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ABSTRACT 

 

The successful regeneration of muscle tissue is dependent upon the infiltration of 

phagocytic CD14++CD16- monocytes that support the proliferation and differentiation of 

myogenic precursor cells. Physiologically, the magnitude of the cellular response following 

resistance exercise is dictated by the level of receptor expression on the plasma membrane of the 

monocyte, as well as the secretion of their cognate ligands from tissue resident cells.  However, 

it remains unclear whether the innate pro-inflammatory immune response varies with different 

resistance training protocols, and how it may impact recovery and the muscle remodeling 

process. Therefore, the purpose of this investigation was to examine temporal changes in the 

expression of chemotactic and adhesion receptors following an acute bout of high-volume, 

moderate-intensity (VOL) versus high-intensity, low-volume (HVY) lower-body resistance 

exercise in experienced, resistance trained men. Changes in receptor expression were assessed in 

conjunction with plasma concentrations of MCP-1, TNFα, and cortisol. Ten resistance-trained 

men (90.1 ± 11.3 kg; 176.0 ± 4.9 cm; 24.7 ± 3.4 yrs; 14.1 ± 6.1% body fat) performed each 

resistance exercise protocol in a random, counterbalanced order. Blood samples were obtained at 

baseline (BL), immediately (IP), 30 minutes (30P), 1 hour (1H), 2 hours (2H), and 5 hours (5H) 

post-exercise. Analysis of target receptor expression on CD14++CD16- monocytes was completed 

at BL, IP, 1H, 2H and 5H time points via flow cytometric analysis. Plasma concentrations of 

myoglobin, and LDH AUC were significantly greater following HVY compared to VOL (p = 

0.003 and p = 0.010 respectively). Changes in plasma TNFα, MCP-1, and expression of CCR2, 

CD11b, and GCR on CD14++CD16- monocytes were similar following HVY and VOL. When 

collapsed across groups, TNFα was significantly increased at IP, 30P, 1H and 2H post-exercise 

iii 
 



(p = 0.001 – 0.004), while MCP-1 was significantly elevated at all post-exercise time points (p = 

0.002 – 0.033). CCR2 expression was significantly lower at IP, 1H, 2H and 5H post-exercise (p 

= 0.020 – 0.040). In contrast, CD11b receptor expression was significantly greater at 1H relative 

to BL (p = 0.001), while GCR expression was not significantly different from baseline at any 

time point. As expected, plasma cortisol concentrations were significantly higher following VOL 

compared to HVY (p = 0.001), although this did not appear to be related to changes in receptor 

expression. Plasma testosterone concentrations and TNFr1 receptor expression did not appear to 

be affected by resistance exercise. Our results do not support a role for cortisol in the modulation 

of CCR2 receptors in vivo, while the degree of muscle damage does not appear to influence 

plasma concentrations of TNFα, or MCP-1. It is therefore likely that both HVY and VOL 

protocols constitute an exercise stimulus that is sufficient enough to promote a robust pro-

inflammatory response, which is similar in timing and magnitude. 
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CHAPTER I: INTRODUCTION 
 

Changes in acute program variables (i.e., intensity, volume and rest) during resistance 

training  may result in a different physiological stimulus to the muscle (Bogdanis, 2012). If the 

stimulus is of significant magnitude, often at a level that is greater than the muscle is accustomed 

to, significant damage to the recruited musculature may be observed (Clarkson & Hubal, 2002). 

Damaged myofibers subsequently undergo either apoptotic or necrotic cell death (Wynn & 

Barron, 2010), leading to the production of cellular debris. Recent evidence suggests that the 

presence of cellular debris may interfere with muscle regenerative processes, acting as a physical 

barrier that prevents myoblasts from efficiently contacting and fusing with existing myofibers 

(H. Lu, Huang, Ransohoff, & Zhou, 2011). This has been reported to result in delayed and 

impaired muscle regenation, characterized by increased fibrosis (Shen, Li, Tang, Cummins, & 

Huard, 2005), and fat infiltration (Summan et al., 2006; Wang et al., 2014). Consequently, the 

removal of cellular debris following myotrauma appears to be important for successful muscle 

regeneration.  

The clearance of cellular debris is accomplished by specialized phagocytic macrophage 

cells that possess specific receptors dedicated to the envelopment of pathogens and opsonized 

tissue (Aderem & Underhill, 1999). Phagocytic macrophages are derived from circulating 

CD14++CD16- monocytes, which are recruited to the site of muscle damage (Soehnlein & 

Lindbom, 2010; Wermuth & Jiminez, 2015). Upon entry into the tissue, cytokines and 

chemokines produced by local innate immune cells drive monocyte differentiation towards the 

pro-inflammatory macrophage (M1) phenotype (Ginhoux & Jung, 2014; Wermuth & Jiminez, 

2015), which support the clearance of opsonized tissue and the proliferation of myogenic 

precursor cells (MPC’s) (Arnold et al., 2007; Saclier et al., 2013). Abrogation of C-C chemokine 
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receptor 2 (CCR2) and/or endothelial adhesion receptor CD11b on CD14++CD16- monocytes has 

been shown to result in an attenuated macrophage accumulation, and subsequent prevention of 

muscle regeneration (Arakawa et al., 2010; Arnold et al., 2007; Brodmerkel et al., 2005; 

Chazaud et al., 2003; Contreras-Shannon et al., 2007; Mesri, Plescia, & Altieri, 1998; Ochoa et 

al., 2007; H. Rosen & Gordon, 1987; Schenkel, Mamdouh, & Muller, 2004; Tsou et al., 2007; 

Volpe et al., 2012; Warren et al., 2004; Willenborg et al., 2012). Therefore, the successful 

infiltration of monocytes into damaged tissue is paramount for optimal tissue remodeling.   

CD14++CD16- monocytes are reported to possess gene enrichment in areas that make 

them particularly receptive to environmental stimuli. These stimuli include bacterial components, 

toxins, drugs, hypoxia, nutrient levels, and hormones (Wong et al., 2011). Resistance exercise 

alone is a potent stimulus for acute increases in the concentrations of circulating hormones 

(Smilios, Pilianidis, Karamouzis, & Tokmakidis, 2003). Perturbations to the systemic hormone 

profile may subsequently dictate the timing and magnitude of the inflammatory response (Kiess 

& Belohradsky, 1986; Walsh et al., 2011), which in turn may lead to altered tissue adaptation. 

Glucocorticoids in particular have been implicated with innate immune-regulation, potentiating 

an up-regulation in the expression of chemotactic receptor CCR2 on human monocytes in vitro 

(Okutsu, Suzuki, Ishijima, Peake, & Higuchi, 2008; Penton-Rol et al., 1999; Pettersson et al., 

2005). High-volume resistance exercise protocols may stimulate a differential pattern of receptor 

expression, since these protocols are often reported to result in greater circulating cortisol 

concentrations compared to low-volume resistance exercise (Ahtiainen, Pakarinen, Kraemer, & 

Hakkinen, 2003; Kraemer & Ratamess, 2005). Nevertheless, a comparison of monocyte cell 

surface protein expression following different resistance training protocols, to our knowledge, 

has not yet been conducted.  
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The presence of a number of other ligands within the circulation may also regulate the 

expression of specific cell surface receptors. For example, both monocyte chemotactic protein – 

1 (MCP-1) and tumor necrosis factor alpha (TNFα) have been shown to modulate both CCR2 

and CD11b receptor expression on leukocytes (Gamble, Harlan, Klebanoff, & Vadas, 1985; 

Montecucco et al., 2008; K. Takahashi et al., 2003; Vaddi & Newton, 1994; Weber et al., 1999). 

However, the effect of different resistance exercise protocols on circulating MCP-1 and TNFα 

levels is not known. It remains unclear whether the innate pro-inflammatory immune response 

varies with different resistance training protocols, and how it may impact recovery and the 

muscle remodeling process. Therefore, the purpose of this investigation was to examine temporal 

changes in the expression of chemotactic and adhesion receptors following an acute bout of high-

volume, moderate-intensity (VOL) versus high-intensity, low-volume (HVY) lower-body 

resistance exercise in experienced, resistance trained men. Specifically, the expression of tumor 

necrosis factor receptor-1 (TNFr1), C-C chemokine 2 (CCR2), cluster of differentiation 

(CD)11b, and glucocorticoid receptor (GCR) were assessed. Changes in receptor expression 

were assessed in conjunction with changes to plasma concentrations of MCP-1, TNFα, and 

cortisol.   
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CHAPTER II: LITERATURE REVIEW 

 

Skeletal muscle demonstrates a profound capacity to adapt to an array of physiological 

demands (Hawke & Garry, 2001). Episodic bouts of muscle contraction are potent stimuli in this 

regard; which under optimal conditions, leads to the remodeling and functional adaptation of 

skeletal muscle tissue in response to mechanical stress (Egan & Zierath, 2013; Hawke & Garry, 

2001). Manipulation of the mechanical stimulus has been suggested to impart varying degrees of 

skeletal muscle adaptation (Kraemer & Ratamess, 2005). This stimulus is primarily modulated 

through changes to acute program variables such as exercise intensity, volume and rest intervals, 

which evoke distinct mechanical and biochemical responses that subsequently lead to contrasting 

contractile phenotypes (Hornberger, 2011).  

Traditionally, resistance training paradigms are divided into either high-intensity or high-

volume protocols. High-intensity protocols typically involve heavy loads [(≥ 85% repetition 

maximum (1RM)], low volumes (2-6 sets; ≤ 6 repetitions), and longer rest intervals (3-5 

minutes), while high-volume protocols typically involve more moderate intensities [< 85% 

1RM)], higher volumes (3-6 sets; 8-12 repetitions), and shorter rest intervals (30 – 90 seconds) 

(Bird, Tarpenning, & Marino, 2005; Tan, 1999). High-intensity, low-volume protocols are 

thought to result in greater strength gains, which may be related to the recruitment of high-

threshold motor units inherent with heavier loading (Kraemer & Ratamess, 2004; Sale, 1987). In 

contrast; high-volume, moderate-intensity protocols are generally thought to stimulate muscle 

hypertrophy, which may be mediated, in part, by concomitant elevations in systemic hormones 

that are thought to augment the anabolic response (Crewther, Cronin, Keogh, & Cook, 2008; 

McCaulley et al., 2009; Smilios et al., 2003). Notwithstanding, the optimal configuration of 
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program variables for the purpose of maximizing strength and/or muscle growth remain unclear 

(Adams & Bamman, 2012). However, it is likely that skeletal muscle regeneration/adaptation 

depends upon the finely coordinated interactions of a number of distinct biological systems that 

work together for the resolution of tissue homeostasis (Kharraz, Guerra, Mann, Serrano, & 

Munoz-Canoves, 2013).  

 

Muscle Regeneration 

 

Adult skeletal muscle fibers are terminally differentiated cells (Hawke & Garry, 2001). 

Because the nuclei within these fibers are post-mitotic, myogenesis depends primarily upon a 

population of satellite cells that are crucial for muscle growth and repair (Bondesen, Mills, 

Kegley, & Pavlath, 2004). Under conditions of homeostasis, satellite cells remain in a non-

proliferative quiescent state, and are physically distinct from adult myofibers due to their 

confinement to indentations between the basal lamina and sarcolemma of the muscle fiber 

(Hawke & Garry, 2001). However, in response to myotrauma, quiescent satellite cells become 

activated (at which stage they are refereed to as MPC’s), and begin to proliferate. While a small 

subset of activated satellite cells subsequently return to quiescence in a process of self-renewal 

(Brack & Rando, 2012; Charge & Rudnicki, 2004), most satellite cells will differentiate and fuse 

to damaged myofibers for the purpose of restoring tissue integrity and function (Martin & Lewis, 

2012). The satellite response has been recently associated with the extent of training induced 

muscle hypertrophy (Bellamy et al., 2014). This process, decribed in detail by Charge and 

colleagues (2004), is illustrated in Figure 1. Following damage to the myofiber, activated 

quiescent satellite cells begin to proliferate, allowing for expansion of the myogenic cell 
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population (A). At the molecular level, activation of MPC’s in response to myotrauma is 

mediated by the up-regulation of a number of muscle regulatory factors (MRF’s), which lead to 

the commitment of satellite cells to the myogenic lineage (Sabourin & Rudnicki, 2000). 

Following the proliferative phase, committed satellite cells (myoblasts) travel to damaged 

myofibers in response to chemical stimuli (chemotaxis) (B), where they fuse to damaged 

myofibers and become terminally differentiated mononucleated myocytes (Hindi, Tajrishi, & 

Kumar, 2013) (C). During fusion, myoblasts provide new myonuclei to the existing myofibers, 

which grow to resemble the original myofiber. As regeneration progresses, donated myonuclei 

coalesce towards the center of the regenerated myofiber (D) resulting in the characteristic 

centronucleated appearance (Bosurgi, Manfredi, & Rovere-Querini, 2011). As regeneration is 

completed, these myonuclei migrate to the periphery of the fiber and begin to resemble normal 

muscle fibers (E).  
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Figure 1. Satellite cell response to myotrauma.  
Adapted from Myogenic satellite cells: physiology to molecular biology. Hawke and Garry 
(2001). Included with permission. 

 

While it is widely accepted that the satellite cell response is fundamental for the 

reconstitution of muscle integrity following myotrauma, skeletal muscle regeneration is a 

functionally complex phenomenom. In addition to the role of MPC’s, many other cell types play 

a role in optimizing the regenerative processes. These cells include endothelial cells, interstitial 

cells, mesenchymal progenitors, fibro/adipogenic progenitors, and inflammatory cells (Ceafalan, 

Popescu, & Hinescu, 2014). Alongside satellite cells, inflammatory cells appear to be essential 

for successful muscle regeneration (Kharraz et al., 2013). In particular, it is widely recognized 

that macrophages execute a critical role in muscle repair (Brunelli & Rovere-Querini, 2008; 

Robertson, Maley, Grounds, & Papadimitriou, 1993; Saclier et al., 2013; Tidball & Wehling-

Henricks, 2007; Wang et al., 2014).  

7 
 



Macrophages and Muscle Repair 

 

Resistance exercise results in damage to parenchymal cells (myofibers), which 

subsequently undergo either apoptotic or necrotic cell death (Wynn & Barron, 2010). The 

clearance of these apoptotic/necrotic cells (cellular debris) is accomplished by specialized 

phagocytic macrophage cells that possess specific receptors dedicated to the envelopment of 

pathogens and cellular debris (Aderem & Underhill, 1999). The removal of cellular debris 

following tissue damage appears to be a critical event that directly mediates muscle regeneration 

(Bosurgi et al., 2011). Recent evidence suggests that the presence of necrotic fibers may interfere 

with muscle regenerative processes, acting as a physical barrier that prevents myoblasts from 

efficiently contacting and fusing with existing myofibers (H. Lu et al., 2011). Consistent with 

this, impaired muscle regeneration is reported to be prevalent following in vitro macrophage 

depletion (Brunelli & Rovere-Querini, 2008), indicating that the macrophage-mediated removal 

of cellular debris is likely critical for optimal tissue regeneration. However, upon the cessation of 

phagocytosis, macrophages remain present in regenerating areas, often in high numbers, and are 

tightly associated with MPC’s and young regenerating myofibers (Saclier, Cuvellier, Magnan, 

Mounier, & Chazaud, 2013). Additionally, depletion of intramuscular macrophages following 

complete phagocytosis has been shown to result in reduced muscle fiber size during recovery 

from myotrauma (Arnold et al., 2007). This indicates that macrophages may have the ability to 

promote muscle regeneration independent of phagocytic function. 

In vitro studies suggest that macrophages directly support MPC growth via the secretion 

of soluble mitogenic factors (Chazaud et al., 2003; Merly, Lescaudron, Rouaud, Crossin, & 

Gardahaut, 1999). In particular, macrophage derived insulin-like growth factoe-1 (IGF-1) 
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appears to have a role in mediating tissue repair. IGF-1 exerts its function via the 

phosphorylation of Akt which leads to MPC proliferation and myoblast differentiation (Engert, 

Berglund, & Rosenthal, 1996; Schiaffino & Mammucari, 2011). Following myotrauma, 

macrophage accumulation has been shown to correlate with an up-regulation of both mRNA and 

protein expression of IGF-1 (Heinemeier et al., 2009; H. Lu et al., 2011). Additionally, it has 

been reported that impaired muscle regneration following macrophage depletion is associated 

with a concomitant decrease in IGF-1 mRNA within the muscle (Summan et al., 2006). Further, 

the recently described protective effect of macrophages against myotube atrophy (N. A. Dumont 

& Frenette, 2013) is abolished following administration of an anti-IGF-1 antibody treatment (N. 

Dumont & Frenette, 2010). Therefore, it is reasonable to suggest that the role of macrophages in 

skeletal muscle regeneration may be mediated, at least in part, by the production of mitogenic 

factors including IGF-1. 

Recent studies have established that macrophages exert different effects on MPC’s, 

dependent upon their polarization to either the pro-inflammatory (M1) or anti-inflammatory 

(M2) phenotype. M1 macrophages appear to stimulate MPC proliferation and inhibit their fusion 

(Arnold et al., 2007; Saclier et al., 2013), while M2 macrophages appear to stimulate myogenesis 

by promoting the terminal differentiation of myoblasts and the formation of large myotubes 

(Saclier et al., 2013). M2 macrophages are likely derived from M1 macrophages and thus 

represent a latter stage of inflammatory macrophage differentiation. It has been posited that the 

removal of cellular debris may serve as a key signal prompting the functional shift in 

macrophage phenotype (Arnold et al., 2007; Rigamonti, Zordan, Sciorati, Rovere-Querini, & 

Brunelli, 2014; Tidball & Villalta, 2010).  
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Macrophages have been associated with the “rescuing” of myotubes from apoptosis 

following skeletal muscle injury (Chazaud et al., 2003; Lesault et al., 2012; Sonnet et al., 2006). 

The addition of macrophages to primary MPC cultures in vitro appears to lead to an inhibition of 

spontaneous myoblast and myotube apoptosis that coincides with the enhanced expression of 

anti-apoptotic proteins and activation/phosphorylation of ERK1/2 and Akt pathways (Sonnet et 

al., 2006). It is possible that macrophage derived IGF-1 may mediate these anti-apoptotic effects, 

since IGF-1 is known to facilitate the inhibition of the foxhead box O (FoxO) apoptotic signaling 

(Stitt et al., 2004; Zhang, Tang, Hadden, & Rishi, 2011). FoxO transcription factors mediate cell 

cycle arrest, DNA repair and apoptosis (Lam, Francis, & Petkovic, 2006). However; to our 

knowledge, the role of macrophage derived IGF-1 in mediating FoxO signalling has not been 

addressed. Nevertheless, macrophages may exert their anti-apoptotic fuinction through 

mechanisms independent of IGF-1 signalling. DNA microarray analyses indicates that MPCs 

constitutively express four cell-to-cell molecular adhesion receptors, all of which are functionally 

active and responsive to counterligands expressed by human macrophages. Blockade of any one 

of these adhesion receptors results in the inhibition of the beneficial effect of macrophages on 

MPC survival. Therefore, the delivery of anti-apoptotic signals appears to be mediated by cell-

to-cell contact between macrophages and MPCs (Chazaud et al., 2003; Sonnet et al., 2006). 

These receptor systems are more strongly expressed by myotubes (multinucleated differentiated 

myogenic cells) that are more protected from apoptosis compared with undifferentiated 

myoblasts, suggesting that macrophages could help protect these cells until they establish a final 

association with the extracellular matrix (Chazaud et al., 2009).  

Current evidence suggests that macrophages exert their effect in three ways: 1. via the 

phagocytosis of opsonized cellular debris; 2. via production of soluble factors that globally 
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stimulate MPC proliferation and differentiation; and 3. via delivery of anti-apoptotic signals 

through direct cell contact with MPCs (Aderem & Underhill, 1999; Chazaud et al., 2003; Sonnet 

et al., 2006). The influence of macrophages in the resolution of tissue damage is depicted in 

Figure 2.  Briefly, the tibialis anterior and quadriceps muscles of two month old C57BL/6 mice 

were injected with cardiotoxin (CTX) to induce muscle damage. Mice were subsequently treated, 

or not, with clodronate-containing liposomes to deplete macrophages, and were subsequently 

sacrificed 15-days following CTX injection. Histochemical analysis of the harvested muscle 

tissue was performed at day 15. Panel A depicts the healthy muscle of untreated control mice. 

Myonuclei (dyed in blue) are confined to the periphery of the myofibers, indicating a healthy 

mature muscle cell. Panel B depicts the muscle tissue of macrophage-competent mice 15-days 

post-CTX injection. Centronucleated fibers are evident throughout the section indicating 

effective and almost complete regeneration. Panel C depicts the muscle tissue of marophage 

depleted mice 15-days post-CTX injection. Muscle regeneration is significantly impaired and 

degenerative fibers and cell remnants persist.  

 

 
Figure 2. Macrophages and tissue regeneration.  
Adapted from Macrophages in injured skeletal muscle: A perpetuum mobile causing and limiting 
fibrosis, prompting or restricting resolution and regeneration. Bosurgi, Manfredi and Rovere-
Querini (2011). Included with permission. Changes have been made to the descriptions of each 
image.  
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Macrophage Origin 

 

Skeletal muscle has been shown to contain a large population of resident macrophages 

(Honda, Kimura, & Rostami, 1990). However, macrophages are also known to originate from 

circulating monocytes (Kumar & Jack, 2006). In light of this, previous studies have attempted to 

examine the role of both resident and monocyte derived macrophages in muscle regenerative 

processes following acute skeletal muscle injury (McLennan, 1993; McLennan, 1996). The 

origin of macrophages involved in the removal of degenerating muscle fibers has previously 

been investigated in vivo using ectodermal dysplasia antibodies ED1 (CD68), ED2 (CD163), and 

ED3 (CD169), as well as RM-1 and W3/13 (CD43) monoclonal antibodies (Honda et al., 1990; 

McLennan, 1993; McLennan, 1996). These antibodies are specific to mononuclear phagocyte 

system (MPS) antigens, and thus can be utilized to differentiate and examine macrophage 

phenotype in various tissues. The ED1 antibody is expressed by monocytes and monocyte 

derived pro-inflammatory macrophages. ED2 and ED3 antibodies bind to certain subsets of 

resident macrophages, including those in skeletal muscle, without binding to pro-inflammatory 

macrophages, dendritic cells, or their monocytes precursors (McLennan, 1993). RM-1 antibodies 

are also specific to monocytes and a sub-population of resident macrophages, while W3/13 

antibodies are specific to neutrophils. Staining of degenerating muscle fibers with monoclonal 

antibody antigens specific to these macrophage and neutrophil phenotypes have enabled the 

identification of cell subtypes involved with muscle regeneration using immunohistochemistry. 

Additionally, the spatial and temporal distributions of these cells following acute muscle injury 

have been characterized (McLennan, 1993; McLennan, 1996).  
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Observational studies indicate that different subtypes of hemopoietic cells are attracted to 

a lesion by distinct signals, and have differing functions in the process of muscle regeneration. 

According to these observations, W3/13 neutrophils are the first cells to penetrate and leave 

damaged tissue (Fielding et al., 1993; McLennan, 1996). Neutrophils are apparent in the 

epimysium overlying tissue damage from freeze lesioning at 1 hour post-injury, and are widely 

distributed throughout damaged tissue 7 hours following freeze lesioning of the tibialis anterior 

muscle in Wistar rats (McLennan, 1996). However, these cells are rarely observed to penetrate 

into muscle fibers during the regenerative process (McLennan, 1996). While their exact function 

is not clearly defined, recent evidence suggests that the role of neutrophils is to initiate the repair 

process that becomes subsequently managed by macrophages (Butterfield, Best, & Merrick, 

2006). This may be achieved through the generation of soluble factors such as proteases and 

reactive oxygen species (ROS) (Pizza, McLoughlin, McGregor, Calomeni, & Gunning, 2001; G. 

M. Rosen, Pou, Ramos, Cohen, & Britigan, 1995). These factors appear to contribute to 

secondary tissue damage (Kharraz et al., 2013; Nguyen, Lusis, & Tidball, 2005), which may 

serve to modify the intramuscular environment in preparation for the phagocytosis of tissue 

debris by macrophages. In vivo analysis in human subjects confirm the temporal appearance of 

neutrophils observed in the murine model. Following 45 minutes of downhill running in 

untrained men, Fielding and colleagues (1993) reported a significant infiltration of neutrophils to 

the exercised tissue within an hour of exercise cessation. 

ED2+ and ED3+ macrophages, although abundant throughout healthy muscle tissue, do 

not appear to be present within degenerating muscle fibers (McLennan, 1993; McLennan, 1996). 

ED2+ macrophages reportedly accumulate in the epimysium and perimysium surrounding tissue 

lesions, but do not penetrate into the lesion until extensive phagocytosis has already occurred 
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(usually 1 or 2 days). Pursuant to penetration, ED2+ cells are concentrated in the regenerating 

connective tissues and empty remnants of phagocytized fibers, but are rarely observed to invade 

necrotic tissue, even when immediately adjacent to it (McLennan, 1993; McLennan, 1996). This 

suggests that this type of macrophage has a specialized function which is unrelated to removal of 

damaged tissue.  

Undamaged muscle tissue appears to be essentially devoid of ED1+ macrophages. 

However; following damage, a small number of ED1+ cells (monocyte derived cells) appear 

within an hour of tissue lesioning, with subsequent cellular infiltration of these cells becoming 

apparent within 3 hours (McLennan, 1996). ED1+ macrophages subsequently predominate 

during the initial response to skeletal muscle damage, taking charge in the clearance of 

opsonized cellular debris (Brigitte et al., 2010). Their absence from healthy tissue suggests that 

ED1+ pro-inflammatory macrophages are derived from monocytes that enter the tissue from 

adjacent arterioles in response to muscle damage. This notion is supported by more recent 

evidence that suggests that MPCs depend on the support of stromal cells (supportive cells), 

including monocyte/macrophages, to develop their myogenic program (Seale, Asakura, & 

Rudnicki, 2001; Spradling, Drummond-Barbosa, & Kai, 2001). Consistent with this, all 

phagocytic macrophages are reported to be ED1+/ED2-/ED3-. MPCs in vitro, appear to 

selectively and specifically recruit monocytes through the endothelium in a dose-dependent 

manner (Chazaud et al., 2003). This recruitment varies according to myogenic maturation, 

whereby chemotactic activity progressively declines during the later stages of myogenic 

differentiation, after peaking immediately following MPC release from quiescence. Furthermore, 

the depletion of circulating monocytes in mice at the time of muscle injury has been shown to 

completely prevent muscle regeneration (Arnold et al., 2007), reinforcing the notion that 
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circulating blood monocytes supply the peripheral tissues with macrophage precursors (Serbina, 

Jia, Hohl, & Pamer, 2008).  

 

Human Monocyte Subsets 

 

Monocytes constitute approximately 10% of the total circulating leukocyte population in 

humans (Italiani & Boraschi, 2014). Peripheral circulating monocytes exhibit morphological 

heterogeneity, manifested through variations in size, granularity and nuclear morphology 

(Gordon & Taylor, 2005; Strauss-Ayali, Conrad, & Mosser, 2007; Yona & Jung, 2010). 

However, in terms of function, peripheral blood monocytes in humans are characterized based 

upon their differential expression of antigenic markers, rather than their morphological 

characteristics. Derived in the bone marrow from a common Lin1-cKithiCD115+CX3CR1+Flt3+ 

progenitor cell (macrophage and DC precursor; MDP) (Fogg et al., 2006), circulating human 

monocytes were initially identified based upon their high expression of CD14 antigen (Griffin, 

Ritz, Nadler, & Schlossman, 1981). Subsequent research has since determined that a number of 

sub-populations of human peripheral blood monocytes exist, which are distinguishable based 

upon the differential expression of CD14 and CD16 antigens. Until recently, monocyte 

heterogeneity was mostly understood based upon the categorization of 2 subpopulations; the 

CD16- classical monocyte, and the non-classical CD16+ monocyte. However, a panel of leading 

experts in monocyte biology recently proposed consensus nomenclature for the re-classification 

of human monocytes into three distinct subsets, which has since been approved by the 

International Union of Immunological Societies (L. Ziegler-Heitbrock et al., 2010). These 

subpopulations were subsequently redefined as classical (CD14++CD16-), non-classical 
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(CD14+CD16++) and intermediate (CD14++CD16+) monocytes. However, this characterization is 

still in its infancy. Consequently, for the purposes of this review, monocyte heterogeneity will be 

discussed in relation to classical (CD14++CD16-) and non-classical (CD14+CD16++) monocyte 

only. 

To date, the functional characteristics of human monocyte subsets have been primarily 

investigated through the examination of murine models as a surrogate for the study of human 

monocyte behavior in vivo (Geissmann, Jung, & Littman, 2003; Gordon & Taylor, 2005; L. 

Ziegler-Heitbrock et al., 2010). Although monocyte subsets in humans and mice are not precisely 

analogous, their differentiation and contribution to immune defense appear to be similar (Belge 

et al., 2002; Ingersoll et al., 2010; Shi & Pamer, 2011). Consequently, the murine model of in 

vivo monocyte behavior has provided significant insight into the functional roles of monocyte 

subsets in humans. 

 

Murine Monocyte Heterogeneity 

 

Murine monocyte subsets are not distinguishable by CD14 and CD16 antigen expression 

(Serbina et al., 2008), but instead are recognized as CD115+ (macrophage colony stimulating 

factor [M-CSF] receptor), CD11b+, and F4/80int blood cells (Ingersoll et al., 2010). Two subsets 

of monocytes have been described in mice, which can be identified based upon their relative 

expression of the pro-inflammatory monocyte marker Ly-6C (Sunderkotter et al., 2004). Ly-6C 

can be identified by flow cytometry using the Gr-1 antibody, which recognizes an epitope of Ly-

6C (Fleming, O'hUigin, & Malek, 1993). It is now accepted that mouse monocyte subsets are 

grouped as Ly-6C+ (further divided as Ly-6Chigh and Ly-6Cmiddle), and Ly-6Clo or Ly-6C- cells 
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(Yang, Zhang, Yu, Yang, & Wang, 2014). Ly-6C+ mouse monocytes are characterized by the 

CX3CR1lowCCR2+CD62L+(L-Selectin) phenotype, and are suggested to correspond to classical 

(CD14++ CD16-) human monocytes (Taylor & Gordon, 2003). Ly-6Chigh and Ly-6Cmiddle subsets 

express high levels of CCR2 and low levels of CX3CR1 (Saederup et al., 2010). MCP-1, an 

inflammatory cytokine, which signals through C-C chemokine receptor 2 (CCR2) on Ly-6C+ 

monocytes, has been suggested to induce a conformational change in the formation of specific 

surface adhesion receptors on these cells, resulting in high-affinity vascular binding and 

subsequent transmigration to areas of tissue damage (Yang et al., 2014). This role is consistent 

with the Ly-6C+ cells pro-inflammatory functions, and potent capacity for phagocytosis (Serbina 

et al., 2008). During early inflammation, Ly-6C+ cells are thought to enter damaged tissue where 

they preferentially differentiate into M1 pro-inflammatory macrophages, which secrete pro-

inflammatory cytokines and exhibit phagocytic and proteolytic inflammatory functions (Ginhoux 

& Jung, 2014). Additionally, the short half-life of Ly-6C+ monocytes (approx. 8 hours), likely 

limits the function of this cell to that of a macrophage precursor (Italiani & Boraschi, 2014).   

Ly-6C- mouse monocytes are characterized by the CX3CR1highCCR2-CD62L-(L-Selectin) 

phenotype, express low levels of CCR2 and high levels of CX3CR1 (Saederup et al., 2010). A 

distinction within mouse Ly-6C- monocytes that corresponds to human non-classical and 

intermediate distinctions not yet been characterized; however, Ly-6C- monocytes are suggested 

to correspond to human CD16+ monocytes (Ingersoll et al., 2010; Taylor & Gordon, 2003). 

Indeed, a recent study demonstrated the presence of FcγR (receptor corresponding to CD16) on 

Ly-6C- monocytes, but not Ly-6C+ monocytes (Santiago-Raber et al., 2009). In comparison to 

the Ly-6C+ monocytes, Ly-6C- monocytes have a circulating half-life of approximately 5-7 days 

(Yona et al., 2013), suggesting that this cell likely has a functional role within the circulation that 
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is distinct from that of the Ly-6C+ monocyte. Previous studies suggest that Ly6C- monocytes are 

recruited to tissue during the latter phase of inflammation, where they subsequently develop into 

resident macrophages (Geissmann et al., 2003), and thus represent the end stage of a distinct 

differentiation path of a common precursor cell. This is consistent with the longer half-life of this 

cell, since this Th2/M2 anti-inflammatory response does not peak until 4 days post-injury 

(Tidball & Villalta, 2010). However, bone marrow derived monocytes in mice appear to be 

exclusively Ly-6C positive (Sunderkotter et al., 2004). Consistent with this, a recent fate 

mapping study provides evidence to suggest that Ly6C+ blood monocytes constitute an 

obligatory steady-state precursor to Ly6C- monocytes, with subsequent maturation of the Ly6C+ 

cell resulting in a dichotomous phenotype (Yona et al., 2013). A similar shift in cell phenotype 

has also been reported in Ly-6C+ monocyte derived M1 pro-inflammatory macrophages (Arnold 

et al., 2007). These cells appear to have the ability to acquire the phenotypic features and 

functional properties of M2 anti-inflammatory macrophages within inflamed skeletal muscle. 

Together, these observations lend credence to the hypothesis that distinct monocyte/macrophage 

subsets represent subsequent maturation stages in a common path of differentiation, which likely 

leads to divergent functional properties (Stansfield & Ingram, 2015). This hypothesis dictates 

that, in the absence of inflammation, Ly-6C+ monocytes differentiate into Ly-6C- monocytes, 

which remain in the circulation for up to two weeks (Yona et al., 2013). While in circulation, the 

primary function of the Ly-6C- cell appears to be patrolling the endothelium and monitoring its 

integrity (Wermuth & Jiminez, 2015). It has also been suggested that in addition to this 

patrolling function, Ly-6C- monocytes may also serve to replenish the resident macrophage 

population (Geissmann et al., 2003). The functional properties of each murine monocyte subset 

are summarized in Figure 3. Briefly, Ly-6C+ monocytes appear to be preferentially and rapidly 
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recruited to sites of injury and infection in response to pro-inflammatory cues such as MCP-1. 

Most inflammatory monocytes are thought to differentiate into macrophages, which are 

important for the clearance of tissue debris and for the resolution of inflammation. In contrast, in 

the absence of inflammation, Ly-6C- monocytes patrol the endothelial surface and coordinates its 

repair via recruitment of neutrophils as required (Ginhoux & Jung, 2014), and are hypothesized 

to precede a source of tissue resident macrophages/dendritic cells (Taylor & Gordon, 2003).  

 

 
 
Figure 3. Development and function of monocyte subsets in mice.  
Monocyte and Macrophage Heterogeneity. Gordon & Taylor (2005). CX3CL1, CX3C-chemokine 
ligand 1 (fractalkine); CCR7, CC-chemokine receptor 7; CCR8, CC-chemokine receptor 8. 
Included with permission from Elsevier; License #: 3582601104753.  
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Monocyte Heterogeneity in Humans 

 

In humans, classical monocytes express high levels of CD14 antigen and no CD16 

antigen (Crowe & Ziegler-Heitbrock, 2010; Weber et al., 2000; Yang et al., 2014). These cells 

constitute the most prevalent monocyte population, accounting for approximately 80-95% of 

total monocytes in human blood (Strauss-Ayali et al., 2007; Wong et al., 2011; Yang et al., 

2014). Gene enrichment in gene ontology biologic processes, which enables the delineation of 

unique characteristics that are inherent to monocyte subsets through the analysis of gene 

expression, suggest that classical monocytes exhibit significant enrichment in the categories of 

angiogenesis, wound healing, and coagulation (Wong et al., 2011). Additionally, CD14++CD16- 

cells are reported to respond to bacterial components, toxins, drugs, hypoxia, nutrient levels and 

hormones, while the pro-inflammatory mediators S100A12 and S100A9 and S100A8 (calcium 

binding proteins) are among the top 50 most highly expressed genes for this subset (Wong et al., 

2011). These data suggest that classical monocytes are highly versatile and capable of 

responding to a variety of external cues, making them ideal for mediating tissue repair or 

immune functions. These functions are consistent with the reports of others who suggest that 

macrophages derived from classical monocytes exhibit excellent phagocytic function (Grage-

Griebenow et al., 2000; Grage-Griebenow, Flad, & Ernst, 2001). Further, the early inflammatory 

response appears to be dominated by the selective recruitment of classical monocytes to injured 

tissue (Ingersoll, Platt, Potteaux, & Randolph, 2011; Wermuth & Jiminez, 2015), where they 

infiltrate at sites of damage/inflammation in response to damage associated molecular patterns 

(DAMP’s), and subsequently differentiate into inflammatory M1 macrophages (Soehnlein & 

Lindbom, 2010; Wermuth & Jiminez, 2015)  for the purpose of phagocytizing opsonized cellular 

debris (Yang et al., 2014). This function is further demonstrated through the expression of 
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specific surface adhesion (CD11b) and chemokine receptors (CCR2) (Stansfield & Ingram, 

2015). This pattern of cell surface apparatus suggests that CD14++CD16– monocytes are 

equipped to respond to inflammatory signals, allowing for their subsequent migration and 

adhesion to the endothelial wall in areas of tissue damage (Imhof & Aurrand-Lions, 2004; 

Mantovani, 1999; Starikova, Lebedeva, & Freidlin, 2010). 

Non-classical monocytes are characterized by their relative low expression of the CD14 

antigen, and a high expression of the CD16 antigen. Under the former nomenclature, non-

classical monocytes (consisting of non-classical and intermediate monocytes) accounted for 

approximately 2-11% of the total monocyte population in human blood (Strauss-Ayali et al., 

2007; Yang et al., 2014). More recent research by Wong and colleagues (2011) suggest that non-

classical monocytes account for 9.2% ± 4.4% of total circulating monocytes. These cells are 

considered the major pro-inflammatory monocyte subpopulation and are the major producers of 

tumor necrosis factor in human blood (Belge et al., 2002; Cros et al., 2010; Passlick, Flieger, & 

Ziegler-Heitbrock, 1989; Wong et al., 2011). Similar to Ly-6C- murine monocytes, non-classical 

human monocytes have been observed to demonstrate a patrolling behavior in healthy tissues 

through long-range crawling on the resting endothelium, and thus may represent a marginal pool 

of monocytes. This may allow for rapid tissue invasion in the event of damage or infection 

(Auffray et al., 2007; Cros et al., 2010). However, following strenuous anaerobic exercise, these 

non-classical monocytes have been observed to mobilize from the marginal pool and enter into 

the circulation, contributing to a 4.8 fold increase in circulating cells within an order of minutes 

(Steppich et al., 2000). This compartment shift may be the result of shear stress or an interaction 

with catecholamines (Freidenreich & Volek, 2012), but nevertheless precludes the rapid entry of 

these cells into sites of exercise-induced damage. Consistent with this, the human CD14+CD16++ 
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non-classical subpopulation has been shown to exhibit poor phagocytic capacity (Cros et al., 

2010), and reduced ROS production, which is a key aspect of phagocytic function in the 

destruction of cellular debris (Cros et al., 2010; Szaflarska et al., 2004). This subset of 

monocytes also exhibits higher expression of CX3CR1, a chemokine receptor reported to mediate 

resident macrophage accumulation in non-inflamed tissue (Ancuta et al., 2003; Geissmann et al., 

2003; Landsman et al., 2009), and exhibit significantly lower levels of CCR2, the chemokine 

receptor mediating monocyte chemotaxis during inflammation (Wong et al., 2011). 

Consequently, non-classical monocytes fail to migrate towards the CCR2 ligand MCP-1 (Weber 

et al., 2000). These cells have also been reported to strongly resemble mature tissue resident 

macrophages (H. W. Ziegler-Heitbrock et al., 1993), which is consistent with a two-fold greater 

affinity for the endothelium in the absence of inflammation, compared to the classical monocyte 

(Starikova et al., 2010). Moreover, non-classical monocytes have recently been shown to exhibit 

a significantly lower expression of CD11b receptor compared to classical monocytes (Wong et 

al., 2011), which has been shown to be critical for tissue repair responses following skeletal 

muscle damage (Arnold et al., 2007).  

The exact role of non-classical monocytes remains unclear; however, these cells do not 

appear to be involved in the acute response to tissue inflammation. While recent reviews have 

focused upon characterizing the origin of tissue resident macrophages (Ginhoux & Jung, 2014; 

Italiani & Boraschi, 2014); to date, no study has provided conclusive evidence against a possible 

role for the non-classical monocyte in tissue macrophage homeostasis (Italiani & Boraschi, 

2014). The origin of tissue resident macrophages appears to vary considerably between tissues, 

and while the origin of these cells has been somewhat characterized in CNS, dermis, epidermis, 

lung, heart, kidney, pancreas, liver, spleen and peritoneal tissue (Epelman et al., 2014; Ginhoux 
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et al., 2010; Guilliams et al., 2013; Schulz et al., 2012), the origin of skeletal muscle resident 

macrophages has not yet been determined.  

 

Monocyte Chemotaxis 

 

Skeletal muscle repair is a tightly regulated process consisting of an initial inflammatory 

response, followed by subsequent regeneration and revascularization of damaged tissue (H. Lu et 

al., 2011; Tidball, 2005). The initial inflammatory response is characterized by a rapid and 

sequential invasion of leukocyte populations for the purpose of reconstituting tissue integrity. 

Members of the chemokine family of chemotactic cytokines play a fundamental functional role 

in this process by directly influencing the vascular migration and accumulation of specific 

leukocytes to sites of tissue injury (Furie & Randolph, 1995; Henningsen, Pedersen, & 

Kratchmarova, 2011). Within healthy skeletal muscle, the chemokine expression profile is fairly 

limited (De Paepe & De Bleecker, 2013); however, in response to tissue damage, the secretion of 

specific chemokines is induced or significantly upregulated within the tissue (Hirata et al., 2003). 

Chemokine effects are mediated via binding with heptahelical receptors located on the plasma 

membrane of leukocytes, which are coupled to GTP binding proteins (Baggiolini & Loetscher, 

2000). Consequently, the trafficking behavior of specific leukocyte subsets during inflammation 

is dependent upon the both the presence of specific chemokines, and the adequate expression of 

its respective receptor.    

Several studies suggest that a number of chemokines, including MCP-1 and MCP-3 

mediate the chemotaxis of classical monocytes to damaged tissue (Charo & Ransohoff, 2006; 

Rossi & Zlotnik, 2000), raising the question as to which ligand the monocyte is in fact 
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responding to. Observational studies report an increase in MCP-1 that parallels the early 

inflammatory response following induced muscle ischemia (Shireman, Contreras-Shannon, 

Reyes-Reyna, Robinson, & McManus, 2006). In accordance, loss of MCP-1 alone via targeted 

disruption of SCYA2 (the gene encoding MCP-1) has been shown to sufficiently impair 

monocyte trafficking in a number of different inflammatory models (B. Lu et al., 1998). These 

findings were corroborated in later work by Shireman and colleagues (2007), where an altered 

inflammatory response, delayed restoration of perfusion, and significant decrements in indices of 

muscle regeneration were observed following femoral artery excision induced muscle damage in 

MCP-1 knockout mice. Nevertheless, selective deletion of MCPs using homologous 

recombination in embryonic stem cells reveal significant deficits in monocyte recruitment in 

both MCP-1 and MCP-3 knockout models (Tsou et al., 2007). This is consistent with the 

observations of others (Jia et al., 2008), highlighting a possible role for MCP-3 in monocyte 

chemotaxis, and a potential synergy between MCP-1 and MCP-3 for the optimal recruitment of 

classical monocytes to damaged tissue.  

Notwithstanding, recent evidence suggests that MCP-1 is in fact the primary chemokine 

required for classical monocyte recruitment, and not MCP-3 (M. Takahashi, Galligan, 

Tessarollo, & Yoshimura, 2009). Takahashi and colleagues (2009) report a marked increase in 

MCP-3 mRNA production following deletion of a 2.3-kb genomic DNA sequence from the 

MCP-1 gene (that resulted in MCP-1 deficiency), which was not apparent in previously 

generated MCP-1 knockout mice (MCP-1-/-) or MCP-1+/+ controls. Comparison of MCP-1 

deficient and MCP-1-/- mice revealed no significant differences in monocyte recruitment, 

indicating that MCP-3 was unable to compensate for the loss of MCP-1 (M. Takahashi et al., 
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2009). It is likely that MCP-3 plays a limited role in monocyte recruitment. Consequently, MCP-

1 signaling appears to be the primary ligand mediating the recruitment of classical monocytes.  

CCR2 signaling appears to have an important role in the recruitment of monocytes to 

injured tissue (B. Lu et al., 1998; Shireman et al., 2006; Shireman et al., 2007). CCR2 is 

considered to be the exclusive receptor of MCP-1 (Charo & Ransohoff, 2006; Gerard & Rollins, 

2001), and while reports suggest that neutrophil and lymphocyte recruitment is similar between 

wild type and CCR2 knockout mice (CCR2-/-) (H. Lu et al., 2011), the mobilization of 

monocytes both from the bone marrow to the blood, and from the blood to the injured tissue, is 

significantly impaired in CCR2-/- mice compared to controls (H. Lu et al., 2011). This 

impairment appears to be directly associated with classical monocytes. Analysis of gene 

expression reveals that CCR2 is almost exclusively expressed by the classical CD14++CD16- 

monocyte population in humans (Wong et al., 2011). Further, selective labeling of monocyte 

subsets indicate that only Ly-6C+ monocytes are recruited to damaged tissue (Arnold et al., 

2007). While the appearance of Ly-6C- monocytes in the blood is reported to be similar between 

CCR2-/- and control mice (H. Lu et al., 2011), both Ly-6C+ and Ly-6C- monocyte/macrophage 

subsets appear to be drastically reduced within the injured muscle of CCR2-/- mice. This provides 

additional evidence favoring the differentiation of Ly-6C+ monocyte derived pro-inflammatory 

macrophages into anti-inflammatory macrophages, in lieu of a secondary recruitment of Ly-6C- 

monocytes in the later stages of tissue repair (Arnold et al., 2007; H. Lu et al., 2011). 

Nevertheless, CCR2-/- mice exhibit a markedly reduced inflammatory response following tissue 

injury, resulting in significantly impaired muscle regeneration, fibrosis, fat infiltration, and 

calcification of the tissue (H. Lu et al., 2011; Warren et al., 2005). These observations are 

consistent with other CCR2 knockout studies, which report marked reductions in  monocyte 
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infiltration, along with concomitant deficits in both muscle regeneration and tissue 

revascularization following injury (Arnold et al., 2007; Brodmerkel et al., 2005; Chazaud et al., 

2003; Contreras-Shannon et al., 2007; Ochoa et al., 2007; Tsou et al., 2007; Volpe et al., 2012; 

Warren et al., 2004; Willenborg et al., 2012). Interestingly, the role of macrophage produced 

IGF-1 in MPC growth discussed earlier, appears to be monocyte derived and dependent upon 

CCR2 signaling (H. Lu et al., 2011). Together, these data suggest that MCP-1/CCR2 signaling is 

critical for classical monocyte egress from the bone marrow (Serbina & Pamer, 2006), and for 

subsequent recruitment from the blood to the tissue, and for optimal tissue regeneration.  

Recent research suggests a role for resident macrophages in orchestrating this immune 

cell response to myofiber injury (Brigitte et al., 2010). Located within the epimysium and 

perimysium of the muscle, resident macrophages appear to contribute to an extensive recruitment 

of neutrophils and monocytes from the circulation through selective secretion of neutrophil and 

monocyte chemotactic proteins. The functional role of resident macrophages in monocyte 

recruitment is consistent with the dramatic reduction in monocyte infiltration observed following 

selective depletion of resident macrophages in injured muscle (Chazaud et al., 2009). The 

processes of monocyte recruitment into skeletal muscle following injury is depicted in figure 4. 

Briefly; following muscle damage, activated myogenic cells secrete a number of chemotactic 

factors, including MCP-1, aimed at monocyte recruitment. However; compared to that of 

myogenic cells, resident macrophage recruitment of monocytes constitutes a substantially more 

robust chemotactic pathway, initiating the recruitment of both neighboring resident macrophages 

and circulating monocytes in an MCP-1 dependent pathway. 
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Figure 4. Monocyte recruitment into skeletal muscle following injury.  
Dual and beneficial roles of macrophages during skeletal muscle regeneration. Chazaud et al. 
(2009). MDC, macrophage–derived chemokine; MCP-1, monocyte chemoattractant protein 1; 
CX3CL1, fractalkine; VEGF, vascular endothelial growth factor; uPA, urokinase-type 
plasminogen activator. Included with permission from Wolters Kluwer Health; License #: 
3590431459002. 

 

Recent reports suggest that CCR2 does not appear to demonstrate a desensitization to the 

MCP-1 ligand following prolonged exposure (Volpe et al., 2012). However, it has previously 

been posited that the expression of chemotactic receptors on leukocytes can be modulated by 

external environmental cues in order to fine tune the timing and magnitude of the inflammatory 

response (Burnett, 1992; Fantuzzi et al., 1999). This suggests that the presence of certain ligands 
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within the circulation may precipitate an up- or down-regulation of chemotactic receptors. 

Changes in the expression of the CCR2 receptor and/or the secretion of the MCP-1 ligand may 

therefore have a profound impact on monocyte recruitment, which may ultimately influence 

muscle regenerative processes.  

 

Glucocorticoid/Monocyte Interactions 

 

Resistance exercise is a potent stimulus for acute increases in the concentrations of 

circulating hormones (Smilios et al., 2003). In particular, significant elevations in circulating 

cortisol are observed following resistance exercise of sufficient volume and intensity (Ahtiainen 

et al., 2003). Cortisol accounts for 95% of secreted glucocorticoids in humans, which are 

released from the adrenal cortex in response to the stress of exercise (Kraemer & Ratamess, 

2005). The constitutive expression of glucocorticoid receptors (GCR) on human peripheral blood 

mononuclear cells (PBMCs) (Bartholome et al., 2004), as well as the potential for these receptors 

to up-regulate in response to immunostimulation, has previously been documented (Bartholome 

et al., 2004; Spies et al., 2007). Consequently, the expression of GCR on monocytes provide the 

molecular basis for these cells to be targets of cortisol signaling prior to, during, and following 

resistance exercise.  

Resent research suggests that cortisol’s regulation of innate immunity may be both pro- 

and anti-inflammatory (Sorrells & Sapolsky, 2010; Yeager, Pioli, & Guyre, 2011). Consistent 

with this, glucocorticoids have been shown to modulate the expression of the pro-inflammatory 

receptor CCR2 on human monocytes in vitro (Okutsu et al., 2008; Penton-Rol et al., 1999; 

Pettersson et al., 2005). Penton-Rol et al. (1999) report a selective up-regulation of CCR2 mRNA 
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expression following treatment of human monocytes with the corticosteroid dexamethasone 

(Penton-Rol et al., 1999). In lieu of an increased rate of nuclear transcription, the corticosteroid 

treatment was observed to augment the CCR2 mRNA half-life. This effect was associated with 

increased chemotaxis towards MCP-1, as measured using a chemotaxis micro-chamber in vitro, 

and was abolished in the presence of glucocorticoid receptor agonist RU486. This indicates that 

the up-regulation of CCR2 was mediated by GCR.  

Similar findings have been observed by Okutsu and colleagues (2008). Human PBMC’s 

from untrained men incubated with either serum drawn immediately and 2 hours post-exercise 

(60 minutes cycling at 70% VO2peak) or cortisol alone, exhibit a dose- and time-dependent 

increase in CCR2 expression in vitro. This expression was 2.4 and 1.3 times higher than that of 

the control condition, respectively. Additionally, the up-regulation of CCR2 was achievable with 

the lower limit of physiological plasma cortisol concentration. Similar to the findings of Penton-

Rol and colleagues (1999), the effects of cortisol and serum on CCR2 were abolished in the 

presence of the GCR agonist RU486. Notwithstanding, the exercise stimulus was not sufficient 

to cause an up-regulation of CCR2 in vivo.  

Taken together, examinations of the effects of glucocorticoids on monocyte CCR2 

expression in vitro suggest that cortisol, and other corticosteroids may augment the chemotactic 

capacity of these cells to inflammatory stimuli. Notwithstanding, the up-regulation of CCR2 in 

the presence of glucocorticoids in vitro requires at least 4-6 hours incubation time (Okutsu et al., 

2008; Penton-Rol et al., 1999). Consequently, in vitro observations may not translate to the up-

regulation of CCR2 in vivo. This is consistent with the absence of in vivo changes to CCR2 

expression following cycling activity (Okutsu et al., 2008). The effects of resistance exercise on 

the expression of CCR2 in vivo is yet to be determined.  
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Monocyte Adhesion 

 

In order for monocytes to successfully migrate into damaged tissue, they must first make 

contact with the endothelium immediately adjacent to it. However, the shear stress associated 

with blood flow in vivo make this contact functionally complex. Therefore, monocyte 

transendothelial migration requires a series of sequential steps. These steps include capture, 

rolling, activation, arrest, adhesion strengthening, and intravascular (intraluminal) crawling, that 

together, ultimately lead to paracellular or transcellular monocyte transmigration (Ley, 

Laudanna, Cybulsky, & Nourshargh, 2007; Schenkel et al., 2004). Each step in the process is a 

fundamental pre-requisite for the next step, in what is known as the leukocyte adhesion cascade. 

The leukocyte adhesion cascade has previously been described in detail by Ley and colleagues 

(2007) and is depicted in Figure 5. Several leukocyte specific structural families of adhesion 

molecules are known to mediate each step within the cascade. However; for the purposes of this 

review, only molecules known to directly mediate intravascular crawling will be discussed. This 

step is the direct pre-requisite to monocyte transmigration.   

Prior to crossing the walls of the post-capillary venules, monocytes are observed to crawl 

inside the blood vessels (intravascular crawling), seeking preferred sites of transmigration (Ley 

et al., 2007). Intravascular crawling is predominantly mediated by cytoskeletally regulated 

heterodimers called integrins (Schenkel et al., 2004; Sumagin, Prizant, Lomakina, Waugh, & 

Sarelius, 2010), which interact with their constitutive or inducible endothelial ligands (Laudanna 

& Alon, 2006). Under homeostatic conditions, integrins are maintained in a low-affinity 

conformational state (Shimaoka et al., 2003). However; in the presence of inflammation, select 

chemokines are secreted, which serve to activate/enhance the affinity and/or surface expression 
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of integrins (Ley et al., 2007). This subsequently increases the ligand binding capacity of the cell 

(Constantin et al., 2000; Montresor, Toffali, Constantin, & Laudanna, 2012; Sun et al., 2014), 

while also facilitating a marked decrease in the rate of ligand dissociation (Ley et al., 2007). 

Cumulatively, these effects lead to the augmentation of endothelial adhesion.  

Integrins exist as two non-covalently bound alpha and beta subunits, which pair to form a 

heterodimer. Each heterodimer consists of a large extracellular domain capable of binding 

proteins in the extracellular environment (Hynes, 2002). The functional specificity of these 

molecules resides largely within the extracellular domain of the molecule (Xiong, Chen, & 

Zhang, 2003; Zen et al., 2011). CD11a and CD11b are alpha glycoprotein chains, which combine 

with the beta chain CD18 to form the extracellular domain of β2 integrin receptors LFA-1 

(Lymphocyte function-associated antigen 1; CD11a/CD18) and CR3 (cell adhesion molecule 

complement receptor 3; Mac-1; CD11b/CD18) (Ehlers, 2000). Both CD11a and CD11b are 

reported to have functional roles in monocyte crawling; however, CD11b mediated crawling is 

reported to predominate during inflammation (Sumagin et al., 2010).  

CD11b is expressed exclusively on granulocytes and monocytes (Dunne, Ballantyne, 

Beaudet, & Ley, 2002). The counter-ligand/receptor for CD11b is recognized as intracellular 

adhesion molecule-1 (ICAM-1) (Diamond et al., 1990), and is upregulated on the surface of 

inflamed endothelial cells following tissue injury (Paulis et al., 2012). Pursuant to damage, the 

intravascular crawling behavior of monocytes is reported to occur in a CD11b/ICAM-1 

dependent manner (Dunne, Collins, Beaudet, Ballantyne, & Ley, 2003; Schenkel et al., 2004). 

Ligation of ICAM-1, especially under conditions of high ICAM-1 expression, is thought to 

trigger cytoplasmic signaling events that lead to the translocation of apical ICAM-1, allowing the 

extension of leukocyte membrane protrusions into endothelial-cell junctions (Schenkel et al., 
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2004). This response is thought to result in the formation of channels through which the 

monocyte can migrate. Consistent with this role, the delivery of a monoclonal antibody directed 

against an epitope of the CD11b molecule in vivo, has been shown to inhibit monocyte 

recruitment to inflammatory stimuli (H. Rosen & Gordon, 1987). Additionally, it has recently 

been shown that suppression of the CD11b molecule in vitro results in a concomitant decrease in 

endothelial adhesion (Arakawa et al., 2010; Mesri et al., 1998). Further, blockade of CD11b in 

conjunction with LFA-1 has been shown to result in impaired cell movement, and the inability of 

monocytes to reach endothelial cell junctions (Schenkel et al., 2004). Consequently, it appears 

that CD11b is vital for the adhesion of monocytes in response to environmental inflammatory 

cues.  

 

 
Figure 5. The leukocyte adhesion cascade.  
Getting to the site of inflammation: the leukocyte adhesion cascade. Ley et al. (2007). ESAM, 
endothelial cell-selective adhesion molecule; ICAM1, intercellular adhesion molecule 1; JAM, 
junctional adhesion molecule; LFA1, lymphocyte function-associated antigen 1 (also known as 
αLβ2-integrin); MAC1, macrophage antigen 1; MADCAM1, mucosal vascular addressin cell-
adhesion molecule 1; PSGL1, P‑selectin glycoprotein ligand 1; PECAM1, platelet/endothelial-
cell adhesion molecule 1; PI3K, phosphoinositide 3‑kinase; VCAM1, vascular cell-adhesion 
molecule 1; VLA4, very late antigen 4 (also known as α4β1-integrin). Included with permission 
from Nature Publishing Group; License #: 3592000371954.  
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In accordance with these reports, an up-regulation in the expression of the CD11b has 

previously been linked with the increased ability of monocytes to adhere to endothelial cells 

(Weber, Erl, & Weber, 1995). Increases in CD11b expression on monocytes has previously been 

reported following long distance running (Nielsen & Lyberg, 2004), and high-volume resistance 

training (Gonzalez et al., 2014; Jajtner et al., 2014). This up-regulation has previously been 

associated with increased circulating MCP-1 (K. Takahashi et al., 2003; Vaddi & Newton, 1994) 

and TNFα (Gamble et al., 1985; Montecucco et al., 2008). MCP-1 and/or TNFα mediated up-

regulation of CD11b expression may augment the ability of monocytes to adhere to the 

endothelium in areas of damage, which could ultimately lead to a higher rate of infiltration, and 

subsequent modulation of tissue adaptation.  

 

Conclusions 

 

Together, murine and human in vivo, as well as in vitro examinations of 

monocyte/macrophage responses to tissue damage/inflammation, have shed considerable light on 

the integrative function of distinct immune cells in the resolution of tissue inflammation. 

Following tissue injury, there is a predictable series of responses by innate immune system. 

While the duration and intensity of certain events may change, the systematic activation and 

redistribution of leukocyte subsets in response to injury is fairly consistent. Pursuant to a 

disturbance in tissue homeostasis, patrolling non-classical monocytes and resident macrophages 

are among the first cells to respond. These cells are able to sense the disturbance in homeostasis, 

and respond by rapidly producing cytokines and chemokines, which subsequently leads the 

activation and expression of specific receptors on endothelial cells and leukocytes. These 
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receptors may also be responsive to endocrine signals. Neutrophils are the first cell to invade the 

site of injury, where they release granule contents that modify the damaged tissue and promote 

the extravasation of classical inflammatory monocytes. The life-span of emigrated neutrophils is 

rather short and is subject to modification by pro- or anti-apoptotic signals, some of which are 

produced by macrophages. Macrophages and apoptotic neutrophil signals prevent further 

infiltration of neutrophils, but continue to signal classical monocytes and promote their influx. 

Classical monocytes subsequently enter the tissue and differentiate into M1 pro-inflammatory 

macrophages, which function to phagocytize opsonized cellular debris and apoptotic neutrophils 

while stimulating MPC proliferation. The eventual clearance of apoptotic neutrophils and 

cellular debris promotes a shift in macrophage phenotype from a pro-inflammatory M1 to an 

anti-inflammatory M2 phenotype, which leads to the release of specific growth factors that 

ultimately modulate to the reconstitution of tissue homeostasis. The sequential activation and 

function of immune cells to inflammatory cells are summarized in figure 6.  
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Figure 6. Phagocyte interactions in inflammation.  
Phagocyte Partnership during the Onset and Resolution of Inflammation. Soehnlein & Lindbom 
(2010). IG-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte–monocyte 
colony-stimulating factor; IL, interleukin; PGE2, prostaglandin E2; TGFβ, transforming growth 
factor-β;TNF, tumor necrosis factor. Included with permission from Nature Publishing Group; 
License #: 3582600880056.  

 

It is currently unclear whether the acute inflammatory response differs between various 

resistance exercise protocols. However, given that cortisol has been shown to have the ability to 

modulate monocyte receptor expression in vitro, and the systemic profile of cortisol is known to 

be significantly different between high-intensity and high-volume resistance exercise protocols, 

it is feasible to suggest that systemic immune response may differ between these exercise 

protocols. An increase in monocyte chemotaxis and adhesion increase the likelihood of 

monocyte extravasation, which may subsequently contribute to an augmented macrophage pool 

within the muscle. Since macrophages directly support both the clearance of cellular debris, and 
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the growth of new muscle, training paradigms that maximize the potential for monocyte 

extravasation may ultimately lead to greater tissue adaptations. 
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CHAPTER III: METHODOLOGY 
 

Participants 

 

Ten resistance-trained men (90.1 ± 11.3 kg; 176.0 ± 4.9 cm; 24.7 ± 3.4 yrs; 14.1 ± 6.1% 

body fat) were recruited to participate in this randomized, cross-over design research study.  

Strict recruitment criteria were implemented to increase homogeneity of the sample.  Inclusion 

criteria required participants to be between the ages of 18 and 35 years, with a minimum of one 

year of resistance training experience, and the ability to squat a weight equivalent to their body 

mass.  Participants had 6.7 ± 4.6 years of resistance training experience with an average 

maximum barbell back squat of 172.7 ± 25.2 kg.  All participants were free of any physical 

limitations that may have affected performance.  Additionally, all participants were free of any 

medications and performance enhancing drugs, as determined by a health and activity 

questionnaire.  Following an explanation of all procedures, risks, and benefits, each participant 

provided his informed consent prior to participation in this study.  The research protocol was 

approved by the New England Institutional Review Board prior to participant enrollment.   

 

Maximal Strength Testing 

 

Prior to experimental trials, participants reported to the Human Performance Laboratory 

(HPL) to establish maximal strength (1RM) on all lifts involved in the exercise protocol.  

Participants performed a standardized warm-up consisting of five minutes on a cycle ergometer 

against a light resistance, 10 body weight squats, 10 body weight walking lunges, 10 dynamic 

walking hamstring stretches, and 10 dynamic walking quadriceps stretches.  Following the 
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warm-up, 1RM testing for the barbell back squat and leg press were performed using methods 

previously described (Hoffman, 2006).  Briefly, each participant performed two warm-up sets 

using a resistance of approximately 40-60% and 60-80% of his perceived maximum, 

respectively.  For each exercise, 3-4 subsequent trials were performed to determine the 1RM.  A 

3-5 minute rest period was provided between each trial.  Maximum strength testing was 

administered by the same Certified Strength and Conditioning Specialist to ensure that each 

participant reached the parallel position for each repetition of the squat and that the exercise 

technique was consistent between sessions. For all other exercises, the 1RM was assessed using a 

prediction formula based on the number of repetitions performed to fatigue using a given weight 

(Brzycki, 1993).  Trials not meeting the range of motion criteria for each exercise or where 

proper technique was not used were discarded.  

 

Experimental Trials 

 

On the morning of each trial, participants reported to the HPL after a 10-hour overnight 

fast and having refrained from all forms of moderate to vigorous exercise for the previous 72 

hours. Experimental trials were performed in a balanced, randomized order, and each 

experimental trial was separated by a minimum of one week to ensure adequate recovery.  Each 

participant performed experimental trials at the same time of day to avoid the influence of 

diurnal variations. During each experimental trial, participants performed the standardized warm-

up routine as described above, followed by a lower-body resistance exercise protocol.  Table 1 

depicts the volume (VOL) and heavy (HVY) resistance exercise protocols.  The VOL protocol 

required participants to perform 10 – 12 repetitions with a load of equating to 70% of their 1RM, 
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with a 1-minute rest period between each set and exercise.  The HVY protocol required 

participants to perform 3 – 5 repetitions with a load equating to 90% of their 1RM with a 3-

minute rest period between each set and exercise.  Both protocols included six sets of barbell 

back squats and four sets of bilateral leg press, bilateral hamstring curls, bilateral leg extensions, 

and seated calf raises.  During each protocol, participants were verbally encouraged to complete 

all repetitions for each set.  If the participant was unable to complete the desired number of 

repetitions, spotters provided assistance until the participant completed the remaining repetitions.  

Subsequently, the load for the next set was adjusted so that participants were able to perform the 

specific number of repetitions for each set. 

 
Table 1. Resistance Exercise Protocols 

 

 

Following each resistance exercise protocol, participants remained in the laboratory for 

all post-exercise assessments.  Blood samples were obtained at six time points over the course of 

the study: baseline (BL), immediately post-exercise (IP), 30 minutes post-exercise (30P), 1 hour 

post-exercise (1H), 2 hours post-exercise (2H), and 5 hours post-exercise (5H) 

To control for diet, participants were provided a standardized low protein, low 

carbohydrate breakfast (7 grams protein; 3 grams carbohydrate; 13 grams fat) following BL 

assessments.  Immediately following IP blood sampling, participants were also provided a 

flavored drink (355 mL, 0 grams protein, 2.5 grams carbohydrates, 0 gram fat).  Participants 

Exercise Order Sets x Repetitions Intensity Rest Interval Sets x Repetitions Intensity Rest Interval
1. Barbell Back Squats 6 x 10-12 6 x 3-5
2. Bilateral Leg Press 4 x 10-12 4 x 3-5
3. Bilateral Hamstring Curls 4 x 10-12 4 x 3-5
4. Bilateral Leg Extensions 4 x 10-12 4 x 3-5
5. Seated Calf Raise 4 x 10-12 4 x 3-5

70% 1-RM 1 Minute 90% 1-RM 3 Minutes

Volume Protocol (VOL) Heavy Protocol (HVY)
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were permitted to drink water ad libitum during experimental trials, and water consumption was 

monitored.   

Dietary Logs 

 

Participants were instructed to maintain their normal dietary intake leading up to 

experiment trials.  Participants were then instructed to record as accurately as possible everything 

they consumed during the 24 hours prior to the first experimental trial.  For the following 

experimental trial, participants were required to duplicate the content, quantity, and timing of 

their daily diet during the 24 hours prior.  Participants were instructed not to eat or drink (except 

water) within 10 hours of reporting to the HPL for experimental trials.   

 

Blood Measurements 

 

During each experimental trial, blood samples were obtained using a Teflon cannula 

placed in a superficial forearm vein using a three-way stopcock with a male luer lock adapter and 

plastic syringe.  The cannula was maintained patent using an isotonic saline solution (Becton 

Dickinson, Franklin Lakes, NJ, USA).  BL blood samples were obtained following a 15-minute 

equilibration period.  IP blood samples were taken within one minute of exercise cessation.  

Participants were instructed to lie in a supine position for 15 minutes prior to 30P, 1H, 2H, and 

5H blood draws. 

All blood samples were collected into three 6 ml Vacutainer® tubes.  Blood samples 

were drawn into either plain, sodium heparin, or K2EDTA treated tubes.  A small aliquot of 

whole blood was removed and used for determination of hematocrit and hemoglobin 
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concentrations.  The blood in the plain tube was allowed to clot at room temperature for 30 

minutes and subsequently centrifuged at 3,000g for 15 minutes along with the remaining whole 

blood from the other tubes.  The resulting serum and plasma was placed into separate micro-

centrifuge tubes and frozen at −80°C for later analysis. 

 

Biochemical Analysis 

 

Blood lactate concentrations were analyzed from plasma using an automated analyzer 

(Analox GM7 enzymatic metabolite analyzer, Analox instruments USA, Lunenburg, MA, USA).  

Hematocrit concentrations were analyzed from whole blood via microcentrifugation (CritSpin, 

Westwood, MA, USA) and microcapillary technique.  Hemoglobin concentrations were analyzed 

from whole blood using an automated analyzer (HemoCue, Cypress, CA, USA).  Plasma volume 

shifts were calculated using the formula established by Dill & Costill (1974).  To eliminate inter-

assay variance, all samples were analyzed in duplicate by a single technician.  Coefficient of 

variation for each assay was 1.4% for blood lactate; 0.4% for hematocrit; and 0.6% for 

hemoglobin.   

  Circulating concentrations of testosterone and cortisol were assessed via enzyme-linked 

immunosorbent assays (ELISA) and a spectrophotometer (BioTek Eon, Winooski, VT, USA) 

using commercially available kits.  Myoglobin concentrations were determined via ELISA 

(Calbiotech, Spring Valley, CA, USA) and a spectrophotometer.  Lactate dehydrogenase (LDH) 

concentrations were determined via kinetic ELISA (Sigma-Aldrich, St. Louis, MO, USA) and a 

spectrophotometer.  To eliminate inter-assay variance, all samples for each assay were thawed 

once and analyzed in duplicate in the same assay run by a single technician.  Coefficients of 
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variation for each assay were 4.8% for testosterone; 5.3% for cortisol; 4.1% for myoglobin; and 

4.8% for LDH.  

Plasma samples were assayed for concentrations of monocyte chemoattractant protein 1 

(MCP-1) and tumor necrosis factor-alpha (TNF-α), using a multiplex cytokine assay (Milliplex, 

Cat no. HCYTOMAG-60K; Millipore, Billerica, MA) on a MAGPIX instrument (Luminex, 

Austin, TX), according to the manufacturer's instructions. All samples were run in duplicate with 

a mean intra-assay variance of 8.77% for MCP-1 and 7.00% for TNF-α. 

 

Cell Staining 

 

Cell staining was performed as described previously (Gonzalez et al., 2014; Jajtner et al., 

2014; Townsend et al., 2013). Analysis of target receptor expression on CD14++CD16- cells was 

completed at BL, IP, 1H, 2H and 5H time points. K2EDTA-treated peripheral whole blood was 

used to identify monocytes, and quantify target receptor expression by direct 

immunofluorescence and flow cytometry (BD Biosciences, San Jose, CA). Erythrocytes were 

first lysed from 350 μl of K2EDTA-treated whole blood with BD Pharm Lyse solution (BD 

Biosciences, San Jose, CA) within 30 min of collection. Samples were then washed in staining 

buffer containing 1 x phosphate-buffered saline (PBS) and fetal bovine serum (FBS) (BD 

Pharmingen Stain Buffer; BD Biosciences) followed by centrifugation and aspiration for a total 

of three washes. Leukocytes were then resuspended in 100 μl BD Pharmingen stain buffer (BD 

Biosciences). Direct staining methods were used to label CD14 and CD16 (monocyte 

identifiers), CCR2 (monocyte chemotaxis), CD120a (receptor for TNFα), CD11b (monocyte 
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adhesion), and glucocorticoid receptor (GCR). Due to the number of receptors of interest, two 

separate cell preparations were performed.  

For preparation 1, Alexa Fluor® 488 conjugated anti-CD120a (FAB225G, IgG; R&D 

Systems), allophycocyanin (APC) conjugated anti-CD11b (550019; IgG1; BD Pharmingen™), 

PerCP Cy5.5 conjugated anti-CD14 (562692; IgG2b; BD Pharmingen™) and PE conjugated anti-

CD16 (561313; IgG1; BD Pharmingen™) were used in the receptor labeling process. Surface 

staining for preparation 1 was performed by adding 5µL of directly conjugated Alexa Fluor® 

488-anti-CD120a, 20µL of directly conjugated APC-anti-CD11b, 5 𝜇𝜇L of directly conjugated 

PerCP Cy5.5-anti-CD14, and 5 𝜇𝜇L of directly conjugated PE-anti-CD16 to the cell suspension, 

followed by incubation in the dark for 30 minutes at room temperature. Cells were then 

resuspended in 1.0mL of stain buffer for immediate flow cytometry analysis. 

For preparation 2, PerCP Cy5.5 conjugated anti-CD14 (562692; IgG2b; BD Pharminigen), 

allophycocyanin (APC) conjugated anti-CCR2 (FAB151A; IgG2b; R&D Systems), and 

DyLight® 488 conjugated anti-GR (ab139892; IgG; Abcam), were used in the receptor labeling 

process. Surface staining for preparation 2 was performed by adding 5 𝜇𝜇L of directly conjugated 

PerCP Cy5.5-anti-CD14, and 10 µL of directly conjugated APC-anti-CCR2 to the cell 

suspension followed by incubation in the dark for 30 minutes at room temperature. Cells were 

then washed in staining buffer followed by centrifugation and aspiration. Cells were 

subsequently resuspended in 250 𝜇𝜇L of fixation and permeabilization solution (BD 

cytofix/cytoperm™, BD Biosciences, San Jose, CA), and set to incubate for 20 minutes in the 

dark at 4° C. Following incubation, cells were washed in 1mL of Perm Wash Buffer (BD 

Perm/Wash™, BD Biosciences, San Jose, CA), followed by centrifugation and aspiration, and 

the addition of 50 𝜇𝜇L of Perm Wash Buffer. Intracellular staining for preparation 2 was 
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accomplished by adding 1 𝜇𝜇L of directly conjugated DyLight® 488-anti-GR to the cell 

suspension followed by incubation in the dark for 30 minutes at 4° C. Cells were then washed in 

1.0mL of Perm Wash Buffer and resuspended in 1.0mL of stain buffer for flow cytometry 

analysis following centrifugation and aspiration.   

 

Flow Cytometry 

 

Flow cytometry analysis of stained cells was performed on a BD Accuri C6 flow 

cytometer (BD Biosciences), equipped with BD Accuri analysis software (BD Biosciences). 

Forward- and side-scatter, along with four fluorescent channels of data, were collected using two 

lasers, providing excitation at 488 nm and 640 nm. A minimum of 10,000 events, defined as 

CD14+ monocytes, were obtained with each sample. Monocytes were determined as CD14+ 

events. Compensation for fluorescence spillover was achieved through single staining of anti-

mouse Ig, κ/negative control compensation particles (BD CompBeads, BD Biosciences). 

Unstained leukocytes from human peripheral blood taken at baseline was used as a negative 

control for CD14, CD16, CD120a, CD11b, and CCR2 expression, while an IgG isotype control 

was used to correct for non-specific binding for glucocorticoid receptor.  

 

Gating Procedures 

 

The gating protocol for preparation 1 is depicted in Figure 3. Viable cells were obtained 

using forward-scatter height (FSC-H) x forward-scatter area (FSC-A) gating to eliminate debris, 

necrotic cells and artifact (Figure 3: Panels 1 and 2). Following this, monocytes sub-populations 
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were determined via 2-dimensional histogram (quadrant analysis) based upon CD14 and CD16 

expression (Tallone et al., 2011). The quadrant gate was set relative to the unstained control 

sample (Figure 3: Panel 3). Analysis of target receptor expression was completed on classical 

CD14+CD16- monocytes (Figure 3: Panel 4; lower right quadrant) using one dimensional 

histograms. An unstained control sample was used to set the gate for all target receptors (Figure 

3: Panel 5). The mean fluorescence intensity for each target receptor on CD14+CD16- monocytes, 

which represents the mean density of each receptor per cell, was quantified by overlaying the 

histogram plots of target receptors to the control samples (Figure 3: Panel 6).   

 

 
Figure 7. Gating Protocol for Preparation 1 
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The gating protocol for preparation 2 is depicted in Figure 4. Viable cells were obtained 

using forward-scatter height (FSC-H) x forward-scatter area (FSC-A) gating to eliminate debris, 

necrotic cells and artifact (Figure 4: Panels 1 and 2). Monocytes were determined via one-

dimensional histogram analysis of CD14+ cells relative to unstained control (Figure 4: Panels 3 

and 4). CCR2 expression on CD14+ monocytes was also quantified via one-dimensional 

histogram analysis relative to unstained control (Figure 4: Panels 5 and 6). Analysis of 

glucocorticoid receptor expression was assessed on CD14+/CCR2+ cells (corresponding to 

classical monocytes) relative to IgG isotype control (Figure 4: Panels 7 and 8). The mean 

fluorescence intensity for each target receptor was quantified by overlaying the histogram plots 

to their respective control samples. 

 

 
Figure 8. Gating Protocol for Preparation 2 
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Statistical Analysis 

 

Biochemical and receptor expression changes were analyzed using a two factor (time x 

trial) repeated measures analysis of variance (ANOVA). In the event of a significant F ratio, 

dependent t-tests were used for pairwise comparisons between trials. Follow-up one way 

repeated measures ANOVA were used to determine time effects for each treatment. In the event 

of a significant F ratio, least significant difference (LSD) post-hoc tests were used for pairwise 

comparisons across time. Comparisons between trials were further analyzed using Cohen’s d. 

Consistent with others (Clemson et al., 2012), interpretations of Cohen’s d were evaluated in 

accordance with Thalheimer and Cook (2002) at the following levels: negligible effect (≥ −.15 

and < .15), small effect (≥ = .15 and < .40), medium/moderate effect (≥ = .40 and < .75), large 

effect (≥ = .75 and <1.10), very large effect (≥ = 1.10 and <1.45), and huge effect ≥ 1.45). Time 

effects were further analyzed using partial eta squared (η2
p). Interpretations of η2

p were evaluated 

in accordance with Cohen (1988) at the following levels: small effect (0.01-0.058), medium 

effect (0.059-0.137) and large effect (> 0.138). The net area under the curve (AUC) was also 

calculated for biochemical measures and receptor expression using a standard trapezoidal 

technique. AUC analyses were performed across either IP, 30P, 1H, 2H and 5H time points 

(biochemical measures), or IP, 1H, 2H and 5H time points (receptor expression), and were 

assessed using paired samples t-tests. AUC was used as a proxy to for total receptor expression 

over time. Pearson’s product-moment correlations were used to examine the association between 

circulating hormones, cytokines and cellular receptor expression on CD14++CD16- monocytes. 

Absolute values of r were interpreted according to the recommendations of Evans (1996), at the 

following levels: very weak correlation (.00 to .19), weak correlation (.20 to .39), moderate 

correlation (.40 to .59), strong correlation (.60 to .79), and very strong correlation (.80 to 1.0). 
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Correlations between the AUC of circulating measures and the AUC of receptor expression were 

assessed at IP, 1H, 2H and 5H time points for consistency. Prior to statistical procedures, all data 

was assessed for sphericity. If the assumption of sphericity was violated, a Greenhouse-Geisser 

correction was applied. Significance was accepted at an alpha level of p ≤ 0.05 and all data are 

reported as mean ± SD.   
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CHAPTER IV: FINDINGS 
 

Resistance Exercise Protocol 

 

 Differences in workout volume between trials are presented in Figure 9. Workout volume 

(sets x load x reps) was significantly greater for VOL (45300.0 ± 13919.8 kg) compared to HVY 

(33633.5 ± 5661.9 kg) (+35%; d = 1.16; p = 0.005).  

 

 

Figure 9. Workout Volume.  
Groups: HVY = Heavy; VOL = Volume. * = Significantly greater volume (p ≤ 0.05); Data 
reported as means ± SD. 
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Biochemical Analysis 

 

Lactate 

 Changes in plasma lactate concentrations are depicted in Table 2. A significant 

interaction between trials was observed for plasma lactate concentrations (F = 41.7; p = < 0.001; 

η2
p = 0.82). Plasma lactate was significantly greater during VOL at IP (+106%; d = 2.82; p = < 

0.001), 30P (+105%; d = 2.10; p = < 0.001) and 1H (+71%; d = 1.77; p = < 0.001) compared to 

HVY. Significant time effects were observed for both HVY (F = 31.8; η2
p = 0.78; p = < 0.001) 

and VOL (F = 133.4; η2
p = 0.94; p = < 0.001). During HVY, lactate was significantly elevated at 

IP (+396%; d = 3.1; p = < 0.001), 30P (+176%; d = 1.82; p = 0.004), 1H (+87%; d = 1.59; p = 

0.010) and 5H (+95%; d = 1.55; p = 0.007). During VOL, lactate was significantly elevated at IP 

(+818%; d = 6.56; p = 0.001), 30P (+409%; d = 4.48; p = < 0.001), 1H (+187%; d = 3.75; p = < 

0.001), 2H (+73%; d = 1.32; p = 0.002) and 5H (+93%; d = 1.36; p = 0.009). AUC was 

significantly greater for VOL compared to HVY (+51%; d = 1.28; p = 0.009).  

 

Table 2. Lactate concentration following resistance exercise.  

 

Trial 
Lactate (mmol) 

BL IP 30P 1H 2H 5H 
HVY 1.24 ± 0.21 6.12 ± 2.34 ‡ 3.41 ± 1.77 ‡ 2.31 ± 0.99 ‡ 1.81 ± 1.00 2.41 ± 1.11 ‡ 
VOL 1.38 ± 0.37 12.63 ± 2.53 ‡* 7.01 ± 1.83 ‡* 3.94 ± 0.95 ‡* 2.39 ± 1.08 ‡ 2.66 ± 1.36 ‡ 

Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. * = 
Significant difference between trials; ‡ = Significant increase relative to BL (p ≤ 0.05); Data 
reported as means ± SD. 
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Myoglobin 

 

 Changes in circulating myoglobin concentrations are presented in Figure 10. A 

significant interaction between trials was observed for circulating myoglobin (F = 8.3; η2
p = 

0.48; p = 0.003). Myoglobin was significantly greater during HVY at IP (+79%; d = 1.11; p = 

0.022), and 30P (+92%; d = 1.28; p = 0.009) compared to VOL. A trend towards HVY being 

greater than VOL at 1H was observed (+41%; d = 0.74; p = 0.054). Significant time effects were 

observed for both HVY (F = 21.5; η2
p = 0.71; p = < 0.001) and VOL (F = 26.3; η2

p = 0.75; p = < 

0.001). During HVY, myoglobin was significantly elevated at IP (+461%; d = 2.14; p = 0.001), 

30P (+588%; d = 2.40; p = 0.001), 1H (+582%; d = 2.43; p = 0.001), 2H (+445%; d = 2.30; p = 

0.001), and 5H (+285%; d = 2.32; p = 0.001). During VOL, myoglobin was significantly 

elevated IP (+162%; d = 2.89; p = < 0.001), 30P (+200%; d = 2.81; p = < 0.001), 1H (+305%; d 

= 3.02; p = < 0.001), 2H (+303%; d = 2.86; p = < 0.001), and 5H (+ 164%; d = 2.47; p = 

0.001). Myoglobin AUC is presented in Figure 11. AUC analysis revealed no significant 

differences between trials (d = 0.60; p = 0.111). 

 

51 
 



 

 
Figure 10. Myoglobin concentration following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. * = 
Significant difference between trials; ‡ = Significant increase relative to BL (p ≤ 0.05); Data 
reported as means ± SD. 

 

 

 
Figure 11. Myoglobin area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD. 
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Lactate Dehydrogenase 

 

 Changes in circulating LDH concentrations are presented in Figure 12. No significant 

interactions were noted between trials for circulating LDH (F = 1.3; η2
p = 0.16; p = 0.283). 

However, a significant main effect was observed (F = 10.2; η2
p = 0.59; p = < .001). When 

collapsed across groups, LDH was significantly elevated above baseline at IP (+34%; d = 1.13; p 

= 0.006), 30P (+22%; d = 0.78; p = 0.004), 1H (+24%; d = 0.92; p = 0.004), 2H (+33%; d = 

1.17; p = 0.001) and 5H (+1.47; d = 1.47; p = <0.001). LDH AUC is presented in Figure 13. 

AUC was significantly greater for HVY compared to VOL (+11%; d = 0.49; p = 0.010). 

 

 

 
Figure 12. Lactate dehydrogenase (LDH) concentration following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. ‡ = 
Significant increase relative to BL (p ≤ 0.05); Data reported as means ± SD. 
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Figure 13. Lactate dehydrogenase (LDH) area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. * = Significantly greater AUC (p ≤ 0.05); Data reported 
as means ± SD.  

 

 

TNFα 

 

 Changes in circulating TNFα concentrations are presented in Figure 20. No significant 

interactions were noted between trials for circulating TNFα (F = 1.7; η2
p = 0.16; p = 0.218). 

However, a significant main effect was observed (F = 12.7; η2
p = 0.56; p = < 0.003). When 

collapsed across groups, TNFα was significantly elevated at IP (+53%; d = 1.65; p = 0.001), 30P 

(+66%; d = 1.60; p = 0.002), 1H (+66%; d = 1.56; p = 0.002) and 2H (+33%; d = 1.18; p = 

0.004). TNFα AUC is presented in Figure 21. AUC analysis revealed no significant differences 

between trials (d = 0.31; p = 0.263).   
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Figure 14. Tumor Necrosis Factor - alpha (TNFα) concentration following resistance exercise. 
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. ‡ = 
Significant increase relative to BL (p ≤ 0.05). Data reported as means ± SD. 

 

 

 
Figure 15. Tumor Necrosis Factor - alpha (TNFα) area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  
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MCP-1 

 

Changes in circulating MCP-1 concentrations are presented in Figure 18. No significant 

interactions were observed between trials for circulating MCP-1, although a trend was noted (F = 

2.2; η2
p = 0.19; p = 0.074). However, a significant main effect was observed (F = 6.4; η2

p = 0.42; 

p = < 0.001). When collapsed across groups, MCP-1 was significantly elevated at IP (+76%; d = 

1.56; p = 0.005), 30P (+110%; d = 2.02; p = 0.002), 1H (+110%; d = 1.77; p = 0.003), 2H 

(+43%; d = 1.21; p = 0.006) and 5H (+37%; d = 0.90; p = 0.033). MCP-1 AUC is presented in 

Figure 19. AUC analysis revealed no significant differences between trials (d = 0.20; p = 0.592).   

 

 

 
Figure 16. Monocyte chemoattractant protein-1 (MCP-1) concentration following resistance 
exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. ‡ = 
Significant increase relative to BL (p ≤ 0.05). Data reported as means ± SD. 
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Figure 17. Monocyte Chemoattractant Protein - 1 (MCP-1) area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  

 

 

Cortisol 

 

Changes in circulating cortisol concentrations are presented in Figure 16. A significant 

interaction between trials was observed for cortisol (F = 10.7; η2
p = 0.54; p = < 0.001). Cortisol 

was significantly greater during VOL at IP (+57%; d = 1.08; p = 0.012), 30P (+113%, d = 2.12; 

p = < 0.001), 1H (+91%; d = 2.00; p = 0.003) and 2H (+57%; d = 1.19p; p = 0.018), compared 

to HVY. Significant time effects were also observed for both HVY (F = 8.9; η2
p = 0.50; p = < 

0.001) and VOL (F = 23.5; η2
p = 0.72; p = < 0.001). During HVY, cortisol was significantly 

decreased at 2H (-30%; d = 0.91; p = 0.028) and 5H (-53%; d = 1.87; p = < 0.001) compared to 

BL. During VOL, cortisol was significantly elevated at IP (+95%; d = 1.40; p = 0.001), 30P 

(+112%; d = 1.87; p = 0.001), and 1H (+81%; d = 1.51; p = 0.004) compared to BL, and was 

significantly lower than BL at 5H (-48%; d = 1.07; p = <0.001). Cortisol AUC is presented in 
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Figure 17. AUC was significantly greater for VOL compared to HVY (+62%; d = 1.51; p = 

0.003).  

 

 

 

 
Figure 18. Cortisol concentration following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. * = 
Significant difference between trials; ‡ = Significant increase relative to BL (p ≤ 0.05); § = 
Significant decrease relative to BL (p ≤ 0.05). Data reported as means ± SD. 
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Figure 19. Cortisol area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. * = Significantly greater AUC (p ≤ 0.05); Data reported 
as means ± SD.  

 
 

Testosterone 

 

Changes in circulating testosterone concentrations are presented in Figure 14. A trend 

was observed between trials for circulating testosterone (F = 2.8; η2
p = 0.24; p = 0.080). 

Additionally, a trend towards a main effect was observed for circulating testosterone (F = 3.5; η2
p 

= 0.28; p = 0.075). However, neither reached significance. Testosterone AUC is presented in 

Figure 15. AUC analysis revealed no significant differences between trials (d = 0.02; p = 0.768). 
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Figure 20. Testosterone concentration following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
30P = 30 minutes post; 1H = One hour post; 2H = Two hours post; 5H = Five hours post. Data 
reported as means ± SD. 

 

 

 

 
Figure 21. Testosterone area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  

 

60 
 



Plasma Volume Shifts 

 

Relative to BL, plasma volume shifts were significantly different between trials at IP (p = 

0.016).  The difference between trials was not significant for any other time-point. During VOL, 

plasma volume decreased at IP, -8.0 ± 7.7; increased at 30P, 2.1 ± 9.4; increased at 1H, 7.2 ± 

14.0; increased at 2H, 3.7 ± 5.0; and decreased at 5H, -1.6 ± 5.5.  During HVY, plasma volume 

decreased at IP, -1.6 ± 3.1; increased at 30P, 3.3 ± 3.6; increased at 1H, 4.0 ± 3.0; increased at 

2H, 7.2 ± 7.3; and decreased at 5H, -2.6 ± 4.0.  Blood variables were not corrected for plasma 

volume shifts due to the importance of molar exposure at the cell receptor level.   

 

Flow Cytometry 

 

TNFα Receptor 1 Expression 

 

Changes in TNFr1 expression are presented in Figure 24. No significant interactions were 

observed between trials for TNFαR1 expression on CD14++CD16- monocytes (F = 1.0; η2
p = 

0.10; p = 0.443). In addition, no significant main effect for time was observed (F = 1.2; η2
p = 

0.12; p = 0.318). TNFr1 AUC is presented in Figure 25. AUC analysis revealed no significant 

differences between trials (d = 0.21; p = 0.370). 
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Figure 22. Tumor Necrosis Factor Receptor-1 (TNFr1) expression following resistance exercise. 
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 1H 
= One hour post; 2H = Two hours post; 5H = Five hours post. Data reported as means ± SD. 
 

 

 

 
Figure 23. Tumor Necrosis Factor Receptor-1 (TNFr1) area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  
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CC Chemokine Receptor 2 (CCR2) Expression 

 

 Changes in CCR2 expression are presented in Figure 22. No significant interactions were 

observed between trials for CCR2 expression on CD14++CD16- monocytes (F = 0.4; p = 0.696; 

η2 = 0.04). However, a significant main effect was observed (F = 4.6; p = 0.005; η2 = 0.37). 

When collapsed across groups, CCR2 expression on CD14++CD16- monocytes was significantly 

lower at IP (-25%; d = 1.32; p = 0.033), 1H (-25%; d = 1.37; p = 0.020), 2H (-28%; d = 1.32; p 

= 0.040) and 5H (-29%; 1.43; p = 0.024). CCR2 AUC is presented in Figure 23. AUC analysis 

revealed a trend towards a significant difference between trials (d = 0.73; p = 0.056).  

 

 

 
Figure 24. C-C Chemokine Receptor 2 expression following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
1H = One hour post; 2H = Two hours post; 5H = Five hours post. § = Significant decrease 
relative to BL (p ≤ 0.05). Data reported as means ± SD. 
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Figure 25. C-C Chemokine Receptor 2 area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  

 

 

Glucocorticoid Receptor Expression 

 

 Changes in GCR expression are presented in Figure 28. No significant 

interactions were noted between trials for Glucocorticoid receptor expression on CD14++CD16- 

monocytes (F = 0.9; p = 0.460; η2
p = 0.12). A significant time effect was observed (F = 4.0; p = 

0.011; η2
p = 0.36). However; when collapsed across groups, no significant elevations above 

baseline were observed (p = > 0.131). GCR AUC is presented in Figure 29. AUC analysis 

revealed no significant differences between trials (d = 0.30; p = 0.505).  
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Figure 26. Glucocorticoid receptor expression following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
1H = One hour post; 2H = Two hours post; 5H = Five hours post. Data reported as means ± SD. 

 

 

 

 
Figure 27. Glucocorticoid receptor area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  
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CD11b Receptor Expression 

 

 Changes in CD11b receptor expression are presented in Figure 26. No significant 

interactions were observed between trials for CD11b expression on CD14++CD16- monocytes (F 

= 0.7; p = 0.599; η2
p = 0.07). However, a significant time effect was observed (F = 6.0; p = 

0.001; η2
p = 0.40). When collapsed across groups, CD11b receptor expression on CD14++CD16- 

monocytes was significantly greater at 1H (+28%; d = 0.71; p = 0.001). A trend towards an 

increase in CD11b receptor expression was observed at IP (+21%; d = 0.55; p = 0.067). 

Additionally, a trend towards a decrease in CD11b receptor expression was observed at 5H (-

17%; d = 0.50; p = 0.082). CD11b AUC is presented in Figure 27. AUC analysis revealed no 

significant differences between trials (d = 0.04; p = 0.894).  

 

 

 
Figure 28. CD11b expression following resistance exercise.  
Groups: HVY = Heavy; VOL = Volume.  Time points: BL = Baseline; IP = Immediately-post; 
1H = One hour post; 2H = Two hours post; 5H = Five hours post. ‡ = Significant increase 
relative to BL (p ≤ 0.05). Data reported as means ± SD. 
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Figure 29. CD11b area under the curve (AUC).  
Groups: HVY = Heavy; VOL = Volume. Data reported as means ± SD.  

 

 

Correlations 

 

CD11b receptor expression was positively correlated with circulating MCP-1 at 1H (r = 

.632, p = 0.003), and with circulating TNFα at 1H (r = .552, p = 0.012).  
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CHAPTER V: DISCUSSION 
 

The findings of this study indicate that changes in CCR2, CD11b, and GCR expression 

on CD14++CD16- monocytes are similar following acute bouts of high-intensity, and high-

volume resistance exercise. When collapsed across groups, CCR2 expression was significantly 

lower at IP, 1H, 2H and 5H post-exercise, while CD11b expression was significantly elevated at 

1H post-exercise only. GCR expression was not significantly different from baseline at any time 

point. Plasma concentrations of myoglobin were significantly higher following HVY compared 

to VOL; however, both protocols resulted in significant elevations above BL at all post-exercise 

time points. No difference between trials was observed for LDH, however AUC was 

significantly greater in HVY compared to VOL. Changes in plasma TNFα, and MCP-1 

concentrations were similar between HVY and VOL. As expected, significant elevations in 

plasma cortisol concentrations were observed following VOL only, although this did not appear 

to be related to changes in receptor expression. Plasma testosterone concentrations and TNFr1 

receptor expression did not appear to be affected by resistance exercise. 

The propagation of muscle damage results in an inflammatory response that is 

characterized by the production of pro-inflammatory cytokines such as TNFα. Our results 

indicate that plasma TNFα is rapidly increased following resistance exercise. Relative to BL, 

plasma TNFα was significantly increased at IP, 30P, 1H and 2H post-exercise, and this was 

similar between HVY and VOL. This suggests that resistance exercise, irrespective of HVY or 

VOL, resulted in a robust post-exercise inflammatory response. This is consistent with prior 

work from our laboratory (Townsend et al., 2015). We have previously reported significant 

increases in plasma TNFα immediately, and 30 minutes post-exercise, following an acute bout of 

high-volume resistance exercise in well-trained males. In the present study, we further 
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characterize the TNFα response to damaging resistance exercise, demonstrating that plasma 

concentrations remain elevated for up to 2 hours post-exercise. In contrast to our findings, a 

number of studies report no changes in plasma TNFα following exercise. Brenner et al. (1999) 

found no changes in plasma TNFα concentrations following an acute bout of high-volume lower-

body resistance exercise in untrained males (Brenner et al., 1999). Similarly, Smith et al. (2000) 

found no changes in plasma TNFα following high-volume eccentric resistance exercise at 100% 

1RM in untrained males. Further, Peake et al. (2006) found no changes in plasma TNFα 

concentrations following submaximal and maximal lengthening contractions of the elbow flexors 

in untrained males (Peake, Nosaka, Muthalib, & Suzuki, 2006). Differences between the present 

study and these other investigations suggest that the cytokine response may differ between 

trained and untrained individuals. There is evidence to suggest that the leukocyte and cytokine 

response may be delayed following significant tissue damage (Paulsen et al., 2005; Suzuki et al., 

2002). In untrained individuals, an exercise stimulus of sufficient magnitude, particularly if 

unaccustomed, may result in a more pronounced muscle damage compared to trained 

individuals. This may subsequently lead to a delayed cytokine response, which may explain 

some of the differences between studies. Notwithstanding, the temporal behavior of cytokines in 

response to resistance exercise requires further investigation.  

TNFα plays several important roles in inflammation, including inducing the secretion of 

MCP-1 (Murao et al., 2000), up-regulating ICAM-1 and P-selectin adhesion molecules on 

endothelial cells (Bernot, Peiretti, Canault, Juhan-Vague, & Nalbone, 2005), and up-regulating 

CD11b expression on both neutrophils and monocytes (Montecucco et al., 2008; Sumagin et al., 

2010). These effects are mediated via binding with its cognate membrane receptors TNFr1 

(CD120a) and TNFr2 (CD120b) (Hijdra, Vorselaars, Grutters, Claessen, & Rijkers, 2012). 
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However, TNFr1 appears to be the key mediator of TNFα signaling (Grell, Wajant, 

Zimmermann, & Scheurich, 1998; Wajant, Pfizenmaier, & Scheurich, 2003). TNFr1 expression 

did not change significantly in response to HVY or VOL resistance exercise. We have previously 

reported a significant increase in TNFr1 receptor expression on monocytes following acute bouts 

of high-volume resistance exercise in well-trained males (Townsend et al., 2013; Townsend et 

al., 2015). However, in contrast to the present study, this observation was made on CD14++ 

monocytes, without further differentiation based on the expression of CD16 antigen. Classical 

and intermediate monocytes both express a high level of CD14 antigen (Wong et al., 2011), 

which prevents their differentiation in the absence of a secondary antibody. Recent research 

suggests that intermediate monocytes express TNFr1 to a significantly greater extent compared 

to classical and non-classical monocytes (Hijdra et al., 2012). It is therefore possible that the 

change in TNFr1 expression previously reported by our laboratory occurred in intermediate 

CD14++ CD16+ monocytes rather than CD14++CD16- classical monocytes. Nevertheless, 

examinations of temporal changes in the expression of TNFr1 on monocytes following resistance 

exercise are lacking.   

Our results indicate that circulating MCP-1 is also rapidly increased following damaging 

resistance exercise. Under inflammatory conditions, MCP-1 is the primary cytokine involved in 

mediating classical monocyte chemotaxis (Charo & Ransohoff, 2006; B. Lu et al., 1998; Rossi & 

Zlotnik, 2000; Shireman et al., 2006; Shireman et al., 2007; M. Takahashi et al., 2009). Relative 

to baseline, MCP-1 was significantly elevated at all post-exercise time points, and this response 

was similar between HVY and VOL. This is consistent with the reports indicating that 

circulating concentrations of MCP-1 parallel early inflammation (Shireman et al., 2006), and 
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suggests that both HVY and VOL protocols likely resulted in a significant recruitment of 

monocytes.  

To our knowledge, only one other study has examined changes in plasma MCP-1 in 

conjunction with an acute bout of resistance exercise (Ihalainen et al., 2014). In contrast to our 

findings, Ihalainen and colleagues (2014) report a significant decrease in plasma MCP-1 

concentrations, following an acute bout of high-volume leg press exercise [5 x 10 (80% 1RM)] 

in healthy untrained males. Data regarding the effect of training status on the plasma MPC-1 

response is currently lacking. However, differences between findings could be related to the 

magnitude of the exercise stimulus. We utilized an exercise protocol consisting of 5 exercises 

designed to target the entire lower extremity. In contrast, Ihalainen and colleagues utilized only 

the leg press exercise. Given the large disparity in total work between studies, it is possible that a 

minimal exercise volume may be required to stimulate MCP-1, and that this was not attained 

with the leg press alone. Nevertheless, Ihalainen and colleagues only examined plasma MCP-1 

concentrations up to 30 minutes post-exercise. Therefore, a delayed increase in plasma MCP-1 

cannot be discounted. 

Consistent with our findings, significant changes in plasma MCP-1 have been reported 

following a number of aerobic exercise interventions (Crystal, Townson, Cook, & LaRoche, 

2013; Peake, Suzuki, Hordern et al., 2005). Peake et al. (2005) observed significant increases in 

plasma MCP-1 immediately, and 1 hour post-exercise, following three separate running 

protocols of varying intensity (Peake et al., 2005). Similarly, Crystal et al. (2013) observed a 

significant increase in plasma MCP-1 immediately, 1 hour, and 6 hours post-exercise, following 

40 minutes of downhill running at 60% VO2max. Comparisons between aerobic exercise protocols 

appear to suggest that the MCP-1 response is related to exercise intensity (%VO2max) rather than 
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the degree of muscle damage (Peake et al., 2005). This is consistent with reports that plasma 

MCP-1 concentrations are higher following level running at 85% VO2max, despite a significantly 

lower plasma concentration of myoglobin compared to downhill running (Peake, Suzuki, Wilson 

et al., 2005; Peake et al., 2005). Anecdotally, our findings appear to support this notion, since 

MCP-1 trended (p = 0.074) towards being higher following high-volume resistance exercise 

compared to the more damaging high-intensity protocol. Nevertheless, changes in MCP-1 were 

not significantly different between trials. Collectively, it appears that exercise of a sufficient 

magnitude results in a rapid elevation in plasma MCP-1. This is likely in response to a 

disturbance in tissue homeostasis (Soehnlein & Lindbom, 2010), which may or may not be 

related to the degree of muscle damage. Further research is required to fully elucidate the effects 

of exercise on the magnitude of the MCP-1 response. 

MCP-1 exerts its chemotactic function via exclusive binding to the G-protein coupled 

receptor CCR2 (Rot & von Andrian, 2004). Our result indicate that CCR2 expression is 

significantly down-regulated at all post-exercise time points following both high-intensity and 

high-volume resistance exercise. The observed findings may be the result of agonist mediated 

receptor internalization, which is a well characterized mechanism contributing to the tight 

control of inflammation (Bennett, Fox, & Signoret, 2011; Berchiche, Gravel, Pelletier, St-Onge, 

& Heveker, 2011; Kelly, Bailey, & Henderson, 2008; Rot & von Andrian, 2004). However, to 

the best of our knowledge, no other study has evaluated changes in CCR2 expression following 

an acute bout of resistance exercise.  

Changes in CCR2 expression have been reported following examinations of MCP-

1/CCR2 mediated monocyte chemotaxis in vitro (Arai, Monteclaro, Tsou, Franci, & Charo, 

1997; Franci, Gosling, Tsou, Coughlin, & Charo, 1996; Handel et al., 2008). Handel and 
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colleagues (2008) observed a dose-dependent decrease in CCR2 expression following incubation 

of murine monocytes with MCP-1. A substantial down-regulation of CCR2 receptors was 

apparent within 30 minutes, while one hour of incubation was sufficient to induce a 60% down-

regulation of CCR2 receptors. Upon removal of the MCP-1 ligand, CCR2 expression began to 

recover. Nevertheless, maximal receptor expression was not regained for an additional 4 hours. 

Consistent with this, low nanomolar concentrations of MCP-1 have been shown to be sufficient 

to induce a substantial down-regulation of CCR2. Further, this effect was achieved within 5 to 10 

minutes of MCP-1 exposure (Franci et al., 1996). Together, these results suggest that MCP-1 

may induce the internalization of CCR2 receptors, possibly as part of a mechanism designed to 

modulate the magnitude of the monocyte response.  

A recent investigation by Volpe and colleagues (2012) indicates that internalization of 

CCR2 does not reduce the responsiveness of monocytes to MCP-1 (Volpe et al., 2012). These 

investigators suggest that following interaction with MCP-1, internalized receptors rapidly 

recycle back to the cell surface in order to maintain the responsiveness of the cell towards the 

chemokine. Physiologically, this action provides for continuous signaling from receptors at the 

leading edge of the monocyte, which is required for directional migration. This mechanism 

would allow monocytes to proceed along an increasing chemokine gradient without becoming 

desensitized. Nevertheless, under conditions of continuous stimulation, receptor cycling may still 

lead to a decrease in CCR2 receptor expression. However, given the need to maintain cell 

polarity, it is likely that that this response would be limited to a particular threshold, rather than 

being dose-dependent. This is consistent with the plateau observed in the present study, and may 

also explain why we did not find a significant inverse relationship between plasma MCP-1 

concentrations and CCR2 expression.  
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Cortisol has been shown to modulate the expression of CCR2 on human monocytes in 

vitro (Okutsu et al., 2008; Penton-Rol et al., 1999; Pettersson et al., 2005). Despite a significant 

increase in plasma cortisol following the high-volume protocol, changes in the expression of 

CCR2 were not different between trials. Additionally, changes in GCR expression were not 

different from BL, and were similar between the two acute protocols. Consequently, our results 

do not support the in vitro observations of others. It is worth mentioning however, that at least 4-

6 hours of incubation were required before an up-regulation of CCR2 was observed in vitro 

(Okutsu et al., 2008; Penton-Rol et al., 1999). Further, 60 minutes of cycling at 70% VO2peak was 

unable to stimulate an up-regulation of CCR2 on monocytes in vivo, even following 24 hours of 

additional incubation time (Okutsu et al., 2008). In the present study, plasma cortisol 

concentrations did not correlate with any outcome measure to a physiologically meaningful 

degree.  

CD11b mediates monocyte intravascular crawling, which is the direct pre-requisite to 

trans-endothelial migration (Ley et al., 2007; Sumagin et al., 2010). Our results indicate a 

moderate but significant up-regulation in CD11b at 1H post-exercise. Further, this change was 

similar between high-intensity and high-volume trials. The up-regulation of CD11b at 1H post-

exercise indicates a greater potential for monocyte adhesion, and is consistent with the temporal 

appearance of monocytes at sites of tissue damage reported by McLennan (McLennan, 1996). 

We have previously reported similar increases in CD11b on CD14++ monocytes following acute 

bouts of high-volume resistance exercise in well-trained males (Gonzalez et al., 2014; Jajtner et 

al., 2014). Our reports appear to be consistent with the findings of others (Hong & Mills, 2008; 

Jordan et al., 1999). Hong et al. (2008) observed a significant increase in the expression of 

CD11b on CD14++CD16- monocytes immediately, and 10-minutes post-exercise, following a 20-
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minute bout of moderate treadmill exercise at 65-70% VO2peak (Hong & Mills, 2008). In another 

study, a significant up-regulation in CD11b expression was observed following maximal 

treadmill exercise and marathon running, albeit on granulocytes (Jordan et al., 1999). 

Interestingly, a bout of moderate treadmill exercise was not sufficient to cause an up-regulation 

in CD11b (Jordan et al., 1999). This could indicate that exercise must be of a sufficient volume 

and/or intensity for CD11b expression to be increased.  

The observed increase in CD11b expression correlated moderately with plasma 

concentrations of both TNFα, and MCP-1 at 1H. These findings are supported by a number of in 

vitro and in situ studies, suggesting that both observations could be physiologically meaningful 

(Montecucco et al., 2008; Starikova et al., 2010; Sumagin et al., 2010; K. Takahashi et al., 2003; 

van Royen et al., 2003). However, TNFα and MCP-1 were also highly correlated with each other 

at all post-exercise time points (data not shown), suggesting that the association of at least one of 

these ligands with CD11b up-regulation is spurious. Previous work by Campbell et al. (2000) 

indicates that for a given receptor, the signals required for rapid adhesion to vascular integrin 

ligands are different from those required for chemotaxis, illustrating that two distinct G-protein-

linked receptor-dependent events are required for leucocyte extravasation from the blood 

(Campbell, Foxman, & Butcher, 1997). This suggests that TNFα mediated up-regulation of 

CD11b is more likely, since MCP-1 mediates chemotaxis. Nevertheless, we are unable to 

delineate the contributions of MCP-1 and/or TNFα in the regulation of CD11b expression.  
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Conclusions 

 

The present study investigated the acute pro-inflammatory response following two typical 

lower-body resistance exercise protocols in experienced, resistance trained men. Markers of 

muscle damage were elevated to a significantly greater extent in HVY, while plasma cortisol 

concentrations were significantly greater following VOL. Nevertheless, changes in plasma 

concentrations of TNFα, and MCP-1 were similar between HVY and VOL, as was the temporal 

response of TNFr1, CCR2, GCR and CD11b receptors on CD14++ CD16- monocytes. 

Consequently, our results do not support a role for cortisol in the modulation of these receptors 

in vivo, while the degree of muscle damage does not appear to influence plasma concentrations 

of TNFα, or MCP-1. It is therefore likely that both HVY and VOL protocols constitute an 

exercise stimulus that is sufficient enough to promote a robust pro-inflammatory response, which 

is similar in timing and magnitude.  
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