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ABSTRACT

Non-protein-coding RNAs play critical regulatory roles in cellular life. Many ncRNAs fold

into specific structures in order to perform their biological functions. Some of the RNAs, such

as riboswitches, can even fold into alternative structural conformations in order to participate

in different biological processes. In addition, these RNAs can transit dynamically between

different functional structures along folding pathways on their energy landscapes. These

alternative functional structures are usually energetically favored and are stable in their

local energy landscapes. Moreover, conformational transitions between any pair of alternate

structures usually involve high energy barriers, such that RNAs can become kinetically

trapped by these stable and local optimal structures.

We have proposed a suite of computational approaches for analyzing and discovering regula-

tory RNAs through studying folding pathways, alternative structures and energy landscapes

associated with conformational transitions of regulatory RNAs. First, we developed an

approach, RNAEAPath, which can predict low-barrier folding pathways between two confor-

mational structures of a single RNA molecule. Using RNAEAPath, we can analyze folding
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pathways between two functional RNA structures, and therefore study the mechanism be-

hind RNA functional transitions from a thermodynamic perspective. Second, we introduced

an approach, RNASLOpt, for finding all the stable and local optimal structures on the energy

landscape of a single RNA molecule. We can use the generated stable and local optimal

structures to represent the RNA energy landscape in a compact manner. In addition, we

applied RNASLOpt to several known riboswitches and predicted their alternate functional

structures accurately. Third, we integrated a comparative approach with RNASLOpt, and

developed RNAConSLOpt, which can find all the consensus stable and local optimal structures

that are conserved among a set of homologous regulatory RNAs. We can use RNAConSLOpt

to predict alternate functional structures for regulatory RNA families. Finally, we have pro-

posed a pipeline making use of RNAConSLOpt to computationally discover novel riboswitches

in bacterial genomes. An application of the proposed pipeline to a set of bacteria in Bacillus

genus results in the re-discovery of many known riboswitches, and the detection of several

novel putative riboswitch elements.
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CHAPTER 1: INTRODUCTION

Recent study has suggested that non-protein-coding RNAs (ncRNAs) exist pervasively in all

three kingdoms of life and play important regulatory roles in cells. For example, about 98%

of the mammalian genome, which does not translate into proteins and has been long con-

sidered as ‘dark matter’ by the traditional view, turned out to be transcribed as functional

ncRNAs [20, 46]. These ncRNAs participate in regulation of gene expression, including RNA

transcription, RNA translation, RNA splicing, and so on. Transfer RNA (tRNA) acts as

an adaptor for bridging nucleotides in messenger RNA (mRNA) with amino acids [91]. Ri-

bosomal RNA (rRNA) cooperates with tRNA to synthesize and produce proteins in living

cells. MicroRNA (miRNA) interacts with target mRNAs, of which the binding sites are

(perfect or partially) reverse complementary to the miRNA, forming RNA-induced silencing

complex and leading to post-transcriptional gene repression, mRNA degradation or gene

silencing [17]. Small nucleolar RNA (snoRNA) guides methylations and pseudouridylations

of other RNAs, mainly rRNA and tRNA [4]. Small interfering RNA involves in RNA inter-

ference related pathways, and interferes the expression of target gene with complementary

sequence [85]. Piwi-RNA post-transcriptionally silences transposons and participates in ma-

ternally derived epigenetic process through forming RNA-induced silencing complexes with
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piwi proteins [34]. There also exist several other regulatory RNAs such as long ncRNAs,

which participate in regulation of gene transcription, post-transcriptional gene regulation

and epigenetic regulation [68].

These regulatory RNAs carry out various biological functions and form an intrinsic hidden

layer of regulatory network to control gene expression, both transcriptionally and post-

transcriptionally. They are closely related with physiology and development, and may lead

to various diseases when disrupted, such as mammalian central nervous system disorder [61],

heart disease [7] and cancer [111].

Many regulatory RNAs fold into specific structures, couple with other RNAs, DNAs and

proteins, and form complexes (e.g. RNA-induced silencing complexes) for performing their

biological functions. Therefore, RNA structure folding has been extensively studied as it

can provide deep insights into the functionality of regulatory RNAs. For many regulatory

RNAs, the thermodynamically stable structures, especially the minimum free energy (MFE)

structures, are usually the native functional structures.

Nevertheless, at times, regulatory RNAs may fold into alternative functional structures in

order to participate in different biological processes. These regulatory RNAs can carry out

RNA-mediated biological activities, such as switching on or off downstream gene translation

activities [70, 92, 108], regulating RNA splicing via multiple-state splicesomal conforma-

tions [99], and regulating the life cycles of virus [98]. For example, the SV-11 RNA folds into

a metastable conformational structure and acts as a template for its own replication using
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Qβ replicase [10, 11]. In addition, some regulatory RNAs can transform between alternative

secondary structures dynamically in response to various environmental stimuli (such as heat

shock and cold shock) [16, 55, 75, 76]. Further, cis-regulatory RNAs such as riboswitches can

bind with small metabolites such as purines, amino acides and vitamins, and fold into alter-

nate functional structures in order to regulate gene expression. The adenine riboswitch of

ydhL gene of Bacillus subtilis can selectively couple the adenine metabolites, causing a struc-

tural rearrangement to disrupt the formation of a transcription terminator which precludes

the gene transcription of its downstream genes [64]. The lysine riboswitch of lysC gene of B.

subtilis responds to the amino acid lysine and represses translation of the lysC gene [103].

Similarly, the cobalamine B12 dependent riboswitch is found to be widespread in prokaryotes

(e.g. in the 5’-UTR of btuB gene of Escherichia coli and Salmonella typhimurium) [73].

So far, most of the known riboswitches exist in bacteria, some riboswitches are also found in

plants and fungi. The thiamine pyrophosphate (TPP) riboswitch is verified to exist in the

3’ UnTranslated Region (UTR) of the thiC gene of many plants. This riboswitch controls

gene transcription of thiC in plants by splicing the alternative 3’ end of mRNAs [107]. Addi-

tionally, the TPP riboswitch is also identified to control the mRNA splicing and processing

in filamentous fungus [19]. Moreover, recently a novel riboswitch has been detected [88] in

human genome. This riboswitch controls a protein critical for forming blood vessel through

folding a switchable structure and binding with different complexes selectively. These find-

ings demonstrate that metabolite-binding riboswitches are vital for regulating the key bio-

chemical processes of life, including gene translation, gene transcription, and RNA splicing.
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More importantly, riboswitches can be served as antibacterial drug targets [13]. Riboswitches

are selective and evolutionarily conserved receptors for small metabolites, forming highly

conserved structures. Upon riboswitch-metabolite binding, the expression of genes down-

stream of the riboswitch can be modulated. Artificial metabolites, which are similar to the

riboswitch-target metabolites, can be designed to bind with the riboswitch and control ex-

pression of the downstream genes. Thus, antibacterial drugs which function by targeting

riboswitches can be produced.

We are particularly interested in these multi-functioning regulatory RNAs, which are switch-

able and vitally important to the biological regulatory system of life. In this thesis, we

described a suite of computational tools for analyzing these switchable regulatory RNAs

and making discoveries of novel switchable regulatory RNAs in section 1.1, section 1.2 and

section 1.3.

1.1 Predicting Folding Pathways between Two RNA Alternate

Structures

Switchable regulatory RNAs can transit between different functional structure conformations

in order to switch between different biological functions. The conformational transformation

between two alternative structures involves the folding of an RNA molecule into a series
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of intermediate structures [62], denoted by RNA folding pathway. RNA folding pathways

can provide valuable information for understanding the catalytic and regulatory functions of

these RNAs (such as hok/sok of plasmid R1 [32] and riboswitches). RNA folding pathways

may also impact the subsequent biological events (such as formation of tertiary structures).

Furthermore, the design of artificial riboswitches can be improved by analyzing RNA folding

pathways between prescribed structural alternatives. Therefore, computational methods for

predicting folding pathways between RNA conformational structures are in demand.

We wanted to study regulatory RNAs through conformational transitions between their

alternate functional structures. In chapter 2, we described an approach, RNAEAPath, for

predicting near optimal folding pathways between a pair of known functional structures of

a single RNA molecule. An RNA molecule can change its folding and is considered to be

able to stepwisely convert from a given structure to one of its neighboring structures (e.g.

by deleting or adding an admissible base pair). A folding pathway of an RNA contains an

ordered set of intermediate secondary structures, sequentially converting the initial structure

to the final structure. There exist numerous possible folding pathways. Each folding path-

way is associated with an energy barrier which represents the amount of additional energy

required by the folding pathway to complete the structure rearrangement. Since RNA folding

is energy-driven, the optimal folding pathway should require the least amount of additional

energy and has the lowest energy barrier among all the folding pathways. Therefore, the

proposed folding pathway prediction problem can be considered as a search problem, tar-

geting at finding the optimal solution among a large set of candidate solutions. This search
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problem requires exponential time to get the globally-optimal solution, and has to be solved

using heuristic algorithms for real applications.

We have implemented our computational approach, RNAEAPath, in the framework of evolu-

tionary computation, which is especially fit for solving the search problem. The developed

evolutionary algorithm starts from an initial population consisting of a set of randomly

generated individual folding pathways. Then, it recursively mutates, evolves and selects

high-quality individual folding pathways to form the population of the next generation.

High-quality individuals are selected based on their fitness, which is the energy barrier of

each folding pathway. The mutation strategies employed by the evolutionary algorithm are

of particular importance, because they can largely determine the search space to explore

and thus have impact on the efficiency of the search. In order to explore the search space

elegantly and efficiently, we chose to guide the search by RNA stacks, which are known to

contribute to RNA thermal stability. We designed a variety of mutation strategies to sim-

ulate the natural folding of RNA stacks, such as the deletion and the formation of a stack,

and the simultaneous conversion of incompatible stacks. In order to evaluate RNAEAPath,

we have conducted benchmarking tests on several known switchable regulatory RNAs with

different configurations of control parameters, and compared RNAEAPath with the state-of-art

heuristic approaches. The results suggested that RNAEAPath can produce folding pathways

with lower-barrier than its counterparts.
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1.2 Inferring Alternate Functional Structures for a Single RNA

The conformational transitions between alternate functional structures of regulatory RNAs

can provide insights to understanding their biological functionality. In addition, the alternate

functional structures themselves can provide important information. These alternate func-

tional structures can be experimentally identified using in-line probing [64], X-ray crystal-

lography [8] or Nuclear Magnetic Resonance spectroscopy [80]. However, these experimental

methods are usually time-consuming and expensive. Therefore, computational approaches

for accurately predicting alternate structures for regulatory RNAs are in need. To solve this

problem, in Chapter 3, we illustrated an approach RNASLOpt to infer alternate functional

structures for a single RNA by studying the underlying RNA energy landscape and the

significantly stable structures in the RNA energy landscape.

The energy landscape of an RNA molecule is composed of all possible secondary structures

of the RNA within a certain energy range. Each structure represents a node in the energy

landscape. Neighboring nodes (structures), which differ from one another by exactly one

base pair, are linked. The free energy of each structure can be considered as the height of

the associated node in the energy landscape. A sequence of adjacent nodes can form a path in

the energy landscape, which represents a folding pathway of the RNA. For simplicity, we were

only interested in acyclic pathways in the space. The constructed RNA energy landscape

usually has an enormously vast space, which grows quickly with the RNA sequence length
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and the energy range. Therefore, it would be very difficult for us to identify the few functional

structures from such a large conformational space.

In order to reduce the search space, we are only interested in significant structures which

are both energetically favored and local optimal in the local energy landscape. We denoted

these structures by local optimal (LOpt) structures. The LOpt structures are more likely to

be functional than none local optimal structures. Because RNA molecules generally can not

stay folded into an unstable structure and carry out its biological activity for a long time

without converting to a LOpt structure. In addition, it is suggested that the conformational

transitions between alternate functional structures usually involve high energy barriers. To

further reduce the search space, we only focused on the stable LOpt (SLOpt) structures,

of which the pairwise energy barriers are high enough such that the regulatory RNAs can

become kinetically trapped.

In Chapter 3, we elucidated an approach RNASLOpt for enumerating all the stable local

optimal structures on the energy landscape of an RNA molecule. RNASLOpt is composed

of the an algorithm for generating all possible LOpt structures, a heuristic algorithm for

computing pairwise energy barriers and a clustering algorithm for obtaining the stable LOpt

structures. RNASLOpt is designed to generate an ensemble of SLOpt structures which can

form a compact representation of the RNA energy landscape, leading to a remarkably reduced

search space than the original search space.
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In order to show whether RNASLOpt can infer the native ‘on’ and ‘off’ functional structures

for a single RNA accurately, we have conducted benchmarking tests on several known ri-

boswitches. We plotted the predicted ‘on’ and ‘off’ structures of an adenine riboswitch,

which are highly similar to the native structures, as an example. We also showed that

RNASLOpt produced significantly less candidate structures to consider than its counterparts,

yet did not miss any alternate functional structures in all the benchmarking tests. From

the results, we were convinced that our developed approach, RNASLOpt, is able to predict

alternate functional structures for regulatory RNA sequences quickly and accurately.

1.3 Computing Consensus Alternate Functional Structures for

Aligned RNAs

The alternate functional structures for a single RNA sequence can be inferred using our

developed approach RNASLOpt. However, RNA structure prediction based on a single RNA

sequence usually has limited accuracy. In order to reduce the possibility of predicting ad

hoc structures introduced by chance, and to further reduce the search space, we developed

a comparative approach, RNAConSLOpt, which can be applied to aligned homologous RNA

sequences, as described in Chapter 4.
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Comparative approaches have long been used in predicting consensus structures for homol-

ogous RNA sequences, and are proven to be more reliable than approaches based on single

RNA sequences. By combining RNASLOpt (our approach for enumerating SLOpt structures

for a single RNA) with RNAalifold (a state-of-art consensus structure prediction approach

for aligned homologous RNA sequences), we presented RNAConSLOpt for predicting consensus

stable local optimal (ConSLOpt) structures shared by homologous RNAs on their consen-

sus energy landscape. We improved RNASLOpt by integrating consensus RNA folding and

taking the covariant mutation and evolutionary conservation information into account. We

set bonus to pairing columns of which the primary sequences mutate while base pairing pat-

terns remain preserved. We also assigned penalty to pairing columns of which the pairing

patterns are not conserved among all the sequences. Since most consensus structure predic-

tion approaches focus on finding exactly one optimal consensus structure, to our knowledge,

RNAConSLOpt is the very first method tailored for finding consensus stable local optimal

structures conserved among a set of related RNAs.

In order to test whether RNAConSLOpt can compute the native ‘on’ and ‘off’ functional struc-

tures for riboswitch families, we have done benchmarking tests on several known riboswitch

families. The results show that RNAConSLOpt can successfully find alternate functional struc-

tures in all the benchmarking tests. In addition, due to the power of comparative approaches,

the number of produced ConSLOpt structures is only a small fraction of the number of SLOpt

structures for single RNAs, and the search space is further reduced. For example, there are

only two ConSLOpt structures predicted for the adenine riboswitch family. Interestingly,
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these two structures are highly similar to the alternate native structures of the reference

adenine riboswitch.

A possible application of RNAConSLOpt is to discover novel riboswitches in the bacterial

genomes. We have developed a pipeline making use of RNAConSLOpt to de novo detect

new riboswitches in bacteria. We have applied the riboswitch detection pipeline to a set

of bacteria in Bacillus genus and selected the generated potential riboswitch elements using

conservative filtering criteria. We have re-discovered many known riboswitches, and revealed

several potential riboswitch elements. By conducting KEGG pathway analysis to these

potential riboswitch elements, we were convinced that some predictions are likely to be

real riboswitch elements. Detailed case studies to the potential riboswitch elements (e.g.

potential riboswitch elements in 5’-UTR of greA and nadD) also supported our idea.

The comparative approach, RNAConSLOpt, is designed for regulatory RNA structure analysis

and can be applied to novel riboswitch detection on a genome scale. It is an integration of our

previous work RNASLOpt with a comparative approach, aiming at improving the accuracy of

structure prediction using signals from covariant mutations and evolutionary conservation.

Directly applying RNAConSLOpt to aligned homologous RNAs can result in an ensemble of

consensus stable local optimal structures on the consensus energy landscape of the aligned

RNAs. Using RNAConSLOpt in our de novo riboswitch detection pipeline can lead to the re-

discovery of many known riboswitches and the uncover of several novel riboswitch candidates

in bacterial genomes.
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1.4 Overview of the Thesis

In summary, we presented a suite of computational approaches for regulatory RNA analysis

and discovery through studying the folding dynamics between RMA alternate functional

structures, and exploiting the RNA energy landscapes. In Chapter 2, 3 and 4, we described

three computational approaches RNAEAPath, RNASLOpt and RNAConSLOpt in detail. In Chap-

ter 5, we briefly reviewed the three approaches, pointed out their advantages and restrictions,

discussed their possible applications and the future work, and finally concluded the thesis.

The developed computational approaches were summarized in the following.

1. RNAEAPath is designed for computing low-barrier folding pathways between two alter-

nate functional structure of regulatory RNAs, as described in Chapter 2.

2. RNASLOpt aims at predicting stable local optimal structures on the energy landscape

of a single regulatory RNA, and it can be used to infer alternate functional structures

for riboswitches, as shown in Chapter 3.

3. RNAConSLOpt is developed to predict consensus stable local optimal structures on the

consensus energy landscape shared by aligned homologous RNAs, and it can be ap-

plied to de novo detecting potential riboswitches in bacterial genomes, as discussed in

Chapter 4.
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All the computational methods are available at the website of Computational Biology and

Bioinformatics Group in University of Central Florida (http://www.genome.ucf.edu/). We

hope that our developed approaches can facilitate biologists’ research on analysis and dis-

covery of switchable regulatory RNAs, and can be beneficial to the whole community in

regulatory RNA research.
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CHAPTER 2: RNA FOLDING PATHWAYS BETWEEN

CONFORMATIONAL STRUCTURES

The conformational transformations between alternative structures involve the folding of an

RNA molecule into a series of sequential adjacent intermediate structures [62]. RNA fold-

ing pathways provide valuable information for understanding the catalytic and regulatory

functions of RNAs (such as hok/sok of plasmid R1 [32]). RNA folding pathways may also

impact sub-sequence biological events (such as formation of tertiary structures). Further-

more, prediction algorithms can help the design of RNA switches by providing prescribed

structural alternatives.

In this chapter, we present a new approach, RNAEAPath, for computing near optimal direct

or indirect folding pathways between two conformational structures of an RNA molecule.

We guide the search for low energy barrier folding pathways by integrating a variety of

strategies for simulating the formation and destruction of RNA stacks in a flexible framework.

Benchmark tests on conformational switches show that RNAEAPath produces lower energy

1This chapter, in part, is a reprint of the paper, “Predicting Folding Pathways between RNA Con-
formational Structures Guided by RNA Stacks”, co-authored with Shaojie Zhang in Proceeding of ACM
Conference on Bioinformatics, Computational Biology and Biomedicine, pp 245−253, Aug 3-5, Chicago, IL,
USA, 2011, and also a reprint of the paper “Predicting Folding Pathways between RNA Conformational
Structures Guided by RNA Stacks”, BMC Bioinformatics, Vol. 13, (Suppl 3):S5, 2012.
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barrier folding pathways and outperforms the existing heuristic approaches in most test

cases.

2.1 Literature Review

2.1.1 Preliminary

Consider an RNA sequence as a string x = x1 . . . xn of n letters over alphabet Σ = {A,U,G,C}.

A pair of complementary nucleotides xi and xj, can form hydrogen bonds and interact with

each other, denoted by xi ·xj. We only consider the canonical base pairings (A ·U and G ·C)

and the wobble base pairing (G ·U). A secondary structure S of the RNA sequence x is a

set of disjoint paired bases (i, j), where 1 ≤ i < j ≤ n. S may be represented by a length

n string of dots and brackets, where dots represent unpaired bases and brackets represent

paired bases. An RNA structure can comprise of stacks which are lists of consecutive base

pairs ({(i, j), (i+1, j−1), . . . , (i+w, j−w)} such that xi ·xj, . . . , xi+w ·xj−w), and unstacking

base pairs. A secondary structure is pseudoknotted if it contains two base pairs (i, j) and

(i′, j′) with i < i′ < j < j′. We only consider pseudoknot-free structures. A base pair is

compatible with a secondary structure if the base pair can be added to the structure without

leading to a pseudoknotted structure or pairing a base with more than one partner. A stack

is compatible with S if each base pair in the stack is either in S or is compatible with S.
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The free energy of a secondary structure S is denoted by E(S). The set of neighboring

structures of S consists of all structures that differ from S by an addition or deletion of

exactly one base pair. For two secondary structures A and B, the distance between A and

B is the number of base pairs in A not in B plus the number of base pairs in B not in A

(i.e. |(A − B) ∪ (B − A)|). A folding pathway from A to B is a sequence of intermediate

structures A = S0, . . . , Sm = B such that for all 0 ≤ i < m, intermediate structure Si+1

is a neighboring structure of Si. A folding pathway is direct if the intermediate structures

contain only base pairs in A and B (i.e. Si ⊆ A∪B for 1 ≤ i < m) and otherwise is indirect.

The saddle point of a pathway is an intermediate structure with the highest energy, and the

energy barrier of a pathway is the energy difference between its saddle point and the initial

structure. Since the folding of RNA structures is thermodynamically-driven and tends to

avoid high-energy intermediate structures, current computational methods aim to find RNA

folding pathways with the lowest energy barriers.

2.1.2 Previous Studies

A lot of research has been done on predicting low energy barrier folding pathways. Morgan

and Higgs proposed a greedy algorithm that employs the Nussinov model [82, 83] for com-

puting direct folding pathways with minimum energy barrier. They also described a heuristic

that samples low energy structures from the partition function and glues them together by
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direct pathways [71]. The Nussinov model is simple and easy to implement, in which base

stacking and loop entropies have no energetic contributions. Based on this model, Thachuk

et al. [104] developed an exact algorithm, PathwayHunter, which exploits elegant properties

of bipartite graphs for finding the globally optimal direct pathways. However, the Nussi-

nov model is not as accurate as the Turner energy model [66, 105] for approximating RNA

thermodynamics. An exact solution based on the Turner energy model is also available.

BARRIERS [25, 28], exactly computes the globally optimal folding pathways between any two

locally optimal secondary structures. BARRIERS reads an energy sorted list of RNA secondary

structural conformations produced by RNAsubopt [112] and is able to compute both direct

and indirect low energy barrier pathways.

Nevertheless, the above exact solutions are all exponential in time, because the problem

itself is NP-hard [65]. Many heuristic algorithms have also been proposed following the

seminal work of Morgan and Higgs. Flamm et al. [27] used breadth-first search in their

heuristics (in Vienna RNA Package [41]) and kept the best k candidates at each step to

bound the search. Voss et al. [106] devised a straightforward strategy for greedily searching

direct pathways. Geis et al. [31] described a greedy heuristic to explore the search space of

direct pathways and they also integrated look ahead techniques to diminish the search space.

Recently, Dotu et al. [21] developed RNATabuPath, a fast heuristic that employs a TABU

semi-greedy search to construct near optimal (both direct and indirect) folding trajectories.

In addition, other heuristic approaches, by splitting the pathways into shorter pathways and

solving each individually, have also been proposed [14, 57]. There are also other formula
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presented for the prediction of RNA folding kinetics (see Flamm and Hofacker’s review [26]

for a systematic discussion).

Many of the existing heuristic algorithms start from an initial structure A, and, at each single

step i, walk from the intermediate structure Si to one of its neighbors Si+1 until finally the

end structure B is reached. The definition of neighborhood relationships as well as the fitness

functions can be different. The fitness function of Si is usually defined on the free energy of

Si, or the distance from Si to B, or a function of both. In general, greedy algorithms select the

‘best’ neighbor structure that has the best fitness. In contrast, semi-greedy algorithms may

select any one from the top k structures for randomization. RNATabuPath, which is more

sophisticated and outperforms other methods [21], keeps a TABU list for saving recently

taken moves such that they can not be applied in certain steps until being removed from the

tabu list. In general, during the construction of a folding pathway, these heuristic algorithms

select the next intermediate structures from a set of neighboring structures that have the

top lowest free energy or have the top shortest distance to B (or the combination of both).

2.1.3 Motivations

However, using energy to guide the construction of folding pathways in the above-mentioned

heuristic algorithms has its downsides. The RNA energy landscapes can be extremely large

and rugged [97, 98] and the ruggedness of RNA energy landscape may cause the energy-
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guided search to become trapped in a local optimum. Similar to using structural rear-

rangements for modeling RNA folding kinetics [79], we want to construct candidate folding

pathways in a manner that make it easier to jump out of local optima. It has been revealed

that stacking base pairs contribute significantly to the stabilization of RNA secondary struc-

tures [101, 113]. The dominant RNA folding pathways involve the formation and destruction

of the stacks, and the cooperative formation of a stack along with the partial melting of an

incompatible stack [116].

We propose to guide the construction of pathways by the formation and destruction of stacks

(not by free energy or by distance to the end structure). We still select the constructed folding

pathways according to their energy barriers. Although the construction of folding pathways is

not driven by thermodynamics, the selection of folding pathways is based on energy barriers.

Guiding the construction of folding pathways by coarse grained movements of RNA stacks

may help reduce the search space and makes it easier to jump out of local optima. In the rest

of this chapter, the Methods section describes the representation of folding pathways and

the detailed strategies employed by RNAEAPath. The Results and Discussion section presents

benchmarking results of RNAEAPath against existing methods followed by concluding remarks

in the Conclusions section.
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2.2 Methods

2.2.1 Representation of RNA Folding Pathways

Given an initial structure A and an end structure B, we use a sequence of actions succes-

sively applied to A, rather than a sequence of intermediate structures, to represent a folding

pathway from A to B. Representing a pathway by an action chain can avoid cyclic additions

and deletions of base pairs and make it easy to simulate the formation and deletion of RNA

stacks. A similar representation has also been employed in the previous work of Thachuk et

al. [104].

We use two types of actions, addi,j and deli,j in the representation of RNA folding pathways.

For an intermediate secondary structure S of an RNA sequence x, the action addi,j denotes

the ‘add’ition of base pair (i, j) to S (i.e. addi,j(S) = S ∪ {(i, j)}) and deli,j denotes the

‘del’etion of base pair (i, j) from S (i.e. deli,j(S) = S − {(i, j)}). An action is direct if it

concerns a base pair in A ∪B and indirect otherwise. The simplest direct pathways from A

to B concern sequential deletions of all base pairs in A−B followed by additions of all base

pairs in B − A.

Consider an example sequence x = GGGGAAAACCCCUUUU with initial and final struc-

tures shown in Figure 2.1. This simple pathway is obtained by first deleting all GC pairs

from A until the RNA is single stranded, and then adding all AU pairs until B is obtained.
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Note that each intermediate structure Si differs from both its successor and predecessor by

exactly one base pair. The actions in the example are all direct actions and the energy

barrier is 5.50− (−6.60) = 12.10 kcal/mol.

Structures Energy Actions
GGGGAAAACCCCUUUU (kcal/mol)

A ((((....)))).... -6.60 a1 del1,12

S1 .(((....)))..... -2.90 a2 del2,11

S2 ..((....))...... 0.40 a3 del3,10

S3 ...(....)....... 3.70 a4 del4,9

S4 ................ 0.00 a5 add8,13

S5 .......(....)... 5.50 a6 add7,14

S6 ......((....)).. 4.60 a7 add6,15

S7 .....(((....))). 3.70 a8 add5,16

B ....((((....)))) 2.80

Figure 2.1: An example of a simple folding pathway. This figure shows a simple folding
pathway which converts an RNA sequence from structure A to B. The leftmost column
shows a simple direct pathway from A to B, the center column shows the free energies (in
kcal/mol) of the intermediate structures, and the rightmost column presents the action chain
a1, . . . , a8 for this pathway.

An addition action addi,j(S) conflicts with S if either xi or xj is already paired in S, and it

clashes with S if there exists a base pair {(x′
i, x

′
j) ∈ S|i < i′ < j < j′ or i′ < i < j′ < j}.

A deletion action deli,j(S) conflicts with S if (xi, xj) /∈ S. An addition or deletion action is

valid and can be applied to S properly if it neither conflicts with nor clashes with S.

A pathway from A to B can be represented by an action chain, which is a sequence of valid

actions a1, . . . , am such that S0 = A, St = at(St−1) for 1 ≤ t ≤ m and Sm = B. Note that an

action chain for A to B implies a sequence of valid actions that can be successively applied to

A without introducing conflicts or clashes and produce B. We use the term “action chain”
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when the sequence is certified to be valid, and the term “sequence of actions” if its validity

is not guaranteed.

This representation of a pathway p from A to B has the following important properties.

First, every folding pathway can be represented by a unique action chain and every action

chain represents a unique folding pathway (note that it is not necessarily true for a sequence

of actions). Second, rearranging the order of actions in p results in a new sequence of actions

which represents a new folding pathway from A to B when it is valid. (It is an action chain

that can be successively applied to A properly and obtain B.) Third, introducing a pair of

complementary actions (e.g. addi,j and deli,j) to p results in a new sequence of actions which

also represents a new folding pathway from A to B if it is valid.

In RNAEAPath, folding pathways are represented in the form of action chains, instead of a

sequence of intermediate structures. This representation makes the life cycle of a folding

pathway transparent to the algorithm and also makes it easier for us to simulate the co-

operative formation and destruction of RNA stacks by re-arranging the order of actions or

introducing multiple pairs of complementary actions.
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Procedure: RNAEAPath(x, A, B)

1: ∆← |E(B)− E(A)|
2: k ← 0
3: Initialize P0 and sort individuals in it by energy barriers
4: OPT0 ← P0[1]
5: while !STOP(k, OPT, ∆) do

6: k ← k + 1
7: Ok ← Pk−1[1 . . . ℓ1]
8: for all p ∈ Pk−1 do

9: T←
(

⋃Y

y=1
My(p)

)

10: Ok ← Ok ∪ T[1 . . . ℓ2]
11: end for

12: OPTk = Ok[1]
13: Pk ← Ok[1 . . . ℓ3]
14: end while

15: return OPTk

Figure 2.2: Overview of RNAEAPath

2.2.2 Predicting Low Energy-barrier Folding Pathways

Given an RNA sequence x, an initial structure A and a final structure B, RNAEAPath com-

putes a near optimal low energy barrier folding pathway from A to B in an evolutionary

algorithm framework [22]. Figure 2.2 elucidates the overall paradigm for RNAEAPath. In this

algorithm, the population of each generation is comprised of folding pathways ordered by

their fitness. The functions My(p) are mutation strategies, each of which takes in a pathway

p and produces a set of offspring pathways. These mutation strategies are central to the

effectiveness of RNAEAPath and will be discussed in the Mutation strategies subsection. ℓ1,

ℓ2, ℓ3, MAX and γ are positive integer control parameters.

The initial population of RNAEAPath, P0, is filled with a set of simple pathways. Then, the

algorithm goes through several iterations. Pk−1 is the population of the k − 1st iteration.
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In the kth iteration, the algorithm produces Ok (an ordered list of pathways) and Pk (the

population of the kth iteration) from Pk−1. Ok stores the best ℓ1 pathways in Pk−1 and the

best ℓ2 pathways produced by each p ∈ Pk−1. More specifically, each pathway p ∈ Pk−1

produces tky offsprings through every mutation strategy My (1 ≤ y ≤ Y ). The resulting

offsprings produced by p are stored in a temporary list T, and the top ℓ2 pathways are added

to Ok. Finally, the best solution of the kth iteration, termed as OPTk, is the best pathway

in Ok. And, Pk (the population of the kth iteration) is composed of the best ℓ3 pathways of

Ok and will be used in the next iteration to produce Pk+1. This helps keep the diversity of

the population large, since Pk contains at most ℓ2 offsprings produced by each p ∈ Pk−1, no

matter how many high-qualified offsprings are produced by each pathway. The algorithm

terminates when a stopping condition is met, and it returns the best solution of the last

iteration. Since Ok retains the best ℓ1 pathways from Pk−1 in each iteration, the best one

ever encountered by the algorithm is retained in lists Ok and Pk, and stored in OPTk. So,

OPTk has no worse fitness when compared to OPTk−1, and RNAEAPath always returns the

best action chain it ever discovered.

In the remaining of section 2.2.2, we discuss details regarding fitness evaluation, initialization

of the population, stopping conditions and mutation strategies of RNAEAPath.
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2.2.2.1 Fitness of Action Chains

The order of folding pathways (valid action chains) is primarily determined by their energy

barriers. In case of a tie, the order is determined by the average of energy differences between

the initial structure A and intermediate structures. Note that lower energies are preferred

in the previous two methods of ordering. If a tie still exists, then shorter action chains are

preferred. Action chains are ordered arbitrarily if their relative order can not be determined

based on these three criteria.

2.2.2.2 The Initial Population of Folding Pathways

The initial population, P0, contains 4 simple pathways from A to B formed by first deleting

all base pairs in A − B and then adding those in B − A, similar to the pathway shown in

Figure 2.1. Although we can also arrange base pair deletions and additions in an arbitrary

order, we tailor them in a manner that simulates successive degradation and formation of

RNA stacks. This is because random deletions and additions of base pairs tend to form

additional unpaired loop regions that introduce entropic penalties (see Figure 2.3 for an

illustration). We can degrade or form each stack either from the outmost base pair to the

innermost base pair or vice verse. Usually, it yields a lower energy barrier if we degrade

a stack from the outmost base pair to the innermost base pair and form a stack from the
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Structures E(S) Structures E(S)
GGGGGGAAAAACCCCCC (kcal/mol) GGGGGGAAAAACCCCCC (kcal/mol)
................. 0 ................. 0
.....(.....)..... 3.7 (...............) 4.04
....((.....)).... 0.4 (.(...........).) 4.10
...(((.....)))... -2.9 (.(.(.......).).) 3.8
.(((((.....))))). -9.5 (((.((.....)).))) -5.0
((((((.....)))))) -12.0 ((((((.....)))))) -12.0

Figure 2.3: Two different folding pathways that form an identical stack.

innermost base pair to the outmost base pair. However, for the sake of simplicity and

generosity, we construct 4 simple pathways in P0, which degrade all the stacks from the

same direction and form all the stacks from the same direction. These simple pathways

constitute a diversified and unbiased initial population for the algorithm start from.

2.2.2.3 The Number of Offsprings Produced by Each Mutation Strategy

In each generation, the expected total number of offsprings produced by each individual is

a constant positive integer L. The number of offsprings that each individual produces using

mutation strategy My, (1 ≤ y ≤ Y ), in the kth generation, is denoted by ℓkMy
. In the initial

generation, ℓ0My
is equivalent to L/Y for all the mutation strategies. In the kth generation,

ℓkMy
is determined adaptively according to the quality of the offsprings produced using My

in the k − 1st iteration. Let bk−1
My

be number of offsprings that are both produced through

My and selected to construct Pk−1, the population of the k − 1st generation. Then, ℓkMy
in
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the kth generation is computed as Equation 2.1.

ℓkMy
= max



Lmin

(bk−1
y /ℓk−1

My
)

Y∑
y′=1

(bk−1
y′ /ℓk−1

My′
)

L

(2.1)

Mutation strategies that have produced more high quality offsprings in the (k − 1)st iteration

are allowed to generate more offsprings in the kth generation. In contrast, mutation strategies

that perform poorly in the k − 1st generation, are only allowed to generate a small number

(Lmin, with default value 3) of offsprings. Note that, the sum of ℓkMy
for 1 ≤ y ≤ Y may be

greater than ℓ.

2.2.2.4 Stopping Conditions

The algorithm terminates when (1) the current best solution achieves the lowest possible

value |E(B) − E(A)|, or (2) when no improvement has been found over γ consecutive it-

erations (a plateau), or (3) when MAX number of iterations have passed and successive

iterations do not discover better results. Note that the algorithm may simulate further than

MAX iterations if improvements are made in the very last iteration and it stops immediately
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if no improvement is made between successive iterations. More specifically, the algorithm

stops when any of the following conditions is satisfied:

1. the energy barrier of OPTk is equivalent to |E(B)− E(A)|.

2. k > γ and the fitness of OPTk is equivalent to that of OPTk−γ.

3. k ≥ MAX and the fitness of OPTk is equivalent to that of OPTk−1.

2.2.3 Mutation Strategies

In RNAEAPath, the mutation strategies employed to evolve folding pathways can be catego-

rized into three types: (1) rearranging the order of actions, (2) introducing indirect pathways

and (3) formation of a single stack or cooperative conversion of a pair of incompatible stacks.

Let M1, . . . ,MY denote the mutation strategies and let p = a1, . . . , am denote the input path-

way A = S0, . . . , Sm = B. For each mutation strategy My(p), we describe the process for

generating one new pathway q using each mutation strategy when given p.
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2.2.3.1 Type 1: Reordering of Actions

As described in section 2.2.1, shuffling the order of actions of the input pathway p can result

in a new pathway from A to B. In RNAEAPath, two mutation strategies of this type are

employed. M1 changes the position of an arbitrary action, and M2 swaps the positions of

two arbitrary actions.

M1: Let Mt1,t2
1 (p) denote the sequence of actions obtained by first removing an action at1

(1 ≤ t1 ≤ m) from p and then inserting it after at2 , for all t2 ∈ {0, . . . , t1 − 1, t1 + 1, . . . ,m}.

Note that the resulting sequence of actions may not necessarily be a valid action chain. For

instance, in Figure 2.1, M1,4
1 (p) = a2, a3, a4, a1, a5, . . . , a8 and M3,2

1 (p) = p are valid action

chains, while M8,1
1 (p) = a1, a8, a2, . . . , a7 is not.

The procedure for computing Mt1,t2
1 (p) is described in the following.

1. Choose t1 uniformly at random from the interval [1,m].

2. Compute the interval [l, u], (t1 < l < u < m), where l is the minimum and u is the

maximum such that for all t2 ∈ [l, u] and t2 ̸= t1, Mt1,t2
1 (p) is a valid action chain.

3. Choose t2 from the interval [l, u].

3.1. If at1 is an addition operation, for all l ≤ t < t′ ≤ u and t ̸= t′ ̸= t1, the probability

of choosing t is greater than that of t′.
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3.2. Otherwise (a deletion operation), for all l ≤ t < t′ ≤ u and t ̸= t′ ̸= t1, the

probability of choosing t is less than that of t′

We do not choose t2 (t2 ̸= t1) uniformly at random in [l, u], instead, we tend to place

addition operations in the front part of p, and deletion operations in the later part of p.

This is because adding base pairs early and deleting them late during the folding may

help stabilize the intermediate secondary structures. The detailed discrete probability of

choosing actions is designed as follows. We construct the discrete probability distribution

similar to the discrete Gaussian distribution over a sample space. Let X be a random

variable over R following a normal distribution with mean µ (µ = 0) and variance σ2.

Consider a sample space of n distinguishable objects V = {v1, v2, . . . , vn}. The V-distribution

selects a sample v with probability Pr(v) (Pr(v = vi) = Pr((i − 1)/n ≤ |X| ≤ i/n) for

1 ≤ i ≤ n− 1 and Pr(v = vn) = Pr(|X| ≥ (n− 1)/n)). The default value of σ2 is 1/12, so

that Pr(|X| ≥ 1) = 0.0005. Consider the set {pl, . . . , p(l+n−1)} and construct V as follows.

If at is an addition operation, then V = {v1 = pl, . . . , v(l+n−1) = pu}. If at is a deletion

operation, then V = {v1 = p(l+n−1), . . . , vn = pl}. The actions chain q is chosen from V with

the V-distribution.

M2: Let Mt1,t2
2 (p) denote the sequence of actions obtained by swapping at1 with at2 . If

the resulting sequence of actions is a valid action chain, let it be q; otherwise, restart the

process. For example, in Figure 2.1, M1,8
2 (p) is not a valid action chain, while M2,4

2 (p) =
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a1, a4, a3, a2, a5, . . . , a8 is. t1 and t2 are chosen uniformly at random from {(t1, t2) : 1 ≤ t1 <

t2 ≤ m}.

Mutation strategies of type 1 provide methods for shuffling the order of actions of an input

pathway and generating slightly different new pathways. However, these strategies are not

capable of introducing additional (indirect) base pairs, and the offsprings of a direct pathway

produced through type 1 strategies are also direct. In the following, we will describe mutation

strategies that are able to construct indirect pathways from a direct pathway.

2.2.3.2 Type 2: Introducing Indirect Pathways by Adding a Pair of Complementary Actions

Morgan and Higgs [71] pointed out that the optimal folding paths are generally indirect

pathways. This idea was further described by Dotu et al. [21]. The temporary formation of

base pairs, especially those base pairs that do not belong to A ∪ B, may lower the energies

of intermediate structures and thus render better folding pathways. Similarly, temporary

deletion and reformation of a base pair also can create an indirect pathway.

M3: Let Mt1,t2,+(i,j)
3 (p) denote the sequence of actions obtained by introducing an addition

action addi,j after at1 and its complementary action deli,j after at2 . Let M
t1,t2,−(i,j)
3 (p) denote

the sequence of actions obtained by introducing a deletion action deli,j after at1 and its com-

plementary action addi,j after at2 . For example, in Figure 2.1, M1,7,+(1,16)
3 (p) = a1, add1,16, a2,
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. . . , a7, del1,16, a8. The procedures for computing Mt1,t2,+(i,j)
3 (p) and Mt1,t2,−(i,j)

3 (p) are similar

to each other. In the following, we only describe the procedure for computing Mt1,t2,+(i,j)
3 (p).

1. Choose t1 uniformly at random from the interval [1,m], and obtain the associated

intermediate structure St1 .

2. Find a set of base pairs that neither conflict with nor clash with St1 and choose a base

pair (i, j) uniformly at random from the set.

3. Compute the interval [l, u], (t1 < l < u < m), where l is the minimum and u is

the maximum such that for all values t2 ∈ [l, u] the resulting sequence of actions of

Mt1,t2,+(i,j)
3 (p) is a valid action chain.

4. Choose t2 from the interval [l, u] with the probability of choosing t greater than that

of t′ for all t > t′. (This is because (i, j) is not likely to be deleted soon after its

formation.)

Mutation strategy M3 is capable of producing an indirect pathway from a direct pathway. In

addition, a proper combination of multiple applications of M3 may result in a pathway which

simulates the successive formation and deletion of a temporary stack during the folding.

Take the pathway p in Figure 2.1 as an example, we can construct a pathway q that forms

a temporary stack consisting of all the GU base pairs via a multiple application of M3,

q = M5,7,+(3,14)
3 (M3,7,+(2,15)

3 (M1,7,+(1,16)
3 (p))).
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2.2.3.3 Type 3: Formation of a Single Stack or Simultaneous Formation and Deletion of a

Pair of Incompatible Stacks

In this section, we will introduce mutation strategies for producing pathways that involve

with formation and deletion of stacks. To perform this type of strategies, we first need to

find all possible stacks in an RNA sequence x. We use the algorithm of Bafna et al. [5]

to find the set of all possible stacks with more than 3 consecutive base pairs, and denote

it by STA(x). There are two strategies in Type 3: formation of a single stack (M4) and

simultaneous formation and destruction of a pair of incompatible stacks (M5).

M4: Let Mt,h
4 (p) denote the sequence of actions obtained by forcing the formation of a stack

stackh ∈ STA after action at, where stackh is compatible with St. The following describes

the procedure for computing Mt,h
4 (p).

1. Choose t uniformly at random from the interval [1,m], and obtain the associated

intermediate structure St.

2. Find a set of stacks that neither conflict with nor clash with St, and pick up a stack

stackh uniformly at random from the set.

3. Ensure that each base pair (i, j) in {stackh − St} is sequentially (from the innermost

base pair to the outmost base pair) formed after at.

3.1. If an action addi,j appears in {at+1, . . . , am}, move it up and place it after at using

strategy M1.
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Folding pathway 1 Folding pathway 2

((((((((.........)))))))) ((((((((.........))))))))

(((((((...........))))))) (((((((...........)))))))

((((((.............)))))) (((((((.....(....))))))))

(((((...............))))) ((((((......(....).))))))

((((.................)))) ((((((.....((....))))))))

(((...................))) (((((......((....)).)))))

((.....................)) (((((.....(((....))))))))

(.......................) ((((......(((....))).))))

......................... ((((.....((((....))))))))

............(....)....... (((......((((....)))).)))

...........((....))...... (((.....(((((....))))))))

..........(((....)))..... ((......(((((....))))).))

.........((((....)))).... ((.....((((((....))))))))

........(((((....)))))... (......((((((....)))))).)

.......((((((....)))))).. .......((((((....))))))..

Figure 2.4: Two different folding pathways with identical initial and final secondary struc-
tures. Left: a stack is destroyed completely before an incompatible stack is formed. Right:
stacks are destructed and constructed simultaneously.

3.2. Otherwise, introduce a pair of complementary actions addi,j and deli,j to p after at

using strategy M3.

We can introduce additional stacks that are compatible with St using M4 by forcing a

sequence of addition actions successively forming base pairs in {stackh − St}, after at.

M5: Let Mt,h
5 (p) denote the sequence of actions obtained by forcing the formation of a

stack stackh ∈ STA which is incompatible with St, after action at. Shown on the right

side of Figure 2.4 is a folding pathway which simultaneously destructs and forms a pair of

incompatible stacks. Shown on the left side is a simple folding pathway which has exactly

the same start and end structures, while it folds into a single stranded structure during the
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folding. Usually, the pathway on the right has lower energy barrier than the one on the left

because it never folds into a single stranded structure. The folding pathway on the right

side of Figure 2.4 can be introduced using strategy M5. And, the procedure for computing

Mt,h
5 (p) is as follows:

1. Choose an arbitrary deletion action at = deli,j from p, and obtain the associated inter-

mediate structure St.

2. Find a set of stacks which either conflicts with or clashes with St, and choose a stack

stackh uniformly at random from the set.

3. For each base pair (i′, j′) in {stackh − St} that is compatible with St, place addi′,j′ to p

after at using strategy M4.

4. For each base pair (i′, j′) in {stackh − St} that is incompatible with St,

4.1. Find all the base pairs (i∗, j∗) in St that are incompatible with (i′, j′), and ensure

that each base pair (i∗, j∗) is deleted before the action addi′,j′ .

4.3. If a action deli∗,j∗ appears in {at+1, . . . , am}, move it up before addi′,j′ using strategy

M1.

4.4. Otherwise, introduce a pair of complementary actions deli∗,j∗ and addi∗,j∗ using

strategy M3.

Using M5, we can introduce the simultaneous formation of a stack stackh, which is incom-

patible with St, and destruction of existent stacks (or base pairs) that hamper the formation

of stackh. Since cooperative formation and destruction of stacks may contribute additional
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stacking energies for stabilizing the intermediate structures, better folding pathways with

lower energy barriers may be rendered.

2.3 Results and Discussion

2.3.1 Benchmarking Tests

We benchmarked RNAEAPath against existing methods (BARRIERS [25, 28], PathwayHunter

[104], Findpath [27], and RNATabuPath [21]) by predicting low energy barrier folding path-

ways between two designated RNA secondary structures of 18 conformational switches. All

the conformational switches were taken from the work of Dotu et. al [21]. Five of them

are riboswitches, including rb1, rb2, rb3, rb4, and rb5. The metastable structures of these

riboswitches have been experimentally determined by inline probing [63, 108]. The thirteen

remaining cases concern conformational switches, including hok, SL (Spliced leader RNA),

s15, s-box leader, thiM leader, ms2, HDV, dsrA, ribD leader, amv, alpha operon and HIV-

1 leader. Sequences of these conformational switches can also be obtained from paRNAss

web site (http://bibiserv.techfak.uni-bielefeld.de/parnass/examples.html), and some of the

metastable secondary structures were computationally determined using RNAbor [30].
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We summarize the results computed by PathwayHunter, the results computed by BARRIERS,

the results computed by Findpath (with the look ahead parameter k = 10), the best results

over 1000 runs found by RNATabuPath, and the best results over 1 run and 5 runs found by

RNAEAPath in Table 2.1 respectively. And we use ‘−’ to mark test cases that methods fail

to apply to in the table. For all methods, free energies of the intermediate structures of the

folding pathways (including PathwayHunter) are evaluated based on the Turner model using

RNAeval (with -d1 option) from the Vienna RNA Package [41]. The default configuration

parameters of RNAEAPath are as follows. MAX is 10, γ is 5, L is 100, ℓ1 is 10, ℓ2 is 5 and

ℓ3 is 100. Due to the stochastic nature of the evolutionary algorithm, we report the best

energy barrier of RNAEAPath found over both 1 run and 5 runs.

BARRIERS is the only exact solution that produces indirect pathways based on the Turner

model. BARRIERS has already been compared with existing heuristic algorithms on the same

test cases in the work of Dotu et al. [21]. We put the results of BARRIERS in the table just for

the sake of comparison. It has been pointed out that BARRIERS gives provably globally opti-

mal pathways in 4 out of 18 cases (i.e. SL, attenuator, s15 and dsrA). BARRIERS can not be

directly applied to 5 cases because either the initial or the end structure is not locally optimal

(i.e. rb2, sbox leader, ms2, amv and alpha operon), and can not converge in the remaining

cases. Possibly due to the fact that both the number of RNA secondary conformations to

consider and the computational resources required increase exponentially with the growing

length of the RNA sequence and the growing range of energy barrier. PathwayHunter is

an exact algorithm capable of producing the optimal direct folding pathways based on the
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Table 2.1: Energy barriers of the best folding pathways produced by BARRIERS,
PathwayHunter, Findpath, RNATabuPath, and RNAEAPath for 18 conformational RNA
switches are shown.

Instance BARRIERS PathwayHunter Findpath RNATabuPath RNAEAPath

(n=1000) (n=1) (n=5)
rb1 − − 24.04 24.04 23.2 22
rb2 − 10 8.2 7.25 6.5 6.5
rb3 − − 22.4 17.9 17.5 16.7
rb4 − − 16.9 16.9 16.9 16.9
rb5 − − 24.54 24.54 21.44 21.44
hok − − 28.5 29.66 20.7 20.1
SL 11.80 − 13 12.9 13.0 12.9
attenuator 8.3 − 8.7 8.6 8.7 8.5
s15 6.60 − 7.1 6.6 7.1 7.1
sbox leader − 7.9 5.2 5.2 5.2 5.2
thiM leader − − 16.13 14.84 12.3 12.3
ms2 − 11.6 6.6 6.6 6.6 6.6
HDV − 23.53 17.4 17.0 16.8 16.8
dsrA 8.0 − 8.3 8.2 8.0 8.0
ribD leader − − 10.71 9.5 9.5 9.5
amv − 12.2 5.8 5.8 5.74 5.74
alpha operon − 11.8 6.5 6.5 6.1 6.1
HIV-1 leader − 14.3 9.3 11.3 8.9 8.9

Energy barriers (measured in kcal/mol) of the best folding pathways over n runs are shown.
Boldface numbers are the best energy barriers found by the heuristic algorithms.

Nussinov model. PathwayHunter can not be directly applied to 10 cases, because it requires

the pair of input structures being able to form a ‘pairwise-optimal’ bipartite conflicting

graph (see the work of Thachuk et al. [104] for details). It is not surprising that the per-

formance of the exact algorithm, PathwayHunter, evaluated by free energy (in kcal/mol),

is worse than the heuristic algorithms. This is because PathwayHunter is optimized based

on the Nussinov model and only produces direct pathways, while the optimal direct path-

ways predicted based on the Nussinov model may not be the optimal pathways (considering
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both direct and indirect pathways) based on the Turner model. All the remaining three

methods are heuristics capable of producing both direct and indirect pathways based on

the Turner model. Findpath produces folding pathways very quickly, however it performs

worse than both RNATabuPath and RNAEAPath in most cases. RNATabuPath performs better

than Findpath, but produces less optimal pathways than RNAEAPath. The energy barriers

predicted by RNAEAPath over 5 runs are exactly the same as RNATabuPath in 5 cases, worse

in 1 case, and better in all the remaining 12 cases.

Figure 2.5: A predicted indirect pathway for an adenine riboswitch. This figure shows a pre-
dicted near optimal indirect pathways between the two conformational secondary structures
of an adenine riboswitch from V. vulnificus.

Other heuristic algorithms (including a greedy algorithm of Voss et al. [106], a semi-greedy

modification of the greedy algorithm, a greedy algorithm of Morgan, and Higgs [71] for
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predicting direct pathways and a variant of the Morgan-Higgs greedy algorithm capable of

producing indirect pathways), that have been shown to perform considerably worse than

RNATabuPath [21], are not listed.

By analyzing the best folding pathways produced by RNAEAPath, we found that most high-

quality pathways involve the melting of stacks in the initial structure, the (possibly simulta-

neous) construction of stacks in the final structure, and the formation of auxiliary temporary

stacks for obtaining folding pathways with lower energy barriers. We may take the lowest en-

ergy barrier folding pathway of rb2 found by RNAEAPath, shown in Figure 2.5 as an example.

The stack colored in red is an auxiliary temporary stack introducing intermediate structures

with lower free energies (which is constructed using M4). Some of the stacks in the initial

structure (in blue) are gradually melting, while at the same time, an incompatible stack (in

green) is being formed (which is constructed using M5). The stack colored in red is an aux-

iliary temporary stack introducing intermediate structures with lower free energies. This ex-

ample convinces us that the advantages of RNAEAPath mainly come from employing mutation

strategies that guide the construction of folding pathways by the formation and destruction

of stacks and introducing additional stacking interactions that are important for stabilizing

the intermediate structures. Detailed low energy barrier folding pathways for all the test

cases are available on RNAEAPath web site (http://www.genome.ucf.edu/RNAEAPath/).
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2.3.2 Control Parameters and Performance

Table 2.2: Energy barriers (measured in kcal/mol) of the best folding pathways found by
RNAEAPath over 5 runs with ℓ1, the number of top offsprings preserved in the next generation,
varying from 1 to 16.

Instance
Control Parameter: ℓ1

1 4 7 10 13 16
rb1 22 22 22 22 22 22
rb2 7.4 7.5 10 6.5 6.5 6.5
rb3 16.7 16.7 17.1 16.7 16.7 16.7
rb4 16.9 16.9 16.9 16.9 16.9 16.9
rb5 21.44 21.44 21.44 21.44 21.44 21.44
hok 20.2 20.1 20.2 20.1 20.1 20.1
SL 13 13 12.9 12.9 13 13
attenuator 8.6 8.5 8.5 8.5 8.5 8.5
s15 6.6 7.1 7.1 7.1 6.6 7.1
sbox leader 5.2 5.2 5.2 5.2 5.2 5.2
thiM leader 12.3 12.3 12.3 12.3 12.3 12.3
ms2 6.6 6.6 6.6 6.6 6.6 6.6
HDV 16.7 16.8 16.7 16.8 16.8 16.8
dsrA 8 8 8 8 8 8
ribD leader 9.5 9.5 9.5 9.5 9.5 9.5
amv 5.74 5.74 5.74 5.74 5.74 5.74
alpha operon 6.5 6.1 6.1 6.1 6.1 6.1
HIV-1 leader 8.9 8.9 8.9 8.9 8.9 8.9

In order to evaluate the performance of RNAEAPath with different parameter configurations,

we played with several other control parameters. The results with ℓ1, the number of top

offsprings preserved in the next generation, varying from 1 to 16, are shown in Table 2.2.

The results with ℓ3, the size of population in each generation, varying from 80 to 120, are

shown in Table 2.3. The results with L, the total number of offsprings each individual is

expected to produce, varying from 80 to 120, are shown in Table 2.4. In general, RNAEAPath
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Table 2.3: Energy barriers (measured in kcal/mol) of the best folding pathways found by
RNAEAPath over 5 runs with ℓ3, the size of population in each generation, varying from 80 to
120.

Instance
Control Parameter: ℓ3

80 90 100 110 120
rb1 22 22 22 22 22.4
rb2 6.5 7.4 6.5 6.5 6.5
rb3 16.7 17.1 16.7 16.7 16.7
rb4 16.9 16.9 16.9 16.9 16.9
rb5 21.44 21.44 21.44 21.44 21.44
hok 20.1 20.9 20.1 20.7 20.1
SL 13 13 12.9 13 13
attenuator 8.5 8.6 8.5 8.6 8.5
s15 7.1 6.6 7.1 6.6 6.6
sbox leader 5.2 5.2 5.2 5.2 5.2
thiM leader 12.3 12.3 12.3 12 12
ms2 6.6 6.6 6.6 6.6 6.6
HDV 16.8 16.8 16.8 16.7 16.8
dsrA 8 8 8 8 8
ribD leader 9.5 9.5 9.5 9.5 9.5
amv 5.74 5.74 5.74 5.74 5.74
alpha operon 6.1 6.1 6.1 6.1 6.1
HIV-1 leader 8.9 8.9 8.9 8.9 8.9

produces pathways of roughly the same quality for most test cases with different control

parameters, among which the default parameter setting is the best.

We explored the relationship between the performance of RNAEAPath and the number of

generations completed by plotting energy barriers of the best folding pathways produced

by RNAEAPath with the default parameters in each generation, as shown in Figure 2.6. In

general, the energy barriers decrease dramatically in the first one or two generations, and

then the decrements slow down and finally plateau within 10 generations. For instance, in

the case of rb3, the predicted energy barriers of folding pathways in the initial population
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Table 2.4: Energy barriers (measured in kcal/mol) of the best folding pathways found by
RNAEAPath over 5 runs with different control parameters: L, the number of offsprings that
each individual should generate, varying from 80 to 120.

Instance
Control Parameter: L

80 90 100 110 120
rb1 22 22 22 22 22
rb2 7.4 6.5 6.5 6.5 6.5
rb3 17.5 16.7 16.7 16.7 16.7
rb4 16.9 16.9 16.9 16.9 16.9
rb5 21.44 21.44 21.44 21.44 21.44
hok 20.5 20.1 20.1 20.1 20.1
SL 12.9 13 12.9 13 13
attenuator 8.5 8.5 8.5 8.6 8.5
s15 7.1 6.6 7.1 7.1 7.1
sbox leader 5.2 5.2 5.2 5.2 5.2
thiM leader 12.3 12.3 12.3 12 12.1
ms2 6.6 6.6 6.6 6.6 6.6
HDV 16.7 16.8 16.8 16.7 16.8
dsrA 8 8 8 8 8
ribD leader 9.5 9.5 9.5 9.5 9.5
amv 5.74 5.74 5.74 5.74 5.74
alpha operon 6.1 6.1 6.1 6.1 6.1
HIV-1 leader 8.9 8.9 8.9 8.9 8.9

is 27.3 kcal/mol. It decreases by 7.2 kcal/mol (24.9%) through the first two generations

and decreases by 2.5 kcal/mol (9.2%) through the next three generations. Through all the

remaining generations, no further improvement is made.

We also evaluated the execution time for each run of RNAEAPath. All the tests were performed

on a 32 bit PC with 2.4 GHz Quad-processor and 3.2 GB memory, running Fedora 11. With

the default control parameters, RNAEAPath terminates in 1 minute in the best case (rb4),

445 minutes in the worst case (hok), and 43 minutes on average. The detailed running times
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Figure 2.6: Energy barriers of the best folding pathways in each generation. This figure shows
energy barriers (in kcal/mol) of the best folding pathways of 18 conformational switches in
each generation in a typical run of RNAEAPath.

are shown in Table 2.5. We did not perform direct comparisons between the running time of

RNATabuPath and that of RNAEAPath, since RNATabuPath is only accessible via web server.
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Table 2.5: Running time of RNAEAPath (in minutes) on 18 conformational switches using the
default parameters.

Instances Running Time Instances Running Time
rb1 34 sbox leader 20
rb2 16 thim leader 45
rb3 22 ms2 10
rb4 1 HDV 20
rb5 17 dsrA 13
hok 421 ribD leader 52
SL 13 amv 14
attenuator 13 alpha operon 15
s15 10 HIV-1 leader 34

2.4 Conclusions

In conclusion, we have presented a new algorithm, RNAEAPath, for predicting low energy bar-

rier folding pathways between conformational structures. RNAEAPath guides the construction

of folding pathways through the destruction and formation of RNA stacks using various types

of mutation strategies, and integrates them in a well-established computational framework

of evolutionary algorithm. These mutation strategies can help reduce the search space and

make it easier to jump out of local optima. By analyzing the results, we confirmed that most

of the best folding pathways involve the formation of auxiliary stacks, or involve the coop-

erative formation and disruption of incompatible stacks. The benchmarking results show

that RNAEAPath outperforms the existing heuristics on most test cases. We believe that this

is because the construction of folding pathways in RNAEAPath captures important biological

findings.
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CHAPTER 3: FINDING RNA STABLE LOCAL OPTIMAL

STRUCTURES

In Chapter 1, we have developed an approach RNAEAPath, which, given a pair of functional

structure conformations of a riboswitch, can predict near optimal folding pathways between

the alternate structures. However, usually the alternate functional structures of riboswitches

are not easy to determine. Riboswitches exert control over translation initiation or formation

of a transcription terminator (or an anti-terminator) helix and thus turn ‘off’ (or ‘on’) the

gene transcription, through selectively binding with small metabolites and forming alterna-

tive structure conformations [64, 108]. Consequently, these alternate structure conformations

of RNA riboswitches are vitally important to understanding riboswitches’ biological function-

ality. But, unlike many regulatory RNAs, the alternate functional structures of riboswitches

can not be inferred by computing the minimum free energy (MFE) structure.

Experimental methods for verifying alternate structure conformations for roboswitches in-

clude in-line probing [64], X-ray crystallography [8] and Nuclear Magnetic Resonance spec-

troscopy [80]. However, these methods are usually time-consuming and expensive. There-

1Chapter 3, in part, is a reprint of the paper, “Finding Stable Local Optimal RNA Secondary Structures”,
co-authored with Shaojie Zhang in Bioinformatics, 27(21), pp 2994−3001, 2011.
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fore, computational approaches for accurately predicting riboswitches’ alternate functional

structures are in need.

In this chapter, we will present an approach, RNASLOpt, to predict alternate functional

structures for riboswitches through exploiting characteristics of their energy landscapes and

folding dynamics.

3.1 Literature Review

The alternate functional structures are usually energetically favored and are stable in their

local energy landscapes. The conformational transitions between any pair of alternate struc-

tures may involve high energy barriers, such that RNAs can easily become kinetically trapped

by these structures. Accurate predictions of alternate structures of an RNA molecule should

be conducted by exploiting the energy landscape and the folding dynamics of the RNA, in

combination with the binding of the target metabolites. The ideal approach is to construct

an exact energy landscape on all possible suboptimal secondary structures, then analyze ev-

ery possible local optimal structures as well as all possible folding pathways in the landscape,

and finally determine the most significant structures. In the following, we will briefly review

existing methods for enumerating suboptimal structures and predicting alternate structures

for RNA molecules.
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Zuker devised the first algorithm, mfold [118], for predicting the Minimum Free Energy

(MFE) structure and multiple suboptimal structures . For a given sequence, it generates,

for each admissible base pair, the energetically best structure containing that base pair. For

a sequence of length n, mfold produces at most n(n − 1)/2 suboptimal structures, which

are a very small fraction of all the candidate suboptimal structures, and may miss some of

the functional structures. In addition, mfold uses a filter based on the base pair metric to

remove structures that are similar to one another. The filter is based on base pair difference,

while it might be better to infer stability of structures in the context of energy landscape

and remove unstable structures.

Wuchty et al. proposed the first exact solution, RNAsubopt [112], for predicting all possible

suboptimal structures between the MFE and an arbitrary upper limit using a mathematical

model proposed by Waterman and Byers [109] based on the Turner energy model [29, 40,

45, 105]. Parisien and Major devised MC-Fold [84], a similar solution to the same problem

that takes into account both non-canonical base pairings and pseudoknotted structures. In

addition, Flamm et al. presented BARRIERS [28], an algorithm for constructing the exact

energy landscape on all possible suboptimal structures produced by RNAsubopt. BARRIERS

is able to distinguish all the local optimal structures and can build a barrier tree representing

the energy landscape. However, the number of feasible structures grows quickly with the

length of the RNA sequence and the energy range, and RNAsubopt enumerates enormous

solutions for even a short sequence with a small energy range. For example, the free energies
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of the native ‘off’ and ‘on’ structures of the 110 nucleotide-long adenine riboswitch of ydhL

from Bacillus subtilis are −32.3 and −14.8 (kcal/mol) respectively.

As shown in Figure 3.1, the number of feasible structures grows quickly as free energy

increases, and the number of structures with free energies between the two native struc-

tures exceeds 109. Therefore, it is very difficult and time-consuming to find a few alternate

structures from an enormous collection of candidates. Applications of these algorithms are

generally limited to very short RNA sequences with a small energy range.
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Figure 3.1: The number of feasible suboptimal structures (produced by RNAsubopt) against
free energies (in kcal/mol) of the structures is shown. The RNA sequence is taken from the
adenine riboswitch of the ydhL gene from Bacillus subtilis. The free energies of the native
‘off’ and ‘on’ structures are −32.3 kcal/mol and −14.8 kcal/mol respectively. The number
of structures with free energies between the two native structures exceeds 2.25 ∗ 109.
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The conformational space of feasible structures not only is prohibitively large, but also

renders redundant information, because many structures in the space are similar to one

other. Thus, researchers have also proposed alternative approaches, which investigate re-

duced conformational spaces instead of the space of feasible suboptimal structures. Pipas

and McMahon presented an algorithm [86] that can construct the best k structures com-

posed of compatible stacks (i.e. sharing no base in common and forming no pseudoknot).

Nakaya et al. used a search tree for generating suboptimal structures by selecting a subset

of stacking regions that can coexist, from the set of all possible stacking regions [74]. The

search tree is composed of m level of nodes, where m is the number of possible stacks and

nodes at depth i determine whether the ith stacking region is selected. Evers and Giegerich

provided an algorithm [24] that can enumerate all possible saturated structures such that

no unpaired base can be paired without affecting the validity of the structures [117]. They

employed a dynamic programming similar to that of Wuchty et al. [112] and incorporated a

saturation check to ensure that structures are saturated. Giegerich and his cooperators also

presented RNAShapes [33, 102], an approach that first extracts RNA abstract shapes based

on juxtaposition and embedding of stacks, and then clusters structures with the same shape

together, and finally represents all the structures in a cluster by the ‘shrep’ of the cluster (i.e.

the secondary structure with the lowest free energy in the cluster). One shortcoming of the

stack based approaches is that they may exclude incompatible stacks that overlap by only

one or a few bases. If we consider shorten one of the stacks by cutting off the overlapping

bases, it will result in a pair of compatible stacks. Another drawback of these approaches is
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that it is hard to infer the stability of RNA secondary structures in the context of energy

landscape and thus is hard to accurately predict native structures.

Recently, Lorenz and Clote proposed an approach, RNAlocopt [58], that can sample a user-

defined number of structures from the space of locally optimal structures. A locally optimal

structure has the lowest free energy compared with its neighboring structures (obtained by

adding or deleting a single base pair). One shortcoming is that when the sample size is small,

RNAlocopt may fail to predict the native structures, and when the sample size is large, it

would be difficult to identify the significant structures from a large number of candidates.

3.1.1 Motivations

We are interested in finding stable local optimal (SLOpt) structures that conform to the

following criteria. First, a SLOpt structure should be local optimal (LOpt) in that it resides

at the bottom of a basin in the energy landscape (i.e. has the lowest free energy compared

with all its neighbors). None local optimal structures are unlikely to be biologically func-

tional, because they can continuously transit to their lower-energy neighboring structures,

like climbing down a hill until a local optimum (the bottom of a basin in the energy land-

scape) is reached. Second, a SLOpt structure should be stable in that the minimal energy

barrier between this structure and any other SLOpt structures should be high. This criterion

is proposed because secondary structures with lower free energies are not guaranteed to be
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more stable than those with higher energies. This criterion ensures that the RNA molecule

can be ‘trapped’ by the energy basin where the SLOpt structure resides, without being able

to getting out of the basin easily. Figure 3.2 illustrates a schematic representation of the en-

ergy landscape of an RNA molecule. In Figure 3.2, numbers 1, 3, 4, 5 represent local optima

and 2∗ represents the global optimum. The dot adjacent to a local optimum 5 represents a

none local optimal structure, which can transit to 5 along a gradient walk. Lowercase char-

acters a, b, c and d are saddle points (i.e. structures with the highest free energies) of folding

pathways between local optima 1&2, 2&3, 3&4 and 4&5, respectively. Bars represent the

minimal additional energy required for the RNA molecule to ‘jump’ out of the corresponding

energy basins.

Figure 3.2: A schematic representation of an energy landscape is shown.

Each LOpt structure (e.g. the local optimum, number 5) can represent a set of none LOpt

structures in its associated energy basin (e.g. the dot). In addition, although both 1 and 3

are local optima and 1 has even lower energy than 3, 1 is still less stable. This is because the
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conformational transition from 1 to 2 involves a lower energy barrier, while the transitions

from 3 to any lower free energy LOpt structures yield higher energy barriers.

We formalize the problem as follows: given an RNA sequence A, an energy range ∆E, and

an energy barrier cutoff ∆B, find all the stable and local optimal structures, of which (1)

the free energies are within ∆E of the MFE and (2) the minimal energy barrier between

any pair of SLOpt structures is greater than or equal to ∆B. We will describe our approach,

RNASLOpt, for addressing the problem in the Methods section. In the Results section, we will

compare RNASLOpt against the state-of-art methods and show benchmark tests on known

riboswitches. In the Conclusion section, we will discuss possible applications of our approach

and conclude this chapter.

3.2 Methods

First, we introduce configurations of stacks to represent scaffolds of RNA secondary struc-

tures. RNA secondary structures involve both stacking base pairs and isolated base pairs,

where stacking base pairs contribute significantly to the stabilization of RNA secondary

structures [113]. Structures with isolated base pairs are usually unrealistic and the removal

of these structures from the search space may yield more significant structures [118]. Since

LOpt structures reside at bottoms of basins in the energy landscape, and each can represent

a set of similar secondary structures, we introduce LOpt stack configurations to approximate
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LOpt structures. LOpt stack configurations are configurations that have a maximal number

of putative stacks such that no stacks can be added rendering lower energy structures. We

then present algorithms for finding all possible LOpt stack configurations based on both the

Nussinov model [83] and the Turner energy model [29, 40, 45, 66, 105], using the mathemat-

ical scheme advocated by [112]. Next, we describe a fast heuristic algorithm for computing

pairwise energy barriers among LOpt stack configurations. The energy barrier between a

pair of LOpt stack configurations indicates the amount of additional energy required for the

RNA molecule to fold from one structure to the other, and can be used to filter out unstable

LOpt structures. Finally, we employ a simple neighbor joining algorithm to cluster unstable

LOpt structures, obtain stable local optimal structures and assign rank accordingly.

3.2.1 RNA Secondary Structures and Stack Configurations

Consider an RNA sequence as a string A = a1 · · · an of n letters over alphabet Σ =

{A,U,G,C}. A pair of nucleotides ai and aj (i < j) can interact with each other and

form a base pair (denoted by (i, j)), if they are complementary to each other. We only

consider the canonical base pairings (G-C and A-U) and the wobble base pairing (G-U).

A secondary structure of an RNA can be represented by an ensemble of pairing bases. A

secondary structure is pseudoknotted if it contains two base pairs (i, j) and (i′, j′) such that

i < i′ < j < j′. We only consider pseudoknot-free secondary structures.

54



The stability of an RNA secondary structure is determined predominantly by energetically fa-

vorable helical regions, where both base pair stacking and hydrogen bonding provide stabiliz-

ing energy contributions [113]. We denote a helical region by a stack. A stack p = (pb, pe, pl)

has pl consecutive base pairs, where (pb, pe) is the outmost base pair and (pb+pl−1, pe−pl+1)

is the innermost base pair. Without loss of generality, pl can be 0. We define two arbitrary

stacks as compatible with each other if they are parallel or one stack encloses the other. We

define partial orders <P and <I between compatible stacks as follows. If a stack p is parallel

to a stack q, and p resides to the 5’ of q (i.e. pe < qb), then p <P q. If p encloses q (i.e.

(pb+pl) ≤ qb and qe ≤ (pe−pl)), then q <I p. We denote the ensemble of all possible putative

stacks of an RNA sequence by P . We can compute P using the algorithm of Bafna et al. [5]

in O(n2) time. Following their work, we score hydrogen bonds between pairing bases G-C,

A-U and G-U by 3, 2 and 1, respectively, and set the minimum length of putative stacks

(ℓmin) as 4 and the minimum score of hydrogen bonds (hmin) as 8, because statistics show

that the fraction of true stacks missed is less than 10% with the cutoff [5]. The number of

putative stacks predicted is usually much less than the number of feasible pairing bases. This

yields a faster algorithm for enumerating suboptimal structures, which recursively branches

when a putative stack (instead of a feasible base pair) is encountered. In addition, the typical

lengths of riboswitches are around 100 200, and the number of putative stacks predicted for

an RNA of similar length may even be smaller than the sequence lengths. For example, we

predicted 62 putative stacks for the 110 nt-long adenine riboswitch of ydhL gene from B.

subtilis.
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In order to elucidate the basic idea, we define a notion of stack configuration. A stack

configuration of an RNA sequence is composed of a set of putative stacks in P that are

pairwisely compatible. Figure 3.3 shows a schematic representation of a stack configuration.

A stack configuration φ is local optimal if there does not exist any stack p in P that p can

be added to φ without affecting the validity of φ (i.e. forming a pseudoknot or paring a base

with more than one partner). Next, let p and q be putative stacks and q is enclosed with p,

we also define the following terms:

|p|: the length of the subsequence covered by p (i.e. pe − pb + 1).

P(p): the set of all possible putative stacks on a subsequence covered by p (i.e.

apb . . . ape).

N (p): all possible LOpt stack configurations composed of putative stacks in P(p).

FI(p): a subset of putative stacks in P(p), where ∀q ∈ FI(p), @ q′ such that q′ <I

p and ((q <P q′) or (q <I q
′)).

lp,q: a stack (pb + pl, qb − 1, 0) that is enclosed by p and juxtaposes to the 5’ end of q,

provided that q <I p.

rp,q: a stack (qe + 1, pe − pl, 0) that is enclosed by p and juxtaposes to the 3’ end of q,

provided that q <I p.
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Figure 3.3: A schematic representation of a stack configuration.

In Figure 3.3, filled arcs represent putative stacks p, q, u and v. The relationships between

these putative stacks are: p <P v, u <P q, u <I p, q <I p, and q ∈ FI(p). Dashed arcs

represent lp,q and rp,q respectively.

In the next two subsections, we will describe algorithms for generating all possible LOpt

stack configurations based on the Nussinov model and the Turner model respectively.

3.2.2 Stack-based RNA Folding using Nussinov Model

3.2.2.1 Computing the Maximum Number of Base Pairs

The RNA folding problem was formulated as a loop matching problem by Nussinov et al. [83]

and solved using dynamic programming. In the Nussinov model, the energy contribution of

each base pair is 1, while base pair stacking and loop entropies have no energetic contribu-

tions. Given an arbitrary stack p, we define N(p) as the maximal number of base pairs of
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all the stack configurations in N (p). The recursive formula for computing N(p) is shown

in Equation 3.1. If FI(p) is an empty set, then no putative stack is enclosed with p and

N(p) = pl (the number of base pairs in p). Otherwise, we can divide the sequence covered

by p into three parts: (1) the stacking base pairs in p, (2) an arbitrary stack q in FI(p) and

(3) a stack lp,q which is enclosed with p and to the 5’ of q. In this case, N(p) is the sum

of base pairs in the three parts. The time complexity for computing N(p) is O(|P(p)|2). In

addition, we denote the entire RNA sequence by a stack p∗ = (1, n, 0) and can obtain the

maximum number of base pairs over all possible stack configurations on the sequence by

computing N(p∗).

N(p) = pl + max
∀q∈FI(p)

{N(q) +N(lp,q)} (3.1)

3.2.2.2 Generating All Possible LOpt Stack Configurations

We present in Figure 3.4 an exact algorithm for enumerating all possible LOpt stack con-

figurations with at least nθ base pairs. We keep an array of partial stack configurations in

R. Each partial stack configuration φ in R comprises an ordered list of stacks, which are

labeled with either finished or unfinished. The label finished indicates that we have

finished processing p and p should appear on all the stack configurations φ represents. The

label unfinished means that the structures on the sub-sequence covered by p is not deter-

mined yet and p needs to be dealt with in the future. Each partial stack configuration φ
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can represent a set of LOpt stack configurations that contain all the finished stacks in φ.

And, a partial stack configuration (p∗, unfinished) can represent all possible LOpt stack

configurations on the entire RNA sequence. Besides, when all the stacks in φ are labeled

with finished, φ only represents exactly one stack configuration.

The algorithm is as follows. First, we push (p∗, unfinished) to R. Then, we repeatedly pop

up the last partial stack configuration φ from R and process φ according to the following

procedures until R is empty. Given φ, we pop the last element (a stack p) from the array of

φ and check its associated label. If the label of p is finished, then all the stacks in φ should

have been processed. (Because we always insert stacks labeled with finished to the front of

the array of φ and push stacks labeled with unfinished to the end.) In this case, we output

the only stack configuration that φ represents. Otherwise, we decompose the unfinished stack

p into three disjoint components: (i) the stacking base pairs of p, (ii) a stack q ∈ FI(p), and

(iii) a stack lp,q. We can construct a stack configuration on the subsequence covered by p

by combining (i) the stack p, (ii) a stack configuration taken from N (q), and (iii) a stack

configuration taken from N (lp,q). If q is determined, we can construct |N (q)| × |N (lp,q)|

possible new stack configurations. And, for each stack q in FI(p), we construct a new stack

configuration φ′ by pushing (p, finished) to the end of φ and inserting (lp,q, unfinished) and

(q, unfinished) to the beginning of φ. We can compute the size of N (p) using Equation 3.2.

|N (p)| =
∑

q∈FI(p)

|N (q)| × |N (lp,q)| (3.2)
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Next, we push all the new partial stack configurations that have at least nθ base pairs to

the end of R. We denote the maximal number of base pairs of a partial stack configuration

φ by N(φ). As shown in Equation 3.3, N(φ) is the sum of N(p) over all stacks p in φ.

Each stack labeled with finished contributes exactly pl base pairs, and each stack labeled

with unfinished contributes at most N(p) base pairs, where N(p) can be computed using

Equation 3.1.

N(φ) =
∑
∀p∈φ


pl the label of p is finished

N(p) the label of p is unfinished

(3.3)

3.2.3 Stack-based RNA Folding using Turner Model

According to the Turner model, the free energy of a stack configuration is the additive

sum of energy contributions of all the stacking base pairs, hairpin loops, bulges, interior

loops, multi-loops and dangling bases [66]. We describe the energy parameters and terminal

symbols used in the following:

Mc: offset penalty for opening a multi-branched loop.

Mb: free base penalty for each unpaired base in a multi-branched loop.

Mi: helix penalty for each helix in a multi-branched loop.

H(p): destabilizing energy of the hairpin loop enclosed with a stack p.
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procedure enumerate(A, nθ)
p∗ = (1, n, 0), φ = {(p∗, unfinished)}, R = {(φ,N(p∗))}
while (R ̸= ∅) do

(φ, x) ⇐ R, (p, label) ⇐ φ

if (label is unfinished) then

for all stacks q in FI(p) do

(φ′, x′) = (φ, x−N(p))

if (pl ̸= 0) then (p, finished) ⇒ φ′ end if

(lp,q, unfinished) ⇒ φ′, (q, unfinished) ⇒ φ′

x′ = x′ + pl +N(q) +N(lp,q)

if (x′ ≥ nθ) then (φ′, x′) ⇒ R end if

end for

if (FI(p) is ∅ and x ≥ nθ) then (φ, x) ⇒ R end if

else (/* label is finished */

if (x ≥ nθ) then output φ end if

end if

end while

Figure 3.4: An algorithm for enumerating all possible LOpt stack configurations for an RNA
sequence. This figure shows an algorithm enumerate(A, nθ) which enumerates all possible
local optimal stack configurations on an RNA sequence A with at least nθ base pairs. ⇒, ⇒
and ⇐ means pushing back an element to the end of an array, inserting an element to the
beginning of an array, and popping up the last element from an array, respectively.

I(p, q): destabilizing energy of the interior loop or bulge between stacks p and q.

S(p): stabilizing energies of all the stacking base pairs in a stack p.

Mc, Mb and Mi are constant energy parameters. H(p) and I(p, q) can be obtained from the

tabulated energy parameters, and S(p) can be computed as the sum of tabulated stacking

energies of adjacent stacking base pairs in p. All the free energy parameters are taken from

the work of Mathews et al. [66]. We also define the following non-terminal symbols as follows:
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F (p): the MFE of all stack configurations in N (p), provided that pb = 1 and pl = 0.

C(p): the MFE of all stack configurations in N (p), provided that pl ̸= 0 and p closes

the structure on apb . . . ape .

FM1(p): the MFE of all stack configurations in N (p), provided that p is within a

multi-branched loop, and there exists at least a stack q such that ql ̸= 0 and q <I p.

FM(p): the MFE of all stack configurations in N (p), provided that p is within a

multi-branched loop.

3.2.3.1 Computing the Minimum Free Energy

The recursive formula for computing the minimum free energy is shown in Equation 3.4,

with a time complexity of O(|P(p)|3) (which is O(n6) with a small factor). For the sake

of simplicity, we do not discuss dangling energy contributions in the recursive formula, but

take them into account in the implementation.
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F (p) = min
q∈FI(p)

{C(q) + F (lp,q)}

C(p) = S(p) + min



H(p),

min
q<Ip

{C(q) + I(p, q)},

min
q∈FI(p)
FI(lp,q) ̸=∅


C(q) + FM1(lp,q) +Mc

+2 ∗Mi + |rp,q| ∗Mb


FM1(p) = min

q∈FI(p)
{C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb}

FM(p) = min


|p| ∗Mb,

min
q∈FI(p)

{C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb}

(3.4)

3.2.3.2 Generating All Possible LOpt Stack Configurations

In this section, we describe an algorithm for numerating all possible local optimal stack con-

figurations of an RNA sequence A within ∆E of the MFE. We denote the free energy upper

limit for stack configurations by eθ, where eθ is equivalent to the MFE of all possible stack

configurations plus ∆E. We keep an array of paired objects R = {(φ,E(φ)), (φ′, E(φ′)), . . . }.

Each paired object of R comprises of a partial stack configuration φ and its associated min-

imum free energy E(φ). Each partial stack configuration φ comprises an ordered list of

stacks, each with a label (i.e. φ = {(p, label), (p′, label′), . . . }). There are five types of labels,

including finished, F , C, FM1 and FM . The label finished indicates that we have fin-

ished processing stack p, and p will appear on all the stack configurations that φ represents.
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The remaining labels correspond to the following cases: F (p), C(p), FM1(p), and FM(p)

respectively.

The algorithms starts with a partial stack configuration φ0 = (p∗ = (1, n, 0), F ) and its

associated minimum free energy E(φ0). φ0 represents all possible stack configurations on

A, and E(φ0) is the minimum free energy of φ0 (i.e. E(φ0) = F (p∗)). We push (φ0, E(φ0))

to R and repetitively process the last element of R according to the following procedure

until R is empty. Let (φ,E(φ)) be the last partial stack configuration and its associated

energy in R, and let (p, label) be the last stack and its associated label in φ. First, we check

the label of p. Similar to the algorithm based on the Nussinov model, we also ensure that

stacks labeled with finished are inserted to the front of the array of φ and other stacks are

pushed back to the end of the array. If the label of p is finished, then all the stacks should

have been processed. In this case, we output φ if Eφ is less than eθ. Otherwise, we will

construct a set of new partial stack configurations according to the label. Each new partial

stack configuration φ′ is constructed by combining all the remaining stacks other than p in φ

(denoted by φ−, where φ− = φ−{(p, label)}) with stacks enclosed with p. Next, we compute

E(φ′) for each new partial stack configuration φ′, and push them to the end of R if E(φ′) is

less than or equal to eθ, as described in the following:

Case F : p (pb = 1 and pl = 0) is a stack. For each stack q in FI(p), we construct

a new partial stack configuration φ′ by pushing (q, C) and (lp,q, F ) to the end of φ−.
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E(φ′) is given by Equation 3.5.

E(φ′) = E(φ)− F (p) + C(q) + F (lp,q) (3.5)

Case C: p (pl ̸= 0) should appear on all the stack configurations that φ represents.

We construct a set of new partial stack configurations according to cases C.1, C.2 and

C.3.

C.1: p closes a hairpin loop. We construct a new partial stack configuration φ′

by inserting (p, finished) to the front of φ−. E(φ′) is given by Equation 3.6.

E(φ′) = E(φ)− C(p) + S(p) +H(p) (3.6)

C.2: p closes a stack q and forms an interior loop (or a bulge) with q. For

each stack q <I p, we construct a partial stack configuration φ′ by inserting

(p, finished) to the front of φ− and then pushing (q, C) to the end. E(φ′) is

given by Equation 3.7.

E(φ′) = E(φ)− C(p) + S(p) + I(p, q) + C(q) (3.7)

C.3: p closes a multi-branched loop. For each stack q ∈ FI(p), we construct a new

partial stack configuration φ′ by inserting (p, finished) to the front of φ−, and
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then pushing (q, C) and (lp,q, FM1) to the end. E(φ′) is given by Equation 3.8.

E(φ′) = E(φ)− C(p) + S(p) + C(q) + FM1(lp,q)

+Mc + 2 ∗Mi + |rp,q| ∗Mb

(3.8)

Case FM1: p (pl = 0) is directly enclosed with a multi-branched loop, and there exists

at least a stack q such that ql ̸= 0 and q <I p. For each stack q in FI(p), we construct

a new partial stack configurations φ′ by pushing (q, C) and (lp,q, FM) to the end of

φ−. E(φ′) is given by Equation 3.9.

E(φ′) = E(φ)− FM1(p) + C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb (3.9)

Case FM : p (pl = 0) is directly enclosed with a multi-branched loop. We construct a

set of new partial stack configurations according to cases FM.1 and FM.2.

FM.1: all the bases covered by p are unpaired. We construct a partial stack

configuration φ′ = φ−. E(φ′) is computed as Equation 3.10.

E(φ′) = E(φ)− FM(p) + |p| ∗Mb (3.10)

FM.2: there exists a stack q (ql ̸= 0) enclosed with p. For each stack q <I p, we

construct a partial stack configuration φ′ by pushing (q, C) and (lp,q, FM) to the
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end of φ−. E(φ′) is given by Equation 3.11.

E(φ′) = E(φ)− FM(p) + C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb (3.11)

Figures 3.5, 3.6, 3.7, 3.8 and 3.9 describe procedures for generating all possible LOpt stack

configurations based on the Turner Model. Figure 3.5 demonstrates procedures in the main

function for enumerating all possible LOpt stack configurations on an RNA sequence A with

free energy lower than or equal to eθ. Figures 3.6, 3.7, 3.8 and 3.9 describe procedures in

subroutines for enumerating partial stack configurations when the incoming stack is labeled

with F , C, FM1 and FM respectively.
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procedure enumerate(A, eθ)
p∗ = (1, n, 0), φ = {(p∗, F )}, R = {(φ,E(p∗))}
while (R ̸= ∅) do

(φ,Eφ) ⇐ R, (p, label) ⇐ φ

if (label is finished) then

if (pl ̸= 0) then

(p, finished) ⇒ φ

end if

if (Eφ ≤ eθ) then

output φ

end if

else if (label is F ) then

Eφ = Eφ − F (p), enumerateF (p, φ,Eφ)V R

else if (label is C) then

Eφ = Eφ − C(p), enumerateC (p, φ,Eφ)V R

else if (label is FM1) then

Eφ = Eφ − FM1(p), enumerateFM1 (p, φ,Eφ)V R

else if (label is FM) then

Eφ = Eφ − FM(p), enumerateFM (p, φ,Eφ)V R

end if

end while

Figure 3.5: An algorithm enumerate(A, eθ) for enumerating all possible local optimal stack
configurations on an RNA sequence A with free energy lower than or equal to eθ. The
meaning of ⇒, ⇒ and ⇐ are pushing back an element to the end of an array, inserting
an element to the beginning of an array and popping up the last element from an array,
respectively. V means appending all the elements in an array to the end of another array
(e.g. a ⇒ φ denotes pushing a to the end of φ, b ⇒ φ denotes inserting b to the beginning of
φ and φ ⇐ R denotes assigning the last element of R to φ and deleting it from R. R′ V R
denotes appending all the elements in R′ to the end of R).
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procedure enumerateF (p, φ,Eφ)
R = ∅
if (FI(p) = ∅) then

if (Eφ ≤ eθ) then

(φ,Eφ) ⇒ R

end if

return R

end if
for all stacks q ∈ FI(p) do

(φ′, Eφ′) = (φ,Eφ), (lp,q, F ) ⇒ φ′, (q, C) ⇒ φ′

Eφ′ = Eφ′ + F (lp,q) + C(q)

if (Eφ′ ≤ eθ) then

(φ′, Eφ′) ⇒ R

end if

end for
return R

Figure 3.6: Given a stack p labeled with F , a partial stack configuration φ, and its minimum
free energy Eφ, enumerateF enumerates all possible partial stack configurations that conform
to φ as well as contain a structure corresponding to F (p). ⇒,⇒ and ⇐ are defined in
Figure 3.5.
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procedure enumerateC (p, φ,Eφ)
R = ∅
/* Case C.1, p closes a hairpin loop */
(φ′, Eφ′) = (φ,Eφ)
(p, finished) ⇒ φ′, Eφ′ = Eφ′ + S(p) +H(p)
if (Eφ′ ≤ eθ) then

(φ′, Eφ′) ⇒ R

end if
for all q <I p do

/* Case C.2, p closes an interior loop or a bulge */

(φ′, Eφ′) = (φ,Eφ)

(p, finished) ⇒ φ′, (q, C) ⇒ φ′

Eφ′ = Eφ′ + S(p) + I(p, q) + C(q)

if (Eφ′ ≤ eθ) then

(φ′, Eφ′) ⇒ R

end if

/* Case C.3, p closes a multi-branched loop */

(φ′′, Eφ′′) = (φ,Eφ)

(p, finished) ⇒ φ′′, (lp,q, FM1) ⇒ φ′′, (q, C) ⇒ φ′′

Eφ′′ = Eφ′′+S(p)+C(q)+FM1(lp,q)+Mc+2∗Mi+|rp,q|∗Mb

if (e′′ ≤ eθ)

(φ′′, Eφ′′) ⇒ R

end if

end for
return R

Figure 3.7: Given a stack p labeled with C, a partial stack configuration φ, and its minimum
free energy Eφ, enumerateC enumerates all possible partial stack configurations that conform
to φ as well as contain a structure corresponding to C(p). ⇒,⇒ and ⇐ are defined in
Figure 3.5.
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procedure enumerateFM1 (p, φ,Eφ)
R = ∅
if (FI(p) = ∅) then

return R

end if
for all stacks q <I p do

(φ′, Eφ′) = (φ,Eφ)

(lp,q, FM) ⇒ φ′, (q, C) ⇒ φ′

Eφ′ = Eφ′ + C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb

if (Eφ′ ≤ eθ) then

(φ′, Eφ′) ⇒ R

end if

end for
return R

Figure 3.8: Given a stack p labeled with FM1, a partial stack configuration φ, and its
minimum free energy Eφ, enumerateFM1 enumerates all possible partial stack configurations
that conform to φ as well as contain a structure corresponding to FM1(p). ⇒,⇒ and ⇐
are defined in Figure 3.5.

3.2.3.3 Redefining Partial Orders <I and <P

Stack configurations produced by our approach consist of pairwisely compatible stacks, there-

fore incompatible stacks that overlap one another by only a few bases can not coexist in a

structure. To solve this problem, we use looser definitions of partial orders <I and <P ,

which allow compatible stacks to share a small portion of bases in common. RNASLOpt is

able to produce stack configurations containing incompatible stacks overlapping by a few

(by default, no more than 20%) bases.
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procedure enumerateFM (p, φ,Eφ)
R = ∅
/* Case FM.1, p covers a single stranded region */
(φ′, Eφ′) = (φ,Eφ + |p| ∗Mb)
if (Eφ′ ≤ eθ) then

(φ′, Eφ′) ⇒ R

end if
for all stacks q <I p do

/* Case FM.2, p contains a putative stack q */

(φ′′, Eφ′′) = (φ,Eφ)

(q, C) ⇒ φ′′, (lp,q, FM) ⇒ φ′′

Eφ′′ = Eφ′′ + C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb

if (Eφ′′ ≤ eθ) then

(φ′′, Eφ′′) ⇒ R

end if

end for
return R

Figure 3.9: Given a stack p labeled with FM , a partial stack configuration φ, and its
minimum free energy Eφ, enumerateFM enumerates all possible partial stack configurations
that conform to φ as well as contain a structure corresponding to FM(p). ⇒,⇒ and ⇐ are
defined in Figure 3.5.

3.2.4 Clustering Stable Local Optimal Structures

Using the algorithm described above, we can produce a set of all possible LOpt stack config-

urations on an RNA sequence, and denote it by R. However, although the conformational

space of LOpt stack configurations is dramatically reduced compared to the space of feasible

secondary structures, the number of structures considered may still be enormous. In litera-
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ture, many distance metrics, such as base pair metrics [118, 119], tree metrics [96], mountain

metrics [72], metrics based on base pairing probability matrices [43] and metrics using the

Lempel-Ziv algorithm [56, 115] have been proposed for filtering out similar structures and

reducing the number of structures considered. In contrast, we are only interested in stable

local optimal (SLOpt) structures. And, we will filter out unstable structures from the space

instead of removing similar structures that share base pairs, shapes or pairing probabilities

in common. The SLOpt structures should be difficult for an RNA molecule to escape, and

the associated energy barrier between any pair of SLOpt structures should be greater than

or equal to a certain threshold ∆B. Using pairwise energy barriers among LOpt stack con-

figurations as a distance matrix, we can evaluate the stability of RNA secondary structures

in the context of energy landscape.

The problem of determining the minimal energy barrier between two conformational struc-

tures has been well studied, and it is usually solved in conjunction with finding the optimal

folding pathways with the minimal energy barrier. Many approaches have been proposed to

address the problem. These approaches can either be based on the Nussinov model, (e.g. an

exact algorithm proposed by Thachuk et al. [104] and a greedy algorithm by Morgan and

Higgs [71]), or the Turner model (e.g. an exact solution devised by Flamm et al. [28] and

heuristic algorithms developed by Morgan and Higgs [71], Flamm et al. [27], Voss et al. [106],

Geis et al. [31] and Dotu et al. [21]). In this chapter, we focus on using energy barriers to find

SLOpt stack configurations (instead of determining the optimal folding pathways). There-

fore, here, we propose a fast heuristic for computing pairwise energy barriers among LOpt
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stack configurations. Upon these pairwise energy barriers, we cluster unstable LOpt stack

configurations using a simple neighbor joining algorithm, and obtain all the SLOpt stack

configurations with the minimal pairwise energy barrier no less than ∆B. Finally, we rank

these SLOpt structures either according to their free energies or their minimal associated

energy barriers.

3.2.4.1 Approximating Barrier Energy

Consider secondary structures S and S ′, the folding pathway between S and S ′ involves a

series of intermediate structures, among which, the saddle point structure S∗ is the one with

the highest free energy (e.g. in Figure 3.2, a is the saddle point for the folding pathway from

local optima 1 to 2). We denote the energy barrier from S to S ′ by B(S → S ′) and denote

the energy barrier between S and S ′ by B(S � S ′). B(S → S ′) is equivalent to the absolute

difference in the free energies of S and S∗ (i.e. |E(S) − E(S∗)|), and B(S � S ′) can be

computed using Equation 3.12.

B(S � S ′) = min{B(S ′ → S),B(S → S ′)} (3.12)

We list our assumptions for approximating barrier energy B(S → S ′) in the following. The

saddle point S∗ between S and S ′ can be achieved when all the base pairs in S are opened
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Table 3.1: Positional relationships between a base pair and a stack. This tables shows four
types of positional relationships between a base pair (i, j) and a stack p′.

Cases Relationships Descriptions w((i, j), ρ′)
1 Compatible (i, j) and p′ either are nested

or juxtapose to each other
- (not applicable)

2 Consistent (i, j) is in p′ 0
3 Partially-Conflict there exist base pairs (i, i′) and

(j′, j) in p′
α
pl

4 Conflict Otherwise 1
pl

or shifted such that S ′ can be formed without opening more base pairs. The amount of

additional energy required for opening an entire stack p is roughly S(p), and the amount for

opening a base pair in p is about 1
pl
∗ S(p), while the amount for sliding one endpoint of a

base pair in p is α
pl
∗ S(p), (0 ≤ α ≤ 1, by default, α is 0.5).

Given a base pair (i, j) in S and an arbitrary stack p′ in S ′, we determine the necessary

operation to apply to (i, j) (i.e. operations that can make the formation of p′ possible)

according to the positional relationship between (i, j) and p′. Let w((i, j), p′) denote the

additional energy associated with the operation. We describe the four types of positional

relationships and the corresponding w((i, j), p′) in Table 3.1. Case 1, (i, j) is compatible

to p′ (i.e. either be nested or juxtapose to each other). In this case, we can not infer the

operation to apply to the base pair, because the stack can be formed anyway. Case 2, (i, j)

is consistent with p′ ((i, j) is in p′). We do not apply any operation to the base pair so as

to keep it intact during the folding. Case 3, (i, j) partially conflicts to p′ (i.e. there exist

two base pairs (i, i′) and (j′, j) in p′). In this case, we may slide either endpoint i or j to
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its new partner (i′ or j′) to form p′. Case 4, (i, j) conflicts to p′. In this case, we have to

open (i, j) in order to make the formation of p′ possible. Since S ′ usually contains more than

one stack, we use the smallest w((i, j), p′) over all the stacks p′ in S ′, to represent the least

amount of additional energy required so as to form S ′. If (i, j) is compatible with all the

stacks in S ′, we have to delete (i, j), which requires 1
pl
∗ S(p) additional energy. We present

the approximated algorithm for computing B(S → S ′) in Equation 3.13.

B(S → S ′) =
∑
p∈S

∑
(i,j)∈p

min
p′∈S′

{w((i, j), p′) ∗ S(p)} (3.13)

3.2.4.2 Pairwise Energy Barrier based Clustering

A LOpt stack configuration φ is considered as stable if the minimal energy barrier between

φ and any other stable structures is no less than ∆B. φ can be seen as a representative of all

the unstable structures in the energy basin it resides. Let R∗ denote the set of SLOpt stack

configurations. We describe the procedure for constructing R∗ from the set of LOpt stack

configurations R in Figure 3.10. First, we sort LOpt stack configurations in R by their free

energies (i.e. the lower the free energy is, the higher the stack configuration ranks). Then, we

push the MFE LOpt stack configuration (i.e. R[0]) to R∗. Next, we define a lower-triangular

matrix M∗ for saving pairwise energy barriers of SLOpt stack configurations in R∗, where

M∗[k, l] represents the energy barrier between R∗[k] and R∗[l] (i.e. B(R∗[k] � R∗[l])). We

analyze each LOpt stack configuration φ in R. If the energy barrier between φ and any
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procedure clusterLOpt(R,∆B)

1. Sort R according to free energies of LOpt stack configurations in R.

2. Push R[0] to the set of SLOpt stack configurations, R∗.

3. Let M∗ be a lower-triangular matrix for saving pairwise energy barriers of SLOpt stack
configurations in R∗ (i.e. M∗[k, l] = B(R∗[k] � R∗[l])).

4. For each LOpt stack configuration φ in R,

4.1. If there exists R∗[l] ∈ R∗ such that B(φ � R∗[l]) ≤ ∆B, we consider φ as unstable
and discard it.

4.2. Otherwise, we push φ to R∗ as a SLOpt stack configuration, and update M∗.

5. Apply the following neighbor joining algorithm to M∗ (repeat steps 5.1, 5.2 and 5.3
until R∗ contains only one element) and generate a cluster tree.

5.1. Find two integers k and l, such that M∗[k, l] has the smallest value in M∗.

5.2. If k < l (which means E(R∗[k]) < E(R∗[l])), then merge R∗[l] to R∗[k] by deleting
R∗[l] from R∗, deleting row l and column l from M∗, and assigning a pointer from
a node representing R∗[l] to a node representing R∗[k].

5.3. Otherwise, merge R∗[k] to R∗[l].

Figure 3.10: Given the set of all possible LOpt stack configurations R and the energy barrier
cutoff ∆B, clusterLOpt(R,∆B) clusters LOpt stack configurations based on pairwise energy
barriers, obtains SLOpt stack configurations and produces a cluster tree.

SLOpt stack configuration in R∗ is less than ∆B, we consider φ as unstable, and discard

it. Otherwise, we push φ to R∗ as a SLOpt stack configuration and update M∗ accordingly.

WhenM∗ is constructed completely, we step-wisely neighbor join SLOpt stack configurations

in R∗ which have the lowest pairwise energy barrier in M∗, and obtain a cluster tree. Finally,

we rank SLOpt structures in R∗ either by their free energies or by their associated minimal

energy barriers.

77



3.3 Results and Discussion

3.3.1 Reducing the Conformational Space

The number of feasible secondary structures within a certain energy range of the MFE can

be enormous. Therefore, instead of investigating the vast conformational space of feasible

secondary structures, we want to reduce the size of the conformational space to consider.

Firstly, we only enumerate LOpt stack configurations instead of feasible structures, the

number of which is greatly reduced compared with that of feasible structures. In addition, we

can further reduce the number of candidates to consider by filtering out unstable structures

and only investigate SLOpt stack configurations. Note that the reduced space still grows

exponentially with the RNA length and the energy range. Comparisons of sizes of different

conformational spaces are shown in Figures 3.11 and 3.12.

Figure 3.11 shows that the conformational space of structures to consider can be largely

reduced by both increasing the minimum stack length ℓ and restricting the stack configu-

rations to be LOpt, and increasing the minimum stack length seems to be more effective

in reducing the number of candidating structures. The RNA sequence is taken from the

adenine riboswitch of the ydhL gene. Panel A of Figure 3.11 shows that the number of all

possible stack configurations produced by RNASLOpt is greatly reduced as ℓ increases from 2

to 4. In addition, the ratio of the number of stack configurations with ℓ = 4 over that with
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Figure 3.11: The conformational space of stack configurations produced by RNASLOpt with
the minimum stack length ℓ = 2 and the space produced with ℓ = 4 are compared. Panel A:
The x-axis shows the energy range in kcal/mol. The y-axis shows the ratio of the number of
stack configurations produced with ℓ = 4 over the number of stack configurations produced
with ℓ = 2. Panel B: The x-axis shows the energy range in kcal/mol. The y-axis shows
the ratio of the number of LOpt stack configurations over the number of all possible stack
configurations (both with the default parameters).

ℓ = 2 decreases dramatically from 0.25 to 0.0028 as the energy range increases from 1 to

20 (kcal/mol). Panel B of 3.11 demonstrates that the conformational space of LOpt stack

configurations is small compared with the space of all possible stack configurations, and the

ratio decreases from 1 to 0.30 as the energy range increases from 1 to 20 (kcal/mol).

Figure 3.12 demonstrates that the conformational space of SLOpt stack configurations pro-

duced by RNASLOpt is greatly reduced compared with the space of feasible structures. The

RNA sequence is taken from the adenine riboswitch of the ydhL gene. Panel A of Figure 3.12

shows that the ratio of the number of LOpt stack configurations over the number of feasible

structures decreases dramatically from 1 to less than 10−8 as the energy range increases from

0 to more than 17.5 (kcal/mol). Panel B of Figure 3.12 shows that the ratio of the number
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Figure 3.12: The conformational space of LOpt stack configurations produced by RNASLOpt

and the space of feasible structures by RNAsubopt are compared. Panel A: The x-axis
shows the energy range in kcal/mol. The y-axis shows the ratio of the number of LOpt
stack configurations produced by RNASLOpt over the number of feasible secondary structures
produced by RNAsubopt. Panel B: The x-axis shows the energy barrier cut off in kcal/mol.
The y-axis shows the ratio of the number of SLOpt stack configurations over the number of
LOpt stack configurations.

of SLOpt stack configurations over the number of LOpt stack configurations decreases from

1 to 0.003 as ∆B increases from 0 to 20 (kcal/mol).

3.3.2 Predicting Alternative Structures for Riboswitches

We show that although the conformational space of SLOpt stack configurations is greatly

reduced compared with the space of feasible structures, it does not miss native structures for

all the benchmark tests. Therefore, we can predict alternate structures for riboswitches by

exploring the space of SLOpt stack configurations. We performed benchmark tests on seven

riboswitches, including the adenine riboswitch of the ydhL gene from B. subtilis [64] (denoted
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Table 3.2: Comparison of the numbers of structures produced by mfold, RNAShapes and
RNASLOpt.

Riboswitch Len SubOpt mfold RNAShapes RNASLOpt

(%) LOpt SLOpt
adenine-BS 110 55 43 25 19 5
adenine-VV 113 20 20 9 14 4
guanine 148 55 38 759 1216 70
SAM 134 20 18 53 410 31
c-di-GMP 124 20 25 81 259 38
lysine 233 20 20 >1000 4798 346
TPP 185 20 33 247 1384 91

by adenine-BS), the adenine riboswitch of add gene from Vibrio vulnificus [53] (denoted

by adenine-VV), the guanine riboswitch of xpt-pbuX operon from B. subtilis [63], the S-

adenosylmethionine (SAM) riboswitch of metE from Thermoanaerobacter tencongensis [23],

the c-di-GMP riboswitch of tfoX from Candidatus desulforudis [100], the lysine riboswitch

of lysC from B. subtilis [12] and the thiamine pyrophosphate (TPP) riboswitch of thiamine

from B. subtilis [69, 90]. We describe the parameters used in the tests as follows. By

default, the minimum length of putative stacks (i.e. ℓmin) is 4, and the minimum score for

hydrogen bonds (i.e. hmin) is 8. However, ℓmin is 3 for the SAM riboswitch and c-di-GMP

riboswitch, because a large proportion of stacks in the native structures of both cases are

of lengths less than or equal to 3. Percentage suboptimality is a parameter that determines

the free energy upper limit for the predicted structures. If percentage suboptimality is x%,

then only structures that have free energies less than or equal to (1− x%) of the MFE will

be computed. The default value is 20%, since usually the native structures are within a

lower energy range from the MFE. However, for the adenine-BS riboswitch and the guanine

81



Table 3.3: Comparison of ranks assigned by RNASLOpt and other approaches. This table
shows ranks of the best structures corresponding to the native ‘off’ and ‘on’ structures
produced by mfold, RNAShapes, RNAlocopt and RNASLOpt. Len represents lengths of ri-
boswitches. SubOpt is short for percentage suboptimality.

Riboswitch SubOpt mfold RNAShapes RNAlocopt RNASLOpt

(%) n=10 n=100 n=1000 RankE RankB
adenine-BS 55 (1, 18) (1, -) (3, -) (3, -) (3, -) (1, 4) (1, 2)
adenine-
VV

20 (3, 1) (4, 1) (7, -) (28, -) (42, 25) (2, 1) (4, 1)

guanine 55 (1, 25) (1, 66) (1, -) (1, -) (1, -) (1, 15) (1, 3)
SAM 20 (6, 11) (8, 14) (-, -) (66, 60) (180, 98) (1, 5) (1, 13)
c-di-GMP 20 (10, 12) (22, 3) (-, 1) (38, 1) (68, 1) (6, 14) (10, 4)
lysine 20 (4, 5) (22, 35) (1, -) (2, 92) (658, 806) (24, 31) (18, 22)
TPP 20 (1,17) (1,24) (1, -) (2, -) (190, 410) (1, 5) (1, 3)

For each (a, b) in the table, a and b denote ranks of the best structures corresponding to the
native ‘off’ and ‘on’ structures respectively. SubOpt represents percentage suboptimality
used by mfold, RNAShapes and RNASLOpt. RNAShapes were run using the most abstract
shape type. RNAlocopt were run with sample size n = 10 (the default value), 100 and 1000
(instead of using suboptimality). RankE and RankB represent that secondary structures are
ranked by their free energies and minimal associated energy barriers, respectively. Bold faced
numbers indicate the best pair of ranks produced among all the approaches. ‘-’ represents
no secondary structure similar to the specified native structure is found.

riboswitch, suboptimality is assigned a greater value (i.e. 55%), because the free energies

of the ‘on’ structures for both riboswitches are higher than 20% of the MFE. The default

energy barrier cutoff ∆B is 12 (kcal/mol), which is empirically chosen to reflect the stability

of alternative structures, and it can be changed by users.

First, we compare the number of structures produced by mfold (v3.5), the number of

‘shreps’ by RNAShapes (v2.1.6), and the numbers of LOpt and SLOpt stack configurations by

RNASLOpt in Table 3.2, which shows the numbers of structures produced by mfold, RNAShapes

and RNASLOpt.
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Table 3.4: Running time used by various parts of RNAEAPath (in seconds) on benchmark tests
are shown. TimeLOpt represents the running time for generating LOpt stack configurations.
TimeSLOpt shows the time for obtaining SLOpt stack configurations. TimeALL is the overall
running time of RNAEAPath.

Riboswitch TimeLOpt TimeSLOpt TimeALL

adenine-BS 0.018 0.022 0.040
adenine-VV 0.021 0.017 0.038
guanine 2.632 3.321 5.953
SAM 1.316 1.056 2.372
c-di-GMP 0.730 0.808 1.538
lysine 11.792 151.847 277.639
TPP 6.343 9.496 15.839

The number of SLOpt produced by RNASLOpt is less than that of RNAShapes in all the cases.

It reveals that although the number of candidates considered by both methods are exponen-

tial, the space of RNASLOpt is reduced compared to the space of RNAShapes. Interestingly, the

number of candidates produced by RNASLOpt is even less than that of mfold (which generates

O(n2) structures at most), when the RNA sequence is short (e.g. the adenine riboswitch).

The running time for all the test cases on a 32 bit PC with 2.4 GHz Quad-processor, 3.2 GB

memory (running Fedora 11) are 0.04, 0.04, 6, 2.4, 1.5, 227.6 and 15.8 seconds, respectively,

as shown in Table 3.4.Usually, RNASLOpt can be applied on RNAs of around 200 nucleotides

(nt) long and finish the computation within a few minutes.

Next, we compare the ranks of the best structures corresponding to the native structures

produced by mfold, RNAShapes, RNAlocopt and RNASLOpt in Table 3.3. The best structures

should share the most backbone structures in common with the native structures. RNASLOpt

can rank predicted structures both according to their free energies and minimal associated
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energy barriers. In all the cases, RNASLOpt ranks the best structures corresponding to the

native ‘on’ and ‘off’ structure conformations among the top. And, in 6 out of 7 cases,

RNASLOpt provides better ranks than the others.

For example, Figure 3.13 show both the native ‘on’ and ‘off’ structures of adenine ri-

boswitch from the ydhL gene of B. subtilis [15] and the best stack configurations produced

by RNASLOpt. RNAsubopt produces more than 109 feasible secondary structures, mfold se-

lects 43 representative structures and RNAShapes predicts 25 shreps (with the most abstract

option). In contrast, RNASLOpt enumerates 19 LOpt stack configurations within 55% of the

MFE, filters out 14 unstable stack configurations, and obtains 5 SLOpt stack configura-

tions. Two SLOpt stack configurations among the five have the similar backbone structures

to the native conformations and are ranked among the top according to both free energies

(i.e. ranked 1 and 4 respectively) and the minimal associated energy barriers (i.e. ranked

1 and 2 respectively). Since the ‘on’ and ‘off’ structures predicted by RNASLOpt are LOpt

stack configurations, an extra stack was predicted for each configuration (Figure 3.13, panels

C and D) without affecting the backbone structure. We also list the native ‘on’ or ‘off’

conformations of the 7 riboswitches, together with the best structures produced by mfold,

RNAShapes, RNAlocopt and RNASLOpt are shown in Appendix A.
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Figure 3.13: The native and predicted ‘on’ and ‘off’ structure conformations of the adenine
riboswitch from ydhL gene of B. subtilis. Panels A and B show the native ‘on’ and ‘off’
structure conformations; panels C and D plot the best corresponding stack configurations
predicted by RNASLOpt.
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3.4 Conclusions

In this chapter, we described an approach, RNASLOpt, for predicting stable local optimal

stack configurations of an RNA molecule. We first predict all possible local optimal stack

configurations that are significantly different from one another. With each stack configura-

tion representing a set of similar RNA secondary structures, we are able to greatly reduce

the size of the conformational space considered, and make applications on longer sequences

with a higher energy range possible. In addition, we also employ a fast heuristic to compute

pairwise energy barriers among LOpt stack configurations. Finally, we filter out unstable

structures based on their pairwise energy barriers, obtain stable structures and rank them

either according to their free energies or their minimal associated energy barriers.
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CHAPTER 4: FINDING RNA CONSENSUS STABLE LOCAL

OPTIMAL STRUCTURES AND NOVEL RIBOSWITCH

DETECTION

In Chapter 3, we have developed an approach, RNASLOpt, for predicting alternate functional

structures for a single ncRNA by generating all possible stable local optimal (SLOpt) stack

configurations on the ncRNA’s energy landscape. Determination of riboswitches’ alternate

functional structures can provide deep insights into their regulatory mechanisms in cellular

life. Moreover, analysis of putative RNAs’ potential structure conformations can lead to

discovery of novel riboswitches. However, the structure analysis and discovery of novel

riboswitches based on a single sequence alone usually has limited power.

With the rapid development of next generation sequencing techniques and the growing avail-

ability of complete genomes for more organisms, we incorporate structural conservation in-

formation among a family of related ncRNA sequences, in order to further improve accuracy

of analysis. In this chapter, we present a comparative approach, RNAConSLOpt, to produce all

1This chapter, in part, is a reprint of the paper, “Finding consensus stable local optimal structures for
aligned RNA sequences”, co-authored with Shaojie Zhang in IEEE International Conference on Computa-
tional Advances in Bio and Medical Sciences, 2012, Feb 23-25, Las Vegas, Nevada, USA, 2012, and is also a
reprint of the paper, “Finding consensus stable local optimal structures for aligned RNA sequences and its
applications”, submitted to BMC Genomics.
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possible consensus SLOpt stack configurations that are conserved on the consensus energy

landscape of a family of related ncRNAs. In addition, we develop a pipeline making use of

RNAConSLOpt to computationally discover novel riboswitches in bacterial genomes.

4.1 Literature Review

In Literature Review section, we first briefly explain RNASLOpt and stable local optimal

(SLOpt) structures, which have been introduced in Chapter 3. Second, we review several

existing comparative approaches for RNA structure analysis. Third, we describe our novel

approach, RNAConSLOpt, which combines our previous work RNASLOpt and comparative ap-

proaches to further reduce search space and improve the accuracy of predicting alternate

functional structures for riboswitches. Finally, we discuss applying RNAConSLOpt to de novo

detecting novel riboswitches in bacterial genomes.

4.1.1 Stable Local Optimal Structures and Energy Landscape of a Single

RNA

The alternate functional structures of an ncRNA can be determined by analyzing its energy

landscape. The exact energy landscape of an RNA consists of all feasible suboptimal struc-
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tures within a certain energy range, where each suboptimal structure is directly connected

to its neighboring structures (i.e. structures that differ from it by exactly one base pair). We

can use approaches such as RNAsubopt [112], to enumerate all possible suboptimal structures,

and then use approaches such as BARRIERS [28], to construct the exact energy landscape.

As shown in Figure 3.1, the conformational space of feasible suboptimal structures can be

extremely large, rendering a lot of redundant information (many suboptimal structures are

similar to one another).

Researchers have also developed approaches that only investigate a subset of suboptimal

structures. Zuker [118] has developed mfold, an approach that is able to generate, for each

admissible base pair in an RNA, the minimum energy structure containing the base pair.

The approaches of Pipas et al. [86] and Nakaya et al. [74] consider structures composed

of coexisting stacks to reduce the number of candidates. Evers and Giegerich [24] have

implemented an approach for enumerating all saturated suboptimal structures. Giegerich et

al. [33] have also developed RNAShapes, which can cluster suboptimal structures according

to their shapes. Lorenz and Clote [58] have developed RNALocopt, which can sample a

user-defined number of locally optimal structures. Also, Lou and Clote [59] has contributed

RNAborMEA, which, for an RNA secondary structure S and a number k, can compute the

structure with maximum expected accuracy over all k-neighbors of S. (See Chapter 3.1 for

detailed discussion.)
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In Chapter 3, we have described a novel approach, RNASLOpt, for predicting functional

structural conformations of a single RNA by finding stable local optimal (SLOpt) structures

on the RNA energy landscape. Usually, ncRNAs’ functional structural conformations have

some distinctive features. First, the functional structures are energetically favorable and

optimal on their local energy landscapes (LOpt). They tend to reside at the bottom of energy

basins to ensure being favored over an ensemble of other structural conformations [93]. This is

because none local optimal structures can progressively fold into their neighboring structures

with lower free energies easily, like rolling down a hill until reaching an energy basin (a LOpt

structure). Second, the conformational transitions between any pair of alternate functional

structures may involve high energy barriers, such that the ncRNA can become kinetically

trapped on the energy landscape (i.e., if the energy barrier between two structures is low,

then conformational transition between the two structures may occur easily).

Therefore, in order to predict ncRNAs’ native structures, we have proposed to ncRNAs’

underlying energy landscapes and search for SLOpt structures, that are not only thermody-

namically stable, but also involve high energy barriers during the folding pathways to any

other SLOpt structures. That is, given an ncRNA sequence, how to enumerate all the SLOpt

structures such that (1) their free energies are within a certain energy range ∆E from the

minimum free energy (MFE), (2) they are local optimal on the ncRNA’s energy landscape

and (3) they are dynamically stable such that the minimal energy barrier between any two

SLOpt structures is no less than a certain threshold ∆B?
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We have employed stack configurations (each of which contains a set of compatible stacks)

to represent scaffolds of RNA secondary structures. We also have used LOpt stack configu-

rations to approximate LOpt structures, where each LOpt stack configuration consists of a

maximal number of compatible stacks (i.e., no additional stack can be added without forming

pseudoknots). We enumerated all the LOpt stack configurations within an energy range ∆E

from the MFE, and then used a fast heuristic to compute the approximated pairwise energy

barriers among these LOpt stack configurations, and finally applied a clustering algorithm

to obtain all the SLOpt stack configurations (among which all the pairwise energy barriers

are greater than or equal to ∆B). Based on the generated SLOpt stack configurations, we

can infer a compact representation of the RNA’s energy landscape with a remarkably re-

duced conformational space. Moreover, from the reduced search space, we can distinguish

the ncRNA’s alternate native structural conformations more accurately.

4.1.2 Predicting the Optimal Consensus Structure for a Family of Related

RNAs

The biological functions of ncRNAs are usually determined by their structures. And, ncR-

NAs that carry out similar biological functions are likely to share similar structural confor-

mations. Predicting secondary structures for a single RNA based on energy minimization

alone typically has limited accuracy. More accurate prediction can be obtained by using
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comparative approaches to compute consensus structures that are conserved among related

ncRNAs. Comparative approaches for predicting consensus structures can either (a) con-

duct sequence alignment and thermodynamic-based folding simultaneously (e.g., the Sankoff

algorithm [94], Foldalign [35], Dynalign [67]), or (b) rely on well-aligned sequence alignments

and fold consensus structures (e.g., RNAalifold [42, 44], Pfold [51], PETfold [95], McCaskill-

MEA [50], CentroidAlifold [39]), or (c) first fold each individual RNA separately and then

align all the predicted structures to obtain the consensus structure (e.g., RNACast [89],

RADAR [49]). One of the most popular comparative approaches is RNAalifold, which takes

into account thermodynamic stability, covariant mutations and inconsistent base pairing into

consensus folding.

4.1.3 Consensus Stable Local Optimal Structures and Energy Landscapes

for a Family of Related RNAs

Most of the comparative approaches can predict only the best consensus structure, while

ignoring consensus suboptimal structures. These approaches are not appropriate for ana-

lyzing ncRNAs with alternate functional structures. In order to predict ncRNAs’ alternate

functional structures more accurately and confidently, we want to study the consensus sub-

optimal structures that are conserved in evolution among related ncRNAs on their consensus

energy landscapes. We assume that the consensus functional structures of ncRNAs should
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also be local optimal, residing at energy basins of the consensus energy landscape. In addi-

tion, the consensus folding pathways between any two consensus functional structures should

involve high energy barriers such that the conformational transitions can not occur easily.

We propose the following problem: given a family of related ncRNAs, how to enumerate all

the consensus stable local optimal structures such that (1) they are conserved among the

family of related ncRNAs, (2) their consensus free energies are within a certain energy range

∆E from the MFE, (3) they are local optimal on the consensus energy landscape, and (4)

they are dynamically stable such that the pairwise energy barrier between any two of them

is no less than ∆B?

So far, to our knowledge, no specific method has been proposed to address this problem.

In this chapter, we describe our comparative approach, RNAConSLOpt, for finding consensus

SLOpt (denoted by ConSLOpt) structures on the consensus energy landscape of a family of

related ncRNAs.

4.1.4 Novel Riboswitch Elements Discovery

An application of our approach, RNAConSLOpt, is to search for novel riboswitch elements.

Computationally detecting novel riboswitches is a very challenging task. RNAConSLOpt is

particularly fit for addressing this problem, because riboswitches can switch between al-
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losteric structure conformations that are mutually exclusive, while RNAConSLOpt can find

evolutionarily conserved and thermodynamically stable structures in RNA sequences.

Many researchers have developed a variety of methods for identifying new riboswitch ele-

ments in bacterial genomes. Barrick et al. [6] have proposed an approach that integrates

intergenic sequence search, pairwise sequence alignment, and structure-based motif search in

novel riboswitch detection. They have discovered and experimentally verified several novel

riboswitches within B. subtilis genome. Bengert et al. [9] have developed RiboswitchFinder,

a method that searches an input sequence for specific riboswitch elements according to the

sequence and structure patterns of the elements, and the energy-based folding of the input

sequence. Abreu-Goodger et al. [1] have created RibEx (Riboswitch explorer), a web server

that can search for known riboswitches and conserved regulatory elements in bacteria. In

addition, Yao et al. [114] have contributed CMfinder, an effective motif search tool that per-

forms well in finding motifs that are present in a subset of unaligned sequences. CMfinder

integrates energy-based secondary structure prediction and covariance models for character-

izing motifs. CMfinder can be applied to genome-wide homolog search and is shown to have

identified many homologous instances of known ncRNA families. Moreover, Chang et al. [18]

have implemented RiboSW, a systematic method that searches putative riboswitch elements

through considering secondary structures of known riboswitches, as well as sequence conser-

vations of their functional regions. However, these approaches perform well in identifying

homologous instances of known riboswitch families, but can not be used for de novo detect-
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ing novel riboswitches. We have developed a pipeline making use of RNAConSLOpt for de

novo detecting riboswitch elements in bacteria 5’ untranslated regions (UTRs).

We arrange this chapter as follows. In the Methods section, we elucidate algorithms of

RNAConSLOpt in detail. In the Results and Discussion section, we show benchmarking tests

of RNAConSLOpt on known riboswitches, and compare RNAConSLOpt against RNASLOpt. In

addition, we present the pipeline utilizing RNAConSLOpt to discover novel riboswitch elements

within Bacillus bacterial genomes and analyze the predicted riboswitch element candidates.

In the Conclusions section, we discuss further applications of RNAConSLOpt, and finally con-

clude the chapter.

4.2 Methods

RNAConSLOpt incorporates not only free energies of structures, but also covariance and con-

servation signals into enumerating ConSLOpt structures. RNAConSLOpt consists of three al-

gorithms: (1) the stack-based consensus folding algorithm, (2) the algorithm for generating

all possible ConSLOpt stack configurations, (3) and the algorithm for filtering out unstable

consensus LOpt stack configurations and obtaining ConSLOpt stack configurations. In the

following, we first review the covariance and conservation score of aligned RNA sequences

used in RNAalifold, and then define notations related to consensus stack configurations, and

finally describe the three algorithms.
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4.2.1 Covariant Mutations and Structural Conservation

We represent an alignment of n (n > 1) related RNAs, each containing exactly L bases, by

A = {a1, . . . , an}. By aik, we denote the ith base of the kth RNA. The alphabet includes

nucleotides {A,U,G,C} and a gap ‘−’. Complementary nucleotides (including A ·U,G ·C

and G ·U) can form base pairs. Following the idea of RNAalifold [44], we consider the ith

and jth columns of A to be complementary, if the covariance and conservation score between

the two columns, γij, is no less than a threshold value γ∗ (with a default value −0.4). Recall

that γij is composed of a covariance score Cij and an inconsistent score qij. Note that Cij

is the bonus to compensatory mutations that maintain the pairing pattern between ith and

jth columns; while qij is the penalty to RNAs, of which the ith and jth columns can not pair.

The values of γij, Cij and qij are computed using Equations 4.1, 4.2 and 4.3, respectively:

γij = 1/n(Cij − ϕ1qij) (4.1)

where ϕ1 is the relative weight of the inconsistent score and its default value is 1.0;

Cij =
2

n− 1

∑
1≤k<l≤n


d(aik, a

i
l) + d(ajk, a

j
l ) if (aik · a

j
k) ∧ (ail · a

j
l )

0 otherwise

(4.2)
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where d(x, y) is the hamming distance between two nucleotides x and y (0, if x = y; 1, if

x ̸= y);

qij =
∑

1≤k≤n


0 if aik · a

j
k

0.25 if both aik and ajk are gaps

1 otherwise

(4.3)

4.2.2 Notations of Consensus Stacks and Structures

By computing γij for all possible i and j, where 1 ≤ i < j ≤ L, we can determine the

consensus base-pairing pattern in A. Following the convention of RNASLOpt, we define the

following notations. Let (i, j) represent a consensus base pair between the ith and jth columns

of A. A consensus stack of A is a helical region consisting of a set of consecutive consensus

base pairs, which can not extend on both ends. We use p = (pb, pe, pl) to represent a

consensus stack containing the following pl consecutive consensus base pairs, {(pb, pe), (pb +

1, pe− 1), . . . , (pb+ pl− 1, pe− pl+1)}. pb and pe are the 5’ and 3’ ends of the out-most base

pair in p. |p| is the sequence length covered by stack p and is equal to pe − pb + 1. We use

γ(p) to denote the covariance and conservation score of p. γ(p) can be computed by adding

up the γ scores of all the consensus base pairs in p.
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We use P(A) to denote a set of all possible consensus stacks of A, which contains at least

a user-defined number of base pairs (the default value is 4). For any two stacks p and q in

P(A), if p is parallel to the 5’ of q (i.e. pe < qb), then p <P q; if p is enclosed by q (i.e.

qb + ql ≤ pb and pe ≤ qe − ql), then p <I q; otherwise, p and q are incompatible. (The

partial orders p <P q and p <I q can be loosely defined, allowing p and q to overlap by a

few columns.) In case that p is enclosed by q, we use a stack lp,q = (qb + ql, pb − 1, 0) (or

rp,q = (pe + 1, qe − ql, 0)) to represent the region that is enclosed by q and appears to the 5’

(or 3’) end of p. We define P(p) to be the set of all possible consensus stacks within p, and

FI(p) to be a subset of P(p). A stack q ∈ P(p) belongs to FI(p), if and only if there is no

stack q in P(p), such that either q <P q (i.e. q appears to the 3’ of q), or q <I q (i.e. q is

embedded in q).

We use configurations of consensus stacks (containing a set of compatible consensus stacks

allowing no pseudoknots) to represent scaffolds of consensus structures. We also employ

consensus LOpt stack configurations (each of which contains a maximal number of compatible

consensus stacks) to approximate consensus LOpt structures. We use consensus free energy

for evaluating each generated consensus structures. The consensus free energy contains both

the covariance and conservation score, and the average free energy over all single RNAs in

the alignment, and is computed in a similar manner to RNAalifold.

We define the following terminal symbols. By S(p), we denote the normalized stabilizing

consensus energy of all the stacking base pairs in a consensus stack p. H(p) is the normalized
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destabilizing consensus energy of hairpin loops enclosed by p, and I(p, q) is the normalized

consensus energy of interior loops or bulges between stacks p and q. In case that an RNA in

the alignment can not form a base pair (or a loop or a bulge) which exists in the consensus

structure, the energy contribution of the particular base pair in the RNA will not be counted.

Mc is a constant offset penalty for closing a multi-loop. Mb and Mi are constant penalties

for each unpaired base and each helix in a multi-loop. We also define non-terminal symbols:

F (p), C(p), FM1(p) and FM(p), each represents the minimal consensus energy over all

stack configurations within p conforming to the following constraints:

(a) F (p): pb = 1 and pl = 0;

(b) C(p): pl ̸= 0 and p closes some structures within itself;

(c) FM1(p): p is within a multi-loop, and there exists at least a consensus stack q such

that ql ̸= 0 and q <I p;

(d) FM(p): p is within a multi-loop.

4.2.3 Stack-based Consensus Folding Algorithm

In Chapter 3, we have described a recursive formula for computing the MFE for all possible

LOpt stack configurations of a single RNA. Here, we modify the formula in order to compute
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the minimal consensus energy for aligned sequences of related ncRNAs (as in Equation 4.4):

F (p) = min
q∈FI(p)

{C(q) + F (lp,q)}

C(p) = S(p) + ϕ2γ(p) + min



H(p),

min
q<Ip

{C(q) + I(p, q)},

min
q∈FI(p)
FI(lp,q) ̸=∅


C(q) + FM1(lp,q) +Mc

+2 ∗Mi + |rp,q| ∗Mb


FM1(p) = min

q∈FI(p)
{C(q) + FM(lp,q) +Mi + |rp,q| ∗Mb}

FM(p) = min


|p| ∗Mb,

min
q∈FI(p)


C(q) + FM(lp,q)

+Mi + |rp,q| ∗Mb



(4.4)

where ϕ2 is the weight of the covariance and conservation score and its default value is 0.5.

The major differences are that (1) we consider the consensus structures shared among related

ncRNAs, instead of structures of a single ncRNA, and (2) we integrate the covariance and

conservation score in evaluating the generated structures.
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4.2.4 Generating All Possible Consensus Local Optimal Stack

Configurations

Next, we enumerate all possible consensus LOpt stack configurations of A within an energy

range of ∆E from the minimum consensus free energy. In Chapter 3.2.3.2, we have developed

an approach for enumerating all possible LOpt stack configurations for a single RNA. We

modify it for aligned RNA sequences as follows.

We use p∗ (where p∗ = (1, L, 0)) to denote the stack that covers the overall alignment of

A. The minimum consensus free energy of A is F (p∗), and the energy upper bound is

∆E + F (p∗). We use a partial stack configuration φ0 (where φ0 = {(p∗, F )}) to represent

all possible consensus LOpt stack configurations on A. A partial stack configuration φ is

composed of a set of compatible consensus stacks, where each consensus stack p is associated

with one of the five labels: finished, F , C, FM1 and FM . For each consensus stack p

in φ, we decompose the region covered by p into several separated sub-regions according to

the label of p, and then construct a set of new partial stack configurations accordingly. The

decomposition and construction are conducted through back tracking he recursive formula

of Equation 4.4, as shown in Chapter 3.2.3.2. We repeatedly process each partial stack

configuration φ, until either the consensus free energy of φ is greater than the energy upper

bound, or all the consensus stacks in φ are labeled finished.

101



During the back tracking phase, at each step, we determine whether to include a consensus

stack. This procedure differs from those of RNASLOpt and RNAsubopt in that: at each step,

RNASLOpt decides wether to include a stack of a single RNA; and RNAsubopt chooses whether

to form a feasible base pair. RNASLOpt can greatly reduce the search space compared with

RNAsubopt, because it encounters far less branching points, as the number of stacks is less

than the number of feasible base pairs. Similarly, RNAConSLOpt is expected to explore a

further reduced, yet evolutionarily conserved, conformational space of consensus structures

compared with RNASLOpt (as the number of consensus stacks of aligned RNAs is usually less

than the number of stacks in a single RNA). Note that, although RNAConSLOpt still considers

a search space that grows exponentially with sequence length, it can further reduce the

number of candidate structures, and thus can be applied to longer sequences with a greater

energy range.

4.2.5 Clustering Consensus Stable Local Optimal Stack Configurations

Finally, we select consensus stable local optimal structures from the consensus LOpt stack

configurations based on pairwise consensus energy barriers. To achieve this goal, we need

to compute the pairwise consensus energy barriers among LOpt structures. The problem of

determining the minimal energy barrier between two secondary structures , even for a single

RNA, is hard [65]. Although both exact solutions [104, 28] and heuristic approaches [71, 27,
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106, 31, 21, 54] have been proposed to address this problem for single RNAs, they are not

tailored for computing consensus energy barriers for aligned RNAs and are not fast enough

to apply to thousands pairs of conformational structures. Therefore, we use the fast heuristic

described in Chapter 3.2.4.1 to compute consensus energy barriers. Finally, we obtain a set

of ConSLOpt structures (among which all the pairwise consensus energy barriers are greater

than or equal to ∆B) using neighbor joining clustering described in Chapter 3.2.4.2.

4.3 Results and Discussion

4.3.1 Benchmarking Tests on Known Riboswitches

In order to test whether RNAConSLOpt is able to predict alternate functional structures for

riboswitches, we conducted benchmark tests on the adenine riboswitch, the thiamine py-

rophosphate (TPP) riboswitch, the lysine riboswitch and the flavin mononucleotide (FMN)

riboswitch. First, we obtained primary sequences and native structural conformations of

the following riboswitches as the reference: adenine - ydhL gene of B. subtilis [64], TPP

- thiamine of B. subtilis [69, 90], lysine - lysC of B. subtilis [12] and FMN - ribD of B.

subtilis [110].
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Next, for each riboswitch, we constructed an alignment of homologous sequences. We down-

loaded the seed alignment of each riboswitch from the Rfam database [36]. Note that we

could not use the seed alignment directly, because it is an alignment of partial sequences that

are too short when compared to the full reference sequence. For each partial sequence in

the seed alignment, we inferred the genomic location of the full sequence accordingly. After

extracting all the full sequences from the EMBL Nucleotide Sequence Database [48], we se-

lected the reference sequence and four other sequences which have lower than 90% sequence

identity with the reference, and aligned them using ClustalW2 [52].

We applied RNAConSLOpt to the constructed riboswitch alignments in order to produce Con-

SLOpt stack configurations. Finally, we evaluated the generated ConSLOpt structures using

the reference native structural conformations and compared RNAConSLOpt against RNASLOpt.
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Figure 4.1: Aligned sequences of adenine riboswitches and the corresponding native and
predicted consensus ‘on’ and ‘off’ conformational structures. Pairing columns with covariant
mutations in the predicted consensus structures are colored red.

We show the native and predicted ‘on’ and ‘off’ structural conformations of the adenine ri-

boswitch in Figure 4.3.1. We found that covariant mutations exist in both ‘on’ and ‘off’ struc-

tures and are informative for the prediction. We also compared ranks of the best predicted

structures corresponding to the native ‘on’ and ‘off’ structures produced by RNAConSLOpt
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Table 4.1: Ranks of the best structures corresponding to the native ‘off’ and ‘on’ structures
by RNASLOpt and RNAConSLOpt are shown. RNAConSLOpt was run with the default param-
eters for all the riboswitches (minimum stack length: 4; ∆E: 15 kcal/mol; and ∆B: 12
kcal/mol). For each (a, b) in the table, a and b denote ranks of the best consensus structures
corresponding to the native ‘off’ and ‘on’ structures respectively. RankE is the rank of each
predicted structure based on its free energy. RankB is the rank of each predicted structure
based on its minimal associated energy barrier. Len represents length of each alignment.
Pairid represents the mean pairwise identity of each alignment. For each riboswitch, the
best pair of ranks produced by RNASLOpt and RNAConSLOpt are bold faced.

Name
∆E

RNASLOpt RNAConSLOpt

(kcal/mol) RankE RankB # of
SLOpt

Len Pairid RankE RankB # of
ConSLOpt

Adenine 25 (1, 5) (1, 3) 6 108 0.67 (1, 2) (1, 2) 2
TPP 15 (1, 5) (1, 4) 369 194 0.62 (1, 5) (1, 3) 5
Lysine 15 (25, 32) (76, 33) 673 237 0.62 (1, 2) (1, 2) 5
FMN 15 (64, 49) (7, 29) 234 247 0.60 (1, 23) (1, 20) 50

against the ranks by RNASLOpt in Table 4.1. We can see that ranks of ‘on’ and ‘off’ structures

predicted by RNAConSLOpt are better than those of RNASLOpt. This is due to the power of

comparative analysis in ncRNA structure prediction. RNAConSLOpt only investigates con-

sensus stable local optimal structures residing at energy basins of the consensus energy

landscape. It can further reduce the search space comparing with RNASLOpt, retaining the

ability to predict both alternate native structures for riboswitches. The running time for the

four benchmarking tests (on a 32 bit, 2.4 GHz Quad-processor, 3.2 GB memory PC) were

1s, 3s, 8s and 14s, respectively. It indicated that RNAConSLOpt can be applied to alignments

of length around 250 with efficiency.

In addition, we also compared the number of ConSLOpt structures of aligned riboswitches

(produced by RNAConSLOpt) against the number of SLOpt structures of the reference se-
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Figure 4.2: ConSLOpts and SLOpts represent the consensus SLOpt stack configurations of
aligned RNA sequences, and the SLOpt stack configuration of the reference RNA, respec-
tively.

quence (produced by RNASLOpt). In general, the number of ConSLOpt structures of aligned

riboswitches is a small fraction of the number of SLOpt structures of the reference sequence,

as shown in Figure 4.3.1. The source code and benchmark tests for RNAConSLOpt (V1.1) are

available at http://genome.ucf.edu/RNAConSLOpt.

4.3.2 A Pipeline for de novo Detection of Riboswitch Elements in

Bacterial Genomes

We present a pipeline that utilizes RNAConSLOpt in detecting novel riboswitch elements.

RNAConSLOpt can predict consensus stable local optimal structures for aligned orthologous

sequences, while putative riboswitches are likely to have allosteric structure conformations.

106



Therefore, by analyzing covariant mutation patterns of the predicted ConSLOpt structures,

we can obtain additional information and then discover putative riboswitch elements with

more confidence. We have applied this riboswitch detection pipeline to a set of bacteria in

Bacillus genus, and carried out the following procedures.

First, we downloaded 82 complete genomes of 37 Bacillus bacteria (see the RNAConSLOpt web

site at http://www.genome.ucf.edu/RNAConSLOpt for a list of all the bacteria), as well as

their gene annotations from National Center for Biotechnology Information (NCBI). We

selected Bacillus subtilis 168 (with GenBank accession number NC 000964) as the reference

genome. B. subtilis is an extensively-studied organism commonly used as a model in bacteria

research. B. subtilis has 4155 non-redundant genes annotated. For each gene, we collected

upstream sequences of all orthologous genes from the 82 Bacillus bacterial genomes, aiming

at constructing an orthologous sequence alignment. Each sequence consists of up to 500

nucleotides in 5’-UTR of the specific gene and the starting 50 nucleotides of the gene’s

protein coding region. We kept the starting 50 nucleotides of protein coding region in the

sequences so that we can use them as an anchor to construct high-quality alignments. We also

discarded short orthologous sequences which have less than 100 nucleotides in 5’-UTR. After

collecting all the orthologous sequences for a specific gene, we then employed ClustalW2 [52]

to construct an alignment.

With the constructed orthologous sequence alignments, we then divided them into many

small overlapping windows. The window size can be 100, 120, 140 and 160 and the step size is
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20. We refined each alignment window using rnazSelectSeqs.pl in RNAz [37] package (version

2.1 with default parameters). Note that the refined alignments produced by RNAz are usually

shorter in length than the original alignments. We only chose windows with lengths between

90 and 120. We also filtered out windows which contain less than 4 sequences, as they can

not provide enough covariant mutation information. Further, for each remaining alignment

window, we used RNAz (with –no-shuffle option) to predict whether the alignment is likely

to be a real RNA. We removed windows which have less than 50% probability of being

classified as an RNA by RNAz, and finally obtained 10577 high-quality alignment windows.

After selecting 10577 alignment windows, we applied RNAConSLOpt to each of them with the

default parameters (∆E = 15 kcal/mol, ∆B = 12 kcal/mol). RNAConSLOpt produced Con-

SLOpt structures for each window and ranked these structures by their associated minimal

energy barriers. We denoted the rank 1st and rank 2nd ConSLOpt structures by R1 and R2,

respectively. E(R1) and E(R2) represent consensus energies with covariant scores for R1

and R2, respectively. Among all the selected windows, 4037 of them were predicted with

putative allosteric consensus structures.

Since many of the remaining 4037 windows may overlap with one another, for each group

of overlapping windows, we selected the one with the lowest E(R2) as the representative.

After trimming redundant information from the results, we obtained 630 non-overlapping

windows. To make the prediction more conservative, we only analyzed 506 windows of which

the average distances to the starting codons of their downstream genes are less than 100.
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With E(R2) less than −10 (kcal/mol) and −20 (kcal/mol), we obtained 161 and 38 putative

riboswitch candidates, respectively.

In order to check whether the putative riboswitches have already been studied or not, we

searched their orthologous sequences in the alignments against known riboswitch families.

First, we used BLAST [2] (with option megablast) to compare each orthologous sequence

against the full sequence alignments of RNA families in the Rfam database [36]. We con-

sidered a riboswitch candidate belonging to a known RNA family if one of its orthologous

sequences ‘hit’ an Rfam RNA family with an e-value less than 10−5. The Rfam RNA family

would be denoted as the best matching RNA family for the putative riboswitch. In addition,

we also conducted homolog search against covariance models of known ncRNAs in Rfam

using Infernal/cmsearch [78] with a significant e-value cutoff (E < 10−10).

Finally, we sorted all the windows based on their E(R2) values (i.e. the consensus energy with

covariance for the rank 2nd ConSLOpt structure R2). Table 4.2 shows all the predictions with

E(R2) less than −20 (kcal/mol). (We also show detailed information of all the riboswitch

candidates with E(R2) value less than −10 (kcal/mol), including their predicted ConSLOpt

structures at http://www.genome.ucf.edu/RNAConSLOpt/).
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Table 4.2: 38 predicted riboswitch elements in Bacillus genus with E(R2) less than −20
(kcal/mol) are shown. Genes represent names of related downstream genes. E(R1) and
E(R2): consensus energy with covariance of R1 and R2, where R1 and R2 are the rank 1st

and 2nd ConSLOpt structure according to associated energy barriers. Cov(R1) and Cov(R2)
are covariant mutation scores for R1 and R2. B(R1, R2) represents the predicted consensus
barrier energy between R1 and R2. COG represents the Clusters of Orthologous Groups of
related proteins. Rfam shows the best matching RNA family in Rfam Database. + and ∗ indi-
cate that the best matching RNA families were identified by BLAST and Infernal/cmsearch,
respectively. B(R1, R2) denotes the approximated consensus energy barrier between R1 and
R2. Pairid is the mean pairwise identity among orthologous sequences.

Gene COG Rfam Riboswitch E(R1) E(R2) Cov(R1) Cov(R2) B(R1, R2) Pairid

hisZ COG3705 - - -49.83 -45.2 1.33 1.03 32.67 0.94
greA COG0782 - - -41.95 -39.18 0.9 0.73 44.72 0.9
yjcI COG0626 RF00162+∗ SAM -37.74 -33.27 3.75 3.5 30.48 0.75
yxkD COG1284 RF00442+∗ ykkC-yxkD -42 -33.06 3.7 3.4 29.02 0.79
ileS COG0060 RF00230+∗ T-box -40.02 -32.83 1.57 0.58 16.43 0.89
glyQ COG0752 RF00230∗ T-box -35.25 -30.27 -0.03 0.55 45.9 0.79
thiM COG2145 RF00059∗ TPP -34.88 -29.9 0.43 0.6 18.72 0.97
yugI COG1098 - - -31.22 -29.52 3.62 3.45 21.95 0.88
trpE COG0147 RF00230+∗ T-box -36.37 -29.23 0.78 0.35 17.59 0.96
cysE COG1045 RF00230∗ T-box -32.57 -28.9 3.53 2.17 20.52 0.79
ylxS COG0779 - - -30.13 -28.75 -0.45 0.25 14.61 0.86
hutH COG2986 - - -41.95 -28.02 0.47 0.93 16.99 0.96
glyS COG0751 RF00230∗ T-box -35.11 -27.45 -1.35 0.15 38.54 0.8
leuS COG0495 RF00230+∗ T-box -34.32 -26.35 2.98 1.67 13.28 0.68
yrhG COG2116 - - -37.07 -25.65 0.35 -0.15 14.02 0.88
argH COG0165 - - -28.44 -25.38 0.2 0 21.55 0.97
secG - - - -29.97 -25.25 0.18 0.35 12.24 0.9
pyrH COG0528 - - -33.6 -24.92 0.63 0.35 12.17 0.9
secDF COG0342 - - -25.02 -24.28 1.45 0.97 17.27 0.94
tenA COG0819 RF00059+∗ TPP -29.73 -24.27 1.78 1.2 16.96 0.81
narH COG1140 - - -29.12 -24.18 0 0.25 22.62 0.97
infC COG0290 RF00558+∗ L20-leader -24.82 -23.9 0.1 -0.08 23.57 0.88
ilvB COG0028 RF00230+∗ T-box -32.95 -23.85 1.32 0.8 25.71 0.82
glmS COG0449 RF00234+∗ glmS -26.98 -23.77 3.3 4.23 16.53 0.6
proI COG0345 RF00230+∗ T-box -33.12 -23.57 1.15 1.57 17.13 0.85
ykkC COG2076 RF00442+∗ ykkC-yxkD -25.91 -22.86 1.79 2.29 18.34 0.81
cysH COG0175 RF00162∗ SAM -25.32 -22.52 -1.87 -0.42 12.1 0.79
odhB COG0508 - - -28 -22.42 -0.1 0.4 15.29 0.96
glyA COG0112 - - -23.23 -22.4 0.52 0.37 14.72 0.85
glgA COG0297 - - -33.15 -22.35 2.13 1.43 17.11 0.86
valS COG0525 RF00230+∗ T-box -32.28 -21.88 1.33 1.47 16.87 0.8
rtpA COG0484 RF00230+∗ T-box -32.49 -21.25 3 2.08 15.12 0.77
gabP COG1113 - - -27.42 -21.12 2.12 1.58 23.42 0.76
ribD COG1985 RF00050∗ FMN -29.25 -20.8 1.8 0.33 13.58 0.76
pyrG COG0504 - - -23.55 -20.6 1.07 0.87 15.72 0.76
guaA COG0519 RF00167∗ Purine -28.65 -20.45 0.68 0.92 16.7 0.93
atpD COG0055 - - -21.12 -20.13 0.25 0.23 20.8 0.89
nadD COG1057 - - -22.48 -20.12 2.55 1.6 12.86 0.8
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4.3.3 Discovery of Novel Riboswitch Elements in Bacillus Bacteria

Genome-wide discovery of riboswitch elements in Bacillus bacterial genomes using the pipeline

results in 38 hits with E(R2) less than −20 (kcal/mol). These 38 potential riboswitch el-

ements are sorted based on E(R2) and are listed in Table 4.2.Among the 38 genes whose

5’-UTR contain potential riboswitch elements, 28 of them are recognized by the KEGG

pathway analysis [47]. Of these recognized genes, 60.7% (17/28) of them are involved in

metabolic pathways. The major pathways consist of aminoacyl-tRNA biosynthesis, biosyn-

thesis of secondary metabolites, microbial metabolism in diverse environments, thiamine

metabolism, pyrimidine metabolism, purine metabolism, methane metabolism, and histi-

dine metabolism.

BLAST [2] search of the 38 regions against Rfam database reveals that 34.2% (13/38) of

them are annotated riboswitches or mRNA leader elements (See Table 4.2). In addition, we

further use Infernal/cmsearch to annotate the other 25 regions that are not registered in

Rfam. The cmsearch results indicate another 7 potential riboswitch elements with significant

expectation value (E < 10−10). An example of this category resides in the 5’-UTR of cysE,

which codes serine acetyltransferase. This enzyme, together with acetyl-coA, catalyzes the

reaction of producing O-acetylserine from serine. O-acetylserine participates in the sulfur

metabolic pathway, which synthesizes organic sulfur metabolites such as cysteine, methionine

and S-adenosyl-methionine [3]. Although experimental evidences suggest that many steps of

this pathway are regulated by T-box and S-box riboswitches, whether cysE is also regulated
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Figure 4.3: An alignment of orthologous sequences located in 5’-UTR of greA, together with
its rank 1st and 2nd ConSLOpt structures produced by RNAConSLOpt are shown. Pairing
columns with covariant mutations are colored red.

by riboswitch is still unclear [3]. The discovery of an allosteric structure of this element, and

its sequence and structural resemblance to T-box riboswitch, confirm that these genes are

regulated by T-box riboswitch.

The other 18 genes whose 5’-UTR do not contain known riboswitch elements are likely to be

regulated by novel riboswitch elements. We selected two elements as examples for detailed

discussion. The first gene greA codes for the transcription elongation factor GreA. It has

been recently experimentally verified that this gene is regulated by the greA attenuator[87]

in E. coli. The presence of such an attenuator indicates that this gene is under certain

transcriptional regulation by its 5’-UTR. However, the mechanism of this regulation is still

unclear [77]. Our results indicate that the attenuator may act like a riboswitch, which

regulates the transcription of the gene by alternating its structure. Interestingly, homolog

search (using Infernal/cmsearch) of the greA attenuator profile against B. subtilis does

not return any significant hits. It implies that the greA attenuator adopts its own structures

in B. subtilis, which in turn suggests that the gene may participate in different biological
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Figure 4.4: An alignment of orthologous sequences located in 5’-UTR of nadD, together with
its rank 1st and 2nd ConSLOpt structures produced by RNAConSLOpt are shown. Pairing
columns with covariant mutations are colored red.

pathways and under the different regulation in B. subtilis. The predicted allosteric structures

R1 and R2 of greA are shown in Figure 4.3.

The second gene nadD codes nicotinate mononucleotide adenylyl transferase (NMNAT),

which catalyzes the adenylation of nicotinate mononucleotide to nicotinate adenine dinu-

cleotide (NAD). The biochemical function of the enzyme NMNAT resembles that of FMN

adenylyl transferase (FMNAT), which also catalyzes adenylation as an enzyme, but produces

flavin adenine dinucleotide (FAD) from flavin mononucleotide (FMN). The interaction cat-

alyzed by FMNAT is a critical step of FMN biosynthesis pathway, and the expression of

FMNAT is considered to be regulated by the FMN riboswitch [81, 38, 60]. As a result, it is

highly possible that the enzyme NMNAT, which is coded by nadD gene, is also regulated by

riboswitch elements in the 5’-UTR. Using RNAConSLOpt, we are able to identify a potential

allosteric RNA element in the 5’-UTR (see Figure 4.4), which further implies the existence of

such riboswitch element. Homolog search with Infernal/cmsearch against this region does

not result in any significant matches with known riboswitch families, suggesting that the

riboswitch element that regulates nadD is novel. The sequences of this region is relatively
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diverse (79.8% average identity), yet most of the mutations are covariant. More importantly,

we identified a covariant mutation that is compatible for both structures that the putative

riboswitch element can adopt. Therefore, nadD is highly likely to be regulated by a putative

riboswitch element, and its predicted allosteric structures R1 and R2 are shown in Figure 4.4.

4.4 Conclusions

We have developed the first comparative approach, RNAConSLOpt, for producing all possible

ConSLOpt (i.e. consensus stable local optimal) stack configurations given an alignment

of related ncRNAs. Based on these ConSLOpt structures, we can distinguish alternate

functional structures for ncRNA families more accurately and confidently. Moreover, we can

construct a compact representation of the consensus energy landscape of an ncRNA family.

The benchmarking tests on four riboswitch families show that RNAConSLOpt outperforms

RNASLOpt in reducing the number of candidate structures and improving the ranks of both

predicted alternate functional structures.

In addition, we have built a pipeline making use of RNAConSLOpt to discover novel riboswitch

elements genome-wide. The advantage of this pipeline is that it requires no preliminary

knowledge about sequences and structures of known riboswitches. Therefore, it can be

used not only for identifying homologous instances of known riboswitches, but also for de

novo riboswitch detection. An application of this pipeline to a set of bacteria in Bacillus
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genus results in the recovering of many known riboswitches and the detection of many novel

riboswitch candidates. The KEGG pathway analysis and biological function annotation of

proteins associated with several riboswitch candidates, together with studies of their putative

allosteric structures, provide strong evidences that they are likely to be real riboswitches.

Our future work involves applying the riboswitch detection pipeline to systematically detect

riboswitch elements in more bacterial genomes.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

ncRNAs are highly abundant in all kingdoms of life and play important regulatory roles in

a variety of biological processes in cells. Many ncRNAs perform their biological functions

through folding into native structures. Some RNAs, such as riboswitches, may have allosteric

native structures, and can switch among different biological activities through structural

rearrangements. We are particularly interested in such kind of switchable RNAs. In this

thesis, we have developed a suite of computational approaches for switchable regulatory RNA

analysis and discovery through studying RNA conformational transitions, folding pathways,

alternative functional structures, and the RNA energy landscape.

In Chapter 2, we described RNAEAPath, an algorithm for predicting low-barrier folding path-

ways between two conformational structures of a single RNA molecule. We implemented

RNAEAPath in the framework of evolutionary algorithm, which is inspired by natural evolu-

tion. Evolutionary algorithm takes each candidate solution as an individual in a population

of solutions. It starts from an initial population of solutions, then iteratively reproduces,

evolves and selects candidate solutions based on their fitness to generate and improve the

population of the next generation. Evolutionary algorithm provides an excellent framework

for solving the optimization problem and the search problem. The search of the optimal

116



RNA folding pathway, which has the highest fitness (i.e. the lowest energy barrier) among

all the folding pathways between two alternate functional structures, can be solved in the

framework of evolutionary algorithm naturally and successfully.

More importantly, in RNAEAPath, we guided the search for optimal folding pathways by

stacks, which are shown to contribute to RNA thermal stability. We employed a variety of

mutation strategies in order to simulate the natural folding of RNA stacks, such as deletion

and formation of a stack, and simultaneous conversion of incompatible stacks. These mu-

tation strategies work together to reproduce high-quality offspring solutions, generation by

generation. Therefore, RNAEAPath can explore the complex search space consisting of RNA

folding pathways elegantly and efficiently, and consequently find near-optimal solutions (i.e.

low-barrier folding pathways).

We have conducted benchmarking tests on known RNAs with alternate functional struc-

tures. The results indicated that RNAEAPath can produce better folding pathways than the

existing approaches. This further convinced us the importance of stacking base pairs in

RNA folding. In addition, it has been revealed that the energy barriers of folding pathways

between alternate functional structures of RNAs are usually relatively high. This suggested

that the dual-functionality of the switchable regulatory RNA is likely to be determined by

characteristics of their folding pathways, together with their underlying energy landscapes.

Our approach, RNAEAPath, can be used to produce near-optimal folding pathways between

alternate functional structures for switchable regulatory RNAs. Analysis of these folding
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pathways can help us understand the mechanism behind RNA functional transitions from a

thermodynamic perspective. In addition, RNAEAPath can be utilized to facilitate the design of

artificial riboswitch elements. For example, the near-optimal folding pathways and folding

dynamics of an artificial riboswitch element can be computed in advance by RNAEAPath,

before experiments are carried out in cell lines.

In Chapter 2, we have presented RNAEAPath, an approach to analyzing folding pathways

given a pair of alternate functional structures. However, alternate functional structures for

switchable regulatory RNAs, such as riboswitches, are costly to obtain through experimental

methods. Therefore, in Chapter 3, we described RNASLOpt, a computational method for

predicting alternate functional structures based on RNA sequences.

The prediction of alternate functional structures, rather than the minimum free energy struc-

ture, is difficult. Because the search space of feasible suboptimal structures on the energy

landscape, even for a short RNA molecule with a small energy range, can be prohibitively

large. Identifying a few native structures from a huge number of candidates is challenging.

In order to reduce the search space, we only investigated the local optimal structures, which

reside at the bottom of energy basins and are thermodynamically stable, since these local

optimal structures are more likely to be functional compared with non-local optimal struc-

tures. We employed local optimal stack configurations to approximate the scaffold of local

optimal structures for further reducing the number of candidate structures to consider. More

importantly, we have proposed to represent an RNA energy landscape in a compact manner
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consisting of only the stable and local optimal (SLOpt) structures. RNA energy landscape is

usually rugged, containing many small energy basins. In a ‘shallow’ energy basin, even the

local optimal structure is still unlikely to be functional. This is because the RNA molecule

cannot stay in the ‘shallow’ energy basin for enough time to complete its biological function

and may ‘jump’ to another stable LOpt structure. Therefore, we filtered out the unstable

local optimal structures and only focused on stable local optimal structures, which should

encounter a high energy barrier in order to convert to another stable local optimal structure.

Given a single RNA molecule, we can use RNASLOpt to enumerate all the stable and local

optimal (SLOpt) stack configurations, and use these structures to form a compact represen-

tation of its energy landscape. We showed that the search space of our approach, RNASLOpt,

has been remarkably reduced compared with the original search space consisting of all the

feasible suboptimal structures. Moreover, benchmarking tests on a set of known riboswitches

revealed that although the search space has been greatly reduced, structures that are signifi-

cantly similar to the alternate functional structures have been preserved (e.g. the number of

candidate structures for the adenine riboswitch of ydhL of B. subtilis has been reduced from

over 109 to less than 10, yet structures that are significantly similar to the native ‘on’ and

‘off’ functional structures have been included in the results). In conclusion, our contributed

approach RNASLOpt can predict alternate functional structures for single riboswitches quickly

and accurately, as shown in Chapter 3.
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However, sometimes the accuracy of RNA folding based on a single RNA sequence may

be affected by ad hoc structures predicted by chance. In order to eliminate the existence

of ad hoc structures, and to further reduce the search space, we contributed RNAConSLOpt

in Chapter 4. We improved RNASLOpt by integrating a comparative approach of consensus

folding and taking the covariant mutations and evolutionary conservation information into

account. Many comparative approaches (e.g. RNAalifold) have been proposed to compute

consensus folding for homologous RNA sequences. And, consensus folding based on compar-

ative approaches is proven to be more reliable than RNA folding based on single sequences.

However, most of the comparative approaches are designed to find the consensus minimum

free energy structure that are conserved among a set of related RNAs , while are not tailored

for finding consensus stable suboptimal structures on the consensus energy landscape.

Following the method of RNAalifold and our previous work RNASLOpt, we presented an al-

gorithm, RNAConSLOpt, for predicting consensus stable local optimal (ConSLOpt) structures

shared by homologous RNAs on their consensus energy landscape. We have done benchmark-

ing tests on known riboswitch families and the results showed that RNAConSLOpt succeeded

in computing the native ‘on’ and ‘off’ functional structures for these riboswitch families. In

addition, due to the power of comparative approaches, the number of produced ConSLOpt

structures is only a small fraction of the number of SLOpt structures, which indicates that

the search space was further reduced. Taking the adenine riboswitch as an example, there

are only 2 ConSLOpt structures generated, which are highly similar to the native ‘on’ and

‘off’ functional structures respectively.
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In addition, we also showed that RNAConSLOpt can be used in novel riboswitch detection in

Chapter 4. We have developed a pipeline making use of RNAConSLOpt to de novo detect new

riboswitches in bacterial genomes. We have applied the riboswitch detection pipeline to a set

of bacteria in Bacillus genus and selected the resulting putative riboswitch elements using

conservative filtering criteria. As a result, we have re-discovered many known riboswitches,

and detected several potential riboswitch elements. We have also conducted KEGG pathway

analysis to these potential riboswitch elements and done detailed case studies to the potential

riboswitch elements (e.g. the potential riboswitch elements in 5’-UTR of greA and nadD).

The results indicated that some of the putative riboswitch elements are likely to be real

riboswitch elements.

So far, we have only applied the riboswitch detection pipeline to bacteria in Bacillus genus,

which is a sub-group of bacteria in the Firmicutes phylum. Our future work is to apply the

developed pipeline to more bacteria genus, and to detect novel riboswitches that do not exist

universally, but are shared by a small group of bacteria. Using the pipeline, we may also be

able to compare the distribution of riboswitches in different bacteria species.

To summarize our thesis, we have developed a suite of computational tools, including

RNAEAPath, RNASLOpt, RNAConSLOpt and a riboswitch detection pipeline for regulatory RNA

(especially riboswitch) analysis and discovery through studying RNA folding pathways of

conformational transitions, alternate functional structures and RNA energy landscapes. We

hope that our contributed computational tools can boost the research in riboswitch struc-
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tural and functional analysis, as well as de novo detection of new riboswitches in bacterial

genomes.
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APPENDIX A: BENCHMARK RESULTS OF RNASLOPT

This appendix shows the benchmark results of RNASLOpt against existing approaches on

several known riboswitches.

For all the riboswitches, we choose the best structures corresponding to the native structures

according to the following criteria. Let A and B each denote a native structure. Let A ∩ B

denote the structures (i.e. stacks or base pairs) that A and B share in common, A − B be

the structures that are distinctive to A. Let X = {S1, S2, . . . , Sm} be the set of secondary

structures produced by an approach. For each structure Si in X, we state that Si is ‘similar’

to A, if Si contains both at least a subset of structures that are distinctive to A (i.e. Si ∩

(A−B) ̸= ∅) and at least a subset of structures that are shared in common by A and B

(i.e. Si∩ (A ∩B) ̸= ∅). Otherwise, Si is not ‘similar’ to A at all (if either Si∩ (A−B) = ∅

or Si ∩ (A ∩B) = ∅).

Among all the structures in X that are ‘similar’ to A, we select the structure that shares the

most stacks with A as the best structure corresponding to A. To break a tie (e.g. in case

that many structures share the same number of stacks with A), we then select the structure

with the best (tinyest) ranking. Besides, we do not allow any structure to be both the best
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structure corresponding to A and the best structure corresponding to B at the same time.

If none of the structures in X is ‘similar’ to A, then we state that ‘A is not found’ by the

approach.

Figures A.1 - A.7 show benchmark tests on riboswitches discussed in the paper, including

A.1: the adenine riboswitch of ydhL from B. subtilis,

A.2: the adenine riboswtich of add from V. vulnificus,

A.3: the guanine riboswitch of xpt-pbuX from B. subtilis,

A.4: the SAM riboswitch of metE from T. tencongensis,

A.5: the c-di-GMP riboswitch of tfoX from C. desulforudis,

A.6: the lysine riboswitch of lysC from B. subtilis, and

A.7: the TPP riboswitch of thiamin from B. subtilis.

In each figure, the sequence of the riboswitch, the native ’off’ and ’on’ structure conforma-

tions, and the best structures corresponding to the native structures produced by mfold,

RNAShapes, RNAlocopt and RNASLOpt are shown. For mfold, RNAShapesand RNASLOpt, the

best corresponding structures were produced with suboptimality percentage specified in the

figure title. For RNAlocopt, the best results with sampling size 1000 are shown.
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