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ABSTRACT 

The focus of this dissertation is on improving decision-maker trade-offs and the 

development of a new constrained methodology for multiple response surface optimization.  

There are three key components of the research: development of the necessary conditions and 

assumptions associated with constrained multiple response surface optimization methodologies; 

development of a new constrained multiple response surface methodology; and demonstration of 

the new method.   

The necessary conditions for and assumptions associated with constrained multiple 

response surface optimization methods were identified and found to be less restrictive than 

requirements previously described in the literature.  The conditions and assumptions required for 

a constrained method to find the most preferred non-dominated solution are to generate non-

dominated solutions and to generate solutions consistent with decision-maker preferences among 

the response objectives.  Additionally, if a Lagrangian constrained method is used, the 

preservation of convexity is required in order to be able to generate all non-dominated solutions.  

The conditions required for constrained methods are significantly fewer than those required for 

combined methods. 

Most of the existing constrained methodologies do not incorporate any provision for a 

decision-maker to explicitly determine the relative importance of the multiple objectives.  

Research into the larger area of multi-criteria decision-making identified the interactive surrogate 

worth trade-off algorithm as a potential methodology that would provide that capability in 

multiple response surface optimization problems.  The ISWT algorithm uses an ε-constraint 

formulation to guarantee a non-dominated solution, and then interacts with the decision-maker 
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after each iteration to determine the preference of the decision-maker in trading-off the value of 

the primary response for an increase in value of a secondary response.  The current research 

modified the ISWT algorithm to develop a new constrained multiple response surface 

methodology that explicitly accounts for decision-maker preferences.  The new Modified ISWT 

(MISWT) method maintains the essence of the original method while taking advantage of the 

specific properties of multiple response surface problems to simplify the application of the 

method.  The MISWT is an accessible computer-based implementation of the ISWT. 

Five test problems from the multiple response surface optimization literature were used to 

demonstrate the new methodology.  It was shown that this methodology can handle a variety of 

types and numbers of responses and independent variables.  Furthermore, it was demonstrated 

that the methodology can be successful using a priori information from the decision-maker about 

bounds or targets or can use the extreme values obtained from the region of operability.  In all 

cases, the methodology explicitly considered decision-maker preferences and provided non-

dominated solutions.  The contribution of this method is the removal of implicit assumptions and 

includes the decision-maker in explicit trade-offs among multiple objectives or responses.   
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CHAPTER ONE: INTRODUCTION 

Response Surface Methodology 

Response Surface Methodology (RSM) was first introduced by Box and Wilson (1951) to 

address problems where the goal is to determine optimum settings in an experimental 

environment.  RSM is often used in the design of new products and processes.   RSM utilizes 

experimental design, search methods, model fitting, and optimization to find the optimal levels 

of design factors that minimize or maximize one or more response variables with the minimum 

number of experiments.   

In general, response surface methodology can be outlined as follows: 

• Phase One: 

1. An appropriate experimental design is selected to conduct an initial screening 

experiment.   

2. A first-order model is fit from the results of the screening experiment, usually by 

the method of least squares. 

o A first-order response function is of the form: 

nn xbxbby +++= K110ˆ , where ix  are the factors and ib  are the coefficients 

of the factors. 

3. A search algorithm such as steepest ascent is used to find the direction for 

improvement. 

4. The first three steps are repeated until no further improvement is sought. 
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• Phase Two: 

5. If needed, additional observations are made through experimental design in order 

to fit a higher order model. 

6. The response(s) is fitted using a model building technique such as regression. 

o A second-order response function is of the form: 

2

2112

2

111110
ˆ

nnnnn xbxxbxbxbxbby +++++++= KK , where ix  are the factors 

and ib  are the coefficients of the factors for n factors.  This can also be in 

matrix form, ,ˆ Xby =  where [ ]′= myyy ˆ,,ˆ,ˆˆ
21 Ky the vector of m responses; 

X is a pm x   matrix of the factor settings where ;2/)2)(1( ++= nnp  and 

b is a vector of the estimates of the coefficients. 

7. The response(s) is optimized to determine the optimal level of the design factors. 

Multiple Response Surface Methodology 

When there are two or more responses, the procedure is often referred to as Multiple 

Response Surface Methodology (MRSM).  MRSM is a subset of the larger field of multi-criteria 

decision-making.  The focus of this research is on response surface methodologies that are able 

to solve problems with two or more responses. 

The optimization of problems with multiple responses can be classified into one of two 

categories.  The first, which will be defined as the “combined” approach, is an optimization of a 

single response which contains all of the response objectives.  The second, which will be defined 
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as the “constrained” approach, optimizes a primary response while treating the other responses as 

constraints.  Osborne (1997) called these two approaches MRSM1 and MRSM2, respectively. 

The formulation of a typical combined model is as follows: 

∑
=

m

i
nii xxyw

1
1 ),...,(ˆmin , where 0≥iw  for all mi ,,1K=  responses and 1

1
=∑

=

m

i
iw . 

Subject to Rx∈ , where R is the experimental region. 

The formulation of a typical constrained model is as follows: 

 ),...,(ˆmin 1 nj xxy  

Subject to iii uyl ≤≤ ˆ , for all jimi ≠= ,,,1K  

Rx∈ , where }{ mj ,,1K∈ , iu  are upper bounds and il  are lower bounds for 

the responses ji ≠  and R is the experimental region. 

An example of a combined response surface method is used to provide an illustrative 

overview.   Derringer and Suich (1980) described the development of a tire tread compound.  

There are four response variables (y1=PICO abrasion index; y2=200% modulus; y3=elongation at 

break; y4=hardness) and three design factors (x1=hydrated silica level; x2=silane coupling agent 

level; x3=sulfur level).  The example begins at the beginning of Phase Two which assumes that 

the experimenter had already conducted screening experiments and utilized search methods to 

find the region of interest.   

A rotatable, central composite design with six center points was used.  Quadratic 

functions were fitted for each of the four response variables as follows: 
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For illustration, the desirability function approach by Derringer and Suich (1980) was used to 

simultaneously optimize the responses given the following goals: 

1ˆmax y with the constraint 170ˆ120 1 << y   

2ˆmax y  with the constraint 1300ˆ1000 2 << y  

500ˆ3 =y  with the constraint 600ˆ400 3 << y  

5.67ˆ4 =y with the constraint 75ˆ60 4 << y  

The desirability values for each response were calculated by the following: 
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for 3ŷ  and 4ŷ given the upper )( iu  and lower )( il  bounds and target )( it  given above.  The 

desirabilities were combined using the geometric mean and equal weights of importance to the 

responses were assumed.  The resulting combined objective function was as follows:  Maximize 

D where ( )mddddD
1

4321 ***= , where 4=m  for the four response variables.  The objective 

function was optimized using the Design Expert software.  The nonlinear algorithm used by 

Design Expert is a Nelder-Mead search method.  The solution was found to be:  x1=-0.04; 

x2=0.16; x3=-0.90; y1=129.363; y2=1300; y3=465.605; y4=68.0133 for a predicted desirability 

D=0.582.  A sample contour plot and response surface plot are shown below. 
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Figure 1-1 Sample Contour Plot 



6 

DESIGN-EXPERT Plot
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Figure 1-2 Sample Response Surface Plot 

Notations and Definitions  

The section below provides general definitions found in response surface methodology 

and multi-criteria decision-making literature and the notations that will be utilized throughout 

this document. 

Definition: A response variable is the performance measure or quality characteristic of 

interest to the decision-maker or, in other words, the dependent variable of the response function. 

 Notation: ,jy  where there are m responses of interest. 

Definition: Design factors are the other variables that are believed to impact the response 

variable.  These are the independent variables.  
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 Notation: ,ix  where there are n factors that can be controlled in the experimental 

design. 

Definition: Region of operability is the space defined by the independent variables. 

Definition: Steepest ascent is a first-order search method used to find the direction of 

improvement. 

Definition: Region of interest, also known as the region of experimentation, is a 

subregion of the region of operability usually cuboidal (square) or spherical near the optimum. 

 Notation: R 

Definition: Pareto-optimal solutions are those in which further improvement in one 

objective cannot be made without detriment to at least one other objective.  A decision vector 

S*∈x  is Pareto optimal if there does not exist another S ∈x  such that *)()( xx ii ff ≤  for all 

mi ,...1=  and *)()( xx jj ff <  for at least one index j.  An objective vector is Pareto optimal if the 

corresponding decision vector is Pareto optimal (Miettinen 2001).  Pareto-optimal solutions may 

also be referred to as “noninferior, efficient, and non-dominated” interchangeably (Chankong 

and Haimes 1983).   

Pareto-optimal or non-dominated solutions may also be classified as those alternatives 

that are not dominated by another alternative where dominated is defined as:  x1 dominates x2 if 

and only if )),(())(( 21 xx fvfv ≥  where v is the value function (Chankong and Haimes 1983).  

Definition: A weakly Pareto optimal vector is one where there does not exist any other 

vector for which all the components are better.  The Pareto optimal set is a subset of the weakly 

Pareto optimal set (Miettinen 1999). 
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Definition: Non-differentiable functions are functions where there are points for which a 

first derivative cannot be calculated. 

Definition: Robustness is a measure of the solution’s ability to remain unaffected by 

small, but deliberate, variations in parameters. 

Definition: Bias is the error associated with parameter estimates. 

Definition: Implicit preferences are preferences among the response functions that are 

embedded in the optimization procedure. 

Definition: Explicit preferences are preferences among the response functions that are 

expressed by the decision-maker. 

Definition: No-preference methods do not take into consideration preferences or opinions 

of the decision-maker.   

Definition: A posteriori methods generate the set of Pareto optimal solutions from which 

a decision-maker chooses the most preferred. 

Definition: A priori methods require the decision-maker to provide preferences prior to 

conducting the analysis. 

Definition: Interactive methods are a repetitive process of finding a solution, soliciting 

decision-maker input, and revising the process to obtain a new solution or set of solutions until 

an acceptable solution is found. 

Definition: A trade-off is the ratio of the change in the values of two objective functions 

as one increases and the other decreases.    

Definition: Indifference curves indicate alternative solutions which the decision-maker 

finds equally desirable. 
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Definition: The marginal rate of substitution is the change in the value of one objective 

function that the decision-maker feels offsets a one-unit change in the value of another function, 

with all other objectives remaining constant. 

Definition: Satisficing decision-making means that the decision-maker is satisfied 

reaching certain aspiration levels for each objective rather than minimizing or maximizing any 

general value function.   

Definition: A value function is an order-preserving real-valued function that serves to 

compare various levels of different attributes or responses indirectly. 

Definition: Reference point is a vector consisting of aspiration levels desirable to the 

decision-maker. 

Definition: Local optima are optimal solutions within a subregion of the region of 

operability. 

Definition: Global optima are non-dominated solutions in the region of operability.  

Definition: Ideal objective vectors *)(z  represent the values of the minimization of each 

objective function individually. 

Definition: Scalarization converts problems into a single or multiple single objective 

optimization problems that have a real-valued objective function (i.e., scalarizing function).  

Applications 

The scope of areas utilizing response surface methodologies has expanded in recent years 

beyond its initial use of finding optimum settings for a set of parameters for new product 

development.  Multiple response surface methods have been used in applications such as quality 
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control (Simpson and Keats 1995; Carlyle, Montgomery, and Runger 2000), ergonomic designs 

(Ben-Gal and Bukchin 2002), simulation models (Rees, Clayton, and Taylor 1985; Meidt and 

Bauer 1992; Ankenman and McDaniel 1996; Gearhart and Wang 2001; Safizadeh 2002; Yang, 

Kuo, and Chou 2005), structural reliability (Kaymaz and McMahon 2005), machinery 

performance (Suresh, Venkateswara Rao, and Deshmukh 2002), health services (Facer and 

Muller 2003), and multidisciplinary design optimization problems (Rodriguez, Perez, 

Padmanabhan, and Renaud 2001; van Keulen and Vervenne 2004; Wang 2004; Youn and Choi 

2004; Jianjiang, Renbin, and Yifang 2005).        

Research Objectives 

With the expanding use of response surface methodology as just discussed, there 

continues to be a need to improve the formulation and understanding of multiple response 

surface methods.    Chapter Two provides an overview of the available multiple response surface 

methods as well as recent topics in the literature.  The largest gap identified in the multiple 

response surface literature was the lack of methods that explicitly take into consideration 

decision-maker preferences and allow for trade-offs among the responses. 

Most MRSM approaches use implicit weighting schemes rather than explicit trade-offs 

between responses.  A few utilize a posteriori approaches where multiple alternative optima are 

generated and then the decision-maker chooses among the solutions.  However, the solutions 

provided to the decision-maker may or may not be representative of the set of non-dominated 

solutions.  For example, convexity is required for all non-dominated solutions to be found using 

combined methods.  More recent methods have looked at the ability to generate alternatives by 
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changing the values of the constraints, the values of the weights, or the allowable over or under 

achievement of the target.  As indicated by Osborne (1997), in order to determine the most 

preferred solution, decision-maker preferences must be considered.  However, no current 

methods explicitly allow the decision-maker to make trade-offs among the responses. 

Chapter Three explores the broader area of multi-criteria decision-making.  Interactive 

methods provide a platform for decision-makers to provide input throughout the optimization 

process.  The interactive surrogate worth trade-off (ISWT) method is identified for potential 

application to MRSM problems.  The method begins with the ε-constraint method by having the 

analyst select one objective to optimize and provide upper bounds on the other objectives.  The 

problem is solved and a Pareto optimal solution is presented to the decision-maker.  The 

decision-maker then conducts a “worth assessment” to determine how (much) the decision-

maker would like to make a trade-off between the primary response and each secondary response 

where the value of the primary response decreases by the value of the Lagrange multiplier for a 

one unit increase in value of the secondary response.  The worth values are used to update the 

right-hand-side of the secondary responses and then the problem is re-optimized.  The process 

continues until the decision-maker is satisfied with the solution.  

The advantages to interactive methods are that they require less information from the 

decision-maker up front, the decision-maker is involved throughout the process, and the 

information can be obtained incrementally.  These methods require fewer assumptions than a 

priori methods but many of these procedures are more complicated and can be time consuming 

for the decision-maker. 

The identified area for further research is incorporating decision-maker trade-offs and the 

development of a new constrained multiple response surface optimization methodology.  
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Specifically, the research develops an interactive method for multiple response surface problems 

to explicitly allow the decision-maker to conduct trade-offs in order to guarantee a preferred 

solution. 

Chapter Four develops the conditions and assumptions required for constrained methods 

and compares the results to those identified by Osborne (1997) for combined methods.  The 

current constrained methods are evaluated against these conditions.  Recommended 

characteristics for multi-criteria methodologies are also identified.   

Chapter Five develops a new multiple response surface method based on the advantages 

of interactive methods and ε-constraint methodology.  Using the particular characteristics of 

multiple response surface problems, a methodology is developed that maintains the essence of 

ISWT while simplifying the process.  Furthermore, the ε-constraint foundation of the 

methodology guarantees that all non-dominated solutions can be found and convexity is not 

required. 

Chapter Six demonstrates the use of the new Modified ISWT (MISWT) methodology on 

five problems from the literature and Chapter Seven provides conclusions and recommended 

areas for future research. 
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CHAPTER TWO: MULTIPLE RESPONSE SURFACE OPTIMIZATION 
METHODS 

This dissertation is a follow-up to the work completed by Osborne (1997).  Osborne 

developed a structure to categorize and evaluate the different multiple response surface 

methodologies.  The work focused on combined MRSM methodologies where necessary 

conditions and assumptions were developed as well as a new combined weighted methodology.  

The current work focuses on constrained methods.   

Osborne’s dissertation provided a good summary of the multiple response surface 

methodologies conducted prior to 1996.  Myers (1999) provided a perspective on the current 

status and future directions of response surface methodologies.  Myers identified the need to 

move to robust designs rather than optimal solutions including the possible use of sequential and 

Bayesian designs.  Additionally, identified future areas of research included generalized linear 

models, multiple response models, nonparametric and semiparametric models, and models than 

can respond to problems when there are restrictions in randomization.  The articles referenced in 

this chapter reflect the recent progress seen in these areas. 

In 2004, a literature survey was published of response surface methodology work 

conducted since 1989, when the last comprehensive review was conducted (Myers, Montgomery, 

Vining, Borror, and Kowalski 2004).  The article provided an extensive bibliography.  Primary 

areas included in the review are robust parameter design (RPD), experimental designs including 

methods of evaluation, multiple responses, and generalized linear models (GLM). 

The review of the state of the art in MRSM in this chapter will focus on response surface 

methodology activities since 1996 as well as include relevant seminal work conducted previous 

to this time period.  In order to provide a broad view of the recent direction and questions being 
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addressed in response surface, recent work related to the early steps of the process will be 

discussed.  However, the majority of the review will focus on the optimization step.  Finally, 

issues in trade-offs and weighting methodologies will be examined in more detail. 

Experimental Design Techniques 

Many authors have focused on developing experimental designs that are robust to 

environmental conditions or noise factors.  Other factors include understanding interaction 

effects and minimizing experimental runs.  Possible designs included running experiments at 

only the extreme environmental conditions, split plot designs, mixed resolution designs, and 

optimal non-regular experimental designs (Box and Jones 1992; Lucas 1994; Loeppky, 

Bingham, and Sitter 2006).   Furthermore, Myers (1999) recommended the use of Bayesian and 

multi-stage experimental designs to address robustness.      

In the multidisciplinary design optimization (MDO) research, one main concern was the 

expense for large scale problems, so response surface experimental design and sampling 

techniques are being used to approximate the surface under study (Rodriguez, et al. 2001).  

Furthermore, Youn and Choi (2004) introduced the selective interaction sampling method in 

order to provide better information concerning the main effects and interactions needed for 

reliability analyses.  

Some authors have focused on designing criteria to aid in the choice of an appropriate 

experimental design including using Bayesian criteria or progressive lattice sampling so that 

prior knowledge from earlier experiments can be used to determine future designs (Box and 

Jones 1992; Gilmour and Mead 2003; Romero, Swiler, and Giunta 2004; Loeppky, Bingham, 
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and Sitter 2006).   Another criterion recommended was the use of word-length patterns to rank 

designs (Loeppky, Bingham, and Sitter 2006).  Huang and Fan (2004) reviewed minimizing the 

mean squared error (MSE) bias versus a minimum bias estimator (MBE) criterion where the 

MSE criterion considers the prediction error due to process variability and the bias due to model 

misspecification whereas the MBE criterion minimizes bias by reducing the number of terms 

included in the model.  They showed that MBE depends only on the number of experimental 

runs and center replicates.  Goupy (2005) developed a robustness quality ratio to compare the 

quality of various experimental designs. 

Search Methods 

Response surface methodology has historically advocated the use of the path of steepest 

ascent as the search technique.  An adapted steepest ascent method was recommended to address 

some of the issues with the steepest ascent methodology: scale dependency and step size 

selection (Kleijnen, den Hertog, and Angun 2004).   

Dvorak (2000) introduced two new methods “to move from an initial region of 

experimentation to a new point or region where all of the response values are improved.”   The 

hyperplane method transforms a multiple response non-linear problem into a linear solution set 

and searches the set to find solution points that represent the union for the solution sets for all 

responses.  The sensitivity analysis method was applied to two different optimization 

formulations: 1) combined response with a distant constraint and 2) a minimized distance 

function with response constraints.  The results of the sensitivity analysis help the analyst to 
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identify changes to make to the constraints that find a direction of improvement for all or some 

of the responses.     

In situations involving simulations, a scatter-search method was recommended as part of 

the iterative process of defining the response surface and a smaller search region was 

recommended to reduce bias and variance (Safizadeh 2002; Yang, Kuo, and Chou 2005).   

Model Fitting 

Box, Hunter, MacGregor, and Erjavec (1973) identified potential problems with fitting 

multiple response models.  Specifically, they were concerned about three types of dependencies: 

correlation among the errors, linear dependence among the responses, and linear dependencies in 

the data often caused by normalizing the data.  They recommended an eigenvalue-eigenvector 

analysis prior to fitting the model to identify these dependency issues.  Furthermore, they stated 

that dependencies in the responses provide meaningless parameter estimates.   

Recent work has focused on using methods other than regression to fit the response 

surface model.  Particularly, as the use of response surface methodologies has expanded to other 

problems and disciplines beyond the traditional design problem, the types of methods used to fit 

response surface models has also expanded.  Draper and Pukelsheim (2003) recommended the 

use of canonical reduction to determine the form and shape of the surface and to potentially 

simplify the model.  For fitting structural reliability problems, Kaymaz and McMahon (2005) 

used a weighted regression methodology.  Wang (2004) discussed the use of multiquadric 

approximation which allows for interpolation of the available data to fit multidisciplinary design 

optimization problems.  For use with progressive or iterative experimental designs, three possible 
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fitting schemes were suggested: piecewise finite-element interpolation, polynomial regression, 

and kriging (Romero, Swiler, and Giunta 2004).  Facer and Muller (2003) discussed the use of 

nonparametric regression with kernel smoothers to fit response surfaces. 

Other recent work has included the development of new criteria to determine the best fit 

response model.  Gearhart and Wang (2001) developed two Bayesian measures, under known 

and unknown uncertainty, of the fit of the response surface model to the original simulation 

model that take into consideration the number and robustness of the fitting parameters.    

Optimization Methodologies 

Many overviews of optimization methodologies have been written in recent years with 

focuses on multiple response surface optimization (Carlyle, Montgomery, and Runger 2000; 

Murphy, Tsui, and Allen 2005), alternatives for robust parameter design (Myers, Khuri, and 

Vining 1992), nonlinear multiobjective optimization (Miettinen 2001), and a graphical overview 

of multiple objective programming (Steuer 2001).   

The subsections below focus on a variety of methods that have been proposed to solve 

multiple response surface problems.  The formulations for the constrained approaches, translated 

to a consistent notation, are included.  A table comparing the various optimization methodologies 

is included in the summary section.   
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Contour Plots 

Hoerl (1959) introduced a graphical method, called Ridge Analysis, whereby a single 

response is plotted and the peaks are examined to determine the optimum levels of the variables.  

Furthermore, this methodology can be used for both types of multiple response problems.  The 

combined method is analyzed like a single response problem.  The constrained method requires 

the additional step of superimposing the contour plots of each of the responses to find the 

optimal values of the variables.  The number of responses that can be accommodated by the 

method in the combined methodology is theoretically limitless although in practicality it 

becomes very difficult to interpret as the number of responses increases.  Furthermore, no more 

than two variables can easily be analyzed simultaneously.  One advantage to this methodology is 

that it allows the decision-maker to view multiple peaks and determine the trade-offs that reflect 

their needs. 

Robust Parameter Design 

RPD is a method introduced by Taguchi in the 1980s to design a process by selecting the 

proper levels of controllable factors such that the system is robust or insensitive to changes in 

levels of the noise factors.  Taguchi’s methodology to the RPD problem involved two orthogonal 

arrays: an inner array for the control variables and an outer array for the noise variables.  Taguchi 

developed a performance criterion called signal-to-noise ratio that provides information about 

the mean and variance dependent on the goal.  For response surface, Taguchi had three goals: the 
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smaller the better, the larger the better, and target is best (Myers, Vining, Giovannitti-Jensen, and 

Myers 1992) 

Myers, Khuri, and Vining (1992) indicated in a review of response surface alternatives to 

robust parameter design that, “Taguchi’s most significant contribution is that he formalized a 

notion…that product variability must be a performance response.”  They also provided five 

criticisms of robust parameter design: “(1) inefficiency of the signal-to-noise ratio, (2) lack of 

flexibility in modeling design variables, (3) lack of economy in experimental design plan, (4) 

preoccupation with optimization, and (5) no formal allowance for sequential experimentation.” 

Dual Response 

Myers and Carter first introduced the theory of dual response systems in 1973.  Dual 

response is a method by which a set of optimal parameter settings are found by optimizing a 

primary response subject to the constraint of a secondary response.  A secondary constraint may 

be applied to keep the solution within a region of interest.  There is no limit to the number of 

independent variables; however, the method is limited to only quadratic response functions.  

Lagrange multipliers are used to find the optimum values of the parameters  (Myers and Carter 

1973). 

Vining and Myers (1990) utilized the dual response methodology developed by Myers 

and Carter to solve the three goals identified by Taguchi by achieving the mean response 

objective and minimizing variance.  For the target is best goal, the primary response is to 

minimize the variance and the mean target is the secondary response.  For the other two goals, 

the mean is the primary response while the variance is the secondary response.  In this case, 
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several possible targets for the variance may be considered and then a compromise solution is 

selected.  This technique addresses four of the five criticisms discussed above under Robust 

Parameter Design.  

Box and Jones (1992) addressed the dual response problem by minimizing the weighted 

sum of the mean response, as a function of the target mean, and variance response. 

Nonlinear Programming – Dual Response 

Del Castillo and Montgomery (1993) developed a nonlinear programming approach to 

solve the same Taguchi goals that Vining and Myers addressed using dual response methods as 

well as having the flexibility to solve other types of problems including mixture experiments.  

Given that the fitted responses are usually quadratic functions, the response surface problems are 

nonlinear.  Del Castillo and Montgomery suggested using the generalized reduced gradient 

(GRG) algorithm to solve the problems.  GRG was recommended because it is “one of the most 

robust” nonlinear methods, is known to work well in practice, and the termination point is 

feasible.   

As an extension of this work and to address the problem of sampling error, Del Castillo 

(1996) presented the idea of finding confidence regions for quadratic responses or confidence 

cones for linear responses.  For quadratic responses, the Lagrangian function is maximized for 

each response subject to the Karush-Kuhn-Tucker conditions utilizing the GRG algorithm.  For 

linear responses, Box and Draper’s methodology of finding confidence cones is utilized.  Then a 

primary response is optimized subject to the confidence regions and confidence cones found in 

the previous step.   The primary function can be optimized at various alpha levels to develop a 
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sensitivity table.  In cases where there are conflicting linear responses, a combined weighted 

function is developed for the primary responses that take into account the best directions for each 

response. 

Further, Miro-Quesada and Del Castillo (2004a) and Miro-Quesada and Del Castillo 

(2004b) provided a revised form of the variance response for the dual response problem that 

takes into account both the variability created by the randomness of the noise factors and the 

uncertainty in the parameter estimates.   

Target Variance Methods (Process-Bias Methods) 

Lin and Tu (1995) expanded on the dual response work of Vining and Myers by 

minimizing a MSE criterion. Although this criterion allows for some bias, it provides a trade-off 

of some disparity from the target with a smaller variance.  Unlike the previous method, the MSE 

method does not restrict models to be polynomials nor the constraints to be equality constraints.  

Copeland and Nelson (1996) proposed a variation to the MSE criterion, a direct function 

minimization, that places a restriction as to how far the mean can deviate from the target and 

recommended using the simplex search procedure of Nelder and Mead (1965).  Myers, 

Brenneman, and Myers (2005) minimized a MSE criterion for a generalized linear model where 

a quality measure is a nonnormal response.  Shin and Cho (2005) addressed the “target-is-best” 

goal by developing a bias-specified robust design (BSRD) model that, similar to Lin and Tu, 

allows for some process bias.  Specifically, the model uses a nonlinear programming, Lagrangian 

method that allows the decision-maker to specify an upper bound on the amount that the mean 

can vary from the target.  The authors reference the ability of the method to generate non-
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dominated partial trade-off rates using the dual associated with the Lagrangian function, 

however, they do not demonstrate or discuss the use of this functionality. 

Desirability Functions 

The desirability function was first introduced by Harrington in 1965.  The decision-maker 

or user specifies the minimum, maximum, and/or preferred values acceptable for each of the 

original fitted response functions as well as the weights that determine the rate at which the 

desirability of a function increases or decreases over the range of acceptable values.  This 

method transforms each of the fitted functions into a desirability value and then the desirability 

values for each response are combined using the geometric mean into a single objective to be 

optimized.  Derringer and Suich (1980) utilized a more generalized method to achieve the 

individual desirability values than Harrington to allow greater flexibility in the creation of the 

desirability values.    

However, this method creates non-differentiable points that do not allow the problem to 

be optimized using more efficient nonlinear programming techniques.  Del Castillo, 

Montgomery, and McCarville (1996) overcame this by using a local polynomial approximation 

at each of the non-differentiable points and modified the desirability value functions accordingly.  

They suggested optimizing the revised desirability function using the GRG algorithm as they did 

with the dual response problem above.  Although the formulation of the desirability values differ 

in the two approaches, and both allow the decision-maker to provide input into the relative 

importance of the different responses, neither approach allows the decision-maker to make any 

explicit trade-offs among the response functions.  
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Similarly to the desirability index, Plante (2001) proposed using the geometric mean of 

the individual process capability measures (Cpk or Cpm) as a criterion.   

Generalized Distance Measure 

Khuri and Conlon (1981) developed a method to simultaneously optimize multiple 

responses.  The method calls for the elimination of dependencies among the responses and then 

uses least squares to fit the models.  Each response is individually optimized and if all responses 

produce the same set of solutions then the problem is solved.  Otherwise, a distance measure is 

developed that takes into account the optimal values of each of the responses found in the 

previous step as well as their variability and optimized to minimize the distance.     

Loss Functions 

The purpose behind loss functions is to capture the economic loss due to deviations of 

one or more quality characteristics from target where minimizing the loss function will 

simultaneously optimize the mean and variances.  Pignatiello, Ames, and Vining all proposed 

approaches that utilize quadratic loss functions where Pignatiello and Vining incorporated the 

correlation structure while Ames, et al. did not (Pignatiello 1993; Ames, Mattucci, MacDonald, 

Szonyi, and Hawkins 1997; Vining 1998).  Vining’s (1998) work expanded on that of Pignatiello 

and included not only the correlation structure but also the quality of the predictions.  Khuri and 

Conlon’s approach was found to be a special case of this mean squared error loss function 

approach.  Romano, Varetto, and Vicario (2004) expanded on Vining’s work by adding an 
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additional term that takes into consideration producer loss which is the cost to fix the standard 

deviation of the noise factor.  Kuhnt and Erdbrugge (2004) proposed the use of a sequence of 

possible weights assigned to each response rather than defining a cost matrix.  Joint optimization 

plots are then used to visualize the optimal design settings for a sequence of weights.    

Minimal Satisfaction 

Kim and Lin (2006) proposed an alternative to the generalized distance measure for 

simultaneously optimizing a set of responses including both the location and dispersion for all 

responses.  The degree of satisfaction with any response decreases the further away the solution 

is from the target or the larger the standard deviation becomes.  This approach is a maximin 

approach where the objective is to maximize the overall minimal degree of satisfaction with 

respect to all of the responses.  Four variations of the approach were also discussed: 1) the 

responses are alternatives and the maximum satisfied response is selected, 2) consideration of 

predictive capability where the responses are weighted by the goodness of fit of the models, 3) 

assigning different weights to the responses, and 4) maximize the sum of the degrees of 

satisfaction. 

Goal Programming 

Rees, Clayton, and Taylor (1985) expanded on the framework established by Biles and 

Swain in the late 70s of combining the techniques of response surface methodology and goal 

programming by introducing the use of the satisficing algorithm.  This methodology requires that 
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the decision-maker rank the priority of the responses and provide a target or minimum level of 

attainment required for each response or goal.  The satisficing algorithm, utilizing the path of 

steepest ascent, first optimizes the highest ranking response.  Then the algorithm systematically 

attempts to find the optimal solution for each of the other responses within the region of interest 

that satisfies all higher priority goals without violating a higher goal.     

Tang and Xu (2002) utilized a goal programming approach to simultaneously optimize 

the mean and standard deviation of a response, similar to the approach by Khuri and Conlon 

(1981); however the approach by Tang and Xu is more flexible.  This method requires the 

decision-maker to provide a target for the mean and standard deviation as well as weights to 

indicate the importance of each response.  A combined objective is developed that minimizes the 

weighted under or over-achievement of the targets subject to the constraints.  Weights and 

targets can be defined that enable earlier methods to be special cases of this goal programming 

approach (Vining and Myers 1990; Del Castillo and Montgomery 1993; Lin and Tu 1995; 

Copeland and Nelson 1996; Ames, et al. 1997).   Xu, Lin, Tang, and Xie (2004) discussed the 

use of this methodology in a more general sense for multiple responses using a minimax 

objective where the approach is to minimize the maximum weighted deviation from target. 

Pareto Front Methods 

Pareto Front methods are those which aim to find multiple alternatives rather than one 

optimal solution. 

Koksoy and Doganaksoy (2003) utilized a standard nonlinear multiobjective program, 

NIMBUS, to solve the “smaller-the-better” and the “larger-the-better” Taguchi goals by 
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simultaneously optimizing the mean and variance.  This method provides many Pareto optimal 

solutions rather than the one solution that would be garnered using a combined weighted 

approach.  Tang and Xu (2002) also provided for alternative Pareto solutions if the user varies 

the weights. 

Tsui, Goh, Xie, and Loy (2001) introduced the idea of finding non-dominated fronts for 

each response individually and then looking at the intersection of those fronts to find optimal 

solutions or to find a compromise solution by looking at the solutions identified in the non-

dominated fronts.    

Liao (2004) used neural networks to find the signal-to-noise ratios for all combinations of 

factors and levels, also called decision making units (DMUs), including estimating incomplete 

data.  Data envelopment analysis (DEA) is then used to find the optimal combination of 

factors/levels by ranking the DMUs by their relative efficiencies.  DEA uses the ratio of inputs to 

outputs to create an efficient frontier that identifies the efficient and inefficient alternatives.  

Thus, a non-dominated solution is guaranteed (Mollaghasemi and Pet-Edwards 1997).   

Weighted Multiple-Response Optimization Methodology 

Osborne (1997) provided an approach that utilized the necessary conditions for 

optimizing a combined methodology which include: generation of non-dominated solutions, 

convexity requirement, mutual preferential independence, identification of a preference structure, 

satisfaction of monotonicity of preference, use of value functions, requirement of similar 

magnitudes of the response objectives, and elicitation of decision-maker specified weights.  The 

proposed approach is defined as a linear additive value function that can be maximized using 
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nonlinear programming techniques and ensures a non-dominated solution.  Gheware (2003) 

recommended a change to the value function limit calculation such that the value function cannot 

be negative.  

Randomly Valued – Independent Variable Method 

Dvorak (2000) proposed a methodology that considers the probability distribution of an 

independent noise variable.  The method replaces the independent variable in the response 

surface model with the expected value of the probability distribution of that independent 

variable.  Thus, the objective is to optimize the response to the mean of the randomly valued 

independent variable. 

Genetic Algorithms 

Khoo and Chen (2001) developed a model that combines response surface methodology 

with a genetic algorithm to optimize the responses.  Genetic algorithms have been around since 

the 1960s and are based on the idea of survival of the fittest.  Each chromosome has a set of 

possible parameter values and the algorithm begins with a randomly generated set of 

chromosomes that are then evaluated against the objective function.  The user provides the 

minimum and maximum values for each of the variables along with the genetic algorithm inputs 

of population size, probabilities of crossovers and mutations, and the number of iterations.  The 

user can also specify weights to indicate the relative importance of the responses as well as to 

normalize the variables.  Penalties are used to keep the responses as close to the targets as 
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possible.  Thus the objective function simultaneously optimizes all responses by minimizing the 

sum of the weighted minimums minus the sum of the weighted maximums plus the sum of the 

weighted penalties.   

An application of the combined RSM and genetic algorithm approach was used to find 

the optimal parameter values for the minimum and maximum values generated by the algorithm 

for a single objective function (Suresh, Venkateswara Rao, and Deshmukh 2002). 

Special Cases 

Optimization methods for two special cases are discussed below: stochastic problems and 

multidisciplinary design optimization problems. 

Stochastic Models 

Six methods were described for solving the multiple response stochastic problem under 

the basic premise that the stochastic problem is transformed into a deterministic problem that can 

be solved by familiar optimization techniques.  The first is the E-model which is essentially a 

minimization of the weighted average of the mean and variance responses.  The second, the V-

model, minimizes the variance of the objective function.  The third, the P-model, maximizes the 

probability that the objective function is smaller than some fixed value.  The fourth is a minimax 

objective.  The fifth uses a lexicographic goal programming approach.  The last one is based on 

minimizing the distances.  Many of these methods align with response surface methods already 

in use for deterministic problems (Diaz-Garcia, Ramos-Quiroga, and Cabrera-Vicencio 2005).    
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Multidisciplinary Design Optimization Methods 

MDO “is a systematic methodology that synergistically exploits the interaction among 

disparate disciplines (also known as subsystems) to improve performance, low cost, and shorten 

product design cycle” (Jianjiang, Renbin, and Yifang 2005).  Some of the issues concerning 

current MDO methods include the accumulation of uncertainties, the inability to use discrete 

design variables at the system level, difficulties with convergence, and being computationally 

expensive (Jianjiang, Renbin, and Yifang 2005).  In order to address these issues, researchers 

were integrating response surface methods into their MDO methods.  Artificial neural networks, 

gradient-enhanced response surfaces, fidelity response surface approximations, and hybrid mean 

value methods are some of the methods being considered (Rodriguez, et al. 2001; van Keulen 

and Vervenne 2004; Youn and Choi 2004; Jianjiang, Renbin, and Yifang 2005).  Furthermore, 

Jones (2001) developed a taxonomy of optimization methods in multidisciplinary problems 

based on whether a one-stage or two-stage search method was used and whether or not 

interpolation was used.    

Summary of Optimization Methodologies 

Figure 2-1 below provides a diagram that illustrates the evolution of the multiple 

response surface methods discussed in this section.  Further, Table 2-1 provides a comparison of 

the methods utilizing the categories outlined by Osborne (1997).  The table contains information 

about the number of responses, types of responses (mean and/or variance), type of approach 

(overlay, combined, constrained), articulation of preferences (implicit or explicit indication of 
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goals and weights), and assumptions (e.g. independence).  Furthermore, the comments field 

indicates any explicit consideration of bias and robustness, weighting schemes, or issues that 

have been identified with the approach.  
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Contour Plots 
(Hoerl 1959)

Overlay Methods 0
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(Tsui, Goh, Xie, and Loy 2001)
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(Del Castillo and Montgomery 1993) 0

1
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(Miro-Quesada and Del Castillo 2004a, 2004b)
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(Myers and Carter 1973)

RPD Dual Response
(Vining and Myers 1990)

1 1
Direct Function Minimization
(Copeland and Nelson 1996)

Target Variance Methods 0
1

Constrained Methods 0

1
Bias-Specified Robust Design
(Shin and Cho 2005)

0
1

Goal Programming-Satisficing Algorithm
(Rees, Clayton, and Taylor 1985)

Nonlinear Desirability Function
(Del Castillo, Montgomery, and McCarville 1996)

Desirability Functions
(Derringer and Suich 1980) 0

1
Capability Index
(Plante 2001)

Dual Response Goal Programming
(Tang and Xu 2002)

Multi-Response Goal Programming
(Xu, Lin, Tang, and Xie 2004)

1
Generalized Distance Measure
(Khuri and Conlon 1981) 0 0

1
Minimal Satisfaction
(Kim and Lin 2006)

Quality Loss Function
(Ames et al. 1997)

Loss Functions
(Pignatiello 1993)

1

0
Producer Loss Function
(Romano, Varetto, and Vicario 2004)

Correlation Structure and Prediction Quality Loss 
Function
(Vining 1998) 0

Combined Methods 1
1 0

0
Weight Matrix Loss Function
(Kuhnt and Erdbrugge 2004)

MSE
(Lin and Tu 1995)

MSE Methods

MSE for GLM
(Myers, Brenneman, and Myers 2005)

Nonlinear Pareto Method
(Koksoy and Doganaksoy 2003)

Pareto Methods 0
1

0
Data Envelopment Analysis
(Liao 2004)

Weighted Dual Response
(Box and Jones 1992)

Weighted Multi-Response Optimization
(Osborne 1997)

Other Methods
Randomly Valued Independent Variable
(Dvorak 2000)

1
Genetic Algorithm
(Khoo and Chen 2001)  

 

Figure 2-1 Multiple Response Surface Optimization Methods Tree
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Table 2-1 Multiple Response Surface Optimization Methods Categorization 
# Method Author Year # of 

Responses 
Type of 
Responses 

Type of 
Approach 

Articulation 
of Preference 

Assumptions Comments 

1 Contour Plots Hoerl 1959 2 or more µ Overlay Explicit goals; 
Implicit 
weights 

 Not feasible for 
large number of 
variables 

2 Non-
Dominated 
Fronts 

Tsui, Goh, 
Xie, Loy 

2001 2 μ, σ2 Overlay Explicit goals; 
Explicit 
weights 

 Does not require 
re-optimization 
when weights 
change 

3 Dual 
Response 

Myers and 
Carter 

1973 2 µ Constrained Explicit goals; 
Implicit 
weights 

All response 
functions are 
quadratic 

 

4 RPD Dual 
Response 

Vining and 
Myers 

1990 2 μ, σ2 Constrained Explicit goals; 
Implicit 
weights 
(choose 
compromise 
combination) 

All response 
functions are 
quadratic 

May lead to 
stationary point 
that is not a local 
optima 

5 Nonlinear 
Dual 
Response 

Del Castillo 
and 
Montgomery 

1993 2  
or 
2 or more 

μ, σ2 

 

μ 

 

Constrained Explicit goals; 
Implicit 
weights 

All response 
functions are 
nonlinear 

All solutions are 
feasible but may 
not be a global 
optimum 

6 Constrained 
Confidence 
Regions 

Del Castillo 1996 2  
or 
2 or more 

μ, σ2 

 

μ 

Constrained Implicit goals; 
Implicit 
weights (more 
weight given 
to responses 
that exclude 
more 
directions) 

Independence 
among responses 

Addresses 
sampling error 
issue; use 
sensitivity 
analysis to find 
multiple optimal 
solutions for 
different levels 
of α and for 
some values of α 
there may be no 
feasible 
solutions 
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# Method Author Year # of 
Responses 

Type of 
Responses 

Type of 
Approach 

Articulation 
of Preference 

Assumptions Comments 

7 Process 
Variance 
Dual 
Response 

Miro-
Quesada and 
Del Castillo 

2004 2 μ, σ2 

 
Constrained Explicit goals; 

Implicit 
weights 

Independence 
between the noise 
factors and 
parameter 
estimates 

Considers 
multiple sources 
of variability; 
robust to both 
noise factor and 
parameter 
estimation 
uncertainty; 
utilizes an 
unbiased 
estimator of the 
variance; 
calculates 95% 
prediction 
intervals 

8 Direct 
Function 
Minimization 

Copeland and 
Nelson 

1996 2 μ, σ2 Constrained Explicit goals; 
Implicit 
weights 

 Considers both 
bias and variance 

9 Bias-
Specified 
Robust 
Design 

Shin and Cho 2005 2 μ, σ Constrained Explicit goals; 
Implicit 
weights  

 Potential to 
provide tradeoffs 
between process 
bias and 
variability 

10 Goal 
Programming 
Satisficing 
Algorithm 

Rees, 
Clayton, and 
Taylor 

1985 2 or more µ Constrained Explicit goals; 
Implicit 
weights 
(prioritized 
responses) 

  

11 Desirability 
Functions 

Derringer and 
Suich 

1980 2 or more µ Combined Explicit goals; 
Implicit 
weights 
(r, s, t) 

Responses are 
continuous 
functions 

Use contour 
plots to assess 
sensitivity; 
contains non-
differentiable 
points 
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# Method Author Year # of 
Responses 

Type of 
Responses 

Type of 
Approach 

Articulation 
of Preference 

Assumptions Comments 

12 Nonlinear 
Desirability 
Function 

Del Castillo, 
Montgomery, 
and 
McCarville 

1996 2 or more µ Combined Explicit goals; 
Implicit 
weights 
(use 
breakpoints) 

 Use regression 
estimates to 
account for 
correlation 
between the 
responses 

13 Capability 
Index 

Plante 2001 2 or more μ, σ2 as a 
Cp 
measure 

Combined Explicit goals; 
Implicit 
weights 

 Uses 
nonconformance 
costs to weight 
the measures 

14 Generalized 
Distance 
Measure 

Khuri and 
Conlon 

1981 2 or more µ Combined Implicit goals; 
Implicit 
weights 

Independence 
among responses; 
All responses 
have same set of 
controllable 
factors 

Accounts for 
covariances and 
prediction 
uncertainty 

15 Dual 
Response 
Goal 
Programming 

Tang and Xu 2002 2 μ, σ2 Combined Explicit goals; 
Explicit 
weights 

 Sensitivity 
analysis through 
experimenting 
with different 
convex 
combinations of 
weights 

16 Multi-
Response 
Goal 
Programming 

Xu, Lin, 
Tang, and 
Xie 

2004 2 or more µ Combined Explicit goals; 
Explicit 
weights 

Responses must 
be twice 
differentiable 

Considers 
predictive 
capability in the 
weighting 
scheme.  Allows 
different sets of 
input variables 
for the r 
responses.  Only 
considers the 
response with 
the maximum 
weighted 
deviation from 
target. 
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# Method Author Year # of 
Responses 

Type of 
Responses 

Type of 
Approach 

Articulation 
of Preference 

Assumptions Comments 

17 Minimal 
Satisfaction 

Kim and Lin 2006 2 or more μ and σ2 Combined Explicit goals; 
Implicit 
weights 
(a variation 
allows for 
explicit 
weights) 

 Uses best fit 
models; robust to 
dependencies 
among the 
responses 

18 Loss 
Functions 

Pignatiello 1993 2 or more µ Combined Explicit goals; 
Explicit 
weights (cost 
matrix) 

 Considers 
covariance 
matrix 

19 Quality Loss 
Function 

Ames, 
Mattucci, 
MacDonald, 
Szonyi, and 
Hawkins 

1997 2 or more µ Combined Explicit goals; 
Explicit 
weights 

 Robust to 
variability in the 
process variables 

20 Correlation 
Structure and 
Prediction 
Quality Loss 
Function 

Vining 1998 2 or more µ Combined Explicit goals; 
Explicit 
weights (cost 
matrix) 

 Considers the 
covariance 
structure and 
prediction 
quality 

21 Producer 
Loss 
Function 

Romano, 
Varetto, and 
Vicario 

2004 2 or more μ, σ2 Combined Explicit goals; 
Explicit 
weights (how 
limits are 
chosen or the 
cost 
coefficients) 

 Considers 
correlation 
structure and 
prediction 
uncertainty 

22 Weight 
Matrix Loss 
Function 

Kuhnt and 
Erdbrugge 

2004 2 or more μ and σ2 Combined Explicit goals; 
Explicit 
weights (Sets 
of weight 
matrices) 

 Utilizes a set of 
weight matrices 
to find 
alternative 
optima 
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# Method Author Year # of 
Responses 

Type of 
Responses 

Type of 
Approach 

Articulation 
of Preference 

Assumptions Comments 

23 MSE Lin and Tu 1995 2 μ, σ2 Combined Explicit goals; 
Explicit 
weights  

Independence 
among responses 

Considers both 
bias and 
variance; fit of 
the models.  
Does not limit 
how far the 
secondary 
response can 
vary from target 

24 MSE for 
GLM 

Myers, 
Brenneman, 
and Myers 

2005 2 μ, σ2 

 
Combined Explicit goals; 

Implicit 
weights 

  

25 Nonlinear 
Pareto 
Method 

Koksoy and 
Doganaksoy 

2003 2 μ, σ Combined/ 
Simultaneous 

Explicit goals; 
Implicit 
weights 

 Generates a set 
of Pareto optimal 
solutions using 
NIMBUS; 
ignores 
parameter 
estimation 
uncertainty 

26 Data 
Envelopment 
Analysis 

Liao 2004 2 or more SN ratio Combined Explicit goals; 
Implicit 
weights 

 Neural network 
used to calculate 
SN ratios 

27 Weighted 
Dual 
Response 

Box and 
Jones 

1992 2 μ, σ2 Combined Explicit goals; 
Explicit 
weights 

 Dependent upon 
the magnitude 
and choice of the 
target mean 

28 Weighted 
Multi-
Response 
Optimization 

Osborne 1997 2 or more µ Combined Explicit goals; 
Explicit 
weights 

  

29 Randomly 
Valued 
Independent 
Variable 

Dvorak 2000 2 μ, σ2 Combined Explicit goals; 
Implicit 
weights 

Probability 
distributions are 
independent 

Considers the 
distribution of 
the random 
variables 

30 Genetic 
Algorithm 

Khoo and 
Chen 

2001 2 or more µ Combined Explicit goals; 
Explicit 
weights 
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Summary of Formulations for Constrained Optimization Methodologies 

The formulations for the constrained approaches, translated to a consistent notation, for 

the above methodologies are shown in Table 2-2. Additionally, each method below has an 

additional constraint to restrict the region of interest. 

Table 2-2 Constrained Optimization Method Formulations 

Method General case: Target is best: Larger is better: Smaller is better: 
Dual Response 
(Myers and Carter 
1973):   

optimize 1y)  
subject to Ty =2  

   

RPD Dual Response 
(Vining and Myers 
1990) 

 minimize σ̂  
subject to 

T=μ̂  

maximize μ̂  
subject to 

T=σ̂  

minimize μ̂  
subject to  

T=σ̂  
Nonlinear Dual 
Response (Del 
Castillo and 
Montgomery 1993) 

optimize kŷ  
subject to jjj uyl ≤≤ ˆ  
for all ,,...,1 mj =  kj ≠  

minimize σ̂  
subject to 

T=μ̂  

maximize μ̂  
subject to  

T=σ̂  

minimize μ̂  
subject to  

T=σ̂  

Direct Function 
Minimization 
(Copeland and 
Nelson 1996) 

 minimize σ̂  
subject to 

22)ˆ( Δ≤−Tμ  

minimize μ̂−  
subject to  

T≤σ̂  

minimize μ̂  
subject to  

T≤σ̂  

Constrained 
Confidence Regions 
(Del Castillo 1996) 

optimize kŷ  
subject to 

pnkjjjjj FksV −
− ≤′′≤ ,,

210 αδδ  
for all mj ,...,1=  

   

Process Variance 
Dual Response 
(Miro-Quesada and 
Del Castillo 2004b) 

 minimize 
)),(ˆ(var , zxyz β  

subject to 
T=μ̂  

  

Bias-Specified 
Robust Design (Shin 
and Cho 2005) 

 minimize σ̂  
subject to 

εμ ≤− Tˆ  

  

 

The final constrained method formulation is the goal programming satisficing algorithm 

(Rees, Clayton, and Taylor 1985) described below. 

Step 1: The decision-maker prioritizes the objectives and sets goals for each response. 
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Step 2: Achievement of the goal for the highest ranking response is attempted.  If 

achieved, then continue to Step 3. 

Step 3: The goal for the next highest response is attempted, but not at the expense of 

achieving the goal for higher priority responses (i.e., search for response two is conducted in the 

region for which the optimum for response 1 was found).  This continues for each response. 

Trade-Offs and Weighting 

Some combined approaches, such as the desirability function, use implicit weighting 

schemes where a level of desirability for a response is established but no explicit trade-off 

between responses is determined.  For the desirability function method, users provide values (r, 

s, and t) used in the transformation of the responses into desirabilities where large values indicate 

that values of the response closer to the extremes or target are most desirable whereas small 

values imply less importance for that response.  A value of 1 indicates a linear transformation 

(Derringer and Suich 1980).  A modified approach utilizes the breakpoints of the desirability 

functions set at different heights or targets for each of the responses to indicate priorities of the 

responses (Del Castillo, Montgomery, and McCarville 1996).  The approaches do not permit the 

decision-maker to identify the relative importance of the response functions. 

A few approaches identify alternative optima from which a decision-maker then looks at 

the trade-offs, for example between the mean and standard deviation of a response, and chooses 

an alternative.  Some methods generate the alternatives by changing the values of the constraints 

(Koksoy and Doganaksoy 2003; Shin and Cho 2005) while others change the values of the 
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weights of the objectives or allowable over or under achievement to target (Jin, Okabe, and 

Sendhoff 2001; Tang and Xu 2002; Kuhnt and Erdbrugge 2004; Xu, et al. 2004).  

Gheware (2003) explored the impact of concavity on solutions derived from multiple 

response surface optimization methods for two objective problems by varying the weights of 

each objective function.  It was found that regardless of convexity that weighting methods 

generate only non-dominated solutions points.  However, whether or not a complete set of Pareto 

optimal solutions were found was dependent on the sign of values in the Hessian matrix for 

second partial derivatives (test for convexity).    

Jeong, Kim, and Chang (2005) proposed a systematic method for generating the 

weighting factors for a weighted MSE criteria.  The method utilizes the decision-maker’s 

expressed preferences utilizing pairwise comparisons of the bias and variance terms at each 

condition (set of factor levels).  The first step consists of calculating the weights followed by 

resolving any inconsistencies.  Jin, Okabe, and Sendhoff (2001) used an evolutionary 

methodology that systematically changes the weights in a multiobjective problem so that a 

Pareto front can be found.     

Although, as discussed above, some work with respect to weighting and trade-offs has 

been conducted with respect to multiple response surface methods, much of the work that has 

been conducted is in the more general area of multiattribute or multi-criteria decision-making.  

Value trade-offs are two consequences with different measures for which the decision-maker is 

indifferent.  Keeney (2002) described 12 common mistakes that when made result in a solution 

that does not represent the true intentions of the decision-maker.    Miettinen (2001) provided an 

overview of nonlinear multiobjective optimization methods and discusses the role of the 

decision-maker in the various approaches.  Chankong and Haimes (1983) provided an overview 
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of decision making theory including utility theory, assessment methods, noninteractive and 

interactive multiobjective programming methods, and the surrogate worth trade-off method.  

Anderson and Hobbs (2002) introduced a procedure to eliminate scale compatibility bias 

in the use of trade-off weights for multiattribute analysis.  Choo and Wedley (2004) compared 18 

different methods for eliciting pairwise preference values when there is a finite number of 

alternatives.  Jessop (2004) examined three methods for justifying a chosen alternative of a finite 

set of alternatives by showing insensitivity to the weighting of the attributes: 1) maximize the 

number of feasible scenarios for which the solution is best, 2) maximize the difference between 

the best and second best solutions, and 3) minimize the different between the chosen alternative 

and the best alternatives under different weighting scenarios.    

An overview of the larger area of multi-criteria decision-making as it relates to 

preference methodologies and optimization techniques is provided in the next chapter.   

Summary of Future MRSM Research 

Below are areas identified by the authors discussed in the literature review as topics for 

future research: 

1. Impact of uncertainty on results: 

a. How sensitive are the results to small changes in the input parameters (Kim and 

Lin 2006). 

b. Impact of errors in the estimation of the covariance matrix (Miro-Quesada and 

Del Castillo 2004b). 
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c. Problems with multiple correlated properties and incorporating estimation 

uncertainty (Koksoy and Doganaksoy 2003). 

d. Multiple performance measure problems with correlated errors (Plante 2001). 

e. Additional work on robustness (Myers, et al. 2004). 

2. Determination of cost coefficients: 

a. How to select cost coefficients (Romano, Varetto, and Vicario 2004). 

b. Investigate other ways to account for cost trade-offs (Plante 2001). 

3. Extensions of current methods: 

a. Extension of fuzziness to the neural network and data envelopment analysis 

approach (Liao 2004). 

b. Extend aggregation based method to more than two objectives (Jin, Okabe, and 

Sendhoff 2001). 

c. Extend Peterson’s approach to include noise variables and residual error 

distributions with heavier tails (Peterson 2004). 

d. Computational improvements in algorithms used for parameter estimation and 

minimizing loss function and the replacement of loss function with other criteria 

(Kuhnt and Erdbrugge 2004). 

e. New mutation scheme for multiple response problems (Khoo and Chen 2001). 

4. Weighting and trade-offs: 

a. Consider how error and biases impact value function analyses (Anderson and 

Hobbs 2002). 

b. More investigation of weighting methods (Anderson and Hobbs 2002). 
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c. Optimization of multiple means and standard deviations, interpretability of 

results, and assessing weights (Osborne 1997). 

5. New methodologies: 

a. Development of user-friendly nonlinear multiobjective programming methods and 

visual illustrations (Miettinen 2001). 

b. Cases where responses are categorical (Kuhnt and Erdbrugge 2004). 

c. Methods that can handle non-continuous variables (Yang, Kuo, and Chou 2005). 

d. Methods for nonnormal and GLM models, semiparametric and nonparametric 

RSM (Myers 1999). 

e. Efficient designs for larger problems (Myers, et al. 2004). 

f. Methods for complex response objectives (Osborne 1997). 

g. Methodologies when monotonicity of preference and mutual preferential 

independence do not hold (Osborne 1997). 

6. Further theoretical development: 

a. Constrained methods conditions and assumptions including whether non-

dominated solutions are obtained (Osborne 1997). 

b. What types of problems should be solved with what methods (Osborne 1997). 

c. Identifying the region of interest and what happens when regions for different 

responses are remote (Osborne 1997). 

As demonstrated by the long list of topics, there exists numerous opportunities to 

contribute to the area of multiple response surface methods.  The main topic of development in 

this research is the issue of trade-offs and incorporating decision-maker preferences.  A new 

constrained method is developed and thus, Osborne’s topic of determining the conditions and 
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assumptions necessary for constrained methods are also addressed.  In order to have a better 

understanding of the issues with trade-offs among multiple responses the larger area of multi-

criteria decision-making (MCDM) is explored in the next chapter.  Current methods in MCDM 

are explored for potential application to multiple response surface problems. 
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CHAPTER THREE: MULTI-CRITERIA DECISION-MAKING 

Multiple response surface methods belong to a larger area of study called multi-criteria 

decision-making (MCDM).  As indicated in Chapter Two, little work has been done within 

MRSM to explicitly address the role of the decision-maker and the impact that decision-maker 

preferences have on the solution to the problem.  The first section below reviews the role of 

decision-makers in multiobjective problems and the second provides a high-level review of 

multiobjective optimization procedures within the area of MCDM.  

Decision-Maker Preferences 

An integral part of any problem with multiple attributes, criteria, or responses is the 

preferences of the decision-maker(s).  Kenney (2002) indicated that “making value trade-offs is 

one of the most difficult elements faced in important decisions.”   

Role of the Decision-Maker 

The role of the decision-maker can be classified into four categories: no-preference, a 

posteriori, a priori, and interactive (Miettinen 1999).  No-preference methods do not take into 

consideration preferences or opinions of the decision-maker.  A posteriori methods generate a set 

of Pareto optimal solutions from which a decision-maker chooses the most preferred.  A priori 

methods require the decision-maker to provide preferences prior to conducting the analysis.  

Interactive methods are a repetitive process of finding a solution, soliciting decision-maker input, 
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and revising the problem to obtain a new solution or set of solutions until an acceptable solution 

is found. 

No-preference methods are often used when the decision-maker is satisfied with an 

optimal solution without any additional specifications.  These types of methods often use 

simplifying assumptions such as equally weighted objectives or some global criterion which 

results in a single solution for the decision-maker to reject or accept.  The disadvantage of this 

method is that the additional information to determine the most preferred solution for a particular 

decision-maker is not available.  With a posteriori methods multiple optimal solutions are 

generated.  Some methods have the capability to generate all potential alternative solutions while 

others are only able to generate a subset of all Pareto optimal solutions.   The decision-maker 

then chooses from the set of alternative solutions.  Disadvantages to this approach are that it can 

be computationally expensive to generate the multiple solutions and decision-makers may have 

difficulty making the trade-offs to select the most preferred solution as the size of the solution set 

increases.  With a priori methods, the decision-maker provides input prior to the analysis.  The 

disadvantage with this method is that the decision-maker may not know what the set of realistic 

expectations may be.  The advantages of the interactive methods over the previous methods are 

that the decision-maker does not have to identify the preference structure up front and the entire 

set of Pareto optimal solutions does not need to be generated.  Rather the decision-maker 

preferences can evolve throughout the process and provide direction to the generation of the next 

subset of Pareto optimal solutions (Miettinen 1999). 
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Methods of Soliciting Preference Structures 

 The purpose of soliciting preferences is to be able to assess the relative importance of 

attributes or in the case of multiobjective problems the relative importance of the objectives in 

order to find the best compromise solution.  Trading off an increased value in one objective for a 

lower value in another is subjective and requires the preference of the decision-maker (Clemen 

and Reilly 2001).  Assessment methods can be classified into three categories: direct, sequential 

elimination, and spatial proximity (Chankong and Haimes 1983). 

Direct Assessment 

The direct approach quantifies the decision-maker’s preference up-front and reduces the 

problem to an a priori evaluation approach discussed below.  This approach, including the 

multiattribute utility function method, develops a global representation of decision-maker 

preferences.  There are five steps in the use of the multiattribute utility function method: 1) 

verify the existence of a value or utility function which in practice is assumed to be true, 2) find a 

suitable form of the function, 3) construct the component functions, 4) develop scaling constants, 

and 5) check for consistency and perform the final analysis (Chankong and Haimes 1983).    

Suitable forms of the function include additive, quasi-additive, and multiplicative.  

Conditions of independence are tested to determine the appropriate form (Chankong and Haimes 

1983).  An additive utility function involves developing a utility score for each objective and 

then utilizing weights to demonstrate the relative importance of the objectives and then summing 
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the weighted utility scores (Clemen and Reilly 2001).  A multiplicative utility function is the 

product of utility functions and their scaling constant (Chankong and Haimes 1983). 

There are multiple methods for developing the weights used in individual utility 

functions.  Proportional scoring has the decision-maker rate each attribute on a scale from 0 to 

100; normalization can take place if needed.  The midpoint method requires the decision-maker 

to identify the value at which one would have to give up the same amount of both attributes if 

you were to move in one direction or the other (Chankong and Haimes 1983).  Another method 

is to price out the value of one additional unit of the attribute and then convert it to a weight.  

Ratios are used often when attributes are not quantitative.  In this method, the decision-maker 

determines that one attribute/objective is twice as important as another attribute.  Using swing 

weights involves the development of a table that compares scenarios for the worst outcomes for 

each objective (benchmark), and then swings the best outcome for one objective at a time.  The 

scenarios are then ranked and rated on a scale of 1 to 100.  The rates are then converted into 

weights.  Swing weights have the advantage that the range of allowable values is considered.  

The lottery weight method is the development of the probability that makes the decision-maker 

indifferent between the lottery (best on all attributes) and the sure thing (best on one, worst on all 

others).  By changing the item included as best in the “sure thing,” probabilities are developed 

for each attribute (Clemen and Reilly 2001).  Once the individual utility functions are developed 

and the correct form is identified, scaling constants are determined.  Many of the same 

approaches listed above to elicit weights can be used to determine the scaling constants.     
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Sequential Elimination 

 Two examples of sequential elimination are included: lexicographical ordering and the 

ELECTRE method.  Lexicographical ordering has the decision-maker rank order the importance 

of the objectives.  The most important criteria is used in the first screening step and alternatives 

yielding the most preferred solution is kept and the other discarded.  Next the second most 

important criteria is used to find the most preferred solution among this subset.  This continues 

until only one solution is left or until all criteria have been used. 

ELECTRE method can be used to make the final decision, classify alternatives as 

“rejected” or “nonrejected”, or classify alternatives into indifference classes and rank these 

classes given a small set of alternatives or solutions.  The decision-maker indicates the relative 

importance of the objectives.  Then for each pair of alternatives, outranking relations are 

developed.  Alternatives that are outranked by another are eliminated.  A new outranking relation 

can then be constructed to further narrow down this subset of alternatives. 

Spatial Proximity 

An indifference curve depicts a set of alternatives (solutions) for which the decision-

maker is indifferent.  Multiple indifference curves can be created which demonstrate varying 

levels of utilities.  The slope of the curve is the trade-off rate to be discussed in the following 

section (Clemen and Reilly 2001).  This method provides graphical representation of two 

attributes/objectives at a time.   
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Trade-Offs and Marginal Rates of Substitution 

A trade-off is the ratio of the change in the values of two objective functions as one 

increases and the other decreases.  The marginal rate of substitution is the change in the value of 

one objective function that the decision-maker feels offsets a one-unit change in the value of 

another objective, with all other objectives remaining constant.  Weighting coefficients, used in 

many combined optimization methods, are the same as marginal rates of substitution when 

provided by the decision-maker.  Miettinen (1999) provides a distinction between trade-offs and 

marginal rates of substitutions where trade-offs are mathematically defined compared to 

marginal rates of substitution that reflect the preferences of the decision-maker.  Keeney (2002) 

uses the terminology “value trade-offs” to “define how much must be gained in the achievement 

of one objective to compensate for a lesser achievement on a different objective.” 

Marginal rates of substitution can be used to create indifference curves.  Indifference 

curves indicate alternative solutions for which the decision-maker finds equally desirable.  

Assume that given two objectives, X and Y, the decision-maker is “indifferent to the solutions 

(x1, y2) and (x2, y1).  The interpretation of this indifference is as follows: 

• An increase in X from x1 to x2 is compensated by a decrease in Y from y2 to y1 

• An increase in Y from y1 to y2 is compensated by a decrease in X from x2 to x1 

• An increase in X from x1 to x2 is equal to an increase in Y from y1 to y2 

• A decrease in X from x2 to x1 is equal to a decrease in Y from y2 to y1 (Keeney 2002). 
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Figure 3-1 Marginal Rate of Substitution 

Issues in Value Trade-Offs 

Keeney (2002) described twelve common mistakes in determining value trade-offs that 

when made result in a solution that does not represent the true intentions of the decision-maker.  

The first set of mistakes relate to not understanding the decision context including purpose and 

whose perspective the trade-offs should represent and using proxy objectives that do not 

adequately represent the decision problem.  The second set of mistakes relate to measures and 

consequences including not having measures for consequences, using inadequate measures, and 

not knowing what the measures represent.  The third set of mistakes relates to using 

inappropriate questions or assumptions to determine trade-offs including willingness to swap 

solutions, using screening criteria as absolute value judgments (i.e., hard limits), and using a 

“safety” factor to provide conservative trade-offs that bias the values.  The fourth set relates to 
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mistakes made when calculating trade-offs including trying to calculate “correct” trade-offs 

without decision-maker input, determining trade-off rates without considering the range of 

possibilities, and extrapolating a trade-off over the entire range of consequences which assumes 

linearity.  The final mistake discussed the failure to use consistency checks to identify bias and 

random errors and assess reasonableness.  

Keeney (2002) provides a four step process for making good trade-offs.  Step 1 is to 

appropriately understand the decision problem.  Step 2 is to clearly define the objectives with 

clear measures, consequences, and allowable ranges.  Step 3 is to find pairs of consequences (or 

solutions) for which the decision-maker is indifferent.  Step 4 is to check the value trade-offs for 

reasonableness.   The method developed in this research accomplishes Keeney’s four steps. 

Decision Rules 

Chankong and Haimes (1983) defined two categories of decision rules.  The first, the 

optimizing category, is a set of rules that provide a “best” alternative based on some criterion 

implied by the rule.  The second, the satisficing category, is a set of rules that seeks a satisfactory 

alternative.  The rules in this category may sacrifice optimality for simplicity, cost, and time.  

Generally, the alternatives are categorized as acceptable or unacceptable where the alternatives 

within the category are not differentiable by the decision-maker.  In cases with a large number of 

alternatives, the satisficing rule may only look for an alternative where the objectives reach a 

certain aspiration level. 

In problems with multiple responses, it is generally not possible to find one solution that 

would optimize all responses simultaneously.  Therefore, solutions are optimal if one objective 
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cannot be improved without detriment to at least one other objective.  This is what is meant by 

Pareto optimality.  Most problems will have many (possibly infinite) Pareto optimal solutions.  

Somewhere in the process, the decision-maker’s preferences must be taken into consideration to 

select one of the solutions in the Pareto optimal solution set as “best.”     

Satisficing decision making means that the decision-maker is satisfied reaching certain 

aspiration levels for each objective rather than minimizing or maximizing any general value 

function.  Miettinen (1999) indicates that although in extreme cases the satisficing would not 

have to be Pareto optimal, he assumes throughout his book that the satisficing solution will 

always be within the Pareto optimal solution set (or at least weakly Pareto optimal). 

Multiobjective Optimization Methods 

 Miettinen (1999) provides a broad sample of multiobjective optimization methods.  The 

sections below present MCDM optimization methods following Miettinen’s structure of 

classifying the methods based on the role of the decision-maker.  This section should not be seen 

as an exhaustive list of multi-criteria decision-making optimization methods and the reader is 

referred to the references included in Miettinen’s text. 

No-Preference Methods 

Miettinen (1999) presented two no-preference methods of multiobjective optimization.  

The method of the global criterion minimizes the distance between a reference point and the 

feasible objective region where the analyst determines the reference point and metric to be used 
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to measure distance.  For example, the Lp metric minimizes the sum of the objectives and the 

Tchebycheff metric returns the minimum of the maximum distances for all objectives.  This 

method assumes that all functions are equally important using the scales of the individual 

functions.  The second method, the multiobjective proximal bundle method, improves the values 

of all objectives simultaneously where the analyst must select a starting point from which all 

objectives can be improved.  

A Posteriori Methods 

 A posteriori methods generate a set of Pareto optimal solutions from which the decision-

maker chooses a preferred solution.  However, in many cases only one solution may be 

generated.  Many multiple response surface methods fall into this category of MCDM methods.   

The weighting method minimizes the weighted sum of the objectives where the weights 

are positive and sum to one.  As such, this method combines the multiple objectives into a single 

objective to be optimized.  A set of Pareto optimal solutions may be found by varying the values 

of the weights.     

The ε-constraint method optimizes one objective subject to treating the other objectives 

as constraints where the analyst selects an upper bound for each constraint.  All Pareto optimal 

solutions can be found by varying the upper bounds of the constraint objective functions and by 

changing out the objective function to be treated as the primary response with each of the 

constraint responses.   
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The hybrid method combines elements of the weighting method and ε-constraint method.  

The method minimizes the weighted sum of the objectives but subject to constraints on the 

objectives. 

The method of weighted metrics is a variation of the method of global criterion where the 

metrics are weighted for each objective.  Thus, this method minimizes the weighted distance 

between a reference point and the feasible objective region.  The analyst must select the weights 

for each of the objectives, as well as the reference point and the metric (e.g., Lp, Tchebycheff).  

Alternative solutions can be found by varying the weights.  Achievement scalarizing functions 

can be used in place of the metrics used in the global criterion or method of weighted metrics.  

This option ensures weakly Pareto optimal solutions and allows alternative optima to be found 

by changing the reference point rather than the weighting coefficients.   

A Priori Methods 

 A priori methods capture the preferences of the decision-maker before beginning the 

optimization method.  The value function method maximizes the value of the function defined by 

the mathematical formulation of the decision-maker’s preferences.  Once defined, the value 

function can be solved using any single objective optimization method.  For example, the 

weighting method can be seen as a special case of a value function when utilizing decision-

maker preferences.     

Lexicographic ordering requires the decision-maker to rank order the objectives.  The 

most important objective function is minimized and if a unique solution is not found then 
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subsequent objectives are optimized adding the previous objective as a constraint at its optimum 

value until a unique solution is found or all functions have been minimized. 

Goal programming requires the decision-maker to define aspiration levels for each 

objective and the method minimizes the deviations from the aspiration levels.  This method can 

be used with weighted methods or lexicographic ordering. 

Interactive Methods 

Interactive methods provide a platform for decision-makers to provide input throughout 

the optimization process.  The methods below differ in the optimization function and the amount 

of information required of the decision-maker.   

The interactive surrogate worth trade-off (ISWT) method begins with the ε-constraint 

method by having the analyst select one objective to optimize and provide bounds on the other 

objectives.  The problem is solved and a Pareto optimal solution is presented to the decision-

maker.  The decision-maker then conducts a “worth assessment” to determine how (much) the 

decision-maker would like to make a trade-off between the primary response and each secondary 

response where the value of the primary response decreases by the value of the Lagrange 

multiplier for a one unit increase in value of the secondary response.  An integer worth scale 

between -10 and 10 is used where 10 indicates a strong preference to make the trade-off, 0 

indicates satisfaction with the current solution and the desire to make no trade-off and -10 

indicates a strong preference to make the opposite trade-off.  The worth values are used to update 

the right-hand-side of the secondary responses and then the problem is re-optimized.  The 

process continues until the decision-maker is satisfied with the solution.  
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The Geoffrion-Dyer-Feinberg method maximizes a value function and requires the 

decision-maker to identify the reference function and then specify marginal rates of substitution 

between this function and the other objectives at the current solution point.  The decision-maker 

also helps to determine the step size.  The optimization is conducted iteratively with the decision-

maker choosing the preferred solution among each set of solutions until the decision-maker 

wants to stop. 

The sequential proxy optimization technique begins with the ε-constraint method like the 

ISWT method.  Then, like the Geoffrion-Dyer-Feinberg method, the decision-maker must 

specify the marginal rates of substitution.  A proxy function and step size are determined.  The 

optimization is conducted iteratively until the decision-maker is satisfied. 

The Tchebycheff method minimizes the maximum weighted distance of the function 

from a “utopian objective” defined by the decision-maker where a utopian objective is a vector 

that represents values that are strictly better than every Pareto optimal solution. 

 The bounds on the weights are tightened to reduce the number of Pareto optimal 

solutions generated.  The decision-maker chooses a most preferred objective vector among a 

subset of the generated ones at each iteration until a final solution is chosen. 

The step method requires the decision-maker to be able to indicate functions that have 

acceptable values and those that have values that are too high.  Then the weighted Tchebycheff 

problem is used to generate solutions.  Then the decision-maker is asked to determine which of 

the objectives are satisfactory and relax the upper bounds on those objectives.  The method 

repeats until the decision-maker is satisfied for all objectives. 

The reference point method begins by providing the decision-maker with some 

information that provides a range of the Pareto optimal set.  The decision-maker specifies a 
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reference point from which the achievement function is minimized.  The solutions are provided 

to the decision-maker.  If one of the solutions is satisfactory then the process stops, otherwise a 

new reference point is gathered and the process continues.  An extension of this, the reference 

direction approach also projects the vector from the current iteration point to the reference point. 

This provides the decision-maker with more information to determine the next direction and also 

provides a wider part of the weakly Pareto optimal set to review.  The reference direction method 

minimizes the computational effort by having the decision-maker determine the number of steps 

to be taken in the reference direction, thereby minimizing the number of alternatives that the 

decision-maker will review.   

In the GUESS method the decision-maker specifies a reference point as well as upper or 

lower bounds to the objective functions.  Then a function representing the minimum weighted 

deviation from the nadir objective vector is minimized, where the nadir objective vector contains 

the upper bounds of the Pareto optimal set, and the solution is presented to the decision-maker.  

If the solution is satisfactory the process stops, otherwise it is repeated with the decision-maker 

specifying new bounds and reference points. 

The satisficing trade-off method begins by optimizing a scalarizing function and 

providing the solution to the decision-maker.  The decision-maker reviews each objective and 

labels them as unacceptable, acceptable with the ability to relax, or acceptable as is.  The 

decision-maker provides aspiration levels for the objectives to be improved.  Then the modified 

scalarizing function is minimized and the process is repeated. 

The light beam search method has the decision-maker identify bounds for each objective 

as well as to specify “indifference” thresholds.  The achievement function is minimized and the 

solution as well as Pareto optimal neighbors are presented to the decision-maker.  If one of the 
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alternatives are satisfactory then the process is stopped, otherwise the decision-maker can revise 

reference points or thresholds and the function is re-optimized. This method allows the decision-

maker to “save” preferred solutions, explore other directions, and then select among the 

preferred solutions. 

The NIMBUS method requires that at each solution point the decision-maker determines 

whether each objective should be decreased freely, decreased to a certain bound, satisfactory, 

increased to a certain bound, or changed freely.  The function is minimized and the process 

repeats with input from the decision-maker until the decision-maker chooses a preferred solution.  

Summary of MCDM Optimization Methods 

The following section summarizes the MCDM optimization methods discussed above 

and identifies similar methodologies that have been used for multiple response surface problems.  

The table indicates the decision-maker’s role, the type of method, and whether it can be 

considered a combined or constrained approach.  From the table it can be seen that the 

interactive surrogate worth trade-off method and sequential proxy optimization technique are 

two constrained approaches that have not been used for multiple response surface problems.   

Miettinen (1999) provides a decision tree diagram comparing the interactive methods and 

the reader is referred to this resource for further details. 
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Table 3-1 Multi-Criteria Decision-Making Optimization Methods Categorization 

# MCDM Method DM Role Type Functional 
Types 

Comparable Multiple Response Surface Methods 

1 Global Criterion No-Preference Reference Point Combined  Generalized Distance Measure (Khuri and Conlon 
1981), MSE methods, Loss Function methods 

2 Multiobjective Proximal 
Bundle 

No-Preference Simultaneous 
Improvement 

Combined  

3 Weighting Method A Posteriori Weighted Combined Weighted Multi-Response Optimization (Osborne 
1997); Weighted Dual Response (Box and Jones 1992) 

4 ε-Constraint Method A Posteriori Constrained Constrained Dual Response (Myers and Carter 1973); RPD Dual 
Response (Vining and Myers 1990); Nonlinear Dual 
Response (Del Castillo and Montgomery 1993) 

5 Hybrid Method A Posteriori Hybrid Combined  
6 Method of Weighted 

Metrics 
A Posteriori Reference Point Combined   

7 Achievement Scalarizing 
Function 

A Posteriori Reference Point Combined  

8 Value Functions A Priori Weighted Combined Weighted Multi-Response Optimization (Osborne 
1997); Desirability Functions (Derringer and Suich 
1980) 

9 Lexicographic Ordering A Priori Objective Ranking Constrained Goal Programming Satisficing Algorithm (Rees, 
Clayton, and Taylor 1985) 

10 Goal Programming A Priori Aspiration Levels  Combined 
or 
Constrained 

Dual Response Goal Programming (Tang and Xu 
2002); Multi-Response Goal Programming (Xu, et al. 
2004) 

11 Interactive Surrogate 
Worth Trade-Off Method 

Interactive Objective Ranking Constrained  

12 Geoffrion-Dyer-Feinberg 
Method 

Interactive Value Function Combined  

13 Sequential Proxy 
Optimization Technique 

Interactive Value Function Constrained  

14 Tchebycheff Method Interactive Weighted, Reference 
Point  

Combined  

15 STEM Method Interactive Weighted, Reference 
Point 

Combined  

16 Reference Point Method Interactive Reference Point Combined   
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# MCDM Method DM Role Type Functional 
Types 

Comparable Multiple Response Surface Methods 

17 Reference Direction 
Approach 

Interactive Achievement 
Function, Reference 
Point 

Combined  

18 Reference Direction 
Method 

Interactive Reference Point Combined  

19 GUESS Method Interactive Reference Point Combined  
20 Satisficing Trade-Off 

Method 
Interactive Weighted, Reference 

Point 
Combined  

21 Light Beam Search Interactive Achievement 
Function, Reference 
Point 

Combined  

22 NIMBUS Interactive Simultaneous 
Improvement 

Combined Nonlinear Pareto Method (Koksoy and Doganaksoy 
2003) 
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Area of Research 

The identified area of research for further development is constrained multiple response 

surface optimization methodologies and improving decision-maker trade-offs. 

  Osborne (1997) investigated the conditions and assumptions associated with combined 

MRSM methods and identified the need for parallel investigation into constrained 

methodologies.  The majority of current multiple response surface methods utilize combined 

methodologies.  The current constrained methods include the dual response method developed 

by Myers and Carter in 1973 and the evolution of additional dual response algorithms and target 

variance methods, and the goal programming satisficing algorithm developed by Rees, Clayton, 

and Taylor in 1985.   

Only recently in the response surface literature has there been methods discussed for 

generating alternative optima for constrained methods from which a decision-maker then looks a 

posteriori and chooses an alternative.  Some methods generate the alternatives by changing the 

values of the constraints (Koksoy and Doganaksoy 2003; Shin and Cho 2005) while others 

change the allowable over or under achievement to target (Jin, Okabe, and Sendhoff 2001; Tang 

and Xu 2002; Kuhnt and Erdbrugge 2004; Xu, et al. 2004).  However, no methods have 

demonstrated the ability to explicitly allow the decision-maker to trade-off among the responses.  

It can be very difficult to correctly assess a decision-maker’s preferences a priori.  Most current 

methods require the ability to accurately develop the decision-makers value function or 

implicitly make assumptions about preferences, most often using evenly weighted responses.      
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Reviewing constrained methods found in the larger area of multi-criteria decision-making 

identified the interactive surrogate worth trade-off algorithm as one potential untapped MDCM 

methodology that has not been implemented in multiple response surface problems.  ISWT uses 

an ε-constraint methodology which guarantees non-dominated solutions and allows for the 

decision-maker to interactively make trade-offs among the responses. 

Opportunity exists to contribute to the body of knowledge of constrained methods for 

multiple response surface optimization and improving the method and understanding of decision-

maker trade-offs.  The following three chapters develop and demonstrate a new approach to 

MRSM that provides explicit opportunities for a decision-maker to incorporate relative 

preferences for alternative solutions.  In Chapter Four, conditions and assumptions associated 

with constrained multiple response optimization methodologies are developed and evaluated.  In 

Chapter Five, a new constrained multiple response surface methodology that is based on the 

ISWT method is developed.  In Chapter Six, the new constrained methodology is demonstrated 

using several diverse MRSM problems from the literature.  A pictorial of the research 

methodology is provided in Figure 3-2. 
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Figure 3-2 Research Methodology 
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CHAPTER FOUR: CONDITIONS AND ASSUMPTIONS FOR 
CONSTRAINED MULTIPLE RESPONSE SURFACE OPTIMIZATION 

METHODS 

 Osborne, Armacost, and Malone (1996) described a partial set of necessary conditions for 

combined multiple response methods.  Osborne (1997) found that independence between the 

factors, independence of the regression errors, independence between response functions, and 

uncorrelated response functions were not required for combined MRSM methodologies.  It was 

found that monotonicity of preference, where for each response objective, an alternative having a 

smaller outcome is always preferred to a larger outcome, and mutual preferential independence, 

where the preference between outcomes is not dependent on the levels of the responses, are 

required.  Furthermore, in order to find the most preferred solution using combined methods, the 

methodology needed to generate non-dominated solutions, preserve convexity, generate 

solutions consistent with the underlying preference structure of the response objective, account 

for different magnitudes in the response objectives, and generate solutions consistent with 

decision-maker preferences.  Preserving convexity is a substantial requirement.  When that does 

not occur, there is a “duality gap” in the objective space and combined methods will not generate 

all non-dominated solutions.  A major challenge in using weighting methods is identifying and 

modeling the decision-maker’s preference structure. 

After developing necessary conditions and assumptions for combined methods, Osborne 

(1997) identified the need for parallel investigation into constrained methodologies.  This chapter 

develops the conditions and assumptions necessary for constrained methods, compares them to 

those required for combined methods, and evaluates the current constrained methods.    
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Development of Conditions and Assumptions for Constrained Methods 

Within the constrained multiple response surface methodologies literature, assumptions 

mentioned include all responses must be quadratic (Myers and Carter 1973; Vining and Myers 

1990), all response functions are nonlinear (Del Castillo and Montgomery 1993), independence 

among the responses (Del Castillo 1996), and independence between the noise factors and 

parameter estimates (Miro-Quesada and Del Castillo 2004b).  Concerns with some of the 

constrained methods are that the method may lead to a stationary point that is not a local optima 

(Vining and Myers 1990), that although solutions are feasible they may not be the global 

optimum (Del Castillo and Montgomery 1993), or that in the case of confidence regions that 

there may be no feasible solutions for some values of α (Del Castillo 1996).  This section will 

explore many of these issues along with those identified by Osborne for combined methods to 

determine their relevance for constrained methods. 

Given the basic foundation of response surface methodologies the following assumptions 

apply to all MRSM methods and will carry throughout the rest of this research: 

• Experimental designs are developed and conducted that contain the controllable 

factors and the response variables to be studied.  As such, the same factors and factor 

settings are used in the development of the response functions for each response 

variable.  However, this does not mean that all factors will be significant and included 

in all response functions. 

• A region of interest is identified.  In many methods an additional constraint is added 

to the problem formulation to identify this region. 
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• A model building technique, such as regression, is used to create the response 

functions. It is assumed that second-order response functions are sufficient for 

describing the functions. 

• It is assumed that at least one response function is to be optimized.   

Regression Assumptions 

 Given that most MRSM techniques utilize regression to fit the second-order response 

model, Osborne (1997) evaluated two of the underlying assumptions of regression: uncorrelated 

errors and independence among the factors.  Uncorrelated errors are important in conducting 

inferential tests due to the potential of creating bias in standard error estimation and inaccuracy 

in the values of the parameters.  However, Osborne indicated that since response surface 

methodology only requires accurate estimates of the response variables and not the parameter 

estimates, RSM can be applied even when errors may be correlated.  Independence among the 

factors, also known as multicollinearity, is also important in inferential testing and can cause 

regression coefficients to have a high standard error.  Osborne indicated that since in most 

designed experiments used in RSM (central composite design or factorial designs) 

multicollinearity is minimized or eliminated, independence among the factors is not an issue 

when applying RSM techniques.  For experimental designs where multicollinearity could be an 

issue, the reader is referred to Mason, Gunst, and Hess (1989) for techniques to eliminate 

multicollinearity.    
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Non-Dominated Solutions 

At the core of any multiobjective optimization problem is the ability to find non-

dominated or Pareto-optimal solutions.  As defined in Chapter One, Pareto-optimal solutions are 

those in which further improvement in one objective cannot be made without detriment to at 

least one other objective.  A decision vector S*∈x  is Pareto optimal if there does not exist 

another S ∈x  such that *)()( xx ii ff ≤  for all mi ,...1=  and *)()( xx jj ff <  for at least one index 

j.  An objective vector is Pareto optimal if the corresponding decision vector is Pareto optimal 

(Miettinen 2001).  Pareto-optimal solutions may also be referred to as “noninferior, efficient, and 

non-dominated” interchangeably (Chankong and Haimes 1983).  Pareto-optimal or non-

dominated solutions may also be classified as those alternatives that are not dominated by 

another alternative where dominated is defined as: x1 dominates x2 if and only if 

)),(())(( 21 xx fvfv ≥  where v is the value function (Chankong and Haimes 1983).   Decision-

maker preferences, to be discussed later, are required to find the “most preferred” solution 

among the set of non-dominated solutions. 

Multi-criteria decision-making literature provides three common approaches to 

developing non-dominated solutions for a multiobjective programming problem using vector 

optimization problem (VOP) theory (Chankong and Haimes 1983).  These approaches are known 

as the weighting problem, the kth-objective Lagrangian problem, and the kth-objective ε-

constraint problem.  The formulation for each approach follows in standard format: 

The weighting problem :)(wP  

∑
=

m

j
jj fwMin

1
)(x  
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Subject to: R∈x   

where, 0≥jw  and 1
1

=∑
=

m

j
jw  

The kth-objective Lagrangian problem :)(ukP  

 Min ∑
≠

+
kj

jjk fuf )()( xx  

 Subject to: R∈x   

where, 0≥ju  for all kj ≠  

The kth-objective ε-constraint problem :)(εkP  

 Min )(xkf  

 Subject to: ,)( jjf ε≤x  ,,...,1 mj = kj ≠  

      R∈x  

 Osborne (1997) discussed the association of these three methods as described by 

Chankong and Haimes (1983) including the theorems that prove that under the convexity 

assumption, all three approaches will provide the same optimal solution for some particular 

values of w, u, and ε.  )(wP  applies to the combined approaches for multiobjective 

optimization.  Therefore, the reader is referred to these two references for additional details.  For 

the purposes of exploring the conditions and assumptions associated with constrained problems, 

only the kth-objective Lagrangian and kth-objective ε-constraint approaches will be reviewed 

further.  The kth-objective Lagrangian approach has the appearance of a combined method and 

Osborne (1997) classified it that way.  However, for this research, the approach is classified as 

constrained because a priori weights are not used to combine the responses. 
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The kth-Objective Lagrangian Problem Pk(u) 

The necessary conditions for noninferiority for the Lagrangian approach are summarized 

by Chankong and Haimes (1983) as: 

Assuming convexity, if ** Xx ∈ and, for any given k,  

i. *)(εkP  is stable; 

ii. all ,jf  ,,...,1 mj =  and ,ig  ,,...,1 pi =  are faithfully convex with 

{ };,...,1,0)( pigR i

n =≤∈= xxX   

iii. the constraint of *)(εkP  satisfies Karlin’s constraint qualification; or 

iv. the constraints of *)(εkP  satisfy the regularity assumption of *x ;  

then there exists kU∈*u  such that *x  solves ).(ukP  

The sufficient conditions for noninferiority for the Lagrangian approach are summarized 

by Chankong and Haimes (1983) as: 

*x  is a noninferior solution of VOP if for some k there exists kU∈*u  such that *x  

solves ),(ukP  and if either 

i. 0>ju  for all ,kj ≠  or 

ii. *x  is the unique minimizer of ).(ukP  

Definition: A problem is said to be stable if )(0kw  is finite and there exists 0>M  such 

that for all ][ ,/)()(, Mww kk <−≠ yy00y  where )(ykw { }kjyff ijjkXx
≠≤−=

∈

Δ

,)(|)(inf εxx  

(Chankong and Haimes 1983). 
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Definition: The faithfully convex assumption holds when all functions ,jf  ,,...,1 mj =  are 

either linear or nonlinear and contain no straight-line segment in their graphs (Chankong and 

Haimes 1983). 

Definition: The constraints of the problem are said to satisfy Karlin’s constraint 

qualification if S is a convex subset of RN; ,jg ,,...,1 pj =  are all convex functions on S; and 

there exists S∈x such that 0)( ≤xjg  for all .,...,1 pj =   This guarantees a saddle point of 

),( uxL  (Chankong and Haimes 1983). 

Definition: The regularity assumption is defined as *x  is a regular point of the constraint 

of the interested problem where a regular point is defined as one where 0=*)(xh  and 

*)(*),...,(1 xx lhh ∇∇ are linearly independent (Chankong and Haimes 1983).   

To test the sufficiency conditions it is easy to see if all .0>ju   Furthermore, if the 

primary objective function is shown to be strictly convex then the solution is unique.    

The kth-Objective ε-Constraint Problem Pk(ε) 

The sufficient conditions for noninferiority for the ε-constraint approach are summarized 

by Chankong and Haimes (1983) as: 

Let kY  be the set of all ε such that )(εkP  is feasible.  Given an ε in ,kY  let *x  be an 

optimal solution of ).(εkP   Then *x  is a noninferior solution of VOP if 

i. *x  solves )(εkP  for every ;,...,1 mk =  

ii. *x  is the unique solution of );(εkP  or 
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iii. The optimal value of )( 0εkP  is strictly greater than *)(xkf  for any .*0 εε ≤   

The necessary conditions for noninferiority are (i) and (iii) above.  However, if condition (ii) is 

true then it is sufficient to prove that *x  is a noninferior solution of VOP.  This then implies that 

conditions (i) and (iii) are also true based on Chankong and Haimes implication diagram, 

proving the necessary conditions. 

 Non-dominated solutions can be found by solving )(εkP  for some ε and k and then 

checking to see if one of the sufficiency conditions hold.  A subset of non-dominated solutions 

can be acquired by varying ε.  However, testing the sufficiency conditions can be difficult.   

Condition (i) requires )(εkP  to be solved for every k to confirm even one non-dominated 

solution.  In other words, for the set of ε found when solving objective k as the primary objective 

including the objective value as ε for k, when rotating each objective into the primary objective 

position, the same solution is found.  In large problems with hundreds of constraints this problem 

could be intractable.  However, in MRSM problems the relatively small number of constraints 

found in most problems make proving condition (i) possible.   

Condition (ii) only requires one )(εkP  to be solved but uniqueness may be difficult to 

prove.  If the primary objective function is strictly convex then the solution is unique.  If the 

primary objective is convex (but not strictly) and twice continuously differentiable then the 

solution is unique if the second-order sufficiency conditions hold.   

Condition (iii) indicates that within a local region, that any *0 εε ≤  will result in a non-

dominated solution.  Although this condition is difficult to check numerically, Lin (1977) has 

established a procedure to do so.   
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Only condition (ii) relies on the convexity of the primary objective function.  Therefore, 

)(εkP  problems can be solved for nonconvex functions using conditions (i) and (iii).  This results 

in the ability to find every non-dominated solution for the constrained problem, regardless of 

convexity.   

Association Between Pk(ε) and Pk(u) 

Chankong and Haimes (1983) provide four methods by which the solution to an ε-

constraint problem ( )(εkP ) is also a solution to the Lagrangian problem ( )(ukP ): 

1. If i) *x  solves *),(εkP  ii) *)(εkP  is stable, and iii) the convexity assumption holds, 

then there exist 
,

0≥ju  for all kj ≠  such that *x  solves ).(ukP  

2. Assume i) all ,jf  ,,...,1 mj =  and ,ig  ,,...,1 pi =  are faithfully convex; ii) X is given 

by { }Spigi ∈=≤= xxxX ;,...,1,0)(   when ∅=S ; and iii) *x  solves ).(εkP   Then 

there exists 
,

0≥ju  for all kj ≠  such that *x  solves ).(ukP   

3. Assume i) the convexity assumption and ii) the constraints of *)(εkP  satisfy Karlin’s 

constraint qualification.  Then if *x  solves ),(εkP  there exists 
,

,0≥ju  kj ≠ such 

that *x  solves ).(ukP  

4. Assume that i) the convexity assumption and ii) the constraints of *)(εkP  satisfy the 

regularity assumption at .*x   Then if *x  solves ),(εkP  there exist 
,

,0≥ju  ,kj ≠  

such that *x  solves ).(ukP  
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Conversely, if *x  solves )(ukP  for some ,kU∈u  then *x  solves ).(εkP   Moreover 

*)(εkP  is stable if the convexity assumption is assumed. 

Lagrange and Karush-Kuhn-Tucker Multipliers  

For the Lagrangian problem, the value of ju  for all kj ≠  is a constant that is “adjusted” 

to solve one or more equality constraints.  These constants are known as Lagrange multipliers.  

Lagrange multipliers are the shadow prices of the constraints and can be used for sensitivity 

analysis.  For problems with both equality and inequality constraints, the result is Karush-Kuhn-

Tucker (KKT) multipliers.  Some sources use the Lagrange multipliers nomenclature for both 

types of problems.  In both cases, the multipliers can be used to determine local trade-offs for the 

active constraints.  The multiplier provides the rate of change of the value of the objective 

function per unit increase in the right-hand-side constant of a constraint (Reklaitis, Ravindran, 

and Ragsdell 1983).    

The following conditions are required for the result of the kth-objective ε-constraint 

problem to be KKT multipliers:  

Let ,f  ,ih  and jg  be twice continuously differentiable.  In a problem 

 Min )(xf  

 Subject to  ,,...,1 ,)( lich ii ==x   

   ,,...,1 ,)( pjdg jj =≤x   

let *x  be a local solution when ,,...,1 ,0 lici ==  and ,,...,1 ,0 pjd j ==  and let *x  

satisfy the following conditions: 
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1. *x  is a regular point of the constraints 

2. Second-order sufficiency conditions are satisfied at *x  

3. There is no degenerate binding constraint at *x . 

Then there is a continuously differentiable vector-valued function x()  defined on a 

neighborhood of (0,0)  in pl RR X  such that *xx(0,0) =  and such that for every d)(c,  in 

a vicinity of ,(0,0)  d)x(c,  is a strict local solution.  Moreover 

  ][ ,,...,1 ,/, licf ii =−=∂∂ λ)0x(0   

  ][ ,,...,1 ,/, pjdf
ijj =−=∂∂ μ)0x(0  (Chankong and Haimes 1983). 

 Definition: Second-order sufficiency conditions are satisfied for *x  if  

• ,* bAx =  

• ,0*)( =∇ xfTZ  and 

• ZZT *)(2 xf∇  is positive definite, where Z is a basis matrix for the null space of 

A, then *x  is a strict local minimizer of f over { }bAx =:x  (Nash and Sofer 

1996).   

Definition: A degenerate binding constraint is defined as one for which the Karush-

Kuhn-Tucker multiplier is not strictly positive (Miettinen 1999).  

Summary of Noninferior Solutions 

The chart below summarizes the method to use for finding noninferior solutions based on 

the types of response functions (i.e., convexity).  Furthermore, it indicates the type of multipliers 

to use to conduct trade-offs among the objectives.   
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Are all 
objectives 
convex?

Use Lagrangian Method
Or

Use ε-Constraint Method

Use ε-Constraint Method
Utilizing Second 

Sufficient Condition

Use ε-Constraint Method
Utilizing First and Third 

Sufficient Conditions

Yes

Is the Primary 
Objective Strictly 

Convex?

Yes

No

No

Use Lagrange Multipliers
To Conduct Trade-Offs

Use Karush-Kuhn-Tucker
Multipliers To 

Conduct Trade-Offs

Weighted method could be used, but trade-offs not provided

 

Figure 4-1 Methods for Finding Noninferior Solutions 

Transformation of the Response Functions 

In combined approaches to multiobjective optimization, Osborne (1997) showed that 

individual response functions must be transformed to commensurable units prior to their 

combination.  With constrained methods, the form of the response function is not an issue 

because multiple functions are not combined.   
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Linear Dependence Between Response Functions 

For the constraint method, consideration of linear dependence among the constraints 

needs to be considered.  For linear programming problems, redundant constraints are usually 

removed (Nash and Sofer 1996).  Miettinen (1999) defines an objective as redundant if “it is not 

in conflict with any other objective function.”  It is suggested that linear dependence be checked 

for linear problems.  Miettinen suggests that removing redundant objectives may make it easier 

on the decision-maker.  However, determining the redundant constraint to be removed is based 

on the value of the right-hand-side.  As described above, to find all non-dominated solutions, the 

value of the right-hand-side of each constraint objective would be systematically changed.  Thus, 

the constraint that could be considered redundant may change as the values of the right-hand-side 

changes.  The trade-offs that the decision-maker would be required to make would be impacted.  

To demonstrate, a counter-example is provided.   

Minimize  211 3xxR +=  

Subject to:  422 212 ≥+= xxR  

  244 213 ≥+= xxR  

  0, 21 ≥xx  

 Solution (Scenario 1): .2;0,2 121 === Rxx   In this scenario 2R  is the binding constraint 

and 3R  is the redundant constraint that would have been removed. 

 Now, let the value of the right hand side change to 22 ≥R  and .163 ≥R   The solution to 

Scenario 2 is .4;0,4 121 === Rxx   Conversely, in this scenario, 3R  is the binding constraint and 
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2R  is the redundant constraint that would have been removed.  Figure 4-2 illustrates the two 

scenarios. 
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R1 = 1x1+3x2

Scenario 1
(2,0)  

Figure 4-2 Linear Dependency 

 
Given the above information about decision-maker preferences and the fact that the 

binding constraint is dependent on the right-hand-side values, it is not recommended to remove 

what may appear to be redundant responses.   

Correlation Between Response Functions 

Miettinen (1999) suggested the correlation of the objective functions be checked for 

nonlinear problems.  If objectives are strongly positively correlated then they may be redundant 

and should be considered for removal from the problem.  Negatively correlated responses would 

not be removed.  Miettinen suggests that removing redundant objectives may make it easier on 

the decision-maker.  However, as shown above, determining the redundant constraint to be 
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removed would be based on the value of the right-hand-side.  See the section above regarding 

linear dependency between response functions for a counter-example.  The same argument can 

be made for nonlinear problems.  Further, Osborne (1997) demonstrated that correlation between 

pairs of response functions varies dependent on an arbitrary selection of design parameter values.  

Therefore, it is not recommended to remove what may appear to be redundant responses based 

on correlation values in nonlinear problems.    

Scaling Factors 

Since response functions are not combined in constrained methods, the original 

objectives do not need to be scaled into normalized units.  Utilizing the same example as in the 

section above, it is shown that multiplying an individual objective by 1000 has no impact on the 

solution.   

Minimize  211 30001000 xxR +=  

Subject to:  422 212 ≥+= xxR  

  244 213 ≥+= xxR  

  0, 21 ≥xx  

 Solution: .2000;0,2 121 === Rxx   When the primary objective to be minimized is 

multiplied by 1000, the solution remains the same and only the value of the objective function 

changes.   
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Minimize  211 31 xxR +=  

Subject to:  400020002000 212 ≥+= xxR  

  200040004000 213 ≥+= xxR  

  0, 21 ≥xx  

Solution: .2;0,2 121 === Rxx   When the constraint objectives are multiplied by 1000, 

the solution and the value of the primary objective function remains the same as in the original 

problem. 

Therefore, it is concluded that the objectives can remain in their original units.  Further, it 

is easier for decision-makers to make trade-offs when the objectives are in their original units. 

Decision-Maker Preferences 

In order to determine the most preferred solution, decision-maker preferences must be 

considered.  In constrained multiple objective problems, the decision-maker has two types of 

decisions that are usually made prior to the start of the optimization procedure.  First, the 

decision-maker chooses the primary objective or objective to be optimized (in some methods all 

objectives must be ranked in importance).  Second, the decision-maker puts some targets or 

bounds on all of the secondary, or constraint, objectives.  The additional effort required by the 

decision-maker depends on the method used to elicit the decision-maker’s preferences.  This is 

discussed in the following section.   
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Eliciting Decision-Maker Preferences  

Somewhere in the process, the decision-maker’s preferences must be taken into 

consideration to select one of the solutions in the Pareto optimal solution set as “best.”  A priori 

methods capture the preferences of the decision-maker before beginning the optimization 

method.  A posteriori methods generate a set of Pareto optimal solutions from which the 

decision-maker chooses a preferred solution.   Interactive methods provide a platform for 

decision-makers to provide input throughout the optimization process.  The methods differ in the 

optimization function and the amount of information required of the decision-maker (Miettinen 

1999).   

 The advantage to a priori methods is that the process tends to be simple because the 

problem is usually reduced to a single-objective problem using a combined approach.  However, 

the disadvantage is that it is often difficult for the decision-maker to provide the necessary 

preference information.  It has been argued that value functions and utility functions should not 

be used because the decision-maker is required to make hypothetical choices between 

alternatives.  It is also difficult for the decision-maker to assess the interpretation of scaling 

constants.  Furthermore, preferential independence and utility independence are required for the 

formulation of the optimization function (Mollaghasemi and Pet-Edwards 1997).  

 The advantage to a posteriori methods is that the decision-maker does not need to be able 

to provide preference information up front.  However, the disadvantages are that most all or all 

of the non-dominated solutions should be found and then presented to the decision-maker to 

select the preferred solution, the algorithms are often complex for both the analyst and the 

decision-maker, many problems are too large for this method to be efficient, and problems with a 
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large number of non-dominated solutions may be difficult for the decision-maker to choose the 

“best” alternative.  A posteriori methods are considered to place the most cognitive burden on the 

decision-maker and is the least popular class of methods (Mollaghasemi and Pet-Edwards 1997). 

 The advantages to interactive methods are that they can require less information from the 

decision-maker, the decision-maker is involved throughout the problem, and the information can 

be obtained incrementally.  These methods require fewer assumptions than a priori methods.  

However, many of these procedures are more complicated and can be time consuming for the 

decision-maker (Mollaghasemi and Pet-Edwards 1997).   

Preference Structure 

When utilizing a constrained approach, monotonicity of preference and preferential 

independence among the responses are not required since the response functions are not 

combined.  Monotonicity is acquired if, for each response objective, an alternative having a 

smaller outcome is always preferred to a larger outcome (Osborne 1997).  Preferential 

independence is acquired if the preference between outcomes is not dependent on the levels of 

the responses.  For interactive or a posteriori methods, as well as a priori methods such as goal 

programming when lexicographic ordering is used, monotonicity of preference is not required.    

Conclusions 

The following conditions and assumptions are required for a constrained method to find 

the most preferred non-dominated solution: 
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• Generate non-dominated solutions 

• Generate solutions consistent with decision-maker preferences among the response 

objectives. 

Additionally, if a Lagrangian constrained method is used, the following additional condition is 

required:   

• Convexity must be preserved 

 The following conditions and assumptions are not required for constrained methods in 

order to find the most preferred non-dominated solution: 

• Independence between the factors 

• Independence of the regression errors 

• Independence between the response functions 

• Uncorrelated response functions 

• Monotonicity of preference 

• Mutual preferential independence 

• Account for different magnitudes in the response objectives. 

The following section compares these requirements against those required for combined 

methods. 

Comparison of Conditions and Assumptions for Constrained vs. Combined Methods 

 Table 4-1 below provides a summary of the conditions and assumptions necessary for 

constrained versus combined methods.  The conditions and assumptions for combined methods 



83 

were obtained from the work of Osborne (1997).  It is easily seen that constrained methods 

require fewer conditions and assumptions.   

Table 4-1 Comparison of Required Conditions and Assumptions 

 Constrained Methods Combined 
Methods 

Conditions/Assumptions ε-Constraint Lagrangian Combined 
Independence between the factors No No No 
Independence of the regression errors No No No 
Independence between the response functions No No No 
Uncorrelated response functions No No No 
Monotonicity of preference No No Yes 
Mutual preferential independence No No Yes 
Account for different magnitudes in the response objectives No No Yes 
Requires convexity to generate all non-dominated solutions No Yes Yes 
Generate non-dominated solutions Yes Yes Yes 
Generate solutions consistent with decision-maker 
preferences among the response objectives 

Yes Yes Yes 

Advantages and Disadvantages of a Constrained Approach 

Advantages to the constrained approach are that it can theoretically generate all of the 

non-dominated solutions and it can be easier for a decision-maker to rank order objectives and 

provide upper bounds or aspiration levels on the original objectives.  With the ε-constraint 

method it is possible to find every non-dominated solution by changing the value of the upper 

bounds, or right-hand-sides, of the constraints and rotating in each of the objectives as the 

primary objective.  The disadvantage to this approach is that it can be labor intensive to find the 

non-dominated solutions since you must either show that the solution holds for all objectives or 

show that the solution is unique.  It may also be difficult to determine appropriate values for the 

upper bounds (Chankong and Haimes 1983; Miettinen 1999).   However an interactive version of 

the method may reduce the cognitive burden on the decision-maker.     
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Conversely, the combined approach does not guarantee all of the non-dominated 

solutions, particularly if the problem is nonconvex, and it may be difficult for the decision-maker 

to assign appropriate and consistent weights or preferences.  As the number of responses 

increases, it would become increasingly more difficult for the decision-maker to apply consistent 

weights and increases the burden on the decision-maker as to the number of pairwise 

comparisons that would need to be made.  Furthermore, with the weighting approach, the 

objectives may have to be scaled or normalized before being combined.  This can be difficult for 

the decision-maker to interpret the results of a weighted and transformed objective, particularly 

when conducting trade-offs among the non-dominated solutions.  As the number of responses 

increases, it would become even more difficult for the results of the weighting approach to be 

interpreted (Chankong and Haimes 1983; Miettinen 1999).   

Evaluation of Current Constrained Methodologies 

The eight constrained methods discussed in Chapter Two will be evaluated against the 

conditions and assumptions defined above. A brief summary of the methodologies along with the 

evaluation of the methods follow. 

Lagrangian Methods 

 Four of the current constrained methods utilized the Lagrangian constrained method: 

Dual Response, RPD Dual Response, Process Variance Dual Response, and Bias-Specified 

Robust Design.   
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Dual Response 

Dual response is a method introduced by Myers and Carter (1973) by which a set of 

optimal parameter settings are found by optimizing a primary response subject to the constraint 

of a secondary response.  A secondary constraint may be applied to keep the solution within a 

region of interest.  Lagrange multipliers are used to find the optimum values of the parameters. 

Myers and Carter restrict this method to only quadratic functions of the responses.  

However, it is more appropriate to restrict the method to functions that are shown to be convex.  

Further, the region of interest must be selected appropriately, or the method may not generate 

non-dominated solutions.  The method does allow for decision-maker preferences with the 

selection of the primary response and the target for the secondary response.  However, the 

method provides for a single solution point and does not specify the use of trade-offs between the 

responses that may lead to a “better” solution for the decision-maker.    

RPD Dual Response 

Vining and Myers (1990) utilized the dual response methodology to solve the three goals 

identified by Taguchi to achieve the mean response objective and minimize variance.  For the 

target-is-best goal, the primary response is to minimize the variance and the mean target is the 

secondary response.  For the other two goals, the mean is the primary response while the 

variance is the secondary response.    

Similar to Myers and Carter, Vining and Myers restrict this method to only quadratic 

functions of the responses.  However, it is more appropriate to restrict the method to functions 
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that are shown to be convex.  Further, the region of interest must be selected appropriately, or the 

method may not generate non-dominated solutions.  The method does allow for decision-maker 

preferences with the selection of the primary response and the target for the secondary response.  

The authors suggest running the optimization for multiple targets to provide for a set of solutions 

from which the decision-maker can select the best compromise solution.  However, the method 

generates only a subset of solutions and does not discuss utilizing trade-offs.  Therefore, the 

decision-maker may not select the most preferred solution. 

Process Variance Dual Response 

Further, Miro-Quesada and Del Castillo (2004a) and Miro-Quesada and Del Castillo 

(2004b) provided a revised form of the variance response for the dual response problem that 

takes into account both the variability created by the randomness of the noise factors and the 

uncertainty in the parameter estimates.   

This method is subject to the convexity assumption.  Furthermore, this method is only 

used for problems where the primary response is to reduce the variance.  The decision-maker 

only determines the bounds on the mean response and the bounds have to be normalized for this 

procedure.  This makes it more difficult for the decision-maker to understand the results.  Only 

one solution is generated. 
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Bias-Specified Robust Design 

Shin and Cho (2005) addressed the “target-is-best” goal by developing the BSRD model 

that allows for some process bias.   

Similar to the Process Variance Dual Response Method, the BSRD method only 

addresses the problem where the primary objective is to minimize the variance.  The decision-

maker does specify a target for the mean and the amount that the mean can vary from the target.  

The authors do discuss the possibility of using Lagrange multipliers to allow for further trade-

offs among the responses, providing additional flexibility for the decision-maker to find the best 

compromise solution.  However, since the Lagrangian method is used, the response functions 

must be convex. 

ε-Constraint Methods 

Four of the current constrained methods utilized the ε-constraint method: Nonlinear Dual 

Response, Direct Function Minimization, Constrained Confidence Regions, and Goal 

Programming Satisficing Algorithm.   

Nonlinear Dual Response 

Del Castillo and Montgomery (1993) developed a nonlinear programming approach to 

solve the same Taguchi goals that Vining and Myers addressed, as well as having the flexibility 
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to solve other types of problems including mixture experiments.  Del Castillo and Montgomery 

suggested using the GRG algorithm to solve the problems.    

This method is not restricted to the convexity condition and will generate non-dominated 

solutions.  The decision-maker process includes determining the primary response and targets or 

bounds on the secondary responses.  However, this method does not discuss utilizing trade-offs 

to find a potentially preferred solution to those generated based on the selections that the 

decision-maker defines a priori. 

Constrained Confidence Regions 

To address the problem of sampling error, Del Castillo (1996) presented the idea of 

finding confidence regions for quadratic responses or confidence cones for linear responses.  For 

quadratic responses, the Lagrangian function is maximized for each response, subject to the 

Karush-Kuhn-Tucker conditions utilizing the GRG algorithm.  For linear responses, Box and 

Draper’s methodology of finding confidence cones is utilized.  Then a primary response is 

optimized subject to the confidence regions and confidence cones found in the previous step.      

This method is not restricted to the convexity condition and will generate non-dominated 

solutions.  The decision-maker determines the bounds on the secondary responses and can select 

the confidence level used to generate the solutions.  The author suggests running the 

optimization at varying levels of confidence to generate multiple solutions that the decision-

maker can choose from.   However, this method only generates a subset of the solutions and does 

not guarantee the “most” preferred solution. 
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Direct Function Minimization 

Copeland and Nelson (1996) proposed a variation to the mean square error criterion, a 

direct function minimization, that places a restriction as to how far the mean can deviate from the 

target and recommended using the simplex procedure of Nelder and Mead (1965).   

This method is not restricted to the convexity condition and will generate non-dominated 

solutions.  The decision-maker process includes determining the primary response and targets or 

bounds on the secondary responses.  However, this method only generates one solution and does 

not discuss utilizing trade-offs to find a potentially preferred solution. 

Goal Programming Satisficing Algorithm 

Rees, Clayton, and Taylor (1985) combined the techniques of response surface 

methodology and goal programming by introducing the use of the satisficing algorithm.  This 

methodology requires that the decision-maker rank the priority of the responses and provide a 

target or minimum level of attainment required for each response or goal.  The satisficing 

algorithm, utilizing the path of steepest ascent, first optimizes the highest ranking response.  

Then the algorithm systematically attempts to find the optimal solution for each of the other 

responses within the region of interest that satisfies the lower priority goals without violating all 

higher priority goals.     

This method is not restricted to the convexity condition and will generate non-dominated 

solutions.  The decision-maker ranks the priority of the responses and selects target levels for the 
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responses.  This method does not provide for evaluating trade-offs among the responses.  It is 

assumed that the optimal solution generated by high priority goals is the preferred solution.   

Summary 

The largest gap identified in the current set of constrained methods is the ability to find 

the decision-maker’s preferred solution.  All of the methods provide for decision-maker input.  

However, most methods were limited to only a priori input and did not allow for evaluation of 

trade-offs among the responses.  Table 4-2 below provides a summary of the existing constrained 

methods. 
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Table 4-2 Summary of Existing Constrained Methods 

Method Problem 
Type 

Requires 
Convexity 

Generates non-
dominated 
solutions 

Type of 
DM 

process 

Trade-offs DM’s best 
solution 

guaranteed 
Dual Response (Myers 
and Carter 1973) 

)(ukP  Yes Yes, if region of 
interest selected 

appropriately 

A priori No No 

RPD Dual Response 
(Vining and Myers 
1990) 

)(ukP  Yes Yes, if region of 
interest selected 

appropriately 

A priori Subset by 
modifying 

targets 

No 

Nonlinear Dual 
Response (Del Castillo 
and Montgomery 1993) 

)(εkP  No Yes A priori No No 

Direct Function 
Minimization 
(Copeland and Nelson 
1996) 

)(εkP  No Yes A priori No No 

Constrained Confidence 
Regions (Del Castillo 
1996) 

)(εkP  No Yes A priori Subset by 
modifying 
confidence 

levels 

No 

Process Variance Dual 
Response (Miro-
Quesada and Del 
Castillo 2004b) 

)(ukP  Yes Yes A priori No No 

Bias-Specified Robust 
Design (Shin and Cho 
2005) 

)(ukP  Yes Yes A priori Could use 
Lagrange 

multipliers 

No 

Goal Satisficing 
Algorithm (Rees, 
Clayton, and Taylor 
1985) 

)(εkP  No Yes A priori No No 

 

Suggested Guidelines for Methodology Development 

Although not required, the following section provides some guidelines from the literature 

to consider in the development of the new methodology.  Two classifications for multi-criteria 

decision-making provide insight into problem and technique characteristics. 



92 

Classification Proposed by Mollaghasemi and Pet-Edwards 

Mollaghasemi and Pet-Edwards (1997) proposed a classification for multi-criteria 

decision-making problems based on the characteristics of the decision problem, the decision-

maker, and the solution technique.  Characteristics of the decision problem include the size and 

complexity of the problem (i.e., number of objectives) and the amount of uncertainty present in 

the problem.  Characteristics of the decision-maker include the ability or desire of the decision-

maker to articulate types and amounts of preference information.  Characteristics of the solution 

technique include ease of use, in this situation the cognitive burden on the decision-maker; time 

required to solve the problem (interaction time with the decision-maker); accuracy (guarantees a 

non-dominated solution and whether it converges to an optimal or satisficing solution); 

restrictiveness of the assumptions which could include types/number of assumptions, conditions 

needed, and types of problems that can be solved using the method.   

Classification Proposed by Chankong and Haimes 

Chankong and Haimes (1983) use a classification structure based on the decision 

situation or problem structure and the decision rule or preference modeling.  Furthermore, they 

subclassify methods based on the inputs required and the output of the method.  Specifically, the 

decision situation considers the types of decision variables, the level of measurement, state of 

nature, set of alternatives, and types of relationships.  The decision rule can be defined by global 

preference functions, priorities, weights, goals, and ideals, or trade-offs and preferences.  Inputs 

include data requirements such as types, amounts, and accuracy, the manner of the decision-
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maker participation, and the number of decision-makers.  The output can be a noninferior best-

compromise solution, an inferior best-compromise solution, or a ranked list of alternatives. 

Furthermore, Chankong and Haimes suggest an ex post evaluation that includes how the 

method is received by users including the ability of the method to produce a result that reflects 

the decision-maker’s preferences, ability of the method to allow the decision-maker to learn 

more about the system and consequences of alternatives, knowledge required by the analyst, 

knowledge required from the decision-maker, and ease of use. 

Other Potential Guidelines 

Additional characteristics found in the literature such as robustness, reliability, and ability 

to locate Pareto optimal solutions are discussed.  Potential guidelines to address the short-

comings of current methods, such as measuring sensitivity to trade-offs and weights are also 

discussed.  

Robustness 

A definition of robustness specifically for multiple response surface optimization was not 

found.  In the response surface literature, two types of robustness are discussed: statistical 

robustness and robust experimental design.  Two types of robustness are commonly found in 

statistics.  The first relates to the importance of “robustness or insensitivity of many commonly 

used statistical procedures to deviations from theoretical normality” (Box, Hunter, and Hunter 

1978) which Box and Tiao (1973) call criterion robustness.  The second refers to the ability of 
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statistical techniques to “perform fairly well even if the actual probability law is not exactly the 

same as the one assumed” (Larson 1982) or in other words robustness to departures from 

assumptions which Box and Tiao (1973) call inference robustness. 

Robust parameter design “entails designing the system so as to achieve robustness 

(insensitivity) to inevitable changes in the noise variables” (Myers and Montgomery 1995).  

Experimental design methods can be used to design or develop the best product or process.  

Montgomery defines best as “a product or process that is robust or insensitive to uncontrollable 

factors that will influence the product or process once it is in routine operation” (Montgomery 

1991). 

While the statistical definitions of robustness relate more to the theoretical assumptions, 

the application-oriented definitions such as robust design relate to the ability of changes, albeit 

noise factors or parameters, to have little or no impact on the final performance of the product.  

Box (1999) indicated that applications of robust designs are to minimize the variation in 

the system or to minimize the impact of the variation of environmental variables on the system.  

He indicates split plot designs can be used for the second application.  Further, Myers, et al. 

(2004) indicated that the areas of design that impact robustness are model misspecification, 

outliers, and errors in control.  Goupy (2005) pointed out that finding robustness relates to 

finding an experimental region where the response is not sensitive to changes in the factors 

whereas checking robustness is to verify that a solution is not sensitive to changes in the factors.   
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Reliability 

Peterson (2004) proposed a Bayesian approach to analyze the reliability of models that 

can be used in conjunction with many of the existing response surface methods.  The approach 

considers the correlation structure, the variability of the process, and the model parameter 

uncertainty.  The process variability and model parameter uncertainty is dependent on the sample 

size and type of experimental design.  Peterson suggested conducting a preliminary optimization 

and calculating the level of reliability to determine if an increase in sample size might reduce 

variability and thus increase the reliability.   

Ability to Locate Pareto Optimal Solutions 

Recently, new metrics/performance measures for multiobjective optimization have been 

proposed.  These include a measurement of the ability of the method to produce Pareto optimal 

solutions, the size of the largest hole in the distribution of solutions along the Pareto front, 

spacing metric which captures the ability of the method to provide a representative or well-

diversified set of non-dominated solutions, a generalized distance measure that looks at how far 

one solution is compared to another, and a progress measure which is the ratio of the number of 

iterations taken divided by the number of non-dominated solutions found (Collette and Siarry 

2005; Suman 2005).   
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Sensitivity to Trade-Offs and Weights 

For each set of trade-offs as defined by the primary response and bounds or targets on 

secondary responses in constrained approaches and the specific set of weights used in a 

combined approach, one solution is found.  Similar to the discussion above concerning 

robustness, given all other preferences being equal, a decision-maker would prefer a solution that 

is less sensitive to variability to changes in the decision variables.  In other words, a solution that 

provides the same objective value for a larger set of trade-offs or weights is preferred over a 

solution that has the same objective value for a smaller set of trade-offs or weights. 

Summary of Suggested Methodology Characteristics 

Robustness and reliability, as defined above, are most relevant to the experimental design 

and development of the response functions.  As the scope of this research is focused on the 

optimization process of response surface methodologies, these potential characteristics do not 

need to be considered. 

However, the structure of the methodology and the preferences of the decision-maker are 

very relevant to the optimization process.  Guidelines reflective of the decision-maker process, 

the structure of the methodology, and the solution are recommended.  Table 4-3 below 

summarizes the recommended characteristics to consider in the development of the new 

methodology. 
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Table 4-3 Summary of Recommended Guidelines 

Measure Target 
Decision-Maker Process  
     Ease of use High 
     Cognitive load Low 
     Reflects decision-maker preferences High 
          Explicit/implicit preferences Explicit 
     Incorporates trade-offs among solutions Yes 
Structure of Methodology  
     Response/objective limitations Low 
     Ability to find all non-dominated solutions High 
     Number of iterations to find the “best compromise solution” Low 

Conclusions 

This chapter discussed the development of conditions and assumptions associated with 

constrained multiple response surface optimization methodologies and the advantages of 

utilizing a constrained method versus combined method to solve multiple response surface 

optimization problems.  Eight constrained multiple response surface methods were evaluated 

against the required conditions and assumptions.  The largest gap existed in the ability to find the 

decision-maker’s preferred solution.  Guidelines on characteristics to consider in the 

development of a new methodology were also provided.   

The following chapter describes the development of a new constrained multiple response 

surface methodology to improve the decision making process and address the preferences of the 

decision-maker.  This approach seeks to integrate relevant approaches from decision theory and 

constrained nonlinear optimization to generate a robust approach to MRSO that will truly capture 

the decision-maker preferences. 
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CHAPTER FIVE: DEVELOPMENT OF A NEW CONSTRAINED 
MULTIPLE RESPONSE SURFACE METHODOLOGY 

This chapter involves the development of a new constrained multiple response surface 

methodology that aligns with the required conditions and assumptions and considers the 

recommended characteristics. 

Recommended Set of Conditions and Characteristics for Constrained Methods 

The following list provides a summary of the conditions and assumptions necessary for 

solving constrained multiple response surface optimization problems along with a set of 

recommended characteristics.  This list will be used in the development of a proposed new 

constrained method for solving multiple response surface optimization problems. 

Required conditions/assumptions: 
 

• Generate non-dominated solutions 

• Generate solutions consistent with decision-maker preferences among the response 

objectives 

• Preserve convexity (if Lagrangian constrained method is used). 

Recommended characteristics: 

• High ease of use 

• Low level of cognitive burden 

• Reflects decision-maker preferences 

o Uses explicit preferences 
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o Allows for trade-offs among solutions 

• Few limitations on the type and number of responses/objectives  

• Ability to find all non-dominated solutions 

• Low number of iterations to find the “best compromise solution” 

This set of conditions and characteristics will be utilized in the development of a new 

constrained method.  Ideally, the method would not require convexity, be able to generate all 

non-dominated solutions, and accurately reflect decision-maker preferences in an easy to use, 

low cognitive burden method.  This chapter develops a new constrained multiple response 

surface optimization methodology.  The use of the interactive surrogate worth trade-off is 

explored as a viable method to extend to multiple response surface optimization problems.   

Interactive Surrogate Worth Trade-Off 

ISWT was identified in Chapter Three as a possible method that had yet to be extended to 

MRSO problems.  The ISWT is an expansion of the surrogate worth trade-off (SWT) 

methodology.  In the SWT method, a set of alternative solutions is generated and the decision-

maker is asked a posteriori to determine the worth of the trade-offs between the responses for 

each solution.  These worth values are used in a regression analysis to provide a final solution.  

The interactive surrogate worth trade-off (ISWT) method removes the need for generating a set 

of alternative solutions and incorporates the decision-maker throughout the process to conduct 

trade-offs that lead to the next solution point.  The ISWT begins with the ε-constraint method by 

having the decision-maker select one objective to optimize and provide upper bounds on the 

other objectives.  The problem is solved and a Pareto optimal solution is presented to the 
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decision-maker.  The decision-maker then conducts a “worth assessment” to determine how 

(much) the decision-maker would like to make a trade-off between the primary response and 

each secondary response where the value of the primary response changes by the value of the 

Lagrange multiplier for a one unit increase in value of the secondary response.  An integer worth 

scale between -10 and 10 is used to indicate the relative strength of the preference, where 10 

indicates a strong preference to make the trade-off, 0 indicates satisfaction with the current 

solution and the desire to make no trade-offs and -10 indicates a strong preference to make the 

opposite trade-off.  The worth values are used to update the right-hand-side of the secondary 

response and then the problem is re-optimized.  The process continues until the decision-maker 

is satisfied with the solution.  

ISWT Algorithm (Chankong) 

The following outlines the steps utilized by the ISWT algorithm developed by Chankong 

(1977) to solve a multiobjective optimization problem that can be defined as follows: 
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Step 0: initialization.  Select kf  as a primary objective.  Guess an initial 0ε . 

• Select one objective to be the primary. 

• For each ,,...1 mj =  find { }Xxx ∈= |)(minmin jff . 

• Select an initial min

0

jj f>ε  for all .kj ≠  

Step 1: local noninferior solution.  With the current ,iε  formulate )( i

kP ε  and solve for 

(strict) local solution .ix    

• Solve )( i

kP ε . 

• Check regularity assumption and second-order sufficiency condition, if 

possible. 

• Calculate mjf i

j ,...,1 allfor  )( =∇ x and i

s sg Ix ∈∇ for  )( 0  where 

{ }psgs i

s

i ,...,1,0)(| === xI . 

• Find }0,,1|{ >≠≤≤= i

kj

i

k kjmjjJ λ . 

• Estimate . allfor  )(/1 i

k

i

j

i

j Jjfc ∈= x  

Step 2: trade-off information.  Obtain all necessary trade-off information at this point. 

• If },1|{ kjmjjJJ k

i

k ≠≤≤==
Δ

, then go to Step 3(a). 

• Otherwise, check whether mjf i

j ,...,1 allfor  )( =∇ x  and ii

s sg Ix ∈∇ for  )(  are 

linearly independent using the Gaussian elimination method. 

o If yes, then solve )( i

kP ε , where i

j

i

j εε =  for all i

jJj∈  and j

i

j

i

j δεεε −=  

for some small 0>jδε  for all i

kk JJj −∈ , to get )( ii xx ε=  and 0>i

kjλ  

for all .kj ≠   Go to Step 3(a). 
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o If no, then calculate 
l

ε
ε

∂
∂ )( ix  for all i

kJ∈l  and compute 
l
ε
ε

∂
∂

∇
)(*)(

i
i

j

xf x  

for each i

kk JJj −∈  and i

kJ∈l .  Go to Step 3(b). 

Step 3: worth assessments.  Exchange information obtained from step 1 with the 

decision-maker and in return obtain the worth values i

kjW  for kj ≠  from the 

decision-maker. 

(a) Case where 0>i

kjλ  for all .kj ≠  

• For each k≠l , ask the decision-maker, “Given that )( i

jj ff x=  for all 

,,...,1 mj =  how much would you like to decrease kf  by i

kjλ  units for one 

unit increase in 
l

f  and all other jf  remains unchanged?”  Decision-maker 

should give i

kjW  for all .kj ≠  

(b) Case where some 0=i

kjλ . 

• For each i

kJ∈l , ask the decision-maker, “Given that )( i

jj ff x=  for all 

,,...,1 mj =  how much would you like to decrease kf  by i

kjλ  units for each 

i

kk JJj −∈ , jf  changes by 
l
ε
ε

∂
∂

∇
)(*)(

i
i

j

xf x  units per one unit increase in 

l
f ?”  Decision-maker should give i

kjW , 
i

kJj∈ . 

(c) Worth assessments represent the preference of the decision-maker to make the 

trade-off in question.  The decision-maker is asked to assign an integer 

between -10 and 10 where a large positive value indicates a strong preference 

to make the trade-off and a large negative number indicates a strong 
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preference to make the opposite trade-off.  A value of 0 indicates indifference 

to the trade-off. 

Step 4: step size.  

• The step size determines how far we should move in the direction of 

improvement to find the next solution point. 

• If 0≠i

kjW  for some i

kJj∈  (or for some kj ≠ ), then },...,min{ 1

i

Mm

i

M

i

M ααα =  

where 0/))(( min <−= i

j

i

jjMj Qxffα ; any large number if 0≥i

jQ   

and 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∑ =−

∑
−∈

∂
∂

∇

∈

=

∈

∈

i
kJ

ii

k

i

k

i
kJ

i

kk

ii

k

i
i

j

i

k

i

j

i

kj

i

j

cW

JJjcWxxf

JjcW

Q

l
lll

l

ll

l

k.jfor  )/(

 allfor  )/)()(*)((

 allfor  /

λ

ε
ε

  

• Choose iα  to be a small number between 0 and i

Mα  or by drawing i

j

i

j Qf α+  

against α for all .,...,1 mj =   Ask the decision-maker to estimate the best iα  

from the diagram so that iα  solves ),...,(max 11
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 where U is 

a utility function defined on { }Xxx ∈= |)(fF  and is assumed to exist and is 

known only implicitly to the decision-maker. 

Step 5: termination.  Check stopping criteria and if not satisfied, proceed. 

• If ) if  all(or k j allfor  0 i
kk

i
k

i
kj JJJjW ≠∈≠= …STOP, or 

• If ) some(or k j somefor  0 i
k

i
kj JjW ∈≠≠ , do the following: 
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a. Check whether i

Mα  or the usable iα  (i.e., one that makes )( 1+i

kP ε  feasible) 

is less than ∑
∈ i

kJj

i
kjW ||/δ  where δ is some small positive number.  If NO, 

formulate )( 1+i

kP ε  and continue to Step 6.  If Yes, do (b), 

b. Select new slopes for some or all of |))(|/)( i

j

i

kj

ii

kj

i

j xfWcW =γ  to get a new 

id  and go back to (a).  Repeat (a) or (b) at most 10 times (say) if no new 

usable direction can be found before then…STOP, a constrained local 

maximum has been found. 

Step 6: update.  Use i

kjW  to update 1+→ ii εε  and return to step 1.  

• Put i

k
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• Go to step 1. 

Reasons for Utilizing the ISWT Algorithm 

The reasons the ISWT algorithm was considered for the response surface problem can be 

summarized as follows: 

• ISWT uses the ε-constraint methodology so it is possible to find all non-dominated 

solutions regardless of convexity of the response functions. 

• The interactive nature of the algorithm means that all solutions do not need to be 

found.  The process stops when the decision-maker is “satisfied” with the solution. 
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• Since ISWT is not an a priori method, it does not require a constant preference 

structure nor does the decision-maker need to completely define their preference 

structure in advance. 

• Characteristics of the ISWT solution technique as classified by Mollaghasemi and 

Pet-Edwards (1997) are: 

o Ease of Use: low learning curve and low to moderate cognitive burden on the 

decision-maker 

o Time and Effort: Moderate interaction time, depending on problem size 

o Accuracy: Non-dominated solution is guaranteed 

o Assumptions: Nonrestrictive 

• Decision-makers can make partial trade-offs requiring only that the decision-maker 

can determine the worth of a trade-off for one “constraint” objective compared to the 

primary objective at a time. 

• Objectives can stay in original units making it easier for decision-makers to 

understand the trade-offs they are making. 

Modified ISWT Method for Multiple Response Surface Optimization Problems 

This section develops a new multiple response surface methodology that addresses gaps 

identified in previous methodologies, in particular, incorporating the explicit preferences of 

decision-makers and allowing for explicit trade-offs among the responses.  The methodology 

satisfies the conditions set forth in the previous chapter, as well as considers the recommended 

characteristics.  The methodology utilizes the ISWT algorithm as a basis for incorporating 
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decision-maker trade-offs.  The specific characteristics of multiple response surface problems 

include the definition of a region of interest based on the experimental design.  This uniquely 

sets up the problem to allow for some simplification of the ISWT algorithm.  Specifically, the 

region of interest allows for the new methodology to require binding constraints which allows for 

the necessary information needed for decision-makers to make informed trade-offs among the 

responses. 

The following provides a complete outline of the process incorporating both the 

experimental design aspects of MRSM problems along with the MCDM solution of ISWT, as 

well as the guidelines for decision-maker involvement.   

Guidelines for Finding the Best Compromise Solution 

The following section provides guidelines for selecting the region of interest, selecting 

the primary response, selecting bounds or targets on the secondary responses, and how to analyze 

trade-offs. 

Selecting the Region of Interest 

The region of interest needs to be defined in order to place a constraint on the solution 

set.  Research, particularly that of Del Castillo and Montgomery (1993), discussed defining 

regions of interest and compared results using a cuboidal region versus a spherical region.  The 

authors indicate in some situations a cuboid region can be a better choice of defining the region.  
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For illustrative purposes, a cuboid region of interest based on the space defined by the 

independent variables is used throughout this research.   

Selecting the Primary Response 

Historically it is the most important response that is optimized in multiple response 

surface methodologies.  However, the trade-off literature recommends using the response that is 

easiest for the decision-maker to make trade-offs (e.g., cost) as the primary response.  Another 

consideration is the ability of the decision-maker to place bounds or targets on the responses.  It 

is recommended that the responses for which a target can be confidently established should be 

considered for a secondary response. 

If there are only two responses, select the response with the better defined target as 

secondary.  If there are more than two responses, select the response easiest for the decision-

maker to make trade-offs as the primary.   

Selecting Targets or Bounds 

First, each response is optimized individually to find the minimum and maximum values 

within the region of operability as defined by the settings used for the independent variables in 

the experimental design (e.g., coded as -1.414 to 1.414).  This method will be called the Extreme 

Values Method (EVM). 

If the decision-maker has bounds defined that lie within the experimental region of 

interest then those are used as the initial ε in the optimization.  When a target is defined, if it is a 
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maximization constraint, the target is used as the lower bound and the upper extreme value 

associated with the constraint is used for the upper bound; if it is a minimization constraint, the 

target is used as the upper bound and the lower extreme value associated with the constraint is 

used for the lower bound.   If the decision-maker does not have targets or bounds identified then 

the extreme values will be used.  Worth trade-offs can then be used along with the Lagrange 

multipliers to find alternative solutions for the decision-maker to consider. 

Analyzing Trade-Offs 

Analyzing trade-offs is comprised of three steps: collecting the Lagrange multipliers, 

having the decision-maker assess the worth of the partial trade-offs, and updating the right-hand-

side values (or ε).   

Lagrange multipliers indicate the impact that changing the constraint’s right-hand-side 

value has on the primary objective.  For response surface problems this is interpreted as the 

amount of trade-off that is made on the primary response for a one unit change in the secondary 

response.  Chankong (1977) explains that partial trade-offs are only valid when the Lagrange 

multipliers are positive.  For those responses where all of the associated Lagrange multipliers are 

zero, a small change is made in ε and the problem is resolved.  The change needs to be large 

enough so that at least one the Lagrange multiplier associated with the response becomes 

positive.   

In Miettinen’s (1999) discussion of ISWT, Tarvainen (1984) is referenced as a possible 

alternative scale for the worth trade-off step.  Tarvainen recommends using the alternative scale 

of -2 to 2 (rather than the original scale of -10 to 10) to reduce the number of alternative values 
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that the decision-maker must deal with, thus making it easier for the decision-maker to maintain 

consistency while conducting the worth assessments.  The five point scale is sufficient to 

represent the direction and rough degree of preference or satisfaction for the trade-off.  The 

decision-maker selects an integer between -2 and 2 to indicate preference for making the trade-

offs where: 

• 2 means that the decision-maker definitely wants to make the trade-off,  

• 1 means that the decision-maker somewhat wants to make the trade-off,  

• 0 means that the decision-maker is satisfied at the current point and does not want 

to make a trade-off, 

• -1 means that the decision-maker somewhat wants to make the opposite trade-off, 

• and -2 means that the decision-maker definitely wants to make the opposite trade-

off. 

The value of the right-hand-side (ε) is updated based on the worth assessment made by 

the decision-maker.  In general for each partial trade-off assessment, a step size is multiplied by 

the worth from the decision-maker of the trade-off and the current value of the constraint 

response.  This is multiplied by either the difference between the current ε and the lower bound 

for a minimization objective or between the current ε and the upper bound for a maximization 

objective.  This value is added to the current ε and the problem is updated with new right-hand-

size values and re-optimized.   The step size is a constant value raised to the power of the 

iteration to aid in convergence multiplied by iβ where ( )∑=
≠kj

i

j

i

kj

i xfW
2

)(/1β .  A common step 

size method in optimization based on the golden section search sets c equal to .618.      
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Figure 5-1 below illustrates the movement of ε for the update process.  From the diagram 

it can be seen that in order to improve a response objective, ε needs to be moved within the 

region between the current ε and the minimum or maximum value of ε, depending on the type of 

constraint. 

x2

x1

εmax

εmin

εcurrent=

εmax-εcurrent

R

f1≤ε1,min

f2≥ε2,min

εmin-εcurrent

εc1
εc2

 

Figure 5-1 Updating Procedure 

Terminating Criteria 

Theoretically, the only stopping criteria desired are those based on the decision-maker 

satisfaction and interest in exploring additional non-dominated solutions.  Step 8 terminates the 
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process if the decision-maker is satisfied with the current point.  Step 10 terminates the process if 

all worth assessments equal zero, indicating that the decision-maker does not want to make any 

further trade-offs.   

Therefore, contingencies have been incorporated into the methodology for three specific 

situations that were encountered during the testing phase.  If a solution converges to a point and 

the decision-maker is not satisfied, either modify the step size and attempt to find another non-

dominated solution or go back to a previous solution and change the direction of the worth 

assessment in order to move in a different direction.  If the problem becomes infeasible, again, 

either modify the step size and attempt to find another non-dominated solution or go back to a 

previous solution and change the direction of the worth assessment in order to move in a 

different direction.  If ε is updated to a point outside the extreme values, use the associated 

extreme value and re-solve. 

MISWT Algorithm 

 This section outlines the new MISWT algorithm.  The algorithm is demonstrated step by 

step in the Silicon Wafer problem in Chapter Six. 

Step 1: Problem Definition.  The responses and factors of interest must be defined. 

Step 2: Experimental Design.   

a. Conduct the screening experiment. 

b. Fit single order models. 

c. Find the direction for improvement. 
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d. Conduct additional experiments if additional data points are needed to fit 

higher order models. 

Step 3: Develop the Response Functions. 

• Fit higher order models.  Usually multiple regression is used to fit each 

response. 

Step 4: Identify the Region of Interest.   

• The region of interest needs to be defined in order to place a constraint on the 

solution set.  For illustrative purposes, a cuboid region of interest is used 

throughout this research.  

Step 5: Identify Primary Response.   

• If the problem only has two responses then use the response with the better 

defined target (based on the decision-maker’s confidence in the target) as the 

secondary response.  This could reduce the number of iterations required. 

• If there are more than two responses, select the response that is easiest for the 

decision-maker to make trade-off comparisons as the primary response. 

Step 6: Identify the Targets or Bounds for the Secondary Responses. 

a) Minimize and maximize each response individually, unconstrained within the 

region of operability, to find the extreme upper and lower bounds for each 

response.  This will be referred to as the Extreme Values Method (EVM) and 

will define the widest possible range for the bounds within the region of 

interest.  These extreme values will also be utilized in Step 11 to update ε. 

b) Ask the decision-maker to place a bound or target on the secondary responses.   
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• If the decision-maker desires to set a range around the possible response 

values for each of the secondary responses, he/she specifies an upper and 

lower bound for each constrained response. 

• If the decision-maker has a specific target to reach on a secondary 

response then, if it is a maximization constraint, the target is used as the 

lower bound and the upper extreme value associated with the constraint is 

used for the upper bound; if it is a minimization constraint, the target is 

used as the upper bound and the lower extreme value associated with the 

constraint is used for the lower bound.    

c) Use the narrower of the bounds defined by step 6a and step 6b above in the 

optimization problem.  The tighter the bounds, the quicker the convergence 

may be to a “preferred” solution. 

Step 7: Run the Optimization.   

• Utilizing the parameters defined in the higher order models and the selection 

of the region of interest, primary response, and target or bounds on the 

secondary responses, formalize the problem and run the optimization 

procedure.   

• This dissertation will use Frontline’s Premium Solver in Excel to conduct the 

optimizations.  This software uses the GRG nonlinear programming 

algorithm. 

• Note that the method only guarantees local optima.  If the problem is non-

convex, it is necessary to use alternative starting points to test for local 

optima. 
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• If after running the optimization in subsequent iterations a solution converges 

to a point and the decision-maker is not satisfied or the problem becomes 

infeasible, either modify the step size and re-solve in an attempt to find 

another non-dominated solution or go back to a previous solution and change 

the direction of the worth assessment in order to move in a different direction.   

Step 8: Decision-Maker’s Satisfaction with the Current Solution 

• The decision-maker is asked if satisfied with the current solution.  If yes, then 

the procedure stops.  If no, then proceed to Step 9. 

Step 9: Collect Trade-Off Information (Lagrange multipliers (LM) or Karush-Kuhn-

Tucker multipliers (KKT)). 

• For purposes of this research, Lagrange multipliers and Karush-Kuhn-Tucker 

multipliers terminology will be used interchangeably for this step. 

• Chankong (1977) explains that partial trade-offs are only valid when the 

Lagrange multipliers are positive.  Therefore, at least one Lagrange multiplier 

associated with each of the secondary responses must be greater than 0, 

indicating it is an active or binding constraint, to conduct trade-offs with the 

decision-maker. 

• If at least one Lagrange multiplier associated with each secondary response is 

greater than 0, then collect trade-off information and move to Step 10. 

o In Frontline’s Premium Solver in Excel, this information can be located on 

the sensitivity report. 
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• If there are any secondary responses with no Lagrange multipliers greater than 

0, then perturb at least one of the bounds associated with the response and 

return to Step 7.   

o In order to achieve a positive Lagrange multiplier, the value of one of the 

bounds for the constraint can be perturbed by adding (or subtracting) the 

slack of the constraint, using the answer report in Excel’s Solver, and 

some small constant.  In other words, by using the slack value in the 

answer report, ε is modified so that constraint becomes binding. 

Step 10: Collect Decision-Maker Worth Values. 

• Have the decision-maker make comparisons between the primary response 

and each secondary response. 

• If the primary response is a maximization problem, ask, “Given that the 

primary response value equals Y1 and the secondary response (max, min) 

value equals Y2, please indicate your preference for decreasing the primary 

response by LM units for one unit (increase, decrease) in the secondary 

response?” 

• If the primary response is a minimization problem, ask, “Given that the 

primary response value equals Y1 and the secondary response (max, min) 

value equals Y2, please indicate your preference for increasing the primary 

response by LM units for one unit (increase, decrease) in the secondary 

response?” 

• Use Tarvainen’s (1984) integer scale from -2 to 2 to evaluate the partial trade-

offs and assess the decision-maker’s preference in making the specified trade-
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offs.   The decision-maker selects an integer worth value (W) between -2 and 

2 to indicate preference for making the trade-offs where: 

• 2 means that the decision-maker definitely wants to make the trade-off,  

• 1 means that the decision-maker somewhat wants to make the trade-off,  

• 0 means that the decision-maker is satisfied at the current point and does 

not want to make a trade-off, 

• -1 means that the decision-maker somewhat wants to make the opposite 

trade-off, 

• and -2 means that the decision-maker definitely wants to make the 

opposite trade-off. 

• If all W=0, then stop, otherwise continue to Step 11. 

 Step 11: Update ε and return to Step 7.   

• In order to move to another non-dominated solution, the value of ε is updated 

to reflect a direction of movement and a step size, or distance, to move.   

• Equation: In general the formula is New RHS = Old RHS + Step Size*Worth 

(Current Value) * Direction.  The specific equations to update ε follow: 

a. For minimization constraints: 
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• If ε is updated to a point outside the extreme values, use the associated 

extreme value to keep the problem within the region of interest. 

• Direction: As discussed above and seen in Figure 5-1, the use of the extreme 

values minus the current point, ( i

jj εε -min ) and ( )-max

i

jj εε , provide a direction 

of movement: minimization constraints are moving ε in the direction of the 

lower bound while maximization constraints are moving ε in the direction of 

the upper bound. 

• Worth: Worth = ))(( i

j

i

kj xfW .  The worth value in the equation indicates the 

strength of the decision-maker’s preference and the direction.  If the worth 

value is negative then the new ε will move in a direction opposite of the 

direction of optimization.  When there are only two responses, only the sign 

matters.  However, when there are more than two responses, the strength of 

the worth assessment is normalized in the step size equation to incorporate the 

relative importance of the response trade-offs in the distance and direction of 

movement.  

• Step Size: The step size provides the amount by which the search will move to 

find the next non-dominated solution.  The step size is multiplied by the 

current value of the constraint, thereby moving some distance as a proportion 

of the current value.   The step size is equal to )()( iic β .  Summarizing 

Chankong’s (1977) proof, ( )∑=
≠kj

i

j

i

kj

i xfW
2

)(/1β . This research will utilize 

a common step size method in optimization based on the golden section 
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search to set c equal to .618.  In order to ensure that the iterations result in 

convergence, c is raised to a power equal to the number of the iteration, i.   

• Return to Step 7 to re-optimize at the new ε. 

Summary 

This chapter has developed a new algorithm to solve multiple response surface 

optimization problems.  Utilizing the ISWT multi-criteria decision-making algorithm as a basis 

for development, the specific characteristics of the multiple response surface optimization 

problem and the conditions and assumptions developed in Chapter Four for constrained methods, 

a new multiple response surface methodology was created.  Figure 5-2 below provides a flow 

diagram of the new Modified ISWT (MISWT) MRSO process.  Chapter Six will demonstrate the 

new methodology using test problems from the literature. 
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Figure 5-2 Modified ISWT for MRSO Problems 
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CHAPTER SIX: DEMONSTRATION OF THE NEW CONSTRAINED 
MULTIPLE RESPONSE SURFACE OPTIMIZATION METHOD 

In order to demonstrate the new Modified ISWT Method for MRSO problems, results of 

the new method will be compared to existing constrained MRSM techniques using five test 

problems from the literature.  The decision-maker preferences will be simulated using a random 

number generator.  Finally, the method will be evaluated against the recommended set of 

conditions and characteristics discussed in Chapter Five.   

Demonstration of New Method to Existing Constrained Methods Using Test Problems 

Results of the new method, MIWST, will be compared to existing constrained MRSM 

techniques using five test problems from the literature.  The test problems have been chosen such 

that results can be compared to existing constrained methods for different types of MRSO 

problems.  The problems reflect a variety of number of factors and responses, and types of 

responses.  A more complete list of potential test problems can be found in Appendix A.  

Frontline System’s Excel Premium Solver was used to conduct the optimizations for the new 

method in an easily implemented spreadsheet environment.  This represents an easily accessible 

computer based implementation of the ISWT.   

For purposes of this research, a random number generator is used to select an integer 

between -2 to 2 to simulate a decision-maker for each partial trade-off.  Although MCDM 

methods are based on the assumption of a rational decision-maker, using a “random” worth value 

allows the research to explore what happens when a decision-maker selects a direction and 

continues to move in the same direction as well as when a decision-maker changes direction.  In 
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reality a decision-maker may not know until they evaluate partial trade-offs that they are willing 

to move in a different direction (e.g., willing to trade-off a small decrease in standard deviation 

for a much larger increase in the mean).  Therefore, this testing method will demonstrate the 

robustness of the proposed method to manage many types of decision-makers including a 

traditional “rational” decision-maker.      

For each problem, a table summarizing the process used is included with a map to the 

Figure in the Appendix where Excel screenshots with the details are provided.  Each problem 

also contains a results table that outlines for each iteration the solution point, response values, 

original ε, the values of the Lagrange multipliers, the values of the worth assessments, and the 

updated εi+1.  For some problems, multiple scenarios were tested. 

Test Problem 1:   Silicon Wafers 

The silicon wafer problem was analyzed by Shin and Cho (2005).  Silicon wafers are 

produced by a subcontractor for a large motor corporation.  There were problems maintaining the 

dimensions, surface quality and flatness of the housing.  The coating thickness of the wafers was 

considered by the customer to be the most important characteristic.  A central composite design 

was conducted with two factors (mould temperature and injection flow rate) and the responses 

were the mean and standard deviation of the coating thickness of the wafers.  The target value of 

the coating thickness was 71.14, the maximum allowable process bias was .9, and the variability 

of the thickness was targeted to be as small as possible.   This problem demonstrates a typical 

two quadratic response problem, trading off the mean and the standard deviation.  The data for 
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the experimental design and screen shots of the Excel spreadsheets can be found in Appendix B.  

Details of the process for the new method are described below. 

Step 1: Determine the Responses and Factors.  Based on the problem defined by Shin and 

Cho, the customer selected the mean and standard deviation of the coating thickness as the 

responses of interest.  Mould temperature and injection flow rate were identified as the factors. 

Step 2: Conduct Experimental Design.  The results of a central composite design 

conducted by Shin and Cho will be used for comparison purposes.  Figure 6-1 below provides 

the design and results of the experiment. 

X1 X2 Y1 Y2 Y3 Y4 Y (avg) Y (std)
-1 -1 76.3 73.5 68.8 74.2 73.20 3.17
1 -1 70.4 81.2 76.7 79.6 76.98 4.76

-1 1 76.6 72.0 77.7 78.5 76.20 2.91
1 1 72.3 67.5 75.7 72.7 72.05 3.39

-1.414 0 70.6 75.8 69.9 71.5 71.95 2.65
1.414 0 74.1 80.2 76.2 77.1 76.90 2.53

0 -1.414 78.5 68.7 76.2 75.3 74.68 4.21
0 1.414 70.2 76.3 79.2 75.9 75.40 3.77
0 0 74.1 71.8 72.5 71.9 72.58 1.06
0 0 72.1 70.4 73.3 74.2 72.50 1.64
0 0 74.2 69.8 71.2 72.2 71.85 1.85
0 0 70.1 69.3 71.6 72.5 70.88 1.44
0 0 69.8 70.6 71.6 74.1 71.53 1.87

X1=mould temperature (99.6, 301.4)
X2=injection flow rate (40, 70)
Y=quality of printing process (4 replicates)  

Figure 6-1 Experimental Design 

 
Step 3: Develop Response Functions.  For comparison purposes, the response functions 

Shin and Cho obtained through regression will be used here. 
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Figure 6-2 illustrates the convex response functions. 
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Figure 6-2 Response Surface and Contour Plots for Silicon Wafer Problem 

Step 4: Determine the Region of Interest.  Throughout this research, a cuboid region of 

interest is used based on the value of the x(s) used in the design of experiments.  In this case, the 

cuboid region is defined by -1.414 and 1.414. 

Step 5: Determine the Primary Response.  The decision-maker is asked to select which of 

the responses to use as the primary response.  In the article by Shin and Cho, minimizing the 

variance was chosen as the primary response.   

Step 6: Determine the Bounds/Targets on the Secondary Responses.   

6A: The mean was optimized, unconstrained, to find the extreme values.    
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C D E F G H I J K
Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.41 2.00 2.00 -2.00 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 82.76
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 6.58

Constraints
x1 >= -1.414
x1 <= 1.414
x2 >= -1.414
x2 <= 1.414

Lower Bound 71.63
Upper Bound 82.76

Case >= 70.24
<= 72.04  

 

Figure 6-3 Extreme Values Method 

 
6B: The decision-maker was asked to place bounds or a target on the mean response.  For 

comparison with Shin and Cho, we assume that the decision-maker has set bounds on the mean 

of 70.24 and 72.04. 

6C: The narrower of the two sets of bounds are used.  In this case, the specified lower 

bound is below the EVM of 71.63.  The method would recommend using the EMV lower bound 

and the decision-maker upper bound.  However for comparison purposes with Shin and Cho, the 

decision-maker defined bounds will be used.   

Step 7: Run the optimization for the problem as defined by the region of interest, primary 

response, and bounds on the secondary responses as determined above: 
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Figure 6-4 below provides a screenshot of Excel’s Solver. 

 

Figure 6-4 Sample Solver Screenshot 

Figure 6-5 provides the solution for the optimization of the problem above.  The initial 

solution point was found to be (-.19, .09) with a mean value of 71.79 and standard deviation of 

1.54. 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J K
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 70.24
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F16
=ISWT!F15

 

Figure 6-5 Optimization Sample 

Step 8: Decision-Maker Satisfaction.  The decision-maker is asked if satisfied with the 

above solution.  If yes, then stop.  If no, as in this case, continue to Step 9. 

Step 9: Collect Trade-Off Information.  The Lagrange multipliers are collected from the 

“Sensitivity Report” output from Excel Solver, Figure 6-6.  For this problem, the Lagrange 

multiplier is equal to 0.  Therefore, ε must be perturbed and the problem re-optimized.  Since the 

mean is a maximization objective, the ε for the lower bound of the mean is perturbed by adding 

the slack collected from the “Answer Report” output from Excel Solver (Figure 6-7) plus some 

small constant.  As can be seen from Figure 6-8, ε moves from a value of 70.24 to 71.80 

(70.24+1.55+.01=71.80). 
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3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.19 0.00
$F$2 Settings x2 0.09 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.79 0.00
$K$3 µ (Y1) Value 71.79 0.00  

Figure 6-6 Trade-Off Results from Solver 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

X Y Z AA AB AC AD
Microsoft Excel 11.0 Answer Report
Worksheet: [Silicon Wafers.xls]ISWT 1
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Min)
Cell Name Original Value Final Value

$K$4 σ (Y2) Value 1.57 1.54

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -0.19
$F$2 Settings x2 0.00 0.09

Constraints
Cell Name Cell Value Formula Status Slack

$K$3 µ (Y1) Value 71.79 $K$3<=$F$8 Not Binding 0.2457027
$K$3 µ (Y1) Value 71.79 $K$3>=$F$7 Not Binding 1.55
$E$2 Settings x1 -0.19 $E$2<=$F$10 Not Binding 1.5993901
$F$2 Settings x2 0.09 $F$2<=$F$10 Not Binding 1.324902
$E$2 Settings x1 -0.19 $E$2>=$F$9 Not Binding 1.23
$F$2 Settings x2 0.09 $F$2>=$F$9 Not Binding 1.50  

Figure 6-7 Answer Report Sample 
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1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K L
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.17 0.10 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.80
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.80
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

='ISWT 1'!F8
='ISWT 1'!F7+'ISWT 1'!AD22+0.01

 

Figure 6-8 Perturb Sample 

 Step 7: Run Optimization.  The problem was re-optimized using the new ε.  The new 

solution point found was (-.17, .10) with a mean value of 71.8 and standard deviation of 1.54.  

See Figure 6-8 above. 

Step 8: Decision-Maker Satisfaction.  The decision-maker is asked if satisfied with the 

above solution.  If yes, then stop.  If no, as in this case, continue to Step 9. 

Step 9: Collect Trade-Off Information.  The Sensitivity Report provided by Solver for the 

second iteration returned a Lagrange multiplier value of .06 as seen in Figure 6-9 below. 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.17 0.00
$F$2 Settings x2 0.10 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.80 0.00
$K$3 µ (Y1) Value 71.80 0.06  

Figure 6-9 Trade-Off Example, Iteration 2 

Step 10: Conduct Worth Assessments.  The Lagrange multiplier found in the step above 

was used in collecting worth assessments with the decision-maker.  The decision-maker was 
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asked, “Given that the mean equals 71.8 and the standard deviation equals 1.54, please indicate 

your preference for increasing the standard deviation by .06 units for one unit increase in the 

mean, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference 

to make no trade-off, and -2 is a strong preference to make the opposite trade-off.?”  In this test a 

random number generator returned an integer value of 1 indicating that the decision-maker is 

interested in making this trade-off.  Since the worth assessment did not equal 0, the process 

continues to Step 11. 

Step 11: Update ε.  Using a worth assessment of 1, the step size is calculated as 

(.618^1)/(SQRT((1*71.8))^2)) = .0086.  This is used to calculate the updated εi+1 as 

71.8+(.0086*1*|71.8|)*(72.04-71.8) = 71.95.   
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.17 0.10 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.80
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.80
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.06

Step 10: Given that the mean equals 71.8 and the standard deviation equals 1.54,
please indicate your preference for increasing the standard deviation by 0.06 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00861

ε= 71.95

='ISWT 1'!F8
='ISWT 1'!F7+'ISWT 1'!AD22+0.01

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))

 

Figure 6-10 Silicon Wafer, Iteration 2, ε Update 
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Return to Step 7.  The problem is re-optimized using this new right-hand-side bound for 

the mean.  Screen shots of additional iterations can be found in Appendix B.  Table 6-1 provides 

a summary of the process used for solving the Silicon Wafer problem.  The process stopped 

when the solution point returned to the same solution from a previous iteration. 

Table 6-1 Silicon Wafers Process, Scenario 1 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the coating thickness 

Factors: mould temperature and injection flow rate 
 

Step 2: A Central Composite Design with 4 replicates B-1 
Step 3: xx1.98x1.55x1.25x0.11x0.8371.87μ 1

2
2

2
121 −++−+=  

21
2
2

2
121 28.028.158.028.024.057.1 xxxxxx −++−+=σ  

B-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: 
-1.414, 1.414.   

B-1 

Step 5: Primary response: minimize standard deviation.  
Step 6: The region of interest is used in a single response optimization to find the extreme values 

of the mean: 71.63, 82.76.  Shin and Cho set the upper bound=72.04 and the lower 
bound=70.24.  Since the specified lower bound is below the EVM of 71.63, the method 
would recommend using the EMV lower bound and the decision-maker upper bound.  
However for comparison purposes, the decision-maker defined bounds will be used.   

B-3 

Step 7: 

04.27
24.07

:Subject to
),(x Minimize 21

≤
≥

μ
μ

σ x

 

B-4, B-5 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. B-5 
Step 9: Lagrange multiplier = 0 from the “Sensitivity Report”. Using the slack value of 1.55 

from the “Answer Report”, perturb the value of ε = 70.24+1.55+.01 for the lower bound. 
B-5 

Step 7: Re-optimize. B-6 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. B-6 
Step 9: Lagrange multiplier=.06. B-6 
Step 10: Given that the mean equals 71.8 and the standard deviation equals 1.54, please indicate 

your preference for increasing the standard deviation by .06 units for one unit increase in 
the mean, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is 
a preference to make no trade-off, and -2 is a strong preference to make the opposite 
trade-off.  Decision-maker indicates a worth assessment of 1. 

B-6 

Step 11: Update εi to εi+1 = 71.95 = 
71.8 + (((.618^1)/SQRT((1.0*ABS(71.80))^2)))*1.0*ABS(71.8))*(72.04-71.80)). 

B-6 

Step 7-11: Repeat steps 7-11 for Iterations 3 – 8. B-7 to  
B-12 

Step 7: Repeat step 7.  Iteration 9.  Solution and responses same as Iteration 6.  Stop. B-13 
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Table 6-2 below summarizes the results of the experiment.  The initial solution found by 

the MISWT method was the same found by Shin and Cho.  As seen by the results table, the 

simulated decision-maker preferred to move in a positive direction, increasing the mean, for 

iterations 2-4.  At the next point, the decision-maker determined that the trade-off was too much 

and provided a negative worth assessment, causing the solution to show a decrease in the mean.  

The analyst stopped the process when there was no substantive improvement seen and the 

solution returned to a point that was obtained at a previous iteration.  The final solution was at a 

point (.15, .12) with a mean value of 71.99 and standard deviation of 1.60.  However, the 

methodology suggests that when the process converges to a solution point that either a different 

step size is used to move the solution to a different non-dominated solution or return to a 

previous iteration and have the decision-maker re-evaluate the worth to move in a new direction.  

Given a real-world decision-maker, if the solution point obtained was not satisfactory, one of 

these two methods would be implemented to find a solution point that satisfies the decision-

maker. 

Table 6-2 Silicon Wafers Results, Scenario 1 

Method Iteration x1 x2 µ σ εi LM W εi+1

Shin & Cho -0.19 0.09 71.79 1.54

MISWT 1 -0.19 0.09 71.79 1.54 70.24 0.00 Perturb
2 -0.17 0.10 71.80 1.54 71.80 0.06 1.00 71.95
3 0.10 0.14 71.95 1.58 71.95 0.39 1.00 71.98
4 0.14 0.13 71.98 1.59 71.98 0.39 1.00 72.00
5 0.15 0.12 72.00 1.60 72.00 0.39 -1.00 71.99
6 0.15 0.12 71.99 1.60 71.99 0.39 -1.00 71.99
7 0.14 0.12 71.99 1.60 71.99 0.39 2.00 71.99
8 0.14 0.12 71.99 1.60 71.99 0.39 1.00 71.99
9 0.15 0.12 71.99 1.60  
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An additional scenario, Scenario 2, demonstrates what happens when the decision-maker 

does not know what to set for the bounds.  Table 6-3 summarizes the process used for Scenario 

2.  The main difference is that in Step 6, the extreme values found in Step 4 were used.  Table 6-

4 summarizes the results of this scenario.  The same initial solution found in Scenario 1 and by 

Shin and Cho was found in Scenario 2.  With the wider bounds, the simulated decision-maker 

opted to continue to increase the mean at the expense of the standard deviation until a mean of 

80.78 was reached.  The decision-maker chose to move back (smaller mean) at the final iteration 

and settled on a point (1.41, -1.08) with a mean of 80.49 and a standard deviation of 5.29.  In this 

iteration, the decision-maker provided a worth assessment of 0 indicating satisfaction with the 

solution and the process stopped.     
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Table 6-3 Silicon Wafers Process, Scenario 2 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the coating thickness 

Factors: mould temperature and injection flow rate 
 

Step 2: A Central Composite Design with 4 replicates B-1 
Step 3: xx1.98x1.55x1.25x0.11x0.8371.87μ 1

2
2

2
121 −++−+=  

21
2
2

2
121 28.028.158.028.024.057.1 xxxxxx −++−+=σ  

B-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: 
-1.414, 1.414.   

B-1 

Step 5: Primary response: minimize standard deviation.  
Step 6: The region of interest is used in a single response optimization to find the extreme values 

of the mean: 71.63, 82.76.  It is assumed that the decision-maker does not know where to 
set the bounds.  Therefore, the bounds defined by the extreme values will be used: 71.63 
and 82.76. 

B-3 

Step 7: 

76.28
63.17

:Subject to
),(x Minimize 21

≤
≥

μ
μ

σ x

 

B-14,  
B-15 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. B-15 
Step 9: Lagrange multiplier = 0 from the “Sensitivity Report”. Using the slack value of 10.96 

from the “Answer Report”, perturb the value of ε = 71.80 for the lower bound. 
B-15,  
B-16 

Step 7: Re-optimize. B-16 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. B-16 
Step 9: Lagrange multiplier=.06. B-16 
Step 10: Given that the mean equals 71.8 and the standard deviation equals 1.54, please indicate 

your preference for increasing the standard deviation by .06 units for one unit increase in 
the mean, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is 
a preference to make no trade-off, and -2 is a strong preference to make the opposite 
trade-off.  Decision-maker indicates a worth assessment of 1. 

B-16 

Step 11: Update εi to εi+1 = 78.57. B-16 
Step 7-11: Repeat steps 7-11 for Iterations 3 – 5. B-17 to 

B-19 
Step 7-11: Repeat steps 7-10.  Iteration 6.  Worth assessment = 0.  Stop. B-20 

 
 

Table 6-4 Silicon Wafers Results, Scenario 2 

Method Iteration x1 x2 µ σ εi LM W εi+1

MISWT 1 -0.19 0.09 71.79 1.54 71.63 0.00 Perturb
2 -0.17 0.10 71.80 1.54 71.80 0.06 1.00 78.57
3 1.41 -0.75 78.57 4.28 78.57 0.49 1.00 80.17
4 1.41 -1.03 80.17 5.12 80.17 0.54 1.00 80.78
5 1.41 -1.13 80.78 5.45 80.78 0.56 -1.00 80.49
6 1.41 -1.08 80.49 5.29 80.49 0.55 0.00 Stop  
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Scenario 3 demonstrates what happens when the secondary response is substituted as the 

primary response (i.e., the mean becomes the primary response and the standard deviation 

becomes the secondary response).  Table 6-5 summarizes the process used for Scenario 3 and 

Table 6-6 summarizes the results of this scenario.  Letting the worth assessment equal 2 at each 

iteration, the solution converged to a point (.76, -.10) with a mean of 73.4 and a standard 

deviation of 2.15.  The same solution was reached for two iterations, so the analyst stopped the 

process.  Similar to Scenario 1, if a real decision-maker was available, one of the alternatives 

would be used to move off of the converged solution until a solution was found that satisfied the 

decision-maker.   
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Table 6-5 Silicon Wafers Process, Scenario 3 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the coating thickness 

Factors: mould temperature and injection flow rate 
 

Step 2: A Central Composite Design with 4 replicates B-1 
Step 3: xx1.98x1.55x1.25x0.11x0.8371.87μ 1

2
2

2
121 −++−+=  

21
2
2

2
121 28.028.158.028.024.057.1 xxxxxx −++−+=σ  

B-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.414, 1.414.   

B-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the standard deviation: 1.54, 6.58.  The decision-maker did not specify a 
target or bounds.  Therefore, the extreme values will be used.   

B-21 

Step 7: 

58.6
54.1

:Subject to
),(x Maximize 21

≤
≥

σ
σ

μ x

 

B-22,  
B-23 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. B-23 
Step 9: Lagrange multiplier = 1.70 from the “Sensitivity Report”.  B-23 
Step 10: Given that the mean equals 82.75 and the standard deviation equals 6.58, please 

indicate your preference for decreasing the mean by 1.70 units for one unit decrease in 
the standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

B-23 

Step 11: Update εi to εi+1 = 3.47. B-23 
Step 7-11: Repeat steps 7-11 for iterations 2-12.   B-24 to  

B-34 
Step 7 Repeat step 7 for iteration 13.  Converged to the same point for the last two iterations.  

Stop. 
B-35 

  

Table 6-6 Silicon Wafers Results, Scenario 3 

Method Iteration x1 x2 µ σ εi LM W εi+1

MISWT 1 1.41 -1.41 82.75 6.58 6.58 1.70 2.00 3.47
2 1.41 -0.35 76.76 3.47 3.47 2.54 2.00 2.73
3 1.10 -0.23 74.88 2.73 2.73 2.55 2.00 2.45
4 0.95 -0.17 74.16 2.45 2.45 2.55 2.00 2.32
5 0.87 -0.14 73.83 2.32 2.32 2.55 2.00 2.25
6 0.82 -0.13 73.65 2.25 2.25 2.55 2.00 2.21
7 0.80 -0.12 73.55 2.21 2.21 2.55 2.00 2.18
8 0.78 -0.11 73.49 2.18 2.18 2.55 2.00 2.17
9 0.77 -0.11 73.45 2.17 2.17 2.55 2.00 2.16
10 0.77 -0.11 73.43 2.16 2.16 2.55 2.00 2.16
11 0.76 -0.11 73.42 2.16 2.16 2.55 2.00 2.15
12 0.76 -0.10 73.41 2.15 2.15 2.55 2.00 2.15
13 0.76 -0.10 73.41 2.15 Stop  
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Test Problem 2:   Chemical Experiment 

The chemical experiment was conducted by Del Castillo (1996) and has been referenced 

in the research of Gheware (2003) and Osborne (1997).  In this experiment there were two 

factors (temperature and reaction time) and two responses (the mean and variance of the process 

yield).  A rotatable CCD experimental design was used with three replicates.  This problem 

provides an example using a combination of quadratic and linear responses.  Appendix C 

provides the data as well as the Excel and Solver formulations for the problem. 

Table 6-7 provides a summary of the process used for solving the chemical experiment 

problem.  In this problem, the mean is maximized subject to treating the standard deviation as a 

constraint.  The bounds were not defined by the decision-maker so the extreme values were used.  

The process terminated when the decision-maker rated the worth of the current trade-off as 0.   
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 Table 6-7 Chemical Experiment Process, Scenario 1 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of process yield. 

Factors: temperature and reaction time. 
 

Step 2: Rotatable Central Composite Design with three replicates. C-1 
Step 3: 

21
2
2

2
121 70.2442.7305.1284.15471.4346.760 xxxxxx −−−++=μ  

21 28.631.626.19 xx ++=σ  (Osborne’s response functions used). 
C-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: 
-1.414, 1.414.   

C-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme values 

of the standard deviation: 1.46, 37.06.  The decision-maker did not specify bounds on the 
secondary response.  Therefore, the bounds are defined by the extreme values. 

C-3 

Step 7: 

37.06
1.46

:Subject to
),(x Maximize 21

≤
≥

σ
σ

μ x

 

C-4, C-5 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. C-5 
Step 9: Lagrange multiplier = 0 from the “Sensitivity Report”. Using the slack value of 6.53 

from the “Answer Report”, perturb the value of ε = 30.52. 
C-5, C-6 

Step 7: Re-optimize. C-6 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. C-6 
Step 9: Lagrange multiplier = .01. C-6 
Step 10: Given that the mean equals 849.92 and the standard deviation equals 30.52, please 

indicate your preference for decreasing the mean by .01 units for one unit decrease in the 
standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make the 
opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

C-6 

Step 11: Update εi to εi+1 = 12.56. C-6 
Step 7-11: Repeat steps 7-11 for iteration 3. C-7 
Step 7-10: Repeat steps 7-10 for iteration 4.  Worth assessment = 0.  Stop. C-8 

 

Table 6-8 below summarizes the results of the experiment, along with the results reported 

by Osborne for the Del Castillo problem.  The initial solution found with the new method was 

the same as that found by Osborne (.89, .91) with a mean of 849.92 and a standard deviation of 

30.53.  The simulated decision-maker was satisfied with the point at (-1.3, .92) with a mean of 

792.85 and a standard deviation of 16.80.  The iterative process allowed the decision-maker to 

find a more satisficing point by decreasing the mean by 57 units for a trade-off of a decrease of 

14 units of standard deviation.       
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Table 6-8 Chemical Experiment Results, Scenario 1 

Method Iteration x1 x2 µ σ εi LM W εi+1

Del Castillo 0.89 0.91 849.92 30.53

MISWT 1 0.89 0.91 849.92 30.53 37.06 0.00 Perturb
2 0.88 0.91 849.92 30.52 30.52 0.01 2.00 12.56
3 -1.41 0.35 732.55 12.56 12.56 21.94 -2.00 16.80
4 -1.30 0.92 792.85 16.80 16.80 8.31 0.00 Stop  

Test Problem 3:   Printing Press 

The printing press problem has been referenced in many multiple response surface 

methods research including Box and Draper (1987), Vining and Myers (1990), Del Castillo and 

Montgomery (1993), Lin and Tu (1995), Copeland and Nelson (1996), Tang and Xu (2002), 

Koksoy and Doganaksoy (2003), Gheware (2003), and Osborne (1997).   

The printing press problem was analyzed to determine the impact of three factors (speed, 

pressure, and distance) and the quality of the printing process (ability of machine to apply 

colored inks to package labels).   The two responses of interest were the mean and standard 

deviation of the quality of the printing process.  A 33 factorial design with 3 replicates was used 

to develop the quadratic functions for the two responses.  The data for the experimental design as 

well as the final quadratic functions to be used in the problem can be found in Appendix D.  The 

Excel and Solver formulations for the problem are also included. 

The printing press problem demonstrates responses with three independent variables.  

Table 6-9 provides a summary of the process used for solving the printing press problem.  The 

initial scenario seeks to minimize the standard deviation subject to a target mean of 500.  The 

process ended when the decision-maker reached a preferred solution (W=0). 
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Table 6-9 Printing Press Process, Scenario 1 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 

3231

21
2
3

2
2

2
1321

6.435.75
661.294.22325.1314.1091176.327

xxxx
xxxxxxxx

++
+−−++++=μ  

3231
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2
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2
2

2
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1.141.5
7.78.163.12.42.293.155.119.34

xxxx
xxxxxxxx

++
++−++++=σ  

D-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: minimize standard deviation.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the mean: 74.9, 911.1.  The decision-maker specified a target of 500 for the 
mean.  Therefore, the bounds are defined as 500, 911.1. 

D-3 

Step 7: 

911.1
500

:Subject to
),,(x Minimize 321

≤
≥

μ
μ

σ xx

 

D-4, D-5 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-5 
Step 9: Lagrange multiplier = .12 from the “Sensitivity Report”.  D-5 
Step 10: Given that the mean equals 500 and the standard deviation equals 45.1, please indicate 

your preference for increasing the standard deviation by .12 units for one unit increase 
in the mean, on a 5-point scale where 2 is a strong preference for making the trade-off, 
0 is a preference to make no trade-off, and -2 is a strong preference to make the 
opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

D-5 

Step 11: Update εi to εi+1 = 754.06. D-5 
Step 7-11: Repeat steps 7-11 for iterations 2-6. D-6 to 

D-10 
Step 7-10: Repeat steps 7-10 for iteration 7.  Worth assessment = 0.  Stop. D-11 

 

Table 6-10 below summarizes the results of the experiment.  The initial solution was the 

same point that was found by Del Castillo and Montgomery when they used a cuboid region of 

interest.  The simulated decision-maker made trade-offs for six iterations before indicating 

satisfaction with the point at (1.0, 1.0, .24) with a mean of 747.88 and a standard deviation of 

84.84.  The iterative process allowed the decision-maker to find a more satisficing point by 

increasing the mean by 248 units for a trade-off of an increase of 40 units of standard deviation.       
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Table 6-10 Printing Press Results, Scenario 1 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

Vining & Myers 0.61 0.23 0.10 500.00 51.80
Del Castillo & Montgomery cuboid 1.00 0.12 -0.26 500.00 45.10
Del Castillo & Montgomery ρ2=1 0.98 0.03 -0.18 500.00 45.32
Del Castillo & Montgomery ρ2=1.5 1.19 -0.22 -0.19 500.00 43.60
Del Castillo & Montgomery ρ2=2 1.34 -0.43 -0.15 500.00 42.45
Del Castillo & Montgomery ρ2=3 0.95 1.25 -0.73 500.00 46.98
Del Castillo & Montgomery ρ2<=3 1.57 -0.72 -0.09 500.00 40.65

MISWT cuboid 1 1.00 0.12 -0.26 500.00 45.10 500.00 0.12 2.00 754.06
2 1.00 1.00 0.27 754.06 86.33 754.06 0.24 -2.00 694.08
3 1.00 1.00 0.02 694.08 73.17 694.08 0.20 1.00 745.30
4 1.00 1.00 0.23 745.30 84.23 745.30 0.24 -1.00 721.12
5 1.00 1.00 0.13 721.12 78.75 721.12 0.22 1.00 738.25
6 1.00 1.00 0.20 738.25 82.58 738.25 0.23 1.00 747.88
7 1.00 1.00 0.24 747.88 84.84 747.88 0.24 0.00 Stop  

 

Scenario 2 provides another example of a decision-maker that did not know where to set 

the bounds for the mean.  Therefore, the extreme values were used.  In this problem, the wider 

bound found other local optima, very different from the original solution in Scenario 1.  The 

initial point in scenario 2 was (-.2, -1.0, -.42) with a mean of 139.38 and a standard deviation of 

14.76.  For this scenario, worth assessments were made with the goal of reaching the same mean 

target of 500 that was used in Scenario 1.  After 12 iterations, a solution point was reached (1.0, 

.12, -.26) with a mean of 500.38 and a standard deviation of 45.14.  Thus, it has been illustrated 

that using the extreme values as bounds can still achieve the target mean; however it is not as 

efficient as when the decision-maker has a satisficing target in mind.  See Table 6-11 and Table 

6-12.   
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Table 6-11 Printing Press Process, Scenario 2 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 
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Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: minimize standard deviation.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the mean: 74.9, 911.1.  Assume that the decision-maker does not have a 
target or bounds in mind.  Therefore, the extreme values will be used. 

D-3 

Step 7: 

911.1
9.47

:Subject to
),,(x Minimize 321

≤
≥

μ
μ

σ xx

 

D-4, D-12 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-12 
Step 9: Lagrange multiplier = 0 from the “Sensitivity Report”. Using the slack value of 64.48 

from the “Answer Report”, perturb the value of ε = 149.38. 
D-12,  
D-13 

Step 7: Re-optimize. D-13 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-13 
Step 9: Lagrange multiplier = .01.  D-13 
Step 10: Given that the mean equals 149.38and the standard deviation equals 14.83, please 

indicate your preference for increasing the standard deviation by .01 units for one unit 
increase in the mean, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

D-13 

Step 11: Update εi to εi+1 = 620.12. D-13 
Step 7-11: Repeat steps 7-11 for iterations 3-11. D-14 to 

D-22 
Step 7-10: Repeat steps 7-10 for iteration 12.  Worth assessment = 0.  Stop. D-23 

 



142 

 Table 6-12 Printing Press Results, Scenario 2 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

MISWT cuboid 1 -0.20 -1.00 -0.42 139.38 14.76 74.90 0.00 Perturb
2 -0.09 -1.00 -0.39 149.38 14.83 149.38 0.01 2.00 620.12
3 1.00 1.00 -0.27 620.12 60.50 620.12 0.15 -2.00 508.99
4 1.00 0.20 -0.27 508.99 46.18 508.99 0.12 -1.00 414.08
5 1.00 -0.52 -0.14 414.08 34.97 414.08 0.12 2.00 486.58
6 1.00 0.01 -0.24 486.58 43.49 486.58 0.12 1.00 524.85
7 1.00 0.34 -0.30 524.85 48.10 524.85 0.12 -1.00 503.33
8 1.00 0.15 -0.26 503.33 45.50 503.33 0.12 -1.00 489.29
9 1.00 0.03 -0.24 489.29 43.82 489.29 0.12 1.00 498.27
10 1.00 0.10 -0.26 498.27 44.89 498.27 0.12 1.00 503.70
11 1.00 0.15 -0.27 503.70 45.54 503.70 0.12 -1.00 500.38
12 1.00 0.12 -0.26 500.38 45.14 500.38 0.12 0.00 Stop  

 

Table 6-13 through Table 6-20 below demonstrate scenarios where the mean becomes the 

primary response.  Scenarios 3, 4, and 5 demonstrate a comparison to Vining and Myers for 

targets set on the standard deviation.  The initial solution point for Scenario 3 was the same as 

that found by Del Castillo and Montgomery when a cuboid region of interest was used.  All three 

scenarios obtained an initial solution equal to the target standard deviation and ended when the 

decision-maker provided a worth assessment = 0 indicating a preferred solution was found.  

Furthermore, Scenario 5 demonstrates a situation where the decision-maker is satisfied with the 

initial solution. 
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Table 6-13 Printing Press Process, Scenario 3 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 

3231

21
2
3

2
2

2
1321

6.435.75
661.294.22325.1314.1091176.327

xxxx
xxxxxxxx

++
+−−++++=μ  

3231

21
2
3

2
2

2
1321

1.141.5
7.78.163.12.42.293.155.119.34

xxxx
xxxxxxxx

++
++−++++=σ  

D-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the standard deviation: 12.50, 137.5.  The decision-maker specified a target 
of 60 for the standard deviation.  Therefore, the bounds are defined as 12.50, 60. 

D-24 

Step 7: 

06
5.21

:Subject to
),,(x Maximize 321

≤
≥

σ
σ

μ xx

 

D-25,  
D-26 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-26 
Step 9: Lagrange multiplier = 6.86 from the “Sensitivity Report”.  D-26 
Step 10: Given that the mean equals 616.7 and the standard deviation equals 60, please indicate 

your preference for decreasing the mean by 6.86 units for one unit decrease in the 
standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

D-26 

Step 11: Update εi to εi+1 = 30.65. D-26 
Step 7-11: Repeat steps 7-11 for iterations 2-4. D-27 to 

D-29 
Step 7-10: Repeat steps 7-10 for iteration 5.  Worth assessment = 0.  Stop. D-30 

 

Table 6-14 Printing Press Results, Scenario 3 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

Vining & Myers 0.77 0.31 0.20 557.90 60.00
Del Castillo & Montgomery cuboid 1.00 1.00 -0.28 616.70 60.00
Del Castillo & Montgomery ρ2=1 0.95 0.31 0.09 594.08 60.00
Del Castillo & Montgomery ρ2=1.5 1.19 0.28 -0.03 626.87 60.00
Del Castillo & Montgomery ρ2=2 1.40 0.19 -0.11 647.64 60.00
Del Castillo & Montgomery ρ2=3 1.72 -0.10 -0.13 672.50 60.00

MISWT cuboid 1 1.00 1.00 -0.28 616.70 60.00 60.00 6.86 2.00 30.65
2 1.00 -0.75 -0.09 376.75 30.65 30.65 8.66 2.00 23.71
3 1.00 -1.00 -0.15 314.39 23.71 23.71 11.23 1.00 21.07
4 0.88 -1.00 -0.25 278.13 21.07 21.07 14.98 -1.00 22.32
5 0.98 -1.00 -0.23 296.46 22.32 22.32 14.38 0.00 Stop  
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Table 6-15 Printing Press Process, Scenario 4 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 

3231

21
2
3

2
2

2
1321

6.435.75
661.294.22325.1314.1091176.327

xxxx
xxxxxxxx

++
+−−++++=μ  

3231

21
2
3

2
2

2
1321

1.141.5
7.78.163.12.42.293.155.119.34

xxxx
xxxxxxxx

++
++−++++=σ  

D-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the standard deviation: 12.50, 137.5.  The decision-maker specified a target 
of 75 for the standard deviation.  Therefore, the bounds are defined as 12.50, 75. 

D-24 

Step 7: 

75
5.21

:Subject to
),,(x Maximize 321

≤
≥

σ
σ

μ xx

 

D-31,  
D-32 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-32 
Step 9: Lagrange multiplier = 4.92 from the “Sensitivity Report”.  D-32 
Step 10: Given that the mean equals 703.23 and the standard deviation equals 75, please 

indicate your preference for decreasing the mean by 4.92 units for one unit decrease in 
the standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of 2. 

D-32 

Step 11: Update εi to εi+1 = 36.38. D-32 
Step 7-11: Repeat steps 7-11 for iterations 2-5. D-33 to 

D-36 
Step 7-10: Repeat steps 7-10 for iteration 6.  Worth assessment = 0.  Stop. D-37 

 

Table 6-16 Printing Press Results, Scenario 4 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

Vining & Myers 1.05 0.44 0.29 687.5 75

MISWT cuboid 1 1.00 1.00 0.05 703.23 75.00 75.00 4.92 2.00 36.38
2 1.00 -0.44 -0.15 426.12 36.38 36.38 8.57 -1.00 45.49
3 1.00 0.15 -0.26 503.30 45.49 45.49 8.33 -1.00 53.28
4 1.00 0.73 -0.35 566.60 53.28 53.28 7.87 1.00 47.33
5 1.00 0.28 -0.29 518.54 47.33 47.33 8.25 -2.00 50.47
6 1.00 0.52 -0.32 544.19 50.47 50.47 8.08 0.00 Stop  
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Table 6-17 Printing Press Process, Scenario 5 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 

3231

21
2
3

2
2

2
1321

6.435.75
661.294.22325.1314.1091176.327

xxxx
xxxxxxxx

++
+−−++++=μ  

3231

21
2
3

2
2

2
1321

1.141.5
7.78.163.12.42.293.155.119.34

xxxx
xxxxxxxx

++
++−++++=σ  

D-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the standard deviation: 12.50, 137.5.  The decision-maker specified a target 
of 90 for the standard deviation.  Therefore, the bounds are defined as 12.50, 90. 

D-24 

Step 7: 

90
5.21

:Subject to
),,(x Maximize 321

≤
≥

σ
σ

μ xx

 

D-38,  
D-39 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-39 
Step 9: Lagrange multiplier = 3.90 from the “Sensitivity Report”.  D-39 
Step 10: Given that the mean equals 768.73 and the standard deviation equals 90, please 

indicate your preference for decreasing the mean by 3.90 units for one unit decrease in 
the standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of 0.  Stop. 

D-39 

 

Table 6-18 Printing Press Results, Scenario 5 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

Vining & Myers 1.33 0.56 0.37 813.9 90

MISWT cuboid 1 1.00 1.00 0.33 768.73 90.00 90.00 3.90 0.00 Stop  

A final scenario with the printing press problem, Scenario 6, illustrates when the 

decision-maker did not have a target or bound in mind for the standard deviation, so the extreme 

values were used to establish the bounds on the constraint response.  This scenario demonstrates 

a situation where the decision-maker chooses a negative trade-off that updates ε to a value 

outside the extreme value.  So, the extreme value is used instead in order to keep the problem 
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within the region of interest.  The decision-maker then selects a different worth value moving in 

the opposite direction.  The problem is resolved and a new solution is found.  The decision-

maker is satisfied with the new solution so the process stops.   

Table 6-19 Printing Press Process, Scenario 6 

Step # Description Figure # 
Step 1: Responses: maximize mean and minimize standard deviation of the quality of the 

printing press. 
Factors: speed, pressure, and distance. 

 

Step 2: A 33 factorial design with 3 replicates.   D-1 
Step 3: 

3231

21
2
3

2
2

2
1321

6.435.75
661.294.22325.1314.1091176.327

xxxx
xxxxxxxx

++
+−−++++=μ  

3231

21
2
3

2
2

2
1321

1.141.5
7.78.163.12.42.293.155.119.34

xxxx
xxxxxxxx

++
++−++++=σ  

D-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental 
design: -1.0, 1.0.   

D-1 

Step 5: Primary response: maximize mean.  
Step 6: The region of interest is used in a single response optimization to find the extreme 

values of the standard deviation: 12.50, 137.5.  Assume the decision-maker did not 
have specified target or bounds for the standard deviation.  Therefore, the bounds are 
defined as 12.50, 137.5. 

D-24 

Step 7: 

5.137
5.21

:Subject to
),,(x Maximize 321

≤
≥

σ
σ

μ xx

 

D-40,  
D-41 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. D-41 
Step 9: Lagrange multiplier = 2.35 from the “Sensitivity Report”.  D-41 
Step 10: Given that the mean equals 911.1 and the standard deviation equals 137.5, please 

indicate your preference for decreasing the mean by 2.35 units for one unit decrease in 
the standard deviation, on a 5-point scale where 2 is a strong preference for making the 
trade-off, 0 is a preference to make no trade-off, and -2 is a strong preference to make 
the opposite trade-off.  Decision-maker indicates a worth assessment of -1. 

D-41 

Step 11: Update εi to εi+1 = 214.75.  This is outside of the extreme value so ε is set at the 
extreme value. 

D-41 to 
D-42 

Step 7-11: Repeat steps 7-11 for iteration 3. D-43 

Step 7-10: Repeat steps 7-10 for iteration 4.  Worth assessment = 0.  Stop. D-44 
 

Table 6-20 Printing Press Results, Scenario 6 

Method
Region of 
Interest Iteration x1 x2 x3 µ σ εi LM W εi+1

MISWT cuboid 1 1.00 1.00 1.00 911.10 137.50 137.50 2.35 -1.00 214.75
2 214.75 Outside Extreme Value
3 1.00 1.00 1.00 911.10 137.50 137.50 2.35 2.00 89.76
4 1.00 1.00 0.32 767.80 89.76 89.76 3.91 0.00 Stop  
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Test Problem 4:   Propellant Mixture 

The propellant mixture problem was analyzed by Del Castillo and Montgomery (Del 

Castillo and Montgomery 1993).  This problem moves away from the typical dual response 

problem.  In this experiment there were three factors or components to mix (fuel, oxidizer, and 

binder) with the objective of maximizing the primary response (burning rate) subject to 

satisfactory level of two secondary minimization responses (variability of burning rate and cost).  

The satisfactory levels indicated were variability less than or equal to 4.5 and cost less than or 

equal to 20.  The experimental design along with the Excel and Solver formulations are provided 

in Appendix E. 

Table 6-21 provides a summary of the process used for solving the propellant mixture 

problem with the decision-maker defined bounds on the secondary responses.   
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Table 6-21 Propellant Mixture Process, Scenario 1 

Step # Description Figure # 
Step 1: Responses: maximize burning rate, minimize variability and cost. 

Factors: fuel, oxidizer, and binder. 
 

Step 2: Conduct an experimental design. E-1 
Step 3: 

321

323121321

9818.854
8204.1363347.360204.163612.707755.424945.351

xxx
xxxxxxxxxY

+
+++++=  

323121321 6761.276195.161904.06339.130387.98815.32 xxxxxxxxxY −−−++=  

321 7333.147333.191333.233 xxxY ++=  

E-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: 
0, 1.  

E-1 

Step 5: Primary response: maximize Y1 (burning rate).  
Step 6: The region of interest is used in a single response optimization to find the extreme values 

of the secondary responses.  Y1: 0, 106.65; Y2: 0, 13.63; Y3: 0, 21.13.The decision-
maker specified upper bounds on Y2 and Y3 as 4.5 and 20, respectively.  These are 
within the extreme value bounds, so will be used. 

E-3 

Step 7: 

1x
2030

5.420
:Subject to

),, Y1(xMaximize

321

321

=++
≤≤
≤≤

xx
Y
Y

xx

 

E-4, E-5 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. E-5 
Step 9: Lagrange multipliers Y2 = 0 and Y3 = 0 from the “Sensitivity Report”. Using the slack 

values for Y2 of 0.32 and Y3 of 1.76 from the “Answer Report”, perturb the values of ε 
(Y2) = 4.17 and ε (Y2) = 18.23. 

E-5, E-6 

Step 7: Re-optimize. E-6 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. E-6 
Step 9: Lagrange multiplier Y2 = 5.02 and Y3=2.63. E-6 
Step 10: Given that the Y1 equals 106.61 and Y2 equals 4.17, please indicate your preference for 

decreasing Y1 by 5.02 units for one unit decrease in Y2, on a 5-point scale where 2 is a 
strong preference for making the trade-off, 0 is a preference to make no trade-off, and -2 
is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth 
assessment of -1. 
 
Given that the Y1 equals 106.61 and Y3 equals 18.23, please indicate your preference for 
decreasing Y1 by 2.63 units for one unit decrease in Y3, on a 5-point scale where 2 is a 
strong preference for making the trade-off, 0 is a preference to make no trade-off, and -2 
is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth 
assessment of 2. 

E-6 

Step 11: Update εi to εi+1 (Y2) = 4.46; εi to εi+1 (Y3) = 7.04. E-6 
Step 7: Repeat steps 7 for iteration 3.  The problem is infeasible.  Return to Iteration 2 and re-

evaluate worth assessment.  
E-7 

Step 7-11 Repeat steps 7-11 for iteration 4.  Worth assessment for Y2=0; Y3 = 2, therefore update 
εi to εi+1 only for Y3 = 6.96 and return to step 7.   

E-8 

Step 7-10: Repeat steps 7-9 for iteration 5.  W=0 for both responses.  Stop. E-9 
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The initial solution found with the new method was the same as that found by Del 

Castillo and Montgomery (.21, .34, .44) with Y1=106.65, Y2=4.18, and Y3=18.24.  This 

problem provides an example of a situation where ε modified the problem so that it became 

infeasible.  An alternative worth assessment was provided to modify ε to a feasible solution.  The 

decision-maker provided a worth assessment = 0, so the process stopped. 

Table 6-22 Propellant Mixture Results, Scenario 1 

Method Iteration x1 x2 x3 Y1 Y2 Y3 εi
2 εi

3 LM2 LM3 W2 W3 εi+1
2 εi+1

3
Del Castillo & Montgomery 0.21 0.34 0.44 106.65 4.17 18.23

MISWT 1 0.21 0.34 0.44 106.65 4.18 18.24 4.50 20.00 0.00 0.00 Perturb
2 0.20 0.35 0.44 106.61 4.17 18.23 4.17 18.23 5.02 2.63 -1.00 2.00 4.46 7.04
3 0.00 0.11 0.33 32.85 4.46 7.04 4.46 7.04 Infeasible
4 Return to Iteration 2 4.17 18.23 5.02 2.63 0.00 2.00 4.17 6.96
5 0.20 0.35 0.44 106.61 4.17 18.23 4.17 18.23 5.02 2.63 0.00 0.00 Stop  

 

A second scenario was run assuming that the decision-maker was not able to provide 

bounds for the secondary responses.  The extreme value method was used to set the bounds.  The 

process was similar to that of Scenario 1 ending in a solution where the decision-maker is 

satisfied.  The solution point was the same found by Del Castillo and Montgomery as well as the 

initial solution found in Scenario 1 of the new method.  
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Table 6-23 Propellant Mixture Process, Scenario 2 

Step # Description Figure # 
Step 1: Responses: maximize burning rate, minimize variability and cost. 

Factors: fuel, oxidizer, and binder. 
 

Step 2: Conduct an experimental design. E-1 
Step 3: 

321

323121321

9818.854
8204.1363347.360204.163612.707755.424945.351

xxx
xxxxxxxxxY

+
+++++=  

323121321 6761.276195.161904.06339.130387.98815.32 xxxxxxxxxY −−−++=  

321 7333.147333.191333.233 xxxY ++=  

E-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: 
0, 1.  

E-1 

Step 5: Primary response: maximize Y1 (burning rate).  
Step 6: The region of interest is used in a single response optimization to find the extreme values 

of the secondary responses.  Y1: 0, 106.65; Y2: 0, 13.63; Y3: 0, 21.13.Scenario 2 
assumes that the decision-maker does not know where to set the bounds on the secondary 
responses.  Therefore, the extreme values will be used. 

E-3 

Step 7: 

1x
2030

5.420
:Subject to

),, Y1(xMaximize

321

321

=++
≤≤
≤≤

xx
Y
Y

xx

 

E-10,  
E-11 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. E-11 
Step 9: Lagrange multipliers Y2 = 0 and Y3 = 0 from the “Sensitivity Report”. Using the slack 

values for Y2 of 9.45 and Y3 of 4.90 from the “Answer Report”, perturb the values of ε 
(Y2) = 4.17 and ε (Y2) = 18.23. 

E-11,  
E-12 

Step 7: Re-optimize. E-12 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. E-12 
Step 9: Lagrange multiplier Y2 = 5.02 and Y3=2.63. E-12 
Step 10: Given that the Y1 equals 106.61 and Y2 equals 4.17, please indicate your preference for 

decreasing Y1 by 5.02 units for one unit decrease in Y2, on a 5-point scale where 2 is a 
strong preference for making the trade-off, 0 is a preference to make no trade-off, and -2 
is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth 
assessment of -1. 
 
Given that the Y1 equals 106.61 and Y3 equals 18.23, please indicate your preference for 
decreasing Y1 by 2.63 units for one unit decrease in Y3, on a 5-point scale where 2 is a 
strong preference for making the trade-off, 0 is a preference to make no trade-off, and -2 
is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth 
assessment of 2. 
 

E-12 

Step 11: Update εi to εi+1 (Y2) = 4.46; εi to εi+1 (Y3) = 7.04. E-12 
Step 7: Repeat steps 7 for iteration 3.  The problem is infeasible.  Return to Iteration 2 and re-

evaluate worth assessment.  
E-13 

Step 7-11 Repeat steps 7-11 for iteration 4.  Worth assessment for Y2=0; Y3 = 2, therefore update 
εi to εi+1 only for Y3 = 6.96 and return to step 7.   

E-14 

Step 7-10: Repeat steps 7-9 for iteration 5.  W=0 for both responses.  Stop. E-15 
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Table 6-24 Propellant Mixture Results, Scenario 2 

Method Iteration x1 x2 x3 Y1 Y2 Y3 εi
2 εi

3 LM2 LM3 W2 W3 εi+1
2 εi+1

3
MISWT 1 0.21 0.34 0.44 106.65 4.18 18.24 13.63 23.13 0.00 0.00 Perturb

2 0.20 0.35 0.44 106.61 4.17 18.23 4.17 18.23 5.02 2.63 -1.00 2.00 4.46 7.04
3 0.00 0.11 0.33 32.85 4.46 7.04 4.46 7.04 Infeasible
4 Return to Iteration 2 4.17 18.23 5.02 2.63 0.00 2.00 4.17 6.96
5 0.20 0.35 0.44 106.61 4.17 18.23 4.17 18.23 5.02 2.63 0.00 0.00 Stop  

Test Problem 5:   Foaming Properties of Dialyzed Whey Protein 

Numerous researchers have conducted variations of the whey protein concentrates 

problem.  Khuri and Conlon (1981) conducted an experiment utilizing five factors (heating 

temperature, pH level, redox potential, sodium oxalate, and sodium lauryl sulfate) to investigate 

their impact on the foaming properties of whey protein concentrates.  There were four 

maximization responses: maximum overrun, time at first drop, indentured protein, and soluble 

protein.  The data for the experimental design and Excel screen shots can be found in Appendix 

F. 

The whey protein problem provides an example with four responses.  Table 6-25 

provides a summary of the process and Table 6-26 provides the results for the whey protein 

problem.  Multiple perturbations were required before the process ended in a point where the 

decision-maker indicated worth assessments = 0 for all partial trade-offs.  Khuri and Conlon used 

a combined method.  The solution points found by the constrained method were different as the 

responses were not equally weighted.  The final preferred solution had a higher Y1 and a lower 

value for Y2, Y3, and Y4 than the solution returned by Khuri and Conlon.  This process 

demonstrated how more than three responses can be solved allowing for the decision-maker to 

trade-off multiple responses.   
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Table 6-25 Whey Protein Process, Scenario 1 

Step # Description Figure # 
Step 1: Responses: maximizing maximum overrun, time at first drop, indentured protein, and soluble protein. 

Factors: heating temperature, pH level, redox potential, sodium oxalate, and sodium lauryl sulfate. 
 

Step 2: A central composite design with 6 center points. F-1 
Step 3: 2

5
2
4

2
3

2
2

2
154321 22.909.3484.4484.2397.5608.1983.2158.5717.1808.17698.11761 xxxxxxxxxxY −−−−−+++−−=  

54534352423251413121 00.138.238.400.1175.1688.275.3625.1288.4800.25 xxxxxxxxxxxxxxxxxxxx −+−++−−−−−  
2
5

2
4

2
3

2
2

2
154321 06.137.024.013.056.050.121.060.169.308.144.92 xxxxxxxxxxY +++−+−−+++=  

54534352423251413121 63.021.196.035.285.019.013.275.246.015.2 xxxxxxxxxxxxxxxxxxxx +−−−−+−−−+  
2
5

2
4

2
3

2
2

2
154321 33.034.036.277.416.437.171.010.068.812.1079.773 xxxxxxxxxxY −−−−−+−−−−=  

54534352423251413121 03.051.104.048.026.068.171.077.177.221.6 xxxxxxxxxxxxxxxxxxxx ++++−−+++−  
2
5

2
4

2
3

2
2

2
154321 07.101.258.266.437.766.113.138.251.725.881.1034 xxxxxxxxxxY +−−−−++++−=  

54534352423251413121 29.009.444.116.029.078.077.009.247.011.0 xxxxxxxxxxxxxxxxxxxx +++−+−+++−  

F-2 

Step 4: Region of interest is cuboid, defined by the values of the x(s) in the experimental design: -2, 2.  F-1 
Step 5: Primary response: maximize Y1 (maximum overrun).  
Step 6: The region of interest is used in a single response optimization to find the extreme values of the secondary responses.  Y1: -44.86, 

1640.54; Y2: -22.44, 85.04; Y3: 42.45, 97.79; Y4: -13.41, 127.15.  No bounds were specified.  It is assumed that the decision-
maker does not know where to set the bounds on the secondary responses.  Therefore, the extreme values will be used. 

F-3 

Step 7: 

15.12740
97.7930

04.8520
:Subject to

),,,, Y1(xMaximize 54321

≤≤
≤≤
≤≤

Y
Y
Y

xxxx

 

F-4, F-5 

Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. F-5 
Step 9: Lagrange multipliers Y2 = 0, Y3 = 0, and Y4 = 0 from the “Sensitivity Report”. Using the slack values for Y2 of 68.2, Y3 = 39.2, 

and Y4 of 24.3 from the “Answer Report”, perturb the values of ε (Y2) = 16.74, ε (Y3) = 58.36, and ε (Y4) = 102.79.  (Note: 
larger constants were subtracted in order to return Lagrange multipliers > 0. 

F-5, F-6 

Step 7: Re-optimize. F-6 
Step 8: Is the decision-maker satisfied with the solution found in Step 7?  No. F-6 
Step 9: Lagrange multiplier Y2 = .09, Y3=.02, and Y4=.01. F-6 
Step 10: Given that the Y1 equals 1640.54 and Y2 equals 16.74, please indicate your preference for decreasing Y1 by 0.09 units for one 

unit increase in Y2, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-
off, and -2 is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth assessment of 2. 
Given that the Y1 equals 1640.54 and Y3 equals 58.36, please indicate your preference for decreasing Y1 by 0.02 units for one 

F-6 
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Step # Description Figure # 
unit increase in Y3, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-
off, and -2 is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth assessment of -2. 
 
Given that the Y1 equals 1640.54 and Y4 equals 102.79, please indicate your preference for decreasing Y1 by 0.01 units for one 
unit increase in Y4, on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-
off, and -2 is a strong preference to make the opposite trade-off.  Decision-maker indicates a worth assessment of 1. 

Step 11: Update εi to εi+1 (Y2) = 25.62; εi to εi+1 (Y3) = 40.48; εi to εi+1 (Y4) = 112.52. F-6 
Step 7-9: Repeat steps 7-9 for iteration 3.  Lagrange multiplier for Y2 = 0 and Y4 = 0 so perturb the values of ε for Y2 to 15.69 and Y4 to 

93.54 using the slack values of 9.83 and 18.87 respectively from the Answer Report and return to Step 7.  
F-7, F-8 

Step 7-9: Repeat steps 7-9 for iteration 4.  Lagrange multiplier for Y2 = 0 so perturb the value of ε for Y2 to 11.29 using the slack value of 
4.3 from the Answer Report and return to Step 7. 

F-8, F-9 

Step 7-11: Repeat steps 7-11 for iteration 5.  Worth assessment for Y3 = 0, therefore update εi to εi+1 only for Y2 = 12.99 and Y4 = 106.36 
and return to step 7.   

F-9 

Step 7-9: Repeat steps 7-9 for iteration 6.  Lagrange multiplier for Y4 = 0 so perturb the value of ε for Y4 to 100.39 using the slack value 
of 5.87 from the Answer Report and return to Step 7. 

F-10, F-11 

Step 7-10: Repeat steps 7-10 for iteration 7.  All worth assessments = 0.  Stop. F-11 
 

Table 6-26 Whey Protein Results, Scenario 1 

Method Iteration x1 x2 x3 x4 x5 Y1 Y2 Y3 Y4 εi
2 εi

3 εi
4 LM2 LM3 LM4 W2 W3 W4 εi+1

2 εi+1
3 εi+1

4
Khuri & Conlon -1.31 -0.16 0.30 0.46 1.72 1433.55 16.96 81.63 106.64

MISWT 1 -2.00 1.33 1.70 0.87 2.00 1640.54 16.84 58.56 102.89 85.04 97.79 127.15 0.00 0.00 0.00 Perturb
2 -2.00 1.35 1.70 0.87 2.00 1640.54 16.74 58.36 102.79 16.74 58.36 102.79 0.09 0.02 0.01 2.00 -2.00 1.00 25.62 40.48 112.52
3 -2.00 2.00 2.00 1.62 2.00 1613.32 15.79 40.48 93.64 25.62 40.48 112.52 0.00 7.25 0.00 Perturb
4 -0.04 2.00 -0.52 2.00 0.76 1018.57 11.39 40.48 93.54 15.69 40.48 93.54 0.00 11.03 9.73 Perturb
5 -0.04 2.00 -0.53 2.00 0.80 1018.56 11.29 40.48 93.54 11.29 40.48 93.54 0.35 11.11 9.52 1.00 0.00 2.00 12.99 40.48 106.36
6 -1.53 2.00 2.00 1.61 1.68 1492.04 12.99 40.48 100.49 12.99 40.48 106.36 42.66 32.25 0.00 Perturb
7 -1.54 2.00 2.00 1.60 1.67 1492.04 12.99 40.48 100.39 12.99 40.48 100.39 43.08 32.29 0.08 0.00 0.00 0.00 Stop  
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Conclusions 

The variety of test problems in this section demonstrated how the proposed modified 

interactive surrogate worth trade-off (MISWT) method can successfully be utilized to solve 

multiple response surface optimization problems.  Furthermore, it demonstrated an accessible 

computer-based implementation of the algorithm. 

Unlike many of the current constrained methods that focus on two responses, the MISWT 

method was tested on problems ranging from two (silicon wafer, chemical, and printing press) to 

four responses (whey protein).     

Many of the current approaches also focused on the dual response problem.  However, 

the MISWT was demonstrated on dual response (silicon wafer, chemical, and printing press), 

mixture (propellant), and multiple maximization response (whey protein) problems.  The 

complexity of the responses also varied demonstrating all quadratic responses as well as a 

combination of quadratic and linear (chemical) responses.  The number of independent variables 

also varied from two (silicon wafer and chemical) to five (whey protein).     

The examples demonstrated that the method can handle situations where the decision-

maker has a target (printing press) or bound (silicon wafer, propellant) in mind as well as when 

the decision-maker does not know (chemical, whey protein).  Furthermore, the problems with 

decision-maker specified targets or bounds were also run using the extreme values, assuming that 

the decision-maker did not know how to set the bounds.   The silicon wafer and propellant 

problems demonstrated a situation where the scenario using the extreme values, or wider bounds, 

produced the same initial solution point as that found when the decision-maker had a narrower 

bound specified.  The printing press problem (scenario 2) demonstrated a situation where the 
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methodology does provide the ability to get to the same 500 target starting from the extreme 

values if the decision-maker does not know ahead of time the goal.  However, it does 

demonstrate that if a target is known, the solution can be reached quicker when it is used.        

Swapping out the primary objective was demonstrated with the silicon wafer and printing 

press problems.  Iteration 3 of Scenario 4 of the printing press problem demonstrates that 

maximizing the mean can return the same or similar solution as that reached by minimizing the 

standard deviation (Iteration 11, Scenario 2). 

In order to test for local optima, it is recommended that alternative initial starting points 

are used.  All problems were tested using multiple initial starting points.  The only problem to 

return alternative optima was the printing press problem.  This was also observed in scenario 2 

where the initial solution returned a mean of 139 rather than around 500 where the other 

scenarios were.  The printing press problem is non-convex. 

Various potential terminating criteria were demonstrated including worth assessments 

equal to 0 (silicon wafer scenario 2, chemical experiment, printing press scenarios, and whey 

protein), convergence to same point (silicon wafer scenarios 1 and 3), infeasibility (propellant) 

and when ε is updated to a point outside of the extreme values (printing press scenario 6).  It was 

shown how the process can manage these situations.      

Finally, it was demonstrated that the proposed MISWT method can return solutions that 

compare to existing constrained methods (Shin and Cho, Del Castillo, Del Castillo and 

Montgomery).  All problems demonstrated how when the decision-maker preferences are 

explicitly taken into consideration an alternative solution may be preferred over the initial 

solution.  The decision-maker may be willing to make trade-offs that cannot be captured with 

implicit methods. 
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Therefore, it is concluded that MISWT is a reasonable alternative to existing constrained 

methods, and it can be argued that MISWT is a better method due to the ability of the method to 

explicitly consider decision-maker trade-offs and allow the decision-maker to find preferred 

solutions. 

Evaluation of New Method Compared to Conditions and Characteristics 

The MISWT method successfully meets the conditions and assumptions required for 

constrained methods to find the most preferred non-dominated solution: 

• Generate non-dominated solutions, as guaranteed by the use of the ε-constraint 

approach. 

• Generate solutions consistent with decision-maker preferences among the response 

objectives, as guaranteed by the interactive process of the methodology.  Decision-

maker preferences are explicitly considered in the methodology and the method 

allows for the decision-maker to make trade-offs among the responses. 

Furthermore, the method addresses the following recommended characteristics:   

• High ease of use: the method was easily implemented using an Excel add-in, 

Premium Solver.  No programming was required. 

• Low level of cognitive burden: Tarvainen’s 5-point scale was utilized in an effort to 

reduce the moderate level of cognitive burden of the ISWT method.  Furthermore, it 

was demonstrated that if the decision-maker cannot specify bounds or targets, the 

method can still find the decision-maker’s preferred solution.  

• Reflects decision-maker preferences 
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o Uses explicit preferences: The method explicitly uses the decision-maker’s 

preference for the primary response and bounds or targets on secondary 

responses. 

o Allows for trade-offs among solutions:  The method allows for explicit trade-offs 

among responses by the decision-maker to determine the most preferred solution.  

• Few limitations on the type and number of responses/objectives:  The method was 

demonstrated on both linear and quadratic responses as well as a variety of problems 

with the number of responses ranging from two to four. 

• Ability to find all non-dominated solutions:  As guaranteed by the use of the ε-

constraint approach, it is possible to find all non-dominated solutions.  The interactive 

nature of the method allows for the preferred non-dominated solution, regardless of 

response convexity, to be found without having to generate all of the non-dominated 

solutions.  However, multiple starting points should be used due to the possibility of 

obtaining local optima. 

• Low number of iterations to find “best compromise solution:” It was demonstrated 

that the number of iterations to find the preferred solution ranged from 1 to 13 with 

not all of the iterations requiring decision-maker involvement. 

The modified interactive surrogate worth trade-off methodology successfully addresses 

the required and recommended conditions for multiple response surface methods.  Furthermore, 

it provides distinct advantages over current MRSM approaches in that it does not require 

convexity to find all non-dominated solutions and explicitly takes into consideration decision-

maker preferences. 
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CHAPTER SEVEN: CONCLUSIONS 

Summary and Conclusions 

This research has developed a new constrained multiple response surface methodology 

based on the multi-criteria decision-making technique, interactive surrogate worth trade-off.  The 

theoretical contribution is the development of the conditions and assumptions necessary for 

constrained multiple response surface optimization methods.  The methodological contribution is 

the development of a new constrained multiple response surface method that explicitly takes into 

account the preferences of the decision-maker as well as the conditions and assumptions 

identified through this research.  The practical contribution is a constrained multiple response 

surface methodology that is reasonable for the average decision-maker to use that explicitly takes 

into account the preferences of the decision-maker as demonstrated with the test problems.   

The current multiple response surface methods were summarized and categorized.  A 

methods tree was developed to depict the evolution of multiple response surface methodologies.  

Gaps in the research were identified, particularly with respect to methods that explicitly consider 

decision-maker preferences and allow for explicit trade-offs among the responses.  The larger 

area of multi-criteria decision-making was explored and the interactive surrogate worth trade-off 

method was identified for modification to apply to response surface optimization problems. 

The conditions and assumptions required for constrained methods to find the most 

preferred non-dominated solution are that they must generate non-dominated solutions and must 

generate solutions consistent with decision-maker preferences.   If a Lagrangian method is used, 
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then convexity is also required in order to generate all non-dominated solutions.  Far fewer 

assumptions and conditions are required for constrained methods compared to those for 

combined methods.   

Recommended characteristics identified for development of a multiple response method 

included a high ease of use, low level of cognitive burden, reflects decision-maker preferences 

including explicit use of preferences and allows for trade-offs among solutions, few limitations 

on the type and number of responses/objectives, the ability to find all non-dominated solutions, 

and a low number of iterations to find the “most preferred solution.”   

A new constrained multiple response surface methodology was developed based on the 

multi-criteria decision-making technique, interactive surrogate worth trade-off.   The new 

methodology maintains the essence of ISWT while simplifying the process based on the 

particular specifications of multiple response surface problems.  The MISWT methodology was 

demonstrated on five test problems from the literature.  The variety of test problems in this 

section demonstrated how the proposed modified interactive surrogate worth trade-off (MISWT) 

method can successfully be utilized to solve multiple response surface optimization problems.  

Furthermore, it demonstrates the accessibility of a computer-based implementation of the 

algorithm. 

The MISWT method successfully meets the conditions and assumptions required for 

constrained methods to find the most preferred non-dominated solution: 

• Generate non-dominated solutions, as guaranteed by the use of the ε-constraint 

approach.  And the method does not require convexity. 

• Generate solutions consistent with decision-maker preferences among the response 

objectives, as guaranteed by the interactive process of the methodology.  Decision-
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maker preferences are explicitly considered in the methodology and allows for the 

decision-maker to make trade-offs among the responses. 

The MISWT addresses the recommended characteristics as follows: 

• High ease of use: the method was easily implemented using an Excel add-in, 

Premium Solver.  No programming was required. 

• Low level of cognitive burden: Tarvainen’s 5-point scale was utilized in an effort to 

reduce the moderate level of cognitive burden of the ISWT method.  Furthermore, it 

was demonstrated that if the decision-maker cannot specify bounds or targets, the 

method can still find the decision-maker’s preferred solution.  

• Reflects decision-maker preferences 

o Uses explicit preferences: The method explicitly uses the decision-maker’s 

preference for the primary response and bounds or targets on secondary 

responses. 

o Allows for trade-offs among solutions:  The method allows for explicit trade-offs 

among responses by the decision-maker to determine the most preferred solution.  

• Few limitations on the type and number of responses/objectives:  The method was 

demonstrated on both linear and quadratic responses as well as a variety of problems 

with the number of responses ranging from two to four. 

• Ability to find all non-dominated solutions:  As guaranteed by the use of the ε-

constraint approach, it is possible to find all non-dominated solutions.  The interactive 

nature of the method allows for the preferred non-dominated solution, regardless of 

response convexity, to be found without having to generate all of the non-dominated 

solutions. 
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• Low number of iterations to find the “best compromise solution:” It was 

demonstrated that the number of iterations to find the preferred solution ranged from 

1 to 13 with not all of the iterations requiring decision-maker involvement. 

It was demonstrated that the proposed MISWT method can return solutions that compare 

to existing constrained methods (Shin and Cho, Del Castillo, Del Castillo and Montgomery).  

Furthermore, the test problems demonstrated that when the decision-maker preferences are 

explicitly taken into consideration an alternative solution may be preferred over the initial 

solution.  The decision-maker may be willing to make trade-offs that cannot be captured with 

implicit methods.  Therefore, it is concluded that MISWT is a reasonable alternative to existing 

constrained methods.  Furthermore, it can be argued that MISWT is a better method due to the 

ability of the method to explicitly consider decision-maker trade-offs and allow the decision-

maker to find preferred solutions. 

Recommendations for Future Research  

An important area for future research is to examine the use of the MISWT method with a 

real decision-maker.  Specifically, the methodology should be further evaluated by decision-

makers on ease of use, cognitive burden, and level of interaction.  A suggested problem and 

questions are included in Appendix G. 

 An alternative approach utilizing the surrogate worth trade-off (SWT) approach first and 

then employing the interactive portion of the process should be explored.  The SWT method 

generates a set of alternative optima and then the decision-maker is asked to assess each point 

and a regression is run to find the optimal solution based on this feedback.  This approach may 
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provide for a method to find a starting solution when the decision-maker does not have targets or 

bounds in mind for the secondary response and may reduce the number of iterations required to 

reach a preferred solution.  Another alternative would be to generate a set of alternative optima 

and have the decision-maker select one preferred solution to start the interactive portion from 

that point.  These alternative methodologies should be compared to determine if one is easier and 

reduces the cognitive burden on the decision-maker.  

Another area of future research is the interpretation of “units” in decision-maker trade-

offs.  This research assumes that the decision-maker can make reasonable trade-offs among 

responses with different units (e.g., time vs. standard deviation).  Furthermore, when move in a 

direction outside of the region of operability, whether or not to interact with the decision-maker 

in original or coded units for the decision to expand the region should also be addressed.  

Another area of future development is to further automate the MISWT process to make 

the analysis easier on the decision-maker and/or analyst.  Macros could be utilized to provide the 

functionality within Excel with the Solver add-in to automate the transition between iterations 

and provide a more interactive, user-friendly interface. 
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APPENDIX A: TEST PROBLEMS FOUND IN MRSM LITERATURE 
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Table A-1 Test Problems in the Literature 

Use Test Problem Reference # Factors # Responses 
 Beef stew military field 

ration 
(Wurl and Albin 1999), (Tsui, et al. 2001) 5 4 (2µ, 2σ) 

 Bonding process (Khoo and Chen 2001) 3 2 
 Catapult experiment (Luner 1994), (Del Castillo 1996) 3 2 (µ, σ) 

Y Chemical experiment (Del Castillo 1996), (Gheware 2003), 
(Osborne 1997) 

2 2 (µ, σ) 

 Colloidal gas aphrons 
study 

(Jauregi, Gilmour, and Varley 1997), (Kim 
and Lin 2006) 

3 6 (3µ, 3σ) 

 Force transducer (Romano, Varetto, and Vicario 2004) 5 2 
 Hard disk driver (Su and Tong 1997), (Liao 2004) 6 4 

Y Silicon wafers (Shin and Cho 2005) 2 2 (µ, σ) 
 Integrated circuit (Yang and Tseng 2002), (Yang, Kuo, and 

Chou 2005) 
5 2 (µ, σ) 

 Inventory model 
simulation 

(Rees, Clayton, and Taylor 1985) 2 3 

 Liquid chromatography 
assay 

(Peterson 2004), (Miro-Quesada and Del 
Castillo 2004a) 

3 4 

 Mechanical properties of 
steel 

(Kim and Lin 2000) 
(Xu, et al. 2004) 

6 3 

 Mixed resolution design (Borror and Montgomery 2000), (Miro-
Quesada and Del Castillo 2004b) 

7 2 (µ, σ) 

 Numerical example (Myers, Khuri, and Vining 1992), (Koksoy 
and Doganaksoy 2003) 

4 2 (µ, σ) 

 Polymer experiment (Myers and Montgomery 1995), (Vining 
1998) 

3 2 

 Printed circuit boards (Plante 2001) 7 5 
Y Printing machine (Box and Draper 1987), (Vining and Myers 

1990), (Del Castillo and Montgomery 1993), 
(Lin and Tu 1995), (Copeland and Nelson 
1996), (Tang and Xu 2002), (Koksoy and 
Doganaksoy 2003), (Gheware 2003), 
(Osborne 1997) 

3 2 (µ, σ) 

Y Propellant mixture 
problem 
 

(Montgomery and Voth 1991), (Del Castillo 
and Montgomery 1993) 

3 3 (µ, σ, $) 

 Pseudolatex formation (Frisbee and McGinity 1994), (Peterson 
2004) 

3 2 

 Semiconductor 
manufacturing facility 

(Montgomery 2001),  
(Miro-Quesada and Del Castillo 2004b), 
(Koksoy and Doganaksoy 2003) 

5 2 (µ, σ) 

 Sheet metal hydroforming 
process 

(Kuhnt and Erdbrugge 2004) 4 2 

 Solder experiment (Lee and Nelder 2003), (Myers, Brenneman, 
and Myers 2005) 

8 2 (µ, σ) 

 Tire tread compound  (Derringer and Suich 1980), (Xu, et al. 
2004), (Ames, et al. 1997) 

3 4 

 Vehicle side impact (Youn and Choi 2004) 11 11 
 VLSI device design (Young, Teplik, Tweed, Tracht, and 

Alvarez 1991), (Plante 2001) 
4 9 
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Use Test Problem Reference # Factors # Responses 
 Wheel cover component 

experiment 
(Harper, Kosbe, and Peyton 1987), (Kim 
and Lin 2006), (Kuhnt and Erdbrugge 2004)  

7 4 (2µ, 2σ) 

 Whey protein 
concentrates 

(Khuri and Conlon 1981), (Gheware 2003), 
(Osborne 1997),  (Diaz-Garcia, Ramos-
Quiroga, and Cabrera-Vicencio 2005) 

2 4 

Y Foaming properties of 
whey protein 

(Richert, Morr, and Cooney 1974) 
(Khuri and Conlon 1981), (Xu, et al. 2004) 

5 4 

 Foaming properties of 
whey protein (different 
responses used) 

(Khuri and Cornell 1987), (Miro-Quesada 
and Del Castillo 2004a) 

5 3 

 Wire bonding process (Del Castillo, Montgomery, and 
McCarville 1996) 

3 6 

*Bold type face indicates the earliest reference identified for the problem.  Italics indicate constrained methods. 
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APPENDIX B: SILICON WAFER PROBLEM 
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Silicon Wafers (Shin and Cho, 2005)

X1 X2 Y1 Y2 Y3 Y4 Y (avg) Y (std)
-1 -1 76.3 73.5 68.8 74.2 73.20 3.17
1 -1 70.4 81.2 76.7 79.6 76.98 4.76

-1 1 76.6 72.0 77.7 78.5 76.20 2.91
1 1 72.3 67.5 75.7 72.7 72.05 3.39

-1.414 0 70.6 75.8 69.9 71.5 71.95 2.65
1.414 0 74.1 80.2 76.2 77.1 76.90 2.53

0 -1.414 78.5 68.7 76.2 75.3 74.68 4.21
0 1.414 70.2 76.3 79.2 75.9 75.40 3.77
0 0 74.1 71.8 72.5 71.9 72.58 1.06
0 0 72.1 70.4 73.3 74.2 72.50 1.64
0 0 74.2 69.8 71.2 72.2 71.85 1.85
0 0 70.1 69.3 71.6 72.5 70.88 1.44
0 0 69.8 70.6 71.6 74.1 71.53 1.87

X1=mould temperature (99.6, 301.4)
X2=injection flow rate (40, 70)
Y=quality of printing process (4 replicates)  

Figure B-1 Silicon Wafers, Experimental Design 

Fitted Responses:

21
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121 xx1.98x1.55x1.25x0.11x0.8371.87μ −++−+=

21

2

2

2

121 28.028.158.028.024.057.1 xxxxxx −++−+=σ
 

Figure B-2 Silicon Wafers, Fitted Responses 
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“ISWT” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C D E F G H I J K
Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.41 2.00 2.00 -2.00 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 82.76
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 6.58

Constraints
x1 >= -1.414
x1 <= 1.414
x2 >= -1.414
x2 <= 1.414

Lower Bound 71.63
Upper Bound 82.76

Case >= 70.24
<= 72.04  

 

Figure B-3 Silicon Wafers, Scenario 1, Extreme Values 

 



169 

“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 70.24
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F16
=ISWT!F15

 
 

 

Figure B-4 Silicon Wafers, Scenario 1, Solver Parameters 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 70.24
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F16
=ISWT!F15

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.19 0.00
$F$2 Settings x2 0.09 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.79 0.00
$K$3 µ (Y1) Value 71.79 0.00  

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

X Y Z AA AB AC AD
Microsoft Excel 11.0 Answer Report
Worksheet: [Silicon Wafers.xls]ISWT 1
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Min)
Cell Name Original Value Final Value

$K$4 σ (Y2) Value 1.57 1.54

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -0.19
$F$2 Settings x2 0.00 0.09

Constraints
Cell Name Cell Value Formula Status Slack

$K$3 µ (Y1) Value 71.79 $K$3<=$F$8 Not Binding 0.2457027
$K$3 µ (Y1) Value 71.79 $K$3>=$F$7 Not Binding 1.55
$E$2 Settings x1 -0.19 $E$2<=$F$10 Not Binding 1.5993901
$F$2 Settings x2 0.09 $F$2<=$F$10 Not Binding 1.324902
$E$2 Settings x1 -0.19 $E$2>=$F$9 Not Binding 1.23
$F$2 Settings x2 0.09 $F$2>=$F$9 Not Binding 1.50  

Figure B-5 Silicon Wafers, Scenario 1, Iteration 1 
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“ISWT 2” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.17 0.10 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.80
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.80
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.06

Step 10: Given that the mean equals 71.8 and the standard deviation equals 1.54,
please indicate your preference for increasing the standard deviation by 0.06 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00861

ε= 71.95

='ISWT 1'!F8
='ISWT 1'!F7+'ISWT 1'!AD22+0.01

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.17 0.00
$F$2 Settings x2 0.10 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.80 0.00
$K$3 µ (Y1) Value 71.80 0.06  

Figure B-6 Silicon Wafers, Scenario 1, Iteration 2 
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“ISWT 3” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.10 0.14 0.01 0.02 0.01 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.95
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.58

Constraints
µ >= 71.95
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 71.95 and the standard deviation equals 1.58,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00531

ε= 71.98

='ISWT 1'!F8
='ISWT 2'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 3

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.10 0.00
$F$2 Settings x2 0.14 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.95 0.00
$K$3 µ (Y1) Value 71.95 0.39  

Figure B-7 Silicon Wafers, Scenario 1, Iteration 3 
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“ISWT 4” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.14 0.13 0.02 0.02 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.98
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.59

Constraints
µ >= 71.98
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 71.98 and the standard deviation equals 1.59,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00328

ε= 72.00

='ISWT 1'!F8
='ISWT 3'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 4

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.14 0.00
$F$2 Settings x2 0.13 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.98 0.00
$K$3 µ (Y1) Value 71.98 0.39  

Figure B-8 Silicon Wafers, Scenario 1, Iteration 4 
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“ISWT 5” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.15 0.12 0.02 0.01 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 72.00
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.60

Constraints
µ >= 72.00
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 72 and the standard deviation equals 1.6,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.00203

ε= 71.99

='ISWT 1'!F8
='ISWT 4'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 5

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.15 0.00
$F$2 Settings x2 0.12 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 72.00 0.00
$K$3 µ (Y1) Value 72.00 0.39  

Figure B-9 Silicon Wafers, Scenario 1, Iteration 5 
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“ISWT 6” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.15 0.12 0.02 0.02 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.99
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.60

Constraints
µ >= 71.99
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 71.99 and the standard deviation equals 1.6,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 5
step size= 0.00125

ε= 71.99

='ISWT 1'!F8
='ISWT 5'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 6

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.15 0.00
$F$2 Settings x2 0.12 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.99 0.00
$K$3 µ (Y1) Value 71.99 0.39  

Figure B-10 Silicon Wafers, Scenario 1, Iteration 6 
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“ISWT 7” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.14 0.12 0.02 0.02 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.99
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.60

Constraints
µ >= 71.99
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 71.99 and the standard deviation equals 1.6,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 6
step size= 0.00039

ε= 71.99

='ISWT 1'!F8
='ISWT 6'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 7

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.14 0.00
$F$2 Settings x2 0.12 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.99 0.00
$K$3 µ (Y1) Value 71.99 0.39  

Figure B-11 Silicon Wafers, Scenario 1, Iteration 7 
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“ISWT 8” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.14 0.12 0.02 0.02 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.99
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.60

Constraints
µ >= 71.99
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.39

Step 10: Given that the mean equals 71.99 and the standard deviation equals 1.6,
please indicate your preference for increasing the standard deviation by 0.39 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 7
step size= 0.00048

ε= 71.99

='ISWT 1'!F8
='ISWT 7'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F16-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 8

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.14 0.00
$F$2 Settings x2 0.12 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.99 0.00
$K$3 µ (Y1) Value 71.99 0.39  

Figure B-12 Silicon Wafers, Scenario 1, Iteration 8 
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“ISWT 9” 
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A B C D E F G H I J K
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.15 0.12 0.02 0.02 0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.99
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.60

Constraints
µ >= 71.99
µ <= 72.04
x1, x2 >= -1.41
x1, x2 <= 1.41

='ISWT 1'!F8
='ISWT 8'!G27

 

Figure B-13 Silicon Wafers, Scenario 1, Iteration 9 

“ISWT 1b” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.63
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F13
=ISWT!F12

 

 

Figure B-14 Silicon Wafers, Scenario 2, Solver Parameters 
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“ISWT 1b” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.63
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F13
=ISWT!F12
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 1b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.19 0.00
$F$2 Settings x2 0.09 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.79 0.00
$K$3 µ (Y1) Value 71.79 0.00  
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26

X Y Z AA AB AC AD
Microsoft Excel 11.0 Answer Report
Worksheet: [Silicon Wafers.xls]ISWT 1b
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Min)
Cell Name Original Value Final Value

$K$4 σ (Y2) Value 1.57 1.54

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -0.19
$F$2 Settings x2 0.00 0.09

Constraints
Cell Name Cell Value Formula Status Slack

$K$3 µ (Y1) Value 71.79 $K$3<=$F$8 Not Binding 10.961976
$K$3 µ (Y1) Value 71.79 $K$3>=$F$7 Not Binding 0.16
$E$2 Settings x1 -0.19 $E$2<=$F$10 Not Binding 1.5993901
$F$2 Settings x2 0.09 $F$2<=$F$10 Not Binding 1.324902
$E$2 Settings x1 -0.19 $E$2>=$F$9 Not Binding 1.23
$F$2 Settings x2 0.09 $F$2>=$F$9 Not Binding 1.50  

Figure B-15 Silicon Wafers, Scenario 2, Iteration 1 
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“ISWT 2b” 
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Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.17 0.10 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.80
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
µ >= 71.80
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.06

Step 10: Given that the mean equals 71.8 and the standard deviation equals 1.54,
please indicate your preference for increasing the standard deviation by 0.06 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00861

ε= 78.57

=ISWT!F13
=ISWT!F12+'ISWT 1b'!AD22+0.01

=F7+((G25*G21*ABS(K3))*(ISWT!F13-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 2b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.17 0.00
$F$2 Settings x2 0.10 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 71.80 0.00
$K$3 µ (Y1) Value 71.80 0.06  

Figure B-16 Silicon Wafers, Scenario 2, Iteration 2 
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“ISWT 3b” 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -0.75 2.00 0.56 -1.05 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 78.57
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 4.28

Constraints
µ >= 78.57
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.49

Step 10: Given that the mean equals 78.57 and the standard deviation equals 4.28,
please indicate your preference for increasing the standard deviation by 0.49 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00486

ε= 80.17

=ISWT!F13
='ISWT 2b'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F13-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))

 

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 3b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 -0.80
$F$2 Settings x2 -0.75 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 78.57 0.00
$K$3 µ (Y1) Value 78.57 0.49  

Figure B-17 Silicon Wafers, Scenario 2, Iteration 3 
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“ISWT 4b” 
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Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.03 2.00 1.06 -1.45 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 80.17
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 5.12

Constraints
µ >= 80.17
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.54

Step 10: Given that the mean equals 80.17 and the standard deviation equals 5.12,
please indicate your preference for increasing the standard deviation by 0.54 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00294

ε= 80.78

=ISWT!F13
='ISWT 3b'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F13-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 4b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 -1.30
$F$2 Settings x2 -1.03 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 80.17 0.00
$K$3 µ (Y1) Value 80.17 0.54  

Figure B-18 Silicon Wafers, Scenario 2, Iteration 4 
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“ISWT 5b” 
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Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.13 2.00 1.27 -1.59 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 80.78
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 5.45

Constraints
µ >= 80.78
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.56

Step 10: Given that the mean equals 80.78 and the standard deviation equals 5.45,
please indicate your preference for increasing the standard deviation by 0.56 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.00181

ε= 80.49

=ISWT!F13
='ISWT 4b'!G27

=F7+((G25*G21*ABS(K3))*(ISWT!F13-F7))

=(G23^G24)/(SQRT((G21*ABS(K3))^2))

 

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 5b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 -1.47
$F$2 Settings x2 -1.13 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 80.78 0.00
$K$3 µ (Y1) Value 80.78 0.56  

Figure B-19 Silicon Wafers, Scenario 2, Iteration 5 
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“ISWT 6b” 
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Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.08 2.00 1.17 -1.53 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 80.49
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 5.29

Constraints
µ >= 80.49
µ <= 82.76
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.55

Step 10: Given that the mean equals 80.49 and the standard deviation equals 5.29,
please indicate your preference for increasing the standard deviation by 0.55 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

=ISWT!F13
='ISWT 5b'!G27
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 6b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 -1.39
$F$2 Settings x2 -1.08 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$3 µ (Y1) Value 80.49 0.00
$K$3 µ (Y1) Value 80.49 0.55  

Figure B-20 Silicon Wafers, Scenario 2, Iteration 6 
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“ISWT c” 
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Constant x1 x2 x1sq x2sq x1x2 Response

Settings -0.19 0.09 0.03 0.01 -0.02 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 71.79
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 1.54

Constraints
x1 >= -1.414
x1 <= 1.414
x2 >= -1.414
x2 <= 1.414

Lower Bound 1.54
Upper Bound 6.58  

 

Figure B-21 Silicon Wafers, Scenario 3, Extreme Values 
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“ISWT 1c” 

1
2
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5
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10
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.41 2.00 2.00 -2.00 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 82.75
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 6.58

Constraints
σ >= 1.54
σ <= 6.58
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 1.70

Step 10: Given that the mean equals 82.75 and the standard deviation equals 6.58,
please indicate your preference for decreasing the mean by 1.7 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.04696

ε= 3.47

='ISWT c'!F13
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))

 

 

Figure B-22 Silicon Wafers, Scenario 3, Solver Parameters 
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“ISWT 1c” 
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28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -1.41 2.00 2.00 -2.00 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 82.75
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 6.58

Constraints
σ >= 1.54
σ <= 6.58
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 1.70

Step 10: Given that the mean equals 82.75 and the standard deviation equals 6.58,
please indicate your preference for decreasing the mean by 1.7 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.04696

ε= 3.47

='ISWT c'!F13
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 1c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 3.30
$F$2 Settings x2 -1.41 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 6.58 1.70
$K$4 σ (Y2) Value 6.58 0.00  

Figure B-23 Silicon Wafers, Scenario 3, Iteration 1 
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“ISWT 2c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.41 -0.35 2.00 0.12 -0.50 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 76.76
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 3.47

Constraints
σ >= 1.54
σ <= 3.47
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.54

Step 10: Given that the mean equals 76.76 and the standard deviation equals 3.47,
please indicate your preference for decreasing the mean by 2.54 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.05511

ε= 2.73

='ISWT 1c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 2c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.41 0.04
$F$2 Settings x2 -0.35 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 3.47 2.54
$K$4 σ (Y2) Value 3.47 0.00  

Figure B-24 Silicon Wafers, Scenario 3, Iteration 2 
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“ISWT 3c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 1.10 -0.23 1.20 0.05 -0.25 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 74.88
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.73

Constraints
σ >= 1.54
σ <= 2.73
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 74.88 and the standard deviation equals 2.73,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.04323

ε= 2.45

='ISWT 2c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 3c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.10 0.00
$F$2 Settings x2 -0.23 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.73 2.55
$K$4 σ (Y2) Value 2.73 0.00  

Figure B-25 Silicon Wafers, Scenario 3, Iteration 3 
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“ISWT 4c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.95 -0.17 0.90 0.03 -0.16 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 74.16
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.45

Constraints
σ >= 1.54
σ <= 2.45
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 74.16 and the standard deviation equals 2.45,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.02978

ε= 2.32

='ISWT 3c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 4c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.95 0.00
$F$2 Settings x2 -0.17 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.45 2.55
$K$4 σ (Y2) Value 2.45 0.00  

Figure B-26 Silicon Wafers, Scenario 3, Iteration 4 
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“ISWT 5c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.87 -0.14 0.75 0.02 -0.12 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.83
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.32

Constraints
σ >= 1.54
σ <= 2.32
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.83 and the standard deviation equals 2.32,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 5
step size= 0.01946

ε= 2.25

='ISWT 4c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 5c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.87 0.00
$F$2 Settings x2 -0.14 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.32 2.55
$K$4 σ (Y2) Value 2.32 0.00  

Figure B-27 Silicon Wafers, Scenario 3, Iteration 5 
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“ISWT 6c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.82 -0.13 0.68 0.02 -0.11 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.65
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.25

Constraints
σ >= 1.54
σ <= 2.25
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.65 and the standard deviation equals 2.25,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 6
step size= 0.0124

ε= 2.21

='ISWT 5c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 6c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.82 0.00
$F$2 Settings x2 -0.13 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.25 2.55
$K$4 σ (Y2) Value 2.25 0.00  

Figure B-28 Silicon Wafers, Scenario 3, Iteration 6 
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“ISWT 7c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.80 -0.12 0.64 0.01 -0.09 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.55
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.21

Constraints
σ >= 1.54
σ <= 2.21
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.55 and the standard deviation equals 2.21,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 7
step size= 0.0078

ε= 2.18

='ISWT 6c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 7c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.80 0.00
$F$2 Settings x2 -0.12 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.21 2.55
$K$4 σ (Y2) Value 2.21 0.00  

Figure B-29 Silicon Wafers, Scenario 3, Iteration 7 



194 

“ISWT 8c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.78 -0.11 0.61 0.01 -0.09 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.49
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.18

Constraints
σ >= 1.54
σ <= 2.18
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.49 and the standard deviation equals 2.18,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 8
step size= 0.00487

ε= 2.17

='ISWT 7c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 8c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.78 0.00
$F$2 Settings x2 -0.11 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.18 2.55
$K$4 σ (Y2) Value 2.18 0.00  

Figure B-30 Silicon Wafers, Scenario 3, Iteration 8 
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“ISWT 9c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.77 -0.11 0.60 0.01 -0.08 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.45
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.17

Constraints
σ >= 1.54
σ <= 2.17
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.45 and the standard deviation equals 2.17,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 9
step size= 0.00303

ε= 2.16

='ISWT 8c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 9c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.77 0.00
$F$2 Settings x2 -0.11 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.17 2.55
$K$4 σ (Y2) Value 2.17 0.00  

Figure B-31 Silicon Wafers, Scenario 3, Iteration 9 



196 

“ISWT 10c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.77 -0.11 0.59 0.01 -0.08 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.43
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.16

Constraints
σ >= 1.54
σ <= 2.16
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.43 and the standard deviation equals 2.16,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 10
step size= 0.00188

ε= 2.16

='ISWT 9c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 10c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.77 0.00
$F$2 Settings x2 -0.11 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.16 2.55
$K$4 σ (Y2) Value 2.16 0.00  

Figure B-32 Silicon Wafers, Scenario 3, Iteration 10 
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“ISWT 11c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.76 -0.11 0.58 0.01 -0.08 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.42
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.16

Constraints
σ >= 1.54
σ <= 2.16
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.42 and the standard deviation equals 2.16,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 11
step size= 0.00116

ε= 2.15

='ISWT 10c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 11c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.76 0.00
$F$2 Settings x2 -0.11 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.16 2.55
$K$4 σ (Y2) Value 2.16 0.00  

Figure B-33 Silicon Wafers, Scenario 3, Iteration 11 
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“ISWT 12c” 
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A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.76 -0.10 0.58 0.01 -0.08 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.41
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.15

Constraints
σ >= 1.54
σ <= 2.15
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.55

Step 10: Given that the mean equals 73.41 and the standard deviation equals 2.15,
please indicate your preference for decreasing the mean by 2.55 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 12
step size= 0.00072

ε= 2.15

='ISWT 11c'!G27
='ISWT c'!F12

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))
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10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Silicon Wafers.xls]ISWT 12c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.76 0.00
$F$2 Settings x2 -0.10 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 2.15 2.55
$K$4 σ (Y2) Value 2.15 0.00  

Figure B-34 Silicon Wafers, Scenario 3, Iteration 12 
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“ISWT 13c” 

1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.76 -0.10 0.58 0.01 -0.08 Value
µ (Y1) 71.87 0.83 -0.11 1.25 1.55 -1.98 73.41
σ (Y2) 1.57 0.24 -0.28 0.58 1.28 -0.28 2.15

Constraints
σ >= 1.54
σ <= 2.15
x1, x2 >= -1.41
x1, x2 <= 1.41

='ISWT 12c'!G27
='ISWT c'!F12

 

Figure B-35 Silicon Wafers, Scenario 3, Iteration 13 
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APPENDIX C: CHEMICAL EXPERIMENT
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Chemical Experiment (Del Castillo, 1996)

X1 X2 Y (avg) Y (std)
-1 -1 456.50       8.76            
1 -1 595.60       21.96          

-1 1 808.70       21.21          
1 1 849.00       40.77          

1.41 0 794.10       30.82          
-1.41 0 673.70       18.32          

0 1.41 835.00       16.79          
0 -1.41 387.40       3.38            
0 0 757.90       9.18            
0 0 760.70       24.14          
0 0 761.30       22.31          
0 0 757.50       10.16          
0 0 764.90       22.62          

X1=temperature
X2=reaction time
Y=yield  

Figure C-1 Chemical Experiment, Experimental Design 

Fitted Responses:

21

2

2

2

121 70.2442.7305.1284.15471.4346.760 xxxxxx −−−++=μ

21 28.631.626.19 xx ++=σ  

Figure C-2 Chemical Experiment, Fitted Responses 
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“ISWT” 

1
2
3
4
5
6
7
8
9

10
11
12
13

C D E F G H I J K
Constant x1 x2 x1sq x2sq x1x2 Response

Settings -1.41 -1.41 2.00 2.00 2.00 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 259.44
σ (Y2) 19.26 6.31 6.28 0 0 0 1.46

Constraints
x1 >= -1.414
x1 <= 1.414
x2 >= -1.414
x2 <= 1.414

Lower Bound 1.46
Upper Bound 37.06  

 

Figure C-3 Chemical Experiment, Extreme Values 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.89 0.91 0.78 0.82 0.80 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 849.92
σ (Y2) 19.26 6.31 6.28 0 0 0 30.53

Constraints
σ >= 1.46
σ <= 37.06
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F13
=ISWT!F12

 
 

 

Figure C-4 Chemical Experiment, Solver Parameters 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.89 0.91 0.78 0.82 0.80 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 849.92
σ (Y2) 19.26 6.31 6.28 0 0 0 30.53

Constraints
σ >= 1.46
σ <= 37.06
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F13
=ISWT!F12

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Chemical Experiment.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.89 0.00
$F$2 Settings x2 0.91 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 30.53 0.00
$K$4 σ (Y2) Value 30.53 0.00  

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

X Y Z AA AB AC AD
Microsoft Excel 11.0 Answer Report
Worksheet: [Chemical Experiment.xls]ISWT 1
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$K$3 µ (Y1) Value 760.46 849.92

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 0.89
$F$2 Settings x2 0.00 0.91

Constraints
Cell Name Cell Value Formula Status Slack

$K$4 σ (Y2) Value 30.53 $K$4<=$F$8 Not Binding 6.5272737
$K$4 σ (Y2) Value 30.53 $K$4>=$F$7 Not Binding 29.08
$E$2 Settings x1 0.89 $E$2<=$F$10 Not Binding 0.5283577
$F$2 Settings x2 0.91 $F$2<=$F$10 Not Binding 0.5084931
$E$2 Settings x1 0.89 $E$2>=$F$9 Not Binding 2.30
$F$2 Settings x2 0.91 $F$2>=$F$9 Not Binding 2.32  

Figure C-5 Chemical Experiment, Scenario 1, Iteration 1 
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“ISWT 2” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings 0.88 0.91 0.78 0.82 0.80 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 849.92
σ (Y2) 19.26 6.31 6.28 0 0 0 30.52

Constraints
σ >= 1.46
σ <= 30.52
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.01

Step 10: Given that the mean equals 849.92 and the standard deviation equals 30.52,
please indicate your preference for decreasing the mean by 0.01 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.0101

ε= 12.56

='ISWT 1'!F8-'ISWT 1'!AD21-0.01

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))

=ISWT!F12

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Chemical Experiment.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.88 0.00
$F$2 Settings x2 0.91 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 30.52 0.01
$K$4 σ (Y2) Value 30.52 0.00  

Figure C-6 Chemical Experiment, Scenario 1, Iteration 2 
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“ISWT 3” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -1.41 0.35 2.00 0.13 -0.50 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 732.55
σ (Y2) 19.26 6.31 6.28 0 0 0 12.56

Constraints
σ >= 1.46
σ <= 12.56
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 21.94

Step 10: Given that the mean equals 732.55 and the standard deviation equals 12.56,
please indicate your preference for decreasing the mean by 21.94 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.0152

ε= 16.80

='ISWT 2'!G27

=F8+((G25*G21*ABS(K4))*(ISWT!F12-F8))

=(G23^G24)/(SQRT((G21*ABS(K4))^2))

=ISWT!F12

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Chemical Experiment.xls]ISWT 3

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -1.41 -69.39
$F$2 Settings x2 0.35 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 12.56 21.94
$K$4 σ (Y2) Value 12.56 0.00  

Figure C-7 Chemical Experiment, Scenario 1, Iteration 3 
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“ISWT 4” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M
Step 7: Constant x1 x2 x1sq x2sq x1x2 Response

Settings -1.30 0.92 1.70 0.84 -1.20 Value
µ (Y1) 760.46 43.71 154.84 -12.05 -73.42 -24.7 792.85
σ (Y2) 19.26 6.31 6.28 0 0 0 16.80

Constraints
σ >= 1.46
σ <= 16.80
x1, x2 >= -1.41
x1, x2 <= 1.41

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.31

Step 10: Given that the mean equals 792.85 and the standard deviation equals 16.8,
please indicate your preference for decreasing the mean by 8.31 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT 3'!G27
=ISWT!F12

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16

O P Q R S
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Chemical Experiment.xls]ISWT 4

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -1.30 0.00
$F$2 Settings x2 0.92 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$K$4 σ (Y2) Value 16.80 8.31
$K$4 σ (Y2) Value 16.80 0.00  

Figure C-8 Chemical Experiment, Scenario 1, Iteration 4 
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APPENDIX D: PRINTING PRESS PROBLEM 
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Printing Process (Lin and Tu, 1995)

X1 X2 X3 Y1 Y2 Y3 Y (avg) Y (std)
-1 -1 -1 34 10 28 24.0 12.5
0 -1 -1 115 116 130 120.3 8.4
1 -1 -1 192 186 263 213.7 42.8

-1 0 -1 82 88 88 86.0 3.5
0 0 -1 44 178 188 136.7 80.4
1 0 -1 322 350 350 340.7 16.2

-1 1 -1 141 110 86 112.3 27.6
0 1 -1 259 251 259 256.3 4.6
1 1 -1 290 280 245 271.7 23.6

-1 -1 0 81 81 81 81.0 0.0
0 -1 0 90 122 93 101.7 17.7
1 -1 0 319 376 376 357.0 32.9

-1 0 0 180 180 154 171.3 15.0
0 0 0 372 372 372 372.0 0.0
1 0 0 541 568 396 501.7 92.5

-1 1 0 288 192 312 264.0 63.5
0 1 0 432 336 513 427.0 88.6
1 1 0 713 725 754 730.7 21.1

-1 -1 1 364 99 199 220.7 133.8
0 -1 1 232 221 266 239.7 23.5
1 -1 1 408 415 443 422.0 18.5

-1 0 1 182 233 182 199.0 29.5
0 0 1 507 515 434 485.3 44.6
1 0 1 846 535 640 673.7 158.2

-1 1 1 236 126 168 176.7 55.5
0 1 1 660 440 403 501.0 138.9
1 1 1 878 991 1161 1010.0 142.5

X1=speed
X2=pressure
X3=distance
Y=quality of printing process (3 replicates)  

Figure D-1 Printing Press, Experimental Design 

Fitted Responses:

323121
2
3

2
2

2
1321 6.435.75661.294.22325.1314.1091176.327 xxxxxxxxxxxx +++−−++++=μ

323121
2
3

2
2

2
1321 1.141.57.78.163.12.42.293.155.119.34 xxxxxxxxxxxx ++++−++++=σ  

Figure D-2 Printing Press, Fitted Responses 
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“ISWT” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

C D E F G H I J K L M N O
Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings -1.00 1.00 -1.00 1.00 1.00 1.00 -1.00 1.00 -1.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 74.90
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 12.50

Constraints
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Lower Bound 74.90
Upper Bound 911.10

Stated Goal: >= 500.00
<= 500.00  

 

Figure D-3 Printing Press, Scenario 1, Extreme Values 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.12 -0.26 1.00 0.01 0.07 0.12 -0.26 -0.03 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 500.00
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.10

Constraints
µ >= 500.00
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 500 and the standard deviation equals 45.1,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00062

ε= 754.06

=ISWT!F11
=ISWT!F13

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))

 
 

 

Figure D-4 Printing Press, Scenario 1, Solver Parameters 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.12 -0.26 1.00 0.01 0.07 0.12 -0.26 -0.03 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 500.00
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.10

Constraints
µ >= 500.00
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 500 and the standard deviation equals 45.1,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00062

ε= 754.06

=ISWT!F11
=ISWT!F13

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S T U V W
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.99
$F$2 Settings x2 0.12 0.00
$G$2 Settings x3 -0.26 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 500.00 0.00
$O$3 µ (Y1) Value 500.00 0.12  

Figure D-5 Printing Press, Scenario 1, Iteration 1 
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“ISWT 2” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.27 1.00 1.00 0.07 1.00 0.27 0.27 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 754.06
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 86.33

Constraints
µ >= 754.06
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.24

Step 10: Given that the mean equals 754.06 and the standard deviation equals 86.33,
please indicate your preference for increasing the standard deviation by 0.24 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00025

ε= 694.08

=ISWT!F11
='ISWT 1'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S T U V W
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -50.76
$F$2 Settings x2 1.00 -10.51
$G$2 Settings x3 0.27 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 754.06 0.00
$O$3 µ (Y1) Value 754.06 0.24  

Figure D-6 Printing Press, Scenario 1, Iteration 2 
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“ISWT 3” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.02 1.00 1.00 0.00 1.00 0.02 0.02 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 694.08
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 73.17

Constraints
µ >= 694.08
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.20

Step 10: Given that the mean equals 694.08 and the standard deviation equals 73.17,
please indicate your preference for increasing the standard deviation by 0.2 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00034

ε= 745.30

=ISWT!F11
='ISWT 2'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S T U V W
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 3

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -32.86
$F$2 Settings x2 1.00 -5.14
$G$2 Settings x3 0.02 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 694.08 0.00
$O$3 µ (Y1) Value 694.08 0.20  

Figure D-7 Printing Press, Scenario 1, Iteration 3 
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“ISWT 4” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.23 1.00 1.00 0.05 1.00 0.23 0.23 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 745.30
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 84.23

Constraints
µ >= 745.30
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.24

Step 10: Given that the mean equals 745.3 and the standard deviation equals 84.23,
please indicate your preference for increasing the standard deviation by 0.24 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.0002

ε= 721.12

=ISWT!F11
='ISWT 3'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S T U V W
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 4

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -47.85
$F$2 Settings x2 1.00 -9.59
$G$2 Settings x3 0.23 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 745.30 0.00
$O$3 µ (Y1) Value 745.30 0.24  

Figure D-8 Printing Press, Scenario 1, Iteration 4 
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“ISWT 5” 

1
2
3
4
5
6
7
8
9
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.13 1.00 1.00 0.02 1.00 0.13 0.13 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 721.12
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 78.75

Constraints
µ >= 721.12
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.22

Step 10: Given that the mean equals 721.12 and the standard deviation equals 78.75,
please indicate your preference for increasing the standard deviation by 0.22 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 5
step size= 0.00013

ε= 738.25

=ISWT!F11
='ISWT 4'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 5

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -40.36
$F$2 Settings x2 1.00 -7.30
$G$2 Settings x3 0.13 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 721.12 0.00
$O$3 µ (Y1) Value 721.12 0.22  

Figure D-9 Printing Press, Scenario 1, Iteration 5 
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“ISWT 6” 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.20 1.00 1.00 0.04 1.00 0.20 0.20 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 738.25
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 82.58

Constraints
µ >= 738.25
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.23

Step 10: Given that the mean equals 738.25 and the standard deviation equals 82.58,
please indicate your preference for increasing the standard deviation by 0.23 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 6
step size= 7.5E-05

ε= 747.88

=ISWT!F11
='ISWT 5'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 6

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -45.58
$F$2 Settings x2 1.00 -8.89
$G$2 Settings x3 0.20 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 738.25 0.00
$O$3 µ (Y1) Value 738.25 0.23  

Figure D-10 Printing Press, Scenario 1, Iteration 6 
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“ISWT 7” 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.24 1.00 1.00 0.06 1.00 0.24 0.24 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 747.88
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 84.84

Constraints
µ >= 747.88
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.24

Step 10: Given that the mean equals 747.88 and the standard deviation equals 84.84,
please indicate your preference for increasing the standard deviation by 0.24 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

=ISWT!F11
='ISWT 6'!G27
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 7

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -48.69
$F$2 Settings x2 1.00 -9.86
$G$2 Settings x3 0.24 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 747.88 0.00
$O$3 µ (Y1) Value 747.88 0.24  

Figure D-11 Printing Press, Scenario 1, Iteration 7 
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“ISWT 1b” 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings -0.20 -1.00 -0.42 0.04 1.00 0.18 0.20 0.08 0.42 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 139.38
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 14.76

Constraints
µ >= 74.90
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.00

=ISWT!F11
=ISWT!F10
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 1b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.20 0.00
$F$2 Settings x2 -1.00 10.46
$G$2 Settings x3 -0.42 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 139.38 0.00
$O$3 µ (Y1) Value 139.38 0.00  
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AB AC AD AE AF AG AH
Microsoft Excel 11.0 Answer Report
Worksheet: [Printing Press.xls]ISWT 1b
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Min)
Cell Name Original Value Final Value

$O$4 σ (Y2) Value 34.90 14.76

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -0.20
$F$2 Settings x2 0.00 -1.00
$G$2 Settings x3 0.00 -0.42

Constraints
Cell Name Cell Value Formula Status Slack

$O$3 µ (Y1) Value 139.38 $O$3<=$F$8 Not Binding 771.72008
$O$3 µ (Y1) Value 139.38 $O$3>=$F$7 Not Binding 64.48
$E$2 Settings x1 -0.20 $E$2<=$F$10 Not Binding 1.197752
$F$2 Settings x2 -1.00 $F$2<=$F$10 Not Binding 2
$G$2 Settings x3 -0.42 $G$2<=$F$10 Not Binding 1.4193888
$E$2 Settings x1 -0.20 $E$2>=$F$9 Not Binding 0.80
$F$2 Settings x2 -1.00 $F$2>=$F$9 Binding 0.00
$G$2 Settings x3 -0.42 $G$2>=$F$9 Not Binding 0.58  

Figure D-12 Printing Press, Scenario 2, Iteration 1 
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“ISWT 2b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings -0.09 -1.00 -0.39 0.01 1.00 0.16 0.09 0.04 0.39 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 149.38
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 14.83

Constraints
µ >= 149.38
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.01

Step 10: Given that the mean equals 149.38 and the standard deviation equals 14.83,
please indicate your preference for increasing the standard deviation by 0.01 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00207

ε= 620.12

=ISWT!F11
='ISWT 1b'!F7+'ISWT 1b'!AH24+10

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 2b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.09 0.00
$F$2 Settings x2 -1.00 9.88
$G$2 Settings x3 -0.39 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 149.38 0.00
$O$3 µ (Y1) Value 149.38 0.01  

Figure D-13 Printing Press, Scenario 2, Iteration 2 
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“ISWT 3b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 -0.27 1.00 1.00 0.07 1.00 -0.27 -0.27 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 620.12
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 60.50

Constraints
µ >= 620.12
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.15

Step 10: Given that the mean equals 620.12 and the standard deviation equals 60.5,
please indicate your preference for increasing the standard deviation by 0.15 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00031

ε= 508.99

=ISWT!F11
='ISWT 2b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 3b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -16.16
$F$2 Settings x2 1.00 -0.97
$G$2 Settings x3 -0.27 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 620.12 0.00
$O$3 µ (Y1) Value 620.12 0.15  

Figure D-14 Printing Press, Scenario 2, Iteration 3 
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“ISWT 4b” 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.20 -0.27 1.00 0.04 0.07 0.20 -0.27 -0.05 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 508.99
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 46.18

Constraints
µ >= 508.99
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 508.99 and the standard deviation equals 46.18,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00046

ε= 414.08

=ISWT!F11
='ISWT 3b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 4b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -8.09
$F$2 Settings x2 0.20 0.00
$G$2 Settings x3 -0.27 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 508.99 0.00
$O$3 µ (Y1) Value 508.99 0.12  

Figure D-15 Printing Press, Scenario 2, Iteration 4 
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“ISWT 5b” 
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C D E F G H I J K L M N O
Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 -0.52 -0.14 1.00 0.27 0.02 -0.52 -0.14 0.07 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 414.08
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 34.97

Constraints
µ >= 414.08
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Ask DM, "Are you satisfied with the above solution?" No

Lagrange multiplier= 0.12

Given that the mean equals 414.08 and the standard deviation equals 34.97,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Update ε c= 0.618
iteration= 4
step size= 0.00018

ε= 486.58

=ISWT!F11
='ISWT 4b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 5b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.65
$F$2 Settings x2 -0.52 0.00
$G$2 Settings x3 -0.14 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 414.08 0.00
$O$3 µ (Y1) Value 414.08 0.12  

Figure D-16 Printing Press, Scenario 2, Iteration 5 
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“ISWT 6b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.01 -0.24 1.00 0.00 0.06 0.01 -0.24 0.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 486.58
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 43.49

Constraints
µ >= 486.58
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 486.58 and the standard deviation equals 43.49,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 5
step size= 0.00019

ε= 524.85

=ISWT!F11
='ISWT 5b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 6b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.86
$F$2 Settings x2 0.01 0.00
$G$2 Settings x3 -0.24 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 486.58 0.00
$O$3 µ (Y1) Value 486.58 0.12  

Figure D-17 Printing Press, Scenario 2, Iteration 6 
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“ISWT 7b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.34 -0.30 1.00 0.11 0.09 0.34 -0.30 -0.10 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 524.85
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 48.10

Constraints
µ >= 524.85
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 524.85 and the standard deviation equals 48.1,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 6
step size= 0.00011

ε= 503.33

=ISWT!F11
='ISWT 6b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 7b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -8.35
$F$2 Settings x2 0.34 0.00
$G$2 Settings x3 -0.30 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 524.85 0.00
$O$3 µ (Y1) Value 524.85 0.12  

Figure D-18 Printing Press, Scenario 2, Iteration 7 
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“ISWT 8b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.15 -0.26 1.00 0.02 0.07 0.15 -0.26 -0.04 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 503.33
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.50

Constraints
µ >= 503.33
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 503.33 and the standard deviation equals 45.5,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 7
step size= 6.8E-05

ε= 489.29

=ISWT!F11
='ISWT 7b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 8b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -8.02
$F$2 Settings x2 0.15 0.00
$G$2 Settings x3 -0.26 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 503.33 0.00
$O$3 µ (Y1) Value 503.33 0.12  

Figure D-19 Printing Press, Scenario 2, Iteration 8 
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“ISWT 9b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.03 -0.24 1.00 0.00 0.06 0.03 -0.24 -0.01 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 489.29
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 43.82

Constraints
µ >= 489.29
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 489.29 and the standard deviation equals 43.82,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 8
step size= 4.3E-05

ε= 498.27

=ISWT!F11
='ISWT 8b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 9b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.88
$F$2 Settings x2 0.03 0.00
$G$2 Settings x3 -0.24 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 489.29 0.00
$O$3 µ (Y1) Value 489.29 0.12  

Figure D-20 Printing Press, Scenario 2, Iteration 9 



228 

“ISWT 10b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.10 -0.26 1.00 0.01 0.07 0.10 -0.26 -0.03 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 498.27
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 44.89

Constraints
µ >= 498.27
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 498.27 and the standard deviation equals 44.89,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 9
step size= 2.6E-05

ε= 503.70

=ISWT!F11
='ISWT 9b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 10b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.97
$F$2 Settings x2 0.10 0.00
$G$2 Settings x3 -0.26 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 498.27 0.00
$O$3 µ (Y1) Value 498.27 0.12  

Figure D-21 Printing Press, Scenario 2, Iteration 10 
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“ISWT 11b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.15 -0.27 1.00 0.02 0.07 0.15 -0.27 -0.04 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 503.70
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.54

Constraints
µ >= 503.70
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 503.7 and the standard deviation equals 45.54,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 10
step size= 1.6E-05

ε= 500.38

=ISWT!F11
='ISWT 10b'!G27

=F7+((G25*G21*ABS(O3))*(ISWT!F11-F7))

=(G23^G24)/(SQRT((G21*ABS(O3))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 11b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -8.03
$F$2 Settings x2 0.15 0.00
$G$2 Settings x3 -0.27 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 503.70 0.00
$O$3 µ (Y1) Value 503.70 0.12  

Figure D-22 Printing Press, Scenario 2, Iteration 11 
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“ISWT 12b” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.12 -0.26 1.00 0.01 0.07 0.12 -0.26 -0.03 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 500.38
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.14

Constraints
µ >= 500.38
µ <= 911.10
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 0.12

Step 10: Given that the mean equals 500.38 and the standard deviation equals 45.14,
please indicate your preference for increasing the standard deviation by 0.12 units for one unit increase in the mean,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

=ISWT!F11
='ISWT 11b'!G27

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S T U V W
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 12b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 -7.99
$F$2 Settings x2 0.12 0.00
$G$2 Settings x3 -0.26 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$3 µ (Y1) Value 500.38 0.00
$O$3 µ (Y1) Value 500.38 0.12  

Figure D-23 Printing Press, Scenario 2, Iteration 12 
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“ISWT c” 
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Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 911.10
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 137.50

Constraints
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Lower Bound 12.50
Upper Bound 137.50

Stated Goal: >= 60.00 75.00 90.00
<= 60.00 75.00 90.00  

 

Figure D-24 Printing Press, Scenario 3, Extreme Values 
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“ISWT 1c” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 -0.28 1.00 1.00 0.08 1.00 -0.28 -0.28 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 616.70
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 60.00

Constraints
σ >= 12.50
σ <= 60.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 6.86

Step 10: Given that the mean equals 616.7 and the standard deviation equals 60,
please indicate your preference for decreasing the mean by 6.86 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00515

ε= 30.65

='ISWT c'!F14
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))

 
 

 

Figure D-25 Printing Press, Scenario 3, Solver Parameters 
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“ISWT 1c” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 -0.28 1.00 1.00 0.08 1.00 -0.28 -0.28 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 616.70
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 60.00

Constraints
σ >= 12.50
σ <= 60.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 6.86

Step 10: Given that the mean equals 616.7 and the standard deviation equals 60,
please indicate your preference for decreasing the mean by 6.86 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00515

ε= 30.65

='ISWT c'!F14
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 1c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 106.32
$F$2 Settings x2 1.00 5.67
$G$2 Settings x3 -0.28 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 60.00 6.86
$O$4 σ (Y2) Value 60.00 0.00  

Figure D-26 Printing Press, Scenario 3, Iteration 1 
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“ISWT 2c” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 -0.75 -0.09 1.00 0.56 0.01 -0.75 -0.09 0.07 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 376.75
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 30.65

Constraints
σ >= 12.50
σ <= 30.65
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.66

Step 10: Given that the mean equals 376.75 and the standard deviation equals 30.65,
please indicate your preference for decreasing the mean by 8.66 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00623

ε= 23.71

='ISWT 1c'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 2c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 66.43
$F$2 Settings x2 -0.75 0.00
$G$2 Settings x3 -0.09 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 30.65 8.66
$O$4 σ (Y2) Value 30.65 0.00  

Figure D-27 Printing Press, Scenario 3, Iteration 2 
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“ISWT 3c” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 -1.00 -0.15 1.00 1.00 0.02 -1.00 -0.15 0.15 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 314.39
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 23.71

Constraints
σ >= 12.50
σ <= 23.71
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 11.23

Step 10: Given that the mean equals 314.39 and the standard deviation equals 23.71,
please indicate your preference for decreasing the mean by 11.23 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00995

ε= 21.07

='ISWT 2c'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 3c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 35.36
$F$2 Settings x2 -1.00 -50.53
$G$2 Settings x3 -0.15 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 23.71 11.23
$O$4 σ (Y2) Value 23.71 0.00  

Figure D-28 Printing Press, Scenario 3, Iteration 3 
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“ISWT 4c” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 0.88 -1.00 -0.25 0.77 1.00 0.06 -0.88 -0.22 0.25 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 278.13
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 21.07

Constraints
σ >= 12.50
σ <= 21.07
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 14.98

Step 10: Given that the mean equals 278.13 and the standard deviation equals 21.07,
please indicate your preference for decreasing the mean by 14.98 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.00692

ε= 22.32

='ISWT 3c'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 4c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.88 0.00
$F$2 Settings x2 -1.00 -115.76
$G$2 Settings x3 -0.25 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 21.07 14.98
$O$4 σ (Y2) Value 21.07 0.00  

Figure D-29 Printing Press, Scenario 3, Iteration 4 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 0.98 -1.00 -0.23 0.97 1.00 0.06 -0.98 -0.23 0.23 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 296.46
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 22.32

Constraints
σ >= 12.50
σ <= 22.32
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 14.38

Step 10: Given that the mean equals 296.46 and the standard deviation equals 22.32,
please indicate your preference for decreasing the mean by 14.38 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT 4c'!G27
='ISWT c'!F10
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 5c

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.98 0.00
$F$2 Settings x2 -1.00 -109.86
$G$2 Settings x3 -0.23 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 22.32 14.38
$O$4 σ (Y2) Value 22.32 0.00  

Figure D-30 Printing Press, Scenario 3, Iteration 5 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.05 1.00 1.00 0.00 1.00 0.05 0.05 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 703.23
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 75.00

Constraints
σ >= 12.50
σ <= 75.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 4.92

Step 10: Given that the mean equals 703.23 and the standard deviation equals 75,
please indicate your preference for decreasing the mean by 4.92 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00412

ε= 36.38

='ISWT c'!G14
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))

 
 

 

Figure D-31 Printing Press, Scenario 4, Solver Parameters 
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“ISWT 1d” 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.05 1.00 1.00 0.00 1.00 0.05 0.05 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 703.23
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 75.00

Constraints
σ >= 12.50
σ <= 75.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 4.92

Step 10: Given that the mean equals 703.23 and the standard deviation equals 75,
please indicate your preference for decreasing the mean by 4.92 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00412

ε= 36.38

='ISWT c'!G14
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 1d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 173.84
$F$2 Settings x2 1.00 28.72
$G$2 Settings x3 0.05 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 75.00 4.92
$O$4 σ (Y2) Value 75.00 0.00  

Figure D-32 Printing Press, Scenario 4, Iteration 1 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 -0.44 -0.15 1.00 0.19 0.02 -0.44 -0.15 0.07 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 426.12
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 36.38

Constraints
σ >= 12.50
σ <= 36.38
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.57

Step 10: Given that the mean equals 426.12 and the standard deviation equals 36.38,
please indicate your preference for decreasing the mean by 8.57 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.0105

ε= 45.49

='ISWT 1d'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 2d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 65.56
$F$2 Settings x2 -0.44 0.00
$G$2 Settings x3 -0.15 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 36.38 8.57
$O$4 σ (Y2) Value 36.38 0.00  

Figure D-33 Printing Press, Scenario 4, Iteration 2 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.15 -0.26 1.00 0.02 0.07 0.15 -0.26 -0.04 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 503.30
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 45.49

Constraints
σ >= 12.50
σ <= 45.49
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.33

Step 10: Given that the mean equals 503.3 and the standard deviation equals 45.49,
please indicate your preference for decreasing the mean by 8.33 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 3
step size= 0.00519

ε= 53.28

='ISWT 2d'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 3d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 66.80
$F$2 Settings x2 0.15 0.00
$G$2 Settings x3 -0.26 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 45.49 8.33
$O$4 σ (Y2) Value 45.49 0.00  

Figure D-34 Printing Press, Scenario 4, Iteration 3 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.73 -0.35 1.00 0.54 0.12 0.73 -0.35 -0.26 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 566.60
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 53.28

Constraints
σ >= 12.50
σ <= 53.28
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 7.87

Step 10: Given that the mean equals 566.6 and the standard deviation equals 53.28,
please indicate your preference for decreasing the mean by 7.87 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 1.00

Step 11: Update ε c= 0.618
iteration= 4
step size= 0.00274

ε= 47.33

='ISWT 3d'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 4d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 76.08
$F$2 Settings x2 0.73 0.00
$G$2 Settings x3 -0.35 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 53.28 7.87
$O$4 σ (Y2) Value 53.28 0.00  

Figure D-35 Printing Press, Scenario 4, Iteration 4 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.28 -0.29 1.00 0.08 0.08 0.28 -0.29 -0.08 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 518.54
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 47.33

Constraints
σ >= 12.50
σ <= 47.33
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.25

Step 10: Given that the mean equals 518.54 and the standard deviation equals 47.33,
please indicate your preference for decreasing the mean by 8.25 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -2.00

Step 11: Update ε c= 0.618
iteration= 5
step size= 0.00095

ε= 50.47

='ISWT 4d'!G27
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 5d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 67.90
$F$2 Settings x2 0.28 0.00
$G$2 Settings x3 -0.29 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 47.33 8.25
$O$4 σ (Y2) Value 47.33 0.00  

Figure D-36 Printing Press, Scenario 4, Iteration 5 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 0.52 -0.32 1.00 0.27 0.10 0.52 -0.32 -0.17 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 544.19
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 50.47

Constraints
σ >= 12.50
σ <= 50.47
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 8.08

Step 10: Given that the mean equals 544.19 and the standard deviation equals 50.47,
please indicate your preference for decreasing the mean by 8.08 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT 5d'!G27
='ISWT c'!F10
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 6d

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 71.14
$F$2 Settings x2 0.52 0.00
$G$2 Settings x3 -0.32 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 50.47 8.08
$O$4 σ (Y2) Value 50.47 0.00  

Figure D-37 Printing Press, Scenario 4, Iteration 6 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.33 1.00 1.00 0.11 1.00 0.33 0.33 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 768.73
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 90.00

Constraints
σ >= 12.50
σ <= 90.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 3.90

Step 10: Given that the mean equals 768.73 and the standard deviation equals 90,
please indicate your preference for decreasing the mean by 3.9 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT c'!H14
='ISWT c'!F10

 
 

 

Figure D-38 Printing Press, Scenario 5, Solver Parameters 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.33 1.00 1.00 0.11 1.00 0.33 0.33 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 768.73
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 90.00

Constraints
σ >= 12.50
σ <= 90.00
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 3.90

Step 10: Given that the mean equals 768.73 and the standard deviation equals 90,
please indicate your preference for decreasing the mean by 3.9 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT c'!H14
='ISWT c'!F10
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Worksheet: [Printing Press.xls]ISWT 1e

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 217.76
$F$2 Settings x2 1.00 47.42
$G$2 Settings x3 0.33 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 90.00 3.90
$O$4 σ (Y2) Value 90.00 0.00  

Figure D-39 Printing Press, Scenario 5, Iteration 1 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 911.10
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 137.50

Constraints
σ >= 12.50
σ <= 137.50
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.35

Step 10: Given that the mean equals 911.1 and the standard deviation equals 137.5,
please indicate your preference for decreasing the mean by 2.35 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00449

ε= 214.75

='ISWT c'!F11
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))

 
 

 

Figure D-40 Printing Press, Scenario 6, Solver Parameters 
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A B C D E F G H I J K L M N O
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 911.10
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 137.50

Constraints
σ >= 12.50
σ <= 137.50
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.35

Step 10: Given that the mean equals 911.1 and the standard deviation equals 137.5,
please indicate your preference for decreasing the mean by 2.35 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= -1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.00449

ε= 214.75

='ISWT c'!F11
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press.xls]ISWT 1f

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 305.77
$F$2 Settings x2 1.00 93.25
$G$2 Settings x3 1.00 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 137.50 2.35
$O$4 σ (Y2) Value 137.50 0.00  

Figure D-41 Printing Press, Scenario 6, Iteration 1 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 -0.75 -0.09 1.00 0.56 0.01 -0.75 -0.09 0.07 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 376.75
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 30.65

Constraints
σ >= 12.50
σ <= 214.75
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

='ISWT 1f'!G27
='ISWT c'!F10

 

Figure D-42 Printing Press, Scenario 6, Iteration 2 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 911.10
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 137.50

Constraints
σ >= 12.50
σ <= 137.50
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 2.35

Step 10: Given that the mean equals 911.1 and the standard deviation equals 137.5,
please indicate your preference for decreasing the mean by 2.35 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.00139

ε= 89.76

='ISWT 1f'!F8
='ISWT c'!F10

=F8+((G25*G21*ABS(O4))*('ISWT c'!F10-F8))

=(G23^G24)/(SQRT((G21*ABS(O4))^2))
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Worksheet: [Printing Press rev.xls]ISWT 3f

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 305.77
$F$2 Settings x2 1.00 93.25
$G$2 Settings x3 1.00 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 137.50 2.35
$O$4 σ (Y2) Value 137.50 0.00  

Figure D-43 Printing Press, Scenario 6, Iteration 3 
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Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 Response

Settings 1.00 1.00 0.32 1.00 1.00 0.11 1.00 0.32 0.32 Value
µ (Y1) 327.60 177.00 109.40 131.50 32.00 -22.40 -29.10 66.00 75.50 43.60 767.80
σ (Y2) 34.90 11.50 15.30 29.20 4.20 -1.30 16.80 7.70 5.10 14.10 89.76

Constraints
σ >= 12.50
σ <= 89.76
x1, x2, x3 >= -1.00
x1, x2, x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier= 3.91

Step 10: Given that the mean equals 767.8 and the standard deviation equals 89.76,
please indicate your preference for decreasing the mean by 3.91 units for one unit decrease in the standard deviation,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W= 0.00

='ISWT 3f'!G27
='ISWT c'!F10
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Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Printing Press rev.xls]ISWT 4f

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 1.00 217.15
$F$2 Settings x2 1.00 47.14
$G$2 Settings x3 0.32 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$O$4 σ (Y2) Value 89.76 3.91
$O$4 σ (Y2) Value 89.76 0.00  

Figure D-44 Printing Press, Scenario 6, Iteration 4 



252 

APPENDIX E: PROPELLANT MIXTURE PROBLEM 
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Propellant Experiment (Del Castillo and Montgomery, 1993)

X1 X2 X3 Y1 Y2 Y3
1 0 0 32.5            4.1           32
1 0 0 37.9            3.7           25

0.5 0.5 0 44.0            6.8           20
0.5 0 0.5 63.2            4.7           18

0 1 0 54.5            8.9           18
0 1 0 32.5            9.2           21
0 0.5 0.5 94.0            4.5           17
0 0 1 64.0            14.0         14
0 0 1 78.5            13.0         16

0.667 0.167 0.167 67.1            3.5           20
0.167 0.667 0.167 73.0            5.2           22
0.167 0.167 0.667 87.5            7.0           17
0.333 0.333 0.333 112.5          4.6           19
0.333 0.333 0.333 98.5            3.5           20
0.333 0.333 0.333 103.6          3.0           18

X1=fuel (.3, .5)
X2=oxidizer (.2, .4)
X3=binder (.2, .4)
Y1=burning rate
Y2=variability of burning rate
Y3=manufacturability index  

Figure E-1 Propellant Mixture, Experimental Design 

Fitted Responses:

321 7333.147333.191333.233 xxxY ++=

323121321 6761.276195.161904.06339.130387.98815.32 xxxxxxxxxY −−−++=

21323121321 854.9818xx136.8204xx36.3347xx16.0204x70.3612x42.7755x35.4945x1 xY ++++++=

 

Figure E-2 Propellant Mixture, Fitted Responses 
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C D E F G H I J K L M N O P
Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.21 0.34 0.44 0.05 0.12 0.20 0.07 0.09 0.15 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.65
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.18
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.24

Constraints
x1 >= 0.00
x1 <= 1.00
x2 >= 0.00
x2 <= 1.00
x3 >= 0.00
x3 <= 1.00

1.00 x1+x2+x3 > 0.00
x1+x2+x3 <= 1.00

Y1 Y2 Y3
Lower Bound 0.00 0.00 0.00
Upper Bound 106.65 13.63 23.13

Case <= 4.50 20.00  

 

Figure E-3 Propellant Mixture, Extreme Values 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.21 0.34 0.44 0.05 0.12 0.20 0.07 0.09 0.15 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.65
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.18
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.24

Constraints
Y2 >= 0.00
Y2 <= 4.50
Y3 >= 0.00
Y3 <= 20.00
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00

=ISWT!G21

=ISWT!H21

 

 

Figure E-4 Propellant Mixture, Scenario1, Solver Parameters 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.21 0.34 0.44 0.05 0.12 0.20 0.07 0.09 0.15 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.65
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.18
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.24

Constraints
Y2 >= 0.00
Y2 <= 4.50
Y3 >= 0.00
Y3 <= 20.00
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00

=ISWT!G21

=ISWT!H21
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21

T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.21 0.00
$F$2 Settings x2 0.34 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 187.54
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.18 0.00
$P$4 Y2 Value 4.18 0.00
$P$5 Y3 Value 18.24 0.00
$P$5 Y3 Value 18.24 0.00  
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4
5
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7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

AC AD AE AF AG AH AI
Microsoft Excel 11.0 Answer Report
Worksheet: [Propellant Experiment.xls]ISWT 1
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$P$3 Y1 Value 0.00 106.65

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 0.21
$F$2 Settings x2 0.00 0.34
$G$2 Settings x3 0.00 0.44

Constraints
Cell Name Cell Value Formula Status Slack

$C$14 Constraints 1.00 $C$14<=$F$15 Binding 0
$C$14 Constraints 1.00 $C$14>=$F$14 Binding 0.00
$P$4 Y2 Value 4.18 $P$4<=$F$9 Not Binding 0.3205124
$P$4 Y2 Value 4.18 $P$4>=$F$8 Not Binding 4.18
$P$5 Y3 Value 18.24 $P$5<=$F$11 Not Binding 1.7633866
$P$5 Y3 Value 18.24 $P$5>=$F$10 Not Binding 18.24
$E$2 Settings x1 0.21 $E$2<=$F$13 Not Binding 0.7875069
$F$2 Settings x2 0.34 $F$2<=$F$13 Not Binding 0.6563287
$G$2 Settings x3 0.44 $G$2<=$F$13 Not Binding 0.5561634
$E$2 Settings x1 0.21 $E$2>=$F$12 Not Binding 0.21
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure E-5 Propellant Mixture, Scenario 1, Iteration 1 



258 

 “ISWT 2” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= -1.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.0168

ε (Y2)= 4.46
ε (Y3)= 7.04

=ISWT!G21-'ISWT 1'!AI24-0.01

=F9+((G40*G28*ABS(P4))*(ISWT!G18-F9))

=(G38^G39)/(SQRT((G28*ABS(P4))^2+(G35*ABS(P5))^2))

=ISWT!H21-'ISWT 1'!AI26-0.01

=F11+((G40*G35*ABS(P5))*(ISWT!H18-F11))
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10
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14
15
16
17
18
19
20
21

T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.20 0.00
$F$2 Settings x2 0.35 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 0.00
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.17 5.02
$P$4 Y2 Value 4.17 0.00
$P$5 Y3 Value 18.23 2.63
$P$5 Y3 Value 18.23 0.00  

Figure E-6 Propellant Mixture, Scenario 1, Iteration 2 

“ISWT 3” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.00 0.11 0.33 0.00 0.01 0.11 0.00 0.00 0.04 0.00 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 32.85
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.46
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.04

Constraints
Y2 >= 0.00
Y2 <= 4.46
Y3 >= 0.00
Y3 <= 7.04
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

0.44 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

='ISWT 2'!G42

='ISWT 2'!G43

 

Figure E-7 Propellant Mixture, Scenario 1, Iteration 3 
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“ISWT 4” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 0.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.017

ε (Y2)= 4.17
ε (Y3)= 6.96

=ISWT!G21-'ISWT 1'!AI24-0.01

=F9+((G40*G28*ABS(P4))*(ISWT!G18-F9))

=(G38^G39)/(SQRT((G28*ABS(P4))^2+(G35*ABS(P5))^2))

=ISWT!H21-'ISWT 1'!AI26-0.01

=F11+((G40*G35*ABS(P5))*(ISWT!H18-F11))

 

Figure E-8 Propellant Mixture, Scenario 1, Iteration 4 
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“ISWT 5” 
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 0.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 0.00

='ISWT 4'!G42

='ISWT 4'!F11
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21

T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 5

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.20 0.00
$F$2 Settings x2 0.35 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 0.00
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.17 5.02
$P$4 Y2 Value 4.17 0.00
$P$5 Y3 Value 18.23 2.63
$P$5 Y3 Value 18.23 0.00  

Figure E-9 Propellant Mixture, Scenario 1, Iteration 5 
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“ISWT 1b” 

1
2
3
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6
7
8
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13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.21 0.34 0.44 0.05 0.12 0.20 0.07 0.09 0.15 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.65
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.18
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.24

Constraints
Y2 >= 0.00
Y2 <= 13.63
Y3 >= 0.00
Y3 <= 23.13
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00

=ISWT!G19

=ISWT!H19

 

 

Figure E-10 Propellant Mixture, Scenario 2, Solver Parameters 
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“ISWT 1b” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.21 0.34 0.44 0.05 0.12 0.20 0.07 0.09 0.15 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.65
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.18
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.24

Constraints
Y2 >= 0.00
Y2 <= 13.63
Y3 >= 0.00
Y3 <= 23.13
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00

=ISWT!G19

=ISWT!H19
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T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 1b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.21 0.00
$F$2 Settings x2 0.34 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 187.54
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.18 0.00
$P$4 Y2 Value 4.18 0.00
$P$5 Y3 Value 18.24 0.00
$P$5 Y3 Value 18.24 0.00  
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AC AD AE AF AG AH AI
Microsoft Excel 11.0 Answer Report
Worksheet: [Propellant Experiment.xls]ISWT 1b
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$P$3 Y1 Value 0.00 106.65

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 0.21
$F$2 Settings x2 0.00 0.34
$G$2 Settings x3 0.00 0.44

Constraints
Cell Name Cell Value Formula Status Slack

$C$14 Constraints 1.00 $C$14<=$F$15 Binding 0
$C$14 Constraints 1.00 $C$14>=$F$14 Binding 0.00
$P$4 Y2 Value 4.18 $P$4<=$F$9 Not Binding 9.4544124
$P$4 Y2 Value 4.18 $P$4>=$F$8 Not Binding 4.18
$P$5 Y3 Value 18.24 $P$5<=$F$11 Not Binding 4.8966866
$P$5 Y3 Value 18.24 $P$5>=$F$10 Not Binding 18.24
$E$2 Settings x1 0.21 $E$2<=$F$13 Not Binding 0.7875069
$F$2 Settings x2 0.34 $F$2<=$F$13 Not Binding 0.6563287
$G$2 Settings x3 0.44 $G$2<=$F$13 Not Binding 0.5561634
$E$2 Settings x1 0.21 $E$2>=$F$12 Not Binding 0.21
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure E-11 Propellant Mixture, Scenario 2, Iteration 1 
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“ISWT 2b” 
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42
43
44

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= -1.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.0168

ε (Y2)= 4.46
ε (Y3)= 7.04

=ISWT!G19-'ISWT 1b'!AI24-0.01

=ISWT!H19-'ISWT 1b'!AI26-0.01

=F9+((G40*G28*ABS(P4))*(ISWT!G18-F9))

=(G38^G39)/(SQRT((G28*ABS(P4))^2+(G35*ABS(P5))^2))

=F11+((G40*G35*ABS(P5))*(ISWT!H18-F11))
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21

T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 2b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.20 0.00
$F$2 Settings x2 0.35 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 0.00
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.17 5.02
$P$4 Y2 Value 4.17 0.00
$P$5 Y3 Value 18.23 2.63
$P$5 Y3 Value 18.23 0.00  

Figure E-12 Propellant Mixture, Scenario 2, Iteration 2 

“ISWT 3b” 
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14
15

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.00 0.11 0.33 0.00 0.01 0.11 0.00 0.00 0.04 0.00 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 32.85
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.46
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.04

Constraints
Y2 >= 0.00
Y2 <= 4.46
Y3 >= 0.00
Y3 <= 7.04
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

0.44 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

='ISWT 2b'!G42

='ISWT 2b'!G43

 

Figure E-13 Propellant Mixture, Scenario 2, Iteration 3 
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“ISWT 4b” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 0.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 2.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.017

ε (Y2)= 4.17
ε (Y3)= 6.96

=ISWT!G19-'ISWT 1b'!AI24-0.01

=ISWT!H19-'ISWT 1b'!AI26-0.01

=F9+((G40*G28*ABS(P4))*(ISWT!G18-F9))

=(G38^G39)/(SQRT((G28*ABS(P4))^2+(G35*ABS(P5))^2))

=F11+((G40*G35*ABS(P5))*(ISWT!H18-F11))

 

Figure E-14 Propellant Mixture, Scenario 2, Iteration 4 
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“ISWT 5b” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

A B C D E F G H I J K L M N O P
Step 7: Constant x1 x2 x3 x1sq x2sq x3sq x1x2 x1x3 x2x3 x1x2x3 Response

Settings 0.20 0.35 0.44 0.04 0.13 0.19 0.07 0.09 0.16 0.03 Value
Y1 0.00 35.49 42.78 70.36 0.00 0.00 0.00 16.02 36.33 136.82 854.98 106.61
Y2 0.00 3.88 9.04 13.63 0.00 0.00 0.00 -0.19 -16.62 -27.68 0.00 4.17
Y3 0.00 23.13 19.73 14.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.23

Constraints
Y2 >= 0.00
Y2 <= 4.17
Y3 >= 0.00
Y3 <= 18.23
x1, x2, x3 >= 0.00
x1, x2, x3 <= 1.00

1.00 x1+x2+x3 >= 1.00
x1+x2+x3 <= 1.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 5.02
Lagrange multiplier Y3= 2.63

Step 10: Given that Y1 equals 106.61 and Y2 equals 4.17,
please indicate your preference for decreasing Y1 by 5.02 units for one unit decrease in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 0.00

Given that Y1 equals 106.61 and Y3 equals 18.23,
please indicate your preference for decreasing Y1 by 2.63 units for one unit decrease in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 0.00

=ISWT!G19-'ISWT 1b'!AI24-0.01

=ISWT!H19-'ISWT 1b'!AI26-0.01

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

T U V W X
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Propellant Experiment.xls]ISWT 5b

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 0.20 0.00
$F$2 Settings x2 0.35 0.00
$G$2 Settings x3 0.44 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$C$14 Constraints 1.00 0.00
$C$14 Constraints 1.00 0.00
$P$4 Y2 Value 4.17 5.02
$P$4 Y2 Value 4.17 0.00
$P$5 Y3 Value 18.23 2.63
$P$5 Y3 Value 18.23 0.00  

Figure E-15 Propellant Mixture, Scenario 2, Iteration 5 
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APPENDIX F: FOAMING PROPERTIES OF WHEY PROTEIN PROBLEM 
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Foaming Properities of Whey Protein (Khuri and Conlon, 1981)

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
-1 -1 -1 -1 1 1082 4.5 80.6 81.4
1 -1 -1 -1 -1 824 7.5 67.9 69.6

-1 1 -1 -1 -1 953 8.3 83.1 105.0
1 1 -1 -1 1 759 17.0 38.1 81.2

-1 -1 1 -1 -1 1163 6.7 79.7 80.8
1 -1 1 -1 1 839 9.5 74.7 76.3

-1 1 1 -1 1 1343 12.0 71.2 103.0
1 1 1 -1 -1 736 36.0 36.8 76.9

-1 -1 -1 1 -1 1027 4.0 81.7 87.2
1 -1 -1 1 1 836 5.0 66.8 74.0

-1 1 -1 1 1 1272 12.5 73.0 98.5
1 1 -1 1 -1 825 20.0 40.5 94.1

-1 -1 1 1 1 1363 15.0 74.9 95.9
1 -1 1 1 -1 855 7.5 74.2 76.8

-1 1 1 1 -1 1284 18.5 63.5 100.0
1 1 1 1 1 851 12.0 42.8 104.0

-2 0 0 0 0 1283 12.0 80.9 100.0
2 0 0 0 0 651 8.5 42.4 50.5
0 -2 0 0 0 1217 4.5 73.4 71.2
0 2 0 0 0 982 10.5 45.0 101.0
0 0 -2 0 0 884 9.0 66.0 85.8
0 0 2 0 0 1147 9.0 71.7 103.0
0 0 0 -2 0 1081 9.0 77.5 104.0
0 0 0 2 0 1036 10.0 76.3 89.4
0 0 0 0 -2 1213 16.0 67.4 105.0
0 0 0 0 2 1103 8.5 86.5 113.0
0 0 0 0 0 1171 11.0 77.4 102.0
0 0 0 0 0 1179 9.0 74.6 104.0
0 0 0 0 0 1183 9.0 79.8 107.0
0 0 0 0 0 1120 10.0 78.3 104.0
0 0 0 0 0 1180 9.5 74.8 101.0
0 0 0 0 0 1195 11.0 80.9 103.0

X1=heating temperature
X2=PH level
X3=redox potential
X4=sodium oxalate
X5=soldium lauryl sulfate
Y1=maximum overrun
Y2=time at first drop
Y3=undenatured protein
Y4=soluble protein  

Figure F-1 Whey Protein, Experimental Design 
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Fitted Responses:

54534352423251413121 00.138.238.400.1175.1688.275.3625.1288.4800.25 xxxxxxxxxxxxxxxxxxxx −+−++−−−−−
2
5

2
4

2
3

2
2

2
154321 06.137.024.013.056.050.121.060.169.308.144.92 xxxxxxxxxxY +++−+−−+++=

54534352423251413121 63.021.196.035.285.019.013.275.246.015.2 xxxxxxxxxxxxxxxxxxxx +−−−−+−−−+
2
5

2
4

2
3

2
2

2
154321 33.034.036.277.416.437.171.010.068.812.1079.773 xxxxxxxxxxY −−−−−+−−−−=

54534352423251413121 03.051.104.048.026.068.171.077.177.221.6 xxxxxxxxxxxxxxxxxxxx ++++−−+++−
2
5

2
4

2
3

2
2

2
154321 07.101.258.266.437.766.113.138.251.725.881.1034 xxxxxxxxxxY +−−−−++++−=

54534352423251413121 29.009.444.116.029.078.077.009.247.011.0 xxxxxxxxxxxxxxxxxxxx +++−+−+++−

2
5

2
4

2
3

2
2

2
154321 22.909.3484.4484.2397.5608.1983.2158.5717.1808.17698.11761 xxxxxxxxxxY −−−−−+++−−=

 

Figure F-2 Whey Protein, Fitted Responses 
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“ISWT” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C D E F G H I J K L M N O P Q R S T U V W X Y Z
Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -0.25 0.64 2.00 1.06 2.00 0.06 0.41 4.00 1.12 4.00 -0.16 -0.49 -0.26 -0.49 1.28 0.68 1.28 2.12 4.00 2.12 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1186.45
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 9.88
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 66.44
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 127.15

Constraints
x1, x2, x3, x4, x5 >= -2
x1, x2, x3, x4, x5 <= 2

Y1 Y2 Y3 Y4
Lower Bound 0.00 0.00 0.00 0.00
Upper Bound 1640.54 85.04 97.79 127.15

Solved Lower Bound -44.86 -22.44 -42.45 -13.41  
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Figure F-3 Whey Protein, Extreme Values 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -2.00 1.33 1.70 0.87 2.00 4.00 1.77 2.89 0.75 4.00 -2.66 -3.40 -1.74 -4.00 2.26 1.16 2.66 1.48 3.40 1.74 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1640.54
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 16.84
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 58.56
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 102.89
Constraints

Y2 >= 0.00
Y2 <= 85.04
Y3 >= 0.00
Y3 <= 97.79
Y4 >= 0.00
Y4 <= 127.15
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00
Lagrange multiplier Y4= 0.00

=ISWT!G13
=ISWT!G14
=ISWT!H13
=ISWT!H14
=ISWT!I13
=ISWT!I14

 
 

 
 

Figure F-4 Whey Protein, Solver Parameters 
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“ISWT 1” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -2.00 1.33 1.70 0.87 2.00 4.00 1.77 2.89 0.75 4.00 -2.66 -3.40 -1.74 -4.00 2.26 1.16 2.66 1.48 3.40 1.74 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1640.54
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 16.84
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 58.56
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 102.89
Constraints

Y2 >= 0.00
Y2 <= 85.04
Y3 >= 0.00
Y3 <= 97.79
Y4 >= 0.00
Y4 <= 127.15
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 0.00
Lagrange multiplier Y4= 0.00

=ISWT!G13
=ISWT!G14
=ISWT!H13
=ISWT!H14
=ISWT!I13
=ISWT!I14

 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 1

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -2.00 -148.63
$F$2 Settings x2 1.33 0.00
$G$2 Settings x3 1.70 0.00
$H$2 Settings x4 0.87 0.00
$I$2 Settings x5 2.00 73.52

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 16.84 0.00
$Z$4 Y2 Value 16.84 0.00
$Z$5 Y3 Value 58.56 0.00
$Z$5 Y3 Value 58.56 0.00
$Z$6 Y4 Value 102.89 0.00
$Z$6 Y4 Value 102.89 0.00  
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

AK AL AM AN AO AP AQ
Microsoft Excel 11.0 Answer Report
Worksheet: [Whey Protein.xls]ISWT 1
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$Z$3 Y1 Value 1176.98 1640.54

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -2.00
$F$2 Settings x2 0.00 1.33
$G$2 Settings x3 0.00 1.70
$H$2 Settings x4 0.00 0.87
$I$2 Settings x5 0.00 2.00

Constraints
Cell Name Cell Value Formula Status Slack

$Z$4 Y2 Value 16.84 $Z$4<=$F$9 Not Binding 68.200098
$Z$4 Y2 Value 16.84 $Z$4>=$F$8 Not Binding 16.84
$Z$5 Y3 Value 58.56 $Z$5<=$F$11 Not Binding 39.233374
$Z$5 Y3 Value 58.56 $Z$5>=$F$10 Not Binding 58.56
$Z$6 Y4 Value 102.89 $Z$6<=$F$13 Not Binding 24.263596
$Z$6 Y4 Value 102.89 $Z$6>=$F$12 Not Binding 102.89
$E$2 Settings x1 -2.00 $E$2<=$F$15 Not Binding 4
$F$2 Settings x2 1.33 $F$2<=$F$15 Not Binding 0.6687688
$G$2 Settings x3 1.70 $G$2<=$F$15 Not Binding 0.2999095
$H$2 Settings x4 0.87 $H$2<=$F$15 Not Binding 1.1319782
$I$2 Settings x5 2.00 $I$2<=$F$15 Binding 0
$E$2 Settings x1 -2.00 $E$2>=$F$14 Binding 0.00
$F$2 Settings x2 1.33 $F$2>=$F$14 Not Binding 3.33
$G$2 Settings x3 1.70 $G$2>=$F$14 Not Binding 3.70
$H$2 Settings x4 0.87 $H$2>=$F$14 Not Binding 2.87
$I$2 Settings x5 2.00 $I$2>=$F$14 Not Binding 4.00
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure F-5 Whey Protein, Scenario 1, Iteration 1 
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“ISWT 2” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -2.00 1.35 1.70 0.87 2.00 4.00 1.82 2.89 0.75 4.00 -2.70 -3.40 -1.74 -4.00 2.29 1.17 2.70 1.48 3.40 1.74 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1640.54
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 16.74
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 58.36
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 102.79
Constraints

Y2 >= 0.00
Y2 <= 16.74
Y3 >= 0.00
Y3 <= 58.36
Y4 >= 0.00
Y4 <= 102.79
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.09
Lagrange multiplier Y3= 0.02
Lagrange multiplier Y4= 0.01

Step 10: Given that Y1 equals 1640.54 and Y2 equals 16.74,
please indicate your preference for decreasing Y1 by 0.09 units for one unit increase in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 2.00

Given that Y1 equals 1640.54 and Y3 equals 58.36,
please indicate your preference for decreasing Y1 by 0.02 units for one unit increase in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= -2.00

Given that Y1 equals 1640.54 and Y4 equals 102.79,
please indicate your preference for decreasing Y1 by 0.01 units for one unit increase in Y4,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y4)= 1.00

Step 11: Update ε c= 0.618
iteration= 1
step size= 0.0039

ε (Y2)= 25.62
ε (Y3)= 40.48
ε (Y4)= 112.52

=F9+((G48*G29*ABS(Z4))*(ISWT!G14-F9))

=(G46^G47)/(SQRT((G29*ABS(Z4))^2+(G36*ABS(Z5))^2+(G43*ABS(Z6))^2))

=F13+((G48*G43*ABS(Z6))*(ISWT!I14-F13))
=F11+((G48*G36*ABS(Z5))*(ISWT!H14-F11))

=ISWT!G13
=ISWT!G14-'ISWT 1'!AQ24-0.1
=ISWT!H13
=ISWT!H14-'ISWT 1'!AQ26-0.2
=ISWT!I13
=ISWT!I14-'ISWT 1'!AQ28-0.1
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3
4
5
6
7
8
9

10
11
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 2

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -2.00 -149.00
$F$2 Settings x2 1.35 0.00
$G$2 Settings x3 1.70 0.00
$H$2 Settings x4 0.87 0.00
$I$2 Settings x5 2.00 73.33

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 16.74 0.09
$Z$4 Y2 Value 16.74 0.00
$Z$5 Y3 Value 58.36 0.02
$Z$5 Y3 Value 58.36 0.00
$Z$6 Y4 Value 102.79 0.01
$Z$6 Y4 Value 102.79 0.00  

Figure F-6 Whey Protein, Scenario 1, Iteration 2 
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“ISWT 3” 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -2.00 2.00 2.00 1.62 2.00 4.00 4.00 4.00 2.63 4.00 -4.00 -4.00 -3.25 -4.00 4.00 3.25 4.00 3.25 4.00 3.25 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1613.32
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 15.79
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 40.48
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 93.64
Constraints

Y2 >= 0.00
Y2 <= 25.62
Y3 >= 0.00
Y3 <= 40.48
Y4 >= 0.00
Y4 <= 112.52
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 7.25
Lagrange multiplier Y4= 0.00

=ISWT!G13
='ISWT 2'!G50
=ISWT!H13
='ISWT 2'!G51
=ISWT!I13
='ISWT 2'!G52
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 3

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -2.00 -217.76
$F$2 Settings x2 2.00 111.55
$G$2 Settings x3 2.00 79.18
$H$2 Settings x4 1.62 0.00
$I$2 Settings x5 2.00 61.56

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 15.79 0.00
$Z$4 Y2 Value 15.79 0.00
$Z$5 Y3 Value 40.48 7.25
$Z$5 Y3 Value 40.48 0.00
$Z$6 Y4 Value 93.64 0.00
$Z$6 Y4 Value 93.64 0.00  



280 

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

AK AL AM AN AO AP AQ
Microsoft Excel 11.0 Answer Report
Worksheet: [Whey Protein.xls]ISWT 3
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$Z$3 Y1 Value 1176.98 1613.32

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -2.00
$F$2 Settings x2 0.00 2.00
$G$2 Settings x3 0.00 2.00
$H$2 Settings x4 0.00 1.62
$I$2 Settings x5 0.00 2.00

Constraints
Cell Name Cell Value Formula Status Slack

$Z$4 Y2 Value 15.79 $Z$4<=$F$9 Not Binding 9.8339014
$Z$4 Y2 Value 15.79 $Z$4>=$F$8 Not Binding 15.79
$Z$5 Y3 Value 40.48 $Z$5<=$F$11 Binding 0
$Z$5 Y3 Value 40.48 $Z$5>=$F$10 Not Binding 40.48
$Z$6 Y4 Value 93.64 $Z$6<=$F$13 Not Binding 18.874306
$Z$6 Y4 Value 93.64 $Z$6>=$F$12 Not Binding 93.64
$E$2 Settings x1 -2.00 $E$2<=$F$15 Not Binding 4
$F$2 Settings x2 2.00 $F$2<=$F$15 Binding 0
$G$2 Settings x3 2.00 $G$2<=$F$15 Binding 0
$H$2 Settings x4 1.62 $H$2<=$F$15 Not Binding 0.3773502
$I$2 Settings x5 2.00 $I$2<=$F$15 Binding 0
$E$2 Settings x1 -2.00 $E$2>=$F$14 Binding 0.00
$F$2 Settings x2 2.00 $F$2>=$F$14 Not Binding 4.00
$G$2 Settings x3 2.00 $G$2>=$F$14 Not Binding 4.00
$H$2 Settings x4 1.62 $H$2>=$F$14 Not Binding 3.62
$I$2 Settings x5 2.00 $I$2>=$F$14 Not Binding 4.00
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure F-7 Whey Protein, Scenario 1, Iteration 3 
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“ISWT 4” 
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -0.04 2.00 -0.52 2.00 0.76 0.00 4.00 0.27 4.00 0.58 -0.08 0.02 -0.08 -0.03 -1.04 4.00 1.52 -1.04 -0.40 1.52 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1018.57
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 11.39
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 40.48
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 93.54
Constraints

Y2 >= 0.00
Y2 <= 15.69
Y3 >= 0.00
Y3 <= 40.48
Y4 >= 0.00
Y4 <= 93.54
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.00
Lagrange multiplier Y3= 11.03
Lagrange multiplier Y4= 9.73

=ISWT!G13
='ISWT 2'!G50-'ISWT 3'!AQ24-0.1
=ISWT!H13
='ISWT 2'!G51
=ISWT!I13
='ISWT 2'!G52-'ISWT 3'!AQ28-0.1
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 4

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.04 0.00
$F$2 Settings x2 2.00 326.09
$G$2 Settings x3 -0.52 0.00
$H$2 Settings x4 2.00 17.90
$I$2 Settings x5 0.76 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 11.39 0.00
$Z$4 Y2 Value 11.39 0.00
$Z$5 Y3 Value 40.48 11.03
$Z$5 Y3 Value 40.48 0.00
$Z$6 Y4 Value 93.54 9.73
$Z$6 Y4 Value 93.54 0.00  
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AK AL AM AN AO AP AQ
Microsoft Excel 11.0 Answer Report
Worksheet: [Whey Protein.xls]ISWT 4
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$Z$3 Y1 Value 1176.98 1018.57

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -0.04
$F$2 Settings x2 0.00 2.00
$G$2 Settings x3 0.00 -0.52
$H$2 Settings x4 0.00 2.00
$I$2 Settings x5 0.00 0.76

Constraints
Cell Name Cell Value Formula Status Slack

$Z$4 Y2 Value 11.39 $Z$4<=$F$9 Not Binding 4.2997579
$Z$4 Y2 Value 11.39 $Z$4>=$F$8 Not Binding 11.39
$Z$5 Y3 Value 40.48 $Z$5<=$F$11 Binding 0
$Z$5 Y3 Value 40.48 $Z$5>=$F$10 Not Binding 40.48
$Z$6 Y4 Value 93.54 $Z$6<=$F$13 Binding 0
$Z$6 Y4 Value 93.54 $Z$6>=$F$12 Not Binding 93.54
$E$2 Settings x1 -0.04 $E$2<=$F$15 Not Binding 2.0406307
$F$2 Settings x2 2.00 $F$2<=$F$15 Binding 0
$G$2 Settings x3 -0.52 $G$2<=$F$15 Not Binding 2.5216736
$H$2 Settings x4 2.00 $H$2<=$F$15 Binding 0
$I$2 Settings x5 0.76 $I$2<=$F$15 Not Binding 1.2382329
$E$2 Settings x1 -0.04 $E$2>=$F$14 Not Binding 1.96
$F$2 Settings x2 2.00 $F$2>=$F$14 Not Binding 4.00
$G$2 Settings x3 -0.52 $G$2>=$F$14 Not Binding 1.48
$H$2 Settings x4 2.00 $H$2>=$F$14 Not Binding 4.00
$I$2 Settings x5 0.76 $I$2>=$F$14 Not Binding 2.76
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure F-8 Whey Protein, Scenario 1, Iteration 4 
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“ISWT 5” 
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42
43
44
45
46
47
48
49
50
51
52
53

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -0.04 2.00 -0.53 2.00 0.80 0.00 4.00 0.28 4.00 0.64 -0.08 0.02 -0.08 -0.03 -1.05 4.00 1.60 -1.05 -0.42 1.60 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1018.56
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 11.29
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 40.48
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 93.54
Constraints

Y2 >= 0.00
Y2 <= 11.29
Y3 >= 0.00
Y3 <= 40.48
Y4 >= 0.00
Y4 <= 93.54
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 0.35
Lagrange multiplier Y3= 11.11
Lagrange multiplier Y4= 9.52

Step 10: Given that Y1 equals 1018.56 and Y2 equals 11.29,
please indicate your preference for decreasing Y1 by 0.35 units for one unit increase in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 1.00

Given that Y1 equals 1018.56 and Y3 equals 40.48,
please indicate your preference for decreasing Y1 by 11.11 units for one unit increase in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 0.00

Given that Y1 equals 1018.56 and Y4 equals 93.54,
please indicate your preference for decreasing Y1 by 9.52 units for one unit increase in Y4,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y4)= 2.00

Step 11: Update ε c= 0.618
iteration= 2
step size= 0.002

ε (Y2)= 12.99
ε (Y3)= 40.48
ε (Y4)= 106.36

=F9+((G48*G29*ABS(Z4))*(ISWT!G14-F9))

=(G46^G47)/(SQRT((G29*ABS(Z4))^2+(G36*ABS(Z5))^2+(G43*ABS(Z6))^2))

=F13+((G48*G43*ABS(Z6))*(ISWT!I14-F13))
=F11+((G48*G36*ABS(Z5))*(ISWT!H14-F11))

=ISWT!G13
='ISWT 4'!F9-'ISWT 4'!AQ24-0.1
=ISWT!H13
='ISWT 4'!F11
=ISWT!I13
='ISWT 4'!F13
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 5

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -0.04 0.00
$F$2 Settings x2 2.00 326.50
$G$2 Settings x3 -0.53 0.00
$H$2 Settings x4 2.00 16.24
$I$2 Settings x5 0.80 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 11.29 0.35
$Z$4 Y2 Value 11.29 0.00
$Z$5 Y3 Value 40.48 11.11
$Z$5 Y3 Value 40.48 0.00
$Z$6 Y4 Value 93.54 9.52
$Z$6 Y4 Value 93.54 0.00  

Figure F-9 Whey Protein, Scenario 1, Iteration 5 
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“ISWT 6” 
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -1.53 2.00 2.00 1.61 1.68 2.36 4.00 4.00 2.58 2.81 -3.07 -3.07 -2.47 -2.57 4.00 3.21 3.35 3.21 3.35 2.69 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1492.04
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 12.99
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 40.48
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 100.49
Constraints

Y2 >= 0.00
Y2 <= 12.99
Y3 >= 0.00
Y3 <= 40.48
Y4 >= 0.00
Y4 <= 106.36
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 42.66
Lagrange multiplier Y3= 32.25
Lagrange multiplier Y4= 0.00

=ISWT!G13
='ISWT 5'!G50
=ISWT!H13
='ISWT 5'!G51
=ISWT!I13
='ISWT 5'!G52
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 6

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -1.53 0.00
$F$2 Settings x2 2.00 863.70
$G$2 Settings x3 2.00 410.65
$H$2 Settings x4 1.61 0.00
$I$2 Settings x5 1.68 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 12.99 42.66
$Z$4 Y2 Value 12.99 0.00
$Z$5 Y3 Value 40.48 32.25
$Z$5 Y3 Value 40.48 0.00
$Z$6 Y4 Value 100.49 0.00
$Z$6 Y4 Value 100.49 0.00  
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AK AL AM AN AO AP AQ
Microsoft Excel 11.0 Answer Report
Worksheet: [Whey Protein.xls]ISWT 6
Result: Solver found a solution.  All constraints and optimality conditions are satisfied.
Engine: Standard GRG Nonlinear

Target Cell (Max)
Cell Name Original Value Final Value

$Z$3 Y1 Value 1176.98 1492.04

Adjustable Cells
Cell Name Original Value Final Value

$E$2 Settings x1 0.00 -1.53
$F$2 Settings x2 0.00 2.00
$G$2 Settings x3 0.00 2.00
$H$2 Settings x4 0.00 1.61
$I$2 Settings x5 0.00 1.68

Constraints
Cell Name Cell Value Formula Status Slack

$Z$4 Y2 Value 12.99 $Z$4<=$F$9 Binding 0
$Z$4 Y2 Value 12.99 $Z$4>=$F$8 Not Binding 12.99
$Z$5 Y3 Value 40.48 $Z$5<=$F$11 Binding 0
$Z$5 Y3 Value 40.48 $Z$5>=$F$10 Not Binding 40.48
$Z$6 Y4 Value 100.49 $Z$6<=$F$13 Not Binding 5.8705947
$Z$6 Y4 Value 100.49 $Z$6>=$F$12 Not Binding 100.49
$E$2 Settings x1 -1.53 $E$2<=$F$15 Not Binding 3.5349638
$F$2 Settings x2 2.00 $F$2<=$F$15 Binding 0
$G$2 Settings x3 2.00 $G$2<=$F$15 Binding 0
$H$2 Settings x4 1.61 $H$2<=$F$15 Not Binding 0.392831
$I$2 Settings x5 1.68 $I$2<=$F$15 Not Binding 0.3246185
$E$2 Settings x1 -1.53 $E$2>=$F$14 Not Binding 0.47
$F$2 Settings x2 2.00 $F$2>=$F$14 Not Binding 4.00
$G$2 Settings x3 2.00 $G$2>=$F$14 Not Binding 4.00
$H$2 Settings x4 1.61 $H$2>=$F$14 Not Binding 3.61
$I$2 Settings x5 1.68 $I$2>=$F$14 Not Binding 3.68
$F$2 Settings x2 0.34 $F$2>=$F$12 Not Binding 0.34
$G$2 Settings x3 0.44 $G$2>=$F$12 Not Binding 0.44  

Figure F-10 Whey Protein, Scenario 1, Iteration 6 
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“ISWT 7” 
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Step 7: Constant x1 x2 x3 x4 x5 x1sq x2sq x3sq x4sq x5sq x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 Response

Settings -1.54 2.00 2.00 1.60 1.67 2.36 4.00 4.00 2.57 2.78 -3.07 -3.07 -2.46 -2.56 4.00 3.20 3.34 3.20 3.34 2.67 Value
Y1 1176.98 -176.00 -18.17 57.58 21.83 19.08 -56.97 -23.84 -44.84 -34.09 -9.22 -25.00 -48.88 -12.25 -36.75 -2.88 16.75 11.00 -4.38 2.38 -1.00 1492.04
Y2 9.44 1.08 3.69 1.60 -0.21 -1.50 0.56 -0.13 0.24 0.37 1.06 2.15 -0.46 -2.75 -2.13 0.19 -0.85 -2.35 -0.96 -1.21 0.63 12.99
Y3 77.79 -10.12 -8.68 -0.10 -0.71 1.37 -4.16 -4.77 -2.36 -0.34 -0.33 -6.21 2.77 1.77 0.71 -1.68 -0.26 0.48 0.04 1.51 0.03 40.48
Y4 103.81 -8.25 7.51 2.38 1.13 1.66 -7.37 -4.66 -2.58 -2.01 1.07 -0.11 0.47 2.09 0.77 -0.78 0.29 -0.16 1.44 4.09 0.29 100.39
Constraints

Y2 >= 0.00
Y2 <= 12.99
Y3 >= 0.00
Y3 <= 40.48
Y4 >= 0.00
Y4 <= 100.39
x1, x2, x3, x4, x5 >= -2.00
x1, x2, x3, x4, x5 <= 2.00

Step 8: Ask DM, "Are you satisfied with the above solution?" No

Step 9: Lagrange multiplier Y2= 43.08
Lagrange multiplier Y3= 32.29
Lagrange multiplier Y4= 0.08

Step 10: Given that Y1 equals 1492.04 and Y2 equals 12.99,
please indicate your preference for decreasing Y1 by 43.08 units for one unit increase in Y2,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y2)= 0.00

Given that Y1 equals 1492.04 and Y3 equals 40.48,
please indicate your preference for decreasing Y1 by 32.29 units for one unit increase in Y3,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y3)= 0.00

Given that Y1 equals 1492.04 and Y4 equals 100.39,
please indicate your preference for decreasing Y1 by 0.08 units for one unit increase in Y4,
on a 5-point scale where 2 is a strong preference for making the trade-off, 0 is a preference to make no trade-off, 
and -2 is a strong preference to make the opposite trade-off.

W (Y4)= 0.00

=ISWT!G13
='ISWT 5'!G50
=ISWT!H13
='ISWT 5'!G51
=ISWT!I13
='ISWT 6'!F13-'ISWT 6'!AQ28-0.1
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AB AC AD AE AF
Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Whey Protein.xls]ISWT 7

Adjustable Cells
Final Reduced

Cell Name Value Gradient
$E$2 Settings x1 -1.54 0.00
$F$2 Settings x2 2.00 866.54
$G$2 Settings x3 2.00 411.23
$H$2 Settings x4 1.60 0.00
$I$2 Settings x5 1.67 0.00

Constraints
Final Lagrange

Cell Name Value Multiplier
$Z$4 Y2 Value 12.99 43.08
$Z$4 Y2 Value 12.99 0.00
$Z$5 Y3 Value 40.48 32.29
$Z$5 Y3 Value 40.48 0.00
$Z$6 Y4 Value 100.39 0.08
$Z$6 Y4 Value 100.39 0.00  

Figure F-11 Whey Protein, Scenario 1, Iteration 7 
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Usability Example 
 
Use the automotive test problem that Dvorak used in his dissertation to test the Distant 
Minimization technique.  The study could be duplicated using the real decision-makers to 
evaluate the process.  In the Engine Research Laboratory at the University of Central Florida, a 
study was conducted to determine the exhaust configuration of a restrictor-plate Winston Cup 
race engine that would deliver the optimum performance of the racecar.  There were two 
response functions: the horsepower of the race car in the draft (Y1) and the horsepower of the 
race car out of the draft (Y2).  The independent variables are oil temperature, engine speed, and 
exhaust header length.  A fourth independent variable in the Y2 function is pressure.  The goal of 
the study was to optimize the restrictor-plate so that the engine performed well both as the leader 
and as a follower in the draft.  The regression results obtained by Dvorak will be used for 
consistency.   
 
Goals: 

• Test process in a “real-world” environment 
o Ask the DM to select the primary objective 
o Ask the DM to select bounds on the secondary objective 

 If inside the extreme values, use the DM’s bounds 
• Gain feedback on the usability of the process from a decision-maker’s point of view 

 
Questions for decision-maker: 

• Where possible, ask for a rating using a five point scale 
• Please explain why you rated … that way 
• Other comments 
 

Question Rating Comments 
Overall   
Ease of Use   
Level of interaction   
Solutions reflect preferences   
Use of trade-offs   
Number of iterations   
Satisfaction with final solution   
Confidence in the solution   
 

• Feedback on wording of trade-off question 
• 5 point scale vs. 20 point scale (-2 to 2 vs. -10 to 10) 
• How does this compare with other methods previously used such as Dvorak’s Distant 

Minimization Technique? 
• What could make this process easier for the decision-maker? 
• Would having an initial set of solutions (e.g., SWT) first and then conducting trade-offs 

be easier for the DM? 
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