
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Integration Of Real-Time Experiments With Internet Access Integration Of Real-Time Experiments With Internet Access

Pavan Talakala
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Talakala, Pavan, "Integration Of Real-Time Experiments With Internet Access" (2005). Electronic Theses
and Dissertations, 2004-2019. 401.
https://stars.library.ucf.edu/etd/401

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/401?utm_source=stars.library.ucf.edu%2Fetd%2F401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INTEGRATION OF REAL – TIME EXPERIMENTS
WITH INTERNET ACCESS

by

PAVAN TALAKALA
B.E. Osmania University, India 2000

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2005

ABSTRACT

The revolution of Internet – enabled instrumentation is emerging as a revolution in

Measurement and Automation. New standards are being developed for transmitting data and

connecting instruments to the Internet. The main purpose of this thesis is to design and develop a

system to Integrate various Real – time experiments and be able to monitor and control them

over Internet using LabVIEW. LabVIEW is a graphical programming package capable of data

acquisition, data analysis, data presentation and real time remote control.

In this thesis a Real – time system is developed which integrates several real time

experiments and remote control access over Internet is provided using LabVIEW. The latest

remote panel technology is used to provide the remote control access. There are four Real – time

instrument experiments developed in this thesis project. They are Automatic Mixing Controller,

The Digital Storage Oscilloscope from Gould Instruments, Temperature Controller and an

Electronic Recording Rain/Precipitation Gauge. These four instruments are connected and

communicated from the main computer by external Data Acquisition Board (DAQ) for the

Automatic Mixing Controller, By General Purpose Interface Board (GPIB) for the Oscilloscope,

by Data Acquisition board (DAQ) for the Temperature controller and by Serial port for the

Electronic Recording Rain/Precipitation Gauge. A system is developed to integrate all the

applications listed above into one application and are monitored and controlled remotely over

Internet using LabVIEW.

 ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr.Janusz Zalewski, my advisor who has given

me constant guidance dedicated support through out my thesis work. Without his encouragement

and advice this thesis would never have been completed

 I would like to thank Dr.Samuel Richie and Dr.Fernando Gonzalez for agreeing to be on

thesis committee and giving me valuable suggestions while working on my thesis.

I would like to thank my friends for their understanding and support over the years and

for proof reading this document.

Finally, I want to express my deepest regards to my parents and family members for their

support, motivation and inspiration throughout my education and without whose blessings and

best wishes I would not have been able to reach my goals.

 iii

TABLE OF CONTENTS

LIST OF FIGURES ... vi
1. INTRODUCTION .. 1

1.1 Computer Based Measurement And Automation ... 1
1.2 Publishing Data... 7
1.3 Sharing Data.. 9
1.4 Remote Control... 11
1.5 Distributed Execution ... 14

2. LITERATURE REVIEW ... 17
2.1 Overview of LabVIEW... 17
2.2 Open Connectivity with Other Applications... 18
2.3 Other Features of LabVIEW... 23

2.3.1 Portability.. 23
2.3.2 Productivity... 24
2.3.3 Flexibility.. 24
2.3.4 Reusability .. 25
2.3.5 Maintainability.. 25
2.3.6 Interoperability.. 25
2.3.7 OOP... 26

2.4 Other G languages... 26
2.5 User Interface Event Programming .. 28

2.5.1 Simple Example: Event Structure... 29
2.6 Nonvisible Event Structure Cases... 30

2.6.1 State Machine.. 33
3. METHODOLOGY ... 37

3.1 Problem Description ... 37
3.2 The Automated Controlled Mixing Process Experiment.. 39
3.3 Experiment with the Digital Storage Oscilloscope... 39
3.4 Experiment with the Temperature Controller ... 40
3.5 Experiment with RainWise Recording Rain/Precipitation Gauge................................ 41
3.6 Remote Access to the Experiments via Internet ... 41
3.7 Internet Connectivity Using Remote Panels in LabVIEW 6.1 42

4. DESIGNING THE INTEGRATED APPLICATION .. 44
4.1 Experiment with the Automated Controlled Mixer .. 44
4.2 Design Description: .. 46
4.3 Implementation ... 47

4.3.1 TTL Digital Line... 48
4.4 Experiment with the Gould Digital Storage Oscilloscope.. 52
4.5 The Panel VI ... 53
4.6 Experiment with the Temperature Controller ... 58
4.7 Experiment with the Rain Gauge.. 61
4.8 Integration of the Real – Time Experiments... 65
4.9 Remote Panels... 68

 iv

5. TESTING.. 70
6. CONCLUSIONS... 74
APPENDIX A: Front Panels of the Integrated Real – Time Experiments 75
APPENDIX B: Source Code for Remote Panels.. 81
APPENDIX C: LabVIEW Source Code for Integrated Application .. 85
REFERENCES ... 184

 v

LIST OF FIGURES

Figure 1.1: Computer – Based Measurement and Automation... 3
Figure 1.2: LabVIEW Product History... 4
Figure 1.3: Publishing Data using LabVIEW... 8
Figure 1.4: Data sharing using LabVIEW .. 11
Figure 1.5 : Running Both in LabVIEW and Embedded in a Web Browser................................ 13
Figure 1.6 : Distributed Execution using LabVIEW .. 15
Figure 2.1: Front panel of a LabVIEW virtual instrument. .. 20
Figure 2.2 : The block diagram of the above virtual instrument. ... 21
Figure 2.3 : Front Panel and Block Diagram .. 22
Figure 2.4: LabVIEW Terms and Their Conventional Equivalents ... 23
Figure 2.5 : A simple Even Loop.. 30
Figure 2.6 : A While Loop with Event Structure.. 30
Figure 2.7 : A Traditional User Interface State Machine.. 34
Figure 2.8 : A UI State Machine Using the Event Structure .. 35
Figure 2.9 : Nonvisible Event Structure Cases ... 35
Figure 3.1 : The Architecture of the Integrated Real – Time System.. 38
Figure 3.2 : Distributed Application ... 43
Figure 4.1 : Mixing Tank with Dispense reservoir .. 45
Figure 4.2: Front Panel of the Automatic Mixing Controller VI.. 49
Figure 4.3: Block Diagram of the Automatic Mixing Controller Experiment 50
Figure 4.4 : Manual Mode Case:... 50
Figure 4.5 : AUTO False Case:... 50
Figure 4.6 : AUTO write to digital line sequence... 51
Figure 4.7 : Formula node sequence ... 51
Figure 4.8 : Block Diagram of the Formula node sequence ... 51
Figure 4.9: Cold Water Valve, Hot Water Valve, Motor and Solution Valve sequences 52
Figure 4.10 : Front Panel of the Oscilloscope.vi .. 53
Figure 4.11 : Diagram of a GPIB Write VI. ... 54
Figure 4.12 : Diagram of a GPIB Read VI. .. 55
Figure 4.13 : Waveform acquisition and presentation diagram... 56
Figure 4.14: Part of the Channel VI block diagram... 57
Figure 4.15: A simplified diagram of knob operation on the Panel VI. 57
Figure 4.16 : The temperature control process and connections for this experiment 59
Figure 4.17: The front panel to control the temperature controller. .. 60
Figure 4.18 : Block Diagram of the Tempcontroller.vi .. 61
Figure 4.19 : The Rain/Precipitation Recording Gauge.. 63
Figure 4.20 : Front Panel for the Rain –Precipitation Gauge.vi ... 64
Figure 4.21: Block Diagram of the State Machine VI architecture .. 66
Figure 4.22: Front Panel of the Integrated Real - time Application .. 67
Figure 4.23: Block Diagram of the State Machine used for the Real – time Application 68
Figure 4.24: LabVIEW Web Publishing Tool .. 69
Figure 5.1 : Front Panel of the Integrated Application ... 70

 vi

Figure 5.2 : Screen shot of the Application when executed – Prompts for User Name 71
Figure 5.3 : Remote Panel of the Integrated Application ... 72
Figure 5.4 : Screen shot of the program when accessed remotely and has requested for Control

... 73

 vii

1. INTRODUCTION

1.1 Computer Based Measurement And Automation

For more than 25 years, National Instruments has revolutionized the way scientists and

engineers’ work by leveraging the personal computer and its related technologies. Around the

world, National Instruments is changing the way measurements are made by providing the

software, hardware, and technologies necessary to transform personal computers into powerful

computer-based and networked measurement and automation systems. [1] Whether testing cars

at Honda in Japan, validating cardiac defibrillators at Tecktronics in Australia, or increasing test

efficiency of phone lines at British Telecom in the UK, companies using NI products can achieve

their goals - faster, better.

 Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a Programming

environment in which one can create programs with graphics. National Instruments (NI)

Corporations developed LabVIEW in 1986. [1] Thousands of successful engineers, scientists,

and technicians use LabVIEW to create solutions for their demanding application needs.

LabVIEW is a revolutionary graphical programming development environment based on the

Graphical programming language for data acquisition and control, data analysis, and data

presentation. LabVIEW gives the flexibility of a powerful programming language without the

associated difficulty and complexity because its graphical programming methodology is

inherently intuitive to scientists and engineers. LabVIEW is used to program instrumentation

systems in a faster way without sacrificing performance.

 1

National Instruments provides with several types of computer-based measurement and

automation hardware and software tools. A developer can make all the required measurements

from PCs using different combinations of I/O that are appropriate for an application:

 • Rack-n-stack GPIB instruments (NI makes the GPIB host interface)

 • Serial instruments (NI makes RS-232 & RS-485 host interfaces)

 • Data acquisition boards w/ & w/o signal conditioning

 • VXI instruments (NI makes controllers, chassis, DAQ boards)

 • Image acquisition

 • Motion control

 • PXI / Compact PCI

The PC’s making these measurements are typically networked together, and are running

software that makes taking measurements fast and easy. [2]

 2

www.ni.com

Computer-Based Measurement and
Automation

GPIB
Serial

DAQ

Process
or

Unit Under
Test

VXI

Image
Acquisition

Motion
Control

PXI

Application
Software

Hardware & Driver Software
Corporate Network

Figure 1.1: Computer – Based Measurement and Automation

LabVIEW is one member of National Instruments family of software tools and languages

[1]. LabVIEW is a graphical programming language that is fast and easy to write. Virtual

Bench is a set of soft front panel instruments that resemble bench top instruments—they use any

NI DAQ [3] or computer-based instrument. Measure is used for inserting data directly into cells

of an Excel spreadsheet.

LabVIEW is a programming language just like other programming languages, such as C,

Basic, or Pascal, but LabVIEW is higher-level. In text-based programming languages, a

developer will be concerned about the code and must pay close attention to the syntax (commas,

periods, semicolons, square brackets, curly brackets, round brackets). LabVIEW is much

higher-level language, it uses icons to represent subroutines, and the developer has to wire these

 3

icons together in order to define the flow of data through the program. It is sort of like flow-

charting the code as it is written - and the net effect is that the program can be written in a lot less

time than it would take in a text-based programming language [4].

LabVIEW has been in existence since October of 1986. It has gone through many

revisions and feature enhancements over the years, and today it is the most popular test and

measurement programming language. It has all the depth and breadth that any programming

language has. [2]

Figure 1.2: LabVIEW Product History

 4

LabVIEW programs are called “Virtual Instruments” or “VIs” for short.

They are modeled after traditional bench top instruments, which have a front panel for the

instrument’s inputs and outputs, and underneath the instrument’s front panel is the hardware of

the instrument.

LabVIEW Virtual Instruments are similar—they have a Front Panel for the routine inputs

and outputs, and underneath the Front Panel is the graphical source code area, which we call the

“Block Diagram.”

LabVIEW is technically what is known as a dataflow programming language. Data

flows from a source of data to one or more sinks of data—and it propagates through the program

in this fashion. LabVIEW lends itself well to modular programming techniques—as a developer

can write his own subVIs, and use them as subroutines to a higher-level program. LabVIEW is a

multi-platform programming language, which means that any piece of LabVIEW source code

written on one platform, can be brought to any other of the supported platforms, and recompiled.

LabVIEW is thus portable across the various platforms.

Today, the Web is an essential part of the way a business operates. The Web can be used

to gain visibility, share information, and sell products, and also to improve the ways to design,

manufacture, and test products; to decrease design time; and to ensure quality. Just as

advancements in PC technologies transformed the way measurements are automated, networks

are revolutionizing the fundamental architecture of PC-based measurement solutions. Some have

proposed that network technologies are ushering in a post-PC era. Networks are not antiquating

the PC, but revolutionizing the PC platform. The basic components found in a PC platform, such

as I/O, processors, memory and storage, and displays are still the building blocks, but they no

longer need to be packaged as a self-contained unit. With networking technologies, the developer

 5

can distribute these components to the location most appropriate for the required application. The

platform is fundamentally the same, but the deployment capabilities of the platform are enhanced

radically. Using network technologies in the measurement solutions, one can perform I/O on the

production floor, deploy additional processing power for in-depth analysis in the control center,

log and store post analysis information to a corporate database, and display key information to

clients around the world via a Web browser. The essential tool that is required to tie all of these

pieces together is the software. LabVIEW provides a platform for designing the test system to

take advantage of all of the latest technologies while providing an environment still focused on r

developing the application quickly. National Instruments LabVIEW focuses on solving

measurement and automation needs by incorporating commercial technologies and balancing

powerful ease-of-use functionality.

LabVIEW provides the most productive development environment for empowering

scientists and engineers to develop their own solutions. Any LabVIEW application, without any

additional development time, can be turned into a remote application accessed via a Web

browser. High-level functions are available to generate Web reports through Microsoft Excel or

Word with out the necessity to design and develop the low-level interfaces. Live data sharing can

be enabled for individual user interface items simply by right-clicking the item and placing a

checkmark in a checkbox. These technologies not only save valuable development time, but also

help to take advantage of the economies of scale that the Web provides. Many technologies are

available for sharing information and data on the Web. For convenience and clarity Labview

applications are classified into four main types [2]

• Publishing Data

• Sharing Data

 6

• Remote Control

• Distributed Execution

1.2 Publishing Data

Generates a static Web report of test results that can be shared with others. This method

is the electronic version of the traditional printed report but has the advantage of easy access

through a standard Web browser.

The use of the Web for distributing information from invoices of new cars, to e-mail

alerts of airline specials, to continuously updated research and stock quotes has become everyday

business. In the same way the Web provides this daily information, it is the ideal medium for

sharing measurement results with others. One of the simplest ways to share information across a

network or the Internet is by publishing a report or summary. These reports help disseminate

vital information quickly to various groups in the company in a form that can easily be accessed

using Web browsers. With the built-in Web Server in LabVIEW, it is possible to publish the

front panel of the application without adding any development time to project. After the Web

Server is enabled, LabVIEW generates front panel images that can be accessed from any Web

browser.

Report generation functions to publish reports in HTML format, ready for publishing to

the Web can be used to extend the reporting capability beyond publishing an image of the front

panel, such as creating a report that includes tables, lists, operator information, dates, and times

along with the graphs and analysis on the front panel. These functions professionally document

the results of an application quickly and easily by adding images, front panels, bulleted lists, and

tables, thereby making it easy to further integrate the applications on the Web. Often, a developer

 7

might want to generate a report using a standard application such as Microsoft Word or Excel.

The Report Generation Toolkit for Microsoft Office can be added to LabVIEW to provide high-

level functions that make creating these reports fast and easy. It is not necessary to understand

the hierarchical ActiveX interface to interact with Microsoft Word or Excel, because these high-

level functions incorporate the most common tools required to generate professional reports.

Beyond the ability to create the reports for internal use, the toolkit also has functions to generate

HTML from Microsoft Word or Excel required to share the results of the report easily

throughout the world.

Figure 1.3: Publishing Data using LabVIEW

 8

In the above figure use of LabVIEW to generate a report in Microsoft Word (1), and then

create HTML (2) to display the data on the Web (3) are displayed. In addition to Word and

Excel, some corporations use databases to store the data and use a Web interface for viewing

reports. For quality control purposes, manufacturers might prefer to use a database that the rest

of the company can easily access through a Web interface. The Database Connectivity Toolkit

provides a common ADO interface for easy transfer of data and information to and from a

database. Many databases have a front end that is accessible and searchable through a Web

interface. Anyone who has access can then search and view the data in a Web browser.

LabVIEW Internet Toolkit can also be used to do FTP, to transfer data files on the web, when a

large amount of information is gathered and is preferred to place these files on an FTP site where

it can be shared easily. FTP sites are a good way to share larger files that might not be

appropriate to send in e-mail and around which it might be difficult to create HTML. As the

Web has become the preferred medium for disseminating test data, because with it one can easily

create reports and send updates. With the built-in tools in LabVIEW, it is easy to take advantage

of these technologies.

1.3 Sharing Data

Expands the concept of publishing data to include transferring the actual data among

computers where a user can perform different analyses on that data, depending on the needs.

Some applications might require streaming the actual data for additional processing, storage, or

monitoring. For example, out-of-bound parameters can be updated while the test is still

progressing.

A report offers a static view of compiled information. While this may deliver an

 9

easy-to-read summary of a completed test, it does not provide an easy way to access the

data that created the report. In many applications, real-time access to acquired data is needed to

control or monitor a process or perform a test across a network. The results of one measurement

or automation process can be passed directly to the next process. In this type of application, it is

sharing the actual information that is important; as opposed to the data reporting applications

where sharing static views, such as a report or a Web page, were sufficient. In this kind of

application, manufacturing might share quality data with the R&D organization, which could

then analyze the data directly instead of just looking at a report that manufacturing generated.

For data sharing, XML is quickly becoming a standard way to transfer, in a text-readable

fashion, data that can easily be displayed on the Web. [1] Because of the universal XML

standard, it is possible to generate a Web report that has a defined set of data. Because the data is

readily accessible, applications can download any XML document, parse the data, and perform

custom analyses. LabVIEW provides built-in functions that can be used to create or read XML

documents.

 Another method of sharing data directly with other parts of the organization is through

DataSocket. Using DataSocket, a National Instruments technology built on top of TCP/IP, can

quickly stream data between computers and applications. DataSocket implementation requires no

extra development time because it enables a graph or other user interface item to stream the data

it is displaying over the network. Because DataSocket also is implemented as an ActiveX

control, a Java Bean, and a component of Measurement Studio for C/C++ and Visual Basic

development, the developer can incorporate this technology in many other applications. To

subscribe to the DataSocket Server item containing the data, these applications use a URL

address to begin receiving data and any updates that are sent. Using DataSocket, Web page can

 10

be generated to show updates of quality information from a manufacturing floor, changing

properties of materials during an ongoing test, or even updates of the weather.

Figure 1.4: Data sharing using LabVIEW

This application in the above figure sends an e-mail alert when specified limits are

exceeded. With the Internet Toolkit, LabVIEW can be used to send e-mail alerts. Electronic

notifications can then be created for operators that use pagers or mobile phones to receive alerts

from the production area when certain process values exceed established limits. The operator

gets updated as the test runs, and his time is freed up to spend on more productive tasks.

1.4 Remote Control

Expands the concept of sharing data to include enabling another computer to connect to

the experiment and control that experiment remotely. For many applications, the test might be in

 11

a harsh environment or run overnight where it is inconvenient for someone to be at the terminal

continuously.

With remote control, anyone can control the execution of a system from another

computer in a remote location. One instance where this would be useful is with a system in a

harsh environment where a person will have limited access and might want a way to perform

remote monitoring, control, even run diagnostics, while the system itself is dedicated to running

acquisition and control. Sometimes tests are designed to run for long periods of time, but at

certain intervals, parameters must be changed or other tests begun. Because the operator of the

test does not want to have to drive back to work on the weekend or at night just to make these

small modifications to the tests, the operator logs onto the network from home, connects to the

test, and makes those changes just as if he or she were on site.

With LabVIEW, it is possible to achieve remote execution for every application

developed with just a few clicks. Without any additional programming, any LabVIEW

application for remote control through a common Web browser can be configured. The user

simply points the Web browser to the Web page associated with the application. The remote user

can access fully the user interface that appears in the Web browser. The acquisition still occurs

on the host computer, but the remote user has complete control of the application. Other users

also can point their Web browser to the same URL to view the test. To avoid confusion, only one

client can control the application at a time, but that control can pass easily among the various

clients at run-time. At any time during this process, the host computer can take control of the

application away from any of the remote clients who are in control.

 12

Figure 1.5 : Running Both in LabVIEW and Embedded in a Web Browser

Built-in LabVIEW tools can be used to take advantage of powerful networking

technologies for Web-based applications through common Web browser interfaces, as well as

use the latest in Windows technologies with the LabVIEW applications. Windows XP

introduces Remote Desktop and Remote Assistance, which one can use to help debug deployed

systems. After the system is deployed in the field, often it is cost prohibitive for the support staff

to visit every site. With Remote Desktop, a support operator can log into the Windows XP

machine and act as if he or she were sitting at the desk where that machine is located. With

Remote Assistance, the operator can remain in control of the desktop but the support operator

can view the desktop on his/her remote machine. At any time, the operator can give up control of

the desktop to the support operator and still see which troubleshooting techniques are in use.

These new technologies in Windows XP make troubleshooting deployed systems much easier

than ever before. As the industry-standard software development tool, LabVIEW takes

advantage of these new features and provides additional features that complement them. At

times, the Web browser can be used to initiate the measurement or automation application, but

 13

not actually control the experiment. In this case, an operator can log in, set certain parameters,

and run the application. This can be accomplished using the Remote Panel technology. This

program normally builds HTML dynamically by accessing other data sources such as a database.

As part of the HTTP request, the browser can send to the server the parameters to use in the

application.

1.5 Distributed Execution

Combines several of the concepts, by developing a system architecture that shares the

acquisition and analysis of the test among several computers. Systems of the future will consist

of measurement nodes that can transfer data between computers, so different parts of the test can

run at different places, and the data still can be correlated and used to control other hardware

items.

The advantage of networking can be used to distribute execution, dedicating certain

machines for the acquisition and control while offloading analysis and presentation on other

systems. Each system is optimized to perform specific functions. Because the user can share data

among the distributed components and each component accomplishes a unique task, this network

functions as a complete system. With network access to various measurement nodes, one can

develop software that uses each computer to complete a portion of the application. A test can

have several acquisition nodes; each sending data back to a main computer or cluster of

computers where the analysis is performed and reports are generated and sent to the Web. For

certain test and control applications, an embedded and reliable solution might be needed. For

these applications, LabVIEW Real-Time Module can be downloaded to a PXI instrumentation

system or a Field Point distributed I/O module. LabVIEW runs on a real-time operating system

 14

on these systems, but still can be accessed from a host computer through Ethernet. From this

computer, either remote front panels in LabVIEW can be used to control the application, or can

use DataSocket to transfer the data directly from the real-time target to a host computer, which

could then act as a server to further disseminate that data to other computers. [1]

Figure 1.6 : Distributed Execution using LabVIEW

Using LabVIEW and the Web, different systems work together in one application. An

example application is a structural test system measuring the vibration and harmonics of a bridge

design. One node can be set up with a camera to monitor the testing of the bridge, another node

to measure parameters such as wind direction and speed, temperature, and humidity. Finally, a

node can be set up to measure the load, strain, and displacement on certain areas of the bridge.

All the data will be sent back to a main computer that correlates the data, analyzes the data, and

displays the results of the test on a Web page.

 15

Each of these nodes would need to be running autonomously, acquiring data and sending

it onto other computers to correlate the data and create reports. Using the LabVIEW

Real-Time Module and PXI, each of the measurement nodes could become an embedded,

reliable, and durable solution. Remote front panels in LabVIEW are extensible to the LabVIEW

Real-Time Module, so the user could easily control any of the measurement nodes to modify

parameters of the test. The original creation and testing of the code is also completed using a

Windows operating system and then downloaded to the measurement node. So, the user can

make major modifications to the test and download them to the embedded target without visiting

the site. Next, one of the live data-sharing techniques could be used to transfer the data to

another cluster of computers that would correlate and analyze the data. Finally, an Internet server

could be set up to share the Web reports and analysis with others around the country.

The Web is changing the way the measurements are taken and the results are distributed.

Many different options exist for publishing reports, sharing data, and remotely controlling

applications. LabVIEW incorporates the latest Web technologies, to take advantage of the power

of the Web without having to become experts in any Web technologies. With LabVIEW, the user

can incorporate the Web into many different aspects of the application, from just sharing the data

with colleagues to creating a unique, powerful distributed application combining different

measurement nodes and multiple computers together into one measurement and control system.

With LabVIEW, applications can be integrated easily into the existing corporate networking

infrastructure so that the corporation can better share data and increase the productivity of those

performing the measurements.

 16

2. LITERATURE REVIEW

2.1 Overview of LabVIEW

LabVIEW is a revolutionary graphical development environment with built-in

functionality for data acquisition, instrument control, measurement analysis, and data

presentation. LabVIEW gives the flexibility of a powerful programming language without the

complexity of traditional development environments. LabVIEW delivers extensive acquisition,

analysis, and presentation capabilities in a single environment, to seamlessly develop a complete

solution on the platform of the users choice. Unlike general purpose programming languages,

National Instruments (NI) LabVIEW provides functionality specifically tailored to the needs of

measurement, control, and automation applications, accelerating the development process. From

built-in analysis capabilities to connectivity with a wide variety of I/O, LabVIEW delivers what

engineers and scientists need to quickly build test and measurement, data acquisition, embedded

control, scientific research, and process monitoring systems. The LabVIEW graphical

development environment is equipped with powerful tools to create applications without writing

any lines of text-based code. With LabVIEW, a user can drag and drop pre-built objects to

quickly and simply create user interfaces for an application. [1] Then, the developer can specify

system functionality by assembling block diagrams -- a natural design notation for scientists and

engineers.

LabVIEW delivers seamless connectivity with measurement hardware, to quickly

configure and use virtually any measurement device, including everything from stand-alone

instruments to plug-in data acquisition devices, motion controllers, image acquisition systems,

 17

and programmable logic controllers (PLC). LabVIEW works with more than 1,000 instrument

libraries from hundreds of vendors [2].

2.2 Open Connectivity with Other Applications

With LabVIEW, anyone can connect to other applications and share data through

ActiveX, the Web, DLLs, shared libraries, SQL, TCP/IP, XML, OPC, wireless communication

and other methods. LabVIEW's open connectivity makes it possible to create open, flexible

applications that can communicate with other applications across an organization. [2]

In many applications, execution speed is critical. With a built-in compiler that generates

optimized code, LabVIEW applications deliver execution speeds comparable to compiled C

programs. With LabVIEW, it is possible to develop systems that meet even the most demanding

performance requirements across a variety of platforms including Windows, Macintosh, UNIX,

or real-time systems.

LabVIEW is a graphical programming language that uses icons instead of lines of text to

create applications. In contrast to text-based programming languages, where instructions

determine program execution, LabVIEW uses dataflow programming, where the flow of data

determines execution. In LabVIEW, a user interface is built by using a set of tools and objects.

The user interface is known as the front panel. Then the code is added using graphical

representations of functions to control the front panel objects. The block diagram contains this

code. In some ways, the block diagram resembles a flowchart. Several add-on software toolsets

can be purchased for developing specialized applications. All the toolsets integrate seamlessly in

LabVIEW.

 18

LabVIEW is integrated fully for communication with hardware such as GPIB, VXI, PXI,

RS-232, RS-485, and data acquisition control, vision, and motion control devices. LabVIEW

also has built-in features for connecting an application to the Internet using the LabVIEW web

server and software standards such as TCP/IP networking and ActiveX [2].

LabVIEW can be used to create 32-bit compiled applications that give fast execution

speeds needed for custom data acquisition, test, measurement, and control solutions. Stand-alone

executables and shared libraries, like DLLs, can also be created because LabVIEW is a true 32-

bit compiler [2].

LabVIEW contains comprehensive libraries for data collection, analysis, presentation,

and storage. LabVIEW also includes traditional program development tools. LabVIEW has

different options to set breakpoints, animate program execution, and single-step through the

program to make debugging and development easier. LabVIEW also provides numerous

mechanisms for connecting to external code or software through DLLs, shared libraries,

ActiveX, and more. In addition, numerous add-on tools are available for a variety of Application

needs.

LabVIEW empowers a user to build his own solutions for scientific and engineering

systems. LabVIEW gives the flexibility and performance of a powerful programming language

without the associated difficulty and complexity. LabVIEW gives thousands of successful users

a faster way to program instrumentation, data acquisition, and control systems. By using

LabVIEW to prototype, design, test, and implement instrument systems, the development

Engineers can reduce system development time and increase productivity by a factor of 4 to 10.

LabVIEW also gives the benefits of a large installed user base, years of product feedback, and

powerful add-on tools. [2].

 19

LabVIEW programs are called virtual instruments, or VIs, because their appearance and

operation imitate physical instruments, such as oscilloscopes and multi-meters. Every VI uses

functions that manipulate input from the user interface or other sources and displays that

information or moves it to other files or other computers.

A VI contains the following three components:

• Front panel - Serves as the user interface.

• Block diagram - Contains graphical source code that defines the functionality of a VI.

• Icon and connector pane - Identifies the VI so that it can use the VI in another VI. A

VI within another VI is called a subVI. A subVI corresponds to a subroutine in text-

based programming languages.

Figure 2.1: Front panel of a LabVIEW virtual instrument.

 20

Figure 2.2 : The block diagram of the above virtual instrument.

LabVIEW programs are called virtual instruments (VI) because their appearance and

operation imitate actual instruments. However, behind the scenes they are analogous to main

programs, functions, and subroutines from popular programming languages like C or BASIC.

Hereafter, a LabVIEW program is referred to as a ‘VI’. VI has three main parts:

The front panel is the interactive user interface of a VI, so named because it simulates the

front panel of a physical instrument. The front panel can contain knobs, push buttons, graphs,

and many other controls (which are user inputs) and indicators (which are program outputs).

Input data using a mouse, keyboard, and then view the results produced by the program on the

screen.

The block diagram is the VI's source code; constructed in LabVIEW's graphical

programming language, G. The block diagram is the actual executable program. The components

of a block diagram are lower-level VI’s, built-in functions, constants, and program execution

 21

control structures. The programmers draw wires to connect the appropriate objects together to

indicate the flow of data between them. Front panel objects have corresponding terminals on the

block diagram so data can pass from the user to the program and back to the user. [2]

Figure 2.3 : Front Panel and Block Diagram

In order to use a VI as a subroutine in the block diagram of another VI, it must have an

icon and a connector. A VI that is used within another VI is called a subVI and is analogous to a

subroutine. The icon is a VI's pictorial representation and is used as an object in the block

diagram of another VI. A VI's connector is the mechanism used to wire data into the VI from

other block diagrams when the VI is used as a subVI. Such like parameters of a subroutine, the

connector defines the inputs and outputs of the VI Virtual instruments are hierarchical and

modular. The icon can be used as top-level programs or subprograms. With this architecture,

LabVIEW promotes the concept of modular programming. First, an application is divided into a

series of simple subtasks. Next, build a VI to accomplish each subtask and then combine those

VIs on a top-level block diagram to complete the larger task.

 22

Modular programming is a plus because each subVI can be executed by itself, which

facilitates debugging. Furthermore, many low-level subVIs often perform tasks common to

several applications and can be used independently by each individual application. A few

common LabVIEW terms with their conventional programming equivalents are listed below. [1]

LabVIEW Conventional Language

VI

Function

SubVI

Front panel

Block diagram

G

Program

Function

Subroutine, subprogram

User interface

Program code

C, Pascal, BASIC, etc.

Figure 2.4: LabVIEW Terms and Their Conventional Equivalents

2.3 Other Features of LabVIEW

2.3.1 Portability

As mentioned above, LabVIEW programs are portable across platforms, so it is possible

to write a program on a Macintosh and then load and run it on a Windows machine without

changing a thing in most applications.

 23

2.3.2 Productivity

One of the initiatives of LabVIEW is to ease the work of professionals and engineers who

have no or few programming practices. Therefore, the LabVIEW programming language is very

easy to use. Once the user has figured out the data flow of a program, he can easily build a VI by

using the rich built-in controls, indicators, functions, device drivers, I/O, and networking

protocols. The program can be run without compiling, linking, or building which are required to

be done when using other programming environments. LabVIEW have features and instant help

to ease the debugging process. The advantages of the graphical features and the easiness of use

to build rapid prototypes should be utilized in requirement phases. Instrument drivers, ready-to-

run software modules for controlling programmable instruments, are a key to enhancing

productivity. Instrument drivers have been a standard part of virtual instrumentation software,

with modules for hundreds of instruments from many different instrument manufacturers.

2.3.3 Flexibility

Virtual instrumentation uses cost-effective, multifunction instrumentation hardware and

user-friendly, sophisticated software to leverage the power and economies of scale of the

computer. The fierce competition and huge investment in the computer industry ensure that

virtual instrumentation is both affordable and powerful. Virtual instruments are built and

maintained at a fraction of the cost and in a fraction of the time of traditional instruments. They

are also easily reconfigurable, so development efforts are highly leveraged for future systems.

Virtual instrumentation software easily integrates the four most popular types of instruments,

GPIB, VXI, serial and plug-in data acquisition (DAQ) boards. A consistent development

 24

methodology is applied to each instrument type so a system optimized for both performance and

cost is achieved by combining many vendors' instruments and standard drivers.

2.3.4 Reusability

The program of LabVIEW is called virtual instrument (VI). Each VI can be used (called)

by other VIs as a subVI. Actually many built-in functions of LabVIEW are subVIs. A subVI can

be called at different level of hierarchy, in different places of the VI at the same time. Once a VI

is built into a subVI, it can be reused repeatedly in the later programming.

2.3.5 Maintainability

Basically, LabVIEW uses data flow and subVIs to build VIs. If all the subVI’s are well

tested, then it is easy to add functionality, easy to trace along the data flow to locate faults.

2.3.6 Interoperability

If the operating system used is Windows 95, 98, or NT, ActiveX in the LabVIEW allows

people to use any combination of applications they want to solve their programming problems.

One can run a LabVIEW VI from Excel, use a Visual Basic program to load results from a VI

into a database. LabVIEW supports multithreading. Users of Windows 95, 98, and NT, Sun

Solaris 2, and Concurrent PowerMAX will be able to write applications that take full advantage

of LabVIEW's new multithreading capability. If there is a single processor in a computer,

LabVIEW will preemptively multitask areas of the application that can execute independently or

 25

in separate threads. This is similar to what these operating systems do when they share processor

time between separate applications.

If there are multiple processors in a system, the tasks will be able to run on separate

processors. The tasks are preempted according to the priority assigned to the sub-virtual

instruments (VIs) of each task. Although the number of threads available is limited, it is

definitely an advantage to programmers who want to speed up their code and assure the tasks in

an application are given the attention they deserve, without monopolizing the processor. To take

advantage of multithreading in LabVIEW, a programmer can specify that subVIs run in separate

execution systems.

2.3.7 OOP

The nature of LabVIEW supports object-oriented programming. The subVIs can be

treated as modules. Some subVIs has single input and single output. Some received multiple

inputs and output different data, but these inputs are related and all are necessary for the subVI to

process and generate the appropriate outputs. The subVIs are connected by data flow, this

ensures that the subVIs have the data coupling. Because of the graphical feature of LabVIEW, it

is suitable for rapid prototyping. This property eases the work at the specification phase of the

development cycle.

2.4 Other G languages

There are several graphical languages; one of them is HP VEE. Regarding performance,

it is appreciably slower than LabVIEW except when performing built-in tasks. When comparing

library LabVIEW icons vs. built-in HP VEE functions, the speed of HP VEE and LabVIEW

 26

comparable. Sometimes HP VEE was faster, sometimes LabVIEW. Even when the wiring is

added, LabVIEW still is clearly faster. In almost all cases, either will have the performance to do

the task. Most likely, if HP VEE is not fast enough, LabVIEW will not be either. Most tasks

requiring high performance are butting against the real-time OS question, not a HP VEE vs.

LabVIEW issue. The more serious concern is whether either package can break the real-time

barrier. That’s where almost all the performance questions really lie.

The area of difference between HP VEE and LabVIEW is the architecture of the

graphical programming. HP VEE customizes its icons with a label rather than changing the form

of the icon as LabVIEW does. As a result, the LabVIEW programmer approaching HP VEE

wonders where the differences are. The HP VEE programmer approaching LabVIEW wonders

how they can ever remember what all the symbols mean.

The approach to flow structures in the two languages also is completely different. HP

VEE is based on the flow chart: Everything needed to understand a layer or a level of abstraction

is visible. Structures are constructed much the same way as it is done in a flow chart. For

example, in HP VEE, a case structure would have an if/then/else object with a bunch of ELSEIF

tests. From each of these tests, a line would lead to the next step. LabVIEW embodies the

structures as windows in the syntax. In LabVIEW, the case number would be constructed as an

integer. The construction would be up to the programmer. Then, each of the cases would reside

in a frame, all sharing the same screen window [4].

 27

2.5 User Interface Event Programming

Since the beginning, LabVIEW programmers have written user interfaces (UIs) in

essentially the same way, using a technique commonly known as polling. A user interface VI

would read all controls on its front panel in a loop, checking each one to see if it had changed

since the last iteration. Over the years, clever users have developed advanced tricks and

techniques to make UI programming easier, such as grouping together Boolean controls into

invisible clusters so they can be tested in fewer operations, or using queued state machines to

manage the overall state of the UI. However, the underlying mechanism has remained the same

since LabVIEW's inception. Unfortunately, this mechanism has a few inherent problems. Polling

is inefficient because every control must be tested repeatedly, regardless of whether it has

changed or not. Poll too fast and the user can dominate CPU time. Poll too slowly and the user

might miss something, or be unable to determine the order in which multiple user actions

occurred [5].

The Event Structure, which is the first new structure node since LabVIEW 1.0, makes it

possible to do event-driven programming in LabVIEW. Event-driven programming is a popular

paradigm for managing user interfaces in other language environments such as

LabWindows/CVI and Visual Basic. With event-driven programming, an application can sleep

until something "interesting" happens on the front panel, rather than having to repeatedly poll for

such activity. LabVIEW takes advantage of features in the operating system to be notified when

user interface activity occurs, so the OS can give the CPU to other programs running on a

computer while the application is idle. The Event Structure can be configured to listen only for

the events that are important for an application.

 28

An Event Structure is kind of like a cross between a Wait on Occurrence function and a

Case Structure. Like a Case Structure, the Event Structure contains multiple sub diagrams, each

of which is configured to handle one or more events, which are user actions such as Key Down

or Mouse Move. When the user drops an Event Structure on the block diagram, the same way it

would be for any other G object, and it executes according to the normal data-flow rules. When

LabVIEW executes the Event Structure, it puts the VI to sleep until one of the events it is

configured to listen for occurs, just as a Wait on Occurrence sleeps until an occurrence is fired.

When an event of interest happens, the Event Structure automatically wakes up and executes the

appropriate sub diagram to handle that event. Each sub diagram has an Event Data node affixed

to its inside left border that allows access to specific information about the event that occurred.

The node looks and works like an unbundle by Name function, so a user can resize it and select

only the data fields needed. [5]

2.5.1 Simple Example: Event Structure

Figures below show a simple VI that uses an Event Structure to monitor "OK" and

"Cancel" buttons on the front panel, and brings up a confirmation dialog when the user attempts

to close the panel.

 29

Figure 2.5 : A simple Even Loop

Figure 2.6 : A While Loop with Event Structure

2.6 Nonvisible Event Structure Cases

In the above While Loop an Event Structure is used because when the Event Structure

executes, it will only wait for and handle exactly one event. It is very important to place an Event

Structure in a loop to repeatedly process events. Failure to do so can cause the VI's front panel to

hang if an event occurs a second time while the VI is running, but the Event Structure has

completed once and is not called again. This is because when an event occurs that any Event

Structure on a VI's block diagram is configured to handle, LabVIEW will lock the front panel

until some Event Structure has handled the event. This is done to ensure that events are never

lost and are always processed in the order they are received. It is possible to avoid the hanging

 30

scenario by clearing the "Lock Panel" option, but this might produce other undesired results. The

key is to place the required Event Structure in a loop.

The user actions that generate events include mouse button presses and releases, key

presses and releases, control value changes, menu selection, and a VI front panel window

closing, among others. The user selects which events are required to be monitored by using a

configuration dialog that lets the users choose one or more events to associate with each sub

diagram. These events are divided into two classes:

• Notify Events

• Filter Events

 A Notify Event is a simple after-the-fact notification that some-thing happened on the

front panel. For example, the value changed events for the OK and Cancel buttons in the above

figures are Notify Events. Filter Events, on the other hand, allow a user to programmatically

affect the outcome of the action that triggered the event. The user can can either discard the event

entirely or modify the data for the event before LabVIEW finishes processing it. For example,

the Panel Closing event handled in the second figure above is a Filter Event; the user can

recognize this by the presence of the Event Filter Node on the inside right border of the sub

diagram. If the user presses Cancel on the "Really close window?" dialog, the Two Button

Dialog will return FALSE, and the "Discard?" terminal will be TRUE, so LabVIEW will discard

the event without closing the panel window. All Filter Events will have a "Discard?" terminal;

some will additionally have other fields, which can be modified as the event "passes through" the

handling diagram. For example, because Key Down is a Filter Event, the user could make a

string control only accept upper case characters by translating keys from lower case to upper

 31

case as they are typed. If a value is not wired to an Event Filter node terminal on the right, the

value passes through unmodified.

There are a few more things to mention about the simple example before we move on. It

should be noticed that even though both the old and new values of the controls are available as

event data in the OK and Cancel button event cases, the values of these controls are still read

from their front panel terminals. Because the OK and Cancel buttons are Latching Booleans, it is

still necessary to read their front panel terminals in order to get them to reset.

If the Value Changed event and never read the terminal are merely handled, the buttons

will stay pressed and never "pop up." In general, it is always a good idea to place the front panel

terminal of a control inside the event case for its Value Change event if it is not needed

elsewhere. Special attention is required to be paid for this rule if a "Stop" button is used to end an

event-handling loop; if the value is read outside the event case, LabVIEW will read the terminal

before the Event Structure executes and goes to sleep, so the loop might execute one more time

than it is expected. There is a little white box displayed on the tunnels that exit from the Event

Structure. This is a new kind of tunnel in LabVIEW 6.1; it automatically uses the default value

for its data type when unwired. This behavior can be turned on and off by right-clicking the

tunnel and toggling the "Use Default If Unwired" option. (Case Structure tunnels also have this

feature, but it is off by default) The blue hourglass terminal in the upper left corner of the Event

Structures is the Timeout terminal; if a value in milliseconds is wired, the Event Structure will

wake up and execute a special Timeout case if no other events occur within the specified

duration. If the terminal is unwired (or wired the value -1), the Event Structure will sleep forever

if no "interesting" events ever occur. So it might be better use a Timeout case if periodic

processing in the background is required.

 32

The above explanation covers what can be learnt from the simple example. Though, real-

world applications will be more complicated than this simple example, more advanced users

might find it intuitive to use the Event Structure in conjunction with a state machine.

2.6.1 State Machine

LabVIEW 6i demonstrates the use of a queued state machine to handle the user interface

of a VI. Traditionally, in the Idle or No Event state, the VI polls for front panel activity,

comparing the current value of controls to old values stored in shift registers. The results of these

comparisons will tell what buttons have been pressed or menu items selected, and thus what the

next state should be. This approach has two unfortunate limitations.

If multiple transitions occurred, there is no way to determine their order. It is possible

that a control's value was changed to a new value, and then back to its original value before the

"Idle" state executes, and actions that would have triggered a state transition go undetected.

These transitions might be important. As mentioned earlier, the Event Structure has the

potential to eliminate both shortcomings. Modifying an existing UI state machine to use an Event

Structure is easy. This can be achieved by replacing the code in the "Idle" state that is checking

controls for value changes with an Event Structure configured to handle Value Changed events

for those same controls. And each event handling case should then write the action to the queue.

 33

Figure 2.7 : A Traditional User Interface State Machine

The above Figure illustrates the block diagram of a simplified version of the example VI.

The "No Event" case checks for Menu selections, a button being pressed, and the value of a ring

changing. Using the Event Structure, things like selection of User and Application menu items,

and Value Changes of controls can be detected, so that the user can replace all the code inside

that case with a single Event Structure. The resulting diagram code is shown in the following

Figures.

 34

Figure 2.8 : A UI State Machine Using the Event Structure

Figure 2.9 : Nonvisible Event Structure Cases

In addition to simplifying the diagram dramatically, the use of the Event Structure has

two more benefits. Primarily, all events are queued, even if the Event Structure is not presently

waiting on them. Due to this the user does not miss any state changes. Also, event handling is

synchronous. The events are guaranteed to be processed in the order they are received unless two

Event Structures are executing in parallel. A couple of potential problems can arise when using

the Event Structure with a more complicated state machine. First, the Event Structure by default

sleeps indefinitely until an event fires. In the above example, the state machine will remain in the

 35

"No Event" case until a user interface event occurs. In many cases, this is desirable, as it

minimizes CPU usage.

Another caveat when using Event Structures with state machines is that it is very

important to make sure there is always an Event Structure available to handle any user interface

event that is generated. As mentioned earlier, if an event occurs and there is no Event Structure

waiting to handle it, the user interface will be locked until the diagram code executes in such a

way that an Event Structure configured to handle that event runs. In the best case, this will cause

some latency in the feedback of the user interface. In the worst case, it will cause deadlock in the

VI. The Abort button, which is immune to event locks, should be used in such situations. [5]

 36

3. METHODOLOGY

3.1 Problem Description

In this thesis a Real – time system is developed which integrates several real time

experiments and remote control access over Internet is provided using Labview. The objective of

this work is to develop and test a real-time experiment system with LabVIEW and provide

remote control access over the Internet. The system will allow the users to access and control the

experiments and collect data automatically. The ways to do this depend on the physical

instruments or devices on which the users do the experiments and the interfaces between them

and the controller (the computer).

There are four computerized instruments available in this project: The Gould Classic

6100 Series Digital Storage Oscilloscopes from Gould Instruments [6], Inc., a PT 236 Process

Trainer (temperature controller) from Feedback Instruments Ltd., [7,9] and an Electronic

Recording Rain/Precipitation Gauge (rain logger) from RainWise Inc., [8,9] and Automatic

Mixing Controller [1]. There are also four methods for an application to communicate with the

instruments from a computer: by General Purpose Interface Bus (GPIB), [1] by Data Acquisition

(DAQ) board, by serial port and by external Data acquisition Board. [3] The four instruments

listed above will be monitored and controlled by using these four methods, respectively, as

shown in Figure below.

 37

Figure 3.1 : The Architecture of the Integrated Real – Time System

All the four experiments can be accessed from anywhere via Internet to monitor and

control them in real time. There are different methods of remote access, such as Common

Gateway Interface (CGI) and ActiveX, and Remote Panels Technology using LabVIEW 6.1, to

implement the Internet connections. The connectivity via different methods is made possible due

to the use of the web server (G web server) provided in the add-on Internet Toolkit (ITK) for

LabVIEW.

 38

3.2 The Automated Controlled Mixing Process Experiment

Automatic control system facilitates process automation where dynamics of the process

are known. In today’s industrial market, efficiency and reliability of Automatic control systems

have revolutionized the industries such as automakers to petrochemical. Controlling a mixing

process is important part of production application for industries such as pharmaceutical, steel

makers and food and beverage. Mixing processes usually are controlled by variety of software

packages and hardware components. The main objective of this Thesis project is not to reinvent

the wheel but to demonstrate capabilities of National Instrument’s LabVIEW software package

and a DAQ card by National Instrument to control an automated mixing process [1,3]

3.3 Experiment with the Digital Storage Oscilloscope

Gould has developed a series of Classic Digital Storage Oscilloscopes suitable for a wide

range of applications like data analysis and data acquisition. Incorporating state of the art

integrated electronic components and using the latest manufacturing techniques, high

performance and ease of use ensures excellent value. [6]

This oscilloscope has four channels; each has a record length of 1000 samples and 8-bit

vertical resolution at 100 MS/s and 12 – bit High Resolution mode to 25 MS/s. All the channels

acquire waveforms simultaneously. The maximum sampling rate is 1 Giga-samples per second

and has 200 MHz analog bandwidth and fastest base setting of 2.5 ns/div. Offering a high

performance 12-bit resolution mode as standard, the Classic 6100 will be of particular interest to

users involved in analytical scientific research where the dynamic range of the Classic 6100

guarantees that the complete signal is acquired, including the fine detail. The high-resolution

 39

capability is achieved using a system that ensures low noise, linearity and high accuracy

performance to give both high quality data and results when analyzed or measured.

For meaningful analysis and to preserve data integrity, it is of paramount importance to

avoid aliasing on high frequencies. The Classic 6100 has an Anti-Alias filter for each time base,

which removes high frequency noise beyond the maximum sample rate. With FFT averaging,

distortion 80 dB down from the fundamental can be observed.

This oscilloscope has a rear GPIB connector. When connected to the GPIB board of the

PC running LabVIEW applications, it can be programmed and controlled. In practice, a number

of selected functions of the oscilloscope will be implemented by using LabVIEW. A LabVIEW

application with a front panel depicting the oscilloscope will be developed. The user will control

the oscilloscope via this software panel. The application should retrieve waveform data from the

oscilloscope and present the data in a waveform graph. The front panel operations will be

transformed to command sets and sent to the oscilloscope via the GPIB bus.

3.4 Experiment with the Temperature Controller

The temperature controller is in fact an entire process trainer used to teach control theory

via experiments. Its objective is to do close-loop proportional control. The trainer accepts a SET

VALUE voltage (0 to 10 V) that represents the desired temperature. Then the output temperature

(voltage) is measured. The deviation from the SET VALUE is read by the computer running

LabVIEW. According to the control algorithm, a certain control signal is sent back to the trainer

to take the corrective action. The LabVIEW application can set the desired temperature; acquire

the deviation data from the trainer and write the control signal to the trainer so that it can take the

corresponding corrective actions. The communication between the LabVIEW application and the

 40

trainer will be implemented via the analog I/O channels in the DAQ board, through its analog

input and output. The LabVIEW application will show the SET VALUE and the deviation and

present them graphically as waveforms in the front panel.

3.5 Experiment with RainWise Recording Rain/Precipitation Gauge

The RainWise Recording Rain/Precipitation Gauge consists of industrial tipping bucket

rain gauge connected to a battery operated 32K data logger, housed in a NEMA 4X weatherproof

enclosure. This assembly is mounted on a PVC pipe for simple hole in the ground installation.

The logger records the date once every 24 hours, and records the time and rainfall at the logging

interval selected. The user can select this interval from once a minute to once an hour. The

logger records the accumulation in increments of 0.01 inch/0.25mm during each time interval

and adds this number to the existing amount. The rate of rain/precipitation is also calculated for

each recording interval.

The information stored can be retrieved with a computer via the serial line (RS 232). A

built-in microprocessor with an on-board RAM allows it to transfer data to a PC through the

serial port or directly drive a dot matrix printer. To control the rain gauge, a PC running

LabVIEW will be connected with it via the RS232 bus. The application will acquire data of

rainfall and will convert the data into a special format so that they can be viewed in LabVIEW

panel and be presented graphically. [8]

3.6 Remote Access to the Experiments via Internet

The revolution of Internet-enabled instrumentation is emerging as a revolution in

Measurement and Automation. New standards are being developed for transmitting data and

 41

connecting instruments to the Internet, such as Remote Panels from LabVIEW 6.1, Data Socket

from National Instruments, and others such as Java and Jini from Sun, continue to mature.

Making instrumentation information available through a network is likely to bring a dramatic

increase in productivity, collaboration, and technological capability.

The needs for remote or web-based instrumentation may include:

• Remote or geographically scattered data acquisition, which may require collecting data

from many remote sites around the world.

• Sharing the experiment sources among different users, which may require a global

collaboration of researchers.

• Distributed computing, when it is needed to share computing and hardware resources to

accomplish a task that might be burdensome, inconvenient, or impossible to perform on

one machine.

• Harsh experiment conditions, which may not allow personnel presence at the experiment

sites.

 In this project, the users will get access to the four experiments, monitor and control

them in real time via Internet, using Remote Panels of LabVIEW 6.1. Before the emergence

of remote Panels techniques in LabVIEW 6.1 several techniques like CGI, Active X were

used to provide Internet access to the applications

3.7 Internet Connectivity Using Remote Panels in LabVIEW 6.1

With LabVIEW 6.1, the user can operate the front panel on a machine that is separate

from where the VI resides and executes. Furthermore, as the front panel is embedded into a web

page the user can operate it within that page. All that is required on the client machine for

 42

executing in a web page is a browser and the LabVIEW 6.1 run-time engine and browser plug-in.

It is very easy to configure and use remote panels. [2] There are two steps:

• Enable the LabVIEW Web Server on the server machine.

• Connect and execute remote panels on the client machine.

Figure 3.2 : Distributed Application

 43

4. DESIGNING THE INTEGRATED APPLICATION

4.1 Experiment with the Automated Controlled Mixer

 This project demonstrates a simple model of Automated Controlled Mixing Process with

relatively simple parameters. This project concerns the control of a mixing process. The process

will consist of two separate tanks of water, varying in temperature that will be combined in a

third tank to meet temperature and volume selection. Here the liquid will be mixed and

dispensed. The temperature and volume parameters are to be selected by the user. The general

idea of the project is to develop a simplified model of an industrial process control application

and design the parameters around which the model will operate. For example, there are many

industries such as pharmaceutical, food and beverage, and petrochemical, in which process

control is fully automated. A central processing unit in conjunction with multiple data I/O cards

takes into account all of the variables and parameters involved in the process. Through software

programming, specific amounts of one substance can be added to another at a pre-determined

rate. These rates are calculated by opening and/or closing certain valves for a determined amount

of time, based on the size of the medium and the pressure of the substance present in the

medium. The process allows the mixture to be passed down the line for further modification, and

eventually packaging.

 44

Figure 4.1 : Mixing Tank with Dispense reservoir

Design Specifications:

• Two 5-gallon plastic tanks.

• Three Direct Acting Normally Closed Solenoid valves.

• A conical tank to ensure all liquid is dispensed.

• T-type thermo coupling

• Gravity fed system.

• Vinyl tubing

• 120 VAC -60 Hz -4 Watts -60 RPM Mixing motor.

• National Instruments PCI-6024E Data Acquisition board.

• National Instruments SCB-68 connector block with cold junction compensation.

 45

4.2 Design Description:

The Automated-mixing controller has two 5-gallon tanks to hold cold and hot water.

Only up to 4 gallons of required to be filled to prevent water leakage from Thermocouple

insertion opening on top of stop valve side of the tanks. The mixing reservoir is conical to ensure

all liquid is dispensed. For the automated process three major questions are on hands.

• How long will each valve need to be open to arrive at selected temperature and volume?

• Determination of t1 and t2 for hot and cold values respectively. How do we implement

this in software?

• What are the fluid dynamics formulas that will do this?

Mass Flow Properties

Fluid formulas

What is known?

M = ρ V V = dx/dt

Mass (kg) = density (rho (kg/m^3))*Volume (m^3)

Cp = specific heat

T = temperature

t = time (sec)

M1 Cp T1 + M2 Cp T2 = M3 Cp T3 (fluid formula)

Assumptions for the Automated – Mixing controller application:

• Same size tubing and solenoid valves with same Flow rates.

• Same substance in each tank, therefore same properties such as specific heat and density.

 46

• Short tubing length results in negligible thermal expansion.

• Volume of hot and cold-water tanks much larger than amount dispensed therefore Flow

rate is unaffected.

 M3 = M1 + M2

 So ρ V1 T1 + ρ V2 T2 = ρ (V1+V2) T3

 V1 T1 + V2 T2 = (V1+V2) T3

 V1 and V2 depend on time the valves are open and Flow rate.

= Flow rate (oz/sec)

 V1 = ν 1 t1

 V1 + V2 = V3

 ν1 t1 + ν2 t2 = V3 (1)

 (ν1 t1) T1 + (ν2 t2) T2 = V3 T3 (2)

 ν1 = ν2 = ν3 = ν same flow rate.

 Two equations and two unknowns solved for t1 and t2.

 2) Open valves time

 t1 = (V3 (T3-T2)/ ν(T1-T2)) t2 = (V3 (T3-T1)/ ν(T2-T1))

 So third tank open valve time is t3 = (t1 +t2)

4.3 Implementation

Flow control is accomplished using 120 VAC 60 Hz Normally Closed solenoid values.

There are two types of valves available normally closed or normally open. Our project uses

 47

normally closed type. Widely used for dispensing, collating, gas shut off, vacuum holding, and

tank draining applications. The valve flow rate is proportional to the orifice size and pressure in

medium. For Direct Acting Normally Closed Solenoid valve of pipe size 3/8”, orifice size 1/8”,

Cv Flow factor is .35 gallon per minute operating from 0 to 150 PSI. Temperature Reading

For temperature reading T type Thermocouples are used because it has very linear

increase in mV in the range of our project’s temperature therefore better reading of water

temperature. Low mV induced by medium generated by Thermo couple is amplified and

sampled by the DAQ board via Analog Input Channel (0). The connection schematics are

developed referring to National Instruments SCB-68 Cold Junction Compensated Connector

Block Diagram.

4.3.1 TTL Digital Line

Four digital signal lines are needed to enable the three valves open and close and mixing

motor on and off. Opti couplers are used to switch power on and off to the inductive load when

TTL Line (Logic line) goes low (fall) and high (True) respectively. Digital channel (0) Line0 and

Line1 for Cold and Hot valves were used respectively, and line2 for mixing motor and Line 3 for

dispensing valve. Connection schematics were developed referring to National Instruments SCB-

68 Cold Junction Compensated Connector Block Diagram. [1]

 48

Figure 4.2: Front Panel of the Automatic Mixing Controller VI

The Process acquires data through Thermo couples and selected values by user and

manipulates the data and through series of structured While Loop, Case and Sequence sends

digital signals sequentially to valves and motor to complete the mixing process. First Loop

determines the data Acquisition is on (True) to acquire reading from Thermo couples or

disabled (False).

 49

Figure 4.3: Block Diagram of the Automatic Mixing Controller Experiment

Figure 4.4 : Manual Mode Case:

Figure 4.5 : AUTO False Case:

 50

Figure 4.6 : AUTO write to digital line sequence

Figure 4.7 : Formula node sequence

Figure 4.8 : Block Diagram of the Formula node sequence

 51

Figure 4.9: Cold Water Valve, Hot Water Valve, Motor and Solution Valve sequences

4.4 Experiment with the Gould Digital Storage Oscilloscope

This experiment will allow the user access and control of the oscilloscope remotely over

the Internet. The physical entities in this experiment include a PC as the controller to the

oscilloscope, the oscilloscope itself, and the remote host as the web terminal. The local PC has

the LabVIEW application and the web server for LabVIEW residing, and running in it. The

LabVIEW application should have three parts, the Panel VI which is the simulation of the

functions of the oscilloscope, the Remote Panels VI which serves as the bridge for the remote

web terminal user to control the oscilloscope, and the web page (an HTML file) which brings the

panel image to the remote user, and lets the user input the control message to the oscilloscope.

As mentioned above, to do the experiment with the Gould Classic 6100 Oscilloscope

remotely, three programs are needed: the HTML coded web page, Remote VI, and Panel VI. The

web page serves as the remote user interface. Users can input controls and get replies via the web

page. The Remote Panel VI is the bridge between the web page and the Panel VI. It receives

controls from the web page and sets the corresponding properties of the Panel VI. Then, the

Panel VI sends control commands to the oscilloscope. Once the Panel VI gets the response from

 52

the oscilloscope, it will send the updated image to the web page to complete the control loop. In

the following sections, the implementation of each program is explained in detail. The

techniques and tools used are also introduced.

4.5 The Panel VI

The Panel VI is the program that controls the oscilloscope. Only parts of the functions of

the oscilloscope are implemented in this VI, since it is not necessary to realize all the

functionality of the instrument. Moreover, it is impossible to do this because not all of the

functions are programmable. Figure below shows the front panel of the Gould Classic 6100

Oscilloscope.

Figure 4.10 : Front Panel of the Oscilloscope.vi

 53

The above figure shows the front panel of the LabVIEW VI that will control the

oscilloscope via a NI GPIB board (AT-GPIB/TNT).

The Panel VI can acquire data from the oscilloscope and present the data in the graph

window. The channel selection slider sets the source of the data. The Acquire and Display menus

control the data acquisition and display properties. The basic GPIB communication includes two

LabVIEW built-in VI’s, "GPIB Write VI" and "GPIB Read VI." The former is used to write

commands to the instrument and the latter is to read the response from the instrument. The

following figure shows the diagram (code) of a typical GPIB communication VI.

Figure 4.11 : Diagram of a GPIB Write VI.

 54

Figure 4.12 : Diagram of a GPIB Read VI.

Any operation applied to the oscilloscope uses one of the write and read operations, or

both. The most important part of the Panel VI is the data acquisition and presentation. The visual

part is the graph window on the front panel.

 55

Figure 4.13 : Waveform acquisition and presentation diagram.

This program contains a sequential structure (only sequence 0 and 1 are shown). The data

will be presented in a XY graph (a LabVIEW built-in graph object). First, the data for the x-axis

(relative time from sampling interval) is obtained, then the y-axis data that are the data points of

the waveform are also obtained. After that, the waveform data is transferred from the ASCII

format into the numerical format. Finally, the data is sent to the XY graph for presentation.

Several subVIs, Graph_X_Data, Graph_Y_Data, and DataStringToNumber are used to complete

the above operations (A sub VI is a piece of reusable code. Any VI can be used as a subVI in the

VI diagram). Each subVI may have a combination of write and read operations as discussed

above.

The oscilloscope channel selection is implemented by using a slider that is also a built-in

object of LabVIEW. When a channel is selected, it becomes the data source of the graph

window. The default channel is channel 1. If channel 2 is selected, the corresponding command

set will be written to the oscilloscope. At the same time, the LED of channel 2 will light up.

 56

Figure 4.14: Part of the Channel VI block diagram.

There are four knobs on the front panel of the Panel VI. They are used to adjust the

horizontal and vertical positions and scale of the waveform. They have similar VI diagrams in

which the actions on the knobs are collected and the related command sets are sent to the

instrument. Whenever the value of the knob is changed, the Boolean control becomes true and

the command set containing the updated knob value will be written to the oscilloscope. The

subVI "W" is just the combination of subVIs.

Figure 4.15: A simplified diagram of knob operation on the Panel VI.

 57

4.6 Experiment with the Temperature Controller

The temperature controller that does close-loop proportional control is used in this

experiment. After setting the temperature (a voltage between 0 and 10 V), the deviation of the

controlled variable from the present value is measured and sent to the LabVIEW VI via NI-DAQ

board. According to the control algorithm, a certain control signal is sent back to the controller to

take the corrective action.

The instrument used in this experiment is PT 326 Process Trainer from Feedback

Instrument Limited [7,9]. In this equipment, air drawn from the atmosphere by a centrifugal

blower is driven past a heater grid and through a length of tubing to the atmosphere again. The

process consists of heating the air flowing in the tube to the desired temperature level, and the

purpose of the control equipment is to measure the air temperature, compare it with a value set

by the operator and generate a control signal which determines the amount of electrical power

supplied to a correcting element, in this case a heater mounted adjacent to the blower. The

elements, which form the system and the connections for this experiment, are shown in the

Figure below.

 58

Figure 4.16 : The temperature control process and connections for this experiment

In the Figure above, the desired temperature is set by sending an analog signal, called Set

Value, to socket D. The Set Value is between 0 and -10V, representing temperature between 30

and 60°C. The deviation between the set value and the measured value can be read from socket

B. The control signal is sent back to the process trainer through socket A for the process trainer

to do the correction. The control signal is generated, according to proportional control algorithm,

by multiplying the deviation by a factor called Gain Value.

The software components of this experiment are similar to the last one: a LabVIEW VI

which controls the temperature controller and communicates with Server and an HTML file. To

 59

control the temperature controller, LabVIEW's DAQ card (AT-MIO-16) is used. There are

analog input and output channels in the interface of the DAQ card, which are used to write to and

read from the temperature controller. This feature allows to program this instrument very easily.

The front panel of the temperature controller is as shown below

Figure 4.17: The front panel to control the temperature controller.

In the Figure above, a user can input "Set Value" and "Control Gain" from input boxes.

When the "RUN" button is clicked, the VI will run the control process continuously until the

"STOP" button is pushed. The "Set Value" and deviation will be presented in the graph. Part of

the block diagram of the Temperature Controller VI is shown in the following figure

 60

Figure 4.18 : Block Diagram of the Tempcontroller.vi

The sequential structure in the middle of the diagram is the core of the VI. In the

structure, the set value is written to the controller first. After the deviation is measured, it is

multiplied by the control gain to form the control signal that will be sent back to the controller. A

while loop will let the VI detect the changes of set value and control gain and adjust the output

signals accordingly. Because the correction action involves motor action and airflow, a delay is

added to allow enough time of reaction between writing control signal and reading deviation.

4.7 Experiment with the Rain Gauge

In this experiment, the instrument to be controlled is a rain gauge called weather log that

measures the amount of rainfall automatically. It is connected via the serial port to a PC running

LabVIEW application to acquire real-time data. The user can access the system remotely and

view the data in real time from a web browser over the Internet. The local PC has the LabVIEW

 61

application and the web server for LabVIEW residing and running on it. The mechanisms to

implement the remote control is by using Remote Panels for embedding the front panel into a

web page and operate it within that page control. To let the web browser communicate with

LabVIEW, an HTML file that embeds the front panel into a web page and operate it within that

page at the same time, the Data Socket Sever should also be enabled. The LabVIEW VI controls

the rain gauge via an RS232 bus. The function of the Data Socket is to transfer the control

message from the remote user to the LabVIEW VI and send data back to the user. The web page

is actually an HTML file that contains an image similar to the front panel of LabVIEW VI. The

remote user can view the data and input the control messages to the rain gauge from the web

page.

RainWise Recording Rain/Precipitation Logger (rain logger) is a device that stores the

time and rainfall amount for each recording interval in which rainfall is measured. The stored

data can be retrieved from the rain logger by connecting the computer's RS232 port to the rain

logger's serial port with the 9-pin cable provided.

 62

Figure 4.19 : The Rain/Precipitation Recording Gauge

In this experiment, a VI that retrieves data from rain logger is built. This VI will

communicate with the rain gauge via the serial port of the host computer. A web page is

provided to assess the experiment as an HTML file with a Remote Panel embedded in it. As the

remote user interface, the web page, when used with LabVIEW's Remote Panels protocol

together, allows users view the raw data, process the data and present the data graphically

 63

Figure 4.20 : Front Panel for the Rain –Precipitation Gauge.vi

The RainWise Recording Rain/Precipitation Logger consists of a industrial tipping

bucket rain gauge connected to a battery operated 32K data logger, housed in a NEMA 4X

weatherproof enclosure. This assembly is mounted on a sturdy PVC pipe for simple hole-in-the

ground installation. The logger records the date once every 24 hours, and records the time and

rainfall at the logging interval selected. The user can select this interval from once a minute to

once an hour. The logger records the accumulation in increments of .01 inch/0.25mm during

each time interval and adds this number to the existing amount. The rate of rain/precipitation is

also calculated for each recording interval. The data logger is supplied with non-volatile data

 64

RAM. Logged data will be preserved for up to 10 years by a built-in Lithium battery on this

RAM with a storage capacity of 8,000 events. The rechargeable lead-acid battery will power the

system for 110 days. The information stored can be retrieved with a laptop PC or the optional

RainWise Data Sponge. The RainWise Data Sponge is a handheld battery operated recorder. A

built-in microprocessor with an on-board RAM allows it to transfer data to a PC through the

serial port or directly drive a dot matrix printer.

4.8 Integration of the Real – Time Experiments

The four Real - time Experiments are integrated using the State Machine VI architecture

of LabVIEW. The State Machine VI architecture is a method for controlling the execution of VIs

in a nonlinear fashion. This programming technique is very useful in VIs that are easily split into

several simpler tasks such as VIs that act as user interface. Using the state Machine VI

architecture the block diagrams can be made more compact by using a single case structure to

handle all the events.

A state machine in LabVIEW can be created using a while Loop, a Case structure and a

shift register. Each state of the state machine is a case in the Case structure. The VIs and the

other code that the state should execute are placed within the appropriate case. A shift register

stores the state to be executed upon the next iteration of the loop.

 65

 State Machine VI architecture

Figure 4.21: Block Diagram of the State Machine VI architecture

In this architecture the list of possible events, or states are designed and the then they are

mapped to each case. For the VI in the previous block diagram the possible states are startup,

Idle, event 1,event 2 and shutdown. The states are stored in an enumerated constant. Each state

has its own case where the appropriate nodes are placed.

 66

In this thesis project the four events are

(i). Automated Mixing Controller

 (ii). Digital storage Oscilloscope Experiment

 (iii). Temperature Controller Experiment and

 (iv). Rain/Precipitation recording Gauge

Figure 4.22: Front Panel of the Integrated Real - time Application

 67

Figure 4.23: Block Diagram of the State Machine used for the Real – time Application

The advantage of the State Machine VI architecture is that the block diagram can become

much smaller making it easier to read and debug. A disadvantage of the state machine VI

architecture is that if two events occur at the same time, it handles only the first one and the

second one is lost. This can lead to errors that are difficult to debug because they can occur only

occasionally. More complex versions of the State Machine VI architecture contain extra code

that builds a queue of events, or states so that the user does not miss any event.

4.9 Remote Panels

The Integrated Real-time application is provided with Internet access using the Remote

Panel technology available in LabVIEW 6.1 version. Using this technology it is possible to view

and control a VI front panel remotely either from within LabVIEW or from within a Web

browser, by connecting to the LabVIEW built-in Web Server. When a front panel is opened

 68

remotely from a client, the Web Server sends the front panel to the client, but the block diagram

and all the sub VIs remain on the server computer. The User can interact with the front panel in

the same way as if the VIs were running on the client except the block diagram executes on the

server. Remote clients can see live front Panel updates using this technology. Also multiple

clients can view the same panel simultaneously. But only one client can control the front panel at

a time. Using the Web Publishing tool the LabVIEW VI is embedded into an HTML file. This

file can be opened and customized in any HTML editor.

Figure 4.24: LabVIEW Web Publishing Tool

 69

5. TESTING

As explained above all the four Experiments are developed using LabVIEW 6.1 using

different software technologies. Finally all the above four experiments are integrated using the

State Machine VI architecture, User Interface Event programming and Remote Panel technology.

All the four experiments are clustered into one application and are run on event based method.

The following is the complete Integrated Application of all the real – time experiments

mentioned above.

Figure 5.1 : Front Panel of the Integrated Application

 70

Figure 5.2 : Screen shot of the Application when executed – Prompts for User Name

When the Integrated application is executed the inbuilt Login VI, Prompts for the Login

Name and Password. This facility is developed to ensure security of the application and safe

guard the access to the applications.

 71

Figure 5.3 : Remote Panel of the Integrated Application

The above figure shows that the Access is granted and the remote panel of the

Application being accessed from a remote location. Now the User can choose one of the

applications and execute them. The following is a screen shot of the remote panel of the

application when the Automatic Mixing Controller Experiment is executed.

 72

Figure 5.4 : Screen shot of the program when accessed remotely and has requested for Control

Screen shot of the remote panel of the integrated application executing the Automatic

Mixing Controller Experiment.

 73

6. CONCLUSIONS

In the implementation of these experiments, LabVIEW's ability for data acquisition and

possibility in networking are explored. LabVIEW can communicate with instruments via the

GPIB board, DAQ card, or the serial port. All of them are used in the experiments successfully.

Which one to use in which instrument depends on the types of the signals, data size and

transmission speed and instrument communication interface. The main objective of this thesis,

which is to integrate the real - time applications and provide remote access to the application is

successfully achieved. The state machine VI architecture is used to integrate the real – time

applications. The State Machine VI architecture is a method for controlling the execution of VIs

in a nonlinear fashion.

 There are various ways through which LabVIEW VIs can be controlled over the Internet:

CGI, ActiveX, Java applets and Remote Panels. Each one has its own advantages and

disadvantages. In this Thesis project the Remote Panel technology is used to access the

application over Internet. In addition, the LabVIEW VI can be controlled remotely and locally at

the same time. The front panel will be updated whenever there is controls change, no matter if it

is from the remote user or local user. The remote user interface (the HTML file) is easier to write

with Remote Panels Technique using Web publishing tool. The data is transferred via the Data

Socket between the LabVIEW VI and the Remote Panel control. Remote panels are useful in

cases when users will need to make measurements remotely or when many users need to have

access to the same equipment. The successful execution of the Integrated Real – time experiment

emphasizes the use of LabVIEW in developing applications that can be used for distance

learning, Remote Control Labs and Monitoring.

 74

APPENDIX A: Front Panels of the Integrated Real – Time Experiments

 75

The Integrated Real-Time Application

Figure A.1: The front panel for the Labview VI of the Integrated Real-Time Application

 76

Automatic Mixing Controller Application

Figure A.2: The front panel for the Labview VI of the Automatic Mixing Controller Application

 77

Digital storage Oscilloscope Application

Figure A.3: The front panel for the Labview VI of the Digital storage Oscilloscope Application

 78

Temperature Controller Application

Figure A.4: The front panel for the Labview VI of the Temperature Controller

 79

Rain/Precipitation Gauge Application

Figure A.5: The front panel for the Labview VI of the Rain / Precipitation Gauge Application

 80

APPENDIX B: Source Code for Remote Panels

 81

* Remote Panel for Integrated Real Time Application - Thesis Exercise

The following is the html code for the Remote Panel

<OBJECT ID="LabVIEWControl"

CLASSID="CLSID:A40B0AD4-B50E-4E58-8A1D-8544233807AA"

WIDTH=650 HEIGHT=500>

<PARAM name="LVFPPVINAME" value="Thesis Exercise.vi">

<PARAM name="server" value="http://132.170.201.154">

<EMBED SRC="http://132.170.201.154/.LV_FrontPanelProotocol.rpvi"

LVFPPVINAME="Thesis Exercise.vi"

TYPE="application/x-labviewrpvi" WIDTH=650

HEIGHT=500>

</EMBED>

</OBJECT>

* Remote Panel for Automix Controller

The following is the html code for the Remote Panel

<OBJECT ID="LabVIEWControl"

CLASSID="CLSID:A40B0AD4-B50E-4E58-8A1D-8544233807AA"

WIDTH=650 HEIGHT=500>

<PARAM name="LVFPPVINAME" value="AutoContrMixProcessV2.1.vi">

<PARAM name="server" value="http://132.170.201.154">

<EMBED SRC="http://132.170.201.154/.LV_FrontPanelProotocol.rpvi"

LVFPPVINAME="AutoContrMixProcessV2.1.vi"

 82

TYPE="application/x-labviewrpvi" WIDTH=650

HEIGHT=500>

</EMBED>

</OBJECT>

* Remote Panel for Digital Oscilloscope

The following is the html code for the Remote Panel

<OBJECT ID="LabVIEWControl"

CLASSID="CLSID:A40B0AD4-B50E-4E58-8A1D-8544233807AA"

WIDTH=650 HEIGHT=500>

<PARAM name="LVFPPVINAME" value="Oscilloscope.vi">

<PARAM name="server" value="http://132.170.201.154">

<EMBED SRC="http://132.170.201.154/.LV_FrontPanelProotocol.rpvi"

LVFPPVINAME="Oscilloscope.vi"

TYPE="application/x-labviewrpvi" WIDTH=650

HEIGHT=500>

</EMBED>

</OBJECT>

* Remote Panel for Temperature Controller

The following is the html code for the Remote Panel

<OBJECT ID="LabVIEWControl"

CLASSID="CLSID:A40B0AD4-B50E-4E58-8A1D-8544233807AA"

 83

WIDTH=650 HEIGHT=500>

<PARAM name="LVFPPVINAME" value="Tempcontroller.vi">

<PARAM name="server" value="http://132.170.201.154">

<EMBED SRC="http://132.170.201.154/.LV_FrontPanelProotocol.rpvi"

LVFPPVINAME="Tempcontroller.vi"

TYPE="application/x-labviewrpvi" WIDTH=650

HEIGHT=500>

</EMBED>

</OBJECT>

* Remote Panel for Rain/Precipitation Gauge

The following is the html code for the Remote Panel

<OBJECT ID="LabVIEWControl"

CLASSID="CLSID:A40B0AD4-B50E-4E58-8A1D-8544233807AA"

WIDTH=650 HEIGHT=500>

<PARAM name="LVFPPVINAME" value="Rain-Precipitation Gauge.vi">

<PARAM name="server" value="http://132.170.201.154">

<EMBED SRC="http://132.170.201.154/.LV_FrontPanelProotocol.rpvi"

LVFPPVINAME="Rain-Precipitation Gauge.vi"

TYPE="application/x-labviewrpvi" WIDTH=650

HEIGHT=500>

</EMBED>

</OBJECT>

 84

APPENDIX C: LabVIEW Source Code for Integrated Application

 85

Labview Code for Thesis Exercise.vi

Connector Pane

Front Panel

Block Diagram

 86

AutoContrMixProcessV2.1.vi

Connector Pane

Front Panel

 87

Block Diagram

AI Sample Channel.vi

Connector Pane

AI Sample Channel (single-point waveform).vi

Connector Pane

 88

Front Panel

Block Diagram

General Error Handler.vi

Connector Pane

 89

Front Panel

Block Diagram

 90

Error Code Database.vi

Connector Pane

Front Panel

BuildHelpPath.vi

Connector Pane

Front Panel

 91

Block Diagram

GetHelpDir.vi

Connector Pane

Front Panel

Block Diagram

AI Read One Scan.vi

Connector Pane

AI Read One Scan (single-point waveform).vi

Connector Pane

 92

Front Panel

Block Diagram

 93

AI Config.vi

Connector Pane

Front Panel

Block Diagram

 94

AI Group Config.vi

Connector Pane

Front Panel

Block Diagram

AI Hardware Config.vi

Connector Pane

 95

Front Panel

Block Diagram

 96

AI Buffer Config.vi

Connector Pane

Front Panel

Block Diagram

 97

AI Clock Config.vi

Connector Pane

Front Panel

Block Diagram

 98

AI Parameter.vi

Connector Pane

Front Panel

Block Diagram

 99

AI SingleScan.vi

Connector Pane

AI SingleScan (single-point waveform).vi

Connector Pane

Front Panel

 100

Block Diagram

AI SingleScan (scaled array).vi

Connector Pane

Front Panel

 101

Block Diagram

AI SingleScan (binary array).vi

Connector Pane

Front Panel

 102

Block Diagram

AI SingleScan (scaled & binary arrays).vi

Connector Pane

Front Panel

 103

Block Diagram

AI Read One Scan (scaled array).vi

Connector Pane

Front Panel

 104

Block Diagram

AI Read One Scan (binary array).vi

Connector Pane

Front Panel

 105

Block Diagram

AI Read One Scan (scaled & binary arrays).vi

Connector Pane

Front Panel

 106

Block Diagram

AI Sample Channel (scaled value).vi

Connector Pane

Front Panel

Block Diagram

 107

Write to Digital Line.vi

Connector Pane

Front Panel

Block Diagram

 108

DIO Port Config.vi

Connector Pane

Front Panel

Block Diagram

 109

DIO Port Write.vi

Connector Pane

Front Panel

Block Diagram

 110

TempController.vi

Connector Pane

Front Panel

 111

Block Diagram

DataSocket Open Connection.vi

Connector Pane

Front Panel

 112

Block Diagram

DataSocket Create.vi

Connector Pane

Front Panel

Block Diagram

 113

DataSocket Reference Type.ctl

Connector Pane

Front Panel

Create ActiveX Event Queue.vi

Connector Pane

Front Panel

 114

Block Diagram

Wait types.ctl

Connector Pane

Front Panel

Create Error Clust.vi

Connector Pane

Front Panel

 115

Block Diagram

DataSocket Connect.vi

Connector Pane

Front Panel

 116

Block Diagram

DataSocket Set Error From Status.vi

Connector Pane

Front Panel

 117

Block Diagram

DataSocket Close Connection.vi

Connector Pane

Front Panel

Block Diagram

DataSocket Disconnect.vi

Connector Pane

 118

Front Panel

Block Diagram

DataSocket Unload.vi

Connector Pane

 119

Front Panel

Block Diagram

Destroy ActiveX Event Queue.vi

Connector Pane

 120

Front Panel

Block Diagram

Merge Errors.vi

Connector Pane

Front Panel

 121

Block Diagram

DataSocket Read Boolean.vi

Connector Pane

Front Panel

 122

Block Diagram

DataSocket Read Variant.vi

Connector Pane

Front Panel

 123

Block Diagram

DataSocket Data Updated.vi

Connector Pane

Front Panel

 124

Block Diagram

Wait On ActiveX Event.vi

Connector Pane

Front Panel

 125

Block Diagram

EventData.ctl

Connector Pane

Front Panel

OccFireType.clt

Connector Pane

Front Panel

 126

DataSocket Clear Variant.vi

Connector Pane

Front Panel

Block Diagram

DataSocket Read Double.vi

Connector Pane

Front Panel

 127

Block Diagram

DataSocket Write Double Matrix.vi

Connector Pane

Front Panel

 128

Block Diagram

AO Update Channel.vi

Connector Pane

AO Update Channel (scaled value).vi

Connector Pane

Front Panel

 129

Block Diagram

AO Write One Update.vi

Connector Pane

AO Write One Update (single-point waveform).vi

Connector Pane

Front Panel

 130

Block Diagram

AO Config.vi

Connector Pane

Front Panel

 131

Block Diagram

AO Group Config.vi

Connector Pane

Front Panel

 132

Block Diagram

AO Hardware Config.vi

Connector Pane

Front Panel

 133

Block Diagram

AO Buffer Config.vi

Connector Pane

Front Panel

 134

Block Diagram

AO Single Update.vi

Connector Pane

AO Single Update (single-point waveform).vi

Connector Pane

Front Panel

 135

Block Diagram

AO Single Update (scaled array).vi

Connector Pane

Front Panel

 136

Block Diagram

AO Single Update (binary array).vi

Connector Pane

Front Panel

 137

Block Diagram

AO Write One Update (scaled array).vi

Connector Pane

Front Panel

 138

Block Diagram

AO Update Channel (single-point waveform).vi

Connector Pane

Front Panel

Block Diagram

 139

Oscilloscope.vi

Connector Pane

Front Panel

 140

Block Diagram

Load Target Position

Connector Pane

Front Panel

Block Diagram

 141

Communicate

Connector Pane

Front Panel

Block Diagram

 142

ValueMotion Slot #

Connector Pane

Front Panel

ValueMotion Axis # Out

Connector Pane

Front Panel

Simple Error Handler

Connector Pane

Front Panel

 143

Block Diagram

Error File Parser

Connector Pane

Front Panel

 144

Block Diagram

Read Lines From Files

Connector Pane

Front Panel

 145

Block Diagram

Read File+ (string).vi

Connector Pane

 146

Front Panel

Block Diagram

 147

Close File+.vi

Connector Pane

Front Panel

 148

Block Diagram

Find First Error.vi

Connector Pane

Front Panel

 149

Block Diagram

Open File+.vi

Connector Pane

Front Panel

Bl

 150

Block Diagram

ValueMotion Slot # Out

Connector Pane

Front Panel

ValueMotion Axis #

Connector Pane

Front Panel

 151

Load Steps/Sec

Connector Pane

Front Panel

Block Diagram

Load Steps/Sec^2

Connector Pane

 152

Front Panel

Block Diagram

Load Acceleration Factor

Connector Pane

Front Panel

 153

Block Diagram

Start Motion

Connector Pane

Front Panel

Block Diagram

 154

Set Position Mode

Connector Pane

Front Panel

Block Diagram

Read Position

Connector Pane

 155

Front Panel

Block Diagram

Write To Spreadsheet File.vi

Connector Pane

 156

Front Panel

Block Diagram

 157

Write File+ (string).vi

Connector Pane

Front Panel

Block Diagram

 158

Open/Create/Replace File.vi

Connector Pane

Front Panel

 159

Block Diagram

Stop Motion

Connector Pane

Front Panel

Block Diagram

 160

AI Waveform Scan.vi

Connector Pane

AI Waveform Scan (waveform).vi

Connector Pane

Front Panel

 161

Block Diagram

 162

AI Start.vi

Connector Pane

Front Panel

 163

Block Diagram

AI Trigger Config.vi

Connector Pane

 164

Front Panel

Block Diagram

 165

AI Control.vi

Connector Pane

Front Panel

Block Diagram

 166

AI Clear.vi

Connector Pane

Front Panel

Block Diagram

Channel To Index.vi

Connector Pane

Front Panel

 167

Block Diagram

AI Read.vi

Connector Pane

AI Read (waveform).vi

Connector Pane

Front Panel

 168

Block Diagram

AI Buffer Read.vi

Connector Pane

AI Buffer Read (waveform).vi

Connector Pane

 169

Front Panel

 170

Block Diagram

AI Buffer Read (scaled array).vi

Connector Pane

 171

Front Panel

 172

Block Diagram

AI Buffer Read (binary array).vi

Connector Pane

 173

Front Panel

 174

Block Diagram

AI Buffer Read (scaled & binary arrays).vi

Connector Pane

 175

Front Panel

 176

Block Diagram

AI Read (scaled array).vi

Connector Pane

 177

Front Panel

Block Diagram

 178

AI Read (binary array).vi

Connector Pane

Front Panel

Block Diagram

 179

AI Read (scaled & binary arrays).vi

Connector Pane

Front Panel

Block Diagram

 180

AI Waveform Scan (scaled array).vi

Connector Pane

Front Panel

 181

Block Diagram

 182

Login.vi

Connector Pane

Front Panel

Block Diagram

 183

 184

REFERENCES
1. http://www.ni.com

2. http://www.ni.com/labview/

3. http://www.ni.com/dataacquisition

4. Wells L. K., Travis J., LabVIEW for everyone, Graphical programming made more easy.

Prentice Hall, 1997.

5. Craig Smith and Jason King, A Powerful New Tool for UI Programming User Interface

Event Programming LabVIEW Technical Resource, Volume 9 No. 3

6. http://www.gouldis.com

7. Feedback Instruments Limited, Process trainer, PT326.

8. Kostic M., Data acquisition and control for an innovative thermal conductivity apparatus

using LabVIEW/sup r/ virtual instrument. Laboratory robotics and automation, 10(2)

107-111

9. Jia, Huiping.; Real – time experiments with LabVIEW over Internet, 2001

10. Travis J., Internet Application of LabVIEW. Prentice Hall, 1999

11. Filippetti F., A labVIEW based virtual instrument for on line induction motor parameters

identification. IEEE power engineering review, 18(6) 47-48

12. Beyon, Jeffrey Y., LabVIEW programming Data acquisition and analysis, 2001.

13. Bitter, Rick.; LabVIEW advanced programming techniques, 2001

14. Brenner E., Application of LabVIEW as measuring system in field power electronics.

Proceedings of the 7th European conference on power electronics and applications.

 4:984-989

http://www.ni.com/
http://www.ni.com/labview/
http://www.ni.com/dataacquisition
http://www.gouldis.com/

	Integration Of Real-Time Experiments With Internet Access
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Computer Based Measurement And Automation
	1.2 Publishing Data
	1.3 Sharing Data
	1.4 Remote Control
	1.5 Distributed Execution

	2. LITERATURE REVIEW
	2.1 Overview of LabVIEW
	2.2 Open Connectivity with Other Applications
	2.3 Other Features of LabVIEW
	2.3.1 Portability
	2.3.2 Productivity
	2.3.3 Flexibility
	2.3.4 Reusability
	2.3.5 Maintainability
	2.3.6 Interoperability
	2.3.7 OOP

	2.4 Other G languages
	2.5 User Interface Event Programming
	2.5.1 Simple Example: Event Structure

	2.6 Nonvisible Event Structure Cases
	2.6.1 State Machine

	3. METHODOLOGY
	3.1 Problem Description
	3.2 The Automated Controlled Mixing Process Experiment
	3.3 Experiment with the Digital Storage Oscilloscope
	3.4 Experiment with the Temperature Controller
	3.5 Experiment with RainWise Recording Rain/Precipitation Gauge
	3.6 Remote Access to the Experiments via Internet
	3.7 Internet Connectivity Using Remote Panels in LabVIEW 6.1

	4. DESIGNING THE INTEGRATED APPLICATION
	4.1 Experiment with the Automated Controlled Mixer
	4.2 Design Description:
	4.3 Implementation
	4.3.1 TTL Digital Line

	4.4 Experiment with the Gould Digital Storage Oscilloscope
	4.5 The Panel VI
	4.6 Experiment with the Temperature Controller
	4.7 Experiment with the Rain Gauge
	4.8 Integration of the Real – Time Experiments
	4.9 Remote Panels

	5. TESTING
	6. CONCLUSIONS
	APPENDIX A: Front Panels of the Integrated Real –
	APPENDIX B: Source Code for Remote Panels
	APPENDIX C: LabVIEW Source Code for Integrated Application
	REFERENCES

