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ABSTRACT 
 

Intersection related crashes form a significant proportion of the crashes occurring 

on roadways. Many organizations such as the Federal Highway Administration (FHWA) 

and American Association of State Highway and Transportation Officials (AASHTO) are 

considering intersection safety improvement as one of their top priority areas. This study 

contributes to the area of safety of signalized intersections by identifying the traffic and 

geometric characteristics that affect the different types of crashes. 

The first phase of this thesis was to classify the crashes occurring at signalized 

intersections into rear-end, angle, turn and sideswipe crash types based on the traffic and 

geometric properties of the intersections and the conditions at the time of the crashes. 

This was achieved by using an innovative approach developed in this thesis “Neural 

Network Trees”. The first neural network model built in the Neural Network tree 

classified the crashes either into rear end and sideswipe or into angle and turn crashes. 

The next models further classified the crashes into their individual types. Two different 

neural network methods (MLP and PNN) were used in classification, and the neural 

network with a better performance was selected for each model. For these models, the 

significant variables were identified using the forward sequential selection method. Then 

a large simulation database was built that contained all possible combinations of 

intersections subjected to various crash conditions. The collision type of crashes was 

predicted for this simulation database and the output obtained was plotted along with the 

input variables to obtain a relationship between the input and output variables. For 

example, the analysis showed that the number of rear end and sideswipe crashes increase 

relative to the angle and turn crashes when there is an increase in the major and minor 
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roadways’ AADT and speed limits, surface conditions, total left turning lanes, 

channelized right turning lanes for the major roadway and the protected left turning lanes 

for the minor roadway, but decrease when the light conditions are dark.  

 The next phase in this study was to predict the frequency of different types of 

crashes at signalized intersections by using the geometric and traffic characteristics of the 

intersections. A high accuracy in predicting the crash frequencies was obtained by using 

another innovative method where the intersections were first classified into two different 

types named the “safe” and “unsafe” intersections based on the total number of lanes at 

the intersections and then the frequency of crashes was predicted for each type of 

intersections separately. This method consisted of identifying the best neural network for 

each step of the analysis, selecting significant variables, using a different simulation 

database that contained all possible combinations of intersections and then plotting each 

input variable with the average output to obtain the pattern in which the frequency of 

crashes will vary based on the changes in the geometric and traffic characteristics of the 

intersections. The patterns indicated that an increase in the number of lanes of the major 

roadway, lanes of the minor roadway and the AADT on the major roadway leads to an 

increased crashes of all types, whereas an increase in protected left turning lanes on the 

major road increases the rear end and sideswipe crashes but decreases the angle, turning 

and overall crash frequencies. 

 The analyses performed in this thesis were possible due to a diligent data 

collection effort. Traffic and geometric characteristics were obtained from multiple 

sources for 1562 signalized intersections in Brevard, Hillsborough, Miami-Dade, 
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Seminole and Orange counties and the city of Orlando in Florida. The crash database for 

these intersections contained 27,044 crashes.  

This research sheds a light on the characteristics of different types of crashes. The 

method used in classifying crashes into their respective collision types provides a deeper 

insight on the characteristics of each type of crash and can be helpful in mitigating a 

particular type of crash at an intersection. The second analysis carried out has a three fold 

advantage. First, it identifies if an intersection can be considered safe for different crash 

types. Second, it accurately predicts the frequencies of total, rear end, angle, sideswipe 

and turn crashes. Lastly, it identifies the traffic and geometric characteristics of signalized 

intersections that affect each of these crash types. Thus the models developed in this 

thesis can be used to identify the specific problems at an intersection, and identify the 

factors that should be changed to improve its safety. 
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1 INTRODUCTION 
 

1.1 Background 
 

One of the most complex situations faced by a driver on a roadway is an 

intersection. With many vehicles and pedestrians entering and leaving an intersection, 

there are greater possibilities of different types of crashes. According to Federal Highway 

Administration (FHWA), (National Agenda for Intersection Safety, May 2002) more than 

2.8 million intersection-related crashes had occurred in the United States in the year 

2000, which represented 44% of the total crashes reported. Around 8500 fatalities, 

representing 23% of the total fatalities, and almost one million injury crashes had 

occurred at intersections. FHWA also states that more than half of all rear end crashes 

occur at or near the intersections and more than one-third of all deaths to vehicle 

occupants occur in angle crashes. Both human and property damage losses from rear-end 

crashes cost the United States billions of dollars each year in medical expenses, lost 

productive time and numerous property insurance claims. The cost to society for 

intersection-related crashes is approximately $40 billion a year. National Highway 

Traffic Safety Administration (NHTSA) estimates that the injury costs alone for rear-end 

crashes exceed $5 billion per year. Thus there is a need to study the crash phenomenon 

and identify the factors that make such crashes more probable. This can be achieved by 

classifying crashes into their respective collision types. 

Numerous highway safety organizations have identified intersection safety as a 

national priority. The FHWA has identified intersection safety as one of four safety 
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priority areas in the agency's performance plan. The Am.erican Association of State 

Highway and Transportation Officials (AASHTO) Strategic Highway Safety Plan 

includes 22 key emphasis areas, one of which is improving the design and operation of 

highway intersections. Therefore, there is a need to study the crash characteristics at 

intersections and put forth appropriate solutions that can make intersections a safer place 

to travel. The solution to this is to build models to predict the number of crashes that can 

be expected to occur at signalized intersections and to identify the variables that affect 

each type of crash. If the model suggests that the intersection is expected to have a large 

number of crashes, the intersection characteristics that lead to an increased number of 

crashes can be controlled in order to decrease the crash rate.  

1.2 Research Objectives 
 
 
 The main objective of this thesis is to analyze the crash characteristics at or near 

signalized intersections and to develop models that will be helpful in increasing safety at 

intersections. To accomplish this, the first step will be to review previous studies on 

intersection safety and determine the methodologies used by them. Then, data will be 

collected on intersection properties and characteristics of the crashes that occurred at 

these intersections. The next step would be to analyze the data in order to predict the 

frequency of crashes occurring at the intersections. Different neural network models will 

be utilized in this phase to accurately predict the crash frequencies and the best model 

will be identified that will give the least error in estimation. The frequencies of crashes 

with different collision types (e.g., rear end and angle crashes) will also be predicted 

using the neural network models. This will be followed by the identification of significant 
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variables for each of these models and the manner in which they affect the crash 

frequencies.  

 Another objective of this thesis is to classify crashes into their respective collision 

type based on the traffic and geometric characteristics of the intersections and the 

conditions known at the time of the crash. By using different neural network methods, the 

best method that can be used in the classification of crashes with a high accuracy will be 

acknowledged. The significant variables will be determined for this classification and 

their effect on the classification will be determined. Thus, this analysis will indicate the 

type of crash that will be most likely to occur based on the given input variables.  

 

1.3 Organization of Thesis 
 
 This thesis is organized as follows: 

1. Literature Review: This chapter consists of a review of various studies performed 

in the area of traffic safety and the analysis methods used by them. 

2. Methodology: The relevant models that can be used in the thesis in order to fulfill 

the objectives have been identified. The functioning of these models will be 

discussed in detail. 

3. Data Collection: The data collection effort for the thesis has been described in 

this chapter. The data finally obtained in the study has been described in detail. 

4. Using Neural Networks to identify Unsafe Intersections: This chapter describes a 

new technique in predicting crashes at signalized intersections that is also capable 

of identifying if an intersection in safe or unsafe. The formulation of such a 
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technique and the results obtained in estimating different types of crashes have 

also been discussed in the chapter. 

5. Classification of Crashes using Neural Network Trees: The classification of 

crashes into their respective collision types using an innovative method called the 

“Neural Network Trees” has been described in this chapter. The chapter also 

discusses the significant variables identified in this analysis and their effects on 

the classification. 

6. Conclusions: The final chapter contains a briefing on the work carried out in the 

thesis and discusses appropriate conclusions. 
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2 LITERATURE REVIEW 
 

2.1 Introduction 
 
 According to the Bureau of Transportation Statistics, 6,328,000 crashes were 

estimated to have occurred in the year 2003, of which there were 42,643 fatalities and 

around 3 million were estimated to be injuries. Of these fatalities, 21% were reported as 

intersection fatalities, which is a high percentage. Hence there is a need to identify the 

intersection characteristics that lead to an increased rate of crashes at these locations. By 

controlling these factors, the intersections can be made a safer place to travel. In order to 

achieve this, some statistical, geographical or neural network methodologies have to be 

applied on crash data collected at intersections. This chapter explores some studies that 

have been carried out in the recent past, which have used such methods to bring forth the 

characteristics of highways and intersections that can alter their safety. 

2.2 Poisson and Negative Binomial Modeling 
 
Poch et al. (1996) presents a negative binomial analysis to study the relationship between 

road geometrics/traffic related elements and accident frequencies at intersections. Four 

different models were developed that predicted total accident frequency, rear-end 

accident frequency, angle accident frequency and approach turn accident frequency. A 

total of 63 intersections were studied in the analysis, for which the data was collected 

between the years 1988 and 1992. The variables used in the analysis were approach 

volumes, number of approach lanes, speed limits, highway grades, signal-control 

characteristics, presence of horizontal curves, sight distance restrictions and indicator 

variables for the calendar year for the data and the location of the intersection.  The 
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model is able to identify the factors that tend to increase/decrease the accident 

frequencies, for various collision types. Hence the authors conclude that the negative 

binomial regression model can be satisfactorily used in identifying the significant traffic 

and geometric elements that tend to increase or decrease the accident frequency. 

 The concept of random effect negative binomial model was used by Chin et al. 

(2003) to identify elements that affect intersection safety. This model can deal with the 

spatial and temporal effects in the data by treating the data in a time-series cross-section 

panel. A total of 52 four-legged intersections in the Southwestern part of Singapore were 

used, which accounted for 832 crashes between the periods of 1992 to 1999. The random 

effect negative binomial model was used to examine a total of 32 possible explanatory 

variables, which were classified into traffic volumes, geometric elements and regulatory 

control measures. The results showed that 11 variables significantly affected the safety at 

the intersections. The total approach volumes, the numbers of phases per cycle, the 

uncontrolled left-turn lane and the presence of a surveillance camera are among the 

variables that are the highly significant. On the other hand, the presence of an 

acceleration section and the provision of bus bays as well as the use of adaptive signal 

control tend to point to lower total crash occurrence. These findings might be limited by 

the relatively small sample size used.  

 Another study to formulate practicable accident prediction models that would 

describe the expected number of accidents at junctions and road links in urban areas was 

conducted by Greibe (2003). Poisson distribution model was used to identify factors 

affecting safety, geometry, land use, etc. The model incorporated accident data for five 

years, and also contained a plethora of variables like AADT counts, length of section, 
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speed limit, one or two-way traffic, number of lanes, road width, speed reducing 

instruments, etc for roadway sections and traffic volumes, number of lanes, median, 

turning lanes, bicycle facilitation, signalized/non-signalized, and number of signal arms 

for intersections. The results for both roadway segments and intersections indicated that 

ADT contributed the most to crash frequency. Explanatory variables describing road 

design and road geometry proved to be significant for road link models but less important 

in junction models. 

 Vogt et al. (1998) used poison and negative binomial models to study the three-

legged and four-legged intersections’ crashes. The data were obtained from Highway 

Safety Information System (HSIS) files for the states of Minnesota and Washington for 

the time periods 1985 to 1989 and 1993 to 1995 respectively. Intersections in Minnesota 

were selected from a population of HSIS observations divided into four bins, with 

random selection from each bin. The bins were defined by median values of mainline 

traffic and minor road traffic. In case of Washington, no HSIS intersection file was 

available, but an intersection database was developed through combining video-log 

information with data provided by the state of Washington. The results showed that right-

turn lanes on the mainline increase the likelihood of crashes at three-legged intersections. 

For the four-legged intersections, fewer crashes result at right-angled intersections. 

 Both Poisson and negative binomial regressions were also used by Oh et al. 

(2004) to create crash prediction models for three-legged, four-legged and signalized 

intersections for both the total number of crashes and the number of injury crashes.  For 

the total crash model at signalized intersections, the traffic volume on both the major and 

minor road, the posted speed limit on the major and commercial driveways in the vicinity 
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of the intersection caused more crashes.  The higher the average degree of curvature for 

the intersection and the condition whether the intersection was lighted caused fewer 

crashes to occur.   

 Shankar et al. (1997) suggests that the accident frequencies can be considered to 

be belonging to two states: one in which the roadway section from which the accident 

data is collected is inherently safe, and the other is the accident state in which accident 

frequencies follow a known distribution. The former distribution case is the zero accident 

state in which no accidents will be observed. If the two processes are modeled as a single 

process that assumes that all sections are in accident state, the estimated models will be 

inherently biased because there will be an over representation of zero-accident 

observations in the data. Hence the paper explores the conditions under which the Zero 

Inflated Poisson (ZIP) and Zero Inflated Negative Binomial (ZINB) models are more 

appropriate than the simple Poisson and Negative Binomial models. Analysis was carried 

out with the data collected for highway sections. The data is limited to non-intersection 

roadway sections. The section defining information included changes to district number, 

urban or rural section, roadway type, number of lanes, roadway width, shoulder width, 

presence of curb or retaining wall, divided or undivided highway, speed, AADT, truck 

percentage, peak hour factors and vertical and horizontal curve characteristics. For the 

model estimation, 2-year summary of accident data was used. 

 The analysis shows that several variants of the ZIP/ZINB are plausible, and that 

roadway engineers can isolate design control factors that affect zero-accident processes 

and positive accident processes. 
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 Persaud (2003) used the Empirical Bayes method to estimate the change in 

expected accident frequency after the installation of a signal and to use safety impact 

knowledge to determine where to place a signal. Accident counts and traffic volumes 

were used to estimate the expected accident rates if an intersection was not signalized. 

When developing the models, variables like area type, volumes, sight distance, and turn 

lanes were used. The software package GENSTAT was used to create a general linear 

model assuming a negative binomial error distribution. The only variables that proved to 

be significant were the flows on the intersecting roadways. After the models were 

created, a before-after Bayesian analysis was performed to account for the regression-to-

mean bias encountered. The results from this research were the development of a step-by-

step procedure to determine whether a signal should be placed at a particular site. 

Rodriguez et al. (1999) developed crash prediction models for estimating the 

safety performance of urban unsignalized intersections. The models are developed using 

the generalized linear modeling (GLIM) approach that addresses and overcomes the 

shortcomings associated with conventional linear regression. The safety predictions 

obtained from the models are refined using the empirical Bayes approach to provide more 

accurate, site-specific safety estimates. The study made use of sample crash and traffic 

volume data corresponding to unsignalized intersections located in urban areas of the 

British Columbia. Four applications of the models are described: identification of crash-

prone locations, developing critical crash frequency curves, ranking the identified crash-

prone location, and before and after safety evaluation. These applications showed the 

importance of using crash prediction models to reliably assess the safety of unsignalized 

intersections. 
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 In 1998, Turner reviewed models used in practice to relate crashes to traffic flow, 

with particular emphasis on the appropriateness of the model form and the statistical 

analysis technique employed for parameter estimation. The development of generalized 

linear models for predicting individual crash types at intersections in New Zealand was 

then described. The use of covariate analysis to identify the effect of intersection 

location, an investigation of the effect of non-collision flows, and the use of the models 

for predicting intersection crashes in three networks were also described. It was 

concluded that generalized linear models for estimating different crash types (based on 

the conflicting flows) were better than models for estimating total crashes (based on the 

approach flows), especially when the cost of different crash types was known. It was also 

found that intersection location affects the number of different crash types. It was 

important to consider the interactions between turning flows (to take better account of the 

mechanisms of crash occurrence) as well as non-collision flows. Comparison of the 

predicted and observed numbers of crashes showed that there was poor agreement for 

individual intersections, but fairly good agreement for networks. 

 Mountain et al. (1996) developed and validated a method for predicting expected 

accidents on main roads with minor junctions where the traffic counts on minor arms are 

not available. The study was based on data for around 3800 km of highway in the U.K 

with more than 5000 minor junctions. Generalized linear modeling was used in this study 

to develop regression estimates of expected accidents for six highway categories and an 

empirical Bayes procedure was used to improve these estimates by combining them with 

accident counts. In the paper, accidents on highway sections have been shown to be a 

non-linear function of exposure and minor junction frequency. In addition, it has been 
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shown that the presence of minor junctions has an important influence on link accident 

frequencies. The best results were obtained using the empirical Bayes method. 

 In 1998, Mountain et al. (1998)developed models to predict the accident rates at 

junctions by taking into consideration the change in accident trends over time due to 

traffic growth and local or national road safety policies and programs. The data used in 

this study comprised details of highway and junction characteristics, personal injury 

accidents and traffic flows on the road networks, collected for periods between 5 to 15 

years. Of the 501 junctions used, 96 were signalized intersections. The junction 

characteristics included number of arms and method of control, major road carriageway 

type and speed limit. The relevant information of the accident was its date, location, 

severity, road surface condition and lighting condition. Generalized Linear Models were 

developed for estimating expected number of accidents per year as a function of the 

accident risk and the major and minor road inflows. The trend for the change of traffic 

flows and national road safety programs and policies was incorporated in a separate 

model. It was found that effect road safety policies and programs result in a decline in 

accident risk from year to year. Many more conclusions were drawn on the trend of the 

variables. For example, it was found that the ratio of the dark to night accidents depends 

on the minor road flow. 

 In an effort to create crash severity models based on roadway medians, Donnell 

and Mason (2004) utilized logistic regression to find the probability of various types of 

injury levels based on geometric and environmental characteristics as well as traffic 

operations.  Results suggested that for interstate median crashes, the probability of fatal 
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crashes is affected by wet road surface, use of drugs of alcohol, nearby interchange ramp, 

crash type, and the traffic volume. 

 In 2003, Wang et al. (2003) presented a new mechanism for predicting rear end 

accidents based on a probabilistic approach. Using the data from 115 intersections and 

589 rear-end crashes, the occurrence of rear end crashes was studied considering the 

probability of encountering an obstacle and the probability of a driver failing to react 

quickly enough to avoid a collision with the obstacle vehicle. The probability of 

encountering an obstacle vehicle is assumed to be a function of the frequency of 

disturbances that cause the driver of a leading vehicle in a vehicle pair to decelerate. The 

probability of the trailing vehicle’s driver failing to respond is the probability that this 

drivers’ needed reaction time is less than the available reaction time. Hence the effect of a 

variable could be found on both the probabilities, giving a dual impact of the variables. 

2.3 Nested Logit, Ordered Probit and Regression Tree Models 
 
 In an exploratory study, Shankar et al. (1996) attempts to develop a multinomial 

logit model for predicting the motorcycle-rider accident severity. The model uses a 5-

year statewide data on single-vehicle motorcycle accidents from the state of Washington, 

that considers environmental factors, roadway conditions, vehicle characteristics and 

rider attributes. The study shows that the multinomial logit formulation is a promising 

approach to evaluate the determinants of motorcycle accident severity. 

 Shankar et al. (1996) developed a nested logit formulation as a means for 

determining accident severity given that an accident has occurred.  The study involved 

collection of the following six categories of data from 61 km of study section of I-90 in 

Washington State: 1. individual accident data (primary identified causes, most severe 
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consequences of the accident, time and location of the accident), 2. weather data, 3. 

geometric data (radii of horizontal curves, number of horizontal and vertical curves per 

kilometer, percentage length of horizontal curves) , 4. pavement surface data, 5. vehicle 

data, and 6. driver-related data (drug/alcohol usage by driver, age and gender of the 

drivers). Accidents that had occurred within a five year period were considered for 

estimating the four levels of severities: property damage only, possible injury, evident 

injury and disabling of fatal injury. 

 
Figure 2.1 The most efficient Nested Logit structure developed by Shankar et al. (1996) 

 
Among the various models tested statistically for the nested logit model, the model 

depicted in Figure 2.1 proved to be of the correct nested structure for accident severities. 

This diagram implies that the injury severity can be modeled in the form of two nests: an 

accident injury split up into no evident injury, evident injury and disabling/fatal injury; 

and the No evident injury split up into property damage only and possible injury. The 

variables were tested in both the nests and the effect of each variable on the injuries has 

been illustrated. For example, when the lower nest was tested, it was found that the 

overturn accident indicator played an important role and it had a greater probability of 

possible injury severity relative to the property damage only.  Similarly, when this 
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variable was tested for the upper nest, it was found that the variable had a greater 

probability of evident injury or disabling injury/fatality. 

 An ordered probit model was used by Quddus et al. (2002) to investigate how 

variations in various factors can lead to variations in the level of both injury severity and 

damage severity to motorcycles in motorcycle crashes. Crash data of 27570 accidents for 

the years 1992 to 2000 was collected in order to estimate the parameters in the ordered 

probit models. The results indicate that there are more severe injuries in the early 

morning periods and less severe injuries occurring during the day time. It was found that 

higher road design standards increase the probability of severe injuries and fatalities. But 

collision types of the accidents were included as input in the database that could have 

created a bias the database. For example, collision with pedestrians is almost always 

considered as a severe crash. Hence the database will be based on the collision type rather 

than any other variables. 

 Krull et al. (2000) used logit models to analyze driver injury severities for single-

vehicle crashes. The authors analyzed three-year crash data from Michigan and Illinois in 

order to explore the effect of rollover, while controlling for roadway, vehicle, and driver 

factors. Results showed that driver injury severity increases with: (a) failure to use a 

seatbelt, (b) passenger cars as opposed to pick-up trucks, (c) alcohol use, (d) daylight, (e) 

rural roads as opposed to urban, (f) posted speed limit, and (g) dry pavement as opposed 

to slippery pavement. 

 Abdel-Aty (2003) analyzed driver injury severity levels for roadway sections, 

signalized intersections, and toll plazas in Central Florida using ordered probit models. 

The database used in the analysis consisted of variables related to the driver, vehicle, 
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roadway and environmental conditions obtained from three counties in Central Florida. 

Results of the analysis showed that the older driver, male drivers and those not wearing a 

seat belt were most prone to severe injury crashes. The same was observed for drivers of 

passenger cars, vehicles struck at the driver’s side, and drivers who speed. Variables 

related to the location of the crash like the roadway curves and dark lighting conditions 

were found to contribute to higher probabilities of injuries on roadway sections. 

 Nested models were also developed in this study to model injury severity. But 

ordered probit approach was found to produce better results than the multinomial logit 

approach, and was also considered simpler than the ordered probit model.  

 Although the Hierarchical Tree-Based Regression (HTBR) models have been 

used in many areas of transportation engineering like traffic planning to forecast trip 

generation (Washington and Wolf (1997)), they were used in traffic safety by Karlaftis et 

al. (2002) to quantitatively assess the effects of various rural road geometric 

characteristics on accident rates, and provide a mathematically sound way of predicting 

accident rates. The advantages of HTBR are that it allows for the quick estimation of 

predicted accident rates for a given rural road section and that it is easily amenable to ‘if-

then’ statements for incorporation in expert systems. 

 The data used in the analysis is a combination of two databases: first consisting of 

road sections and their various traffic and geometric characteristics and the second 

containing the description of the location and type of accidents that occurred at these 

sections. This data was used in the HTBR model to predict the crash rate. The output 

comprised of tree shaped diagrams that can be transformed into a set of ‘if-then’ 

statements. The output for two-lane roads indicated that AADT was the most significant 
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variable, lane width, serviceability index, pavement type and friction ratio were the other 

important variables affecting the crash rates. While the importance of lane width seemed 

to increase with higher flows, the importance of pavement condition factors seemed to 

increase with lower flows.  For the multilane roads, the important factors were: AADT, 

median width, access control and pavement condition.  

 Although the paper demonstrates that HTBR can be used to find the most 

important factors in the crash rate prediction, the paper fails to mention if this model has 

been used on a test data to predict the crash rate so as to test the performance of the 

model on new data. The paper also does not mention the accuracy of the prediction of the 

crash rate.  

 More recently, HTBR model was used by Abdel-Aty et al. (2005) to determine 

the significant factors for different collision types and to determine if there was a 

difference between models based on complete and restricted datasets. Complete dataset is 

one in which all crashes are taken into account including the minor crashes with property 

damage only, whereas restricted dataset contains only major crashes reported as long 

forms in the state of Florida.  

The authors chose the HTBR model primarily because the model does not need 

any assumptions or knowledge of the true functional form in advance. Also the model 

was used to take advantage of its robustness against multicollinearity between variables, 

handling missing values in the model and its ability to easily identify outliers. 

The HTBR model developed to predict the frequency of crashes in each collision 

type. These models clearly indicated the factors that lead to increased accidents at 

signalized intersections. For example, the paper shows that for a complete dataset the 
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factors affecting angle crashes are: number of left turn protected lanes on the major road, 

number of lanes on the minor roads, number of right turn channelized lanes on the major 

road, the traffic volume on the minor road, etc in that sequence. The consistency of these 

results for the complete and restricted datasets was compared in the study. 

This study also had a testing phase where the number of crashes expected in 2002 

was calculated for City of Orlando and Brevard County.  In conclusion, the authors feel a 

need to develop models for predicting the frequency of crashes for each collision type 

instead of aggregating crash types to predict the total number of crashes. Also, the 

crashes reported on short-forms were found important while modeling the number of 

expected crashes.  

2.4 Neural Network Models 
 
 A lot of papers have been published in the 1990’s that deal with the application of 

neural networks in various areas of transportation. Neural networks have been used to 

predict driver behavior, pavement maintenance, vehicle detection/classification, freight 

operations, traffic pattern analysis, traffic forecasting, traffic operations, etc (Dougherty 

(1995)). Abdelwahab and Abdel-Aty (2001) discuss the classification of injury severities 

of accidents at signalized intersections into three levels (no injury, possible/evident 

injury, and disabling injury/fatality) using Artificial Neural Networks (ANNs). MLP 

Neural Network and Fuzzy ARTMAP Neural Network are the two ANN models have 

been used to classify the injury severities. These models have been compared to bring out 

a model that gives better classification accuracy. The 1997 accident data for the Central 

Florida area (Orange, Seminole and Osceola counties) was used in this study. The data 

consisted of accident characteristics and circumstances, information about the vehicles 
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and vehicle maneuver before the accident, information on drivers and the condition or 

action of driver that contributed to the accident.  

 An MLP Neural Network was developed with nine input nodes, fifteen hidden 

nodes and three output nodes for the three injury levels. The number of hidden nodes was 

selected by running the model for 5 to 25 hidden nodes and selecting the number of nodes 

giving the best performance. All transfer functions used in the hidden and output layers 

were hyperbolic tangent sigmoid transfer functions. This model gave a classification 

accuracy of 65.6 and 60.4 percent for the training and testing phases, respectively. The 

model gave a classification accuracy of 63.7 percent for 1996 Central Florida accident 

data. 

 An Ordered Fuzzy ARTMAP Neural Network was also developed with 285 nodes 

in the ARTa module and 3 nodes in the ARTb module. It gave a generalized performance 

of 58.1 percent. Since the MLP Neural Network consisted of lesser number of nodes and 

gave a better performance, the authors concluded that MLP Neural Network has a better 

performance. The authors found that the MLP Neural Network performed better than the 

ordered logit model for the 1997 Central Florida accident data. 

 Hence the MLP Neural Network was found to have a promising potential in 

modeling injury severity. 

 The main objective of the work carried out by Abdelwahab and Abdel-Aty (2002) 

was to investigate the use of fuzzy Adaptive Resonance Theory MAP (ARTMAP) neural 

networks to analyze and predict injury severity of drivers involved in traffic accidents. 

Two accident databases have been used in this paper: one from the Florida Department of 

Highway Safety and Motor Vehicles (DHSMV) for the year 1996 through 1997, and the 
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other from the Central Florida expressway system for the years 1999 and 2000. The latter 

database contained accidents that occurred in the vicinity of toll plazas. The authors 

developed a Fuzzy ARTMAP algorithm using a Visual C++ code. Since the order of 

pattern presentation affects the performance of the fuzzy ARTMAP training algorithm, 

the authors used three different orders of pattern presentation out of which two were 

random and one was an ordered pattern presentation. The data was ordered in the latter 

case using K-means clustering.  

 Three models were developed using Fuzzy ARTMAP. The first model was 

developed by training the 1997 accident data and testing over the 1996 accident data, for 

all accidents in the Central Florida region. Driver age, gender, alcohol, use of seat belt, 

vehicle type, point of impact, speed ratio, area type, lightning condition, and trafficway 

characteristics were found to be significant in predicting driver injury. The ordered 

version of fuzzy ARTMAP gave the best classification accuracy of 70.6%. The second 

model was developed for signalized intersections, with 1997 data used for the training 

phase and 1996 data used for the testing phase. The variables found significant were: 

driver age, gender, use of seatbelt, fault, vehicle type, point of impact, speed ratio and 

area type. The classification accuracy for this model was 58.1%. The third model was 

developed for the injury prediction in accidents around the vicinity of toll plazas. 2000 

accident data was used in the training phase and 1999 accident data was used in the 

testing phase. The variables that were found significant were driver age, gender, payment 

method (electronic toll collection vs manual toll payment), plaza type (main vs ramp), 

use of seat belt, alcohol involvement, vehicle type, point of impact, number of impacts 

and weather condition. The model had a classification accuracy of 71.2%.  
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 The authors also carried out a simulation experiment to extract knowledge from 

the trained network. Simulated input patterns were created using all possible 

combinations of input variables. The variables were plotted and the relationships between 

them were identified. Then these results were transformed into marginal effects to show 

the significance of an input variable on driver injury severity. 

 A more recent publication by Abdelwahab and Abdel-Aty (2004) compares the 

injury severity level prediction capability of a Multilayer Perceptron (MLP) Neural 

Network to the prediction capability of a fuzzy Adaptive Resonance Theory (ARTMAP) 

neural network and an Ordered Probit Model. The models are compared based on the 

1996 and 1997 crash data of the Central Florida region consisting of Orange, Osceola and 

Seminole counties. The 1997 crash database was used in the training phase and 1996 

crash database was used in the testing phase. 12 input variables were initially used in all 

the models. The number was reduced in each model based on the significance of the 

variables. For the neural networks, several runs were made on the training data set to 

prune the size of the inputs. One or more variables were removed at each run and the 

performance was compared to the complete model. Those variables were excluded that 

gave the best performance when excluded from the model. For the ordered probit model, 

the t tests and conditional likelihood tests were used to assess the goodness of fit of the 

reduced models against the full model. 

 The MLP neural network had a classification accuracy of 76.2 and 73.5% in the 

training and testing phases respectively. Peak period and weather were the insignificant 

variables in the model. The fuzzy ARTMAP had a classification accuracy of 70.6%. Peak 

period and weather were also found significant in this model. This was also true in the 
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Ordered Probit Model. Driving under influence was another factor that was insignificant 

in the Ordered Probit model, but its interaction with the seat belt factor was significant. 

The classification accuracy of the model was 62.6 and 61.7% in training and testing 

phases respectively. 

 Since the MLP neural network had a better classification accuracy and smaller 

network size compared to the fuzzy ARTMAP, it was concluded to be the better model 

for predicting the injury severity level. To compare the MLP neural network and Ordered 

Probit models, a test for the difference of two proportions was performed. MLP neural 

network showed better performance in this test and was hence declared to be the better of 

the two models. Hence the MLP neural network was found to be promising in modeling 

injury severity. 

 In 1999, Mussone et al. (1999) tried to identify the most significant parameters 

that determine the possibility of an accident occurring at an intersection by using an MLP 

neural network. The accident database consisted of 10 files containing information on 

location of the crash, vehicle information, driver information, injury severity, possible 

traffic violations of the driver of each vehicle, roadway conditions, visibility, weather and 

characteristics of vehicles and drivers, etc for all crashes that occurred in Milan from 

1992 to 1995. An accident index was created for each intersection that was an indicative 

value for the degree of danger relative to the most dangerous intersection over the period 

of four years. The accident index was calculated as the ratio of the number of accidents at 

a particular intersection and the number of accidents at the most dangerous intersection. 

The authors selected intersections from a particular region and not from the entire city of 

Milan. 217 conflict points for the accidents on intersections were found out. The MLP 
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model that was developed consisted of 10 input neurons and 4 neurons in the hidden 

layer. The transfer function in the input layer was linear and in the hidden layer was 

sigmoid. The Root Mean Square Error for this model was 18.24%. Multiple Linear and 

exponential regression techniques were also used to predict the accident index. These 

methods gave RMSE of 0.5 to 0.7. 

 Models have been developed using back propagation MLP neural networks to 

study the effect of intersection characteristics on numbers of intersection related traffic 

accidents, in a study conducted by Liu et al. (2004). A total of 28 different traffic and 

geometry related variables were collected for 62 signalized intersections for the years 

2000 and 2001, that accounted for 1593 accidents during the 2 years. The crash details 

like the crash spot, date, time, illumination and weather condition of each crash were also 

recorded. The data was split based on the approaching directions of vehicles involved in 

the crashes, based on the Approaching Direction Combination (ADC). 

 The Back Propagation network developed in this study consisted of 53 input 

nodes, 22 hidden nodes, and 1 output node. The output obtained was very accurate for the 

test data. A sensitivity analysis was conducted to find the variables that had a greater 

influence on the crashes. A scheme for improvement of intersection deficiencies is 

proposed using the generated model. A case study is performed afterwards to examine the 

appropriateness of the proposed scheme. 

 Sayed et al. (1998) investigate the classification of road accidents using neural 

networks and fuzzy classification techniques. A feed forward back propagation neural 

network is used in the study to assign membership of accidents into three classes defined 

as the driver, the vehicle and the road. The database consisted of a detailed list of 900 
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accidents with each accident having around 21 variables associated with it, like the 

degree of curvature, road grade, speed limit, surface, weather and light condition, land 

use, accident time, location and type, severity, contributing causes of the accident, etc. 

The data was standardized to a (0, 1) range. The comparison of fuzzy classification 

technique to the neural network classifier showed that the neural network performed 

better. The neural network techniques have been compared with the fuzzy classification 

technique. 

2.5 Geographical Information Systems (GIS) in Traffic Safety 
 

 Transportation professionals the world over have discovered and embraced GIS as 

an important tool in managing, planning, evaluating, and maintaining transportation 

systems. GIS has been used for diverse purposes from modeling travel demand 20 years 

in the future to tracking a snowplow; from analyzing the annual capital improvement 

plans to identifying noise regulation violations around airports; from improving transit 

service throughout rejuvenated urban centers to planning scenic byways in recreational 

areas. In transportation safety, the analytical capabilities of GIS support a variety of tasks, 

like crash location and reporting, incident and response management, accident analysis 

and "hot spot" identification, safety engineering and capital improvement, etc. Research 

is being carried out to study transportation safety from a geographic viewpoint, so as to 

relate the safety aspects with locational details. For example, Pawlovich (1998) presents a 

concept typology to organize the use of GIS, along with statistical techniques, to explore 

the relationship between crash incidence and underlying demographic, socioeconomic, 

and land use data. 
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 To estimate the number of traffic accidents and assess the risk of traffic accidents 

in a study area, Ng et al. (2002) developed an algorithm that involves a combination of 

GIS techniques and statistical methods. The algorithm is developed as a four stage 

process: 1. GIS is used to locate accidents on a digital map; 2. Cluster analysis is used to 

group the homogeneous data together; 3. Regression analysis is performed to identify the 

relation between the number of accident events and the potential causal factors; 4. 

Accident risk is computed using the Empirical Bayes approach.  A case study illustrates 

that the algorithm improves the accident risk estimation when compared to estimated risk 

based on only on the historical accident records. The algorithm is found to be more 

efficient, especially in the case of fatality and pedestrian-related crashes. 

 Kam (2002) presents a disaggregate approach to crash rate analysis. The approach 

involves combining two disparate datasets on a geographic information systems (GIS) 

platform by matching accident records to a defined travel corridor. As an illustration of 

the methodology, travel information from the Victorian Activity and Travel Survey 

(VATS) and accident records contained in CrashStat were used to estimate the crash rates 

of Melbourne residents in different age–sex groups according to time of the day and day 

of the week. The results show a polynomial function of a cubic order when crash rates are 

plotted against age group, which contrasts distinctly with the U-shape curve generated by 

using the conventional aggregate quotient approach. Owing to the validity of the many 

assumptions adopted in the computation, this study does not claim that the results 

obtained are conclusive. 

 The project carried out by Mistry et al. (2003) involves developing a new 

Geographic Information System (GIS) application for the display and analysis of crash 
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data.  Multi-year crash data from Tuscaloosa County are mapped on a commercially 

available base map, and these crash locations are compared with existing roadway 

features.  After geocoding the base map with nodes, links, and route-milepost data, 

spatial analysis and “hot spot” identification is done using thematic mapping, buffering, 

and route impedance. 

 Using GIS, a methodology was developed by Abdel-Aty et al. (2000) to examine 

the association between driver characteristics and traffic crash involvement. The aims of 

the study were to identify areas in the state of Florida that have high crash rates and 

provide drivers there with suitable educational programs to improve their safety 

behaviors and enhance their knowledge of traffic safety problems. Two conventional 

driver characteristics were investigated in this research: driver's age and gender. Income 

level was also investigated. Data and variables from the 1995 Florida crash database and 

census data were used in the analysis. Results showed a strong relationship between 

income level and crash involvement while under the influence of alcohol/drugs, and crash 

involvement when seat belts were not used. Male drivers had higher crash rates than 

females, and teenagers are riskier drivers than the elderly. 

2.6 Summary 
 
 The methodologies used in the studies described in this chapter have proved to be 

an invaluable tool in predicting and modeling the frequency of crashes. Although a lot of 

research has been performed in improving the safety of the highways in general, not 

many studies have concentrated on the safety of signalized intersections. There have been 

a plethora of studies carried out using the statistical negative binomial and Poisson 
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models. But the applications of the recent tools of neural networks, regression trees and 

GIS has been limited in this field. Hence the present study will try to utilize these 

methodologies to predict the severity and collision types of crashes at signalized 

intersections in Florida. 

 26



3 METHODOLOGY 
 

3.1 Introduction 
 
 The main objectives of this thesis are to classify and predict crashes at signalized 

intersections using the data on traffic and geometric properties of intersections and the 

properties of the crashes. The studies by Abdelwahab and Abdel-Aty (2002), 

Abdelwahab and Abdel-Aty (2004) and Mussone et al. (1999) indicate that the 

classification and prediction of crash parameters can be achieved efficiently using 

Artificial Neural Networks (ANN). Therefore, this chapter discusses the various neural 

network methods that will be used in the analysis phase of this thesis. 

3.2 Artificial Neural Networks 
 
 According to According to Nigrin (1993): “A neural network is a circuit 

composed of a very large number of simple processing elements that are neurally based. 

Each element operates only on local information.” One of the advantages of using ANNs, 

as described by Haykin (1999) is that it can perform massive computations through its 

massively parallel distributed structure and its ability to learn and generalize. Neural 

networks also possess the ability to produce reasonable results by adapting themselves to 

the inputs that are not encountered during its training. ANNs can adapt themselves to 

changes in the input variables by adjusting their weights. Thus they can perform well 

even under a variation of input variables for which they haven’t been trained. 

Nonlinearity is an important characteristic of an ANN as it can nonlinearly map input 

variables to output variables. The neural networks are also considered to be fault tolerant 

because their performance falls gracefully under adverse operating conditions. 
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 The Multi Layer Perceptron (MLP) and Probabilistic Neural Networks (PNN) 

were used for the classification  analysis, and MLP and Generalized Regression Neural 

Networks (GRNN) were used for the prediction of crash frequencies. 

3.3 Multi Layer Perceptron (MLP) Neural Network Architecture 
  

 MLP neural networks are an important class of neural networks and are very 

widely used.  Typically, an MLP neural network consists of a set of source nodes that 

constitute the input layer, one or more hidden layers of computation nodes, and an output 

layer of computation nodes. A descriptive diagram of the MLP neural network is given in 
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Figure 3.1. The input signal propagates through the network in a forward direction on a 

layer-by-layer basis. By adding one or more hidden layers, the network is enabled to 

extract higher ordered statistics. The number of output nodes depends on whether the 

MLP is being used for classification or prediction. In the classification phase, the number 

of output nodes is typically equal to the number of classes the data is split into, whereas 

only one output node is required in the prediction phase. 
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 The MLP shown in 

Figure 3.1 has K input nodes, J hidden nodes and I output nodes, and w represents the 

weight functions. The nodes at the input layer of the MLP supply the respective inputs of 

the activation pattern to the hidden layer. The output of the hidden layer is again 

transferred to the output layer as input, and the activation pattern of this forms the output. 

The nodes in the MLP neural network transform their input by using a scalar-to-scalar 

function called the activation function. The commonly used activation functions are the 

sigmoid (or the tanh function), logistic (1/(1+exp(-x)))) and the linear functions. 
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Output Values

Figure 3.1 Multi Layer Perceptron Feedforward Network 

 The MLP neural network has been used to solve complex problems using the 

back-propagation algorithm. This algorithm consists of two passes through the different 

layers of the neural networks: a forward pass in which the input is applied at the input 

layer and the output is produced as the actual response of the network, and a backward 

pass in which all weights are adjusted according to the error correction rule. According to 

this criterion, the actual response is subtracted from the target outputs to obtain the error 
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signal. The error signal is propagated backwards so that the weights can be adjusted 

accordingly. Hence the algorithm gets its name of back-propagation algorithm. 

 The aim of the training phase of the MLP neural network is to map a given set 

of inputs in the training data, say x(1), x(2)…. x(PT), to the output values in the training 

data, say d(1), d(2),… d(PT) respectively. Hence the input x(p) has to be mapped to the 

output d(p). For this purpose, the following error function is constructed: 
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 The objective is to change the weights w so that the error function is 

minimized, which means that the actual output is being made as close as possible to the 

desired output. The error is back-propagated through the neural network to adjust for the 

weights between the layers. The error function is minimized using the gradient descent 

procedure that changes the weight vector w by an amount proportional to the negative 

gradient of the function E(w). Using detailed calculations, Georgiopoulos and 

Christodoulou (2001) determine the amount by which the weights in each layer can be 

changed so as to minimize the weight functions.  

 The error is minimized until a stopping criterion is met. The stopping 

conditions usually set are that the number of epochs (or presentations of the inputs) does 

not exceed a certain value, or the error function becomes sufficiently small 

(Georgiopoulos and Christodoulou, 2001).  

3.4 Probabilistic Neural Networks (PNN) 
 
 The probabilistic neural network (PNN) was developed by Donald Specht. 

This network provides a general solution to pattern classification problems by following 
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an approach of the Bayesian classifiers. The network paradigm also uses Parzen 

Estimators which were developed to construct the probability density functions required 

by Bayes theory.  

 Chen (1996) states that in order to classify a variable into one of two classes 

based on a set of measurements represented by a p-dimensional vector Xt the two 

category decision surface Baye’s criteria can be arbitrarily complex. This is true even 

with a multi-category classification. The key to using the Bayes classifiers is the ability to 

estimate PDFs based on training patterns. Parzen showed that a class of PDF estimators 

asymptotically approaches the underlying parent density provided it is continuous. 

Therefore the accuracy of the decision boundaries depends on the accuracy with which 

the underlying PDFs are estimated. Parzen showed that a family of estimates of f(x) can 

be constructed using the formula: 

1

1( )
n

i
n

i

x xf x W
nσ σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

which is consistent at all points X at which the PDF is continuous. This was extended to 

the multivariate case where the multivariate estimates can be expressed as: 
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where k = category 

 i = pattern 

 m = total number of training patterns 

 Xki = ith training pattern from category k 

 σ = smoothing parameter or spread 
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 p = dimensionality 

 The smoothing parameter σ defines the width of the bell curve that surrounds 

each sample point. The only parameter that has to be adjusted for is the spread.  

 The PNN uses a supervised training set to develop distribution functions 

within a pattern layer. These functions are used to estimate the likelihood of an input 

feature vector being part of a learned category or class. The learned patterns can also be 

combined with the a priori probability of each category to determine the most likely class 

for a given input vector. 

 The structure of the PNN has been shown in 
Figure 3.2. The input nodes provide the same input values to the nodes in the pattern 

layer. Each pattern unit forms a dot product of the input vector X with the weight vector 

Wi: Zi = X * Wi, and then performs a nonlinear operation on Zi before outputting its 

activation level to the summation unit (Chen, 1996). Instead of a sigmoid function 

commonly used for backpropagation, the nonlinear operation used in PNN is exp[(Zi -

1)/σ2]. Both X and Wi are normalized to unit length which is equivalent to using the 

probability density function: 

F(X) = exp( -(Wi - X)t(Wi - X)/2σ2) 

 Where i is the pattern number, X is the training pattern and σ is the smoothing 

parameter or the spread. The network is trained by setting the Wi weight vector in one of 

the pattern units equal to each of the X patterns in the training set and then connecting the 

pattern unit's output to the appropriate summation unit. A separate neuron (also called 

pattern unit) is required for every training pattern. The same pattern units can be grouped 
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by different summation units to provide additional pairs of categories and additional bits 

of information to form the output vector. 

 

Figure 3.2 Structure of a PNN 

 

3.5 Generalized Regression Neural Network (GRNN) 
 

A GRNN provides estimates of continuous variables and converges smoothly to 

underlying linear or nonlinear regression surface. Like PNN, a GRNN features instant 

learning and a highly parallel structure. GRNN provides smooth transition from one 
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observed value to another even with sparse data in multidimensional measurement space. 

The GRNN can also be used for regression problems where an assumption of linearity is 

not justified.  

GRNN uses Parzen’s estimators along with a joint continuous probability density 

function. The conditional mean of y given  X is given by 
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For nonparametric estimate of f(x,y), the Parzen’s estimator can be used. This 

leads to the equation (Chen, 1996): 
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The estimate  can be visualized as a weighted average of all the observed 

values Y

^
( )Y X

i, where each observed value is weighted according to its Euclidean distance 

from X. When σ becomes large, assumes the value of the sample mean of the 

observed Y

^
( )Y X

i, and as σ tends to 0,  assumes the value of Y
^
( )Y X i associated with the 

observation closest to X. For intermediate values of σ, all values of Yi are taken into 

account, but those corresponding to points closer to X are given heavier weight. 

The structure of the GRNN is shown in Error! Reference source not found.. 

This network estimates vector Y from measurement vector X. 
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Figure 3.3 Structure of GRNN 

 

The first two layers are identical to the PNN. The summation node performs a dot 

product between a weight vector and a vector composed of the activations from the 

pattern layer. The summation node generates the estimate of f(X)K that sums the outputs 

of the pattern layer weighted by the number of observations each cluster center 
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pattern node by the sum of the samples Yj associated with the cluster center Xi. The 

output unit divides  by f(X)K to yield the desired estimate of Y. 
^

( )Y f KX

3.6 Summary 
 

This chapter has briefly described the methodologies that will be used in the 

classification of crashes and the prediction of crash frequencies. Artificial Neural 

Networks (ANNs) will be used in the study as they possess a lot of advantages over other 

methods like their ability to efficiently handle non-linear problems, their adaptivity to 

new data, their efficiency in performing massive calculations, and their fault tolerance. 

The theory and the working mechanism of the MLP, PNN and GRNN neural networks 

have been discussed. 
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4 DATA COLLECTION AND CLASSIFICATION 
 

4.1 Introduction 
 
 The analysis and results of any project are a reflection of the type of the data used 

in the project. The data collected should be appropriate and abundant so as to meet both 

the qualitative and quantitative requirements of a project. This means that efforts have to 

be made to collect as much quality data as possible, and this data should be useful in a 

variety of ways to the project. This has been carefully considered while collecting data 

for the present project, and this chapter describes the various types of data collected and 

the efforts put in to collect the data. 

4.2 Collecting Data for Six Counties 
 

Data was collected from six counties: Brevard, City of Orlando, Hillsborough, 

Miami-Dade, Orange and Seminole. Data pertaining to various intersections and crashes 

occurring at these intersections were collected in different formats from each county.  

Data collected for the counties was divided into two parts: the geometry database 

containing all the intersection characteristics, and the crash database containing the 

details about crashes. To develop the geometry database, CAD files or aerial pictures of 

the intersections were obtained from each County so as to identify the intersections’ 

configuration. Not all of these files were clear, and so a field visit was needed in many 

cases to identify their configuration. The data collected pertaining to the geometric 

characteristics of the intersections includes number of through, left, and right lanes for 

each approach, presence of channelization at each approach and the presence of median 
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for each approach. Also, the data on the speed limit, traffic volume (AADT) and K-

factors for each approach was incorporated in this database. 

Different sources were used for developing the crash database, namely the county 

mailed/handed files, county websites, Department of Highway Safety & Motor Vehicles 

(DHSMV) data, photocopied crash reports, and F-DOT websites that included the SSO 

Online Document Retrieval System and the Crash Analysis and Reporting (CAR) 

database in the FDOT Mainframe. It is important to note that every county saves their 

data in different ways. There is inconsistency among counties in the way they keep data, 

which posed a challenge to obtain complete data from each county and maintain 

uniformity among counties as much as possible. The contents of the crash database have 

been listed in Table 4-1. Most of these data was available for all counties. 

In the crash database, the crashes were sometimes labeled as occurring at an 

intersection when they actually occurred up to a mile away from the intersection. To be 

consistent with the FDOT’s definition of an intersection related crash, only the crashes 

occurring at a radius of 250ft around the intersection were selected as intersection related 

crashes. Therefore, any crash listed as occurring over 250 feet from an intersection was 

not included in the crash database. 

Although efforts were made to collect the maximum amount of data possible for 

signalized intersections from all counties being considered in this study, not all of the 

data could be collected for all of the counties. The data collection efforts from each of the 

counties have been described in the following subsections. 
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Table 4-1 Format of Crash Database 

 Field # Field Caption 

  1 crash report number 
2 node number 
3 intersection (routes names) 
4 AADT 
5 type 
6 category 
7 Speed Limit In

te
rs

ec
tio

n 
D

at
a 

8 K-Factor 
9 crash date 

10 time of crash 
11 county code 
12 city code 
13 number of lanes 
14 divided/undivided highway 
15 total property damage 
16 investigating department 
17 fist harmful event 
18 subsequent harmful event 
19 road system identifier 
20 location type 
21 lighting condition 
22 road surface condition 
23 weather 
24 road surface type 
25 1st contributing cause-road 
26 2nd contributing cause-road 
27 1st contributing cause-environment 
28 2nd contributing cause-environment 
29 1st traffic control 
30 2nd traffic control 
31 site location 
32 trafficway character 
33 type of shoulder 
34 state road crash 
35 day of week 
36 rural/urban 
37 crash injury severity 
38 alcohol/drugs 
39 total number of vehicles 
40 total number of fatalities 

C
ra

sh
 D

at
a 

41 total number of injuries 
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4.2.1 Orange County 
 

Data was first collected for Orange County. Signalized intersection drawings were 

obtained from the county’s traffic engineering department. From these drawings, a 

geometry database was created that contained intersection characteristics. In addition, 

several other geometric characteristics were collected from these drawings and input into 

the database. Due to the fact that the drawings were not always consistent, Orange 

County was contacted again for more information. Through their help, complete 

geometric characteristics were obtained for the signalized intersections in Orange 

County. Information received included intersection drawings and several signal time 

sheets and turning volumes. 

While continuing the efforts on building the geometry database, new intersections 

were identified based on the level of service report published by the county in an effort to 

collect AADT volumes and k-factors for the new intersections. Next, available turning 

volumes and signal timings were associated with the appropriate intersections.  Finally, a 

new geometry database was created reflecting the most complete data.   

As a next step, efforts were made to identify all intersections that underwent 

construction during the years 1999 and 2000. If an intersection was under construction 

during a year it would be excluded from analysis for that particular year.  

Based on the available information, the intersections were classified based on the 

number of lanes on the major and minor road (i.e. 2x2, 4x2, 4x4, 6x2, 6x4, and 6x6).  

Some intersections contained Two Way Left Turning Lanes (TWLTL), and were 

represented as 3x2, 4x3, 5x2, 5x3, 5x5, etc. These intersections were considered in lane 

configurations without the TWLTL, i.e., 3x2 was considered in 2x2, 4x3 was considered 
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in 4x2, 5x5 was considered in 4x4, etc. Since there were a significant number of T-

intersections, they were further divided as per lane configuration into 2xT2, 4xT2, 4xT4, 

6xT2, etc. 

The crash database for the Orange County was developed for the years 1999 and 

2000. It was not possible to retrieve records from 2001 onwards because the county 

began coding their records in a manner different from that of FDOT crash database, while 

using a numbering system different from the crash report numbering. As Orange County 

does not keep a record of the short form crash reports, only the long form crashes were 

collected. 

In the crash database developed for the years 1999 and 2000, several crash 

records were found missing. In order to remedy this problem, our team visited the Orange 

County Public Works department for a total of four days and was able to make 

photocopies of about 500 crash records from 1999 and 2000. This ensured that the 

database was complete. 

Another database was then created in Access to input the data from the crash 

reports as well as all roadway geometry from the previous database.  An Access program 

was written to collect the required information from the crash reports. In an effort to 

account for all crashes and to ensure that the final crash database was as accurate and 

complete as possible, the county, FDOT and DHMSV databases were cross-checked. 

This ensured the completeness of our data as each of the databases was found to be 

missing some crash reports. 

A SAS program was written to match the crash report number in the crash 

database to the crash report number in the DHSMV database, and then to extract the 
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information on the hour of the day, day on the week, month, light conditions, surface 

conditions, severity and collision type of the crash. Collision type was categorized into 

rear end, head on, angle, left turn, right turn, sideswipe, pedestrian, fixed object and other 

collisions. Injury severity was subcategorized into property damage, possible injury, non-

incapacitating injury, incapacitating injury and fatal injury. Light condition was branched 

off to daylight, dusk, dawn, dark (with street lights), dark (without street lights) and 

unknown. Weather condition was sub divided into dry, cloudy, rain, fog, others and 

unknown. The fifth category, Surface conditions, was separated into dry, wet, other and 

unknown. Months of the year consisted of months January through December. Each day 

of the week was a separate category and time of the day was divided into seven groups. 

The groups consists of 00:00-06:00, 06:01-09:00, 09:01-11:00, 11:01-13:00, 13:01-15:00, 

15:01-18:00, and 18:01-24:00. Using this method, a large amount of the data related to 

the crash was collected. Similar methods were adopted to extract these variables for the 

crashes in the other five counties. 

After collecting the data, the traffic and geometric characteristics of every 

intersection were combined along with the information of all the crashes that had 

occurred at or influenced by that intersection. The following steps were followed during 

this process: 

1. The database containing the crashes contained the Crash Report Numbers (CRN) 

of the long form crashes for the years 1999 and 2000. The names of the 

intersecting roads are available, no node number is provided for the intersection. 
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2. The DHSMV databases for the years 1999 and 2000 were used to extract the 

information of the above crashes. The CRN was used to link the Orange county 

Excel spreadsheet with the DHSMV databases. 

3. All these missing CRNs were photocopied from the original crash reports to 

complete the DHSMV databases for Orange County. 

4. The crash data developed in this phase was crosschecked with the FDOT 

Mainframe’s CAR database and the missing crashes were added. 

5. A unique node number for every intersection was generated for further use.  

6. Using CAD drawings for every intersection, the research team developed a 

database that has the geometric characteristics of each intersection and its unique 

node number. This job was done manually for each intersection. 

7. Using the Orange county traffic reports posted on their website, a database was 

developed that had the traffic characteristics of each intersection and its unique 

node number. 

8. A SAS code was written to read the above databases and combine them in the 

master database of Orange county; 

a. The CRN was used to link Orange county Excel spreadsheet with 

DHSMV databases to produce a dummy database.  

b. The intersecting street names were used to link the dummy database to the 

geometric and traffic databases to produce the final master database of 

Orange County. 
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4.2.2 Seminole County 
 

The website of Seminole County was first reviewed for information such as traffic 

counts based on the type of roadways.  The county was then contacted directly to get 

additional information.  The County provided a list of signalized intersections as well as a 

CD containing partial intersection geometry and signal details. A geometry database was 

built for Seminole County where each intersection was classified based upon the number 

of through lanes. Other geometric information was also available and input into the 

database as well.  Using electronic drawings on Excel spreadsheets for the intersections, a 

database was developed containing all the geometric characteristics of each intersection 

and its unique node number. This job was done manually for each intersection. 

A unique node number was assigned to every intersection for further use. Using 

the Seminole county traffic reports posted on their website, a database was developed that 

contained the traffic characteristics of each intersection and its unique node number. 

Approach speed limits at the intersections were obtained from the CD. For the 

intersections for which these values were unavailable, they were obtained by driving on 

the roadways and noting the speed limits manually. 

To make Seminole County more compatible to Orange County for a more 

accurate comparison, the roadway k-factor values were searched for Seminole County 

because this information was readily available for our Orange County intersections.  

Seminole County k-factors were found on the Florida Department of Transportation’s 

website for state roads only and this information was then input into the geometry 

database.  
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Next, crash records were obtained for the county.  The database contained the 

following data: 

1. The Crash Report Number (CRN) for both long- and short-form crashes for the 

years 1999, 2000, and 2001. 

2. The crash information, similar to DHSMV data and format. 

3. The names of the intersecting roads. 

4. No node number was provided for the intersection. 

For crashes reported on long forms, a program was written to extract the 

necessary records from the FDOT and DHSMV databases and input them into a database 

for Seminole County to serve as a crosscheck for the records provided by the county. 

A SAS code was written to read the above databases and fuse them in the master 

database of Seminole county. The intersecting street names were used to link the Access 

database to the geometric and traffic databases to produce the final master database of 

Seminole county. 

4.2.3 Hillsborough County 
 

Hillsborough County officials provided a CD containing aerial photographs and 

field drawings for some of the signalized intersections in the county. Again, the 

intersections were classified by lanes and included any other information that could be 

gathered in the geometry database. During the process of collecting the county’s 

information, several items were found missing and it became necessary to meet with the 

county officials directly. One member of the research team was sent to the main office in 

Tampa for two days in an effort to retrieve all the possible data.  
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Hillsborough County did not provide any AADT counts, so they were located on 

the website in the form of a spreadsheet.  The format made the extrapolation of the 

necessary information very difficult.  In order to use this spreadsheet, all intersections 

had to be located on a map of the county and their location was found relative to the 

locations where AADT counts were measured.  It took several weeks to complete this 

process. When finished, these AADT values were compared to the AADT values at 

comparable intersections in both Orange and Seminole counties.  It was then evident that 

the AADT values reported on the Hillsborough spreadsheet were an inaccurate 

representation of the actual street volumes because the Hillsborough AADTs were 

considerably lower than those in Orange and Seminole counties. It was decided that a 

more credible source was needed for these counts.  After searching the Internet, an up-to-

date level of service report was found that not only included the AADT and level of 

service but also the number of lanes on the roadway as well as whether it was divided or 

not.  Upon comparison of the previously used spreadsheet, these numbers were found to 

be more accurate especially since roadways with relatively low AADT were graded with 

a better level of service. In addition to replacing the erroneous AADT values in the 

geometry database, all of the streets were checked to ensure that they were consistent in 

the number of lanes and roadway division with the official level of service report.   

Another task for Hillsborough County included identifying all intersections that 

went under construction during our data period, 1999, 2000, and/or 2001.  If an 

intersection was under construction during a year it would be excluded from analysis for 

that particular year.  Modification information was received in spreadsheet form from the 
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county.  There were a total of 12 intersections that were to be excluded from at least one 

year’s analysis. 

The crash data was then downloaded from the county’s ftp site, which included 

both long and short forms for years 1999 to 2001.  Another code was written to extract 

each crash individually into an Excel spreadsheet, which would allow for much easier 

manipulations. When this task was finished, each intersection listed in the crash file was 

manually reviewed and the unique county number was attached to the ones that had been 

included in the geometry database.   

The next step taken was to associate the available intersections with their 

respective crashes occurring between 1999 and 2001. Crash information was downloaded 

from the county’s FTP site and included both long and short forms with the type clearly 

stated.  To link these crashes, an Excel spreadsheet was created with the different 

spellings of each intersection as well as the intersection’s unique county number that was 

assigned to the intersection.  Then a SAS code was written to perform two tasks; first, to 

associate the crashes with the link from the Excel spreadsheet and, second, to use the link 

again to associate crashes with their respective geometry information.  Upon completion, 

a master database was created for Hillsborough County and was crosschecked with the 

FDOT Mainframe and DHSMV database to ensure completeness.   

4.2.4 City of Orlando 
 

Two CD-ROMs were obtained from the City of Orlando, one containing 

intersection geometry and signal timing details for 355 intersections in the City of 

Orlando, and the other containing the crash specifications at every intersection. About 

one-third of the intersections in the database consisted of one-way streets.  

 49



Of the 355 intersections in City of Orlando that were received in the drawings 

from city officials, geometry characteristics could be collected for most of them. The 

speed limit values for the approach roadways were collected from Internet sources. 

However, of those the AADT values were known for only 171 intersections.  Due to the 

fact that most of City of Orlando’s intersections are nearby at least one other intersection, 

AADTs for intersections missing this information was interpolated using the two nearest 

intersections.  This was done by locating each intersection on a city map and then 

locating the next two closest intersections.  If the nearby intersections both had AADT 

counts, then the missing intersection’s AADT would be the average of these actual 

AADTs.  This process turned out to be particularly tedious but worthwhile because 

AADT could be identified for 124 more intersections, increasing the number of 

intersections for City of Orlando to 295.  

A geometry spreadsheet was created for the city and the intersections were 

classified in the same way as for the aforementioned counties.   

The crash details for City of Orlando were obtained in the form of an Access 

database, in a similar format as for the Seminole County. This database contained crashes 

for the years 2000, 2001 and 2002. The crash list included both long and short forms for 

the years 2000 to 2002.  A SAS code was written to match crashes with the intersection’s 

characteristics by way of a unique number that was assigned to each intersection. This 

database generated was crosschecked for completeness and accuracy. 

4.2.5 Brevard County 
 

Brevard County was originally contacted for cooperation and was able to provide 

hand-drawings for a lot of intersections. Each drawing was categorized and information 
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was recorded into a geometry database showing each intersection.  When this was 

complete, intersection AADT information was found from the Internet and the database 

was updated.   

After completing the geometry database for the intersections, Brevard County was 

contacted again for a crash list.  The county provided an Excel spreadsheet listing each 

long and short-form crash for the years 2000 to 2002. A code was written to extract 

crashes and the unique county numbers were attached to all of their locations. Some 

additional crashes were added to the database obtained from the FDOT Mainframe’s 

CAR database. The next step was to use the county numbers attached to the crashes to 

match them individually to the intersection the crash occurred at based on the geometry 

database and create another master county database as was done in other counties. 

4.2.6 Miami-Dade County 
 

Several CDs were obtained from the county containing geometric information for 

a total of 3200 intersections. Upon looking into these, it was found that many 

intersections were not signalized, some were signalized pedestrian crosswalks, and others 

were mechanical bridges. Also, crash records could not be retrieved from the county. 

Therefore all crashes had to be downloaded from the FDOT Mainframe’s CAR database. 

The FDOT database reports long-form crashes from state roads only. Hence 1501 state 

road drawings were identified from the 3200 that the county had sent. Of these 

intersections the geometric information was recorded for 580 state-road intersections. 

This information only included size of the intersection, e.g., number of left turn lanes, 

roadway median type and whether there the right turn was channelized. The database 

contained no information on AADT, k-factors or speed limits. The county was unable to 
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provide any more information.  Since the roads in the database were only state road 

intersections, the AADT and k-factors were extracted from the FTI2003 CD-ROM from 

FDOT.  

The crash list was obtained from the FDOT mainframe database by specifying the 

intersection in the mainframe and specifying the time period for which the crashes had to 

be downloaded. This procedure proved to be time consuming but worthwhile because 

28,380 crashes were downloaded for 413 intersections in Miami-Dade County for the 

years 1999, 2000, 2001 and 2002. These crashes were extracted from the FDOT crash 

database were crosschecked with the DHSMV database to make sure that the database 

was consistent. 

The final step was to link the crashes to their respective intersections and 

geometry information. This was done by writing a SAS program to join the intersections 

to the crashes by the intersection ID common to both the geometry and crash databases. 

The method was similar to the one used in the joining the geometry and crash files in the 

other counties. Thus the master database developed included crash and geometric 

information from 413 intersections in Dade County. 

4.2.7 Summary of the Databases 
 

The data collected for each of the six counties consisted of geometry and crash 

databases in different formats. These databases were combined to form a Master 

Database that contained all the characteristics of a particular crash as found in the crash 

database, and also the intersection characteristics as found in the geometry database. This 

step provided one final database for each county. 
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One important aspect that came up while building the Master Database was 

whether to include short form crashes in the database. By the best of efforts, a database of 

both long and short form crashes was developed for City of Orlando, Brevard, 

Hillsborough and Seminole counties.  Although the Orange County crash databases were 

obtained from the county, Orange County does not keep a record of short forms.  As for 

Miami-Dade, the county was unable to provide the crash database and thus the crash 

database was downloaded from the FDOT sources that contained only long form crash 

records for intersections with at least one road being a State Road. Therefore, except for 

Orange and Miami-Dade Counties, all other counties contained crash databases 

consisting of both long and short forms. It was decided upon to include these crashes, 

because, there will be a consistent under reporting some types of crashes (such as PDO 

crashes, which tend to be rear-end in many cases) if they are not accounted for. Hence the 

Master Databases contained both long and short form crashes for the four counties: 

Brevard, City of Orlando, Hillsborough and Seminole, while they contained only long 

form crashes for Miami-Dade and Orange counties. Since FDOT was only interested in 

long-form reported crashes, the focus of the project has been on these crashes. But 

detailed records of all types of crashes were included. 

The complete summary of the Master Databases of all six counties has been 

tabulated in Table 4-2. 
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Table 4-2 Summary of Data in all Six Counties 

 

8 x 6 1 1

8 x 4 5 2 7

6 x 6 1 4 1 1 5 12

6 x 5 1 1 2

6 x 4 2 8 24 5 6 23 68

6 x 3 5 3 9 17

7 x 3 1 1

8 x 2 6 2 2 10

6 x 2 7 16 27 14 19 47 130

5 x 4 1 1 1 6 9

4 x 4 11 16 40 23 18 41 149

4 x 3 2 1 14 6 6 29

5 x 2 1 3 4 8

4 x 2 76 50 109 90 60 119 504

3 x 3 1 1

3 x 2 4 1 5

2 x 2 17 40 36 33 30 13 169

115 144 261 185 139 278

24 32 36 41 55 61 249 249

12 15 15 69 6 74 191 191

151 191 312 295 200 413

Yes Yes Yes Yes Yes Yes

No Yes Yes No No Yes

Yes Yes Yes Yes Yes Yes

23 sites only No Yes No No No

No No Yes No No No

No Yes Yes No Yes No

00,01,02 99,00,01 99,00 00,01,02 99,00,01 99,00,01,02

Excel file County FTP County, FDOT CD from the city Access file FDOT Site

from County Site Site & Copies  for the 3 years from County

1486 4651 3616 5764 2527 28380

Done Done Done Done Done Done

Number of crashes
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a 
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d 
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s

Orange

Turning Volumes

Total

Crash Years

Crash Source(s)

Master-Database

AADT

k Factor

Speed Limit

Signal Timings

Modification dates

City of Orlando Seminole

3-Legged

Brevard HillsboroughIntersection 
Type

Includes 
Types: Miami-Dade Sub-total Total

C
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n

6 x 4 90

6 x 2 158

4 x 4 158

4 x 2

1562

541

2 x 2 175

SubTotal 1122

One Ways/Ramps
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4.3 Classification of Intersections 
 

The intersections were classified into various groups in order to study the crash 

patterns. In order to identify the best AADT values to classify intersections of a particular 

configuration, the AADT/major-lane values were tabulated for the intersections of 

Orange County. Orange County was chosen for the analysis because it was the first 

county to have a complete database. These tabulated AADT/lane values were plotted as 

frequency and cumulative graphs, as shown in Figure 4.1 and Figure 4.2 for 4 x 2 

intersections. Similarly, frequency and cumulative frequency plots were plotted for each 

type of intersection for AADT/lane for minor roads and entire intersection. Figure 4.3 

and Figure 4.4 show such frequency plots for 4 x 2 intersections. 
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Figure 4.1 Frequency plot for Avg. AADT/Major-lane for 4 x 2 intersections 
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Figure 4.2 Cumulative frequency plot for Avg. AADT/Major-lane for 4 x 2 intersections 
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Figure 4.3 Frequency plot for Avg. AADT/Minor-lane for 4 x 2 intersections 
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Figure 4.4 Frequency plot for Avg. AADT/(through lanes at intersection) for 4 x 2 
intersections 

 
Looking at the frequency plots, it was fairly reasonable to deduce that AADT/lane 

for the major road followed a somewhat normal distribution and therefore it was decided 

to use it to classify intersections based on traffic volume. After deciding on using 

AADT/lane for major road for classification of the intersections, the intersections were 

further categorized based on AADT/lane. In case of classifying each intersection 

configuration into high/low traffic volume, a cut-off ADT/lane had to be identified. The 

cumulative frequency plots for each type of intersection were carefully analyzed and the 

50th percentile volumes were estimated for this purpose. It was checked if a balance was 

maintained after each type of intersection was classified as per average AADT per lane, 

i.e. if more or less, equal number of intersections fell in the below and above cut-off 

points. For example, the cut-off point for 2x2 intersections was set at 5,000 as this 

resulted in the distribution of intersections below and above 5,000 equally. 4x2 
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intersections were further classified based on number of left turning lanes (i.e. <= 2 and > 

2). The complete summary of the categories have been listed in Table 4-3. Table 4-3 

indicates the category of intersections present in each county. 

Table 4-3 Classification of intersections into 19 categories 

Size MJ AADT/ MJ Lane Category
≥5,000 1 2 x 2 
<5,000 2 

≥7,000 (Total LTL ≤ 2) 3 
≥7,000 (Total LTL > 2) 4 
<7,000 (Total LTL ≤ 2) 5 

4 x 2 

<7,000 (Total LTL > 2) 6 
≥7,500 7 4 x 4 
<7,500 8 
≥7,500 9 6 x 2 
<7,500 10 

6 x 4 and 6 x 6 - 11 
≥7,500 12 3-Legged 

 (T-intersections) <7,500 13 
One Way Major - 14 
One Way Minor - 15 

Both Major and Minor One-Way - 16 
≥7,500 17 Ramp Intersections 
<7,500 18 

3-Legged Intersection with at least one One_Way Street  19 
 

Table 4-4 Categories of intersections present in each county’s master database 

County Categories Present 

Brevard 1 to13, 17, 18 

City of Orlando 1 to 16 

Hillsborough 1 to 14, 17, 18 

Miami-Dade 1 to 19 

Orange 1 to 13 

Seminole 1 to 13 
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Once the intersections were broken down according to type, the means, standard 

deviations and percentiles were determined for each category. Tables were made to 

incorporate all the data related to eight (8) different divisions, which consisted of 

collision type, severity class, light conditions, weather, surface conditions, month of the 

year, day of the week and hour of the day.  A versatile code was written in SAS to 

compute crash statistics like mean, standard deviation and the 85th, 90th and 95th 

percentiles for all the nineteen classification tables that contained the above mentioned 

categories and their respective crash summary.  Table 4-5 gives a sample of the table 

developed. The top header of the table indicates the category (10) and configuration (6x2) 

of the intersections used to develop the table, and the number of intersections (16) present 

in this category. The numbers in the first column indicate the total number of crashes 

pertaining to their respective crash criteria (Collision type, Severity etc.) average over the 

years 1999, 2000, 2001 and 2002 for Miami-Dade County. The numbers in the second 

column represent the average crashes per year. The rest of the columns indicate the mean 

crashes per intersection per year, the standard deviations for every category, and the 85th, 

90th and 95th percentile of crashes.  

 Similar tables were developed for the 19 categories of intersections in all six 

counties. 
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Table 4-5 A sample of a classification table for Dade County 

Average Number  Mean Crashes Per Standard 85th 90th 95th
Crashes Per Year* Year Per Intersection Deviation** Percentile Percentile Percentile

Collision Type Head On 2 0.14 0.22 0 0 1
Left Turn 33 2.05 1.84 4 5 5
Pedestrian/Bicycle 5 0.30 0.34 1 1 1
Rear End 79 4.95 3.93 8 9 11
Angle 53 3.33 2.69 6 7 8
Sideswipe 22 1.38 1.02 2 3 3
Right Turn 4 0.27 0.31 1 1 1
Other/Unknown 26 1.61 1.38 2 3 4

Severity No Injury 148 9.27 5.47 14 17 20
Possible Injury 44 2.75 2.15 5 6 6
Non-Incapacitating Injury 24 1.48 1.34 3 4 4
Incapacitating Injury 7 0.45 0.59 1 1 2
Fatal Injury 1 0.06 0.11 0 0 0

Light Conditions Daylight 162 10.11 6.33 18 19 21
Dusk 5 0.33 0.31 1 1 1
Dawn 3 0.17 0.31 0 1 1
Dark (w/street lights) 53 3.33 2.25 6 6 7
Dark (w/o street lights) 1 0.08 0.12 0 0 0

Surface Conditions Dry 189 11.80 7.56 21 23 26
Wet 33 2.03 1.40 4 4 4
Others 3 0.19 0.23 0 1 1

Month of Year January 24 1.50 0.98 3 3 3
February 19 1.17 0.83 2 2 3
March 22 1.34 0.85 2 3 3
April 18 1.14 0.91 2 2 3
May 22 1.36 1.02 2 3 3
June 17 1.08 0.66 2 2 2
July 21 1.30 1.33 3 4 4
August 21 1.30 1.12 2 3 3
September 17 1.05 0.63 2 2 2
October 17 1.05 0.73 2 2 2
November 13 0.83 0.58 1 2 2
December 15 0.91 0.69 2 2 2

Day of Week Monday 27 1.70 1.23 3 4 4
Tuesday 30 1.86 1.06 3 4 4
Wednesday 36 2.27 1.57 3 4 6
Thursday 35 2.16 1.40 4 4 4
Friday 38 2.38 1.53 4 5 5
Saturday 35 2.16 1.70 4 5 5
Sunday 24 1.50 0.91 3 3 3

Hour of Day*** 00:00 - 06:00 16 0.97 0.81 2 2 2
06:01 - 09:00 17 1.08 0.97 2 3 3
09:01 - 11:00 13 0.80 0.61 2 2 2
11:01 - 13:00 14 0.89 0.82 2 2 2
13:01 - 15:00 18 1.14 0.88 2 3 3
15:01 - 18:00 38 2.39 1.56 4 5 5
18:01 - 24:00 42 2.64 1.70 4 5 6

* Crashes extracted for years 1999, 2000, 2001and 2002 for long forms only.
** Standard Deviation column represents the standard deviation for mean crashes per year per intersection.
*** Hour of Day statistics are based upon a portion of the crashes with time information available.

EXPECTED ANNUAL ACCIDENT TABLE - DADE COUNTY

TYPE 10 - 6 LANE x 2 LANE SIGNALIZED INTERSECTION, AADT PER LANE ON MAJOR ROAD < 7,500 

TOTAL NUMBER OF INTERSECTIONS - 16

Average Number  Mean Crashes Per Standard 85th 90th 95th
Crashes Per Year* Year Per Intersection Deviation** Percentile Percentile Percentile

Collision Type Head On 2 0.14 0.22 0 0 1
Left Turn 33 2.05 1.84 4 5 5
Pedestrian/Bicycle 5 0.30 0.34 1 1 1
Rear End 79 4.95 3.93 8 9 11
Angle 53 3.33 2.69 6 7 8
Sideswipe 22 1.38 1.02 2 3 3
Right Turn 4 0.27 0.31 1 1 1
Other/Unknown 26 1.61 1.38 2 3 4

Severity No Injury 148 9.27 5.47 14 17 20
Possible Injury 44 2.75 2.15 5 6 6
Non-Incapacitating Injury 24 1.48 1.34 3 4 4
Incapacitating Injury 7 0.45 0.59 1 1 2
Fatal Injury 1 0.06 0.11 0 0 0

Light Conditions Daylight 162 10.11 6.33 18 19 21
Dusk 5 0.33 0.31 1 1 1
Dawn 3 0.17 0.31 0 1 1
Dark (w/street lights) 53 3.33 2.25 6 6 7
Dark (w/o street lights) 1 0.08 0.12 0 0 0

Surface Conditions Dry 189 11.80 7.56 21 23 26
Wet 33 2.03 1.40 4 4 4
Others 3 0.19 0.23 0 1 1

Month of Year January 24 1.50 0.98 3 3 3
February 19 1.17 0.83 2 2 3
March 22 1.34 0.85 2 3 3
April 18 1.14 0.91 2 2 3
May 22 1.36 1.02 2 3 3
June 17 1.08 0.66 2 2 2
July 21 1.30 1.33 3 4 4
August 21 1.30 1.12 2 3 3
September 17 1.05 0.63 2 2 2
October 17 1.05 0.73 2 2 2
November 13 0.83 0.58 1 2 2
December 15 0.91 0.69 2 2 2

Day of Week Monday 27 1.70 1.23 3 4 4
Tuesday 30 1.86 1.06 3 4 4
Wednesday 36 2.27 1.57 3 4 6
Thursday 35 2.16 1.40 4 4 4
Friday 38 2.38 1.53 4 5 5
Saturday 35 2.16 1.70 4 5 5
Sunday 24 1.50 0.91 3 3 3

Hour of Day*** 00:00 - 06:00 16 0.97 0.81 2 2 2
06:01 - 09:00 17 1.08 0.97 2 3 3
09:01 - 11:00 13 0.80 0.61 2 2 2
11:01 - 13:00 14 0.89 0.82 2 2 2
13:01 - 15:00 18 1.14 0.88 2 3 3
15:01 - 18:00 38 2.39 1.56 4 5 5
18:01 - 24:00 42 2.64 1.70 4 5 6

* Crashes extracted for years 1999, 2000, 2001and 2002 for long forms only.
** Standard Deviation column represents the standard deviation for mean crashes per year per intersection.
*** Hour of Day statistics are based upon a portion of the crashes with time information available.

EXPECTED ANNUAL ACCIDENT TABLE - DADE COUNTY

TYPE 10 - 6 LANE x 2 LANE SIGNALIZED INTERSECTION, AADT PER LANE ON MAJOR ROAD < 7,500 

TOTAL NUMBER OF INTERSECTIONS - 16
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4.4 Building a Combined Database 
 

The previous sections have described the process of building the crash databases 

of each of the six counties. These crash databases were combined to form a complete 

database in order to study the crash characteristics for all counties. The database was 

developed for the years 2000 and 2001 for all counties, except for Orange County for 

which the 1999 and 2000 year database was used because the 2001 database was not 

available. This database consisted of 27230 crashes for 1562 intersections for two years. 

Initially, both the long and short form crashes from all six counties were used to 

make a complete database. Then the long form crashes were filtered out to develop a 

separate long only crash database for all six counties. Another database was developed by 

filtering out the crashes from the four counties Brevard, City of Orlando, Hillsborough 

and Seminole containing both long and short form crashes. Tables for the expected 

number of crashes for the 19 categories were developed for both the databases: the long-

form-only crash database and the four county long-short crash database.  

4.5 Tests to compare each County to the Combined Database 
 

Since the tables for the expected number of crashes on long forms for each county 

as well as for the combined database were prepared for the 19 categories, tested were 

conducted to find out if there was a difference between the tables of each county and the 

tables for the combined six counties. This could be used in finding out if the tables for the 

combined database can be referred for finding the crash characteristics of a county, rather 

than referring to each county table. For example, this analysis would enable us to see if 

the mean number of sideswipe crashes for a 6 x 2 intersection in Brevard County is any 
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different from the sideswipe crashes for a 6 x 2 intersection for the combined six 

counties. If they are the same, the characteristics for the sideswipe crashes for the 6 x 2 

intersections in Brevard County tables for expected number of crashes would be similar 

to those in the combined database tables. Hence the tables for the combined database can 

be used in such a case instead of referring to each of the county tables. 

This analysis was carried out by conducting a Student’s t-test to compare the 

mean number of crashes of each county to the means of the combined database. The 

results show whether the means are equal or not. The results were tabulated and a sample 

is shown in Table 4-6. The mark “√” in the table indicates that the mean number of 

crashes for a particular county is similar to the mean number of crashes in the combined 

database, indicating that the data from combined database can be used for these counties 

and categories. BC denotes Brevard County, CO denotes City of Orlando, HC denotes 

Hillsborough County, OC denotes Orange County, SC represents Seminole County and 

DC denotes Dade County. Category 19 was not included because this category has been 

assigned only in Dade County. 
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Table 4-6 Comparison of means of each of six counties to the means of the combined six 
counties 

 

BC CO HC OC SC DC
Collision Type Rear End √ √

Head On √
Angle √ √ √ √
Left Turn √ √ √ √
Right Turn √
Sideswipe √ √
Pedestrian/Bicycle
Other √ √ √

Severity  No Injury √ √ √ √ √ √
Possible Injury √ √
Non-Incapacitating Injury √ √
Capacitating Injury √ √
Fatal Crashes

Light Conditions Daylight √ √ √ √ √
Dusk
Dawn
Dark (w/street lights) √ √ √ √ √
Dark (wo/street lights) √ √

Surface Condition Dry √ √ √ √ √ √
Wet √ √
Others √ √

Month of year January √ √
February √ √
March √ √
April √
May √
June √
July √ √
August √ √ √
September √ √
October √
November √
December √

Day of week Monday √ √ √ √
Tuesday √ √
Wednesday √ √ √
Thursday √ √
Friday √ √ √ √ √
Saturday √ √
Sunday √ √

Hour of day 00:00 - 06:00 √ √
06:01 - 09:00 √ √
09:01 - 11:00 √
11:01 - 13:00 √
13:01 - 15:00 √ √
15:01 - 18:00 √ √ √
18:01 - 24:00 √ √ √ √ √

√ represents the similarity in the county mean and the mean of the combined database

Type 4
4 Lane x 2 Lane Intersection, Signalized, AADT/lane for Major Road  ≥ 7000 (LT lanes > 2)

√

√
√

√
√
√

√
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4.6 Classifying the Combined Database 
 

As the combined database had larger number of intersections, they could be 

divided into a larger number of categories. Hence an analysis was conducted to increase 

the number of categories of intersections in the combined database. All intersections from 

the six counties were categorized into various types so that all intersections in each 

category had similar crash characteristics. The first step involved was to combine the 

geometry files of all six counties. The geometry files were sorted based on the field 

“int_id”, which is the unique ID assigned to each intersection. Intersections were filtered 

out from this database based on the lane configuration of each intersection (2x2, 4x2 etc). 

Separate tables were made for intersections of the same type. As AADT is one of the 

most important factors affecting the crash frequency, the crashes were categorized based 

on AADT/number of approach lanes on the major road. For each type of intersection the 

median value of AADT was noted. The number of intersections for every 1000 AADT 

values for each configuration of intersection was listed. A sample of such a list has been 

shown for the 2x2 intersections in Table 4-7.  

In order to form categories for a particular type, the range of AADT was widened 

and the number of intersections under each range was noted. Table 4-8 shows this 

method for 2x2 intersections. The table first shows the initial splits made in AADT/lane, 

and the intersections present in each of the splits (indicated in brackets). Then the range 

of AADT/lane was widened to make six categories of intersections of the type 2x2. This 

range was further increased to form three, and later two categories. It was decided to split 

the intersection into three categories (shown in bold) because the split of the intersections 

was even and each category had sufficient number of intersections.  
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Table 4-7 Initial sampling of 2 x 2 intersections based on the AADT/Major Lane values 

 

2 x 2 

 
Total number of intersections = 175 

 

Median = 5874 = approximate by 5900 or 6000 

 

Split Number AADT Range Number of Intersections 

1 =< 3000 11 

2 > 3000 and =< 4000 12 

3 > 4000 and =< 5000 38 

4 > 5000 and =< 6000 31 

5 > 6000 and =< 7000 20 

6 > 7000 and =< 8000 14 

7 > 8000 and =< 9000 15 

8 > 9000 and =< 10000 7 

9 > 10000 and =< 11000 10 

10 > 11000 17 
 

 

At the end of this process, there were various combinations of categories for each 

type of intersection. The optimum number of categories for each type was obtained by 

making sure that (a) the number of intersections in each category was almost the same, 

(b) adequate sample size is achieved, and, (c) the cutoff AADT/lane values were similar. 

Categories were formed based on this range and the idea that the number of intersections 
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in all categories was as close as possible. Various combinations of categories were 

formed for each type of intersection with different range of AADT values. 
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Table 4-8 Categorizing the intersections based on different AADT/lane for 2x2 
intersections 

Total number of intersections = 175 
 
Median = 5874 = 6000 (approx) 
 
splits:   ≤ 3000 (11) 
 

 > 3000 and ≤ 4000 (12) 
 
 > 4000 and ≤ 5000 (38) 
 

> 5000 and ≤ 6000 (31) 
 
> 6000 and ≤ 7000 (20) 
 
> 7000 and ≤ 8000 (14) 
 
> 8000 and ≤ 9000 (15) 
 
> 9000 and ≤ 10000 (7) 
 
> 10000 and ≤ 11000 (10) 
 
> 11000 (17) 
 

6 Categories:  ≤ 4000 (23) 
   

 > 4000 and ≤ 5000 (38) 
 

> 5000 and ≤ 6000 (31) 
 

> 6000 and ≤ 8000 (34) 
 
> 8000 and ≤ 11000 (32) 
 
> 11000 (17) 
 

3 Categories:  ≤ 5000 (61) 
 

> 5000 and ≤ 9000 (80) 
 
> 9000 (34) 

 
2 Categories:  ≤ 6000 (92)  > 6000 (113)  
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All the types were categorized based on the AADT values. Since the intersections 

of type 4x2 were very large in number (541), they were subcategorized based on a new 

variable. First the intersections were subcategorized based on the number of left-turning 

lanes. But a majority of the intersections had 4 left-turning lanes. Hence the sub-

classification of intersections based on left-turning lanes was not considered appropriate. 

Thus this variable was discarded for the purpose of sub-classification. Next, the 

intersections were subcategorized based on the speed limit on the major road. The median 

speed limit was 40mph, and sub-classification based on this speed produced satisfactory 

results. Therefore the 4 x 2 intersections were classified first by AADT and then by the 

speed limit on the major road. 

This method was adapted to develop classifications for all types of intersections. 

After completing the classification, it was found that 38 categories of intersections were 

developed. These have been tabulated in Table 4-9. Then a summary of intersections was 

developed indicating the number of categories formed for each type of intersection. This 

has been shown in Table 4.10. 
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Table 4-9 Classification of intersections into 38 types 

 

S.No Type Condition for AADT/Lane of Major Road # Intersections

1 =< 5000 61 

2 > 5000 and =< 9000 80 

3 

2 x 2 

> 9000 34 

4 =< 5000 and MJ speed =< 40 41 

5 =< 5000 and MJ speed > 40 37 

6 > 5000 and =< 7000 and MJ speed =< 40 48 

7 > 5000 and =< 7000 and MJ speed > 40 65 

8 > 7000 and =< 9000 and MJ speed =< 40 99 

9 > 7000 and =< 9000 and MJ speed > 40 63 

10 > 9000 and =< 11000 and MJ speed =< 40 41 

11 > 9000 and =< 11000 and MJ speed > 40 42 

12 > 11000 and MJ speed =< 40 32 

13 

4 x 2 

> 11000 and MJ speed > 40 73 

14 =< 5000 21 

15 > 5000 and =< 7000 36 

16 > 7000 and =< 9000 35 

17 > 9000 and =< 11000 35 

18 

4 x 4 

> 11000 31 

19 =< 7000 44 

20 > 7000 and =< 9000 49 

21 

6 x 2 

> 9000 and =< 11000 37 
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22  > 11000 27 

23 =< 9000 50 

24 

6 x 4 

> 9000 40 

25 =< 8000 26 

26 

2 x T2 

> 8000 20 

27 =< 7000 44 

28 

4 x T2 

> 7000 69 

29 4 x T4  28 

30 6 x T2  42 

31 6 x T4  14 

32 One Way Major =< 7000 45 

33  > 7000 40 

34 One Way Minor  36 

35 Both One way  13 

36 One way and T  14 

37 =< 7000 24 

38 

Ramps 

> 7000 26 
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Table 4-10 Summary of Classifications 

 

S.No Type Number of Categories 

1 2 x 2 3 

2 4 x 2 10 

3 4 x 4 5 

4 6 x 2 4 

5 6 x 4 2 

6 2 x T2 2 

7 4 x T2 2 

8 4 x T4 1 

9 6 x T2 1 

10 6 x T4 1 

11 One Way Major 2 

12 One Way Minor 1 

13 Both One Ways 1 

14 One way and T 1 

15 Ramps 2 

 Total 38 

 

After developing the 38 categories, tables were developed to predict the expected 

number of crashes at each category of intersections. These tables were developed for the 

database containing only the long form crashes, and were represented in the same way as 

the 19 category tables.  
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4.7 Summary 
  
 This chapter has discussed the methodology used in data collection, classifying 

intersections, developing tables for the expected number of crashes in all categories and 

the method used in combining the databases of all counties and reclassifying the 

intersections into 38 categories. The tables developed for the expected number of crashes 

can be used to estimate the average number of crashes occurring at any particular 

configuration of intersection in any of the six counties. The tables for the combined 

database can also be used to estimate the mean number of crashes at these intersections as 

they have been finely classified in 38 categories, instead of the 19 categories in the tables 

of each county. These tables can also be used to estimate the number of crashes in other 

counties in Florida. The combined six counties could be used to represent other counties 

in the state that are not represented in the database. Also, counties with similar 

characteristics or at proximity with one of the six counties can use the tables for the 

respective county.    
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5 USING NEURAL NETWORKS TO IDENTIFY UNSAFE 
INTERSECTIONS 

 

5.1 Predicting Frequency of Crashes at Intersections 

 The objective of this study is to predict the frequency of crashes at various 

intersections using different neural network models and identifying the geometric and 

traffic characteristics at intersections that affect particular types of crashes. These 

characteristics were evaluated to identify the manner in which they affect the crash 

frequency at intersections. If the models predict that an intersection has a lot of crashes, 

the characteristics of the intersection can be changed so as to make the intersection safer. 

 To predict the crash frequency, a database of intersections was first developed. 

This database contained the geometric and traffic variables using which the crash 

frequency would be predicted, that is, it contained the input variables for the models that 

were going to predict the crash frequency. The database consisted of 1563 intersections 

from all six counties, as found in the combined database. The intersection database 

contained the following input variables: 

1. Number of through lanes on the major road 

2. Number of through lanes on the minor road 

3. Total Left Turning Lanes at the intersection 

4. Number of Protected Left Turning Lanes on the major road 

5. Number of Protected Left Turning Lanes on the minor road 

6. Number of channelized right turning lanes on the major road 

7. Number of channelized right turning lanes on the minor road 

8. Speed Limit on the major road 
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9. AADT on the major road 

Since the data for the speed limit and AADT on the minor roadway was not 

known for more than half the intersections in the database, these variables could not be 

used.  

The number of crashes that had occurred at these intersections during the years 

2000 and 2001 were identified. Since these crashes amounted to two years, the number 

was halved to obtain the crash frequency for each year.  

Then the neural network models were used to predict the crash frequency at these 

intersections. The Multi Layer Perceptron (MLP) Neural Network, Probabilistic Neural 

Network (PNN) and the Generalized Regression Neural Network (GRNN) models have 

been used in this study. The MLP models have been used frequently in many traffic 

safety studies, and have often been found to be very effective in analyzing the crash 

frequencies. The GRNN model has hardly been used in traffic safety analysis. The 

comparison of the models will prove if the MLP model is in fact the best neural network 

model available to be used in traffic safety studies, as has been found by Abdelwahab and 

Abdel-Aty (2001, 2004).  

5.2 Crash Frequency Prediction using MLP Neural Network 
 
 A program was written in MATLAB to build the MLP neural network. The 

program performed the following functions: 

1. The input variables in the database were normalized. This was carried out because 

the contribution of an input will depend heavily on its variability relative to other 

inputs. If one input has a range of 0 to 1, while another input has a range of 0 to 

1,000,000, then the contribution of the first input to the distance will be overruled 
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by the second input. So it is essential to rescale the inputs so that their variability 

reflects their importance. It is common to standardize each input to the same 

range or the same standard deviation. Hence the database was normalized for a 

unit variance.  

2. Take an input of the crash frequency data for the 1563 intersections. 

3. Shuffle the input data and take the first 75% of the data for training and the rest 

25% for testing. 

4. Use 1 hidden nodes for training the data. The Resilient Back Propagation neural 

network was used in the training. The activation functions that proved to be the 

best for the hidden and output layers were hyperbolic tangent sigmoid and pure 

linear respectively. The maximum number of epochs used was 3000. The learning 

rate was 0.05. 

5. Calculate the root mean squared error (RMSE) by adding the squares of the 

difference of the actual value and the predicted value of the crash frequencies, 

averaging them over the intersections used in the testing phase, and taking a 

square root of this value. 

6. Vary the number of hidden nodes from 1-15.  

7. Repeat the whole procedure five times and take the average of the results (Root 

Mean Squared Error - RMSE) for each value of the number of hidden nodes. 

The results obtained are shown in Table 5-1. The results are arranged with 

ascending order of RMSE. The lowest RMSE obtained is 9.44. The MAPE (Mean 

Absolute Percentage Error) for this model was around 80%. This is a large value 

considering that the error in predicting crash frequencies for each intersection can have 
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an error of 10 crashes. An error of 10 crashes implies a possible misinterpretation of the 

safety at the intersection. Hence this model was not considered suitable for predicting the 

crash frequencies at signalized intersections. 

Table 5-1 Results obtained for predicting long form crash frequencies using MLP NN 

No Hidden Nodes Average RMSE
4 9.44 
2 9.51 
3 9.53 
1 9.57 
5 9.61 
8 9.68 
6 9.76 
9 9.97 
7 10.02 
12 10.15 
13 10.19 
11 10.20 
14 10.28 
10 10.37 
15 10.38 

 
 

5.3 Crash Frequency Prediction using GRNN 
 
A program was written in MATLAB to develop the GRNN. This program was similar to 

the MLP program, except that instead of the hidden nodes, learning rate and number of 

epochs, the spread was varied from 0.01 to 5.0 with increments on 0.02. A lot of spread 

values were used to make certain that the results obtained are accurate. The results 

obtained from GRNN are tabulated in Table 5-2. 
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Table 5-2 Results obtained for predicting long form crash frequencies using GRNN 

Spread Average RMSE
1.19 9.03 
1.17 9.03 
1.21 9.03 
1.15 9.03 
1.23 9.03 
1.13 9.03 
1.25 9.04 
1.11 9.04 
1.27 9.04 
1.09 9.05 

 
 Although the results obtained using GRNN were better than the MLP NN, they 

were not satisfactory. The MAPE value was similar to that of the MLP model. This 

model cannot be used for predicting crash frequency with such a RMSE.  

 The possible reason because of which the errors were so large was that the crash 

frequency per intersection ranged from 0 to 113, and the models were unable to perform 

well when the intersections had high crash frequencies. A very small percentage of 

intersections have a very high number of crashes, and the models developed cannot 

predict these crash frequencies correctly leading to a large error. Hence an appropriate 

method was sought after that could accurately predict crashes for all range of crash 

frequencies. 

5.4 Predicting Total Crash Frequency Based on Number of Lanes 
 
 A new methodology was devised to predict the crash frequencies more precisely 

at signalized intersections. First, the total number of lanes at each intersection was 

calculated by summing up the number of through lanes, exclusive left turning lanes and 

channelized right turning lanes on the major and minor roads. Since this number indicates 
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the total number of lanes at the intersection, it is a representation of the size of the 

intersection. It could also implicitly indicate the magnitude of AADT at the intersection. 

The greater the number of lanes at the intersection, the bigger it is. Then a graph was 

drawn to observe the variation of the average number of crashes per intersection with the 

total number of lanes at the intersections, as shown in Figure 5.1. 
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Figure 5.1 Variation of total crashes per intersection with total lanes per intersection 

 
Clearly, the graph shows an increasing trend of total crashes per intersection as 

the total lanes at the intersections increase. Thus it can be concluded that the number of 

crashes at an intersection increase as the size of the intersection increases. Therefore, any 

intersection can be classified into one of the following types: (a) the intersection has more 

crashes than the average number of crashes for intersections with the same number of 
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total lanes; (b) the intersection has less than or equal number of crashes than the average 

number of crashes for the intersections with the same number of total lanes. The 

intersections in the former category can be considered as “unsafe intersections” while the 

rest can be considered as “safe intersections”. 

Therefore, intersections can be categorized into safe or unsafe intersections based 

on the total crashes it has incurred and the total number of lanes it has. In order to predict 

the crash frequencies, a model can first be developed that easily and efficiently classifies 

intersections into safe and unsafe categories. Then the frequency of crashes can be 

predicted for the safe and unsafe intersections by developing separate models for the two 

types. This method develops models for separate data ranges, and is thus expected to 

reduce the error in crash frequency prediction. 

 Thus, neural network models were built to classify intersections into safe and 

unsafe intersections first. To accomplish this, the intersection database was divided into 

the two categories. First, the intersections with total lanes between 3 to 5, 6 to 10, 11 to 

15, and 16 and above were grouped together. The average crashes per intersection were 

found for these groups. These values have been shown in Table 5.3. If an intersection 

incurred more crashes than the average number of crashes obtained from Table 5.3, the 

intersection was categorized as an unsafe intersection. If not, it was categorized as a safe 

intersection. The neural network models used for this classification were the MLP and 

PNN models. 

 

Table 5-3 Average number of crashes for different groups of intersections 

Total Lanes at an Intersection Average Number of Crashes 
3 to 5 13.17 

6 to 10 12.71 
11 to 15 23.93 
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16 and above 40.69 
 
 Separate PNN and MLP neural network models were developed to predict the 

number of crashes at safe and unsafe intersections. These crashes were predicted using 

the MLP and GRNN models. These models were compared to the previous model that 

predicted the crash frequency for all intersections. The models that worked the best were 

used as the final models for predicting the frequency of crashes at the intersections. 

5.4.1 Classification of Intersections 
 
 As was mentioned earlier, MLP and PNN models were utilized to classify the 

intersections into safe and unsafe categories. The following steps were carried out to 

classify the intersections: 

1. The database was classified into the two categories: safe and unsafe, using the 

method mentioned in the previous section. 65% of the intersections were 

categorized as safe intersections. 

2. The input variables were normalized as was described in section 5.2. 

3. The number of input and output nodes was decided. The number of input nodes is 

equal to the number of input variables, which are 9. The number of output nodes 

is one, indicating an output of 0 or 1. 

4. The database was randomized. Out of this randomized database, 75% of unsafe 

intersections and an equal number of safe intersections were selected for training. 

This ensured that an equal proportion of safe and unsafe intersections were trained 

so that there was no bias in the estimation of results. The rest of the intersections 

are used for testing the neural network model developed. 
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5. For MLP neural network: 

a. The learning rate was set to 0.05, the maximum number of epochs was set 

to 3000 and the Resilient backpropagation (rprop) algorithm was used to 

develop the neural network. The Resilient backpropagation algorithm 

leads a transparent and powerful adaptation process that is straightforward 

and very efficiently computed with respect to both time and storage 

consumption (Riedmiller and Braun, 1993). Thus, the rprop was used as 

they were considered more advantageous compared to the ordinary 

backpropagation algorithms.   

b. One hidden layer was used. The number of neurons in the hidden layers 

was increased from 5 to 50. The performance of the neural network is 

evaluated for different number of hidden nodes. 

c. The activation functions for the hidden and output layers were tan sigmoid 

and pure-linear. This combination of activation functions gave the best 

results when tested with other combinations. 

d. The MLP neural network was trained using the training data selected in 

step 4. 

e. The training data was used to simulate the network and predict the output. 

This output was compared to the predicted output and the accuracy in 

prediction is calculated. The accuracy with which the total database is 

classified is calculated; the accuracy in predicting the safe and unsafe 

intersections is also calculated. 
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f. The MLP neural network model was used to classify the intersections in 

the test database into safe and unsafe intersections. The test output was 

compared to the actual output and the accuracies were determined. The 

test accuracy was determined that represents the percentage of 

intersections that were correctly classified. The accuracies with which the 

safe and unsafe intersections were predicted were also determined. 

6. For the PNN model: 

a. Spread of the neural network was varied from 0.01 to 2.0 with increments 

of 0.02. The PNN model with a spread value greater than 2.0 did not 

perform well. 

b. The PNN model was trained using the training data selected in step 4. 

c. The test data was used to predict if the intersections in the database were 

safe or unsafe. The accuracies were determined in the same manner they 

were calculated for the MLP neural network model. 

7. This process was repeated five times and the results of the MLP and PNN models 

were stored in separate files. 

 
Since the training and test databases were randomly chosen, the results were 

averaged. These results have been tabulated in Table 5.4 and Table 5.5 for MLP and PNN 

models, respectively. The numbers in the table represent the percentage accuracy. For 

example, a test accuracy of 64.66 indicates that 64.66% of the test database was classified 

correctly. Accuracy of safe intersection being 58.48% indicates that this percentage of 

safe intersections was classified correctly. The results have been tabulated in a decreasing 

order of test accuracies. Thus the best accuracy of 64.66% for the MLP neural network is 
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obtained using 5 hidden nodes. The highest accuracy attained by the PNN model is 

65.00%, which is almost equal the accuracy of the MLP neural network model. An 

interesting point to note is that the PNN classified the safe and unsafe intersections with 

almost similar accuracies, whereas the MLP model classified the unsafe intersections 

with a higher accuracy compared to safe intersections. 

 
Table 5-4 Results of the testing phase of MLP neural network for classifying 

intersections into safe and unsafe categories 
# Hidden 

Nodes Test Accuracy 
Accuracy of Safe 

Intersections 
Accuracy of Unsafe 

Intersections 
5 64.66 58.48 70.83 

25 64.07 61.72 66.42 
35 63.83 62.22 65.44 
30 63.70 62.93 64.46 
50 63.41 61.61 65.20 
20 63.34 62.22 64.46 
55 63.33 63.92 62.75 
60 63.15 61.34 64.95 
10 63.01 63.76 62.25 
40 62.82 62.66 62.99 
15 62.22 61.45 62.99 
45 60.53 61.01 60.05 

 

Table 5-5 Results of the testing phase of PNN for classifying intersections into safe and 
unsafe categories  

Spread Test Accuracy Accuracy for Safe Intersections Accuracy for Unsafe Intersections
1.25 65.00 64.80 65.20 
1.01 64.85 64.25 65.44 
1.23 64.73 66.72 62.75 
1.03 64.61 64.03 65.20 
1.29 64.59 65.46 63.73 
1.31 64.58 65.68 63.48 
1.27 64.51 65.79 63.24 
0.87 64.48 65.24 63.73 
0.99 64.35 66.94 61.76 
1.19 64.34 64.96 63.73 

 

 Both the MLP and PNN models can be considered to be equally good in 

classifying intersections into safe and unsafe intersections. 
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5.4.2 Determining the Significant Variables in Classifying Intersections 
 
 The models developed above can give a good prediction about the classification 

of an intersection as safe or unsafe intersection. These models take into account the entire 

nine variables used in the input phase. While some variables might play a significant role 

in governing if an intersection is of safe or unsafe type, some variables might not be 

affecting the output at all. Hence there is a need to determine the significant variables that 

govern the model. If a variable is found to be significant, it can be controlled to make an 

intersection a safer place to travel. 

 The significant variables were identified using a Forward Sequential Selection 

method. According to this method, just one input variable is used at a time to train and 

test the databases. Once all the inputs have been used individually, the test accuracies are 

compared. The variable that gives the maximum accuracy is chosen as the most 

significant variable. Then training and testing of databases is carried out by using this 

variable along with the other input variables one at a time. The variable whose 

combination with the first significant variable gives the highest accuracy is chosen as the 

next significant variable. This process is repeated till there is no further increase in 

accuracy by addition of any of the variables. All the variables selected in this process are 

determined to be the significant variables in the model. 

 As the PNN model gave a slightly better performance in classifying the 

intersections into Safe and Unsafe categories, the significance of variables was tested 

using PNN. The network was developed in the same method as described in section 5.4.1. 
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The only difference was that the number of input variables changed. The significant 

variables were identified using the forward sequential selection method. Table 5.6 lists 

the significant variables along with the accuracy and the spread used in each run. 

 
Table 5-6 Significant Variables identified in classifying intersections into safe and unsafe 

intersections  

Run# Spread Order of 
Significant Variables Test Accuracy 

Accuracy of 
Safe 

Intersections 

Accuracy of 
Unsafe 

Intersections 
1 0.06 Major AADT 63.69 68.7 58.68 
2 0.31 Major Speed 65.69 59.97 71.81 
3 1.06 Major LTP 67.31 66.72 67.89 
4 0.81 Total Left Turning Lanes 67.35 68.75 65.89 
5 1.61 Minor RTC 67.6 70.73 64.46 

 

  A combination of these variables with any other variable did not show any 

significant increase in the test accuracy. Hence these variables govern whether an 

intersection can be classified as a safe intersection or an unsafe intersection. The results 

show that the Major AADT, major speed limit and total left turning lanes are important 

factors in classifying the intersections. This is a reasonable result because an increase in 

these factors can be expected to increase the crash frequencies at intersections, thus 

making them unsafe. 

5.4.3 Predicting the Crash Frequency for Safe Intersections 
 
 From the intersection database, the intersections classified as safe intersections 

were filtered out. The database consisted of 1017 safe intersections. The total crashes (per 

year) occurring at these intersections were predicted in this step using the MLP neural 

network and the GRNN. The methods used in developing these models were similar to 

those described in sections 5.2 and 5.3. The root mean square errors and the mean 
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absolute percentage square errors for the test phase of the MLP and GRNN models have 

been listed in Tables 5.7 and 5.8 respectively. 

Table 5-7 Errors in predicting the frequency of total crashes for safe intersections using 
the MLP neural network model  

# Hidden Nodes Test RMSE Test MAPE
1 2.75 60.76 
3 2.79 64.08 
4 2.80 62.99 
5 2.82 66.72 
7 2.87 64.52 
8 2.93 69.00 
6 2.98 64.28 
9 3 72.11 
2 3.02 69.48 
10 3.10 66.52 

 
 

Table 5-8 Errors in predicting the frequency of total crashes for safe intersections using 
the GRNN model 

 
Spread Test RMSE Test MAPE

1.95 2.785 63.31 
1.85 2.786 62.79 
1.65 2.787 62.00 
1.6 2.787 61.83 
1.9 2.787 63.02 

1.55 2.787 61.80 
1.5 2.788 61.14 
1.8 2.789 63.02 

1.45 2.791 60.94 
 

 Both the MLP and GRNN models performed equally well. The test MAPE 

obtained was also similar for both the models. The MAPE values seem large because this 

database consists of safe intersections having small number of crashes. Hence when the 

crashes are predicted for an intersection having a very small number of crashes, even a 

small absolute error will be portrayed as a large percentage error. Therefore the RMSE 

was used to judge the model.  
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5.4.4 Significant Variables for Predicting Crashes at Safe Intersections 
 
 The significant variables were identified for the MLP neural network model using 

the forward sequential selection method. The criterion for choosing the significant 

variables was that the RMSE was the least for the significant set of variables. The 

significant variables have been listed in Table 5.9. This table indicates that safe 

intersections are affected only by the three variables listed. For example, if an 

intersection is identified as a safe intersection, an increase or decrease in AADT can 

significantly affect the number of crashes occurring at the intersection. The number of 

hidden nodes was varied from 1 to 15. Again, the results obtained are reasonable because 

an increase in the major AADT and minor LTP can be expected to increase the frequency 

of total crashes. 

 
Table 5-9 Significant variables identified in predicting the frequency of crashes at safe 

intersections 
Run # Significant Variables # Hidden Nodes Test RMSE 

1 Minor LTP 1 2.90 
2 Major AADT 2 2.82 
3 Minor RTC 1 2.62 

 

5.4.5 Predicting the Crash Frequency for Unsafe Intersections 
 
 The intersections classified as unsafe intersections in section 5.4.1 were used in 

this analysis for predicting the crash frequency of unsafe intersections. 75% of the 

intersections were used in the training phase and 25% were used in the testing phase. The 

models were developed in a method similar to the ones adapted in sections 5.2 and 5.3. 

The results of the MLP and GRNN models have been tabulated in Tables 5.10 and 5.11 

respectively. The MLP neural network model performed better compared to the GRNN 

model. 
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Table 5-10 Errors in predicting the frequency of total crashes for unsafe intersections 
using the MLP neural network model 

# Hidden Nodes Test RMSE Test MAPE
3 5.76 31.94 
1 6.07 31.83 
2 6.18 32.41 
5 6.27 32.10 
4 6.57 32.79 
8 6.58 34.10 
6 6.59 34.51 
7 6.67 34.25 
10 6.80 33.77 
9 6.82 35.16 

 

Table 5-11 Errors in predicting the frequency of total crashes for unsafe intersections 
using the GRNN model  

 
Spread Test RMSE Test MAPE

1.33 5.88 31.33 
1.35 5.88 31.48 
1.37 5.89 31.37 
1.39 5.89 31.26 
1.41 5.90 31.77 
1.43 5.91 31.22 
1.45 5.92 31.84 
1.47 5.93 31.93 
1.49 5.94 31.33 
1.51 5.95 32.03 

 

 As can be seen in the table, the MLP model performed slightly better when 

compared to the GRNN model. The MAPE of the testing phase was 31.94% for the PNN 

model, which can be considered low. This value is lower than the value found for the safe 

intersections because the MAPE depends on the values of the output. Since the crash 

frequency is large for unsafe intersections, the denominator of the MAPE is larger 

resulting in lesser value of the error. Therefore, RMSE is considered a better option for 

evaluating the errors. To evaluate the significant variables, RMSE has been used. 
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5.4.6 Significant Variables for Predicting Crashes at Unsafe Intersections 
 
 The MLP neural network model was used to identify the significant variables in 

predicting the frequency of crashes at unsafe intersections. These variables have been 

listed in Table 5.12. 

 
Table 5-12 Significant variables identified in predicting the frequency of crashes at 

unsafe intersections 
Run # Significant Variables # Hidden Nodes Test RMSE 

1 Minor Lanes 8 6.36 
2 Total Left Turning Lanes 3 5.65 
3 Major Lanes 8 5.35 

 

 Only three variables were found significant, and the RMSE obtained was lesser 

than the value obtained by using all input variables. Hence these variables were used for 

further analysis. 

5.4.7 Estimating a Pattern in Significant Variables 
 
 Identifying the significant variables is the first step in predicting how the input 

variables affect the output. The affect of a change in input on the output has to be found. 

The factors that tend to increase the crash frequency at an intersection can be checked 

and controlled if an intersection is found to have a large number of crashes and hence is 

unsafe for travel. 

 To identify this, the pattern in which the significant input variables lead to an 

intersection being safe or unsafe is found out. For this purpose, a “simulation” database 

was created that contained all possible combinations of the original 9 input variables. 

This database basically contained all possible intersection types that could be generated 

with the input variables. These intersections were tested using the MLP neural network 
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model that was used in classifying the intersections into safe and unsafe intersections. 

Only the significant variables were used to identify if the intersections could be classified 

as safe or unsafe.  

 The database was created by referring to the combined master database and 

observing the data patterns. The following steps were followed in developing the 

simulation database: 

1. The AADT on the major road was used between 10000 and 80000 with 

increments of 10000. Since only 3 intersections in the master database had an 

AADT of over 80000, this number was set as the maximum limit for AADT. 

2. The speed limit was varied from 30-55 mph with increments of 5 mph. 

3. The number of major lanes was varied from 2 to 6 with increments of 2 lanes. 

Since no intersections with an AADT of over 30000 had 2 lanes on the major road 

in the master database, the minimum number of lanes used for AADT of 30000 

and above was 4. Similarly the maximum number of lanes for an AADT of below 

30000 was used as 4. 

4. The number of minor lanes was also varied from 2 to 6 with increments of 2. 

Also, the minor lanes were always set to be equal to or less than the number of 

major lanes. 

5. The left turning lanes were from 0 to 8 with increments of 2. The number of left 

turning lanes was always equal to or lower than the sum of major and minor lanes 

at the intersection, but never exceeding 8. 

6. The number of protected left turning lanes was varied between 0 and 4. They 

were always lesser than or equal to the number of left turning lanes. Also, the sum 
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of protected lanes on both major and minor roads was less or equal to the number 

of left turning lanes. 

7. Channelized right turning lanes (both major and minor) were varied between 0 

and 2. 

The test database was developed based on these combinations of the nine 

variables. The total number of intersections obtained using this method was 98928. These 

intersections were used as input in the PNN model that was used in classifying the 

intersections into safe or unsafe type. Only the significant variables were used in 

classifying the intersections.  

The PNN neural model classified 49176 intersections as safe intersections and the 

rest as unsafe intersections. The safe intersections were separated out from the unsafe 

intersections and were saved in different files. These intersections were used in the MLP 

neural network models for predicting the frequency of crashes at safe and unsafe 

intersections. Separate programs were written that trained the safe and unsafe 

intersections using the complete databases used in sections 5.4.3 and 5.4.5. This was done 

so that the performance of the neural network models could be further enhanced.  

The training of the MLP model for safe intersections was carried out by using 

only the significant variables shown in Table 5.9. The intersections identified as the safe 

intersections during the classification phase of the simulation database were chosen and 

the significant variables were extracted from these intersections (those shown in Table 

5.9). The number of crashes occurring at these safe intersections was predicted using the 

trained MLP model. The frequency of crashes at unsafe intersections was predicted in a 

similar manner using the MLP neural network model developed in section 5.4.5.  
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The files containing the frequency of crashes at safe and unsafe intersections were 

merged together. From these files, the number of crashes occurring at intersections with 

each value of the input variable was found out. For example, the number of crashes 

occurring at different values of AADT were found and plotted. This plot establishes a 

trend of variation of the number of crashes occurring at the intersection with a change in 

AADT. Similar plots were drawn for all input variables and their affect on the output 

variable was established. The following points discuss the trends observed with different 

input variables: 

1. Major Lanes: The number of crashes occurring at intersections with 2, 4 and 6 

through lanes on the major road were determined. The number of intersections 

with each number of major lanes was different because of the constraint imposed 

in using the major limit while creating the database (the minimum number of 

lanes used for AADT of 30000 and above was 4, which was also the maximum 

number of lanes for an AADT of below 30000). Hence an average rate of crashes 

occurring per intersection was found out. As can be seen from the Figure 5.2, the 

number of crashes per intersection shows an increasing trend as the number of 

lanes increase. The average value of crashes per intersection has been indicated in 

the graph. This pattern is consistent with the findings of Keller (2004), who too 

finds that the trend increases.  
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 Figure 5.2 Average expected number of crashes per intersection per year for different 
values of through lanes on the major road 

 
 

2. Minor Lanes: Since the number of intersections having 2, 4 and 6 through lanes 

on the minor road were different, average number of crashes occurring at 

intersections per year was determined and plotted in Figure 5.3. Keller(2004) 

observes a similar increasing trend, where the frequency of crashes increases 

drastically when the number of minor lanes are over 2. The same pattern is 

observed here when the frequency of crashes almost doubles when the number of 

minor lanes increase. Greibe (2003) also finds that an increase in minor roads 

increases accident risk. 
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Figure 5.3 Average expected number of crashes per intersection per year for different 

values of through lanes on the minor road 

 
3. Total Left Turning Lanes (LTL): To be consistent with the previous plots, all 

graphs were drawn for crashes per intersection, although the number of 

intersection per value of the input variable was the same. The graph for the 

variation of the crash frequency with the total left turning lanes has been shown in 

Figure 5.4. The graph shows that the frequency of crashes decreases slightly when 

the number of left turning lanes increases at an intersection, and then it starts 

increasing once the number of left turning lanes exceeds 4. This implies that the 

frequency of crashes can be decreased at an intersection by increasing the left 

turning lanes to a certain extent, but if the total LTL increases beyond 4 there is 

an increase in the crash frequency. 
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 Figure 5.4 Average expected number of crashes per intersection per year for different 
values of total left turning lanes 

 
 

4. Major Left Turning Protected (LTP) Lanes: From the Figure 5.5, it can be seen 

that an increase in the protected left turning lanes actually decreases the crash 

frequency. An almost linear trend can be established between the protected left 

turning lanes and the crash frequency. This decrease can be expected because an 

increase in the LTP lanes can decrease the number of left turning crashes. 

However, this variable has not been found significant by Keller (2004). 

 
5. Minor Protected Left Turning Lanes: From the Figure 5.6, it is evident that the 

protected left turning lanes had a slight affect on the prediction of the crash 

frequency. Keller (2004) also reports an increase in the crash frequency with an 

increase in the protected left turning lanes on the minor road. 
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Figure 5.5 Average expected number of crashes per intersection per year for different 
values of protected left turning lanes on the major road 
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Figure 5.6 Average expected number of crashes per intersection per year for different 
values of protected left turning lanes on the minor road 
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6. Major Channelized Right Turning Lanes: This variable was neither found 

significant in classifying intersections into safe or unsafe intersections nor in 

predicting the crash frequency for any of the intersections. Hence it does not have 

any affect on the overall crash frequency at an intersection.  

7. Minor Channelized Right Turning Lanes: As can be seen in Figure 5.7, an 

increase in the RTC lanes on the minor road tends to slightly decrease the crash 

frequency. The intersections with no RTC on the minor road can be expected to 

have a larger number of crashes because there is a greater possibility for the 

vehicle taking a right turn from the minor road on to the major road to get 

involved in a crash as the traffic on the major road is high. The same cannot be 

said about the channelization on the major road because the minor road will have 

a lesser traffic than the major road and hence a vehicle taking a right turn is less 

exposed to a crash.  

8. Major Speed Limit: The speed limit on the major road does not have a very 

significant effect on the crash frequency. This can be observed in Figure 5.8. 

Keller (2004) finds that the crash frequency increases drastically when the speed 

limit is over 35. 

9. Major AADT: As can be clearly observed in Figure 5.9, the frequency of crashes 

increases as the AADT on the major roadway increases. The increase is especially 

high between the values of 20000 and 60000. In the study by Keller (2004), the 

AADT was found to significantly increase the crash frequency.  Poch and 

Mannering (1996) and Greibe (2003) also find that an increase in AADT 

increases the frequency of crashes at intersections. 
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Figure 5.7 Average expected number of crashes per intersection per year for different 

values of channelized right turning lanes on the minor road 
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Figure 5.8 Average expected number of crashes per intersection per year for different 
values of Speed Limit on the major road 
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 Figure 5.9 Average expected number of crashes per intersection per year for different 
values of AADT on the major road 

 
 

 Hence the results obtained from this method were very similar and comparable to 

those obtained by other studies. Therefore, it was decided to use the same methodology to 

predict the crashes of different collision types. 

5.5 Predicting Rear End Crash Frequency Based on Number of Lanes 
 
 Rear end crashes form the majority of the crashes in the database. Almost half the 

crashes in the database are rear end crashes. Rear end crash frequencies were predicted 

by using the same methodology as described section 5.4. This section briefly describes 

the results obtained by using this method and compares these results to the results 

obtained in other studies. 
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 As a first step, the average number of rear end crashes was determined for 

intersections with different number of total lanes. These have been shown in Table 5-13. 

The values clearly indicate an increasing crash frequency with an increase in the total 

number of lanes at the intersection, thus allowing us to use the model developed in 

section 5.4. 

 
Table 5-13 Average number of rear end crashes for different groups of intersections 

Total Lanes at an Intersection Average Number of Rear End Crashes 
3 to 5 3.11 

6 to 10 4.65 
11 to 15 9.98 

16 and above 19.72 
 

5.5.1  Classification of Intersections 
 
 The intersection database was first classified into safe and unsafe intersections 

based on Table 5-13. Both the MLP and PNN models were used to classify these 

intersections. The MLP neural network model gave a highest accuracy of 63.31% with 10 

hidden nodes. The accuracies for the safe and unsafe intersections were 63.53% and 

63.06% respectively. The PNN model had a highest accuracy of 65.222% with accuracies 

of 68.46% and 62% for the safe and unsafe intersections respectively. Therefore the PNN 

model was considered as the better model for classifying the intersections into safe or 

unsafe intersections. 

 The AADT, major through lanes and minor through lanes were identified as the 

factors in the classification process. A combination of these variables gave an average 

accuracy of 68.22%. 
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5.5.2 Predicting the frequency of rear end crashes for safe intersections 
 
 The GRNN model performed better with a least RMSE of 1.40 and a 

corresponding MAPE of 33.04%. The MLP model showed a minimum RMSE of 1.46 

with a corresponding MAPE of 40.53%. Since the GRNN model performed better with 

both RMSE and MAPE criteria, it was used to identify the significant variables for safe 

intersections. The variables found significant in predicting the rear end crashes at safe 

intersections were major LTP lanes, major lanes, AADT and minor LTP lanes. The 

minimum RMSE obtained by predicting the rear crashes using these significant variables 

was 1.37, which is equal to the RMSE obtained by using all the input variables. This 

error is significantly less than the error in predicting the total crashes at safe intersections. 

 

5.5.3 Predicting the frequency of rear end crashes for unsafe intersections 
 
 The rear end crash frequency at unsafe intersections was predicted with a lesser 

RMSE and MAPE by the MLP model. The values attained by the MLP model for RMSE 

and MAPE were 5.14 and 41.73% respectively, while those attained by the GRNN model 

were 5.35 and 43.13% respectively. Hence the MLP neural network model was used in 

identifying the significant variables and also in the simulation process. 

 The significant variables identified using the MLP model were: AADT, number 

of minor lanes, speed limit on the major road, minor RTC lanes, minor LTP lanes and 

major LTP lanes. The minimum RMSE obtained was 4.3. This was much better than the 

RMSE obtained using all nine input variables. 
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5.5.4 Estimating a Pattern in Significant Variables 
 
 The same simulation database as used in section 5.4.7 containing 98928 crashes 

was used to estimate the pattern in which the significant variables affect the frequency of 

the rear end crashes. The PNN model was used to classify the intersections into safe and 

unsafe categories. GRNN model predicted the frequency of safe intersections whereas 

MLP model estimated the frequency of unsafe intersections. The results were combined 

and averaged for each value of the input variable. The following points discuss the 

association of the significant input variables with the frequency of rear end crashes: 

1. Major Lanes: As can be seen in Figure 5.10, the average number of crashes 

occurring on 4 and 6 lanes is almost double the number for 2 lanes. Keller (2004) 

and Poch and Mannering (1996) find an increasing trend in the rear end accidents 

with an increase in major lanes. An increase in number of lanes can be related to 

an increase in the traffic volume on the roadway. Greater volume implies that the 

vehicles move closely, thereby increasing the possibility of a rear end crash. 

Hence an increase in the number of lanes on the major road can be related to an 

increase in the rear end crashes. 
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Figure 5.10 Average expected number of rear end crashes per intersection per year for 
different values of through lanes on the major road 

 
2. Minor Lanes: The increase in minor lanes was also found to affect the rear end 

crashes. This has been depicted in Figure 5.11. An intersection with 6 minor lanes 

can be expected to have almost double the number of rear end crashes as that of 

an intersection with 2 minor lanes. The reasoning is same as followed for the 

major roads: an increase in minor roads usually means that the size of the 

intersection is increasing, which in turn can be due to the high traffic volume on 

minor roadway. This increases the possibility of rear end crashes. 
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Figure 5.11 Average expected number of rear end crashes per intersection per year for 
different values of through lanes on the minor road 

 
3. Total Left Turning Lanes: Since this variable was not found significant in either 

the classification of prediction models, it does not have any affect on the rear end 

crashes.  

4. Major LTP: Figure 5.12 shows that an increase in protected left turning lanes on 

the major road also tends to increase the number of rear end crashes. Keller 

(2004) also reports an increasing trend in rear end crashes with an increase in the 

major LTP lanes. The possible reasoning for this phenomenon is that an 

intersection with a higher number of left turning lanes can be expected to have a 

higher left turning volume. An increased turning volume leads to an increased 

tendency in the driver to maneuver the left turn before the signal is red. This 

sometimes causes confusion among drivers wherein the driver of the lead vehicle 

decides not to take a left turn when the signal is turning red, but the driver in the 
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following vehicle intends to take a left turn but rear ends the vehicle in lead 

instead.  

5. Minor LTP: The number of rear end crashes has been observed to increase when 

LTP lanes are present on the minor roadway, for reasons similar to the ones given 

for the major LTP lanes. Figure 5.13 illustrates such an occurrence. An increasing 

trend has also been observed by Keller (2004). Although the graph shows a 

decrease after 2 minor LTP lanes, the decrease is insignificant. 

6. Major RTC: Since the RTC lanes were not significant in any of the models, they 

did not affect the rear end crashes in any way.  
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Figure 5.12 Average expected number of rear end crashes per intersection per year for 
different values of protected left turning lanes on the major road 
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Figure 5.13 Average expected number of rear end crashes per intersection per year for 
different values of protected left turning lanes on the minor road 

 
 

7. Minor RTC: From Figure 5.14, it can be seen that an increase in the RTC lanes on 

the minor road leads to an increase in the rear end crashes. The possible reasoning 

for this is similar to the rear end crashes during a left turn: the driver following a 

vehicle thinks that the vehicle is taking a right turn and accelerates, but the 

vehicle in lead slows down to stop. This leads to a rear end crash. 
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Figure 5.14 Average expected number of rear end crashes per intersection per year for 
different values of channelized right turning lanes on the minor road 

 

8. Speed Limit: Rear end crashes are found to increase linearly with the increase in 

speed limit on the major road in Figure 5.15. The possible reason for this 

phenomenon is that higher speed limit implies a greater distance is required to 

stop the car, and if a minimum distance is not maintained between the cars a rear 

end crash is possible when the vehicles decelerate. An increasing trend is also 

observed by Keller (2004) and Poch and Mannering (1996). 
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Figure 5.15 Average expected number of rear end crashes per intersection per year for 
different values of speed limit on the major road 
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Figure 5.16 Average expected number of rear end crashes per intersection per year for 
different values of AADT on the major road 
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9. AADT: The frequency of rear end crashes shows a huge increasing trend when the 

AADT on the major roadway is increased, as can be seen in Figure 5.16. Keller 

(2004) and Greibe (2003) also find an increasing trend in the rear end crashes 

with an increase in the AADT. 

The model performed well with the new model. The errors for both the prediction 

models are reasonably low. The output obtained seems reasonable. Hence this method 

can be used effectively for the prediction of the frequency of rear end crashes. 

5.6 Predicting Frequency of Angle Crashes Based on Number of Lanes 
 
 Angle crashes formed the next highest percentage of crashes in the database after 

the rear end crashes. The first step was to identify the trend in the crash frequency with an 

increase in the total number of lanes at the intersection. As can be observed from Table 

5.14, the angle crashes clearly show an increasing trend with an increase in the total 

number of lanes at the intersections. 

Table 5-14 Average number of angle crashes for different groups of intersections 

Total Lanes at an Intersection Average Number of Angle Crashes 
3 to 5 2.90 

6 to 10 3.01 
11 to 15 5.19 

16 and above 6.54 

5.6.1 Classification of Intersections 
 
 Based on Table 5.14, the intersections in the database were classified to safe and 

unsafe intersections for angle crashes. Using the MLP neural network, a test classification 

accuracy of 62.57% was obtained, whereas the PNN model gave a highest accuracy of 

64.97%. The PNN model was judged as the better model with the classification of 

accuracies of safe and unsafe intersections as 66.1% and 63.75% respectively. 
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 The factors found significant in this classification process were: number of 

protected LTP lanes on the major road, the number of lanes on the major road, the 

number of LTP lanes on the minor road and the number of lanes on the minor road. The 

accuracy for this combination of variables was 68.24%, which was significantly higher 

than the model built using all variables. 

5.6.2 Predicting the frequency of angle crashes for safe intersections 
 
 Both the MLP and GRNN models performed equally well in predicting the 

number of angle crashes for safe intersections. The RMSE for both the models was 

around 0.8 and the MAPE was around 36%. The MLP NN model was used to identify the 

significant variables, which turned out to be the number of minor lanes, major lanes and 

AADT. 

5.6.3 Predicting the frequency of angle crashes for unsafe intersections 
 
 The MLP NN model predicted the frequency of angle crashes for unsafe 

intersections with a RMSE of 3.5 and MAPE of 52%. The GRNN model predicted the 

same with RMSE and MAPE of 3.3 and 49% respectively. Based on a lower RMSE, the 

GRNN model was chosen for selecting the significant variables. The major lanes, minor 

lanes and the LTP lanes on the major road turned out to be the significant variables in the 

model. The RMSE for the restrained model turned out to be 2.65, which is significantly 

lower from the RMSE of the overall model. 

5.6.4 Estimating a Pattern in Significant Variables 
 
 The pattern among the significant variables was identified by predicting the 

number of angle crashes occurring at the intersections in the simulation database. The 

 110



PNN model was used to classify the intersections into safe and unsafe intersections and 

the MLP and GRNN models were used to predict the number of crashes occurring at safe 

and unsafe intersections respectively. The results were plotted to establish the 

relationship between the angle crashes and the input variables. The following points 

explain the relationships obtained: 

1. Major Lanes: An increase in the number of through lanes on the major roadway 

tremendously increases the chances of angle crashes, as can be observed in Figure 

5.17. The possible reason for this trend is that an increase in the number of 

through lanes implies a greater amount of traffic flowing in the through lanes, 

thereby increasing the possibility of an angle crash. 
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Figure 5.17 Average expected number of angle crashes per intersection per year for 
different values of through lanes on the major road 
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Figure 5.18 Average expected number of angle crashes per intersection per year for 

different values of through lanes on the minor road 
 

2. Minor Lanes: As can be observed in Figure 5.18, the frequency of angle crashes 

also shows an increasing trend with an increase in the number of minor lanes. 

Keller(2004) found this variable to be the most important variable in predicting 

angle crashes and observed an increasing trend in the frequency of angle crashes 

with an increase in the minor lanes. 

3. Left Turing Lanes: Since the left turning lanes were not found to be significant in 

any of the models, this variable does not affect the frequency of angle crashes. 

4. Major LTP Lanes: The protected left turning lanes on the major road were found 

to decrease the number of angle crashes, as can be seen in Figure 5.19. Poch and 

Mannering (1996) also finds that presence of protected left turning lanes reduces 

the number of angle crashes. 
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Figure 5.19 Average expected number of angle crashes per intersection per year for 

different values of LTP lanes on the major road 
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Figure 5.20 Average expected number of angle crashes per intersection per year for 
different values of LTP lanes on the minor road 
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5. Minor LTP Lanes: The protected left turning lanes on the minor road have been 

observed to increase the number of angle crashes, as can be seen in Figure 5.20. A 

similar phenomenon has been observed by Keller (2004). 

6. Major AND Minor RTC Lanes:  As this factor was not found significant in any of 

the models, it does not affect the frequency of angle crashes at the intersections. 

7. Major Speed Limit: As this factor was not found significant in any of the models, 

it does not affect the frequency of angle crashes at the intersections. 

8. Major AADT: As can be seen in Figure 5.21, an increase in the AADT on the 

major road results in a slight increase in the angle crashes. Keller (2004) finds the 

AADT on the minor roadway to be a very important factor in predicting the 

frequency of angle crashes.  
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Figure 5.21 Average expected number of angle crashes per intersection per year for 
different values of AADT on the Major road 
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5.7 Predicting the Frequency of Turning Crashes Based on Number of 
Lanes 

 
 The turning crashes consisted of both left turning and right turning crashes. In 

order to predict the frequency of these crashes using the method described in section 5.4, 

the increasing trend of turning crashes with an increasing in the total number of lanes at 

the intersections had to be established. Hence the average number of turning crashes for 

all intersections was determined and tabulated in Table 5.15. The number of turning 

crashes definitely seems to increase with an increase in the size of the intersection. 

Therefore, the crash frequencies can be predicted using the method of classifying the 

intersections into safe and unsafe type and then predicting the crash frequencies for each 

type of intersection. 

Table 5-15 Average number of turning crashes for different groups of intersections 

Total Lanes at an Intersection Average Number of Turning Crashes 
3 to 5 1.69 

6 to 10 1.97 
11 to 15 3.83 

16 and above 5.86 
 

5.7.1 Classification of Intersections 
 
 The intersections in the database were classified into safe and unsafe intersections 

using the MLP and PNN models. The MLP neural network classified the intersections 

with a highest accuracy of 63.03%, whereas the PNN classified the intersections with an 

accuracy of 64%. Hence the PNN was judged as a better model and was used to identify 

the significant variables in the classification process. The following variables were found 

to be significant in the model: AADT, major LTP lanes, major RTC lanes, major lanes, 
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and minor LTP lanes. The accuracy for the model with this combination of variables was 

64.43%.  

5.7.2 Predicting the frequency of turn crashes for safe intersections 
 
 Both MLP and GRNN models performed equally well in predicting the turning 

crashes, with RMSE of 0.622 and 0.615 respectively. The MAPE for both models were 

around 47%. The GRNN model was chosen to identify the significant variables as the 

GRNN can train and test the neural networks faster compared to the MLP neural network 

model. The following variables were found significant: left turning lanes, minor lanes, 

major lanes, major RTC lanes, speed limit and AADT. 

5.7.3 Predicting the frequency of turn crashes for unsafe intersections 
 
 The MLP and GRNN models again performed equally well with RMSE of 2.3. 

The MAPE of both the models was close to 45%. The GRNN model was used to identify 

the significant variables, which were minor lanes, major lanes, major LTP lanes and 

AADT.  

5.7.4 Estimating a Pattern in the Significant Variables 
 
 The models developed in the previous sections were used to predict the number of 

turning crashes occurring at the intersections in the simulation database. The final output 

of the three models was plotted with each of the significant variables to establish the 

pattern in which the input variables affect the frequency of the turning crashes. The 

following points give a detailed explanation of the relationships between the input 

variables and the frequency of the turning crashes: 
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1. Major Lanes: As can be seen in Figure 5.22, an increase in the number of lanes on 

the major road tends to increase the number of turning crashes. An increase in the 

through lanes means that a left (or right) turning vehicle has a greater exposure to 

the through traffic commuting from the opposite direction. Hence a turning crash 

is more likely with an increase in the number of lanes on the major road. This 

variable has been found to be significant in predicting the right turning crashes by 

Keller (2004). 
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Figure 5.22 Average expected number of turning crashes per intersection per year for 
different number of through lanes on the Major road 

 
1. Minor Lanes: An increase in the number of lanes on the minor road also tends to 

increase the number of turning crashes at intersections, as can be observed in 

Figure 5.23. This variable has been found to be significant in predicting the 

frequency of left turning crashes by Keller (2004). 
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Figure 5.23 Average expected number of turning crashes per intersection per year for 

different number of through lanes on the Minor road 
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Figure 5.24 Average expected number of turning crashes per intersection per year for 
different number of left turning lanes 
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2. Left Turning Lanes: The turning crashes show a slightly decreasing trend with an 

increase in the left turning lanes, and then show an increasing trend when the 

number of left turning lanes is above 4. This suggests that left turning lanes 

decrease turning crashes, but more than four left turning lanes tend to increase the 

turning crashes. 

3. Major LTP Lanes: It is clear from Figure 5.25 that an increase in LTP lanes on 

the major road leads to a decrease in the turning crashes. This illustrates that 

protected left turning lanes prevent the left turning crashes. Major LTP lanes has 

been found significant by Keller (2004) in predicting both left and right turning 

crashes. 
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Figure 5.25 Average expected number of turning crashes per intersection per year for 
different number of major LTP lanes 
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4. Minor LTP Lanes: The turning crashes have been found to increase very slightly 

with an increase in the minor LTP lanes, as can be observed in Figure 5.26. Keller 

(2004) also finds that this factor tends to increase the left turning crashes, and 

finds this to be one of the most important factors in predicting the left turning 

crashes. But in the present study, this variable has been found to be significant 

only in judging if the intersections are safe or unsafe. Since the turning crashes 

show an increasing trend with an increase in the LTP lanes, it can be concluded 

that increasing LTP lanes on the minor roadway makes the intersection less safer 

with regard to turning crashes.  

5. Major RTC Lanes: Channelized right turning lanes are usually provided at 

intersections when the right turning volume is large. Higher right turning volume 

indicates that more right turning vehicles are exposed to the traffic from other 

directions, and thus more right turning crashes can be expected. The same 

phenomenon has been observed in the simulation output, and can be observed in 

Figure 5.27.  
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Figure 5.26 Average expected number of turning crashes per intersection per year for 

different number of minor LTP lanes 
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Figure 5.27 Average expected number of turning crashes per intersection per year for 
different number of major RTC lanes 
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6. Minor RTC Lanes: As this variable was not found to be significant in any of the 

models, it can be considered not to affect the frequency of the turning crashes. 

7. Major Speed Limit: Although the speed limit was a significant factor in predicting 

the turning crashes on safe intersections, it was not found to be a very significant 

factor in the simulation phase. This was reflected in the simulation output shown 

in Figure 5.28, where the turning crashes vary only very slightly with an increase 

in the speed limit. Poch and Mannering (1996) found the speed limit for the 

opposing approach to be the least significant factor in predicting approach turning 

crashes. The major speed limit was also found to be significant by Keller (2004). 
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Figure 5.28 Average expected number of turning crashes per intersection per year for 
different values of speed limits on the major road 

 
8. Major AADT: The turning crashes show a very slight increasing trend with the 

increase in AADT, as can be observed in Figure 5.29. Keller (2004) finds AADT 

to be one of the least significant factors in predicting the frequency of left turning 
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crashes. Hence it can be concluded that the AADT does not significantly affect 

the turning crashes. 
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Figure 5.29 Average expected number of turning crashes per intersection per year for 
different values of AADT on the major road 

 

The variables found to be significant in predicting the frequency of turning 

crashes have also been found to be significant in other studies. The error in predicting the 

turning crashes reduced significantly by using the new method. The RMSE in predicting 

the frequency of turning crashes for safe and unsafe intersections was 0.62 and 2.3 

respectively. The error was significantly reduced by using this method, considering that 

the error in predicting the turning crashes for all intersections taken together was 3.35. 

Hence this method can be considered to be very efficient in predicting the turning crashes 

at signalized intersections. 
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5.8 Predicting the frequency of Sideswipe crashes based on the number of 
lanes 

 
 To predict the number of sideswipe crashes at signalized intersections, all 

intersections were taken and the 75% of the intersections were randomly selected and 

trained by the GRNN model. The rest of the intersections were tested using this neural 

network, and the RMSE and MAPE values obtained were 2.62 and 57.6% respectively. 

To develop a better model that can predict the sideswipe crashes more efficiently, the 

method described in section 5.4 was used. In order to use the method, it was first checked 

if the sideswipe crashes increase with an increase in the total lanes. From Table 5.16, it is 

clear that the sideswipe crashes do show an increasing trend. Therefore this method was 

used to predict the sideswipe crashes and also to check if the error can be reduced. 

Table 5-16 Average number of angle crashes for different groups of intersections 

Total Lanes at an Intersection Average Number of Sideswipe Crashes 
3 to 5 1.77 

6 to 10 1.10 
11 to 15 2.08 

16 and above 3.08 

 

5.8.1 Classification of Intersections 
 
 The intersections were classified into safe and unsafe types by using the values in 

Table 5.16. In the database, 375 intersections were categorized as safe intersections for 

sideswipe crashes. The classification was carried out using both the MLP and PNN 

models. The MLP neural network gave a best accuracy of 68.4%, whereas the PNN 

model demonstrated a better accuracy of 70.7%. Hence the PNN model was chosen to 

identify the significant variables. The following variables were identified to be significant 

using this model: major LTP lanes, AADT, major speed limit, minor RTC lanes and 
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major lanes. The accuracy of the model increased to 71.6% upon using only the 

significant variables. 

5.8.2 Predicting the frequency of sideswipe crashes for safe intersections 
 
 Both the MLP and GRNN models performed equally well in predicting the 

frequency of sideswipe crashes at signalized intersections. The RMSE values for both the 

models were around 0.46, and the MAPE values were around 71.6%. The GRNN model 

was chosen to identify the significant variables as GRNN is faster in training and testing 

data compared to the MLP neural network model. The significant variables identified in 

the model were as follows: major lanes, minor lanes, major LTP lanes, speed limit and 

AADT.   

5.8.3 Predicting the frequency of sideswipe crashes for unsafe intersections 
 
 Compared to the MLP model, the GRNN model performed much better in 

predicting the sideswipe crashes. The RMSE of the GRNN model was 2.4 whereas for 

the MLP model was 2.96. The MAPE for both the models was around 49%. Hence the 

GRNN model can be considered as a better model for predicting the sideswipe crashes at 

unsafe intersections. The significant variables identified using the GRNN model were as 

follows: minor lanes, major RTC lanes and major LTP lanes. The RMSE of the model 

drastically reduced to 1.61 upon using these significant variables. 

5.8.4 Estimating a Pattern in Significant Variables 
 
 To identify the relationship between the input variables and the frequency of 

sideswipe crashes, the method of testing the simulation data with the models developed in 

the previous sections was used. The PNN model was used to classify the intersections 

 125



into safe and unsafe types, and the GRNN models were used to determine the frequency 

of sideswipe crashes at these intersections. The following points establish the relationship 

between the input variables and the sideswipe crashes: 

1. Major Road: The number of through lanes on the major road was found to be a 

significant factor for classifying the intersections as well as for predicting the 

frequency of sideswipe crashes for safe intersections. From the output obtained 

for the simulation database, which is shown in Figure 5.30, it was found that their 

increase leads to an increase in the sideswipe crashes. This result is reasonable, 

because the increase in the through lanes implies that more lane changing 

maneuvers occur that increase the chances of a sideswipe crash. This factor has 

been found to be significant by Keller (2004). 
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Figure 5.30 Average expected number of sideswipe crashes per intersection per year for 
different number of lanes on the major road 
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Figure 5.31 Average expected number of sideswipe crashes per intersection per year for 

different number of lanes on the minor road 
 

2. Minor Road: Based on the reasoning given for the increase in sideswipe crashes 

with an increase in the major lanes, the sideswipe crashes can also be expected to 

increase when the number of lanes on the minor road increases. This has been 

observed in the simulation output, and has been shown in Figure 5.31. 

3. Total Left Turning Lanes:  Since this variable was not found to be significant in 

any of the models, it does not influence the frequency of sideswipe crashes. 

4. Major LTP Lanes: The LTP lanes on the major road tend to increase the 

frequency of sideswipe crashes, as can be seen in Figure 5.32. One possible 

reason for this increase is that many vehicles taking a left turn have a sideswipe 

crash with a vehicle taking a right turn onto that road, and an increase in protected 

left turns means that vehicles in the rightmost left lane are very susceptive to 

sideswipe crashes. Another possible reason is that many drivers in the left turning 
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bay decide to change-over to the through lane, and become a part of a sideswipe 

crash in this maneuver. Thus the result is reasonable, and has also been found to 

be significant by Keller (2004). 

5. Minor LTP Lanes: Since this variable was not found to be significant in any of the 

models, it does not influence the frequency of sideswipe crashes. 

6. Major RTC Lanes: During a right turning maneuver, a vehicle is subjected to a 

sideswipe crash either from a vehicle going through or taking a left turn onto the 

roadway in which the right turning vehicle is heading to. Thus the presence of 

channelized right turning lanes can be expected to increase the sideswipe crashes. 

This has been demonstrated in Figure 5.33.  
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Figure 5.32 Average expected number of sideswipe crashes per intersection per year for 

different number of LTP lanes on the major road 
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Figure 5.33 Average expected number of sideswipe crashes per intersection per year for 
different number of RTC lanes on the major road 

1.86 1.89

2.22

0.00

1.00

2.00

3.00

0 1

RTC lanes on the Minor road

A
ve

ra
ge

 c
ra

sh
es

 p
er

 in
te

rs
ec

tio
n

2

 

Figure 5.34 Average expected number of sideswipe crashes per intersection per year for 
different number of RTC lanes on the minor road 
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7. Minor RTC Lanes: This variable has been found significant only in classifying 

intersections into safe and unsafe types. From Figure 5.34, it can be clearly seen 

that it does not have much impact on the prediction of sideswipe crashes. 

8. Speed Limit: Speed limit shows an uncommon trend in the Figure 5.35. Although 

the graph seems to be wavering, the difference in values is small. Since the speed 

limit was found to slightly significant in predicting crashes at safe intersections, 

referring to Figure 5.35 it can be considered not to affect the sideswipe crash 

frequency by much. 

9. Major AADT: As the traffic volume increases, the spacing between vehicles 

decreases, increasing the chances of a sideswipe crash. Thus more sideswipe 

crashes can be expected at higher traffic volumes, as can be seen in Figure 5.36. 

AADT has also been found significant by Keller (2004). 

Thus the model for sideswipe crashes gave reasonable results. The accuracies of 

the models were better compared to the model that used all the intersections in the 

database for predicting the frequency of crashes. Therefore, the models can efficiently 

predict the frequency of sideswipe crashes at signalized intersections. 
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Figure 5.35 Average expected number of sideswipe crashes per intersection per year for 
different values of speed limit 
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Figure 5.36 Average expected number of sideswipe crashes per intersection per year for 
different values of AADT 
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5.9 Summary 
 
 This chapter illustrates the method of predicting the frequency of various types of 

crashes based on simple intersection characteristics that include the lane configuration, 

speed limit and traffic volume. At first, all intersections from the long form crash 

database were utilized to develop models for determining their crash frequencies. Two 

models: GRNN and MLP neural network, were used and their outputs were compared. 

But the error obtained in these models was large and unsatisfactory. Thus a new method 

was developed that demonstrated an efficient way of determining the crash frequencies. 

Firstly, it was established that an increase in the total number of lanes at an intersection 

leads to an increase in crashes. Secondly, the average number of crashes per intersection 

was determined for intersections with different number of total lanes. If the number of 

crashes at an intersection was lesser than the average number of crashes at intersections 

with the same number of total lanes, the intersection was classified as a “safe” 

intersection. If the value was greater, it was classified as an “unsafe” intersection. Then, 

models were developed to classify the intersections in into safe and unsafe categories 

using PNN and MLP neural networks. The intersections in the safe category were 

separated and models were developed to predict the frequency of crashes using MLP and 

GRNN methods. Similar models were developed to predict the frequency of crashes for 

unsafe intersections. For each of the models, the best neural network model was 

identified and the significant variables were identified using the Forward Sequential 

Selection method. A simulation database was then built containing 98928 intersections 

with all possible combinations of the input variables.  The frequency of crashes was 

predicted for these intersections using the above models. Lastly, the output of the model 
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was plotted with the input variables to establish relationships between the input and 

output variables. This method was followed to predict the frequency of crashes of each 

collision type. 

 Table 5.17 illustrates the different neural network models that were used and the 

accuracies of each model. The neural networks that were either most accurate or were 

more suitable for the models have been shown. The PNN model always performed better 

in the classification phase compared to the MLP neural network model. Hence it can be 

safely concluded that PNN is more efficient in classifying when compared to the MLP 

neural network. In the prediction phase, the MLP and GRNN have both performed well. 

In some cases the performance of both the models was the same. But GRNN model was 

preferred in such a case because of it’s capability of training large amounts of data in a 

short time. 

Table 5-17 Significant neural network models and their accuracies in predicting different 
types of crashes 

 Total 
Crashes Rear End Angle Turn Sideswipe 

Classification 

Model/Accuracy 
PNN / 
67.6% 

PNN / 
68.22% 

PNN / 
68.24% 

PNN / 
64.43% 

PNN / 
71.6% 

Predicting Crashes: 
Safe Int 

Model/RMSE 
MLP / 2.62 GRNN / 

1.37 MLP / 0.78 GRNN / 
0.61 

GRNN / 
0.45 

Predicting Crashes: 
Unsafe Int 

Model/RMSE 
MLP / 5.35 MLP / 4.3 GRNN / 

2.65 
GRNN / 

2.3 
GRNN / 

1.61 

 

 Table 5.18 illustrates the results of testing the models on the simulation database. 

The cells show the type of pattern each input variable shows for predicting the frequency 
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of different types of crashes. “Increase” means that crashes increase with an increase in 

the input variable. “-“ means that the variable was not found to be significant in 

predicting the frequency of crashes. Most of the variations obtained are reasonable. 

 

Table 5-18 Relationship between the input variables and the frequency of various types 
of crashes 

 

 Total 
Crashes Rear End Angle Turn Sideswipe 

MJ Lanes Increase Increase Increase Increase Increase 

MN Lanes Increase Increase Increase Increase Increase 

Total LTL Increase - - - - 

MJ LTP Decrease Increase Decrease Decrease Increase 

MN LTP Increase Increase Increase Increase - 

MJ RTC - - - Increase Increase 

MN RTC Decrease Increase - - - 

MJ Speed - Increase - - - 

MJ AADT Increase Increase Increase Increase Increase 

 

 Therefore, this chapter establishes a strong method in accurately predicting the 

frequency of crashes using simple traffic and geometric characteristics of signalized 

intersections. This method can prove very useful in crash prediction at various stages of 

an intersection. For example, before the construction of an intersection, this method can 

be used to predict the expected frequency of crashes using the variables that have been 

proposed for the intersection. If the model suggests that the crash frequency for this 

intersection is high, the input variables can be altered to design a safer intersection. 
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Similarly, the intersection characteristics of an operational signalized intersection can be 

used as an input to the model, and these input variables can be changed so as to obtain 

optimum characteristics of the intersection that can make it a safer place to travel on. 
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6 CLASSIFICATION OF CRASHES USING NEURAL NETWORK 
TREES 

 

6.1 Introduction 
 

An analysis was conducted to estimate the collision type of a crash based on the 

intersection properties, traffic characteristics and conditions prevalent at the time of the 

crash. Given any of these characteristics and given the criterion that a crash will occur, 

the models formed in the analysis would predict the type of collision the crash will be 

subjected to. This will be helpful in studying the factors that lead to a particular type of 

crashes. For example, the model will be able to specify the intersection properties that 

can lead to increased rear end crashes, and therefore it will help us design 

countermeasures directed to reducing this particular crash type if the intersection 

experiences above normal rates of this type. 

6.2 Database Used 
 

To analyze the data for predicting the collision type, the database was first 

prepared for analysis. The database with crashes reported on long forms was chosen for 

the analysis because all the counties contained information on long form crashes, but the 

crashes reported as short forms were not present in the database of two counties (Orange 

and Miami-Dade). The following variables were selected and encoded: 

 
1) Light Conditions: 

1. Daylight 
2. Dusk 
3. Dawn 
4. Dark with street lights 
5. Dark without street lights 
6. Others/unknown 

 136



 
2) Surface Conditions 
   1. Dry 
   2. Wet/Slippery 
   3. Others/unknown 
 
3) Month 
 
4) Day of the week 
 
5) Time of the day: 
   1. 12:00 am – 6 am 
   2. 6am –9 am 
   3. 9am – 11 am 
   4. 11 am – 1 pm 
   5. 1 pm – 3 pm 
   6. 3 pm – 6 pm 
   7. 6 pm – 12pm 
 
6) Number of Major Lanes 
 
7) Number of Minor Lanes 
 
8) Total Left Turning Lanes 
 
9) Total Left Turning Protected Lanes on the Major Road 
 
10) Total Left Turning Protected Lanes on the Minor Road 
 
11) Total Right Turn Channelized Lanes on the Major Road 
 
12) Total Right Turn Channelized Lanes on the Minor Road 
 
13) Speed Limit on the Major Road 
 
14) Speed Limit on the Minor Road 
 
15) AADT on the Major Road 
 
16) AADT on the Minor Road 
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17) Collision Type: 
   1. Rear End 
   2. Angle 
   3. Turn crashes 
   4. Sideswipe 
   5. Pedestrian crashes 
   6. Head On 
   7. Other crashes/unknown 
 
 
 This complete database consisted of 27,044 crashes that had occurred in the years 

2000 and 2001 for all counties, except for Orange County for which the crash data was 

available only for the years 1999 and 2000. Not all the crashes contained the information 

on the speed limit and AADT on the minor roadways. Of these crashes, the pedestrian 

and bike crashes were only 2% in number and 1.3% were Head-on crashes. Since the 

percentage of the crashes was too low, most of the crashes would not be predicted 

correctly. Hence these crashes were deleted from the analysis database. Although the 

percentage of crashes whose collision type was unknown were 9% of the total crashes, 

they were not used in the database as no specific properties of the intersection/crash 

conditions can be underlined for the occurrence of such crashes. 

 Now the analysis database contained 23216 crashes. Since some of the crashes 

were missing the speed and traffic volume data for the minor roadway, the complete 

database was considered for the analysis by initially not considering these variables in the 

analysis. 

 The training and test databases were developed by using the data for the year 

2000 for training, and 2001 for testing, except in the case of Orange County for which the 

data for the year 1999 was used in testing as the data for 2001 was unavailable. As the 

frequency of right turning crashes was very low, they were combined with the left turning 
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crashes to form a category of “turning crashes”. Therefore, the test database contains 

11726 crashes (50.6% rear end crashes, 22.56% angle crashes, 16.5% turn crashes and 

10.3% sideswipe crashes) and the training database contains 11490 crashes (50.36% rear 

end, 21.93% angle, 17.2% turn and 10.6% sideswipe crashes).  

The Multi-Layer Perceptron (MLP) and Probablistic Neural Networks (PNN) 

have been used in this study. The MLP neural network has been used several times in 

traffic safety by Abdelwahab and Abdel-Aty  (2001; 2004), Mussone et al. (1999) and 

Sayed and Abdelwahab (1998), and these studies have found MLP to be one of the best 

neural network models. Not many studies in traffic safety have used the PNN models.  

 The neural networks were developed using the Neural Network Toolbox in the 

MATLAB software. The procedure of developing the models is as follows: 

1. The training and test databases were developed as explained earlier. 

2. These datasets were normalized to unit standard deviation, as was carried out in 

the previous chapter. 

3. The number of input and output nodes was decided. The number of input nodes is 

equal to the number of input variables being considered in the model. The number 

of output nodes depends on the number of categories of the output. If the output 

has four categories, the number of output nodes can be chosen to be four. 

4. The training database was randomized so that there is a randomized presentation 

of inputs. 

5. A neural network is built based on the input and output values of the training 

database. This network depends on the number of hidden nodes and the number of 

epochs in case of the MLP and on the value of spread in case of PNN. 
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6. The test database is tested using the network developed to get the predicted 

output. 

7. This predicted output is compared to the actual output to check how well the 

network performs. From the comparison, the accuracy of prediction for different 

categories of outputs is calculated.  

8. This process is repeated for different values of hidden nodes for MLP and spread 

for PNN.  

9. The model that gives the highest accuracy is declared as the better model. 

6.3 Predicting Collision Type ignoring the AADT and speed for the Minor 
road 

6.3.1 Multi Layer Perceptron (MLP) Neural Network 
  

The MLP neural network consisted of 14 input nodes and 4 output nodes for 

predicting the four types of collisions in the form of (1, 0, 0, 0) for rear end, (0,1,0,0) for 

angle, (0,0,1,0) for turn and (0,0,0,1) for sideswipe crashes.  

 At first, only one hidden layer was used in the analysis. The number of neurons in 

this hidden layer was increased from 5 to 60 with increments of 5 neurons. The number 

of neurons with which the accuracy was highest was chosen as the optimal number of 

neurons to be used in the model. The maximum number of epochs was set to 1000.  The 

activation function for the hidden layer was tan sigmoid, and for the output layer was 

pure linear. The Resilient backpropagation (rprop) algorithm was used for the MLP 

model. The model was trained with the training data and then tested on a testing data to 

find the percentage accuracy for the complete database as well as for each individual type 

of collision types.  
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 Tables 6.1 and 6.2 illustrate the results of training and testing phases of the MLP 

NN. The numbers in the table represent the correct percentage of the particular collision 

type predicted. For example, the value of 6.0824 in Table 6.1 for the Angle Accuracy 

represents that 6.08% (194 crashes out of 3202 angle crashes) accuracy in predicting 

angle crashes. In the tables, RE indicates a rear end crash and SS indicates a sideswipe 

crash. 

 As can be clearly seen in the tables, the accuracy of the model was low. Attempts 

to increase the number of hidden neurons and adding a hidden layer could not make the 

results any better. All the crashes were being classified as Rear End crashes as they 

formed the majority in the database.  

 
Table 6-1 Training Accuracy of MLP for predicting Collision Types 

Number of Nodes Overall Accuracy RE accuracy Angle accuracy Turn Accuracy SS accuracy
5 50.3011 97.2246 6.0824 0 0
10 50.4875 98.5198 3.6625 0.20894 0.27155
15 50.4946 97.5519 5.1014 1.0029 0.67889
20 50.4946 97.922 4.3492 1.2119 0.13578
25 50.5018 96.9826 6.6056 1.2119 0
30 50.3513 96.0717 7.881 1.2119 0.27155
35 50.0215 93.7518 10.3663 2.9252 0.27155
40 50.3082 95.3886 8.0772 2.2984 0.95044
45 50.0717 93.6664 8.6658 5.0982 1.1541
50 48.7957 89.1261 11.2819 7.0205 2.1724
55 49.2975 90.0085 11.6743 7.0623 1.833
60 49.7276 91.1756 11.9032 5.8504 1.833  
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Table 6-2 Testing Accuracy of MLP for predicting Collision Types 
 

Number of Nodes Overall Testing Accuracy RE accuracy AN accuracy Turn Accuracy SS accuracy
5 50.8771 97.3717 6.8729 0 0

10 51.0743 98.5816 4.9047 0.12804 0.068493
15 50.701 97.4273 5.3733 0.72557 0.13699
20 51.0391 97.8445 5.4983 1.4085 0
25 50.9123 96.8989 7.3102 1.0243 0.068493
30 50.9264 96.8572 7.5914 0.89629 0
35 50.1021 93.6031 10.0594 2.4755 0.068493
40 50.7503 95.4109 8.8722 2.2194 0.47945
45 50.074 93.5475 8.6223 3.7132 1.2329
50 48.2212 88.0962 10.9028 5.4204 2.3288
55 49.0102 89.6815 11.184 5.8045 0.9589
60 49.4893 90.9053 11.8713 3.9693 1.0274  

 
 

 To avoid this situation, the database was balanced by first selecting all the crash 

data for the collision type that has a minimum number in the database and then randomly 

selecting an equal number of crash data for the other collision types. Thus all the 

categories will have an equal representation in the training method. This method was 

expected to increase the prediction accuracy for the categories whose representation was 

very small. Since the data was chosen in a random fashion, some of the input values 

would be excluded from the database. By repeating the process for a few times, different 

input values can be used in each cycle. The average of the results would indicate the 

average result of using this process. Thus this process was repeated five times and an 

average was taken for the accuracies to find the average accuracy of the prediction. 

Although this process increased the accuracy of the collision types other than rear-end, 

the results were not encouraging. 

6.3.2 Probabilistic Neural Network (PNN) 
 
 PNN was developed similar to the MLP neural network. The spread was varied 

from 0.1 to 2.0 with increments of 0.05. The PNN develops the model in such a manner 

that the output of training dataset is predicted accurately. Hence the training accuracy was 
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not checked for the PNN model. Only the test data was checked for its accuracy. The 

results have been indicated in Table 6.3. 

 Although PNN was able to produce better results for the angle, turn and sideswipe 

crashes, the prediction accuracy of the rear end crashes and the overall model decreased. 

Similar to the MLP, the PNN failed to produce any significant results to predict the 

collision type using the available variables. The spread was varied on a larger scale, but 

no fruitful result availed. 

 
Table 6-3 Predicting Collision Type using a PNN 

SPREAD OVERALL ACCURACY RE ACCURACY ANGLE ACCURACY TURN ACCURACY SIDESWIPE ACCURACY
0.05 39.4196 58.6567 22.4617 19.8805 13.2192
0.1 38.4334 54.7768 25.2109 21.3737 14.3151
0.2 38.6095 55.0549 25.0547 21.843 14.2466
0.3 39.2012 56.5568 24.8985 21.2031 13.9726
0.4 40.4128 59.5606 24.1799 20.5631 13.5616
0.5 41.7019 63.8993 22.6179 18.6007 11.3014
0.6 43.5193 69.5453 20.9622 16.2116 8.6301
0.7 45.7382 75.97 19.1503 13.5239 6.8493
0.8 47.1893 81.2961 16.4324 10.7509 5.137
0.9 48.4996 86.2328 13.527 8.4044 3.6986
1 49.4435 90.3769 10.7779 5.5887 3.0137

1.1 50.1761 93.9091 8.0912 3.413 2.1233
1.2 50.4931 96.287 5.4983 1.9625 1.5068
1.3 50.6622 97.8584 3.5301 1.0666 1.1644
1.4 50.7185 98.7206 2.343 0.72526 0.61644
1.5 50.8171 99.3047 1.687 0.63993 0.27397
1.6 50.8312 99.7497 1.0622 0.29863 0.13699
1.7 50.7256 99.9166 0.37488 0.17065 0
1.8 50.6692 100 0.06248 0 0
1.9 50.6622 100 0.03124 0 0
2 50.6551 100 0 0 0  

 

6.4 Using data for the Minor Roadway 
 
 The next step in the analysis was to use the data based on the minor roadway to 

predict the collision type. It was expected that adding the speed and traffic data for the 

minor roadway would produce better results. 

 143



 As the data for the flow and speeds of the minor roadway was limited, the 

database shrunk to 9801 crashes, which was almost one-thirds of the original database. 

Because of this drastic decrease, the format of some variables had to be changed. The 

light conditions were originally classified into 6 categories. But in the new database, most 

of the crashes had occurred either in daylight or dark lighting conditions. Hence the 

classes in light conditions were brought down to two. All categories except for daylight 

conditions were combined into the second category, as the lighting conditions will be 

almost be dark during the other cases. Now there were 7202 crashes in daylight 

conditions and 2599 crashes in the dark conditions. 

 In the new database, rear end crashes formed 54.5%, angle crashes formed 19.4%, 

and there were 13.6% of turn crashes and 12.6% of sideswipe crashes. This is only 

slightly different from the original database. A Chi-squared test was performed to prove 

that this data is not different from the full dataset. 

 MLP neural network was developed using the same method used in the previous 

case, except that there were 2 extra input nodes of the speed limit and AADT on the 

minor roadway. The same algorithm was used, but the results hardly improved. The same 

was tried with the PNN, but there was no significant improvement in the results. 

6.5 Neural Network Tree for Predicting Collision Type 
 
 Since the MLP and PNN performed below expectation to predict the collision 

type of the crashes, they cannot be used to satisfy our objectives. The neural networks 

were not able to perform well with four output types. Therefore a new strategy had to be 

used that could deal with this problem and also make the model significantly better. We 

developed a new idea to use a Neural Network Tree. 
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 The concept used in developing the Neural Network Tree is similar to the 

modeling used for developing a Nested Logit structure. In such a Tree shaped Neural 

Network, the classes of collision type could be wisely combined together to obtain two 

classes instead of four. It was perceived that more often than not, rear-end and sideswipe 

crashes occur along the same direction. Hence they usually have the same characteristics. 

On the other hand, angle and turn crashes usually occur because of the interference of 

traffic from one direction with the other. Therefore, they have a similar pattern. This 

resulted in a method in which the rear-end and sideswipe crashes together were combined 

into one category and angle and turn crashes into another category. Thus a neural 

network model was first developed to classify a crash into these two categories based on 

the 16 variables identified in the earlier sections. This classification would form the first 

branch of the neural network tree. The next branch would classify rear-end and sideswipe 

crashes and the third branch would classify the angle and turn crashes. The Neural 

network tree is depicted in Figure 6.1. Then the models could be used to identify the 

significant variables and identify their effect on the crashes. 
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Rear-end, Sideswipe, Angle and Turn 

Branch 
1 

Rear-end & Sideswipe Angle & Turn 

Branch 2 Branch 3

Rear-end Sideswipe Angle Turn 

 

Figure 6.1 Proposed structure of the Neural Network Tree 

 
Overall, the tree structure will be constructed in the following pattern: 

1. In the database used for prediction of the collision types, the rear end and 

sideswipe crashes will be combined to form category 1 and angle and turning 

crashes will be combined to form category 2.  

2. MLP and PNN models will be used to classify the two categories. 

3. The model with higher classification accuracy will be identified. 

4. Significant variables will be identified for the models. 

5. This model will be used on a test database to check how the variation of input 

affects the output. 

6. The previous steps will be repeated to develop the other two branches of the 

neural network tree. 

7. The Neural network tree will be formed with a neural network model at each 

node. 

 The following sections discuss developing the neural network tree by taking one 

neural network model at a time. 
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6.6 Distinguishing Rear End and Sideswipe crashes from Angle and Turn 
crashes 

6.6.1 MLP Neural Network 
 
 The database used in the previous neural network model was used. It contained 

9801 crashes for the years 2000 and 2001. The rear end and sideswipe crashes formed 

category 1 and angle and turn crashes formed category 2. The 16 input variables were 

normalized as discussed earlier. As the database contained 67% of category 1 crashes, the 

MLP program was developed so that it would randomly extract category 1 crashes from 

the training database to make them equal to the number of category 2 crashes. Hence the 

proportion of category 1 and category 2 crashes became equal in the training database. 

The model was predicted using this data and this method was repeated five times so that 

different proportions of random category 1 crashes could be chosen in each run. Then the 

average of the 5 runs was taken to find the actual output of the model. 

 As a first step, a complete model was developed to predict the collision type 

categories. The model consisted of 16 input nodes, hidden nodes varying from 5-60 with 

increments of 5, and one output node (indicating 0 or 1). The Resilient backpropagation 

(rprop) algorithm was used in the study. The maximum number of epochs used were 

1000. The results of the algorithm have been summarized in Table 6.4.  

 As can be observed from Table 6.4, the model performed satisfactorily. The best 

accuracy obtained in the testing phase is for 57.81% for 5 hidden nodes, whereas for the 

training phase is 66.38% for 40 hidden nodes. Since the test data is common for all 

models, the best model was selected based on the test results. Hence the best model was 

the MLP with 5 nodes in the hidden layer. The increase in the number of hidden nodes 

does not have a significant effect on the test accuracy. 
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Table 6-4 Summary of results of the Testing phase of MLP model for classifying crashes 
into rear-end and sideswipe crashes (cat 1) or into angle and turn (cat 2) crashes 

 
# Hidden Nodes Train Accuracy Cat 1 Accuracy Cat 2 Accuracy Test Accuracy Cat 1 Accuracy Cat 2 Accuracy

5 63.04 64.79 61.30 57.81 60.59 55.02
10 62.79 64.42 61.16 57.10 61.12 53.07
15 64.36 65.24 63.48 57.16 60.53 53.79
20 64.19 65.22 63.16 56.93 59.07 54.79
25 65.19 65.63 64.75 57.55 59.57 55.52
30 65.73 67.05 64.40 57.55 60.77 54.33
35 64.79 66.44 63.14 57.24 59.97 54.52
40 66.38 67.81 64.95 57.31 59.95 54.66
45 65.08 66.71 63.46 56.72 58.91 54.54
50 65.99 66.81 65.18 57.18 58.98 55.37
55 65.97 67.10 64.85 56.77 59.32 54.22
60 65.77 67.14 64.40 56.29 58.65 53.93  

6.6.2 PNN 
 

A model was developed using PNN to distinguish rear end and sideswipe crashes 

from angle and turn crashes. This model consisted of the same data used in the MLP 

model. As discussed in the previous PNN models, the spread was varied from 0.05 to 2 

with increments of 0.1. The best accuracy obtained, as can be seen in Table 6.5, is 

57.75%, which is almost the same as the MLP model. Hence the MLP and PNN models 

gave the same accuracies for the first branch. But the runtime of the PNN model was far 

more than the MLP model. Hence the MLP model was chosen to find the significant 

variables. 
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Table 6-5 Summary of results of the Testing phase of PNN model for classifying crashes 
into rear-end and sideswipe crashes (cat 1) or into angle and turn (cat 2) crashes  

Spread Test Accuracy Cat 1 Accuracy Cat 2 Accuracy 
1.05 57.75 59.98 55.52 
1.15 57.42 61.39 53.45 
1.35 57.13 63.19 51.07 
0.95 57.11 58.36 55.87 
1.45 57.07 64.30 49.85 
1.55 57.00 65.25 48.75 
1.25 56.99 61.93 52.04 
1.65 56.92 66.31 47.52 
1.75 56.69 66.98 46.41 
0.85 56.54 56.71 56.37 
1.85 56.47 67.80 45.14 
1.95 56.46 68.48 44.45 
0.75 56.16 56.12 56.20 
0.65 55.47 55.27 55.67 
0.55 55.41 55.33 55.49 
0.45 54.67 53.76 55.59 
0.35 54.45 53.50 55.40 
0.25 54.23 53.47 54.99 
0.15 54.17 53.44 54.90 
0.05 52.17 61.47 42.88 

 

6.7 Distinguishing Rear End crashes from Sideswipe crashes 
 
 From the database used in the first branch of the neural network tree, the rear end 

and sideswipe crashes were filtered out. These crashes were separated into categories 1 

and 2, based on whether the crashes were rear end or sideswipe. Thus the training 

database consisted of 3331 crashes and the test database contained 3243 crashes. As in 

the previous methods, the training database represented the crashes that had occurred in 

2000 while the test database consisted of crashes in 2001. In both the databases, rear end 

crashes constituted to around 80% of the crashes. So the number of rear end cases were 

matched with the number of sideswipe cases, as was done in the previous method. 
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6.7.1 MLP Neural Network 
 
 Based on the 5 runs, 16 inputs and the number of hidden nodes, which varied 

from 5 to 60, the test results showed a highest accuracy to be 55.47%. The results can be 

seen in Table 6.6. Since the number of hidden nodes were 5, another program was written 

to check if better results could be obtained by varying the number of hidden nodes from 2 

to 10. But the test accuracy was not significantly different from 55.47%. Hence the MLP 

neural network gives a classification accuracy of 55.47% to distinguish between rear end 

and sideswipe crashes. 

Table 6-6 Summary of results of the Testing phase of MLP model for classifying crashes 
into rear-end or sideswipe crashes 

# Hidden Nodes Test Accuracy RE Accuracy SS Accuracy 
5 55.47 55.46 55.49 
20 55.01 53.84 56.18 
15 54.76 53.19 56.32 
10 54.70 53.99 55.42 
45 54.64 53.99 55.28 
55 54.39 54.10 54.68 
35 54.28 52.55 56.01 
25 54.26 52.83 55.69 
40 53.98 53.35 54.62 
60 53.95 53.88 54.02 
50 53.92 53.81 54.03 
30 53.76 52.56 54.97 

 

6.7.2 PNN 
 
 This model consisted of the same data used in the MLP model. The model had the 

highest test accuracy of 57.97%, which is better than the MLP test accuracy. Hence the 

PNN model was found to perform better in classifying rear end and sideswipe crashes. 
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Table 6-7 Summary of results of the Testing phase of PNN model for classifying crashes 
into rear-end (cat 1) or sideswipe crashes  

Spread Test Accuracy RE Accuracy SS Accuracy
1.45 57.97 48.52 67.42 
1.55 57.94 47.31 68.58 
1.65 57.86 46.16 69.56 
1.75 57.69 44.49 70.89 
1.95 57.41 41.21 73.61 
1.85 57.39 42.79 71.99 
1.35 57.20 49.47 64.93 
1.25 56.75 50.71 62.79 
1.15 56.51 51.62 61.40 
1.05 56.29 52.46 60.13 
0.95 55.82 53.13 58.51 
0.85 55.54 53.61 57.47 
0.75 54.87 54.12 55.61 
0.65 54.64 54.18 55.09 
0.05 54.55 68.08 41.03 
0.55 54.22 54.09 54.34 
0.45 54.11 54.39 53.82 
0.25 53.96 54.91 53.01 
0.15 53.92 55.01 52.84 
0.35 53.85 54.74 52.95 

 

6.8 Distinguishing Angle crashes from Turn crashes 
 
 The angle and turn crashes were filtered out from the database used in the branch 

1 of the neural network tree. These crashes were categorized into category 1 and 2 based 

on whether the crashes were angle or turn crashes. The training database consisted of 

1633 crashes, out of which 932 were angle crashes. The test database consisted of 1594 

crashes out of which 60% were angle crashes. 
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6.8.1 MLP Neural Network 
 
 The best accuracy for distinguishing between angle and turn crashes was 

developed was 55.05% for a MLP neural network model with 60 hidden nodes. The 

results are shown in Table 6.8. 

Table 6-8 Summary of results of the Testing phase of MLP model for classifying crashes 
into angle or turn crashes 

 
# Hidden Nodes Test Accuracy Angle Accuracy Turn Accuracy 

60 55.05 55.37 54.73 
40 54.37 53.90 54.83 
45 54.20 53.26 55.13 
35 54.18 53.33 55.03 
55 54.00 55.04 52.96 
15 53.84 53.83 55.84 
10 53.83 52.58 55.08 
50 53.39 53.51 53.26 
20 53.08 54.76 51.39 
25 53.00 53.55 52.45 
30 52.85 55.12 50.58 
5 52.16 53.69 50.63 

 
 

6.8.2 PNN 
 

The PNN model was developed based on the same database with which the MLP 

neural network was developed. As can be seen in Table 6.9, the MLP model showed 

mildly higher results compared to the PNN model. Hence the MLP model was chosen as 

the best model for classifying between angle and turn crashes. 
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Table 6-9 Summary of results of the Testing phase of PNN model for classifying crashes 
into angle or turn crashes  

Spread Test Accuracy Angle Accuracy Turn Accuracy 
1.15 54.60 55.44 53.77 
1.25 54.37 55.22 53.52 
1.55 54.34 55.72 52.96 
1.35 54.30 55.19 53.41 
1.45 54.25 55.90 52.60 
1.05 54.12 55.44 52.81 
1.65 54.09 55.22 52.96 
1.85 54.08 55.51 52.66 
0.95 54.02 55.90 52.15 
1.95 54.02 55.44 52.60 
1.75 53.93 55.04 52.81 
0.85 53.61 55.72 51.49 
0.75 53.54 56.19 50.89 
0.45 53.42 56.11 50.73 
0.55 53.42 56.15 50.68 
0.65 53.09 55.76 50.43 
0.35 52.95 55.58 50.33 
0.05 52.62 71.41 33.84 
0.25 52.56 55.40 49.72 
0.15 52.37 55.22 49.52 

 

6.9 Summary of the Neural Network Tree 
 
 The above analysis can be summarized in the Table 6.10. The table illustrates the 

results of both MLP and PNN models with all three branches and the models selected for 

further analysis. 

 
Table 6-10 Summary of the model comparisons and the models selected for the neural 

network tree 
  Model Accuracy Model selected 

MLP 57.81% Rear end and Sideswipe vs Angle and Turn
PNN 57.75% 

MLP 

MLP 55.47% Rear end vs Sideswipe 
PNN 57.97% 

PNN 

MLP 55.05% Angle vs Turn 
PNN 54.60% 

MLP 
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RE & SS  
vs 

Angle & Turn 
(MLP) 

60.59% 55%

57.81%

 

Figure 6.2 Diagram indicating the prediction accuracies of the Neural Network Tree 

 
The tree can be represented in branches as shown in Figure 6.2. The collision type 

that the model is predicting has been written in the rectangular boxes. The type of model 

used has been listed in Italics. These boxes are branched off into the two categories that 

are being predicted. The accuracy with which the categories are predicted on the test data 

has been written between the model type and category being predicted. The overall model 

accuracy has been listed in Italics by joining the two individual collision type accuracies. 

For example, for distinguishing between angle end and turn crashes, the accuracy with 

RE vs SS Angle vs Turn 
(PNN) (MLP) 

55.37% 54.73%48.52% 67.42%

Angle

58% 55.05%

RE SS Turn 
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which the angle crashes are predicted is 55.37% and the accuracy with which the turn 

crashes are predicted is 54.73%. The overall model accuracy is 55.05%. 

6.10 Determining Significant Variables for the models 
 
 The models developed above can give a good prediction about the collision type 

of a crash. These models take into account the complete list of variables collected in the 

data collection phase. But an important phase of the analysis is to determine the variables 

that lead to an increased/decreased number of crashes with a particular collision type. For 

example, it is important to know which of the 16 input variables effects the angle crashes, 

and in what manner: whether an increase in these variables will lead to an increase or a 

decrease in angle crashes. This will illustrate the trends of the significant variables for 

each collision type. 

 The identification of significant variables was carried out by starting the modeling 

procedure by using just one variable to carry out the classification. Each of the 16 input 

variables were used individually to classify the crashes. The variable that gave the highest 

accuracy was selected as the most significant variable. Then this variable was used with 

the other 15 variables one at a time and the model accuracies were compared. The 

variable that gave the highest accuracy was chosen as the next most significant variable. 

The procedure was repeated until there was no significant change in the model accuracies 

when any of the remaining variables were added to the significant variables. These set of 

variables were chosen to be the significant variables. 

 The significant variables were found for the first branch of the neural network 

tree, i.e. to distinguish the rear end and sideswipe crashes from the angle and turn 

crashes. An MLP was written to test each variable individually with number of hidden 

 155



nodes varying from 2-25 and the activation functions in the hidden and output layer being 

tangential sigmoid and pure linear functions respectively. The range of the number of 

hidden nodes was changed because the MLP requires lesser number of hidden nodes for 

lesser input variables. The hidden neurons were increased to 35 when the number of input 

variables were more than 5. When the first significant variable was found, the second run 

of the program was conducted to use this variable individually with the rest of the 

variables. The significant variable was selected from the second run and further runs of 

the program were conducted in a similar manner.  

For the first branch of the neural network tree, the test of significance showed that 

the AADT on the Major road was the most important variable in distinguishing rear end 

and sideswipe crashes from angle and turn crashes. The rest of the significant variables 

have been listed in Table 6.11. The table shows the significant variables found in each 

run, and the increase in accuracy with an increase in significant variables. The accuracy 

of the model increased to 59.12% when all the eleven significant variables were used. 

This is slightly more than the accuracy obtained when all variables were used. Since all 

variables are not always available, using these results can help in determining the needed 

variables. 

Table 6-11 List of significant variables for distinguishing rear end and sideswipe crashes 
from the angle and turn crashes 

Run# Variables Hidden Nodes Test Accuracy RE-SS Angle-Turn
Run 1 AADT Major 12 55.50 65.12 46.86
Run 2 AADT Minor 9 56.00 65.12 46.86
Run 3 Speed Limit Minor 12 56.62 61.43 51.90
Run 4 Surface Conditions 14 56.82 56.61 57.59
Run 5 Light Conditions 14 57.38 63.37 51.63
Run 6 Major Lanes 13 57.83 57.31 58.42
Run 7 Speed Limit Major 25 58.14 59.94 56.34
Run 8 Left Turning Lanes 32 58.72 61.33 55.46
Run 9 Right Turn Channelized MN 29 58.82 56.52 61.86

Run 10 Left Turn Protected Minor 23 58.92 63.12 55.46
Run 11 Right Turn Channelized MJ 30 59.12 58.25 60.67  
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 Since the PNN model performed better in distinguishing between rear end and 

sideswipe crashes, it was used to find the significant variables for the second branch. The 

spread was increased from 0.05 to 2 with increments of 0.05. The results obtained have 

been tabulated in Table 6.12. In the table, LTP indicates Left Turn Protected lanes and SL 

indicates Speed Limit. The table indicates that the number of through lanes on the minor 

roadway was determined as the first significant variable, followed by minor LTP lanes, 

major through lanes, major LTP lanes and the major speed limit. The accuracy of the 

final model is 58.9%. 

Table 6-12 List of significant variables for distinguishing between rear end and sideswipe 
crashes 

Run# Variables Spread Test Accuracy Rear End Sideswipe 
Run 1 MN Lanes 0.25 53.94 54.93 52.95 
Run 2 MN LTP 0.35 57.09 52.19 61.98 
Run 3 MJ Lanes 0.25 57.44 50.66 65.10 
Run 4 LTP MJ 0.45 58.02 58.57 59.02 
Run 5 MJ SL 0.55 58.90 49.31 66.84 

 

The MLP neural network was used to distinguish between angle and turn crashes. 

The neural network was built similar to the first branch of the neural network tree. The 

complete list of variables is shown in Table 6.13. The most significant variable turned out 

to be the AADT on the minor roadway. The accuracy of this model was 57%, which is 

also slightly greater than the model developed considering all input variables. LTL 

indicates the total number of left turning lanes at the intersection.  

 
Table 6-13 List of significant variables for distinguishing between angle and turn crashes 

Run# Variables Hidden Nodes Test Accuracy Angle Crashes Turn Crashes
Run 1 MNAADT 32 54.33 63.8503 42.7921
Run 2 LTP MN 12 54.85 52.0856 58.2701
Run 3 Surface Conditions 18 55.4 58.5027 54.173
Run 4 LTP MJ 7 55.87 40.4278 71.0167
Run 5 MJ AADT 18 56.47 58.7166 51.7451
Run 6 LTL 18 57 44.8128 67.9818  
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6.11 Estimating a Trend in the Significant Variables 
 
 The identification of significant variables was the first step in determining how 

the input variables affect the type of collision. The effect of change in input variables has 

to be found on the type of collision. This will indicate the type of crash that is likely to 

occur when the geometric or traffic characteristics change.  

 To accomplish this, a simulation database was built with all possible 

combinations of significant input variables. This database represented crashes that had 

occurred at various crash conditions and at intersections with different values of AADT, 

number of lanes and speed limits. The simulation database was used in the relevant 

neural network to determine the expected type of collision, given the crash conditions and 

the traffic and geometric characteristics of the intersections. This output was grouped 

according to the input variables, and the trend of the output with a change in the input 

variables was determined. This procedure is explained in greater detail in the following 

sections which discuss this “simulation” process for each branch of the neural network 

tree. 

6.11.1 Simulation for Branch 1 of the Neural Network Tree 
 
 Since 11 variables were found significant in distinguishing the rear end and 

sideswipe crashes from angle and turn crashes, a simulation database was built using 

these variables. A program was written in MATLAB to build the database. The database 

was developed using the variables listed below: 

1. The AADT on the major roadway was considered between 10000 and 80000 with 

increments of 10000. 
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2. Since the AADT on the minor roadway was below 60000, it was varied from 

1000 to 60000 with increments of 6000.  

3. Speed limit for the minor roadway was varied from 25 to 55 mph with increments 

of 10 mph. 

4. Surface and light conditions were categorized as was done while developing the 

models. 

5. The number of through lanes on the Major roadway was varied from 2 to 6 with 

increments of 2. 

6. Speed limit on the major roadway was varied from 25 to 55 mph with increments 

of 10 mph. 

7. The number of left turning lanes was increased from 0 to 8 with increments of 2. 

8. The right turn channelized lanes were varied from 0 to 2 for both the major and 

minor roadways. 

9. The number of protected left turning lanes on the minor roadway was varied from 

0 to 4. 

A database was built using these crash characteristics, but with the following 

constraints, as was observed in the database collected from the six counties: 

1. The AADT on the minor roadway was either equal to or lower than the AADT on 

the major roadway. 

2. It was observed from the county databases that the minimum speed limit on the 

minor roadway was 25 mph when the AADT was less than 20000, and 30 mph 

when more than 20000. Hence this criterion was implemented. 
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3. The number of major lanes for roadways having the major AADT lesser than 

30000 was set to either 2 or 4. When the AADT was greater than 30000, the 

number of major lanes were either 4 or 6. 

4. The number of right turn channelized (RTC) lanes on the minor roadway were set 

to be either equal to or lesser than the RTC lanes on the major roadway. 

The simulated database obtained with this procedure consisted of 615600 

different crashes. This database was used in the MLP neural network model, developed 

using the crash database for the year 2000 (the training database used in the model 

development phase). The network developed using this database was used to predict the 

collision type for the simulated database. Thus results were obtained to indicate the 

collision type of each crash given the input variables. 

To establish a relationship between the input variables and the type of collision, 

the number of rear end and sideswipe crashes were determined for each value of the input 

variables. This was divided by the total number of crashes in the simulation database with 

the respective values of input variables to obtain the percentage of rear end and sideswipe 

crashes. For example, the number of rear end and sideswipe crashes classified by the 

MLP neural network model for the value of Major AADT = 10000 was found. This value 

was divided by the total crashes in the simulation database having Major AADT of 10000 

to obtain the percentage of rear end and sideswipe crashes for this value of Major AADT. 

The percentages were similarly found for the other Major AADT values (20000 to 

80000). These values were plotted on a graph to obtain the variation of rear end and 

sideswipe crashes with Major AADT. The graph was not plotted for the total number of 

rear end and sideswipe crashes because the number of crashes for each value of input 
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variable was different in the simulation database due to the constraints used while 

developing the data (that is, the number of crashes in the simulation database for Major 

AADT = 10000, 20000, etc were different). Converting the number of crashes into 

percentages gives an unbiased estimate of the relationship between the significant input 

variables and the type of collision. This percentage signifies a value where if 100 crashes 

have occurred at different intersections with AADT of 10000 (or any other input value), 

this percentage of crashes will be of the rear end or sideswipe collision type. Graphs were 

plotted for angle and turn crashes in a similar way. 

 The graphs for the significant variables have been shown below along with a 

possible explanation for the type of trends observed. The results have been compared to 

other studies, like Abdel-Aty and Keller (2005). 

1. Major AADT: The graph for the Major AADT has been shown in Figure 6.3. 

Clearly, the number of rear end and sideswipe crashes increase relative to the 

angle and turn crashes when there is an increase in AADT on the major roadway. 

This relationship can be understood by the mechanism of the type of crashes. As 

the traffic volume increases, the roadway gets more and more congested, thus 

reducing the spacing between the following vehicles. When a vehicle stops or 

decelerates, there is a higher chance of a rear end crash compared to a situation 

where the spacing between vehicles is more. Similarly, a person trying to change 

lanes is more likely to have a sideswipe crash when the traffic is more and the 

spacing between vehicles is less. Hence more of rear end and sideswipe crashes 

can be expected when the traffic volume increases. This result can be deduced 

from the analysis conducted in the previous chapter. For the rear end and  
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Figure 6.3 Variation of the collision types with Major AADT 

 
sideswipe crashes in Figures 4.9 and 4.36, the increase in crash rate is higher 

compared to the angle and turn crashes as shown in Figures 4.16 and 4.21. This 

result is also supported by Abdel-Aty and Keller (2005), who observe that AADT 

on the Major road is significant for rear end, sideswipe and right turning crashes, 

but is not significant at all for angle and left turning crashes. But the interesting 

point to note is that for a very low AADT, the number of angle and turn crashes 

are more than rear end and sideswipe crashes. This is possible because the spacing 

between vehicles is large in low traffic conditions, and there is a lesser chance of 

a rear end crash. Higher spacing between vehicles also implies that the lane 

changing maneuvers will be safer, thus reducing the possibility of a sideswipe 

crash. Thus, if a crash occurs when the AADT is low, it will have a higher chance 
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of being an angle or a turn crash. AADT was the most important factor observed 

by Greibe (2003) and Chin and Quddus (2003). 

2. Minor AADT: The pattern observed for the AADT on the minor roadway is 

similar to that of the major AADT, as has been shown in Figure 6.4. Abdel-Aty 

and Keller (2005) find that the angle, rear end and sideswipe crashes are most 

affected by the minor AADT, and turn crashes are not affected at all. 

3. Minor Speed Limit: According to Poch and Mannering (1996), total and rear end 

crashes increase and the other crash types are unaffected with an increase in 

approach speed limit. Abdel-Aty and Keller (2005) find that the speed limit on the 

minor road is significant in predicting angle, left turn and rear end crashes. But 

the increase in rear end crashes is found to be the highest due to the increase in 

the speed limit. Therefore, the increase in speed limit can be expected to increase 

the rear end crash and sideswipe crashes more than the angle and turn crashes. 

This has been found in Figure 6.5.  
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AADT on the Minor Road vs Percentage of Collision Types

0

10

20

30

40

50

60

70

80

1000 7000 13000 19000 25000 31000 37000 43000 49000 55000

AADT on the Minor Road

Pe
rc

en
ta

ge
 o

f C
ol

lis
io

n 
Ty

pe
s

RE and SS
Angle and Turn

 

Figure 6.4 Variation of the collision types with Major AADT 

 

Speed Limit on the Minor Road vs the percentage of type of collisions
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Figure 6.5 Variation of the collision types with Minor Speed Limit 
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4. Surface Conditions: According to Figure 6.6, more rear end and sideswipe 

crashes can be expected in wet surface conditions compared to dry surface 

conditions. This is true because when the surface is wet or slippery, it is takes a 

longer time to stop the vehicle, thus increasing the chances of colliding with the 

vehicle in lead. A crash is more likely to be a rear end crashes compared to an 

angle or a turn crash in such conditions. 

5. Light Conditions: When the light conditions are dark, drivers can see the vehicles 

going along in their direction clearly. Angle or turn crashes are more likely to 

happen at such conditions because the vehicle coming in the other roadway is 

difficult to spot, and hence there is a greater chance of such collisions. This has 

been observed in Figure 6.7. 
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Figure 6.6 Variation of the collision types with Surface conditions 
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Light Conditions vs Percentage of Collision Types
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Figure 6.7 Variation of the collision types with Light conditions 
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Figure 6.8 Variation of the collision types with Major Lanes 
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6. Number of Major Lanes: In the analysis conducted in the previous chapter, it was 

found that the increase in the number of lanes on the major road increases all 

types of crashes. Abdel-Aty and Keller (2005) find that the number of major lanes 

is not significant in predicting only left turning crashes. Figure 6.8 gives a deeper 

insight showing that if the number of lanes on the major road increases, the 

crashes is more likely to be a rear end or a sideswipe crash. Therefore, if an 

intersection is already subjected to high rear end and sideswipe crashes, an 

increase in number of through lanes on the major road of that intersection will 

only make the intersection more dangerous for such crashes. 

7. Major Speed Limit: The results produced in the analysis showed that the rear end 

and sideswipe crashes are more likely to happen as the speed limit on the major 

road increases, as can be seen in Figure 6.9. But at lower speed limits, angle and 

turning crashes are more likely to occur. Abdel-Aty and Keller (2005) find that 

the speed limit on the major road is only significant in predicting angle and rear 

end crashes. The study in the previous chapter found the major speed limit to be 

significant in predicting the rear end crashes. Therefore, the increase in speed 

limit can be expected to increase the rear end crash and sideswipe crashes more 

than the angle and turn crashes. However, at lower speed limits, the rear end and 

sideswipe crashes are less likely to occur because a vehicle traveling at such 

speeds can stop easily to prevent such crashes. Therefore, if there is a crash at 

lower speed limits, it is more likely to be an angle or turn crash.  
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Speed Limit on the Major Road vs Percentage of Collision Types
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Figure 6.9 Variation of the collision types with Major Speed Limit 

Number of Left Turning Lanes at the Intersection vs Percentages of Collision Types
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Figure 6.10 Variation of the collision types with Left Turning Lanes 
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8. Number of Left Turning Lanes: An increase in the left turning lanes at the 

intersection result in crashes more likely to be rear end and sideswipe crashes 

compared to angle and turn crashes, as can be seen in Figure 6.10. The possible 

reason for this phenomenon is that a greater number of left turning lanes indicates 

greater amount of left turning traffic trying to get through the protected phase. 

When the protected phase is about to end, the vehicles in the left turning bay try 

to finish the left turning movement. If a driver slows down in such a case, it leads 

to a rear end crash wherein the driver of the vehicle behind the slowing vehicle 

does not slow down (in order to finish the left turning maneuver) and rear ends 

the slowing ahead. Thus rear end crash is more likely in such a case. Also, greater 

number of left turning lanes can be expected to decrease the number of left 

turning crashes. 

9. Minor RTC Lanes: Minor RTC lanes have been found to increase the number of 

rear end crashes in the analysis conducted in the previous chapter. The pattern of 

crashes observed on increasing the number of channelized right turning lanes on 

the minor road is shown in Figure 6.11. 

10. Minor LTP Lanes: An increase in the LTP lanes on the minor roadway can 

increase the possibility of a rear end or sideswipe crash compared to an angle or 

turn crash, as can be seen in Figure 6.12. The possible explanation for this is 

similar to the theory given for rear end and sideswipe crashes being more likely 

with an increase in the total left turning lanes. 

 169



Number of Channelized Right Turning Lanes on the Minor Road vs Percentage of Collision Types
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Figure 6.11 Variation of the collision types with Minor RTC Lanes 

 

Number of Protected Left Turning Lanes on the Minor Road vs Percentage of Collision Types
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Figure 6.12 Variation of the collision types with Minor LTP Lanes 
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11. Major RTC Lanes: According to Abdel-Aty and Keller (2005), only rear end and 

sideswipe crashes are affected by a change in RTC lanes on the major road. In the 

study conducted in the previous chapter, turning and sideswipe crashes are 

affected by this variable. But the increase in sideswipe crashes is larger when the 

RTC lanes increase. Hence a crash can more likely be either a rear end or a 

sideswipe crash when the number of RTC lanes on the major increase, as is seen 

in Figure 6.13. 
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Figure 6.13 Variation of the collision types with Major RTC Lanes 

6.11.2 Simulation for the Second Branch of the Neural Network Tree 
 

A simulation database was developed in a method similar to the database built for 

branch 1. This database consisted of all possible combinations of the five significant 

input variables. The limits of the input variables were same as those used in the database 
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created for the first branch of the neural network tree. This simulated database consisted 

of 2625 crashes. A PNN model was developed using the training data of the year 2000 

for rear end and sideswipe crashes. The simulation database was used to predict the 

output and this output was summarized and plotted. The variations observed are as 

follows: 

1. Minor Lanes: Although the Table 4.18 suggests that both rear end and sideswipe 

crashes increase with the increase in number of lanes on the minor road, Figure 

6.14 shows that the chances of a crash being a sideswipe crash increase with an 

increase in the number of lanes. The possible reason for this is that the number of 

lane changing maneuvers increase with an increase in the number of lanes, thus 

leading to a greater probability of a crash being sideswipe. Abdel-Aty and Keller 

(2005) find that the number of lanes on the minor roadway does not affect either 

of the crash types. But the present analysis gives an appropriate result that has a 

good reasoning associated with it. 

2. Minor LTP Lanes: As stated in the previous section, an increase in this variable 

leads to an increase in rear end crashes. Also, the analysis for predicting the crash 

frequencies suggests that the minor LTP lanes only affect the rear end crash 

frequency. As can be seen in Figure 6.15, a crash is more likely to be a rear end 

crash when the number of LTP lanes on the minor road increase. 
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Number of Lanes on the Minor Road vs Percentage of Collision Types
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Figure 6.14 Graph indicating the variation of rear end and sideswipe crashes with the 
through lanes on the Minor road 

Number of Protected Left Turning Lanes vs Percentage of Collision Types
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Figure 6.15 Graph indicating the variation of rear end and sideswipe crashes with the 

protected left turning lanes on the Minor road 
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3. Major Lanes: Figure 6.16 suggests that the chances of a crash being sideswipe 

increase very slightly when the number of lanes on the major road increase.   

Number of Lanes on the Major Road vs Percentage of Collision Types
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Figure 6.16 Graph indicating the variation of rear end and sideswipe crashes with the through lanes on 
the Major road 

 

4. Major LTP Lanes: The trend obtained for an increase in major LTP lanes can be 

seen in Figure 6.17. As seen in the previous chapter, the sideswipe crashes double 

when the major LTP lanes increase, whereas the rear end crashes increase only 

slightly. This shows that as major LTP lanes increase, the probability of crash 

being sideswipe is higher. 

 174



Number of Protected Left Turning Lanes on the Major Road vs Percentage of Collision Types
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Figure 6.17 Graph indicating the variation of rear end and sideswipe crashes with the protected left 

turning lanes on the Major road 
 

5. Major Speed Limit: In the studies conducted for predicting the frequency of rear 

end and sideswipe crashes in the previous chapter, by Poch and Mannering (1996) 

as well as by Abdel-Aty and Keller (2005), the rear end crashes show an 

increasing trend with an increase in the speed limit on the major road. But the 

sideswipe crashes do not show any variation with speed limit. Hence the rear end 

crashes are more likely to occur as the speed limit on the major road increases.  
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Speed Limit on the Major Road vs Percentage of Collision Types
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Figure 6.18 Graph indicating the variation of rear end and sideswipe crashes with the speed limit on 

the Major road 
 

6.11.3 Simulation for the Third Branch of the Neural Network Tree 
 

The simulation database for the third branch of the neural network tree consisted 

of 13275 crashes generated by using the six significant variables identified in the model. 

The results of this analysis have been listed below. 

1. Minor AADT: In the study conducted by Abdel-Aty and Keller (2005), only the 

angle crashes are affected by the minor AADT and they show an increasing trend 

with the increase in this variable. The result obtained in the present analysis is 

consistent with this result, and has been illustrated in Figure 6.19. 
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Traffic Volume on Minor Road vs Percentage of Collision Types
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Figure 6.19 Graph indicating the variation of angle and turn crashes with the AADT on 

the Minor road 

 
2. Minor LTP Lanes: According to Figure 6.20, the chances of a crash being a turn 

crash increase with an increase in LTP lanes on the minor road. But the chances 

of a crash being an angle crash are always higher. The probable reason for this is 

that an increase in the LTP lanes implies that the traffic on the roadway is large. 

As the traffic increases, a crash is more likely to be an angle crash as can be seen 

in Figure 6.19. Hence, with an increase in the minor LTP lanes a crash is more 

likely to be an angle crash.  
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Number of Protected Left Turning Lanes on the Minor Road vs Percentage of 
Collision Types
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Figure 6.20 Graph indicating the variation of angle and turn crashes with the protected 
left turning lanes on the minor road 

Surface Conditions vs Percentage of Collision Types
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Figure 6.21 Graph indicating the variation of angle and turn crashes with the surface 
conditions 
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3. Surface Conditions:  Figure 6.21 shows that a crash is more likely to be an angle 

crash when the surface conditions are dry, wet or slippery. 

4. Major LTP Lanes: Figure 6.22 shows that a crash is more likely to be an angle 

crash for any number of LTP lanes on the major road. But the chances of a turn 

crash increase with an increase in the variable. The reasoning is similar to that 

given for Minor LTP lanes. 

5. Major AADT: As the AADT increases, turn crashes are more likely to occur 

compared to angle crashes, as can be seen in Figure 6.23. According to the crash 

frequency prediction in the previous chapter as well as in the study by Poch and 

Mannering (1996), both the collision types show an increasing trend with the 

approach volume. But Abdel-Aty and Keller (2005) report that only left turning 

crashes increase with an increased AADT on the major road. Thus this result is 

justified. But it is the exact opposite to the trend observed for minor AADT 

because as the minor AADT increases, the chances of interactions between the 

vehicles traveling on major and minor road increases that lead to a higher 

likelihood of angle crashes.  
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Number of Protected Left Turning Lanes on the Major Road vs Percentage of Collision Types

0

10

20

30

40

50

60

70

80

0 1 2 3 4

Number of Protected Left Turning Lanes on the Major Road

 P
er

ce
nt

ag
e 

of
 C

ol
lis

io
n 

Ty
pe

s

Angle Crashes
Turn Crashes

Figure 6.22 Graph indicating the variation of angle and turn crashes with the protected 
left turning lanes on the major road 

AADT on the Major Road sv Percentage of Collision Types
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Figure 6.23 Graph indicating the variation of collision types with the AADT on the major 
road 
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6. Left Turning Lanes: The result shown in Figure 6.24 is a direct reflection of the 

results obtained for LTP lanes on the major and minor roadway. 

Number of Left Turning Lanes at the Intersection vs Percentage of Collision Types
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Figure 6.24 Graph indicating the variation of angle and turn crashes with the total 
left turning lanes 

 

6.12 Summary 
 
 This study explores several methods used to identify the collision type of a crash 

given the crash conditions and the geometric and traffic characteristics of the intersection 

at which the crash has occurred. Two neural network models: Multi Layer Perceptron 

(MLP) Neural Network and Probabilistic Neural Network (PNN) have been used to 

develop the models. At first, the crashes were classified into rear end, angle, turn or 

sideswipe crashes by using these models. But the results of this analysis were not very 

encouraging. Hence a new method was developed, the Neural Network Tree, to classify 
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the crashes into their respective collision types. The tree would first classify all crashes 

into either rear end and sideswipe crashes or angle and turn crashes. Then the crashes 

would be classified to rear end and sideswipe crashes separately, and angle and turn 

crashes separately. The MLP and PNN models built performed well. They were 

compared and the best model was used for predicting the corresponding collision types. 

The significant variables were then identified for each of these models using a forward 

sequential method. This was followed by the building of simulation databases for each 

model using all possible combinations of the significant input variables. The output of the 

simulation database was used to study the influence of the input variables on the collision 

type classified. The relation between the input variables and the collision types was 

studied, and was compared to other studies. The results obtained were found to match 

very well with previous studies. For instance, for distinguishing between rear end and 

sideswipe from angle and turn crashes, Abdel-Aty and Keller (2005) observe that the 

major and minor AADT affects the rear end and sideswipe crashes more than angle and 

turn crashes, which is the same observation made is the present study. Therefore it can be 

concluded that using Neural Network Trees results in reasonably accurate results. Thus 

the Neural Network Tree can be used as an effective method in classifying various 

collision types. 

 182



7 SUMMARY AND CONCLUSIONS 
 

Intersections generally experience high crash rates. Due to the vehicles arriving 

and leaving in different directions, there are a large number of conflict points at 

intersections. This implies a greater chance of a crash occurring at these places. The 

intersections can be made safer by studying the characteristics of the intersections that 

affect different types of crashes. These properties can be controlled during the design of a 

roadway, thereby designing intersections that are less prone to crashes. 

This research delves into the safety of signalized intersections. The first objective 

was to predict the frequency of crashes at signalized intersections and to identify the 

traffic and geometric aspects of the intersections that most affect the crash frequencies. 

The second objective was to classify the crashes into their respective collision types 

based on the conditions at the time of the crash and the traffic and geometric 

characteristics of the intersection at which the crash occurred.  

The first task was to extensively review the work carried out in this field and to 

study the various techniques employed in these studies. The usage of Negative Binomial, 

Poisson, Nested Logit, Ordered Probit, Regression Trees, Neural Network Models and 

GIS techniques in some of the studies that were reviewed. The benefits of these methods 

were analyzed and it was decided to use the neural network models because of their 

various advantage, such as their ability to perform non-linear operations very efficiently, 

their capability of learning and generalizing, and their ability to produce reasonable 

results by adapting to new inputs not encountered during training. The Multilayer 

Perceptron (MLP), Probabilistic Neural Networks (PNN), and Generalized Regression 

Neural networks (GRNN) were utilized to perform the analyses. 
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The next task consisted of collecting the data necessary to perform the analysis. 

Various counties in Florida were contacted to obtain data on the signalized intersections 

and on the crashes occurring at these locations. The data was collected from Brevard, 

City of Orlando, Hillsborough, Miami-Dade, Orange and Seminole Counties. First, a 

geometry database was developed that contained all the geometric and traffic 

characteristics of the intersections. This database totally consisted of 1562 intersections 

from the six counties. Secondly, a crash database was built that consisted of the 

characteristics of all the crashes occurring at a distance of 250 ft from the intersection. 

Thirdly, the two databases were merged to form a Master Database. Finally, these 

databases were combined for all the six counties to obtain a Combined Database. This 

database was built for the years 2000-2001 as they were the common years for which the 

crash data was available for the all counties. This was followed by classifying 

intersections in each county into 19 categories such that each category represented a set 

of similar geometric and traffic characteristics. The means of each category of crashes 

were compared to the means of the respective categories in the combined database to 

identify the counties whose mean number of crashes differed considerably from the mean 

crashes occurring in the six counties combined. Then the intersections in the combined 

database were finely classified into 38 categories so that each category represented 

intersections with similar traffic and geometric aspects more accurately.  

In order to predict the frequency of crashes occurring at signalized intersections, 

the MLP and GRNN models were developed and tested using the data in the combined 

database. The crash data for the year 2000 was used for the training phase of the model 

and the data for 2001 was used for testing the accuracy in the prediction of crash 
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frequencies. The Root Mean Squared Error (RMSE) for the models was checked, and this 

turned out to be very high. To minimize the error in the prediction values, a new method 

was devised. This method first classifies intersections into safe and unsafe categories 

depending on the size of intersection (that is, the total number of lanes at the 

intersection), and then predicts the crash frequencies for the two categories separately 

using different neural network models. The MLP and PNN models were developed for 

the classification phase and the PNN model was found to perform marginally better. MLP 

and GRNN models were developed for the predicting the crash frequencies for the two 

categories, and the MLP neural network was found to perform marginally better than the 

GRNN model for both categories. The error in predicting the frequency of crashes using 

the new technique was considerably lesser than the error obtained in the previous models 

developed. This was followed by the identification of significant variables for each model 

using the forward sequential method. Then a simulation database was developed that 

consisted of 98928 intersections. The crash frequencies were predicted for these 

intersections using the models developed using the significant variables. In order to 

determine the manner in which the significant variables affect the output, the average 

number of crashes per intersection was determined for each value of the significant input 

variables and these were plotted. The graphs show if the significant variables have an 

increasing or decreasing effect on the frequency of crashes. Such models were developed 

for rear end, angle, turn (left and right turn crashes) and angle crashes. Table 5.17 

summarizes the neural network models that were considered to perform well in each 

phase of the analysis, along with the accuracy of the models. PNN was found to perform 

better than MLP in all of the classification phases, whereas MLP and GRNN performed 
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equally well in the prediction phase. Table 5.18 summarizes the effects of input variables 

on the prediction of the frequencies of different types of crashes. An increase in the 

number of through lanes on the major and minor roadway and the AADT on the major 

roadway tends to increase all types of crashes. Increase in the speed limit on the major 

roadway did not have a considerable effect on the variation of any of the crash types 

other than the rear end crashes. An increase in the channelized right turning lanes on the 

major roadway tends to increase the turn and sideswipe crashes. All crash types except 

for the sideswipe crashes increase with an increase in the protected left turning lanes on 

the minor road. Rear end and sideswipe crashes increase with an increase in the major 

LTP lanes, but all other crash types show a decreasing trend. Increase in the total number 

of left turning lanes increases total crashes at intersections. Thus the new technique was 

not only able to predict the frequencies of different types of crashes accurately, it was 

also able to identify the manner in which the geometric and traffic characteristics of the 

intersections influence the crash frequencies. 

 The next phase of the research was to classify crashes intro rear end, angle, turn 

(left and right turn) and sideswipe crash types. At first the MLP and PNN models were 

used to achieve this, but the performance of the models was not satisfactory. An 

innovative method called the Neural Network Trees was developed that classifies the 

crashes either into a category of rear end and sideswipe crashes or into a category of 

angle and turn crashes. The crashes are further classified by separate neural network 

models into their respective collision types. This has been shown graphically in Figure 

6.1. The MLP and PNN models were used in each classification phase and the better 

model was chosen for identifying the significant variables, and also in the simulation 
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phase for identifying the manner in which the input variables affect the classification. 

Figure 6.2 depicts the models that were considered to perform better and the accuracy 

attained by the models on a test dataset. The PNN performed better in classifying the rear 

end and sideswipe crashes and the MLP neural network performed better in the other two 

models. The accuracies obtained in these models were considerably better than the 

accuracies obtained in classifying crashes into the four collision types. Eleven variables 

were found to be significant in distinguishing the rear end and sideswipe crashes from 

angle and turn crashes, as shown in Table 6.11. These included the AADT and speed 

limits on the major and minor roadways, surface and light conditions at the time of the 

crash, number of through lanes on the major roadway, total left turning lanes, RTC lanes 

on both the major and minor roadways and LTP lanes on the minor roadway. The 

significant variables for the other two models have been listed in Tables 6.12 and 6.13. 

Upon using these models on the simulation datasets, the effect of the significant input 

variables on the classification of the crash types was known. For example, Figures 6.3 

and 6.4 show that an increase in the AADT on the major and minor roadways 

considerably increases the chances of a crash being a rear end or a sideswipe crash. These 

trends have been plotted in Figures 6.3 to 6.24 and have been compared to other studies 

in order to verify the results. It was found that the trends obtained were comparable to the 

outputs of other studies, thereby verifying the validity of the Neural Network Trees. 

 Thus, this thesis shows the use of innovative neural network techniques in 

prediction and classification of crashes at signalized intersections. The neural network 

techniques have produced results that are comparable to other studies. These models can 

be used to accurately predict the crash types an intersection will be most prone to. If an 
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intersection is found to have a high number of crashes, the intersection can be used in the 

model with possible improvements to check if the crash rate at the intersection decreases. 

Therefore, an optimum improvement plan for an intersection can be determined that can 

lower the crash rate. If an intersection is in its design phase, its characteristics can be used 

as an input to the models to determine the crash rate at the intersection. If it is found to be 

too high, the design can be altered to make the intersection safer. 

 Since the simulation phase of the analysis conducted for predicting the frequency 

of crashes estimated the frequency of crashes at a large combination of possible 

intersections, a program can be developed that takes an input of the traffic and geometric 

characteristics of an intersection from a user, refers to the simulation output to obtain the 

frequency of crashes at such intersections, and shows this output to the user. This 

eliminates the process of developing a neural network and training it to predict the 

frequency of crashes at different intersections. 

 The neural networks showed a satisfactory performance. The analysis shows that 

even if the neural network models are not able to perform well, they can be modified to 

obtain better results. This demonstrates the flexibility of the neural networks. On 

comparison of the MLP and PNN neural networks, both were found to perform better in 

different cases. But for classifying intersections into safe or unsafe with respect to 

different collision types, PNN always performed better. PNN was faster in training 

databases compared to MLP. PNN also demonstrated its advantages by not being trapped 

in local minima and has only one parameter that has to be varied in order to obtain 

optimum results. The only disadvantage found for PNN was that it takes a long time and 

consumes a lot of memory in simulating the results of a test database. Therefore large 
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databases had to be split up into parts in order to make the process faster and less taxing 

on the computer. But on the whole, PNN can be considered as a better method for 

classification. The GRNN and MLP neural networks showed similar performances and 

hence can be considered equally efficient in predicting values. 

 Further studies can be carried out to extend the techniques demonstrated in this 

research. Models can be developed to classify the crash injury types using the Neural 

Network Trees and studying the effects of traffic, geometric and driver characteristics on 

the injury types. The results obtained can be compared to the results of other statistical 

models such as the nested-logit and ordered-probit models. Crash frequency prediction 

models can be developed to estimate the frequency of fatal and severe-injury crashes at 

signalized intersections. Other statistical models such as the Negative Binomial and 

Poisson models can be developed using the same dataset and the results can be compared 

to check the performance the neural network models. Additional parameters like the 

signal timing can also be used to further enhance the models. 
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