
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2010

Modeling And Simulation Of Soft Bodies Modeling And Simulation Of Soft Bodies

Jaruwan Mesit
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Mesit, Jaruwan, "Modeling And Simulation Of Soft Bodies" (2010). Electronic Theses and Dissertations,
2004-2019. 1647.
https://stars.library.ucf.edu/etd/1647

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1647?utm_source=stars.library.ucf.edu%2Fetd%2F1647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MODELING AND SIMULATION OF SOFT BODIES

by

JARUWAN MESIT

M.S. National Institute of Development Administration, 1999
B.S. Rajabhat Institute Phetchaburi, 1996

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term 2010

Major Professor:
Ratan K. Guha

 ii

© 2010 by Jaruwan Mesit

ABSTRACT

 As graphics and simulations become more realistic, techniques for approximating soft

body objects, that is, non-solid objects such as liquids, gases, and cloth, are becoming

increasingly common. The proposed generalized soft body method encompasses some specific

cases of other existing models enabling simulation of a variety of soft body materials by

parameter adjustment. This research presents a general method of soft body model and

simulation in which parameters for body control, surface deformation, volume control, and

gravitation, can be adjusted to simulate different types of soft bodies. In this method, the soft

body mesh structure maintains configuration among surface points while fluid modeling deforms

the details of the surface. To maintain volume, an internal pressure is approximated by simulated

molecules within the soft body. Free fall motion of soft body is generated by gravitational field.

Additionally, a constraint is specified based on the property of the soft body being modeled.

 There are several standard methods to control soft body volume. This work illustrates the

simplicity of simulation by selecting a mass-spring system for the deformation of the connected

points of a three-dimensional mesh, while an internal pressure force acts upon the surface

triangles. To incorporate fluidity, smooth particles hydrodynamics (SPH) is applied where

surface points are considered as free moving particles interacting with neighboring surface points

within a SPH radius. Because SPH is computationally expensive, it requires an efficient method

to determine neighboring surface points. Collision detection with soft bodies and other rigid

body objects also requires such fast neighbor detection. To determine the neighboring surface

point, Axis Aligned Bounding Box (AABB), Octree, and a partitioning and hashing schemes

 iv

have been investigated and the result shows that the partitioning and hashing scheme provides

the best frame rate. Thus a fast partitioning and hashing scheme is used in this research to

reduce both computational time and the memory requirements.

 The proposed soft body model aims to be applied in several types of soft body

application depending on the specific types of soft body deformation. The work presented in this

dissertation details experiments with a variety of visually appealing fluid-like surfaces and

organic materials animated at interactive speeds. The algorithm is also used to implement

animated space-blob creatures in the Galactic Arms Race video game and a human lung

simulation, demonstrating the effectiveness of the algorithm in both an actual video game engine

and a medical application. The simulation results show that the general model of the soft body

can be applied to several applications by adjusting the soft body parameters according to the

appearance results.

 v

To my husband, Erin and to my parents, Arom and Tawin Mesit.

 vi

ACKNOWLEDGMENTS

 Thanks to my advisor, Dr. Ratan Guha, with whose guidance and attention to detail we

have published valuable contributions to the field. Thanks to the Computer Science Department

at UCF, without whose financial support I would not be able to complete this dissertation.

Special thanks to my dissertation committee members Dr. Mostafa Bassiouni, Dr. Sheau-Dong

Lang, Dr. Brian Goldiez, and Dr. Matthias R. Brust for generously donating their time,

knowledge, and suggestions.

 Thanks very much to my parents, Arom and Tawin Mesit, who enabled me to study in the

United States and supported me both financially and emotionally. Thanks to Dr. Peter Kincaid

and the members of the Hurricane project at the UCF Institute for Simulation and Training.

Thanks for Dr. Atem Masunov at the UCF Nanoscience Department who introduced me to

monte carlo simulation. Thanks for Dr. Brian Goldiez for his support of the work on high

performance computer visualization.

 Additionally, I would like to thank fellow lab member Shafaq Chaudhry, who helped

keep me on track for all deadlines and graduation paper work. Without her, I might not have

graduated on time this semester. Finally, thanks to the Galactic Arms Race team for integrating

my soft-body method into their video game.

Jaruwan Mesit

University of Central Florida

Fall 2010

 vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES ... xxi

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Contribution .. 2

1.3 Dissertation overview ... 3

CHAPTER 2: BACKGROUND ... 4

2.1 Previous works .. 4

2.1.1 Two dimensional cloth simulation in general .. 5

2.1.2 Cloth simulation with drapes, folds, and wrinkles ... 7

2.1.3 Cloth simulation in Garment design .. 10

2.1.4 Three dimensional deformable objects .. 12

2.1.5 Three dimensional facial, skin, and musculature animations 18

2.2 Mass-spring Systems .. 22

2.3 Finite Element Method (FEM).. 26

2.4 Finite Volume Method (FVM).. 28

2.5 Finite Difference Method (FDM) ... 30

2.5.1 Fluid mechanics ... 30

2.5.2 Smooth Particles Hydrodynamics (SPH) in fluid dynamics .. 31

2.6 Newton’s Second Law of Motion for Soft Body Animation .. 35

2.6.1 Explicit Euler Integration ... 37

 viii

2.6.2 Implicit Euler Integration ... 37

2.7 Collision detection .. 39

2.8 Constraints .. 42

2.8.1 Volume control .. 43

2.8.2 Surface deformation ... 44

2.8.3 Internal energy ... 45

2.8.4 Gravity ... 46

2.8.5 Contact constraints ... 47

CHAPTER 3: A GENERAL MODEL OF SOFT BODIES ... 49

3.1 Definitions of rigid body and soft body .. 50

3.2 Definitions of force parameters .. 52

3.3 Mapping the general model to some specific models ... 54

3.3.1 A versatile and robust model for geometrically complex deformable solids 55

3.3.2 A fast, flexible, particle-system model for cloth draping .. 57

3.3.3 Estimating Cloth Simulation Parameters from Video ... 60

3.3.4 Underwater cloth simulation with fractional derivatives ... 62

3.3.5 Position based dynamics .. 64

3.5.6 Soft Articulated Characters with Fast Contact Handling ... 67

3.3.7 PriMo: coupled prisms for intuitive surface modeling .. 69

3.4 Specific methods of a soft body model ... 71

3.5 Physics motion in the soft body .. 76

CHAPTER 4: IMPLEMENTATION OF THE SPECFIC METHODS OF SOFT BODIES . 82

 ix

4.1 Determining the neighboring surface points ... 83

4.1.1 Determining neighboring surface points by AABB... 83

4.1.2 Determining neighboring surface points by Octree ... 86

4.1.3 Neighboring surface points by hashing for fluid model .. 89

4.2 Comparing the methods for fluid modeling .. 93

4.3 Dynamically resizing grid cell scheme for collision detection ... 95

4.4 Soft body simulation details.. 102

4.5 Complexity analysis .. 111

CHAPTER 5: SIMULATION OF FLUID-LIKE SOFT BODY, ORGANIC FACE, AND

SOFT BODY IN GAMES .. 114

5.1 Deformation experiments.. 114

5.1.1 Fluid-like soft body simulation .. 115

5.1.2 Simulation of organic faces ... 123

5.2 Integration into a game engine .. 131

CHAPTER 6: SIMULATION OF LUNG RESPIRATION FUNCTION 134

6.1 Respiration and lung functions ... 135

6.1.1 Respiratory system ... 135

6.1.2 Lung volume .. 136

6.1.3 Pressure Volume (P-V) curve relation ... 137

6.2 Adapting internal pressure in lung respiration model .. 138

6.3 Lung respiratory simulation .. 140

6.4 Experiments .. 141

 x

6.4.1 Determining the dependency of the body control on lung model 141

6.4.2 Determining the effect of the volume control .. 148

6.4.3 Determining the effect of the fluidity control .. 149

6.5 Lung simulation conclusion .. 151

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 153

LIST OF REFERENCES .. 155

 xi

LIST OF FIGURES

Figure 2—1: Flag waving in the wind simulated by Terzopoulos et al. [9]. He proposed

deformable objects with elastic properties which have successfully been used in soft body cloth

simulation .. 24

Figure 2—2: Pouring water into a glass simulated by Müller et al [63]. The SPH in fluid

modeling has been use in this simulation. .. 33

Figure 2—3: Generated clothes simulated by Kang et al [1]. The implicit Euler method is used in

this cloth simulation. ... 38

Figure 4—1: Axis Aligned Bounding Box (AABB) for determining the neighboring surface

points of surface point p . The AABB is used to bound a soft body model and then all surface

points in the soft body need to be tested if they are in the core radius wh of surface point p 84

Figure 4—2: Fluid particle list table. Each soft body object has a fluid particle table of size n,

where n is the number of surface points in the soft body. Each entry in the table lists contains the

surface points within the kernel radius of the surface point correlation. 85

Figure 4—3: Octree subdivision. The three dimension space is recursively subdivided the space

at the location of the surface points into eight octants. ... 87

 xii

Figure 4—4: Octree structure. The add new node function uses location of the surface point and

recursively subdivides the 3D space of the model into eight octants. The child pointer of each

tree node references the subdivided spaces where surface point can reside in one of those spaces.

... 87

Figure 4—5: 3D hash table for SPH. Each grid cell index c = (cx, cy, cz) is mapped into the hash

index H=(Hx, Hy, Hz). Then, each hash index points to a list of surface points mapped to that

index. ... 91

Figure 4—6: SPH with grid cells of the soft body surface. This figure shows surface points

within the radius hw of surface point pi , where hw is core radius of SPH. 92

Figure 4—7: Performance comparison of the methods for determining the neighboring surface

points. The best frame rate is obtained by using the partitioning and hashing scheme. 94

Figure 4—8: Effect of density of points and performance of collision detection. This experiment

tests grid-based partitioning for collision detection between 1,000 points. Results show the best

frame rate when the density is between 0.45 – 1.0. .. 98

Figure 4—9: Effect of density of points and performance of collision detection. This experiment

is set for the collision detection with grid-based partitioning between 3,000 points. The result

shows the good frame rate when the density is between 0.4 – 1.7. .. 98

 xiii

Figure 4—10: Effect of density of points and performance of collision detection. This

experiment is set with grid-based partitioning for the collision detection between 5,000 points.

The result shows the good frame rate when the density is between 0.6 – 1.2. 99

Figure 4—11: Effect of density of points and performance of collision detection. This

experiment is set with grid-based partitioning for the collision detection between 7,000 points.

The result shows the good frame rate when the density is between 0.8 – 2.1. 99

Figure 4—12: Structure of surfacePointList. This structure is for containing surface point list

used in the 3D hash table and the fluid particle list table. The variable count tracks the number of

surface points in the list. The variable pointNumber stores the surf ace points into the list. 104

Figure 4—13: The function hashTableCreation(int Gx, int Gy, int Gz). This function creates the

3D hash table by taking grid cell size (Gx, Gy, Gz) as arguments. Both fluid modeling and

collision detection use this function to construct the 3D hash table. When being called, it

removes all surface points in the list in each entry of the 3D hash table by initializing the variable

count to 0. Then, the function uses the grid cell size to compute the 3D grid cell index and

converts the 3D grid cell index to the 3D hash table index. The result of the function is the 3D

hash table containing the list of surface points. .. 105

Figure 4—14 : The function void accessToHashTable (int Gx, int Gy, int Gz, string process).

This function accesses the 3D hash table in which the surface point p is placed. All surface points

in the 3D hash index and all surface points in 3D hash indices of neighboring grid cells are tested

for either fluid modeling or collision detection. If this function is used for fluid modeling, it

 xiv

passes surface points i and j to the function testforFluidParticleList. Similarly, if this function is

used for collision detection, it passes those two points to the function testforCollision. 106

Figure 4—15 : : The function void fluidParticleListTableCreation(). This function is used for

fluid modeling. It creates the fluid particle list table of size n if the table has not been created.

When this function is called, it removes all surface points in the list for each entry of the fluid

particle list by initializing the variable count to 0. .. 107

Figure 4—16 : The function void testforFluidParticleList(int p, int q). This function is called by

the function accessToHashTable and stores the surface points in the fluid particle list table for

fluid modeling. It checks if the surface point j is in the SPH core radius, wh , of surface point i or

not. If so, the surface point j is placed into the surface point list indexed by count in the fluid

particle list table indexed by i. .. 107

Figure 4—17 : The function void testforCollision(int p, int q). This function is called by the

function accessToHashTable and detects collisions. It checks if the distance between surface

point i and j is less than the collision threshold or not. If so, it resolves the effect of collision for

those colliding points. ... 108

Figure 4—18 : The function void createOneAABB(). This function is called at the beginning of

collision detection to create an AABB. All surface points of all objects in the frame are tested for

the maximum and minimum points of the AABB. This AABB is used later to find the grid cell

size for collision detection in the function findGridCellSizeForCollision. 108

 xv

Figure 4—19 : The function int (Cx, Cy, Cz) findGridCellSizeForCollision(). This function is

called after an AABB has been created. It computes the grid cell size for collision detection by

finding the length of AABB. Then the length in each direction is divided by the number of

partitions, NP. The number of partitions, NP, is evaluated by 3 Nn . The result of this function is

grid cell size which is later passed as arguments to create the 3D hash table for collision

detection. ... 109

Figure 4—20 : The function void main(). This main program repeats the simulation until the soft

body until the user stops. All soft bodies are simulated with mass-spring force, fluid modeling

force, internal pressure force, and gravitational force. Then all forces for each surface point are

combined. The velocity is generated by the implicit Euler method to evaluate the new position

of the surface point. Finally, collision detection is resolved for the colliding surface points. ... 110

Figure 5—1: The visual result of soft body model of experiment A, where the parameters α =1,

β =0, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000th, 3000th, 4000th, and 6000th and it shows that these parameters generate the smooth surface

of the soft body. .. 117

Figure 5—2: The visual result of soft body model of experiment B, where parameters α =1, β

=1, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th, 2000th,

3000th, 4000th, and 6000th and it shows that these parameters generate the undulating surface

waves... 118

 xvi

Figure 5—3: The visual result of soft body model of experiment C, where the parameters α =1,

β =2, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate more undulating

surface waves compared to experiment B. ... 119

Figure 5—4: The visual result of soft body model of experiment D, where the parameters α =1,

β =0, γ =5, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate bubbles or rubber

balls. .. 120

Figure 5—5: The visual result of soft body model of experiment E, where the parameters α =1,

β =0, γ =2, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate bubbles or rubber

balls. Since internal pressure force becomes the dominant factor on the soft body, the fluid force

parameter does not affect visual result in this experiment. ... 121

Figure 5—6 : The visual result of soft body model of experiment F, where the parameters α =1,

β =1, γ =0, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the soft body

without volume much like fabric or cloth. .. 122

Figure 5—7 : The visual result of organic face of experiment A, where the parameters α =1, β

=0, γ =0.001, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

 xvii

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with less balloon effect. .. 125

Figure 5—8 : The visual result of organic face of experiment B, where the parameters α =1, β

=0, γ =0.005, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with more balloon effect compared to experiment A but less balloon effect compared to

experiment C. .. 126

Figure 5—9 : The visual result of organic face of experiment C, where the parameters α =1, β

=0, γ =0.010, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with more balloon effect compared to experiments A and B. .. 127

Figure 5—10 : The visual result of organic face of experiment D, where the parameters α =1, β

=0.075, γ =0.001, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

surface with less bloated appearance compared to experiments E and F and retains more of the

original surface structure compared to experiment A. .. 128

Figure 5—11 :The visual result of organic face of experiment E, where the parameters α =1, β

=0.075, γ =0.005, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

 xviii

surface with more bloated appearance compared to experiment D but less bloated appearance

compared to experiment F and retains more of the original surface structure compared to B. .. 129

Figure 5—12 : :The visual result of organic face of experiment F, where the parameters α =1, β

=0.075, γ =0.010, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

surface with more bloated appearance compared to experiments D and E and retains more of the

original surface structure compared to C. ... 130

Figure 5—13 : Soft Body Monsters in Galactic Arms Race (GAR). The proposed soft-body

algorithm animates and renders the large amorphous "Space Blob" enemies in the Galactic Arms

Race video game (http://gar.eecs.ucf.edu). Varying internal pressure force creates a continual

animated “breathing” effect. ... 132

Figure 6—1: A sigmoidal for curve-fitting pressure-volume data in [118,119] (Sigmoidal P-V

curve is discussed in 6.2). ... 137

Figure 6—2: Lung volumes resulted from the experiment parameter sets in table 6—1. 143

Figure 6—3: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 0.25, 1,

1, and 0.1, respectively. .. 144

 xix

Figure 6—4: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 0.25, 1,

1, and 0.1, respectively. .. 144

Figure 6—5: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 1, 1, 1,

and 0.1, respectively. .. 145

Figure 6—6: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 1, 1, 1,

and 0.1, respectively. .. 145

Figure 6—7: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 3, 1, 1,

and 0.1, respectively. .. 146

Figure 6—8: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 3, 1, 1,

and 0.1, respectively. .. 146

Figure 6—9: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 4, 1, 1,

and 0.1, respectively. .. 147

 xx

Figure 6—10: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 4, 1, 1,

and 0.1, respectively. .. 147

Figure 6—11: Lung volumes resulted from the experiment parameter sets in table 6—2 149

Figure 6—12: The visual result with gradient map of lung simulation for each fluidity control

parameter value. .. 151

 xxi

LIST OF TABLES

Table 4—1: Results of collision detection experiment with grid-based partitioning. 97

Table 5—1: Experiment parameters for fluid-like soft body deformation experiments. 116

Table 5—2: Parameters for organic face deformation experiments. .. 124

Table 6—1: Parameter values of the experiment on effect of the mass-spring 142

Table 6—2: Parameter values of the experiment on effect of the internal pressure. 148

Table 6—3: Parameter values of the experiment on effect of the fluid modeling 150

 1

CHAPTER 1: INTRODUCTION

 Deformable models simulate non-solid objects such as cloth [1,2,3,4], hair [5,6,7],

elastics [8,9,10,11], and liquids [12,13,14,15] in computer graphics for movies, television, and

video games. Deformable models are usually defined by a set of points and, unlike rigid body

models, each point moves independently. Individual points in a soft body model have attributes

such as position, velocity, and force. Because deformable model vertices constantly rearrange

due to interaction with environment, soft body simulation is significantly more complex than

rigid body simulation.

 There are two general approaches to simulate soft body objects. The first method is to

compute interactions between an arbitrary set of points. The arrangement of the points later

determines a physical surface mesh which is computed by surface reconstruction algorithms such

as Marching Cubes [16]. These methods are commonly employed to simulate viscous materials

like liquids [14,15,17]. Other soft body methods simulate semi-soft objects by deforming the

points of an existing rigid-body surface without need to periodically recompute the surface mesh.

Materials that change shape, yet maintain a relatively coherent structure, include cloth [18,19,20],

hair [5,6,7], and elastics [9,21].

 1.1 Motivation

Applications of 3D soft body model technology vary widely in the domains of graphics,

simulations, and games. Non-real time graphic applications include pre-rendered movie or

television special effects, melting or flowing objects, skin, and facial speech animation. Soft-

 2

body models are employed widely in the simulation realm within applications such as interactive

surgical training [11,22], where the layers of human tissue may be cut. These simulations include

realistically moving human organs such as the heart, lungs, and pulmonary system [23]. In

gaming, soft body models may represent cloth and hair of digital avatars, realistic blob-like or

slimy creatures, viscous fluids, and many other non-solid surfaces.

1.2 Contribution

 This research introduces a general soft body model suitable for many applications that

deform existing 3D rigid body models. Several parameters for body control, fluid modeling,

volume control, constraints, and gravitational field are applied to a rigid body model to obtain a

desired level of deformation. We demonstrate that the proposed general soft body model is able

to map into several existing soft body models. For some specific applications, we have selected

the certain components where the mass-spring system is used for body control and SPH is

applied for fluid modeling. In addition, a partitioning and hashing scheme for both fluid

modeling and collision detection is presented to significantly reduce the computation time.

We have experimented with our proposed model in simulating of (1) fluid-like soft body,

(2) human surface, (3) blobby objects integrated in Galactic Arms Race (GAR) game engine

(http://gar.eecs.ucf.edu), and (4) lung functions. Specifically, in GAR the algorithm creates

animated, amorphous blob creatures used as enemies in the game. In the medical application, the

lung functions have been simulated where the lung volume is controlled by the Pressure-Volume

(P-V) relation. An internal pressure model of P-V relation controls respiratory rhythm while the

mass-spring system maintains the body control of the model. The use of the proposed method in

 3

GAR and lung functions demonstrates ways to use the proposed general soft body model in

different applications.

1.3 Dissertation overview

The research proceeds as follows. Chapter 2 provides the background of the methods in

which our soft body model is developed. Chapter 3 details the proposed general model of soft

bodies. Chapter 4 describes the proposed soft body modeling implementation. Chapter 5 presents

simulation experiments and comparison results. Chapter 6 demonstrates the soft body model in

human lungs for medical application. Finally, chapter 7 discusses the conclusion and future work.

 4

CHAPTER 2: BACKGROUND

This chapter presents previous work on deformable objects related to the methods

incorporated into this work. Some of the common approaches to soft body modeling include

mass-spring systems, finite element methods (FEM), finite volume methods (FVM), and finite

difference methods (FDM), which are discussed in sections 2.2, 2.3, 2.4, and 2.5. Then, in

section 2.6 Newton's second law of motion is discussed as it relates to numerical integration in

physics. Background work on collision detection is then detailed in section 2.7. Finally, the

constraints involved in the proposed model are discussed in section 2.8.

2.1 Previous works

In this section, we present the previous works of deformable objects where several

methods such as mass-spring systems, Finite Element Method (FEM), Finite Volume Method

(FVM), Finite Differential Method (FDM), etc. have been used to provide behaviors of

deformable objects. The element types in triangles, quads, tetrahedrons, or hexahedrons

demonstrate the structures of the models in different domain dimensions, such as two dimensions

(2D) in clothes or thin shell simulations and three dimensions (3D) in soft tissues or character

animations. These deformable objects are later applied to facial, skin, and musculature modeling.

In these previous works, we do not present all studies in deformable objects, but rather, we have

selected some relevant papers and briefly described the models and the methods that they have

used in the models. In this chapter we present the deformable objects in the following categories:

cloth simulation in general, cloth simulations with effects, cloth simulations in garment designs,

 5

three dimensional deformable objects in general, and three dimensional facial, skin, and

musculature animations.

2.1.1 Two dimensional cloth simulation in general

In [9], Terzopoulos et al. propose deformable objects with elastic properties for model

surface. They employ FDM to the model structures which provide dynamic and realistic

animation. The principles of mathematical physics applied in this model provide the model

motions from internal and external components, such as gravitational force, constraints of

linkages, viscous fluids, or implemented obstacles (force from the effects of collision). The

equation of motion from Newtonian mechanics balances the externally applied force due to the

model deformations. The results of this proposed method include surface deformation and

deformable solids.

Terzopoulos and Fleischer develop the model of inelastic deformation which presents the

viscous and plastic properties in the deformable objects [8]. The spring property that satisfies

Hooke’s law is used for elongation or contraction of the model surface. In their implementation,

they discretize the continuum equations in material coordinates known as a semidiscrete system,

which is later integrated through time to simulate the dynamics of deformable models. The semi-

implicit time integration produces the elastic displacement that provides the model deformation.

The result of the current time step becomes the input data for successive frames of animation.

The simulation of a net falling over a spherical obstacle shows the effect of fracture when the

deformation is over the limitation of elasticity.

 6

Carignan et al. describe the physic-based modeling in cloth for animated synthetic actors

in [4]. In this paper, the polygonal panels in 2D define the cloth patterns, which are mapped onto

an actor’s body in the 3D environment with the physical properties that create the motion of the

cloth from the actor’s movement. They examine constraints on the cloth when it is attached to

rigid moving objects. These constraints include internal elastic force and external forces of

gravity, wind, and collision response. The collision detection handles both self collision that

might have occurred in each pair of cloth particles and collision between cloth and the human

body that happens between the cloth particle and a triangle’s vertices of a rigid body. The result

shows a sequence of images of a fashion show with the walking motion of synthetic avatars.

Provot presents the mass-spring systems for cloth simulation derived from elastically

deformable models and improved them to nonelastic properties of woven fabrics [25]. The

network of masses and springs presents the structure of the model. Then numerical integration of

the fundamental law of dynamics determines the movement of the end points of each spring. The

problem of high stress concentration occurs in a small region of surface at local deformations,

which becomes unrealistic when the real deformation of textiles is compared. Thus, Provot

proposes a new method that adapts the cloth property to suitable properties of textiles by using

dynamic inverse constraints on deformation rates. If the deformation rates of those springs are

greater than a critical deformation rate, the dynamic inverse constraints on the super-elongated

springs is processed to reduce their elongation. With this method, the cloth simulation in semi-

rigid property, as shown in their results, becomes more realistic compared to elastic cloth

simulation.

 7

Baraff and Witkin propose cloth simulation with large steps between animated frames to

avoid the instability problem [2]. A triangular mesh of particles in cloth models is exerted by

internal and external forces on each particle. The most critical forces mentioned in this paper are

the internal cloth forces, such as shear, bend, and stretch forces generated by stretching or

compression of the cloth. Both shear and bend forces depend on the material of cloth being

simulated, but stretch force is set at the same large value for all simulations. The internal cloth

forces are derived from a simple continuum formulation to proceed with modeling operations,

including stretching or compression. Several constraints are imposed on individual cloth

particles. In any simulation, the new positions of the models are evaluated by numerical analysis,

such as explicit Euler or implicit Euler methods. The simulation becomes unstable in large

deformation where the positions are overshot by the explicit Euler method. To eliminate this

problem, the implicit Euler method is used to provide the dynamic motions to overcome the

performance limits in the explicit simulation in large step deformation. The simulation of dancers

in cloth has shown the effectiveness of this proposed method.

2.1.2 Cloth simulation with drapes, folds, and wrinkles

In cloth simulation, several researchers have proposed techniques to demonstrate the

cloth behaviors, such as drapes, folds, and wrinkles, for different properties of textiles. These

cloth behaviors involve large deformations in cloth-specific properties like cloth flexibility. Most

recently, underwater cloth simulation has also been presented to describe the internal and

external dynamics of cloth underwater.

 8

Eberhardt et al. describe the fast, flexible, particle-based model to animate the drapes of

different types of cloth in some environments, such as air, water, or oil, which require the

calculation of exact trajectories of moving particles [26]. A suitable description of internal forces

for each particle has been investigated in the form of force plots of tension, shearing, and

bending, which later are used to calculate trajectory of a particle via an integration of the

Lagrange differential equation. The air resistance and external forces depend on the particle

locations, inside or at the border of cloth, giving different levels of air resistance to particular

particles. The visual results of cloth simulation with different textures present draping and

vibrating effects.

Bhat et al. investigate cloth simulation from video data of real fabrics in [27]. Since many

parameters need to be adjusted to achieve the appearance of a particular fabric, an algorithm for

estimating the parameters of cloth simulation from video data of real fabric is proposed in this

paper. The motivated metric compares two consecutive video frames to provide the cloth

parameters from the folds of fabrics. The dynamic and static tests on small swatches of fabrics

provide appropriate simulation parameters. Then these parameters are used to simulate the

fabrics that are worn by a human actor. Four different fabrics (linen, fleece, satin, and knit) are

simulated to demonstrate the power of this approach.

Bridson et al. present the simulation of clothing with folds and wrinkles in [28]. The

proposed methods match the behavior and appearance of clothing that uses a mixed

explicit/implicit time integration in numerical analysis. A physically correct bending model

combines with an interface forecasting technique that promotes detail in contact regions of the

cloth. A post-processing method preserves folds and wrinkles on cloth-character collision.

 9

Additionally, a dynamic constraint mechanism supports the control in large scale folding. The

improvement of the simulation realism is achieved by using these techniques to control folds and

wrinkles on cloth simulation.

Bridson et al. propose the paper for robust treatment of collision, contact and friction for

cloth animation that allows actual modeling of cloth thickness in [29]. The post-processed

scheme with subdivisions produces the smooth and interference free data in sharp folds and

wrinkles in a cloth mesh. The sharp folds can generate the intersections between elements of

subdivisions. To eliminate cloth-cloth intersection, the repulsion and collision impulses are used

to adjust the cloth positions with no intersection at the end of adjustment. The static friction

model in this paper also provides the stable folds and wrinkles as shown in the simulation of a

curtain that is draped over a ball. Then, the ball moves and the curtain flips on top of itself.

Decaudin et al. present the folds which are generated by the collision with the virtual

mannequin [30]. The different buckling patterns for a cylinder of fabric are described in the

patterns of diamond buckling, twist buckling, and axis aligned folds. Diamond buckling is the

compression of a cylinder of cloth maintaining a zero Gaussian curvature, and has a diamond

shape which appears when an elbow or a knee of a character is bent or the sleeves of a sweater

are pulled up. When the body twists and when a loose skirt hangs under gravity, the twist

buckling and axis aligned folds are the parallel folds generated, respectively. The proposed

method for producing these folds works on an ideal fabric cylinder. It also processes a mesh

aligned with the main fold direction, called the buckling mesh, which can be compressed and

twisted simultaneously. The result of this method shows the realistic 3D mannequin dressed in

the designed garment.

 10

Müller et al. introduce a method to avoid the velocity layer that usually needs to be

updated in every time step to provide the new position of the model [31]. To avoid the instability

problem in the explicit Euler method, point based dynamics provide the new position

immediately after the model constraints, including constraints of collision. The Solver approach

immediately estimates the new locations of the points by trying to satisfy all constraints of the

model. By this method, all points in the models can be manipulated immediately during the

simulation. Cloth simulation with animated game characters is presented to show the

effectiveness of the method.

Ozgen et al. simulate underwater cloth with fractional derivatives in [32]. They use a

particle-based cloth model that includes half-derivative viscoelastic elements to describe the

internal and external dynamics of the cloth. These elements allow the cloth to respond to fluid

stresses and the behavior of particles in a viscous fluid. The fractional cloth model uses fluid

viscosity to produce bump propagations. The equation of motion that Ozgen et al. implement is

Fractional Differential Equation (FDE) to where both explicit and implicit numerical solution

techniques can be extended. The underwater cloth deformation has been realistically

demonstrated and the simulated fractional clothes are compared with real clothes to present the

realism of the simulation.

2.1.3 Cloth simulation in Garment design

After the considerable research on cloth simulation is introduced for the properties of the

textiles, the computer aided design (CAD) system gains more attention for the garment designs

 11

which try to achieve the incorporation of darts, seams, edges, stiffening pads, and local stretches

of the fabric.

McCartney presents the levels of functionalities of CAD in the specifications of the

garment details in [33]. The visualization in 2D shapes shows the pattern of the garment, and the

3D specification presents the final form of the garment that is attached around a mannequin. The

accurate drape algorithm in cloth simulation constructs the visualization of different fabric types.

Luo and Yuen simulate 3D garments that are generated by 2D garment pattern design to

optimize the detail design modification without any change in the topology of 2D patterns [34].

This proposed method emphasizes the smooth geometry where the model deforms from the

original boundary to the targeted boundary by using 2D mesh morphing. With this approach, 3D

garment fitting simulation allows the 2D pattern modification to work efficiently and speedily

since the simulation does not repeat entirely for every modification.

Metaaphanon and Kanongchaiyos present a real-time cloth simulation for garment CAD

in [35], where the mass-spring model is parameterized under Newton's laws and cellular

structure space is defined for the structure of each garment pattern. The user’s body size is the

input to the simulation, which then scales the pattern to fix the user’s virtual body. The structure

of the mass-spring includes the shear springs which connect each node with its four diagonally

adjacent neighbors and bend springs which connect each node with two horizontal and diagonal

neighbors. The cellular structure is based on the theory of algebraic topology which classifies

objects into subsets if they are equivalent. In the attaching function presented by Metaaphanon

and Kanongchaiyos, the connecting patterns are set to be equivalent to reduce the computational

 12

time of model modification. This proposed method reduces the computational time for pattern

making and enables the dress to be remade or refit in real-time.

2.1.4 Three dimensional deformable objects

 The 3D deformable objects are used in a wide range of applications such as movies,

video games, and surgical training. These 3D deformable objects have additional properties, such

as volume, beyond the cloth simulation. However most of the techniques in cloth simulation can

be applied to model the objects. Several techniques are proposed for modeling the 3D

deformable objects in real-time.

In [36], Sederberg and Parry propose a technique to deform solid geometric models by

using free-form deformation (FFD), which can deform surface primitives of any planes, quadrics,

parametric surface patches, or implicitly defined surfaces. The deformation of a solid model that

requires volume preservation can also be simulated by this method. This proposed technique is

based on Bernstein polynomials to provide the deformation effects. The solid model is

subdivided into parallelpiped regions, then the control points on the parallelpiped regions control

the deformation of the solid body depending on the continuity control. The visual results show

several deformations including Coke cans and bottles that are deformed into arbitrary shapes and

pipe that is later deformed into a telephone handset.

Chadwick et al. present layered construction for deformable animated characters to create

and animate the computer generated characters [37]. This methodology combines physically

based modeling and geometric modeling with the hierarchy of composite deformations to define

both local and global transitions of the character’s movement. The skeleton layer provides the

 13

motion specification which is created by a tree structured hierarchy, robotic joint-link parameters,

joint angle constraints, and physical attributes. The muscle and fatty tissue layers are

implemented by FFD for muscle deformation and the geometric skin data is mapped to the

underlying articulated skeleton foundation with smooth quality during squash and stretch

behaviors of the characters. The physical model in 3D is composed of a 3D grid of mass points

connected by viscously damped Hookean springs. Spring elements that are connected diagonally

between mass points on adjacent planes provide the shear strain behavior. The deformation in

this animation is constructed from several local and global deformations and the methodology is

designed to satisfy specifications of animated characters.

In [38], Müller et al. develop a fast and stable simulation in a large deformation where

the non-linear technique provides the simulation speed and stability similar to linear technique.

This technique provides robustness, speed, and a realistic appearance in the simulation of a large

deformation for both FEM and mass-spring systems. Müller et al. use the stiffness warping in

linear elasticity for deformation, but the stiffness matrix is only computed once and used for the

entire simulation to give robust and fast simulations. The elastic forces in the linear elastic

technique are evaluated by the element's stiffness matrix, current positions, and the original

positions of the points. In the stiffness warping scheme which provides the stability into the

system, the local rotation matrices are applied to every vertex instead of using a global rotation

matrix. For the rotation tensor field, geometric algebra with multivectors is used to describe the

local rotations. The simple and fast way to compute rotation is to evaluate the relative rotation

between two orthonormal vectors based on the directions of adjacent edges. This simple method

 14

provides the correct constant rotation matrix for every vertex. The visual results of the long tube,

bunny skin, and Dane’s skin show the speed and stability of the proposed method.

James and Pai present the Dynamic Response Texture or DyRT that illustrates the

simulations of complex, interactive, physically-based, volumetric and dynamic deformation

models [39]. With negligible main CPU costs, DyRT is mapped onto any animation in the

rendering stage using graphics hardware. The model describes the modal vibration in the form of

a linear elastodynamic equation for a finite element model. Then exiting modes with rigid

motions are included to produce the realistic modal deformation from bone-based animation. To

increase the detail of the surface deformation, correct normal calculation is added to each vertex

by considering the neighboring vertex information. This causes more memory requirement,

however the normal correction is applied only for some particular modes. The animation of a

jumping motion shows the vibrations of thigh and belly that are implemented by this method.

Hauser et al. describe the modal analysis with constraints in [40] to present the model

manipulation, collision, and other constraints that can be implemented within a modal framework.

The modal composition of a physical system is described in the linearized form of the system’s

stiffness, damping, and mass matrices. To convert the complicated non-linear system to the

simple linear system, this modal analysis takes the system's nonlinear description, matches the

description to a linear approximation, and finds a coordinate system that diagonally relates to the

linear approximation. The system is designed as piecewise-linear tetrahedral finite element

method (FEM). Hauser et al. combine the modal simulation with a standard rigid body dynamic

simulator for dynamic simulation. The main benefit of this approach is that the behavior of the

system is calculated efficiently and analytically which provides stability to the system. Several

 15

models are implemented to show the simulation results and the geometric and kinematic

complexity of the models.

Müller et al. introduce point based animation for the objects that have a range from stiff

elastic to highly plastic in [41]. This method animates the objects with large deformation. They

use the Moving Least Square (MLS) to provide the derivatives of the discrete displacement fields.

The elasticity and plasticity models are presented for model behaviors and then the displacement

approach is described to define the displacement field that animates the models. The continuum

equations in the elastic model describes the elastic stresses in the volumetric models at the given

deformation field. The Green's strain tensor is used to preserve the model volume with additional

energy. The strain state variable simulates the plastic behavior in this model. The multi

presentation approach is presented when fracturing or merging occurs at some parts of the model,

and when a collision between a highly deformable object and rigid body happens. The results

show that the different levels of deformation depend on the effects of Poisson’s ratio used for the

volume preservation, and that the deformation of the reference shape deviates from the original

shape.

Teschner et al. describe a versatile and robust model for geometrically complex

deformable solids in [42] which can be applied to either deformable tetrahedral meshes or

triangle meshes. Both elastic and plastic deformation are considered for a large variety of

material properties. The materials ranging from stiff to fluid-like behavior can be presented with

this method. These potential energies are derived from the specific constraints applied at each

mass point to deform the object. This potential energies in this model support distance, surface

area, and volume preservations. For numerical analysis, the Verlet scheme for number

 16

integration [43] is used for linear trajectories of all mass points. In the Verlet scheme, each

integration step requires only one force computation. This scheme provide high accuracy, and

the integration of positions does not depend on the integration of velocities if the system uses

undamped forces. The sequence of highly elastic deformation, plastic deformation, and the

melting object demonstrates the performance of this model.

Müller et al. propose the method for interactive virtual material in [44] where the warped

stiffness finite element approach for linear elasticity is combined with a strain-state-based

plasticity model. The internal stress component in finite element computation in the tetrahedrons

determines the fracture locations and orientations of the model. The stiffness warped stiffness in

[38] has two disadvantages. First, the rotation matrix of the vertex needs to be computed from

the location of its adjacent vertices. Second, elastic forces are not guaranteed to add up to zero.

These problems can be solved by extracting rotations of the tetrahedral elements instead of

vertices. The model becomes perfectly elastic and it turns to the original shape when the external

forces are removed. For the plasticity, the method is presented by the linear FEM and warped

FEM with implicit integration. The simulation of this method shows the large rotational elastic

deformation and the melting of the model under gravity.

 Müller et al. present the pointed based object and non-connectivity information in [45].

This approach presents the replacement of energies by geometric constraints and forces from the

current positions and the goal positions. Each point has an original position and then it is mapped

to the deformed shape which is later pulled toward the goal position. These goal positions are

defined by shape matching at an undeformed rest state of the models. Since the goal positions are

defined, the points do not overshoot the equilibrium or goal positions. Thus, the instability

 17

problem in the explicit Euler method is eliminated by this method. The linear deformation

presents the model motion of shear and stretch. To extend the deformation, the quadratic

deformation is used for the motion of twist and bending. To extend the motion even further, the

cluster based deformation has been presented to provide the deformation based on the model

clusters. A reasonable number of deformable objects can be handled by this approach in real time.

 Botsch et al. present Primo: coupled prisms for intuitive surface modeling in [46] where

the surface mesh is embedded in a layer of volumetric prisms with non-linear elastic force. In

this model the rigidity of prisms preserves the model shape under high deformation, which

supports the numerical stability of the system. Local and global shape matching are employed for

body deformation. The goals of this method are to provide robust and physically plausible large

deformation, preserve the surface detail of the model, present constraint-based and force-based

deformations, and demonstrate intuitive geometric parameters for surface modeling. In this

prism-based modeling, the model positions and orientations of an arbitrary subset of prisms are

prescribed by the users. Then, the resulting prisms define the positions of the deformed surface

mesh from the average transformation of its incident prisms. As another benefit of this method,

the surface behavior is controlled by the geometrically intuitive parameter to improve the large

and complex deformation. The results show the flexibility of prism-based modeling for the

complex shape deformation and general surface processing.

 Galoppo et al. propose a fast and novel algorithm for the soft articulated characters with

fast contact handling in [47]. The dynamic skeleton skin interacts with elastic deformation in the

pose space of the skinned surface. The approximation of Schur complements is used for skeleton

and skin computations that bring robustness to the system. The layered representation for soft

 18

characters provides an integration of articulated body dynamics and skinning with displacement

corrections. The pose space deformation is the skeletal-subspace deformation with the number of

bones. Then elastic deformation of the skin is performed at the rest pose space. The methods of

Lagrange multiplier model both joint and contact constraints, and implicit Backward Euler

integration provide the numerical approximation for the model. The fast collision detection

module is adopted by a fast image-based algorithm which performs on the layered representation

of the soft characters. The experiments show that the simulation of the soft articulated characters

produces the deformed skin in detail and the simulation handles the contact constraints in

interactive speed.

2.1.5 Three dimensional facial, skin, and musculature animations

Significant efforts have been devoted to animate models of human face, skin, and

muscles. These animations follow the procedures of designing 3D mesh and animating the 3D

mesh from the movement of a human body. Thus, several methods have been developed to

approximate the muscle actions that affect facial and skin models.

Gourret et al. present the FEM that is used to simulate object and human skin

deformations in a grasping task [48]. Both the forces of the fingers on the object and the object

on the fingers are presented by a numerical method based on finite elements that control the

synthetic human behavior. The finite element approach provides visual realism because the body

surface of the model corresponds to an element face at the body boundary. Since FEM requires

high memory space and computational time, Gourret et al. use zero order continuity instead of

higher order continuity. The physical modeling of deformable objects is shown by presenting the

 19

example of a contact problem with the grasping and pressing of a ball. For the example of

simulation, the contact force is created by muscular forces acting on bones, then the human skin

is deformed by the process of joint flexing. They have successfully developed both object and

synthetic human deformations and their contacts by using finite element theory.

In [49], Lee et al. describe realistic modeling for facial animation where scanning range

sensor creates the realistic human facial models and animates the facial geometries through the

dynamic simulation of facial tissues and muscles. The Cyberware scanner automatically

constructs an efficient and fully functional model of the subject’s head. Then the well-structured

face mesh is modified by the control parameters to compensate for geometrical facial features

from person to person. For the discrete deformable model, Lee et al. use a node-spring-node

structure. Node properties include mass, position, velocity, acceleration, and net nodal forces.

The tissue model around the eyes and nose involves the force spring that is exerted directly on

nodes on both parts. For the muscles of facial expression that spread out below the facial tissue,

short elastic tendons are created to attach the facial musculature and skin tissue. This provides

the movement of facial tissue caused by contraction of facial muscles. The well-known explicit

Euler method is used for numerical simulation. The facial animation examples include

expressions of surprise, anger, quizzical look, and sadness.

Scheepers et al. present anatomy-based modeling of human musculature which describes

the relationship between the exterior form and structure of human muscles [50]. The influence of

the musculature on the surface form is considered to develop muscle models that react to the

change of postures of an underlying articulated skeleton. They select the ellipsoids to represent

the muscles bellies since ellipsoids can be scaled along three major axes to simulate bulging of

 20

the muscles. The dimensions of the muscle belly are adjusted automatically when the muscles

move further apart or close together. The multi-belly muscle model is positioned automatically

for wide muscles with complex shapes. Scheepers et al. construct bicubic patch meshes along a

cubic Bezier curve to define the muscles with complex shapes. The control parameters that

determine the shape of the muscle include muscle volume, height and width ratio of the muscle’s

bulge, location, direction, and orientation. The result of muscle deformation is shown by the

animation sequence of muscle bulges when the forearm is flexed at the elbow joint.

Teran et al. develop a simulation of skeletal muscle that uses FVM in [18]. They show

that FVM is able to simply interpret the stress inside a tetrahedron experiencing

multidimensional force that pushes on each face. The time stepping scheme is selected by a

mixed explicit/implicit method for the equation of motion. The stress exerted by a volume

element gives a measure of the material deformation using a hyperelastic component, a quasi-

incompressible component, and a transversely isotopic component. Hyperelastic material refers

to a soft elastic material that can create the large deformations in a muscle. The FVM and a

quasi-incompressible component simulate the contracting muscle tissue while B-spline models

the fiber direction of the muscle. The simulations of skeletal muscle of isometric contraction of

both biceps and triceps muscles show the effectiveness and robustness of FVM.

Capell et al. introduce the physically based rigging for deformable characters in [51]

where the rigging characters are modeled as dynamic elastic bodies. The forces from the building

blocks of rigging guide the character shape and the models are combined with other forces such

as gravity, physical constraints, and user interaction during animation. This deformable character

is defined by elastic domains as the structure of triangular mesh with FEM approximation, a

 21

control lattice, skeleton consisting of prescribed edges, and rigging force fields. The

specifications of elastic domains include mass density, Poisson ratio, and Young’s modulus. The

motion of a character is solved by Euler-Lagrange equations. A pose-dependent linear system

has to satisfy two goals: forces and deformations need to be in correspondence for a given pose

and for the computation of rig forces for a given surface deformation at a given pose, and the

simulation needs to rely on the static equilibrium solution to the equation of motion. A surface

deformation rig affecting a chest flex is shown to present the effects of rigging forces introduced

by this paper.

Stoiber et al. present facial animation retargeting and control based on human appearance

space in [52] that combines with the parameter-based animation method to offer a precise control

on facial configuration and performance-based animation to naturally capture human motion.

The human appearance space presents a coherent and continuous parameterization of human

facial movement. The topological characteristics of the appearance provide the principal

variation patterns of a face and then reorganize them on a low-dimension control space. This

control space manipulates the facial expression of a synthetic face. Each dominant direction in

appearance space on a human face in high-dimensional space is mapped to the one direction for

the facial expression on a virtual character in low-dimensional space. The facial expression has

been successfully transferred to the synthetic face from the information between appearance

space and control space.

In deformable objects, mass-spring systems, FEM, FVM, and FDM are common

techniques that present body control, volume control, and fluid modeling. At each point of the

model, the force generated by the body control, volume control, or fluid modeling is modeled

 22

differently depending on the technique that is applied in the model. Each technique affects either

real-time or accuracy requirements. In the next four sections, we briefly describe some examples

of those techniques that can be applied to body control, volume control, or fluid modeling in the

general soft body model.

2.2 Mass-spring Systems

Soft bodies using mass-spring systems can be classified into two different categories:

modeling a 3D object as a 2D grid structure e.g. cloth, and modeling a 3D object as a 3D

structure e.g. a bouncing ball. In these models, a soft body is represented as a triangular,

rectangular, or tetrahedral mesh where each point has its own properties such as mass, velocity,

force, and position. The force exerted at each point is cumulative of the forces of its neighbors

and is represented by a differential equation which can be evaluated using numerical integration.

For 2D grid modeling of a 3D object, Terzopoulos et al. [9] propose deformable objects

with elastic properties which have successfully been used in soft body cloth simulation

[1,53]. The cloth simulation presented in [9] is shown in figure 2—1. Provot [54] uses a mass-

spring system to present the structure of cloth as a mesh of nm× mass points which are

relocated at each time step. In Provot’s method, the internal spring force,)(, jiPF , acting on a

particular surface point jiP , , is calculated by spring forces that connect the point to its neighbors

and is given by:

,
||

)(
),(

,,,

,,,0
,,,,,,),(,int ,,,∑ ∈

−−=

Rlk
lkji

lkji
lkjilkjisji l

l
llkP

lkji
F (2.1)

 23

where R is the set of all points (k, l) linked to jiP , by a spring; lkjil ,,, is the vector ,,, lkji PP ; 0
,,, lkjil

is the rest-length of the spring that links jiP , and lkP , ; and)(,,, lkjisk is the stiffness of the spring

),(,, lkji PP . The damping force at point jiP , is given by:

jidjidis kP ,,)(vF −= , (2.2)

where dk− is the damping coefficient, and ji,v is the velocity of point jiP , . To avoid unrealistic

deformation of a hanging cloth, he proposes to increase stiffness of the spring. Fuhrmann et al.

[55] use collision detection to simulate interactive animation of cloth and use their results to

simulate virtual garments. Since cloth simulation collapses in explicit integration methods for

large spring constants, several researchers propose implicit Euler integration method to change

position, velocity, and force of a point in each time step [1,2,53,56].

 24

Figure 2—1: Flag waving in the wind simulated by Terzopoulos et al. [9]. He proposed

deformable objects with elastic properties which have successfully been used in soft body cloth

simulation

 A lot of work has been done on 3D modeling of 3D structures like simulation of surgery,

fluid-based soft body, and bouncing ball. A layer mass-spring system for facial animation was

first presented in [57]. In craniofacial surgery simulation [22,58], the patient’s skin, muscle, and

bone layers are modeled using mass-spring systems where the deformation of each layer is based

on its mechanical spring constant. Padilla et al. [59] present the Transurethral Resection of the

 25

Prostate (TURP) method to remove inner prostate tissue using a mass-spring system in 3D

structure. The mass-spring system in this model calculates the internal force, iF , acting on point

i by:

∑
∈ −

−−−
=

)(

0
,

,

)(

iNj ji

jijiji
jii pp

pplpp
kF , (2.3)

where jik , is the stiffness coefficient of the spring connecting point i to any point j in the

neighborhood)(iN of i ; ip is the current position of point i ; jp is the current position of point

j ; and 0
, jil is the spring length at rest position.

 Nixon and Lobb [60] present mass-spring system that uses classical fluid mechanic’s

Navier-stokes differential equations to simulate soft body surfaces. The force interacting with the

surface at one particular point is generated from the fluid force exerted by neighboring points.

The spring forces, ijF , between two points, i and j , at positions, ip and jp , with velocities, iv

and jv , is given by:

,
||||

)()(
)|(| 0

ij

ij

ij

ijij
dijijsij pp

pp
pp

pp
klppk

−

−

−

−⋅−
+−−=

vv
F (2.4)

where sk and dk are the spring and damping constants respectively, and 0
ijl is the spring’s rest-

length. The force jiF is equal and opposite to ijF , i.e., ijji FF −= .

 26

2.3 Finite Element Method (FEM)

 The finite element method (FEM) is used in many applications to simulate body

deformation. FEM solves an equation by approximating a continuous set of discrete points,

usually grid or mesh. Problems of complexity and unusual geometry can be evaluated by FEM.

Thus, FEM is one of the powerful tools in the problem of heat transfer, fluid mechanics, and

mechanical systems. To pursue the physical realism in soft body simulation, it is important to

keep computation efficient. The main benefits of FEM are accuracy and realism in performing

the soft body deformation. Since FEM can accurately simulate soft body deformation, it requires

more computation which can reduce the simulation speed. Several methods are proposed to

increase the simulation speed while maintaining the simulation accuracy.

The volume of deformable objects can be preserved by FEM better than mass-spring

system but the computation is more complicated, which causes the simulation speed to slow

down. To provide a fast and robust simulation, the FEM with warping stiffness is employed in

interactive virtual material [44] for simulating elasto-plastic materials. FEM is employed for the

body deformation by using the model structure of a tetrahedral mesh. For the elasticity model,

the deformation of an object is described by a vector field)(xu which is given by:

uxHxu e ˆ)()(⋅= , (2.5)

where)(xH e contains the shape functions of the tetrahedral element,

[]Twvuwvuu 444111 ,,,...,,,ˆ = is the collection of the displacement vectors at the four vertices of a

tetrahedron.

By applying Cauchy’s linear strain tenser [61], the strain, ε , in each tetrahedron becomes

 27

uBe ˆ⋅=ε , (2.6)

 where eB is computed for each tetrahedron.

Hooke’s law is applied for the stress, σ , within each element. Then we get

uEBE e ˆ=⋅= εσ , (2.7)

where E depends on two scalars, Young’s modulus and Poisson’s ratio [61], for isotropic

material.

Thus, the elastic force is defined by:

uKee ˆ=F , (2.8)

where e
T
eee EBBVK = is the stiffness matrix computed for each tetrahedral element and eV is the

volume element. Then the global stiffness of entire tetrahedral mesh, K , is calculated from eK .

In Lagrange’s form, the dynamic behavior of the object is described as:

ext0)xK(xxCxM F=−++ , (2.9)

where x and x are the first and second derivatives of x with respect to time, M is mass matrix,

C is the damping matrix, and extF is a vector of external forces.

Under large deformation, element-based warped stiffness is applied to the rotation at the

elements of the model instead of the vertices of the model. By using the warped stiffness concept

to each tetrahedral element the elastic force, eF , is computed by

'
oe

'
ee xK FF += , (2.10)

where 1' −= eeee RKRK , eR is the rotation matrix of the tetrahedron and a force offset oee
'

oe R FF = ,

oeF is the elastic force at time 0.

 28

Then, the global elastic force is generated by:

'
oFF += xK ' . (2.11)

For the plastic model , the plastic forces, pF , generated by linear warped FEM, is expressed by:

peep εPR ⋅=F , (2.12)

 where plasticeee PRP ε⋅= is the plastic matrix.

Finally, the force for the elasticity combined with plasticity is computed by:

extFFF =−+++ p
'

o
' xKxCxM . (2.13)

2.4 Finite Volume Method (FVM)

 Finite volume refers to a small volume surrounding each node point on a mesh. Fluxes

can be evaluated at the surfaces of each finite volume. In the Finite Volume Method (FVM),

volume integrals in a partial differential equation are converted to surface integrals. An

advantage of the FVM is the simplicity of formulating unstructured meshes that can be applied in

many computational fluid dynamics. For example, in [62] the FVM has been used to solve the

incompressible Navier-Stokes equations to provide more accuracy in arbitrary boundary

conditions and sharp geometric features in fluid simulation. The implementation is based on the

grid mesh data in the form of a tetrahedral mesh in 3D simulation. The differences of this

simulation and the existing FEM are the applied mathematics and computational physics which

aim to provide a fast and plausible visual simulation. The simulations include free surface fluid

simulations and smoke simulations flowing around objects that have complex geometries.

 29

 In [18] FVM is presented for muscle tissue by using B-spline solids to model fiber

directions and muscle movements that are derived from key frame animation. Since muscle

tissue fibers are rearranged uniformly to exhibit several regions of fiber directions, B-spline solid

models capture the detail of fiber directions and then assign fiber direction to individual

tetrahedrons for muscle simulation meshes. To find the movement of muscles, the muscle force

distribution is computed between the sets of which they span.

 In the configuration of the model, it is divided up into the number of discrete regions that

have nodes at the midpoints of the regions. Thus the force on node ix surrounded by the region

Ω is calculated by:

∫ ∫∫ ∂∂
===

Ω ΩΩ
t

i dsnσdStdxρ
D
D vF , (2.14)

where σ is the density, v is the velocity, t is the surface traction on Ω∂ , n normal unit vector

of the region, and nt σ= in the Cauchy stress. In the triangle, the force on node ix is computed

by:

)nenσ(e
2
1

2211i +−=+F , (2.15)

where 1e and 2e are the edge lengths of the triangles that are connected, and 1n and 2n are normal

vectors of the triangles.

 For the tetrahedral mesh, each tetrahedron has three faces that contributes the force on

each node. Thus the combined force at each point on the tetrahedron is described as:

)nananσ(a
3
1

332211i ++−=+F , (2.16)

where 1a , 2a , and 3a are areas of the faces that are connected on ix .

 30

2.5 Finite Difference Method (FDM)

 The finite difference method (FDM) is a mesh discretization technique applicable to

several branches of mechanics static and dynamic problems. To apply FDM, discrete functional

values are specified at the center of the node. Then, either Euler’s equation or energy function

computes the approximated value of the function. Euler’s equation expresses the conditions of

dynamic equilibrium of the continuous function and obtains the mathematical form of the partial

differential equation. In the general soft body model, fluid modeling with incompressible fluid

provides the detail of bump propagation of surface which can be simulated by Smooth Particle

Hydrodynamics (SPH). SPH is considered as a form of FDM because it is an interpolation

method for particles where field qualities, such as density, fluid pressure, and fluid density, are

defined at the center of a particle's location within a specified distance. Since we use

incompressible fluid with SPH for fluid modeling, in the this section we describe mechanics for

incompressible fluid and then summarize SPH.

2.5.1 Fluid mechanics

 The fundamental equations of fluid dynamics are the conservation laws; conservation of

mass and conservation of momentum, which are based on classical mechanics, modified in

quantum mechanics, and general relativity presented in [60].

2.5.1.1 Continuity equation (conservation of mass)

Let ∇ be gradient vector, the equation for Conservation of Mass is given by:

 31

() 0=⋅∇+
∂
∂ vρρ

t
, (2.17)

where ρ and v are density and velocity vectors, respectively.

In incompressible fluid, eq. 2.17 becomes

0=⋅∇ v (2.18)

2.5.1.2 Navier-Stokes equation (conservation of momentum)

For the conservation of momentum, the Navier-Stokes equation derived for incompressible fluid

states that:

vg 2∇++−∇=

∂
∂ µρρ L

t
v , (2.19)

where the fluid or liquid pressure force is the first term of the equation, L∇− , the gravity force

is the second term, gρ , and the viscous force is the third term, v2∇µ .

We use the Navier-stokes equation to apply the fluid pressure force to surface tension in the soft

body by SPH.

2.5.2 Smooth Particles Hydrodynamics (SPH) in fluid dynamics

We simulate the fluid-layer by using the SPH fluid model in [63,64]. The SPH in fluid

modeling presented in [63] is shown in figure 2—2. SPH is an interpolation method for particles

where field qualities such as density, force, etc., are defined at discrete particle locations and are

evaluated within a specified distance [65,66,67]. The smoothing kernel,),(whrW , is a function

 32

for the smoothing kernel with the radius, wh , and the distance, r , where r is calculated from

the positions of surface points i and j . The gradient and laplacian of the smoothing kernel are

),(whrW∇ and),(2
whrW∇ , respectively. Based on interpolation, the scalar quality A at position

r is the weighted sum of all particles in the sampled area. The basic interpolation formula for any

quality A is given by:

 ∑ −=
j

wj
j

j
jS hrrW

A
mA),()(

ρ
r , (2.20)

where j is a local particle in the sampled area, jm is the mass of particle j , jr is position of

particle, jρ is density, jA is the field quantity at jr , and),(wj hrrW − is kernel function of the

sampled area.

 Since particle mass in SPH never changes, the conservation of mass property in fluid eq.

2.17 is satisfied. From eq. 2.19, there exist three terms: fluid pressure force, L∇− , gravity force ,

gρ , and the viscous force, v2∇µ .

 33

Figure 2—2: Pouring water into a glass simulated by Müller et al [63]. The SPH in fluid

modeling has been use in this simulation.

For the choice of smoothing kernel to be used, there are several properties needed to be

considered such as stability, accuracy, and speed. In this research, we focus on application in fast

simulation where simple calculation is the main factor. In general quality field, Matthias et al.

[63] suggest the kernel which is given by:

 ≤≤−=

otherwise
hrrh

h
hrW ww

w
wpoly

||)||(),(
0

064
315 322

96
π

, and (2.21)

 ≤≤−=∇

otherwise
hrrrh

h
hrW ww

w
wpoly

||)||(),(
0

032
945 222

96
π

. (2.22)

 34

However, for the fluid pressure force and viscosity force the different kernels are used to

simulate different behaviors as described next.

2.5.2.1 Fluid pressure force kernel

 Under high pressure, particles cluster close to each other, and the relative force

approaches to zero in the gradient of the kernel. The spiky kernel is ideally suited for this

behavior. Thus, to compute the fluid pressure force, we use the spiky kernel presented in [63]

which is given by:

 ≤≤−

=
otherwise

hrrh
h

hrW ww

w
wspiky

|||)|(),(
0

0
15 3

6π
, and (2.23)

 ≤≤−

+
=∇

otherwise
hrrh

r
rh

h
hrW ww

w

w
wspiky

||)
||

(),(
0

0

245
22

6π
. (2.24)

Fluid pressure force is computed as

∑
−

=

−∇
−

−=
1

0
),(

2

n

j
wji

j

ji
jfpi hrrW

LL
m

ρ
F , (2.25)

where fpiF is the fluid pressure force, jm is the mass of particle j , iL and jL are pressures at

particles i and j , i is a considering particle, and j is a local particle in the sampled area of

particle i .

 35

2.5.2.2 Viscosity kernel

 Viscosity should have a smoothing kernel that affects velocity field, whereas a standard

smoothing kernel does not have this property. Additionally, if two particles move toward to each

other, the Laplacian of the smoothed velocity field should produce a positive value. Thus, to

compute the viscosity force, we use the viscosity kernel presented in [63] which is given by

≤≤−++−
=

otherwise
hr

r
h

h
r

h
r

h
hrW w

w

ww
w

wityvis

||
||

||||
),(cos

0

0

1
222

15 2

2

3

3

3π
, and (2.26)

 ≤≤−

=∇
otherwise

hrrh
h

hrW ww

w
wityvis

|||)|(
),(cos

0
0

45
6

2

π
. (2.27)

To compute the viscosity force from fluid, we use

),(2
1

0
wji

j

ij
n

j
jfvi hrrWm −∇

−
= ∑

−

= ρ
µ

vv
F , (2.28)

where fviF is the viscosity force from fluid, µ is the viscosity of fluid, jm is mass at particle j ,

iv and jv are velocities at particles i and j , respectively, i is a considering particle, and j is a

local particle in the sampled area of particle i .

2.6 Newton’s Second Law of Motion for Soft Body Animation

 To animate the soft body, we consider a mesh of points drawn on its surface and use

Newton second law of motion to animate those points. The second law of motion states that the

 36

time rate of change of a body’s momentum is equal to the vector sum of the external forces

acting on it [68]. This equation can be expressed by using the following first order differential

equation:

,)),(()(
m

tt
dt

td vFv
= (2.29)

where v is the velocity of an object; F is the cumulative force that applies on the object and is a

continuous function of velocity, v , and time, t ; and m is the mass of the object assumed to be

constant in our simulation. By a basic theorem of calculus, integrating eq. 2.29 over the interval

[]htt +, yields

,)),(()()(∫
+

+=+
ht

t

dt
m

tttht vFvv (2.30)

where h is the interval time step.

 This equation expresses that the velocity can be computed at time ht + if we know (a)

the initial velocity of the object at time t and (b) the net force acting on the object at every

instant between t and ht + . Since the net force is a function of v and velocity is not known over

the interval of integration, the integral in eq. 2.30 cannot be exactly calculated. This requires

approximating the value of F across the interval of integration by using either the explicit,

implicit, or trapezoid Euler methods. In the next section, we discuss the explicit and implicit

Euler methods.

 37

2.6.1 Explicit Euler Integration

Explicit Euler integration is a straight-forward approach for soft body simulation with

pressure forces where velocity, point, and force are related by the following set of equations

[1,53]:

i

t
i

t
i

ht
i m

hFvv +=+ (2.31)

hpp ht
i

t
i

ht
i

++ += v (2.32)

Here, t
iv is the velocity of point i at time t , t

iF is the force acting on point i at time t , t
ip is the

position of point i at time t , and h is the time interval between simulation steps. The position

of point i at time ht + can be easily evaluated by the current values of t
ip , t

iv , and t
iF .

 In the explicit Euler method, the velocity at time ht + is evaluated from force at time t

and stability is achieved only when the time steps are small [69]. In fact, for stability, the step

size must be inversely proportional to the square root of the stiffness [69]. Otherwise, the

simulation will fail.

2.6.2 Implicit Euler Integration

 The advantage of implicit Euler integration over explicit Euler integration method is that

it solves the stability problem. The example of cloth simulation presented in [1] using implicit

Euler integration is shown in figure 2—3. A large step can be applied to implicit Euler

integration without simulation failure. To find the value of variables in the subsequent time step,

implicit Euler integration method replaces t
iF by ht

i
+F as follows [1,53]:

 38

i

ht
i

t
i

ht
i m

h++ += Fvv (2.33)

hpp ht
i

t
i

ht
i

++ += v (2.34)

Figure 2—3: Generated clothes simulated by Kang et al [1]. The implicit Euler method is used in

this cloth simulation.

 39

This small change has been proven to solve unstable conditions in the explicit Euler

method [70]. After the new positions of all surface points are evaluated, those positions can be

collided with other objects. Thus it is necessary to detect the collision between soft bodies and

environment, which is described next.

2.7 Collision detection

Collision detection is a well known problem in deformable or soft objects. When

interactive speed is considered, the limitation of algorithm is increased. Many algorithms are

based upon types of bounding volume hierarchies and spatial subdivision. For bounding volume

hierarchies, some examples are bounding spheres [71,72,73,74], axis-aligned bounding boxes

(AABBs) [75,76], oriented bounding boxes (OBBs) [77], quantized orientation slabs with

primary orientations (QuOSPOs) [78], and discrete-oriented polytopes (K-DOPs) [79]. CLOD

with dual hierarchy [80] has been also proposed for polyhedral objects whereas Separation-

sensitive collision detection [81] was presented for convex objects. For spatial subdivision,

octtree [82], BSP tree [83], brep-indices [84], k-d tree [85], bucket tree [86], and uniform spatial

subdivision [87] are proposed. The GPU processor also has been used to detect collision for

complex models [88,89,90]. Some of the relevant works in collision detection are briefly

explained here.

Axis-aligned bounding box (AABB) presented in [75] defines the minimum point and

maximum point to bound an object. AABB tree for deformable object is presented in this

research. The binary tree is created for AABB trees to speed up the performance by recursive

subdivision. The subdivision is chosen by the longest axis of the AABB, called fat subdivision

 40

(cube-like) in which better performance can be accomplished for the intersection test. The

subdivision continues until the subset in the AABB tree contains one element. For n primitives

in the deformable objects, the AABB tree contains n leaves and 1−n internal nodes. The result

shows that it is fast to build the tree but it is slow for test for collision compared to other tree

structure such as Octree.

Oriented bounding box (OBB) in [77] is the data structure for exact interference detection

for long shape object. The oriented bounding box is created to tightly bound the long and thin

model based on the orientation of the object. A new separating axis theorem is proposed to test

the overlapping between oriented boxes. The OBB provide the tight fit for long and thin objects.

The OBB in tree structure algorithm is implemented by using two steps. First a tight-fitting OBB

is placed around the objects and second OBB is nested into tree hierarchy. The benefit of this

algorithm is that the performance can significantly improved for long-thin shape of models

compared to AABB tree. However, it is computational expensive to build the tree in deformable

object simulation because the orientation of the object changes over time.

An Octree applied to a bucket tree is presented by Ganovelli et al. [86] to construct a tree

structure in which root of the tree is attached to AABB of the object, and each leaf on the tree

contains a set of primitives for a corresponding box or a bucket. The bucket index can be

identified by 3 values of xn , yn , and zn : l
zyx nnn 2,,0 <<= where l is the level on the tree. In

every time step, coordinates of AABB are changed. As a result, the tree must be reconstructed

and all primitives are replaced into the correct buckets. Then, the collision detection is tested. If

there is an overlap between non-leaf node, the children of the non-leaf node in the smaller

volume is tested against the one in the bigger. If overlap occurs between leaf nodes, the set of

 41

primitives in the bucket are tested for collision. However, the octree in this proposed method

requires updating during the simulation which is a disadvantage of tree structure in collision

detection. In the worst case, if a deformable object has m primitives where 1−m primitives are

very close to each other and one primitive is far away. Then, one bucket could have 1−m

primitives where as another one could have only one primitive. Spatial hashing is widely used

for collision detection for deformable objects and rigid bodies.

Spatial hashing is widely used for collision detection for deformable objects and rigid

bodies. The primitives are placed into the hash table by using hash function with respect to x , y ,

and z coordinates of primitives. This method can be used and adapted to any type of primitives.

In [11], spatial hashing and a bounding box are used for collision detection in deformable objects

and rigid bodies. A deformable object is bounded with AABB bounding box and then grid cells

are created for spatial hashing. Each primitive is placed into the hash table. Then collision

detection is performed for all primitives in the same hash index.

Since the tetrahedral mesh is common used in deformable objects, optimized spatial hashing

is proposed for tetrahedral meshes in [92]. Each vertices and tetrahedrons with respect to small

AABB bounding boxes is map to hash table index. For spatial hashing of vertices, the

coordinates of the vertex position are hashed with respect to the given cell size. Then, the vertex

will be placed into hash table according to hash index. For spatial hashing of tetrahedrons, the

minimum point and maximum point of AABB are to cover a tetrahedron in the second pass. All

grid cells are in AABB are hashed in to hash table. To get hash index, hash function uses the

operation, XOR, with the big random prime numbers for better distribution in the hash table..

Thus, each hash table contains a number of object primitives. Then, collision detection is

 42

performed among the number of the primitives in the same hash table index. Because each hash

table index contains the primitives of itself and primitives of other objects, the collision and self

collision can easily performed.

In interactive haptic rendering of high resolution deformable objects [93], Galoppo et al.

have presented the efficient method for the force computation of contact that interacts with the

haptic force feedback in haptic rates. They present the contact detection or collision detection

between soft body and haptic device in three main steps. First they perform the query for the

collision detection in low-resolution polygon proxies. Each convex proxies has only few vertices.

Second they refine the query by using higher resolution of the soft body. They also develop an

algorithm based on the image-space to compute direction of penetration depth. Finally, they

check for the high resolution skin surface of collision and compute collision response if collision

occurs on the area of the surface.

The background of collision detection has been presented in this section. In the next section,

we explain the constraints that occur in deformable object simulation.

2.8 Constraints

Several constraints, such as volume control, surface deformation, internal pressure,

gravity, and contact surface, influence the deformations of the objects. In this section we

describe how these constraints can be manipulated in the simulation of deformable objects.

 43

2.8.1 Volume control

The volume control significantly affects the physical behaviors of the models. The

nonlinear and linear systems in FEM, mass-spring, modal analysis, etc. have been used to

generate volume control in deformable objects.

In interactive deformation using modal analysis [90], the modal analysis takes the

nonlinear description of the system. This analysis finds a good linear approximation that is

mapped to the coordinate system, representing the volume of the model. The instability problem

in numerical analysis can be eliminated by this modal analysis because each of decoupled

equations is solved analytically. The volumetric tetrahedral mesh is generated for the model

structure and a linear set of equations is applied to describe the system’s behavior. Then the

system interacts with a rigid body, depending on the contact or inertial forces.

For a versatile and robust model for geometrically complex deformable solids in [91], the

deformable solids are discretized into tetrahedral and mass points for dynamic behaviors of the

models. The forces at the mass points are derived by the potential energies that preserve the

surface area and volume of the objects. Then the weighted stiffness coefficients describe the

material properties of the deformable objects. The deformation behavior is a combination of

elasticity and plasticity where the FFD is applied on tetrahedral meshes to define the volume of

the objects.

The meshless deformation in [54] presents the deformation based on shape matching. The

meshless deformation preserves the model volume since the system has the original locations of

the model points and then the model points are mapped to the goal locations that are calculated

to satisfy the volume preservation of the model. The deformations have been described in forms

 44

of linear, quadratic, and cluster based deformations. The linear transformation only represents

shear and stretch, and the quadratic deformation extends the motion of twist and bending

behaviors. Besides those deformations, the cluster based deformation extends the range of

motion to the goal positions that respect to the clusters of model points.

2.8.2 Surface deformation

Unlike the volume control, the surface deformation does not significantly affect the

physical behaviors of the models. The surface deformation is the internal energy that applies

only on the surface of the model to present the deformed appearance of the model surface.

To increase the visual realism of the model surface in modal analysis, the normal

correction has been added in DyRT [51] that uses an approximation of neighboring vertex

information for dynamic elastic in FEM. Since the normal correction adds memory cost into the

system, correcting normals are applied only on some particular modes such as the dominant and

torsional modes.

In interactive virtual material [92], two representations are used in the same object to

increase the appealing quality of the simulation. These representations include low resolution

volumetric mesh for the FEM simulation and high resolution surface mesh for rendering. Since

the surface deformation does not provide the physical behaviors of the modes and low resolution

produces enough information to simulate the model behavior, the mesh coupling and consistent

watertight fracturing are applied only on the surface mesh to provide the surface detail.

In PriMo [93], the surface deformation is presented by a layer of rigid prisms to develop

the mesh face of the model. This simulation provides robust and physically plausible large-scale

 45

deformation that still preserves the surface detail. The prism representation connected to the

elastic points is used to avoid instability of large deformation in FEM. Local and global shape

matchings provide the local deformation at each prism and global deformation of the entire

model.

Soft layer of articulated characters in [94] is presented by linear elasticity theory and

linear FEM that formulate the displacement field of the soft layer in pose space. Linear elasticity

provides the elastic energy that affects on the soft skin layer, not on skeleton because the

deformation of skeleton is simulated by pose space of the model. Then the collision detection of

surface contact only operates on the local area that contact occurs on model surface.

2.8.3 Internal energy

The methods, FEM, mass-spring system, or modal analysis, in volume control can be also

used to generate the internal energy for model deformation.

In modal analysis in [51], the bone-based animation is designed for realistic modal

deformation. The motion movement of the body is captured during the dynamics simulation and

the movement is specified by bone transformation as rigid body. Then the correct modal forcing

function is used for deformable objects as skin that attached to the bone.

The dynamics simulation in interactive deformation of modal analysis is discussed in [90]

where the model system is embedded in a rigid-body reference frame to interact with each other

though inertial effects. The modal decomposition applies a set of linear equations that describe

the behavior of the system. The internal pressure is generated by the system’s stiffness, damping,

and mass matrices that are applied to the piecewise-tetrahedral finite elements.

 46

The element-based warped stiffness is used in [92] to remove the artifacts under large

deformation in the linear elastic system that controls the internal energy in the model. The

problem has been solved by allowing the integration of the plasticity model that apply to each

tetrahedral to generate internal energy of the model that does not produce the artifacts under

large deformation. The method provides stability and speed into the system

2.8.4 Gravity

Gravitation force is an external force that is acting on vertical direction of each object

primitives. By gravitational forces, the deformable objects are moved downward along y

direction which causes the deformable objects to collide with other objects or environments [94].

This gravity refers to the weight of the objects and gravitational field to generate the realism in

physics which is essentially used in physically-based modeling [9].

Gravity introduces the large deformation that causes the unrealism in the simulation. This

problem is avoided by modifying (lowered) gravitational field in the simulation system [53].

Gravitation force has been used to demonstrate the level of deformations if the one end of the

deformation object is fixed and another end of the object deforms under the influence of the

gravitational force [95].

In stable real-time deformations [38], non-linear, warped, and linear strain measures have

been used to simulate three bars that have one ends attach to a wall and then the gravity pulls

another ends downward. This simulation shows that the linear strain measure (linear elasticity)

that is commonly used in real time simulations can cause the large deformation under gravity and

other conditions. The problem is solved by using the stiffness warping scheme that uses global

 47

rotation component for the body frame and local matrices for every model vertex. The results of

the simulation show that the method is stable and robust in large deformation under gravitational

force.

2.8.5 Contact constraints

The constraints of collision include the constraints that occur from touching, poking, or

pinching. Several collision response methods have been proposed to handle the contract

constraints.

The collision response in [96] uses the penalty-based and constraints-based methods for

interactive deformation in modal analysis. The penalty-based leads to instability problem but fast,

while the constraints-based solves instability problem but require more computational time. Thus,

this modal analysis uses both methods to handle the collision to provide both fast and sable to the

system.

In [97], the contact representation in point based animation of elastic, plastic, and melting

occurs when an object is melted and flows into another objects, such as solid objects. For

collision response, the colliding surface elements in deformable objects are projected onto

Moving Least Square (MLS) surface of the solid object. The normal vectors of the colliding

surface elements are set to the normal vectors of the MLS on the solid surface to respond to the

collision.

In [31], the self collision response is presented in position based dynamics by using

spatial hashing presented in [92] to find vertex triangle collisions in cloth simulation. The

collision detection method checks between a vertex and a triangle to ensure that the vertex does

 48

not move through the triangle. The collision constraints are referred to the position of the vertex,

the positions of the triangle, and the thickness of the cloth. Then, the collision response uses

these constraints to maintain the original side of the cloth vertices.

In [47], the collision response for contact constraints is formulated by velocity constraints

of the collision area. The method of Lagrange multipliers solves the implicit motion equation

which guarantees the effectiveness of the collision response that acts on the skeletal motion. The

collision detection performs in the low-resolution proxies and the high-resolution skin surface to

collect all colliding skin vertices. Then, the computation of bone and skin response is computed

by condensed contact constraints to provide the appearance detail of the contact surface.

 The background of soft body simulation has been presented. In the next chapter, we

discuss the definitions of rigid body and soft body in detail.

 49

CHAPTER 3: A GENERAL MODEL OF SOFT BODIES

 The major objective of this research is to present a general model for deformable

objects. In our observation, a soft body is generally based on body control, fluidity control,

volume control, constraints, and gravity. Based on this fact, we propose a parametric based

general formal soft body model utilizing these components. The body control preserves the

structure of the model whereas fluidity control determines the deformation of the model surface.

The volume control defines the variability in the volume of the model. Constraints may impose

special relations among these three components. The effect of gravity is determined by the

gravity component. In order to show that the proposed general model encompasses some other

existing models, we map this general model to some existing models. This mapping indicates

that many models are specific cases of the proposed general model.

 In our general model, specific methods are selected to implement the general model.

Other specific methods can also be selected to implement the proposed general model. For the

specific methods, the soft body 3D model is defined by a triangular mesh of surface points and

the volume inside the soft body is maintained by internal pressure. Mass-spring forces, fluid

forces, and gravitational forces are applied to each surface point to model the soft body. Instead

of considering all points inside the soft body, internal pressure force maintains an approximated

volume without explicit internal structure. This approach significantly reduces simulation time

required to determine the configuration of the soft body. In addition, we also present a

partitioning and hashing scheme to reduce simulation time of both fluid modeling and collision

detection.

 50

 Consider two general approaches to deform a triangle mesh: (1) the internal pressure soft

body method [98] and (2) the fluid-based soft body method [63,64]. Each method has both

benefits and drawbacks. The internal pressure model with a mass spring system can generate

smooth surfaces, which are suitable for balloon-like models. However, a drawback is that the

wavy surfaces of liquid-like substances, such as silicone gel, cannot be simulated by this method.

The main limitations of the fluid model are (1) fluid particle physics is computationally

expensive, and (2) the soft body surface must be reconstructed every animation frame by the

Marching Cubes algorithm, which can be prohibitively expensive to fast compute as mesh detail

increases.

 To obtain the benefits of both models while avoiding the drawbacks, the method

proposed in this research utilizes a hybrid model that (1) applies internal pressure force to a

mass-spring system surface, and (2) applies fluid equations to more realistically deform the soft

body surface. Thus, rippling fluid-like surfaces can be simulated while maintaining the

interactive rendering speeds of a pre-defined surface mesh.

 This chapter is structured as follows. Section 3.1 describes the definitions of rigid body

and soft body. Section 3.2 discusses the definitions of force parameters. Section 3.3 presents how

to map the proposed general model to some specific models. Section 3.4 shows a specific soft

body model. Finally section 3.5 discusses the physics motion in the soft body.

3.1 Definitions of rigid body and soft body

 This section formally describes the 3D soft body motion model. First, the rigid body in

motion, DR3 , is defined as:

 51

VF,O,R3D = ,

where O is the object defined by a list of points and other components, such as edges, triangles,

and tetrahedrons,

 { }1,..,0 −== nipP i is a set of surface points of the rigid body and ()iii zyx ,, is a

coordinate of surface point ip ,

for example if the object is defined by a list of edges and triangles then

{ }PppppE jiji ∈= , is a set of edges that connect ip and jp ,

{ }EppppppPppppppT kjkijikjikji ∈∈= andand ,, , ,, is a set of triangles of rigid

body surface defined by kji ppp and,, ,

{ }g,F FF= is a set of forces consisting of F , an external force, and gF , a gravitational

force, applied at the center of the rigid body, and

V is the velocity at the center of the rigid body.

Correspondingly, we formally define the 3D soft body in motion, DS3 , as

CN,V,F,O,S3D = ,

where O is for the soft body as defined in the rigid body model,

{ }1,..,0 −== niF iF is a set of forces for each surface point of the soft body,

{ }1,..,0 −== niV iv is a set of velocities for each surface point of the soft body, and

N is a number proportional to the number of molecules inside the soft body to maintain

the approximated volume of the soft body, and

 52

C is a set of deformation constraints for various types of the object being modeled for

specific applications.

If the model uses the structure of a triangle mesh in 3D rigid or soft body in motion, we

also define jiij ppl = , length of the edge ji pp ∈ E and kjiijk pppa = , area of the triangle,

kji ppp ∈ T . ijl and ijka are constants for rigid body whereas ijl and ijka change in soft

body due to deformation and interaction with environment. In this model, it is assumed that the

number of surface points, edges, and triangles remain constant after any deformation.

3.2 Definitions of force parameters

 We propose several forces at each surface point for soft body. These forces are due to the

following assumptions.

1) The body control is generated by the structure of the model that connects surface points

for primitive structure defining the model. For example, a mass-spring system can be

applied on the edge of surface points ip and jp . The edge is represented by a spring, the

length of which varies depending on the deformation of the soft body.

2) For the fluidity control, each surface point is a free moving particle which interacts with

nearby neighboring surface points within a radius by fluid force.

3) In the volume control, the molecules inside the soft body can be used to exert internal

pressure force on the surface area of the soft body. This force maintains an approximated

volume of the soft body without explicitly computing each point in the 3D soft body.

4) Gravity is calculated at each surface point and applied to it.

 53

 To obtain a desired level of softness and deformation, we propose a parametric model of

different forces. As indicated previously, the composite force, t
iF , of the surface point i at time t

is based on components created by body control force, fluidity control force, volume control

force, and gravity. With this assumption, t
iF is defined as:

t
gi

t
vi

t
fi

t
bi

t
i FFFFF δγβα +++= , (3.1)

where t
biF is the force of the body control at surface point i , t

fiF is the force of the fluidity at

surface point i , t
viF is the force of the volume control at surface point i , and t

giF is the force of

gravity at surface point i . Parameters, ,,, γβα and δ are parameters of body control, fluid

control, volume control, and gravitational field, respectively, where 0>α and 0,, ≥δγβ .

Constraints may exist for relations among these components.

 The purpose of each parameter is as follows:

• The value of 0>α determines body control, enabling the model to deform while

maintaining a relative configuration among the surface points. If body control (structure

of the model) is significant for modeling, then the value of α may dominate among all

parameter values.

• The value of 0≥β affects fluidity, such as pressure and viscosity of fluid force of soft

body on the surface points. If fluidity is important for the model, then the value of β

may dominate among all parameter values.

 54

• The value of 0≥γ influences body volume as well as deformation due to the molecules

inside. If the volume of the model is important for the model, then the value of γ should

be carefully determined.

• The value of 0≥δ simulates the soft body with or without the impact of gravitational

force. 0=δ is for no gravity.

 In this manner, the various force parameters exerted on each soft body surface point can

be adjusted to obtain specific types of soft body behaviors.

The velocity generated by the force t
iF is defined as:

t
gi

t
vi

t
fi

t
bi

t
i δγβα vvvvv +++= , (3.2)

where t
biv is the velocity from body control at surface point i , t

fiv is the velocity from fluidity

control at surface point i , t
viv is the velocity from volume control at surface point i , and t

giv is

the velocity from gravity at surface point i .

3.3 Mapping the general model to some specific models

In this section we demonstrate that the proposed general soft body method can map to

other existing models to simulate variety of soft bodies by selecting appropriate components and

parametric values. Within the soft body, the forces generated from the selected components and

parametric values are combined to create a realistic simulation of the soft bodies. As presented in

previous section, the combined force, t
iF , is evaluated by:

 55

t
gi

t
vi

t
fi

t
bi

t
i FFFFF δγβα +++=

, where t
biF ,is the internal force for body control, t

fiF is the internal force generated by fluidity

control, t
viF is the internal force for volume control, and t

giF is the external force from

gravitational field. α , β , γ , and δ are parameters for body control, fluidity control, volume

control, and gravitation, respectively.

 Since our soft body model is designed for a specific case of most existing models, in this

section we map our general model to some specific models. Seven model mapping are discussed

here.

3.3.1 A versatile and robust model for geometrically complex deformable solids

 The deformable object in [42] is designed for the model both 2D deformable objects and

3D deformable objects with high deformation by FFD. The solid model is tessellated into

tetrahedrons and mass points. For dynamic behavior, potential energies provide the combined

forces at each mass-point. The constraints of stiffness and damping coefficients are considered

for the potential energy, which depends on the mass point positions and stiffness coefficient. The

coefficient defines the type of potential energy and if the body is in non-deformed state, the

potential energy becomes zero. The potential energy, E , is evaluated by:

2
10 2

1),...,(kCppE =−n (3.3)

 56

, where k is a stiffness coefficient, C is a set of constraints defined for this model, and ip is the

mass points of the model. Then the force at mass point ip incorporated with damping force to

improve the robustness of the dynamic simulation is defined as:

 ∑
<≤

−− ∂
∂

∂
∂

−−=
nj

jni vvvF
0

10)(),...,,(
ij

d1n0 p
C

p
CkkCp,...,p (3.4)

, where iv is the velocity at a mass point and dk is damping coefficient.

In this model, the distance preservation considers all pairs of mass points that are connected by

the tetrahedral edges. The potential energy for distance preservation, DE , is computed by:

2

 −−
=

0

0ij
DjiD D

Dpp
k

2
1)p,(pE (3.5)

, where 0D is the rest or initial distance of the tetrahedral edge and 0≠0D . Then the force for

distance preservation, DF , is evaluated as mentioned in (3.4).

 The surface area preservation depends on the energy which is evaluated by the difference of

current area and initial area of the model triangles. The potential energy for surface area

preservation, AE , is defined as:

2

0

0ikij

AkjiA A

A)p(p)p(p
2
1

k
2
1)p,p,(pE

 −−×−
= (3.6)

, where 0A is the initial and rest area of a triangle and 0≠0A . Then the force for the area

preservation, AF , is evaluated again as mentioned in (3.4).

 57

The volume preservation considers the mass point of a tetrahedron derived from the difference of

the current volume and the initial volume of the tetrahedron. The potential energy for volume

preservation is described as:

2
0

2
0ilikij

v
lkjiV V

)V))p(p)p((p)p(p
6
1(

2
k

)p,p,p,(pE ~
−−×−⋅−

= (3.7)

, where 0V~ = 0V if the models are the volumetric tetrahedral meshes and 0V is assume not to be

zero but if the models are plates or discrete shells, then l
12

2V0 =
~ , where l is the average edge

length of a tetrahedron. Then the force for the volume preservation, VF , is defined as stated in

(3.4).

 Finally, the combined force is computed as t
V

t
A

t
D

t FFFF ++= . To map this model, the

body control is the forces that are derived from the distance preservation and area preservation

(t
A

t
D FF +) in (3.5) and (3.6). The volume control is the force evaluated by the volume

preservation (t
VF) in (3.7). The constraints in this model are specified by)p,...,C(p 1n0 − . Thus,

the parameters for this specific model are 1=α , 0=β , 1=γ , and 1=δ .

3.3.2 A fast, flexible, particle-system model for cloth draping

 In a flexible particle system model for cloth draping [26] , the model structure is defined

by lists of particles and edges that connect among those particles. Cloth properties such as

anisotropic behavior and hysteresis are specified for the forces that are generated to interact with

environment. The measured force data is introduced for specific cloth properties for the effect on

 58

falling cloth from air resistance, wind, moving bodies, and surface friction. The model has been

described as the masses of the particles which have the properties of positions, velocities, and

forces. The Lagrange equations provide the trajectory of the moving particles for this model. The

forms of force plots of tension, shearing and bending describe the internal energy of the cloth

model. Consider a particle 0p at location)z,y,(xp 0000 = with four neighbors 4321 p,p,p,p . By

approximation of the plots with piecewise linear functions, the sharing and bending energies in

this model are given by:

 ∑
=

−−=
4

1i

2
siiss)h

2
π(C

2
1E ϕ (3.8)

∑
=

−−=
2

1i

2
biibb)hπ(ψC

2
1E (3.9)

, where (sC , bC) and (sh , bh) are the slopes of the plot in weft and warp directions, ϕ is a set

of angles formed around the four-connected neighbors of particles i , and ψ is a set of angles

formed by the segment of connecting particles i and its nearest horizontal and vertical neighbors.

Then, the tension energy on the cloth surface is implemented as:

<−−−−

≥−−−−
=
∑

∑

=

=

4

1 2
1
2
1

i

t

ii0
5

tiii0t2i,

4

1i ii0
3

tiii0t1i,

dppif)hd)p((pC

dppif)hd)p((pC
E (3.10)

, where d is the un-stretched distance between particles 0p and ip . The tension energy

distinguishes between repelling and stretching forces on the textiles.

For the Lagrange function, the following energy, kinE , is required:

2
cikin vmE ⋅=

2
1 (3.11)

 59

, where im is a mass at particle ip , and cv is velocity in weft and warp directions.

Also, the potential energies, potE , is:

0ipot zmE ⋅⋅= g (3.12)

, where g is gravitational field.

From (3.8) through (3.12), the energies for particles with four neighbors are defined. For

Lagrange function, all the energies for n particles must be added and the redundant energies for

particles with fewer than four neighbors must be eliminated.

Then the air resistance and external force, airF , for the particles at the edge of cloth is computed

by:

2

2
1

iwair vcF ⋅⋅⋅⋅= Aρ (3.13)

, where ρ is specific weight of air, wc is the resistance coefficient, and A is the surface

perpendicular to the velocity iv .

 In this model, the body control is specified by the sharing and bending energies in (3.8)

and (3.9). Then the tension and potential energies in (3.10) (3.11), and (3.12) are also included

for the body control with the gravitational field (in potential energy). To control the body

movement along the edge, the formulation of air resistant in (3.13) has been added. Body control

and gravitational field components of the proposed soft body model are used to create this cloth

model for draping. The constraints are defined for the effects of draping along the edge of the

cloth. Thus, the parameters for this specific model are 1=α , 0=β , 0=γ , and 1=δ .

 60

3.3.3 Estimating Cloth Simulation Parameters from Video

 The cloth simulation from video in [27] presents the parameters of four different fabrics,

linen, fleece, satin, and knit. The information data is collected from the video that captures the

movement of fabrics. Then the movement of fabric is simulated using the information data and

then the simulation is compared to the real movement of cloth in the video data. The energy of

the cloth model for different types of fabric is applied on the model points, edges, and triangles.

The condition functions for the internal energy associate with the stiffness and damping

coefficients. Within the triangle area, the energy distributes linearly in terms of condition

functionC(x) . The energy of a particular triangle, uE , is defined by

(x)C(x)C
2
k

E Ts
u = (3.14)

, where sk is a stiffness coefficient in a particular condition function. Then the forces are given

by:

uExF ∇= . (3.15)

Then the damping forces, d , are computed in the term of the condition function, C(x) , as:

C(x)
dx
dCkd d−= (3.16)

, where

dk

is the damping coefficient of the system.

To capture the dynamic aspects of cloth, the simple non-linear drag force has developed a

function of non-linearity, where a linear function of tangential velocity and a quadratic function

of normal velocity are combined with fk that controls the degree of non-linear function. Then

the drag force, dragF , is expressed by:

 61

+

+
−= T

N

N

N

N v
v
v

v

v
F T

f

N
drag k

k

k
a 2

2

1
 (3.17)

, where a is the area of the given triangle, the average velocities on the face are from two

components, one normal to the surface Nv and one tangential Tv , and drag coefficients Nk and

Tk are acting on the normal of the surface and the triangle of the surface.

The gradient mask, kM , of each video for each frame of video is given by:

<
≥

=
τ
τ

j)δ(i,
j)δ(i,

j(i,M k ,0
,1

) (3.18)

, where τ is the threshold defined by a user, and j)δ(i, is the magnitude of the gradient of the

angle map at j)(i, .

For fold comparison, the frame by frame sum of squared differences (SSD) between masked

angle that maps in simulation with video data is computed by the metric to generate the errors of

the comparison between the simulation data and the video data. The error at any particular frame

k along the sequence, fold
kE , is computed by:

∑∑
= =

−⋅=
x yS

0i

S

0j

2sim
k

real
kk

fold
k j))(i,θj)(i,(θj)(i,ME (3.19)

, where xS and yS are the size of angle maps, realθ are the angles from real data, and simθ are

the angles from simulation data.

The silhouette comparison is an addition to the angle map. The penalty of silhouette mismatch is

computed by the difference between the two silhouettes, i.e., the number of mismatched pixels.

The penalty from silhouette comparison, silh
kE , is computed by:

 62

∑∑
= =

−=
x yS

0i

S

0j

sim
k

real
k

silh
k j)(i,Aj)(i,AE (3.20)

, where

=
otherwise0,

silhouetteinside1,
j)(i,Ak .

The total error in frame k is:

silh
k

fold
kk αEEE += . (3.21)

, where α is a user-defined weight that controls the relative contribution of two terms which is

0.1 in this simulation. Finally, the error across the entire sequence of N frames is presented by:

∑
=

=
N

1k
kEE (3.22)

 This model defines the body control in cloth simulation by using the potential energies

with condition functions in (3.14) through (3.17). The comparisons between the simulated cloth

and video data in (3.18) through (3.22) provide the specifications of the simulation that are

considered as the constraints of the simulation. Additionally, a gravitational field has been added

for realistic simulation. Thus, the parameters for this specific model are 1=α , 0=β , 0=γ ,

and 1=δ .

3.3.4 Underwater cloth simulation with fractional derivatives

 Underwater cloth simulation is presented in [32] where the point-based or particle-based

cloth model with the list of points, edges, and triangles generates the cloth behavior and

fractional derivatives depict the dynamics the cloth interacting with fluid. The technique involves

fractional derivatives to improve the speed of computation. The damping force is derived from

the viscoelastic elements that generate Basset drag in Stokes flows. This cloth simulation is

 63

described as viscoelastic microstructure that has the behavior of fluid-like (viscous) to solid-like

(elastic). The wave propagation on cloth shows the response between cloth and water property

that has added in this model. For the force computation, the dynamic system is governed by

Newton's second law of motion, which is:

aF m= (3.23)

, where m is the mass and a is the acceleration of a particle.

In the model, the combined forces are the gravitational force, the buoyancy of water, a regular

viscous drag, and the history drag. The gravitational force and the buoyancy are computed by:

gF cwcg)Vρ(ρ −= (3.24)

where cρ is the density of a cloth particle, wρ is the water density, cV is an estimation of the

volume of one cloth particles, and g is the gravitational acceleration.

The regular viscous drag, vdF , yields:

xF vdvd k−= (3.25)

, where vdk is the viscous drag coefficient, and vx = is the velocity of the particle.

The history drag is then computed for the inertial response with the fluid as:

vvF ˆ)ˆ⋅−= x(Dk 1/2
hdhd (3.26)

, where hdk is the history drag coefficient, vvv /ˆ = is the unit velocity vector, and 1/2D is the

half derivative term which is computed by:

∑

−

+
−−
+

++
−−

= −−
2/12/1

11

)()(
)(2

ihnh1/2)h(inh1)h)(i(nhπ6
hxD 1/2n

1/2 iiii xxxx

 64

−+

+

+
++ −−

1/2h)h
h

h)hh
h

1.0(3
4

)05.0(3
2805.0

1.0()55.0(
)(215.0

2/12/12/1
1

2/1
1 nnnnnn xxxxxx

ππ
 (3.27)

, where h is the time step, i is time step index, and n is the index of most recent computed time

step.

Then, the spring force, sF , added on the particle i by the fractional viscoelastic spring element

to connect particles i and j is modeled as:

l
l

l
lxDx(D

k
l
lr)l(k j

1/2
i

1/2

dss

 ⋅−
−−−=F (3.28)

, where sk is the linear spring constant, dk is the viscoelastic damping constant, r is the rest

length of spring, and ji xxl −= is the length of spring between particles i and j .

 In this underwater cloth simulation, the body control is defined by the mass-spring

systems with the fractional viscolastic spring element. The half derivative term in (3.27) supports

the body control to provide more accurate approximation which has been used for both drag

force and spring force in (3.25) and (3.26). The Newton's second law of motion is presented for

the motion of physics in (3.23) and has included the interaction of water using the buoyancy in

(3.24), which is considered to support fluid modeling. Thus, the parameters for this specific

model are 1=α , 1=β , 0=γ , and 1=δ .

3.3.5 Position based dynamics

 In position based dynamics [31], model points are connected with neighboring points by

the edges of triangles. The velocity layer in this model has been omitted and the positions are

directly computed during simulation. Instability problems in the explicit integration method can

 65

be avoided and controllability can be improved by using this position based dynamics. The

collision constraints are simply handled by projecting positions of the points to the correct

locations. The simulations of cloths and inflated characters show the system stability and

effectiveness of the collision and self collision.

 In this model, a set of N vertices, M constraints, and a mass im at vertex i are defined. A

constraint []M1,...,j∈ is composed of a cardinality jn , a function ℜ→ℜ jn2:jC , a set of

indices { } []N1,...,i,i,...,i knji ∈ , a stiffness parameter []0...1k j ∈ , and a type of either equality or

inequality. The equality is defined by 0=)x,...,(xC
jinijj and the inequality is defined by

0≥)x,...,(xC
jinijj .The strength of the constraints is determined by the stiffness parameter jk ,

which has the range of zero to one. In each frame of the simulation, the solver function runs

multiple times to find the new locations of the points that satisfy all of these constraints. The

constraint projection scheme moves a set of points according to a constraint specified for the

simulation. Let iΔp be the displacement of vertex i by the projection. Linear momentum is

conserved if:

0=∑
i

iiΔpm (3.29)

, where im is the mass at vertex i .

The angular momentum is conserved if:

∑ =×
i

0iii Δpmr

(3.30)

, where ir is distance of vertex i to an arbitrary common rotation center.

For each p , the correction Δp needs to satisfies 0Δp)C(p =+ which can be approximated by

 66

0=⋅∇+≈+ ΔpC(p)C(p)Δp)C(p p (3.31)

solving for Δp between two points 1p and 2p , the final correction is computed as:

p2p1
p2p1d)pp(

ww
wΔp 21

21

1
1 −

−
−−

+
−= (3.32)

p2p1
p2p1d)pp(

ww
wΔp 21

21

2
2 −

−
−−

+
−= (3.33)

, where iw is the inverse masses ii 1/mw = , and d is the distance between two points.

In cloth simulation, at each edge the stretching constraint is represented by the constraint

function:

02121stretch lpp)p,(pC −−== (3.34)

, where 0l is the initial length of the edge.

Similarly, the bending constraint is defined by the constraint function:

0ϕ−

×
×

⋅
×
×

=
)p-(p)-p(p
)p-(p)-p(p

)p-(p)p-(p
)p-(p)p-(p

acos)p,p,p,(pC
1412

1412

1312

1312
4321bend (3.35)

, where 0ϕ is the initial dihedral angle between the two triangles.

In collision detection, if the vertex q moves through a triangle 1p , 2p , and 3p , the constraint

function is defined as:

h
)p(p)p(p
)p(p)p(p

)p(q)p,p,pC(q,
1312

1312
1321 −

−×−
−×−

⋅−= (3.36)

, where h is cloth thickness.

If the vertex moves from below with the respect to the triangle normal, the constraint function is

computed by:

 67

h
)p(p)p(p
)p(p)p(p

)p(q)p,p,pC(q,
1213

1213
1321 −

−×−
−×−

⋅−= . (3.37)

The balloon effect for cloth modeling is also defined by the constraint function as:

0pressurett

n

1i
tN1 Vkp)p(p)p,...,C(p i

3
i
2

triangles

i
1

−

⋅×= ∑

=

 (3.38)

 In this model, each point position has been directly computed for the new location by

omitting the velocity layer. The constraint projection processes the new positions of the models

according to the constraints which define the body control in (3.29) through (3.37) and volume

control in (3.38). The new locations of points need to satisfy the constraints in (3.29) through

(3.38) that are specified especially for this simulation. Thus, the parameters for this specific

model are 1=α , 0=β , 1=γ , and 1=δ .

3.5.6 Soft Articulated Characters with Fast Contact Handling

 Soft articulated characters with fast contact handling, as presented in [47], show the

layered representation for articulated bodies. The volumetric mesh of the deformable layer can

be implemented by any method, such as tetrahedral elements, that preserves the original outer

surface points. The high-resolution deformable skin is built in real-time. The pose space of the

skinned surface and collision queries presents the dynamic skeleton-skin deformation that

interplays with other objects. The new formulation for elastic deformation in pose space has

been proposed for the soft articulated characters by considering the skeletal-subspace

deformation model with k bones. The deformed position x of a material point is based on the

position u in pose space i0,T and bone transformations iT as

 68

uTTwuTwx
k

1i

1
i0,iiii∑ ∑

= =

−

==

k

i
i

1

 (3.39)

, where blend weight iw obeys the affine constraint ∑ =
i

1iw .

By substitute the deformation field in the previous equation with its discrete version, the position

x becomes:

)))Sq(uR(cR(cwx s0i0,

k

1i
i0,iii +++= ∑

=

 (3.40)

, where 0c and i0,c are constant transformations, iR and i0,R are rotation matrices, S is shape

matrix, and sq is deformation field.

For the joint constraint, the constraints on the collision-free velocities are defined by:

)()(bjb qJqJ gvgv b ααµ +∆−⇒−=− (3.41)

, where μJ is joint Jacobians, [] k7ℜ∈=
TT

k
T
k

T
1

T
1b θc...θcq are quaternions that represent the

orientations θ , and [] k
bv 6ℜ∈=

TT
k

T
k

T
1

T
1 ωc...ωc is angular bone velocity ω expressed in the

bone's local frame.

The contact constraint is then defined by:

−−− +=−−⇒=+ sbsb vvvvvv sbsbλ JJJJJ δδδ 0)((3.42)

, where [])36(nkm +×ℜ∈= sbλ JJJ , m is the number of colliding surface nodes, k is the number of

bones, n is the total number of surface nodes, and sv is shape velocity.

 This model uses a layered representation for body control in soft characters, which is

integration of articulated body dynamics and skinning with displacement in (3.39) and (3.40).

Soft contact with contact constraints defines dynamic simulation when the soft character is

 69

contacted by other object. This contact constraints bases on three different components: coupled

layered dynamics, joint constraints, and contact constraints in (3.41) and (3.42). Thus, the

parameters for this specific model are 1=α , 0=β , 1=γ , and 1=δ .

3.3.7 PriMo: coupled prisms for intuitive surface modeling

 In Primo [46], 3D shape modeling is presented by volumetric prisms coupled through

non-linear for elastic deformation. To satisfy user constraints, local and global shape matching

techniques are combined to provide the mesh deformation. The various geometrical parameters

produce the control the behavior of the physical surface. In the prism representation, the face of

ip neighboring jp is a rectangular bi-linear patch v)(u,f ji→ , []20,1v)(u, ∈ , interpolating its four

corner vertices { }ji
11

ji
01

ji
10

ji
00 ffff →→→→ ,,, and the opposite face is defined by j

ij Pv)(u,f ⊂→ Then

the energy between ip and jp is computed as:

[]
dudvv)(u,fv)(u,fE ijji

ij ∫ →→ −= 21,0
 (3.43)

, corresponding to an integral over infinitesimal elastic forces.

Deformation energy is computed by the accumulation of pairwise energies ijE as:

{ }
∑ ⋅=

ji,
ijij EwE ,

ji

2

ij
ij FF

e
w

+
= (3.44)

, where ijw is the weight at the area of the corresponding mesh faces iF and jF , and ije is the

length of their shared edge .

 70

For local shape matching, the faces ji→f needs to match to the corresponding faces ij→f to find

the best rigid motion of rotation and translation)(ii t,R that yields a weighted pair-wise shape

matching problem. Thus local shape matching is defined as:

[]
∫ →→ −+

2ii
0,1

2ij
i

ji
itR

du(u)ft(u)fRmin . (3.45)

For the global shape matching, the matching process applies the formulation to each prism and

updates until the system is converged. The first order approximations iA of rigid motion)(ii t,R

are defined in terms of linear and angular velocities iv and iω by:

)(A:v)(ω)(t)(R iiiii ⋅=+⋅×+⋅≈+⋅ (3.46)

Then the energy minimization in terms of the approximation iA is

{ }
[]{ }

∑ ∫ →→ −
ji ,,

2ii
0,1

2ij
j

ji
iijv

du(u))(fA(u))(fAwmin
ω

 (3.47)

This method requires small updated steps, which is not appropriate for the large deformation.

The proposed method projects the approximation iA by finding the closest rigid motion)(ii t,R ,

where the distances of transformations are compared their effects on the prism ip . Thus the

energy minimization becomes

[]
∫ →→ −+

2ii
0,1

2ij
ji

ji
itR

du(u))(fAt(u)fRmin . (3.48)

 In this model, a prism representation is used the structure of the model. The elastic force

for body and volume control is expressed in (3.43) and (3.44). The elastic joint energy defines

the deformation state between connected prisms. Local shape matching and global shape

matching are considered as the constraints of this simulation because they need to be satisfied to

 71

provide the local and global areas of deformation. The local shape matching and global matching

tries to find the best rotation using energy minimization in sections (3.45) through (3.48) that

give small errors to the model. Thus, the parameters for this specific model are 1=α , 0=β ,

1=γ , and 1=δ .

 This section has described how the existing models can be mapped into the proposed

general soft body model. In the next section, the details of soft body are presented, where the

mass-spring system, SPH, internal pressure have been selected for body control, fluidity control,

and volume control for this specific model.

3.4 Specific methods of a soft body model

 Our soft body model is defined by TE,P,O,M = , where P , E , and T are the lists of

points, edges, and triangles, respectively. The mass-spring system is selected to act on the mesh

points, which are connected by springs, enabling the model to deform while maintaining a

relative configuration among the surface points. SPH for fluid modeling creates a realistic fluid-

like motion on the soft body surface. Volume inside the 3D soft body model is modeled by

simulated molecules and ideal gas approximation to maintain volume. Constraints determine the

properties of soft bodies, which is defined by specific applications. Gravitational force provides

soft body motion from natural force. In this section, we present the model components that are

suitable for our specific soft body model.

 The surface elasticity is created by a mass-spring system in which surface mesh points

move freely, yet retain a relative configuration to the original mesh. Mass-spring force t
biF is

 72

determined by two parts, spring force t
isF and damping force t

diF . Thus, t
biF is defined as follows

[53,99]:

t
di

t
si

t
bi FFF += , (3.49)

where t
siF is spring force at surface point i and t

diF is damping force at surface point i .

 In a mass-spring system, the spring force generated by each spring depends on the spring

constant, the spring length, and spring rest position. The equation for cumulative spring force

among neighboring surface points is given by:

∑ ∈∀

−
−=

Ejij t
ij

t
i

t
j

ij
t
ijs

t
is l

pp
llk

),|(
0)(
)(F , (3.50)

where t
siF is the net internal spring force exerted on surface point i for every surface point j in

the neighborhood E , sk is the spring constant of the spring connecting surface points i and j , ip

and jp are the positions of surface point i and j respectively, 0
ijl is the initial length of the spring

between surface points i and j , and t is current time step.

 Damping force works against the velocities of connected surface points in order to slow

their relative velocities. The equation of cumulative damping force among a surface point’s

neighbors is given by:

∑ ∈∀
−=

Ejij
t
j

t
id

t
di hk

),(|
)v(vF , (3.51)

where t
diF is the damping force, dk is the damping constant between surface point i and j , iv is

the velocity at surface point i , jv is the velocity at surface point j , t is current time step, and h

is time elapsed.

 73

 In order to model complex surface interactions, forces beyond mass-spring systems are

required. For example the deformation of fluid-like on the surface of a deformed soft body. Since

3D fluid simulation is computationally expensive, we perform fluid calculation on the mass-

spring surface of the soft body only while we generate the volume by internal pressure force

which acts on each surface point.

 For modeling behavior of fluids, we consider the impact of fluid pressure and fluid

viscosity of the fluid. For that purpose, we simulate the surface points as free moving particles

interacting with nearby surface points within a radius. Since the mass-spring system provides

surface tension, we consider both fluid pressure force generated due to the density and fluid

viscosity force generated due to the viscosity of the fluid. To model these forces in this

simulation, we adopt the smoothed particle hydrodynamics (SPH) model developed originally

for astrophysical problems and later used in interactive applications of particles based on fluid

simulation [63,64]. In general, SPH is simple compared to other fluid modeling such as FEM or

FVM. SPH is an interpolation method that distributes quantities in a local neighborhood of each

particle using radial symmetrical smoothing kernels. We utilize poly6, spiky, and viscosity

smoothing kernels in [63,64] to model fluid density, fluid pressure, and viscosity forces. Thus,

during fluid force calculation, fluid density and fluid pressure are computed to generate fluid

pressure force and fluid viscosity force as presented as follows.

In accordance with the model developed in [63,64], fluid density is given by:

∑=
j

w
t
ijpolyj

t
i hlWm),(6ρ , j∀ such that w

t
ij hl ≤ , (3.52)

 74

where t
iρ is the density at surface point i at time t , jm is the mass at surface point j , and wh is

the core radius of SPH.

Next, fluid pressure is generated from fluid density as:

)(0= ρρ t
i

t
i kL , (3.53)

where t
iL is the fluid or liquid pressure at surface point i at time t , k is the gas constant, t

iρ is the

density at surface point i at time t , and 0ρ is the initial density.

Fluid pressure force at the soft body surface point i , t
fpiF , is computed as:

∑ ∇
−

−=
j

w
t
ijspikyt

j

t
j

t
i

j
t
fpi hlW

LL
m),(

2ρ
F , j∀ such that w

t
ij hl ≤ , (3.54)

where jm is the mass at surface point j , t
iL and t

jL are fluid or liquid pressure values at surface

points i and j respectively at time t , t
jρ is the density at surface point j at time t , and wh is the

core radius of SPH.

Finally the fluid viscosity force at the soft body surface point i , t
fviF , is generated by:

∑ ∇
−

=
j

w
t
ijityvist

j

t
i

t
j

j
t
fvi hlWm),(

vv
F cos

2

ρ
µ , j∀ such that w

t
ij hl ≤ , (3.55)

where µ is the viscosity of fluid, jm is the mass at surface point j , t
iv and t

jv are the velocities

at surface points i and j respectively at time t , t
jρ is the density at surface point j at time t , and

wh is the core radius of SPH.

 75

The fluid force, t
fiF , is the combination of two different forces; (1) fluid pressure force,

t
fpiF , and (2) fluid viscosity force, t

fviF . Hence, we define the fluid force as follows:

t
fvi

t
fpi

t
fi FFF += (3.56)

where t
fpiF is fluid pressure force at surface point i and t

fviF is fluid viscosity force at surface

point i .

 In order to model volume of the soft body an internal pressure force must push the

surface points outward. This volume is created by pressure force generated by the molecules

within the soft body. Without volume, the soft body may become flat, much like fabric or cloth

after colliding with the environment.

 We are proposing a model for maintaining the volume of the soft body by internal

pressure force. This model is conceptually similar to the idea presented in [98]. The internal

pressure force is defined as:

∑= E∈k)j,(i,|∀jk ijk
t

vi N
B
1na ˆF , (3.57)

where t
viF is the net pressure force in bounding box volume of soft body experienced at surface

point i at time t , ijka is the surface area of the face connecting surface point i to all surface

point pairs),(ki in the neighborhood of i , n̂ is a normal vector to the surface where the

pressure force is acting, B is the volume of the soft body bounding box at current frame, and N

is proportional to the number of molecules inside the soft body to maintain the approximated

volume of the soft body.

 76

 In the real-world gravity affects all objects, thus the simulation model must account for it.

The force of gravity experienced by an object earth is equal to weight of the object experiencing

the gravitational pull. Gravitational force at a point on the soft body surface is computed by:

gF i
t

gi m= , (3.58)

where t
giF is gravity force at time t acting on surface point i of mass, im , and g is acceleration

due to Earth’s gravity.

 When computing the sum of all individual forces on a soft body, the forces must be

combined in this step for each surface point. The combination of all forces proportionally selects

of particular forces suitable for specific applications.

3.5 Physics motion in the soft body

 After the effective application at each surface point, we determine the new position of the

surface point due to the motion physics for the next animated frame. There are several standard

numerical methods for performing soft body motion updates. In general, explicit, implicit, and

trapezoid Euler methods have been used to approximate the motion of soft bodies. Explicit

methods require constraints, such as time step or spring constant, should be small in each

animation step because the simulation may become unstable when the large constraints are

applied. Thus, they are not suitable for applications that require stability and accuracy. These

problems have been addressed in [1,53,100].

 77

 To avoid stability issues, we use the implicit method in [100] to update soft body motion.

In our model, velocity is generated from combination of all forces. Thus, the velocity at surface

point i at time ht + , ht
i
+v , is calculated by:

ht
i

t
i

ht
i

++ ∆+= vvv , (3.59)

i

ht
i

t
i

ht
i m

h++ += Fvv , (3.60)

To compute the force at surface point i at time ht + , ht
i
+F is derived from the force at surface

point i at time t , t
iF . Then the surface point i at time ht + , ht

ip + is as follows:

hpp ht
i

t
i

ht
i

++ += v , (3.61)

where ht
ip + and ht

i
+v is the position and velocity of surface point i at time ht + , t

ip is the

position of surface point i at time t , and h is the time interval between simulation steps.

Simplified Implicit Integration

Our proposed integration method is inspired from [1,53] to model 3D soft objects as a 2D

grid e.g. cloth. Ref. [1] offers a fast and stable calculation method as compared to [53]. We

extend this method to model 3D objects as 3D structures and include an approximation for

implicit integration to animate the soft bodies. Rather than computing velocity at each

neighboring point, we use an approximation of the forces exerted by neighboring points to

generate the velocity at the considered point. Our proposed simplified approximated implicit

method bears less computation as compared to the method in [1]. The derived method is

described below.

 78

As mentioned earlier, implicit Euler method equations are given by:

i

ht
i

t
i

ht
i m

h++ += Fvv (3.62)

hpp ht
i

t
i

ht
i

++ += v (3.63)

ht
i
+F is not easily evaluated at the current value of ,t

ip t
iv , and t

iF , but can be approximated by a

first-order derivative as [1,53]:

httht p
x

++ ∆
∂
∂

+=
FFF , (3.64)

where tF is the net force at point i , and is given by Tt
r

ttt],...,,[21 FFFF = , where r is number of

surface points defining the soft body. The difference of positions, htx +∆ , at times t and ht + , is

given by:

ththt ppp −=∆ ++ (3.65)

It is also written as:

hp httht)(++ ∆+=∆ vv , (3.66)

where ht+∆v is the difference of the velocities at times t and ht + .

To calculate ht+F , Desbran et al. [53] use the negated Hessian matrix
p

H
∂
∂

=
F of the

mass-spring system to solve implicit method integration in (3.64). Substituting (3.66) in (3.64),

the equation becomes:

hH htttht)(++ ∆++= vvFF (3.67)

Then, substituting (3.67) in (3.62) and simplifying, we obtain [53]

 79

m
hhHH

m
hI ttht)()(

2

vFv +=∆− + (3.68)

Now, the approximated Hessian matrix is given as [53]:

ijij kH = , if ji ≠ ; and

∑ ≠
−=

ij ijii kH , otherwise,

where k is the spring constant.

The calculation in (3.68) becomes expensive as there is an nn× matrix H involved,

where n denotes the number of surface points on the soft body. Since ijH is 0 if points i and j

are not linked, the velocity change of point i can be updated by considering only the linked

points. This approximation leads to [1]:

i

t
i

Ejij
jijii

i

ii

m
h

H
m
h

m
Hh F

vv =∆−∆− ∑
∈∀),|(

22

)()1(. (3.69)

If k is constant for all springs, then iiH and ijH can be approximated as ikn− and k ,

respectively, to get [1]:

i

Eji

ht
j

i

t
iht

i
i

ii

m

kh

m
h

m
knhm ∑

∈

+

+

∆
+=∆

+),(

2
2)(

v
F

v . (3.70)

Simplifying for ht
i
+∆v and substituting the value

||
|| t

j

t
jt

j
ht

j F
F

vv ∆=∆ + in (3.69), we get:

ii

Eji

t
j

t
j

t
i

ht
i nkhm

khh

2
),(

2)ˆ||(

+

∆+
=∆

∑
∈+

FvF
v , (3.71)

where t
jF̂ is the normalized force at point j , evaluated by ||/ t

j
t
j FF .

 80

We simplify this equation by considering the velocity difference at times t and ht + . In our

approximation, the value of

∑
∈

∆
Eji

t
j

t
j

),(

ˆ|| Fv (3.72)

is approximated by:

t
i

t
iin Fv ˆ|| ∆ , (3.73)

where in is the number of neighbors of point i and t
iF̂ is the normalized force at point i ,

evaluated by ||/ t
i

t
i FF . Equation 3.72 computes the summation from the number of neighboring

surface points that are connected to point i , all of which are assumed to be of identical mass and

form part of a symmetrical mesh that defines the surface of the soft body. Since this is a mass-

spring system, force computed at point j is equal and opposite to the force exerted at the

connected point i . Thus, we have t
i

t
j FF −= . Now, force is used to compute velocity, as shown

in (3.62). Since we assume the same parameters, i.e. mass, spring and damping constants, for

each surface point and each spring, we may assume |||| t
i

t
j vv ∆−=∆ without loss of generality.

Then, the summation of (3.72) is approximated by using the number of neighboring points in

multiplied by the magnitude of velocity difference and normalized force at point i . Using the

approximation of (3.73) in (3.71), we get:

()

+
∆+

=∆ +

ii

t
i

t
ii

t
iht

i nkhm
nkhh

2

2 ˆ|| FvFv .

We can simplify the equation as follows:

 81

ht
i
+∆v

ii

t
i

t
ii

ii

t
i

nkhm
nkh

nkhm
h

2

2

2

ˆ||
+
∆

+
+

=
FvF

i

t
i

t
ii

t
i

t
ii

ii

t
i

nkhm
nkh

nkhm
h

2

2

2 ||||
||

FF
FvF

+
∆

+
+

=

 ()ii
t

i

t
i

t
ii

ii

t
i

nkhm
nkh

nkhm
h

2

2

2 ||
||

+
∆

+
+

=
F

FvF

 ()ii
t

i

t
i

t
ii

t
i

t
i

nkhm
vnkhh

2

2

||
||||

+
∆+

=
F

FFF

()

()ii
t

i

t
ii

t
i

t
i

nkhm
khnh

2||
||||

+
∆+

=
F

vFF
. (3.74)

The simplified implicit integration takes into account, spring, damping, fluid modeling,

internal pressure forces, and gravitational acting at each point on the surface of the body. All

external and internal forces are calculated and aggregated and then the velocity of point i at time

ht + is computed by using either of the explicit, implicit, or proposed implicit methods. The

result is passed onto the next step and then a new position is calculated for point i . Finally, a

display function renders the soft body. This loop repeats until the user terminates the simulation.

 We have presented the proposed generalized soft body method that employs some

specific cases of other existing models to simulate a wide variety of materials by adjusting

parameters such as body control, surface deformation, volume control, constraints, and

gravitation. The combined forces within the soft body model combine all these parameters to

create a realistic simulation of the intended material. In the next chapter we describe how the soft

body can be efficiently implemented to provide the simulation that displays each animated frame

in interactive speed.

 82

CHAPTER 4: IMPLEMENTATION OF THE SPECFIC METHODS OF
SOFT BODIES

 This section details each phase of our soft body implementation. In the specific methods,

the edge of any two connecting surface points is a spring between those points, where the length

of the edge is initially considered as the rest state of the spring. Each spring is represented by a

spring force and a damping force at each end. To maintain volume within the soft body, internal

pressure is exerted onto the soft body triangular mesh surface area. The internal pressure force is

applied to each triangle area in the mesh, spring forces exert on connected points, and

gravitational force is applied to each surface point.

 To incorporate fluidity, surface points are free moving particles that exert fluid forces on

all neighboring points within a radius. Because determining SPH fluid force between all free

moving neighboring surface points is an)2O(n process, an efficient method is required to

quickly determine neighboring points. In this chapter, we present several data structures, such as

AABB, Octree, and a partitioning and hashing scheme, and examine how each structure

increases performance. We choose the most efficient method for the fluid modeling based on

those results. The same selected data structure is also applied to collision

detection so the soft body can interact with other soft body and rigid body objects in the

environment.

 This chapter is organized as follows. Section 4.1 describes how to determine the

neighboring surface points. Section 4.2 shows the comparison of the methods for fluid modeling.

Section 4.3 presents the dynamically resizing grid cell scheme for collision detection. Section 4.4

 83

discusses the soft body simulation in details. Finally section 4.5 provides the overview of

performance efficiency and complexity analysis.

4.1 Determining the neighboring surface points

Since eq. 3.52, 3.54, and 3.55 in fluid modeling concern only the surface points in the

radius, the surface points outside the radius can be ignored. If we determine the neighboring

surface points at the beginning of each animation frame, then the speed of the simulation can be

improved. To determine the neighboring surface points of a point effectively, we present three

different methods, AABB, Octree, and a partitioning and hashing scheme. Then, we compare

the performance of each method and discuss what method is suitable for our fluid modeling in

the next section.

4.1.1 Determining neighboring surface points by AABB

AABB has been used in many computer graphics applications, such as collision detection

or ray tracing [75,101]. The reason why AABB is widely used in many applications is because

AABB can be simply computed and it is fast for the simple models.

To find the neighboring surface points for the surface point p for fluid modeling using

the AABB, each soft body model is bounded by a AABB. This AABB is simply computed by

the soft model’s minimum and maximum points,)(xx ,maxmin ,)(yy ,maxmin , and)(zz ,maxmin .

The distance between surface point p to each surface point in the soft body’s AABB needs to be

 84

computed for neighboring surface points in the core radius wh . The AABB that bounds a soft

body is shown in figure 4—1.

Figure 4—1: Axis Aligned Bounding Box (AABB) for determining the neighboring

surface points of surface point p . The AABB is used to bound a soft body model and then all

surface points in the soft body need to be tested if they are in the core radius wh of surface point

p .

For the surface point p , fluid force in SPH method is affected by the surface points

within the core radius wh . We crate the fluid particle list to contain neighboring surface points

of surface point p . Each element p of the fluid particle list has a pointer to the surface points

within the core radius wh of the surface point p as shown in figure 4—2.

 85

We find the neighboring surface points each surface point by computing the distance

between that surface point and each surface point in the soft body. If the surface points are in the

core radius wh of surface point p then we place those surface points to the table fluid particle

list table.

Figure 4—2: Fluid particle list table. Each soft body object has a fluid particle table of size n,

where n is the number of surface points in the soft body. Each entry in the table lists contains the

surface points within the kernel radius of the surface point correlation.

The fluid particle table list contains the list of neighboring surface points of each surface

point. We use these neighboring surface points to approximate the fluid density, fluid pressure

force, and fluid viscosity force at surface point p in fluid modeling. The next section we

present Octree structure that can also be implemented to determine the neighboring surface

points that later we use for fluid modeling.

 86

4.1.2 Determining neighboring surface points by Octree

The Octree is the tree data structure where each inner node contains up to eight children

[86,102]. The 3D space is recursively subdivided the space into eight octants. In point based

subdivision, the Octree subdivides the 3D space from the locations of points. Each node in an

Octree contains the points that reside in one of subdivisions. Since in our implementation each

soft body has its own Octree, an AABB is used to bound each soft body model and to define as

3D space for Octree subdivisions. Then, determining the neighboring surface points by Octree is

accomplished in two steps: 1) creating the Octree and 2) finding the surface point in the core

radius wh of surface point p . We present the details of each step here.

4.1.2.1 Creating the Octree

Each surface point of the soft body model is passed into Octree to add the new node into

the tree. This function uses location of the surface point and recursively subdivides the 3D space

of the model into eight octants, shown in figure 4—3, and the surface point resides in one of the

octants. In our implementation, we create a function to add new node in the tree which returns

the tree level of the surface point. If tree level at surface point p is defined as
ltp,T , the function

to add a new node in the Octree is defined as:

ltp,addnode T(p)f = ,

where lt is the level of the tree. Note that the root of the Octree is level 0, the next level is 1, and

so on. This step is performed for all surface points p , and then the Octree is filled with all

surface points. The Octree structure is shown in figure 4—4.

 87

Figure 4—3: Octree subdivision. The three dimension space is recursively subdivided the space

at the location of the surface points into eight octants.

Figure 4—4: Octree structure. The add new node function uses location of the surface point and

recursively subdivides the 3D space of the model into eight octants. The child pointer of each

tree node references the subdivided spaces where surface point can reside in one of those spaces.

 88

4.1.2.1 Finding the surface points in the core radius wh of surface point p

 To find the neighboring surface points of surface point p , the bounding box pB as a size

of the core radius wh is created around surface point p .The pB is defined as the minimum and

maximum points,),maxB(minB pxpx ,),maxB(minB pypy , and),maxB(minB pzpz .

 Each node of Octree contains its bounding box that has been created during subdivisions.

Let ‘s assume that the bounding box of each tree node is defined by
lt

B . The
lt

B is also defined

as the minimum and maximum points,)maxB,(minB
ll ttx,ttx, ,)maxB,(minB

ll tty,tty, , and

)maxB,(minB
ll ttz,ttz, , of tree subdivisions at level lt . To determine the neighboring surface points,

the method uses these two bounding boxes to perform the intersection test between
lt

B and pB

and then the surface points in
lt

B is checked whether or not it is in the surface point core radius.

 In the Octree, we use bounding box interactions to find the path in the tree to find the

neighboring surface points. The
lt

B is tested for intersection with pB . If
lt

B intersects with pB ,

the surface point in the tree node is tested whether or not it is in the core radius of surface point

p . If so, the surface point is placed in the fluid particle list table at index p , shown in figure

4—2. Then the process repeats for the higher levels of the non-leaf nodes that
lt

B intersects pB .

After all surface points p are tested for the list of surface points in the core radius wh , the fluid

particle list table is filled and then we can compute the fluid density, fluid pressure, fluid

viscosity for each surface point.

 89

4.1.3 Neighboring surface points by hashing for fluid model

 To reduce the time complexity, we have applied a custom spatial hashing scheme in [92]

to partition 3D space into grid cells to determine the neighboring surface points in SPH. During

animation, the grid cell of each surface point in the frame is determined by spatial partitioning.

The surface point within that grid cell is then mapped into a 3D hash table. Determining all

neighboring points of a surface point is accomplished in two steps: (1) creating a 3D hash table

for all surface points, and (2) obtaining a list of neighboring points for each surface point using

the 3D hash table.

4.1.3.1 3D hash table creation

 To determine the neighboring surface points of a particular surface point, the simulation

environment is partitioned into cubic grid cells. Each grid cell has the same size as the kernel of

fluid model represented by SPH core diameter, wh2 , where wh is core radius of SPH. In this

partitioning, a three dimensional (3D) array for these grid cells requires a large amount of

memory space. For example, a 100100100 xx array structure needs memory space for 610 grid

cells. However, our models consist of only the surface points in the animated scene. A majority

of the grid cells do not contain any information. To avoid large memory allocation for the large

number of grid cells to search for the neighboring surface points, we propose a set of lists

indexed by a 3D hashing scheme to utilize memory space effectively and develop an efficient

search technique for neighboring surface points. In this hashing scheme, we map the surface

points into a small 3D hash table. Since the hash table size is an important parameter for the

 90

execution time of each animated frame, experiment on hash table size is included in the future

work.

 Conceptually, our spatial partitioning method divides the environment into grid cells.

However in reality we do not create all these grid cells. Instead, for each surface point we

determine the grid cell index by using the position of the surface point. This grid cell index of the

surface point is mapped into the hash table index. The surface point is then placed into the list

pointed by the hash index shown in figure 4—5. The grid cell index and hash table index of the

surface point p are as follows.

 The surface point),,(zyxp = belongs to the grid cell),,(zyx cccc = , where

 wx hxc 2/= , wy hyc 2/= , and wz hzc 2/= , and wh is the core radius of SPH. (4.1)

The hash index),,(zyx HHHH = of the grid cell),,(zyx cccc = is determined by

HTcH xx mod= , HTcH yy mod= , and HTcH zz mod= , (4.2)

where HT is the hash table size in each direction. Hence, 3HT is the total size of the hash table.

 Let’s us assume that the minimum and maximum grid cell index in x , y , and z

directions are given by),(xx maxcminc ,),(yy maxcminc , and),(zz maxcminc .

The neighboring grid cells)',','(' zyx cccc = of the grid cell),,(zyx cccc = is given by

cxx Icc +=' , cyy Icc +=' , and czz Icc +=' , (4.3)

where 1±0= ,cI and xxx maxccminc ≤≤ ' , yyy maxccminc ≤≤ ' , zzz maxccminc ≤≤ ' .

Then the hash index)',','(' zyx HHHH = of a neighboring cell)',','(' zyx cccc = is

HTcH xx mod'' = , HTcH yy mod'' = , and HTcH zz mod'' = . (4.4)

 91

Figure 4—5: 3D hash table for SPH. Each grid cell index c = (cx, cy, cz) is mapped into the hash

index H=(Hx, Hy, Hz). Then, each hash index points to a list of surface points mapped to that

index.

4.1.3.2 Obtaining list of neighboring points from the 3D hash table

 Each surface point p has the grid cell index),,(zyx cccc = and the hash index

),,(zyx HHHH = indicated in eq. 4.1 and 4.2. All surface points in the hash index

),,(zyx HHHH = are tested to determine if they are within the core radius, wh , of the surface

point p shown in figure 4—6. If so, the surface points within the radius of the surface point p

are placed into the fluid particle list table at the index for surface point p as shown in figure 4—

2. Since the surface points within the core radius, wh , of the surface point p may reside in the

neighboring grid cells)',','(' zyx cccc = with the hash indices)',','(' zyx HHHH = indicated

in eq. 4.3 and 4.4, the list of surface points in the hash indices)',','(' zyx HHHH = are also

checked for the surface points within the core radius, wh , of surface point p .

 92

Figure 4—6: SPH with grid cells of the soft body surface. This figure shows surface points

within the radius hw of surface point pi , where hw is core radius of SPH.

For each surface point, we determine a list of neighboring surface points. These

neighboring surface points affect the fluid density, fluid pressure force, and fluid viscosity force

at surface point p in fluid modeling. After fluid modeling, the fluid force is combined with

other forces as detailed in chapter 3. Motion physics are then applied to move particles through

space. After presenting three different methods for fluid modeling, in the next section we

compare the performance among those methods and select the suitable method for the fluid

modeling.

 93

4.2 Comparing the methods for fluid modeling

We compare the presented method, AABB , Octree, and the partitioning and hashing

schemes, in order to select the suitable method to determine neighboring surface points in our

fluid modeling. The experiments are conducted on a mid-range laptop, 2.0 GHz Core-2 Duo

processor, 2GB memory, and NVIDIA GeForce 6800 Mobile GPU. The performance of each

method is measured by frame per second (FPS). We set up the experiment that generates 500 to

6,000 points. Since we would like to only find the neighboring surface points of a surface point,

all points are randomly moving around the scene without computation of any forces. Then we

implement AABB, Octree, and the partitioning and hashing scheme to determine the neighboring

surface points. The result is shown in figure 4—7.

 94

Figure 4—7: Performance comparison of the methods for determining the neighboring surface

points. The best frame rate is obtained by using the partitioning and hashing scheme.

 When the numbers of points are 500 and 1,000, the AABB scheme provides acceptable

frame rates, varied from 200 to 40 FPS. However, when we increase the number of points from

1500 to 6000 then frame rates decrease from 40 down to 5 FPS, which is unacceptable for the

simulation. The Octree scheme produces better frame rate compared to the AABB scheme. Even

though the number of fluid points are increased to 6000, it still provides an acceptable frame rate

at 25 FPS. However, when the partitioning and hashing scheme is applied, it provides even better

than Octree. For the number of particles of 6000, the simulation runs at 40 FPS. Thus, in our

simulation we use the partitioning and hashing scheme to determine the neighboring surface

 95

points in fluid modeling. To increase in realism of the simulation, the fast collision detection is

required by most applications and the partitioning and hashing scheme can also determine the

surface points nearby a particular point. In the next section, the collision detection that we plan to

use in our simulation is explained.

4.3 Dynamically resizing grid cell scheme for collision detection

 In fluid modeling, the grid cell size is based on the size of the kernel, where more points

in each grid cell is preferred for higher density fluid modeling. However, fewer points are suited

for collision detection to reduce time computation because collision detection considers only the

surface points for contact surface. Since our partitioning and hashing schemes are efficient to

find the neighboring surface points, we use a similar approach to determine the neighboring

surface points for contact surface in collision detection. In this collision detection scheme, all

surface points in the environment and surface point of the soft models are determined by location

in the hash table. Then the contact surface identifies if there is the collision between soft models

and the environment. If so, we determine the collision points and collision response.

 Because grid cell size is one of the most important parameters in partitioning and hashing,

we have conducted experiments to find the most suitable grid cell size for collision detection. To

find the colliding points, we use point-based collision detection where the distance between two

surface points determines if there is collision or not. If the distance between two surface points is

less than collision threshold, then the collision occurs between those two surface points. Only

surface points are considered for collision detection; thus, during collision detection the model

components such as mass-spring system, fluid modeling, and internal pressure force can be

 96

ignored until after detection. Therefore, effects from these components are omitted in this

experiment.

 The experiment is composed of four scenarios of 1,000, 3,000, 5,000, and 7,000 points

moving randomly inside an AABB of size 200200200 xx . In each scenario, 26 simulations are

run where the number of grid cells is varied from 64,000 down to 343 cells, as shown in table

4—1. The testing measurement in the experiments is frame per second (FPS). Each simulation is

run over 10,000 animated frames and is repeated with the same parameters 10 times. Finally, the

averages of FPS are recorded and the results are in the graphs shown in figures 4—8, 4—9, 4—

10, and 4—11.

 97

Table 4—1: Results of collision detection experiment with grid-based partitioning.

 This experiment is conducted to find a suitable grid cell size for a specific number of

points. The highlighted cells denote the best frame rate results from the experiment. The best

frame rates of 471-476, 175-179, 114-115, 80-85 are obtained for collision detection between

1000, 3000, 5000, 7000 points, respectively.

Density
(Avg num
of points
per grid

cell)

FPS

Density
(Avg num
of points
per grid

cell)

FPS

Density
(Avg num
of points
per grid

cell)

FPS

Density
(Avg num
of points
per grid

cell)

FPS

1 5 64000 0.016 105 0.047 84 0.078 67 0.109 56
2 6 39304 0.025 161 0.076 111 0.127 86 0.178 64
3 7 24389 0.041 221 0.123 136 0.205 98 0.287 73
4 8 15625 0.064 268 0.192 154 0.320 108 0.448 76
5 9 12167 0.082 311 0.247 156 0.411 109 0.575 78
6 10 8000 0.125 355 0.375 179 0.625 115 0.875 85
7 11 6859 0.146 392 0.437 180 0.729 116 1.021 83
8 12 4913 0.204 428 0.611 184 1.018 114 1.425 85
9 13 4096 0.244 436 0.732 181 1.221 111 1.709 82

10 14 3375 0.296 458 0.889 178 1.481 109 2.074 80
11 15 2744 0.364 466 1.093 177 1.822 107 2.551 74
12 16 2197 0.455 476 1.365 177 2.276 104 3.186 75
13 17 1728 0.579 482 1.736 175 2.894 101 4.051 70
14 18 1728 0.579 472 1.736 166 2.894 100 4.051 65
15 19 1331 0.751 466 2.254 164 3.757 93 5.259 57
16 20 1000 1.000 471 3.000 158 5.000 89 7.000 55
17 21 1000 1.000 460 3.000 149 5.000 85 7.000 54
18 22 1000 1.000 459 3.000 145 5.000 81 7.000 52
19 23 729 1.372 458 4.115 138 6.859 77 9.602 50
20 24 729 1.372 450 4.115 130 6.859 70 9.602 47
21 25 512 1.953 443 5.859 124 9.766 66 13.672 44
22 26 512 1.953 422 5.859 121 9.766 58 13.672 41
23 27 512 1.953 425 5.859 115 9.766 57 13.672 39
24 28 512 1.953 420 5.859 110 9.766 55 13.672 36
25 29 343 2.915 407 8.746 105 14.577 53 20.408 34
26 30 343 2.915 401 8.746 102 14.577 53 20.408 33

Simulation

5000 points 7000 points

Number of cells
(200/Grid cell size)3

Grid
cell
 size

1000 points 3000 points

 98

Figure 4—8: Effect of density of points and performance of collision detection. This experiment

tests grid-based partitioning for collision detection between 1,000 points. Results show the best

frame rate when the density is between 0.45 – 1.0.

Figure 4—9: Effect of density of points and performance of collision detection. This experiment

is set for the collision detection with grid-based partitioning between 3,000 points. The result

shows the good frame rate when the density is between 0.4 – 1.7.

0
100
200
300
400
500
600

0.000 0.500 1.000 1.500 2.000 2.500 3.000

Frames
per

second

Density

Effect of density for collision
detection (1000 points)

0

50

100

150

200

0.000 0.500 1.000 1.500 2.000 2.500 3.000

Frames
per

second

Density

Effect of density for collision
detection (3000 points)

 99

Figure 4—10: Effect of density of points and performance of collision detection. This

experiment is set with grid-based partitioning for the collision detection between 5,000 points.

The result shows the good frame rate when the density is between 0.6 – 1.2.

Figure 4—11: Effect of density of points and performance of collision detection. This

experiment is set with grid-based partitioning for the collision detection between 7,000 points.

The result shows the good frame rate when the density is between 0.8 – 2.1.

0
20
40
60
80

100
120

0.000 0.500 1.000 1.500 2.000 2.500 3.000

Frames
per

second

Density

Effect of density for collision
detection (5000 points)

0

20

40

60

80

100

0.000 0.500 1.000 1.500 2.000 2.500 3.000

Frames
per

second

Density

Effect of density for collision
detection (7000 points)

 100

Figures 4—9 through 4—11 show that the best frame rates are obtained when the

densities are between 0.45 - 1.0, 0.4 - 1.7, 0.6 - 1.2, and 0.78 - 2.1 for collision detection between

1000, 3000, 5000, and 7000 points, respectively. From these results we conclude that the

approximated number of 1.0 should be the best density value for collision detection with grid-

based partitioning because the good result in each scenario is in the range of 1.0 and our

simulation has a number of points not larger than 7000. This approximated density from the

experiment is used to calculate the grid cell size for collision detection, which is described below.

From the density in the experiments, we have:

NC
Nn

D = (4.5)

, where D is density, Nn is total number of points, and NC is the total number of grid cells

partitioned in x , y , and z directions of AABB.

Since the number of partitions, NP , is equal in x , y , and z directions, NC is calculated as

3NPNC = (4.6)

Substitute eq. 4.6 to eq. 4.5, eq. 4.5 becomes

3=
NP
Nn

D

From the previous experiment, the good result of collision detection is when the density is

approximated by one. Then, we have

3=1
NP
Nn

. (4.7)

We simplify eq. 5.7 and we get NnNP =3 . In x , y , and z directions ,the number of partitions,

NP , becomes 3 Nn .

 101

Thus, the grid cells size in x , y , and z directions (xC , yC , zC) is

NP
b

C x
x = ,

NP
b

C y
y = , and

NP
b

C z
z = , (4.8)

where xb , yb , and zb are the length of AABB in x , y , and z directions.

Then, the grid cell sizes (xC , yC , zC) are used in the collision detection with partitioning and

hashing scheme.

 Collision detection between soft body models and the environment using partitioning and

hashing scheme is performed in three steps. First, an AABB bounds all objects in the animated

frame. Second, grid cell size is determined for partitioning and hashing, based on the current size

of the AABB. Finally, collisions are detected by point-based contact surface. The details of the

collision detection with partitioning and hashing are described next.

 First, a single AABB bounds all soft body objects and environment in the frame, defined

by the minimum and maximum points of all moving object positions including the points of the

environment. Note that the length of the AABB in the x , y , and z dimensions changes over

time since all objects may move between animation frames.

 Second, to find the grid cell size for partitioning, the grid cell size is specified by the

number of grid cells partitioned in x , y , and z directions. According to the previous

experiments, the execution time of collision detection depends on the density of the points in the

grid cells. After calculating the grid cell size (eq. 4.8), we find grid cell index and the hash table

index for surface points as preceded in eq. 4.1 and 4.2 using the grid cell size of xC , yC , zC in

x , y , and z directions instead of the core radius of SPH, wh . Correspondingly for the

 102

neighboring grid cell indices and their hash indices, the eq. 4.3 and 4.4 are applied with the grid

cell size of xC , yC , zC instead of the core radius of SPH, wh .

 Finally, all surface points in grid cell of surface point p and the surface points in the

neighboring grid cell of surface point p are tested for collision. If the distance between two

surface points is less than collision tolerance, then collision occurs. After the collision is detected,

the surface points are assigned to the new positions from collision resolution. All soft body

models and the environment are rendered to the screen and then all steps of simulation are

repeated during the simulation. The next section explains soft body simulation in detail.

4.4 Soft body simulation details

 The main program repeats the simulation until the soft body becomes stable or user stops.

At the beginning, the partitioning and hashing scheme for fluid modeling creates the 3D hash

table (hashTableCreation ()) and assigns the 3D hash index to each surface point of the soft

body. The function accessToHashTable() accesses all surface points p . Each surface point in

the 3D hash index and the 3D hash indices of neighboring grid cells of the surface point p is

tested for surface points in the SPH core radius, wh , (testforFluidParticleList()). The result of

these steps is the fluid particle list table in which each entry has a pointer to the surface points in

the SPH core radius.

 For all surface points of all soft body models in the scene, each force is calculated and all

forces are aggregated. The velocity of each surface point is computed by the combination of all

 103

forces and is approximated by the implicit Euler method. This new velocity provides the new

position of each surface point.

 At the end of the loop, by using partitioning and hashing scheme for collision detection,

new positions of all surface points are placed into the 3D hash table (hashTableCreation ()).

Then the positions of all surface points in the 3D hash index and the 3D hash indices of

neighboring grid cells of the surface point p are accessed (accessToHashTable()) and tested for

collision detection (testforCollision()). Collision detection assigns the new positions for the

colliding points and then the display function renders the soft body.

The algorithm is organized as follows:

• Data structure used for both fluid modeling and collision detection :

o structure surfacePointList – contains the surface point list used in both the 3D

hash table and the fluid particle list table.

• Functions for both fluid modeling and collision detection :

o void hashTableCreation (int Gx, int Gy, int Gz) – constructs the 3D hash table

which contains a list of surface points in the 3D hash table index.

o void accessToHashTable (int Gx, int Gy, int Gz, string process) – accesses each

surface point in the 3D hash table and passes the surface points to either

testforFluidParticleList or testforCollision.

• Functions for fluid modeling :

 104

o void fluidParticleListTableCreation() – creates the fluid particle list table of size

n.

o void testforFluidParticleList(int i, int j) – stores the surface point j in the SPH

core radius, wh , of surface point i into fluid particle list table.

• Functions for collision detection :

o void testforCollision(int i, int j) – detects the collision between surface points i

and j .

o void createOneAABB() – creates an AABB for collision detection.

o int (Cx, Cy, Cz) findGridCellSizeForCollision() – computes the grid cell size, xC ,

yC , zC for collision detection.

The details of all functions are presented in figures 4—12 through 4—20:

Figure 4—12: Structure of surfacePointList. This structure is for containing surface point list

used in the 3D hash table and the fluid particle list table. The variable count tracks the number of

surface points in the list. The variable pointNumber stores the surf ace points into the list.

structure surfacePointList

 {

 public int count;

 public int pointNumber[100];

 }

 105

Figure 4—13: The function hashTableCreation(int Gx, int Gy, int Gz). This function creates the

3D hash table by taking grid cell size (Gx, Gy, Gz) as arguments. Both fluid modeling and

collision detection use this function to construct the 3D hash table. When being called, it

removes all surface points in the list in each entry of the 3D hash table by initializing the variable

count to 0. Then, the function uses the grid cell size to compute the 3D grid cell index and

converts the 3D grid cell index to the 3D hash table index. The result of the function is the 3D

hash table containing the list of surface points.

void hashTableCreation (int Gx, int Gy, int Gz)

{

 if (hash table does not exist)

 create an empty hash table with size of HTxHTxHT and pointer for each index pointing to empty
surfacePointList

 for all indexed (x,y,z) = 0 to HT-1

 initialize count in each hashTable[Hx][Hy][Hz] to 0

 for all surface point i = 0 to n-1 {

 // find grid cell index for each surface point i

 cx = Gxxi / , cy = Gyyi / cz = Gzzi / , (xi , yi , zi) is position of surface point i

 // convert the grid cell index to hash table index

 Hx = cx mod HT, Hy = cy mod HT, Hz = cz mod HT

 add the surface point i to the surfacePointList indexed by count in hashTable[Hx][Hy][Hz]

 increase count in hashTable[Hx][Hy][Hz] by one

 }

}

 106

Figure 4—14 : The function void accessToHashTable (int Gx, int Gy, int Gz, string process).

This function accesses the 3D hash table in which the surface point p is placed. All surface points

in the 3D hash index and all surface points in 3D hash indices of neighboring grid cells are tested

for either fluid modeling or collision detection. If this function is used for fluid modeling, it

passes surface points i and j to the function testforFluidParticleList. Similarly, if this function is

used for collision detection, it passes those two points to the function testforCollision.

void accessToHashTable (int Gx, int Gy, int Gz, string process)

 {

 for all surface point i = 0 to n-1

 x = Gxxi / , y = Gyyi / z = Gzzi / , (xi , yi , zi) is position of surface point i

 // repeats for all surface points in the hash table indexed by (x, y, z) and all surface points in neighboring grid

// cells in the hash table indexed by (x±1, y±1, z±1) mod HT.

for (k = 0 to k = count – 1 in hashTable [x’ = (x±{0,1}) mod HT],[y’=(y±{0,1}) mod HT],

 [z’=(z±{0,1}) mod HT])

 j is the surface point indexed by k in hashtable[x’][y’][z’]

 if (surface point i ≠ surface point j)

 { if (process == “fluid modeling”)

 testforFluidParticleList(i, j)

 if (process == “collision”)

 testforCollision(i, j)

 }

 107

Figure 4—15 : : The function void fluidParticleListTableCreation(). This function is used for

fluid modeling. It creates the fluid particle list table of size n if the table has not been created.

When this function is called, it removes all surface points in the list for each entry of the fluid

particle list by initializing the variable count to 0.

Figure 4—16 : The function void testforFluidParticleList(int p, int q). This function is called by

the function accessToHashTable and stores the surface points in the fluid particle list table for

fluid modeling. It checks if the surface point j is in the SPH core radius, wh , of surface point i or

not. If so, the surface point j is placed into the surface point list indexed by count in the fluid

particle list table indexed by i.

void testforFluidParticleList(int i, int j) {

 distance is the distance between surface point i and j

 if (distance is less than or equal to the SPH core radius, wh)

 { add the surface point j to the surfacePointList indexed by count in fluidParticleListTable[i]

increase count in fluidParticleListTable[i] by one

 }

}

void fluidParticleListTableCreation()

{

 if (fluidParticleListTable does not exist)

 create an empty fluid particle list table with size of n and pointer for each index pointing to empty
surfacePointList

 for i = 0 to n-1

 initialize count in each fluidParticleListTable[i] to 0

}

 108

Figure 4—17 : The function void testforCollision(int p, int q). This function is called by the

function accessToHashTable and detects collisions. It checks if the distance between surface

point i and j is less than the collision threshold or not. If so, it resolves the effect of collision for

those colliding points.

Figure 4—18 : The function void createOneAABB(). This function is called at the beginning of

collision detection to create an AABB. All surface points of all objects in the frame are tested for

the maximum and minimum points of the AABB. This AABB is used later to find the grid cell

size for collision detection in the function findGridCellSizeForCollision.

void testforCollision(int i, int j) {

 distance is the distance between surface point i and j

 if (distance is less than collision threshold)

 compute the effect of collision

}

maxAABB(x,y,z) = (-1000, -1000, -1000)

minAABB(x,yz) = (1000, 1000, 1000)

void createOneAABB(){

 for (i = 0 to i = numberOfObjects)

 for (j = 0 to object[i].n-1) {

 if (position (x, y, z) of surface point j of object i is bigger than maxAABB(x,y,z))

 maxAABB(x,y,z) is equal to position (x, y, z) of surface point j of object i

 if (position (x, y, z) of surface point j of object i is less than minAABB(x,y,z))

 minAABB(x,y,z) is equal to position (x, y, z) of surface point j of object i

 }

}

 109

Figure 4—19 : The function int (Cx, Cy, Cz) findGridCellSizeForCollision(). This function is

called after an AABB has been created. It computes the grid cell size for collision detection by

finding the length of AABB. Then the length in each direction is divided by the number of

partitions, NP. The number of partitions, NP, is evaluated by 3 Nn . The result of this function is

grid cell size which is later passed as arguments to create the 3D hash table for collision

detection.

int (Cx, Cy, Cz) findGridCellSizeForCollision(){

 // find the length of AABB in x, y, z directions

 b(x, y, z) is (|maxAABB.x- minAABB.x|,|maxAABB.y- minAABB.y|, |maxAABB.z- minAABB.z|)

 // initialize the total number of points to 0

 initialize Nn to 0

 for (i = 0 to i = numberOfObjects)

 Nn is Nn plus the number of points of object[i].

 NP is 3 Nn

 gridCellSize(Cx, Cy, Cz) is (b.x/NP, b.y/NP, b.z/NP)

 return Cx, Cy, Cz

}

 110

Figure 4—20 : The function void main(). This main program repeats the simulation until the soft

body until the user stops. All soft bodies are simulated with mass-spring force, fluid modeling

force, internal pressure force, and gravitational force. Then all forces for each surface point are

combined. The velocity is generated by the implicit Euler method to evaluate the new position

of the surface point. Finally, collision detection is resolved for the colliding surface points.

void main() {

 Repeat{

 hashTableCreation(
wh2 ,

wh2 ,
wh2)

 accessToHashTable(
wh2 ,

wh2 ,
wh2 , “fluid modeling”)

 for all soft bodies

 for all surface points i = 0 to i = n-1 {

 compute spring force for surface point i, t
isF

 compute spring damping force for surface point i, t
idF

 for j = first surface point to j = last surface point in fluid particle list table indexed i {

 compute fluid density for surface point i, t
iρ , using all surface points j

 compute fluid pressure force for surface point i, t
fpiF , using all surface points j

 compute fluid viscosity for surface point i, t
fviF using all surface points j

 }
 compute internal pressure force for surface point i, t

viF

 compute gravitation force for surface point i, t
giF

 combine all forces for surface point i,

 () () t
gi

t
vi

t
fvi

t
fpi

t
di

t
is

t
i δγβα FFFFFFF +++++=

 compute velocity for surface point i,
i

ht
i

t
i

ht
i m

h++ += Fvv

 compute position for surface point i, hvpp ht
i

t
i

ht
i

++ +=
 }
 }
 createOneAABB()

 int Cx, Cy, Cz = findGridCellSizeForCollision()

 hashTableCreation(Cx, Cy, Cz)

 accessToHashTable(Cx, Cy, Cz, “collision”)

 display()

 } until user stops

 111

4.5 Complexity analysis

Simulating realistic soft body models is computationally intensive because both fluid

modeling and collision detection require comparison of each surface point to all other adjacent

particles, the time complexity of which increases exponentially with the number of particles.

This section examines in detail how the partitioning and hashing scheme presented greatly

improves such calculations, making realistic soft body simulations possible on common

consumer hardware.

Note that the size of the 3D hash table, HT , is used for the partitioning and hashing

scheme. From the result presented in [103], HT in range 13-17 provides the good results for

2,500 – 4,000 surface points, which can be approximated by HT < 3 n . Additionally, 3HT

presents the number of the 3D hash indices of the 3D hash table and is defined as the constant C

in this analysis.

With the partitioning and hashing scheme, the function hashTableCreation() initializes

the variable count to 0 in each 3D hash index and assigns the 3D hash index to each surface

point, resulting in time complexity (nC +).The function accessToHashTable() accesses all

surface point p and all surface points in the 3D hash index including the 3D hash indices of the

neighboring grid cells of surface point p , resulting in time complexity (hnn27), where hn is

number of surface points in the surface point list and it is greatly less than n and 27 is the total

number of hash indices accessed by the function for each surface point p . The computation of

mass-spring force, internal pressure force, gravitational force, combination of all forces, velocity,

 112

and position is for each surface point, resulting in time complexity (n). However, in fluid

modeling with the partitioning and hashing scheme, the fluid force of each surface point is

calculated with only the surface points in the SPH core radius, wh . Thus the calculation of all

forces, velocity, and position becomes (knn), where kn is the number of surface points in the

SPH core radius, wh and kn is significantly less than n . For collision detection with the

partitioning and hashing scheme, the function createOneAABB() processes in each surface point,

resulting in time complexity (n). The functions hashTableCreation()and accessToHashTable()

are called an additional time for collision detection, resulting in time complexity (nC +) and (

hnn27), respectively. This results in a total complexity of)()(hk nnnnnC 272+++2 or

hk nnnnnC 54+++2)(. We are currently working on the detail of analysis in average case of

this time complexity.

In the best case, we assume that the surface points are distributed equally in the 3D hash

table (Cnnh =) and all the surface points in the 3D hash index are in the SPH core radius, wh ,

of surface point p (Cnnk =). The time complexity of this case becomes

)()()(CnnCnnnC 54+++2 or CnnC 255++2)(. In the worse case, we assume that all

surface points are in one 3D hash index and all surface points are in the SPH core radius, wh , of

each surface point p . The time complexity of this case becomes 22 54+++2 nnnC)(or

255++2 nnC)(.

 113

With all details of the algorithm described, the next chapter demonstrates the proposed

method in practice, as applied to the domains of fluid-like soft bodies, human tissue simulation,

and blob-like video game monsters.

 114

CHAPTER 5: SIMULATION OF FLUID-LIKE SOFT BODY,
ORGANIC FACE, AND SOFT BODY IN GAMES

 Two categories of experiments aim to test all aspects of the proposed algorithm: (1)

impact of various force parameters and (2) implementation of fluid-like soft body creatures into

the Galactic Arms Race video game [104]. The experiments are conducted on a mid-range

laptop, 2.0 GHz Core-2 Duo processor, 1GB memory, and NVIDIA GeForce 6800 Mobile GPU.

The scenarios measure algorithm efficiency in FPS.

 This chapter is organized as follows. Section 5.1 shows deformation experiments on the

simulation of fluid-like soft bodies and organic faces and section 5.2 demonstrates a integration

of the soft body into game engine.

5.1 Deformation experiments

 Two deformation scenarios are simulations of a soft object and a human face. Each

simulation has six different combinations of parameters ,,, γβα and δ which are body control,

fluidity control, volume control, and gravitational field, respectively, where 0>α , and

0,, ≥δγβ . Since the selected mass-spring system for body control enables the model to deform

while maintaining a relative configuration among the surface points without loss of generality,

the body control is set to one in both scenarios (1=α).

 Both the soft body and human face illustrate the main effects of fluid force and internal

pressure force. The first scenario emphasizes fluid-like behavior, thus the fluid force is set to

2,1,0=β while the second scenario focuses on deformation of the human face (fluidity has less

 115

effect), thus the fluid force is set to 075.0,0=β . In both scenarios, the internal pressure force is

adjusted and based on the shape and the purpose of the model. For the shape of balloon-like soft

body in first scenario, the internal pressure force is set to 5,1,0=γ , which provides more

volume. Since the internal pressure force can destroy the shape of the model in the second

scenario, the internal pressure force is set to smaller values of 010000500010= .,.,.γ .

 We have experimented with various parameter values on both scenarios. The visual

results of the model depend on the model structures such as the number of surface points and

connection of those surface points. Because second scenario has many more surface points than

the first scenario, small parameter values provide more suitable results. However, the

experiments of parameter values are open for additional experimentation.

5.1.1 Fluid-like soft body simulation

 In the first experiment, a soft body mass is dropped into a rigid-body wine glass. To

demonstrate a variety of soft body behaviors, six versions of the experiment are performed where

equation parameters are varied as shown in table 5—1. The soft body has 1,986 surface points,

3,968 faces, and 5,952 springs. Experiment A shows that a zero fluid parameter value results in

a smooth surface of the soft body as shown in figure 5—1. Experiments B and C illustrate

variable different fluid parameters that cause different levels of undulating surface waves, and

the parameter of fluid force becomes the dominant factor on the soft body as shown in figures

5—2 and 5—3. Experiments D and E have high internal pressure value and behave like bubbles

or rubber balls as shown in figures 5—4 and 5—5. Both show that internal pressure force

becomes the dominant factor on the soft body. Thus, the fluid force parameter does not affect

 116

visual result in figure 5—5. Finally, experiment F has a zero internal pressure, which results in a

soft body without volume much like fabric or cloth as shown in figure 5—6. Overall, the

experiment demonstrates the effectiveness of the proposed method to simulate a variety of fluid-

like surfaces.

Table 5—1: Experiment parameters for fluid-like soft body deformation experiments.

Experiment α β γ δ FPS

A 1 0 1 1 >20

B 1 1 1 1 >20

C 1 2 1 1 >20

D 1 0 5 1 >20

E 1 2 5 1 >20

F 1 1 0 1 >20

In each variation of the fluid-like soft body experiments, equation parameters are varied to

achieve a variety of fluid-like characteristics The parameters affect the following soft body

parameters: (α) net body control, (β) net fluidity control, (γ) net volume control, and (δ)

gravitational field. Visual results for each experiment are detailed in figures 5—1 through 5—6.

 117

Figure 5—1: The visual result of soft body model of experiment A, where the parameters α =1,

β =0, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000th, 3000th, 4000th, and 6000th and it shows that these parameters generate the smooth surface

of the soft body.

 118

Figure 5—2: The visual result of soft body model of experiment B, where parameters α =1, β

=1, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th, 2000th,

3000th, 4000th, and 6000th and it shows that these parameters generate the undulating surface

waves.

 119

Figure 5—3: The visual result of soft body model of experiment C, where the parameters α =1,

β =2, γ =1, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate more undulating

surface waves compared to experiment B.

 120

Figure 5—4: The visual result of soft body model of experiment D, where the parameters α =1,

β =0, γ =5, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate bubbles or rubber

balls.

 121

Figure 5—5: The visual result of soft body model of experiment E, where the parameters α =1,

β =0, γ =2, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate bubbles or rubber

balls. Since internal pressure force becomes the dominant factor on the soft body, the fluid force

parameter does not affect visual result in this experiment.

 122

Figure 5—6 : The visual result of soft body model of experiment F, where the parameters α =1,

β =1, γ =0, and δ =1 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the soft body

without volume much like fabric or cloth.

 123

5.1.2 Simulation of organic faces

 In the second experiment, a human face is deformed in various ways by varying equation

parameters as shown in table 5—2. The human face structure has 4,721 surface points, 9,213

faces, and 13,825 springs. Gravitational force is not applied in this experiment. The visual

results of the experiments are depicted in figures 5—7 through 5—12 and demonstrate the

effectiveness of the proposed algorithm at simulating deformed organic faces. In experiments A

through C internal pressure coefficient is increased, resulting in a balloon effect with a smooth

surface as shown in figures 5—7 through 5—9. In experiments D through F the internal pressure

force is increased, however a higher fluid force results in a less bloated appearance and retains

more of the original surface structure as shown in figures 5—10 through 5—12.

 Comparing the results shown in figure 5—7 to figure 5—10 shows that in 5—10 the

parameter of fluid force becomes dominant and holds the outline or shape of the model. The

same relationship holds for the results shown in figures 5—8 and 5—11 and also between figures

5—9 and 5—12, even though higher internal pressure force is applied. Such deformations can be

used for model morphing effects in graphics and games.

 124

Table 5—2: Parameters for organic face deformation experiments.

Experiment α β γ δ FPS

A 1 0 0.001 0 >15

B 1 0 0.005 0 >15

C 1 0 0.010 0 >15

D 1 0.075 0.001 0 >15

E 1 0.075 0.005 0 >15

F 1 0.075 0.010 0 >15

In each variation of the organic surface deformation experiments the equation parameters

are varied to achieve different output characteristics. The parameters affect the following soft

body parameters: (α) net body control, (β) net fluidity control, (γ) net volume control, and

(δ) gravitational field. The visual results for each experiment are detailed in figures 5—7

through 5—12.

 125

Figure 5—7 : The visual result of organic face of experiment A, where the parameters α =1, β

=0, γ =0.001, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with less balloon effect.

 126

Figure 5—8 : The visual result of organic face of experiment B, where the parameters α =1, β

=0, γ =0.005, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with more balloon effect compared to experiment A but less balloon effect compared to

experiment C.

 127

Figure 5—9 : The visual result of organic face of experiment C, where the parameters α =1, β

=0, γ =0.010, and δ =0 have been set. The result is captured at animated frames 100th, 1000th,

2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic surface

with more balloon effect compared to experiments A and B.

 128

Figure 5—10 : The visual result of organic face of experiment D, where the parameters α =1, β

=0.075, γ =0.001, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

surface with less bloated appearance compared to experiments E and F and retains more of the

original surface structure compared to experiment A.

 129

Figure 5—11 :The visual result of organic face of experiment E, where the parameters α =1, β

=0.075, γ =0.005, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

surface with more bloated appearance compared to experiment D but less bloated appearance

compared to experiment F and retains more of the original surface structure compared to B.

 130

Figure 5—12 : :The visual result of organic face of experiment F, where the parameters α =1, β

=0.075, γ =0.010, and δ =0 have been set. The result is captured at animated frames 100th,

1000th, 2000 h, 3000th, 4000th, and 6000th and it shows that these parameters generate the organic

surface with more bloated appearance compared to experiments D and E and retains more of the

original surface structure compared to C.

 131

5.2 Integration into a game engine

 While isolated simulations are useful for testing graphics and gaming technology, they do

not accurately reflect the environment of video games which have strict time requirements and

large additional processing burden from AI, sound, networking, physics, particles systems, and

various other game components. Therefore, the proposed soft-body algorithm has been

integrated into the Galactic Arms Race (GAR) game engine [104]. GAR is a multi-player space

video game and a test bed for experimental game technology. Additional information and the

GAR game demo is available at http://gar.eecs.ucf.edu.

 In GAR, the proposed soft-body algorithm is used to animate and render "Space Blobs",

which are large amorphous enemies (see figure 5—13). The 3D model for the Space Blob is a

162 vertex sphere. The sphere vertex count is chosen to be low enough for fast simulation of

multiple creatures on low-end hardware, yet high enough so that the model does not look

"blocky". With 162 vertices, an appropriate texture, and a lighting shader, the Space Blob

creature looks quite convincing in game. To introduce a continual animated "breathing" effect in

the blob, the soft body internal pressure is periodically randomized. The animated Space Blob

enemies in the GAR game engine prove the effectiveness of the algorithm described in this

research for gaming.

 132

Figure 5—13 : Soft Body Monsters in Galactic Arms Race (GAR). The proposed soft-body

algorithm animates and renders the large amorphous "Space Blob" enemies in the Galactic Arms

Race video game (http://gar.eecs.ucf.edu). Varying internal pressure force creates a continual

animated “breathing” effect.

 133

 The simulation of fluid-like and organic faces in this chapter demonstrates that a variety

of soft body deformations can be produced by adjusting the parameter values. Additionally,

implementation of the “Space Blobs” in the Galactic Arms Race shows the use of soft body

models in video games. In the next chapter, the simulation of lung function shows that the

proposed soft body model can be used in medical applications.

 134

CHAPTER 6: SIMULATION OF LUNG RESPIRATION FUNCTION

 Lung simulation has been used in medical imaging for training purposes. This lung

simulation involves deformation methods simulated by geometrically-based or physically-based

modeling [105].

 Geometrically-based methods normally involve spherical harmonics (SP) where the

angular portion of a set of solutions is used to transform the points of the model [106,107] during

the respiration. These methods have been used not only in artificial approximation for model

recognitions but also in predicting soft tissue deformation. However, the physiological basis

cannot be achieved by this method especially for the simulation of a breathing lung.

 Physically-based methods model the physiology of lungs. The lung functions, inhalation

and exhalation, are simulated according to the functional representation such as mass-spring

system or FEM [108,109]. In FEM, the airflow inside bronchioles is simulated through fluid

dynamics to generate the forces that are applied to each element of FEM. The lung model is

divided into the individual elements of the FEM, thus the computational complexity depends on

the number of FEM elements. In order to reduce computational complexity, a mass-spring

system is used to model lungs [105,110,111,112,113].

 By using our general soft body model, an internal pressure model controls respiratory

rhythm by using a constraint of Pressure-Volume (P-V) relation while the mass-spring system

maintains the elastic behavior of the model and the fluid model generates surface deformation of

lungs. Experiments of the parametric values of body control, volume control, and fluidity control

are conducted to determine the suitable values of these parameters for realistic simulation. The

 135

interaction between lungs and rib cage also illustrate the realism of our simulation as the lung

volume changes due to this.

 This chapter is structured as follows. Section 6.1 briefly describes the respiratory and

lung functions. Section 6.2 discusses internal pressure in our lung respiration model. Section 6.3

presents how our soft body model is adapted for simulation of lung respiration. Section 6.4

shows the results of the lung simulation. Finally section 6.5 summarizes our soft body for lung

simulation.

6.1 Respiration and lung functions

 In this section we present the basic functions of the lungs and respiration. A brief

explanation of the respiratory system, lung volume, and Pressure Volume (P-V) curve relation

are described here.

6.1.1 Respiratory system

 There are two alternative means of human respiration [114]. The first mean is breathing

through the nose called nasal breathing and the second is breathing through mouth called oral

breathing. Nasal breathing provides two advantages: filtration of particulate and humidification

of inspired gas. Since the nasal septum and turbinate expand the surface area of mucosa, they

increase the efficiency of evaporation and produce turbulent flow. Humidification by nasal

breathing is more efficient than by mouth breathing. Unfortunately, nasal breathing experiences

more airflow resistance than mouth breathing. This can be exacerbated when the respiration is

obstructed by polyps, adenoids, or congestion of the nasal mucosa. The resistance of nasal

 136

breathing may necessitate oral breathing. For example during exercise, oral breathing occurs

because the required respiratory volume increases as the body needs more air flow into lungs.

6.1.2 Lung volume

 Lung volume or lung capacity is related to the state of the respiratory cycle. During

normal breathing, the average of total lung capacity is about 6 liters of air for human male and

4.7 liters of air for a human female [115]. Lung capacity is related to several other lung

parameters. During respiration, it depends on Total lung capacity (TLC), Vital capacity (VC),

Forced vital capacity (FVC), Tidal volume (Vt), Residual volume (RV), Expiratory reserve

volume (ERV), Inspiratory reserve volume (IRV), Functional residual capacity (FRC), and

Inspiratory capacity (IC). TLC is the volume of air at the end of maximal inspiration. VC is the

amount of air that can be forced out after the maximal inspiration and represents the

completeness of expiration. FVC is similar to VC but represents a maximal value. Vt is the

volume of air during inhalation and exhalation during normal respiratory. RV is the amount of air

left in the lungs after a maximal exhalation. ERV is the amount of air that can be pushed out after

the end of inhalation for normal respiratory. IRV is the additional air that can be inhaled after a

normal tidal inhalation. FRC is the amount of air left in the lungs after a tidal exhalation during

normal breathing. Finally, IC is the maximal volume that can be inspired following a normal

expiration.

 137

6.1.3 Pressure Volume (P-V) curve relation

 A single inhalation and exhalation involves the movement of thoracic muscles including

the muscles of the abdominal region, the diaphragm, and the intercostal muscles. The movement

of diaphragm and chest wall forms a mechanical pump that drives air flow into and out of the

lungs [112,116,117]. The change of pressure and volume is known as the Pressure-Volume (P-V)

relation. The relation of P-V is shown in figure 6—1. This relationship indicates changes in

pulmonary mechanics and reflects the respiratory parameters such as lung tissue properties [112].

 In our lung simulation, we use this P-V curve to control the volume of lungs that generate

the internal pressure force during inhalation and exhalation. In the next section we propose a

adapting our soft body model using this P-V relation determined from experiment results

[118,119] .

Figure 6—1: A sigmoidal for curve-fitting pressure-volume data in [118,119] (Sigmoidal P-V

curve is discussed in 6.2).

 138

6.2 Adapting internal pressure in lung respiration model

 The lung model is simulated by adapting the internal pressure and volume of lung

function as a constraint for our soft body model. We presented a soft body model by using mass-

spring system to generate the elastic behavior of the model, the fluid modeling to present the

surface deformation of the model tissue, the internal pressure to maintain the volume the soft

body, the constraint to control the relation between pressure and volume, and finally gravitation

to present the realism of physics.

 Respiration is a function of the lung’s internal pressure force, which controls the lung

volume within certain limits. For an appropriately functioning lung model, we adapt this volume

control function which depends on internal pressure of the lung. This volume control function

specifies the internal pressure inside the lung which leads the air to flow in and out of the lung.

The flow of air during inhalation and exhalation is simulated by the number of molecules in the

internal pressure model in our simulation.

 The internal pressure, vF , in lung simulation is presented as:

{ }VN,=vF ,

where N is number of molecule and V is bounding volume of soft body.

 In this simulation, the constraint is the function that controls the relation between

pressure and volume (P-V). We adopted the P-V curve using the sigmoidal equation modeled

from the experimental pressure volume data. The sigmoidal form of a P-V model equation is

presented in [120] and based on observed performance of both healthy humans, dogs and,

humans who have had lung surgery [121]. The P-V data has further been analyzed in acute

 139

respiratory distress syndrome in [119]. We use this sigmoidal equation shown in figure 6—1 to

generate lung volumes during inhalation and exhalation. The sigmoidal model in P-V curve is

presented by:

+

+= c)/d--(Pe1
baV ,

where P is the respective pressure of the respiratory system, a is the lower asymptote volume,

b is the vital capacity, c is the point of maximal compliance (true inflection point), and d is the

pressure range that includes most of the volume change.

 During inhalation or exhalation, we compute the volume of the lung model by increasing

or decreasing the pressure of the respiratory system. The volume function of lung model during

inhalation or exhalation is given by the constraints, V)(P,Ci for inhalation and V)(P,Ce for

exhalation.

V)(P,Ci is given by:

+

+= + c)/d-ΔP(Pt te1
baV , and

V)(P,Ce is given by:

+

+= − c)/d-ΔP(Pt te1
baV ,

where tP is the pressure of the respiratory system at the current time, P∆ is the pressure

difference in the current frame and the next frame, and { }exhinh c,cc = are the points of maximal

compliance; inhc is the point for inhalation and exhc is the point for exhalation.

 140

 In the next section, we discuss how we use this volume control function in our soft body

model to simulate inhalation and exhalation.

6.3 Lung respiratory simulation

 In this simulation the visualization of diaphragm is does not move the position of the rib

cage; however, we approximate the movement and position of the rib cages from the number of

animated frames during inhalation and exhalation. The interaction between lungs and rib cages

is achieved by point-based collision.

 We approximate the fixed number of frames for the state of inhalation or exhalation at

each respiratory cycle. However, it can be changed according to the inhalation or exhalation of a

specific individual. The internal pressure force models the inhalation and exhalation of the lung

volume according to { ΔP+ , inhc , inhN } and { ΔP- , exhc , exhN }, respectively, where ΔP =

40/(number of frames for one inhalation or exhalation), inhc = 20, exhc = 10, inhN = 70k, exhN

=100 in this simulation. The gravitational force is exerted on all surface points of the lung for the

real-world physics effects. Finally, all the forces are combined and velocities are evaluated for

the new surface positions.

 After updating new positions of all lung surface points, we perform the collision

detection between the lung model and the rib cage. If a collision occurs, the effects of collision

on the point positions are calculated. After surface positions have been checked for collision and

have been assigned to new positions from the effect of collision, the display function displays all

 141

surface points of both lung models and rib cage. These steps repeat until the user stops the

simulation.

6.4 Experiments

 We applied the soft body model, where the mass spring system controls the body of the

model, the internal pressure produces the inhalation and exhalation activities of lung functions,

and the fluid modeling generates the surface deformation. To maintain the realistic physics, the

gravitational force is applied at each surface point. The experiments on body control, volume

control, and fluid modeling show the effects of the soft body parameters. The parameter values,

body control by mass spring (α), fluid modeling (β), volume control by internal pressure (γ),

and gravitation (δ), are set in table 6—1 to present the effect of body control, table 6—2 to

demonstrate the effect of volume control, and table 6—3 to show the effect of fluidity control.

6.4.1 Determining the dependency of the body control on lung model

 This experiment observes the dependency of body control on the lung model to control

the volume of lung within the limit. The parameter of body control by mass spring (α), is set to

0.25, 1, 3, and 4 while the fluid modeling (β), and volume control by internal pressure (γ) are

fixed to 1. For the realism of physics we set the gravitational parameter (δ) to 0.1 because we

need the gravitation force to maintain the center of the lungs. The parameter value sets are shown

in table 6—1.

 142

Table 6—1: Parameter values of the experiment on effect of the mass-spring

Experiment α β γ δ

A 0.25 1 1 0.1

B 1 1 1 0.1

C 3 1 1 0.1

D 4 1 1 0.1

 The lung volumes of five respiratory cycles in each mass spring parameter are shown in

figure 6—2. This experiment shows that even though the body control determine the structure of

the model, it can affect the volume of the lung model. Thus, a good parameter value needs be

selected to provide the realistic lung simulation. In this experiment, α =3 provides a lung volume

under control during inhalation and exhalation. The visualizations of lung simulation during

inhalation and exhalation for the parameter sets, A, B, C, and D are shown in figures (6—3 and

6—4), (6—5 and 6—6), (6—7 and 6—8), and (6—9 and 6—10), respectively. Figures 6—3,

6—5, 6—7, and 6—9 show the sequences of images from the beginning to the end of inhalation

while figures 6—4, 6—6, 6—8, and 6—10 present the sequences of images from the beginning

to the end of exhalation. Figures 6—3 and 6—4 show that with the body control parameter of

0.25, the lung model at the end of exhalation (the rightmost in figure 6—4) does not deform back

to the volume at the beginning of inhalation (the leftmost in figure 6—3). It maintains some

volume even though it reaches the end of exhalation and should be in an initial state to start a

new cycle of inhalation and exhalation. Figures 6—5 and 6—6 show that with the body control

 143

parameter of 1.0, the lung model at the end of exhalation (the rightmost in figure 6—6) deforms

back to the original volume (the leftmost in figure 6—5) better than the result presented in

figures 6—3 and 6—4. However it still maintains some volume at the end of exhalation. Figures

6—7 and 6—8 illustrate that with the body control parameter of 3.0, the lung model at the end of

exhalation (the rightmost in figure 6—8) deforms back to the original volume (the leftmost in

figure 6—7), which provides the best result compared to two previous parameter values. Figures

6—9 and 6—10 demonstrate that with the body control parameter of 4.0, the lung model at the

end of exhalation (the rightmost in figure 6—10) deforms smaller than original volume (the

leftmost in figure 6—9) compared to three previous parameter values. Thus, the best parameter

value for body control is α =3.

Figure 6—2: Lung volumes resulted from the experiment parameter sets in table 6—1.

 144

.

The beginning of inhalation The end of inhalation

Figure 6—3: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 0.25, 1,

1, and 0.1, respectively.

The beginning of exhalation The end of exhalation

Figure 6—4: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 0.25, 1,

1, and 0.1, respectively.

 145

The beginning of inhalation The end of inhalation

Figure 6—5: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 1, 1, 1,

and 0.1, respectively.

The beginning of exhalation The end of exhalation

Figure 6—6: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 1, 1, 1,

and 0.1, respectively.

 146

The beginning of inhalation The end of inhalation

Figure 6—7: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 3, 1, 1,

and 0.1, respectively.

The beginning of exhalation The end of exhalation

Figure 6—8: The visual result of lungs from the beginning to the end of exhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 3, 1, 1,

and 0.1, respectively.

 147

The beginning of inhalation The end of inhalation

Figure 6—9: The visual result of lungs from the beginning to the end of inhalation (left to right)

when parameters of body control, fluidity control, volume control, and gravity are set to 4, 1, 1,

and 0.1, respectively.

The beginning of exhalation The end of exhalation

Figure 6—10: The visual result of lungs from the beginning to the end of exhalation (left to

right) when parameters of body control, fluidity control, volume control, and gravity are set to 4,

1, 1, and 0.1, respectively.

 148

6.4.2 Determining the effect of the volume control

 This experiment observes the dependency of volume control on the lung model to control

the volume of lung beyond the effect of body control. Since the best result is given when the

body control parameter is set to 3.0, the parameter of body control by mass-spring, (α), is fixed

to 3 in this experiment. Similar to the previous experiment, fluid modeling, (β), and

gravitational parameter, (δ), are set to 1 and 0.1, respectively. Volume control by internal

pressure parameter, (γ), is varied from 1.0, 1.5, and 2.0 to investigate the effect of the internal

pressure. The parameter value sets are shown in table 6—2.

Table 6—2: Parameter values of the experiment on effect of the internal pressure.

Experiment α β γ δ

A 3 1 1 0.1

B 3 1 1.5 0.1

C 3 1 2 0.1

 The result of this experiment is shown on the graph of the lung volumes in figure 6—11.

In this simulation, we ignore the transient values of first cycle of respiration which are due to

stabilization of the model as it interacts with the forces of the simulation. We consider the

remaining cycles of the simulation. When internal pressure parameter is set to 1.0, the volume of

inhalation and exhalation is the same as the result in the body control parameter set in C that

provides the best result among those parameter sets. When the internal pressure parameter is set

 149

to 1.5, the volume of the lung is increased for both inhalation and exhalation compared to the

volume when the internal pressure is set to 1.0. However, at the end of exhalation the volume

does not reduce back to the volume at the beginning of inhalation. Similarly, when the internal

pressure is set to 2.0, the volume does not decrease back to the beginning of inhalation. Thus, in

this experiment the best parameter for the volume control is γ =1.0.

Figure 6—11: Lung volumes resulted from the experiment parameter sets in table 6—2

6.4.3 Determining the effect of the fluidity control

 This experiment measures the effect of fluidity control to create the bumpiness of the

lung surface. The parameter of body control by mass-spring, (α) and volume control by internal

pressure, (γ) are fixed to 3 and 1, respectively, while the fluid control, (β), is varied from 0.25,

 150

0.5, 0.75, 1, and 2. Similar to the previous experiment, the gravitational parameter (δ) is set to

0.1. The parameter value sets are shown in table 6—3.

Table 6—3: Parameter values of the experiment on effect of the fluid modeling

Experiment α β γ δ

A 3 0.25 1 0.1

B 3 0.5 1 0.1

C 3 0.75 1 0.1

D 3 1 1 0.1

E 3 2 1 0.1

 The visual results of each fluid parameter value are shown in figures 6—12. Figure 6—

12 is created using a gradient map tool to present the bumpiness of the lung surface. This figure

shows that the bumpiness of the surface is increased when the fluid modeling value is increased.

Thus, the fluidity control parameter effects the surface deformation of the lung. This parametric

value can be selected to vary with the condition of lung’s surface.

 151

Figure 6—12: The visual result with gradient map of lung simulation for each fluidity control

parameter value.

6.5 Lung simulation conclusion

 We have utilized the adapting soft body model based on the experimental results of

pressure-volume curve of lung function. The parameters of body control and volume control

have been examined to generate the realistic simulation of lung’s deformation during respiration.

The result shows that our soft body model can simulate the lung function appropriately with

certain parametric values of lung model. Thus, the best parameter values can be set for certain

condition of lungs. In this simulation, the detection of the rib cages is also considered using

point-based collision detection. By using this collision detection, the lung simulation becomes

 152

more realistic. In future works, more lung simulations under various disease conditions should be

simulated by using our soft body model.

 153

CHAPTER 7: CONCLUSION AND FUTURE WORK

 The soft body model presented in this dissertation is a generalized soft body simulation

method that integrates and extends specific cases of other existing models in order to mimic a

wide variety of real-world non-solid objects. User defined characteristics such as body control,

surface deformation, volume control, constraints, gravitation, and combined forces can be

customized by users to realistically simulate an intended model. In this technique, body control

enables the surface deformation while maintaining a relative configuration among surface points,

fluid modeling helps create realistic fluid-like motion on the soft body surface, and volume

within the 3D model is maintained by simulated gas molecule pressure. User-defined constraints

can influence the amount of deformation, while gravitational force provides natural free fall

motion. Additionally, a custom partitioning and hashing scheme for both fluid modeling and

collision detection significantly reduces computation time necessary for interactive applications.

 The experiments presented demonstrate simulation of fluid-like and organic faces show

that the algorithm can produce a variety of soft body surfaces. Implementation of the “Space

Blobs” in the Galactic Arms Race video game shows not only the algorithm’s effectiveness in

real-time game engines, but also that creative use of soft body models can help to increase the

realism of video games. The human lung simulation demonstrates that the algorithm is suitable

for medical applications.

 There are several distinct possibilities for future work including, simulation of other

internal organs for medical applications, splitting models in real-time for surgical simulations,

 154

and further exploration of soft-body models in interactive entertainment, in both standard video

game genres or perhaps in an experimental game consisting entirely of soft-body objects.

 155

LIST OF REFERENCES

[1] Y. Kang, J. Choi, and H. Cho, "Fast and stable animation of cloth with an approximated
implicit method," In Proceedings Computer Graphics International, 2000.

[2] D. Baraff and A. Witkin, Large steps in cloth simulation, New York, New York, USA:
ACM Press, 1998.

[3] D.E. Breen, D.H. House, and M.J. Wozny, "Predicting the drape of woven cloth using
interacting particles," Proceedings of the 21st annual conference on Computer graphics
and interactive techniques - SIGGRAPH '94, New York, New York, USA: ACM Press,
1994, pp. 365-372.

[4] M. Carignan, Y. Yang, N.M. Thalmann, and D. Thalmann, "Dressing animated synthetic
actors with complex deformable clothes," Proceedings of the 19th annual conference on
Computer graphics and interactive techniques - SIGGRAPH '92, New York, New York,
USA: ACM Press, 1992, pp. 99-104.

[5] K. Ward, N. Galoppo, and M. Lin, "A Simulation-based VR System for Interactive
Hairstyling," IEEE Virtual Reality Conference (VR 2006), IEEE, 2006, pp. 257-260.

[6] K. Ward, F. Bertails, T. Kim, S.R. Marschner, M. Cani, and M.C. Lin, "A survey on hair
modeling: styling, simulation, and rendering," IEEE transactions on visualization and
computer graphics, vol. 13, 2007, pp. 213-34.

[7] K. Ward, N. Galoppo, and M. Lin, "Interactive Virtual Hair Salon," Presence:
Teleoperators & Virtual Environments, vol. 16, 2007, pp. 237-251.

[8] D. Terzopoulos and K. Fleischer, "Modeling Inelastic Deformation: Viscoelasticity,
Plasticity, Fracture," Computer Graphics, vol. 22, 1988, pp. 269-278.

[9] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, Elastically deformable models, New
York, New York, USA: ACM Press, 1987.

[10] I. Costa and R. Balaniuk, "LEM-an approach for real time physically based soft tissue
simulation," Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), IEEE, 2001, pp. 2337-2343.

[11] S. Cotin, H. Delingette, and N. Ayache, "Real-time elastic deformations of soft tissues
for surgery simulation," IEEE Transactions on Visualization and Computer Graphics,
vol. 5, 1999, pp. 62-73.

 156

[12] N. Foster and R. Fedkiw, "Practical animation of liquids," Proceedings of the 28th
annual conference on Computer graphics and interactive techniques - SIGGRAPH '01,
New York, New York, USA: ACM Press, 2001, pp. 23-30.

[13] D. Hinsinger, F. Neyret, and M. Cani, "Interactive animation of ocean waves,"
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation - SCA '02, New York, New York, USA: ACM Press, 2002, p. 161.

[14] J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm, "Practical animation of turbulent
splashing water," SCA '06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2006, pp. 335-344.

[15] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw, "Multiple interacting liquids," ACM
Transactions on Graphics, vol. 25, 2006, p. 812.

[16] W.E. Lorensen and H.E. Cline, "Marching cubes: A high resolution 3D surface
construction algorithm," ACM SIGGRAPH Computer Graphics, vol. 21, 1987, pp. 163-
169.

[17] H. Mao and Y. Yang, "Particle-based immiscible fluid-fluid collision," GI '06:
Proceedings of Graphics Interface 2006, Toronto, Ont., Canada, Canada: Canadian
Information Processing Society, 2006, pp. 49-55.

[18] J. Teran, S. Blemker, V.N. Hing, and R. Fedkiw, "Finite volume methods for the
simulation of skeletal muscle," SCA '03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2003, pp. 68-74.

[19] P. Volino, N. Thalmann, and D. Thalmann, "An evolving system for simulating clothes
on virtual actors," IEEE Computer Graphics and Applications, vol. 16, 1996, pp. 42-51.

[20] P. Volino, M. Courchesne, and N. Magnenat Thalmann, "Versatile and efficient
techniques for simulating cloth and other deformable objects," Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques - SIGGRAPH '95,
New York, New York, USA: ACM Press, 1995, pp. 137-144.

[21] G. Debunne, M. Cani, M. Desbrun, and A. Barr, "Adaptive Simulation of Soft Bodies in
Real-Time," CA '00: Proceedings of the Computer Animation, Washington, DC, USA:
IEEE Computer Society, 2000, p. 15.

[22] E. Keeve, S. Girod, and B. Girod, "Craniofacial Surgery Simulation," VBC '96:
Proceedings of the 4th International Conference on Visualization in Biomedical
Computing, London, UK: Springer-Verlag, 1996, pp. 541-546.

 157

[23] A. Santhanam, S. Pattanaik, J.P. Roll, C. Imielinska, and B. Informatics,
"Physiologically-based Modeling and Visualization of Deformable Lungs," In
Proceedings of the 11th Pacific Conference on Computer Graphics and Applications
(PG03, 2003.

[24] M. Carignan, Y. Yang, N.M. Thalmann, and D. Thalmann, "Dressing animated synthetic
actors with complex deformable clothes," Proceedings of the 19th annual conference on
Computer graphics and interactive techniques - SIGGRAPH '92, New York, New York,
USA: ACM Press, 1992, pp. 99-104.

[25] X. Provot, "Deformation constraints in a mass-spring model to describe rigid cloth
behavior," 1995.

[26] B. Eberhardt, A. Weber, and W. Strasser, "A fast, flexible, particle-system model for
cloth draping," IEEE Computer Graphics and Applications, vol. 16, 1996, pp. 52-59.

[27] D. Breen, M.L. (editors, K.S. Bhat, C.D. Twigg, J.K. Hodgins, S. M., P.K. Khosla, Z.
Popovic, and S.M. Seitz, "Estimating Cloth Simulation Parameters from Video,"
Eurographics/SIGGRAPH symposium on Computer Animation 2003, 2003, pp. 37-51.

[28] R. Bridson, S. Marino, and R. Fedkiw, "Simulation of clothing with folds and wrinkles,"
SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2003, pp. 28-36.

[29] R. Bridson, R. Fedkiw, and J. Anderson, "Robust treatment of collisions, contact and
friction for cloth animation," ACM SIGGRAPH 2005 Courses on - SIGGRAPH '05, New
York, New York, USA: ACM Press, 2005, p. 2.

[30] P. Decaudin, D. Julius, J. Wither, L. Boissieux, A. Sheffer, and M. Cani, "Virtual
Garments: A Fully Geometric Approach for Clothing Design," Computer Graphics
Forum, vol. 25, 2006, pp. 625-634.

[31] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, "Position based dynamics,"
Journal of Visual Communication and Image Representation, vol. 18, 2007, pp. 109-118.

[32] O. Ozgen, M. Kallmann, L.E. Ramirez, and C.F. Coimbra, "Underwater cloth simulation
with fractional derivatives," ACM Transactions on Graphics, vol. 29, 2010, pp. 1-9.

[33] J. McCartney, "Dedicated 3D CAD for garment modelling," Journal of Materials
Processing Technology, vol. 107, 2000, pp. 31-36.

[34] Z. LUO and M. YUEN, "Reactive 2D/3D garment pattern design modification,"
Computer-Aided Design, vol. 37, 2005, pp. 623-630.

 158

[35] N. Metaaphanon and P. Kanongchaiyos, "Real-time cloth simulation for garment CAD,"
Proceedings of the 3rd international conference on Computer graphics and interactive
techniques in Australasia and South East Asia - GRAPHITE '05, New York, New York,
USA: ACM Press, 2005, p. 83.

[36] T.W. Sederberg and S.R. Parry, "Free-form deformation of solid geometric models,"
ACM SIGGRAPH Computer Graphics, vol. 20, 1986, pp. 151-160.

[37] J.E. Chadwick, D.R. Haumann, and R.E. Parent, "Layered construction for deformable
animated characters," Proceedings of the 16th annual conference on Computer graphics
and interactive techniques - SIGGRAPH '89, New York, New York, USA: ACM Press,
1989, pp. 243-252.

[38] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, Stable real-time
deformations, New York, New York, USA: ACM Press, 2002.

[39] D.L. James and D.K. Pai, DyRT: Dynamic Response Textures for Real Time Deformation
Simulation with Graphics Hardware, 2002.

[40] K.K. Hauser, C. Shen, and J.F. Brien, "Interactive Deformation Using Modal Analysis
with Constraints," GRAPHICS INTERFACE, 2003.

[41] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, "Point Based
Animation of Elastic, Plastic and Melting Objects," Most, 2004, pp. 141-151.

[42] M. Teschner, B. Heidelberger, M. Muller, and M. Gross, "A versatile and robust model
for geometrically complex deformable solids," Proceedings Computer Graphics
International, 2004., IEEE, 2004, pp. 312-319.

[43] L. Verlet, "Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation
Functions," Physical Review, vol. 165, 1968, pp. 201-214.

[44] M. Müller and M. Gross, "Interactive virtual materials," GI '04: Proceedings of Graphics
Interface 2004, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada: Canadian Human-Computer Communications Society, 2004, pp. 239-246.

[45] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless deformations based
on shape matching," ACM Trans. Graph., vol. 24, 2005, pp. 471-478.

[46] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt, "PriMo: coupled prisms for intuitive
surface modeling," SGP '06: Proceedings of the fourth Eurographics symposium on
Geometry processing, Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2006, pp. 11-20.

 159

[47] N. Galoppo, M.A. Otaduy, S. Tekin, M. Gross, and M.C. Lin, "Soft Articulated
Characters with Fast Contact Handling," Computer Graphics Forum, vol. 26, 2007, pp.
243-253.

[48] J. Gourret, N.M. Thalmann, and D. Thalmann, "Simulation of object and human skin
formations in a grasping task," ACM SIGGRAPH Computer Graphics, vol. 23, 1989, pp.
21-30.

[49] Y. Lee, D. Terzopoulos, and K. Walters, "Realistic modeling for facial animation,"
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques - SIGGRAPH '95, New York, New York, USA: ACM Press, 1995, pp. 55-62.

[50] F. Scheepers, R.E. Parent, W.E. Carlson, and S.F. May, "Anatomy-based modeling of the
human musculature," Proceedings of the 24th annual conference on Computer graphics
and interactive techniques - SIGGRAPH '97, New York, New York, USA: ACM Press,
1997, pp. 163-172.

[51] S. Capell, M. Burkhart, B. Curless, T. Duchamp, and Z. Popović, "Physically based
rigging for deformable characters," Graphical Models, vol. 69, 2007, pp. 71-87.

[52] N. Stoiber, R. Seguier, and G. Breton, "Facial animation retargeting and control based on
a human appearance space," Computer Animation and Virtual Worlds, vol. 21, 2010, pp.
39-54.

[53] M. Desbrun, P. Schröder, and A. Barr, "Interactive animation of structured deformable
objects," Proceedings of the 1999 conference on Graphics interface '99, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 1-8.

[54] X. Provot, "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth
Behavior," In Graphics Interface, 1996, pp. 147-154.

[55] A. Fuhrmann, C. Groß, and V. Luckas, "Interactive Animation of Cloth including Self
Collision Detection," Journal of WSCG, vol. 11, 2003, pp. 203-208.

[56] M. Meyer, G. Debunne, M. Desbrun, and A.H. Barr, "Interactive Animation of Cloth-like
Objects in Virtual Reality," The Journal of Visualization and Computer Animation, vol.
12, 2000, pp. 1-12.

[57] K. Waters, "Physical model of facial tissue and muscle articulation derived from
computer tomography data," Proceedings of SPIE, SPIE, 1992, pp. 574-583.

[58] M. Teschner, S. Girod, and B. Girod, "Direct Computation of Nonlinear Soft-Tissue
Deformation," Vision, Modeling, and Visualization VMV’00, 2000, pp. 383-390.

 160

[59] M. Castaneda and F. Cosio, "Computer simulation of prostate resection for surgery
training," Proceedings of the 25th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE, 2003, pp. 1152-1155.

[60] D. Nixon and R. Lobb, "A fluid-based soft-object model," IEEE Computer Graphics and
Applications, vol. 22, 2002, pp. 68-75.

[61] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow, "Real-time simulation of
deformation and fracture of stiff materials," Proceedings of the Eurographic workshop on
Computer animation and simulation, New York, NY, USA: Springer-Verlag New York,
Inc., 2001, pp. 113-124.

[62] I. Oguz, W. Baxter, M.C. Lin, and J.D. Wendt, "Finite volume flow simulations on
arbitrary domains," Graph. Models, vol. 69, 2005, p. 2007.

[63] M. Müller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive
applications," SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2003, pp. 154-159.

[64] M. Müller, B. Solenthaler, R. Keiser, and M. Gross, "Particle-based fluid-fluid
interaction," SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, New York, NY, USA: ACM, 2005, pp. 237-244.

[65] J.J. Monaghan, "Smoothed Particle Hydrodynamics," Annual Review of Astronomy and
Astrophysics, vol. 30, 1992, pp. 543-574.

[66] R.A. Gingold and J.J. Monaghan, "Smoothed particle hydrodynamics - Theory and
application to non-spherical stars," Royal Astronomical Society, vol. 181, 1977, pp. 375-
389.

[67] J.P. Morris, "Simulating surface tension with smoothed particle hydrodynamics,"
International Journal for Numerical Methods in Fluids, vol. 33, 2000, pp. 333-353.

[68] D. Nixon, "A fluid-based soft object model," 1999.

[69] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, The Art
of Scientific Computing, 2007.

[70] S. Nakamura, In Applied Numerical Methods with Software, Prentice-Hall, 1991.

[71] P. Hubbard, "Collision detection for interactive graphics applications," IEEE
Transactions on Visualization and Computer Graphics, vol. 1, 1995, pp. 218-230.

 161

[72] D.L. James and D.K. Pai, "BD-tree: output-sensitive collision detection for reduced
deformable models," ACM SIGGRAPH 2004 Papers on - SIGGRAPH '04, New York,
New York, USA: ACM Press, 2004, p. 393.

[73] L. Kavan, C. O'Sullivan, and J. Žára, "Efficient collision detection for spherical blend
skinning," Proceedings of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia - GRAPHITE '06, New York,
New York, USA: ACM Press, 2006, p. 147.

[74] C. MENDOZA and C. OSULLIVAN, "Interruptible collision detection for deformable
objects," Computers & Graphics, vol. 30, 2006, pp. 432-438.

[75] G. van den Bergen, "Efficient collision detection of complex deformable models using
AABB trees," J. Graph. Tools, vol. 2, 1997, pp. 1-13.

[76] C. Mendoza, I.N. (editors, R. Weller, G. Zachmann, and T. Clausthal, "Kinetic
Separation Lists for Continuous Collision Detection of Deformable Objects," In 3rd
Workshop in Virtual Reality Interactions and Physical Simulation VRIPHYS 2006, 2006.

[77] S. Gottschalk, M.C. Lin, and D. Manocha, "OBBTree: A Hierarchical Structure for
Rapid Interference Detection," Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques - SIGGRAPH '96, New York, New York, USA: ACM
Press, 1996, pp. 171-180.

[78] T. He, "Fast collision detection using QuOSPO trees," Proceedings of the 1999
symposium on Interactive 3D graphics - SI3D '99, New York, New York, USA: ACM
Press, 1999, pp. 55-62.

[79] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, "Efficient collision
detection using bounding volume hierarchies of k-DOPs," IEEE Transactions on
Visualization and Computer Graphics, vol. 4, 1998, pp. 21-36.

[80] M.A. Otaduy and M.C. Lin, "CLODs: dual hierarchies for multiresolution collision
detection," SGP '03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2003, pp. 94-101.

[81] J. Erickson, L.J. Guibas, J. Stolfi, and L. Zhang, "Separation-sensitive collision detection
for convex objects," SODA '99: Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1999, pp. 327-336.

[82] M. Moore and J. Wilhelms, "Collision detection and response for computer animation,"
Proceedings of the 15th annual conference on Computer graphics and interactive

 162

techniques - SIGGRAPH '88, New York, New York, USA: ACM Press, 1988, pp. 289-
298.

[83] B. Naylor, J. Amanatides, and W. Thibault, "Merging BSP trees yields polyhedral set
operations," Proceedings of the 17th annual conference on Computer graphics and
interactive techniques - SIGGRAPH '90, New York, New York, USA: ACM Press, 1990,
pp. 115-124.

[84] R. Baumann and D. Glauser, "Force feedback for virtual reality based minimally invasive
surgery simulator," Medecine Meets Virtual Reality, 1996.

[85] M. Held, J.T. Klosowski, and J.S. Mitchell, "Evaluation of Collision Detection Methods
for Virtual Reality Fly-Throughs," In Canadian Conference on Computational Geometry,
1995, pp. 205-210.

[86] F. Ganovelli, J. Dingliana, and C. O’Sullivan, "BucketTree: Improving collision
detection between deformable objects," Proceedings Spring Conference on Computer
graphics SCCG’00, 2000.

[87] J. HUANG, X. LIU, H. BAO, B. GUO, and H. SHUM, "An efficient large deformation
method using domain decomposition," Computers & Graphics, vol. 30, 2006, pp. 927-
935.

[88] N. GOVINDARAJU, I. KABUL, M. LIN, and D. MANOCHA, "Fast continuous
collision detection among deformable models using graphics processors," Computers &
Graphics, vol. 31, 2007, pp. 5-14.

[89] N. BANDI, C. SUN, D. AGRAWAL, and A. ELABBADI, "Fast computation of spatial
selections and joins using graphics hardware☆," Information Systems, vol. 32, 2007, pp.
1073-1100.

[90] A. Greß, M. Guthe, and R. Klein, "GPU-based Collision Detection for Deformable
Parameterized Surfaces," Computer Graphics Forum, vol. 25, 2006, pp. 497-506.

[91] S. Cotin, H. Delingette, and N. Ayache, "Real-time elastic deformations of soft tissues
for surgery simulation," IEEE Transactions on Visualization and Computer Graphics,
vol. 5, 1999, pp. 62-73.

[92] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross, "Optimized
Spatial Hashing for Collision Detection of Deformable Objects," 2003, pp. 47-54.

[93] N. Galoppo, S. Tekin, M.A. Otaduy, M. Gross, and M.C. Lin, "Interactive haptic
rendering of high-resolution deformable objects," ICVR'07: Proceedings of the 2nd

 163

international conference on Virtual reality, Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 215-233.

[94] S. Rodriguez and N. Amato, "Planning motion in completely deformable environments,"
Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., IEEE, , pp. 2466-2471.

[95] R. Alterovitz and K. Goldberg, "Comparing Algorithms for Soft Tissue Deformation:
Accuracy Metrics and Benchmarks," 2003.

[96] K.K. Hauser, C. Shen, and J.F. OBrien, "Interactive Deformation Using Modal Analysis
with Constraints," IN GRAPHICS INTERFACE, 2003, pp. 247-256.

[97] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, "Point based
animation of elastic, plastic and melting objects," SCA '04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2004, pp. 141-151.

[98] M. Matyka and M. Ollila, "Pressure Model of Soft Body Simulation," 2003.

[99] D.M. Bourg, Physics for game developers, 2001.

[100] J. Mesit, R. Guha, and S. Chaudhry, "3D Soft Body Simulation Using Mass-spring
System with Internal Pressure Force and Simplified Implicit Integration," Journal of
Computers, vol. 2, 2007.

[101] J. Mahovsky and B. Wyvill, "Fast Ray-Axis Aligned Bounding Box Overlap Tests with
Plücker Coordinates," journal of graphics, gpu, and game tools, vol. 9, 2004, pp. 35-46.

[102] C. Tzafestas and P. Coiffet, "Real-time collision detection using spherical octrees: virtual
reality application," Proceedings 5th IEEE International Workshop on Robot and Human
Communication. RO-MAN'96 TSUKUBA, IEEE, , pp. 500-506.

[103] J. Mesit and R. Guha, "Experimenting with Real Time Simulation Parameters for Fluid
Model of Soft Bodies," ANSS2010, 2010.

[104] E. Hastings, R. Guha, and K. Stanley, "Automatic Content Generation in the Galactic
Arms Race Video Game," IEEE Transactions on Computational Intelligence and AI in
Games 2009, vol. 1, 2009.

[105] A.P. Santhanam, F.G. Hamza-Lup, and J.P. Rolland, "Simulating 3-D Lung Dynamics
Using a Programmable Graphics Processing Unit," IEEE Transactions on Information
Technology in Biomedicine, vol. 11, 2007, pp. 497-506.

 164

[106] W. Segars, D. Lalush, and B. Tsui, "Modeling respiratory mechanics in the MCAT and
spline-based MCAT phantoms," IEEE Transactions on Nuclear Science, vol. 48, 2001,
pp. 89-97.

[107] J. Lötjönen, I.E. Magnin, L. Reinhardt, J. Nenonen, and T. Katila, "Model, Automatic
Reconstruction Of 3D Geometry Using Projections And A Geometric Prior," In IEEE
Transactions on Medical Imaging, vol. 18, 1999, pp. 992-1002.

[108] M. Bro-Nielsen and S. Cotin, "Real-time Volumetric Deformable Models for Surgery
Simulation using Finite Elements and Condensation," Computer Graphics Forum, vol.
15, 1996, pp. 57-66.

[109] M. Bro-Nielsen, "Finite element modeling in surgery simulation," Proceedings of the
IEEE, vol. 86, 1998, pp. 490-503.

[110] A. Santhanam, C. Fidopiastis, P. Davenport, K. Langen, S. Meeks, and J. Rolland, "Real-
Time Simulation and Visualization of Subject-Specific 3D Lung Dynamics," 19th IEEE
Symposium on Computer-Based Medical Systems (CBMS'06), IEEE, 2006, pp. 629-634.

[111] A. Santhanam, S. Pattanaik, J. Rolland, C. Imielinska, and J. Norfleet, "Physiologically-
based Modeling and visualization of deformable lungs," 11th Pacific Conference
onComputer Graphics and Applications, IEEE Comput. Soc, 2003, pp. 507-511.

[112] A. Santhanam, "Modeling, simulation, and visualization of three-dimensional lung
dynamics," Ph.D. Thesis, University of Central Florida, 2003.

[113] V.B. Zordan, B. Celly, B. Chiu, and P.C. DiLorenzo, "Breathe easy: Model and control
of human respiration for computer animation," Graphical Models, vol. 68, 2006, pp. 113-
132.

[114] A.B. Lumb, Nunn's Applied Respiratory Physiology, Butterworth-Heinemann, 2005.

[115] A.J. B. Palsson, J.A. Hubbell, R. Plonsey, Tissue Engineering (Principles and
Applications in Engineering), CRC Press, 2003.

[116] J. Cotes, Lung function assessment and application in medicine, Blackwell Scientific
Publication, 1993.

[117] R. Harris, "Pressure-Volume Curves of the Respiratory System," RESPIRATORY CARE,
vol. 50, 2005.

[118] R. Harris, "Pressure-volume curves of the respiratory system," RESPIRATORY CARE,
vol. 50, 2005, pp. 78-98.

 165

[119] R. Harris, D. Hess, and J. Venegas, "An objective analysis of the pressure-volume curve
in the acute respiratory distress syndrome," Am J Respir Crit Care Med, vol. 161, 2000,
pp. 432-439.

[120] J.G. Venegas, S. Harris, and B.A. Simon, "A comprehensive equation for the pulmonary
pressure-volume curve," J Apply Physiol, vol. 84, 1998, pp. 389-395.

[121] U. Narusawa, "General characteristics of the sigmoidal model equation representing
quasi-static pulmonary P-V curves," J Appl Physiol, vol. 91, 2001, pp. 201-210.

	Modeling And Simulation Of Soft Bodies
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Contribution
	1.3 Dissertation overview

	CHAPTER 2: BACKGROUND
	2.1 Previous works
	2.1.1 Two dimensional cloth simulation in general
	2.1.2 Cloth simulation with drapes, folds, and wrinkles
	2.1.3 Cloth simulation in Garment design
	2.1.4 Three dimensional deformable objects
	2.1.5 Three dimensional facial, skin, and musculature animations

	2.2 Mass-spring Systems
	2.3 Finite Element Method (FEM)
	2.4 Finite Volume Method (FVM)
	2.5 Finite Difference Method (FDM)
	2.5.1 Fluid mechanics
	2.5.1.1 Continuity equation (conservation of mass)
	2.5.1.2 Navier-Stokes equation (conservation of momentum)

	2.5.2 Smooth Particles Hydrodynamics (SPH) in fluid dynamics
	2.5.2.1 Fluid pressure force kernel
	2.5.2.2 Viscosity kernel

	2.6 Newton’s Second Law of Motion for Soft Body Animation
	2.6.1 Explicit Euler Integration
	2.6.2 Implicit Euler Integration

	2.7 Collision detection
	2.8 Constraints
	2.8.1 Volume control
	2.8.2 Surface deformation
	2.8.3 Internal energy
	2.8.4 Gravity
	2.8.5 Contact constraints

	CHAPTER 3: A GENERAL MODEL OF SOFT BODIES
	3.1 Definitions of rigid body and soft body
	3.2 Definitions of force parameters
	3.3 Mapping the general model to some specific models
	3.3.1 A versatile and robust model for geometrically complex deformable solids
	3.3.2 A fast, flexible, particle-system model for cloth draping
	3.3.3 Estimating Cloth Simulation Parameters from Video
	3.3.4 Underwater cloth simulation with fractional derivatives
	3.3.5 Position based dynamics
	3.5.6 Soft Articulated Characters with Fast Contact Handling
	3.3.7 PriMo: coupled prisms for intuitive surface modeling

	3.4 Specific methods of a soft body model
	3.5 Physics motion in the soft body

	CHAPTER 4: IMPLEMENTATION OF THE SPECFIC METHODS OF SOFT BODIES
	4.1 Determining the neighboring surface points
	4.1.1 Determining neighboring surface points by AABB
	4.1.2 Determining neighboring surface points by Octree
	4.1.2.1 Creating the Octree
	4.1.2.1 Finding the surface points in the core radius of surface point

	4.1.3 Neighboring surface points by hashing for fluid model
	4.1.3.1 3D hash table creation
	4.1.3.2 Obtaining list of neighboring points from the 3D hash table

	4.2 Comparing the methods for fluid modeling
	4.3 Dynamically resizing grid cell scheme for collision detection
	4.4 Soft body simulation details
	4.5 Complexity analysis

	CHAPTER 5: SIMULATION OF FLUID-LIKE SOFT BODY, ORGANIC FACE, AND SOFT BODY IN GAMES
	5.1 Deformation experiments
	5.1.1 Fluid-like soft body simulation
	5.1.2 Simulation of organic faces

	5.2 Integration into a game engine

	CHAPTER 6: SIMULATION OF LUNG RESPIRATION FUNCTION
	6.1 Respiration and lung functions
	6.1.1 Respiratory system
	6.1.2 Lung volume
	6.1.3 Pressure Volume (P-V) curve relation

	6.2 Adapting internal pressure in lung respiration model
	6.3 Lung respiratory simulation
	6.4 Experiments
	6.4.1 Determining the dependency of the body control on lung model
	6.4.2 Determining the effect of the volume control
	6.4.3 Determining the effect of the fluidity control

	6.5 Lung simulation conclusion

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	LIST OF REFERENCES

