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ABSTRACT 

In this thesis, two parts of practical issues in the GPRAM system design are included. 

The first part is the coding part. The sum-product decoding algorithm of LDPC codes has been 

refined to fit for the GPRAM hardware implementation. As we all know, communication 

channel has noise. The noise in telecom system is different from that in GPRAM systems. So the 

noise should be handled well in the GPRAM design. A noise look-up table was created for 

FPGA and those noises in the table are quantized. The second part of the thesis is to convert 

perfect images in video stream to those similar to the coarse images in human vision. GPRAM is 

an animal like robot in which coarse images are needed more than the fine images in order for us 

to understand how to GPRAM progresses those images to generate as clear image as we 

experienced. We use three steps, Point Spread function, inserting Poisson Noise, and introducing 

Eye fixation movements to mimic the coarse images seen merely from our eyes at the retinal 

photo-receptor level, i.e., without any brain processing. 
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CHAPTER ONE: INTRODUCTION 

Over the last thousands of years, people have been wondering what is intelligence, how 

to define intelligence and how to build intelligent machines? Scientists and engineers are more 

and more interested in developing a system with intelligence similar to human behaviors. But 

what is intelligence? In (Gardner, 1983), Gardner describes the intelligences in eight categories: 

visual-Spatial intelligence, verbal-linguistic intelligence, Bodily-kinesthetic intelligence, logical-

mathematical intelligence, interpersonal intelligence, musical intelligence, intra personal 

intelligence, naturalistic intelligence. In a more general point of view, intelligence is the ability 

to learn or to apply knowledge to deal with one’s situation. Artificial intelligence (AI) is the 

intelligence of machines (Mackworth & Poole, 1988). No matter whether the machine will 

behave exactly like a human or not, developing an intelligent machine is important. That kind of 

machines should ultimately have the ability to communicate, learn and adapt, but at this stage, 

we need to search for a way to develop this type of machines, similar to what human has 

achieved in development of a computer.  

Computers have been developed as a type of intelligent machine since 1946. With the 

help of computers, many computational tasks which the brain could not handle with, has been 

solved by them with great accuracy far beyond what human brain can do. As soon as people 

discovered computational machines, people started to think that they were building 

computational brains. However, after nearly 70 year’s research and development, the progresses 

in artificial intelligent disappointed many researchers. Is brain a computational machine or 

something beyond? In fact in (Neumann, 1958), Neumann clearly highlighted the differences 

between the popular computer architecture and how human neural cells represent information. 
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Computer did in binary digital, but neural cells use mixture of digital and analog representations 

and computations. Today, the computer can run much accurately, faster, and precisely than 

human brain, but yet many common features in human brains (even existing in infant brain) 

cannot be duplicated by computer, for example, face recognition or simple commonly 

understandable gestures. 

During the same time period, in 1948, Shannon started information theory in which he 

introduced a new and mathematical way to measure information for probabilistic events. Based 

on his (Shannon, 1948) definition of information and theory, he discovered physical limit for 

telecommunication systems which was later called Shannon limits. After that, thousands of 

researchers in telecommunication industry have been worked for nearly 60 years to develop 

telecommunication system (mainly error control coding mechanism) to achieve this limit (Lin & 

Costello, 2004). Activities started in 1950s as block codes, to convolutional codes in 1960s, 

trellis coded modulation (TCM) in 1970s and 80s. In 1993, turbo codes revolutionized the error 

control coding field (Berrou, Glavieux, & Thitimajshima, 1993) soon after that, rediscovery of 

low-density parity-check code made near Shannon limit decoding possible (MacKay & Neal, 

1996). The key themes in Turbo and LDPC successes include (a) better understanding extrinsic 

information, how to pass it between decoders and how to use it to improve error rate; (b) sparse 

connection between codes and Tanner graph. During the course, people discovered the 

connection between turbo iterative decoding and neural network processing such as Pearl’s belief 

algorithm described in (MacKay, McEliece, & Cheng, 1998) (Pearl, 1988). 

Meanwhile in biological field, people discovered STDP (Spike-timing-dependent 

plasticity rules) which play essential roles to build sparsely connected networks (Yang & 
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Froemke, 2002b) (Yang & Poo, 2006a) and Sparse net in visual signal processing (Olshausen & 

Field, 1996a). The process of STDP is interesting. The input spike to a neuron may cause the 

post-synaptic neuron’s excitation only when the input spike has high probability to occur in the 

future. STDP rule discourage network which connected closely, otherwise, it encourage network 

which is sparsely connected. Sparse connected network can develop template filters closely 

matched to what we observed in human visual systems. These researches, combined with error 

control coding achievement, attracted Dr. Wei to propose a new theory called GPRAM machine 

(Wei, 2012a). 

According to (Wei, 2012a), GPRAM is short for General Purpose Representation and 

Association Machine. For the general purpose, the machine is not optimal for one purpose, 

which means, it will perform well even for tasks not known before. Thus, GPRAM is different 

from the conventional machine. Each part of the conventional machine is designed precisely and 

fixed. Conventional machine could only perform a task after it gets trained and tested. GPRAM, 

as a general purpose machine, supposes to cover as many tasks as possible in the beginning. 

What’s more, GPRAM is a hierarchy system. When it imports a rule, it narrows down to a lower 

hierarchy which is less vague than the higher hierarchy. We hope GPRAM could move and make 

decision by itself even for some tasks we did not train it before. Due to the differences between 

the two systems discussed above, the way to build the GPRAM should be different. In GPRAM, 

iterative coding is used instead of the precise logic design. Also, in GPRAM, the noises in the 

system may be beneficial. They could behave very different compared with telecommunication 

systems. 
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To design and develop GPRAM machines, we cannot follow the traditional 

computational pathway, rather than we aim to develop a simple demonstration system to show 

their unique properties. Currently Dr. Wei’s team is working on this direction and this thesis is 

part of the effort. During the demonstration of the system’s implementation, Byron McMullen 

(Dr. Wei’s PhD candidate) needs to implement the simulation of GPRAM system on the FPGA 

board. Similar to implement decoder for telecommunication industry, FPGA needs to implement 

the decoder in digital format. So the metric or probabilistic measurements of information need to 

be quantized. The decoding algorithm in the implementation is the Sum-Product algorithm for 

LDPC codes. In this method, implementation of sum function is necessary as well as the product 

function. Sum function is easy to implement in the FPGA design, but the product function is 

complex to achieve due to the hardware limitation. Thus we need to refine the traditional SPA 

algorithm to make it easier for its implementation. The messages updated between the variable 

nodes and check nodes are quantized to the integer and passed through the quantization function 

in each iteration. This is my first contribution in this thesis. 

Unlike the decoder used in telecommunication system, we also need to find an effective 

way to quantize noise as well. The noise in FPGA should not be real numbers anymore and the 

only way is to generate the Gaussian noise table. By proper selection of digitized noises, we can 

closely emulate the effects of real noises in FPGA implementation. This forms the second 

contribution of this thesis, which is to provide insights in this aspect. 

During constructing of demonstration system, we also need to find a simple way to 

process visual signals. In today’s electronic devices industry, the video camera is more and more 

accurate, precision, and faster. Therefore, for our demonstration systems, the video streams we 
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aimed to put into the GPRAM are similar to what captured from human eyes. It has been well 

documented that images presented at human retina has poorer quality than what we can image. 

The image suffers from Poisson noise, point spread, and deteriorated by head motion. Yet, the 

coarse quality of images may play an important role in hieratical structure in GPRAM system. 

Three steps are needed to generate the coarse images. The first step is using the point 

spread function to perform the two dot stimulus blurred image. The second step is adding the 

Poisson noise in each pixel of the images. The third step is modeling the real cases which our 

eyeballs are moving consistently. We model the drift-like eye movement as a Gaussian random-

walk function. By doing the above three steps, the coarse image will be generated and ready to 

be used in the GPRAM systems. My third contribution to this thesis includes the following two 

parts: (a) learn from biological visual signal processing. (b) Implement various stage of image 

processing to mimic one or several effects using MATLAB. This lays a foundation for other 

team members to continue the work in this direction to build up visual system for our GPRAM 

prototype. 

This thesis is organized as follows. Chapter two is the literature review part. I summarize 

the background of error control coding, GPRAM and human visual system. Chapter three 

introduces the coding and decoding algorithm of LDPC codes because it is used in GPRAM 

system. In chapter four, you may find out how I quantized the metric information in the iterative 

decoding and also the noise. The results are also shown in this part. Chapter five is the 

background knowledge for bio-visual processing. Chapter six shows the simulation results of 

visual imperfectness images. Chapter seven is the conclusion and future works part. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Literature review of error control coding and quantization 

Many engineers believed that the transmission was unreliable due to the presence of 

channel noise. However, Shannon thought the channel noise may not be the reason for unreliable 

transmission. In 1948, Shannon discovered that channel noise limit the transmission rate, not the 

accurate rate of the transmission (Shannon, 1948). Soon after the theory of Shannon limit, 

researchers started to find ways to achieve this limit. The first type of codes is linear block codes, 

which heavily relied on Algebraic mathematical theory to design codes, analyze codes, and 

perform decoding (Lin & Costello, 2004). Algebraic theory dramatically cut down its complexity 

of encoder and decoder. Also it provided insight to design best possible codes of these types. 

However, it can only deal with hard decision decoder, i.e., the decision statistics need to be 

converted to binary decision before performing decoding procedure. This quantization of 

decision statistics lead to loss of around 3 dB compared with the decoders which use soft 

decision decoders. Different from algebraic approach, Gallager in his PhD thesis proposed low 

density parity check code (Gallager, 1963a), which is randomly constructed sparsely connected 

parity check codes. Unfortunately, due to limitation of computational power in 1960s, his design 

has never been simulated out until 1996 of rediscovery of the beauty of LDPC codes (MacKay & 

Neal, 1996).  

In 1955, Elias introduced convolution codes as an alternative to block codes (Elias, 1955). 

Convolution codes gained substantial attentions due to its capability to perform soft decision 

decoders. In 1963 Fano introduced the Fano algorithm which searches over a tree for best 

possible decision path (Fano, 1963). In 1967, Viterbi discovered Viterbi algorithm which is 
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proved to be the optimal soft decision decoding algorithm for small constraint length (typically 

less than 10) convolutional codes (Viterbi, 1967). In 1971, Heller and Jacobs found out that if we 

quantized branch metric to only 3 bits, the loss of quantization is only about 0.2-0.3 dB (Heller & 

Jacobs, 1971). Therefore, we can approach optimally implement Viterbi algorithm in digital 

circuits. In 1974, BCJR algorithm was discovered and named after the four creators (Bahl, Cocke, 

Jelinek, & Raviv, 1974). This algorithm has a great influence on the turbo codes and LDPC 

codes. BCJR algorithm can deliver soft decision output, but unfortunately at that time, none 

knew how to use the soft decision. In (Forney, 1973a), Forney demonstrated that the Viterbi 

algorithm just required one way process, while BCJR algorithm requires almost about twice 

complexity due to forward and backward processing. Thus, over the next twenty years, BCJR 

algorithm has never found applications in real world due to its complexity. 

In 1981, NASA started to implement the Viterbi algorithm with 2
15

 states for deep space 

mission (Yuen & Vo, 1985). The performance of this system is about 2 dB away from Shannon 

limit (Dolinar, 1988). During the same time, Hagenauer and Hoeher proposed soft output Viterbi 

algorithm (SOVA) (Hagenauer & Hoeher, 1989), in which it not only takes soft-decision as input, 

but also generate soft output. In 1993 during Turbo coding invention, Berrou et al takes SOVA 

idea one step forward (Berrou, Glavieux, & Thitimajshima, 1993). Turbo codes are a new type of 

concatenated convolutional codes whose BER performance can achieve 0.7 dB away from 

Shannon limit. More importantly, Turbo codes define extrinsic information and then pass this 

information between two sub decoders to improve their reliability. The extrinsic information is 

based on soft decision output from decoder, which is called a feedback decoding method. Instead 

of SOVA, it uses BCJR algorithm to compute the extrinsic information. Although BCJR 
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algorithm has twice the complexity for a given code constraint length, turbo codes use codes 

with small constraint lengths, so that its complexity is far less than conventional Viterbi 

algorithm which requires large constraint lengths. 

Turbo codes excited the error control coding field. People started to search for new near 

optimal decoding algorithm. In 1996 Researchers rediscovered the Gallager’s LDPC codes 

(MacKay & Neal, 1996). In 2001, Chung et al in (Chung & Forney, 2001) showed that LDPC 

codes can achieve 0.0045dB away from Shannon limit. During the progress, researchers 

developed analytical tools such as EXIT chart for turbo codes (Brink, 1999) and density 

evolution for LDPC codes. Using these tools, people discovered that as long as we construct 

codes with sparsely connected constraint, we can achieve near Shannon limit decoding 

(Richardson, 2001). 

Turbo coding excitement did not stop at error control coding. Turbo codes as belief 

algorithm (Pearl J. , 1988) Graph theory has been a great implementation in many fields.  

In (Wei, 2012a), Wei summarized the key lessons learned in error control coding are 

listed as follows: 

1. Randomly constructed codes are good choices to achieve Shannon limit. (Gallager, 

Information Theory and Reliable Communication, 1968) 

2. Due to the discovery of Tanner graphs (Tanner, 1981), near Shannon limit codes require 

to exclude small loops in Tanner graphs. 

3. Message passing and updating between different sub-graphs provide a low complexity 

way to decode. (Berrou, Glavieux, & Thitimajshima, 1993) 
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4. Decoding can be implemented iteratively and result is not sensitive to noises and errors 

(Berrou, Glavieux, & Thitimajshima, 1993).  

5. The discovery of connections between iterative decoding methods and Pearl’s belief 

algorithm (Pearl, 1988) is significant in Bayesian network information processing 

(MacKay, McEliece, & Cheng, 1998). 

6. With the help of low density graph and iterative decoding, many popular problems will 

be solved, for example, Fourier transforms and Kalman filtering (Kschischang, Frey, & 

Loeliger, 2001). 

7. Having an abstract summary of how iterative decoding works into three steps: repetition, 

random shift, and non-linear operation (Forney, 2001b), Forney may bring us one step 

close to understand biological signal processing. The neurons could work the similar way 

as iterative decoding. 

Is it possible unveiling the mystery on processing of a biological brain by the best known 

information transmission/reception mechanism? Dr. Wei not only paid a lot attention on long 

codes (Wei & Qi, 2000b), codes on graphs and large scale random ad-hoc networks (Wei, 2003c), 

but also reached to life science realm as it is the foundation of GPRAM theory. 

2.2 Literature review of biological visual systems 

Up to now, we do not know the architecture of biological brains. What makes matter 

worse is that over the last 50 years, our observations on human brains have been largely based on 

neuronal metabolism which consumes less than 5% of energy. In (Fox & Raichle, 2007), Fox 

and Raichle made the following statement. “Task-related increases in neuronal metabolism are 
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usually small (<5%) when compared with this large resting energy consumption. Therefore, most 

of our knowledge about brain function comes from studying a minor component of total brain 

activity.” We are not sure whether these approaches will lead to understand of basic principle of 

human intelligence and architecture of human brains. In a book review, “A neurocomputational 

jeremiad,” appeared in the October 2009 issue of Nature Neuroscience, it pointed out that one of 

key ingredients missing in neuroscience researches is the architecture of bio-brains. Since 2003, 

Dr. Wei has been searching for biological lessons which may lead to new intelligent system 

design. Our team is following Dr. Wei’s steps so that in this section, we will briefly review what 

in literature in biological sciences and mainly focus on bio-visual signal processing. 

Between 2004 and 2007, Dr. Wei worked on human visual systems and he picked up a 

simple task called hyper-acuity capability. Hyper-acuity was coined by Westheimer (Westheimer, 

1975) to describe a super-phenomenon that human visual systems can distinguish fine lines 

separated well beyond Nyquist rate. In fact, it will need a huge amount of templates for a tiny 

spatial of uncertainty to build a machine to achieve hyper-acuity at an accuracy of 1/10
th

 to 1/30
th
 

of the diameter of photo-receptors (Klein & Levi, 1985). In (Wei, Levi, Li, & Klein, 2007), Dr. 

Wei and his collaborators at University of California at Berkeley showed in order to cover 9 by 9 

arc min position uncertainty and speed uncertainty up to 2 degree/s, we need to construct 7776 

templates if we follow ideal system design. This is only for a single stimulus with two simple 

dots. The human visual system can handle various hyper-acuity tasks under very dynamic 

environments, yet its performance closely approach to various ideal observers, which each is 

optimized to a particular setting. It seems the visual system has used a super approximated 

template which is approximated as the superposition of many ideal templates. It may tune toward 
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a particular template smoothly and slowly when it is exposed to some artificially designed 

stimuli intensively. 

During Dr. Wei’s visit to UC Berkeley, he also encountered two other research teams, 

one led by Dr. Yang who is working on STDP rules (Yang & Froemke, 2002b) and other led by 

Olshausen who is working in the area of sparse coding (Olshausen & Field, 1996a) (Olshausen & 

Field, 1997b). These works significantly opened his field of horizon.  

People may wonder how does neurons connected and functioned together. Can we build a 

system which has the function of human brain? STDP rule was discovered by (Levy & Steward, 

1983) when they tried to find out the time difference on the pre and postsynaptic actions on 

plasticity. Dr. Yang and M.M. Poo’s paper (Yang & Poo, 2006a) on neuromuscular helps us 

have a better understanding of the synaptic activity in a long term depression. Dr. Yang’s team 

has been working on observing the how will the cat’s brain acting when it sees human faces by 

fixing the cat’s head. The videos got from the cat’s brain have given light on Dr. Wei’s idea of 

visual part in GPRAM system.  

Each item which is called neuron in sparse code is encoded by a set of neurons. This set 

is the subset of the original neuron before encoding, which supply a hierarchy structure in the 

coding process (Rehn & Sommer, 2007). Sparse coding has been greatly used in the computer 

vision field. In computer vision, the input patterns are huge. Thus, sparse coding will help in 

finding a small number of in use patterns and begin processing. Sparse coding provides us a state 

structure which is effective in the computer vision processing. In Olshausen’s neural coding in 

(Olshausen & Field, 1997b), the details of images will be resemble together in the eyes’ 

receptors, which will reduce the complexity in bio field. The idea of sparse coding has been used 
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in the design of GPRAM. The input includes many information, using the idea of sparse coding, 

it will narrow down to a subset (Wei, 2012a), and then make decision.  

In (Wei, 2012a), Dr. Wei summarized lessons learnt from biological system as follows: 

[Blurring a dot in order to see it clear] The basic principle of human eye achieving hyper-

acuity is to blur on one little dot stimulus. Knowing that, probably improving quality is not the 

only way achieving high resolution images. Take a step further, our eyes are continue moving 

even we sit still, so coarse images may be more suitable and will take less efforts and time. Same 

idea, although precision approach provides the optimal solution, it rolls out other smart ways 

which may not the optimal solution in this particular part, but maybe better and efficient result in 

all. Therefore, versatile or blurred approaches provide as many solutions as possible which may 

contain a better result regards to the whole system. 

[Over-complete and sparse coding] In (Olshausen & Field, 1997b), Olshausen and Field’s 

sparse coding idea lead us to understand how to use over-complete templates to achieve sparse 

neural activities. 

[STDP rule (Yang & Froemke, 2002b)] STDP rule will be applied in the GPRAM system 

in the future, because it prevents the loops in the structure of coding and apply the posterior 

information calculation. 

Overall, blurred or coarse images may perform better than the fine or high resolution 

images in the implementation of GPRAM system for the following reasons. First, at the initial 

levels, low quality images could be sufficient to recognize many different objects or deal with 

tasks at initial levels. Then, it will move to higher levels only when it is necessary. Second, if our 

cortex uses this coarse image to work out a result far better than sharp one, then its focus does 
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not need to be improved. Third, prepared in blurred could easily handle head and eye movements. 

Forth, coarse image does not need a lot computation power to process them. Fifth, fine images 

have similar low resolution counterpart, so these can be grouped together to form hierarchical 

structures. Sixth, we just take random sampling points out of images, so coarse images will 

perform as good as fine ones. 

2.3 Literature review of GPRAM systems 

Based on lesson learnt in error control coding and biological visual system, Dr. Wei 

proposed GPRAM system in (Wei, 2012a). GPRAM is general purpose intelligent system which 

may lead to systems which could perform functions similar to a bio-brain. GPRAM could move 

and make decision by itself even for some tasks we haven’t trained yet. GPRAM has hierarchy 

structure. At the highest hierarchy, it does rough and quick estimates on how to process a task. 

When adding a rule into the system, it becomes more special on processing the task and finally 

completing the task in a lower hierarchy. Conventional machine was designed precisely and 

functionally. It only could perform a task after it gets trained and tested. This is the main 

difference between GRPARM and conventional machine. The design of GPRAM system 

includes two procedures (Wei, 2012a): 

Each part of the conventional machine is designed precisely and fixed. Conventional 

machine could only perform a task after it gets trained and tested. GPRAM, as a general purpose 

machine, supposes to cover as many tasks as possible in the beginning. What’s more, GPRAM is 

a hierarchy system. When it imports a rule, it narrows down to a lower hierarchy which is less 

vague than the higher hierarchy. 
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The first part is group design. At this part, GPRAM collects as much information as 

possible. Then set up the aim of the machine. After that, a specific rule which narrows the scope 

of GPRAM system into a subset was added into the system. After these three steps, GPRAM will 

contain less uncertainty compare to the beginning. The second part is individual specification. 

According to different tasks, select different learning methods to implement the task by using 

existing technology. The design procedures of GPRAM are different from traditional machine. In 

tradition machine, how it will act to achieve one function is determined. Whereas in GPRAM, 

different approaches are being used which work similar as human brain. Imagine this scenario, if 

a person goes to a city and encounter with heavy traffic on his way, he may pick another route to 

that city next time. Just like that, GPRAM will act as human brain which is learning from its past 

experience. It will be not achievable by traditional machine. 

After a brief understanding of GPRAM design, Dr. Wei and his team clarified the method 

for a GPRAM prototype by adopting LDPC codes in (Li, Dai, Schultz, & Wei, 2013). They used 

coding mechanism to build the system instead of the traditional logic design. At first, Hamming 

(7, 4) code was used at first to present the connections in GPRAM. Due to short length of 

Hamming (7, 4) code, the tasks it performed were limited. Therefore, longer codes, LDPC codes 

were tried in the simulations. It has been conclude that the longer the code word is, the more 

difficult for the system to learn. In the future, the learning algorithm should be improved for 

applying long codes. It also indicates that, bio-implications need to be developed. 

To learn one task each time may not be enough for an intelligent system. In (Li & Wei, 

2013c), they carry on performing multi-tasks learning method. This paper continues on the 

exploration of LDPC codes to establish GPRAM system. Good codes were used to improve the 
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performance of GPRAM. Also, progressive learning was introduced in the paper to improve the 

function of multi-tasks learning. The current error control coding knowledge may not enough for 

supporting the GPRAM design, to move one step further, the knowledge of it needs to be 

extended. 

The primary goal is to achieve an animal-like-robot, which can perform simple function 

for demonstration. In (Li, Dai, Schultz, & Wei, 2013), different length of code words have been 

simulated, good code word has picked. Thus, based on (Li, Dai, Schultz, & Wei, 2013), Byron 

McMullen (Dr. Wei’s PhD candidate) is working on converting the simulation method into 

FPGA. Sensors s1 and s2 are inputs in (Li, Dai, Schultz, & Wei, 2013), in the FPGA design, 

wireless camera and microphone will substitute two input sensors. By doing that, outputs are 

images and sounds, which would be more directly to convince people.  

As Mr. McMullen has been working on implementation the GPRAM system on FPGA, 

some troubles have encountered. First of all, how to implement decoder in digital format? 

Secondly, how to generate noises in FPGA to mimic noise effects in real systems? Thirdly, how 

to deal with simple image input? In his initial trials, he simply selected 4 bit quantization to 

approximate decoding computation and 4 bits to quantize noises, which lead to huge loss in 

implementation as we will see in the later section of this thesis. He also implemented very simple 

visual image process. My thesis took these challenges and evaluated how to near optimally 

achieve decoding and mimic human visual images. 
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CHAPTER THREE: QUANTIZATION IN LDPC DECODING AND NOISE 

In this chapter, we will first review error control coding in telecommunication system 

design in Section 3.1. Then, we highlight application of LDPC coding in GPRAM prototype 

design in Section 3.2. After that, we illustrate what has been done in Mr. McMullen’s 

implementation and its performance in Section 3.3. We then present our work on digital 

implementation of LDPC decoding in Section 3.4. We further present our work on digitalizing 

noises in Section 3.5. Finally, we conclude this chapter. 

3.1 Error Control Coding in Telecommunication systems 

Coding theory is an important skill in the telecommunication. It is a research field which 

helps us to understand how information was transmitted between transmitter and receiver 

through an unreliable channel. By using coding and decoding technique, the error-free 

transmission over an unreliable channel is practicable. 

The following figure shows the block diagram of digital communication system. At the 

transmitter side, the encoder adds redundant bits to create a code word and will be used for error 

correction. Also, with the help of encoder, the rate of the code will be limited by channel 

capacity. Modulator transforms the code word into a format suitable for the channel, like the 

analog carrier signal. Then pass the modulated signal through a noisy channel. The demodulator 

attempts to recover the correct channel symbol in the presence of channel noise. Decoder then 

uses the redundant bits to detect or correct the bit errors and made hard or soft decision to 

quantize the receive bit to be “0” or “1” and received by the receiver. 
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Figure 1 Block Diagram of Communication System 

 

3.1.1 Description of Several Types of Error Control Coding 

3.1.1.1 Linear Block Codes 

The information transmitted in block codes is formatted into binary form, and grouped 

into blocks of k information bits. Messages are represented as M=2
k
 and mapped to a longer 

block of n bits, which n>k, called code-words. The code-words have systematic structure, as 

shown in following figure. The structure has two parts, the checking part and the message part. 

 

 

Figure 2 Structure of Codewords 
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The code rate denotes as R=k/n, which is ratio of information bits represented in the 

messages. Generator matrix (G matrix) is used to generate all possible codewords. G matrix 

could be represented by the following structure: G=[Ik | P], where Ik is an identity matrix which 

is k by k. P has the dimension of k*(n-k).  

Parity check matrix is derived from the G matrix or vice versa. The Parity check of the 

above G matrix is the following: H= [P
T
 | In-k]. G matrix and parity check matrix should satisfy 

the following equation: G H
T
=0. Several examples of block codes will be introduced in the 

following: 

3.1.1.2 Repetition Code 

Repetition Code is one of the easiest ways of implementing the coding theory just by 

repeating the transmitted symbol n times. The code rate is 1/n.  For example, a repetition code 

with n equals to 3. The code words are (000) or (111), i.e., if the message is 0, we select code 

word (000); and if the message is 1, we select code word (111). Thus, if we receive code words 

as (001) or (110), then we may be regarded as an error event and using simple decoding rule, we 

can recover from this one bit error event. If there are error events more than 1 bit, then we cannot 

recover.  

3.1.1.3 Hamming Code 

Hamming code is also a kind of block codes, discovered by Richard Hamming in 1950. 

To illustrate more properties of block code, we use (7, 4) Hamming code as an example. The 

code rate is 4/7. (7, 4) Hamming code has 16 possible code words, seen in Fig. 3. In each 7-bits 

code word, contains 4-bits message data (the first 4 bits) and 3-bits check codes (the last 3 bits). 
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In Fig. 3, we also include generator matrix (G) and parity check matrix (H). Let m be a 4 

by 16 message matrix, which includes all 16 tuples from 0000 to 1111, seen the first 4 bits in 

code word.   We can generate all code words (C) by C=mG. Also, we can check code words by 

using CH
T
=0, that is, any valid code word will satisfy parity check matrix, where H

T
 is the 

transpose of H. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               (

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

    

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 )    (
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ) 

Figure 3 (7, 4) Hamming code words, generator matrix (G) and parity check matrix (H) 

 

The Hamming distance is very important in the coding theory. Two equal length code 

words were needed to calculate the Hamming distance. The number of differences of positions at 

the corresponding symbols is the Hamming distance. For example, the distance of (1101110) and 

(1110111) is 3. The minimum distance usually denotes as dmin is the minimum Hamming 

distance between two code words. The Hamming weight of a code word is the number of non-

zero positions. For example, the Hamming weight of (0011100) is 3. The (7, 4) Hamming code 

can detect 2 errors, can correct 1 error. 
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3.1.1.4 LDPC codes 

LDPC code was developed by Gallager in 1963 (Gallager, Low-Density Parity-Check 

Codes, 1963), which is a linear block code. LDPC codes are represented by a sparse parity-check 

matrix (H). That is, the parity-check matrix H contains fewer 1's than the amount of 0's, and has 

a fixed number of 1’s per row and also per column. As for an (n, k) LDPC code, n denotes the 

variable nodes, n-k denotes the check nodes connected to the variable nodes. To encode the 

LDPC code, the parity-check matrix H should be rearranged by Gauss-elimination into [P
T 

| In-k]. 

After get the modified matrix, generator matrix G could be obtained by using G·H
T
=0. Then the 

codewords are generated from C= G
T
·m, where m denotes the messages vector. More details of 

LDPC codes will be introduced in section 3.1.2.  

3.1.1.5 Convolutional Codes 

Convolution code was developed in 1956. It is another important technique in coding 

theory. The encoder does not encode the information in block form; it has memory. It uses the 

both previous and present information to format the code-words. The previous information is 

stored in shift register. Each encoded block does not depend only on the corresponding message 

at the same time unit, but also depends on previous information blocks which remembered in the 

register. The following figure shows the simple block diagram of a convolutional encoder. 
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Figure 4 Block Diagram of Convolutional Encoder 

 

One previous bit, together with the newly input data bit, determines the output of coded bit. The 

other encoded bit should be the present bit information. According to apply different code rate, 

the number of shift registers was various. Convolutional encoders various however they will fall 

into two general categories: feed-forward and feedback. In each category, convolutional 

encoders can be different with data rate. A feed-forward with rate ½ will be illustrated in the 

following figure.  

 

Figure 5 Convolutional Encoder 
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This encoder consists of three registers and two modulo-2 adders M (0), M (1). 

Information sequences w= (w0, w1, w2, w3…) enter this linear encoder one bit a time. One 

information bit enters in this system, and two encoded bits come out and form into new coded 

sequences. Time sequence unit or called generator sequence for adder M (0) should be g (0) = (1 

0 1 1), for adder M (1) should be g (1) = (1 1 1 1). Then, the encoding equations should be easy 

to get: 

 ( )     ( ) ( 1 ) 

 

 ( )     ( ) ( 2 ) 

 

The output sequence could obtain by implement the following equation: 

 

  
 
 ∑       

 
     

 
       

 
       

  
          

 
       ( 3 ) 

 

where k is the length of the information sequence. 

For example, for the information sequence w= (1 0 1 1 1), then  

  ( )  (         ) (       )  (               ) ( 4 ) 

 

  ( )  (         ) (       )  (               ) ( 5 ) 

 

Thus, the code-word is 

  (                              ) ( 6 ) 
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3.1.1.6 Turbo Codes 

The technique of Turbo coding was introduced by (Berrou, Glavieux, & Thitimajshima, 

1993) in 1993. This technique concatenates two convolution codes; two encoders are arranged in 

parallel. The information is encoded two times. The following figure shows the block diagram of 

turbo encoder. The information pass through the first encoder to do the first time encoding, 

before it pass through the second encoder, a random interleaving block is needed. In this 

procedure, the output sequences which passing by two encoders should be independently. 

Information passing by two encoders will reduce the code rate. However, puncture block is 

designed to improve the rate of the code. 

 

Figure 6 Block Diagram of Turbo Encoder 
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3.1.2 Description of Several Decoding Procedures 

3.1.2.1 Maximum A Posterior (MAP) and Maximum-likelihood (ML) Decoding 

Maximum-likelihood (ML) decoding is to maximize the probability that received noisy 

code-words r given the condition code-words c were sent, i.e., max P(r | c). Maximum a 

posterior (MAP) decoding is to maximize the probability that probability that a bit ci was sent 

given the condition r is received, i.e., max P(c | r). According to Bayes theorem, 

  

    (   )     
 (   ) ( )

 ( )
     (   )   ( ) ( 7 ) 

 

When codewords are equal-probable, P(cm)=1/m, equation (7) can be rewrite into  

    (   )      (   ) ( 8 ) 

 

 

Figure 7 Flow chart shows message decoding process  

 

For AWGN channels, we have  
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If we have equal-probability, MAP decoder is the same as ML decoder. But for a given 

code trellis, MAP method is more complexity than ML method and MAP method needs to 

estimate noise variance. 

3.1.2.2 Decoding method of Linear Block Codes 

Syndrome decoding method has higher efficiency compare to ML decoding especially for 

linear codes. Consider a simple (7, 4) Hamming code. 
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From the property of parity matrix, for any codewords c,       . Thus, if the received 

codewords have no errors,        . The decoded message should be the received k bits. If 

     is not equal to zero, errors exist in the received codewords.        (   )    

    . Let’s assume there is at most only one bit error and error is the first k elements which e is 

1. For example, if e= 0 1 0 0…0, then the error is the second bit. The above equation     

  which used to detect whether or not is called the syndrome of the received signal r. Syndrome 

s is the summation of the received parity signal (r0, r1 r2 …rn-k-1) and parity check signal (rn-k, rn-

k+1, …, rn-1). 

Most of hard decision decoders are based on efficient computation syndromes and find 

the error location based on syndromes. There are also various methods to perform soft decoding 

of block codes. The readers can find these algorithms in (Lin & Costello, 2004). 
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3.1.2.3 The Viterbi Algorithm for soft decoding convolution codes 

Viterbi algorithm was introduced in (Viterbi, 1967) as a decoding method for convolution 

codes by performing maximum likelihood decoding. After the convolutional encoder, the bit 

block can be modulated into BPSK signals and to be transmitted through an AWGN channel. 

Modulated signal is represented in the following equation: 

   √   (     ) ( 9 ) 

where Eb is the energy per bit, R is the code rate, v is the bit stream.  

The received signal should be the modulated signal plus Gaussian noise with zero mean 

and varience 
  

 
, which is the following equation            Viterbi decoding algorithm 

usually includes three steps:  

Step1: branch metric calculation. Branch metric is used to calculate the distances between 

received signals and transmitted signals. The branch metric for Viterbi algorithm is 

 (  )       (       ) ( 10 ) 

which is always greater or equal to zero. Beginning at time unit t=1 in the following 

figure, separately calculate the partial metric of each path which entering in the state. Keep 

records of the path and metric for each state. 

Step 2: Increase the time unit by one, which means at time t=2, calculate the branch 

metric for all paths is by adding the branch metric entering that state together with survivor path 

at t-1 time unit. Keep records of the path and metric for each state. 

Step 3: Keep repeating step 2 until reach the final state. Trace back the survivor path.  

Trellis diagram is used to implement this algorithm. Viterbi algorithm is finding the 

maximum likelihood path through the trellis. Black nodes stand for the states in time sequence. 
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Branch metric stands for the information transmission. Labeled number on each branch metric 

stands for the length of received data between the four states. The Viterbi algorithm shows in the 

following:  

 

Figure 8 Viterbi Decoder 

 

Step 1: Initialization 

At time unit 0, the survivor path should start from zero. 

Step 2: Recursion 

Compute the shortest path of each state by adding the previous time branch metric. Store 

the survivor path and delete other paths. 
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Figure 9 Decoding Procedure of VA algorithm 

 

From the figure above, trace back the final path, we can get the decoded codes. 

3.1.2.4 BCJR Algorithm for soft decoding convolutional codes 

BCJR algorithm can be applied to block codes as well as convolutional codes. This 

algorithm is complicated than VA algorithm, so it doesn’t bring much attention until turbo codes 

discovered. BCJR is also known as Maximum a posteriori probability (MAP) decoding. The 

input information should be the log-likelihood ratio (LLR) value, which we will discuss more 

details in the LDPC decoding algorithm. After the processing of the decoder, a hard decision will 

be made. If the LLR value is less than 0, the decoder will estimate the sent bit equals to -1. If 

LLR value is larger or equal to 0, decoder will count it as +1.  
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3.1.2.5 Sum-Product Algorithm for decoding LDPC block codes 

LDPC code can be decoded in various ways. In this paper, we only focus on the sum-

product algorithm. It is known that the sum-product algorithm (SPA) has the better decoding 

performance than other decoding algorithms for LDPC codes. 

It is an algorithm which uses iteration to update the soft information between check nodes 

and variable nodes. The implementation of SPA decoding is based on the computation of a 

posteriori probabilities, its log-likelihood ratio (LLR). Then, the LLR for each code bit is given 

by the following equation. 

Step 1: Initialization 

In the initialization step, each variable node may get the posterior probability at the 

receiver, which is the information from the transmitter over AWGN channel. The soft 

information 

𝜆n→m denotes the message transmitted from the n
th
 variable node to m

th
 check node. 

    (  )       (  )  
  

   ( 11 ) 

where y denotes the received signal over AWGN channel, which is the real number. 

Λm→n denotes the message transmitted from m
th

 check node to n
th

 variable node. 

    (  )    ( 12 ) 

The m
th
 check node will accumulate the LLR information getting from the other check 

nodes. 

Step 2(1): Check node update 

From the knowledge of the message passing in the last section, for each check node m, 

we need to calculate the accumulate values in the n N (m), shows in the following: 
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    (  )         ∏     (
 

 
(     ))    ( )   ( 13 ) 

Step 2(2): Variable node update  

For each variable node n, sum up all the information from the check nodes, which in the 

set m M (n) and also the information of the variable node itself. 

    (  )   (  ) ∑          ( )  (  ) ( 14 ) 

For each iteration, compute: 

  (  )   (  ) ∑        ( ) (  ) ( 15 ) 

Step 3: Make decision 

Quantize Cn such that  

Cn=0 if   (  )<0, and Cn=1 if   (  )>=0 ( 16 ) 

3.1.3 Quantization Issues in Implementation of Decoding Algorithms 

3.1.3.1 Quantization of Viterbi Algorithm 

In order to design Viterbi decoder, quantization of state metrics is needed. In (Heller & 

Jacobs, 1971), quantization method was presented. Viterbi decoder used log-likelihood in each 

path calculation. Instead of that, the metric was quantized into 2-, 4-, and 8 -levels. The metric 

used digital symbol, which shows in the following figure. 
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Figure 10 8-level quantization code metrics 
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After the convolutional encoder, the encoded bits are sent into an AWGN channel, after 

BPSK modulation, all bits are mapped into +1 or -1. The noise is zero mean, independent, and 

double-sided power density. At +1 side, combine with the above figure, branch metric was 

quantized from 0 to 7. At -1 side, branch metric was quantized from 7 to 0. The branch metric 

has +1 and -1 part. Thus, yielding to the following equation    
 (     )

 (     )
, in which, the r should be 

the value from 0 to 7.  

 

Figure 11 Quantization range 

State metric in Viterbi algorithm could also be quantized. One method is rescaling 

approach introduced by Hekstra in (Hekstra, 1989). This implementation is to subtract the 

minimum metric, which is ck, from a metric ms(k) continuously.  

In traditional method, path metric from state s at time t-1 to a state m at time t denotes as 

bsm(k), information transition could be shown in following equation: 

 

   ( )    (   )     ( ) ( 17 ) 
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After several accumulations, overflow problem may occur. To avoid this problem, 

rescaling approach will apply without sacrifice correctness. In equation 17, addition operator 

could be change to modulo 2
c
 operator (for c bits). Based on the Two’s complement arithmetic in 

(Hekstra, 1989), equation 17 should be modified as follows: 

 

   ( )    (   )     ( )  (   (   )      ( ))       ( 18 ) 

where in equation 18, replacing state accumulation by residuals msm(k) mod 2
c
. By using this 

method, no overflow problem will occur. This rescaling method will use one more bit than 

traditional accumulation method, however due to high probability of errors will occur when we 

met metric overflow, we would rather agree on adding one bit data.  

3.1.3.2 Quantization of Iterative Viterbi Algorithm 

IVA decoding procedure will be discussed in this section. Branch metric equation shows 

in Section 3.1.1. Decoding steps will show clearly in the IVA flow diagram. 
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Figure 12 Flow chart of VA decoding 

 

In Step one, compute the branch metric using equation 9 and apply to traditional Viterbi 

algorithm in step two. Iteration begins in this step. Iteration will be terminated if the decoded 

codeword is valid or the number of iterations steps reaches the maximum value. Otherwise, it 

will update the branch metric and step back to Step 2.  

In IVA branch metric will be modified as the following equation: 

  (  )   (  )  (  ) 𝜆 (  ) ( 19 ) 

 

where    is the updated metric,    denotes the bit used in its branch metric.  (  ) denotes the 

metric of   . The quantization table can be simplified as follows: 
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Originalw: 

λw 

0 1 2 3 4 5 6 7 

0 0 0 0 0 1 1 1 

Figure 13 Quantization Level 

 

As shown in table 2, the branch metric is quantized into 3-bit, the original branch metric 

w is 7, however, the metric is scaled down to be either 0 or 1. λ=1/4 in this table.  

State metrics will constantly update in the iterative decoding. Each branch metric could 

be quantized into 3 bit value (8 quantization levels) as shown in section 3.1.4. Branch metric will 

keep gathering the non-negative symbol value form the branch metrics. Thus, state metric will 

facing the overflow problem in the iterative VA. State metric normally has 7-bit or 8 bit 

precision. In (Wei, 2004), two quantization methods were implemented to solve the overflow 

problem. One method is state metric rescaling, which all state metrics subtract the smallest state 

metric after each decoding step. If 3 bits quantization is conducted, the value of branch metric 

per transmission bit should be no larger than 7. For any ½ rate code with the number of registers 

in convolutional encoder mc could be 2, 3, 4, 5, 6, 7, 8, and mc·nc·B=28, 42, 56, 70, 84, 98, 112. 

Thus, the state metric quantization should be 5 bits, 6 bits, 6 bits, 7 bits, 7 bits, 7 bits, 7 bits, This 

method do not need to change the precision of branch and state metric in the decoding procedure. 

Another method in(Wei, 2004) is the two’s complement arithmetic approach. The number of bits 

in state metric has limitation, which is  

       (    )         ( 20 ) 
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If we also select 3 bit quantization as in state metric rescaling, the state metric 

quantization should be 7 bits, 7 bits, 8 bits, 8 bits, 8 bits, 8 bits, 8 bits. Hence, the precision of 

state metrics only need to increase for 1 bit, however the improvement of the metrics are only 

needed for some cases. 

3.1.3.3 Quantization of Sum-Product Algorithm 

The core operation for the check node update is the calulate the by log-likelihood 

function. By using two times Jacobian algorithm, the function should be revised to a linear 

function and easy to design a look-up table in the decoding procedure. 

   (   )     
      ( )    ( )

    ( )    ( )  ( 21 ) 

 

    [      ( )    ( )]     [    ( )    ( )] 

By using Jacobian logarithm twice, equation (21) should be modify into the following: 

         ( )     ( )     (        ( )    ( ) )         ( )    ( )     (        ( )    ( ) ) 

 

         ( )         ( )          ( )      ( )      [    |   ( )    ( )|]     [    |   ( )    ( )|] 

 

The above two log terms could be regard as the following funcion: 

 ( )     (       ) ( 22 ) 

The quantization range shows in the following figure. In the hardware implementation, a 

look up table is generated by the guidence of the following figure. 
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Figure 14 LUT design 

 

The decoding implementation should be achieved by the serial implementation and 

parallel implementation. Serial implementation can be view as the forward and backward 

implementation. This method has a limitation, it can deal with two nodes each time, so in require 

of high throughput, and parallel implementation will have a better performance. Tree topology 

can do fast check nodes update in (Hu, 2001). 
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3.2 LDPC Decoding in GPRAM System 

3.2.1 Overview a Simple GPRAM Prototype 

The prototype of a simple GPRAM system shows in the following block diagram. The 

system contains some sensor inputs (s1, s2), input/output actions (a1, a2) and the output action a3. 

The result of action a3 could be achieved from using LDPC coding theory instead of the 

traditional logic design in a machine. Usually, in a conventional system design, the goal is to 

achieve the optimal solution. For example, given all inputs s1, s2, a1, a2, we can get the result of 

output of a3. However, in GPRAM, a1, a2 are no long be the input only, they could also be 

outputs of a machine. This somehow self-explains the differences between the conventional 

machine and the GRPAM. 

 

Figure 15 Prototype of GPRAM 
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3.2.2 Decoding process in GPRAM 

In (Li, Dai, Schultz, & Wei, 2013), a simple example shows the how GPRAM system 

work using (7, 4) Hamming code. In the following figure, v1-v7 are variable nodes, C1-C3 are 

check nodes. The links represent information exchange in each iteration. Sum-product operation 

is used to update messages between check nodes and variable nodes. As introduced in the block 

diagram above, sensors (s1, s2) and actions (a1, a2, a3) are desired to connect with variables nodes. 

The initial value of variable node j should be the log-likelihood ratio 

  
  

   
 

  
  ( 23 ) 

in which, l denotes the number of iteration, in this example, l=30, j denotes the variable node, y 

should be the signal plus noise, as it is the initial value, y is the noise with zero mean, variance 

one. For iterative decoding, we have: 
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In the above equation,     denotes the LLR which transfer from variable node to check 

node,     denotes the LLR transfer from check node to variable node. After each iteration, a hard 

decision was made: 
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 ( 25 ) 
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3.2.3 Connection methods in GPRAM 

After knowing the basic method of decoding method, we need to focus on how GPRAM 

sets connections.  

 

 

Figure 16 GPRAM connecting procedure 

 

Step 1：For s1=1 and s2=1, no connection has been set up. According to equation 20, for 

j=1 to 7,   
  to   

  were known. After thirty iterations, a table contains 30 rows, and each row are 

the values from    to   . Then we need to process numbers in the table, count the number of “1” 

in each column, and pick two columns which have largest number of “1”, these two columns are 

connected with s1 and s2 separately.  

Step 2: Make connections for a1 and a2. First, all variable nodes are set to zero and keep 

the connection set up in Step one. Run thirty iterations again as in Step one, as s1 and s2 are 

fixed, we counted other five uncounted columns. A1 is connected to the column which has the 

most “0”, and a2 is connected to the column which has the most “1”.  
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Step 3: Repeat setting all variable nodes to zero and keep existed connections. In order to 

let a3 connected, we introduce two tasks together this time. Each task runs 10 iterations, after 

thirty iterations, a3 is connected to largest number equal to   
 . 

Thus, all connections are completed. There is one more thing needs to mention, as we 

introduced above, decoding method in GPRAM is different from that in telecommunication. In 

telecommunication, noises should be the same in the whole decoding procedure. However, in 

GPRAM, noises could change randomly in the end of each iteration, which is due to the fact that 

the signal is continuously coming into system. 

3.3 Problems in Existing Implementation 

The goal is to design an animal-like robot to let people have an intuitive view of what 

GPRAM is like. Thus, computer simulation is not enough for that. We need to build up the 

GPRAM machine. However, hardware implementation may different from the computer 

simulation, FPGA design needs a simply way to do the decoding procedure, it couldn’t deal with 

real numbers which will add complexity to the hardware design. Thus, quantization is needed 

and look up table should be designed. Mr. Mcmullen did some decoding work in hardware 

design using FPGA.  

Mr. Mcmullen derived sign-min algorithm as decoding method. The core operation is like 

the following: 

   (   )          ( )         ( )           ( )      ( )   ( 26 ) 
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However, this method will lead to a 0.4 dB performance loss than sum-product algorithm 

in (Hu & Eleftheriou, 2001). The simulation result shows in the following figure. 

 

Figure 17 BER as a function of Eb/N0 as a method of Sign-Min algorithm  
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lut input lut output 

0 101010 
1 11110 

10 10101 
11 1110 

100 1000 
101 101 

110 11 
111 0 

others 0 
 

Figure 18 LUT 3-6 
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Figure 19 LUT 6-3 

 

lut input lut output lut input lut output 

0 000000 6 110 32 100000 0 000 

1 000001 6 110 33 100001 0 000 

2 000010 6 110 34 100010 0 000 

3 000011 6 110 35 100011 0 000 

4 000100 5 101 36 100100 0 000 

5 000101 5 101 37 100101 0 000 

6 000110 4 100 38 100110 0 000 

7 000111 4 100 39 100111 0 000 

8 001000 4 100 40 101000 0 000 

9 001001 3 011 41 101001 0 000 

10 001010 3 011 42 101010 0 000 

11 001011 3 011 43 101011 0 000 

12 001100 3 011 44 101100 0 000 

13 001101 3 011 45 101101 0 000 

14 001110 3 011 46 101110 0 000 

15 001111 2 010 47 101111 0 000 

16 010000 2 010 48 110000 0 000 

17 010001 2 010 49 110001 0 000 

18 010010 2 010 50 110010 0 000 

19 010011 2 010 51 110011 0 000 

20 010100 2 010 52 110100 0 000 

21 010101 2 010 53 110101 0 000 

22 010110 1 001 54 110110 0 000 

23 010111 1 001 55 110111 0 000 

24 011000 1 001 56 111000 0 000 

25 011001 1 001 57 111001 0 000 

26 011010 1 001 58 111010 0 000 

27 011011 1 001 59 111011 0 000 

28 011100 1 001 60 111100 0 000 

29 011101 1 001 61 111101 0 000 

30 011110 1 001 62 111110 0 000 

31 011111 0 000 63 111111 0 000 
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He made a LLR look up table in his design. Two units were built in his design, one is 

check node unit, and the other is variable node unit. In the check node unit, the input of doing 

LLR operation was quantized into 3 bits. When doing the LLR algorithm, to improve the 

performance, 3 bits were transformed into 6 bits. After finish all the sum operation, they were 

transformed back to 3 bits to save the memory. As for the noise, he randomly generated a set of 

Gaussian noise and use Matlab to generate a LUT. The result is not very well. So I did the 

simulation to check how bad the performance is. By adding two features together, performance 

loss is more than 3dB in the following figure. The decoding result is almost half right half wrong. 

 

Figure 20 (7, 4) Code Simulation in Bryon's method 
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The simulation result is not good in the above figure. One reason is sign-min algorithm is 

approached in Bryon’s decoding. 0.4dB loss occurred using sign-min algorithm compare to the 

Sum-product algorithm. Another reason is for the LUT table Bryon created. Errors occur due to 

the 3 bit to 6 bit and also 6 bit to 3 bit message exchange.  

We couldn’t bear that much loss in the design of GPRAM. In this circumstance, changing 

the quantization method is necessary. Also, the LUT is also needed to be change. With setting 

proper LUTs for check node update and also noise, we hope the performance within 0.2dB and 

even 0dB loss. This is my major work in the thesis. 

In the following sections, quantization of LDPC decoding and noises will be introduced. 

3.4 Quantization of LDPC decoding 

According to the hardware implementation, the check-node updates part has the most 

computationally complexity due to the “tanh” rule. In this circumstance, we need to implement a 

quantized sum product algorithm to fit for the hardware implementation. Also, messages update 

between the check nodes and variable nodes are real numbers which need to be quantized to 

integers. 

In Step 2(1): Check node update: 

    (  )         ∏     (
 

 
(𝜆    ))    ( )   ( 27 ) 

 

This equation needs to make a change. 
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The 𝜆    may be regard as two parts. First is the symbol part, which could be achieved 

by using the sign function. Second part is the absolute value of the message. The equation can be 

rewrite into the following: 

    (  )        ∏     (
 

 
{    (     (  ))}      (  ) )

    ( )  

 

 

  ∏ {    (     (  ))}     ( )            {   (∏     [
      (  ) 

 
]    ( )  )} 

 

 ∏ {    (     (  ))}     ( )            {   (∏     [
      (  ) 

 
]    ( )  )} ( 28 ) 

where,  ( ) is the quantized function. 

  

 ( )     
    

    
    ( ) ( 29 ) 

 

Using Matlab,  ( ) was shown in the following figure. 
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Figure 21 Quantization function 
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Figure 22 Quantization into eight levels 

 

The quantized range was set as the above figure. All the LLR real number value was 

quantized into Q-LLR integer value. The LLR values have been divided into two parts, one bit is 

for sign operation, and other 3 bits are the absolute values. In the hardware implementation, the 

sign operation can be implemented as the XOR switch. The other 3 bits can use a look up table to 

map the value of   (x). According to the equation 11, sum up all the values of   (x), re-mapping 

to the LLR value. 

LLR Q-LLR 

<0.25 3.5 

[0.25,0.5) 1.875 

[0.5,0.75) 1.25 

[0.75,1) 1 

[1,1.5) 0.625 

[1.5,2) 0.375 

[2,2.875) 0.25 

>=2.875 0 
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Variable Node Update and the decision part should remain the same. After doing the 

quantized decoding algorithm, the Bit Error Rate (BER) performance has at most 0.3dB loss. 

Noise Quantization will help us bring back the loss in the GPRAM design. 

Quantization level could be designed as you need. 4-bit quantization have better 

performance in figure 21, but only a little better than 3-bit quantization. If we take hardware 

limitation into consideration, it will need more memory to process the 4-bit information. Also, 

from figure 17, value in x axis changes little in range [3, 7]. So there is no need that we divide x-

axis into so many levels. Results will not influence that much if we count 0 in that range. 

Performance of 3-bit is only 0.3 dB worse than the original performance. If we change to 2-bit 

quantization, performance is figure 21 is much worse than original one. Result is not acceptable 

in 2-bit quantization. Quantization in 3 bit is more desirable compare to 2-bit and 4-bit 

quantization. Thus, in my thesis, 3-bit quantization will be implemented. 

 

Figure 23 Quantization in 4 levels 

 

LLR Q-LLR 

<0.5 2 

[0.5,1) 1 

[1,2) 0.5 

>=2 0 
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Figure 24 Quantization in 16 levels 

LLR Q-LLR 

<0.25 3.5 

[0.25,0.5) 1.875 

[0.5,0.75) 1.25 

[0.75,1) 1 

[1,1.25) 0.685 

[1.25,1.5) 0.5 

[1.5,1.75) 0.4 

[1.75,2) 0.3 

[2,2.25) 0.25 

[2.25,2.5) 0.2 

[2.5,2.75) 0.15 

[2.75,3) 0.1 

[3,3.25) 0.0825 

[3.25,3.5) 0.0625 

[3.5,3.75) 0.05 

>=3.75 0 
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Figure 25 Comparison of different quantization levels 
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3.5 Noise implementation in LDPC decoding design 

Computers can easily generate the Gaussian noise for us during the simulation. However, 

it is hard to do the same thing using FPGA. In this circumstance, a noise look-up table needs to 

be generated for FPGA. The noise has zero mean and unitary variance. 100 sets of quantized 

Gaussian noises were generated and each set contains 100 Gaussian noises. One set of quantized 

Gaussian noise was picked after simulation. Which is gaussian[100]={-2,0,-1,0,-1,0,-1,-1,0,1,-

2,2,-1,1,1,1,-1,0,0,-1,0,0,0,0,3,0,1,0,-1,0,1,-1,-2,0,0,0,0,1,1,-1,-2,1,0,-1,1,0,0,0,1,2,0,-2,1,-1,1,-

1,1,-1,-1,1,-1,1,0,0,0,2,0,0,-1,-1,-1,2,0,-1,0,1,-1,1,-1,0,-2,1,1,-1,0,0,1,0,1,0,-1,0,0,1,0,-1,0,1,0,-1} 

The above set of Gaussian noise was chosen because this set fit best for the original BER 

performance without doing the quantization. The other sets could be found in the appendix part. 

The following figure shows the pdf of the Gaussian noise. 

 

Figure 26 PDF of Gaussian Noise set which used in the simulation 
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3.6 Simulation Results 

In the thesis, LDPC codes with length (7, 4), (40, 20) (510,255), (1020, 510) were used in 

the simulation. Each length code was simulated 3 times, with 10 iterations each time. The BER 

performance without quantized, with quantized and also the quantized noise added to the 

simulation.  

 

Figure 27 Simulation result of (7, 4) code 
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Figure 28 Simulation result of (40, 20) code 
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Figure 29 Simulation result of (510, 255) code 
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Figure 30 Simulation result of (1024, 512) code 
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3.7 Conclusions 

From the above figures in the simulation part, the longer the code length, the BER 

performance is nearer to the Shannon limit. The (1020, 510) code, when the SNR is 2.5dB, it 

may reach to the 10
-5

 Shannon Bound. However, the (7, 4) code, even for the SNR is 7dB; it can 

only falls into 10
-4

. The quantized decoding algorithm will bring 0.3dB loss at most. If we add 

one quantization bit into the decoding, for example, 4 bit, the result will be better. However, it 

will be more memory in the hardware implementation. The result is only 0.3dB, we can bare that 

performance. In the GPRAM design, we need to bring back this loss by adding the quantized 

noise. The noise set was picked which will recover the loss cost by the decoding quantization. As 

we have 100 noise sets, we simulated and picked one set which will have the same result on all 

codes no matter what length it is. This set of noise will be used as the noise look-up table in the 

GPRAM. As said above, the iterative decoding process in the GPRAM is different from that in 

telecommunication. The noise in GPRAM could change randomly in the end of each iteration. 

Thus, this look-up table simplifies the noise reading in the design of GPRAM. What’s more, this 

look-up table also brings back the performance of the iterative decoding. In conclusion, by doing 

the two quantized in the iterative decoding step, the problems met in FPGA design of GPRAM 

have been solved. 
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CHAPTER FOUR: IMAGING MANIPULATION FOR GPRAM 

4.1 Differences between camera images and bio-visual images at retinal 

In ancient time, people have started to try to explain how human visual worked. Date 

back to the time of Aristotle, his thoughts of human vision was that between the observer and the 

object, there should exits something allowing the object to be seen. He called this the media, 

which is known as the air today. However, during the Middle Ages time, Scholars hold different 

ideas of Aristotle's theory, which are the observer’s eyes sent out emission to the object and the 

emissions made the object being able to be observed. Although these theories may seem illogical 

today, the theories were based on the observation of the scholars not on today's scientific 

experiments. Due to the theories generated by thousands of scholars our understanding of human 

vision has come to a breakthrough. 

Hyper acuity is important in human visual system. For example, the design of the 

telescope helps us to expand our scope about the universe. More and more advanced tools were 

developed for the image processing of human. Hyper acuity will take the resolution limitation 

into consideration. More and more devices with hyper acuity have been achieved. No matter how 

many advanced tools were designed to help human improve the resolution of the image, human 

eyes are the still the final step. Thus, human eyes are the limitations of human visual capability. 

Take a look around the environment; you will see images and colors in huge variety. All 

the images can be update with no break at all, and also can judge the accurate position. These are 

the beauty of the human vision. Although the images we saw are seamless, they are updated 

continuously by the help of our brain. With the function of the brain, we can see the image more 

clearly and with more details. Without the help of our brain, the image we saw at retinal will be 
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blurred. Due to the movement of the eyeball, the images are not stable. In this paper, we 

simulated the blurred images at the retinal and made a video which showed the exact images at 

the retinal without the function of the brain. 

In (Wei, Levi, Li, & Klein, 2007), human visual system and hyper acuity device were 

discussed. Device with high visual acuity is in great need in many fields. For example, in the 

design of a space shuttle, a metal-polishing machine needs to examine the surface of the space 

shuttle, to make sure it is perfect flat, and flawless. We focus on studying that kind of machine 

and assume the vision part of that machine is similar to human eyes. Also, the following things 

were taken into consideration: point spread function, Poisson noise, eye movements with 

conditional of stable head.  

Let’s take a short review of how human eyes work first. When light entering the eye, it 

passes through the first transparent layer of the eye, called cornea. After reaching cornea, it will 

immediately reach the eye lens. Continuous refraction of the light at the surfaces of the cornea 

and the eye lens together serve to focus an image on the curved rear surface of the eyeball known 

as the retina. Retina is the innermost layer, it is like a "screen", on which image is formed by the 

lens when properly focused. About 100 million photo receptors are located on the retina. We 

assume the receptors are arranged in hexagonal array, because, hexagonal array has the tightest 

character, which shows in the following figure. The diameter of receptor is the cone size which is 

0.6 min of arc. The total size of receptor depends on the stimuli, range from 400 to 10000. The 

stimuli are two dots with distance of  . Detector has functions of processing visual signal from 

receptor and also making a decision.   
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Figure 31 Receptors structure and stimuli 

 

In (Wei, Levi, Li, & Klein, 2007), how to select stimuli is also described. We have two 

stimuli, shows in the above figure. We randomly select one pair of two dots and use it into the 

device. As stimuli presented, not all decisions are correct, about 75% decision will be made. 

Under the above conditional, the image will be blurred, which is the same conditional of human 

eyes. However, hyper acuity is in great demand. If a system with CCD (charge-coupled device) 

camera was used, images will be much clearer. The image is clear with no doubt, but processing 

the image will be slow. What if we deliver a machine, which can work well with low resolution 

image? This idea also brings up Dr. Wei’s idea of the GPRAM machine.  

Further, an ideal detector for moving stimuli is conducted. Two synchrony mechanisms 

have been taken into consideration. First method is by using SDE (stimulus defined exactly) 

detector array. Each SDE detector will record the moving distance, direction, and speed. Second 

method is snap shooting the all uncertain parameters for an image. After all uncertain parameters 

are measured and fixed, the problem will be similar as design a fixed detectors.  

𝛿  ∆𝜃 

𝛿 

 

0.6 MIN 

Stimuli #1 

Stimuli #2 
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In my thesis, I will focus on the detector design with fixed stimuli. All parameters are the 

same as introduced in (Wei, Levi, Li, & Klein, 2007).   

4.2 Key steps to generate coarse visual images from camera images 

4.2.1 Point Spread Function 

The point spread function is a calculated image of optical system to a perfect point source 

of light. PSF is the response of an imaging system to the point input. It's analogous to the 

impulse response. The flowing figure is the typical point-source situation in an imaging system. 

 

Figure 32 Typical point source situation in image system 

 

Consider a point of light, if we have perfect visual system, the image of this light point on 

the retina will be exactly the same as the original point of light. It would be shown in the figure 

with green lines. However, the eye’s optics is not perfect, so the light point is spread on the 

retina as shown in the following red curve, which is called the point spread function. 
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Figure 33 Point Spread Function 

 

If we have two objects really close to each other, after the convolution with PSF, they 

might be smeared together and look like one object on the screen. 

The output image can be achieved by the two dimensional convolution of the ideal image 

with point spread function. In this case, the point spread function is described as the sum of two 

2-D Gaussian functions in (Geisler, 1984) (Geisler & Davilla, 1985) 

 ( )  
  

    
   [

      

  
 ]  

  

    
   [

      

  
 ] ( 30 ) 

In the above equation, a1, a2, a3, a4 are coefficients are a1=0.417, a2=0.583, 

a3=0.443*scale (arc minutes)=26.58*SPSF (arc seconds), and a4=2.04* SPSF (arc minutes)=122.4 * 
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SPSF (arc seconds). SPSF is scale which we can change the distribution of point spread function. 

SPSF was scaled in range from 0 to 9. For SPSF equals to 0, there is no point spread added into the 

image. The larger the value of SPSF, the wider it spreads, the more blur the image will be. In 

images, we use PSF0, PSF1, PSF2 to denote no point spread case, point spread with SPSF=1, 2 

respectively. 

In the daytime, the pupil gets narrower than in the night. The diameter of human pupil 

has the range from 3.0mm to 5.0 mm. In this thesis, 3.0 mm pupil was assumed. These 

parameters set in this thesis followed by (Wei, Levi, Li, & Klein, 2007). The diameter of the 

receptor is 0.6 arcmin, which is the space between cones and square shape is assumed here. The 

unit arcmin denotes one minute of arc, which means 1/60 of one degree. The unit arcsec will also 

be used in the thesis, which is 1/60 of one arcmin. In the thesis, chromatically broadband stimuli 

will only stimulate the middle and long wavelength cones equally.  

4.2.2 Poisson distribution 

The image we saw at the retina should be blurred, and noise should be added to the image, 

which is Poisson distribution.  In information theory, the Poisson distribution shows the 

probability of a number of events happens in a fixed interval of time. In our situation, the 

Poisson distribution was expressed as the number of photons absorbed in the receptor during a 

fixed period of time.  

 (   )  
     

  
 ( 31 ) 
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In the above equation, r belongs to nature numbers, and F denotes the mean number of 

quanta absorbed in the receptor (Wei, Levi, Li, & Klein, 2007). The value of F (Geisler, 1984) 

dependent on optical factors and also point spread function in equation (27). 

                ( )   ( ) ( 32 ) 

where A denotes the cross-sectional area of the receptor, the value is A=0.28 min
2
. D is the 

duration of the stimulus, D=0.2 sec. S is the area of 2 mm pupil, which is S=3.1416 mm
2
. T is 

the transmittance of the ocular media, T=0.68. E555 denotes the quantum efficiency of the 

photoreceptors at 555nm, E555=0.5.It is assumed that half of the quanta are effectively absorbed 

whether they fall in a middle or long wavelength cone. l (t) is the luminance distribution of the 

stimulus in candelas per square meter. h (t) denotes the point spread function in equation (27). In 

images, we use PN0 and PN1 to denote without Poison noise and with Poison noise respectively.  

4.2.3 Simulation Eye Movements 

Eye movements are disordered and the eyeballs are drifting all the time. Even when we 

fix the head to make it not move and let the eyes gazing one object, the eyeballs are continuing 

moving. When walking, running, sleeping, the drift rates are different. Even two people walking 

with the same pace, the eye drift rate may be different. This fixation eye movements studied in 

this thesis gives us a better understanding of how human brain helps us to see the objects. 

Quintessentially, the drift rate is 2-5 Hz, and peak to peak amplitude is less than 5 arcmin 

(Wei, Levi, Li, & Klein, 2007). The horizontal direction drifts are independent with the vertical 

direction drifts. The drifts between the two eyes are also uncorrelated. In this thesis, the drift-like 

eye movement could be model as the Gaussian random function, which shows in the following: 
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 ( )   ( )     ( ) ( 33 ) 

 

 ( )   ( )     ( ) ( 34 ) 

 

In the above equation, h (t) is the impulse response which can be described as follows: 

 

 ( )  (
    

√    
 
   ( 

  

   
 )     )    (

   

    
) ( 35 ) 

where   
 =50000 ms

2
. 

In equation (30) & (31),   is the convolution operation and         denote the 

independent Gaussian random process with unitary variance and zero mean. In equation (33), we 

can change the scale of fixation movement by changing the variance of        , i.e., using two 

independent Gaussian process with variance S
2

FM and zero mean. The larger the variance, the 

more unstable the images. In images, we use FM0, FMx to denote no fixation movement, 

fixation movement with SFM=x, respectively. 
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4.3 Flow chart of the Matlab programing 

 

Figure 34 Flow chart of the system design 

 

I used the Matlab to process the video which shows the result. I will capture the image of 

the video to show the results after doing the above three steps. 

Read Input 

Video 

Point Spread 

Function 
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Blurred 
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4.4 Simulation Results 

 

Figure 35 Original Image 
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Figure 36 Image through Point Spread Function, with SPSF=0.5 
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Figure 37 Image through Point Spread Function, with SPSF=1 
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Figure 38 Image through Point Spread Function, with SPSF=2 
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Figure 39 Image through Point Spread Function, with SPSF=4 
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(a) without noise

 

(b) with noise 

Figure 40 Image without Poison noise (a) and with Poison Noise (b) 
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Figure 41 Image show fixation eye movement with SFM=5 

You may see from the image, which is not located in the center anymore. It will show 

well in a video. 
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Figure 42 Combine three functions together, with SPSF=1, PN=1, SFM=1 
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Figure 43 Combine three functions together, with SPSF=2, PN=1, SFM=2 
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CHAPTER FIVE: CONCLUSION 

In the thesis, I introduce the basic design idea of the GPRAM, which is different from the 

conventional machine. GPRAM systems use the idea of coding instead of the logic design. Error 

control coding plays an important role in the design of GPRAM. The GPRAM system uses 

LDPC coding and decoding theory. Thus, the quantization in the iterative decoding part is 

needed in the FPGA design of the GPRAM. The information updates between check nodes and 

variable nodes have been changed to the integer number due to the quantization of the decoding. 

After the quantization of the iterative decoding, the BER performance is 0.3dB loss compare to 

the un-quantized performance. What’s more, noise quantization is also needed in the FPGA 

design of GPRAM. A Gaussian noise look-up table was created, and could be read one by one in 

the end of every iteration. This quantized noise brings back the BER performance compare to the 

quantized performance. These noises may be not perfect match the Gaussian distribution due to 

the small quantities. The goal is to pick a set of noise which will match the un-quantized BER 

performance. We may tolerance the noises are not exactly match the Gaussian distribution, 

because we need the BER performance match the un-quantized one in the GPRAM design. 

In the human vision part, the images we see from our eyes are blurred. The role of our 

brain is as an image processing center, which may recover the blurred images to the fine images. 

GPRAM is a general purpose machine which is like the human brain, so the images input into 

the GPRAM should be blurred ones. Another reason of needed for the blurred images is the 

following, the higher resolution of the image, the more data are required. Thus, we need to 

mimic the images merely see from our eyes, which are blurred images. Three steps are 

introduced in this thesis, which are point spread function, Poisson distribution, fixed eye 
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movements. These three steps are independent. One image pass through these three steps, coarse 

images are generated. 

What we did in the thesis is not enough; many other practical ideas should be added in 

the GPRAM. We will build a robot-like system which can display behaviors similar to some 

small animals. But to achieve this goal, we will need to extend error control coding beyond our 

current understanding. What’s more, music signal is an interesting part and needed in the 

GPRAM. The GPRAM tit uses singing songs to enhance its capability. For example, in the 

future, we may use the mind-mouth-ear-mind loop to make its music-like signal base more 

coherent, longer strings, more variations, so it may better predict the future. For the Vision part, 

after we get the coarse images, we may take only a few pixels and do the coding, after iterative 

decoding; the GPRAM may take a good guess and determine what is in an image.  
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APPENDIX: MATLAB CODE OF VISION PART 
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PSF function 

function h=pointspread(hs,scale) 

hs=0.6; %space between cones,in arc min, assume square shape here 

scale=6; 

a_1=0.417; 

a_2=0.583; 

a_3=0.443*scale; 

a_4=2.04*scale; 

x=[-10*hs*scale:hs:10*hs*scale]; 

y=[-10*hs*scale:hs:10*hs*scale]; 

h=zeros(length(x),length(y)); 

for i=1:length(x) 

    for j=1:length(y) 

        h(i,j)=a_1/(2*pi*a_3)*exp(-0.5*(x(i)^2+y(j)^2)/a_3^2)+a_2/(2*pi*a_4)*exp(-

0.5*(x(i)^2+y(j)^2)/(a_4^2)); 

    end 

end 

h=h/h(floor(length(x)/2)+1,floor(length(y)/2)+1); 

   surf(x,y,h); 

  axis([-10*scale 10*scale 0 1.3]); 

   xlabel('retinal distance, x (min)'); 

   ylabel('relative intensity'); 

   text(-5,1.2,'Point spread function'); 
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  x 

Fixation Eye movement 

function [xo,yo]=fixation_eye_mov(frame_rate,nframes,hs,scale) 

%frame_rate=30;nframes=1000;scale=16;hs=0.6; 

prnt=0; 

xo=zeros(1,nframes,'int16'); 

yo=zeros(1,nframes,'int16'); 

frame_msec=floor(1000/frame_rate/scale+0.5); 

tot_msec=frame_msec*nframes; 

  

x_scale=1000; 

x=[1:1:x_scale]; 

x=x-x_scale/2; 

sigma2=50000; 

ht=(2400/sqrt(2*pi*sigma2)*exp(-x.*x./2/sigma2)-0.7).*cos(2*pi*x/500); 

%temp=sum(ht); 

if prnt==1 

    figure 

    subplot(2,1,1),plot(x,ht,'k-') 

    axis([-x_scale/2 x_scale/2 -3 5]); 

    grid; 

    legend('fixational eye movement') 
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    xlabel('msecond'); 

    ylabel('Amplitude (SEC OF ARC)'); 

    text(200,4,'impluse response'); 

     

   figure 

    subplot(2,1,2), plot(20*log10(abs(fft(ht)))); 

    axis([0 200 -20 60]); 

    legend('Power Spectral Density of h(t)') 

    xlabel('Hz'); 

    ylabel('PSD (dB)'); 

end 

ii=1; 

for t=1: tot_msec+10 

    if t==1 

        ax=randn(x_scale); 

    end 

    yt(t)=0.; 

    for i=1:x_scale 

        yt(t)=yt(t)+ht(i)*ax(x_scale-i+1); 

    end 

    if mod(t,frame_msec)==1 

        xo(ii)=int16(yt(t)/60/hs*scale); 
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        ii=ii+1; 

    end 

    for i=1:x_scale-1 

        ax(i)=ax(i+1); 

    end 

    ax(x_scale)=randn(1); 

end 

ii=1; 

for t=1: tot_msec+10 

    if t==1 

        ax=randn(x_scale); 

    end 

    yt(t)=0.; 

    for i=1:x_scale 

        yt(t)=yt(t)+ht(i)*ax(x_scale-i+1); 

    end 

    if mod(t,frame_msec)==1 

        yo(ii)=int16(yt(t)/60/hs*scale); 

        ii=ii+1; 

    end 

    for i=1:x_scale-1 

        ax(i)=ax(i+1); 
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    end 

    ax(x_scale)=randn(1); 

end 

  

if prnt==1 

    xx=[1:1:tot_msec+10] 

    figure 

    plot(xx,yt,'k-') 

    axis([1 tot_msec+10 -200 200]); 

    legend('fixational eyemovement') 

    ylabel('Amplitude (SEC OF ARC)'); 

    xlabel('msec'); 

    xx=[1:1:length(xo)] 

    figure 

    plot(xx,xo,'k-') 

    axis([1 length(xo) min(min(xo)) max(max(xo))]); 

    legend('fixational eyemovement') 

    ylabel('Amplitude (SEC OF ARC)'); 

    xlabel('msec'); 

end 

filr_gram 

function flnm_para() 
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global Mv Mvname Shp_nm lenH lenW scl_res scl_PSF scl_FM scl_PSN; 

Mv=''; 

while(length(Mv)==0)%(Mv~='0')&&(Mv~='1')) 

    Mv = input('For Movie, input 1, pattern, input 0: \n','s'); 

    if Mv~='0' && Mv~='1' 

        fprintf('wrong input, try again; \n'); 

        Mv=''; 

    end 

end 

if Mv=='1' 

    Mvname=''; 

    while(length(Mvname)==0) 

        Mvname = input('input movie name, for example nature3.mpg: \n','s'); 

    end 

end 

if Mv=='0' 

    Shp_nm='';ind=0; 

    while(length(Shp_nm)~=3||ind==0) 

        Shp_nm = input('input shape name: dot,sqr for squar,ovl for oval\n','s'); 

        ind=0; 

        if (length(Shp_nm)==3) 

            if(Shp_nm=='dot') 
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                Mvname='dot'; 

                ind=1; 

            end 

            if(Shp_nm=='sqr') 

                ind=1; 

                Mvname='square'; 

            end 

            if(Shp_nm=='ovl') 

                ind=1; 

                Mvname='oval'; 

            end 

            if ind==1 

                reply=input('length:\n','s'); 

                lenH=str2num(reply); 

                reply=input('width:\n','s'); 

                lenW=str2num(reply); 

            end 

        end 

        if(ind==0) 

            fprintf('wrong input, try again;\n'); 

            Shp_nm=''; 

        end 
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    end 

end 

reply=''; 

while (length(reply)==0) 

    reply = input('input PSF, 0.0 to 9.9: \n','s'); 

    scl_PSF=str2num(reply); 

    if (scl_PSF<0)||(scl_PSF>9.9) 

        fprintf('out of range, try again;\n'); 

        reply=''; 

    end 

end 

  

reply=''; 

while (length(reply)==0) 

    reply = input('input Fixational Movement, 0.0 to 9.9: \n','s'); 

    scl_FM=str2num(reply); 

    if (scl_FM<0)||(scl_FM>9.9) 

        fprintf('out of range, try again;\n'); 

        reply=''; 

    end 

end 

reply=''; 
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while (length(reply)==0) 

    reply = input('input Poisson, 0.0 to 9.9: \n','s'); 

    scl_PSN=str2num(reply); 

    if (scl_PSN<0)||(scl_PSN>9.9) 

        fprintf('out of range, try again;\n'); 

        reply=''; 

    end 

end 

 

Main program 

% this is program to convert any shape and movie file into 

% retinal images, including point spread blur, fixation movement, and 

% poisson noise 

  

close all 

clear all 

global Mv Mvname Shp_nm lenH lenW scl_res scl_PSF scl_FM scl_PSN; 

Mv='0';Mvname='nature3';Shp_nm='dot'; 

lenH=1;lenW=1;scl_PSF=0.0;scl_FM=0.0;scl_PSN=0.0; 

  

flnm_para(); 
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Mvname1=[Mvname '.mpg']; 

hs=0.6; % cone size  

if Mv=='1' 

    xyloObj=mmreader(Mvname1); 

    nFrames = xyloObj.NumberOfFrames; 

    vidHeight = xyloObj.Height; 

    vidWidth = xyloObj.Width; 

    frame_rate=xyloObj.FrameRate; 

% 

% Preallocate movie structure. 

    nFrames=300; 

    mov(1:nFrames) = ... 

        struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 

    'colormap', []); 

  

% Read one frame at a time. 

    aa=zeros(vidHeight, vidWidth, 3,'uint8'); 

else 

    nFrames=100; 

    vidHeight= 100; 

    vidWidth = 200; 

    frame_rate=29.97; 
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    aashape=zeros(vidHeight, vidWidth, 3, 'uint8'); 

    LH=int16(vidHeight/2-lenH/2); 

    LW=int16(vidWidth/2-lenW/2); 

    for i=LH:LH+lenH-1 

        for j=LW:LW+lenW-1 

            aashape(i,j,:)=128; 

        end 

    end 

   % mov(1:nFrames) = ... 

      %  struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 

       % 'colormap', []); 

end 

if scl_PSF~=0.0 

    h=pointspread(hs,scl_PSF); 

    bb=zeros(length(h)-1+vidHeight,length(h)-1+vidWidth, 3,'uint8') 

    cc=zeros(vidHeight, vidWidth,'single') 

    dd=zeros(length(h)-1+vidHeight, length(h)-1+vidWidth,'single')  

end 

if scl_FM~=0.0 

    [xo,yo]=fixation_eye_mov(frame_rate,nFrames,hs,scl_FM); 

    xo=xo-min(xo); 

    yo=yo-min(yo); 
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end 

  

for k = 1 : nFrames 

    if Mv=='1' 

        aa=read(xyloObj, k); 

    else 

        aa=aashape; 

    end 

    if scl_PSF~=0.0 

        for j=1:3 

            cc=single(aa(:,:,j))*2^(-8); 

            ccmax=max(max(cc)); 

            dd=conv2(cc,h); 

            ddmax=max(max(dd)); 

            bb(:,:,j)=uint8(dd*ccmax/ddmax*2^8); 

        end 

        

aa=bb(floor(length(h)/2)+1:vidHeight+floor(length(h)/2),floor(length(h)/2)+1:vidWidth+floor(le

ngth(h)/2),:); 

    end 

    if scl_PSN~=0.0 

        ee=poissrnd(single(aa)*2^(-8)*200); 
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        aa=uint8(ee); 

        %aa=uint8(ee/max(max(max(ee)))*2^8); 

    end 

    if scl_FM~=0.0 

        mov(k).cdata(1:vidHeight-xo(k),1:vidWidth-yo(k),:) = 

aa(xo(k)+1:vidHeight,yo(k)+1:vidWidth,:); 

    else 

        mov(k).cdata = aa; 

    end 

end 

  

Cpsf=num2str(scl_PSF); 

Cfm=num2str(scl_FM); 

Cpsn=num2str(scl_PSN); 

if Mv=='1' 

    Filename=['rawdata/' Mvname '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn '.avi']; 

    FilenameM=['rawdata/' Mvname '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn '.mat']; 

else 

    CH=num2str(lenH); 

    CW=num2str(lenW); 

    Filename=['rawdata/' Mvname '_H' CH '_W' CW '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn 

'.avi']; 
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    FilenameM=['rawdata/' Mvname '_H' CH '_W' CW '_PSF' Cpsf '_FM' Cfm '_PSN' 

Cpsn '.mat']; 

end 

movie2avi(mov, Filename, 'compression', 'None'); 

save(FilenameM); 
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