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ABSTRACT 

Molecular oxygen in its lowest electronically excited state plays an important roll in the 

field of chemistry.  This excited state is often referred to as singlet oxygen and can be generated 

in a photosensitized process under one- or two-photon excitation of a photosensitizer.  It is 

particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen 

formation can be used to destroy cancerous tumors.  The use of two-photon activated 

photosensitizers possesses great potential in the field of PDT since near-IR light is used to 

activate the sensitizer, resulting in deeper penetration of light into biological tissue, less photo-

bleaching of the sensitizer, and greatly improved resolution of excitation.   

The synthesis and photophysical characterization of new fluorene-based photosensitizers 

for efficient singlet oxygen production were investigated.  The spectral properties for singlet 

oxygen production were measured at room temperature and 77 K.  Two-photon absorption (2PA) 

cross-sections of the fluorene derivatives were measured by the open aperture Z-scan method.  

The quantum yields of singlet oxygen generation under one- and two-photon excitation (Φ∆ and 

2PAΦ∆, respectively) were determined by the direct measurement of singlet oxygen luminescence 

at ≈ 1270 nm.  The values of Φ∆ were independent of excitation wavelength, ranging from 0.6 - 

0.9.  The singlet oxygen quantum yields under two-photon excitation were 2PAΦ∆ ≈ ½Φ∆, 

indicating that the two processes exhibited the same mechanism of singlet oxygen production, 

independent of the mechanism of photon absorption. 
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CHAPTER 1: INTRODUCTION 

Ground state molecular oxygen, O2, is essential for life in all aerobic organisms on earth.  

It is highly abundant throughout the universe and is the most common component of the earth’s 

crust.  It can undergo excitation in a photosensitized process to become a powerful oxidant where 

it can undergo destructive reactions with organic compounds.  Excited state O2 is commonly 

referred to as singlet oxygen (1O2) and its photosensitized production has given rise to a 

fascinating field of medicine known as photodynamic therapy (PDT).   

This chapter will introduce the intriguing properties of 1O2 and its photosensitized 

production.  Recently, there have been heightened interests in the fields of chemistry, biology, 

and medicine to produce new compounds capable of photosensitizing 1O2 for use in PDT.  The 

central objective of this dissertation is in the development of 1O2 sensitizers that can efficiently 

produce 1O2 under one- or two-photon excitation.  Section 1.1 describes 1O2, how it can be 

produced, and its use in PDT.  A description of two-photon excitation (2PE) and the benefits of 

its use to enhance 1O2 sensitization in PDT will be discussed.  The dissertation statement will be 

presented in section 1.2 and an outline for this work will be provided in the final section. 

1.1 Background and Significance 

Ground state molecular oxygen, 3O2, has two unpaired π electrons in separate degenerate 

orbitals giving rise to a triplet state and its paramagnetic behavior.  There are two electronically 

excited singlet states of molecular oxygen that have the same electron configuration but with 

spin pairing of the two electrons.  The excited singlet states lay 94 and 157 kJ mol-1 above the 

ground triplet state.  However, the higher energy excited state is very short lived and quickly 
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decays to the lower excited singlet state.  Phosphorescence emission at 1270 nm results upon 

relaxation from the lower excited state to the ground state.  Additionally, it is this lower excited 

state that is associated with much of the chemistry of 1O2.  

The formation of 1O2 can occur by a number of different pathways such as thermally, 

chemically, or by means of a photosensitizer.  Cyclic organic peroxides can readily undergo 

thermal decomposition resulting in 1O2 formation.  Khan and Kasha, who performed some of the 

earliest direct spectroscopic studies on 1O2, used the chemical reaction between sodium 

hypochlorite and hydrogen peroxide to form 1O2.1  Singlet oxygen can also be generated in an 

energy transfer process between a photosensitizer and 3O2.2  Some of the more common types of 

photosensitizers are highly conjugated organic compounds, transition metal complexes, and 

porphyrins.  Many of theses compounds are associated with a number of photochemical and 

photobiological processes, and are involved in the photodegradation of organic compounds and 

polymers, bleaching processes and the purification of water, and the destruction of biological 

material in PDT.3-6   

Biological tissue is very sensitive to 1O2 and is quickly destroyed in its presence.  In 

recent years there has been a heightened interest in utilizing compounds that can photosensitize 

the formation of 1O2 for use in PDT of cancer.  Singlet oxygen is very reactive towards 

biological tissue and will quickly react with unsaturated organic compounds and fatty acids.  Cell 

membranes such as plasma, mitochondrial, and nuclear membranes are rapidly destroyed by 

1O2.7  Enzymes and cellular proteins become cross-linked, and may become bound to and 

inactivate DNA and RNA.8-11   

Photodynamic therapy of cancer has great potential to treat a variety of different types of 

neoplastic diseases such as skin, head and neck, esophageal, and lung cancer.  In PDT of cancer, 
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a photosensitizer (PS) is administered topically or by intravenous injection to a patient.  This is 

pictorially represented in Figure 1.  Initially inert, the PS travels throughout the body and is taken 

up and retained by the tumor.  In some circumstances the PS has a lower affinity for healthy cells 

and is removed from the body through the liver and kidneys.  The sensitizer is then activated by 

exposing the treatment area to a wavelength of light were the PS undergoes excitation from the 

ground state, S0, to the first excited state, S1.  The S1 state is short-lived, and the PS quickly 

undergoes intersystem crossing from the S1 to the triplet state T1.  Collisional interaction 

between the PS T1 and ground state 3O2 result in the formation of 1O2.  The use of PDT allows 

the possibility to reduce or completely remove a cancerous tumor, in some cases, without the 

need for surgery, chemotherapy, or radiation. 

 

 

Figure 1.  Graphical representation of PDT. A) Injection of PS into patient, B) 
localization of PS in tumor, C) activation of PS with light, D) tumor eradicated. 

 

One of the most important requirements in PDT is to get enough light to the PS to 

adequately excite it.  Most PS’s have absorption maxima in the visible to near IR region.  

Scattering and absorption by biological tissue are significant in this region (Figure 2) and greatly 
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reduce the ability to excite the PS.  Synthetic efforts on commercial PS’s have been on shifting 

the absorption maxima to longer wavelengths, out towards the absorption minimum of biological 

tissue to 700-1000 nm.  The ability to maintain a high 1O2 quantum yield and photostability at 

longer wavelengths has been difficult, and many of the commercial PS’s approved by the FDA 

have absorption maxima at or below 680 nm.12  This has limited the effective use of PDT to 

tumors close to the surface, such as skin cancer, or to areas that can be accessed with an 

endoscope, such as the esophagus and upper bronchi of the lungs.   

 

 

Figure 2.  Absorption of biological tissue.13 
 

The ability to access longer wavelengths beyond 700 nm would allow for deeper 

penetration into tissue, and the lower energy of these wavelengths may result in less 

photobleaching of the PS.  Despite the benefit of using longer excitation wavelengths, there 

remains a significant problem that is inherent with the selectivity of the PS’s used today.  Many 

of the commercial PS’s available exhibit increased selectivity for particular types of tumors, but 
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they are not 100 % selective.14-16  Typically, the PS is administered to the patient and is not 

activated until the systemic PS concentration in a patient has dropped to a level that will not 

cause significant damage to healthy tissue.  Additionally, there is a limited timeframe in which 

the concentration of the PS is adequate to destroy the tumor.  Typical linear excitation of the PS 

can lead to some out of focus activation due to the inherent nature of linear (one-photon) 

excitation.  In addition to scattering and absorption loss, out of focus excitation of the PS greatly 

limits the effective treatment of tumors by PDT.   

The use of PS’s that can undergo excitation by two-photon absorption (2PA) promises to 

greatly improve the use of PDT.  First proposed by physicist Maria Göppert-Mayer in 1931, the 

process of 2PA by a molecule is described as the near simultaneous absorption of two photons 

producing an electronic transition corresponding to the combined energy of the photons 

involved.17  To produce an electronic transition under 2PA, high irradiation intensities are 

required to increase the possibility that two photons will combine at the same time and at the 

same point in space.  The combined energies of the two photons are equivalent to the energy of 

one-photon for the particular electronic transition.   

The nonlinear process of 2PA results in excitation of a molecule in the focal volume of 

the excitation beam.  Unlike 1PA, the probability that a molecule will absorb two photons 

simultaneously to produce an electronic transition is nonlinearly dependent on the incident 

intensity of the excitation source.  Whereas the probability of the same molecule will undergo an 

electronic transition under 1PA is linearly dependent.  This is clearly evident in Figure 3, where 

the emission intensity from the sample under two-photon excitation is tightly confined to the 

focal volume, but out-of-focus emission is clearly visible under one-photon excitation where the 

emission is linearly dependent on the incident intensity.  The quadratic dependence of 2PA on 
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the incident intensity, I2, allows one to obtain increased three dimensional (3D) resolution when 

exciting a molecule.  This is a tremendous advantage over linear 1PA.   

 

1PA dw ∝ I
dt

2PA dw ∝ I2

dt

380 nm

760 nm

 

Figure 3.  Comparison of 1PA at 380 nm vs. 2PA at 760 nm. 
 

The precision of PDT may be greatly enhanced with the use of PS’s that can generate 1O2 

under 2PA.  This will reduce the need to synthesize PS’s that have a high degree of selectivity 

for tumors.  Moreover, the longer wavelengths that are typically used will result in deeper 

penetration into tissue due to less scattering and absorption.  Lastly, the longer wavelengths 

(NIR) will translate into a lower possibility of photodamage to tissue.  As a result, less PS will be 

required if the chance of excitation is maximized and exposure is tightly controlled.  Due to 

better resolution, activation of the PS can be accomplished early after administration while its 

concentration is high in the patient, leading to better treatment with PDT.   

1.2 Dissertation Statement 

The purpose of this dissertation is to prepare and characterize the photophysical 

properties of new hydrophilic fluorene-based singlet oxygen sensitizers under one- and two-
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photon absorption.  The decision to use fluorene was based on extensive studies with various 

derivatives demonstrating good nonlinear optical properties, thermal and photostability, and 

capacity to photosensitize 1O2.18-20  Furthermore, the fluorene architecture lends itself well to be 

easily derivatized to modulate the photophysical properties and solubility of the compound.  The 

use of heavy atoms and nitro groups will be incorporated into the molecular architecture to help 

promote 1O2 sensitization.  Strong electron withdrawing groups will also be included to increase 

the π-conjugation length and enhance 2PA.  The photophysical properties of these novel 

compounds will be assessed under one- and two-photon excitation at room temperature and 77 

K.  Emphasis will focus on the direct determination of 1O2 quantum yields by 2PA, a rather 

challenging but essential aspect of this research.  Singlet oxygen quantum yields (QY) will be 

determined to assess the potential of the sensitizers for 2PA photodynamic therapy. 

1.3 Dissertation Outline 

Formation of singlet oxygen and its use in PDT is presented in the first Chapter.  Its 

limitations as a therapeutic cancer treatment are also presented providing the motivation for 

designing 1O2 sensitizers that can be used under 2PE.  A summary of the current state of the art 

of PDT is presented in Chapter 2 along with an extensive review of 1O2 and current FDA 

approved sensitizers.  The salient features of fluorene derivatives for use as 2PA photosensitizers 

will be highlighted.  Chapter 3 will describe the synthetic methods used to incorporate heavy 

atoms and nitro groups, extend the π-conjugation with strong electron withdrawing groups, and 

methods to increase the hydrophilic character of the photosensitizers.  The photophysical 

characterization of the PS candidates will be presented in Chapter 4, including 1PA 
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spectroscopic data at room temperature and 77 K and the 1O2 quantum yield under 1PE and 2PE.  

Chapter 5 concludes the dissertation with a synopsis of results and provides a brief discussion for 

future synthetic work to improve the photophysical properties of the fluorene derivatives for 

singlet oxygen sensitization and possible experiments to be performed in vitro with the PS’s.   
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CHAPTER 2: BACKGROUND 

The current status of photodynamic therapy is in its infancy.  Although the therapeutic 

properties of light have been known for thousands of years it has only been in the latter part of 

the last century that PDT has begun to evolve into a unique treatment modality.  It was in the 

early 1900’s that some of the earliest pioneers in the field of PDT realized the combination of 

light and certain chemicals could be used to induce cell death.  Since then numerous 

investigations have been undertaken to identify new compounds and to understand the 

mechanisms involved in the formation of singlet oxygen.21  However, it wasn’t until the late 

1960’s when lasers and instrumentation were beginning to come of age that the 

photosensitization of 1O2 would begin to be seriously developed into a useful medical treatment 

for treatment of malignant and non-malignant diseases.  Despite the tremendous interest in PDT 

over the past forty years there have been less than a dozen PS’s that have been approved for 

medical applications using PDT, and many of these compounds possess limited effectiveness in 

their treatment.   

Hence, this chapter will focus on the more recent PS’s that have been identified as good 

1O2 sensitizers and their clinical use.  An alternative class of compounds will also be proposed 

based on 1O2 sensitization by 2PE.  Section 2.1 will introduce and provide a thorough 

background on 1O2.  The following section will present some of the salient features of currently 

approved PS’s that are being used in PDT and their effectiveness.  Section 2.3 will discuss the 

advantages of using compounds that can generate 1O2 under 2PE for PDT and cover basic terms 

that are used to characterize their photophysical properties.  In addition, section 2.3 will discuss 
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general trends of the 2PA properties for fluorene derivatives and the motivation for using this 

class of compounds as new 1O2 photosensitizers.   

2.1 Overview of Singlet Oxygen 

2.1.1 Introduction of Singlet Oxygen 

The chemistry and physical properties of oxygen have been studied for hundreds of years.  

Oxygen was first described by the Polish alchemist and philosopher, Michal Sędziwój, in the late 

1500’s, and later identified in 1774 as an element by the English scientist Joseph Priestley.  

Although molecular oxygen has been studied for hundreds of years it was not until the beginning 

of the twentieth century that the electronic structure and the photophysical properties of oxygen 

were described.  In 1924, Lewis accurately described the paramagnetic behavior of ground state 

molecular oxygen.  At this time it was thought by many that the electronic structure of oxygen 

was analogous to ethylene and similar analogs.  Lewis, accounting for oxygen’s paramagnetic 

behavior, suggested the double bond in oxygen is broken in a symmetrical fashion leaving an 

odd electron on each oxygen atom.22  Four years later, Mulliken introduced the electronic 

configuration of ground state molecular oxygen.23  The quantum mechanical calculations that he 

performed predicted the triplet ground state 3Σg
- and two metastable electronically excited singlet 

states with the molecular term symbols 1∆g and 1Σg
+.  In this paper Mulliken assigns the 

atmospheric oxygen band at 1.62 eV to the 1Σg
+ ← 3Σg

- transition and predicted another weak 

transition in the infrared at 0.81 eV, attributed to the lower lying transition of 1∆g ← 3Σg
-.  In 
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1933, Ellis and Kneser, using liquid oxygen, demonstrated the 1∆g ← 3Σg
- transition was in fact 

from the infrared transition at 0.81 eV.24   

In 1976, Paul Schaap compiled a series of benchmark papers that describe some of the 

earliest and significant investigations of singlet oxygen.25  Perhaps one of the earliest known 

reports of chemistry involving singlet oxygen was described by Fritzsche in 1867, where he 

reported the conversion of a solution of naphthacene into a crystalline material on exposure to 

light and air.26  He went on to report that the original compound could be regenerated upon 

heating the crystalline material.  It was later confirmed that the crystalline material was the 

epidioxide of naphthacene.  Similar experiments were performed in 1926 by Moureu and co-

workers using rubrene, air, and light to produce a dioxide derivative.27  The earliest example of a 

dye sensitized reaction was performed in 1928 by Windaus and Brunken where they excited 

eosin in the presence of oxygen using a 200 watt bulb.28  The singlet oxygen was generated in 

the presence of a plant hormone where it consequently converted the hormone, ergosterol, to a 

dioxide derivative.   

Investigations of dye sensitized singlet oxygen formation continued, and in 1931 Kautsky 

proposed a mechanism for dye sensitized photooxgenation.25, 29  Up to this point many believed 

the photooxidation process involved an unstable sensitizer-oxygen complex, but Kautsky 

contended that diffusible singlet oxygen was formed in an energy transfer process between 

ground state oxygen and an excited sensitizer.  Between the years of 1933-1938, Kautsky and 

Bruijn devised a series of clever experiments to prove diffusible singlet oxygen, and not a bound 

oxygen complex, was the mechanism by which dye-sensitized photooxidation reactions 

occurred.25  In these experiments, they physically separated the sensitizer and acceptor 

compounds by absorbing them individually onto silica gel and then coated it onto a glass tube.  
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Oxidized product formation was monitored by observing a color change of the acceptor 

compound after exposing the tube with an arc lamp at different oxygen pressures.  The results 

from the experiments unequivocally demonstrated that the dye sensitized photooxidation of the 

substrate occurred by means of diffusion of oxygen. 

Despite the strong evidence, the mechanism of singlet oxygen diffusion was not adopted 

and many stood by the originally proposed mechanism of a sensitizer-oxygen complex proposed 

by Schönberg in 1935.30  In the mid 1960’s, singlet oxygen was being generated by chemical and 

electrical methods, and similar results of a diffusible oxygen species were being observed.  

During this time, Kautsky’s original mechanism began to earn acceptance, and in 1964 Foote and 

Wexler published a paper supporting the original mechanism proposed by Kautsky where they 

demonstrated that they could produce oxygenated organic substrates using sodium hypochlorite 

and hydrogen peroxide.31, 32  The compounds obtained by Foote and Wexler were identical to 

dye sensitized photooxygenation reactions.  At the same time, Corey and Taylor performed 

experiments to oxygenate organic substrates using singlet oxygen produced by passing a stream 

of oxygen through an electric discharge.33  They demonstrated that the products obtained from 

the electric discharge process were also identical to products formed from sensitized 

photooxygenation.  The conclusions by these two groups provided significant support for 

Kautsky’s singlet oxygen mechanism. 

In the 1940’s researchers began to actively investigate the chemistry of singlet oxygen 

and its use in organic chemistry.  Schenck and Ziegler wrote about the first dye sensitized 

photooxygenation of α–terpinene, using chlorophyll as the sensitizer, to synthesize the naturally 

occurring trans-annular peroxide, ascaridole.34  Dufraisse and Ecary did some of the earliest 

studies with 3-diphenylisobenzofuran (DPBF), demonstrating its efficiency as a singlet oxygen 
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acceptor.35  DPBF is commonly used in experiments to study the kinetics and photophysics of 

singlet oxygen sensitizers.  Wilson used it in 1966 as one of several compounds to provide 

support for Kautsky’s singlet oxygen mechanism, and Merkel and Kearns used DPBF in a study 

to directly the lifetime of singlet oxygen in solution.36, 37   

The first comprehensive kinetic experiment of a dye-sensitized photooxidation was 

performed by Schenck in 1951, using α-terpinene and chlorophyll as the singlet oxygen 

sensitizer.25  Although Schenck’s experiment was very insightful, the results were interpreted in 

terms of Schönberg’s sensitizer-oxygen complex mechanism, and later determined to be invalid.  

A couple of years later, Schenck reported on the dye-sensitized photooxygenation of substituted 

alkenes resulting in the formation of allylic hydroperoxides.  By the end of the decade, Nickon 

and Bagli extended the work of Schenck and presented work on the photosensitized oxygenation 

of mono-olefins using hematoporphyrin as the dye sensitizer.38  Their investigation looked at the 

possible mechanism for the olefin-oxygen product formation. 

By 1960, singlet oxygen was routinely formed by dye-sensitization, chemically, and by 

electric discharge.  Spectroscopic studies using various methods of singlet oxygen formation 

allowed for detailed investigations into the photophysical properties and mechanism of its 

formation.  In 1960, while investigating a method to improve the measurement of emission 

spectra, Seliger reported on a sharp chemiluminescence band at 634 nm from a reaction between 

sodium hypochlorite and hydrogen peroxide39.  Intrigued by Seliger’s results, Khan and Kasha 

followed up on this observation, and in 1963 assigned the emission at 634 nm to the 1Σg
+ → 3Σg

- 

transition by singlet oxygen.1  A year later, Browne and Ogryzlo expanded the investigation of 

the sodium hypochlorite and hydrogen peroxide reaction and assigned the 1∆g → 3Σg
- transition  

for singlet oxygen to the emission bands at 1070 and 1270 nm, corresponding to the (1,0) and 
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(0,0) transitions, respectively.40  About this same time, Gollnick and Schenck reported a method 

to determine the triplet state quantum yield of sensitizers using Rose Bengal as an example.41  In 

the paper they use an indirect method where all of the singlet oxygen that is produced from the 

sensitizer in the triplet state is trapped with a highly reactive singlet oxygen acceptor such as 

acenes, cyclohexadiene derivatives, and olefins among other singlet oxygen acceptors.  Up to 

this point, direct evidence of 1∆g oxygen formation by energy transfer from an excited sensitizer 

had not been demonstrated.  In 1968, Snelling provided the first direct evidence of energy 

transfer from electronically excited molecules to oxygen.42  In his experiment, benzene was 

excited at 254 nm in the presence of oxygen and emission at 1270 nm was observed 

corresponding to the 1∆g → 3Σg
- transition for singlet oxygen.   

By the 1970’s, the production of singlet oxygen was being generated by laser excitation 

of a sensitizer, and investigations included the formation of 1Σg
+ oxygen.  In 1970, Andrews and 

Abrahamson reported for the first time the emission of singlet oxygen at 762 nm for the 1Σg
+ → 

3Σg
- transition by photosensitization using gaseous O2 and fluoronaphthalene.43  Merkel and 

Kearns reported the first direct measurement of the 1O2(1∆g) lifetime in methanol by pulsed laser 

excitation, and went on to report on solvent effects and radiationless decay of 1O2(1∆g) in 

solution.36  Using a series of sensitizers and an indirect method to detect singlet oxygen, Adams 

and Wilkinson determined that the rate constant for singlet oxygen decay 1∆g → 3Σg
- was 

independent of the photosensitizer used.44  

By the end of the 1970s the first report of direct detection of 1O2(1∆g) luminescence was 

given by  A. A. Krasnovsky Jr.  In 1976, he reported the detection of 1∆g → 3Σg
- luminescence at 

1270 nm using a 1000 W Xe lamp, phosphoroscope, and an S-1 photomultiplier tube (PMT) 

cooled to –60 °C.45  Air saturated solutions of protoporphyrin and naphthacene in carbon 
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tetrachloride were analyzed where Krasnovsky reported 1O2 QYs and lifetimes.  This set off a 

flurry of experiments utilizing direct detection of singlet oxygen luminescence in the early 

1980s.  Hurst and co-workers investigated the solvent dependence of radiative and nonradiative 

decay of 1O2 in different solutions.46  Ogilby and Foote investigated solvent deuterium isotope 

effects on the lifetime of 1O2, where they found an increase in its lifetime in deuterated solvents 

by an order of magnitude over nondeuterated solvents.47  Parker et al. followed up on Ogilby and 

Foote’s work with an investigation of the collisional lifetime of 1O2 in deuterated and 

nondeuterated acetone, where they observed similar results.48   Rogers et al. reported the lifetime 

of singlet oxygen in water by time resolved luminescence measurements.  About the same time, 

Wilkinson, Helman, and Ross published a paper reporting rate constants for singlet oxygen 

decay in 145 solvents or solvent mixtures, and second order rate constants for interaction of 1O2 

with nearly 2000 different compounds.49  This same group followed up their report of 1O2 rate 

constants with a compilation of 102 1O2 QYs for 755 compounds such as aromatic hydrocarbons, 

dyes, drugs, porphyrins, and related compounds.50 

In 1994, Schmidt and Bodesheim were the first to report the detection of 1Σg
+ → 3Σg

- 

emission at room temperature in carbon tetrachloride, in addition to reporting the lifetime (130 

ns) and rate constant for quenching by several different compounds.51  By the end of the 20th 

century, researchers were actively investigating the mechanism of photosensitized singlet oxygen 

formation.  Schweitzer and Schmidt investigated the physical mechanisms involved in the 

formation and deactivation of singlet oxygen in solution.52  In 2001, Ogilby reported 1O2 

formation under one -photon excitation of a 2PA sensitizer for in solution.53  About the same 

time, Andersen and Ogilby reported the time-resolved detection of 1Σg
+ ← 1∆g absorption in air 

saturated polystyrene through a transmission microscope.54  This was followed up by Ogilby et 
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al., in 2005, where they reported the qualitative detection of singlet oxygen formation in water 

by two-photon excitation, and a year later his group again reported the qualitative emission of 

1O2(1∆g) by 2PE in bulk solution through a microscope.55, 56  In 2006, Belfield et al. reported, for 

the first time, quantitative determination of singlet oxygen upon 2PE of a PS in solution, using an 

indirect chemical quenching procedure to calculate the 1O2 quantum yield.18 

The seminal contributions by some of the early pioneers in the field of singlet oxygen 

helped to lay the foundation for the rich and diverse chemistry that is available through the use of 

singlet oxygen.  Contributions like Lewis’ description of oxygen’s paramagnetic behavior and 

the prediction of a spin-paired electronic state helped Mulliken develop the full electronic 

structure of oxygen and to predict the two low lying excited states of singlet oxygen.  Equally 

important was Kautsky’s work on developing the mechanism of photooxgenation by singlet 

oxygen.  Since this time a vast amount of research has been undertaken to develop the chemistry 

of singlet oxygen. 

2.1.2 Generation of Singlet Oxygen 

Over the years there have been numerous methods devised to produce singlet oxygen for 

investigating its photophysical and chemical properties.  Some of the earliest investigations at the 

beginning of the twentieth century generated 1O2 in a photosensitized process, such as the work 

by Fritzsche and Moureu where they independently investigated photooxygenation of 

naphthacene and rubrene respectively.57, 58  In their investigations they produced singlet oxygen 

in a photosensitized process by exposing the sensitizer to direct sunlight in the presence of air.  

In the late 1950’s, electric and chemical methods of 1O2 formation were introduced.  Foner and 

16 



Hudson were the first to produce the lower lying excited state (1∆g) of singlet oxygen by passing 

a stream of oxygen through an electric discharge, and a few years later Foote and Wexler 

investigated olefin oxidations with 1O2 using the reaction of sodium hypochlorite and hydrogen 

peroxide.1, 59, 60  In 1969, Evans demonstrated 1O2 formation by laser excitation of O2 under high 

pressure (2000 psi) and in the presence of an acceptor molecule, 1,3-diphenylisobenzofuran or 

9,10-dimethylanthracene.61  As a result of numerous efforts, there are a variety of different 

methods to produce singlet oxygen, but the two most common methods of singlet oxygen 

production are by chemical means and photosensitization. 

With the exception of photosensitized production of singlet oxygen, many of the 

techniques that were just introduced have limited usefulness in the formation of singlet oxygen.  

Generation of 1O2 by electric discharge has a rather poor yield (10 – 20%) and requires a stream 

of oxygen.  In the past, this method has been used to study the photophysical properties of singlet 

oxygen.  Generating 1O2 with the use of lasers requires high pressures of O2 and the need for 

powerful lasers.  There are a number of compounds available to generate 1O2 chemically which 

have been successful for studying the photophysical and synthetic properties of 1O2.  As 

mentioned previously, the reaction of NaOCl and H2O2 was used extensively for synthetic and 

photophysical investigations.  The thermal decomposition of triphenylphosphite ozonide at -78 

°C was used to yield singlet oxygen.62  Additionally, some cyclic organic peroxides can be 

thermally decomposed to produce singlet oxygen.  There are a couple drawbacks to generating 

singlet oxygen chemically.  The yield of singlet oxygen is limited by the stoichiometry of the 

reaction, which can also result in unreacted material or side product.   

Singlet oxygen formation by photosensitization of ground state oxygen can be very 

efficient, and is one of the most commonly used methods to generate 1O2.  Currently, there is a 
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plethora of photosensitizers (PS) that are used in 1O2 formation, and new sensitizers are 

continuously being introduced.  PS are commonly used to produce 1O2 in organic synthesis, 

water purification and disinfection, in photodynamic therapy, and in photophysical investigations 

of 1O2.  Singlet oxygen is also easily produced naturally in living organisms and plants, and is a 

problem in the photodegradation of polymers.63, 64  The remainder of this dissertation will focus 

on photosensitized formation of singlet oxygen. 

2.1.3 Singlet Oxygen Sensitizers 

There are several different groups of PS comprising aromatic hydrocarbons, dyes, 

porphyrins, and transition metal complexes among others.  As a group, these compounds provide 

the ability to produce 1O2 with high efficiency and the ability to be excited at wavelengths in the 

UV to near IR spectral region.  These compounds have numerous applications in materials 

science, and have found use in nonlinear optics, electrochromic devices, probes, sensors, liquid 

crystals, and photosensitizers.65-70  Many hydrocarbons and dyes are utilized for investigative 

photophysical studies, organic synthesis, and may serve as 1O2 standards.  They are characterized 

by good singlet oxygen QYs, and usually absorb up to ~600 nm.  Porphyrins have been utilized 

as 1O2 sensitizers nearly as long as the hydrocarbon and dye sensitizers.  Sometimes referred to 

as first generation sensitizers, porphyrins are frequently used in PDT, and typically have 

absorption maxima at longer wavelengths (500-650 nm) than the other hydrocarbon and dye 

sensitizers.  Phthalocyanine and texaphyrin sensitizers are similar in structure to porphyrins but 

were designed to have longer absorption wavelengths (680-750 nm), possessing a larger central 

ring that can complex metals more strongly than their related porphyrin derivatives.  Some 
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transition metal complexes have been developed for 1O2 sensitization.  Ruthenium (II) 

complexes, for example, have very good 1O2 QYs, and numerous other metals such as Cr, Pt, and 

Pd have found use as sensitizers.  One drawback is that many of these compounds absorb at 

relatively short wavelengths (< 400 nm), and there are many more transition metal complexes 

that are quenchers of 1O2 than sensitizerss.71-73   

Aromatic hydrocarbons were some of the earliest compounds investigated for 1O2 

sensitization.  Typically they are comprised of multiple fused ring structures and often form 

unstable cyclic peroxides upon reaction with singlet oxygen (Figure 4).  Some aromatic 

hydrocarbons are very efficient sensitizers such as naphthalene, anthracene, and biphenyl 

derivatives.  Naphthalene absorbs at short wavelengths and has a low molar absorptivity (275 

nm, 6 x 103 M-1 cm-1), but the singlet oxygen quantum yield (0.62) in benzene is relatively large.  

There have been a number of studies utilizing biphenyl and naphthalene derivatives to 

investigate the mechanism of photosensitized 1O2 formation.74-77  9,10-Diphenylanthracene has 

three absorption bands in the longwavelength region of the UV spectrum (360-400 nm), and is 

reported to have a singlet oxygen quantum yield of 0.75 in chloroform.50  Reactions of 

anthracene with singlet oxygen produce a cyclic peroxide.  Wasserman investigated the 

peroxides of 9,10-diphenylanthracene and rubrene as potential sources of singlet oxygen under 

thermal decomposition for photooxygenation reactions.78  The anthracene derivative generated 

molecular oxygen in 96% yield, and was reported to be much more efficient than the rubrene 

derivative as a photooxygenation reagent.   
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Figure 4.  Chemical structures of common aromatic hydrocarbon 1O2 sensitizers. 
 

Dyes represent a large portion of the singlet oxygen sensitizers and have been 

investigated for many years for a number of applications including organic synthesis, 

photophysical studies of 1O2, and photodynamic therapy.79-81  Many dyes absorb in the UV or 

visible spectrum and often have large singlet oxygen quantum yields.  Dye sensitizers are 

typically highly conjugated aromatic compounds and often contain one or more halogens to 

increase 1O2 formation by the heavy-atom effect (Figure 5).82  Eosin and acridine are two early 

examples of dyes that were used for PDT at the beginning of the twentieth century and are 

currently used in organic synthesis and as 1O2 standards.21  Methylene blue and rose bengal are 

some other examples of commonly utilized dye sensitizers.  These compounds are characterized 

by good water solubility and absorption in the far visible spectrum.  Methylene blue has two 

strong absorption bands at 609 and 668 nm.  This dye has a large molar absorptivity (73,000 M-1 

cm-1) at 668 nm and a singlet oxygen quantum yield of 0.52 in acetonitrile.  Rose bengal has 

been used in polymer bound supports for synthetic purposes, reducing quenching and eliminating 

the need to remove the sensitizer after it is used.83  Excitation occurs at 559 nm where rose 
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bengal has a molar absorptivity of 90,400 M-1 cm-1 and a 1O2 QY of 0.54 in acetonitrile.  

Wilkinson and co-workers have published a large compilation of rate constants and singlet 

oxygen quantum yields for a number of dyes, porphyrins, and drugs.49, 50  Wilkinson’s papers 

should be consulted for a comprehensive review of sensitizer photophysical data in different 

solvents.  
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Figure 5.  Common singlet oxygen dye sensitizers. 
 

Porphyrins are widely used and have found great success in PDT due to their absorption 

in the visible, efficient 1O2 QY’s, and ability to be taken up readily by tumors.  These compounds 
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will be discussed briefly to complement a more detailed discussion about porphyrin sensitizers 

for PDT in section 2.2.  Porphyrins are highly conjugated macrocyclic rings consisting of four 

pyrrole-like subunits connected by a methine carbon α to each subunit.  The simplest 

unsubstituted porphyrin ring is known as porphine (Figure 6).  Porphyrins are commonly found 

in nature and can readily be found in plants and red blood cells.  Additionally, porphyrin 

derivatives typically exhibit low cytotoxicity in the absence of light, making them very attractive 

for therapeutic use.  Many different metals with a +2 or +3 charge can bind to the central ring 

porphyrin structure to modulate the photophysical properties of the sensitizer.   

 

HNN

NNH

 

Figure 6.  Chemical structure of porphine. 
 

Porphyrins are utilized for a number of applications such as commercial dyes, nonlinear 

optics, and solar energy production.84  Consequently, there have been a number of investigations 

to modulate the photophysical properties of porphyrins.85-89  Rogers and co-workers investigated 

the photophysical properties for a series of meso-tetraphenyl, tetrabenzo, and tetranaphtho 

annulated metalloporphyrins (Figure 7).90  They were able to increase the intensity and shift the 

main absorption band by as much as 150 nm by extending the conjugation of the central 

porphyrin ring.  Additionally, the choice of the metal ion had an effect on shifting the absorption 

maxima, but heavy atom effects were more dominant and resulted in a significant increase in the 
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phosphorescence QY and rate constant.  Other common modifications are performed to effect 

solubility, includeing alkylation, sulfonation, or carboxylation of the porphyrin.91   
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Figure 7.  Structures of porphyrin derivatives investigated by Rogers and co-workers.  
M = Zn or Pd, MTPP (meso-tetraphenylporphyrin), MTPTNP (meso-
tetraphenyltetranaphthoporphyrin), MTPTBP (meso-tetraphenyltetrabenzoporphyrin). 

 

Another group closely related to porphyrins consists of phthalocyanines and 

metalophthalocyanines. The macrocyclic ring of the phthalocyanine consists of four pyrrole-like 
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subunits connected by a tertiary nitrogen α to each subunit rather than a methine carbon atom.  

These compounds can coordinate a number of different diamagnetic and paramagnetic metals 

such as Al+3, Zn+2, Cu+2, and Co+2 (Figure 8).  Complexes of diamagnetic ions such as Al+3 and 

Zn+2 demonstrate better photophysical properties than paramagnetic ions like Cu+2 and Co+2.  

Zinc phthalocyanine tetrasulfonate, for example, has a triplet lifetime of 245 µs and a 1O2 QY of 

0.45.92  Whereas copper phthalocyanine tetrasulfonate has a triplet lifetime of 0.06 µs and a 1O2 

QY of 0.  For the diamagnetic ions, heavy atom effects contribute to the deactivation of the 

excited singlet state and enhance the rate constant for triplet state formation, but the 

paramagnetic ions are less affected by heavy atoms, and deactivation of the singlet state appears 

to be through nonradiative internal conversion.71, 93  As with the porphyrins, the photophysical 

properties and solubility of the phthalocyanines can be tailored by extending the conjugation and 

inclusion of axial ligands.  Soncin and co-workers synthesized Si-naphthalocyanine derivatives 

that were particularly affective for PDT.94  The absorption of these compounds were at longer 

wavelengths (780-800 nm), and cellular uptake by melanoma tissue was increased by the 

addition of long aliphatic axial groups on the ligand.   
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Figure 8.  Chemical structure of metallophthalocyanine. 
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Texaphyrins are similar in structure to the porphyrins, however, they contain an extra 

nitrogen atom that is able to coordinate with metals with a much greater kinetic stability over the 

porphyrin derivatives, and they act as monoanionic rather than dianionic ligands (Figure 9).  The 

central ring is 20% larger and can accommodate larger cations.  Additionally, the texaphyrins are 

more conjugated (22 π electrons) than the porphyrins with 18 π electrons, and the greater 

aromatic delocalization results in longer absorption and emission bands.  Guldi and co-workers 

investigated a series of lanthanide coordinated texaphyrins.93  It was observed that the intrinsic 

decay rates were significantly affected by the choice of the metal, and the energies of the singlet 

or triplet states did not change significantly.  Heavy atom effects dominated for diamagnetic ions 

and resulted in shorter fluorescent lifetimes.  The paramagnetic ions produced fluorescent 

lifetimes that were about an order of magnitude less than the diamagnetic species and was 

accompanied by smaller intersystem rate constants and triplet lifetimes.   
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Figure 9.  Typical chemical structure of a metallotexaphyrin. 
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Transition metal coordination complexes represent a very small minority of 1O2 

sensitizers and typically absorb in the UV-visible region.  Ruthenium (II) bipyridyl complexes 

are the most common 1O2 sensitizers with impressive 1O2 QY’s near unity.  These complexes are 

characterized by long triplet state lifetimes that allow for efficient quenching by oxygen of the 

triplet metal to ligand charge transfer state.  Demas et al. were the first to report 1O2 production 

from quenching of triplet state bipyridyl ruthenium (II) osmium (II), and iridium (III) complexes 

with 1O2 QY’s of (0.68-0.85) in methanol.95  Abdel-Shafi and co-workers investigated the 

photophysical properties of a series of vinyl linked benzo-crown ether bipyridyl ruthenium (II) 

complexes in acetonitrile.71  The conjugation of the complex was extended by the use of benzo-

crown ether ligands, affording complexes with absorption maxima in the range of 460-485 nm.  

However, the shorter wavelength absorbing bipyridyl complex had a much better 1O2 QY of 0.57 

compared to 0.19 for the crown ether complex.  Bis-cyclometalated iridium (III) complexes were 

investigated by Gao and co-workers.96  Iridium complexes have been reported to quench singlet 

oxygen, but Gao reported high QY’s of 0.6-1.0 for a series of naphtha-benzothiazole 

derivatives.97   

The use of singlet oxygen sensitizers for photodynamic therapy has spawned a new class 

of sensitizers that are capable of producing 1O2 by two-photon excitation.  The benefit of using 

longer wavelengths in combination with 2PE was described in Chapter 1.  Around the time of 

Ogilby’s first report on using compounds with relatively high 2PA as 1O2 PS, there have been a 

number of investigations that have looked at the possibility of exciting known sensitizers by 2PA 

or modifying them to be more efficient at forming 1O2 under these conditions.53  Porphyrins are 

one of the most utilized sensitizers for PDT due to their efficiency of 1O2 production and ability 

to be taken up by tumors.  However, early investigations indicated that the 2PA cross sections (δ) 
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of these compounds were insufficient to be utilized as 2PA sensitizers.  Goyan and Cramb 

measured a maximum δ value of 2 GM at 790 nm for protoporphyrin IX in methanol.98  In fact, 

many of the 1O2 sensitizers that are commercially available for PDT at this time have δ values << 

10 GM, rendering them virtually useless as two-photon 1O2 sensitizers for PDT.   

Modified porphyrin derivatives make up a large portion of 2PA 1O2 sensitizers.  Many of 

the derivatives were designed to have extended conjugation and included 2PA active motifs in an 

attempt to shift the main absorption band to longer wavelengths and to increase the 2PA cross 

section.  Karotki and co-workers were able to increase δ based on work by Albota, Cumptson, 

and Spangler.99-102  In Karotki’s investigation, the conjugation of the porphyrin ring was 

increased using diphenylaminostilbene and dichlorophenyl substituents (Figure 10, I-III).  They 

reported a δ of 80 GM at 780 nm and the detection of 1O2 under 2PA for their stilbene derivative 

but did not report any quantitative 1O2 QY’s.  Drobizhev, Karotki, et al. extended this work for a 

series of tetrapyrrol derivatives, where they reported high δ values for two symmetrical 

tetraazaporhphines of 380 GM and 900 GM at 800 nm for octakis(4-bromophenyl)- 

tetraazaporphyrazine and octakis(4-nitrophenyl)-tetraazaporphyrazine respectively (Figure 10, 

IV).103-105  Recently, Ishi-i and co-workers investigated tetra substituted porphyrin derivatives 

containing diphenylamino benzothiadiazole units to increase the δ (Figure 11).106  The charge 

transfer character of the porphyrin derivative was increased due to the electron donating 

diphenylamino and electron withdrawing effect of the benzothiadiazole unit, and increased 

conjugation lead to larger values of δ without affecting the 1O2 QY.  A slight increase of nearly 

30 GM was observed for the Zn chelated porphyrin derivative of R2 over the unchelated ring.   
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Figure 11.  2PA porphyrin 1O2 sensitizers investigated by Ishi-i with reported δ and 
1O2 QY.  The porphyrin ring of R1 and R3 is in the free-base form, *R2 the porphyrin 
is chelated with Zn. R1: 441 GM, QY∆ 0.68, *R2: 469 GM, QY∆ 0.62, R3: 735 GM, 
QY∆ 0.65. δ was measured at 800 nm in chloroform and 1O2 QY was measured under 
1PE. 

 

Fréchet’s group took a slightly different approach to modifying porphyrin derivatives by 

using fluorescence resonance energy transfer (FRET) from a chromophore that can undergo 2PA 

and indirectly excite the porphyrin by energy transfer.  Once energy transfer to the porphyrin 

core occurred, intersystem crossing from the singlet to the triplet state can result in the formation 

of 1O2.  Efficient FRET is accomplished by carefully selecting 2PA chromophores that have 

emission spectra that overlap with the absorption spectra of the porphyrin.  In Fréchet’s work, 

they attached fluorene derivatives of diphenylamino benzothiazole as the 2PA chromophore 
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(Figure 12).107-110  These compounds have bee reported to have very large δ, reaching upwards 

around 8000 GM.111  Using an excitation wavelength of 780 nm, Fréchet’s group was able to 

detect 1O2 emission at 1270 nm due to 2PE of the porphyrin derivative by FRET.  In another 

investigation the same group used FRET with a porphyrin core surrounded by dendrimers 

composed of one or more types of chromophores.108  Efficient energy transfer to a porphyrin 

derivative was accomplished using a dendrimer composed of naphthopyranone and coumarin 

dyes.  The use of multichromophore dendrimers expands the usable excitation range of the 

sensitizer making them more useful.   
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Figure 12.  2PA-FRET based 1O2 sensitizer investigated by Fréchet et al. 
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Up to this point, the investigations that have been presented on new 2PA 1O2 sensitizers 

have been very limited in their scope, and a number of key issues have not been addressed such 

as the difficulty of sensitizer synthesis, solubility, or the lack of thorough chemical and 

photophysical characterization.  Ogilby and co-workers have made some strides integrating the 

field of 2PA compounds and photosensitized singlet oxygen.  They have made good progress in 

theoretical modeling of structure property relationships for predicting δ.112-114  Additionally, a 

number of comprehensive investigations into the synthesis of hydrophobic and hydrophilic 2PA 

1O2 sensitizers have been reported where solubility, chemical stability, and maximization of δ 

and 1O2 QY have been addressed.53, 113, 115-118  The ability to synthesize a 2PA 1O2 sensitizer with 

good chemical and photophysical properties is challenging.   

One apparent trend that has emerged from the work of Ogilby is that the features of a 

compound which give it good two-photon absorption characteristics often are counter productive 

to qualities of a good singlet oxygen sensitizer, and often a balance between the two needs to be 

obtained.  Larger 2PA cross sections can be obtained by increasing the polarizability of the 

chromophore.  This can be accomplished by extending the conjugation and/or utilizing 

functional groups that can impart greater charge transfer character into the chromophore.  There 

are a number of different methods to promote 1O2 formation, but increasing the charge transfer 

character results in lower efficiency of singlet oxygen formation.  Consequently, it is quite 

challenging to develop a 2PA singlet oxygen sensitizer that can meet or exceed all requirements 

of an efficient sensitizer.  

Ogilby’s investigation into a series of toluene soluble difuranonaphthalenes and 

styrylbenzenes resulted in the identification of key functional groups that can lead to improved 

2PA cross sections, and computational tools were presented that can be used to predict potential 
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two-photon singlet oxygen sensitizers.  Their computational method produced δ values that were 

substantially smaller than experimental values, however, for relative comparison their 

computational methods proved useful.  Increased 2PA cross sections were obtained when the 

central chromophore was extended through the use of styrylbenzene moieties (Figure 13), giving 

δ at 618 nm that were nearly four times greater (205 GM vs. 780 GM) than the parent 

difuranonaphthalene derivative.113  In addition to extending the conjugation, larger 2PA values 

were accomplished by increasing the polarizability of the chromophore using electron donating 

or withdrawing groups in the meta or para position of the conjugated system.  For example, 

cyano, aldehyde, or a carboxylic acid were utilized as electron withdrawing groups, whereas 

diphenylamino and methoxy groups were used as electron donating substituents.  Larger 1O2 QY 

and δ were obtained for the aldehyde difuranonaphthalene derivative (R = CHO, 0.49, 205 GM) 

in comparison to no electron withdrawing group (R = H, 0.36, 8 GM).  The 2PA cross section 

increased to 780 GM at 618 nm when the conjugation of the aldehyde containing 

difuranonaphthalene was extended with two styrylbenzene units (R = CHO), but the 1O2 QY 

dropped dramatically (0.13), emphasizing the difficulty in maintaining both 1O2 and δ 

parameters.  Unfortunately, it is well known that increasing the charge transfer character of the 

sensitizer reduces the efficiency of 1O2 formation.  A detailed discussion of this phenomenon 

will be discussed later in the mechanism of singlet oxygen formation.   
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Figure 13.  Difuranonaphthalene 2PA 1O2 sensitizers investigated by Ogilby et al.  R 
= H, CN, CHO, Br, COOH, OCH3: R’ = H, or CN. 

 

One problem of having vinyl groups present, such as styrylbenzene, is that they are 

susceptible to photooxidation by singlet oxygen.  It was also demonstrated that attachment of a 

vinyl-substituted cyano group to the styryl bridge can impart improved photochemical stability 

without affecting the 2PA properties of the sensitizer.  Another method that has been proposed is 

to replace the vinyl group with an alkyne.  The photostability of the alkyne group was 

demonstrated in a study of 2PA phenylene-ethynylene-based chromophores, where oxidation 

was nearly eliminated by substituting a styryl alkene with an alkyne without significantly 

affecting the photophysical properties.117   

Water solubility is necessary for a sensitizer if it is to be used as a PDT agent.  Many of 

the sensitizers that have been investigated and optimized for PDT have been characterized in 

organic solvents.  Most often these compounds have poor water solubility and/or they have small 
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1O2 QYs.  In fact, the solvent has a significant impact on photosensitized singlet oxygen 

formation, and, in general, the 1O2 QY in polar solvents like water is about half of what it would 

be in a nonpolar solvent like toluene.  As a result, one needs to question the validity of a 

sensitizer that has a 1O2 QY < 0.3 in nonpolar solvents if it is to be a potential PDT agent.   

In two other investigations by Ogilby’s group they looked at increasing the solubility for 

a series of porphyrins, porphyrazines, difuranonaphthalenes, and phenylene-vinylene 2PA 1O2 

sensitizers.  In their studies they were particularly interested in photophysical changes that might 

occur due to modifying the sensitizer for increased water solubility.  Charge transfer is enhanced 

in polar solvents, and as a result, additional deactivation pathways exist that can compete with 

energy transfer from the excited state of the sensitizer to triplet oxygen, leading to lower 1O2 

formation.  Many of their compounds had very small 1O2 QYs in water, but a number of 

important conclusions were made providing valuable insight into the synthesis of efficient 2PA 

water soluble 1O2 sensitizers.   

Several different functional groups were investigated to increase the solubility of a series 

of porphyrins, vinyl benzenes, and phenylene-vinylene 2PA 1O2 sensitizers.  Ionic and nonionic 

substituents were attached in two different configurations where the substituent was directly 

attached to the chromophore π system, and in the other configuration the substituent was not an 

integral part of the chromophore.  Aryl sulfonic acid derivatives and salts of methylated 

benzothiazole, piperazine, and pyridine were utilized as ionic functional groups.  Nonionic 

solvation was accomplished by appending one or more triethyleneglycol units to the sensitizer.  

When the ionic group was an integral part of the π conjugation 1O2 was formed in very low yield 

due to rapid charge transfer mediated deactivation of these sensitizers.  This was most readily 

observed in the styrylbenzenes and phenylene-vinylene derivatives where the ionic group was an 
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integral part of the π conjugation.  For example, a very low singlet oxygen quantum yield (0.03) 

was obtained for the ionic N-methylpyridinium phenylene-vinylene derivative (Figure 14 I), and 

similar results were obtained for other ionic derivatives where the π conjugation was perturbed.55  

Contrary to this observation, when either the ionic or nonionic substituent was attached in a way 

that it no longer interacted with the π conjugation, larger 1O2 QYs were observed.  For an N-

methylpyridinium porphyrin derivative a rather large 2PA cross section and 1O2 quantum yield 

(1890 GM, 0.77) were observed when the ionic substituent was placed on the phenyl ring in the 

meso position of the porphyrin (Figure 14 III).  The values were relatively large and comparable 

to other porphyrin derivatives.  It was assumed that the ionic group did not interact strongly with 

the conjugated system and only provided enhanced solubility.  The reduced 1O2 QYs are the 

result of the ionic substituents imparting an electron withdrawing effect to the chromophore 

system.  The water solubility of the sensitizer could be increased by the addition of nonionic 

ethyleneoxy groups.  A slight increase in the δ and 1O2 QY were observed when the substituent 

was attached directly to the π conjugation and appeared strongest when placed in the ortho or 

para position.  The tetra substituted ethyleneoxy derivative of phenylene-vinylene (Figure 14 II) 

had good water solubility and a reported 1O2 QY of 0.20 in water.118 

The findings by Ogilby’s group indicate charged ionic species will have an adverse effect 

on singlet oxygen production if the group is an integral part of the conjugation.  On the other 

hand, hydrophilic electron donating groups like an alkoxy chain can enhance 1O2 formation 

while imparting solubility to the sensitizer.  The charge transfer character of the sensitizer is not 

significantly altered when the solvating group is separated from the chromophore system.  This 

was most readily seen when comparing the phenylene-vinylene and vinylbenzene derivatives to 

the porphyrins.  As a result of these studies, several different synthetic strategies have been 
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investigated, highlighting important features that can be utilized to impart water solubility and 

maintain or enhance singlet oxygen formation.   
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Figure 14.  Water soluble 1O2 sensitizers investigated by Ogilby et al. 
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2.1.4 Chemistry of Singlet Oxygen 

Although singlet oxygen can be generated by various methods such as chemical and 

electrical means, its use in synthetic organic chemistry is typically formed in a photosensitized 

process using a sensitizer in low to near catalytic amounts.  Many different sensitizers have been 

used effectively.  The choice of the sensitizer is dictated by the reaction conditions such as 

solubility, efficiency of 1O2 formation, wavelength of excitation, as well as other conditions.   

Photosensitized oxidations involving a sensitizer and oxygen can occur by two competing 

processes known as Type I and Type II reactions.119  Both processes involve the photo excitation 

of a sensitizer (sens*) into the singlet or triplet state, but reactions involving the triplet state are 

more common.  In Type I reactions, transfer of a hydrogen atom or electron between sens* and a 

substrate or solvent can result in radicals and radical ions.  Most commonly, the sensitizer is the 

reduced species.  Once formed, the sensitizer then reacts with molecular oxygen to regenerate the 

sensitizer, while substrate radicals can initiate free radical chain reactions.  In Type II reactions 

singlet oxygen is formed in an energy transfer process between sens* and ground state triplet 

oxygen.  The overall reaction produces singlet oxygen and ground state (S0) sensitizer.  The 

sens* can also be oxidized by triplet state oxygen in an electron transfer process to form the 

superoxide ion O2
-.  Even though the formation of the superoxide ion is an electron transfer 

process, it is considered by some to be a Type II reaction because the sensitizer is reacting 

directly with oxygen.119 

It has been demonstrated that the higher excited state 1Σg
+ of singlet oxygen has a very 

short lifetime and quickly decays to the lower 1∆g excited singlet state.  Consequently, all 

photochemistry originates from the lower excited singlet state of oxygen.  The ene and [4 + 2] 
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cycloaddition reactions were some of the earliest reactions identified.  More recently, [2 + 2] 

cycloaddition and oxidation of heteroatoms like sulfur, selenium, phosphorus, and nitrogen-

containing compounds were identified.  Heterocyclic photooxygenations of furans, pyrroles, 

thiophenes, and imidazoles, among others, are also well represented in the chemistry of singlet 

oxygen.  Some of the photooxygenation reactions lead to mixtures of products or have low yields 

of product formation.  Thus, the discussion on the chemistry of singlet oxygen will focus on 

some of the more useful synthetic reactions and those that posses significant biological 

applications such as those that are relevant to photodynamic therapy.   

The majority of synthetic organic chemistry using singlet oxygen involves Type II 

reactions.  The ene, [2 + 2], and [4 + 2] reactions (Figure 15) are useful routs for the addition of 

molecular oxygen to organic substrates.  Allylic hydroperoxides can be generated with the ene 

reaction.  The [2 + 2] cycloaddition reaction occurs readily with electron rich alkenes, and in the 

absence of allylic hydrogens, resulting in the formation of isolable dioxetanes that are thermally 

unstable and can decompose into carbonyl compounds.  The products of the ene and [2 + 2] 

reactions can be reduced to obtain the alcohol or diol, respectively.  The [4 + 2] cycloaddition 

forms an endoperoxide which can also serve as a valuable intermediate for other oxygenated 

products.   
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Figure 15.  Ene, [2 + 2], and [4 + 2] photooxidation reactions with singlet oxygen. 
 

Singlet oxygen will react with heteroatoms often resulting in physical and chemical 

quenching.  Chemical quenching of singlet oxygen will lead to covalent adducts resulting in the 

transfer of one or two oxygen atoms to the heteroatom substrate.  Organosulfur compounds 

containing an α–hydrogen will undergo photooxidation with singlet oxygen to form sulfoxides 

and sulfones.  The reaction proceeds through a hydroperoxy sulfonium ylide intermediate 

(Figure 16).   
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Figure 16.  Sulfide photooxidation showing ylide intermediate (top), and oxidation of 
an organophosphorus compound by singlet oxygen (bottom). 

 

Amines have also been proven to be very useful substrates in cycloaddition reactions.  

Cheng and Shi have reported a method to synthesize substituted pyrrolidine derivatives (Figure 

17).  In the reaction, singlet oxygen can be sensitized using C60.  The nitrogen is then oxidized 

by singlet oxygen, followed by abstraction of two α-protons, resulting in the loss of hydrogen 

peroxide and the formation of an azomethine ylide.  The final step involves the cycloaddition of 

the ylide to the maleimide.   
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Figure 17.  General mechanism for the cycloaddition of a maleimide with an amine 
to form the pyrrolidine derivative. 

 

Five membered rings comprise a large group of heterocyclic photooxygenation reactions 

with singlet oxygen and are important in biological and heterocyclic chemistry.  The following 

examples are only a small sampling of some of the more relevant reactions of this class involving 

furans, pyrroles, and imidazoles.  Furans are important due to their widespread occurrence in 

biological and pharmaceutical applications.  Singlet oxygen will react with these substrates to 

form reactive 2,5-endoperoxide intermediates.  The peroxide is formed through a [4 + 2] 

cycloaddition of singlet oxygen via the 2,5-position of the furan (Figure 18).  The endoperoxide 
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can be reduced in situ by cleavage of the peroxide and elimination of oxygen.  Solvolysis of the 

endoperoxide can generate a cyclic lactone containing an ether group.  Another useful reaction is 

the decomposition of the endoperoxide intermediate to form an epoxide.   

 

1O2

O

R2 R3

R4R1

R2 R3

R4R1

O O
O

R2 R3

R4R1

O

R1 R4

O O

R2 R3

O HO

reduction
LiAlH4

[4 + 2] cycloaddition
   of singlet oxygen

heat

R'OH

O

R2 R3

O
R4

OR'

R1OH

 

 

Figure 18.  Reaction of a furan derivative with 1O2 to for the endoperoxide 
intermediate through a [4 + 2] cycloaddition followed by reduction, solvolysis, or 
thermal decomposition of the intermediate peroxide.   

 

Reactions of singlet oxygen with pyrroles are of particular interest in phototheraputics 

and serve as model compounds for important biological substrates such as tryptophan.  The 

pyrroles undergo [4 + 2] cycloaddition with singlet oxygen to form endoperoxide, dioxetane, and 
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hydroperoxide intermediates (Figure 19).  Although similar to the chemistry of furans, pyrroles 

typically do not undergo ring opening at the N(1)-C(2) or N(1)-C(5) bond positions.  The 

reactions of pyrroles are very sensitive to the structure of the substrate, solvent, and temperature 

of the reaction, and often lead to a mixture of different products.  Maleimides can be produced 

by homolytic bond cleavage of the endoperoxide, whereas the dioxetane can undergo bond 

cleavage at the C(2)-C(3) position or form the endoperoxide through rearrangement.   
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Figure 19.  Reaction of pyrrole derivative with 1O2 by a [4 + 2] cycloaddition to form 
the endoperoxide or dioxetane intermediate and their corresponding products. 
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Imidazoles are limited in their scope of synthetic use, but the understanding of their 

mechanistic behavior is of great interest in photodynamic therapy since the imidazole ring plays 

a key role in reactions of singlet oxygen with nucleic acids and proteins.  Reaction of imidazoles 

with singlet oxygen leads to the formation of endoperoxide intermediates (Figure 20).  

Substitution around the ring plays a key role in effecting the final outcome of the reaction 

product.  The hydroperoxide is formed when R1 contains a hydrogen atom. Additionally, if R2 or 

R5 is a hydrogen atom water is eliminated, resulting in the corresponding amide or urea.  George 

and Bhat demonstrated the synthesis of methoxy imidazolones by addition of methanol to the 

endoperoxide using methylene blue as a singlet oxygen sensitizer.  Formation of the dioxetane 

from hydroperoxide A can result in the formation of diacylamidines.  Guanine is particularly 

important in biological applications because the residue may be decomposed in the presence of 

singlet oxygen during photodynamic therapy.  Low temperature NMR investigations have shown 

the imidazole ring undergoes a [4 + 2] cycloaddition of singlet oxygen to form the endoperoxide.  

Additional studies using N-benzoylhistidine have been used to explain crosslinking of the 

imidazole ring in proteins during photodynamic therapy.  The studies demonstrated the 

formation of dimeric products from the photooxygenation of the histidine residue.   
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Figure 20.  Reaction of imidazole with singlet oxygen leading to the formation of the 
endoperoxide intermediate followed by elimination of water from the hydroperoxide 
A and B to form the corresponding amide and urea. 
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Figure 21.  Dimer formation during the reaction of N-benzoylhistidine with 1O2 to 
explain crosslinking of the imidazole ring in proteins during photodynamic therapy.   

 

2.1.5 Detection and Characterization of Singlet Oxygen 

There are a number of methods to detect photosensitized singlet oxygen formation in 

solution for kinetic analysis, determination of sensitizer singlet oxygen quantum yields, and other 

photophysical properties.  Direct detection of singlet oxygen is the most efficient method to use 

for analysis, but its phosphorescence is a highly forbidden process, making its detection difficult.  

Currently, time resolved direct detection of 1O2 emission at 1270 nm is accomplished through the 

use of low temperature photodiode detectors such as germanium or indium gallium arsenide 

diodes.  These detectors typically operate around –70 °C, which reduces the signal to noise level 

significantly, and are equipped with wide band amplifiers.  There are numerous indirect 
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detection methods, some of which have been used for many years.  One method is to monitor the 

photooxidation of a substrate by observing its appearance or disappearance using absorption or 

fluorescence emission spectroscopy as a function of time.  The photooxidized substrate can be 

the sensitizer or some other species that is known to react with singlet oxygen and undergoes a 

change in its spectral properties as it reacts.  Some additional examples to indirectly detect 

singlet oxygen utilize advanced optical techniques such as thermal lensing of a laser pulse due to 

1O2 formation, photocalorimetry, and laser induced photoacoustics.   

Direct detection of 1O2 luminescence provides increased precision and simplification of 

experimental procedures.  Germanium detectors that can operate in the infrared region were first 

introduced in the early 1980s and have become the method of choice for detection of singlet 

oxygen.  In 1976, Krasnovsky et al. were the first to directly measure sensitized singlet oxygen 

phosphorescence in air saturated solutions using a set-up that included a cooled PMT (-60 °C) 

and a phosphoroscope.120  They were able to measure excitation and emission spectra, quantum 

yields, and phosphorescence lifetimes that exceeded 500 µs.  Time resolved and steady state 

measurements are simplified without the need to add and detect singlet oxygen quenchers or 

other reagents to study the photophysics of singlet oxygen.  Measurement of the 1O2 

phosphorescence intensity as a function of time allows the determination of the rate constant for 

singlet oxygen deactivation (kD) by the substrate or any other molecule that quenches by physical 

or chemical means.  This is accomplished by plotting the logarithm of the phosphorescence 

intensity as a function of time, where the slope is equal to the decay constant kD.  The first order 

decay rate of singlet oxygen (k∆) is typically determined by measuring kD as a function of 

sensitizer concentration and extrapolating to zero concentration.  This type of experiment also 

allows for the determination of the bimolecular rate constant (kS).  Additional experimental 
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information can be found in Wilkinson’s paper where he describes in detail methods for kinetic 

analysis of 1O2 in solution.49  Time resolved and steady state 1O2 emission can also be used to 

determine 1O2 quantum yields.   

There are several methods that can be used to indirectly detect photosensitized singlet 

oxygen for kinetic analysis.  One method requires determining the concentration of a substrate or 

quencher that can react chemically or physically with 1O2.  A relative 1O2 QY (Φ∆) can be 

obtained from a double reciprocal Stern-Volmer plot (1/ΦM) versus (1/[M]), where ΦM is the 

photooxidative product quantum yield and [M] is the concentration of the substrate or 

quencher.49, 50, 121  The Stern-Volmer plot should be linear with a slope equal to (kD/kM) and a (y) 

intercept of Φ∆
-1.  Some of the earliest investigations used chemical quenchers such as 1,3-

diphenylisobenzofuran (DPBF), p-nitrosodimethylaniline (NMA), or a physical quencher such as 

β-carotene.44, 122  DPBF reacts directly with 1O2 and can be monitored by changes in absorption 

or by a decrease in fluorescence emission as it is oxidized to the diketone.  NMA has been used 

in a manor similar to DPBF for the investigation of histidine or imidizole protein residues that 

have been oxidized by singlet oxygen in biological systems.123  The photobleaching of NMA 

occurs secondary to oxidation of histidine or imidizole by 1O2, and it is monitored by observing 

changes in its absorption as it is oxidized by the trans-annular peroxide of histidine or imidizole.  

β-Carotene can quench singlet oxygen by energy transfer. Farmilo and Wilkinson developed a 

method to investigate the kinetics of 1O2 by monitoring the absorption decay of β-carotene at 520 

nm in solution.72   

Some additional examples to indirectly detect singlet oxygen utilize advanced optical 

techniques such as thermal lensing of a laser pulse due to temperature changes during 1O2 

formation, photocalorimetric studies, and laser induced photoacoustics.49, 50  The lifetime, decay 
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constant, and singlet oxygen quantum yield can be determined by thermal lensing.  During 

pulsed excitation of photosensitized 1O2 part of the energy from the pulse is absorbed resulting in 

local temperature changes in the solution.  The increased temperature is the result of decaying 

excited states causing the density and refractive index of the solution to change and act as a 

diverging lens.  A separate continuous laser beam can be used as a probe to monitor the 

magnitude of the thermal lensing due to the nonradiative processes.  Hence, relative rate constant 

and 1O2 quantum yield values can be obtained for sensitizers.  Photocalorimetric methods can be 

utilized to determine sensitizer triplet quantum yields and overall 1O2 quantum yields by 

measuring the rate of heating in the solution upon 1O2 formation.  The measurement is performed 

in the presence and absence of a 1O2 acceptor such as DPBF.  When measured over a short time 

interval, the ΦM is proportional to the change in temperature (∆T – ∆TDPBF)/ ∆T.  Kinetic data 

can also be obtained by laser induced photoacoustic changes.  As with thermal lensing, the local 

temperature changes that occur during pulsed excitation of a sensitizer in solution can also cause 

a pressure wave that can be detected at the surface of the solution.  A microphone can be used to 

detect the photoacoustic wave and convert it into an absorption spectrum.   

2.1.6 Mechanism of Photosensitized Singlet Oxygen Formation 

Photosensitized formation of singlet oxygen is one of the most commonly used and 

efficient methods to form singlet oxygen. There are numerous sensitizers available that can fulfill 

a number of needs such as excitation wavelength, solubility, and efficiency of 1O2 formation.  

The indirect generation of 1O2 by a sensitizer is necessary because the probability of directly 

exciting ground state oxygen does not produce 1O2 in a considerable amount.  The transition 
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from ground triplet state to the lowest excited singlet state is a spin forbidden, parity forbidden, 

and angular momentum forbidden process.  However, ground state triplet oxygen can be 

promoted to the excited singlet state in a photosensitized triplet-triplet transition between a 

sensitizer in the excited triplet state and ground state oxygen.  Therefore, a thorough explanation 

of the sensitizer triplet state will be given to explain its formation and factors that can effect 

triplet state population.   

A simplified Jablonski diagram is presented in Figure 22 in an attempt to illustrate the 

various intramolecular processes initiated by photon absorption by a sensitizer.  The ground 

singlet state (S0), lowest excited singlet (S1), and triplet (T1) states are the three most important 

electronic states of the sensitizer for singlet oxygen formation.  These states are important 

because direct excitation to the triplet state (T1 ← S0) of the sensitizer is a very weak process and 

it is much more efficient to indirectly populate the triplet state through absorption from the 

lowest excited singlet state (S1 ← S0).  Photon absorption by a sensitizer results in population of 

a higher excited state (Sn) and is followed by internal conversion and vibrational relaxation to the 

lowest excited state S1.  In organic molecules there are many different absorption processes that 

may occur, but there are primarily two emission processes, from the S1 or T1 electronic states, 

that result in fluorescence or phosphorescence, respectively.  According to Kasha’s rule, all 

subsequent photophysics and photochemistry originate from these lowest excited states of a 

given multiplicity.  Population of the S1 state can lead to intersystem crossing followed by 

internal conversion to populate the triplet state, T1.   
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Figure 22.  Simplified Jablonski diagram showing the major photophysical processes 
that occur during excitation of an organic molecule. 

 

The left hand side of the Jablonski diagram represents a manifold of singlet states, and 

the right side constitutes the triplet state manifold.  The heavy horizontal lines represent the 

electronic energy levels, and the lighter horizontal lines represent the vibrational-electronic 

energy states.  Absorption and emission processes are represented by solid vertical lines and 

nonradiative (NR) events as wavy lines.  Phosphoresce and direct absorption to the triplet state 

are represented by dashed vertical lines. 
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Absorption of a photon by a molecule to populate a higher excited state (Sn) is a very 

rapid process with a rate constant of 1015 – 1016 s-1 and is considered to be an instantaneous 

event.  The excited state Sn is followed by radiationless internal conversion which is a passage 

between two different electronic states (Sn → S1)NR of the same multiplicity to a vibrationally 

excited S1 state.  This state must then undergo intramolecular vibrational relaxation to a 

thermally equilibrated S1 state.  The final internal conversion event results in a state with the 

same multiplicity but lower energy by a NR process.  The three most likely transitions that can 

occur after internal conversion are NR transition to S0, radiative decay to S0, or NR intersystem 

crossing to a triplet state, Tn.  A radiative transition to the ground state is observed as 

fluorescence, whereas intersystem crossing can lead to phosphorescence and NR events from the 

triplet state.  Relaxation directly to the ground state from S1 by radiative and NR pathways 

results in a lower quantum yield of sensitizer triplet state population.   

In general, fluorescence emission arises from transitions between levels of the same 

multiplicity and, with a few exceptions, results from the (S1 → S0) transition.  The fluorescence 

lifetime for most molecules is about 10-6 s or less.  In addition, the shape of the fluorescence 

emission spectrum is independent of the excitation wavelength, since all photophysics occurs 

after internal conversion from the lowest vibrationally relaxed excited state.  The emission will 

be at lower energies and will be approximately a mirror image of the S1 ← S0 transition.  If the 

sensitizer singlet state is long lived and the excitation energy exceeds 157 kJ mol-1, quenching of 

the lowest excited sensitizer singlet (S1) state by ground state oxygen can lead to the formation of 

singlet (1Σg
+ and 1∆g) and triplet (3Σg

-) state oxygen.45  The higher electronically excited singlet 

state (1Σg
+) of oxygen rapidly undergoes electronic-vibrational relaxation to form the lower 
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metastable singlet state (1∆g) with excitation energy E∆ = 94 kJ mol-1.  Quenching of the 

sensitizer S1 state by O2 can lead to the following products according to Equation 1 a-c. 

 

S1  +  O2(3Σg
-)  →  T1  +  O2(1∆g)  (1a) 

S1  +  O2(3Σg
-)  →  T1  +  O2(3Σg

+)  (1b) 

T1  +  O2(3Σg
-)  →  T1  +  O2(1∆g)  (1c) 

Equation 1.  Quenching of the S1 state by O2(3Σg
-). 

 

If the energy gap ∆EST between the sensitizer singlet and triplet state is larger than E∆, 

equation a leads to the formation of excited triplet state sensitizer and singlet oxygen and 

equation c becomes equally important in singlet oxygen formation.  In this event the singlet 

oxygen quantum yield can be as large as 2.  When the energy gap ∆EST < 94 kJ mol-1, equations 

b and c become important in the formation of singlet oxygen and 1O2 quantum yields are usually 

≤ 1.  When the possibility of fluorescence emission and NR relaxation to the ground state is low 

the possibility of intersystem crossing to the triplet state increases.  Intersystem crossing is 

typically observed in organic aromatic compounds containing carbonyls, nitro groups, and heavy 

atoms such as halogens.   

Intersystem crossing is a radiationless transition between the singlet and triplet manifolds 

of an excited molecule.  Population of the S1 state followed by intersystem crossing is the 

primary route to populating the triplet state (S1 → T1)NR, which is also capable of going in the 

reverse direction to depopulate the triplet state (T1 → S0)NR.  Internal conversion and intersystem 

crossing are very similar processes, but the distinguishing characteristic that differentiates the 

two transitions is in the crossover process between the two-quasi-degenerate states of (Sn → 
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S1)NR and (S1 → T1)NR, respectively.  Intersystem crossing connects states of different 

multiplicities and requires a reorientation of the electron spin-axis, whereas internal conversion 

does not require a spin-axis reorientation.  Depopulation of the triplet state can result from 

intersystem crossing by (T1 → S0)NR transitions to a higher vibrationally excited state of S0.  

Despite the fact the two intersystem crossing pathways appear to be comparable and would 

possess similar probabilities in either direction, the rate constant for the (S1 → T1)NR transition is 

typically three to four orders of magnitude greater than the rate constant for the (T1 → S0)NR 

transition.  The difference in the rate constants is related to the energy gap between the (S1 → 

T1)NR and (T1 → S0)NR transitions. The energy gap of the (T1 → S0)NR transition is typically 

much larger than the (S1 → T1)NR transition, and it has been suggested that the transition 

probability increases as the energy gap decreases.   

Intersystem crossing by radiative and nonradiative transitions requires a change in spin 

multiplicity which is a quantum mechanically forbidden event.  In molecules that do not contain 

heavy atoms the spin angular momenta and orbital angular momenta of the electrons are not 

coupled and there is no interaction between the two momenta.  Consequently, the electric dipole 

transition moment operator is dependent on the spatial coordinates of the electrons and nuclei 

and will have a zero probability for a transition between states with different spin functions.  

Hence, a transition between states of different spin multiplicity (S1 → Tn)NR are forbidden.  The 

quantum mechanic selection rules can be relaxed by the interaction between the magnetic dipole 

generated by the spin of the electron and the magnetic dipole resulting from the orbital motion of 

the electron around the nucleus.  The sum of these two interactions can be described as the total 

angular momentum of the electron.  This interaction, which leads to a relaxation of the selection 

rules, is termed spin-orbit coupling, and the larger the interaction the higher the probability of 

54 



intersystem crossing between singlet and triplet states.  The contribution of spin-orbit coupling in 

light atoms, and molecules containing them, is minimal because the spin angular momenta and 

orbital momenta of the electrons are not coupled.  One would expect that there would be no 

relaxation of the selection rules, and transitions between states of different spin multiplicity 

would not be observed.  Nonetheless, some spin-orbit coupling is present and transitions where 

there is a change in the spin quantum number are observed.   

Spin-orbit coupling can be enhanced, thus increasing the probability of intersystem 

crossing, by incorporating heavy atoms into the molecule in the region were the transition is 

localized.  This is termed the internal heavy-atom effect, and it can result in a significant increase 

in spin-orbit coupling of an electron.  Enhancement can also be achieved using a solvent matrix 

that contains heavy atoms, giving the term external heavy-atom effect.  As a result, the 

possibility of a forbidden transition (S ↔ T) that is only weakly allowed may be increased by the 

heavy atom effect.  In heavy atoms, those with a large atomic number Z, the nuclear charge is 

larger resulting in a greater magnetic field as the electrons orbit the nucleus.  Accordingly, the 

spin-orbit coupling will increase as the magnetic field is increased.  The distance of the electron 

from the nucleus plays a significant role as well.  The angular momentum of the electron must 

also increase as it gets closer to the nucleus to counteract the attractive coulombic force that is 

applied to the electron by its interaction with the nucleus.  As a result, the spin-orbit coupling 

will increase as the electron orbits closer to the nucleus.  Hence, the spin-orbit coupling can be 

maximized by incorporating atoms that possess a large atomic number and have filled or nearly 

filled outer shell orbitals.  It turns out that the atomic number has a significant impact on spin-

orbit coupling and takes on a Z4 dependence.  Therefore, the greatest spin-orbit coupling is 
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observed in molecules that contain atoms from the right hand side of the periodic table, such as 

the halogens, whose atomic numbers are large and have nearly full outer shell electronic orbitals.   

Phosphorescence emission (T1 → S0) can result following intersystem crossing (S1 → 

T1)NR.  The forbidden emissive transition is between two different states of multiplicity, resulting 

in very long phosphorescence (excited state) lifetimes of about 102 to 10-4 s.  Similar to 

fluorescence, phosphorescence emission usually occurs at lower energies than the excitation 

wavelength or fluorescence emission and is independent of the excitation wavelength.  A number 

of events can occur during the very long lifetime of phosphorescence; some of the most likely 

events are nonradiative intersystem crossing to the singlet state S1 or S0 and quenching from 

intermolecular interactions.  Intersystem crossing back to S1 can result in delayed thermal 

fluorescence (S1 → S0) following thermal excitation and (S1 ← T1)NR.  Eosin and fluorescein are 

two examples where delayed fluorescence has been observed in deoxygenated solutions.  

Delayed fluorescence is more common in molecules where there is a small difference in the 

energy of the S1 and T1 states or compounds that have a long phosphorescence lifetime.  

Intermolecular energy transfer between solvent, ground state sensitizer molecules, and other 

quenchers such as oxygen can lead to deactivation of the triplet state.  Quenching of the 

sensitizer triplet state by molecular oxygen can occur if the triplet state energy is > 157 kJ mol-1.  

Sensitized formation of singlet oxygen is typically performed in dilute solutions (≤ 10-6 M) of 

sensitizer, where bimolecular interactions involving the sensitizer do not have a significant 

contribution to triplet state quenching in comparison to oxygen.  On the other hand, ground state 

oxygen can diffuse very rapidly through solution and is usually present in relatively high 

concentration (1-3 x 10-3 M) in air saturated organic solvents at room temperature.  The 
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concentration of oxygen in polar solvents like water, ethylene glycol, and glycerol is about an 

order of magnitude less than some of the more common organic solvents.50   

As mentioned previously, ground state oxygen (3Σg
-) can quench both the sensitizer 

singlet and triplet states resulting in singlet oxygen quantum yields as high as 2.  Conditions that 

can produce two molecules of singlet oxygen per photon absorbed are very rare.  According to 

Schweitzer and Schmidt, five conditions must be met simultaneously in order to achieve a 1O2 

QY = 2.52  The difference in energy between the sensitizer singlet and triplet state must be > 94 

kJ mol-1.  The lowest excited triplet state (T1) should be the only triplet below S1.  Quantitative 

quenching of the singlet state (S1) by oxygen should also quantitatively lead to the formation of 

the triplet state T1.  Finally, the singlet and triplet states should quantitatively lead to the 

formation of singlet oxygen.  In the event that all necessary criteria are met, the overall singlet 

oxygen quantum yield, QY∆, 

 

QY∆, = PS·fS  +  QT·PT·f∆  (2) 

Equation 2.  Determination of 1O2 QY for quenching of the sensitizer singlet and 
triplet state by O2(3Σg

-). 
 

where PS and PT are the fractions of the singlet and triplet state quenched by oxygen, 

respectively, fS is the efficiency of 1O2 production during quenching of the singlet state, and QT is 

the quantum yield of the triplet state.  When the lifetime of the S1 state is short-lived and the 

difference in energy of the singlet and triplet states (ES1 - ET1 << E∆) is much less than the energy 

of 1O2(1∆g), the rate of S1 quenching by oxygen goes to zero and the first term can be ignored.  

The efficiencies of 1Σg
+ and 1∆g production during O2 quenching of the triplet state are given by 

the term, f∆, to describe the overall efficiency of singlet oxygen production from the triplet state.  
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The triplet state is typically long lived, and in air saturated solutions quenching of the triplet state 

by oxygen is very efficient with values of PT approaching 1.  When quenching of the S1 state is 

ignored, the singlet oxygen quantum yield can be simplified even further to give Equation 3. 

 

QY∆, = QT·f∆ (3) 

Equation 3.  Determination of 1O2 QY for quenching of the sensitizer triplet state by 
O2(3Σg

-). 
 

Schmidt, Schweitzer, Wilkinson, and co-workers have performed a great deal of research 

investigating the mechanism of direct photosensitized singlet oxygen formation.2, 76, 77, 124-127  

Schmidt recently published a paper describing the mechanism of photosensitized production of 

singlet oxygen where he developed a model to quantitatively predict the rate constants and 

efficiencies of different competing processes in the formation of singlet oxygen by quenching of 

sensitizer ππ* excited triplet states.128  The model, which is based on more than 40 different ππ* 

triplet sensitizers, ties in previous investigations on nπ* quenching of phenyl ketone 

sensitizers.74, 77, 129  Quenching of triplet state ππ* and nπ* sensitizers both proceed through two 

different pathways by internal conversion of excited non-charge transfer (nCT) encounter 

complexes and partial charge transfer (pCT) exciplexes of the sensitizer and oxygen.  The 

mechanism of singlet oxygen production does not occur by direct energy transfer between 

individual molecules but rather by internal conversion of excited complexes of triplet state 

sensitizer and ground state oxygen (3Σg
-).  The nCT and pCT pathways operate with different 

singlet oxygen efficiencies.  Formation by ππ* transitions are heavily dependent on the triplet 

state energy and oxidation potential of the sensitizer, and to some extent on solvent polarity.  
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Transitions involving nπ* are less understood and exhibit a much smaller dependence relative to 

ππ* transitions (as discussed below).   

The rate of singlet oxygen production by the nCT pathway for ππ* transitions is heavily 

dependent on the sensitizer triplet state energy ET.  Energy transfer occurs upon sensitizer-

oxygen complex (T1
3Σ) formation followed by internal conversion (IC) to form complexes of 

(S0
1Σ), (S0

1∆), and (S0
3Σ). Following IC, the complexes will dissociate to form ground state 

sensitizer S0, O2(1Σg
+), O2(1∆g), and O2(3Σg

-).  The energies (EΣ, E∆, and zero) associated with the 

three complexes are used to determine the excess energy ∆E, where ∆E = ET – EΣ, ET – E∆.  The 

excess vibrational energy, ∆E, for each of the complexes needs to be dissipated by the sensitizer 

as heat.  Hence, the rate constant, kIC, for internal conversion of the complex will decrease as 

more vibrational energy needs to be dissipated.  It has been demonstrated that the rate constants 

for triplet state quenching by oxygen will decrease with increasing excess energy ∆E for the nCT 

pathway.130  Schmidt demonstrated a common dependence for the multiplicity normalized rate 

constants (kT
1Σ, kT

 1∆, and kT
 3Σ/3), and excess energy ∆E in the region ∆E ≤ 220 kJ mol-1.128  The 

data from 11 different ππ* triplet sensitizers was used to devise an empirical curve, log(kP
∆E/m = 

f(∆E), describing the rate constant dependence on the excess energy ∆E.  The curve decreases 

rapidly in a nonlinear fashion as ET is increased.  For nCT transitions involving ππ*sensitizers, 

the rate and efficiency of singlet oxygen formation will increase rapidly as ∆E is decreased. 

Thus, IC is restricted by an empirical energy-gap relation and is the rate limiting step in the 

formation of singlet oxygen by the nCT pathway.   

For ππ* sensitizers possessing large triplet state energies CT interactions between the 

sensitizer and oxygen cannot be ignored.  In the region where ∆E > 240 kJ mol-1, the rate and 

efficiency of singlet oxygen formation is strongly influenced by CT interactions.  Exciplex 
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formation between sensitizer and oxygen is the dominant species rather than encounter 

complexes.  As a result, the oxidation potential (Eox) of the sensitizer is a key parameter that 

determines the amount of CT character of the exciplex, best described as pCT.  The rate 

constants of singlet oxygen formation (kT
1Σ, kT

 1∆, and kT
 3Σ/3) rapidly increase with larger values 

of ∆E and deviate from the empirical curve log(kP
∆E/m = f(∆E).  The deviation is because the 

empirical curve describes the energy-gap relation for IC of nCT encounter complexes without 

charge transfer stabilization.  Consequently, singlet oxygen formation in the pCT pathway is 

accomplished by exciplex formation and is favored by smaller Eox values, thus increasing the 

strength of CT interactions and larger rate constants for quenching of the sensitizer by 

oxygen.Schmidt correlated the strength of the CT interaction for ππ* sensitizers with the free-

energy change (∆GCET) for complete electron transfer where  

 

∆GCET.= F(Eox – Ered) – ET + C (4) 

Equation 4.  Free energy dependence for complete electron transfer during sensitizer 
quenching by O2(3Σg

-) for pCT complexes.  
 

F, Eox, Ered, and C are the Faraday constant, sensitizer oxidation potential, reduction 

potential of O2, and electrostatic interaction energy, respectively.  Typically, the CT interactions 

are best described as pCT and complete electron transfer between triplet state sensitizer and 

oxygen does not occur.  A linear relation was obtained for the multiplicity normalized rate 

constant log(kP
∆E/m) as a function of the free-energy change ∆GCET for sensitizers with ∆E ≥ 240 

kJ mol-1.  The nCT pathway is dominant in the region where ∆GCET ≥ 40 kJ mol-1, whereas the 

pCT pathway is dominant for sensitizers that posses ∆GCET ≤ –25 kJ mol-1.  Hence, large 

sensitizer triplet energy and small sensitizer oxidation potential will favor the pCT pathway, 
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where the singlet oxygen rate constant increases as the free energy change becomes more 

exergonic.  In the pCT pathway the overall efficiency of singlet oxygen, O2(1Σg
+) and O2(1∆g), 

decreases as the rate constants of formation are increased.  This is in stark contrast to the nCT 

pathway where the efficiency of singlet oxygen increased with the rate of formation of 1O2.   

Triplet state quenching of nπ* sensitizers is similar to ππ* sensitizers and occurs by the 

nCT and CT pathways.  Mehrdad et al. investigated a series of nπ* benzophenone sensitizers, 

where the triplet state energy, ET, was nearly the same for the series and the rate constant for 

triplet state quenching by oxygen was evaluated as a function of sensitizer oxidation energy, 

Eox.129  The data was then compared to similar ππ* biphenyls investigated by Schmidt et al.  All 

nπ*and ππ* sensitizers operated through the nCT and pCT pathways and were capable of 

producing O2(1Σg
+), O2(1∆g), and O2(3Σg

-).  Unlike the ππ* sensitizers, the nπ* sensitizers did not 

exhibit such a strong dependence of ET and Eox.  The rate constants for the nπ* sensitizers 

increased with smaller Eox values as did the ππ* sensitizers, but the change was much smaller.  

Additionally, nπ* sensitizers with a very large Eox, where CT interactions are minimal, exhibited 

a significant deviation from the empirical curve f(∆E) that was formulated for the ππ* 

sensitizers. 

The significant deviation of the data for nπ* benzophenones is attributed to the electronic 

and steric interactions of the intermediate sensitizer-oxygen complexes 1,3(T1(nπ*)3Σ).  It is 

believed that the intermediate for the similar 1,3(T1(ππ*)3Σ) biphenyl complex is a supra-supra 

structure where oxygen interacts directly with the aromatic ring (Figure 23 A).  In this 

configuration it is expected that there are no significant changes in bond lengths between the O-

O bond and complex during IC and deactivation of the complex.  In the 1,3(T1(nπ*)3Σ) 

benzophenone complex a four-center structure is formed (Figure 23 B), where O2 and the 
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carbonyl group take on a parallel arrangement.  Consequently, the excitation energy of the 

complex is localized on the carbonyl group, and large changes in the bond lengths of the 

1,3(T1(nπ*)3Σ) complex are expected.  The excess energy is dissipated by displaced potential 

energy during IC and deactivation of the complex, and a smaller excess-energy dependence of 

the rate constant of IC is expected during deactivation.  As a result of the different electronic 

configuration, deactivation of nπ* complexes do not exhibit such a strong dependence on the 

excess energy or oxidation potential for nCT and pCT pathways, respectively. 

 

O O
O

O O

A B  

Figure 23.  Structures of ππ* and nπ* sensitizer-oxygen exciplex formation of A) 
biphenyl 1,3(T1(ππ*)3Σ) and B) benzophenone 1,3(T1(nπ*)3Σ).   

 

The solvent polarity surrounding the sensitizer-oxygen complex has a stronger effect on 

pCT exciplexes than on the nCT encounter complexes.  In particular, the effects of solvent 

polarity on ππ* exciplexes is most profound, resulting in a significant increase in the overall rate 

constant for quenching of the triplet state by oxygen.  The polarity of the solvent helps to 

stabilize the exciplex during IC and appears to have a larger stabilizing effect as the CT character 

of the complex is increased.  Additionally, the efficiency of singlet oxygen formation decreases 

despite an increase in the quenching of the triplet state.  The effects of solvent polarity on nCT 

ππ* encounter complexes is minimal and does not produce any significant changes in the rate of 
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triplet state quenching.  For nπ* complexes there is no measurable effect from solvent polarity in 

regard to nCT or the pCT pathways.  

2.1.7 Optimization of Singlet Oxygen Photosensitizers 

The maximum singlet oxygen quantum yields are obtained when both the sensitizer 

singlet and triplet states are quenched by oxygen to give an upper singlet oxygen quantum yield 

of 2.  In this situation, absorption of one photon will produce two molecules of singlet oxygen.  

This event is quite rare for reasons mentioned previously.  Briefly, the difference of the S1-T1 

energy gap must exceed 94 kJ mol-1, and T1 must be the only triplet level below the S1 state.  

Quantitative quenching of the S1 and T1 states must be achieved, resulting in the quantitative 

formation of singlet oxygen.  Quenching of the singlet state is usually observed in compounds 

that exhibit moderate to strong CT interactions.  This poses a problem since it is known that the 

efficiency of triplet state quenching decreases as the CT character of the sensitizer is increased.  

Quenching of S1 for nCT sensitizers requires high O2 partial pressures, making it unpractical for 

most applications.   

Under typical conditions, singlet oxygen formation by quenching of the sensitizer triplet 

state is the most efficient pathway, and methods to optimize the formation of the triplet state and 

efficiency of its quenching appear to be the best approaches to photosensitized singlet oxygen.  

The energy of the triplet state is an extremely important parameter and should be > 157 kJ mol-1 

to produce O2(1Σg
+) and O2(1∆g), and at a minimum T1 should not be less than 94 kJ mol-1 to 

produce the lower energy O2(1∆g) species.  This will require shorter excitation wavelengths, 

since T1 is typically obtained by populating a higher Sn state.  Large triplet energies should be 
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avoided to minimize the excess energy (∆E) between the sensitizer and the energy of the two 1O2 

states.  The most common 1O2 sensitizers are of the ππ* type and proceed through the nCT and 

pCT pathways.  As ∆E is increased the rate and efficiency of triplet state quenching rapidly 

decreases.   

The effects of the excess energy can be minimized by incorporating electron withdrawing 

groups into the molecular architecture in an attempt to increase the Eox and minimize the CT 

character of the sensitizer.  There are numerous electron withdrawing groups that can be placed 

into the sensitizer such as nitro, cyano, and benzothiazole groups, which are often included to 

modulate the properties of the sensitizer.  Unfortunately, one often wants a moderate to large 

amount of charge transfer in the sensitizer for other photophysical properties.  Some nonlinear 

optical effects, such as two-photon absorption, are heavily dependent on the amount of charge 

transfer within the chromophore system.   

Maximizing the formation of the triplet state sensitizer by ISC is one method to increase 

the probability of 1O2 formation.  Incorporation of heavy atoms into the region of the sensitizer 

that is responsible for the electronic transition can increase spin-orbit coupling (SOC) in the 

molecule, thus increasing the probability of ISC.  The amount of SOC is strongly affected by the 

atomic number of the heavy atom and takes on a Z4 dependence.  As a result, halogens are 

frequently incorporated as the heavy atom constituents.  In conjugated systems it has been 

observed that placement of the heavy atom in the ortho-position rather than directly in line with 

the conjugation leads to better SOC, allowing additional modifications of the conjugated system. 
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2.2 Current Progress in PDT 

Some of the earliest PS studies, dating back to the early 1900’s, were on compounds like 

acridine, eosin, and hematoporphyrin.21, 131-133  In fact, porphyrin derivatives are one of the most 

thoroughly studied PS’s and represent a good portion of the compounds that are commercially 

available.  In the early 1960’s, Lipson and Schwartz separately investigated the use of 

hematoporphyrin derivatives (HpD) to treat neoplastic tissue, and found that the compound had a 

high affinity for tumors with a strong phototoxicity and a low affinity for healthy tissue.134  

Interest in HpD continued through the 1970’s, and a few years later Dougherty introduced the 

first drug grade hematoporphyrin.  After extensive studies, the PS known as Photofrin® (Axcan 

Pharma, Inc.) was used in Canada in 1993, and later approved by the FDA in 1995 to become the 

first clinically used PS for use in PDT.12   

Since the introduction of Photofrin® there have been several new PS’s approved by the 

FDA or that are in clinical trials.  These sensitizers fit into three main families; porphyrins, 

chlorin or chlorophyll-based, and dye-based photosensitizers (Table 1).  With the exception of 5-

aminolevulinic acid (ALA) derivatives, all of the currently FDA approved compounds fit into the 

porphyrins or chlorine-based families.  ALA is a metabolic precursor in the biosynthesis of 

protoporphyrin IX (PpIX), a naturally occurring heme that can function as a photosensitizer.  

Even though ALA is not a porphyrin, the prodrug is classified under the porphyrin-based family.  

All currently approved PS’s have absorption maxima below 730 nm.  Some of the PS’s are very 

specific in the types of tumors they can treat whereas others can be used on a broad range of 

tumors.  The 1O2 QY in phosphate buffered saline (PBS) of these PS range from 0.80 down to 

0.06.50, 135-137   
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Table 1.  1O2 Sensitizers for PDT 
Trade 
Name 

Indication λ nm ε 
M-1cm-1

QY Year 
Approved by 

FDA 
Photochlor Basal cell carcinoma 665 ⎯ ⎯ CT 

Talaporfin Solid tumors from diverse origins 664 15,800 0.56 CT 

Levulan** Basal-cell carcinoma, head and 
neck, gynecological tumors 

635 10,000 0.42 1999 

Benzvix** Gastrointestinal cancer 635 10,000 ⎯ CT 

Metvix** Basal-cell carcinoma 635 10,000 ⎯ 2004 

Hexvix** Diagnosis of bladder tumors 400 10,000 ⎯ EU 

Photofrin Cervical, endobronchial, 
esophageal, bladder, gastric 
cancers, brain tumors 

630 1,170 0.06-

0.12 

1995 

BOPP Brain tumors 630 ⎯ ⎯ ⎯ 

Visudyne Neovascularization of retina 
secondary to macular degeneration 

689 35,000 0.80 2000 

Foscan* Head and neck, prostate, pancreatic 
tumors 

660 30,000 0.58 2001 

Pc 4 Cutaneous/ subcutaneous lesions 675 84,000 0.38 ⎯ 

Purlytin Cutaneous metastatic breast cancer, 
basal cell carcinoma, Kaposi’s 
sarcoma, prostate cancer 

664 30,347 0.71 CT 

(*) Seeking FDA approval, (**) derivatives of 5-aminolevulinic acid, (⎯) data is not available.  
(CT) in clinical trial, (EU) approved for use in Europe 

 

The porphyrin-based PS Photofrin® can be used to treat a large number of conditions and 

is one of the most frequently utilized PS’s.  It is difficult to purify during synthesis and contains 

a mixture of mono-, di-, and oligomeric ether- and ester-linked porphyrins (Figure 24), and the 

purified PS contains about 85% oligomeric material.  This fraction of the PS is most readily 

taken up by tumors and is responsible for its activity.  The PS is only delivered systemically by 

intravenous (IV) injection and is activated after clearance from healthy tissue 40-50 h later on 

illumination at 630 nm.  Clearance of the sensitizer is slower from tumors and some healthy 
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tissue such as skin, liver, and the spleen.  It is most commonly used to treat cancers of the head 

and neck, Barrett’s esophagus, other esophageal, endobronchial, and bladder cancer, although 

some clinical trials have also used Photofrin® on brain tumors such as glioblastoma and some 

types of breast tumors.21   
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Figure 24.  Chemical structure of Photofrin® 
 

In general, there is no one single characteristic of a photosensitizer that determines its 

success, but rather a collective group of characteristics when combined, contribute to the overall 

effectiveness of the PS.  Photofrin® is one example.  Its photophysical properties are certainly 

not stellar.  The PS absorbs at relatively short wavelength (630 nm) and has a very low 

absorption coefficient (1,170 M-1cm-1).  The 1O2 QY is rather low in PBS (0.06-0.12).  As a 

result, large concentrations of the PS and high light intensities are required for clinical use.136  

The relatively high concentrations result in increased photosensitivity for extended periods of 

time (4-6 wks) due to an elevated systemic uptake of the PS in the patient.  Nonetheless, 
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Photofrin® has been successfully used to treat a large number of neoplastic diseases due to the 

PS’s efficient uptake by cancerous tumors and good photocytotoxicity.   

There are four derivatives of the prodrug 5-aminolevulinic acid (Figure 25).  Three of the 

derivatives, Levulan®, Metvix®, and Hexvix®, are approved for use in the U.S. and elsewhere.  

Benzvix® is in clinical trials in Europe to treat gastrointestinal cancer.  Levulan® and Metvix® 

are used topically in an ointment to treat precancerous and skin cancers such as actinic keratosis, 

Bowen’s disease, and basal cell carcinoma.  Hexvix® is used as a bladder tumor imaging agent 

delivered in a solution to the bladder cavity where it forms fluorescent PpIX in cancerous tissue.  
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ALA is applied topically and is taken up by active transport into the cells.  Once in the 

cells it is metabolized through the haem biosynthetic pathway to protoporphyrin IX.  The rate of 

uptake of ALA is higher in malignant tissue than normal tissue by about 10:1.138  One drawback 

to using these compounds is that they are not taken deep into the tissue (< 1 cm), limiting their 
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use to mostly skin cancers.139  Nevertheless, ALA is rapidly taken up by the cells, and treatment 

can begin within 3-4 h of being administered.  Systemic clearance is rapid and is usually 

complete within 24 h. The photophysical properties of ALA are only slightly better than 

Photofrin®.  Excitation of ALA biosynthetic adducts occur at 635 nm, and its absorption 

coefficient is about 10,000 M-1cm-1.  These derivatives have a good 1O2 QY (0.42) adding to 

their efficiency as an effective PS.  The greatest advantage of the ALA derivatives is their rapid 

uptake and systemic removal from the body along with an efficient 1O2 QY.   

Visudyne® is from the chlorin-based family of PS’s and is an equal mixture of two 

regioisomers that differ in the acid and methyl ester groups on the C and D pyrrole rings (Figure 

26).  This PS is hydrophobic and is solubilized as a liposomal formulation for intravenous 

delivery.  Also known as verteporfin or benzoporphyrin derivative monoacid ring A (BPD-MA), 

it is used to prevent the loss of visual sight due to subfoveal choroidal neovascularization 

secondary to age-related macular degeneration or progressive myopia.137   

The PS is activated 15 minutes after administration by passing a beam of light at 689 nm 

through the front of the eye for 83 seconds.  The procedure is typically performed once a month 

for a total of three doses.  Visudyne® has a high affinity for plasma low-density lipoproteins 

(LDL) and is taken up by cells that express a high level of LDL receptors.  Once taken up by the 

cells, the PS generates 1O2 on excitation, destroying the area of neovasularization within the eye 

while leaving nearby healthy vasculature undamaged.140  The PS is very selective in its action 

and exhibits about a 15-fold greater affinity for diseased tissue when compared to Photofrin®.140 
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Figure 26.  Chemical structure of Visudyne 
 

Visudyne® is very similar to the other porphyrin based PS’s in its macrocycle ring 

structure but with one of its four pyrrol rings reduced making it a chlorin.  These ring structures 

typically exhibit a 30-50 nm shift to longer wavelengths in its absorption spectrum when 

compared to similar porphyrin ring structures.  The molar absorptivity of Visudyne® is about 3 

times greater (30,000 M-1cm-1 at 689 nm) than the ALA porphyrins, and has a higher  1O2 QY 

(0.80).  This sensitizer has been very successfully used and is available in over 70 countries 

including the U.S. and Europe. 

Foscan® is another chlorin-based PS that has been used in clinical trials to treat head and 

neck, prostate, and pancreatic tumors and is similar in its use to Photofrin®.  Biolitec AG, based 

in Germany, is actively seeking FDA approval for this sensitizer.  Also known as Temoporfin 

and meta-tetra hydroxyphenyl chlorin (m-THPC), it has increased solubility due to the phenol 

rings (Figure 27) and is delivered intravenously in a mixed solvent solution of polyethylene 

glycol, ethanol, and water (3:2:5).  It has a larger molar absorptivity (30,000 M-1cm-1) and is 

excited at slightly longer wavelength (660 nm).  When compared to Photofrin®, m-THPC 
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exhibits a higher selectivity for cancerous tissue over healthy tissue and has a considerably larger 

1O2 QY (0.58).   
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Figure 27.  Chemical structure of Foscan® 
 

In general, the commercial PS’s currently available have demonstrated their usefulness in 

PDT, although their full potential as a therapeutic treatment for neoplastic disease has yet to be 

accomplished.  At the moment, all PS’s have excitation wavelengths (λmax) at the very edge or 

below the transmission window for biological tissue (700-1000 nm).  Limited progress has been 

accomplished in moving further into this transmission window with the porphyrin-based PS’s.  A 

reduction in one of the four pyrrol rings leads to the chlorin-based PS’s. These compounds have 

longer excitation wavelengths (660–700 nm) and slightly larger 1O2 QY’s.  Another subclass of 

the porphyrins is being developed with pentadentate metalloporphyrins.  Commonly called 

texaphyrins, these compounds have longer λmax, around 700-760 nm.  Phthalocyanines and 
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purpurins with extended conjugation are also being developed, but these compounds do not 

appear to absorb at significantly longer wavelengths than the porphyrins. 

One method that has been recently investigated to access longer wavelengths is the use of 

PS’s that can generate 1O2 under 2PA.  Investigations have been done on Photofrin® PpIX, 

tetrapyrrolic, and stibene-based PS’s to investigate the possibility of using these compounds for 

1O2 sensitization under 2PA.53, 98, 101, 141-143  This will be discussed further in the next section. 

Another aspect of 1O2 PS’s is their specificity for neoplastic tissue.  The commercial PS’s 

rely heavily on the hydrophilicity of the compounds to direct the uptake of the PS by cancerous 

tissue.  Research is being conducted on improving the tumor specificity of PS’s.  Bioconjugation 

techniques using antibodies and proteins have shown to be promising in clinical studies, but 

there are some drawbacks to using these compounds, such as synthesis, transport barriers, and 

the potential of serious toxicity in the host.144, 145  Targeting of cell surface receptors and cellular 

transport using short oligopeptides and small molecules has also shown to be hopeful in the 

delivery of drugs to tumors.  Cyclic peptides have been used to target cell-surface receptors for 

fluorescence and MRI imaging of cancerous brain and breast tumors in vivo.146-150  The future of 

photodynamic therapy will become even more promising as the photophysical properties and 

ability to accurately target tumors improves with 1O2 sensitizers.  The PS’s that are in 

commercial use today demonstrate the great potential that PDT holds for the treatment of various 

diseases. 
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2.3 Fluorene Derivatives for Two-Photon Sensitization of 1O2

2.3.1 Singlet Oxygen Sensitization by 2PE 

The nonlinear two-photon absorption (2PA) process provides an alternative pathway to 

singlet oxygen sensitization, and, in particular, is a promising alternative for photodynamic 

therapy applications.  The tissue transparency window of 700–1000 nm is ideally situated for 

2PE, and the longer wavelengths reduce scattering by tissue.  As explained in section 1.1, the 

quadratic dependence of 2PE provides one with the opportunity of 3D resolution that can not be 

obtained under linear 1PE.   

Singlet oxygen formation by sensitization occurs by populating an excited singlet state of 

a photosensitizer under one- or two-photon excitation.  It is usually assumed that all 

photophysical processes occur from the lowest vibrationally relaxed excited state and is 

independent of the type of excitation.  For centrosymmetric molecules the excited state initially 

populated by 2PA is not usually the same as 1PA.  For this reason one can’t simply assume that a 

doubling of the 1PA λmax will result in a high probability of populating the excited state.  The 

quantum mechanical selection rules are essentially relaxed for noncentrosymmetric molecules, 

and, in general, 2PE can be used to directly access 1PE allowed electronic transitions, though the 

2PA-allowed transitions will be stronger and more favorable.   

A simplified Jablonski diagram is presented in Figure 28, depicting the formation of 1O2 

under 1PA and 2PA of a sensitizer.  The formation of 1O2 begins by populating an excited singlet 

state of the photosensitizer under 1PA or 2PA.  Under 2PA, two photons are absorbed to make 

an electronic transition corresponding to the combined energy of the photons involved.  The two 
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photons combine at the same point in space and at the same point in time, passing through a 

short lived virtual state that is a superposition of the real states of the molecule.151, 152  Population 

of a higher excited state, Sn, is followed by internal conversion and vibrational relaxation to the 

lowest excited state S1, as outlined in section 2.1.  According to Kasha’s rule, all subsequent 

photophysics and photochemistry originate from this lowest excited state, regardless of whether 

it was populated under 1PA or 2PA.  Intersystem crossing from the S1 state, followed by internal 

conversion, leads to population of the first excited triplet state, T1.  Ground state triplet oxygen 

can then quench the triplet state sensitizer producing 1O2 and ground state sensitizer.  1O2 can 

either undergo photochemical reactions, return back to the ground state by phosphorescence 

emission at 1270 nm, or decay to the ground state by nonradiative pathways.   

 

 

 

 

 

 

 

 

 

 

Figure 28.  Jablonski diagram illustrating the production of singlet oxygen by 
irradiating a sensitizer under one- and two-photon excitation. 
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Ground state oxygen can also quench the sensitizer singlet state, so it is theoretically 

possible to have a singlet oxygen quantum yield with an upper limit of 2.  However, this is 

unusual because the sensitizer S1 state has a very short lifetime, but it is observed for some 

compounds such as fullerenes.153, 154  Additional pathways that can lead to a lower population of 

the sensitizer triplet state will result in lower 1O2 QY’s.  Nonradiative decay of the sensitizer S1 

or T1 states and radiative decay such as fluorescence and phosphorescence have a significant 

impact on 1O2 QY.  For a full review of possible mechanisms for the generation and deactivation 

of 1O2 see Schweitzer and Wilkinson’s references.50, 52  As a result, compounds with low or no 

luminescence emission are desirable for 1O2 sensitization.  Incorporation of functional groups 

that can promote intersystem crossing to the triplet state is one method to increase the 1O2 QY.  

Inclusion of heavy atoms such as halogens and heterocyclic compounds with non-bonding π 

electrons have been found to promote intersystem crossing efficiently.2   

The 2PA cross section (δ) is an important parameter of the sensitizer and is a measure of 

the sensitizer’s ability to absorb two photons.  The cross-section is used to determine the 

wavelength at which maximum absorption will be obtained for optimal excitation of the 

sensitizer.  Given the SI unit Göppert-Mayer, (GM) in honor of Maria Göppert-Mayer, it is 

expressed in the units of 1 x 10-50 cm4 sec molecule-1 photon-1.  As mentioned previously, one 

cannot rely on the one-photon absorption spectrum to quantitatively predict where 2PA will 

occur.  For fluorescent molecules, whose fluorescent QY has been previously determined, the 

2PA cross-section can be determined from the fluorescence emitted under 2PA.155  However, 

most good 1O2 sensitizers exhibit no fluorescence or very low fluorescence, making this method 

difficult.   
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The nonlinear 2PA cross-section can be determined directly by the open aperture Z-scan 

method.156  The experimental set up is shown in Figure 29.  In the experiment, a focused 

Gaussian monochromatic beam is passed through a thin sample (< 2 mm) and the transmittance 

is measured as the sample is passed through the propagation path of the beam.  The trace is 

expected to be symmetric with respect to the focus where there will be a minimum transmittance 

due to nonlinear absorption.  The 2PA cross section can be determined from a fitting of the 

normalized transmittance as a function of position (z).  Since the two-photon absorption cross 

section is a measure of how well the molecule will undergo 2PA, there has been considerable 

effort to increase this parameter.  In general, compounds containing an electron rich aromatic 

central core such as fluorenes, distyryl benzenes, and naphthalene compounds have the ability to 

exhibit large 2PA cross sections.19, 20, 53, 155, 157, 158  Increased conjugation length coupled to strong 

donor and acceptor groups have also been used to increase the intramolecular charge transfer 

character of molecules.  The use of a rigid central π-conjugated system also helps to keep the 

conjugation in one plane, maintaining the conjugation through out the molecule.  All of these 

approaches help to increase the 2PA cross section, but it should be noted that modifications to 

the molecular architecture often lead to manifestations of other properties such as fluorescence, 

changes in absorption wavelength, and, most critically, changes in 1O2 QY.   
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Figure 29.  Z-scan experimental set up and plot of transmittance dependence on 
position z. 

 

There have been a number of studies evaluating the 2PA cross section and 1O2 QY of the 

PS’s currently being used in PDT.98, 101, 159  Protoporphyrin IX and Photofrin® have been 

reported to have very low 2PA cross sections of about 1 to 10 GM at 800 nm under femtosecond 

excitation.  Additionally, chlorophyls, porphyrins, and phthalocyanines, have been reported to 

have 2PA cross-sections of several GM or less.  Methods to increase the 2PA cross-section of 

these PS’s have been investigated, and much larger values have been reported in the range of 

several hundred up towards several thousand GM.101, 160 Modification of the porphyrin ring with 

polarizable groups, such as diphenylaminostilbene substituents and other conjugated electron 

donor/acceptor groups, have been attempted with promising results. 
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2.3.2 Fluorene Based 2PA 1O2 Sensitizers 

Fluorene derivatives for nonlinear applications have been actively investigated in our 

laboratory for a number of years.  Synthetic efforts and photophysical characterization of these 

compounds have been undertaken to better understand the nonlinear photophysical properties of 

various fluorene derivatives and to improve on these properties.  Fluorene was originally chosen 

to serve as the central chromophore because it is a rigid, highly π-conjugated, ring system with 

high thermal stability.  Synthetic derivatives are easily afforded by functionalization of the rings 

2, 4, 7, and 9 positions (Figure 30).  The 2, 4, and 7 positions are ideal locations for electron 

donor/acceptor substituents, and the hydrophilic nature of the derivatives can be controlled 

through the 9 position of fluorine, since this position can easily be made nucleophilic and 

modification typically does not perturb the electronic structure of the π conjugated system.  
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Figure 30.  Chemical structure of fluorene chromophore showing the positions for 
synthetic modification by introducing various groups X, Y, Z, R1, and R2. 

 

Investigations into the synthesis and characterization of the nonlinear absorption 

properties of fluorene derivatives have lead to a better understanding of these compounds.  These 

investigations were intended to correlate the nonlinear absorptivity as a function of molecular 

structure.  The systematic investigation has been pursued by examining the effects of different 

electron donating (D) and electron withdrawing (A) groups attached to fluorene in the 2 and 7 
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positions. These derivatives included symmetrical A-π-A, D-π-D, and unsymmetrical A-π-D 

structures.  Furthermore, the π-conjugation length between the donor and acceptor groups was 

varied in an effort to increase the nonlinear absorption properties of the fluorene-based 

derivatives.  A 4-fold increase in 2PA cross-section was observed over similar unsymmetrical 

fluorene derivatives utilizing benzothiazole accepting groups.19  The effects of increased 

conjugation using styryl and vinylene moieties also resulted in higher 2PA cross sections and 

shifted the 2PA band from 600 to 800 nm.  High 2PA cross sections (> 1000 GM, 800 nm) were 

observed for unsymmetrical fluorene derivatives with extended conjugation.19, 157, 161  As a result 

of these studies, it is not uncommon to see large 2PA cross sections (500 to >1000 GM) at 

wavelengths in the near IR region.   

In addition to large 2PA cross sections, fluorene derivatives have been of some interest 

due to a number of nonlinear applications such as optical data storage, optical power limiting, 3-

D microfabrication, and nondestructive fluorescence imaging.162-164  Since Ogilby’s report of 

two-photon sensitized formation of 1O2 there have been a number of investigations to develop 

new two-photon activated sensitizers.  Gollnick et al. reported singlet oxygen formation from 

fluorene derivatives in the 1970s, and recently Mehrdad et al. investigated the mechanism of 1O2 

formation with a series of fluorene derivatives.74, 165  Mehrdad reported overall rate constants, T1 

state energies (ET), oxidation potentials, and overall efficiencies of 1O2 formation (S∆) for the 

fluorene derivatives.  Impressive triplet state energies (270-285 kJ mol-1) and overall efficiencies 

(~ 0.3-0.7) were reported.  Recently, investigations of nonfluorescent, hydrophobic fluorene 

derivatives in our laboratory lead to the formation of singlet oxygen under 1PA and 2PA, 

providing the motivation for this dissertation.18, 166   
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The synthetic approach that was taken was to synthesize water soluble or hydrophilic 

fluorene derivatives that are capable of photosensitizing the formation of singlet oxygen under 

two-photon excitation.  Hydrophilicity or water solubility was accomplished by utilizing alkyl 

carboxylic acid or short (3 repeat units) ethoxy chains in the 9 position of fluorene.  The 

possibility of populating the sensitizer triplet state was accomplished by synthesizing fluorene 

derivatives containing heavy atoms and functional groups such as iodide and nitro groups in 

position 2 and 7.  Benzothiazole derivatives were also synthesized in an effort to increase the 

conjugation and enhance the 2PA cross section of the sensitizer.  A detailed discussion of the 

synthesis and motivation of our approach will be presented in chapter 3. 
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CHAPTER 3: SYNTHESIS OF FLUORENE-BASED SINGLET 
OXYGEN SENSITIZERS 

 The synthesis of several hydrophilic singlet oxygen photosensitizers will be 

discussed in this chapter.  All solvents and reagents were purified prior to use, and commercially 

available reagents were used as received unless otherwise noted.  Reactions were carried out 

under nitrogen or argon atmospheres.  1H NMR spectra were recorded on Varian Mercury-300 

(300 MHz) or Varian Innova-500 NMR (500 MHz) spectrometers using TMS as the internal 

standard where the chemical shift was reported in parts per million (ppm).  13C NMR spectra 

were recorded on Varian Mercury-300 (75 MHz) NMR spectrometer.  High resolution mass 

spectrometry analysis were performed in the Department of Chemistry at the University of 

Florida.  Elemental analyses were performed by Atlantic Microlabs. 

3.1.1 Synthesis of Photosensitizer 1 

The synthesis 3,3’-(2-iodo-7-nitro-9H-fluorene-9,9-diyl)dipropanoic acid (PS 1) began 

from fluorene after recrystallization from hexanes (Scheme 1).  The synthesis involved the acid-

catalyzed nitration of fluorene in the 2 position.  Fluorene (20.0 g, 120 mmol) was placed in a 

three-neck flask equipped with a condenser and dissolved in 180 mL acetic acid.  The solution 

was degassed under argon and heated to 50 °C.  HNO3 (28 mL, 70%) was then added dropwise 

through an addition funnel over 30 min while maintaining constant temperature, during which 

time a yellow precipitate formed.  After HNO3 addition, the reaction was slowly heated to 60-65 

°C over 20-30 min.  Once the precipitate was dissolved, the temperature was increased to 80 °C 

for 5 min. TLC (5:1 hexanes/ethyl acetate) indicated no starting material, at which point the 
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reaction was slowly cooled to room temperature.  The reaction mixture was filtered through a 

Büchner funnel, affording a bright yellow precipitate.  The crude product was placed in a beaker 

and washed twice with ice cold water and filtered each time resulting in the isolation of a pale 

yellow solid.  The product was dried under vacuum to give 19.8 g (78% yd) of product (mp = 

161-163 °C), was determined to be pure after TLC and 1H NMR analysis, and used without 

further purification.   

 

Scheme 1.  Synthesis of fluorene based 1O2 photosensitizer 1 (PS 1). 
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2-Nitrofluorene (intermediate 1) was then converted to the iodo nitro intermediate 2 by 

placing 19.0 g (90 mmol) intermediate 1 into a three neck flask and dissolving it in 600 mL 

acetic acid and degasseing under argon.  I2 (11.4 g, 90 mmol) was then added to the solution at 
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room temperature and allowed to stir for 20 min, after which time an orange-brown mixture with 

undissolved material was observed.  NaNO2 (6.58 g, 95 mmol) was added, followed by the slow 

addition of 62 mL (98%) H2SO4.  The reaction was slowly heated to 115-120 °C and maintained 

at this temperature for 1 h while monitoring by TLC (5:1 hexanes/ethyl acetate).  The reaction 

was stopped, cooled to room temperature, and isolated by filtration.  The crude cake was washed 

with three small portions of cold water.  The filtrate was added to 500 mL ice, and the precipitate 

was filtered and combined with the crude product.  The product was dried and recrystallized 

from acetic acid, yielding 28.5 g (94% yd) of bright yellow needle like crystals (mp = 248-249.5 

°C).   

Intermediate 2 (2-iodo-7-nitrofluorene) was converted to the nitrile derivative 

(intermediate 3) by Triton B (benzyltrimethylammonium hydroxide)-catalyzed addition of 

acrylonitrile to fluorene in the 9 position.  Intermediate 2 (2.4 g, 7.1 mmol ) was dissolved in 

dioxane (12 mL) and degassed for ~ 20 min. under N2 atmosphere.  Triton B (40%, 0.11 mL) in 

water was added slowly through a syringe resulting in a brown mixture.  Acrylonitrile (0.80 g, 15 

mmol) was slowly added while maintaining a near constant temperature (40–45 °C).  The 

greenish-brown solution was stirred at room temperature for 21 h while monitoring by TLC (7:3 

hexanes/ethyl acetate).  The reaction was neutralized with ~ 7 mL 10% HCL followed by the 

addition of 20 mL distilled water.  The crude product was extracted with CH2Cl2, dried over 

anhydrous MgSO4, and the solvent was removed at reduced pressure.  A brown oil was obtained 

(56% yield) after purification by recrystallization from dioxane to give 1.8 g intermediate 3.  

M.p. 312-313°C. 1H NMR (500 MHz, DMSO-d6) δ 8.59 (s, 1H, Ph), 8.33(d, J=8.0 Hz, 1H, Ph), 

8.15(m, 2H, Ph), 7.87(m, 2H, Ph), 2.62(m, 4H, CH2), 1.66(t, J=7.3 Hz, 4H, CH2). 13C NMR (75 

MHz, DMSO-d6) δ 150.34, 148.13, 147.23, 147.08, 138.91, 138.25, 133.70, 125.19, 124.57, 
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122.00, 120.65, 120.25, 97.83, 54.92, 33.66, 12.37. Anal. Calcd. for C19H14IN3O2 (443.24): C, 

51.49; H, 3.18; N, 9.48. Found: C, 51.51; H, 3.23; N, 9.32. 

The nitrile group of intermediate 3 was hydrolyzed in a 1:1 mixture of H2SO4 in acetic 

acid by refluxing for 24 h.  After cooling to room temperature, the precipitate was filtered and 

recrystallized from isopropanol and hexane, affording 1.6 g  (81% yd) of compound 4 (3,3’-(2-

iodo-7-nitro-9H-fluorene-9,9-diyl)dipropanoic acid , PS 1).  M.p. 292-293 °C.  1H NMR (300 

MHz, DMSO-d6) δ 11.90 (s, 2H, OH), 8.41(s, 1H, Ph), 8.27 (m, 1H, Ph), 8.09(m, 2H, Ph), 

7.83(m, 2H, Ph), 2.41(m, 4H, CH2), 1.34(t, J=8.3 Hz, 4H, CH2). 13C NMR (75 MHz, DMSO-d6) 

δ 174.18, 152.72, 149.41, 147.96, 146.93, 138.74, 137.62, 133.18, 124.60, 124.39, 121.74, 

119.77, 97.55, 55.13, 33.97, 29.52. ESI-TOF MS: theoretical m/z [M+Na]+ = 503.9914, found 

503.9916. 

3.1.2 Synthesis of Photosensitizer 2 

PS 2 (3,3’-(2-(benzo[d]thiazol-2-yl)-7-nitro-9H-fluorene-9,9-diyl)dipropanoic acid) was 

synthesized starting from intermediate 2 by first converting the iodo group to the nitrile using 

CuCN.  Intermediate 2 (5.0 g, 14.8 mmol) and CuCN (1.4 g, 15.6 mmol) were placed in 41 mL 

dry DMF, degassed, and brought to reflux under N2 for 1.5 h.  The reaction was monitored by 

TLC (5:1 hexanes/ethyl acetate).  Upon cooling to 85 °C, a solution of FeCl3·6H2O (5.9 g, 22 

mmol), dissolved in 1.4 mL 36% HCl and 9.0 mL distilled water, was added, and the reaction 

was maintained at 60-70 °C for 1 h.  The reaction mixture was cooled to room temperature and 

precipitate collected by filtration, washed with two small portions of distilled water, and once 

with 95% ethanol. The crude product was recrystallized from a 1:1 mixture of DMSO/toluene to 
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afford 2.8 g (79% yd) of a pale yellow solid (mp 280.5-282, lit. 281-282),167 designated as 

intermediate 5. M.p. 280.5 – 282 °C.  1H NMR (300 MHz, DMSO-d6) δ 8.50(s, 1H, Ph-H), 

8.29(m, 3H, Ph-H), 8.14(s, 1H, Ph-H), 7.91(d, J=4.5 Hz, 1H, Ph-H), 4.15(s, 2H, CH2). 13C NMR 

(75 MHz, DMSO-d6) 147.74, 146.17, 145.85, 143.85, 131.98, 129.82, 123.58, 123.26, 122.73, 

121.26, 119.77, 111.23, 104.92, 37.61. 

Intermediate 5 was hydrolyzed to the carboxylic acid derivative by dissolving 2-iodo-9H-

fluorene-7-carbonitrile, the synthesis of which has been reported elsewhere,168 (2.5 g, 10.6 

mmol) in 10 mL 70% H2SO4, and 10 mL acetic acid.  The mixture was refluxed for 48 h.  After 

completion, the cooled precipitate was collected by filtration and recrystallized from DMSO 

twice to afford 1.6 g (58% yd) of intermediate 6. M.p. 338-340 °C (lit. 334-335 °C). 1H NMR 

(300 MHz, CDCl3) δ 8.48 (s, 1H, Ph-H), 8.31 (d, J = 8.4 Hz, 1H, Ph-H), 8.22 (s+d, 2H, Ph-H), 

8.17 (d, J = 7.8 Hz, 1H, Ph-H), 8.03 (d, J = 8.1 Hz, 1H, Ph-H), 4.15 (s, 2H, CH2). 13C NMR (75 

MHz, CDCl3) 167.73, 147.39, 146.92, 145.97, 145.68, 143.52, 131.28, 129.14, 126.92, 123.53, 

122.29, 122.23, 121.17, 37.59. HRMS-ESI theoretical m/z [M+Na]+ = 278.0424, found 

278.0441. 

The carboxylic acid group of intermediate 6 (1.5 g, 5.9 mmol) was converted to the acid 

chloride (intermediate 7) by dissolving it in thionyl chloride (4 mL) and bringing it to reflux for 

4 h under N2.  After completion, the excess thionyl chloride was removed under reduced 

pressure.  The dried residue of intermediate 7 was mixed with 2-aminobenzenethiol (0.74 g, 5.9 

mmol) in 10 mL N-methylpyrrolidone (NMP) and heated to 100 °C for 15 h.  The reaction was 

cooled to room temperature, precipitated with 95 % ethanol, and collected by filtration.  The 

solid material was washed with ethanol followed by hexane, and dried at reduced pressure.  The 

crude product was recrystallized from DMSO to afford 1.5 g (74% yd) of intermediate 8.  M.p. 
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298-299 °C , 1H NMR (300 MHz, DMF-d7) δ 8.72(s, 1H, Ph-H), 8.63(s, 1H, Ph-H), 8.57-

8.43(m, 4H, Ph-H), 8.38(d, J=8.1 Hz, 1H, Ph-H), 8.29(d, J=9.0 Hz, 1H, Ph-H), 7.77 (t, J=8.1 Hz, 

1H, Ph-H), 7.68(t, J=7.2 Hz, 1H, Ph-H), 3.67(s, 2H, CH2). HRMS-EI theoretical m/z [M]+ = 

344.0620, found 344.0620. Anal. Calcd. for (C20H12N2O2S): C, 69.75; H, 3.51; N, 8.13; S, 9.31. 

Found: C, 69.68; H, 3.53; N, 8.09; S, 9.39. 

 

Scheme 2.  Synthesis of fluorene based 1O2 photosensitizer 2 (PS 2). 
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Intermediate 8 was converted to the dinitrile derivative by Triton B-catalyzed addition of 

acrylonitrile to fluorine, as previously described.  Briefly, intermediate 8 (1.5 g, 4.4 mmol ) was 

dissolved in dioxane (8 mL) and degassed under N2.  40% Triton B (0.07 mL) was added slowly, 

followed by the addition of acrylonitrile (0.49 g, 9.1 mmol) while maintaining a near constant 

temperature (40–45 °C).  The greenish-brown solution was stirred at room temperature for 23 h, 

while monitoring by TLC (7:3 hexanes/ethyl acetate), and was neutralized with ~ 5 mL 10% 

HCL followed by the addition of 13 mL distilled water.  The crude product was extracted with 

CH2Cl2, dried over anhydrous MgSO4, and the solvent was removed at reduced pressure.  A 

brown oil was obtained after purification by recrystallization (99:1 CH2Cl2/methanol) to afford 

1.8 g (91% yd) of intermediate 9.  M.p. 236-237 °C, 1H NMR (500 MHz, CDCl3) δ 8.43 (d, J = 

8.5 Hz, 1H, Ph-H), 8.34 (s, 1H, Ph-H), 8.31 (s, 1H, Ph-H), 8.19 (d, J = 7.5 Hz, 1H, Ph-H), 8.13 

(d, J = 7.0 Hz, 1H, Ph-H), 7.98 (m, 3H, Ph-H), 7.57 (t, J = 7.5 Hz, 1H, Ph-H), 7.47 (t, J = 7.5 Hz, 

1H, Ph-H), 2.65 (m, 4H, CH2), 1.73 (m, 2H, CH2), 1.62 (m, 2H, CH2). 13C NMR (75 MHz, 

DMSO-d6) δ 167.58, 154.02, 149.06, 148.35, 148.19, 146.71, 142.02, 135.22, 134.61, 129.00, 

127.41, 126.32, 125.18, 123.57, 123.48, 123.24, 123.03, 122.40, 120.68, 120.24, 55.14, 33.80, 

12.49. HRMS-EI theoretical m/z [M]+ = 450.1150, found 450.1156. Anal. Calcd. for 

C26H18N4O2S⋅0.38dioxane (determined by 1H NMR) (475.99): C, 69.44; H, 4.46; N, 11.77. 

Found: C, 69.22; H, 4.56; N, 11.45. 

Photosensitizer 2 (compound 10) was obtained after hydrolysis of intermediate 9 by 

refluxing 1.7 g (3.8 mmol) in a 1:1 mixture of H2SO4 in acetic acid for 24 h.  The mixture was 

cooled to room temperature and the precipitate was collected by filtration. Recrystallization in 

THF and hexanes produced 1.4 g (78% yd) of PS 2.  M.p. 245-246 °C. 1H NMR (300 MHz, 

DMSO-d6) δ 11.88(br, 2H, OH), 8.48(s, 1H, Ph), 8.30(m, 2H, Ph), 8.214-8.07(m, 5H, Ph), 
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7.55(t, J=8.0 Hz, 1H, Ph), 7.48(t, J=8.0 Hz, 1H, Ph), 2.54(m, 4H, CH2), 1.42(t, J=8.0 Hz, 4H, 

CH2). 13C NMR (75 MHz, DMSO-d6) δ 174.20, 167.66, 154.15, 151.39, 150.63, 148.12, 146.65, 

142.00, 135.29, 134.44, 128.48, 127.42, 126.34, 124.63, 123.58, 123.39, 123.02, 122.55, 122.20, 

119.85, 55.31, 34.11, 29.58. HRMS theoretical m/z [M+H]+ = 489.1115, found 489.1112. 

3.1.3 Synthesis of Photosensitizer 3 

Key intermediate 2 was converted to PS 3 (3,3’-(2-iodo-7-nitro-9H-fluorene-9,9-

diyl)diethoxy-2-methoxyethane) in one step (Scheme 3).  2-Iodo-7-nitro-9H-fluorene (2.5 g, 7.4 

mmol) was dissolved in 33 mL DMSO.  KI (0.13 g, 0.8 mmol) and KOH (1.7 g, 30.3 mmol) 

were added and the solution was degassed for 20 min.  1-Bromo-2-(2-methoxyethoxy)ethane 

(3.3 g, 18 mmol) was added dropwise under Ar.  The reaction was monitored by TLC (7:3 

cyclohexane/ethyl acetate) and was stopped after 24 h.  The reaction was worked up by adding 

100 mL brine and extracting the product with five 25 mL portions of CH2Cl2.  The organic layers 

were combined and washed with a final 100 mL portion of fresh brine solution.  The organic 

layer was dried over anhydrous MgSO4, filtered, and the CH2Cl2. was removed under reduced 

pressure, affording a dark brown oil.  The product (compound 11) was purified by column 

chromatography (7:3 cyclohexane/ethyl acetate) to give 3.0 g (74% yd) of a dark amber oil. 1H 

NMR (300 MHz, CDCl3) δ:  8.26 (s, 1H, ArH), 8.24 (d, 1H, ArH), 7.82 (s, 1H, ArH), 7.76 (d, 1 

H, ArH), 7.73 (1H, ArH), 7.51 (d, 1H, ArH), 3.26 (s, 6H, OCH3), 3.23 (m, 4H, OCH2), 3.15 (m, 

4H, OCH2), 2.80 (m, 4H, OCH2), 2.43 (m, 4H, CH2).  13C NMR (75 MHz, CDCl3) δ:  152.92, 

150.11, 147.59, 145.90, 137.85, 137.01, 133.25, 123.79, 122.81, 120.19, 119.22, 95.73, 71.98, 
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70.28, 67.06, 59.37, 52.61, 39.59.  Anal. Calcd. for C23H28INO6:  C, 51.03; H, 5.21; N 2.59.  

Found:  C, 50.96; H, 5.23; N, 2.59. 

 

Scheme 3.  Reaction of key intermediate 2 with 1-bromo-2-(2-methoxyethoxy)ethane 
to form PS 3. 
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3.1.4 Synthesis of Photosensitizer 4 

Key intermediate 8 was converted to PS 4 (3,3’-(2-(benzo[d]thiazol-2-yl)-7-nitro-9H-

fluorene-9,9-diyl)diethoxy-2-methoxyethane) in one step, as previously described (Scheme 4).  

Briefly, 2-benzothiazole-7-nitro-9H-fluorene (1.3 g, 3.8 mmol) was dissolved in 33 mL DMSO.  

KI (0.06 g, 0.038 mmol), and KOH (0.85 g, 15.1 mmol) were added and the solution was 

degassed for 20 min.  1-Bromo-2-(2-methoxyethoxy)ethane (1.7 g, 9.1 mmol) was added 

dropwise under Ar.  The reaction was monitored by TLC (7:3 cyclohexane/ethyl acetate) and 

was stopped after 24 h.  The reaction was worked up by adding 100 mL brine and extracting the 

product with five 25 mL portions of CH2Cl2. The organic layers were combined and washed with 

a final 100 mL portion of fresh brine solution.  The organic layer was dried over anhydrous 

MgSO4, filtered, and the CH2Cl2. was removed under reduced pressure to afford a dark brown 

oil.  The product (compound 12) was purified by column chromatography (7:3 cyclohexane/ethyl 
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acetate) to give 1.4 g (69%) of a dark amber oil. 1H NMR (300 MHz, CDCl3) δ:  8.33 (s,1H, 

ArH), 8.30 (d, 1H, ArH), 8.22 (s, 1H, ArH), 8.15 (d, 1H, ArH), 8.11 (d, 1H, ArH), 7.94, (d, 1H, 

ArH), 7.88 (d, 1H, ArH), 7.86 (d, 1H, ArH), 7.52 (t, 1H, ArH), 7.41 (t, 1H, ArH), 3.22 (m, 4H, 

OCH2), 3.21 (m, 6H, OCH3), 3.15, (m, 4H, OCH2), 2.90 and 2.82 (m, 4H, OCH2), 2.55, (t, 4H, 

CH2).  13C NMR (75 MHz, CDCl3) δ:  167.37, 154.17, 151.70, 151.37, 147, 67, 145.78, 140.89, 

135.18, 134.59, 127.81, 126.71, 125.66, 123.76, 123.47, 122.60, 121.90, 121.85, 120.60, 119.37, 

71.94, 70.25, 67.16, 59.29, 52.77, 39.67.  Anal. Calcd. for C30H32N2O6S:  C, 65.67; H, 5.88; N 

5.11.  Found:  C, 65.73; H, 5.98; N, 4.96. 

 

Scheme 4.  Reaction of key intermediate 8 with 1-bromo-2-(2-methoxyethoxy)ethane 
to form PS 4. 
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CHAPTER 4: PHOTOPHYSICAL CHARACTERIZATION OF 1O2 
SENSITIZERS 

This chapter will focus on the linear and nonlinear photophysical properties of the 

hydrophilic fluorene derivatives described in the previous chapter.  Linear spectral properties 

will be reported in the first section for these derivatives at room temperature and 77 K in organic 

solvent.  A brief comment will be made on the low temperature measurements that were 

performed to estimate the energies of the lowest triplet state of the sensitizers.  In section 4.2, the 

nonlinear optical parameters will be reported under steady state excitation at room temperature.  

In addition, the characterization of 1O2 generation under 1PE and results from investigating the 

spectral dependence of its formation will be described.  The final section will conclude with a 

discussion of 1O2 generation under pulsed 2PE and determination of the corresponding 2PA 

cross section for each fluorene sensitizer. 

4.1.1 Linear Photophysical Characterization at Room Temperature and 77 K 

The steady-state linear absorption spectra were obtained with an Agilent UV-visible 

spectrophotometer.  Excitation and luminescence spectra were obtained with a PTI Quantamaster 

spectrofluorimeter equipped with a PMT and a nitrogen cooled (77 K) Hamamatsu R5509-73 

PMT.  All luminescence measurements were performed in the photon-counting regime of 

detectors, using 10 mm path length quartz cuvettes with concentrations of PS, C ≤ 3 x 10-6 M.  

The emission spectra were corrected for the spectral sensitivity of detectors.  The optical density 

of the solutions did not exceed 0.15 at the corresponding excitation wavelengths.  The 

fluorescence quantum yields of PS 1-4 were determined by a standard method relative to 9,10-
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diphenylanthracene in cyclohexane using Equation 5.121  From Equation 5, QYS and QYR are the 

fluorescence quantum yield, Is and IR are the integrated fluorescence emission intensity, ODS and 

ODR are the optical density of each solution, and nS and nR are the refractive indexes of the 

sample and reference solvents respectively.   

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××
××

= 2

2

RSR

SRS
RS nODI

nODIQYQY  (5) 

Equation 5.  Relative fluorescence quantum yield determination. 
 

Time-resolved emission spectra of PS 1-4 in ACN were measured at 77 K with a PTI 

Timemaster spectrofluorimeter (time resolution ~ 0.1 ns) in order to find the energy of their 

long-lived triplet electronic state that is primarily responsible for singlet oxygen generation.  

Low temperature measurements were performed in a NMR sample tube with deoxygenated 

solutions of PS 1–4 prepared by repeated freeze-pump-thaw cycles under nitrogen.  The 

efficiency of a photosensitizer to generate singlet oxygen can be estimated by knowing the 

energy of the sensitizer’s triplet state.  Typically this energy should be greater than the higher 

energy orbital of 1O2 (1Σ+
g) 157 kJ/mol.  Oxygen was removed from a solution of each PS 

dissolved in acetonitrile (ACN) to prevent quenching by ground state oxygen and to increase the 

chances of observing phosphorescence by the sensitizer.  Unfortunately, fluorescence emission 

and not phosphorescence was observed for all oxygen-free low temperature measurements.  As a 

result, the linear spectra that follow contain fluorescence emission at 77 K and zero time delay.  

The time delay was increased incrementally (0 ∼ 1 µs) while attempting to observe 

phosphorescence.  As the delay was increased, the emission intensity decreased maintaining the 
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same spectral profile.  If phosphorescence was present it could not be resolved from the 

fluorescence emission.   
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Figure 31.  Linear spectral properties for PS 1: (1-black) absorption RT, (2-red) 
excitation 77 K, (3-magenta) fluorescence emission RT, (4-blue) fluorescence 
emission 77 K.  The chemical structure of PS 1 is on the right. 

 

The normalized linear spectra in ACN are presented in Figure 31 for PS 1.  The room 

temperature absorption (curve 1) and fluorescence emission (curve 3) are near mirror images of 

one another with a 206 nm Stokes shift, indicating strong charge-transfer in the S1 excited state.  

An absorption maximum for the sensitizer is observed at 340 nm with ε = 21,000 M-1 cm-1.  The 

low temperature excitation (curve 2) and fluorescence emission spectra (curve 4) exhibit nearly 

the same Stokes shift (199 nm) compared to the room temperature spectra.  This would suggest 

that the sensitizer is not significantly affected by solvent relaxation of the S1 excited state or that 

relaxation occurs very rapidly.  Typically, one would observe a blue shift of the low temperature 

fluorescence emission if solvent relaxation had much of an effect on the S1 state.  This is because 

solvent molecules cannot rotate as rapidly and reorient around the fluorophore at low 
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temperature.  The solvent dependent reorientation lowers the energy of the fluorophore excited 

state and can shift the fluorescence emission to longer wavelengths.  The low temperature 

fluorescence emission (curve 4) shows additional vibrational structure than its absorption and 

excitation spectra which are devoid of fine structure.  The fine structure is probably not seen at 

room temperature because excess vibrational energy is lost to solvent.  The fluorescence 

quantum yield (< 10-4) is also impressively low.  A summary of the linear photophysical data can 

be found in Table 2. 
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Figure 32.  Linear spectral properties for PS 2: (1-black) absorption RT, (2-red) 
excitation 77 K, (3-magenta) fluorescence emission RT, (4-blue) fluorescence 
emission 77 K.  The chemical structure of PS 2 is on the right. 

 

The spectra for PS 2 obtained at room temperature and 77 K (Figure 32) exhibit less 

charge transfer character in the excited state compared to PS 1.  This is identified by the smaller 

Stokes shift (166 nm) between the absorption (curve 1) and fluorescence spectra (curve 3) at 

room temperature.  Substitution of the iodo group with benzothiazole resulted in a small red shift 

(22 nm) in the main absorption band of curve 1 (362 nm) along with an increase in the molar 
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absorptivity (ε = 36,000 M-1 cm-1) of the sensitizer.  The emission spectra (curves 3 and 4) mirror 

their corresponding absorption (curve 1) and excitation spectra (curve 2) well.  Clearly, there is a 

larger polar dependence on the sensitizer S1 excited state as seen by the blue shift of the 

fluorescence emission (484 nm) at 77 K in comparison to the room temperature emission (528 

nm), resulting in a 72 nm Stokes shift.  The fluorescence QY for PS 2 remained sufficiently low 

(6 x 10-3) , affording the possibility of efficient intersystem crossing to the triplet state.   
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Figure 33.  Linear spectral properties for PS 3: (1-black) absorption RT, (2-red) 
excitation 77 K, (3-magenta) fluorescence emission RT, (4-blue) fluorescence 
emission 77 K.  The chemical structure of PS 3 is on the right. 

 

The linear spectral data for PS 3 is very similar to that of PS 1, as expected.  The 

absorption (curve 1) and fluorescence emission (curve 3) maxima were observed at 342 and 564 

nm, respectively.  Substitution of the two carboxylic acid groups with alkoxy chains in the 9 

position of fluorene to affect solubility does not significantly perturb the main π-conjugation of 

the fluorene ring system.  However, a small increase in the molar absorptivity (23,000 M-1 cm-1) 
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and a larger Stokes shift (223 nm, curve 3) was observed for PS 3 relative to the similar PS 1 

derivative (21,000 M-1 cm-1, 206 nm).  It would appear that the S1 state is somewhat affected by 

changes in the 9 position of fluorene, and substitution of a carboxylic acid with an alkoxy chain 

slightly increases the charge transfer character of the sensitizer.  Comparison of the low 

temperature Stokes shift for PS 1 (199 nm) and PS 3 (191 nm) indicates that substitution with the 

alkoxy groups do not appear to change the polar dependence of the sensitizer as seen by their 

similar Stokes shift.  
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Figure 34.  Linear spectral properties for PS 4: (1-black) absorption RT, (2-red) 
excitation 77 K, (3-magenta) fluorescence emission RT, (4-blue) fluorescence 
emission 77 K.  The chemical structure of PS 4 is on the right. 

 

The maxima of absorption (curve 1) and emission (curve 3) of PS 4 were observed at 364 

and 525 nm, respectively with a Stokes shift of 161 nm at room temperature.  The fluorescence 

QY (7 x 10-3) of PS 4 was determined to be quite small.  The charge transfer character of PS 4 is 

nearly the same as the carboxylic acid derivative PS 2.  A slightly larger change in charge 

transfer character was observed between the two iodo nitro derivatives (PS 1 and 3) when the 
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functional group for solubility was changed from the carboxylic acid to the alkoxy chain.  The 

Stokes shift (75 nm) observed at low temperature (curve 4) is more than half that of the iodo 

nitro derivative (PS 3, 191 nm).  A similar result was observed for PS 2, indicating that the two 

benzothiazole derivatives have a larger solvent dependence than the iodo derivatives.  As with 

PS 2, the alkoxy nitrobenzothiazole derivative (PS 4) exhibits less charge transfer character, in 

addition to some solvent dependence, when compared to the iodo derivatives (PS 1 and 3).  

Similar to PS 1 and 3, the molar absorptivity (40,000 M-1 cm-1) of PS 4 was about 10% larger 

than the carboxylic acid derivative PS 2 (36,000 M-1 cm-1).   

 

Table 2.  Linear photophysical parameters of PS 1-4 in ACN: absorption, absλmax, 
excitation, excλmax, and steady state emission, emλmax , maxima, steady state Stokes 
shift, fluorescence quantum yield, ΦFl, and molar absorptivity, ε. 
 PS 1 PS 2 PS 3 PS 4 
absλmax nm (298 K) 340 362 342 364 
emλmax nm (298 K) 546 528 565 525 
excλmax nm (77 K) 361 412 362 412 
emλmax nm (77 K) 560 484 553 487 

Stokes shift, nm (298 K) 206 166 223 161 

Stokes shift, nm (77 K) 199 72 191 75 

ΦFl (298 K) ≤ 10-4 (6 ± 2) x 10-3 ≤ 1.3 x 10-4 (7 ± 2) x 10-3

ε M-1 cm-1 21,000 36,000 23,000 40,000 
 

Modification of the chromophore π conjugation resulted in small changes in 

spectroscopic properties of the investigated PSs.  The iodo nitro derivatives (PS 1 and 3) 

exhibited increased charge transfer character and less solvent polarity dependence when 

compared to the benzothiazole derivatives (PS 2 and 4).  Substitution of the iodo group by 
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benzothiazole resulted in a small red shift of the main absorption band and a small increase in the 

fluorescence QY.  Modification for solubility increased the molar absorptivity by about 10% 

when the carboxylic acid group was substituted with an alkoxy chain, and nearly no change in 

absorption, fluorescence emission, or fluorescence QY was observed.  

4.1.2 Singlet Oxygen Generation under One-Photon Excitation 

Singlet oxygen luminescence, produced under steady-state excitation of the PS (Xe-lamp 

irradiation), was measured at room temperature with a PTI Quantamaster spectrofluorimeter 

using a cooled PMT (77 K) Hamamatsu R5509-73.  The spectral resolution of the singlet oxygen 

phosphorescence spectra was ≈ 8 nm.  The quantum yields of O2 (1∆g) generation under one-

photon excitation, Φ∆, were obtained for PS 1-4 from the relative steady-state measurements of 

singlet oxygen phosphorescence at ≈ 1270 nm in comparison with acridine in ACN (Φ∆ ≈ 

0.82).50  The quantum yields of O2 (1∆g) generation in water was obtained for the two carboxylic 

acid derivatives (PS 1 and 2) in phosphate buffered saline (0.1 M, pH 7.2) relative to rose bengal 

(Φ∆ ≈ 0.76).  The singlet oxygen quantum yield was determined from Equation 6 where, QYS and 

QYR are the singlet oxygen quantum yield of the sample and reference, respectively, Is and IR are 

the integrated phosphorescence emission intensity of the sample and reference, respectively, PS 

and PR are the excitation power of the sample and reference, respectively, ODS and ODR are the 

optical density from the sample and reference, respectively.  No photochemical decomposition of 

PS 1-4 was observed during these experiments. 
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Equation 6.  Relative singlet oxygen quantum yield determination. 
 

The spectral dependence of the singlet oxygen quantum yield was determined for each PS 

over a broad spectral range (270 – 420 nm).  A representative spectrum from PS 4 is presented in 

Figure 35.  The spectral range investigated covers several possible electronic transitions of the 

PS.  It is evident from the data that higher excited states (Sn) do not contribute to the production 

of singlet oxygen, and the most efficient singlet-triplet transitions of the fluorene-based PS occur 

from the lowest excited singlet electronic state (S1).  Hence, the quantum yield of singlet oxygen 

photosensitization is independent of excitation wavelength over the spectral region of PS 

absorption.   

The values of Φ∆ obtained from relative phosphorescence measurements are presented in 

Table 3.  All PS’s investigated were very efficient in producing singlet oxygen, especially the 

two nitro benzothiazole derivatives (PS 2 and 4) with their Φ∆ approaching unity.  The iodo nitro 

derivatives had Φ∆ values that were slightly smaller than the nitro benzothiazole derivatives.  

This is not surprising since it is known that the efficiency of 1O2 production decreases as the 

charge transfer character of the sensitizer increases.  The carboxylic acid derivatives (PS 1-2) 

were water soluble, enabling their quantum yields of O2 (1∆g) generation in PBS to be measured.  

These two derivatives had fairly large Φ∆ values (≈ 0.4) in water, which are at least twice that of 

many of the water soluble 1O2 sensitizers that are being developed by other groups.55  Most water 

soluble sensitizers that have been developed for 1PE or 2PE have 1O2 QYs < 0.20 and are 

typically closer to 0.05.   
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Figure 35.  Spectral dependence of singlet oxygen quantum yield generation, Φ∆ (red 
triangles), for PS 4 in ACN under one-photon excitation along with its corresponding 
one-photon absorption spectrum (black line). 

 

Table 3.  Quantum yields of singlet oxygen generation, Φ∆, under one-photon 
excitation of PS 1-4, and molar absorptivity, ε, measured at absλmax in ACN. 
 PS 1 PS 2 PS 3 PS 4 

Φ∆  (ACN) 0.65 ± 0.07 0.93 ± 0.10 0.74 ± 0.08 0.92 ± 0.10 

Φ∆  (H2O)* 0.43 ± 0.10 0.34 ± 0.02 NA NA 

ε M-1 cm-1 21,000 36,000 23,000 40,000 
* Measured in phosphate buffered saline 0.1 M, pH 7.2.  (NA) sensitizer was not measured due to poor solubility. 

 

The irradiance dependence on excitation power was investigated to determine if there 

were any nonlinear processes occurring under 1PE of the investigated PS’s.  All compounds 

exhibited a linear response with a slope of nearly 1 (Figure 36).  Accordingly, no nonlinear, 

quenching, or photodecomposition processes were observed during analysis.   
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Figure 36.  Dependence of singlet oxygen phosphorescence intensity under, I∆, under 
1PE in ACN on the excitation power, P, at absλmax: A) PS-1, B) PS-2, C) PS-3, D) PS-
4. 

 

4.1.3 Singlet Oxygen Generation under Two-Photon Excitation 

The efficiency of 2PA of PS 1-4 was determined by the open aperture Z-scan method156 

using a picosecond Nd:YAG laser (PL 2143 B Ekspla) coupled to an optical parametric 

generator (OPG 401/SH).  Pulse energies were measured with a Laserstar power meter (Ophir 

Optronics, Inc.).  Two-photon induced average phosphorescence intensities of 1O2 was measured 
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using the PTI Quantamaster spectrofluorimeter and the cooled PMT under femtosecond laser 

excitation (Clark-MXR, CPA-2001), with pulse duration ≈ 140 fs (FWHM), repetition rate 1 

kHz, output wavelength 775 nm, and average power ≤ 200 mW.  The laser beam was focused 

into 10 mm path length fluorometric quartz cuvettes to a waist radius of ≈ 1.5 mm.  No evidence 

of white-light continuum generation was observed in the solutions under the experimental 

conditions.  Concentrations of the investigated PS in ACN were in the range 10-4 ≤ C ≤ 10-3 M.  

The quantum yields of 1O2 sensitization under two-photon excitation, 2PAΦ∆, were determined by 

the same relative steady-state method as in the case of linear, one-photon, singlet oxygen 

generation.  The averaged phosphorescence of singlet oxygen produced by two-photon 

absorption of PS 1-4 was measured in comparison with the corresponding phosphorescence 

intensity from a solution of 3,3’-(2-(benzo[d]thiazol-2-yl)-7-nitro-9H-fluorene-9,9-

diyl)dipropanoic acid, used as a standard under the same experimental geometry and average 

power of the laser beam.  In this case, the values of 2PAΦ∆ can be calculated from Equation 7. 
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Equation 7.  Calculation for determining singlet oxygen quantum yield by 2PA. 
 

Where I∆, IR
∆, δ2PA, and δR

2PA are the average steady-state phosphorescence emission of 

singlet oxygen from the PS solutions and 2PA cross-sections of the sample and reference PS at 

the excitation wavelength (λexc = 775 nm), respectively. The 2PAΦ∆
R is the quantum yield of 1O2 

sensitization under two-photon excitation of the reference PS.  The typical phosphorescence 

signal of 1O2 produced under two-photon excitation of PS 1-4 in ACN is shown in Figure 37.  
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These signals are proportional to I∆ and were used for the determination of 2PAΦ∆.  The value of 

I∆ exhibited a linear dependence on the square of excitation power for all the investigated PS, 

consistent with pure 2PA processes and low quenching efficiency (Figure 38). 
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Figure 37.  Average phosphorescence signal of singlet oxygen produced by PS 4 in 
ACN under femtosecond two-photon excitation at 775 nm. 
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Figure 38.  Dependence of singlet oxygen phosphorescence intensity, I∆, under 2PE 
in ACN on the excitation power, P, at 775 nm: A) PS-1, B) PS-2, C) PS-3, D) PS-4. 

 

2PA cross-sections, δ2PA, of PS 1-4 in ACN were measured at 775 nm by the open 

aperture Z-scan method and are presented in Table 4.  Relatively low values of δ2PA were 

obtained for PS 1 and 3 at 775 nm.  This wavelength corresponds to the long wavelength edge of 

their main absorption band.  Although 775 nm is not optimal for two-photon photosensitization, 

this wavelength was used since it is the fundamental output of the Clark-MXR Ti:sapphire laser, 

and possessed sufficient intensity for 2PA-induced singlet oxygen quantum yield determination.  

The quantum yields, 2PAΦ∆, were determined from Equation (7) for PS 1-4 in ACN and are 
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presented in the same table.  This work represents the first direct 2PA singlet oxygen quantum 

yield determination by the singlet oxygen phosphorescence method.  Previous reports involved 

either one-photon singlet oxygen quantum yield measurements, indirect singlet oxygen quantum 

yield determination via photochemical methods upon 2PE, or only qualitative 2PE singlet 

oxygen generation.  PS 1-4 all possessed relatively high two-photon quantum yields, 2PAΦ∆ ≈ 0.3 

- 0.45, which are nearly equal to half of the corresponding Φ∆ values obtained under linear, one-

photon, excitation.  Values for 2PAΦ∆ that are half of the corresponding Φ∆ values are expected 

since twice the number of photons are absorbed in a 2PA process relative to 1PA.  This indicates 

that the processes of singlet oxygen production for all the investigated PS start from the same 

vibronic levels of S1 and are nearly independent of the type of excitation.  This research 

successfully identified a class of PS compounds that exhibit high singlet oxygen quantum 

efficiency under both one- and two-photon excitation.  Future work will be directed at structural 

modification to increase the δ2PA. 

 

Table 4.  Singlet oxygen quantum yields by 2PE, 2PAΦ∆, and 2PA cross-sections, 
δ2PA, of PS 1-4 at 775 nm in ACN. 
 PS 1 PS 2 PS 3 PS 4 
2PAΦ∆ 0.40 ± 0.20 0.35 ± 0.10 0.30 ± 0.15 0.45 ± 0.15 

δ2PA, GM 9 ± 4 50 ± 15 10 ± 4 60 ± 20 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The research presented in this dissertation focused on the synthesis and photophysical 

characterization of new, hydrophilic two-photon absorbing fluorene-based singlet oxygen 

photosensitizers.  A synthetic strategy was adopted to impart water solubility, large 1O2 QYs, and 

moderately high 2PA cross sections.  Hydrophilicity was accomplished by incorporating alkyl 

carboxylic acid or ethyleneoxy motifs pendant to the main fluorene architecture without 

perturbing the central π conjugation of the chromophore.  Large 1O2 QYs were achieved by 

incorporating heavy atom halogens and/or nitro groups to promote intersystem crossing to the 

triplet state.  Increase of the 2PA δs was obtained by extending the conjugation of the 

chromophore with an electron withdrawing benzothiazole group.  Thorough photophysical 

characterization of each sensitizer was performed at room and low temperature (77 K) to better 

understand their spectral properties and to evaluate the efficiency of 1O2 sensitization by one- 

and two-photon excitation.  Photophysical characterization revealed important features and 

characteristics of the sensitizers that can be used to help direct future development of fluorene 

based 1O2 sensitizers having large 2PA cross sections at wavelengths extending into the near IR 

region.  This work represents the first direct 2PA singlet oxygen quantum yield determination by 

the singlet oxygen phosphorescence method.  The successful development of 2PA singlet oxygen 

sensitizers is particularly important in the field of photodynamic therapy and could have a 

dramatic impact on addressing such issues as specificity of 1O2 formation, efficiency, and ability 

to penetrate deeper into tissue.   
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Very good water solubility was accomplished by incorporating alkyl carboxylic acid or 

ethyleneoxy groups into the 9 position of the fluorene ring without significantly perturbing the 

photophysical properties of the sensitizer.  The carboxylic acid derivatives (PS 1-2) afforded 

high aqueous solubility under biological conditions (PBS, pH 7.2) while maintaining high 1O2 

QYS (0.4-0.34).  Typically, the efficiency of 1O2 production decreases as the polarity of the 

solvent is increased, and often the 1O2 QY in water is << 0.20.  The ethyleneoxy derivatives (PS 

3-4) were not as water soluble as PS 1-2 but still quite hydrophilic.  PS 3-4 were soluble in a 

DMSO water mixture or in ethanol.   

The synthesis of fluorene derivatives with heavy atoms was accomplished using iodo 

and/or nitro groups, resulting in large 1O2 QYs.  The use of iodo, and other halogens, is often 

used to promote intersystem crossing to the triplet state.  It is interesting to note that the 

nonhalogen containing sensitizers (PS 2 and 4) had the highest 1O2 QYs, 0.93 and 0.92, 

respectively.  The linear photophysical characterization of the sensitizers revealed a large amount 

of charge transfer character in the iodo derivatives (PS 1 and 3) which could be responsible for 

the lower 1O2 QYs, 0.65 and 0.74, respectively.  When trying to promote the heavy atom effect it 

is important to locate the heavy atom/group near the location (part of the molecule) where the 

electronic transition occurs.  Hence, the halogen or nitro group does not need to be directly inline 

with the conjugation to enhance intersystem crossing as it is when it is placed in the 2 or 7 

position of the fluorene ring.  Moving the heavy atom group to the 4 position and placing a group 

in the 2 or 7 position that does not increase the charge transfer character significantly may be a 

good alternative to increasing the 1O2 QY of the sensitizer via the heavy atom effect.   

Substitution of the iodo group with benzothiazole shifted the main absorption band to 

longer wavelengths by about 20 nm.  This is not very significant considering the ideal location 
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for the main absorption band should be around 400-500 nm (800-1000 nm for 2PE).  However, 

the benzothiazole group reduced the charge transfer character of the sensitizer and increased the 

2PA cross section 5-6 times compared to the iodo nitro derivatives.  Based on these results, the 

best approach may be to extend the conjugation by insertion of a styryl group between fluorene 

and benzothiazole and to include a heavy atom/group in the 4 position or on the styryl system to 

promote intersystem crossing to the triplet state.  The main absorption band can be shifted to 

longer wavelengths by extending the conjugation, and fluorescence can be reduced by promoting 

intersystem crossing to the triplet state.   

Clearly PS 1-4 are efficient 1O2 sensitizers under the conditions studied.  The QY value 

of singlet oxygen generation by 1PE for each sensitizer did not change over a broad region of 

wavelengths, revealing no spectral dependence on the 1O2 QY.  Analysis of the power 

dependence on 1O2 luminescence intensity revealed a linear dependence, indicating no other 

photophysical processes occurred.  This is particularly important in demonstrating that singlet 

oxygen is not being formed by quenching of the sensitizer singlet state.   

Singlet oxygen formation by 2PE was demonstrated.  The quantum yields were about half 

(~0.3-0.45) of the corresponding singlet oxygen quantum yields obtained under 1PE, indicating 

1O2 formation proceeds from the lowest excited S1 state regardless of the type of excitation (1PE 

or 2PE).  A value of half is expected since twice the number of photons are required for 2PA 

relative to 1PA.  A quadratic dependence on the excitation power was observed for the singlet 

oxygen luminescence intensity under 2PE, demonstrating that no other nonlinear effects were 

present.  Under high irradiation intensities it is possible to observe reabsorption from the 

sensitizer excited state, which results in lower 1O2 luminescence intensities as the power is 

increased.  Additionally, no photobleaching of the sensitizers were observed during any of the 
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experiments under 1PE or 2PE.  Moderate 2PA δ were reported (~10-60 GM).  It is important to 

note that these values were obtained at a wavelength (775 nm) at the far edge of their main two-

photon absorption band.  To be useful as a PDT sensitizer it will be necessary to push this main 

absorption band to longer wavelengths (800-1000 nm) where much larger 2PA cross sections are 

expected.   

5.2 Future Work 

The usefulness of fluorene as a central chromophore platform, from which a vast array of 

derivatives can be obtained, has been demonstrated by our group.  The rest of this chapter 

discusses a new synthetic strategy to build upon the work that has been presented in this 

dissertation.  A series of reactive chromophore units will be proposed where issues such as 

shifting the main absorption band to longer wavelengths and increasing the 2PA cross section of 

the sensitizer will be addressed.  Each chromophore unit will contain a reactive nitrile functional 

group to allow easy attachment to fluorene in the 2 or 7 position.  This will allow the synthesis of 

a diverse group of symmetrical and unsymmetrical fluorene derivatives.  The reactive 

chromophore units will permit mixing and matching of the units to modulate the photophysical 

properties of each individual sensitizer.   

The main objectives of the proposed synthetic strategy is to produce a variety of 

chromophore units utilizing a uniform synthetic procedure, extend the chromophore conjugation 

while maintaining photostability, and incorporate heavy atoms and functional groups to promote 

intersystem crossing while minimizing fluorescence emission.  The chromophore will be 

extended by inserting functionalized styryl benzene units between fluorene and an electron 
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withdrawing or donating group such as benzothiazole or diphenylamine.  The use of styryl 

groups has been demonstrated to be an effective method to increase the conjugation of 2PA 

chromophores in addition to having the ability to be functionalized.55, 99, 106, 113, 117, 118  There are a 

number of synthetic routes commonly used to obtain conjugated styryl derivatives such as 

Horner-Wadsworth-Emmons, Heck, and Ullmann reactions among others.  A particularly useful 

route is to use base-catalyzed condensation of aromatic aldehydes with functionalized 

acetonitriles, where the carbon-carbon bond formation results in an alkene with a vinyl nitrile 

linking the two desired groups (Figure 39).169, 170  Placement of the nitrile group is of particular 

importance since it has been demonstrated that vinyl nitriles can impart photostability against 

oxidation of the styryl benzene derivatives.171, 172   
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Figure 39.  Base catalyzed condensation of an aromatic aldehyde with a 
functionalized derivative of acetonitrile. 

 

The synthesis of six functionalized chromophore units (Figure 40) can then be prepared 

where heavy atoms and functional groups have been strategically placed to enhance intersystem 

crossing.  In addition, each proposed unit contains a different degree of extended conjugation 

resulting in a highly conjugated chromophore with electron donating or withdrawing character.  

Several fundamental reactions utilizing commercially available starting materials result in 
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maintaining a uniform synthetic approach.  Most importantly, each unit will contain a reactive 

functionalized acetonitrile group for direct attachment to a bis-aldehyde derivative of fluorene19, 

169 (Figure 41), allowing the synthesis of 21 different possible combinations, several of which are 

illustrated in Figure 42.   
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Figure 40.  Proposed chromophore precursors for the synthesis of fluorene based 
singlet oxygen sensitizers.   

 

 

 

 

 

111 



R R

S

N

NC

I

I
(11)

CN

KOtBu
THF

R R
N

S S

N
I

I

I

I
CN NC

CNNC

HH

O O

 

 

Figure 41.  Synthesis of photosensitizer via bis-aldehyde condensation with nitrile 
intermediate.  
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Figure 42.  Example of new fluorene-based photosensitizers. 
 

113 



LIST OF REFERENCES 

 

1. Khan, A. U.; Kasha, M., Red Chemiluminescence of Molecular Oxygen in Aqueous 
Solution. The Journal of Chemical Physics 1963, 39, (8), 2105-2106. 

2. Schweitzer, C.; Mehrdad, Z.; Noll, A.; Grabner, E. W.; Schmidt, R., Mechanism of 
Photosensitized Generation of Singlet Oxygen during Oxygen Quenching of Triplet States 
and the General Dependence of the Rate Constants and Efficiencies of Formation on 
Sensitizer Triplet State Energy and Oxidation Potential. J. Phys. Chem. A 2003, 107, (13), 
2192-2198. 

3. Clennan, E. L.; Pace, A., Advances in singlet oxygen chemistry. Tetrahedron 2005, 61, 
(28), 6665-6691. 

4. Ian J. Macdonald, T. J. D., Basic principles of photodynamic therapy. Journal of 
Porphyrins and Phthalocyanines 2001, 5, (2), 105-129. 

5. Spikes, J. D.; van Lier, J. E.; Bommer, J. C., A comparison of the photoproperties of zinc 
phthalocyanine and zinc naphthalocyanine tetrasulfonates: model sensitizers for the 
photodynamic therapy of tumors. Journal of Photochemistry and Photobiology A: 
Chemistry 1995, 91, (3), 193-198. 

6. Henderson, B. W.; Dougherty, T. J., How does photodynamic therapy work? Photochem 
Photobiol 1992, 55, (1), 145-57. 

7. Ochsner, M., Photophysical and photobiological processes in the photodynamic therapy of 
tumours. Journal of Photochemistry and Photobiology B: Biology 1997, 39, (1), 1-18. 

8. Liu, W.; Oseroff, A. R.; Baumann, H., Photodynamic Therapy Causes Cross-linking of 
Signal Transducer and Activator of Transcription Proteins and Attenuation of Interleukin-6 
Cytokine Responsiveness in Epithelial Cells. Cancer Res 2004, 64, (18), 6579-6587. 

9. Morgan, J.; Potter, W. R.; Oseroff, A. R., Comparison of photodynamic targets in a 
carcinoma cell line and its mitochondrial DNA-deficient derivative. Photochem Photobiol 
2000, 71, (6), 747-57. 

10. Wild, P. J.; Krieg, R. C.; Seidl, J.; Stoehr, R.; Reher, K.; Hofmann, C.; Louhelainen, J.; 
Rosenthal, A.; Hartmann, A.; Pilarsky, C.; Bosserhoff, A. K.; Knuechel, R., RNA 
expression profiling of normal and tumor cells following photodynamic therapy with 5-
aminolevulinic acid-induced protoporphyrin IX in vitro. Mol Cancer Ther 2005, 4, (4), 
516-528. 

114 



11. Wong, T.-W.; Tracy, E.; Oseroff, A. R.; Baumann, H., Photodynamic Therapy Mediates 
Immediate Loss of Cellular Responsiveness to Cytokines and Growth Factors. Cancer Res 
2003, 63, (13), 3812-3818. 

12. Zheng Huang, M. D., Ph.D., A Review of Progress in Clinical Photodynamic Therapy. 
Technology in Cancer Research and Treatment 2005, 4, (3), 283-293. 

13. Jacques, S. L. P., S.A., Absorption spectra for biological tissues. In Oregon Graduate 
Institute: 1998. 

14. Chen, B.; Pogue, B. W.; Hasan, T., Liposomal delivery of photosensitising agents. Expert 
Opin Drug Deliv 2005, 2, (3), 477-87. 

15. Lacerda, S. H. D.; Abraham, B.; Stringfellow, T. C.; Indig, G. L., Photophysical, 
Photochemical, and Tumor-selectivity Properties of Bromine Derivatives of Rhodamine-
123. Photochemistry and Photobiology 2005, 81, (6), 1430-1438. 

16. Qian Peng, T. W., Kristian Berg, Johan Moan, Magne Kongshaug, Karl-Erik Giercksky, 
Jahn M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy. Cancer 1997, 79, 
(12), 2282-2308. 

17. Göppert-Mayer, M., Elementary Actions with two Quantum Leaps. Annals of Physics 
1931, 9, 273-294. 

18. Belfield, K.; Corredor, C.; Morales, A.; Dessources, M.; Hernandez, F., Synthesis and 
Characterization of New Fluorene-Based Singlet Oxygen Sensitizers. Journal of 
Fluorescence 2006, 16, (1), 105-110. 

19. Belfield, K. D.; Morales, A. R.; Kang, B. S.; Hales, J. M.; Hagan, D. J.; VanStryland, E. 
W.; Chapela, V. M.; Percino, J., Synthesis, Characterization, and Optical Properties of 
New Two-Photon-Absorbing Fluorene Derivatives. Chem. Mater. 2004, 16, (23), 4634-
4641. 

20. Schafer-Hales, K. J.; Belfield, K. D.; Yao, S.; Frederiksen, P. K.; Hales, J. M.; 
Kolattukudy, P. E., Fluorene-based fluorescent probes with high two-photon action cross-
sections for biological multiphoton imaging applications. Journal of Biomedical Optics 
2005, 10, (5), 051402-8. 

21. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K., TIMELINE: Photodynamic therapy for 
cancer. Nature Reviews Cancer 2003, 3, (5), 380. 

22. Lewis, G. N., The Magnetochemical Theory. Chem. Rev. 1924, 1, (2), 231-248. 

23. Mulliken, R. S., Interpretation of the Atmospheric Oxygen Bands: Electronic Levels of the 
Oxygen Molecule. Nature 1928, 122, 505. 

115 



24. Ellis J. W., K. H. O., Combination relations in the absorption spectrum of liquid oxygen 
Zeitschrift fuer Physik 1933, 86, 583-591  

25. Schaap, A. P., Singlet molecular oxygen Dowden, Hutchinson & Ross Stroudsburg, PA, 
1976; Vol. 5, p 399. 

26. Fritzsche, J., Note sur les Carbures d'hydrogene Solides, Tires du Goudron de Houille. 
COMPTES RENDUS CHIMIE 1867, 64, 1035-1037. 

27. Moureu C., D. C., Dean P. M., un Peroxyde Organique Dissociable: Le Peroxyde de 
Rubrene. COMPTES RENDUS CHIMIE 1926, 182, 1584-1587. 

28. A. Windaus, J. B., Über die photochemische Oxydation des Ergosterins. Justus Liebig's 
Annalen der Chemie 1928, 460, (1), 225-235. 

29. Kautsky, H.; de Bruijn, H., Die Aufklärung der Photoluminescenztilgung fluorescierender 
Systeme durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle 
durch Sensibilisierung. Naturwissenschaften 1931, 19, (52), 1043-1043. 

30. Alexander, S., Notiz über die photochemische Bildung von Biradikalen. Justus Liebig's 
Annalen der Chemie 1935, 518, (1), 299-302. 

31. Foote, C. S.; Wexler, S., Olefin Oxidations with Excited Singlet Molecular Oxygen. J. Am. 
Chem. Soc. 1964, 86, (18), 3879-3880. 

32. Foote, C. S.; Wexler, S., Singlet Oxygen. A Probable Intermediate in Photosensitized 
Autoxidations. J. Am. Chem. Soc. 1964, 86, (18), 3880-3881. 

33. Corey, E. J.; Taylor, W. C., A Study of the Peroxidation of Organic Compounds by 
Externally Generated Singlet Oxygen Molecules. J. Am. Chem. Soc. 1964, 86, (18), 3881-
3882. 

34. Günther; Günther; Schenck, O.; Ziegler, K., Die Synthese des Ascaridols. 
Naturwissenschaften 1944, 32, (14), 157-157. 

35. Dufraisse C., E. S., Photooxydation sur Cycle Pentagonal: 
Photooxydiphenylisobenzofuran. Comptes Rendus Chimie 1946, 223, 735-737. 

36. Merkel, P. B.; Kearns, D. R., Direct measurement of the lifetime of O2(1∆g) oxygen in 
solution. Chemical Physics Letters 1971, 12, (1), 120-122. 

37. Wilson, T., Excited Singlet Molecular Oxygen in Photooxidation. J. Am. Chem. Soc. 1966, 
88, (13), 2898-2902. 

38. Nickon, A.; Bagli, J. F., PHOTOSENSITIZED OXYGENATION OF MONO-OLEFINS. 
J. Am. Chem. Soc. 1959, 81, (23), 6330-6330. 

116 



39. Seliger, H. H., A photoelectric method for the measurement of spectra of light sources of 
rapidly varying intensities. Analytical Biochemistry 1960, 1, (1), 60-65. 

40. Browne R. J., O. E. A., Chemiluminescence from the Reaction of Chloride with Aqueous 
Hydrogen Peroxide. Proceedings of the Chemical Society 1964, 101-128, 117. 

41. Gollnick K., S. G. O., Mechanism and Stereoselectivity of Photosensitized Oxygen 
Transfer Reactions. Pure and Applied Chemistry 1964, 9, 507-525. 

42. Snelling, D. R., Production of singlet oxygen in the benzene oxygen photochemical 
system. Chemical Physics Letters 1968, 2, (5), 346-348. 

43. Andrews, L. J.; Abrahamson, E. W., Formation of O2(1Σg
+) by 1-fluoronaphthalene 

sensitization. Chemical Physics Letters 1971, 10, (2), 113-116. 

44. Adams D. R., W. F., Lifetime of singlet oxygen in liquid solution 
         Chemical Society, Faraday Transactions 2 1972, 68, 586-593. 

45. Krasnovsky, J. A. A., Photosensitized Luminescence of Singlet Oxygen in Solution. 
Biofizika 1976, 21, (4), 748-749. 

46. Hurst, J. R.; McDonald, J. D.; Schuster, G. B., Lifetime of singlet oxygen in solution 
directly determined by laser spectroscopy. J. Am. Chem. Soc. 1982, 104, (7), 2065-2067. 

47. Ogilby, P. R.; Foote, C. S., Chemistry of singlet oxygen. 36. Singlet molecular oxygen 
O2(1∆g) luminescence in solution following pulsed laser excitation. Solvent deuterium 
isotope effects on the lifetime of singlet oxygen. J. Am. Chem. Soc. 1982, 104, (7), 2069-
2070. 

48. Parker, J. G.; Stanbro, W. D., Optical determination of the collisional lifetime of singlet 
molecular oxygen O2(1∆g) in acetone and deuterated acetone. J. Am. Chem. Soc. 1982, 104, 
(7), 2067-2069. 

49. Wilkinson, F. B., James G., Rate constants for the decay and reactions of the lowest 
electronically excited singlet state of molecular oxygen in solution. Journal of Physical 
and Chemical Reference Data 1981, 10, (4), 809-999. 

50. Wilkinson, F.; Helman, W. P.; Ross, A. B., Quantum Yields for the Photosensitized 
Formation of the Lowest Electronically Excited Singlet-State of Molecular-Oxygen in 
Solution. Journal of Physical and Chemical Reference Data 1993, 22, (1), 113-262. 

51. Schmidt, R.; Bodesheim, M., Time-Resolved Measurement of O2(1Σ+
g) in Solution. 

Phosphorescence from an Upper Excited State. J. Phys. Chem. 1994, 98, (11), 2874-2876. 

52. Schweitzer, C.; Schmidt, R., Physical mechanisms of generation and deactivation of singlet 
oxygen. Chem Rev 2003, 103, (5), 1685-757. 

117 



53. Frederiksen, P. K.; Jorgensen, M.; Ogilby, P. R., Two-Photon Photosensitized Production 
of Singlet Oxygen. J. Am. Chem. Soc. 2001, 123, (6), 1215-1221. 

54. Andersen L. K., O. P. R., Time-resolved Detection of Singlet Oxygen in a Transmission 
Microscope. Photochemistry Photobiology 2001, 73, (5), 489-492. 

55. Frederiksen, P. K.; McIlroy, S. P.; Nielsen, C. B.; Nikolajsen, L.; Skovsen, E.; Jorgensen, 
M.; Mikkelsen, K. V.; Ogilby, P. R., Two-Photon Photosensitized Production of Singlet 
Oxygen in Water. J. Am. Chem. Soc. 2005, 127, (1), 255-269. 

56. Skovsen E., S. J. W., Ogilby P. R. , Two-Photon Singlet Oxygen Microscopy: The 
Challenges of Working with Single Cells. Photochemistry and Photobiology 2006, 82, (5), 
1187-1197. 

57. Charles Moureu, C. D., Paul Marshall Dean, Un Peroxyde Organique Dissociable: Le 
Peroxyde De Rubrene. Compt. Rend. 1926, 182, 1584-1587. 

58. Fritzsche, M., Note Sur Les Carbures D'Hydrogene Solides, Tires Du Goudron De Houille. 
Compt. Rend. 1867, 64, 1035-1037. 

59. Foner, S. N.; Hudson, R. L., Metastable Oxygen Molecules Produced by Electrical 
Discharges. The Journal of Chemical Physics 1956, 25, (3), 601-602. 

60. Foote C. S., W. S., Olefin Oxidations with Excited Singlet Molecular Oxygen. Journal of 
American Chemical Society 1964, 86, 3879-3880. 

61. Evans, D. F., Oxidation by photochemically produced singlet states of oxygen. Journal of 
the Chemical Society D: Chemical Communications 1969, (7), 367-368. 

62. Murray, R. W.; Kaplan, M. L., Singlet oxygen sources in ozone chemistry. Chemical 
oxygenations using the adducts between phosphite esters and ozone. J. Am. Chem. Soc. 
1969, 91, (19), 5358-5364. 

63. Hideg Éva, K. T., Kós Péter B., Asada Kozi, Hideg Kálmán, Singlet Oxygen in Plants—Its 
Significance and Possible Detection with Double (Fluorescent and Spin) Indicator 
Reagents. Photochemistry Photobiology 2006, 82, (5), 1211-1218. 

64. Scurlock, R. D.; Wang, B.; Ogilby, P. R.; Sheats, J. R.; Clough, R. L., Singlet Oxygen as a 
Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer. J. Am. 
Chem. Soc. 1995, 117, (41), 10194-10202. 

65. Ali, H.; van Lier, J. E., Metal Complexes as Photo- and Radiosensitizers. Chem. Rev. 1999, 
99, (9), 2379-2450. 

66. Bonnett, R., Photosensitizers of the porphyrin and phthalocyanine series for photodynamic 
therapy 

         Chemical Society Reviews 1995, 24, 19-33. 

118 



67. Danilo Dini, M. B. M. H., Phthalocyanines as Active Materials for Optical Limiting. 
European Journal of Organic Chemistry 2001, 2001, (20), 3759-3769. 

68. Guillaud, G.; Simon, J.; Germain, J. P., Metallophthalocyanines: Gas sensors, resistors and 
field effect transistors. Coordination Chemistry Reviews 1998, 178-180, (Part 2), 1433-
1484. 

69. Law, K. Y., Organic photoconductive materials: recent trends and developments. Chem. 
Rev. 1993, 93, (1), 449-486. 

70. Torre G. de la, V. P., Agulló-López F., Torres T., Phthalocyanines and related 
compounds:organic targets for nonlinear optical applications. Journal of Materials 
Chemistry 1998, 8, 1671-1683. 

71. Abdel-Shafi, A. A.; Bourdelande, J. L.; Ali, S. S., Photosensitized generation of singlet 
oxygen from rhenium(i) and iridium(iii) complexes. Dalton Transactions 2007, (24), 2510-
2516. 

72. Farmilo A, W. F., Mechanism of quenching of singlet oxygen in solution. Photochemistry 
and Photobiology 1973, 18, (6), 447-450. 

73. Furue Hiroshi, R. K. E., Deactivation of singlet oxygen and triplet pentacene by transition 
metal complexes. Canadian Journal of Chemistry 1978, 56, (12), 1595-1601. 

74. Mehrdad, Z.; Noll, A.; Grabner, E. W.; Schmidt, R., Sensitization of singlet oxygen via 
encounter complexes and via exciplexes of pi pi* triplet excited sensitizers and oxygen. 
Photochemical & Photobiological Sciences 2002, 1, (4), 263-269. 

75. Schmidt, R.; Shafii, F., Influence of Charge Transfer Interactions on the Sensitization of 
Singlet Oxygen: Formation of O2(1Σ+

g), O2(1∆g), and O2(3Σ-
g) during Oxygen Quenching of 

Triplet Excited Biphenyl Derivatives. J. Phys. Chem. A 2001, 105, (39), 8871-8877. 

76. Schmidt, R.; Shafii, F.; Schweitzer, C.; Abdel-Shafi, A. A.; Wilkinson, F., Charge-transfer 
and non-charge-transfer processes competing in the sensitization of singlet oxygen: 
Formation of O2(1Σ+

g), O2(1∆g), and O2(3Σ-
g) during oxygen quenching of triplet excited 

naphthalene derivativest. Journal of Physical Chemistry A 2001, 105, (10), 1811-1817. 

77. Schweitzer, C.; Mehrdad, Z.; Shafii, F.; Schmidt, R., Charge transfer induced quenching of 
triplet sensitizers by ground state oxygen and of singlet oxygen by ground state sensitizers: 
A common deactivation channel. Physical Chemistry Chemical Physics 2001, 3, (15), 
3095-3101. 

78. Wasserman, H. H.; Scheffer, J. R.; Cooper, J. L., Singlet oxygen reactions with 9,10-
diphenylanthracene peroxide. J. Am. Chem. Soc. 1972, 94, (14), 4991-4996. 

119 



79. Castro, C.; Dixon, M.; Erden, I.; Ergonenc, P.; Keeffe, J. R.; Sukhovitsky, A., Dye-
sensitized photooxygenation of the carbon-nitrogen double bond. J. Org. Chem. 1989, 54, 
(15), 3732-3738. 

80. He, Y.-Y.; An, J.-Y.; Jiang, L.-J., Synthesis of a new water-soluble phototherapeutic 
sensitizer from hypocrellin B with enhanced red absorption. Dyes and Pigments 1999, 41, 
(1-2), 93-100. 

81. Schaap, A. P.; Thayer, A. L.; Blossey, E. C.; Neckers, D. C., Polymer-based sensitizers for 
photooxidations. II. J. Am. Chem. Soc. 1975, 97, (13), 3741-3745. 

82. Detty, M. R.; Merkel, P. B., Chalcogenapyrylium dyes as potential photochemotherapeutic 
agents. Solution studies of heavy atom effects on triplet yields, quantum efficiencies of 
singlet oxygen generation, rates of reaction with singlet oxygen, and emission quantum 
yields. J. Am. Chem. Soc. 1990, 112, (10), 3845-3855. 

83. Paczkowski, J.; Neckers, D. C., Polymer-based sensitizers for the formation of singlet 
oxygen: new studies of polymeric derivatives of rose bengal. Macromolecules 1985, 18, 
(6), 1245-1253. 

84. Milgrom, L. R., The Colours of Life: an introduction to the chemistry of porphyrins and 
related compounds. Oxford University Press: New York, 1997; p 249. 

85. Gupta, I.; Ravikanth, M., Synthesis and photophysical studies of covalently linked 
porphyrin-21-thiaporphyrin dyads. Inorganica Chimica Acta 2007, 360, (5), 1731-1742. 

86. Kadish K. M. , S. K., Guilard R. , The Porphyrin Handbook. Academic Press: San Diego, 
2000. 

87. Kozaki, M.; Akita, K.; Okada, K., Enhanced Electron Transfer by Dendritic Architecture: 
Energy Transfer and Electron Transfer in Snowflake-Shaped Zn Porphyrin Dendrimers. 
Org. Lett. 2007, 9, (8), 1509-1512. 

88. Mori, G.; Aratani, N.; Osuka, A., Synthesis of three-dimensionally arranged porphyrin 
arrays via intramolecular meso-meso coupling. Tetrahedron 2007, 63, (33), 7916-7925. 

89. Nah, M. K.; Oh, J. B.; Kim, H. K.; Choi, K. H.; Kim, Y. R.; Kang, J. G., Photophysical 
Properties and Energy Transfer Pathway of Er(III) Complexes with Pt-Porphyrin and 
Terpyridine Ligands. J. Phys. Chem. A 2007, 111, (28), 6157-6164. 

90. Rogers, J. E.; Nguyen, K. A.; Hufnagle, D. C.; McLean, D. G.; Su, W.; Gossett, K. M.; 
Burke, A. R.; Vinogradov, S. A.; Pachter, R.; Fleitz, P. A., Observation and Interpretation 
of Annulated Porphyrins: Studies on the Photophysical Properties of 
Tetraphenylmetalloporphyrins. J. Phys. Chem. A 2003, 107, (51), 11331-11339. 

91. DeRosa, M. C.; Crutchley, R. J., Photosensitized singlet oxygen and its applications. 
Coordination Chemistry Reviews 2002, 233-234, 351-371. 

120 



92. Darwent, J. R.; Douglas, P.; Harriman, A.; Porter, G.; Richoux, M. C., Metal 
Phthalocyanines and Porphyrins as Photosensitizers for Reduction of Water to Hydrogen. 
Coordination Chemistry Reviews 1982, 44, (1), 83-126. 

93. Guldi, D. M.; Mody, T. D.; Gerasimchuk, N. N.; Magda, D.; Sessler, J. L., Influence of 
Large Metal Cations on the Photophysical Properties of Texaphyrin, a Rigid Aromatic 
Chromophore. J. Am. Chem. Soc. 2000, 122, (34), 8289-8298. 

94. Soncin, M.; Busetti, A.; Biola, R.; Jori, G.; Kwag, G.; Li, Y.-S.; Kenney, M. E.; Rodgers, 
M. A. J., Photoinactivation of amelanotic and melanotic melanoma cells sensitized by 
axially substituted Si-naphthalocyanines. Journal of Photochemistry and Photobiology B: 
Biology 1998, 42, (3), 202-210. 

95. Demas J. N., H. E. W., McBride R. P. , Energy Transfer from Luminescent Transition 
Metal Complexes to Oxygen. Journal of American Chemical Society 1977, 99, (11), 3547-
3551. 

96. Gao R., H. D., Hernandez B., Selke M., Murphy D., Djurovich P. I., Thompson M. E., Bis-
Cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers. Journal of 
American Chemical Society 2002, 124, 14828-14829. 

97. Selke, M.; Karney, W. L.; Khan, S. I.; Foote, C. S., Reactions of Singlet Oxygen with 
Organometallic Complexes. 3. Kinetics and Scope of the Oxidative Addition Reaction of 
Singlet Oxygen with Iridium(I), Rhodium(I), and Platinum(II) Complexes. Inorg. Chem. 
1995, 34, (23), 5715-5720. 

98. Goyan, R. L.; Cramb, D. T., Near-Infrared Two-Photon Excitation of Protoporphyrin IX: 
Photodynamics and Photoproduct Generation&para. Photochemistry and Photobiology 
2000, 72, (6), 821-827. 

99. Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; 
Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; 
Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X. L.; Xu, C., Design of organic 
molecules with large two-photon absorption cross sections. Science 1998, 281, (5383), 
1653-6. 

100. Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; 
Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J.; Rockel, H.; 
Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W., Two-photon polymerization initiators 
for three-dimensional optical data storage and microfabrication. Nature 1999, 398, (6722), 
51-54. 

101. Karotki, A.; Kruk, M.; Drobizhev, M.; Rebane, A.; Nickel, E.; Spangler, C. W., Efficient 
singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced 
nonlinear absorption. Selected Topics in Quantum Electronics, IEEE Journal of 2001, 7, 
(6), 971-975. 

121 



102. Spangler, C. W., Recent development in the design of organic materials for optical power 
limiting. Journal of Materials Chemistry 1999, 9, (9), 2013-2020. 

103. Drobizhev, M.; Karotki, A.; Kruk, M.; Mamardashvili, N. Z.; Rebane, A., Drastic 
enhancement of two-photon absorption in porphyrins associated with symmetrical 
electron-accepting substitution. Chemical Physics Letters 2002, 361, (5-6), 504-512. 

104. Karotki Aliaksandr, D. M., Kruk Mikalai, Spangler Charles, Nickel Erik, Mamardashvili 
Nugzar, Rebane Aleksander, Enhancement of Two-Photon Absorption in Tetrapyrrolic 
Compounds. Journal of the Optical Society of America B 2003, 20, (2), 321-332. 

105. Kruk, M.; Karotki, A.; Drobizhev, M.; Kuzmitsky, V.; Gael, V.; Rebane, A., Two-photon 
absorption of tetraphenylporphin free base. Journal of Luminescence 2003, 105, (1), 45-55. 

106. Ishi-i Tsutomu, T. Y., Kato Shin-ichiro, Shigeiwa Motoyuki, Gorohmaru Hideki, Maeda 
Shuuichi, Mataka Shuntaro, Singlet Oxygen Generation by Two-Photon Excitation of 
Porphyrin Derivatives Having Two-Photon-Absorbing Benzothiadiazole Chromophores. 
Journal of Materials Chemistry 2007, 17, 3341-3346. 

107. Dichtel, W. R.; Serin, J. M.; Edder, C.; Frechet, J. M. J.; Matuszewski, M.; Tan, L. S.; 
Ohulchanskyy, T. Y.; Prasad, P. N., Singlet Oxygen Generation via Two-Photon Excited 
FRET. J. Am. Chem. Soc. 2004, 126, (17), 5380-5381. 

108. Dichtel, W. R.; Hecht, S.; Frechet, J. M. J., Functionally Layered Dendrimers: A New 
Building Block and Its Application to the Synthesis of Multichromophoric Light-
Harvesting Systems. Org. Lett. 2005, 7, (20), 4451-4454. 

109. Oar, M. A.; Dichtel, W. R.; Serin, J. M.; Frechet, J. M. J.; Rogers, J. E.; Slagle, J. E.; 
Fleitz, P. A.; Tan, L. S.; Ohulchanskyy, T. Y.; Prasad, P. N., Light-Harvesting 
Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet 
Oxygen via Two-Photon Excited FRET. Chem. Mater. 2006, 18, (16), 3682-3692. 

110. Oar, M. A.; Serin, J. M.; Dichtel, W. R.; Frechet, J. M. J.; Ohulchanskyy, T. Y.; Prasad, P. 
N., Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance 
Energy Transfer in a Water-Soluble Dendrimer. Chem. Mater. 2005, 17, (9), 2267-2275. 

111. Tan, L.-S.; Kannan, R.; Matuszewski, M. J.; Khur, I. J.; Feld, W. A.; Dang, T. D.; 
Dombroskie, A. G.; Vaia, R. A.; Clarson, S. J.; He, G. S.; Lin, T.-C.; Prasad, P. N. In 
Functionalization of heterocyclic diphenylamino-based two-photon absorbing materials 
for microfabrication, data storage, and upconverted imaging, Multiphoton Absorption and 
Nonlinear Transmission Processes: Materials, Theory, and Applications, Seattle, WA, 
USA, 2003; SPIE: Seattle, WA, USA, 2003; pp 171-178. 

112. Norman, P.; Luo, Y.; Agren, H., Large two-photon absorption cross sections in two-
dimensional, charge-transfer, cumulene-containing aromatic molecules. The Journal of 
Chemical Physics 1999, 111, (17), 7758-7765. 

122 



113. Poulsen, T. D.; Frederiksen, P. K.; Jorgensen, M.; Mikkelsen, K. V.; Ogilby, P. R., Two-
Photon Singlet Oxygen Sensitizers: Quantifying, Modeling, and Optimizing the Two-
Photon Absorption Cross Section. J. Phys. Chem. A 2001, 105, (51), 11488-11495. 

114. Wang, C.-K.; Macak, P.; Luo, Y.; Agren, H., Effects of pi centers and symmetry on two-
photon absorption cross sections of organic chromophores. The Journal of Chemical 
Physics 2001, 114, (22), 9813-9820. 

115. Arnbjerg, J.; Jimenez-Banzo, A.; Paterson, M. J.; Nonell, S.; Borrell, J. I.; Christiansen, O.; 
Ogilby, P. R., Two-Photon Absorption in Tetraphenylporphycenes: Are Porphycenes 
Better Candidates than Porphyrins for Providing Optimal Optical Properties for Two-
Photon Photodynamic Therapy? J. Am. Chem. Soc. 2007, 129, (16), 5188-5199. 

116. Arnbjerg, J.; Paterson, M. J.; Nielsen, C. B.; Jorgensen, M.; Christiansen, O.; Ogilby, P. R., 
One- and Two-Photon Photosensitized Singlet Oxygen Production: Characterization of 
Aromatic Ketones as Sensitizer Standards. J. Phys. Chem. A 2007, 111, (26), 5756-5767. 

117. McIlroy, S. P.; Clo, E.; Nikolajsen, L.; Frederiksen, P. K.; Nielsen, C. B.; Mikkelsen, K. 
V.; Gothelf, K. V.; Ogilby, P. R., Two-Photon Photosensitized Production of Singlet 
Oxygen: Sensitizers with Phenylene-Ethynylene-Based Chromophores. J. Org. Chem. 
2005, 70, (4), 1134-1146. 

118. Nielsen, C. B.; Johnsen, M.; Arnbjerg, J.; Pittelkow, M.; McIlroy, S. P.; Ogilby, P. R.; 
Jorgensen, M., Synthesis and Characterization of Water-Soluble Phenylene-Vinylene-
Based Singlet Oxygen Sensitizers for Two-Photon Excitation. J. Org. Chem. 2005, 70, 
(18), 7065-7079. 

119. Foote, C. S., Guest Editorial, Definition of Type I and Type II Photosensitized Oxidation. 
Photochemistry and Photobiology 1991, 54, (5), 659. 

120. Krasnovsky, J. A. A. In Detection of photosensitized singlet oxygen luminescence in 
systems of biomedical importance: steady-state and time-resolved measurements based on 
application of S-1 photomultiplier tubes, Physiological Imaging, Spectroscopy, and Early-
Detection Diagnostic Methods, Los Angeles, CA, USA, 1993; SPIE: Los Angeles, CA, 
USA, 1993; pp 177-186. 

121. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Second ed.; Kluwer: New York, 
1999; p 698. 

122. Telfer, A.; Dhami, S.; Bishop, S. M.; Phillips, D.; Barber, J., beta-Carotene quenches 
singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry 1994, 33, 
(48), 14469-74. 

123. Telfer, A.; Bishop, S. M.; Phillips, D.; Barber, J., Isolated photosynthetic reaction center of 
photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum 

123 



yield determination using a chemical trapping technique. J Biol Chem 1994, 269, (18), 
13244-53. 

124. Abdel-Shafi, A. A.; Wilkinson, F., Electronic to vibrational energy conversion and charge 
transfer contributions during quenching by molecular oxygen of electronically excited 
triplet states. Physical Chemistry Chemical Physics 2002, 4, (2), 248-254. 

125. Schmidt, R., The balance between charge transfer and non-charge transfer pathways in the 
sensitization of singlet oxygen by pi pi* triplet states. Photochemical & Photobiological 
Sciences 2005, 4, (6), 481-486. 

126. Shafii, F.; Schmidt, R., Determination of rate constants of formation of O2(1Σ+
g), O2(1∆g), 

and O2(3Σ-
g) in the quenching of triplet states by O2 for compounds with incomplete 

intersystem crossing. Journal of Physical Chemistry A 2001, 105, (10), 1805-1810. 

127. Wilkinson, F.; Abdel-Shafi, A. A., Mechanism of quenching of triplet states by molecular 
oxygen: Biphenyl derivatives in different solvents. Journal of Physical Chemistry A 1999, 
103, (28), 5425-5435. 

128. Schmidt, R., Photosensitized Generation of Singlet Oxygen. Photochemistry and 
Photobiology 2006, 82, (5), 1161-1177. 

129. Mehrdad, Z.; Schweitzer, C.; Schmidt, R., Formation of O2(1Σ+
g), O2(1∆g), and O2(3Σ-

g) 
during oxygen quenching of n π* triplet phenyl ketones: The role of charge transfer and 
sensitizer-oxygen complex structure. Journal of Physical Chemistry A 2002, 106, (2), 228-
235. 

130. Kawaoka, K.; Khan, A. U.; Kearns, D. R., Role of Singlet Excited States of Molecular 
Oxygen in the Quenching of Organic Triplet States. The Journal of Chemical Physics 
1967, 46, (5), 1842-1853. 

131. H. Tappeiner, H. J., Therapeutische Versuche mit fluoreszierenden Stoffen. Munch. Med. 
Wschr. 1903, 50, 2042-2044. 

132. Jesionek H., T. H., Zur Behandlung der Hautcarcinome mit fluoreszierenden Stoffen 
Dtsch. Arch. Klin. Med. 1905, 82, 223-226. 

133. Meyer-Betz, F., Wirkung des Hamatoporphyrins und anderer Derivate des Blut- und 
Gallenfarbstoffs. Dtsch. Arch. Klin. Med. 1913, 112, 476-503. 

134. Dougherty, T. J., Henderson, B. W. , In Historical Perspective in Photodynamic Therapy. 
Maurice Dekker: New York, 1992. 

135. Nowak-Sliwinska, P.; Karocki, A.; Elas, M.; Pawlak, A.; Stochel, G.; Urbanska, K., 
Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma 
cells. Biochemical and Biophysical Research Communications 2006, 349, (2), 549-555. 

124 



136. Parkhots, M. V.; Lapina, V. A.; Butorina, D. N.; Sobchuk, A. N.; Lepeshkevich, S. V.; 
Petrov, P. T.; Krasnovski; ibreve; Jr, A. A.; Dzhagarov, B. M., Spectral and Photochemical 
Characteristics of the Photosensitizers Chlorin and Photolon in the Presence of Melanin. 
Optics & Spectroscopy 2005, 98, (3), 374-382. 

137. Woodburn, K. W.; Engelman, C. J.; Blumenkranz, M. S., CME photodynamic therapy for 
choroidal neovascularization - A review. Retina-the Journal of Retinal and Vitreous 
Diseases 2002, 22, (4), 391-405. 

138. Datta, S. N.; Loh, C. S.; MacRobert, A. J.; Whatley, S. D.; Matthews, P. N., Quantitative 
studies of the kinetics of 5-aminolaevulinic acid-induced fluorescence in bladder 
transitional cell carcinoma. Br J Cancer 1998, 78, (8), 1113-8. 

139. Brown, S. B., The role of light in the treatment of non-melanoma skin cancer using methyl 
aminolevulinate. Journal of Dermatological Treatment 2003, 14, 11. 

140. Kearn, S. J.; Scott, L. J.; Curran, M. P., Verteporfin: A Review of its Use in the 
Management of Subfoveal Choroidal Neovascularisation. Drugs 2003, 63, (22), 2521-
2554. 

141. Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; 
Anderson, H. L., Extremely strong near-IR two-photon absorption in conjugated porphyrin 
dimers: quantitative description with three-essential-states model. J Phys Chem B Condens 
Matter Mater Surf Interfaces Biophys 2005, 109, (15), 7223-36. 

142. Karotki, A.; Khurana, M.; Lepock, J. R.; Wilson, B. C., Simultaneous Two-photon 
Excitation of Photofrin in Relation to Photodynamic Therapy. Photochemistry and 
Photobiology 2006, 82, (2), 443-452. 

143. Karotki, A.; Khurana, M.; Lepock, J. R.; Wilson, B. C., Simultaneous two-photon 
excitation of photofrin in relation to photodynamic therapy. Photochem Photobiol 2006, 
82, (2), 443-52. 

144. Huwyler, J.; Wu, D.; Pardridge, William M., Brain drug delivery of small 
molecules using immunoliposomes. PNAS 1996, 93, (24), 14164-14169. 

145. Matthay, K. K.; Heath, T. D.; Badger, C. C.; Bernstein, I. D.; Papahadjopoulos, D., 
Antibody-directed Liposomes: Comparison of Various Ligands for Association, 
Endocytosis, and Drug Delivery. Cancer Res 1986, 46, (10), 4904-4910. 

146. Liu, S., Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted 
radiotracers for tumor imaging. Mol Pharm 2006, 3, (5), 472-87. 

147. Mae, M.; Langel, U., Cell-penetrating peptides as vectors for peptide, protein and 
oligonucleotide delivery. Curr Opin Pharmacol 2006, 6, (5), 509-14. 

125 



148. Snyder, E. L.; Dowdy, S. F., Cell penetrating peptides in drug delivery. Pharm Res 2004, 
21, (3), 389-93. 

149. Takeuchi, T.; Kosuge, M.; Tadokoro, A.; Sugiura, Y.; Nishi, M.; Kawata, M.; Sakai, N.; 
Matile, S.; Futaki, S., Direct and rapid cytosolic delivery using cell-penetrating peptides 
mediated by pyrenebutyrate. ACS Chem Biol 2006, 1, (5), 299-303. 

150. Ye, Y.; Bloch, S.; Xu, B.; Achilefu, S., Design, synthesis, and evaluation of near infrared 
fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 2006, 49, (7), 
2268-75. 

151. Mukamel, S. S., Principles of nonlinear optical spectroscopy. Oxford University Press: 
New York, 1995; Vol. 6. 

152. Baldwin, G. C., An introduction to nonlinear optics Plenum Press: New York, 1969; p 155. 

153. Mikata, Y.; Takagi, S.; Tanahashi, M.; Ishii, S.; Obata, M.; Miyamoto, Y.; Wakita, K.; 
Nishisaka, T.; Hirano, T.; Ito, T.; Hoshino, M.; Ohtsuki, C.; Tanihara, M.; Yano, S., 
Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-
Pendant [60] fullerenes. Bioorganic & Medicinal Chemistry Letters 2003, 13, (19), 3289-
3292. 

154. So, G.; Karotki, A.; Verma, S.; Hauck, T. S.; Wilson, B.; Pritzker, K. P. H.; Chiang, L. In 
Singlet oxygen production by amphiphilic C60 derivatives and its correlation to cell 
cytotoxicity in vitro, Photonic Applications in Biosensing and Imaging, Toronto, Canada, 
2005; SPIE: Toronto, Canada, 2005; pp 59690D-8. 

155. Webb, C. X. a. W. W., Measurement of two-photon excitation cross sections of molecular 
fluorophores with data from 690 to 1050 nm. Journal of the Optical Society of America B 
1996, 13, (3), 481-491. 

156. Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W., Sensitive 
measurement of optical nonlinearities using a single beam. Quantum Electronics, IEEE 
Journal of 1990, 26, (4), 760-769. 

157. Morales, A. R.; Belfield, K. D.; Hales, J. M.; VanStryland, E. W.; Hagan, D. J., Synthesis 
of Two-Photon Absorbing Unsymmetrical Fluorenyl-Based Chromophores. Chem. Mater. 
2006, 18, (20), 4972-4980. 

158. Pond, S. J. K.; Rumi, M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bredas, J. 
L.; Marder, S. R.; Perry, J. W., One- and Two-Photon Spectroscopy of Donor-Acceptor-
Donor Distyrylbenzene Derivatives: Effect of Cyano Substitution and Distortion from 
Planarity. J. Phys. Chem. A 2002, 106, (47), 11470-11480. 

159. Frederiksen, P. K.; Jorgensen, M.; Ogilby, P. R., Two-photon photosensitized production 
of singlet oxygen. J Am Chem Soc 2001, 123, (6), 1215-21. 

126 



160. Ogawa, K.; Hasegawa, H.; Inaba, Y.; Kobuke, Y.; Inouye, H.; Kanemitsu, Y.; Kohno, E.; 
Hirano, T.; Ogura, S.; Okura, I., Water-soluble bis(imidazolylporphyrin) self-assemblies 
with large two-photon absorption cross sections as potential agents for photodynamic 
therapy. Journal of Medicinal Chemistry 2006, 49, (7), 2276-2283. 

161. Cohanoschi, I.; Belfield, K. D.; Toro, C.; Yao, S.; Hernandez, F. E., The impact of the pi-
electron conjugation length on the three-photon absorption cross section of fluorene 
derivatives. The Journal of Chemical Physics 2006, 124, (19), 194707-5. 

162. Belfield, K. D.; Liu, Y.; Negres, R. A.; Fan, M.; Pan, G.; Hagan, D. J.; Hernandez, F. E., 
Two-Photon Photochromism of an Organic Material for Holographic Recording. Chem. 
Mater. 2002, 14, (9), 3663-3667. 

163. Belfield, K. D.; Ren, X.; Van Stryland, E. W.; Hagan, D. J.; Dubikovsky, V.; Miesak, E. J., 
Near-IR Two-Photon Photoinitiated Polymerization Using a Fluorone/Amine Initiating 
System. J. Am. Chem. Soc. 2000, 122, (6), 1217-1218. 

164. C. C. Corredor, Z. L. H. K. D. B., Two-Photon 3D Optical Data Storage via Fluorescence 
Modulation of an Efficient Fluorene Dye by a Photochromic Diarylethene. Advanced 
Materials 2006, 18, (21), 2910-2914. 

165. Gollnick K., F. G., Doerhoefer S., Doerhoefer G., Photosensitized Oxygenation as a 
Function of the Triplet Energy of Sensitizers. Annals of the New York Academy of Sciences 
1970, 171, 89-107. 

166. Belfield, K.; Konté, M.; Przhonska, O., Singlet Oxygen Quantum Yield Determination for 
a Fluorene-Based Two-Photon Photosensitizer. Journal of Fluorescence 2006, 16, (1), 
111-117. 

167. Marhevka, V. C.; Ebner, N. A.; Sehon, R. D.; Hanna, P. E., Mechanism-based inactivation 
of N-arylhydroxamic acid N,O-acyltransferase by 7-substituted-N-hydroxy-2-
acetamidofluorenes. J. Med. Chem. 1985, 28, (1), 18-24. 

168. Grantham, P. H.; Weisburger, E. K.; Weisburger, J. H., Ionization Constants of Derivatives 
of Fluorene and Other Polycyclic Compounds2. J. Org. Chem. 1961, 26, (4), 1008-1017. 

169. Holm, M. J.; Zienty, F. B.; Terpstra, M. A., Condensation of aromatic and heterocyclic 
aldehydes with benzenediacetonitriles. J. Chem. Eng. Data 1968, 13, (1), 70-74. 

170. Lim, S. J.; An, B. K.; Park, S. Y., Bistable Photoswitching in the Film of Fluorescent 
Photochromic Polymer: Enhanced Fluorescence Emission and Its High Contrast Switching. 
Macromolecules 2005, 38, (15), 6236-6239. 

171. Dam, N.; Scurlock, R. D.; Wang, B.; Ma, L.; Sundahl, M.; Ogilby, P. R., Singlet Oxygen 
as a Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers. 
Chem. Mater. 1999, 11, (5), 1302-1305. 

127 



172. Ma, L.; Wang, X.; Wang, B.; Chen, J.; Wang, J.; Huang, K.; Zhang, B.; Cao, Y.; Han, Z.; 
Qian, S.; Yao, S., Photooxidative degradation mechanism of model compounds of poly(p-
phenylenevinylenes) [PPVs]. Chemical Physics 2002, 285, (1), 85-94. 

 
 

128 


	Singlet Oxygen Generation Using New Fluorene-based Photosensitizers Under One- And Two-photon Excitation
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF EQUATIONS
	LIST OF SCHEMES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1.1 Background and Significance
	1.2 Dissertation Statement
	1.3 Dissertation Outline

	CHAPTER 2: BACKGROUND
	2.1 Overview of Singlet Oxygen
	2.1.1 Introduction of Singlet Oxygen
	2.1.2 Generation of Singlet Oxygen
	2.1.3 Singlet Oxygen Sensitizers
	2.1.4 Chemistry of Singlet Oxygen
	2.1.5 Detection and Characterization of Singlet Oxygen
	2.1.6 Mechanism of Photosensitized Singlet Oxygen Formation
	2.1.7 Optimization of Singlet Oxygen Photosensitizers

	2.2 Current Progress in PDT
	2.3 Fluorene Derivatives for Two-Photon Sensitization of 1O2
	2.3.1 Singlet Oxygen Sensitization by 2PE
	2.3.2 Fluorene Based 2PA 1O2 Sensitizers


	CHAPTER 3: SYNTHESIS OF FLUORENE-BASED SINGLET OXYGEN SENSIT
	3.1.1 Synthesis of Photosensitizer 1
	3.1.2 Synthesis of Photosensitizer 2
	3.1.3 Synthesis of Photosensitizer 3
	3.1.4 Synthesis of Photosensitizer 4


	CHAPTER 4: PHOTOPHYSICAL CHARACTERIZATION OF 1O2 SENSITIZERS
	4.1.1 Linear Photophysical Characterization at Room Temperat
	4.1.2 Singlet Oxygen Generation under One-Photon Excitation
	4.1.3 Singlet Oxygen Generation under Two-Photon Excitation


	CHAPTER 5: CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Future Work

	LIST OF REFERENCES

