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ABSTRACT

The objective of the current work is to develop novel procedures for the analysis of functional data

and apply them for investigation of gender disparity in survival of lung cancer patients. In partic-

ular, we use the time-dependent Cox proportional hazards model where the clinical information is

incorporated via time-independent covariates, and the current age is modeled using its expansion

over wavelet basis functions. We developed computer algorithms and applied them to the data

set which is derived from Florida Cancer Data depository data set (all personal information which

allows to identify patients was eliminated). We also studied the problem of estimation of a con-

tinuous matrix-variate function of low rank. We have constructed an estimator of such function

using its basis expansion and subsequent solution of an optimization problem with the Schatten-

norm penalty. We derive an oracle inequality for the constructed estimator, study its properties via

simulations and apply the procedure to analysis of Dynamic Contrast medical imaging data.
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CHAPTER 1: INTRODUCTION

The lung cancer is the number one killer for men and women in USA, since year 1987 when it

surpassed the breast cancer killing rate in women [1]. The lung cancer causes more death than 3

next most dangerous cancers combained: breasts, colorectal and pancreas. The predicted death rate

of lung cancer in year 2014 is almost 160 millions. American Lung Cancer Assosiation reports that

the number of deaths due to lung cancer has increased approximately 4.3 percent between 1999

and 2010 from 152,156 to 158,318. The number of lung cancer deaths among men has reached

a plateau but the number is still rising among women. In 2010, there were 87,740 deaths due to

lung cancer in men and 70,578 in women. The age-adjusted death rate for lung cancer is higher

for men (60.3 per 100,000 persons) than for women (38.1 per 100,000 persons). The rate of new

lung cancer cases (incidence) over the past 36 years has dropped for men (24% decrease), while it

has risen for women (100% increase). In 1975, rates were low for women, but rising for both men

and women. In 1984, the rate of new cases for men peaked (102.1 per 100,000) and then began

declining. The rate of new cases for women increased further, did not peak until 1998 (52.9 per

100,000), and has now started to decline

Most studies have reported that women receive lung cancer diagnoses at a younger median age,

suggesting that they may have an increased susceptibility to the development of lung cancer. Hen-

schke and Miettinen [16] provided evidence that, for a given level of smoking, more women than

men develop lung cancer, using baseline CT screening for lung cancer. However, not all studies

support this observation and the effects of gender on the lung cancer risk associated with tobacco

use remains incompletely resolved [10].

The initial objective of current work was to determine whether observed gender disparity in sur-

vival of lung cancer patients can be explained, at least in part, by hormonal differences between
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males and females. Gender differences in lung cancer susceptibility, presentation and survival may

result from estrogen involvement. In particular, our hypothesis was that females with stage 0, 1 or 2

lung cancer exhibit unusual survival patterns around menopausal age when hormonal instabilities

become more pronounced. This conjecture is supported by preliminary data analysis of Florida

cancer data base which contains data for cancer patients in the state of Florida between years 1986

and 2005.

Survival analylis is the tool of choise in our investigation. This branch of statistical science deals

with finding and analysing relationships between some univariate lifetime variable, which is often

referred to as failure time and some set of explanatory variables. To carry out our investigation,

we develop a Cox regression model with current age-dependent covariates, which in turn were

created as functional expansion of unknow hazard function. It is well known that survival of a lung

cancer patient is strongly correlated with age. To account for this fact, patients are usually grouped

by their age at diagnosis and the age group numbers act as categorical covariates. This approach

works very well for more advanced stages of cancer where survival of a patient beyond 2-3 years

is very unlikely. However, for early stages of cancer where average survival time is much longer, a

patient might go into remission which is interrupted by an age-dependent event (say, menopause).

In order to investigate how survival rates depend on the current age of a patient, one needs to

include it into the model together with survival time. Since the current age, the survival time and

the age of diagnosis are functionally related, we represent the age dependent component of the

hazard function via its expansion over a wavelet basis, in particular, Haar and Mexican hat wavelet

bases [15].

The rest of the dissertation is organized as follows. Chapter 2 provides background information.

In particular, section 2.1 introduces main notions, such as censoring and truncation, and main

techniques in survival analysis, such as the Kaplan-Meier estimator, the Cox proportional hazard

model, and accelerated failure time model. Section 2.2.1 reviews wavelet techniques. Section

2



3.3 presents a preliminary study of gender and age-dependent survival rates. In particular, Section

3.3.1 introduces wavelet model for hazard and survival functtions which allows to take into account

current age of a patient while analyzing survival rates. Section 3.3.2 contains comprehensive

description of the data. Section 3.3.4 contains results of our study. Section 4 contains father

developing of the functional data analysis applied to tensor data. Chapter 4 devoted to another

interesting topic - denoising of the medical data. Finally, Section 5.2 concludes the paper with the

proposal on future work.
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CHAPTER 2: BACKGROUND INFORMATION

2.1 Survival analysis

Survival analysis deals with the death of biological organisms, failure in mechanical systems or

generally with timing of events, i.e., the time elapsed from a specific time origin until the event

occurs. In practice an event time could be, for example, the time until tumor recurrence( length

of remission, the time until a car engine fails, time of death from a particular disease, time for

unemployed to find a job, etc. One can see that there is a possibility that a time-to-event will not

be observed due to many causes, one of them is that the event has not occur during the time of

observation. We call the case of incomplete observation - censoring. The necessity of designing

methods for analysis that accommodate censoring is the primary reason for developing models and

procedures for time-to-event data. Prior to development of these procedures , incomplete data were

treated as missing data and omitted from the analysis. This resulted in the loss of information and

introducing bias in the estimated quantities, which lowers efficacy of the studies.

2.1.1 Basic definitions

We are following below [28] Assume for the moment that we know the distribution function of

events in interest. Let F (·) denote the distribution function with corresponding probability den-

sity function f(·), let T denote a non negative random variable representing the lifetimes of indi-

viduals in some population. Then the probability that an individual survives till time t is given by

4



the survival function:

S(t) = P (T ≥ t) = 1− F (t) =

∫ +∞

t

f(x) dx. (2.1)

The hazard function specifies the instantaneous rate of failure at T = t given that the individual

survived up to time t and is defined as:

h(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
. (2.2)

The hazard function is also referred to as mortality rate, it can assume values in [0,∞).It is easily

verified that h(t) specifies the distribution of T , since:

h(t) = −dS(t)/dt

S(t)
= −d log(S(t))

dt

Upon integrating h(t) over (0, t) we obtain another useful quantity- the cumulative hazard func-

tion H(t):

H(t) =

∫ t

0

h(x) dx = − log(S(t)) (2.3)

Therefore knowing the hazard function is enough to find the distribution function F (t) and proba-

bility density function f(t) as:

F (t) = 1− exp(−
∫ t

0

h(x) dx) f(t) = h(t) exp(−
∫ t

0

h(x) dx)

There are couple of useful formulas one can easily derive from the above given information and

basis principals: The well known mean value of the random variable T , E(T ) can be expressed

5



using the survival function S(t) as :

E(T ) =

∫ ∞
0

S(t) dt

Another interesting function is the mean residual life at time T , denoted by MRL(T ).For indi-

viduals of age T , it is the expected remaining lifetime, defined as:

MRL(T ) = E(t− T |t > T ) =

∫∞
T
S(t) dt

S(T )
(2.4)

It is clear that MRL is the area under survival curve to the right of T divided by S(T ).

2.1.1.1 Censoring and truncation

There are three main types of censoring: right, left and interval censoring. The right censoring

is the one that occurs most often. This type arises when we do not observe the failure time due

to terminating of the experiment or due to withdrawal of the subject from observation. It is very

useful to introduce a binary random variable δ which indicates whether we have observed a true

failure time:

δ =


1, if T ≤ tc

0, if tc < T

(2.5)

Thus, in every survival experiment we observe an iid pairs (Yi, δi), where

Yi =


Ti if T ≤ tc

tc, if tc < T

(2.6)

6



Hence, for the n observations we can construct a joint probability distribution function assuming

we know p.d.f. for the one observation f(yi). That joint p.d.f. is called the likelihood and is

denoted by L. The expression for L is easily derived as:

L =
n∏
i=1

[f(yi)]
δi [S(yi)]

1−δi

Another type of censoring is the so called left censoring when the event of interest already occurred

at the beginning of observation time, but it is not known when exactly. The left censoring is much

rare than right one, the examples of the left censoring include:

• the moment of being infected with a sexually-transmitted disease

• time at which teenagers begin to drink alcohol

Finally there is one more type of censoring: interval censoring. The interval censoring occurs if the

exact time when event occurs is not known precisely, but an interval bounding this time is known.

For example, a study of a light bulb life where we screw bulbs into sockets and then check whether

they are on or off once a day is the example of the interval censoring with the interval one day.

One need to distinguish censoring from truncation. Truncation is a procedure where a condition

other than the main event of interest is used to screen patients. Here, we cite an example of right

truncation [7]. Early in the AIDS outbreak, patients with AIDS were recruited to study the time

from being infected with HIV to development of AIDS. At the time of the study, many people were

infected with HIV but had not yet developed symptoms of AIDS.

In the research below we shall be concerned only with right censored data.

7



Table 2.1: Hypothetical drug study (+ indicates a censored value)

Group Length of complete remission(weeks)
Treated 6 13 13+ 15+ 19 19+ 22 25+ 30 44 49+ 99 112+

Nontreated 5 8 9+ 11 13+ 18 18 19+ 25 30 37 44 51

2.1.1.2 Nonparametric methods

In real life situation it is a rare case when the distribution function is known a priory. In order

to conduct statistical inference one needs methods that make no assumptions on the shape of the

underlying distribution function, the so called non parametric methods. It is well understood that

non parametric methods are not a panacea -all they are based on some kind of assumptions. The

goal on non parametric methods is to retrieve as much information as possible from the given data.

We will review here three main non parametric methods ranged by difficulty.

2.1.1.2.1 The Kaplan-Meier estimator

Consider the hypothetical data for cancer remission :

The naive approach would be to treat the data as if there are no censored observations. The empir-

ical survival function(esf) denoted as Sn(t) is defined as:

Sn(t) =
#{of observations > t}

n
=

#{ti > t}
n

As we mentioned above, the attempt to ignore censoring leads to biased estimation. To account for

the censoring Kaplan and Meier introduced the product-limit estimator is their seminal paper [23].

The following notation will be used:

8



• ni -the number of patients alive and not censored just before yi

• di - the number of patients died at time yi

• pi = P (T > yi|T > yi−1)

• qi = 1− pi

Note that the death is the generic word for the event of interest. The Kaplan-Meier estimator is

defined as :

Ŝ(t) =
∏
yi≤t

(
ni − di
ni

)
Figure 2.1. shows the result of application Kaplan-Meier estimator to our toy example data in Table

2.1. One can see that ignoring censored data indeed introduces bias in estimation of the survival

function.

Figure 2.1: Comparison of naive approach (ESF) and Kaplan-Meier (K-M) estimators for the

survival data (2.1)
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2.1.1.2.2 Cox-Proportional Hazard Model

The Cox-Proportional Hazard model, the Cox model for short, is neither parametric, nor non-

parametric model, it is a semi-parametric model. Cox model offers association of hazard function

with covariates and, therefore, provides a very, versatile tool for survival analysis. It assumes that

the hazard function is of the form

h(t|x) = h0(t)exTβ, (2.7)

where x(t) = (x1(t), ..., xn(t)) is a n-dimensional measurable covariate and β is the n-dimensional

regression parameter. Let us consider two sets of predictors from the same model: X and X∗.

Taking the ratio of hazard functions, we obtain the following hazard ratio (HR):

HR =
h(t|X∗)
h(t|x)

= exp

[
p∑
i=1

(X∗ − X) β

]
. (2.8)

The fact that hazard ratio is independent on time, is the manifestation of the Cox Model and is

responsible for the name- Proportional Hazard.

Let T , C and x be, respectively, the survival time, the censoring time and their associated covari-

ates. Correspondingly, let Y as in (2.6) be the observed time and δ = I(T ≤ C) be the censoring

indicator as in (2.5). It is assumed that T and C are conditionally independent given x and the

censoring mechanism is noninformative. When the observed data (xi, Yi, δi), i = 1, ..., n, forms an

i.i.d.random sample from a certain population(x, Y, δ), a complete likelihood of the data is given

by:

L =
∏
i∈u

f(Yi|xi)
∏
i∈c

S̄(Yi|xi) =
∏
u

h(Yi|xi)
n∏
i=1

S̄(Yi|xi) (2.9)

10



where the sets of indices c and u refer to the censored and uncensored data respectively, and

S̄(Yi|xi), h(Yi|xi) and f(Yi|xi) are the conditional survival function, conditional hazard function

and the conditional density function of T given x.

In order to present the likelihood function of Cox’s proportional hazards model explicitly, more

notation is needed. Let t01 < · · · < t0N denote the ordered observed failure times. Let (j) provide

the label for the item falling at t0j , so that the covariates associated withN failures are x(1), . . . , x(N).

Let Rj denote the risk set right before the time t0j .

Rj =
{
i : Yi ≥ t0j

}
.

Using assumption (2.7)of the proportional hazards model , the likelihood in (2.9) becomes:

L =
N∏
i=1

h0(Yi)e
xTi β

n∏
i=1

exp(−H0(Yi) exp(xTi β)),

where H0(·) =
∫
h0(t) dt is the cumulative baseline hazard function. In the Cox proportional

hazard model, the baseline is unknown and has not been parametrized. Consider the ”least infor-

mative” non-parametric modelling forH0(·), in whichH0(t) has a possible jump hj at the observed

failure time T 0
j . More precisely, let H0(t) =

∑N
j=1 hjI(t0j ≤ t). Then

H0(Yi) =
N∑
j=1

hjI(i ∈ Rj) (2.10)

Using (2.10), the logarithm of likelihood of (2.9) becomes

N∑
j=1

{log(hj) + x(j)
Tβ} − hjI(i ∈ Rj)−

n∑
i=1

{
N∑
j

hjI(i ∈ Rj) exp(xTi β)

}
(2.11)
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Taking the derivative with respect to hj and setting it to zero, we obtain:

ĥj =

∑
i∈Rj

exp(xTi β)


−1

Substituting ĥj back into (2.11) and adding the penalty term, we obtain the penalized Cox likeli-

hood:

l =
N∑
j=1

xTj β − log

∑
i∈Rj

exp(xTi β)


− n d∑

j=1

pλ(|βj|) (2.12)

where d is the dimension of β. The penalized likelihood estimate of β is derived by maximizing

(2.12) with respect to β. With a proper choice of pλ, many of the estimated coefficients will be zero

and hence, the corresponding variables do not appear in the model. This achieves the objectives of

the variable selection. To justify the better models, various criteria are used, the most popular of

them isAkaike Information criterion(AIC), see e.g. [28].

2.1.1.2.3 Cox Model for Time-Dependent Variables

The great advantage of the Cox model it is its flexibility and expandability. The case of time-

dependent covariates is the example of the above statement. Given a situation involving both

time-independent and time-dependent predictor variables, we can write an extended Cox model

that incorporates both types as shown below:

h(t,X(t)) = h0(t) exp

[
p1∑
i=1

βiXi +

p2∑
j=p1+1

δjXj(t)

]
(2.13)
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(see, e.g. [24]). Equation (2.13) is similar to the equation (2.7) in a sense that both contain base-

line function h0(t). Exponential part in equation (2.13) contains, however, both time-independent

predictors, as denoted by Xi and time-dependent predictors denoted by Xj . To assess values of δj

and coefficients βi, the maximum likelihood estimation (MLE) procedure is used, which assumes

that the hazard at time t depends on the value of Xi(t) at the same time t. However, it is possible

to modify the definition of the time-dependent covariates to allow for a ”lag-time” effect. MLE’s

are obtained by maximizing a (partial) likelihood function. However, the computations for the

extended Cox model turn out to be more complicated than for the Cox model (2.7), because the

risk sets used to form the likelihood function are more complicated with time-dependent variables.

The apparent simplicity of the model (2.13) has its drawbacks, the most serious of which is the

time dependence of the hazard ratio.

2.1.1.2.4 Cox Likelihood maximization

Let’s start with non-penalized version of Cox likelihood. The goal is to find vector ~β where:

β = arg max
β


N∑
j=1

δj

XT
j β − log

∑
i∈Rj

exp(XT
i β)


where X is the matrix of covariates, which can be time dependent. Most common algorithm to

solve the maximization problem is the Newton-Raphson algorithm. Starting with some initial

guess β0 it proceeds iteratively computing:

βi+1 = βi −H−1(βi)G(βi) (2.14)
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where G(·) is the gradient vector of log-likelihood and H(·) is the matrix of second derivatives of

the log-likelihood. The kth component of the gradient vector G(β) is calculated as:

∂l

∂βk
=

N∑
j=1

δj

[
xjk −

∑
i∈Rj xik exp(Xiβ)∑
i∈Rj exp(Xiβ)

]
(2.15)

the p × p matrix Hof the second derivative of the log-likelihood , has components given by the

following formula:

Hk,m =
N∑
j=1

δj

[∑
i∈Rj xik exp(Xiβ)

∑
i∈Rj xim exp(Xiβ)

(
∑

i∈Rj exp(Xiβ))2
−
∑

i∈Rj xikxim exp(Xiβ)∑
i∈Rj exp(Xiβ)

]
(2.16)

The simple observation brought by [37] will allow us to change notation and to simplify equations

above. Since we have our design matrix sorted according to survival times, each event time j

defines a risk set Rj which is represented by the rows of matrix X starting with j. We can there-

fore consider exp(Xiβ)∑
i∈Rj

exp(Xiβ)
as probability p(j)

i from probability distribution P j . Taking that into

consideration we can rewrite equations for gradient and Hessian as:

∂l

∂βk
=

N∑
j=1

δj

[
xj,k − 〈X·,k〉(j)

]

Hk,m =
N∑
j=1

δj

[
〈X·,k〉(j) 〈X·,m〉(j) − 〈X·,kX·,m〉(j)

]
where 〈·〉(j) is the average over distribution created from the risk set Rj . Properties of that distri-

bution will be described below.

14



2.1.1.2.5 Accelerated failure time model

Accelerated failure time model is a fully parametric approach. The model assumes that response

is log-linear with respect to covariates, i.e.:

Y = log(T ) = ~Xβ + Z (2.17)

where Z is a random variable which does not appear in the inference. distribution. Then for

T ∗ = expZ one has

T = exp(Y ) = T ∗ exp( ~Xβ) (2.18)

Assuming that T ∗ and T have pdf’s f ∗(·) and f(·) cdf’s F ∗(·) and F (·), respectively, define func-

tion g(·) such that T = g(T ∗). Simple algebra yields:

f(t) = P (T < t) = P (T ∗ < g−1(t)) = F ∗(g−1),

hence,

f(t) = f ∗(g−1(t))

∣∣∣∣∂g−1(t)

∂t

∣∣∣∣ .

If T ∗ has the hazard function h∗0(t∗), the above pdf can be rewritten as :

f(t) = h∗0(g−1(t))

∣∣∣∣∂g−1(t)

∂t

∣∣∣∣S∗(g−1(t))

Using comparison of equation (2.18) with definition of g(t), the derivative can be evaluated and

the following expression for the hazard function obtained:

h(t| ~X) = h∗0

(
t exp(− ~Xβ)

)
exp(− ~Xβ) (2.19)
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The equation (2.19) makes apparent the word ”accelerated” in the name of the model.

2.2 Functional Data Analysis

Functional Data Analysis (FDA) is a way to represent discrete data by continuous functions (see

e.g. see [21]) with intention to achieve the following goals:

• reduce the noise

• find the underlying pattern

• predict the outcomes for the new data

Functional Data Analysis tends to treat discrete data as functional entities (see e.g. [21]) by as-

suming the existence of the intrinsic structure of the data. In practice, functional data are observed

discretely as pairs (tj, yj) where

yj = f(tj) + εj, j = 1, · · · , n.

is possibly blurred by the measurement errors. We usually wish to declare function f(t) as smooth,

i.e., the pair of adjacent data values, yj and yj+1 are linked together and unlikely to be too different

from each other. If this property doesn’t hold there would be nothing much to be gained by treating

the data as functional rather than just multivariate. Assuming that the observed data values are

values of some function, the first task is to convert these values to a function, computable for

any sensible argument. Due to the error, one can not use an interpolation algorithm and need to

employ some kind of smoothing technique. The basic ideas of FDA can be described as follows.

Consider the model: fi(x) =
∑N

i=1 φi(x)ci. The system {φ(·)j}∞1 is called the basis system for
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f . A basis function system is a set of known functions that are linearly independent and can

approximate arbitrary well any function by taking a weighted sum of a sufficiently large number

of these functions. The most trivial basis function system would be the collection of monomials:

1, t, t2, t3, · · · , tn, · · · .

. In spite of its simplicity, the system above is used very rarely in real application of FDA due to

the very high value of the conditional number of the transformation matrix and thus difficulties to

invert the transformation. Therefore it is important to select a right basis system. Below we discuss

the three most popular bases: the Fourier basis, the B-spline basis and the wavelet basis.

• Fourier Basis. {
ei2π k t

}∞
k=−∞

– natural representation of periodic functions

– exelent from the computational point of view is the sample data are equidistant.

– can be problematic forrepresentation of the non-periodic functions.

The best known expansion, the basis is periodic and the period is usually equal to the length

of interval over which the observation took place. Fourier series generally yields expan-

sions which are uniformly smooth, but they are inappropriate to some degree for data with

discontinuities in the function itself or in low order derivatives.

• B-splines.

Consider with a partition of some interval (a, b) We call that partition a knot sequence {ti}.
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Thus the B-splines of the first order will be the indicator function for that partition, i.e. :

Bi1(x) =


1, , if t ∈ [ti, ti+1)

(n+ 1)/2, otherwise.
(2.20)

with the constraint:
∑

iBi1(t) = 1, for all t. Starting from the first order, all following

orders of B-splines obtained recursively:

Bik = ωikBi,k−1 + (1− ωi+1,k)Bi+1,k−1 (2.21)

where

ωik(t) =


t−ti

ti+k−1−ti
, if t 6= ti+k−1

0, otherwise.

B-splines constitute a common choice for non-periodic data. To define a spline one needs to

divide the interval, over which a function is to be approximated, into L subintervals . Over

each subinterval, a spline is a polynomial of a specified order m. Adjacent polynomials joint

up smoothly at the breakpoints, moreover, derivatives up to order (m − 2) also match up.

The advantages of the B-splines are:

– good for non cyclic data

– very effective computationally

– tricky knot placement can be a drawback of B-splines

• Wavelets

The wavelet expansion of a function f gives a multiresolution analysis, providing informa-

tion on a sequence of degrees of locality. It copes very well with discontinuities or rapid

changes in the behavior of the function. More information on wavelets are given in the
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section below.

2.2.1 Wavelet Basis

We are following below [8]. The fundamental idea behind wavelets is to analyse a function accord-

ing to scale and location simultaneously. It introduces univariate function ψ, defined on R ,which,

when subjected to the fundamental operations of shifts and dyadic dilation, yields an orthogonal

basis of L2(R). That is, the functions

ψj,k(·) = 2j/2ψ(2j · −k), j, k ∈ Z (2.22)

form a complete orthogonal basis of L2(R). One can view wavelet as a ”bump” with a compact

support(though not necessary). Dilation squeezes or expands the ”bump” and translation shits it.

Thus ψj,k is a scaled version of ψ centered at the dyadic integer k/2j . The large value of j -the

smaller support of ψj,k.

The requirement that the set {ψj,k}j,k∈Z forms an orthonormal system means that any function

f ∈ L2(R) can be represented as a series

f =
∑
j,k∈Z

〈f, ψj,k〉ψj,k (2.23)

Wavelets corresponding to small values of j contribute to broad resolution of f ; those correspond-

ing to larger values of j give finer details. The known advantage of using wavelet basis versus other

type of bases is that it accommodates jump discontinuities in the underlying function. Wavelets

allow one to investigate behaviour of a spatially inhomogeneous function without any assumptions

on the size or location of the intervals of smooth (or stable) behaviour. The decomposition (2.23)

is analogous to the Fourier decomposition of a function f in terms of complex exponents, but there
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is important differences:

• The exponential functions have global support. Thus, all terms in the Fourier decomposition

contribute to the value of f at a point x. On the other hand, wavelets usually either have

compact supports or have fast decay at infinity. Thus, only the terms in (2.23) corresponding

to ψj,k with k/2j near x make a large contribution at x. In this sense, representation (2.23)

is local.

• The coefficients in wavelet decompositions usually encode all information needed to tell

whether f is in a smoothness space, such as the Sobolev and Besov spaces. For example, if

ψ is smooth enough, then a function f is in the Lipschitz space Lip(α,L∞(R)) iff

sup
j,k

{
2j(α+1/2)| 〈f, ψj,k〉 |

}
<∞

.

In this work we have used only two types of wavelets: Haar and Mexican Hat wavelets. We give

father details below.

2.2.1.1 The Haar Wavelets

The Haar functions are known since 1910. They are the most elementary wavelets. While they

have many drawbacks, the main one being lack of smoothness, they illustrate, in the most direct

way, some of the main features of wavelet decompositions. For this reason, we shall consider in

some detail the properties that make them suitable for numerical applications. We will follow here
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[15]. Consider the following subspace V0 of L2(R):

V0 = {f ∈ L2(R) : f is constant on (k, k + 1] , k ∈ Z}

Thus,

f ∈ V0 ⇔ f(x) =
∑
k

ckφ(x− k)

where

φ(x) = I{x ∈ (0, 1]} =

 1, x ∈ (0, 1]

0, x /∈ (0, 1]
(2.24)

The translated function denote as φ0,k = φ(x−k), k ∈ Z. Applying dilation, define a new linear

subspace of L2(R) by

V1 = {h(x) = f(2x) : f ∈ V0}

It is clear that V1 ⊂ V0. Upon normalization the system of basis function of V1 is {φ0,k}, where

φ0,k(x) =
√

2φ(2x− k), k ∈ Z

Following the pattern one can continue building spaces:

... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2...

and their basis’s:

φj,k(·) = 2k/2φ(2k · −j), j, k ∈ Z

Since every function in L2(R) can be approximated by a piecewise constant function, it means

that the linear span of the system of functions {{φ0,k}, {φ1,k}, ...} is dense in L2(R). This system
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is not an orthogonal basis in L2(R), but it is possible orthogonalize it. Introducing orthogonal

complement of V0 to V1:

W0 = V1 	 V0 (2.25)

One can see that W0 is the linear subspace of L2(R) spanned by a certain orthogonal basis. The

following function:

ψ(x) =

 −1, x ∈ (0, 1/2]

1, x /∈ (1/2, 1]
(2.26)

starting the basis in W0, which is the system {ψ0,k} where

ψ0,k = ψ(x− k), k ∈ Z

The graph of Haar functions is presented on Fig.(2.2). We will use names: ”mother wavelet”

for function ψ(·) and ” father wavelet” or ”scaling function” for φ(·). From(2.25) we have V1 =

V0 ⊕W0 the construction can be easily extended to every Vi as:

Vi+1 = Wi ⊕ Vi = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wi (2.27)

It is also can be proved that
⋃
i Vi is dense in L2(R), and

L2(R) = V0 ⊕
∞⊕
i=0

Wi (2.28)

The equation(2.28) means the for every function f(·) from spase L2(R), the following expansion

takes place:

f(x) =
∑
k

α0kφ0k(x) +
∞∑
j=0

∑
k

βjkψjk(x) (2.29)

where α0k and βjk are coefficients of this expansion.
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Figure 2.2: Graphs of ψ−1,0 and ψ9,2

2.2.1.2 Mexican Hat Wavelets

In many numerical applications, the orthogonality of the translated dilates ψj,k is not vital. Mexican

Hat wavelet(MHW) is the one of the non orthogonal wavelets. MH originates from the negative ,

normalized second derivative of the Gaussian function.The formula for MHW is

ψ(t, σ) =
2√

3σ
√
π

(
1− t2

σ2

)
exp

(
− t2

2σ2

)
. (2.30)
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Figure 2.3: Graphs of the MHW functions ψ0,3(t, 1) and ψ9,2(t, 1)

The graph of Mexican Hat Wavelet functions is presented on Fig.(2.3).

2.2.1.3 Wavelet thresholding

Sometimes wavelet estimators may produce a bit of spikes. This reflects the fact that unnecessary

high oscillations are included. Therefore, it is natural to introduce the selection procedure for the

coefficients in wavelet expansion(2.29). Most natural would be to suppress the smallest coefficient

by introducing a threshold. There are several thresholdning procedures, the most common among

them are two: the soft and the hard thresholdings.

• Soft thresholding is when we are replacing all βjk in(2.29) by:

β̂Sjk = (|β̂jk| − t)+ sign(β̂jk) (2.31)

where t is some threshold. This estimator has also name:wavelet shrinkage estimator.
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• Hard thresholding is when we are replacing all βjk in(2.29) by:

β̂Hjk = β̂jkI{|β̂jk| > t} (2.32)

The common problem of thresholding is how to chose a proper value of threshold t ([26]). The

threshold t must be chosen just above the maximum level of noise. Assuming the Gaussian white

noise with variance σ2, it can be proved that the maximum amplitude of the noise has a very high

probability of being just below

T = σ
√

2 logeN

, where N is the number of coefficients. The fact that the threshold increases with N is due to the

tail of Gaussian distribution and the increasing of the amplitudes of the coefficients for large values

of N .
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CHAPTER 3: METHODS AND RESULTS

3.1 Regularization

Consider regression problem

y = Xβ (3.1)

where X ∈ Rn×m is a design matrix, y ∈ Rn is the data we want to fit and β ∈ Rm is the vector of

coefficients. The solution is the well known least square estimatorβ̂ and is given by:

β̂ = (XTX)−1XTy

It is also known (see, e.g., [36]) that E(β̂) = β and Cov(β̂) = σ2(XTX)−1, thus

E||β̂||2 = ||β||2 + σ2(XTX)−1.

Therefore, in the case of ill-conditioned XTX one will have inflated estimation error, and as con-

sequence, the poor prediction properties. There are several methods of regularization designed to

mitigate the problem, from which we will consider Ridge regression and Lasso.

3.1.1 Ridge Regression

Ridge regression has been used as an alternative estimation method in multiple linear regression

models when there is multicollinearity among the covariates. With the multicollinearity, the ridge

type estimator is suggested because it has a smaller total mean square error (MSE) than the max-

imum likelihood estimator. When the multicollinearity is large, the reduction in MSE can be
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significant. The ridge regression estimator was first proposed by Hoerl and Kennard [17] who

replaced problem (3.1) by the following optimization problem:

β̂
ridge

= argmin
β

[
(y− Xβ)T (y− Xβ) + λ

p∑
j=1

β2
j

]
(3.2)

The solution is found by the method of Lagrange multipliers and yelds the following rigde estima-

tor:

β̂
ridge

= (XTX + λI)−1XTy

The ”ridge” addition to the diagonal of XTX clearly reduces the high conditional numbers of the

matrix XTX. It can be proved( see, e.g., [36] or [14]) that the quantity XTX+λI is always invertable

and there is always a unique solution β̂
ridge

. Introducing the linear estimator:

Hridge = X(XTX + λI)−1XT

which is analogous to ”hat” matrix in ordinary regression, the degrees of freedom can be defined

as df = Tr(Hridge). The degrees of freedom df are used in calculation of the Akaike information

criterion (AIC).

AIC = n log(RSS) + 2df

the minimum of which helps to choose the value of λ.

The question now is how to apply the formalism above to our case of time-dependent Cox log-

likelihood? Ridge regression is a special case of the penalized likelihood approach was studied by

Huang and Harrington [19]. The most elegant solution is to use the following trick from [38]. Con-

sider the following Cholesky decomposition of the negative second derivative of the log-likelihood:

∇2l(β) = XTX (3.3)
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where∇ = − ∂
∂β

and ∇2 = − ∂
∂β∂βT

and set up the pseudo response vector:

Y = (XT )−1
{
∇2l(β)β −∇l(β)

}
(3.4)

Now we can rewrite Cox proportional hazards penalized optimization problem similar to equation

(3.2) :

β̂ = argmin
β

[
1

2
(y− Xβ)T (y− Xβ) + λ

p∑
j=1

β2
j

]
(3.5)

where X and Y are understood in terms of (3.3) and (3.4). That method can be applied not only to

ridge but also to another types of penalties. The next problem is the selection of the thresholding

parameter λ.

3.1.2 Lasso

By the Cox proportional hazards model, the hazard function for the patient i is given as

λi(t) = λ0(t) exp(xTi β)

Then the partial log-likelihood can be expressed as:

l(β) =
N∑
i=1

δi(x
T
i β − log(

∑
j∈Ri

exp(xTi β))

where Ri is the set of indices of the patients in the risk set at time ti. For the cases that impose

serious collinearity problem, instead of maximizing the partial likelihood directly, Tibshirani [33]
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proposed to estimate β under the L1-constraint subject to ||β||1 ≤ s:

β̂ = arg max l(β)

or, equivalently by the Lagrange multiplier version:

β̂ = arg min{−l(β) + λ||β||1} with λ > 0.

for λ > 0 .

We will consider in detail the shooting algorithm for lasso, reported first by Fu [11] The description

will follows the lines of the tutorial of Pendse [29] Since we are able to reduce the log-likelihood

optimization problem to the least squares problem (see equations (3.4) and (3.5)). Without loss of

generality the following objective function will suffice:

h(β) =
1

2
||y− Xβ||22 + λ||β||1 (3.6)

Denote textbfX = [x1, · · · , xp] , β = [β1, · · · , βp], X(−i) = [x1, · · · , xi−1, xi+1, . . . , xp] and

β(−i) = [β1, · · · , βi−1, βi+1, · · · , βp]. Denoting yi = y − X(−i)β(−i), the following representation

will take place:

h(β) =
1

2
||y− Xβ||22 + λ||β||1 =

1

2
||yi − xiβi||22 + λ||β(−i)||1 + λ|βi|

Replace problem (3.6)by the series of one-dimensional optimization problems (3.7) and carry out

minimization for i = 1, · · · , p, in a loop till process converges.

βi = argmin
βi

{
1

2
||yi − xiβi||22 + λ||β(−i)||1 + λ|βi|

}
(3.7)
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.

3.2 Denoising and optimization

Another application of FDA which was under study in current work, is the low rank tensor de-

noising. The recent progress in technology has made possible a multitude of novel applications,

which typically require large amount of multidimensional data, such as large-scale images, 3D

video sequences, and neuroimaging data (see, e.g., [4], [32]). To match the data dimensionality,

tensors (also called multiway arrays) have been proven to be a natural and efficient representation

for such massive data. There is a difficulty in a regression setup, of treating the clinical outcome

as a response and treating images as the covariates. Indeed, classical regression methods use co-

variates presented in a vector form. Naively turning an image array into a vector is clearly an

unsatisfactory solution. For instance, (see, e.g., [39]), with a typical anatomical MRI image of size

256 × 256 × 256, it implicitly requires 2563 = 16, 777, 216 regression parameters. Both com-

putability and theoretical properties of the classical regression models are compromised by this

ultra-high dimensionality. It is natural to attempt the solutions which adpplies the FDA (see, e.g.,f

Reiss and Ogden [30] )

Our study is motivated by the analysis of Dynamic Contrast medical imaging data when one has

to observe time changes of some organ recorded as a series of images. From mathematical point

of view this problem can be viewed as a tensor recovery problem (see, e.g., [32]) for an extensive

description. We will follow notation, from [12] which also contains an appropriate algorithm for

the problem in hand.
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3.3 Study of gender and age-specific survival rates

3.3.1 Wavelet model for hazard and survival function

The objective of our research is to check a hypothesis that the hazard functions for male and female

cancer patients differs from each other, depending on the ages of the individuals. It is well known

that probability of survival decreases when one’s age increases, however, this general phenomenon

may not be valid for relatively young individuals in the presence of a life-threatening disease like

lung cancer. We attempt to use wavelets to separate time-dependent part of the hazard function is

(2.13).

Wavelets have been successfully applied in the areas of signal and image processing, physics, etc.

They also proved to be useful in nonparametric statistics (see, e.g. [1]:[3]) The known advantage

of using wavelet basis versus other type of bases is that it accommodates jump discontinuities in

the underlying function. Wavelets allow one to investigate behaviour of a spatially inhomogeneous

function without any assumptions on the size or location of the intervals of smooth (or stable)

behaviour.

Using Haar wavelet basis, generated by a scaling function φ(x) given by equation (2.24) and by

shifts and dilations of the mother wavelet ψ(x) given by equation (2.26), we obtain:

ψjk(x) = 2j/2ψ(2jx− k), j = 0, 1, ...,∞,

k = 0, 1, ..., 2j−1; x ∈ [0, 1] (3.8)

In order to use wavelet basis for representation of a function, one has to scale the argument of the

function to the interval (0, 1). For example, if we considered survival times of patients at ages

between 40 and 75 , so that (t/12 +Ai) ∈ (0, 1), we need to scale t/12 +Ai to (0, 1) by applying
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transformation

x = [t/12 + Ai − 40]/35.

Here Ai is the age of ith patient. In order to account for time-independent covariates as well as for

dependence of the hazard rate on the current age of individual, we represented individual hazard

functions as

hi(t) = h0(t) exp(f(
t

12
+ Ai)) exp(~Xi

~β) (3.9)

where Ai the age of individual i at the time of diagnosis, t is survival time in months, ~Xi is the row

vector of time independent covariates of an individual i and ~β is a column vector of coefficients.

Note that t
12

+ Ai is the age of individual i when his survival time is t months, so that function

f( t
12

+Ai) represents the relationship between survival time and current age of a patient. Since, the

functional form of f(·) is unknown, we estimate function f(·) non-parametrically. In particular, to

take advantage of both modern techniques of non parametric statistics and software which allows

to estimate coefficients in the Cox regression model (2.12), we represent f(·) using wavelet basis.

Using wavelet basis (3.8) and equation(2.29), any function f(x) can be written as

f(x) = aφ(x) +
∞∑
j=0

2j−1∑
k=0

bjkψjk(x) (3.10)

however, since the resolution of the data is limited, one usually applies

f(x) = aφ(x) +
J∑
j=0

2j−1∑
k=0

bjkψjk(x) (3.11)

where J is the maximum resolution level. The average survival time for our patients was 28 months.

Based on this, we have chosen J = 4, which gives us 31 time dependent coefficients.

Cox model is very popular also because of its simplicity - the time dependent parts of the hazard

function are canceled from the partial likelihood. However, using the two dimensional time vari-
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able allows us to keep them. We will illustrate that with a simple example. Consider an artificial

sample of data:

Table 3.1: Artificial Data for time dependent likelihood

Survival Time Dead(1) or Censored(0) Age of Diagnostics

1 1 50

2 1 45

3 0 61

5 1 51

6 1 50

Assume that we will represent time-dependent part of hazard function using the following model:

exp

(
3∑
i=1

βiφi(T )

)
= exp (β · X(T ))

Here T is the current age of the patient. Then the partial likelihood can be easily written as:

L(β) =
exp (β · X(51))

exp (β · X(51)) + exp (β · X(46)) + exp (β · X(62)) + exp (β · X(52)) + exp (β · X(51))
·

exp (β · X(47))

exp (β · X(47)) + exp (β · X(63)) + exp (β · X(53)) + exp (β · X(52))
·

exp (β · X(56))

exp (β · X(56)) + exp (β · X(55)))

It is clear that there are no cancellation of time-dependent functions.
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3.3.2 Data description

For the project we used partial records from the Florida cancer data base. The data base contains

data for cancer patients in the state of Florida between years 1986 and 2005. The lung cancer

patients data contains almost 220,000 records. For the sake of privacy we only used information

about age at diagnosis, stage and type of cancer, smoking patterns and treatment information for

each of the patients. The age distribution of the patients is shown in the Figure3.1.

Figure 3.1: Overall age distribution of cancer patients

One can see that the distribution is heavily biased toward upper ages: 60-80 years old. Since our

goal is to study survival of women of menopausal age (40−61 y.o.), we restricted our studies to the

ages 35-65 years old which left us with 82049 cases from which 35858 records are for women and

46189 records are for men. The rationale for this data reduction is that survival patterns in children
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and young adults and old people differ significantly from those for mature adults. In the course of

the data analysis, we discovered that survival patterns vary greatly with the type of cancer.Type of

cancer was encoded using ”Histology” variable denoted asHi, i = 1 · · · 8. In the course of the data

analysis, we discovered that survival patterns vary greatly for the earlier (Stages 0, 1 and 2) and

the later (Stages 3-9) of cancer and they depend on the type (histology) of cancer as well. Thus,

from the start we have split out data into four categoriess:

• Early Stages, females - 8943 records.

• Earlier stages, males - 9448 records.

• Advanced Stages, females - 26915 records

• Advanced Stages, males - 36741 records

3.3.3 Preliminary results

To simplify analysis we’ve introduced new categorical variable ”AgeGrade” with the help of which

we divided patients onto 8 groups according age of diagnostics. The coding details are given in the

Table 3.2.

At early phase of analysis we fit Cox proportional hazards model with the help of proprietary

software SPSS, using the following model:

SurvMonths = SurvMonths[Status = Dead](Race,Age, Y Birth, Stage, Tobacco, AgeGrade)

The Chi-square value is 8650 for 6 degrees of freedom which makes the p-value close to zero

which also indicates the validity of assumptions of the Cox model. We have plotted cumulative

hazards for all for groups of patients separated by age groups (see Figures 3.3, 3.4, 3.5, 3.6) . For

35



earlier stages of cancer, the dependance on age is pretty regular and intuitive, with the exception

that the 4th age group patients ( ages 45-50) have higher survival probability than 3d age group

( ages 40-45) for both sexes. Taking age group 1 (age 35) out from consideration the following

dependence of the cumulative hazards on age is observed for both sexes:

2 < 4 < 3 < 5 < 6 < 7

Figure 3.2: Distribution according type of cancer
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Table 3.2: Age groups coding

Coding Age of Diagnostics

Age grade1 age ≤ 35

Age grade2 35 < age ≤ 40

Age grade3 40 < age ≤ 45

Age grade4 45 < age ≤ 50

Age grade5 50 < age ≤ 55

Age grade6 55 < age ≤ 60

Age grade7 60 < age ≤ 65

As for advanced stages of cancer (Stages 3-9), one can see that contrary to common understanding

of hazard rate increasing with age female patients show quite irregular dependence on age, but

male patiens show the same pattern as for earlier stages. (see Figures 3.5 and 3.6 below). The list

of age groups ordered according to increasing hazard rate for females:

3 < 2 < 6 < 5 < 4 < 7

and for males:

2 < 4 < 3 < 5 < 6 < 7
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Figure 3.3: Hazard For Early Stages of Cancer (females)
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Figure 3.4: Hazard For Early Stages of Cancer (males)
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Figure 3.5: Hazard For Advanced Stages of Cancer(F)
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]

Figure 3.6: Hazard For Advanced Stages of Cancer(M)

The coding is decrypted in the Table 3.3. The distribution of patients according to the type of

cancer is shown in the Figure 3.2. The majority of data corresponds to cancer types: H6(35%),

H5(25%), H1(18%) and H8(16%) or together for 94% of all data.
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Table 3.3: Types of cancer and their code names

Coding Type of Cancer
H1 Neuroendocrine/small cell carcinoma
H2 Neuroendocrine/carcinoid tumor
H3 Neuroendocrine/atypical carcinoma
H4 Neuroendocrine/mixed tumors
H5 Squamous cell carcinoma
H6 Adenocarcinoma
H7 Bronchido-alveolar carcinoma
H8 Other NSCLC

The graphs of cumulative hazard rates have one thing in common: each curve has the negative

second derivative. Since hazard function is just the derivative of corresponding cumulative hazard,

hazard function is decreasing. Since hazard can’t be negative, the safe assumption would be that

there exists a limiting value of hazard which can be different for each age group. Based on this

heuristic arguments, we have a justification for fitting the right end of the cumulative hazard graph

with a linear function. The left side of each graph of a cumulative hazard function is increasing

fast initially with the rate of growth decreasing afterwards. For this reason, the following approach

was employed: cumulative hazard function was fit with a linear function for the larger survival

times and with a Michaelis-Menten function of the form ( c·t
d+t

) for the smaller times. Therefore we

fit the cumulative hazard function by Λ(t) of the following form:

Λ(t) =


a · t+ b, if t ≤ tst

c·t
d+t
, if t > tst

(3.12)
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where the a, b, c, d and tst are positive constants satisfying the following conditions:

c = (b+a·tst)2
b

d =
a·t2st
b

There is the additional rationale behind choosing the Michaelis-Menten function for fitting: the

equation of Michaelis-Menten is the basic equation of the enzymatic kinetics. It describes the

dependence of the rate of catalyzed reaction on the concentration of the substrate. That equation

has two parameters: the saturation value - which we call ”assumed cumulative hazard”, and ”half-

way” constant which we call ”the critical time” and interpret as the time which it takes to decrease

the mortality rate from the initial value to some saturated value, which is more descriptive for the

advanced stages of cancer.

Fitting the cumulative hazard function by Λ(t) allows us to estimate the critical time at which

survival patterns change as well as the parameters of the survival time. The fitting is carried out

using the least squares and produces very accurate results for all types of cancer and for all age

groups. See the Figure(3.3.3) The very first look on the results reveals the basic features of the

survival. Females have in general lower values of hazard than males. The transition process is

more abrupt in the case of advanced cancer that in earlier stages. Somehow counter intuitive

results indicates that saturated hazard rate is higher for earlier stages, while assumed cumulative

hazard shows the opposite tendency. The ”critical time” parameter appears to indicate the duration

of the renewal process and it is in inverse relations with a risk to die. For advanced stages it is

about one year and 3-4 years for early stages.

The survival patterns differ significantly for the types of cancer but is is hard to see any gender

related differences so far.
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Figure 3.7: Cumulative hazard rate function fit for the squamous cell carcinoma patients. Left:
Early Stages. Right: Advanced Stages. Top: Females. Bottom: Males.

3.3.4 Results of the analysis using the time-varying Cox regression model.

Since the advanced stages of lung cancer are associated with the very short survival time, we

restricted our attention to patients who have stages 1 or 2 of cancer. This operation left us with

Table 3.4: Results of fit of squamous cell carcinoma patients

Gender Stage a · 10−4 critical time assumed cum.hazard
F. Early 9.95 44.3 0.75
F. Advanced 8.25 13.5 0.82
M. Early 10.76 37.8 0.80
M. Advanced 8.56 12.7 0.85
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only 26% of the original data (57147 of the 219685 records).

We also separated our data according to the sex and the type of cancer. In the dissertation we

are presenting three most common cancer types: Neuroendocrine/small cell carcinoma(H1), Squa-

mous cell carcinoma (H5) and Adenocarcinoma (H6).

Using Haar wavelets as our basis we’ve constructed the following representation of the hazard

function:

f(t) =
5∑
j=0

2j−1∑
k=0

βj,kHaarPsi
(

2j(t− Agemin)

Agemax − Agemin
− k
)

where HaarPsi(·) is given by formula (3.8). We have generated vectors of functional values for

all 6 categories and then Cox proportional hazard regression was carried out. That procedure let

us have estimations of coefficients βj,k. After removing non significant coefficients the hazard

functions were reconstructed. The results are shown in the Tables (3.4-3.9).
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Figure 3.8: Hazard of squamous cell carcinoma patients. Left: Early Stages. Right: Advanced

Stages. Top: Females. Bottom: Males.

Table 3.5: Wavelet coefficients for female patients of Neuroendocrine/small cell carcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β3,1 -0.267 (42 · · · 48) β1,0 -0.093 (36 · · · 60)

β4,6 0.183 (54 · · · 57) β3,2 -.090 (48 · · · 54)

β4,10 0.521 (66 · · · 69) β3,4 -0.071 (60 · · · 66)

β5,10 -0.517 (51 · · · 52.5) β4,1 -0.262 (39 · · · 42)

β5,23 0.990 (70.5 · · · 72) β4,2 -0.355 (42 · · · 45)

β4,3 -0.157 (45 · · · 48)
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Figure 3.9: Haar wavelets fit of time dependent part of hazard function of Neuroendocrine/small
cell carcinoma patients. Left: Early Stages. Right: Advanced Stages

Table 3.6: Wavelet coefficients for male patients of Neuroendocrine/small cell carcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β2,1 -0.195 (48 · · · 60) β1,0 -.075 (36 · · · 60)

β4,4 -0.554 (48 · · · 51) β2,0 -.128 (36 · · · 48)

β4,5 -0.286 (51 · · · 54) β4,9 0.065 (63 · · · 66)

β4,9 -0.168 (63 · · · 66) β4,12 -0.572 (72 · · · 75)

β5,1 -0.989 (37.5 · · · 39) β5,6 0.257 (45 · · · 46.6)

β5,6 0.579 (45 · · · 46.6)

β5,8 -0.988 (48 · · · 49.6)

β5,10 -0.533 (51 · · · 52.5)

β5,20 -0.485 (66 · · · 67.5)
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Table 3.7: Wavelet coefficients for female patients of Squamous cell carcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β2,1 .140 (48 · · · 60) β3,0 .530 (36 · · · 42)

β2,2 .160 (60 · · · 72) β4,11 .376 (69 · · · 72)

β3,5 .250 (66 · · · 72) β5,10 -.216 (51 · · · 52.5)

β5,13 -.194 (55.5 · · · 57) β5,14 .125 (57 · · · 58.5)

β5,22 -.435 (69 · · · 70.5) β5,15 .137 (58.5 · · · 60)

β5,25 .638 (73.5 · · · 75) β5,19 .109 (64.5 · · · 66)

Table 3.8: Wavelet coefficients for male patients of Squamous cell carcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β2,2 -.145 (60 · · · 72) β2,2 -.147 (60 · · · 72)

β3,1 -.213 (42 · · · 48) β3,3 -.037 (54 · · · 60)

β3,4 -.049 (60 · · · 66) β4,3 -.101 (45 · · · 48)

β3,5 -.153 (66 · · · 72) β4,5 .068 (51 · · · 54)

β4,8 .071 (60 · · · 63) β4,12 .510 (72 · · · 75)

β4,10 -.171 (66 · · · 69) β5,6 -.173 (45 · · · 46.5)

β5,14 -.096 (57 · · · 58.5)

β5,26 .629 (75 · · · 76.5)
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Figure 3.10: : Haar wavelets fit of time dependent part of hazard function of squamous cell carci-
noma patients. Left: Early Stages. Right: Advanced Stages

Table 3.9: Wavelet coefficients for female patients of Adenocarcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β3,3 -.099 (54 · · · 60) β2,1 -.036 (48 · · · 60)

β3,4 -.138 (60 · · · 66) β3,1 -.070 (42 · · · 48)

β4,4 .253 (48 · · · 51) β4,11 .355 (69 · · · 72)

β4,9 -.085 (63 · · · 66) β5,11 -.124 (52.5 · · · 54)

β4,10 .114 (66 · · · 69) β5,13 .093 (55.5 · · · 57)

β5,2 1.254 (39 · · · 40.5) β5,22 .236 (69 · · · 70.5)

β5,12 -.283 (54 · · · 55.5) β5,25 -.721 (73.5 · · · 75)
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Figure 3.11: : Haar wavelets fit of time dependent part of hazard function of Adenocarcinoma
patients. Left: Early Stages. Right: Advanced Stages

Table 3.10: Wavelet coefficients for male patients of of Adenocarcinoma

Earlier Advanced

β Value Ages covered β Value Ages covered

β4,8 -.101 (60 · · · 63) β1,0 -.052 (36 · · · 60)

β4,11 .300 (69 · · · 72) β2,1 -.030 (48 · · · 60)

β5,12 -.187 (54 · · · 55.5) β4,1 -.213 (39 · · · 42)

β5,14 -.164 (57 · · · 58.5) β4,2 -.131 (42 · · · 45)

β5,15 -.165 (58.5 · · · 60) β4,4 -.066 (48 · · · 51)

β5,21 -.376 (67.5 · · · 69) β4,12 .572 (72 · · · 75)

β5,26 -.586 (75 · · · 76.5) β5,12 .123 (54 · · · 55.5)

β5,27 .706 (76.5 · · · 78) β5,16 .069 (60 · · · 61.5)

Since the wavelet coefficients are time dependent, the computation of Cox regression appears to

be involved. The attempt to use already available software was successful for Haar wavelets. We

used SPSS feature of introducing time-dependent covariates into the model. The attempt to do the
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same with the Mexican Hat wavelets which are more appealing for Functional Data Analysis was

not successful - since Mexican Hat wavelets are not orthogonal, we have encountered situation of

highly correlated variables which leads to crashing of the algorithm. The problem can be avoided

by using some kind of regularization. We were using two types of regularization: the ridge (L2

penalty) and the lasso (L1 penalty).
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3.3.4.1 The ridge penalty

Algorithm 1 L2 penalized Cox regression
β = initial β0 and ε = 0.001

while ||βi+1 − βi|| > ε do

calculate l; ∇ = − ∂l
∂β

; ∇2 = − ∂2l
∂β∂βT

calculate X ∇2 = XTX

Y← (XT )−1
{
∇2l(βi)βi −∇l(βi

}
λi+1 ← trace((∇2−λi)−1∇2)

||βi||22

βi+1 ← (XTX + λI)−1XTY

end while

The algorithm of the ridge regression can be summarized as follows- see Algorithm 1.

3.3.4.2 The lasso penalty

The lasso [33] is a regularized estimation approach that constrains the L1 norm of coefficient

vector. Instead of the log-likelihood we deal with its penalized version:

lpen(β) = l(β)− λ
p∑
i=1

|βi| (3.13)

where the first term is the log-likelihood which is concave and twice differentiable. Thee second

term, the penalty, is concave and continuous but is not differentiable at points where βi = 0. To

avoid that difficulty, we follow the idea of Goeman [13]. Consider directional vector v ∈ Rp and

the corresponding derivative:

l′pen(β, v) = lim
t→0

(lpen(β + tv)− lpen(β)) (3.14)
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That gradient can be defined for every β as the scaled direction of the steepest ascent.

gi(β) =


Gi(β)− λsign(βi) if βi 6= 0

Gi(β)− λsign(Gi(β)) if βi = 0 and |Gi(β)| > λ

0 otherwise

(3.15)

where Gi(β) is the ith component of the gradient of the non-penalized log-likelihood given in

equation (2.15). The gradient is ,therefore, discontinuous at every point where βi = 0. The second

derivative of the penalized log likelihood can also can be understood in terms of the quadratic form

of non penalized log likelihood:

l′′pen(β, v) = v′Hv (3.16)

where components of the matrix H are given by equation (2.16).

Consider second order Taylor approximation in the direction of the gradient (3.15) given by:

lpen(β + t · g(β)) ≈ lpen(β) + t · l′pen(β, g(β)) +
t2

2
l′′(β, g(β)) (3.17)

One needs to understand that the equation above has a meaning only within a subdomain of conti-

nuity of the gradient (3.15) i.e. for 0 < t < tedge, where:

tedge = min
i

{
− βi
gi(β)

: sign βi = − sign gi(β) 6= 0

}

The optimal value inside the continuity domain according to equation(3.17) is at:

topt = −
l′pen(β, g(β))

l′′pen(β, g(β))
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we only can accept topt if it is smaller than tedge The update for β then proceed as follows:

βi+1 = βi + min(topt, tedge)g(βi) (3.18)

The algorithm described by equation(3.18)does not involve computational expensive operations

such as matrix inversion, but requires a large number of iterations for convergence. For us it

is undesirable because we need to calculate time-dependent likelihood which is computationally

expensive process. Therefore the update in the work of Goeman [13] was beneficial for us. Goeman

proposed to use Newton-Raphson algorithm, which is known for its fast convergence rate, and to

switch to update described by equation(3.18) when Newton-Raphson step has failed.

Algorithm 2 L1 penalized Cox regression
β = initial β0 and ε = 0.001

while ||βi+1 − βi|| > ε do

calculate l; G = ∂l
∂β

; H = ∂2l
∂β∂βT

calculate gi(β) =


Gi(β)− λsign(βi) if βi 6= 0

Gi(β)− λsign(Gi(β)) if βi = 0 and |Gi(β)| > λ

0 otherwise

calculate l′pen = Abs(g) and l′′pen = eTg ∂2l
∂β∂βT

eg

calculate topt = − l′pen(β,g(β))

l′′pen(β,g(β))
and tedge = min i

{
− βi
gi(β)

: sign βi = − sign gi(β) 6= 0
}

βi+1 ← βi + min(topt, tedge)g(βi)

end while

The results are presented on the Figures 3.13-3.15. There are no informative patterns regarding

advanced stages of cancer. But for the earlier stages we can see quite distinct maximum in the

hazard rate for female patients comparing to male patients for all types of cancer presented. The

absolute value therefore is not large. This is the explanation why it was to hard to show the
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dependence of the hazard rate on age. The values at maximum of hazard rates for female patients

vary from 0.01 for small cell carcinoma to 0.04 for Squamous cell carcinoma and up to to 0.1 for

Adenocarcinoma. Whether the change in hazard rates is due to menopause or not is not possible

to state based just on statistical data, but definitely there is exist some king of dependence and we

provided evidence for deeper investigations of the phenomena.

Figure 3.12: : Current age dependent part of hazard function for early (left) and advanced (right)

stages of Squamous cell carcinoma

Figure 3.13: : Current age dependent part of hazard function for early (left) and advanced (right)

stages of Neuroendocrine/small cell carcinoma
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Figure 3.14: : Current age dependent part of hazard function for early (left) and advanced (right)

stages of Adenocarcinoma
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CHAPTER 4: ESTIMATION OF MATRIX-VARIATE FUNCTION.

4.1 Introduction

In vivo optical imaging exploits contrasts agents which interact with visible and near-infrared

wavelengths in living tissues. Compared with another types of imaging like X-ray and magnetic

resonance imaging (MRI), optical imaging has the major benefit of being able to exploit a rich

palette of contrasts. Recently, considerable progress was achieved with Dynamic Contrast En-

hanced (DCE) imaging. This method is used intensively in brain science and oncology. DCE has

a great potential for cancer detection and characterization as well as for monitoring in vivo the

effects of treatments.

The penetration of the contrast agent in living tissue is defined either by passive transport ( dif-

fusion) or active transport mechanisms. In each particular case the dynamic of contrast can shine

light on deep internal cell processes and pathways such as receptor activity, antigen expression,

endocytosis etc, see e.g. [35], [27], [22]. Intuitively it is clear that the change in the amount of

contrast agent over time can be described by a continuous function, which opens opportunity for

Functional Data Analysis methods. Consider the problem of estimation of a smooth matrix-variate

function f : [a, b]→ Rm1×m2 on the basis of its discrete noisy measurements

Yi = f(ti) + εξi, Yi, fi, ξi ∈ Rm1×m2 , i = 1, · · · , n. (4.1)

Here, ξi are i.i.d. with matrix-variate normal distribution N(0, Im1 × Im2) and function f is such

that each of its components is a smooth function and, for each ti, matrices f(ti) have low ranks.

The objective is to recover the matrix-variate function f . Since observations Yi, i = 1, · · · , n,

form a tensor, problem of estimating f is the problem of recovery of a sparse tensor from its noisy
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observations. Denoting the 3-dimensional tensors of observations, values of function of interest

and errors by Y , f and ξ, respectively, obtain the following model

Y = f + εξ. (4.2)

In the literature, there have been roughly three categories of solutions to establishing association

between matrix/array covariates and clinical outcome [18]

1 Voxel-based methods, which take the image data at each voxel as responses and clinical

variables such as age and gender as predictors, and then generate a statistical parametric map

of test statistics or p-values across all voxels. Since the relationship between the correlation

of voxels is not taken into consideration, this method we will not explore father.

2 FDA wa takes a one-dimensional function as predictor. Fitting such models commonly in-

volves representing functions as a linear combination of basis functions which are either

pre-specifie, or obtained from principal component decompositions.

3 Two step strategy: carrying out a dimension reduction followed by fitting a model.

Problems like (4.1) appear in image processing, medical imaging and computer vision. For exam-

ple, in the case of Dynamic Contrast Enhanced medical imaging, one obtains a series of matrices

where each of the matrices represents an image at a particular time instance and each of the pixel

represents an amount of the contrast agent in a unit volume of tissue. Since the amount of contrast

agent can only change gradually, each component of the matrix-variate function is itself a smooth

function of time. Each of the images, however, does not necessarily form a smooth function since,

for example, metastases of a tumor usually do not form a smooth continuous structure. Further-

more, since the amounts of contrast agent in a similar tissue types are proportional to each other,
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one expects that many of the time-varying components of f are either equal or proportional to each

other in value.

Due to these similarities, one can expect that if each of the functions is expanded over the same

basis {φj(t), j = 1, 2, · · ·}, the coefficients of the expansion should form low rank matrices with

decreasing norms. For this reason, problem (4.2) is related to both the matrix regression and the

linear regression problem.

4.2 Notations

Below, we provide a brief summary of the notation used throughout this chapter. Let A ∈

Rm1×m2×M be a 3-dimensional tensor and B,B1, B2 ∈ Rm1×m2 be matrices. Denote the k × k

identity matrix by Ik. Denote elements of a matrix B by Bj1,j2 .

• For any vector η ∈ Rp, we denote the standard l1 and l2 vector norms by ‖η‖1 and ‖η‖2,

respectively.

• For any numbers, a and b, denote a ∨ b = max(a, b) and a ∧ b = min(a, b).

• We define the scalar product of matrices 〈B1, B2〉 = Tr(BT
1 B2) where Tr(·) denotes the

trace of a square matrix.

• For any matrix B denote by

‖B‖1 =
m∑
j=1

σj(B) and ‖B‖2 =

(
m∑
j=1

σ2
j (B)

)1/2

with m = m1 ∧m2,

respectively, the trace(nuclear), and Frobenius norms of matrix B. Here σj(B) are the

singular values of B in decresing order. Also, ‖B‖ = σ1(B) is the spectral norm of matrix
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B.

• Denote the L2 norm of tensor A by ‖A‖2 :

‖A‖2 =

[
m1∑
j1=1

m2∑
j2=1

M∑
i=1

(
Aj1,j2i

)2

]1/2

• Denote Kronecker delta function by δk1,k2: δk1,k2 = 1 if k1 = k2, otherwise δk1,k2 = 0.

• For the tensor T ∈ Rl×m×k and the matrix M ∈ Rl×n the tensor O ∈ Rn×m×k is the following

product:

O = T ∗M =
l∑

i=1

Ti ⊗mi

where mi is the ith column of the matrix M and Tiis the ith ”slice” of the tensor T and the

operation follows the following scheme:

1 Unfold tensor T to matrix MT ∈ Rm·k×l

2 Multiply MT and M: MO = MT ·M; MO ∈ Rm·k×n

3 Fold matrix MO into tensor O

In what follows, we use the symbol C for a generic positive constant, which is independent of n,

m1, s and l, and may take different values at different places.
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4.3 Estimation procedure and its risk

Consider a basis {φj(t), j = 1, 2, · · ·} on the interval [a, b]. Expand each of the components of f

over this basis and approximate each slice f(ti) by

fA(ti) =
M∑
l=1

Alφl(ti), i = 1, · · · , n, (4.1)

where coefficients Al ∈ Rm1×m2 , l = 1, · · · ,M , are matrices. Consider matrix Φ ∈ RM×n

Φ =


φ1(t1) · · · φ1(tn)

· · · · ·

φM(t1) · · · φM(tn)


and let W = n−1 ΦΦT be matrix with elements

W j,k =
1

n

n∑
i=1

φj(ti)φk(ti)

. Let f, fA ∈ Rn×m1×m2 and A ∈ RM×m1×m2 be the 3-dimensional tensors of the values of

functions f(t) and fA(t) at points ti, i = 1, · · · , n, and of M matrix coefficients in the expansion

(4.1). Then,

fA = A ∗ Φ =
M∑
l=1

Al ⊗ φl

where φl ∈ Rn is the lth column of the matrix Φ. We obtain an estimator Â of A by minimizing

the penalized empirical risk

Â = argmin
A

(
1

n
‖Y − fA‖2

2 + λ

M∑
l=1

ρl‖Al‖1

)
, (4.2)
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where ρl = W (l,l). We subsequently estimate f(t) by

fÂ(t) =
M∑
l=1

Âlφl(t), t ∈ [a, b]. (4.3)

and measure the quality of the estimator (4.3) by

R(fÂ = n−1‖fÂ − f‖2,

the L2 norm of the difference of tensors fÂ and f at points t1, · · · , tn.

In what follows, we assume that f is sparse, so that coefficients Al ∈ Rm1×m2 in (4.1) are the low

rank matrices.

Let L be any subset of the set {1, 2, · · · ,M}. Then, the following oracle inequality holds.

Theorem 1 Let eigenvalues of matrix W be bounded above and below

0 < wmin = σmin(W ) ≤ σmax(W ) = wmax <∞. (4.4)

Let λ ≥ 2 ε√
n

√
2τ log n+ 2 log(m1 +m2) + logM . Then, for any τ > 0, with probability at least

1− 2n−τ one has

1

n
‖fÂ − f‖2 ≤ inf

Ã

[
3

n
‖fÃ − f‖

2
2 +

16λ2w2
max

w2
min

(m1 ∨m2)
∑
l∈L

rank(Ãl)

]
. (4.5)

Where ‖
∑

l∈LAlφl − f‖2
2 is the bias,

∑
l∈L rl is the number of ”essential terms”, ε2

n
is the error

of estimating one value. σmax
σmin

is the conditional number of the basis matrix (if the grid is uniform,

W = 1
n
ΦΦT = I and σmin = σmax = 1). σmax is magnification due to the basis matrix. (2τ log n+

2 log r0) is the log-factor (price for adaptability.
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Proof of Theorem 1. Note that, for any Ã ∈ Rm1×m2×M one has

1

n
‖Y − fA‖2

2 + λ
M∑
l=1

ρl‖Âl‖1 ≤
1

n
‖Y − fÃ‖

2
2 + λ

M∑
l=1

ρl‖Ãl‖1

Then, after some algebraic manipulations, for the true tensor f which generates data, obtain

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 +

2

n

〈
Y − f, fÂ − fÃ

〉
+ λ

M∑
l=1

ρl

{
‖Ãl‖1 − ‖Âl‖1

}
. (4.6)

Since Y − f = εξ where ξ ∈ Rm1×m2×M is a tensor with i.i.d. N(0, 1) entries, obtain

〈
Y − f, fÂ − fÃ

〉
= ε

〈
ξ, fÂ − fÃ

〉
= ε

n∑
i=1

〈
ξi,

M∑
l=1

(Âl − Ãl)φl(ti)

〉

= ε
n∑
i=1

M∑
l=1

φl(ti)
〈
ξi, Âl − Ãl

〉
= ε

M∑
l=1

Tr

[
(Âl − Ãl)T

n∑
i=1

φl(ti)ξi

] (4.7)

Consider random matrices

Ξl =
1√
n

n∑
i=1

φl(ti)ξi l = 1, · · · ,M, Ξl ∈ Rm1×m2

. Note that elements Ξj,k
l = 1√

n

∑n
i=1 φl(ti)ξ

j,k
i are normal variables with E

[
Ξj,k
l

]
= 0, and

Cov
(

Ξj1,k1
l ,Ξj2,k2

l

)
=

1

n

n∑
i1,i2=1

φl(ti1)φl(ti2)E
[
ξj1,k1i1

ξj2,k2i2

]
=

1

n

n∑
i=1

φ2
l (ti)δj1,j2δk1,k2 = ρ2

l δj1,j2δk1,k2

Hence, Ξl = ρlZl where Zl is the Rm1×m2 matrix with i.i.d. N(0, 1) entries. Therefore, the
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left-hand side of equation (4.7) can be bounded above as follows

∣∣∣∣ 1n 〈Y − f, fÂ − fÃ〉
∣∣∣∣ ≤ ε√

n

M∑
l=1

∣∣∣Tr
[
(Âl − Ãl)TΞl

]∣∣∣ ≤ ε√
n

M∑
l=1

||Âl − Ãl||1 · max
1≤l≤M

||Ξl||

(4.8)

=
ε√
n

M∑
l=1

||Âl − Ãl||1 · ρl max
1≤l≤M

||Zl||.

For any τ > 0,

P (||Zl|| > τ
√
m1 ∨m2) ≤ (m1 +m2)e−

τ2

2

or,

P ( max
1≤l≤M

||Zl|| > t
√
m1 ∨m2) ≤ (m1 +m2)Me−

t2

2

choosing t =
√

2 [log(m1 +m2) + logM + τ log n] obtain that

P ( max
1≤l≤M

||Zl|| > t
√
m1 ∨m2) ≤ n−τ

Hence, with probability at least 1− n−τ one has(see Tropp Ch. 4 [34]):

M∑
l=1

∣∣∣Tr
[
(Âl − Ãl)TΞl

]∣∣∣ ≤ M∑
l=1

||Âl − Ãl||1 · ρl
√
m1 ∨m2

√
2 [log(m1 +m2) + logM + τ log n]

(4.9)

Let Ωl be the set of points where inequality (4.9) is valid. Denote by Ω =
⋂M
l=1 Ωl the set of points

where (4.9) is true for every l. Then, by Morgan laws,

P (Ω) ≥ 1− n−τ (4.10)
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and, for any ω ∈ Ω, one has

2|
〈
Y − f, fÂ − fÃ

〉
| ≤ λ0

√
m1 ∨m2

M∑
l=1

ρl‖Âl − Ãl‖1, (4.11)

where

λ0 = 2
ε√
n

√
2τ log n+ 2 log(m1 +m2) + logM. (4.12)

Combining (4.11) and (4.6), obtain for any Ã and ω ∈ Ω that

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 +

M∑
l=1

λ0ρl
√
m1 ∨m2

[
‖Âl − Ãl‖1 + ‖Âl‖1 − ‖Ãl‖1

]
.

Let L ⊆ {1, 2, · · · ,M} and Lc be its complement. Let Ãl = 0 if l ∈ Lc. Denote rl = rank(Ã).

Then, for ω ∈ Ω, one has
1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 + ∆ (4.13)

where

∆ =
M∑
l=1

ρl

[
λ0

√
m1 ∨m2‖Âl − Ãl‖1 + λ

√
m1 ∨m2‖Ãl‖ − λ

√
m1 ∨m2‖Âl‖

]
.

Simple algebra yields

∆ = ∆1 + (λ0 − λ)
√
m1 ∨m2

∑
l∈Lc

ρl‖Âl‖1 (4.14)

where

∆1 =
∑
l∈L

ρl

[
λ0

√
m1 ∨m2‖Âl − Al‖1 + λ

√
m1 ∨m2‖Al‖ − λ

√
m1 ∨m2‖Âl‖

]
.
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In order to obtain an upper bound for ∆1, we apply Lemmas 6 and 7 of Rohde and Tsybakov [31]:

Lemma 1 Let matrices A and B have the same size and if ABT = 0; ATB = 0 then

||A+B||1 = ||A||1 + ||B||1 (4.15)

The proof is from Recht, Fazel and Parrilo 2010.[2]

Proof of Lemma 1. Consider the singular value decomposition’s of A and B keeping zero singular

vectors:

A = [UA1 UA2]

 ΣA1 0

0 0

 [VA1 VA2]T

and

B = [UB1 UB2]

 ΣB1 0

0 0

 [VB1 VB2]T

The condition ABT = 0 implies that V A1TVB1 = 0, and similarly, ATB = 0 implies that

UT
A1UB1 = 0. Hence, there exist matrices UC and VC such that [UA1 UB1 UC ] and [VA1 VB1 VC ] are

orthogonal matrices. Thus, the following are valid singular value decomposition’s for A and B:

A = [UA1 UA2 UC ]


ΣA1 0 0

0 0 0

0 0 0

 [VA1 VA2 VC ]T

and

B = [UB1 UB2 UC ]


0 0 0

0 ΣB1 0

0 0 0

 [VB1 VB2 VC ]T
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In particular:

A+B = [UA1 UB1]

 ΣA1 0

0 ΣB1

 [VA1 VB1]T

This shows that the singular values of A+B are equal to the union (with repetition) of the singular

values of A and B. Hence,||A+B||∗ = ||A||∗ + ||B||∗ as desired.

Lemma 2 Let A ∈ Rm×T with rank(A) = r and singular value decomposition A = UΛVT . Let

B ∈ Rm×T be arbitrary. Then there exists a decomposition B = B1 + B2 with the following

properties:

a. rank(B1) ≤ 2 rank(A) ≤ 2r.

b. ABT
2 = 0; ATB2 = 0.

c. Tr(BT
1 B2) = 0.

Proof of Lemma 2. SVD of A:

A = U

 ΣA1 0

0 0

V T

Let B̂ = UTBV , then partition B̂ as:

B̂ =

 B̂11 B̂12

B̂21 B̂22


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Defining

B1 = U

 B̂11 B̂12

B̂21 0

V T and B2 = U

 0 0

0 B̂22

V T

it can be easily verified that B1 and B2 satisfy the conditions of the Lemma.

Therefore according Lemma2 the following is true:

1. There exists decomposition Âl = Â
(1)
l + Â

(2)
l with the following properties:

a. rank(Â
(1
l ) ≤ 2 rank(Ãl) ≤ 2rl.

b. Ãl(Â
(2)
l )T = 0; ÃTl (Â

(2)
l ) = 0.

c. Tr
[
(Â

(1)
l − Ãl)T Â

(2)
l

]
= 0.

2. If matrices B1 and B2 are such that B1B
T
2 = 0 and BT

1 B2 = 0, then ‖B1 + B2‖1 =

‖B1‖1 + ‖B2‖1

Hence,

∆1 =
∑
l∈L

ρl

[
λ0‖Â(1)

l + Â
(2)
l − Ãl‖1 + λ‖Al‖ − λ‖Âl‖

]
≤
∑
l∈L

ρl

[
λ0‖Â(1)

l − Ãl‖1 + λ0‖Â(2)
l ‖+ λ‖Ãl‖ − λ‖Âl‖

]
.

Note that, since

‖Âl‖1 ≥ ‖Â(2)
l + Ãl‖1 − ‖Â(1)

l − Ãl‖1 = ‖Â(2)
l ‖1 + Ãl‖1 − ‖Â(1)

l − Ãl‖1

one derives

∆1 ≤
∑
l∈L

ρl

[
(λ0 + λ)‖Â(1)

l − Ãl‖1 − (λ− λ0)‖Â(2)
l ‖1

]
(4.16)
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Combining equations (4.14) and (4.16) and setting λ ≥ λ0, obtain from (4.13) that for any ω ∈ Ω

one has
1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 + 2λ

∑
l∈L

ρl‖Â(1)
l − Al‖1. (4.17)

Note that, for any matrix B,

‖B‖1 ≤
√

rank(B) · ‖B‖2,

so that

‖Â(1)
l − Al‖1 ≤

√
2rl‖Â(1)

l − Al‖2.

Since

‖Âl − Ãl‖2
2 = ‖Âl(1)− Ãl‖2

2

+‖Â(2)
l ‖+ 2Tr

[
(Â

(1)
l − Ãl)

T Â
(2)
l

]
= ‖Â(1)

l − Ãl‖
2
2 + ‖Â(2)

l ‖ ≥ ‖Â
(1)
l − Ãl‖

2
2,

one derives

‖Â(1)
l − Ãl‖1 ≤

√
2rl‖Âl − Ãl‖2. (4.18)

Combination of formulae (4.17) and (4.18) yield that, for any ω ∈ Ω, one obtains

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 + 2λ

∑
l∈L

ρl
√

2rl‖Â(1)
l − Al‖2. (4.19)

Note that ρl = W ll, hence, wmin ≤ ρl ≤ wmax and

1

n
‖fÂ − fÃ‖

2
2 =

1

n

n∑
i=1

‖(Âl − Ãl)φl(ti)‖2
2

=
M∑

l1,l2=1

〈
Âl1 − Ãl1 , Âl2 − Ãl2

〉
W l1,l2 ≥ wmin

∑
l∈L

‖Âl − Ãl‖2
2.
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Therefore, it follows from (4.19) that

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 + 2λwmax

∑
l∈L

√
2rl‖Âl − Al‖2

2 (4.20)

Since, for any d > 0, one has 2ab ≤ d−1 a2 + db2, obtain

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 + 2d−1 λ2w2

max

∑
l∈L

rl + d
∑
l∈L

‖Âl − Ãl‖2
2.

Then, inequality (4.20) yields

1

n
‖fÂ − f‖

2
2 ≤

1

n
‖fÃ − f‖

2
2 +

d

wmin

1

n
‖fÂ − fÃ‖

2
2 + 2d−1λ2w2

max

∑
l∈L

rl.

Since ‖fÂ − fÃ‖2
2 ≤ 2‖fÂ − f‖2

2 + 2‖fÃ − f‖2
2, one obtains

1

n
‖fÂ − f‖

2
2

[
1− 2d

wmin

]
≤ 1

n
‖fÃ − f‖

2
2

[
1 +

2d

wmin

]
+

2λ2w2
max

d

∑
l∈L

rl.

Setting d = wmin/4 and multiplying the last equation by 2, derive

1

n
‖fÂ − f‖

2
2 ≤

3

n
‖fÃ − f‖

2
2 + 16λ2w

2
max

wmin

∑
l∈L

rl,

where rl = rank(Ãl). Since Ãl are arbitrary, this completes the proof.

4.4 Algorithm and Simulation results

Workin with a series of medical images i.e. with tensor data can be divided into two approaches:

local and global. A local approach looks at neighboring pixels or voxels of a missing element and

locally estimate the unknown values on basis of some difference measure between the adjacent
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entries. In contrast, a global approach takes advantage of a global property of the data, and is the

path that we use. For matrix-valued data, the rank of a matrix is a good notion of sparsity. As it is

a non-convex function, matrix rank is difficult to minimize in general. Recently, the nuclear norm

was advocated to be used as convex surrogate function for the rank function [3]. Generalizing this

program, a convex surrogate for the tensor rank applied to the unfoldings of the unknown tensor. A

related approach, which penalizes the unfoldings of the solution tensor to have low nuclear norm,

was already presented in [25] for the special case of tensor completion. Gandi et al [12] have

developed very convenient algorithm for solution problems like 4.2. Since the the optimization

problem with low rank penalty is a NP problem, significant work were devoted to find a work

around of this problem which manifested in the brilliant article of Cai, Candes, Shen [20] who

introduced a novel algorithm to approximate the matrix with minimum nuclear norm among all

matrices obeying a set of convex constraints. Thus the problem of a rank minimization may be

understood as the convex relaxation problem.

4.4.1 Douglas-Rachford technique

Douglas-Rachford algorithm [9] is known for more than 50 years, it addresses the minimization of

the sum of two functions (f + g)(x). Where f and g are from a class of all lower semicontinuous

convex functions from a real Hilbert space. To proceed lets consider the following sequence:

xn+1 = xn + tn

{
prox [
γ,f

2 prox [
γ,g

xn]− xn]− prox [
γ,g

xn]

}
(4.1)

where tn ∈ [0, 2] and
∑

n tn(2− tn) =∞, and the proximal map, of index γ ∈ (0,∞) of function

f is given by the following equation:

y = prox [
γ,f

x]⇔ y = argmin
y

[
f(y) +

1

2γ
||y − x||2

]
(4.2)
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Under certain conditions see e.g [5], [6], the sequence (4.1) converges weakly to the minimizer

of (f + g)(x). To recast our minimization problem given by equation (4.2 to the unconstrained

minimization problem. Do the following:

minimize [
A

f(A) + g(A)];

where A = (A0, A1) and D = {A|A0 = A1} and


f(A) =

∑1
i=0 fi(Ai) = λ

2
||A0 ∗ Φ− Y ||22 + ||A1||∗

g(A) = i(A)D =


0, if A ∈ D

+∞, otherwise

(4.3)

This formalizm is equivalent to equation (4.2) , we only need to establish proximity maps of f and

g to apply algorithm(4.1). The proximal map of f is given by:

prox [
γ,f

X] = argmin
Y

{
1∑
i=0

f(Xi) +
1

2γ
||Y− X||2F

}
(4.4)

For i = 1 the proximal map of f1 is essentially the shrinkage operator as described in [20]:

prox [
τ,||·||∗

X] = argmin
Z

[
||Z||∗ +

1

2τ
||Z −X||22

]
= shrink(X, τ) (4.5)

The operator shrink(X, τ) acts by applying the soft thresholding to the singular values of X . Con-

sider singular value decomposition of the matrix X:

X = UXΣXV
T
X
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where ΣX = diag(σ1(X), · · · , σr(X)) , hence action of ”shrink” operator can be described as:

shrink(X, τ) = UXdiag [max {σ1 − τ} , · · · ,max {σr − τ}]V T
X

To apply shrinking operator to a tensor we need to unfold the tensor to matrix first and then upon

shrinkage fold it back. As for proximal map for i = 0, we have:

prox [
τ,f0

X] = argmin
A0

{
λ

2
||B0 ∗ Φ− Y ||22 +

1

2τ
||A0 −B0||22

}
=

(
λΦTΦ +

1

τ
I
)−1(

λΦTY +
1

τ
A

)

Finally, the proximal map of the indicator function iD is the orthogonal projection onto the set D

and is given by:

iD = [IA0 , IA1 ]
A0 + A1

2
(4.6)

Now we can develop splitting Douglas-Rachford algorithm for our problem (4.2)

Algorithm 3 splitting Douglas-Rachford algorithm
input: tensor Y of observed data; functional matrix Φ

input: ti-divergent sequence

input: λ τ γ -parameters for Lagrange multipliers and for soft thresholding

input: ε - to check convergence

Init tensor A(0)
0 and A(0)

1 with zeros

while ||Ai+1 − Ai|| > ε do

Â = mean(A
(i)
0 + A

(i)
1 )

calculate A(i+1)
0 = A

(i)
0 + ti

(
prox [τ,f0 2Â− A(i)

0 ]− Â
)

calculate A(i+1)
1 = A

(i)
1 + ti

(
refold(shrink(unfold(2Â− A(i)

1 )))− Â
)

end while
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4.4.2 Simulation results

We generated some functional data using elementary functions, contaminated them with Gaussian

noise and then recovered the data using algorithm (4.4.1) the functions were evaluated over integer

values of dependent variable x ∈ {1, · · · , 30}. The following functions were tabulated:

x;
x2

30
; x(30− x);

x3

900
; tan x; x log(1 + x)

We created tensor of zeros T ∈ R30×30×30 and randomly inserted functional fibers in it. Then a

random Gaussian noise was added. The results are presented on the Figure [9] below. The nuclear

norm of the ”denoised” tensor is even smaller that the one for the original tensor before addition

of the noise. From another point of view the bias are still significant and for some functions it is

larger than for anothers.
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Figure 4.1: Simulation data for Douglas-Rachford algorithm. The true value are in blue. Denoised

are in red.
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CHAPTER 5: DISCUSSION

5.1 Conclusion

• Current Age dependent hazard model We found some evidence that in the case of the Ade-

nocarcinoma and squamous cell carcinoma the hazard increasing for women of ages 52−56

is comparison with men

• Matrix-variate denoising We developed oracle in equality for the matrix-variate data least

squares fit. We also developed algorithm which carries out denoising and delivers optimal

convergence rates.

5.2 Future work

We are planning to continue our investigation in two different direction. One venue is a survival

analysis combined with genetic and biochemical data. There is also possibility of applying renewal

mathematical models together with cancer growth mathematical models toward understanding car-

cinogenics and cancer mortality.

Another direction is father developing algorithm for functional data for Dynamic Contrast En-

chanced imaging. The results obtained can be improved by taking into considerations different

penalty functions including the ones based on metabolic kinetics from one side and on advanced

mathematical conceptions such as fractal dimension for example from another side. There is a

room for improvement: undeniably, however, this is a matter of future investigation.
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