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ABSTRACT 
 

Gray level co-occurrence matrix has proven to be a powerful basis for use in texture 

classification. Various textural parameters calculated from the gray level co-occurrence matrix 

help understand the details about the overall image content. 

The aim of this research is to investigate the use of the gray level co-occurrence matrix 

technique as an absolute image quality metric. The underlying hypothesis is that image quality 

can be determined by a comparative process in which a sequence of images is compared to each 

other to determine the point of diminishing returns. An attempt is made to study whether the 

curve of image textural features versus image memory sizes can be used to decide the optimal 

image size. The approach used digitized images that were stored at several levels of 

compression. GLCM proves to be a good discriminator in studying different images however no 

such claim can be made for image quality. Hence the search for the best image quality metric 

continues. 
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CHAPTER 1 - INTRODUCTION 

 
Images play a crucial role in today’s age of succinct information. The field of 

image processing has exhibited enormous progress over past few decades. Generally, the 

images dealt in virtual environments or entertainment applications possess high fidelity 

resulting in large storage requirements. Images may undergo distortions during 

preliminary acquisition process, compression, restoration, communication or final 

display. Hence image quality measurement plays a significant role in several image-

processing applications. Image quality, for scientific and medical purposes, can be 

defined in terms of how well desired information can be extracted from the image. An 

image is said to have acceptable quality if it shows satisfactory usefulness, which means 

discriminability of image content, and satisfactory naturalness, which means 

identifiability of image content. Digital storage of images has created an important place 

in imaging. Image quality metrics are important performance variables for digital 

imaging systems and are used to measure the visual quality of compressed images. The 

three major types of quality measurements are [Joon01]: 

1.1 Objective quality measurement 
 
 The objective image quality measurement seeks to measure the quality of images 

algorithmically. A good objective measure reflects the distortion on image due to 

blurring, noise, compression and sensor inadequacy. Objective analysis involves use of 

image quality/distortion metrics to automatically perceive image quality; the most widely 

being used are “Peak Signal-to-noise Ratio PSNR” and “Mean Squared Error MSE”. 
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These methods provide mathematical deviations between original and processed images. 

The analysis depends on the number of images used in the measurement and the nature or 

type of measurement using the pixel elements of digitized images. Metrics have been 

defined either in spatial or frequency domain. These measurement techniques are easy to 

calculate, however they do not consider human visual sensitivities. They do not 

adequately predict distortion visibility and visual quality for images with large luminance 

variations or with varying content. It is believed that a combination of numerical and 

graphical measures may prove useful in judging image quality. 

1.2 Subjective quality measurement 
 
   For several years, the image quality assessment (QA) has been performed 

subjectively using human observers based on their satisfaction. It depends on the type, 

size, range of images, observer’s background and motivation and experimental conditions 

like lighting, display quality etc. The human visual system (HVS) is enormously complex 

with optical, synaptic, photochemical and electrical phenomena. The International 

Telecommunication Union (ITU) has recommended a 5-point scale using the adjectives 

bad, poor, fair, good and excellent. A numerical category scaling also can be used as an 

alternative, which is linear and hence more convenient to use. Subjective quality 

measurement techniques provide numerical values that quantify viewer’s satisfaction, 

however are time-consuming and observer responses may vary. They provide no 

constructive methods for performance improvement and are difficult to use as a part of 

design process. 
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1.3 Perceptual quality measurement 

 The perceptual quality measurement techniques are based on models of human 

visual perception like image discrimination models and task performance based models. 

Ideally, they should be able to characterize spatial variations in quality across an image. 

  Image quality measures (IQM) are figures of merit used for the evaluation of 

imaging systems or coding/processing techniques. Image quality measurement is still an 

unsolved problem today. There are at least two factors, which contribute to difficulty in 

finding a complete algorithm for image quality measurement. First factor being that there 

are many different kinds of noises and each can affect the quality of image differently. 

Secondly it is not simple to mathematically prove the quality of an image without human 

judgment. Image QA algorithms can as well be classified as “Full-reference” or bivariant, 

in which the algorithm has access to the perfect image, “No-reference” or univariant, in 

which the algorithm has access only to the distorted image and “Reduced-reference”, in 

which the algorithm has partial information regarding the perfect image. All algorithms 

try to map the reconstructed image to some quantity that is positive and zero only when 

original and modified images are identical and also increases monotonically as the 

modified image looks worse. It is very useful to be able to automatically assess the 

quality of images when the number of images to be evaluated is large. Daly’s visual 

difference predictor (VDP) is a popular bivariant tool to assess image quality [Daly93]. It 

computes a map of visible differences between a degraded image and the reference. The 

Karunasekera and Kingsbury (KK) model gives a quality mark to the degraded image 

compared to the reference for the assessment of visual quality of the JPEG compressed 
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image [Karu96]. The KK model gives an image quality assessment that corresponds to 

the visibility of the blocking artifacts. The visibility is evaluated by the reaction time 

required by an observer to identify the degraded image. The results match those of the 

human visual system. Some other quality criteria simply compute a distance between the 

degraded image and the reference. When two images are compared in terms of quality, 

one desires a measure that parallels human visual system with the expectations that the 

differences in quality judged by human eye to be large are also mathematically large and 

if the differences are insignificant to human eye, the error size should be small. Dung and 

others [Dung98] proposed the Image Quality Measure Error (IQME), which supports 

measuring image quality locally as well as globally. It takes into consideration the effect 

of the change of each pixel value to the local area, which contains that pixel and the 

effect of that area to the whole image. The number of pixels changed is also taken into 

consideration since the overall quality of the image depends on it as well. IQMs based on 

pixel-difference, correlation, spectral, context and human visual system are studied 

comprehensively using analysis of variance.  

Texture happens to be an important characteristic for the automated or semi 

automated interpretation of digital images. Texture analysis has history of more than 

three decades. During the 1970s and early 1980s, the algorithms have been mainly based 

on first and second order statistics of the image pixel gray level values as spatial domain 

gray level co-occurrence matrix (SDCM) and neighboring gray level dependence matrix 

(NGLDM). In the mid 1980s, model based methods such as Markov Random Fields 

(MRF) and simultaneous autoregressive (SAR) appeared. Wavelets gained importance in 

late 1980s. Texture analysis is a crucial problem since it conditions the quality of 
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segmentation and interpretation in lots of applications such as in the textile industry or for 

satellite imaging. Texture analysis has applications in image segmentation and 

classification, biomedical image analysis, and automatic detection of surface defects. 

When describing the content of a region, textures give a better understanding about the 

region as compared to intensity descriptors such as average gray-level, minimum and 

maximum gray level. The three common ways of analyzing textures are statistical, 

structural and spectral approaches. Each of these approaches is explained below 

[Gonz02].  

• Structural approach: 

  This approach defines a grammar for the way that the pattern of the texture 

produces structure. The texture is parsed to see if it matches the grammar. The parse tree 

for a pattern in a particular region is used as a descriptor. 

• Spectral approach: 

   If textures are periodic patterns, another useful way to analyze them is the use of 

the frequency domain. The entire frequency domain has as much information as the 

image itself. The frequency domain contains information from all parts of the image and 

is useful for global texture analysis. Information can be condensed either by collapsing a 

particular frequency across all orientations or by collapsing all frequencies in a particular 

direction. This technique referred to as collapsed frequency domains gives two one-

dimensional descriptors useful for discriminating textures. Local frequency content can 

be defined by using some form of co-joint spatial frequency representation. One of the 

ways is to examine the N x N neighborhood around a point and compute its Fourier 

transform. Moving from one textured region to other region changes the frequency 
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content of the window. Differences in the frequency content of each window are used as 

a means of segmentation. They are normally used to discriminate between different 

regions or to classify them, to produce descriptions so that we can reproduce textures and 

to segment an image based on textures. It is difficult to know which attributes might be 

used for an application because the efficiency of each type of attribute is often badly 

known. A study [Rose01] showed that classical attributes are relatively complementary 

and provide good recognition rate if they are combined. 

• Statistical approach: 

 Textures are generally random however possess consistent properties. Hence an 

obvious way to describe texture is their statistical properties. Various moments based on 

the gray level histogram computed from a digital image can be used to describe statistical 

properties such as mean, variance, skewness and flatness. The first four moments are 

easier to describe intuitively, beyond which the description becomes harder. The first 

moment is the mean intensity; the second central moment is the variance describing how 

similar the intensities are within the region. The third central moment, skew, describes 

how symmetric the intensity distribution is about the mean and the fourth central 

moment, kurtosis, describes how flat the distribution is. Given a sufficient number of 

moments, it is possible to reconstruct an image.  The histogram-based measurements 

suffer from the limitation that they carry no information regarding the relative spatial 

position of pixels with one another. The spatial dependence relationship can be 

incorporated by considering the distribution of intensities as well as the position of pixels 

with equal or nearly equal intensity values. The technique involves statistically sampling 

the way certain gray levels occur in relation to other gray levels. This method obtains the 
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gray level co-occurrence matrix (GLCM) of specified texture, which further gives various 

descriptors by measuring texture properties.  Gray level co-occurrence matrices are 

widely used to discriminate texture images and are studied in greater depth in the next 

chapter.  

The research is presented in four main chapters: Chapter 2 provides the 

fundamental background of GLCM technique and the traditional applications of GLCM 

have been described in chapter 3. The experimental methodology has been discussed in 

chapter 4 whereas chapter 5 briefs the optimization techniques that can be incorporated in 

GLCM processing. 
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CHAPTER 2 - GLCM BACKGROUND 

    

Texture is one of the important characteristics used in identifying objects or 

regions of interest in an image. Texture contains important information about the 

structural arrangement of surfaces. The textural features based on gray-tone spatial 

dependencies have a general applicability in image classification.  The three fundamental 

pattern elements used in human interpretation of images are spectral, textural and 

contextual features. Spectral features describe the average tonal variations in various 

bands of the visible and/or infrared portion of an electromagnetic spectrum. Textural 

features contain information about the spatial distribution of tonal variations within a 

band. The fourteen textural features proposed by Haralick et all [Hara73] contain 

information about image texture characteristics such as homogeneity, gray-tone linear 

dependencies, contrast, number and nature of boundaries present and the complexity of 

the image. Contextual features contain information derived from blocks of pictorial data 

surrounding the area being analyzed. 

  Haralick et all first introduced the use of co-occurrence probabilities using GLCM 

for extracting various texture features. GLCM is also called as Gray level Dependency 

Matrix. It is defined as “A two dimensional histogram of gray levels for a pair of pixels, 

which are separated by a fixed spatial relationship.” GLCM of an image is computed 

using a displacement vector d, defined by its radius δ and orientation θ. Consider a 4x4 

image represented by figure 1a with four gray-tone values 0 through 3. A generalized 

GLCM for that image is shown in figure 1b where #(i,j) stands for number of times gray 
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tones i and j have been neighbors satisfying the condition stated by displacement vector 

d.  

 

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

       Figure1a. Test image 

Gray tone 0 1 2 3 

0 #(0,0) #(0,1) #(0,2) #(0,3)

1 #(1,0) #(1,1) #(1,2) #(1,3)

2 #(2,0) #(2,1) #(2,2) #(2,3)

3 #(3,0) #(3,1) #(3,2) #(3,3)

Figure 1b. General form of GLCM

 

The four GLCM for angles equal to 0°, 45°, 90° and 135° and radius equal to 1 

are shown in figure 2 a-d. 

 

4 2 1 0 

2 4 0 0 

1 0 6 1 

0 0 1 2 

Figure 2a. GLCM for δ=1 and θ=0° 

4 1 0 0 

1 2 2 0 

0 2 4 1 

0 0 1 0 

Figure 2b. GLCM for δ=1 and θ=45° 

 

6 0 2 0 

0 4 2 0 

2 2 2 2 

0 0 2 0 

Figure 2c. GLCM for δ=1 and θ=90° 

2 1 3 0 

1 2 1 0 

3 1 0 2 

0 0 2 0 

Figure 2d. GLCM for δ=1 and θ=135° 
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These are symmetric matrices hence evaluation of either upper or lower triangle 

serves the purpose. Frequency normalization can be employed by dividing value in each 

cell by the total number of pixel pairs possible. Hence the normalization factor for 0° 

would be (Nx-1) x Ny where Nx represents the width and Ny represents the height of the 

image. The quantization level is an equally important consideration for determining the 

co-occurrence texture features. Also, neighboring co-occurrence matrix elements are 

highly correlated as they are measures of similar image qualities. Each of these factors is 

discussed ahead in detail. 

2.1 Choice of radius δ 

Various research studies show δ values ranging from 1, 2 to 10. Applying large 

displacement value to a fine texture would yield a GLCM that does not capture detailed 

textural information. From the previous studies, it has been concluded that overall 

classification accuracies with δ = 1, 2, 4, 8 are acceptable with the best results for δ = 1 

and 2. This conclusion is justified, as a pixel is more likely to be correlated to other 

closely located pixel than the one located far away. Also, displacement value equal to the 

size of the texture element improves classification. 

2.2 Choice of angle θ 

Every pixel has eight neighboring pixels allowing eight choices for θ, which are 

0°, 45°, 90°, 135°, 180°, 225°, 270° or 315°. However, taking into consideration the 

definition of GLCM, the co-occurring pairs obtained by choosing θ equal to 0° would be 

similar to those obtained by choosing θ equal to 180°. This concept extends to 45°, 90° 
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and 135° as well. Hence, one has four choices to select the value of θ. Sometimes, when 

the image is isotropic, or directional information is not required, one can obtain isotropic 

GLCM by integration over all angles. 

2.3 Choice of quantized gray levels (G) 

The dimension of a GLCM is determined by the maximum gray value of the 

pixel. Number of gray levels is an important factor in GLCM computation. More levels 

would mean more accurate extracted textural information, with increased computational 

costs. The computational complexity of GLCM method is highly sensitive to the number 

of gray levels and is proportional to O(G2) [Clau02]. 

  Thus for a predetermined value of G, a GLCM is required for each unique pair of 

δ and θ. GLCM is a second-order texture measure. The GLCM’s lower left triangular 

matrix is always a reflection of the upper right triangular matrix and the diagonal always 

contains even numbers. Various GLCM parameters are related to specific first-order 

statistical concepts. For instance, contrast would mean pixel pair repetition rate, variance 

would mean spatial frequency detection etc. Association of a textural meaning to each of 

these parameters is very critical. Traditionally, GLCM is dimensioned to the number of 

gray levels G and stores the co-occurrence probabilities gij. To determine the texture 

features, selected statistics are applied to each GLCM by iterating through the entire 

matrix. The textural features are based on statistics which summarize the relative 

frequency distribution which describes how often one gray tone will appear in a specified 

spatial relationship to another gray tone on the image. 
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Following notations are used to explain the various textural features: 

gij = (i, j)th entry in GLCM 

gx(i) = ith entry in marginal probability matrix obtained by summing rows of 

∑
=

=
gN

j
ij jigg

1
),(  

Ng = Number of distinct gray levels in the image 

∑
i

 =  ∑
=

gN

i 1

∑
j

 =  ∑
=

gN

j 1

gy(i) =   ∑
=

gN

i
jig

1
),(

gx+y(k) =  where i+j = k = 2, 3, …, 2 N∑∑
= =

g gN

i

N

j
jig

1 1
),( g 

gx-y(k) =  where |i-j| = k = 0, 1, …, Ng-1 ∑∑
= =

g gN

i

N

j
jig

1 1
),(

  Few of the common statistics applied to co-occurrence probabilities are discussed 

ahead. 

1) Energy:  

Energy (ene) = ∑∑
i j

jig 2  

  This statistic is also called Uniformity or Angular second moment. It measures the 

textural uniformity that is pixel pair repetitions. It detects disorders in textures. Energy 

reaches a maximum value equal to one. High energy values occur when the gray level 
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distribution has a constant or periodic form. Energy has a normalized range. The GLCM 

of less homogeneous image will have large number of small entries. 

2) Entropy: 

Entropy (ent) = ∑∑−  
i j

ijij gg 2log

  This statistic measures the disorder or complexity of an image. The entropy is 

large when the image is not texturally uniform and many GLCM elements have very 

small values. Complex textures tend to have high entropy. Entropy is strongly, but 

inversely correlated to energy.  

3) Contrast: 

Contrast (con) = ∑∑ −
i j

ijgji 2)(  

  This statistic measures the spatial frequency of an image and is difference 

moment of GLCM. It is the difference between the highest and the lowest values of a 

contiguous set of pixels. It measures the amount of local variations present in the image. 

A low contrast image presents GLCM concentration term around the principal diagonal 

and features low spatial frequencies.  

4) Variance: 

Variance (var) = ∑∑ −
i j

ijgi 2)( µ where µ is the mean of gij 

  This statistic is a measure of heterogeneity and is strongly correlated to first order 

statistical variable such as standard deviation. Variance increases when the gray level 

values differ from their mean.  
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5) Homogeneity: 

Homogeneity (hom) = ∑∑  
−+i j

ijg
ji 2)(1

1

This statistic is also called as Inverse Difference Moment. It measures image 

homogeneity as it assumes larger values for smaller gray tone differences in pair 

elements. It is more sensitive to the presence of near diagonal elements in the GLCM. It 

has maximum value when all elements in the image are same. GLCM contrast and 

homogeneity are strongly, but inversely, correlated in terms of equivalent distribution in 

the pixel pairs population. It means homogeneity decreases if contrast increases while 

energy is kept constant.  

6) Correlation: 

Correlation (cor) = 
yx

yx
i j

ijgij

σσ

µµ−∑∑ )(
 where µx, µy, σx and σy are 

the means and standard deviations of gx and gy 

 The correlation feature is a measure of gray tone linear dependencies in the 

image.  

 The rest of the textural features are secondary and derived from those listed 

above. 

7) Sum Average: 

Sum Average (sa) = ∑
=

+

gN

i
yx iig

2

2
)(  
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8) Sum Entropy: 

Sum Entropy (se) = -  )}(log{)(
2

2
igig yx

N

i
yx

g

+
=

+∑

9) Sum Variance: 

Sum Variance (sv) = ∑
=

+−
gN

i
yx igsai

2

2

2 )()(  

10) Difference Variance: 

Difference Variance = variance of gx-y 

11) Difference Entropy: 

Difference Entropy = -  )}(log{)(
1

0
igig yx

N

i
yx

g

−

−

=
−∑

12) Maximum Correlation Coefficient: 

Maximum Correlation Coefficient (MCC) = (second largest eigen value of Q )0.5 

Where Q(I,j) =  ∑
k yx kgig

kjgkig
)()(
),(),(  

13) , 14) Information Measures of Correlation: 

Information measure of correlation 1 (IMC1) = 
},max{
1

HYHX
HXYHXY −  

Information measure of correlation 2 (IMC2) = )]2(0.2exp[1( HXYHXY −−−  

HXY = where HX and HY are entropies of g∑∑−
i j

ijij gg 2log x and gy 

HXY1 =  ∑∑−
i j

yxij jgigg )}()({log2

HXY2 =  )}()({log)()( 2 jgigjgig y
i j

xyx∑∑−
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The question what exactly the textural features represent from a human perception 

point of view can be a subject for a thorough experimentation. Of the textural features 

described above, the angular second moment, the entropy, the sum entropy, the difference 

entropy, the information measure of correlation and the maximal correlation features 

have the invariance property. Earlier studies [Wang02] cite “Energy” and “Contrast” to 

be the most efficient parameters for discriminating different textural patterns. The general 

thumb rules used in the selection of the textural features can be stated as follows: 

• Energy is preferred to entropy as its values belong to normalized range. 

• Contrast is associated with the average gray level difference between 

neighbor pixels. It is similar to variance however preferred due to reduced 

computational load and its effectiveness as a spatial frequency measure. 

• Energy and contrast are the most significant parameters in terms of visual 

assessment and computational load to discriminate between different 

textural patterns. 
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CHAPTER 3 - VARIOUS APPLICATIONS OF GLCM 

 
 GLCM has been used extensively in the field of image processing. It has been 

applied from a range of applications like texture analysis to synthesis including gray scale 

as well as color texture recognition. A few of its popular applications are discussed 

ahead. 

3.1 Texture Analysis of SAR Sea Ice Imagery 
 
 This application uses GLCM to quantitatively evaluate textural parameters and 

determine which parameter values are best for mapping sea ice textures. The importance 

of gray-level quantization, displacement and orientation factors for representing sea ice in 

synthetic aperture radar (SAR) imagery is studied [Soh99]. The theory is based on a 

computationally efficient expression χ2 = N {∑∑
i j

jig 2( / ricj) – 1} where ri = 

),(
1

jig
N

j
∑

=

and cj = ∑ ),(
1

jig
N

i=
and N = . Here g(i, j) represents the GLCM and 

N

),(
11

jig
Ng

j

Ng

i
∑∑

==

g represents the total number of gray values. Finally the matrix yielding highest value of 

χ2 is supposed to be optimal.  Three types of co-occurrence matrices were studied as 

follows: 

• Mean Displacement Mean Orientation (MDMO): It assumes that every matrix of 

specific displacement and orientation is partially and cumulatively representative 

for the sample. Feature measures of matrices of the four orientations of 0°, 45°, 

90° and 135° are averaged and then further averaged over displacement range. 
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• Optimal Displacement Mean Orientation (ODMO): It assumes that only the 

matrix whose χ2 value is the highest with a specific displacement value is truly 

and sufficiently representative for the sample. 

• Optimal Displacement Optimal Orientation (ODOO): It assumes that only the 

matrix whose χ2 value is the highest with a specific displacement and orientation 

is truly and sufficiently representative for the sample. 

Few of the important conclusions drawn from the experiments were that MDMO 

implementation is better, ODMO and ODOO have almost same performances indicating 

insignificance of orientation, range of displacement values is more representative than 

single value, and 64 gray level representation is efficient and sufficient for analysis of 

SAR images. 

3.2 Synthesis of Textures 

An algorithm for generating synthetic textures based on GLCM is presented, 

[Lohm95] which is used to imitate real textures taken from satellite images. A histogram 

is computed from the desired GLCM. Then an initial image that has the desired 

histogram is randomly generated. Further, a chain of images is iteratively produced such 

that the new image is improvement over the initial in terms of error of distance of current 

co-occurrences from desired co-occurrences. The iteration stops when the error goes 

below a pre-specified threshold value. The algorithm converges only if a solution exists. 

The difference between the real and synthetic textures is indistinguishable by the human 

eye, which implies that co-occurrence features are well suited for characterizing these 

types of images.  
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3.3 Texture Defect Detection 

A combination of wavelet theory and co-occurrence matrices [Lati00] is used to 

detect defects in textile images. Texture defect detection can be defined as the process of 

determining the location and/or extent of collection of pixels in a textured image with 

remarkable deviation in their intensity values or spatial arrangement with respect to the 

background texture. The algorithm comprises of four main steps, which are 

decomposition of the gray level image into sub-bands, partitioning the textured image 

into non-overlapping sub-windows, extracting co-occurrence features and finally 

classifying each sub-window as defective or non-defective. Wavelet filter coefficients are 

used to obtain images ILL, ILH, IHL and IHH where L and H represent low-pass and high-

pass bands respectively. 

 

Figure 3. Decomposition of image I of size 2N x 2N 

 

The study concludes that focusing on a particular band with high discriminatory 

power improves the detection performance and increases computational efficiency as 

well. 
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3.4 Circular GLCM 

GLCM can be used to study the short wavelength anomalies in the Earth’s 

gravitational field [Coop04]. In this case, the GLCM textural measures use a vector that 

connects pairs of pixels within a kernel that is moved over the image. This is a unique 

method as it deals with circular features to enhance the elusive details. The vectors 

connect points that lie on the perimeter of circles of different radii. A mid-point algorithm 

is used to select the points that lay on each circle. The circle’s radius within the kernel 

ranges from one to a user-specified maximum size. A rose diagram is used to show the 

directions of the vectors in the kernel. This unique kernel is useful for the analysis of 

anisotropic textures. Inverse difference moment has been specifically used which yields a 

strong response at the central locations of the features of interest.  

 

 

Figure 4. Circular GLCM vectors and corresponding Rose diagram 
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Thus the use of GLCM vectors that follow circular contours that occur in gravity 

data due to its inherently monopolar nature helps detecting circular features as well as 

enhance linear features that lie at any orientation. Moreover this method is inexpensive as 

compared to other existing geophysical methods. 

3.5 Object Recognition and Matching 

 This application discusses a novel method based on quantitative estimation of 

relations between some elementary image structures, which are represented by elements 

of special multidimensional co-occurrence matrices (MDCM) [Kova96]. An image of 

any object can be considered as a composition of elementary structures, the elements of 

which carry some attributes (e.g. gray level value, gradient magnitude, orientation) and 

have some relations (e.g. gray level difference, relative gradient orientation). An M-

dimensional co-occurrence matrix is used where each of the attributes and relations 

correspond to different axis of the matrix. Object is made recognizable due to the 

balanced presence of some specific elementary structures in it. A MDCM is an M-

dimensional array, the elements of which have the general form of (a1, a2, …aM1; b1, b2, 

… bM2) where M1 + M2 = M and ai takes all possible values a certain attribute could take 

for an elementary structure, while bj takes all possible values a certain relation could take. 

GLCM is used as a powerful way of representing the properties of the elementary 

geometric structures. Such features, when identified, lead to linearly separable classes 

and then a simple classifier identifies a certain object. This approach, as compared to 

clustering method, uses ratio of matrix/histogram elements, eliminating the need to 

specify a metric and the measuring units. The success of the method depends on the 
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correct choice of the attributes and relations and the availability of sufficient number of 

examples. 

3.6 Image Segmentation and Edge Detection 

The field of image analysis has been researched for several years. It involves the 

process of extracting information from an image and analyzing it to achieve a specific 

goal. The two main steps involved are: 

• Image segmentation: segmentation of an image into homogeneous regions 

with respect to certain image characteristic, example – regions of uniform 

grey level. 

• Edge detection: the extraction of the locations in the image having 

changes in intensity. 

The differences between the key image features are emphasized using adaptive 

transforms [Hadd93]. The Sobel edge operator E is a square matrix with 3x3 dimensions 

and elements [1, 0, -1; 2, 0, -2; 1, 0, -1]. Convolving the Sobel edge operator E with the 

image in the neighborhood of a pixel yields good results as vertical edge strength image. 

It is referred to as edge co-occurrence matrix. The parameters of the peak along the 

leading diagonal are determined using correlation techniques. The matrix is further 

labeled in a way to reflect the content of the image. Labeling of the matrix requires 

detailed knowledge about the distributions in the matrix. The labeled matrix is used as a 

look-up table for simultaneously segmenting the regions of an image and for detecting 

the prominent edges for a particular edge operator. Using results of several transforms, it 

is possible to detect edges of all orientations. 
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3.7 Color texture classification by integrative co-occurrence matrices 

Color is an important issue in digital image processing. It is a vectorial feature 

assigned to each pixel. Color information improves the results of gray scale texture 

features. Two categories of co-occurrence matrices (CMs) are proposed for color texture 

classification [Palm03]: 

• Single channel co-occurrence matrices (SCMs): They consist of gray scale 

CMs successively applied to separated color channels. 

• Multi channel co-occurrence matrices (MCMs): These capture correlation 

between textures of different color channels. They provide the opportunity to 

study the effect of texture and pure color analysis in one unified framework. 

No spatial adjacency but channel adjacency is regarded. 

The studies show that several experiments were conducted on various specific 

databases. This is a novel approach in the field of color texture recognition. 
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CHAPTER 4 EXPERIMENTATION 

 
Earlier literature shows that GLCM textural features are used for category-

identification of images representing different content [Hara73]. For instance the energy 

parameter can be used as a measure of homogeneity for comparison of two images, one 

representing grasslands and the other is representing water body. Since the water body 

image will have fewer gray tone transitions, its energy value is expected to be lower than 

that of the grasslands image. Similarly, the contrast feature, which represents local 

variation present in an image, would be higher for grasslands image as compared to the 

other image. The various kinds of datasets relevant for analysis may include 

photomicrographs, aerial photographs of natural or man-made scenes, high altitude 

satellite pictures. 

 The primary objectives of the study were as follows: 

• Objective 1: To study if the textural features followed some specific trend as the 

quality of images increased. 

• Objective 2: To study if the orientation of the overall image content can be used 

to speculate the most appropriate choice of GLCM angle  

This study focuses on digital images representing content ranging from simple 

text, periodic patterns, natural scenes, plants to human faces. Each dataset was formed by 

storing an image at five quality levels using jpeg compression technique and maintaining 

constant pixel resolution. This study is in a way unique from the earlier GLCM research 

works because it analyses different compressed versions of the same image. Quality level 
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1 signifies the poorest quality while quality level 5 is the best. The Irfanview application 

was used for this purpose, which is freely downloadable [Irfa04].  

The first dataset comprised of six different images stored at five compression 

levels. The following table gives the memory sizes of each image: 

 

Image Quality 

level 1 

Quality level 

2 

Quality level 

3 

Quality level 

4 

Quality level 

5 

Carpet (Figure 

5a-5e) 

6KB 7KB 8KB 9KB 13KB 

Plant 

(Figure 6a-6e) 

5KB 6KB 7KB 8KB 11KB 

Water 

(Figure 7a-7e) 

5KB 7KB 7KB 8KB 12KB 

Student Union 

(Figure 8a-8e) 

6KB 7KB 8KB 9KB 12KB 

Grass  

(Figure 9a-9e) 

12KB 12KB 13KB 15KB 20KB 

Flowers 

(Figure 10a-10e) 

10KB 12KB 14KB 16KB 21KB 

Table 1. Dataset 1 
 

A Sony digital camera DSC-F717, set at pixel resolution of 640x480, was used to 

take the pictures. Using the Irfanview application, all pictures were resampled at 160x120 
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sizes for faster computation. The lanczos filter was used for resampling which offers 

better quality at the cost of higher processing time. 

A) CARPET Image: 

 

 

Figure 5a. Quality level 1 

 

Figure 5b. Quality level 2 

 

Figure 5c. Quality level 3 

 

Figure 5d. Quality level 4 

 

Figure 5e. Quality level 5

 

 

 26



 

B) PLANT Image: 

 

 

Figure 6a. Quality level 1 

 

Figure 6b. Quality level 2 

 

Figure 6c. Quality level 3 

 

Figure 6d. Quality level 4 

 

Figure 6e. Quality level 5
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C) WATER Image: 

 

 

Figure 7a.  Quality level 1 

 

Figure 7b. Quality level 2 

 

Figure 7c. Quality level 3 

 

Figure 7d. Quality level 4 

 

Figure 7e. Quality level 5
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D) STUDENT UNION Image: 

 

 

Figure 8a. Quality level 1 

 

Figure 8b. Quality level 2 

 

Figure 8c. Quality level 3 

 

Figure 8d. Quality level 4 

 

Figure 8e. Quality level 5
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E) GRASS Image: 

 

 

Figure 9a. Quality level 1 

 

Figure 9b. Quality level 2 

 

Figure 9c. Quality level 3 

 

Figure 9d. Quality level 4 

 

Figure 9e. Quality level 5
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F) FLOWERS Image: 

 

 

Figure 10a. Quality level 1 

 

Figure 10b. Quality level 2 

 

Figure 10c. Quality level 3 

 

Figure 10d. Quality level 4 

 

Figure 10e. Quality level 5 

 

As discussed in the previous chapter, radius and angle happen to be the crucial 

parameters for GLCM processing. In this experimentation, the radius was set to 1 and 
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angle was set to 0°, and textural parameters for all the thirty images were calculated. 

Each run took approximately 2 minutes of processing time.  

Following plots were obtained for the six images. It is observed that the values of 

the textural parameters for the grass and flowers images lie in a different range as 

compared to the rest of the images. Hence each of the textural plots has been grouped 

into two for better readability. 
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Figure 11a. Energy (carpet, plant, water, student union images) 
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Figure 11b. Energy (grass, flowers images) 
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Figure 12a. Contrast (carpet, plant, water, student union images) 
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Figure 12b. Contrast (grass, flowers images) 
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Figure 13a. Entropy (carpet, plant, water, student union images) 
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Figure 13b. Entropy (grass, flowers images) 
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Figure 14a. Homogeneity (carpet, plant, water, student union images) 
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Figure 14b. Homogeneity (grass, flowers images) 

 

The analysis showed that energy and homogeneity decrease with increasing image 

quality, whereas contrast and entropy showed consistent increase with increasing image 

quality for all the images. There is no change in the sign of first derivative.  

The next task was to study the effect of the values of angle on the textural 

parameters. Hence, four images were generated having orientations in the vertical, 

horizontal, front diagonal and back diagonal directions. Each image was processed for 

four combinations of radius and angle that is 1 and 0°, 1 and 45°, 1 and 90° and finally 1 

and 135°. 

 

 

 36



 

Figure 15a. Dataset 2 Vertical strips 

 

Figure 15b. Dataset 2 Horizontal strips 

 

Figure 15c. Dataset 2 Front  diagonal strips 

 

Figure 15d. Dataset 2 Back diagonal strips 

 

The objective was to observe whether the selected value of angle of GLCM had 

any specific relationship with the orientation of image content, for instance, to observe 

whether textural parameter of vertical strip image showed maximum/minimum value  for 

90° as compared to 0°, 45° and 135°. 
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Figure 16. Dataset 2 Contrast 
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It can be seen that contrast value is least at 90° for vertical strips image, at 0° for 

horizontal image, at 45° for front diagonal image and at 135° for back diagonal image. 
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Figure 17. Dataset 2 Entropy 

 

It can be seen that entropy value is least at 90° for vertical strips image, at 0° for 

horizontal image, at 45° for front diagonal image and at 135° for back diagonal image. 
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Figure 18. Dataset 2 Homogeneity 

 

It can be seen that homogeneity value is maximum at 90° for vertical strips image, 

at 0° for horizontal image, at 45° for front diagonal image and at 135° for back diagonal 

image. 
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Figure 19. Dataset 2 Energy 
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It can be seen that energy value is maximum at 90° for vertical strips image and at 

0° for horizontal image. However these trends are not followed for front diagonal image 

and back diagonal image! As it can be observed that the energy value is not maximum for 

the front diagonal image for 45° as well as for the back diagonal image for 135°. This 

helps in concluding that it would be difficult to use the orientation of the overall image 

content in deciding the most appropriate value of angle for GLCM processing. 

Hence in the final part of experimentation it was decided to do exhaustive runs for 

all combinations of radius and angle. A dataset called FACE was used which comprises 

of images of human faces. To start of with, this image was saved at quality levels 1, 3 and 

5 using standard jpeg compression. The FACE dataset consisted a total of 48 runs, each 

requiring approximately processing time of 2 minutes.  

 

 

Figure 20a. FACE quality level 1 (6KB) 

 

Figure 20b. FACE quality level 3 (7KB) 

 

Figure 20c. FACE quality level 5 (6KB) 

 40



 41

 Image 
size Radius Angle Energy Contrast Entropy Homogeneity 
6KB 1 0 0.02407 171.761 10.26177 0.617437 
7KB 1 0 0.003771 202.8114 11.07969 0.456161 
11KB 1 0 0.002214 237.0179 11.19007 0.393059 
       
6KB 1 45 0.019735 377.2859 10.88752 0.414932 
7KB 1 45 0.002648 395.5287 11.6069 0.282185 
11KB 1 45 0.001759 422.8177 11.57984 0.267074 
       
6KB 1 90 0.02235 347.0806 10.5414 0.552665 
7KB 1 90 0.003593 361.9449 11.34828 0.400357 
11KB 1 90 0.002261 397.3172 11.36973 0.377045 
       
6KB 1 135 0.019751 387.3405 11.00565 0.411819 
7KB 1 135 0.002609 411.6924 11.72667 0.274801 
11KB 1 135 0.001726 442.775 11.69309 0.269048 
       
6KB 2 0 0.022135 469.401 10.69552 0.526195 
7KB 2 0 0.002805 502.9805 11.56605 0.358082 
11KB 2 0 0.001695 529.2688 11.59099 0.31164 
       
6KB 2 45 0.015361 969.8808 11.37108 0.312272 
7KB 2 45 0.001908 972.4885 12.01651 0.203788 
11KB 2 45 0.001374 986.6043 11.98389 0.209876 
       
6KB 2 90 0.018862 896.1711 11.15472 0.452017 
7KB 2 90 0.002565 946.5845 11.96345 0.297973 
11KB 2 90 0.00167 977.4247 11.96004 0.281211 
       
6KB 2 135 0.015742 1021.588 11.59683 0.30791 
7KB 2 135 0.001943 1027.106 12.24931 0.200889 
11KB 2 135 0.001325 1040.207 12.21975 0.212727 
       
6KB 4 0 0.017697 1039.107 11.09772 0.428483 
7KB 4 0 0.002064 1008.678 11.88342 0.278374 
11KB 4 0 0.001365 1025.913 11.86913 0.248683 
       
6KB 4 45 0.008784 2067.087 11.79518 0.209122 
7KB 4 45 0.001269 2042.199 12.33174 0.144673 
11KB 4 45 0.001014 2068.228 12.2902 0.146804 
       
6KB 4 90 0.012794 2063.425 11.81806 0.335178 
7KB 4 90 0.001826 2082.977 12.55724 0.213546 



11KB 4 90 0.00131 2108.965 12.55691 0.208584 
       
6KB 4 135 0.009972 2310.118 12.27307 0.212055 
7KB 4 135 0.001317 2266.555 12.82502 0.143375 
11KB 4 135 0.000971 2287.544 12.79987 0.143962 
       
6KB 8 0 0.010675 1780.929 11.46861 0.28607 
7KB 8 0 0.001317 1730.349 12.09104 0.194486 
11KB 8 0 0.00109 1758.263 12.04626 0.188907 
       
6KB 8 45 0.002938 3954.321 12.01462 0.108293 
7KB 8 45 0.000767 3948.928 12.48789 0.090927 
11KB 8 45 0.000737 3983.652 12.41357 0.090491 
       
6KB 8 90 0.005912 4229.268 12.62757 0.164786 
7KB 8 90 0.001249 4187.663 13.26445 0.123869 
11KB 8 90 0.001173 4213.264 13.17731 0.14189 
       
6KB 8 135 0.006251 4696.982 12.98565 0.124847 
7KB 8 135 0.000964 4594.344 13.45011 0.090663 
11KB 8 135 0.000713 4641.184 13.38461 0.084786 

Table 2. Dataset 3 FACE image 
 

All the four parameters, energy, contrast, entropy and homogeneity were studied. 

The study starts with the energy feature for which eight graphs were plotted. The set of 

first four graphs depicts variation in radius for specific angles: 
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Figure 21a. Energy angle=0 
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Figure 21b. Energy angle=45 
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Figure 21c. Energy angle=90 
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Figure 21d. Energy angle=135 
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The set of next four graphs depicts variation in angle for specific values of radius. 
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Figure 21e. Energy radius=1 
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Figure 21f. Energy radius=2 
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Figure 21g. Energy radius=4 
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Figure 21h. Energy radius=8 
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The study of the graphs shows that for all the combinations of radius (1, 2, 4, 8) 

and angle (0°, 45°, 90°, 135°), energy always decreases with increase in image quality.  

 On similar basis, the contrast feature was studied:  
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Figure 22a. Contrast angle=0 
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Figure 22b. Contrast angle=45 
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Figure 22c. Contrast angle=90 
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Figure 22d. Contrast angle=135 
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Figure 22e. Contrast radius=1 
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Figure 22f. Contrast radius=2 
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Figure 22g. Contrast radius=4 
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Figure 22h. Contrast radius=8 
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These are the plots for Entropy feature: 
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Figure 23a. Entropy angle=0 
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Figure 23b. Entropy angle=45 
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Figure 23c. Entropy angle=90 
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Figure 23d. Entropy angle=135 
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Figure 23e. Entropy radius=1 
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Figure 23f. Entropy radius=2 
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Entropy (radius=4)
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Figure 23g. Entropy radius=4 
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Figure 23h. Entropy radius=8 

 55



The plots for homogeneity feature: 
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Figure 24a. Homogeneity angle=0 
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Figure 24b. Homogeneity angle=45 
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Homogeneity (angle=90)
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Figure 24c. Homogeneity angle=90 
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Figure 24d. Homogeneity angle=135 
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Figure 24e. Homogeneity radius=1 
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Figure 24f. Homogeneity radius=2 
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Homogeneity (radius=4)
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Figure 24g. Homogeneity radius=4 
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Figure 24h. Homogeneity radius=8 
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The analysis of the results showed that the curves of the textural features did not 

follow a specific trend for all the combinations of radius and angle. For instance, the 

contrast and entropy curves change the sign of first derivative for radius equal to 8 and 

angle equal to 0°.  

Similar exhaustive analysis was performed on the second dataset, 

CERTIFICATE, representing simple text. Quality levels 1 through 5 were used. A total 

of 80 runs were performed to analyze the features. 

Dataset 3 CERTIFICATE images:  
 

  

  Figure 25a. CERTIFICATE quality level 1 

(6KB) 
Figure 25c. CERTIFICATE quality level 3 

(8KB) 

 
 Figure 25b. CERTIFICATE quality level 2 

(7KB) Figure 25d. CERTIFICATE quality level 5 

(11KB) 
 
 
 
 

 60



Figure 25e. CERTIFICATE quality level 4 (9KB) 
 
 
These were the results obtained: 

Image 
size Radius Angle Energy Contrast Entropy Homogeneity 
6KB 1 0 0.027379 287.2065 9.783876 0.510128 
7KB 1 0 0.007715 335.0582 10.78946 0.464195 
8KB 1 0 0.004008 421.4891 11.07274 0.420977 
9KB 1 0 0.003586 430.4905 11.05674 0.410885 
       
6KB 1 45 0.021091 463.181 10.28181 0.2892 
7KB 1 45 0.005217 637.521 11.21314 0.244366 
8KB 1 45 0.002328 746.0709 11.45729 0.234125 
9KB 1 45 0.002308 754.4606 11.41144 0.241451 
       
6KB 1 90 0.032086 443.7578 9.230447 0.790542 
7KB 1 90 0.007033 596.3367 10.62541 0.451566 
8KB 1 90 0.003731 645.5999 10.92591 0.415467 
9KB 1 90 0.00331 665.5436 10.98611 0.394092 
       
6KB 1 135 0.021021 475.4983 10.39187 0.285888 
7KB 1 135 0.005151 642.326 11.30022 0.247777 
8KB 1 135 0.002385 758.9157 11.55252 0.235528 
9KB 1 135 0.002297 762.8987 11.51412 0.239714 
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6KB 2 0 0.024476 694.4235 10.06599 0.441217 
7KB 2 0 0.006366 764.2224 11.12403 0.387998 
8KB 2 0 0.003372 828.6582 11.33644 0.354863 
9KB 2 0 0.002793 828.5843 11.33926 0.335974 
       
6KB 2 45 0.016733 1052.688 10.62079 0.221683 
7KB 2 45 0.004043 1150.561 11.45675 0.189758 
8KB 2 45 0.001778 1193.276 11.6344 0.180653 
9KB 2 45 0.001777 1190.999 11.5753 0.198746 
       
6KB 2 90 0.027324 921.1234 9.801897 0.678564 
7KB 2 90 0.00567 1027.203 11.14337 0.347361 
8KB 2 90 0.002697 1064.571 11.41439 0.321483 
9KB 2 90 0.002427 1094.404 11.42713 0.305335 
       
6KB 2 135 0.016377 1082.483 10.83886 0.21717 
7KB 2 135 0.003914 1181.906 11.64734 0.18922 
8KB 2 135 0.001773 1230.544 11.83341 0.183591 
9KB 2 135 0.001846 1233.883 11.77956 0.19612 
       
6KB 4 0 0.018525 1017.375 10.34188 0.381935 
7KB 4 0 0.004871 1049.382 11.29839 0.326618 
8KB 4 0 0.002522 1118.893 11.4781 0.292997 
9KB 4 0 0.002135 1117.56 11.48222 0.268608 
       
6KB 4 45 0.010575 1526.242 10.89026 0.178823 
7KB 4 45 0.002908 1617.764 11.56614 0.166107 
8KB 4 45 0.001354 1671.662 11.70695 0.144582 
9KB 4 45 0.00143 1678.077 11.6497 0.157295 
       
6KB 4 90 0.019759 1531.76 10.47997 0.551872 
7KB 4 90 0.004195 1639.605 11.56554 0.29527 
8KB 4 90 0.00205 1653.875 11.78932 0.258164 
9KB 4 90 0.002004 1691.017 11.7834 0.234682 
       
6KB 4 135 0.009319 1603.564 11.31929 0.172967 
7KB 4 135 0.002503 1695.924 11.96369 0.155629 
8KB 4 135 0.001362 1754.898 12.12374 0.143635 
9KB 4 135 0.001479 1773.781 12.05537 0.154013 
    
6KB 8 0 0.00949 1561.06 10.69729 0.283164 
7KB 8 0 0.003076 1549.745 11.38525 0.226056 
8KB 8 0 0.001688 1627.402 11.51916 0.195653 
9KB 8 0 0.00161 1635.994 11.47102 0.205251 



       
6KB 8 45 0.005472 2504.095 10.96345 0.135835 
7KB 8 45 0.001925 2553.321 11.53527 0.131247 
8KB 8 45 0.001093 2640.996 11.65373 0.106359 

Table 3. Dataset 3 CERTIFICATE  image 
 

The corresponding plots are listed below. The sequence follows eight graphs for 

energy, contrast, entropy and homogeneity respectively, which is similar to that of FACE 

image: 
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Figure 26a. Energy angle=0 
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Figure 26b. Energy angle=45 
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Figure 26c. Energy angle=90 
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Energy (angle=135)
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Figure 26d. Energy angle=135 
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Figure 26e. Energy radius=1 
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Energy (radius=2)
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Figure 26f. Energy radius=2 
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Figure 26g. Energy radius=4 
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Energy (radius=8)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Image size

En
er

gy

angle=0
angle=45
angle=90
angle=135

angle=0 0.00949 0.003076 0.001688 0.00161

angle=45 0.005472 0.001925 0.001093 0.001128

angle=90 0.008794 0.002318 0.001584 0.00161

angle=135 0.00298 0.001413 0.001093 0.001211

6KB 7KB 8KB 9KB

 

Figure 26h. Energy radius=8 
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Figure 27a. Contrast angle=0 
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Figure 27b. Contrast angle=45 
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Figure 27c. Contrast angle=90 
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Figure 27d. Contrast angle=135 
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Figure 27e. Contrast radius=1 
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Figure 27f. Contrast radius=2 
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Figure 27g. Contrast radius=4 
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Figure 27h. Contrast radius=8 
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Figure 28a. Entropy angle=0 
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Figure 28b. Entropy angle=45 
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Figure 28c. Entropy angle=90 
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Entropy (angle=135)

0

2

4

6

8

10

12

14

Image size

En
tr

op
y radius=1

radius=2
radius=4
radius=8

radius=1 10.391874 11.300219 11.552524 11.514122

radius=2 10.838859 11.647343 11.833408 11.779559

radius=4 11.319291 11.963691 12.123741 12.055369

radius=8 11.849242 12.386319 12.515609 12.451726

6KB 7KB 8KB 9KB

 

Figure 28d. Entropy angle=135 
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Figure 28e. Entropy radius=1 

 73



Entropy (radius=2)
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Figure 28f. Entropy radius=2 
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Figure 28g. Entropy radius=4 
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Entropy (radius=8)
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Figure 28h. Entropy radius=8 
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Figure 29a. Homogeneity angle=0 
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Figure 29b. Homogeneity angle=45 
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Figure 29c. Homogeneity angle=90 
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Homogeneity (angle=135)
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Figure 29d. Homogeneity angle=135 
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Figure 29e. Homogeneity radius=1 
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Homogeneity (radius=2)
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Figure 29f. Homogeneity radius=2 
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Figure 29g. Homogeneity radius=4 
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Homogeneity (radius=8)
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Figure 29h. Homogeneity radius=8 

  

The analysis of all the 32 graphs shows that the expected trend is not observed for 

all the combinations of radius and angle. For instance, the homogeneity curve for 135° 

for all values of radius shows a change in the sign of first derivative. However there 

exists at least one single combination (in this case 2 and 90°) when all the textural 

parameters follow the desired trend. So the best way to analyze would be considering all 

the relevant combinations of radius and angle, and plotting the curves of textural features. 
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CHAPTER 5 OPTIMIZATION TECHNIQUES 

Normally a typical GLCM would be a sparse matrix containing a few number of 

non-zero elements. Calculating GLCM is computationally intensive due to the 

humungous sizes of matrix involved. It leads to unnecessary calculations involving zero 

probabilities. Various optimization techniques have been proposed to overcome this 

problem and are discussed ahead in detail.  

5.1 Gray level quantization 

 The number of gray levels is an important factor in the computation of GLCM as 

the dimensions of matrix equals the number of gray levels. The fewer the number of gray 

levels, faster would be the computation. The crucial decision is to decide how many 

levels are needed to represent a texture successfully. Some of the major quantization 

schemes are uniform quantization, Gaussian quantization and equal probability 

quantization. The uniform quantization scheme is the simplest in which gray levels are 

quantized into separate bins with uniform tolerance limits with no regard to the gray level 

distribution of the image. The Gaussian quantization technique finely quantizes a 

particular range of gray levels which might occur more frequently than others. In the 

equal probability quantization scheme, each bin has similar probability and it has been 

shown to represent accurate representation of the original image in terms of textural 

features based on GLCM [Conn78]. 
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5.2 Windowing Technique 

This method directly calculates the co-occurrence matrix parameters from the 

image and is slightly mathematically intensive [Arge90]. It is based on the fact that 

windows relative to adjacent pixels are mostly overlapping, so the features related to a 

pixel can be obtained by updating values already calculated. Consider w(m, n) to be 

window relative to pixel (k, l) and w1(m, n) to be relative to pixel (k+1, l). Most 

occurrences of pixels separated by displacement δ in w can also be found in w1. The co-

occurrence matrix relative to w1 is obtained by updating w. For instance, if δ = 1 and θ = 

135°, g(i, j) corresponding to w1 is obtained by decrementing by one the entries of g(i, j) 

corresponding to w, due to the pairs on the left hand side and incrementing by one due to 

the pairs on the right hand column. This algorithm is twice as fast as classical methods.  

5.3 Gray level Co-occurrence link list (GLCLL) 

Storing GLCM in a linked list can considerably reduce computation time 

[Zhao01]. A GLCLL stores only the non-zero co-occurring probabilities. A linked list is a 

data structure that allows rapid access from node to node using pointers. Each node of the 

GLCLL would consist of a pointer to the previous node, information node containing the 

co-occurring pair (i, j) and it’s probability and a pointer to the next node. Hence, double 

summations over the entire GLCM are avoided and only single summations over the 

length of the linked list are required. Since the linked list length L is much smaller than 

the matrix size Ng x Ng, tremendous gains are achieved. The list needs to be kept sorted 

according to gray level pairs (i, j) for rapid searching of a co-occurring pair which 

compromises the efficiency of GLCLL. If the co-occurring pair is represented on the 
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linked list, its probability value is updated. If the pair is not represented, then a node is 

inserted and initialized at the proper location in the list. Without a sorted list, it would be 

necessary to search the entire list for a particular gray level pair, which would be more 

time consuming. The major advantage of this technique is reduction in computational 

demands as compared to GLCM, although it results in additional computational overhead 

to sort the list. 

5.4 Gray level co-occurrence hybrid structure (GLCHS) 

GLCHS is based on an integrated hash table and linked list approach. It is faster 

as compared to GLCM as well as GLCLL [Zhao02]. The listnode structure defines two 

integer members to store the gray level pairs and two self-referential pointers to access 

previous and next listnode. In the hash table structure, one float member stores the gray-

level co-occurrence probability and the other stores the linked list pointer. The hash table 

is dimensioned to the lower triangle size. Access to the hash table is provided using (i, j) 

as a unique key. Each entry in the hash table contains a pointer. A null pointer indicates 

that a particular co-occurring pair (i, j) does not have a representative node. 

Consequently, a new node would be created, inserted at the end of the linked list and its 

gray level values would be set. If the pointer is not null, then the probability of the 

existing corresponding node on the linked list is incremented. The GLCHS is built in the 

order in which the co-occurring pairs are encountered. The hash table allows rapid access 

to an (i, j) pair and the linked list provides a fast means to apply the statistics. The two 

main advantages are that there is no need of sorted linked list which allows easier 

addition, deletion and modification of probability associated with a node and lower 
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computation time as compared to GLCLL. However it results in increased complexity in 

implementation due to a two dimensional hash table with longer linked list. 
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CONCLUSION AND FUTURE WORK 

 The research work attempted to investigate the use of GLCM textural parameters 

as an image quality metric. The proposed method discussed the relevance of radius and 

angle which happen to be the most crucial input parameters in GLCM processing. It can 

be concluded that the most appropriate value of radius for analysis would be one as 

closely spaced pixels are more likely to be correlated than those which are spaced far 

away. The radius which must be used in computing the GLCM may be obtained from the 

autocorrelation function of the image. The radius value at which the normalized 

autocorrelation function of the image becomes too small can serve as an upper bound on 

the value which may be used for computing the GLCM. No definite conclusion can be 

drawn regarding the value of angle. For most of the studies, it might be appropriate to 

calculate the textural parameters for all the four values of angle and use the average 

value. Thus GLCM happens to be a good discriminator in studying different images 

however no such claim can be made for image quality. The analysis of the results shows 

that the nature of the curve of textural parameter versus image size may not always 

follow a specific trend for chosen values of radius and angle. Performing exhaustive 

processing for all possible radius and angle values could be considered as an option and 

then choosing the most appropriate set of graphs. This however reduces the chances of 

automating the entire process. Hence the search for the best image quality metric 

continues. 
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Future research will include datasets that represent texture classes that differ more 

subtlely. Furthermore, it will be interesting to establish whether this finding holds true for 

computer generated images as well. 
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APPENDIX: C/OPENGL CODE 
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1) main.cpp: This file is used to loading the image and setting the opengl parameters. 

// This is a compiler directive that includes libraries (For Visual Studio) 

#pragma comment(lib, "opengl32.lib") 

#pragma comment(lib, "glu32.lib") 

#pragma comment(lib, "jpeg.lib") 

#include "main.h"         

#include "assert.h" 

#include <math.h> 

bool  g_bFullScreen = TRUE;   // Set full screen as default 

HWND  g_hWnd;    // This is the handle for the window 

RECT  g_rRect;    // This holds the window dimensions 

HDC   g_hDC;   // General HDC - (handle to device context) 

HGLRC g_hRC; //General OpenGL_DC - Our Rendering Context for OpenGL 

HINSTANCE g_hInstance; // Holds the global hInstance for UnregisterClass() in DeInit() 

UINT g_Texture[MAX_TEXTURES];      

 // This will reference to our texture data stored with OpenGL UINT is an unsigned 

int (only positive numbers) 

void Init(HWND hWnd) 

{ 

 g_hWnd = hWnd; // Assign the window handle to a global window handle 

GetClientRect(g_hWnd, &g_rRect); // Assign the windows rectangle to a global RECT 

InitializeOpenGL(g_rRect.right, g_rRect.bottom); // Init OpenGL with the global rect 

/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// * 
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/******** Load "Image.jpg" into OpenGL as a texture********************/ 

CreateTexture(g_Texture, "C:\\clarke\\harshal\\dataset1\\studentunion30.jpg", 0); 

} 

///////////////////////////////// MAIN GAME LOOP \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* 

WPARAM MainLoop() 

{ 

 MSG msg; 

 while(1)      // Do our infinite loop 

 {      // Check if there was a message 

  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))  

        {  

   if(msg.message == WM_QUIT) // If the message wasnt to quit 

    break; 

            TranslateMessage(&msg);  // Find out what the message does 

            DispatchMessage(&msg);  // Execute the message 

        } 

  else     // if there wasn't a message 

  {  

   RenderScene();  // Redraw the scene every frame 

        }  

 } 

 DeInit();    // Free all the app's memory allocated 

 return(msg.wParam);   // Return from the program 
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} 

// This function renders the entire scene. 

void RenderScene()  

{ 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The 

Screen And The Depth Buffer 

glMatrixMode(GL_PROJECTION);  // Select The Projection Matrix 

 glLoadIdentity();     // Reset The Projection Matrix 

 glOrtho(-1,1,-1,1,-1,1); 

 glMatrixMode(GL_MODELVIEW);  // Reset The matrix 

  //    Position      View    Up Vector 

 // Bind the texture stored at the zero index of g_Texture[] 

 glBindTexture(GL_TEXTURE_2D, g_Texture[0]); 

 glBegin(GL_QUADS);  // Display a quad texture to the screen 

glTexCoord2f(0.0f, 0.0f);  glVertex3f(-1.0, 1.0, 0);  // Display the top left vertice 

glTexCoord2f(0.0f, 1.0f);  glVertex3f(-1.0, -1.0, 0);  // Display the bottom left vertice 

glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0, -1.0, 0); // Display the bottom right vertice 

glTexCoord2f(1.0f, 0.0f);  glVertex3f(1.0, 1.0, 0); // Display the top right vertice 

glEnd();     // Stop drawing QUADS 

 SwapBuffers(g_hDC); // Swap the backbuffers to the foreground 

} 

// This function handles the window messages. 
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LRESULT CALLBACK WinProc(HWND hWnd,UINT uMsg, WPARAM wParam, 

LPARAM lParam) 

{ 

    LONG    lRet = 0;  

    PAINTSTRUCT    ps; 

    switch (uMsg) 

 {  

    case WM_SIZE:     // If the window is resized 

  if(!g_bFullScreen)  // Do this only if we are NOT in full screen 

  { 

SizeOpenGLScreen(LOWORD(lParam),HIWORD(lParam)); //LoWord=Width, 

HiWord=Height 

GetClientRect(hWnd, &g_rRect);  // Get the window rectangle 

  } 

        break;  

 case WM_PAINT:   // If we need to repaint the scene 

  BeginPaint(hWnd, &ps);  // Init the paint struct   

  EndPaint(hWnd, &ps); // EndPaint, Clean up 

  break; 

case WM_KEYDOWN: 

  switch(wParam) {    // Check if we hit a key 

   case VK_ESCAPE:  // If we hit the escape key 

  PostQuitMessage(0); // Send a QUIT message to the window 
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    break; 

  } 

  break; 

    case WM_CLOSE:     // If the window is being closes 

        PostQuitMessage(0); // Send a QUIT Message to the window 

        break;  

         default:       // Return by default 

        lRet = DefWindowProc (hWnd, uMsg, wParam, lParam);  

        break;  

    }  

    return lRet;        // Return by default 

} 

2) init.cpp: This file contains the code for GLCM processing and calculation of 

textural parameters. 

#include "main.h" 

// This decodes the jpeg and fills in the tImageJPG structure 

void DecodeJPG(jpeg_decompress_struct* cinfo, tImageJPG *pImageData) 

{  // Read in the header of the jpeg file 

jpeg_read_header(cinfo, TRUE); // Start to decompress the jpeg file  

jpeg_start_decompress(cinfo); 

 // Get the image dimensions and row span to read in the pixel data 

 pImageData->rowSpan = cinfo->image_width * cinfo->num_components; 

 pImageData->sizeX   = cinfo->image_width; 
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 pImageData->sizeY   = cinfo->image_height; 

 // Allocate memory for the pixel buffer 

pImageData->data = new unsigned char[pImageData->rowSpan * pImageData->sizeY]; 

// Here we use the library's state variable cinfo.output_scanline as the 

// loop counter, so that we don't have to keep track ourselves. 

// Create an array of row pointers 

 unsigned char** rowPtr = new unsigned char*[pImageData->sizeY]; 

 for (int i = 0; i < pImageData->sizeY; i++) 

  rowPtr[i] = &(pImageData->data[i*pImageData->rowSpan]); 

 // Now comes the juice of our work, here we extract all the pixel data 

 int rowsRead = 0; 

 while (cinfo->output_scanline < cinfo->output_height)  

 {  // Read in the current row of pixels and increase the rowsRead count 

rowsRead += jpeg_read_scanlines(cinfo, &rowPtr[rowsRead], cinfo->output_height - 

rowsRead); 

 } 

delete [] rowPtr;  // Delete the temporary row pointers 

jpeg_finish_decompress(cinfo);  // Finish decompressing the data 

} 

// This loads the JPG file and returns it's data in a tImageJPG struct 

tImageJPG *LoadJPG(const char *filename) 

{ 

 struct jpeg_decompress_struct cinfo; 
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 tImageJPG *pImageData = NULL; 

FILE *pFile; // Open a file pointer to the jpeg file and check if it was found and opened  

 if((pFile = fopen(filename, "rb")) == NULL)  

 { // Display an error message saying the file was not found, then return NULL 

  MessageBox(g_hWnd, "Unable to load JPG File!", "Error", MB_OK); 

  return NULL; 

 } 

 jpeg_error_mgr jerr; // Create an error handler 

 // Have our compression info object point to the error handler address 

 cinfo.err = jpeg_std_error(&jerr); 

 jpeg_create_decompress(&cinfo);  // Initialize the decompression object 

 jpeg_stdio_src(&cinfo, pFile);  // Specify the data source (Our file pointer)  

 // Allocate the structure that will hold our eventual jpeg data (must free it!) 

 pImageData = (tImageJPG*)malloc(sizeof(tImageJPG)); 

 // Decode the jpeg file and fill in the image data structure to pass back 

 DecodeJPG(&cinfo, pImageData); 

 // This releases all the stored memory for reading and decoding the jpeg 

 jpeg_destroy_decompress(&cinfo); 

 fclose(pFile);  // Close the file pointer that opened the file 

 return pImageData;  // Return the jpeg data 

 

} 

// This creates a texture in OpenGL that we can use as a texture map 
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void CreateTexture(UINT textureArray[], LPSTR strFileName, int textureID) 

{ 

 if(!strFileName) // Return from the function if no file name was passed in 

  return; 

tImageJPG *pImage = LoadJPG(strFileName); //GET PIXEL INFO OF JPEG IN pImage 

FILE *target, *source; int i,j,k; unsigned char * gray; 

gray = (unsigned char *) malloc (pImage->sizeX * pImage->sizeY); 

target = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\grayinfo.xls","w"); 

fprintf(target,"width=%d,\t height=%d rowspan=%d\n",pImage->sizeX, pImage->sizeY, 

pImage->rowSpan); 

short signed int radiusrow, radiuscol, radius, angle, width, height; 

int x, y,   graylevels, xstretch, ystretch, row, col; //*image, 

float   tempf;//, energy_nor, homogeneity_nor, inertia_nor, entropy_nor; 

float *glcm, *buff,  no_of_pairs, counter=0.0; 

double entropy, inertia, homogeneity, energy; 

angle = 0; // SET INPUT PARAMETERS 

radius = 1; height = pImage->sizeY;  width = pImage->sizeX; 

switch(angle) 

 { 

 case 0: 

  radiusrow = 0; radiuscol = radius; 

  no_of_pairs = (float)(width-radius) * height; 

  break; 
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 case 180: 

 radiusrow = 0; radiuscol = radius; 

 no_of_pairs = (float)(width-radius) * height; 

  break; 

case 45: 

  radiusrow = 0-radius;  radiuscol = radius; 

  no_of_pairs = (float)(height-radius) * (width-radius); 

  break; 

 case 225: 

  radiusrow = 0-radius;  radiuscol = radius; 

  no_of_pairs = (float)(height-radius) * (width-radius); 

  break; 

 case 90: 

  radiusrow = radius; radiuscol = 0; 

  no_of_pairs = (float)(height-radius) * width; 

  break; 

 case 270: 

  radiusrow = radius; radiuscol = 0; 

  no_of_pairs = (float)(height-radius) * width; 

  break; 

 case 135: 

  radiusrow = 0 - radius; radiuscol = 0 - radius; 

  no_of_pairs = (float)(height-radius) * (width-radius); 
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  break; 

 case 315: 

  radiusrow = 0 - radius; radiuscol = 0 - radius; 

  no_of_pairs = (float)(height-radius) * (width-radius); 

  break; 

 } 

 for(i=0; i<pImage->sizeY; i++) 

 { 

  for(k=0,j=0; k<pImage->rowSpan/3; k++, j=j+3) 

  { 

* (gray+i*pImage->sizeX+k) = (pImage->data[(i*pImage->rowSpan)+j] + pImage-

>data[(i*pImage->rowSpan)+j+1] + pImage->data[(i*pImage->rowSpan)+j+2]) / 3; 

 fprintf(target,"%d\t", *(gray+i*pImage->sizeX+k)); 

  } 

  fprintf(target,"\n"); 

 } 

 fclose(target); 

  xstretch = ystretch = graylevels = 256; 

  glcm = (float *) malloc (8*graylevels * graylevels); 

  buff = (float *) malloc (8*graylevels * graylevels); 

  for(x=0; x<xstretch; x++) //CLEARING BUFF AND GLCM MATRICES 

  { 

   for(y=0; y<ystretch; y++) 
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   { 

    *(buff+x+y*xstretch) = 0; *(glcm+x+y*xstretch) = 0; 

   } 

  } 

for( row=0; row<xstretch ; row++) 

 { 

  for( col=row; col<ystretch; col++) 

  { 

   counter = 0.0;  

 for(x=0; x<height  ; x++) 

   { 

    for(y=0; y<width; y++) 

    { 

if( (x+radiusrow)<0 || (x+radiusrow)>=width || (y+radiuscol)<0 || (y+radiuscol)>=height ) 

//BOUNDARY CONDITION 

     { 

     } 

     else 

     { 

if(*(gray+x*width+y) == row && *(gray+((x+radiusrow)*width)+(y+radiuscol)) == col 

|| *(gray+x*width+y) == col && *(gray+((x+radiusrow)*width)+(y+radiuscol)) == row) 

      { 

       counter++; 
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      } 

     } 

    } 

   } 

 if(row==col)  *(buff+row*xstretch+col) = 2*counter; 

 else   *(buff+row*xstretch+col) = counter; 

 counter = 0.0; 

  } 

 } 

for( row=0; row<xstretch ; row++) //FILL LOWER TRIANGLE OF GLCM 

  { 

   for( col=0; col<row; col++) 

   { 

   *(buff+row*xstretch+col) = *(buff+col*xstretch+row); 

   } 

  } 

target = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\glcm.xls","w"); 

 for(i=0; i<ystretch; i++) 

 { 

  for(j=0; j<xstretch; j++) 

  { 

 *(glcm+i*xstretch+j) = ((*(buff+i*xstretch+j))/no_of_pairs); 

 fprintf(target,"%f\t", *(buff+i*xstretch+j)); 
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  } 

  fprintf(target,"\n"); 

 } 

 fclose(target); 

energy = 0.0;  //ENERGY COMPUTATION 

for(x=0; x<xstretch; x++) 

 { 

  for(y=0; y<ystretch; y++) 

  { 

   energy = energy + pow(*(glcm+x+y*xstretch),2); 

  } 

 } 

inertia = 0.0; //INERTIA/CONTRAST COMPUTATION 

for(x=0; x<xstretch; x++) 

 { 

  for(y=0; y<ystretch; y++) 

  { 

   inertia = inertia + (pow((x-y),2) * (*(glcm+x+y*xstretch))); 

  } 

 } 

double tempdouble = 0.0;  //ENTROPY COMPUTATION 

entropy = 0.0; 

 for(x=0; x<xstretch; x++) 
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 { 

  for(y=0; y<ystretch; y++) 

  { 

   if(*(glcm+x+y*xstretch) != 0.0) 

   { 

    tempdouble = (double)*(glcm+x+y*xstretch); 

    tempdouble = log(tempdouble) * tempdouble; 

    entropy = entropy +  tempdouble; 

    tempdouble = 0.0; 

   } 

  } 

 } 

 entropy = 0 - entropy; 

tempf = 0.0;  // HOMOGENEITY COMPUTATION 

homogeneity = 0.0; 

 for(x=0; x<xstretch; x++) 

 { 

  for(y=0; y<ystretch; y++) 

  { 

   tempdouble = pow((x-y),2) + 1; 

   tempdouble = 1 / tempdouble; 

   tempdouble = tempdouble * (*(glcm+x+y*xstretch)); 

   homogeneity = homogeneity + tempdouble; 
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   tempdouble = 0.0; 

  } 

 } 

source = fopen("C:\\clarke\\code\\jpeg\\Copy of TexturingIII\\results\\glcminfo.txt", 

"w"); 

fprintf(source, "\n\n ENERGY = %lf \n INERTIA/CONTRAST = %lf \n ENTROPY = 

%lf \n HOMOGENEITY = %lf", energy, inertia, entropy,   homogeneity);  

fclose(source); 

fclose(target); 

if(pImage == NULL)    // If we can't load the file, quit! 

  exit(0); 

glGenTextures(1, &textureArray[textureID]); // Generate a texture with the associative 

texture ID stored in the array 

// Bind the texture to the texture arrays index and init the texture 

glBindTexture(GL_TEXTURE_2D, textureArray[textureID]); 

// Build Mipmaps (builds different versions of the picture for distances - looks better) 

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, pImage->sizeX, pImage->sizeY, GL_RGB, 

GL_UNSIGNED_BYTE, pImage->data); 

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MI

PMAP_NEAREST); 

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MI

PMAP_LINEAR);  

// Now we need to free the image data that we loaded since OpenGL stored it as a texture 
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if (pImage)     // If we loaded the image 

 { 

  if (pImage->data)   // If there is texture data 

  { 

  free(pImage->data); // Free the texture data, we don't need it anymore 

  } 

  free(pImage);  // Free the image structure 

 } 

} 

// This changes the screen to FULL SCREEN 

void ChangeToFullScreen() 

{ 

 DEVMODE dmSettings;   // Device Mode variable 

memset(&dmSettings,0,sizeof(dmSettings));  // Makes Sure Memory's Cleared 

// Get current settings -- This function fills our the settings 

// This makes sure NT and Win98 machines change correctly 

if(!EnumDisplaySettings(NULL,ENUM_CURRENT_SETTINGS,&dmSettings)) 

 {  // Display error message if we couldn't get display settings 

  MessageBox(NULL, "Could Not Enum Display Settings", "Error", 

MB_OK); 

  return; 

 } 

dmSettings.dmPelsWidth = SCREEN_WIDTH;  // Selected Screen Width 
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dmSettings.dmPelsHeight = SCREEN_HEIGHT;// Selected Screen Height 

 // This function actually changes the screen to full screen 

 // CDS_FULLSCREEN Gets Rid Of Start Bar. 

 // We always want to get a result from this function to check if we failed 

 int result = ChangeDisplaySettings(&dmSettings,CDS_FULLSCREEN);  

 // Check if we didn't recieved a good return message From the function 

 if(result != DISP_CHANGE_SUCCESSFUL) 

 {  // Display the error message and quit the program 

  MessageBox(NULL, "Display Mode Not Compatible", "Error", MB_OK); 

  PostQuitMessage(0); 

 } 

} 

// This function creates a window, but doesn't have a message loop 

HWND CreateMyWindow(LPSTR strWindowName, int width, int height, DWORD 

dwStyle, bool bFullScreen, HINSTANCE hInstance) 

{ 

 HWND hWnd; 

 WNDCLASS wndclass; 

memset(&wndclass, 0, sizeof(WNDCLASS)); // Init the size of the class 

wndclass.style = CS_HREDRAW | CS_VREDRAW; // Regular drawing capabilities 

wndclass.lpfnWndProc = WinProc; // Pass our function pointer as the window procedure 

wndclass.hInstance = hInstance;  // Assign our hInstance 

wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // General icon 
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wndclass.hCursor = LoadCursor(NULL, IDC_ARROW); // An arrow for the cursor 

wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW+1); // A white window 

wndclass.lpszClassName = "GameTutorials"; // Assign the class name 

RegisterClass(&wndclass);    // Register the class 

 if(bFullScreen && !dwStyle) // Check if we wanted full screen mode 

 {    // Set the window properties for full screen mode 

  dwStyle = WS_POPUP | WS_CLIPSIBLINGS | WS_CLIPCHILDREN; 

  ChangeToFullScreen();  // Go to full screen 

  ShowCursor(FALSE);  // Hide the cursor 

 } 

 else if(!dwStyle) // Assign styles to the window depending on the choice 

dwStyle = WS_OVERLAPPEDWINDOW | WS_CLIPSIBLINGS | 

WS_CLIPCHILDREN; 

 g_hInstance = hInstance;// Assign our global hInstance to the window's hInstance 

 RECT rWindow; 

rWindow.left = 0;     // Set Left Value To 0 

 rWindow.right = width;  // Set Right Value To Requested Width 

 rWindow.top     = 0;    // Set Top Value To 0 

 rWindow.bottom = height; // Set Bottom Value To Requested Height 

AdjustWindowRect( &rWindow, dwStyle, false); // Adjust Window To True Requested 

Size 

// Create the window 

hWnd = CreateWindow("GameTutorials", strWindowName, dwStyle, 0, 0, 
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rWindow.right  - rWindow.left, rWindow.bottom - rWindow.top, NULL, NULL, 

hInstance, NULL); 

if(!hWnd) return NULL;  // If we could get a handle, return NULL 

ShowWindow(hWnd, SW_SHOWNORMAL); // Show the window 

 UpdateWindow(hWnd);   // Draw the window 

 SetFocus(hWnd);  // Sets Keyboard Focus To The Window  

 return hWnd; 

} 

// This function sets the pixel format for OpenGL. 

bool bSetupPixelFormat(HDC hdc)  

{  

    PIXELFORMATDESCRIPTOR pfd;  

    int pixelformat;  

   pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);// Set the size of the structure 

    pfd.nVersion = 1;     // Always set this to 1 

// Pass in the appropriate OpenGL flags 

pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | 

PFD_DOUBLEBUFFER;  

pfd.dwLayerMask = PFD_MAIN_PLANE;// We want the standard mask     

pfd.iPixelType = PFD_TYPE_RGBA; // We want RGB and Alpha pixel type 

pfd.cColorBits = SCREEN_DEPTH;// Here we use our #define for the color bits 

pfd.cDepthBits = SCREEN_DEPTH;// Depthbits is ignored for RGBA 

pfd.cAccumBits = 0;     // No special bitplanes needed 

 105



pfd.cStencilBits = 0;   // We desire no stencil bits 

// This gets us a pixel format that best matches the one passed in from the device 

    if ( (pixelformat = ChoosePixelFormat(hdc, &pfd)) == FALSE )  

    {  

        MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);  

        return FALSE;  

    }  

 // This sets the pixel format that we extracted from above 

    if (SetPixelFormat(hdc, pixelformat, &pfd) == FALSE)  

    {  

        MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);  

        return FALSE;  

    }  

    return TRUE;   // Return a success! 

} 

// This function resizes the viewport for OpenGL. 

void SizeOpenGLScreen(int width, int height) // Initialize The GL Window 

{ 

 if (height==0)    // Prevent A Divide By Zero error 

 { 

  height=1;   // Make the Height Equal One 

 } 

 glViewport(0,0,width,height); // Make our viewport the whole window 
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glMatrixMode(GL_PROJECTION);  // Select The Projection Matrix 

 glLoadIdentity();   // Reset The Projection Matrix 

  // Calculate The Aspect Ratio Of The Window 

 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height, .5f ,150.0f); 

 glMatrixMode(GL_MODELVIEW);  // Select The Modelview Matrix 

 glLoadIdentity();    // Reset The Modelview Matrix 

} 

// This function handles all the initialization for OpenGL. 

void InitializeOpenGL(int width, int height)  

{   

    g_hDC = GetDC(g_hWnd);   // This sets our global HDC 

   if (!bSetupPixelFormat(g_hDC)) // This sets our pixel format/information 

        PostQuitMessage (0);   // If there's an error, quit 

    g_hRC = wglCreateContext(g_hDC);// This creates a rendering context from our hdc 

    wglMakeCurrent(g_hDC, g_hRC);// This makes the rendering context we just created  

 // This allows us to use texture mapping, otherwise we just use colors. 

 

 glEnable(GL_TEXTURE_2D);  // Enable Texture Mapping 

SizeOpenGLScreen(width, height);  // Setup the screen translations and viewport 

 } 

// This function cleans up and then posts a quit message to the window 

void DeInit() 

{ 
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 if (g_hRC)           

 { 

  wglMakeCurrent(NULL, NULL);     

 // This frees our rendering memory and sets everything back to normal 

  wglDeleteContext(g_hRC); // Delete our OpenGL Rendering Context  

 } 

 if (g_hDC)  

  ReleaseDC(g_hWnd, g_hDC); // Release our HDC from memory 

  if(g_bFullScreen)  // If we were in full screen 

 { 

  ChangeDisplaySettings(NULL,0);// If So Switch Back To The Desktop 

  ShowCursor(TRUE);   // Show Mouse Pointer 

 } 

UnregisterClass("GameTutorials", g_hInstance);  // Free the window class 

 PostQuitMessage (0);  // Post a QUIT message to the window 

} 

// This function handles registering and creating the window. 

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hprev, PSTR cmdline, int 

ishow) 

{  

 HWND hWnd; // Check if we want full screen or not 

 if(MessageBox(NULL, "Click Yes to go to full screen (Recommended)", 

"Options", MB_YESNO | MB_ICONQUESTION) == IDNO) 
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  g_bFullScreen = false; 

  // Create our window with our function we create that passes in the: 

 // Name, width, height, any flags for the window, if we want fullscreen of not, and 

the hInstance 

 hWnd = CreateMyWindow("Texture Mapping JPEGs", SCREEN_WIDTH, 

SCREEN_HEIGHT, 0, g_bFullScreen, hInstance); 

 // If we never got a valid window handle, quit the program 

 if(hWnd == NULL) return TRUE; 

 Init(hWnd);      // INIT OpenGL 

 // Run our message loop and after it's done, return the result 

 return MainLoop();       

} 
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