(0,0,width,height); // Make our viewport the whole window

 106

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix

 glLoadIdentity(); // Reset The Projection Matrix

 // Calculate The Aspect Ratio Of The Window

 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height, .5f ,150.0f);

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix

 glLoadIdentity(); // Reset The Modelview Matrix

}

// This function handles all the initialization for OpenGL.

void InitializeOpenGL(int width, int height)

{

 g_hDC = GetDC(g_hWnd); // This sets our global HDC

 if (!bSetupPixelFormat(g_hDC)) // This sets our pixel format/information

 PostQuitMessage (0); // If there's an error, quit

 g_hRC = wglCreateContext(g_hDC);// This creates a rendering context from our hdc

 wglMakeCurrent(g_hDC, g_hRC);// This makes the rendering context we just created

 // This allows us to use texture mapping, otherwise we just use colors.

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping

SizeOpenGLScreen(width, height); // Setup the screen translations and viewport

 }

// This function cleans up and then posts a quit message to the window

void DeInit()

{

 107

 if (g_hRC)

 {

 wglMakeCurrent(NULL, NULL);

 // This frees our rendering memory and sets everything back to normal

 wglDeleteContext(g_hRC); // Delete our OpenGL Rendering Context

 }

 if (g_hDC)

 ReleaseDC(g_hWnd, g_hDC); // Release our HDC from memory

 if(g_bFullScreen) // If we were in full screen

 {

 ChangeDisplaySettings(NULL,0);// If So Switch Back To The Desktop

 ShowCursor(TRUE); // Show Mouse Pointer

 }

UnregisterClass("GameTutorials", g_hInstance); // Free the window class

 PostQuitMessage (0); // Post a QUIT message to the window

}

// This function handles registering and creating the window.

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hprev, PSTR cmdline, int

ishow)

{

 HWND hWnd; // Check if we want full screen or not

 if(MessageBox(NULL, "Click Yes to go to full screen (Recommended)",

"Options", MB_YESNO | MB_ICONQUESTION) == IDNO)

 108

 g_bFullScreen = false;

 // Create our window with our function we create that passes in the:

 // Name, width, height, any flags for the window, if we want fullscreen of not, and

the hInstance

 hWnd = CreateMyWindow("Texture Mapping JPEGs", SCREEN_WIDTH,

SCREEN_HEIGHT, 0, g_bFullScreen, hInstance);

 // If we never got a valid window handle, quit the program

 if(hWnd == NULL) return TRUE;

 Init(hWnd); // INIT OpenGL

 // Run our message loop and after it's done, return the result

 return MainLoop();

}

 109

REFERENCES

[Eski00] A. M. Eskicioglu, “Quality measurement for monochrome compressed

images in the past 25 years”, Acoustics, Speech and Signal Processing,

IEEE International Conference, Volume 6, June 2000.

[Wang02] Zhou Wang, Bovik A. C. and Ligang Lu, “Why is image quality

assessment so difficult?”, Acoustics, Speech and Signal Processing, IEEE

International Conference, Volume 4, May 2002.

[Joon01] Joonmi Oh, Sandra I. Woollley, Theodoros N. Arvanitis and John N.

Townend “A Multistage Perceptual Quality Assessment for Compressed

Digital Angiogram Images”, IEEE Transactions on Medical Imaging, Vol.

20, No. 12, December 2001

[Gonz02] R. C. Gonzalez and R. E. .Woods, “Digital Image Processing”, Second

Edition 2002

[Rose01] C. Rosenberger and C. Cariou, “Contribution to Texture Analysis”, In

Proc. International Conference on Quality Control by Artificial Vision,vol.

1, pp. 122-126, Le Creuzot, 2001

[Hara73] R. M. Haralick, K. Shanmugam and I. Dinstein “Textural features for

Image Classification”, IEEE Transactions on Systems, Man and

Cybernetics, Vol.3, pp. 610-621, November 1973

[Clau02] David A. Clausi, “An analysis of co-occurrence texture statistics as a

function of gray level quantization”, Can. J. Remote Sensing, Vol. 28, No.

1, pp. 45-62, 2002

 110

[Bara95] Baraldi Andrea and Parmigianni Flavio, “An Investigation of the Textural

Characteristics associated with gray level co-occurrence matrix statistical

parameters”, IEEE Transactions on Geoscience and Remote Sensing, vol.

33, No. 2, March 1995.

[Hadd93] J. F. Haddon and J. F. Boyce, “Co-occurrence matrices for Image

Analysis”, IEE Electronics & Communication Engineering Journal,

Volume 5, Issue 2, April 1993, Pages 71 – 83

[Kova96] V. Kovalev and M. Petrou, “Multidimensional Co-occurrence matrices for

object recognition and matching”, Graphical models and image

processing, vol. 58, No. 3, May 1996, article no. 0016

[Soh99] L. Soh and C. Tsatsoulis, “Texture Analysis of SAR Sea Ice Imagery

using gray level co-occurrence matrices”, IEEE transactions on

Geoscience and Remote Sensing, Vol. 37, No. 2, March 1999

[Lohm95] G. Lohmann, “Analysis and Synthesis of Textures: A Co-occurrence

based approach”, Computer and Graphics, Vol. 19, No. 1, pp. 29 – 36,

1995

[Palm03] C. Palm, “Color Texture Classification by integrative co-occurrence

matrices”, Pattern Recognition, September 2003.

[Coop04] G. R. J. Cooper, “The textural analysis of gravity data using co-occurrence

matrices”, Computers and Geosciences 30 (2004) 107 – 115

[Lati00] A. Latif-Amet, A. Ertuzun, A. Ercil, “An efficient method for texture

defect detection: sub-band domain co-occurrence matrices”, Image and

Vision Computing 18 (2000) 543 – 553

 111

[Arge90] F. Argenti, L. Alparone and G. Benelli, “Fast Algorithms for texture

analysis using co-occurrence matrices”, IEE Proceedings, Vo. 137, No. 6,

December 1990.

[Clau98] D. A. Clausi and M. E. Jernigan, “A fast method to determine co-

occurrence texture features”, IEEE Transactions on Geoscience and

Remote Sensing 36 (1), 298-300, January 1998

[Zhao01] Yongping Zhao and David A. Clausi, “Rapid Determination of Co-

occurrence Texture Features”, Geoscience and Remote Sensing

Symposium, 2001. IGARSS '01. IEEE 2001 International ,Volume: 4 , 9-

13 July 2001 Pages:1880 - 1882 vol.4 IEEE 2001

[Zhao02] Yongping Zhao and David A. Clausi, “Rapid extraction of image texture

by co-occurrence using a hybrid data structure”, Computers and

Geoscicences 28 (2002) 763-774

[Conn78] R. W. Conners and C. A. Harlow, “Equal probability quantizing and

texture analysis of radiographic images”, Computer Graphics Image

Processing, Vol. 8, pp. 447 – 463, 1978.

[Daly93] S. Daly, “The visible differences predictor: an algorithm for the

assessment of image fidelity”, in Digital Images and Human Vision, A. B.

Watson, Ed., pp. 179-206, MIT Press, Cambridge 1993.

[Karu96] S. A. Karunasekera and N. G. Kingsbury, “A distortion measure for

blocking artifacts in images based on human visual sensitivity”, Visual

Communications and Image Processing, Proc. SPIE 2094, 474-486 1996

 112

 113

[Dung98] Le Phu Dung, Srinivasan Bala, Mohammed Salahadin, Kulkarni Santosh

and Wilson Campbell, “A Measure for Image Quality”, Proceedings of

1998 ACM Symposium on Applied Computing, 513 – 519, 1998

[Irfa04] http://www.irfanview.com/

	Image Quality Analysis Using GLCM
	STARS Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 - INTRODUCTION
	CHAPTER 2 - GLCM BACKGROUND
	CHAPTER 3 - VARIOUS APPLICATIONS OF GLCM
	CHAPTER 4 EXPERIMENTATION
	CHAPTER 5 OPTIMIZATION TECHNIQUES
	CONCLUSION AND FUTURE WORK
	REFERENCES

