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ABSTRACT

In the past decade, characterizing spiking neuron models has been extensively researched as an

essential issue in computational neuroscience. In this thesis, we examine the estimation problem

of two different neuron models. In Chapter 2, We propose a modified Izhikevich model with

an adaptive threshold. In our two-stage estimation approach, a linear least squares method and

a linear model of the threshold are derived to predict the location of neuronal spikes. However,

desired results are not obtained and the predicted model is unsuccessful in duplicating the spike

locations. Chapter 3 is focused on the parameter estimation problem of a multi-timescale adaptive

threshold (MAT) neuronal model. Using the dynamics of a non-resetting leaky integrator equipped

with an adaptive threshold, a constrained iterative linear least squares method is implemented to

fit the model to the reference data. Through manipulation of the system dynamics, the threshold

voltage can be obtained as a realizable model that is linear in the unknown parameters. This linearly

parametrized realizable model is then utilized inside a prediction error based framework to identify

the threshold parameters with the purpose of predicting single neuron precise firing times. This

estimation scheme is evaluated using both synthetic data obtained from an exact model as well as

the experimental data obtained from in vitro rat somatosensory cortical neurons. Results show the

ability of this approach to fit the MAT model to different types of reference data.
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CHAPTER 1: INTRODUCTION

As large-scale detailed network modeling projects are appearing in the computational neuroscience

area, it becomes essential to construct easily identifiable lower-dimensional models of single neu-

rons. While lower-dimensional models allow for construction of large-scale computational neu-

ronal networks that can be simulated with ease, identifiability of the underlying neuronal models

is necessary for the neuronal network to be able to mimic the computational properties of the

biological structure being modeled in silico. Fortunately, a wide variety of single neuron mod-

els are available in literature. These models can broadly be categorized into two main groups:

detailed biophysical models and simple phenomenological models, e.g., [1][2]. Detailed biophysi-

cal Hodgkin-Huxley [3] type neuron models can accurately reproduce most behaviors of neurons,

however, their complex dynamics and a high-dimensional parameter space make them an imprac-

tical choice as building blocks for large-scale neuronal networks [4]. In spiking neuron models,

since isolated spikes of a given neuron are similar, the shape of the action potential does not rep-

resent any information. Instead, it is the spike train, as a sequence of spikes, which is important

[5]. Due to this reason and high computational costs, simple phenomenological models such as

leaky integrate-and-fire models have been proposed [6][7] and developed to study the dynamics

of neural networks [8][1]. Recently, substantial efforts have been put in the expansion of leaky

integrate-and-fire models for fitting of such models to data in order to reproduce quantitative fea-

tures [9][10]. Several methods have been proposed that can accurately predict the timing of spikes,

e.g., [11][12][13][14][15].

Identification of model parameters can be performed by several methods. Although hand tuning

of parameters may yield reasonable results, this process is labor intensive and impractical. In [4],

the versatile quadratic model proposed by Izhikevich [16] was utilized to automatically identify

experimentally obtained neuronal firing data. However, as noted in [17], that model cannot be
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utilized for identification because it is unable to quantitatively represent the upstroke of the spike

unless it is assumed that the model parameters are voltage-dependent [18]. Another proposed

model, viz., the Multi-timescale Adaptive Threshold model (MAT) [12] shows great performance

for both stationary and non-stationary fluctuating currents to replicate spike trains of experimental

data [19]. While the threshold is dependent on five independent parameters, the authors a priori fix

two time constant related model parameters and identify the other three parameters by maximizing

a non-convex performance metric encoding for the coincidence of spikes between the model pre-

dictions and the experimental data. Thus, a systematic technique is still needed to automatically

identify all five parameters so that the threshold model firing pattern is consistent with that of the

experimental data. Furthermore, a convex cost function is needed in order to guarantee parameter

convergence. The advantage of such a technique is that it can be utilized in a fully automated

system that can identify the underlying neuronal models that are needed to design and implement

a realistic biological computational structure. This work focuses on the development of the afore-

mentioned automated identification technique. Specifically, we manipulate the threshold equation

into a linear-in-the-parameters model and then proceed to estimate the parameters in order to mini-

mize in a least squares sense the error between the subthreshold voltage and the threshold estimate

at the experimentally observed spiking times. Convex constraints are imposed on the optimization

to ensure meaningfulness of the obtained parameter estimates. Results show that the proposed

scheme outperforms existing strategies in terms of reproducing spike locations. Another novelty

of the proposed method is that unlike many other methods that require the input and the reference

membrane voltage of the neuron to tune their models, this method only needs the input current and

the spike locations to fit the model to the reference data.

The remainder of this thesis is organized as follows. In chapter 2, a modified Izhikevich model is

proposed and a two-stage estimation approach is applied to identify the model parameters in order

to predict the location of spike times. Next, in chapter 3, the basics of the multi-timescale adaptive
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threshold (MAT) model are presented, and a linear-in-the-parameters model with the goal of fitting

the MAT model to the reference data is derived. Finally, chapter 4 concludes the thesis.
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CHAPTER 2: A MODIFIED IZHIKEVICH MODEL

Introduction

In [16], a second-order model is introduced to be able to reproduce almost all types of firing

patterns observed in-vivo and keep the computational effort low at the same time. Although the

quadratic model is proven to be biological versatile, it can only qualitatively reproduce the firing

pattern, i.e., the model cannot quantitatively represent the upstroke of the spike unless assuming

voltage-dependent parameters [18]. To address this issue, a modification is made to this model.

Instead of assuming voltage-dependent parameters, we remove the quadratic term in the model

and make it a representation only for subthreshold dynamics. Since we narrow our interest zone

down to the subthreshold region by doing so, problem with the spike upstroke does not affect

our identification any more. Another reason to consider simplification of the model instead of

making additional assumption is that the modified model dynamics become linear and can be

treated analytically.

The rest of this chapter is organized as follows. We begin by proposing a modified Izhikevich

model with an adaptive threshold which is assumed to be voltage dependent. In our two-stage

estimation approach, first, a linear least squares method is applied to fit the subthreshold model to

the reference data and then in the second step, a linear-in-the-parameters model of the threshold

is derived to predict the location of neuronal spikes. Finally, we discuss the results obtained from

applying the identification procedure to experimental data.
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System Model

Original Izhikevich Model

A simple adaptive quadratic spiking model can be described by the state equations [16]

dv

dt
= k0v

2 + k1v + k2 − k3 (u− i) (2.1)

du

dt
= a(bv − u) (2.2)

and the post-spike resetting

if v = Vp, then

 v → c

u→ u+ d
. (2.3)

Here, v denotes the membrane potential and is the only system output, u is a membrane recovery

state variable which provides a negative feedback to v, while i denotes injected current current. At

the peak Vp of the membrane potential, the state variables are reset according to (2.3), c denotes the

post-spike reset value of the membrane potential while d denotes the amount of spike adaptation of

the recovery variable. The parameters k3 and a denote the time scale of the two state variables, the

parameter b is the level of subthreshold adaptation, while the parameters k0, k1, and k2 are linked

to the spike initiation behavior of the neuron. Figure (2.1) shows the variation of the membrane

potential and recovery variable at the moment of spike.
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Figure 2.1: Izhikevich Dynamics[1]

Modified Izhikevich Model

Compared to the integrate-and-fire model, the additional variable u, accounting for the activation

ofK+ ionic currents and inactivation ofNa+ ionic currents, allows the original model to reproduce

many types of firing patterns that are common in biological systems. However, the nonlinearity

introduced by the quadratic term does not allow for a facile analytical treatment. Furthermore,

variable parameters are needed to reproduce the exact spike shape [18]. To circumvent these

difficulties, we remove the quadratic term and present a modified model as follows

dv

dt
= k1v + k2 − k3u+ k3i (2.4)

du

dt
= a(bu− v). (2.5)
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Whenever the potential v hits the threshold f , the neuron is said to fire a spike, and the variables

are reset according to:

if v = f, then

 v → c

u→ u+ d
(2.6)

where the symbols retain their earlier definitions. Note that (2.4) and (2.5) only describe the sub-

threshold approximation, and the post-threshold dynamics of the cell do not form a part of the

model, i.e., the upstroke/downstroke are drawn by hand. Unlike [20] in which a triangular pulse

is used to mimic the shape of the spike, here, we ignore the whole spiking behavior, only using

a straight line to mark the spike arrival. Since the model above is only valid in the subthreshold

region, a voltage threshold needs to be defined to indicate the initiation of a spike. A fixed thresh-

old is used by [21]. However, empirical evidence suggests that the voltage threshold for a spike

depends not only on the instantaneous value of the voltage, but also on the rate of voltage change

which is observed in biological neurons [22]. Thus in this study, motivated by [19], we define the

threshold dynamics of the model by considering a term representing the subthreshold voltage-rate

dependency and propose the threshold as follows

f(t) , m+ k(t) = m+ kv(
dv

dt
) ∗ exp(−λt) (2.7)

where ∗ denotes the convolution operator, m denotes a dc-offset for threshold voltage that is

added to a dynamic threshold function k(t) which is a filtered version of the time derivative of the

membrane voltage. The parameter kv is a coefficient for managing voltage-rate dependency effect

on the threshold and λ is the inverse of time constant for the kernel function.
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Estimation Procedure

In this section, our goal is to estimate the following set of unknown parameters associated with the

proposed model

θ , (k1, k2, k3, a, b, c, d,m, kv, λ) = (θs0, θt0)

where the partitions θs0 and θt0 will be explicitly defined below. It is assumed that the input exci-

tation and membrane potential depolarization recordings are available for measurement. Given the

membrane potential trace, it is possible to obtain the spike locations. Given the reduced model, the

parameters to be estimated are divided into two sets; specifically, a set θs0 , (k1, k2, k3, a, b) which

is associated with the linear dynamics of (2.4) and (2.5), and another set θt0 , (c, d,m, kv, λ)

which is linked to the after-spike resetting and threshold parameters. Thus, the two-stage estima-

tion problem solved in this chapter consists of both matching the subthreshold voltage recording

to estimate θs0 and utilizing those estimates as well as the measurements to maximize the perfor-

mance of the model to predict the spiking pattern to estimate the threshold parameters θt0 .

Subthreshold Estimation (Stage I)

The linear system represented by (2.4) and (2.5) can be analytically treated and solved. In this

step, since we only aim to estimate the subthreshold parameters, we drop the resets indicated by

2.6 from the modified model. In fact, by choosing an interval of data, which does not include any

spikes in it and is beyond the transient period of a spike, the effect of c and d will be excluded.

Therefore, the solution of (2.4) and (2.5) can be utilized to obtain a linear-in-the-parameters model

of the subthreshold membrane voltage v. We begin by taking the Laplace transformation of the

8



model dynamics as follows


sV − v(0) = k1V + +

k2
s
− k3U + k3I

U =
abV + u(0)

s+ a
.

(2.8)

Next, by plugging the second row of (2.8) into the first row and rearranging the terms, the sub-

threshold dynamics are changed to a single equation:

(s+ a)(s− k1)V = −k3(abV + u(0)) + k3(s+ a)I + (s+ a)
k2
s

+ (s+ a)v(0).

To avoid the model dependency on the derivatives of the measurement signals, a low pass filter of

the form (2.9) is applied to the model representation, and (2.10) is obtained as follows

1

A
,

1

s2 + β1s+ β0
(2.9)

V =
[(β1 − a+ k1)s+ (β0 + ak1 − k3ab)]

A
V +

k3(s+ a)

A
I

+
k3(s+ a)

A
I +

ak2
sA

+ [
s

A
v(0) +

[k2 − k3u(0) + av(0)]

A
]

(2.10)

where s denotes the Laplace variable, V and I represent Laplace transform of vs and i , and β1, β0

are the filter parameters which are considered known during the estimation process. In addition,

to reduce parameter dimensionality, the last term of (2.10), which only has transient effects and

disappears very fast, is excluded from further calculations. Hence, a compact linear-parameterized
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representation of the subthreshold voltage model is provided as follows

V = W T θs =



sV
A

V
A

sI
A

I
A

1
sA



T

×



β1 + k1 − a

β0 + ak1 − k3ab

k3

k3a

ak2


(2.11)

where W (v, i) ∈ R5 is a realizable regression vector and θs ∈ R5 is an unknown parameter vector.

Thus, in the subthreshold region, θs is only a nonlinear function of θs0 and it is independent of θt0.

Based on the LP model obtained above in (2.11), a prediction error can be defined as follows

es ,
∑t(v̂(t)− v(t))2 =

∑
(W T (t)θs − v(t))2. (2.12)

Among various possible estimation algorithms, we draw up least squares estimation due to its

robustness to presence of noise in the system. When the error function is minimized, we obtain

2W (t)W T (t)θ̂s = W (t)v(t). (2.13)

Therefore, the estimated values for subthreshold parameters is given by

θ̂s =
∑t(WW T )−1(WV ). (2.14)
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In order to obtain the parameters θs0, a system of equations has to be solved. If we assume the

estimated values as a vector which is provided as follows

θ̂s , [x1 , x2 , x3 , x4 , x5]
T , (2.15)

then the estimated value of θs0 parameters can be calculated by (2.16)



k̂3 = x3

â = x4/x3

k̂2 = x5/a

k̂1 = x1 + a− β1

b̂ = −(x2 − β0 − ak1)/k3a

(2.16)

The convergence of the parameter estimates to their actual values is ensured by utilizing a per-

sistently exciting input current injection. Now, by using the estimated values, it is possible to

reconstruct the subthreshold region voltage and employ it in the next steps.

Threshold Estimation (Stage II)

During this stage, first we present the threshold voltage as a linear parametrized (LP) model, then

by casting resetting parameters into the subthreshold voltage dynamics, we provide a LP model of

subthreshold voltage valid for all times (including spike times). Here, the subthreshold parameters

θs0 estimated from the previous step are utilized in the reconstruction of the membrane poten-

tial. Based on (2.11), we can explicitly write the dependencies of the reconstructed potential v̂ as

11



follows

v̂ = g(t, i, θ̂s0, c, d). (2.17)

Conditional upon i and θ̂s0 , it can be seen that v̂ is a linear function of the unknown reset pa-

rameters c and d. We remark that in Stage II, the reset parameters (i.e., the initial conditions post

spiking) cannot be ignored because these parameters determine the rate of occurrence of spikes.

The insight here is that the reconstructed membrane potential is allowed to evolve according to

(2.17) and spikes are generated when the reconstructed membrane potential reaches threshold f(t),

the unknown parameters c, d, m, kv and λ are adjusted so as to minimize the error between the

estimated membrane voltage and the estimated threshold voltage at the known spike times. During

this stage, it is assumed that the the only output measured from the neurons is the location of the

spikes. Since the spikes from real neurons have finite width, the spike time tk is defined to be the

time of the peak of each spike. Here, we develop the threshold voltage as a linear-in-the-parameters

model as follows

f(t) = m+ k(t) =⇒ F (s) =
m

s
+K(s) (2.18)

K(s) = kv(sV̂ − v̂(0))
1

s+ λ
(2.19)

By substituting (2.19) into (2.18), we obtain

F (s) =
m

s
+ kv(sV̂ − v̂(0))

1

s+ λ
. (2.20)
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To remove the derivative dependency, we apply a first order low pass filter of the form (2.21) in

our calculations:

1

B
,

1

s+ η0
(2.21)

where η0 is a known filter parameter. Finally, by rearranging the terms, the threshold voltage is

given by

F (s) =
m

s
+
K(s)

B
(η0 − λ) +

kv
B

(sV̂ (s)− v̂(0)). (2.22)

Since v̂(0)kv
B

term only has an initial transient effect, we neglect it from further analysis to reduce

parameter dimensionality, and represent the compact form as follows:

f(t) = W T
t θt = L−1


1

s
K(s)

B

(
sV̂

B
)


T

×


m

(η0 − λ)

kv

 (2.23)

where Wt ∈ R3 represents a regression vector and θt is the unknown parameter vector correspond-

ing to the threshold parameters.

To achieve our goal of estimating neuronal spike times, we integrate the resetting mechanism of the

model into (2.4) and (2.5) and make a single equation to introduce the neuron membrane potential.

Based on (2.6), the firing happens when voltage v crosses threshold f which instantly resets the

voltage to c and the recovery variable jumps by d. Thus, we consider these resets as step functions
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that occur at the spike times tk and develop the model as follows

if v = f then :

 v → c

u→ u+ d
⇒

 v → v + (c− f(t))s(t− tk)

u→ u+ ds(t− tk)
(2.24)


dv

dt
= k1v + k2 − k3u+ k3i+ (c− f(t))

∑
k

δ(t− tk)−
df(t)

dt

∑
k

s(t− tk)
du

dt
= a(bv − u) + d

∑
k

δ(t− tk)
. (2.25)

Since we assume that f (t) changes slowly with time,
df(t)

dt
is set identically to zero in the above

equation. To develop the LP model for the membrane voltage, we follow the same procedure as in

the previous section


sV − v(0) = k1V +

k2
s
− k3U + k3I + (c−m)

∑
k

exp(−tks)−K(s) ∗
∑
k

exp(−tks)

SU − u(0) = abV − aU + d
∑
k

exp(−tks)

(2.26)

where (2.26) indicates the Laplace transformation of (2.25). After rearranging the terms, we obtain

a linear-in-the-parameters model for the unknown parameters as follows

V =
k2

sQ(s)
+ k3

I
Q
− d( k3

Q(s)
)(

∑
k

exp(−tks)

s+ a
)+

(c−m) 1
Q(s)

∑
k

exp(−tks)− 1
Q(s)

(K(s) ∗
∑
k

exp(−tks))
(2.27)

where Q(s) , (s − k1 + k3ab
s+a

) represents a filter which is used for simplifying the notation. Mo-

tivated by our desire to predict the spike times of a neuron, in this stage, we design our objective
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function according to mechanism of generating spikes in the proposed model. Since the firing

happens when v(t) and f(t) take same values, the objective is to minimize their difference at the

spike times. Therefore, the error function is given by

et =
∑tk(f̂(t)− v̂(t))2 (2.28)

where f̂(t) , W T
t θ̂t while v̂(t) has been previously defined in (2.17). By replacing the threshold

and membrane voltage LP models from (2.23) and (2.27) into the (2.28), one can obtain a linear

objective function with respect to the unknown parameters as follows

Et(s) =
∑tk(W T (s)θ̂ +M(s))2 (2.29)

W T (s)θ̂ =



1

Q̂

∑
k

exp(−tks)

− k̂3
Q̂

(
1

s+ â
)(
∑

exp(−tks))

− 1

Q̂

∑
exp(−tks)−

1

s
K0

B

− 1

B
(sV̂s)



T

×

ˆ

c

d

m

λ

kv


(2.30)

M(s) =
k̂2

sQ̂
+ k̂3

I

Q̂
− 1

Q̂
(K0(s) ∗

∑
k

exp(−tks))− (η0)
K0

B
(2.31)

where Q̂(s) , (s − k̂1 + k̂3âb̂
s+â

), W (s) is a regression vector, while M(s) is an auxiliary signal

dependent on the estimated parameters from stage I. Since the objective function is a quadratic
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function of the unknown parameters, the minimizing solution is given as follows (2.32).

θ̂ = −
∑tk(WW T )−1(WM). (2.32)

Note that the existence of solution for θ̂ is dependent on the invertibility of the WW T signal.

Implementation

In our simulations, the excitation is done with the current generated from an Ornstein–Uhlenbeck

process [2]. The total injected current I(t) is given by

I(t+ dt) = I(t)− I(t)

τI
dt+mIdt+ sIζ(t)

√
dt (2.33)

where mI and sI are parameters and ζ(t) is a zero-mean, unit variance Gaussian random variable.

The process was generated and injected at a rate of 5 kHz (dt = 0.2 ms) and the correlation

length τI was 1 ms. The resulting current I(t) has a stationary Gaussian distribution with mean

µI = mIτI and variance σ2
I = s2IτI/2.

Although no iterative procedure is apparent at first glance when utilizing (2.14) and (2.32), the

dependence of the signal K0 in (2.30) on kv and λ (unknown parameters which we are trying

to estimate) forces us to utilize an estimate of K0 computed using estimates of kv and λ from

the previous step instead and apply the algorithm iteratively until all parameters converge. To

summarize, the 2-step estimation problem is solved via the following iterative procedure:

• Step 1: Estimate subthreshold parameters using Eq. (2.14).

• Step 2: Generate estimated subthreshold voltage with Step I estimated parameters based on

16



(2.4) and (2.5).

• Step 3: Initialize the threshold algorithm by selecting starting parameters kv0 and λ0.

• Step 4: Estimate the threshold and resetting parameters.

• Step 5: If the threshold parameters have converged, stop the process, otherwise update the

threshold parameters and go to Step 3.

Results and Discussion

We applied the aforementioned two-stage estimation strategy to the reference data which was gen-

erated in the NEURON [23] simulation environment by using an ion-channel based spiking model

[24]. First, we applied the stage I estimation process to the subthreshold region. Figure (2.2) in-

dicates the predicted subthreshold voltage using estimated parameters. According to the obtained

results, the subthreshold traces are very close to each other, showing that dynamics (2.4) and (2.5)

yield good approximation in the linear zone. In the next step, the θs0 set is used to estimate for the

resetting and threshold parameters. In this stage, estimated values for θt0 were utilized to gener-

ate spike locations based on the proposed model; however, desired results were not obtained and

the predicted model was unsuccessful in duplicating the spike locations. Possible reasons for this

failure could lie in the choice of (a) the stimulating current, (b) subthreshold model, (c) threshold

model, and/or (d) error functions. Further investigation is needed to zero in on the exact reasons

for the failure to obtain useful results via this approach.
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Figure 2.2: Subthreshold estimation
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CHAPTER 3: A MULTI-TIMESCALE ADAPTIVE THRESHOLD

MODEL

Introduction

This chapter is organized as follows. In Section II, we first present the basics of the multi-timescale

adaptive threshold (MAT) model. Next, in Section III, we pursue the mathematical manipulations

and the proposed scheme to identify the MAT model parameters. The implementation procedure

is described in Section IV. In Section V, results are provided on model identification from different

types of reference data. Relevant conclusions are drawn in Section VI.

The MAT Model

The Multi-timescale Adaptive Threshold (MAT) model [12] was proposed by Kobayashi et al.

for the purpose of predicting the timing of output spikes of neurons. The MAT model can be

described by a subthreshold voltage V and a multi-timescale adaptive threshold f . While it is

possible in general to have an arbitrary number of timescales, the analysis in this paper will be

limited to two timescales as similarly done in [12]. The subthreshold voltage can be obtained by

the leaky integrator which is given by a first order differential equation (3.1)

τm
dV

dt
= −V (t) +RI(t) (3.1)

where V (t) denotes a membrane potential, I(t) is the injected input current, while τm and R are

parameters that describe leaky time constant and input resistance, respectively. While Equation

(3.1) is the foundation of Generalized Linear Models and Spike Response Model [5], however, in
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the MAT model, the variable V (t) is not reset after reaching a constant or time/state dependent

threshold. Instead, at the spiking instants defined by the intersection of V and f , the threshold

variable f resets to a different value in the manner shown below

f(t) = α1

tk∑
exp(−k1(t− tk)) + α2

tk∑
exp(−k2(t− tk)) + ω (3.2)

where tk is the kth spike time, k1 and k2 denote inverses of the two threshold time constants,

α1 and α2 denote the increments of the threshold at the spike instants, while ω is the threshold

resting value. Furthermore, an absolute refractory period τR is defined to prevent consecutive

firing; consequently, within τR period after a spike, the model cannot fire more spikes even if the

subthreshold voltage is above the threshold. As seen in Figure (3.1), spikes (represented by arrows)

are assumed to be generated whenever the subthreshold voltage reaches the threshold voltage from

below. The moment of crossing is the so-called firing time at which instant the threshold voltage

increases a certain amount and then starts decaying exponentially to its resting value.
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Figure 3.1: Dynamics of the MAT model. When the threshold voltage (blue) intersects the sub-

threshold voltage (green), a spike is generated and the threshold increases.

The Proposed Estimation Technique

Pursuant to the development in section 2, the MAT model can be completely characterized by 7 free

parameters; where {τm, R} are the leaky integrator parameters and {α1, α2, k1, k2, ω} are the spike

threshold parameters. The resistance R does not affect the spike time prediction and only scales

the subthreshold voltage [12]; furthermore, a common membrane time constant (τm) is extracted

from the data and preselected for all simulations. Therefore, we focus our work to estimate the

threshold parameters and we assert that θ0 , [α1,α2, k1, k2, ω]T completely describes the model.

In what follows, we develop an automatic method for estimating the MAT model parameters.
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Linear Parametrization

While the static threshold representation of (3.2) is nonlinear with respect to the parameters k1

and k2, a dynamic representation can be developed to acquire a linearly parameterized model. By

taking Laplace transform of (3.2) and rearranging the terms, one can obtain

(s2)F (s) = −[(k1 + k2) s+ k1k2]F (s) + [(α1 + α2) s

+ (α1k2 + α2k1)]
tk∑

exp (− tks)

+[ws2 + w (k1 + k2) s+ wk1k2]
1
s

(3.3)

where s is the Laplace variable and F (s) represents the Laplace transform of f(t). A second order

low pass filter
1

A
=

1

s2 + β1s+ β0
(3.4)

is employed in order to eliminate the model dependency on derivatives of the measurable signals

[4]. The following can be obtained by applying the filter to both sides of (3.3):

F (s) = (β1s+β0
A

)F (s)− (k1 + k2)
s
A
F (s)− k1k2 1

A
F (s)

+ (α1 + α2)
s
A

tk∑
exp(−tks) + (α1k2 + α2k1)

1
A

tk∑
exp(−tks) + wk1k2

1
A

1
s
+︷ ︸︸ ︷

[w
s2

A

1

2
+ w (k1 + k2)

s

A

1

s
]

. (3.5)

Since the last row of (3.5) vanishes beyond an initial transient, we can neglect it in the subsequent

calculations to reduce the dimension of the parameter vector. Ultimately, the linearly parameterized

(LP) model is described as follows

f(t) = ΨT (f, t, tk)θ + Φ(f, t) (3.6)
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where Φ(f, t) is a signal that is independent with respect to the model parameters and Ψ(f, t, tk) ∈

R5 is a regression vector. These signals are defined as follows

Φ(f, t) , L−1

{
(
β1s+ β0

A
)F (s)

}
(3.7)

Ψ(f, t, tk) , L−1[ s
A
F (s), 1

A
F (s), s

A

tk∑
exp(−tks),

1
A

tk∑
exp(−tks), 1

sA
]T

(3.8)

while θ ∈ R5 is an unknown auxiliary parameter vector that is a nonlinear function of θ0 and

defined as follows

θ = [−(k1 + k2),−k1k2, α1 + α2, α1k2 + α2k1, wk1k2]
T . (3.9)

Development of Constrained Least Squares Algorithm

According to the MAT model process, firing happens whenever the subthreshold voltage reaches

the threshold voltage. In other words, f(t) and V (t) are equal at the spike instants. Since the main

objective in this work is to fit the MAT model to the reference data in order to obtain a predictive

model for the location of spike times, we define a prediction error variable as follows for each

spike moment

etk , f̂(tk)− V (tk) (3.10)

where f̂ (t) denotes an estimate of f(t). A natural cost function based on the prediction error for

all spike instants can be defined as

J ,
tk∑
e2tk
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and developed as follows

J =

tk∑
(f̂(t)− V (t))2 =

tk∑
(Ψ(f, t, tk)θ̂ + Φ(f, t)− V (t))2 (3.11)

based on the LP model derived in (3.6). Here, θ̂ denotes an estimate for θ. Therefore, the objective

is to find the MAT model parameter that minimize the prediction error

θ̂ = arg min

{
J =

tk∑
(f(t)− V (t))2

}
(3.12)

However, certain constraints need to be introduced so that the parameter estimates θ̂ converge to

physically meaningful values when mapped back to the actual parameter space θ0. The actual

model parameters can be obtained in closed form as follows

k1 = max(
−θ1 ±

√
θ21 + 4θ2

2
) (3.13)

k2 = min(
−θ1 ±

√
θ21 + 4θ2

2
) (3.14)

α1 =
θ4 − k1θ3
k2 − k1

, α2 = θ3 − α1 , w =
−θ5
θ2

(3.15)

where θi denotes the ith component of θ. While there are no restrictions on α1, α2, and w other

than that they are real (which is trivially enforced), k1 and k2, being time constants, are needed by

the model to be positive and real. Thus, the set of equations above suggest the inequalities

θ1, θ2 < 0 and θ21 + 4θ2 ≥ 0 (3.16)

to ensure the real positiveness of k1 and k2. As seen in Figure 3.2, these inequalities define a non-

convex region. Since k1 and k2 denote different timescales, a separation based on available data
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and studies suggests the choice 20 ≤ k1 ≤ 500 , 2 ≤ k2 ≤ 20 (the unit is 1/ sec). Based on this

feasible range, the following set of convex constraints can be obtained

−520 ≤ θ1 ≤ −22,−104 ≤ θ2 ≤ −40

38.5θ1 − θ2 ≤ −1482

−1.7θ1 + θ2 ≤ 0

(3.17)

which is a triangular area demarcated in Figure 3.2 by the dashed blue and green lines and the

vertical solid black line.
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Figure 3.2: Feasible Region for Solution

The above set of constraints does not preclude intersection of V and f between the experimentally

observed spiking instants as shown in Figure 3.3. However, it is impractical to check for and

enforce this condition at all times. Instead, we endeavor to enforce this constraint practically by

observing the maximum value of V (t) between each pair of spikes and corresponding instant tm
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following which we enforce the following convex constraint between each pair of spikes:

f(tm)− V (tm) = ΨT (tm)θ + Φ(tm)− V (tm) > 0. (3.18)

This constraint essentially states that the subthreshold voltage at its peak between any pair of

experimentally observed spikes is not allowed to cross over the threshold. Of course, this does not

preclude intersection altogether since the threshold is time varying but it is an easily implementable

set of constraints that serves well to improve the model efficacy by reducing false positives as will

be seen in the sequel.
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Figure 3.3: Per the objective function, the method only minimizes the error at the spike times

without considering intersections of subthreshold (green) and threshold voltage(red) between spike

times.

Implementation Procedure

Although no iterative procedure is apparent at first glance when solving the constrained least

squares problem defined by (3.12), (3.17) and (3.18), the unavailability of the signal f in (3.11)
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forces us to utilize f̂ instead and apply the algorithm iteratively until the parameters converge.

The implementation proceeds according to the following steps:

Step 1: Generate subthreshold voltage V : Since the objective function (3.12) requires sub-threshold

voltage V , we solve (3.1) by assuming R = 50MΩ and τm = 5 ms. Following [2], the excitation

is performed with current generated from an Ornstein–Uhlenbeck process as follows

I(t+ dt) = I(t)− I(t)

τI
dt+mIdt+ sIζ(t)

√
dt (3.19)

where mI and sI are parameters and ζ(t) is a zero-mean, unit variance Gaussian random variable.

In our simulations, the process is generated and injected at a rate of 5 kHz (dt = 0.2 ms) and the

correlation length τI is 1 ms. The resulting current I(t) has a stationary Gaussian distribution with

mean µI = mIτI and variance σ2
I = s2IτI/2.

Step 2: Build signals Ψ(·) and Φ(·) by using (3.7) and ( 3.8): Since both are dependent on f which

is not available for measurement, we begin with an initial guess θ̂0 for θ0 and build f̂ , f(θ̂0, t, tk)

based on which we build Ψ̂(·) , Ψ(f̂ , t, tk) and Φ̂(·) , Φ(f̂ , t). During estimation computations,

f(t) does not reset at the times where the threshold crosses the subthreshold, instead, the generated

f(t) fires at the reference (experimentally obtained) spike times, tk.

Step 3: Minimize the objective function (3.11) to obtain θ̂ subjects to the set of constraints (3.17)

and (3.18). The loop error is defined as follows:

e(f̂) ,
tk∑

(Ψ(f̂ , t, tk)θ̂ + Φ(f̂ , t)− V (t))2 (3.20)

where e(f̂) denotes the error of f̂ that is generated by θ̂ at the end of the loop. Since the error

function is a quadratic function of variables which is subject to linear constraints on those variables,

the optimization problem (3.12) at each step is formulated as a Quadratic Programming problem.
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Step 4: Solve θ̂ to obtain θ̂0 according to (3.13)-(3.15).

Step 5: Finally, θ̂0 is updated at Step 2 with new parameters and the procedure is repeated until all

parameters converge to constant values.

Evaluation of Prediction

The error function defined in (3.11) is useful for estimating parameters but it cannot be an evalua-

tion criterion since the main aim of this work is to predict the spike train produced by the neurons.

While the firing rate of a spike train provides helpful information, yet, the evaluation of similarity

between two spike trains is needed to capture local artifacts. Several measures exist for compar-

ing the spike train predicted by the model and the spike train generated by the reference data. A

popular index known as the coincidence factor has been proposed in [2]. The coincidence factor

Γ measures both the similarity and dissimilarity of two spike train by considering the spiking rate

and coincident spikes. Γ is calculated as follows

Γ =
NCoinc − < NCoinc >

NData +NModel

× 2

1− 2υ∆
(3.21)

where NData is the number of spikes in the reference spike train, NModel is the number of spikes in

the predicted spike train, NCoinc is the number of coincidences with precision ∆ between the two

spike trains, and < Ncoinc > is the expected number of coincidences generated by a homogeneous

Poisson process with the same rate υ as the spike train of the model. The factor 2/(1 − 2υ∆)

normalizes Γ to a maximum value of 1 which is reached if and only if the spike train of the model

reproduces exactly the reference spike train. Hence, after identifying the model parameters, we

calculate the value of the Coincidence Factor to evaluate the predicted spike times.
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Results and Discussion

In this section, the parameters of the MAT model are identified by the proposed method to match

three types of reference data: (a) data from the MAT model, (b) noisy version of data from the MAT

model, and (c) experimental data. The synthetic datasets are used to test validity and robustness of

our approach. For our experimental data, we utilized a standard dataset from a Quantitative Neuron

Modeling competition [2] which includes the excitation input and single-electrode data recorded

from a cortical pyramidal neuron in slices of rat barrel cortex. The details of the experimental

protocol are available in [25] and [26]. The injected input current is generated based on (3.19) and

stimulation is done with currents of different means and fluctuation amplitudes. Additionally, for

computing Coincidence Factor, the value of ∆ is set to 2 ms, since it is in the same range as the

accuracy of measuring synaptic rise times in the soma of cortical pyramidal neurons [2].

Results from MAT Reference Data

First, to show the ability of the proposed method to identify the model parameters, a reference train

of spikes is produced by the exact MAT model using a known set of parameters shown in Table (1).

The subthreshold voltage V is generated via the method described in Section 3 and is assumed to

be noiseless. For the reference data generation, the parameters for the model are chosen arbitrary

and pointed out in Table (1). The initial guess for θ0 is chosen as follows

α1 = 10 α2 = 5 k1 = 50 k2 = 8 ω = 13

Following the procedure in Section 3, the parameters are seen to converge to final values as shown

in Table (3.1). It is seen that the estimated values are very close to the actual model parameters.

Figures (3.4) and Fig. (3.5) represent the convergence of the objective function value and the esti-
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mated parameters along the estimation loops. To illustrate the evolution of the threshold function,

Figure (3.6) shows the generated f(t) in a few sample process loops.

Table 3.1: Identified and Actual Parameters for The MAT Reference Data

θ0 α1 α2 k1 k2 ω
Identified Val. 3.93 0.48 98.39 4.71 15.13

Actual Val. 4 0.5 100 5 15
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Figure 3.4: Objective function error. The vertical axis is log scale and indicates the value of the

error function along the estimation loops
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Figure 3.6: Convergence of estimated threshold during the loops

Results from Noisy MAT Reference Data

In a neural recording experiment in vivo, the input current received by the neuron is divided into

two components, a deterministic one and a stochastic [5]. The deterministic part does not vary

during the trials with the same stimulus and the stochastic part represents all the remaining inputs

which change during the trials. Therefore, to consider noise in the biological system, the stochastic

component of the input is treated as noise which is added to the right hand side of the subthreshold

voltage dynamics. Specifically, we modified the subthreshold voltage by adding Gaussian White

Noise and the simulations were performed for different SNR values to measure robustness of the

proposed method against noise. Our simulations show that the randomness of the generated noise

causes the parameters to not converge during some trials. Table (2) describes the obtained results

for 10 trials of performed simulations. It is seen that the rate of non-convergence and the average
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error per spike over the converged trials (ē) decreases as SNR becomes better.

Table 3.2: Estimation Results for The Noisy MAT Model Reference Data

SNR = 40 SNR = 35 SNR = 30
Convergence 8/10 7/10 5/10

ē 0.0273 0.0502 0.1669

Results from Experimental Data

After confirming the ability of the proposed method to identify the exact model reference data,

the estimation procedure is applied to in vitro experimental data. We first present a sample set

of data provided by the Single Neuron Competition (data#1, Challenge A, 2007). The identified

parameters for the input current (0.62±0.34 nA) and the corresponding spike train are presented

in Table (3).

Table 3.3: Identified Parameters for The Experimental Reference Data

θ0 α1 α2 k1 k2 ω
data#1 15.4 -1.49 76 11.6 33.5

After the identification process, the estimated parameters were utilized in a MAT model to predict

the spike train. Obtained results for comparing the reference spike train and predicted spike train

are shown in Table (4) for two data samples (data#2 and data#11). Figure (3.7) displays the ex-

perimental trace and predicted MAT model voltages (for data#11) while the similarity of the spike

trains is pointed out by the spike times.
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Table 3.4: Comparison of The Predicted Spike Train Similarity and Reference Spike Train

NData NModel NCoinc Γ
data#2 268 246 230 0.88

data#11 212 162 144 0.76

 

 

 

 

100 ms

Target spike train

Neuron membrane potential

Predicted spike train

MAT model dynamics

Figure 3.7: Model prediction for fluctuating current according to the experimental data. The top

row is the subthreshold (green) and threshold (blue) voltages trace of MAT model, where predicted

spike times are specified by blue triangles. The bottom row, indicates the experimental membrane

potential (magenta) from a single neuron, where the actual spike train are marked by magenta

triangles.

As discussed earlier in the paper, a set of intersection constraints is applied to the objective function

per (3.18). To clarify the contribution of these intersection constraints, comparisons were made

between spike trains predictions from models estimated with and without the use of constraints.

34



Table (5) shows the comparative results using an experimental data sample. It can be seen that

the use of constraints increases the accuracy of predicting spike times by more than 20%. In fact,

the intersection constraints drive the estimator to avoid undesirable spikes and as a result the firing

rate is decreased. Although unconstrained estimator predicts higher percentage of target spikes

correctly, its performance, represented by coincidence factor, is worse than the constrained one.

Table 3.5: Comparison of Predicted Spike Train for Unconstrained/Constrained Estimation

Unconstrained Constrained
NCoinc/NModel % 69 % 92
NCoinc/NData % 88 % 51
Spikes / sec 176 77

Γ Coinc. Fac. 0.35 0.59

In [27], a benchmark test was established to facilitate a systematic comparison of methods and

models in predicting the activity of rat cortical pyramidal neurons. The provided data set includes

four different input currents which were generated based on (3.19). For each injected current, four

trials were recorded to observe if the neuron fires with high reliability. To evaluate the quantitative

predictive feature of our approach, we compare our proposed method performance with the bench-

mark test reported results. Fig. (3.8) indicates the average performance of our method along with

the benchmark test results on the whole data set. The raw Γ̄ is computed by averaging the values of

Γ over the whole test set. Since for a certain input, the pyramidal neuron is more reliable than for

the others [28], the normalized ΓA is also introduced. ΓA scales the raw Γ according to reliability

of the neuron which is evaluated with trial-to-trial variation of the neuron recordings [12]. Of the

four submissions for the challenge, the auto regressive method (AR) demonstrated the best per-

formance. The AR method uses a mathematical model to estimate the membrane potential of the

neuron and then the spike times were predicted by adjusting a dynamic threshold to the estimated

membrane potential. The parameters of this model were determined so that the coincidence factor
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Γ would be maximized. The carbon-copy method (CC) also yielded a good performance; however

it does not benefit from any mathematical model. The CC method utilizes the mean and variance

of fluctuating current and evokes a sequence of spike by considering the training data set. There

were also two other anonymous submissions in the challenge whose performances are presented

here. It is seen that the proposed method is superior to the challenge submissions by both the Γ̄

and the ΓA metrics.

Proposed AR CC Anony. 1 Anony. 2
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Figure 3.8: Comparison of the proposed method to results of the challenge.

Discussion

In this study, we took advantage of the MAT model which comprises two dynamics. Although

the simplified subthreshold leaky integrator dynamics fail to consider many aspects of neuronal

dynamics [5], the leaky integrator free parameters provide adequate strength to track the neuron

membrane potential trace. Furthermore, the threshold dynamic of MAT model makes effective use
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of its multi-timescale feature. Biologically speaking, the multiple timescales can be regarded as

surrogates for ionic currents such that different timescale values represent fast transient current,

non-inactivating current, etc. [19].

The proposed linear representation of the MAT model along with the novel objective function and

constraints provides a framework for fitting the model to a single neuron recording in order to

predict the quantitative features. The results for prediction of reference data generated from the

exact MAT model confirm the validity of the manipulated equations and demonstrate the ability of

the approach to find the best parameters even in the presence of noise. While the obtained results

from experimental data demonstrate a high performance in predicting reference spike times, a

detailed discussion is merited to analyze our approach more clearly. Our utilization of the objective

function of (3.12) clarifies that the defined error function does not have an inherent mechanism

to consider the non-spike moments. To overcome this issue, we added innovative constraints in

our estimation procedure to control the threshold voltage from potential intersections with the

subthreshold voltage during the period between two spikes. As shown above, the application of

the constraints allows the identified model to generate the spike train with more confidence such

that, by avoiding potential false positives, the firing rate is reduced which in turn leads to a higher

predictive performance.

To evaluate of the proposed approach, we also compared the predictive performance of our identi-

fied model to the submissions for Quantitative Neuron Modeling. Our results show the superiority

of the proposed linear method to predict reference spike trains. In addition to improvements in

prediction, our method benefits from a convex cost function while at least some of the other sub-

missions in the challenge utilize the non-convex Γ Coincidence Factor as the cost function to max-

imize their prediction performance. Thus, our proposed approach also has a lower computational

cost and a guaranteed global minimum which further underscores its superiority among the other

methods. Finally, an obvious deficit of the MAT model is its inability to respond appropriately to
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rectangular and ramp currents. Therefore, future work will focus on model modification so it can

response to not only fluctuating currents but also different input types.
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CHAPTER 4: CONCLUSION

In chapter 2, a modified Izhikevich model was proposed by removing the quadratic term from the

original Izhikevich model and a new spike generation mechanism was drawn. A linear-in-the-

parameters model was developed to represent the subthreshold dynamics as well as the threshold

voltage. Then, a two-stage estimation algorithm was utilized to identify the subthreshold and

threshold parameters. The obtained results indicate that our method has the ability to estimate the

subthreshold voltage, however, it was unable to predict spike locations for a variety of possible

reasons as discussed.

In chapter 3, we proposed a constrained linear least squares algorithm to identify MAT model

parameters, for predicting single neuron spike times. Our results show that the proposed identifi-

cation method is robust to system noise and has the ability to find the best parameters to replicate

the spike train. Moreover, the obtained experimental results indicates that our method has excellent

performance in comparison to reported results from the Quantitative Neuron Modeling competi-

tion [2].Convexity of the cost function is another advantage when compared with similar fitting

approaches utilized by the neural community. While the MAT model succeeds in reproducing

quantitative features of single neurons, it still lacks the capability to replicate different firing pat-

terns; hence, there is room to investigate possible modifications of the model in the future.
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