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ABSTRACT 

Geo-specific road database development is important to a driving simulation system and 

a very labor intensive process. Road databases for driving simulation need high resolution and 

accuracy.  Even though commercial software is available on the market, a lot of manual work 

still has to be done when the road crosssectional profile is not uniform. This research deals with 

geo-specific road databases development, especially for roads with non-uniform cross sections.  

In this research, the United States Geographical Survey (USGS) road information is used 

with aerial photos to accurately extract road boundaries, using image segmentation and data 

compression techniques. Image segmentation plays an important role in extracting road boundary 

information. There are numerous methods developed for image segmentation. Six methods have 

been tried for the purpose of road image segmentation. The major problems with road 

segmentation are due to the large variety of road appearances and the many linear features in 

roads. A method that does not require a database of sample images is desired. Furthermore, this 

method should be able to handle the complexity of road appearances.  

The proposed method for road segmentation is based on the mean-shift clustering 

algorithm and it yields a high accuracy. In the phase of building road databases and visual 

databases based on road segmentation results, the Linde-Buzo-Gray (LBG) vector quantization 

algorithm is used to identify repeatable cross section profiles. In the phase of texture mapping, 

five major uniform textures are considered - pavement, white marker, yellow marker, concrete 

and grass. They are automatically mapped to polygons. In the chapter of results, snapshots of 

road/visual database are presented.  
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CHAPTER ONE: INTRODUCTION 

Driving simulation can contribute greatly to transportation research, especially when the 

focus is on driving behavior. A goal of driving simulation is to make driving scenarios as close to 

reality as possible. The road database is one of the most important factors in deciding how close 

a driving scenario is to the real world. Road databases can be based on real scenes, such as the 

UCF campus, or just imaginary. The former type is called geo-specific and the latter is called 

geo-typical. Geo-typical roads are easier to create than geo-specific roads are. Manually creating 

geo-specific road databases is very time consuming. The cost could be much higher when a road 

database is for driving simulation, because, ideally, the accuracy of the data should match the 

dimension of the smallest object that can be seen by drivers.  

Thanks to the advances in photogrammetry techniques, aerial images with high resolution are 

available and can provide many details of roads. The aerial images in this research have a 

resolution of 0.2-0.3 meters per pixel, as measured in this research. Even though aerial images 

can help in the process of developing geo-specific road databases, it still takes modelers a lot of 

work. The amount of work depends on how complex the real scene is and on how detailed data 

should be. For example, a straight road could simply be represented by a vector (start, end) in a 

map. However, this amount of information is far from enough to describe a road for driving 

simulation. Motion based simulators need to know how to react to the surface of the road at each 

point. This straight road could have irregular shaped medians. Therefore, motion of a simulator 

could vary at different lateral positions on a straight road. Most research about road extraction 

from aerial images is for updating maps or creating road networks such as [2], [5], [8], [10]-[13], 
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[15] and [19], These methods focus on recognizing center line information. This level of detail is 

not fine enough for driving simulation.  

Most research in road extraction begins with an entire image. It is difficult and 

computationally expensive to extract roads due to presences of other road-like features with 

straight edges. The USGS has been collecting and updating geographical data for many years. 

This data includes road center lines, aerial photos, etc. Nearly every zip code in the United States 

has been documented. Fortunately, this data is either free or accessible at a small cost. USGS 

geographical data is very helpful in analyzing aerial photos. In this research, USGS geographical 

data serve as starting points for extracting road data. This is one of the major contributions to 

road database development in this research.  

While USGS data can easily limit search space for roads in aerial photos, road 

segmentation is still very difficult, because of the non-uniformity of road cross sections. A 

suitable image segmentation method has to be chosen. Six methods have been tested. They were 

an edge grouping method [31], a texture-based comparison method using histogram intersection 

techniques [30], a feature-based comparison method using Expectation-Maximization (EM) 

method [26], a region-growing method [25], an active contour method [27], and the mean-shift 

clustering method [20]. Edge grouping methods [31] can accurately delineate road boundaries, 

but it is sensitive to noises, such as pavement marking and traffic. Because the aerial photos used 

in this research have a very high resolution of 0.2 to 0.3 meters per pixel, the noise can affect 

segmentation results dramatically. In order to address the noise in photos, complex mathematical 

models are needed, but it is difficult for them to be universal. The texture-based comparison 

method [30] using histogram intersection algorithms picks sample images which are usually as 
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small as 10X10 and compares their histograms of color information with the histogram of each 

pixel’s neighbors in object images. This method work well when samples are taken from an 

image whose appearance is close to that of object images. When this condition cannot be 

satisfied, segmentation results will be affected. In this situation, a large amount of samples are 

needed. The region-growing method [25] merges each pixel with its neighbors if they are similar. 

This process stops when the boundary of the region is not similar enough with neighbor pixels. 

This method can divide an image into small uniform areas, but the problem is how to post 

process these small areas. The feature-based segmentation method [26] treats each pixel as a 

vector which may include hue, saturation and intensity. Then the EM method is used to group 

pixels with similar features. This method yields accurate segmentation results, however this 

method is computation-intensive. The mean-shift method [20] first determines the main objects 

in the image and uses information, such as average saturation to classify these objects. This 

method was adopted in this research, because it is simple and reliable. The aforementioned six 

types of methods will be explained in detail in Chapters 2 and 3.  

The driving simulation system where the road databases are developed in this research 

was made by Simulation Technology Solution (STS). This company has its own format of how 

road information is organized and it is not straightforward to convert results of image 

segmentation to this format. This format requires typical cross sections which can be used 

repeatably. The LBG algorithm for vector quantization was used to reduce all the cross sections 

into a set of repeatable cross sections. Both STS road database format and the LBG algorithm 

will be discussed in detail in Chapter 4. 
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CHAPTER TWO: LITERATION REVIEW 

2.1 Road Extraction from Aerial Photos 

 Numerous methods have been developed to extract roads from aerial photos [1]-[19]. The 

information that needs to be extracted could be either road center line information or road 

boundary information. The resolutions of the object images vary from 0.25 meters per pixel [20] 

to approximately 4 meters per pixel [11]. The higher the resolution, the more accurate the 

extracted information can be. The aerial images in this research have a resolution of about 0.25 

meter per pixel which is high for aerial images.  

 Research of road extraction, such as [2], [5], [8], [10]-[13], [15] and [19], has 

concentrated on how to detect roads in images and retrieve road center line information. In [12] 

and [13], the authors first use two edge detection methods to extract edges from satellite images, 

and then fuse the results though an information combination operator. Numerous road candidates 

will be generated. If a true candidate is denoted as “1” and a false candidate as “0”, there would 

be  combinations; where n is number of candidates. By doing that, the expressions of 

probabilities and  can be defined, where D stands for the observation and L is an n-

vector, composed of 0s and 1s. In [12], the observation field is the result of edge detection. The 

knowledge in  includes that 1) roads are long, but road edges can be any length; 2) non-

road edges are more probable to be short; 3) edges should not be too short. In order to 

calculate , the authors divide a whole set of edges into subsets, each of which contains 

closely located edges. They use the Markovian Random Field and the order depends on how 

n2

)|( LDp )(Lp

)|( LDp

)(Lp
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many neighbors an edge has. To maximize that is the product of and  with 

respect to L¸ many numerical methods can be chosen. This algorithm demonstrates good 

performance in extracting roads from satellite images. It only extracts road center information, 

instead of objects on the road, like curbs and medians. Another issue with this algorithm is that 

appearances of roads vary in different places, especially when the resolution of the aerial photo 

increases. The method in [8] is similar to the method just introduced. 

),( LDp )|( LDp )(Lp

 In [17], instead of building a mathematical model, the authors created several rules. The 

process starts with the result of an edge detection algorithm. Two basic rules stated in [17] are 

that two edges within a close distance and a similar orientation have a high probability of 

belonging to a road. This method needs to have a training process to achieve some thresholds. 

The purpose of the method [17] is to extract center line information, instead of road boundaries. 

A similar method was tested in this research for extracting road boundaries and the results were 

rarely acceptable. The main problem with this method is that it is very difficult to find a 

universal set of thresholds and the training process has to be repeated sometimes. The method in 

[15] is similar to this method. 

 In [2], the authors use old maps as well as aerial photos to update existing maps. The 

outlines of the roads in the existing databases are compared to the cross profiles taken from the 

images at a certain position. If the information from the image deviates from what is in the 

existing database, a new road link is proposed. The algorithm then searches the start of the new 

road in addition to tracking this road. Primarily, this algorithm uses cross-correlation thresholds 

to detect new roads. This method is similar to the method proposed in this research because it 
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also uses some existing geographical information combined with aerial images. The images in 

[2] have a resolution of one meter per pixel. 

 In [5], a semi-automatic method is proposed. In this method, an operator first picks 

several seed points near a road and decide its width. Afterwards, active contour models [18] are 

formulated. The internal energy in the active contour indicates the smoothness of the curve and 

the photometric observations formulate the grey level matching of images. Active contour 

models can be solved iteratively and the iteration stops when each element of the solution vector 

falls below a threshold. There is a trade-off in this method. If many accurate seed points are 

provided by the operator, there is no need to use the active contour model; instead a cubic-spline 

interpolation model can be used to interpolate those points. If too few seed points are given, it 

will not be reliable to use any mathematical model.  

 The method in [8] is similar to the one in [11] and [12]. It builds a model of road features. 

The edges are detected using a set of morphological operations. In the phase of edge linking, the 

Maximum a Priori (MAP) configuration of edge segments is estimated by minimizing an energy 

function.  

 The method in [10] works on low level features such as edges. Given an image, this 

method first segments elongated region and then a curve-fitting algorithm is used to fit a curve. 

This method works for satellite images which usually have a resolution much lower than aerial 

photos. In an image with high resolution, roads usually have many objects irrelevant to road 

segmentation, such as pavement markings, pavement discontinuities, and traffic. It is difficult to 

have good segmentation results for curve-fitting. Additionally, if all the objects are put into 
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consideration, a very complex model must be available to handle all the situations. Furthermore, 

roads look different from place to place; therefore an adaptive method is needed. 

 Instead of extracting road center line information, some methods have focused on how to 

obtain road boundaries, such as [1], [3], [4], [6], [7], [9], [13], [14] and [16]. These methods put 

the width of roads into consideration. Some of these methods begin with no knowledge of where 

roads are, while some have some existing knowledge about road locations.  

 In [1], roads are described by a group of antiparallel pairs which are two smooth curves 

that are parallel pointwise to each other and have opposite gradient direction. Each antiparallel 

pair is expressed as 

 antipair(antipair_no, first_end(point(X,Y,Z), point(X,Y,Z)), 

  second_end(point(X,Y,Z), point(X,Y,Z)), 

  attribute(gradient_direction, length, width, average_intensity)) 

 To generate antiparallel pairs, directions along a segment are determined and a search is 

made on either side of this segment. Thresholds are used to group these antiparallel pairs. The 

factors that are considered are distance, difference in direction, difference in gradient direction, 

difference in intensity, and difference in width. This method yields favorable results, but the road 

contents are very uniform, which is unlike the aerial photos in this research. 

 In [3] and [4], an image is first divided into pieces. For each piece, the probability of the 

road existence is estimated through MAP estimation. When building the mathematical model, 

four assumptions are made. They are 1) roads’ width variance is small and road width change is 

likely to be slow, 2) road direction changes are likely to be slow, 3) road local average gray 

values are likely to vary only slowly, 4) gray level variation between road and background is 
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likely to be large, and 5) roads are unlikely to be short. After the road candidates are chosen, they 

are merged using dynamic programming.  

 In [6], a high level method is proposed. This method emphasizes modeling context in 

aerial photos. A context could be shadow-occlusion, vehicle-road, and building-driveway-road-

segments. For example, if a road is successfully identified, it is possible to find pavement 

markings. This method also uses some existing geographical information. The work in [7] is the 

extension of [6]. In [7], a given Digital Surface Model (DSM) is used together with images to 

obtain context information. A region is first classified into forest area, urban area, or rural area 

through a texture-based segmentation method. Then for rural area and urban area, DSMs are 

used to analyze context relations. Afterwards, the valleys of the DSM are hypothesized to be 

roads and tested in images. With the information of roads, markings could be identified in high-

resolution images if they are clear. After roads are successfully extracted, they are connected to 

create a road network. The system in [6] and [7] is very complex and includes many different 

modules for different types of objects in aerial photos. It also takes advantage of existing 

geographical information to make it reliable. However, this system does not address some 

objects, such as pavement discontinuities and medians, in road areas. 

 In [9], a segmentation algorithm based on morphological operations is proposed to 

segment satellite images. This algorithm connects similar pixels locally and the connected 

regions keep growing until no similar pixel is found. It performs well in segmenting satellite 

images, but the images in [9] have a much lower resolution than the images in this research. 

Additionally, the method in [9] does not mention how to interpret segmentation results. 
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 In [13], the author proposes a method which uses a growing active contour algorithm 

[19]. The original concept of active contours was proposed in [18] by Kass et al. It is used to 

interpolate given points by a geometrically smooth curve. Generically, it is a deformable model 

used for semi-automatic object delineation. The advantages of active contours include 1) 

constraints of geometric models 2) the ease in changing of external forces. The constraints of 

geometric models are regarded as internal forces. In order to delineate objects’ contours, the 

energy of an active contour should be minimized. Numerically, an active contour’ energy is 

represented as  

  ,         (1) ∫∫ +==
1

0 int

1

0
)))](())(([))(( dssvEsvEdssvEE imagecontour ))(),(()( sysxsv =

where stands for the energy of the active contour, stands for the energy at point 

, stands for the internal force at point , stands for the 

image force at point . 

contourE ))(( svE

)(),(( sysx ))((int svE )(),(( sysx ))(( svEimage

)(),(( sysx

Spline curves can be used as the geometric model in many active contours. The internal 

spline energy can be written  

               (2) 2/)|)(|)(|)(|)(( 22
int svssvsE sss βα +=

where , between 0 and 1 represents the displacement from the beginning point.  is the first 

order gradient of the curve at a certain point and is the second order gradient. 

s )(svs

)(svss )(sα  and 

)(sβ controls the curve’s importance of the membrane and thin plate terms. In some cases, they 

could be constants. Minimization of the internal energy makes the curve smooth. However, being 

smooth does not imply being consistent with objects’ contours in images. Image forces can be 

defined based on individual needs. For example, active contour would tend to go to edges if the 

  9 



 

 

                                                      

image force is defined as the reciprocals of gradients. For improved results, image forces can be 

defined as the projection of the image gradient on the curve’s normal at a certain point. When 

energy is being minimized, curve points are solved simultaneously. However this only works 

well when the initial points are selected close to real contours. This is because for each curve 

point, its local minimum is searched. In [19], the concept of growing active contours is proposed. 

It does not solve all the points along the curve simultaneously; instead it grows an active contour 

from the starting and ending points to the center. Unlike traditional active contour models, this 

method first applies the internal force, and then turns on the image force gradually from the ends 

to the center. In [13], a method for road extraction based on growing active contour was 

proposed. This method first performs edge extraction at the coarse level. Since in rural areas, 

roads are the most significant linear structures in aerial images at the coarse level; extracted 

edges are more likely to be roads. Then active contours grow from starting and ending points to 

centers. The stable width is assumed to be one of the roads' properties and is used as part of the 

image force, which filters out those non-road edges. In this research, another active contour-

based method was tested and the results were not acceptable [27]. There are two reasons. The 

first is that it is hard to automatically find initial points in high-resolution images. The second is 

that there are many linear features in road areas, such as pavement markings, pavement 

discontinuities and so on. Active contour based algorithms will be affected by these noises. 

 In [14], the authors utilize a Digital Surface Model (DSM) and Digital Terrain Model 

(DTM) in image analysis. The roles of DSM and DTM are to remove unwanted image contents 

which are far from roads. This algorithm starts with multiple color images and then extracts 

features, such as straight edges and road markings. These features will be analyzed together with 
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the DSM and DTM. The system in [14] contains a knowledge-based system to combine all the 

information either from images or DSM/DTM.  

 In [16], the authors proposed an unbiased detector of curvilinear structures. This method 

puts line width into consideration. When a linear feature appears as a bar-shape in the image, its 

width can not be ignored. In [16], good results are presented. However, the test images have 

relatively narrow and uniform roads, which are different with the roads considered by this 

research. Additionally, there is no median in the test images, while medians are often used for 

traffic operation purposes. 

 The method in [37] builds 3D models for urban environments. The modeling effort 

occurs at two levels: (1) ground-based modeling of building facades using 2D laser scanners and 

a video cameras, and (2) airborne modeling airborne laser scans and aerial images. For ground-

based modeling, the processed scans are triangulated and texture mapped using the camera 

images. 

 The methods discussed above can be categorized into two classes. One is concerned with 

extracting center line information of roads, and the other attempts to extract road boundaries. 

Road center line extraction can be skipped in this research, because the USGS road center line 

information is used. For the second class, some of the methods are interested in delineating 

edges, and some involve grouping similar pixels in road areas. In high resolution images, the 

second approach was found to be more reliable, because there are too many linear features in 

roads to accurately delineate road boundaries.  
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2.2 Image Segmentation Algorithms 

 There are many image segmentation methods. Each method uses cues to segment images. 

Those cues can be RGB (Red, Green, Blue), or HSI (Hue, Saturation, Intensity). No matter 

which cues are selected, there must be a method that classifies pixels. In this section, six methods 

are described. These six methods have been implemented for road segmentation and their 

performances are analyzed in Chapters 3 and 5. 

2.2.1 Edge Detection and Grouping 

 This research has adopted the Canny edge detection method [32]. In the Canny edge 

detection, the first step is to filter out any noise in the original image before trying to locate 

edges. The continuous Gaussian has the form of  

   2

22
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eyxG
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=               (3) 

 The Gaussian filter is discrete and can be used in this case. Its mathematical 

representation is 

             (4) ∑ ∑
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where is the image value at position , ),( jim ),( ji )2,2( jjiig ++ is the  element in the 

discrete Gaussian mask, and c is a constant. The Gaussian mask at 

thjjii ),(

4.1=σ is shown as follows: 
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 The larger the width of the Gaussian mask, the lower the detector's sensitivity is to noise. 

After smoothing the image and eliminating noise, the next step is to find the edge strength by 

taking the gradient of the image. The Sobel operator performs a 2-D spatial gradient 

measurement on an image. Then, the absolute gradient magnitude (edge strength) at each point 

can be found. The Sobel operator uses a pair of 3x3 convolution masks, one estimating the 

gradient in the x-direction (columns) and the other estimating the gradient in the y-direction 

(rows). They are shown below:  
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The magnitude of the edge gradient is calculated using the following formula 

                 (7) |||||| GyGxG +=

 Additional to the magnitude of the edge gradient, the direction of the edge gradient and 

the edge direction can be calculated using the following formulas  

   )/tan( GxGyag =θ (9) and )/tan(
2

GxGyae −=
πθ           (8) 

 Afterwards, there are two thresholds that are used to decide edge pixels. These two 

thresholds are denoted as T1 and T2, where T1>T2. Any pixel with is classified as an 1|| TG >
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edge pixel. Any pixel, connected with the previous edge pixel and with , is also an edge 

pixel. 

2|| TG >

 In the phase of edge grouping, edges with short distance and similar orientation should be 

connected.  

2.2.2 Textured-Based Image Segmentation By Comparing Histograms 

 The method in [30] uses color ratio gradient information as the cue for segmentation, and 

a histogram comparison method, which is called histogram intersection for classifying pixels. 

Details of color ratio gradient are explained in [30]. At least two query images taken from certain 

color ratio gradient images should be available for segmenting the original image. The 

segmentation is achieved by comparing the color gradient ratio histograms of the query images 

and each pixel’s neighbor in the original image. The comparing scheme is called histogram 

intersection [33] cited in [30]. This algorithm compares the closeness of two histograms and can 

be written as a similar function (11) that returns a numerical measure [30]. 
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where QH  stands for the histogram of query image and iIH  stands for the histogram of the 

neighbor of ith pixel in image. Additionally, k
v

 stands for the bin index in a histogram and  

stands for the number of bins in a histogram. Alternatively, this function can be defined as  
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 The larger the returned value is, the more similar two histograms are. The query image 

that is the most similar to a pixel’s neighbor decides this pixel’s classification.  

 This method works well when the sample images are close to the test image. If this 

condition is not held, the results may be affected. As far as this research is concerned, it would 

be safe to have multiple sample images for each texture. But it will take a great deal of effort to 

create such a database. In [30], this method is used to extract data in image databases. 

2.2.3 Feature-Based Comparison Using EM Method 

 The work in [26] presents a system called “blobworld”. Its algorithm has three steps. The 

first is to prepare a database of blobs from other images. Then for each test image, this method 

extracts color and texture features, including L*a*b color coordinates, anisotropy, polarity, and 

contrast. Then the authors use the EM method for grouping pixels with respect to these color and 

texture information. The EM method is used for finding maximization likelihood parameter 

estimates when there is missing or incomplete data. In this case, the missing data is the Gaussian 

cluster to which the points in the feature space belong. The form of the probability density is as 

follows: 

              (11) ∑
=

=Θ
K

i
iii xfaxf

1
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where x is a feature vector and a is the mixing weights, ( ). The value K represents the 

number of Gaussian clusters. The value of 
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),.....,,,.....,( 00 Kkaa θθ . The value of represents a Gaussian multivariate density parameterized if
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by iθ , such as iµ and , which are the mean and covariance of a Gaussian cluster. And  can 

be expressed as  

iΣ if
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The equations that update , a µ , and Σ  take on the following form: 
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where N is the total number of feature vectors and ),|( Θjxip is the probability that Gaussian 

clutter i fits the pixel , given the data jx Θ :  
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 This process is iterative until the parameters converge. Initially, the mean vectors and the 

covariance matrices are calculated by dividing the image into two halves and calculating their 

statistical values. After the images are segmented, each blob is compared with the blobs in the 

database. The one in the database that has the shortest Mahalonobis distance decides the 

classification of the blob being tested. 
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2.2.4 Region-Growing Algorithm for Image Segmentation 

 Region-Growing algorithm starts with each pixel as an object [25]. At each step, pairs of 

image objects are merged into larger objects. The merging decision is based on local 

homogeneity criteria, describing the similarity of adjacent image objects. A “merging cost” is 

assigned to each possible merge. These costs represent the degree of fitting. The simplest way of 

calculating the merging cost can be evaluated by the Euclidean distance between two pixels’ 

RGB values, such as  

   ∑ −=
d dd ffh 2

21 )(           (17) 

where and are one of the selected features and h  indicates the similarity of two objects. 

Alternatively, the cost can be reflected by  

df1 df 2

   ∑ −
=

d
fd

dd ff
h 221 )(

δ
          (18) 

which puts the standard deviation into consideration. When there is no similar object to combine, 

merging stops. The result of this type of methods is a number of comparably uniform regions in 

the image.  

 In [34], authors use this method to segment aerial photos and then use morphological 

operations and a fuzzy knowledge-based system to classify segmented regions. In detail, this 

method performs skeleton operation to each region. The end points yielded by the skeleton 

operation can define contour of region. If these end points form a rectangle-like shape, there may 

be a building. If these end points form an elongated object, there may be a road.  

  17 



 

 

                                                      

 This method was not chosen for road segmentation in this research, because the aerial 

photos contain many irregular shaped objects, such as medians and pavement patches. These 

could make the post-classification very difficult. 

2.2.5 Active Contour Model 

 The method in [17] is based on the active contour model. When updating a contour point, 

four types of energy are considered as follows: 

1. The first is energy of continuity, which is denoted to , where is the 

average distance between each consecutive two points on a contour, and is the i

|||| 11 +

−

−−= ii vvdE
−

d

iv th point 

on the contour. The smaller this energy is, the more continuous the contour is at the 

interested point. Minimizing this energy will make contour points evenly distributed. 

2. The second is energy of smoothness, which is denoted to || 12 ii uuE −= + , where is the 

orientation at i

iu

th point. The smaller this energy is, the smoother the contour is at the 

interested point.  

3. The third is energy of gradient, which is simply magnitude of gradient. This energy 

controls that the grown point should have a high gradient value. Because the sum of these 

four types energy will be minimized with respect to the position of the updated point, this 

energy is actually calculated as || 13 +−= iGE , where G denotes gradient.  

4. The fourth is energy of projected gradient on the normal of the line of and . It is 

denoted as . This energy reflects whether the line of and  

delineates a linear feature in the image.  

iv 1+iv
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 In the calculation, each type of energy should be normalized to a value between 0 and 1 

and be given a weight. Finally, the energy of the proposed point is expressed as follows: 

   4321 EEEEE γθβα +−+=           (19) 

where α , β ,θ , and γ  are the weights. 

 In [27], a greedy algorithm is proposed. This algorithm searches each contour point in its 

neighborhood. The point with the least energy is chosen to be the updated point.  

2.2.6 Mean-Shift Clustering Algorithm for Image Segmentation 

 The mean shift algorithm for image segmentation was introduced in [20]. It is a 

nonparametric method for searching the real estimation within a search window with radius r. 

The value of radius r decides the resolution of segmentation. Larger values of r result in lower 

segmentation resolution. In this paper, r is chosen to be the square root of the trace of the global 

covariance matrix in the HSI fields. The segmentation algorithm is defined as follows: 

 1. Given an aerial image, convert the RGB image to an HSI image. Each pixel in the 

RGB image maps to a point in the HSI image. The process of converting a RGB vector to its HSI 

vector is  
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 2. A 3D histogram of the HSI image is obtained. 

 3. m points in the HSI image are chosen randomly. 

 4. The point which corresponds to the largest value in the HSI histogram is identified. 

 5. Start from this point in the HIS histogram, find the shift vector using the 

formula  

},,{ ishx =
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where is the value in the HSI histogram at . )(
−

xp x

 6. Update . If x converges, go to step 7, otherwise go to 5. 
−−−

∆+= xxx

 7. Centering at , all points in the window with radius r in the HSI histogram will be 

treated as a class and taken off the image. 

−

x

 8. Repeat steps 3, 4, 5 and 6 until all the points in the HSI image have been classified. 

 9. After step 7, several classes are formed, each of which is an estimation vector  of 

hue, saturation and intensity. Each class also has a number of points that are classified to it. From 

the formed classes, drop the classes whose number of pixels is less than 5% of the total number 

of pixels. For each point in the dropped classes, reclassify it to one of the remaining classes 

which has the shortest Euclidean distance to this point. 

−

x

 In step 5, the formula calculates the shift vector  which points to the real estimation 

within the window which has radius r and centers at . When the shift vector  is calculated, 

 is updated. This process repeats until  converges. The resulting  is the real estimation 
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within the window, and all the points within the result window that centers at  will be treated 

as one class. The classified point’s corresponding pixels in the image will be removed from the 

image. This process is repeated until all the points in the image are classified. 

−

x

2.4 Introduction to USGS Data 

 The United States Geographical Survey (USGS) was established in 1879 and has been 

collecting and updating geographical information for many years. This information can be 

obtained either free or at a low cost. In this research, two types of geographical data issued by 

USGS are used. They are Digital Line Graph (DLG) and Digital Orthophoto Qaundrangle 

(DOQ). Digital Line Graphs (DLGs) are digital vector representations of cartographic 

information derived from USGS maps and related sources. For most regions in the United States, 

they can be downloaded from http://www.usgs.gov. There are many layers of information in a 

DLG. Roads are just part of a DLG. DOQs are actually aerial photos with one meter per pixel 

resolution. The DOQ and DLG at a given location have been accurately matched. 

 In this research, DLGs are used to limit the area of image segmentation. Even though 

there are many existing road extraction algorithms which provide good results, USGS road 

information is very reliable and easy to access.  
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2.5 STS Road Database Formats 

 The STS RDB system was designed to make vehicle dynamics calculations efficient.  

Instead of using polygonal road descriptions, a combination of road center line points and cross 

sections was adopted because the cross section description could be reused at different points 

along the road. This scheme, similar to the method used in the MultiGen Creator Road Tool, is 

particularly efficient when roads are primarily composed of uniform cross sections.   

Each uniform section can be defined by a cross section profile and a set of center line 

points. Curve road boundaries are modeled in the STS RDB system using distinct center line 

points and corresponding cross sections.  

Identical cross section profiles can occur many times in a road network.  Fig. 1 illustrates 

how the STS’s RDB system handles this situation in an efficient manner by employing a pool of 

cross sections. Each road segment is spatially sampled along its center line.  For each center line 

point, an entry in the cross section pool will be used to define the cross sectional view at this 

point.  Entries in the pool could be used more than one time as in the case of the cross section 

designated as Cross Section Number 1 (see Fig. 1). 

 

Fig. 1 STS Road Databases Requirements 
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 During execution of the vehicle dynamics model at a specific location (centerline point) 

along the road, the appropriate cross section is referenced by the index associated with the 

centerline point.  It follows that consecutive center line points along a straight line with the same 

cross section index is redundant.  All occurrences of consecutive centerline points with identical 

cross section indices resulting from sampling should be replaced by a single occurrence. 

Compared with road polygon descriptions, memory requirements are reduced significantly, 

especially when there is elevation or irregular road boundaries to account for.  

The process of forming a pool of cross sections is actually encoding them. In other 

words, similar cross sections should be identified and appear in road databases as a distinct 

integer. 
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CHAPTER THREE: EXPERIMENTS OF ROAD SEGMENTATION 

 Six methods for road image segmentation were introduced in the previous chapter. All of 

them have been implemented for road segmentation. The mean-shift clustering algorithm yields 

the best results and is adopted by the proposed system. In this chapter, the results of these 

algorithms are presented.  

3.1 Edge Detection and Edge Linking 

 The Canny edge detection deals with how to extract edge information from an image, and 

it leaves the problem of interpreting these edges unsolved. In this research, the direction of 

Digital Line Graph (DLG) is first used to suppress irrelevant edge pixels, whose edge directions 

deviate from the DLG too much. In this research, if the following condition is met, the edge pixel 

is suppressed. 

    
4

|| πθθ >=− DLGe            (23) 

where eθ stands for the edge direction of an edge pixel and DLGθ  stands for the direction of a 

DLG line. This operation can remove some edges perpendicular to the direction of DLG, and 

also open closed contours. After this step, each edge is approximated using a cubic spline 

interpolation algorithm. By doing this, orientations of two edges can be compared. The similarity 

of orientations and closeness are the two most important factors in deciding whether two edges 

should be connected. Proper parameters need to be found to judge closeness and similar 

orientations. Based on our observation shown in Fig. 2 where the manual connection is recorded, 
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edge pairs with short distance and similar orientation have a better chance of being correctly 

connected. Additionally, when the distance between two edges is the concern, the lengths of the 

two interested edges should also be considered. In Fig. 2, the red crosses indicate right 

connections, while the blue crosses indicate wrong connections. The horizontal axis stands for 

)()(
),(

jLiL
jiD

+
 and the vertical axis stands for , where denotes the distance between 

edges i and j, denotes the length of edge i and A(i,j) denotes the alignment of edges i and j. 

The line in Fig. 2 helps define a boundary for judging whether two edges should be connected or 

not. Numerically, if 
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edges i and j can be connected, otherwise they should not. Even though, there are many red 

crosses above the super-imposed line, it is not suggested to move this line upwards, because it 

will loosen the standards for connecting edges and cause false connecting. Some edges which are 

not qualified for being connected at the first time may become qualified at the second time, 

because they may have gotten longer and closer.  

 

Fig. 2 The Boundary for Judge Right Connections 
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When the edges are grouped once, more connections could become possible, so two-time 

connection is suggested. Another simple rule is to connect two edges that have a same parallel 

partner, like Fig. 3 shows. In the first image, the upper two gray edges are approximately parallel 

with the bottom edge; therefore they should be connected due to the fact that they share the same 

parallel edge. In the second image, the two edges with a same parallel edge are at the bottom. 

 

 

Fig. 3 Examples of Connecting Two Edges With Same Parallel Partner 

 The way to decide whether two edges are parallel is described as follows: 

1) For a pixel in edge 1, draw a line that is perpendicular to the tangent. Tangents are 

approximated using cubic spline parameters.  

2) If this line does not intersect edge 2, choose another pixel in edge 1 and go to step 1. 

3) If the intersection in edge 2 has a similar tangent, this pair of points is regarded as a 

parallel pair. 

4) If there are points that are unevaluated in edge 1, move to the next pixel and go to step 1. 

5) If the number of the parallel pairs is less than 80% of the lengths of both edge 1 and edge 

2, these two edges are not parallel; otherwise, they are parallel. 

 After the work of connecting is finished, this method will remove short edges, which are 

very likely caused by noises, such as traffic or pavement markings. Two sets of results of this 
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algorithm are shown in the following. Each set has five images, which are the result of the Canny 

edge detection, the result of the filtering based on edge direction, the result of the first 

connection, result of the second connection, and the result of connecting edges with same 

parallel partners. Red edges are the results of connecting. 

 

 

 

 

 

Fig. 4 Results of Edge Detection and Grouping (1) 
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Fig. 5 Results of Edge Detection and Grouping (2) 

 When filtering edge points by edge direction, edges which are perpendicular to road 

center lines are removed. In the first connection, edges with similar orientation and close 

distance are connected. In the second connection, few edges get connected. This is the reason 
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why it is suggested to connect edges no more than twice. At last, edges with a same parallel 

partner are connected. However, too many edges that are not road boundaries are preserved. The 

reason is that there are too many linear features in road areas. These noises could be traffic, 

pavement color discontinuities and so on. They are shown in Fig. 6. 

  

  

Fig. 6 Linear Features As Noises 

 This type of noises is very difficult to remove in an edge-detection based algorithm, 

because the lateral distances of these linear features are small. The edges, due to these noises, 

can also be very long, so length is not a good cue to separate noises in this situation.  

3.2 Texture-Based Segmentation Using the Histogram Intersection Method 

 Texture-based methods focus on the pattern of the image. Therefore, it is good to select a 

cue whose pattern varies the most significantly between two textures. In [30], color ratio gradient 

is used as the cue. However, in our experiments, it was found that hue gradient is a better cue. In 

both Fig. 7 and 8, three images are demonstrated. The first one is the original image, the second 

one is the color ratio gradient image, and the third one is the hue gradient image. These images 
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demonstrate that hue gradient separates two different areas, pavement and non-pavement, better 

than color ratio gradient does. 

 

 

 

Fig. 7 Original, Color Ratio Gradient, and Hue Gradient Images (1) 
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Fig. 8 Original, Color Ratio Gradient, and Hue Gradient Images (2) 

 As mentioned in section 2.2.2, sample images need to be chosen in order to segment an 

image into several classes. In this research, it is relatively simple, because a road image only 

needs to be segmented into two classes, which are pavement and non-pavement. Here are the 

sample images. 

   

Fig. 9 Sample Images 
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 The first image is the sample image for pavement and the second is for non-pavement. 

The results of the segmentation are shown below. 

 

 

Fig. 10 Texture-Based Segmentation Using the Histogram Intersection Method 

 The segmentation results in Fig. 10 give strong indications where road and median 

boundaries are likely to exist. A simple procedure has been defined to combine the results in 

section 3.1 to generate cleaner edge images and nicer road delineations. This method is 

performed to see whether an edge is surrounded by pixels with the same classification. If it is 

true, that means this edge is very likely caused by noises. Our threshold is that if a 7-pixel wide 

strip that centers at an edge has either more than 70% pixels classified to pavement, or more than 

70% pixels classified to non-pavement, this edge will be eliminated. There is a problem with the 

threshold, which is that it eliminates too many edges. So this method also defines that if an 

edge’s closest parallel partner is preserved, this edge will survive as well. However, this cannot 

get rid of all the wrong delineations, especially those caused by the lateral discontinuity of 

pavement.  
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 The fuse of segmentation and edge detection needs a certain level of intelligence. Several 

rules are defined to make the delineations better. Before listing the rules, the concept of area will 

be introduced. In this research, an area is defined to be within two edges, but without an edge 

point inside. The purpose of defining areas is to remove part of some edges, because it is 

obviously if areas on both sides of an edge have the same classification, this edge should be 

removed. Table 1 lists all the rules and Fig. 11 lists the improved edge images. 

Table 1 Rules for Fusing Edge Grouping Results and Texture-Based Segmentation Results

Rule Content 

1 If more than 70% of area pixels are classified to pavement/non-pavement, this 

area is classified as pavement/non-pavement. 

2 If two areas share the same boundaries (edge/marker), these two area should be 

classified the same. 

3 If an area has two neighbors with the same classification, this area should also 

have the same classification. 

4 If an area is small (<1000) and narrow (<20), this area should be classified to 

be pavement, because this area is caused by vehicles. 

5 If a part of an edge or a marker is clamped by two areas with the same 

classification, this part should be removed. 
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Fig. 11 Improved Edge Grouping  

 A serious problem with this histogram-based method is that it needs good sample images, 

which must be statistically close to test images. When this condition is not met, segmentation 

results will be significantly affected as follows: 

 

 

Fig. 12 Example of Failing Texture-Based Segmentation (1) 
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Fig. 13 Example of Failing Texture-Based Segmentation (2) 

 The failures are due to the heterogeneity of road appearances. When resolution of an 

aerial image is high, this phenomenon must be addressed.  It is possible to build a database with 

a large number of sample images. When segmenting an image, all of them are compared with 

each pixel’s neighbor in the test image by following the histogram intersection algorithm. The 

problem with this solution is twofold. The first is that road appearance in one place may look 

very different from that in another place. In such a case, this method is not reliable. The second 

is just simply too costly to build a database with many sample images.  

  35 



 

 

                                                      

3.3 Feature-Based Image Segmentation Using EM Method 

 In [26], the first step is to convert an image to its representation in a feature space. The 

features, considered in [26], are categorized into two types. One is based on texture and the other 

is based on color. The color-based features are )),2sin(),2cos(( vhsihsi ππ , where h , and i are 

respectively hue, saturation and intensity. However, in our experiments, the color 

features, , work better. The texture-based features at a certain pixel are obtained by the 

following algorithm. 

s

),,( ish

1. For each 2/kk =δ , where 7,....,2,1=k , perform the following the calculations 

a. , where is a Gaussian kernel and TIIyxGyxM ))((*),(),( ∇∇= δδ ),( yxGδ I∇ is 

the gradient. 

b. 1λ and 2λ are the two eigenvalues of  and ),( yxM δ 21 λλ >  

c. , where is the unit direction of ∑ Ω∈ ++ ∇=
),(

^
])[,(

yx
nIyxGE δ

^
n 1λ ’s eigenvector, 

 represents the neighborhood under consideration, and  stands for 

positive value of the product of 

Ω +∇ ][
^
nI

I∇  and . 
^
n

d. , where  stands for negative value of the 

product of  and . 

∑ Ω∈ −− ∇=
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^
])[,(
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nIyxGE δ −∇ ][

^
nI

I∇
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e. 
||
||

−+

−+

+
−

=
EE
EE

pk  

  36 



 

 

                                                      

2. Choose kδ , when 02.0|| 1 <− −kk pp as the scale for calculating the polarity for a certain 

pixel.  

 Above is the calculation of polarity. Step a is straight forward. In step b, when 

1λ is larger than 2λ , 1λ ’s corresponding eigenvector reflects the dominant orientation in 

the neighborhood. When the two eigenvalues are similar, no preferred orientation exists. 

When they are negligible, the local neighborhood is approximately constant. Steps c and 

d calculate the positive and negative part of a gradient vector, I∇ , on  the direction of 
^
n

1λ ’s eigenvector. Step e calculates the polarity. When p is close to 1, an edge may exist. 

When decays with p kδ , there may be a 2D texture that has multiple orientations. When 

p  takes arbitrary values, the local neighborhood may have a constant intensity. Polarity 

also depends on the size of the local neighborhood, so the size must be selected as 

polarity converges. Afterwards, the anisotropy and the normalized texture contrast for a 

certain pixel are calculated as follows 

     
1

21
λ
λ

−=a           (25) 

     3

212 λλ +=c            (26) 

 represents anisotropy and c represents normalized texture contrast. Finally, the 

texture-based feature vector is . In the experiments, the texture-based features 

do not demonstrate a strong pattern. However, sometimes they greatly contribute to the 

segmentation. The following sets of images show the results of the experiments. Each set 

has six images that are the original image, the polarity image, the texture feature 

images, , and the segmentation result. 

a

),,( cpcac

),,( cpcac
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Fig. 14 Results of Feature-Based Segmentation Using EM Method (1) 
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Fig. 15 Results of Feature-Based Segmentation Using EM Method (2) 
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 Fig. 16 Results of Feature-Based Segmentation Using EM Method (3) 
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 Fig. 17 Results of Feature-Based Segmentation Using EM Method (4)  
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 In the polarity images, it is easy to see that the most salient contents in the road 

images are edges and constant areas, because many pixels have high and relatively high 

gray values in the polarity images. A few pixels having low gray values are textured area.

 The visualized texture-based features are stochastic, instead of being informative. 

One possible reason for this phenomenon is that only gray level gradient values in the test 

images are considered. It may also be because the road images do not have strong 

textures at all. But this does not seem correct, because in the previous sub-section, the 

hue gradient based segmentation method provided good results when texture was the only 

cue for segmenting. This is interesting and is left to future research.  

 The results are more accurate than the results yielded by the method mentioned in 

the previous section. One advantage of this method is that it does not need sample 

images; therefore there is not any bias in selecting sample images and the cost of building 

a database of them.  

 There is another special point when applying this method for road segmentation. 

The initial mean vectors and covariance matrices are calculated for two halves of the 

image in [26]. But in this case, not all the image area is of interest, but the area along the 

DLGs. So for this research, the image area is defined by the 140 pixel wide stripe along 

the DLGs. When initializing mean vectors and covariance matrices, the first step is to 

divide this stripe into two halves, both of which have the same length. Then each half’s 

mean vector and covariance matrix are calculated accordingly. 

 The reason why this method was not chosen as the final solution to road 

segmentation is because this method has to do many complex calculations, such as 
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solving eigenvalues and eigenvectors, inverting matrices, and solving a matrix’s 

determinant. This makes this method very difficult to be integrated into an interactive 

software application.  

3.4 Region-Growing Image Segmentation 

The region-growing segmentation method, tried in this research, is based on [25]. In this 

method, each pixel is treated as an object at the beginning. Then similarities (degree of fitting) 

among neighbor pixels are measured. Several ways of calculating degree of fitting are suggested 

in 2.2.4. A slightly customized formula has been used in the experiments and is 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−=
d dd

dd

ff
ff

h
2

21

21

)(
1 , where and are the mean feature values of two objects. The 

advantage of this formula is that the higher value of h implies two objects are more likely to be 

merged and its value falls in a range of (0,1). If the calculated similarity is greater than a 

predefined threshold, these two pixels are combined into one object.  

df1 df 2

The process of merging objects is very computation intensive. If merging starts with a 

certain pixel, it only needs to check its neighbors; however, its neighbors can bring more pixels. 

This procedure repeats until no more similar pixel is adjacent. If a depth-first method is used, the 

complexity of forming one object is . This process has to be repeated for each pixel. 

Therefore, the complexity of forming all the objects is . After forming all the objects, the 

same process needs to be repeated and the difference is that each object is now larger. If a 

uniform area is of interest, it takes a shorter time to finish, because an object can be big and the 

)( 2nO

)( 4nO
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number of objects is small. Another practical issue with this method is that forming an object 

from single-pixel objects is a recursive procedure as shown below: 

grow(pixel p) 
{ 
 for(each neighbor n of p) 
 { 
  if(n is similar to p) 
  { 
   n is brought to the object which p belongs to 
   grow(n) 
  } 
 }  
} 
 
This recursive function may overflow the function stack in the operating system, if an 

area is relatively uniform. This is because a uniform area will make this recursive function run to 

too many levels. Therefore, a limit must be set ahead of time to control how many levels of 

recursion are allowed to run. In this experiment, the maximal number of recursion is 5000. This 

number may be enough for a complex and small image. If an image is large, this number may not 

be enough to form an actual object at a time; instead it may form several objects and merge them 

later.  

Due to the intensive computation, this method is not recommended for road 

segmentation. It is hard to be integrated into an interactive software application. This method can 

be adopted for other purposes, because it is easy to understand and implement. Below some 

results are shown together with the original images. After the region-growing segmentation is 

finished, each object is represented by its average RGB. The results are color images. 
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Fig. 18 Results of Region-Growing Method (1) 

 

 

Fig. 19 Results of Region-Growing Method (2) 
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Fig. 20 Results of Region-Growing Method (3) 

  

  

Fig. 21 Results of Region-Growing Method (4) 

The results in the previous four examples give accurate results. Each object in the 

segmentation result is relatively uniform in the original image, which is the main goal of this 

algorithm. However, the interpretation of these objects is not straightforward, because located on 

roads there are many irregular shapes which are hard to correctly identify. Another limit with this 

algorithm is that two similar objects cannot be merged into one object if they are not adjacent. 
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That is because spatial relationships between two objects play an important role in region-

growing segmentation methods. Only adjacent objects are considered for merging. This 

algorithm does not consider the distance within the feature space. If two objects are formed in 

two separate places in the image, they cannot be merged, even if they are close in the feature 

space. 

3.5 Growing Active Contour Model 

 In high-resolution road images, road boundaries are not the only linear objects. Many 

other objects, such as pavement markings, also appear linear. Therefore, it is difficult to 

automatically choose initial points to fit in an active contour model. For this research, the active 

contour-like method, proposed in [27], is customized to grow a linear object from its two ends.  

 In this customized version, for each end point, the energy of each neighboring point is 

calculated. The one with the smallest energy is where the contour is going to grow. If any point’s 

energy is greater than a predefined threshold, it means the extension of the contour should be 

stopped. This algorithm is demonstrated as follows: 

 Initialize α , β , θ , and γ  
 terminate=0 
 end[0]=first end point of the contour 
 end[1]=second end point of the contour 
 /*loop to move points to new locations*/ 
 for i=0 to 1   /*grow the contour twice due to two ends*/ 
  while not terminate 
   =BIG   minE
   for j=0 to m-1  /*m is size of neighborhood*/ 
     jjjj

j EEEEE 4321 γθβα +−+=

    if  minEE j <
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     jEE =min  
     jj =min  
    endif 
   endfor 
   if  maxmin EE j >
    terminate=1 
   else 
    grow the contour to point j 
    end[i]=point j 
   endif 
  endwhile 
 endfor 

 The results are shown in the following figures, where red edges are grown edges and 

white edges are detected by the Canny edge detection method. 

 

 

 

 

Fig. 22 Results of An Active Contour Method 
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 The active contour method in this section grows each object from two ends. The growing 

follows the linear contours and is smooth. Additionally, the growing stops where the edges are 

weak. However, there are too many incidents of false growing. This is obvious in the second and 

third images, where objects near the ends of the medians extend to the pavement area. This is 

inevitable to this algorithm due to lateral pavement discontinuities. These discontinuities cause 

adjacent edges to have the same orientation. In such a case, it is not enough to only consider 

gradient-related factors as the image force. But one of the functionalities of active contours is to 

delineate objects with high gradient values. Therefore, active contour based methods are not 

suitable for road segmentation in high resolution images.   

 However, active contour based methods can be useful when developing an interactive 

application for road modeling. Modelers can give relatively accurate initial points around an 

object, such as a median.  

3.6 Mean-Shift Clustering Algorithm 

 The mean-shift clustering algorithm segments image pixels within a feature space by 

searching local modes. In the following results, the first images are the original images and the 

second are the segmentation results. Segmented objects shown in the following images are 

represented by their average RGBs.  
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Fig. 23 Result of the Mean-Shift Clustering Algorithm (1) 

 

 

Fig. 24 Result of the Mean-Shift Clustering Algorithm (2) 

 

 

Fig. 25 Result of the Mean-Shift Clustering Algorithm (3) 
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Fig. 26 Result of the Mean-Shift Clustering Algorithm (4) 

 

 

Fig. 27 Result of the Mean-Shift Clustering Algorithm (5) 

 

 

Fig. 28 Result of the Mean-Shift Clustering Algorithm (6) 
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Fig. 29 Result of the Mean-Shift Clustering Algorithm (7) 
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Fig. 30 Result of the Mean-Shift Clustering Algorithm (8) 
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 These segmentation results yields accurate results. A contributing factor is that the mean-

shift algorithm can find large objects prior to small objects. This can be illustrated by sizes of 

extracted objects in the order they are extracted.  
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Fig. 31 Sizes of Extracted Objects 
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CHAPTER FOUR: METHODOLOGY 

4.1 Matching DLG Information with Aerial Photos 

Since the aerial images in this research and the digital road information (DLG from 

USGS) are from different sources, they need to be matched accurately before the recognition 

process begins. Two types of distortions between an image and the USGS data are considered in 

this research. One is linear and the other is non-linear. Fig. 32 shows the two kinds of distortions.   

 

Fig. 32 Linear and Non-Linear Distortions 

Linear distortion is easily identified, provided accurate correspondences between both 

types of data exist. It can be regarded as a planar projective transformation, which can be 

represented by a non-singular matrix [21] as shown below. 
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where  are coordinate in the USGS data and  are coordinate in the 

corresponding image. Since the source image and the USGS data are planar, z and can be 

assigned 1. Additionally, due to the up-to-scale phenomenon [21], one of the nine elements in the 

non-singular matrix can be assigned a value of 1 e.g., as . Therefore equation 

(27) becomes  
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The inhomogeneous form of (28) becomes [21] 
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Given four pairs of measured data points, the transformation becomes 

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

−−

−−

−−

−−

−−

−−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

32

31

23

22

21

13

12

11

'
44

'
4444

'
44

'
44,44

'
33

'
3333

'
33

'
33,33

'
22

'
2222

'
22

'
22,22

'
11

'
1111

'
11

'
11,11

'
4

'
4

'
3

'
3

'
2

'
2

'
1

'
1

*

,,1,,,0,0,0

,,0,0,0,1,

,,1,,,0,0,0

,,0,0,0,1,

,,1,,,0,0,0

,,0,0,0,1,

,,1,,,0,0,0

,,0,0,0,1,

h
h
h
h
h
h
h
h

yyyxyx

xyxxyx

yyyxyx

xyxxyx

yyyxyx

xyxxyx

yyyxyx

xyxxyx

y

x

y

x

y

x

y

x

          (30) 

If equation (30) is denoted by MhX =' , both 'X  and h are 8x1 vectors, and M is an 8X8 

matrix. Therefore, . Since the USGS road data are text files, it is hard to find 

correspondences between the USGS road data and images. The USGS issues aerial photos with 

one meter accuracy which have been aligned with the corresponding road centerline data. A 

'1 XMh −=
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minimum of four points are chosen on the USGS and object images followed by computation of 

the non-singular matrix. This produces the transformation between the USGS road data and the 

object images. Linear distortion between the two sets of photos for this project is represented by 

the non-singular matrix which is . The most significant 

source of distortion is 2D translation, because the first and second elements in the third row of H 

are zeros. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−−

=
100
4968.1172491.00010.0
2432.1100011.02504.0

H

Non-linear distortion is more difficult to detect. One method is to draw several scanlines 

in both aerial photos and choose feature correspondences along these scanlines. For feature 

points along vertical scanlines, their horizontal differences are compared. For feature points 

along horizontal scanlines, their vertical differences are compared. This method can give a 

preliminary view of non-linear distortion as shown in Fig. 33. The non-linear distortion is not 

significant, because the dimensions of the aerial images are thousands of pixels and the total 

distortion is within 6 pixels. This is acceptable for segmentation requirements. Fig. 34 shows the 

result of matching the USGS data to the aerial photography. 

 

Fig. 33 The Graph of Non-Linear Distortion Measurement. 
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Fig. 34 Matching of the USGS DLG and UCF Aerial Photos 

 Projecting the USGS road data on the object images dramatically reduces the search 

space for segmentation. 

4.2 Post Processing the Segmentation Results by the Mean-Shift Clustering Method  

 Usually pavements in aerial photos have lower saturation, compared with other areas. In 

other words, the areas that have a high average saturation are more likely to be non-pavement. It 

is possible to use saturation values to segment aerial images. The difficulty is that a saturation 

image can easily become noisy. Sometimes a saturation image is so noisy that the road boundary 

is not recognizable. In this case, the classification results via the mean-shift algorithm can be 

used. The mean-shift algorithm classifies an image into several classes. The average saturation 

value of each class separates pavements and non-pavements. Mathematically, the recognition 

process is as follows: 

 1. Sort the classes based on the average saturation in a descending order; 
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 2. For class i, where i is from 1 to n, where n is the number of the classes, classify it to be 

non-pavement if i<=t, otherwise classify it to be pavement. Index t must satisfy 4.01 >
− +

t

tt

s
ss

, 

where s stands for the average saturation with in a class. 

The threshold value of 0.4 is to detect the first significant drop in the average saturations.  

4.3 Conditional Morphological Methods 

 In morphological operations, an object is treated as a set. Fundamental morphological 

operations are the standard set operations which include union, intersection, translation, and 

complement. The morphological operations used to improve the segmentation results are closing 

and opening operations. Their mathematical expressions are shown below: 

 Dilation: )(),( β
β

+=
∈

ABAD
B
U             (30) 

 Erosion: )(),( β
β

−=
∈

ABAE
B
I              (31) 

 Opening:             (32) )),,((),( BBAEDBAO =

 Closing:             (33) )),,((),( BBADEBAC =

 In the above four expressions, A  is an object whose pixels have image coordinates, while 

B is a set of 2D vector, such as , known as the structuring element. Operation 

dilation causes objects to grow in size and operation erosion causes objects to shrink. The 

amount of growing or shrinking depends on

)]1,0(),0,1(),0,0[(

B . Operation opening is operation dilation followed 

by erosion. It removes small connected areas while preserving the shape and size of large objects 

in the image. Operation closing is operation erosion followed by dilation. It fills small gaps. It is 
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important to correctly judge where to use the opening operation and where to use the closing 

operation for road segmentation. For a more detailed discussion about morphological operations, 

please refer to [36]. 

 In order to find out where to use opening operations and where to use closing operations, 

USGS road information can be consulted. Along the USGS road center line, given a valid lateral 

offset, a path parallel to the road center line can be specified. Some pixels along each path are 

classified as non-pavement and some are classified as pavement by the method in 4.2. If the 

pavement pixels are numbered 0 and non-pavement pixels are numbered 1, the summation of all 

the pixels along a path reflects the likelihood of whether this path is in a pavement or non-

pavement area. Fig. 35 is a graph showing this value along the road lateral offset for the 

segmentation result on a road image. 

 

Fig. 35 The Number of Non-Pavement Pixels vs. Lateral Offset 

 The way to decide where the different morphological operations are to be used is to find 

four pairs of consecutive peaks and valleys in Fig. 35 and these four pairs should have the largest 

differences. The middle points of these four pairs of peaks and valleys can roughly specify the 

cross sectional view of the road. Due to the common knowledge, these five parts should be non-
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pavement, pavement, non-pavement, pavement, and non-pavement. Closing operations should be 

performed in non-pavement areas and opening operations should be performed in pavement 

areas. The conditional morphological operations remove noises caused by overlapping color 

information between pavement and non-pavement.  

4.4 Removing Shadows and Occlusions 

 In aerial photos, some of the pavement area is covered by the shadow caused by trees or 

occluded by trees. The colors of trees and shadows are dark compared with other objects in an 

aerial photo. The method for removing shadows/occlusions relies on the mean-shift clustering 

result and the intermediate result in 4.3. In 4.2, the mean-shift algorithm classifies all the pixels 

into several classes. Since shadow and occlusion areas have lower intensity than anything else in 

the image, they will be separated into a class with the lowest intensity. However, shadow areas 

or occlusion areas could cover both pavement areas and non-pavement areas. In order to find out 

which part of a shadow/occlusion area is pavement, the intermediate result in Section 4.3 is used. 

Based on the graph in Fig. 35, the road cross-sectional profile can be obtained. With this 

information, the shadow and occlusion areas can be classified. This process is to see whether a 

shadow/occlusion pixel falls in a pavement area or non-pavement area. The process is described 

as follows: 

1. The mean-shift algorithm in 4.2 segments an aerial image into several classes. The 

class with the lowest average intensity is the shadow/occlusion class. 
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2. Based on Fig. 35, a road profile is derived into five parts which are non-pavement, 

pavement, non-pavement, pavement, and non-pavement. Each part has a lateral range.  

3. For each pixel of the shadow/occlusion class, if its lateral position is within the lateral 

range of a pavement area, it is classified as a pavement pixel; otherwise, it is 

classified as a non-pavement pixel. 

4.5 Manual Adjustment 

 Even though the proposed method yields accurate segmentation results, it is still very 

difficult to automatically generate 3D road models from segmentation results. A software 

application with graphical user interface has been developed in this research. It has the following 

functionalities.  

1. Loading images 

2. Loading detected road boundary points in road segmentation 

3. Moving images and points 

4. Removing points 

5. Inserting points  

6. Connecting two objects 

7. Saving adjusted points 

8. Zooming in/out. 

Below are several snapshots of this software application. 
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Fig. 36 Inserting a Point 

 

 Fig. 37 Connecting Two Objects 

  

 Fig. 38 Results of a Manual Adjustment  

 In the future research, one of the proposed works is to integrate more functions to this 

software. It should include automated road segmentation algorithms, 3D model generation 

  63 



 

 

                                                      

program, and RDB generation program. Because building geo-specific roads is a major interest 

for any driving simulation system, such a software application is a worthwhile investment. 

4.6 LBG Algorithm 

 In order to form a pool of cross sections, center lines are sampled. The sampling rate can 

vary. For each sampled center line point, a line is drawn perpendicular to its center line. This line 

will intersect with boundaries of roads and medians and comprise the top view of the cross 

section at this point.  The true cross-sectional profile can be derived from the top view using 

basic geometric design parameters for existing roads and medians as shown in Fig. 39. 

 

Fig. 39 Transforming Cross Sections Top Views in to True Profiles 

 In Fig. 39, the cross section top view line intersects with four vertical lines. The middle 

two vertical lines are median boundaries and the other two vertical lines are road boundaries. The 

four intersection points uniquely define a top view of the cross section associated with the 

diamond shape road centerline point. Assuming the height of curbs conforms to a six inch 

standard enables construction of the true cross section profile at this point. 

road centerline 

cross section top view 

cross section profile 
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 Top views of cross sections are available at each sampled center line point with the 

possibility that many are very similar, if not identical. The question is how to identify similar 

cross sections. In this research, the Linde-Buzo-Gray (LBG) vector quantization algorithm [35] 

is used to identify similar top views automatically. 

 For example, in Fig. 39 the distances from the center line point to the four intersection 

points on the cross section top view are -48.0, -6.0, 7.5, and, 56.7 feet. A negative value indicates 

that the intersection point is located on the left side of the center line point. Consequently, the 

cross section vector of the center line point is (-48.0, -6.0, 7.5, 56.7).  

 The LBG algorithm automates the process of forming the pool of cross sections.  It 

encodes cross section databases, identifies and removes redundant cross sections.  The LBG 

algorithm can quantitatively evaluate the encoding error. Below is the description of the LBG 

algorithm training process. 

1. Start with an initial set of reconstruction values { }N
iiY 1

)0(
=  and a set of training 

vectors . Set , . Select threshold { }M
iiX 1

)0(
= 0=k 0)0( =D ∈ . 
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)( }{ =
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5. . Find new reconstruction values 1+= kk { }N
i

k
iY 1

)(
=  that are the average value of the 

elements of each of the quantization regions . Go to Step 2. )1( −k
iV

 The input to the LBG algorithm is a set of M cross section vectors.  The desired number 

of cross sections is N and {  will be the cross sections in the cross section pool when 

training stops.  {  are the M cross sections before quantization and each one will point to 

the closest member of  {  after quantization. 
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 Initially there is no prior knowledge of how many cross sections are needed for 

describing the original cross section database.  An acceptable approach is to start with a small 

value of N, e.g. 2 and then calculate the average error among all the cross sections. If this error is 

not acceptable, the intermediate N vectors will be perturbed to generate another group of N 

vectors for retraining. The perturbing method adopted in this research is to shift each original 

entry by a small vector.  This small vector is 0.3 times the vector standard deviation of the part of 

training set near an entry. For example, a 2D vector is chosen to represent },{ 21 yy 'M  vectors 

out of all M training vectors, and these 'M  vectors have standard deviations of  and for 

the first and second items. The newly generated vector is 

1std 2std

},{*3.0},{ 2121 stdstdyy + .  

 The relationship between average errors and numbers of vectors in the codebook is 

shown in Table 2. The LBG algorithm should work towards two pools of cross sections 

corresponding to roads with and without medians. The top views of road cross sections with 

medians will have four points, while those without medians will have only two points. Therefore 

the LBG algorithm is identifying similar 2D vectors and 4D vectors.  
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 Table 2 shows an example of how encoding error changes with respect to the pool size. 

Note how the encoding errors are reduced when the pool sizes increase for both two-point and 

four-point cross sections. Both pool sizes were set to 128.  After quantization, the number of 

two-point cross sections was reduced from 611 to 113 and the number dropped from 3313 to 189 

for four-point cross sections. 

Table 2. Encoding Errors 
Two-Point Cross Section Four-Point Cross Section 

Pool Size Average Error (ft) Pool Size Average Error (ft) 
2 4.30 2 4.25 
4 3.80 4 3.40 
8 2.90 8 2.60 
16 2.03 16 1.88 
32 1.38 32 1.39 
64 0.82 64 1.00 

128 0.40 128 0.74 
256 0.17 256 0.53 

4.7Automatically Creating 3D Road Model 

 When repeatable cross sections are identified, it is possible to convert them, combined 

with center lines, into the visual database automatically. One major type of information, which is 

not available in an RDB, is pavement markings. However this can be derived based on common 

knowledge, such as a lane is 12 foot wide and a marker is 6 inch wide. Then it is possible to 

decide which texture should be mapped at a certain place. The proposed method is to draw 

polygons, each of which can be mapped a uniform texture. Five textures can be made 

beforehand: white marker, yellow marker, concrete, grass, and pavement. This method will 

create many polygons, however from the experiments these polygons can easily be handled by a 

high quality graphics card. This procedure is shown in the following figure. 
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Fig. 40 Texture Mapping in Road Modeling 

 Polygons and five textures are placed in the upper half. Because the types of these 

polygons are known when they are drawn, it is straightforward to map textures. This method is 

not necessary to generate the final version of the visual database, but it can eliminate a great deal 

of work.  
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4.8 Summary of the Methodology 

 The proposed method has two main modules. The first one contains all the steps related 

to image recognition and its purpose is to achieve accurate road segmentation. The first step in 

this module is to accurately match USGS DLG information with high resolution images in order 

to locate where roads are. Then the mean-shift clustering method is used to segment a road area 

into several classes. If a class’s average saturation is low, it is more likely to be a pavement area. 

If a class’s average saturation is high, it is more likely to be a non-pavement area. The way of 

deciding is to sort these classes with respect to average saturation value. The first significant 

drop in average saturation value between two consecutive classes separates the two major 

categories of classes. The classes before the significant drop are non-pavement, and the ones 

after the significant drop are pavement. Segmentation results up to this point need to be 

improved using morphological opening and closing operations. It is critical to decide where to 

use opening/closing operation. Additionally, the effect of shadows and occlusion on road 

segmentation should be removed. 

 After achieving accurate road segmentation results, road boundary points are manually 

adjusted by a software application with a graphical user interface. This software enables 

modelers to insert, remove, connect and adjust boundary points. This step is very important and a 

bridge between road segmentation results and 3D modeling. Then, cross section information is 

sampled along each center line. In order to choose repeatable cross sections, the LBG vector 

quantization algorithm is used to identify repeatable cross section. Afterwards, all the 

information needed to build an STS compatible RDB is ready. The algorithm for building 3D 

models draws many polygons, each of which can be mapped a uniform texture.  

  69 



 

 

                                                      

 The following figure shows how this method works.  

 

Fig. 41 Flow Chart of the Proposed Method 
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CHAPTER FIVE: RESULTS 

5.1 The Results of Saturation-Based Segmentation 

 The uniform areas in the segmentation results shown in 3.6 are classes with similar HSI 

values. In order to have a binary segmentation, saturation images can be used. In the following 

saturation image (Fig. 42), pavement areas have a lower value of saturation and non-pavement 

areas have a higher value of saturation. If extracted objects’ average saturation values are sorted 

in a descending order, a significant drop can normally be found in Fig. 43. 

 

 

Fig. 42 Examples of Saturation Images 
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Fig. 43 Saturation Value in a Descending Order 

 Below are the segmentation results after using saturation as a cue to categorize the 

objects extracted from the mean-shift clustering algorithm.  
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Fig. 44 Result of Segmentation after Using Saturation as a Cue (1) 

 

Fig. 45 Result of Segmentation after Using Saturation as a Cue (2) 

 

Fig. 46 Result of Segmentation after Using Saturation as a Cue (3) 

 

Fig. 47 Result of Segmentation after Using Saturation as a Cue (4) 
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Fig. 48 Result of Segmentation after Using Saturation as a Cue (5) 

 

Fig. 49 Result of Segmentation after Using Saturation as a Cue (6) 

 

Fig. 50 Result of Segmentation after Using Saturation as a Cue (7) 
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Fig. 51 Result of Segmentation after Using Saturation as a Cue (8) 

 

 

Fig. 52 Result of Segmentation after Using Saturation as a Cue (9) 
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5.2 The Results of Conditional Morphological Operations 

 The morphological operations used in this research are opening and closing operations. 

The opening operation should be used within pavement areas and the closing operation should be 

used within non-pavement areas. The following pictures are the results. 

 

Fig. 53 Result of Morphological Operations (1) 

 

Fig. 54 Result of Morphological Operations (2) 

 

Fig. 55 Result of Morphological Operations (3) 
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Fig. 56 Result of Morphological Operations (4) 

 

Fig. 57 Result of Morphological Operations (5) 

 

Fig. 58 Result of Morphological Operations (6) 

 

Fig. 59 Result of Morphological Operations (7) 
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Fig. 60 Result of Morphological Operations (8) 

 

 

Fig. 61 Result of Morphological Operations (9) 
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5.3 The Results of Shadow and Occlusion Removal 

 In the top of Fig. 62, there are several trees on the side of the road. Some of the pavement 

area is covered by the shadow caused or occluded by trees. The areas covered by shadows and 

occlusions are classified using the results of 5.2 and the road cross sectional profile derived in 

4.3. The result is shown in the bottom of Fig. 62. 

 

 

Fig. 62 The Road Image with Shadows and Occlusions, and Its Segmentation Result 

5.4 The Accuracy of Road Segmentation 

 In order to measure the accuracies of the road segmentation results, they are compared 

with the results obtained by a real person using Adobe PhotoShop [22]. The results by the real 

person are used as the correct results. The accuracies are listed in Table 3. 
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Table 3. The Accuracies of the Segmentation Results 
Image Size Accuracy 
600X190 86.82% 
600X190 86.87% 
600X190 93.65% 
600X190 93.78% 
600X190 87.15% 
600X190 88.05% 
600X190 95.75% 

2542X1475 91.78% 
1652X806 90.56% 

 

 In Table 2, all the accuracies are higher than 85%. The first seven images are small 

compared with the last two images. However, the accuracies are not affected by the image size. 

5.5 The Results of Manually Adjusted Road Boundaries 

 Because of the high accuracies of road segmentation, it is easy for modelers to adjust the 

automatically recognized road boundaries. Below are the results of manually adjusted road 

boundaries, which are the input to the RDB and visual database generation algorithms. 

 

Fig. 63 Result of Manually Adjusted Road Boundaries (1) 
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Fig. 64 Result of Manually Adjusted Road Boundaries (2) 

 

Fig. 65 Result of Manually Adjusted Road Boundaries (3) 

 

Fig. 66 Result of Manually Adjusted Road Boundaries (4) 

 

Fig. 67 Result of Manually Adjusted Road Boundaries (5) 
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Fig. 68 Result of Manually Adjusted Road Boundaries (6) 

 

Fig. 69 Result of Manually Adjusted Road Boundaries (7) 

 

Fig. 70 Result of Manually Adjusted Road Boundaries (8) 
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Fig. 71 Result of Manually Adjusted Road Boundaries (9) 

5.6 Results of the LBG Algorithm 

 Three values can reflect how the LBG algorithm works. The first one is the average error 

between a cross section and its corresponding code entry. It is simply the Euclidean distance 

between a data entry and a code entry. The second and the third ones are the number of data 

entries before being quantized and the number of code entries after. Below is a table that shows 

these values.  
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Table 4. Results of the LBG Algorithm 
Number of Cross 
Section Points 

Average Error (pixel) Number of Data 
Entries 

Number of Code 
Entries 

2 0.25 2615 275 
4 0.36 6253 600 

  

 The differences between numbers of data entries and code entries are significant and the 

average errors are acceptable. This information can be easily converted into RDB and below are 

snapshots of roads in the STS Scenario Editor. 

 

Fig. 72 Snapshot of STS Road Database (1) 

 

Fig. 73 Snapshot of STS Road Database (2) 
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Fig. 74 Snapshot of STS Road Database (3) 

 

Fig. 75 Snapshot of STS Road Database (4) 

5.7 Results of Building Visual Databases 

 Using the MultiGen APIs, road information can be converted into the MultiGen file 

format. Many polygons will be generated and each polygon is mapped a uniform texture. Below 
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are snapshots of the visual database. The 3D road modeling shown in these snapshots are 

realistic and simulation compatible. 

 

Fig. 76 Snapshot of Visual Database (1) 

 

Fig. 77 Snapshot of Visual Database (2) 
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Fig. 78 Snapshot of Visual Database (3) 

 

Fig. 79 Snapshot of Visual Database (4) 
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Fig. 80 Snapshot of Visual Database (5) 

  

Fig. 81 Snapshot of Visual Database (6) 
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Fig. 82 Snapshot of Visual Database (7) 

 

Fig. 83 Snapshot of Visual Database (8) 
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5.8 Limitations of the Proposed Methodology 

5.8.1 Image Segmentation Problems 

 The proposed method first segments an image within the feature space by searching local 

modes. Then these segmented classes’ average saturation values are compared. The ones with a 

low saturation are classified as pavement areas and the ones with a high saturation are classified 

as non-pavement areas. This procedure heavily relies on the fact that is there is a significant 

difference in saturation between pavement areas and non-pavement areas. In reality, there are 

some roads where saturation value does not change much from pavement areas to non-pavement 

areas, such as in the following figures. The first one is the original image and the second is the 

corresponding saturation image. 

 

 

Fig. 84 A Road Image with a Relatively Uniform Saturation Value 
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 In this situation, the classes formed by the mean-shift cluster algorithm may not be 

useful. The following figure is the segmentation result by the mean-shift clustering algorithm. 

 

Fig. 85 Segmentation Results by the Mean-Shift Clustering Algorithm 

 Additionally, even though the proposed method addresses shadows and occlusions, a 

large amount of them may still cause considerable problems to road segmentation. This happens 

to narrow roads with large trees. In these areas, large amount of shadows and occlusions make 

road boundaries not easily recognizable. The following figures show an example of this. The first 

image is the original image, the second one is the segmentation result by the mean-shift 

algorithm, and the third one is the saturation image. 
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Fig. 86 Road Images with a Large Amount of Shadow and Occlusion 

 Both problems attribute to the major variety of road appearances. In this situation, more 

manual user input is required.  

 5.8.2 High Resolution Elevation Information Not Available 

 Elevation often changes along a road. It would be more realistic, if 3D road models have 

elevation information. However, there is no elevation information in aerial photos. The USGS 

provides digital elevation models (DEMs) that consist of terrain information for ground positions 
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at regularly spaced horizontal intervals. The USGS produces five different digital elevation 

products. Although all are identical in the manner the data are structured, each varies in sampling 

interval. The one with the highest resolution is the 7.5-Minute DEM with 30X30 meter data 

spacing. This resolution can provide a rough reference of how elevation changes along a road, 

but there is a huge gap between road modeling and DEMs in terms of resolution. Therefore, it is 

difficult to have accurate elevation information. 

 Another elevation is called superelevation, which is used on road curves to provide 

centripetal force. This type of information is not possible to extract from aerial photos. Because 

the amount of superelevation needs a very high rate of accuracy, which cannot be extracted in 

images.  

 5.8.3 Less Information for Building a Complete 3D Road Modeling 

A complete 3D road model should include not only road geometries, but also traffic 

signals, including traffic lights, traffic signs, and pavement markings. Traffic lights and signs are 

not obtainable from aerial photos due to the view angle. The dimensions and positions of 

pavement markings are only a few pixels. It is difficult to accurately extract their dimensions 

from images. In such a case, it is better to explore some existing documents, such as AutoCAD 

and MicroStation files. This topic will be discussed later. 
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CHAPTER SIX: FUTURE WORKS 

 In the future, there are two major tasks. The first is to build a GUI application that 

includes the proposed method. This application should give modelers the access to adjust results 

after each step. This software is very important, because the accuracy of image recognition 

algorithm is limited and manual adjustment is inevitable. It is important to let modelers screen 

results after each step.  

 The second task is to explore the possibility of combining other geographical information 

to have more information for road modeling. When each road is constructed, there must be a 

large amount of construction plans, in forms of either AutoCAD or MicroStation files. These two 

software applications have very good tools in building roads, including road boundaries, 

equipments near roads, road pavement markings, and so on. The purpose of using them is not for 

3D modeling for interactive simulation, instead it is for drawing construction plans. These plans 

have adequate information of what needs to be constructed. These plans are interpreted by 

constructors during construction and it should be a straightforward procedure. The proposed 

future work is to develop an algorithm to automatically interpret these plans and to convert them 

into 3D road models. The models based on this information must be very accurate and, more 

importantly, very complete. The difficulty with this algorithm is how to translate these files into 

simulation compatible road databases and visual databases. If this algorithm is determined, it will 

be a huge advance in the field of geo-specific road modeling for driving simulation. 
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 CHAPTER SEVEN: CONCLUSION 

In this research, the problem of how to quickly develop 3D road databases for driving 

simulation is addressed. A method based on image processing techniques is proposed. This 

method does not extract road center line information from images, instead it matches aerial 

images with the USGS DLG data, which is a collection of road center line point coordinates. 

Doing this can exclude most unwanted contents from consideration. Before using USGS DLG 

data, it has to be matched with aerial photos in order to detect any distortion. The two considered 

distortions are linear distortions and non-linear distortions. Linear distortions are relatively easy 

to detect. Non-linear distortions need more manual work. After this process, significant non-

linear distortions are not found and linear distortions are simply translation and scaling.  

In the step of road segmentation, six methods have been tested. They were edge 

grouping, texture-based segmentation using histogram intersection techniques, feature-based 

segmentation using EM method, region-growing method, active contour method, and the mean-

shift clustering method. The edge grouping method does not work, because there are too many 

linear objects in road areas. The texture-based segmentation method needs a database of sample 

images. When sample images are close to test images, good results can be obtained. If this can 

not be met, the algorithm will be affected. The feature-based segmentation using EM method 

does not have this problem, but it is computation intensive. The region-growing algorithm leaves 

a number of small objects to post processing. Even though each object is chromatically uniform, 

their irregular shapes make recognition very difficult. The active contour method also fails 

because too many linear objects are close to each other.  
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The chosen method is the mean-shift clustering algorithm for image segmentation. This 

method works within a feature space, where local modes are searched. An advantage of this 

method is that segmented objects are connected in the feature space. This is beneficial to 

classifying segmented classes. Formed classes in this step are categorized into two kinds, 

pavement and non-pavement by comparing their average saturation values. Conditional 

morphological operations play an important role in improving segmentation results. The 

proposed road segmentation method achieves high accuracies that are at least 85%. However, the 

segmentation results need to be adjusted by modelers. A software application has been developed 

for this purpose. 

In the phase of creating 3D road models, repeatable cross sections are identified by using 

the LBG vector quantization algorithm. Afterwards, RDBs can be developed automatically. 

During the building of visual databases, polygons are drawn, each of which is mapped a uniform 

texture. Five considered textures are pavement, white marker, yellow marker, concrete, and 

grass.  

Compared with manually creating geo-specific road databases, the proposed system has 

the following advantages: 

1. The utilization of the USGS DLG data eliminates efforts in searching roads in aerial 

photos manually; 

2. The accurate road segmentation results significantly reduce efforts in delineating road 

boundaries; 

3. The automation of identifying repeatable cross sections helps organizing data for non-

uniform cross-sectional roads; 
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4. The automation of texture mapping solves the problem of texture mapping for 

irregular shaped objects; 

5. Adjustable parameters, such as lane width and marker width, make it easy to modify 

existing road models. 

Due to the high accuracy in road segmentation, the proposed method can significantly 

reduce many hours for creating road databases for driving simulation. However, it has three 

limitations. The first is that the proposed road segmentation algorithm cannot handle some roads, 

where saturation does not change from non-pavement areas to pavement areas and there are large 

shadow/occlusion areas. This problem is difficult to resolve because of the major variety of road 

appearances. The second is that the elevation information cannot be extracted from aerial photos. 

The USGS DEM can provide a rough elevation profile of a certain area, which may be used only 

to approximate road elevations. The third limitation is that it is not possible to extract all the 

information needed to create road models. Objects, such as pavement markings or traffic signs, 

can not be accurately obtained from images.  

A future goal of this research is to develop a software application with GUI. Its 

functionalities will include road segmentation, road database development, and visual database 

development. Another future work is to explore the possibility of developing a complete road 

model, including road geometry, pavement markings, and traffic signs from construction plans in 

forms of AutoCAD and MicroStation files. Because these files have complete information about 

how roads should be constructed, there must be adequate information. The challenge is to find 

out a way to interpret these files.  
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This research thoroughly analyzes an image understanding based approach for geo-

specific road modeling. This approach can take advantage of the details in aerial photos, while it 

has to deal with the noise. An important contribution, made by this research, is to utilize the 

USGS DLG information to remove a great portion of noise, irrelevant to road segmentation. This 

step enables the proposed method to avoid the problem of searching roads in image. Most road 

extraction methods start with the whole aerial image, while there is a large amount of existing 

road information. Another uniqueness of this research is automatically identifying repeatable 

cross sections using a vector quantization algorithm. This method can reduce redundant 

information in creating road databases for an STS driving simulator system and quantitatively 

calculate average error. Additionally, this research uses geometric design standards when 

automatically drawing polygons for road models. This proposed system greatly benefits from 

existing geographical data and knowledge. In the future, more existing geographical data should 

be studied. 
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