
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2014

Practical Issues in GPRAM Development Practical Issues in GPRAM Development

Yin Li
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Li, Yin, "Practical Issues in GPRAM Development" (2014). Electronic Theses and Dissertations, 2004-2019.
4712.
https://stars.library.ucf.edu/etd/4712

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236255978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F4712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4712?utm_source=stars.library.ucf.edu%2Fetd%2F4712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PRACTICAL ISSUES IN GPRAM DEVELOPMENT

by

YIN LI

B.S. Northeast Petroleum University, 2011

for the degree of Master of Science

in the Department of Electrical Engineering

in the College of Engineering and Computer Sciences

at the University of Central Florida

Orlando, Florida

Fall Term

2013

Major Professor: Lei Wei

ii

© 2013 Yin Li

iii

ABSTRACT

In this thesis, two parts of practical issues in the GPRAM system design are included.

The first part is the coding part. The sum-product decoding algorithm of LDPC codes has been

refined to fit for the GPRAM hardware implementation. As we all know, communication

channel has noise. The noise in telecom system is different from that in GPRAM systems. So the

noise should be handled well in the GPRAM design. A noise look-up table was created for

FPGA and those noises in the table are quantized. The second part of the thesis is to convert

perfect images in video stream to those similar to the coarse images in human vision. GPRAM is

an animal like robot in which coarse images are needed more than the fine images in order for us

to understand how to GPRAM progresses those images to generate as clear image as we

experienced. We use three steps, Point Spread function, inserting Poisson Noise, and introducing

Eye fixation movements to mimic the coarse images seen merely from our eyes at the retinal

photo-receptor level, i.e., without any brain processing.

iv

ACKNOWLEDGMENTS

I am deeply grateful to Dr. Lei Wei for his role in providing valuable guidance in the idea

of GPRAM. His idea expands my vision in the coding theory. He is the one who guides me to

think more of how our brains work and how to make a similar machine has the analogical

functions as biological brain. I want to thank again for his continuous help in achieving my

masters’ degree.

Also, I wish to thank the following present members in our lab at the University of

Central Florida who rendered many suggestions and supports in the preparation of my thesis:

Bowen Dai and Huihui Li.

In addition, I wish to thank Wenjun Zhang, for his support in the writing of the thesis.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

CHAPTER ONE: INTRODUCTION ..1

CHAPTER TWO: LITERATURE REVIEW ...6

2.1 Literature review of error control coding and quantization6

2.2 Literature review of biological visual systems ..9

2.3 Literature review of GPRAM systems .. 13

CHAPTER THREE: QUANTIZATION IN LDPC DECODING AND NOISE.............. 16

3.1 Error Control Coding in Telecommunication systems .. 16

3.1.1 Description of Several Types of Error Control Coding 17

3.1.2 Description of Several Decoding Procedures ... 24

3.1.3 Quantization Issues in Implementation of Decoding Algorithms.................... 30

3.2 LDPC Decoding in GPRAM System .. 37

3.2.1 Overview a Simple GPRAM Prototype ... 37

3.2.2 Decoding process in GPRAM.. 38

3.2.3 Connection methods in GPRAM ... 39

3.3 Problems in Existing Implementation ... 40

3.4 Quantization of LDPC decoding .. 45

3.5 Noise implementation in LDPC decoding design ... 52

vi

3.6 Simulation Results ... 53

3.7 Conclusions ... 57

CHAPTER FOUR: IMAGING MANIPULATION FOR GPRAM................................. 58

4.1 Differences between camera images and bio-visual images at retinal 58

4.2 Key steps to generate coarse visual images from camera images 61

4.2.1 Point Spread Function ... 61

4.2.2 Poisson distribution ... 63

4.2.3 Simulation Eye Movements ... 64

4.3 Flow chart of the Matlab programing ... 66

4.4 Simulation Results ... 67

CHAPTER FIVE: CONCLUSION .. 76

APPENDIX: MATLAB CODE OF VISION PART... 78

LIST OF REFERENCES ... 93

vii

LIST OF FIGURES

Figure 1 Block Diagram of Communication System .. 17

Figure 2 Structure of Codewords ... 17

Figure 3 (7, 4) Hamming code words, generator matrix (G) and parity check matrix (H)19

Figure 4 Block Diagram of Convolutional Encoder.. 21

Figure 5 Convolutional Encoder .. 21

Figure 6 Block Diagram of Turbo Encoder .. 23

Figure 7 Flow chart shows message decoding process ... 24

Figure 8 Viterbi Decoder ... 27

Figure 9 Decoding Procedure of VA algorithm .. 28

Figure 10 8-level quantization code metrics ... 30

Figure 11 Quantization range ... 31

Figure 12 Flow chart of VA decoding .. 33

Figure 13 Quantization Level... 34

Figure 14 LUT design .. 36

Figure 15 Prototype of GPRAM .. 37

Figure 16 GPRAM connecting procedure .. 39

Figure 17 BER as a function of Eb/N0 as a method of Sign-Min algorithm 41

Figure 18 LUT 3-6... 42

Figure 19 LUT 6-3... 43

Figure 20 (7, 4) Code Simulation in Bryon's method .. 44

Figure 21 Quantization function .. 47

viii

Figure 22 Quantization into eight levels ... 48

Figure 23 Quantization in 4 levels ... 49

Figure 24 Quantization in 16 levels.. 50

Figure 25 Comparison of different quantization levels ... 51

Figure 26 PDF of Gaussian Noise set which used in the simulation................................ 52

Figure 27 Simulation result of (7, 4) code .. 53

Figure 28 Simulation result of (40, 20) code .. 54

Figure 29 Simulation result of (510, 255) code .. 55

Figure 30 Simulation result of (1024, 512) code .. 56

Figure 31 Receptors structure and stimuli .. 60

Figure 32 Typical point source situation in image system .. 61

Figure 33 Point Spread Function .. 62

Figure 34 Flow chart of the system design ... 66

Figure 35 Original Image ... 67

Figure 36 Image through Point Spread Function, with SPSF=0.5 68

Figure 37 Image through Point Spread Function, with SPSF=1 .. 69

Figure 38 Image through Point Spread Function, with SPSF=2 .. 70

Figure 39 Image through Point Spread Function, with SPSF=4 .. 71

Figure 40 Image without Poison noise (a) and with Poison Noise (b) 72

Figure 41 Image show fixation eye movement with SFM=5 .. 73

Figure 42 Combine three functions together, with SPSF=1, PN=1, SFM=1........................ 74

Figure 43 Combine three functions together, with SPSF=2, PN=1, SFM=2........................ 75

1

CHAPTER ONE: INTRODUCTION

Over the last thousands of years, people have been wondering what is intelligence, how

to define intelligence and how to build intelligent machines? Scientists and engineers are more

and more interested in developing a system with intelligence similar to human behaviors. But

what is intelligence? In (Gardner, 1983), Gardner describes the intelligences in eight categories:

visual-Spatial intelligence, verbal-linguistic intelligence, Bodily-kinesthetic intelligence, logical-

mathematical intelligence, interpersonal intelligence, musical intelligence, intra personal

intelligence, naturalistic intelligence. In a more general point of view, intelligence is the ability

to learn or to apply knowledge to deal with one’s situation. Artificial intelligence (AI) is the

intelligence of machines (Mackworth & Poole, 1988). No matter whether the machine will

behave exactly like a human or not, developing an intelligent machine is important. That kind of

machines should ultimately have the ability to communicate, learn and adapt, but at this stage,

we need to search for a way to develop this type of machines, similar to what human has

achieved in development of a computer.

Computers have been developed as a type of intelligent machine since 1946. With the

help of computers, many computational tasks which the brain could not handle with, has been

solved by them with great accuracy far beyond what human brain can do. As soon as people

discovered computational machines, people started to think that they were building

computational brains. However, after nearly 70 year’s research and development, the progresses

in artificial intelligent disappointed many researchers. Is brain a computational machine or

something beyond? In fact in (Neumann, 1958), Neumann clearly highlighted the differences

between the popular computer architecture and how human neural cells represent information.

2

Computer did in binary digital, but neural cells use mixture of digital and analog representations

and computations. Today, the computer can run much accurately, faster, and precisely than

human brain, but yet many common features in human brains (even existing in infant brain)

cannot be duplicated by computer, for example, face recognition or simple commonly

understandable gestures.

During the same time period, in 1948, Shannon started information theory in which he

introduced a new and mathematical way to measure information for probabilistic events. Based

on his (Shannon, 1948) definition of information and theory, he discovered physical limit for

telecommunication systems which was later called Shannon limits. After that, thousands of

researchers in telecommunication industry have been worked for nearly 60 years to develop

telecommunication system (mainly error control coding mechanism) to achieve this limit (Lin &

Costello, 2004). Activities started in 1950s as block codes, to convolutional codes in 1960s,

trellis coded modulation (TCM) in 1970s and 80s. In 1993, turbo codes revolutionized the error

control coding field (Berrou, Glavieux, & Thitimajshima, 1993) soon after that, rediscovery of

low-density parity-check code made near Shannon limit decoding possible (MacKay & Neal,

1996). The key themes in Turbo and LDPC successes include (a) better understanding extrinsic

information, how to pass it between decoders and how to use it to improve error rate; (b) sparse

connection between codes and Tanner graph. During the course, people discovered the

connection between turbo iterative decoding and neural network processing such as Pearl’s belief

algorithm described in (MacKay, McEliece, & Cheng, 1998) (Pearl, 1988).

Meanwhile in biological field, people discovered STDP (Spike-timing-dependent

plasticity rules) which play essential roles to build sparsely connected networks (Yang &

3

Froemke, 2002b) (Yang & Poo, 2006a) and Sparse net in visual signal processing (Olshausen &

Field, 1996a). The process of STDP is interesting. The input spike to a neuron may cause the

post-synaptic neuron’s excitation only when the input spike has high probability to occur in the

future. STDP rule discourage network which connected closely, otherwise, it encourage network

which is sparsely connected. Sparse connected network can develop template filters closely

matched to what we observed in human visual systems. These researches, combined with error

control coding achievement, attracted Dr. Wei to propose a new theory called GPRAM machine

(Wei, 2012a).

According to (Wei, 2012a), GPRAM is short for General Purpose Representation and

Association Machine. For the general purpose, the machine is not optimal for one purpose,

which means, it will perform well even for tasks not known before. Thus, GPRAM is different

from the conventional machine. Each part of the conventional machine is designed precisely and

fixed. Conventional machine could only perform a task after it gets trained and tested. GPRAM,

as a general purpose machine, supposes to cover as many tasks as possible in the beginning.

What’s more, GPRAM is a hierarchy system. When it imports a rule, it narrows down to a lower

hierarchy which is less vague than the higher hierarchy. We hope GPRAM could move and make

decision by itself even for some tasks we did not train it before. Due to the differences between

the two systems discussed above, the way to build the GPRAM should be different. In GPRAM,

iterative coding is used instead of the precise logic design. Also, in GPRAM, the noises in the

system may be beneficial. They could behave very different compared with telecommunication

systems.

4

To design and develop GPRAM machines, we cannot follow the traditional

computational pathway, rather than we aim to develop a simple demonstration system to show

their unique properties. Currently Dr. Wei’s team is working on this direction and this thesis is

part of the effort. During the demonstration of the system’s implementation, Byron McMullen

(Dr. Wei’s PhD candidate) needs to implement the simulation of GPRAM system on the FPGA

board. Similar to implement decoder for telecommunication industry, FPGA needs to implement

the decoder in digital format. So the metric or probabilistic measurements of information need to

be quantized. The decoding algorithm in the implementation is the Sum-Product algorithm for

LDPC codes. In this method, implementation of sum function is necessary as well as the product

function. Sum function is easy to implement in the FPGA design, but the product function is

complex to achieve due to the hardware limitation. Thus we need to refine the traditional SPA

algorithm to make it easier for its implementation. The messages updated between the variable

nodes and check nodes are quantized to the integer and passed through the quantization function

in each iteration. This is my first contribution in this thesis.

Unlike the decoder used in telecommunication system, we also need to find an effective

way to quantize noise as well. The noise in FPGA should not be real numbers anymore and the

only way is to generate the Gaussian noise table. By proper selection of digitized noises, we can

closely emulate the effects of real noises in FPGA implementation. This forms the second

contribution of this thesis, which is to provide insights in this aspect.

During constructing of demonstration system, we also need to find a simple way to

process visual signals. In today’s electronic devices industry, the video camera is more and more

accurate, precision, and faster. Therefore, for our demonstration systems, the video streams we

5

aimed to put into the GPRAM are similar to what captured from human eyes. It has been well

documented that images presented at human retina has poorer quality than what we can image.

The image suffers from Poisson noise, point spread, and deteriorated by head motion. Yet, the

coarse quality of images may play an important role in hieratical structure in GPRAM system.

Three steps are needed to generate the coarse images. The first step is using the point

spread function to perform the two dot stimulus blurred image. The second step is adding the

Poisson noise in each pixel of the images. The third step is modeling the real cases which our

eyeballs are moving consistently. We model the drift-like eye movement as a Gaussian random-

walk function. By doing the above three steps, the coarse image will be generated and ready to

be used in the GPRAM systems. My third contribution to this thesis includes the following two

parts: (a) learn from biological visual signal processing. (b) Implement various stage of image

processing to mimic one or several effects using MATLAB. This lays a foundation for other

team members to continue the work in this direction to build up visual system for our GPRAM

prototype.

This thesis is organized as follows. Chapter two is the literature review part. I summarize

the background of error control coding, GPRAM and human visual system. Chapter three

introduces the coding and decoding algorithm of LDPC codes because it is used in GPRAM

system. In chapter four, you may find out how I quantized the metric information in the iterative

decoding and also the noise. The results are also shown in this part. Chapter five is the

background knowledge for bio-visual processing. Chapter six shows the simulation results of

visual imperfectness images. Chapter seven is the conclusion and future works part.

6

CHAPTER TWO: LITERATURE REVIEW

2.1 Literature review of error control coding and quantization

Many engineers believed that the transmission was unreliable due to the presence of

channel noise. However, Shannon thought the channel noise may not be the reason for unreliable

transmission. In 1948, Shannon discovered that channel noise limit the transmission rate, not the

accurate rate of the transmission (Shannon, 1948). Soon after the theory of Shannon limit,

researchers started to find ways to achieve this limit. The first type of codes is linear block codes,

which heavily relied on Algebraic mathematical theory to design codes, analyze codes, and

perform decoding (Lin & Costello, 2004). Algebraic theory dramatically cut down its complexity

of encoder and decoder. Also it provided insight to design best possible codes of these types.

However, it can only deal with hard decision decoder, i.e., the decision statistics need to be

converted to binary decision before performing decoding procedure. This quantization of

decision statistics lead to loss of around 3 dB compared with the decoders which use soft

decision decoders. Different from algebraic approach, Gallager in his PhD thesis proposed low

density parity check code (Gallager, 1963a), which is randomly constructed sparsely connected

parity check codes. Unfortunately, due to limitation of computational power in 1960s, his design

has never been simulated out until 1996 of rediscovery of the beauty of LDPC codes (MacKay &

Neal, 1996).

In 1955, Elias introduced convolution codes as an alternative to block codes (Elias, 1955).

Convolution codes gained substantial attentions due to its capability to perform soft decision

decoders. In 1963 Fano introduced the Fano algorithm which searches over a tree for best

possible decision path (Fano, 1963). In 1967, Viterbi discovered Viterbi algorithm which is

7

proved to be the optimal soft decision decoding algorithm for small constraint length (typically

less than 10) convolutional codes (Viterbi, 1967). In 1971, Heller and Jacobs found out that if we

quantized branch metric to only 3 bits, the loss of quantization is only about 0.2-0.3 dB (Heller &

Jacobs, 1971). Therefore, we can approach optimally implement Viterbi algorithm in digital

circuits. In 1974, BCJR algorithm was discovered and named after the four creators (Bahl, Cocke,

Jelinek, & Raviv, 1974). This algorithm has a great influence on the turbo codes and LDPC

codes. BCJR algorithm can deliver soft decision output, but unfortunately at that time, none

knew how to use the soft decision. In (Forney, 1973a), Forney demonstrated that the Viterbi

algorithm just required one way process, while BCJR algorithm requires almost about twice

complexity due to forward and backward processing. Thus, over the next twenty years, BCJR

algorithm has never found applications in real world due to its complexity.

In 1981, NASA started to implement the Viterbi algorithm with 2
15

 states for deep space

mission (Yuen & Vo, 1985). The performance of this system is about 2 dB away from Shannon

limit (Dolinar, 1988). During the same time, Hagenauer and Hoeher proposed soft output Viterbi

algorithm (SOVA) (Hagenauer & Hoeher, 1989), in which it not only takes soft-decision as input,

but also generate soft output. In 1993 during Turbo coding invention, Berrou et al takes SOVA

idea one step forward (Berrou, Glavieux, & Thitimajshima, 1993). Turbo codes are a new type of

concatenated convolutional codes whose BER performance can achieve 0.7 dB away from

Shannon limit. More importantly, Turbo codes define extrinsic information and then pass this

information between two sub decoders to improve their reliability. The extrinsic information is

based on soft decision output from decoder, which is called a feedback decoding method. Instead

of SOVA, it uses BCJR algorithm to compute the extrinsic information. Although BCJR

8

algorithm has twice the complexity for a given code constraint length, turbo codes use codes

with small constraint lengths, so that its complexity is far less than conventional Viterbi

algorithm which requires large constraint lengths.

Turbo codes excited the error control coding field. People started to search for new near

optimal decoding algorithm. In 1996 Researchers rediscovered the Gallager’s LDPC codes

(MacKay & Neal, 1996). In 2001, Chung et al in (Chung & Forney, 2001) showed that LDPC

codes can achieve 0.0045dB away from Shannon limit. During the progress, researchers

developed analytical tools such as EXIT chart for turbo codes (Brink, 1999) and density

evolution for LDPC codes. Using these tools, people discovered that as long as we construct

codes with sparsely connected constraint, we can achieve near Shannon limit decoding

(Richardson, 2001).

Turbo coding excitement did not stop at error control coding. Turbo codes as belief

algorithm (Pearl J. , 1988) Graph theory has been a great implementation in many fields.

In (Wei, 2012a), Wei summarized the key lessons learned in error control coding are

listed as follows:

1. Randomly constructed codes are good choices to achieve Shannon limit. (Gallager,

Information Theory and Reliable Communication, 1968)

2. Due to the discovery of Tanner graphs (Tanner, 1981), near Shannon limit codes require

to exclude small loops in Tanner graphs.

3. Message passing and updating between different sub-graphs provide a low complexity

way to decode. (Berrou, Glavieux, & Thitimajshima, 1993)

9

4. Decoding can be implemented iteratively and result is not sensitive to noises and errors

(Berrou, Glavieux, & Thitimajshima, 1993).

5. The discovery of connections between iterative decoding methods and Pearl’s belief

algorithm (Pearl, 1988) is significant in Bayesian network information processing

(MacKay, McEliece, & Cheng, 1998).

6. With the help of low density graph and iterative decoding, many popular problems will

be solved, for example, Fourier transforms and Kalman filtering (Kschischang, Frey, &

Loeliger, 2001).

7. Having an abstract summary of how iterative decoding works into three steps: repetition,

random shift, and non-linear operation (Forney, 2001b), Forney may bring us one step

close to understand biological signal processing. The neurons could work the similar way

as iterative decoding.

Is it possible unveiling the mystery on processing of a biological brain by the best known

information transmission/reception mechanism? Dr. Wei not only paid a lot attention on long

codes (Wei & Qi, 2000b), codes on graphs and large scale random ad-hoc networks (Wei, 2003c),

but also reached to life science realm as it is the foundation of GPRAM theory.

2.2 Literature review of biological visual systems

Up to now, we do not know the architecture of biological brains. What makes matter

worse is that over the last 50 years, our observations on human brains have been largely based on

neuronal metabolism which consumes less than 5% of energy. In (Fox & Raichle, 2007), Fox

and Raichle made the following statement. “Task-related increases in neuronal metabolism are

10

usually small (<5%) when compared with this large resting energy consumption. Therefore, most

of our knowledge about brain function comes from studying a minor component of total brain

activity.” We are not sure whether these approaches will lead to understand of basic principle of

human intelligence and architecture of human brains. In a book review, “A neurocomputational

jeremiad,” appeared in the October 2009 issue of Nature Neuroscience, it pointed out that one of

key ingredients missing in neuroscience researches is the architecture of bio-brains. Since 2003,

Dr. Wei has been searching for biological lessons which may lead to new intelligent system

design. Our team is following Dr. Wei’s steps so that in this section, we will briefly review what

in literature in biological sciences and mainly focus on bio-visual signal processing.

Between 2004 and 2007, Dr. Wei worked on human visual systems and he picked up a

simple task called hyper-acuity capability. Hyper-acuity was coined by Westheimer (Westheimer,

1975) to describe a super-phenomenon that human visual systems can distinguish fine lines

separated well beyond Nyquist rate. In fact, it will need a huge amount of templates for a tiny

spatial of uncertainty to build a machine to achieve hyper-acuity at an accuracy of 1/10
th

 to 1/30
th

of the diameter of photo-receptors (Klein & Levi, 1985). In (Wei, Levi, Li, & Klein, 2007), Dr.

Wei and his collaborators at University of California at Berkeley showed in order to cover 9 by 9

arc min position uncertainty and speed uncertainty up to 2 degree/s, we need to construct 7776

templates if we follow ideal system design. This is only for a single stimulus with two simple

dots. The human visual system can handle various hyper-acuity tasks under very dynamic

environments, yet its performance closely approach to various ideal observers, which each is

optimized to a particular setting. It seems the visual system has used a super approximated

template which is approximated as the superposition of many ideal templates. It may tune toward

11

a particular template smoothly and slowly when it is exposed to some artificially designed

stimuli intensively.

During Dr. Wei’s visit to UC Berkeley, he also encountered two other research teams,

one led by Dr. Yang who is working on STDP rules (Yang & Froemke, 2002b) and other led by

Olshausen who is working in the area of sparse coding (Olshausen & Field, 1996a) (Olshausen &

Field, 1997b). These works significantly opened his field of horizon.

People may wonder how does neurons connected and functioned together. Can we build a

system which has the function of human brain? STDP rule was discovered by (Levy & Steward,

1983) when they tried to find out the time difference on the pre and postsynaptic actions on

plasticity. Dr. Yang and M.M. Poo’s paper (Yang & Poo, 2006a) on neuromuscular helps us

have a better understanding of the synaptic activity in a long term depression. Dr. Yang’s team

has been working on observing the how will the cat’s brain acting when it sees human faces by

fixing the cat’s head. The videos got from the cat’s brain have given light on Dr. Wei’s idea of

visual part in GPRAM system.

Each item which is called neuron in sparse code is encoded by a set of neurons. This set

is the subset of the original neuron before encoding, which supply a hierarchy structure in the

coding process (Rehn & Sommer, 2007). Sparse coding has been greatly used in the computer

vision field. In computer vision, the input patterns are huge. Thus, sparse coding will help in

finding a small number of in use patterns and begin processing. Sparse coding provides us a state

structure which is effective in the computer vision processing. In Olshausen’s neural coding in

(Olshausen & Field, 1997b), the details of images will be resemble together in the eyes’

receptors, which will reduce the complexity in bio field. The idea of sparse coding has been used

12

in the design of GPRAM. The input includes many information, using the idea of sparse coding,

it will narrow down to a subset (Wei, 2012a), and then make decision.

In (Wei, 2012a), Dr. Wei summarized lessons learnt from biological system as follows:

[Blurring a dot in order to see it clear] The basic principle of human eye achieving hyper-

acuity is to blur on one little dot stimulus. Knowing that, probably improving quality is not the

only way achieving high resolution images. Take a step further, our eyes are continue moving

even we sit still, so coarse images may be more suitable and will take less efforts and time. Same

idea, although precision approach provides the optimal solution, it rolls out other smart ways

which may not the optimal solution in this particular part, but maybe better and efficient result in

all. Therefore, versatile or blurred approaches provide as many solutions as possible which may

contain a better result regards to the whole system.

[Over-complete and sparse coding] In (Olshausen & Field, 1997b), Olshausen and Field’s

sparse coding idea lead us to understand how to use over-complete templates to achieve sparse

neural activities.

[STDP rule (Yang & Froemke, 2002b)] STDP rule will be applied in the GPRAM system

in the future, because it prevents the loops in the structure of coding and apply the posterior

information calculation.

Overall, blurred or coarse images may perform better than the fine or high resolution

images in the implementation of GPRAM system for the following reasons. First, at the initial

levels, low quality images could be sufficient to recognize many different objects or deal with

tasks at initial levels. Then, it will move to higher levels only when it is necessary. Second, if our

cortex uses this coarse image to work out a result far better than sharp one, then its focus does

13

not need to be improved. Third, prepared in blurred could easily handle head and eye movements.

Forth, coarse image does not need a lot computation power to process them. Fifth, fine images

have similar low resolution counterpart, so these can be grouped together to form hierarchical

structures. Sixth, we just take random sampling points out of images, so coarse images will

perform as good as fine ones.

2.3 Literature review of GPRAM systems

Based on lesson learnt in error control coding and biological visual system, Dr. Wei

proposed GPRAM system in (Wei, 2012a). GPRAM is general purpose intelligent system which

may lead to systems which could perform functions similar to a bio-brain. GPRAM could move

and make decision by itself even for some tasks we haven’t trained yet. GPRAM has hierarchy

structure. At the highest hierarchy, it does rough and quick estimates on how to process a task.

When adding a rule into the system, it becomes more special on processing the task and finally

completing the task in a lower hierarchy. Conventional machine was designed precisely and

functionally. It only could perform a task after it gets trained and tested. This is the main

difference between GRPARM and conventional machine. The design of GPRAM system

includes two procedures (Wei, 2012a):

Each part of the conventional machine is designed precisely and fixed. Conventional

machine could only perform a task after it gets trained and tested. GPRAM, as a general purpose

machine, supposes to cover as many tasks as possible in the beginning. What’s more, GPRAM is

a hierarchy system. When it imports a rule, it narrows down to a lower hierarchy which is less

vague than the higher hierarchy.

14

The first part is group design. At this part, GPRAM collects as much information as

possible. Then set up the aim of the machine. After that, a specific rule which narrows the scope

of GPRAM system into a subset was added into the system. After these three steps, GPRAM will

contain less uncertainty compare to the beginning. The second part is individual specification.

According to different tasks, select different learning methods to implement the task by using

existing technology. The design procedures of GPRAM are different from traditional machine. In

tradition machine, how it will act to achieve one function is determined. Whereas in GPRAM,

different approaches are being used which work similar as human brain. Imagine this scenario, if

a person goes to a city and encounter with heavy traffic on his way, he may pick another route to

that city next time. Just like that, GPRAM will act as human brain which is learning from its past

experience. It will be not achievable by traditional machine.

After a brief understanding of GPRAM design, Dr. Wei and his team clarified the method

for a GPRAM prototype by adopting LDPC codes in (Li, Dai, Schultz, & Wei, 2013). They used

coding mechanism to build the system instead of the traditional logic design. At first, Hamming

(7, 4) code was used at first to present the connections in GPRAM. Due to short length of

Hamming (7, 4) code, the tasks it performed were limited. Therefore, longer codes, LDPC codes

were tried in the simulations. It has been conclude that the longer the code word is, the more

difficult for the system to learn. In the future, the learning algorithm should be improved for

applying long codes. It also indicates that, bio-implications need to be developed.

To learn one task each time may not be enough for an intelligent system. In (Li & Wei,

2013c), they carry on performing multi-tasks learning method. This paper continues on the

exploration of LDPC codes to establish GPRAM system. Good codes were used to improve the

15

performance of GPRAM. Also, progressive learning was introduced in the paper to improve the

function of multi-tasks learning. The current error control coding knowledge may not enough for

supporting the GPRAM design, to move one step further, the knowledge of it needs to be

extended.

The primary goal is to achieve an animal-like-robot, which can perform simple function

for demonstration. In (Li, Dai, Schultz, & Wei, 2013), different length of code words have been

simulated, good code word has picked. Thus, based on (Li, Dai, Schultz, & Wei, 2013), Byron

McMullen (Dr. Wei’s PhD candidate) is working on converting the simulation method into

FPGA. Sensors s1 and s2 are inputs in (Li, Dai, Schultz, & Wei, 2013), in the FPGA design,

wireless camera and microphone will substitute two input sensors. By doing that, outputs are

images and sounds, which would be more directly to convince people.

As Mr. McMullen has been working on implementation the GPRAM system on FPGA,

some troubles have encountered. First of all, how to implement decoder in digital format?

Secondly, how to generate noises in FPGA to mimic noise effects in real systems? Thirdly, how

to deal with simple image input? In his initial trials, he simply selected 4 bit quantization to

approximate decoding computation and 4 bits to quantize noises, which lead to huge loss in

implementation as we will see in the later section of this thesis. He also implemented very simple

visual image process. My thesis took these challenges and evaluated how to near optimally

achieve decoding and mimic human visual images.

16

CHAPTER THREE: QUANTIZATION IN LDPC DECODING AND NOISE

In this chapter, we will first review error control coding in telecommunication system

design in Section 3.1. Then, we highlight application of LDPC coding in GPRAM prototype

design in Section 3.2. After that, we illustrate what has been done in Mr. McMullen’s

implementation and its performance in Section 3.3. We then present our work on digital

implementation of LDPC decoding in Section 3.4. We further present our work on digitalizing

noises in Section 3.5. Finally, we conclude this chapter.

3.1 Error Control Coding in Telecommunication systems

Coding theory is an important skill in the telecommunication. It is a research field which

helps us to understand how information was transmitted between transmitter and receiver

through an unreliable channel. By using coding and decoding technique, the error-free

transmission over an unreliable channel is practicable.

The following figure shows the block diagram of digital communication system. At the

transmitter side, the encoder adds redundant bits to create a code word and will be used for error

correction. Also, with the help of encoder, the rate of the code will be limited by channel

capacity. Modulator transforms the code word into a format suitable for the channel, like the

analog carrier signal. Then pass the modulated signal through a noisy channel. The demodulator

attempts to recover the correct channel symbol in the presence of channel noise. Decoder then

uses the redundant bits to detect or correct the bit errors and made hard or soft decision to

quantize the receive bit to be “0” or “1” and received by the receiver.

17

Figure 1 Block Diagram of Communication System

3.1.1 Description of Several Types of Error Control Coding

3.1.1.1 Linear Block Codes

The information transmitted in block codes is formatted into binary form, and grouped

into blocks of k information bits. Messages are represented as M=2
k
 and mapped to a longer

block of n bits, which n>k, called code-words. The code-words have systematic structure, as

shown in following figure. The structure has two parts, the checking part and the message part.

Figure 2 Structure of Codewords

Transmitter Encoder

Modulator Channel Demodulator

Decoder Receiver

 Checking Part Message Part

n-k digits k digits

18

The code rate denotes as R=k/n, which is ratio of information bits represented in the

messages. Generator matrix (G matrix) is used to generate all possible codewords. G matrix

could be represented by the following structure: G=[Ik | P], where Ik is an identity matrix which

is k by k. P has the dimension of k*(n-k).

Parity check matrix is derived from the G matrix or vice versa. The Parity check of the

above G matrix is the following: H= [P
T
 | In-k]. G matrix and parity check matrix should satisfy

the following equation: G H
T
=0. Several examples of block codes will be introduced in the

following:

3.1.1.2 Repetition Code

Repetition Code is one of the easiest ways of implementing the coding theory just by

repeating the transmitted symbol n times. The code rate is 1/n. For example, a repetition code

with n equals to 3. The code words are (000) or (111), i.e., if the message is 0, we select code

word (000); and if the message is 1, we select code word (111). Thus, if we receive code words

as (001) or (110), then we may be regarded as an error event and using simple decoding rule, we

can recover from this one bit error event. If there are error events more than 1 bit, then we cannot

recover.

3.1.1.3 Hamming Code

Hamming code is also a kind of block codes, discovered by Richard Hamming in 1950.

To illustrate more properties of block code, we use (7, 4) Hamming code as an example. The

code rate is 4/7. (7, 4) Hamming code has 16 possible code words, seen in Fig. 3. In each 7-bits

code word, contains 4-bits message data (the first 4 bits) and 3-bits check codes (the last 3 bits).

19

In Fig. 3, we also include generator matrix (G) and parity check matrix (H). Let m be a 4

by 16 message matrix, which includes all 16 tuples from 0000 to 1111, seen the first 4 bits in

code word. We can generate all code words (C) by C=mG. Also, we can check code words by

using CH
T
=0, that is, any valid code word will satisfy parity check matrix, where H

T
 is the

transpose of H.

[

]

 (

) (

)

Figure 3 (7, 4) Hamming code words, generator matrix (G) and parity check matrix (H)

The Hamming distance is very important in the coding theory. Two equal length code

words were needed to calculate the Hamming distance. The number of differences of positions at

the corresponding symbols is the Hamming distance. For example, the distance of (1101110) and

(1110111) is 3. The minimum distance usually denotes as dmin is the minimum Hamming

distance between two code words. The Hamming weight of a code word is the number of non-

zero positions. For example, the Hamming weight of (0011100) is 3. The (7, 4) Hamming code

can detect 2 errors, can correct 1 error.

20

3.1.1.4 LDPC codes

LDPC code was developed by Gallager in 1963 (Gallager, Low-Density Parity-Check

Codes, 1963), which is a linear block code. LDPC codes are represented by a sparse parity-check

matrix (H). That is, the parity-check matrix H contains fewer 1's than the amount of 0's, and has

a fixed number of 1’s per row and also per column. As for an (n, k) LDPC code, n denotes the

variable nodes, n-k denotes the check nodes connected to the variable nodes. To encode the

LDPC code, the parity-check matrix H should be rearranged by Gauss-elimination into [P
T

| In-k].

After get the modified matrix, generator matrix G could be obtained by using G·H
T
=0. Then the

codewords are generated from C= G
T
·m, where m denotes the messages vector. More details of

LDPC codes will be introduced in section 3.1.2.

3.1.1.5 Convolutional Codes

Convolution code was developed in 1956. It is another important technique in coding

theory. The encoder does not encode the information in block form; it has memory. It uses the

both previous and present information to format the code-words. The previous information is

stored in shift register. Each encoded block does not depend only on the corresponding message

at the same time unit, but also depends on previous information blocks which remembered in the

register. The following figure shows the simple block diagram of a convolutional encoder.

21

Figure 4 Block Diagram of Convolutional Encoder

One previous bit, together with the newly input data bit, determines the output of coded bit. The

other encoded bit should be the present bit information. According to apply different code rate,

the number of shift registers was various. Convolutional encoders various however they will fall

into two general categories: feed-forward and feedback. In each category, convolutional

encoders can be different with data rate. A feed-forward with rate ½ will be illustrated in the

following figure.

Figure 5 Convolutional Encoder

Shift

Register

w

M(0)

M(1)

Information

22

This encoder consists of three registers and two modulo-2 adders M (0), M (1).

Information sequences w= (w0, w1, w2, w3…) enter this linear encoder one bit a time. One

information bit enters in this system, and two encoded bits come out and form into new coded

sequences. Time sequence unit or called generator sequence for adder M (0) should be g (0) = (1

0 1 1), for adder M (1) should be g (1) = (1 1 1 1). Then, the encoding equations should be easy

to get:

 () () (1)

 () () (2)

The output sequence could obtain by implement the following equation:

 ∑

 (3)

where k is the length of the information sequence.

For example, for the information sequence w= (1 0 1 1 1), then

 () () () () (4)

 () () () () (5)

Thus, the code-word is

 () (6)

23

3.1.1.6 Turbo Codes

The technique of Turbo coding was introduced by (Berrou, Glavieux, & Thitimajshima,

1993) in 1993. This technique concatenates two convolution codes; two encoders are arranged in

parallel. The information is encoded two times. The following figure shows the block diagram of

turbo encoder. The information pass through the first encoder to do the first time encoding,

before it pass through the second encoder, a random interleaving block is needed. In this

procedure, the output sequences which passing by two encoders should be independently.

Information passing by two encoders will reduce the code rate. However, puncture block is

designed to improve the rate of the code.

Figure 6 Block Diagram of Turbo Encoder

 Encoder#1

 Encoder#2

Interleaver

 Puncture

 Block

Information

24

3.1.2 Description of Several Decoding Procedures

3.1.2.1 Maximum A Posterior (MAP) and Maximum-likelihood (ML) Decoding

Maximum-likelihood (ML) decoding is to maximize the probability that received noisy

code-words r given the condition code-words c were sent, i.e., max P(r | c). Maximum a

posterior (MAP) decoding is to maximize the probability that probability that a bit ci was sent

given the condition r is received, i.e., max P(c | r). According to Bayes theorem,

 ()
 () ()

 ()
 () () (7)

When codewords are equal-probable, P(cm)=1/m, equation (7) can be rewrite into

 () () (8)

Figure 7 Flow chart shows message decoding process

For AWGN channels, we have

 () ()

 cm(t)
Detector

n(t)

r(t) m

25

 ()

∑()

 ∑()

If we have equal-probability, MAP decoder is the same as ML decoder. But for a given

code trellis, MAP method is more complexity than ML method and MAP method needs to

estimate noise variance.

3.1.2.2 Decoding method of Linear Block Codes

Syndrome decoding method has higher efficiency compare to ML decoding especially for

linear codes. Consider a simple (7, 4) Hamming code.

 (

) (

)

From the property of parity matrix, for any codewords c, . Thus, if the received

codewords have no errors, . The decoded message should be the received k bits. If

 is not equal to zero, errors exist in the received codewords. ()

 . Let’s assume there is at most only one bit error and error is the first k elements which e is

1. For example, if e= 0 1 0 0…0, then the error is the second bit. The above equation

 which used to detect whether or not is called the syndrome of the received signal r. Syndrome

s is the summation of the received parity signal (r0, r1 r2 …rn-k-1) and parity check signal (rn-k, rn-

k+1, …, rn-1).

Most of hard decision decoders are based on efficient computation syndromes and find

the error location based on syndromes. There are also various methods to perform soft decoding

of block codes. The readers can find these algorithms in (Lin & Costello, 2004).

26

3.1.2.3 The Viterbi Algorithm for soft decoding convolution codes

Viterbi algorithm was introduced in (Viterbi, 1967) as a decoding method for convolution

codes by performing maximum likelihood decoding. After the convolutional encoder, the bit

block can be modulated into BPSK signals and to be transmitted through an AWGN channel.

Modulated signal is represented in the following equation:

 √ () (9)

where Eb is the energy per bit, R is the code rate, v is the bit stream.

The received signal should be the modulated signal plus Gaussian noise with zero mean

and varience

, which is the following equation Viterbi decoding algorithm

usually includes three steps:

Step1: branch metric calculation. Branch metric is used to calculate the distances between

received signals and transmitted signals. The branch metric for Viterbi algorithm is

 () () (10)

which is always greater or equal to zero. Beginning at time unit t=1 in the following

figure, separately calculate the partial metric of each path which entering in the state. Keep

records of the path and metric for each state.

Step 2: Increase the time unit by one, which means at time t=2, calculate the branch

metric for all paths is by adding the branch metric entering that state together with survivor path

at t-1 time unit. Keep records of the path and metric for each state.

Step 3: Keep repeating step 2 until reach the final state. Trace back the survivor path.

Trellis diagram is used to implement this algorithm. Viterbi algorithm is finding the

maximum likelihood path through the trellis. Black nodes stand for the states in time sequence.

27

Branch metric stands for the information transmission. Labeled number on each branch metric

stands for the length of received data between the four states. The Viterbi algorithm shows in the

following:

Figure 8 Viterbi Decoder

Step 1: Initialization

At time unit 0, the survivor path should start from zero.

Step 2: Recursion

Compute the shortest path of each state by adding the previous time branch metric. Store

the survivor path and delete other paths.

2
0

1

1

1

0

1

1

2

0 1

2 1 1

State t=1 t=2 t=3 t=4 t=5

0 0

0 1

1 0

1 1

1 1 0 2 1

1

28

Figure 9 Decoding Procedure of VA algorithm

From the figure above, trace back the final path, we can get the decoded codes.

3.1.2.4 BCJR Algorithm for soft decoding convolutional codes

BCJR algorithm can be applied to block codes as well as convolutional codes. This

algorithm is complicated than VA algorithm, so it doesn’t bring much attention until turbo codes

discovered. BCJR is also known as Maximum a posteriori probability (MAP) decoding. The

input information should be the log-likelihood ratio (LLR) value, which we will discuss more

details in the LDPC decoding algorithm. After the processing of the decoder, a hard decision will

be made. If the LLR value is less than 0, the decoder will estimate the sent bit equals to -1. If

LLR value is larger or equal to 0, decoder will count it as +1.

2

3

2

1

t=1

2

2

3

2

t=2

2

3

3

t=3
t=4

29

3.1.2.5 Sum-Product Algorithm for decoding LDPC block codes

LDPC code can be decoded in various ways. In this paper, we only focus on the sum-

product algorithm. It is known that the sum-product algorithm (SPA) has the better decoding

performance than other decoding algorithms for LDPC codes.

It is an algorithm which uses iteration to update the soft information between check nodes

and variable nodes. The implementation of SPA decoding is based on the computation of a

posteriori probabilities, its log-likelihood ratio (LLR). Then, the LLR for each code bit is given

by the following equation.

Step 1: Initialization

In the initialization step, each variable node may get the posterior probability at the

receiver, which is the information from the transmitter over AWGN channel. The soft

information

𝜆n→m denotes the message transmitted from the n
th
 variable node to m

th
 check node.

 () ()

 (11)

where y denotes the received signal over AWGN channel, which is the real number.

Λm→n denotes the message transmitted from m
th

 check node to n
th

 variable node.

 () (12)

The m
th
 check node will accumulate the LLR information getting from the other check

nodes.

Step 2(1): Check node update

From the knowledge of the message passing in the last section, for each check node m,

we need to calculate the accumulate values in the n N (m), shows in the following:

30

 () ∏ (

()) () (13)

Step 2(2): Variable node update

For each variable node n, sum up all the information from the check nodes, which in the

set m M (n) and also the information of the variable node itself.

 () () ∑ () () (14)

For each iteration, compute:

 () () ∑ () () (15)

Step 3: Make decision

Quantize Cn such that

Cn=0 if ()<0, and Cn=1 if ()>=0 (16)

3.1.3 Quantization Issues in Implementation of Decoding Algorithms

3.1.3.1 Quantization of Viterbi Algorithm

In order to design Viterbi decoder, quantization of state metrics is needed. In (Heller &

Jacobs, 1971), quantization method was presented. Viterbi decoder used log-likelihood in each

path calculation. Instead of that, the metric was quantized into 2-, 4-, and 8 -levels. The metric

used digital symbol, which shows in the following figure.

8-level:

0

1

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

Figure 10 8-level quantization code metrics

31

After the convolutional encoder, the encoded bits are sent into an AWGN channel, after

BPSK modulation, all bits are mapped into +1 or -1. The noise is zero mean, independent, and

double-sided power density. At +1 side, combine with the above figure, branch metric was

quantized from 0 to 7. At -1 side, branch metric was quantized from 7 to 0. The branch metric

has +1 and -1 part. Thus, yielding to the following equation
 ()

 ()
, in which, the r should be

the value from 0 to 7.

Figure 11 Quantization range

State metric in Viterbi algorithm could also be quantized. One method is rescaling

approach introduced by Hekstra in (Hekstra, 1989). This implementation is to subtract the

minimum metric, which is ck, from a metric ms(k) continuously.

In traditional method, path metric from state s at time t-1 to a state m at time t denotes as

bsm(k), information transition could be shown in following equation:

 () () () (17)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

+1 -1

32

After several accumulations, overflow problem may occur. To avoid this problem,

rescaling approach will apply without sacrifice correctness. In equation 17, addition operator

could be change to modulo 2
c
 operator (for c bits). Based on the Two’s complement arithmetic in

(Hekstra, 1989), equation 17 should be modified as follows:

 () () () (() ()) (18)

where in equation 18, replacing state accumulation by residuals msm(k) mod 2
c
. By using this

method, no overflow problem will occur. This rescaling method will use one more bit than

traditional accumulation method, however due to high probability of errors will occur when we

met metric overflow, we would rather agree on adding one bit data.

3.1.3.2 Quantization of Iterative Viterbi Algorithm

IVA decoding procedure will be discussed in this section. Branch metric equation shows

in Section 3.1.1. Decoding steps will show clearly in the IVA flow diagram.

33

Figure 12 Flow chart of VA decoding

In Step one, compute the branch metric using equation 9 and apply to traditional Viterbi

algorithm in step two. Iteration begins in this step. Iteration will be terminated if the decoded

codeword is valid or the number of iterations steps reaches the maximum value. Otherwise, it

will update the branch metric and step back to Step 2.

In IVA branch metric will be modified as the following equation:

 () () () 𝜆 () (19)

where is the updated metric, denotes the bit used in its branch metric. () denotes the

metric of . The quantization table can be simplified as follows:

Step 1: original branch metric in Eq 9

Step 2: VA decoding tail-biting

Step 3: Terminated

Step 4: Update the branch metric

Step 5: Stop

34

Originalw:

λw

0 1 2 3 4 5 6 7

0 0 0 0 0 1 1 1

Figure 13 Quantization Level

As shown in table 2, the branch metric is quantized into 3-bit, the original branch metric

w is 7, however, the metric is scaled down to be either 0 or 1. λ=1/4 in this table.

State metrics will constantly update in the iterative decoding. Each branch metric could

be quantized into 3 bit value (8 quantization levels) as shown in section 3.1.4. Branch metric will

keep gathering the non-negative symbol value form the branch metrics. Thus, state metric will

facing the overflow problem in the iterative VA. State metric normally has 7-bit or 8 bit

precision. In (Wei, 2004), two quantization methods were implemented to solve the overflow

problem. One method is state metric rescaling, which all state metrics subtract the smallest state

metric after each decoding step. If 3 bits quantization is conducted, the value of branch metric

per transmission bit should be no larger than 7. For any ½ rate code with the number of registers

in convolutional encoder mc could be 2, 3, 4, 5, 6, 7, 8, and mc·nc·B=28, 42, 56, 70, 84, 98, 112.

Thus, the state metric quantization should be 5 bits, 6 bits, 6 bits, 7 bits, 7 bits, 7 bits, 7 bits, This

method do not need to change the precision of branch and state metric in the decoding procedure.

Another method in(Wei, 2004) is the two’s complement arithmetic approach. The number of bits

in state metric has limitation, which is

 () (20)

35

If we also select 3 bit quantization as in state metric rescaling, the state metric

quantization should be 7 bits, 7 bits, 8 bits, 8 bits, 8 bits, 8 bits, 8 bits. Hence, the precision of

state metrics only need to increase for 1 bit, however the improvement of the metrics are only

needed for some cases.

3.1.3.3 Quantization of Sum-Product Algorithm

The core operation for the check node update is the calulate the by log-likelihood

function. By using two times Jacobian algorithm, the function should be revised to a linear

function and easy to design a look-up table in the decoding procedure.

 ()
 () ()

 () () (21)

 [() ()] [() ()]

By using Jacobian logarithm twice, equation (21) should be modify into the following:

 () () (() ()) () () (() ())

 () () () () [| () ()|] [| () ()|]

The above two log terms could be regard as the following funcion:

 () () (22)

The quantization range shows in the following figure. In the hardware implementation, a

look up table is generated by the guidence of the following figure.

36

Figure 14 LUT design

The decoding implementation should be achieved by the serial implementation and

parallel implementation. Serial implementation can be view as the forward and backward

implementation. This method has a limitation, it can deal with two nodes each time, so in require

of high throughput, and parallel implementation will have a better performance. Tree topology

can do fast check nodes update in (Hu, 2001).

37

3.2 LDPC Decoding in GPRAM System

3.2.1 Overview a Simple GPRAM Prototype

The prototype of a simple GPRAM system shows in the following block diagram. The

system contains some sensor inputs (s1, s2), input/output actions (a1, a2) and the output action a3.

The result of action a3 could be achieved from using LDPC coding theory instead of the

traditional logic design in a machine. Usually, in a conventional system design, the goal is to

achieve the optimal solution. For example, given all inputs s1, s2, a1, a2, we can get the result of

output of a3. However, in GPRAM, a1, a2 are no long be the input only, they could also be

outputs of a machine. This somehow self-explains the differences between the conventional

machine and the GRPAM.

Figure 15 Prototype of GPRAM

 LDPC

 Sensors

 S1, S2

 Action

 a1, a2

 Action

a3

38

3.2.2 Decoding process in GPRAM

In (Li, Dai, Schultz, & Wei, 2013), a simple example shows the how GPRAM system

work using (7, 4) Hamming code. In the following figure, v1-v7 are variable nodes, C1-C3 are

check nodes. The links represent information exchange in each iteration. Sum-product operation

is used to update messages between check nodes and variable nodes. As introduced in the block

diagram above, sensors (s1, s2) and actions (a1, a2, a3) are desired to connect with variables nodes.

The initial value of variable node j should be the log-likelihood ratio

 (23)

in which, l denotes the number of iteration, in this example, l=30, j denotes the variable node, y

should be the signal plus noise, as it is the initial value, y is the noise with zero mean, variance

one. For iterative decoding, we have:

 {

 ∑

 (24)

In the above equation, denotes the LLR which transfer from variable node to check

node, denotes the LLR transfer from check node to variable node. After each iteration, a hard

decision was made:

 {

 (25)

39

3.2.3 Connection methods in GPRAM

After knowing the basic method of decoding method, we need to focus on how GPRAM

sets connections.

Figure 16 GPRAM connecting procedure

Step 1：For s1=1 and s2=1, no connection has been set up. According to equation 20, for

j=1 to 7,
 to

 were known. After thirty iterations, a table contains 30 rows, and each row are

the values from to . Then we need to process numbers in the table, count the number of “1”

in each column, and pick two columns which have largest number of “1”, these two columns are

connected with s1 and s2 separately.

Step 2: Make connections for a1 and a2. First, all variable nodes are set to zero and keep

the connection set up in Step one. Run thirty iterations again as in Step one, as s1 and s2 are

fixed, we counted other five uncounted columns. A1 is connected to the column which has the

most “0”, and a2 is connected to the column which has the most “1”.

40

Step 3: Repeat setting all variable nodes to zero and keep existed connections. In order to

let a3 connected, we introduce two tasks together this time. Each task runs 10 iterations, after

thirty iterations, a3 is connected to largest number equal to
 .

Thus, all connections are completed. There is one more thing needs to mention, as we

introduced above, decoding method in GPRAM is different from that in telecommunication. In

telecommunication, noises should be the same in the whole decoding procedure. However, in

GPRAM, noises could change randomly in the end of each iteration, which is due to the fact that

the signal is continuously coming into system.

3.3 Problems in Existing Implementation

The goal is to design an animal-like robot to let people have an intuitive view of what

GPRAM is like. Thus, computer simulation is not enough for that. We need to build up the

GPRAM machine. However, hardware implementation may different from the computer

simulation, FPGA design needs a simply way to do the decoding procedure, it couldn’t deal with

real numbers which will add complexity to the hardware design. Thus, quantization is needed

and look up table should be designed. Mr. Mcmullen did some decoding work in hardware

design using FPGA.

Mr. Mcmullen derived sign-min algorithm as decoding method. The core operation is like

the following:

 () () () () () (26)

41

However, this method will lead to a 0.4 dB performance loss than sum-product algorithm

in (Hu & Eleftheriou, 2001). The simulation result shows in the following figure.

Figure 17 BER as a function of Eb/N0 as a method of Sign-Min algorithm

42

lut input lut output

0 101010
1 11110

10 10101
11 1110

100 1000
101 101

110 11
111 0

others 0

Figure 18 LUT 3-6

43

Figure 19 LUT 6-3

lut input lut output lut input lut output

0 000000 6 110 32 100000 0 000

1 000001 6 110 33 100001 0 000

2 000010 6 110 34 100010 0 000

3 000011 6 110 35 100011 0 000

4 000100 5 101 36 100100 0 000

5 000101 5 101 37 100101 0 000

6 000110 4 100 38 100110 0 000

7 000111 4 100 39 100111 0 000

8 001000 4 100 40 101000 0 000

9 001001 3 011 41 101001 0 000

10 001010 3 011 42 101010 0 000

11 001011 3 011 43 101011 0 000

12 001100 3 011 44 101100 0 000

13 001101 3 011 45 101101 0 000

14 001110 3 011 46 101110 0 000

15 001111 2 010 47 101111 0 000

16 010000 2 010 48 110000 0 000

17 010001 2 010 49 110001 0 000

18 010010 2 010 50 110010 0 000

19 010011 2 010 51 110011 0 000

20 010100 2 010 52 110100 0 000

21 010101 2 010 53 110101 0 000

22 010110 1 001 54 110110 0 000

23 010111 1 001 55 110111 0 000

24 011000 1 001 56 111000 0 000

25 011001 1 001 57 111001 0 000

26 011010 1 001 58 111010 0 000

27 011011 1 001 59 111011 0 000

28 011100 1 001 60 111100 0 000

29 011101 1 001 61 111101 0 000

30 011110 1 001 62 111110 0 000

31 011111 0 000 63 111111 0 000

44

He made a LLR look up table in his design. Two units were built in his design, one is

check node unit, and the other is variable node unit. In the check node unit, the input of doing

LLR operation was quantized into 3 bits. When doing the LLR algorithm, to improve the

performance, 3 bits were transformed into 6 bits. After finish all the sum operation, they were

transformed back to 3 bits to save the memory. As for the noise, he randomly generated a set of

Gaussian noise and use Matlab to generate a LUT. The result is not very well. So I did the

simulation to check how bad the performance is. By adding two features together, performance

loss is more than 3dB in the following figure. The decoding result is almost half right half wrong.

Figure 20 (7, 4) Code Simulation in Bryon's method

45

The simulation result is not good in the above figure. One reason is sign-min algorithm is

approached in Bryon’s decoding. 0.4dB loss occurred using sign-min algorithm compare to the

Sum-product algorithm. Another reason is for the LUT table Bryon created. Errors occur due to

the 3 bit to 6 bit and also 6 bit to 3 bit message exchange.

We couldn’t bear that much loss in the design of GPRAM. In this circumstance, changing

the quantization method is necessary. Also, the LUT is also needed to be change. With setting

proper LUTs for check node update and also noise, we hope the performance within 0.2dB and

even 0dB loss. This is my major work in the thesis.

In the following sections, quantization of LDPC decoding and noises will be introduced.

3.4 Quantization of LDPC decoding

According to the hardware implementation, the check-node updates part has the most

computationally complexity due to the “tanh” rule. In this circumstance, we need to implement a

quantized sum product algorithm to fit for the hardware implementation. Also, messages update

between the check nodes and variable nodes are real numbers which need to be quantized to

integers.

In Step 2(1): Check node update:

 () ∏ (

(𝜆)) () (27)

This equation needs to make a change.

46

The 𝜆 may be regard as two parts. First is the symbol part, which could be achieved

by using the sign function. Second part is the absolute value of the message. The equation can be

rewrite into the following:

 () ∏ (

{ (())} ())

 ()

 ∏ { (())} () { (∏ [
 ()

] ())}

 ∏ { (())} () { (∏ [
 ()

] ())} (28)

where, () is the quantized function.

 ()

 () (29)

Using Matlab, () was shown in the following figure.

47

Figure 21 Quantization function

48

Figure 22 Quantization into eight levels

The quantized range was set as the above figure. All the LLR real number value was

quantized into Q-LLR integer value. The LLR values have been divided into two parts, one bit is

for sign operation, and other 3 bits are the absolute values. In the hardware implementation, the

sign operation can be implemented as the XOR switch. The other 3 bits can use a look up table to

map the value of (x). According to the equation 11, sum up all the values of (x), re-mapping

to the LLR value.

LLR Q-LLR

<0.25 3.5

[0.25,0.5) 1.875

[0.5,0.75) 1.25

[0.75,1) 1

[1,1.5) 0.625

[1.5,2) 0.375

[2,2.875) 0.25

>=2.875 0

49

Variable Node Update and the decision part should remain the same. After doing the

quantized decoding algorithm, the Bit Error Rate (BER) performance has at most 0.3dB loss.

Noise Quantization will help us bring back the loss in the GPRAM design.

Quantization level could be designed as you need. 4-bit quantization have better

performance in figure 21, but only a little better than 3-bit quantization. If we take hardware

limitation into consideration, it will need more memory to process the 4-bit information. Also,

from figure 17, value in x axis changes little in range [3, 7]. So there is no need that we divide x-

axis into so many levels. Results will not influence that much if we count 0 in that range.

Performance of 3-bit is only 0.3 dB worse than the original performance. If we change to 2-bit

quantization, performance is figure 21 is much worse than original one. Result is not acceptable

in 2-bit quantization. Quantization in 3 bit is more desirable compare to 2-bit and 4-bit

quantization. Thus, in my thesis, 3-bit quantization will be implemented.

Figure 23 Quantization in 4 levels

LLR Q-LLR

<0.5 2

[0.5,1) 1

[1,2) 0.5

>=2 0

50

Figure 24 Quantization in 16 levels

LLR Q-LLR

<0.25 3.5

[0.25,0.5) 1.875

[0.5,0.75) 1.25

[0.75,1) 1

[1,1.25) 0.685

[1.25,1.5) 0.5

[1.5,1.75) 0.4

[1.75,2) 0.3

[2,2.25) 0.25

[2.25,2.5) 0.2

[2.5,2.75) 0.15

[2.75,3) 0.1

[3,3.25) 0.0825

[3.25,3.5) 0.0625

[3.5,3.75) 0.05

>=3.75 0

51

Figure 25 Comparison of different quantization levels

52

3.5 Noise implementation in LDPC decoding design

Computers can easily generate the Gaussian noise for us during the simulation. However,

it is hard to do the same thing using FPGA. In this circumstance, a noise look-up table needs to

be generated for FPGA. The noise has zero mean and unitary variance. 100 sets of quantized

Gaussian noises were generated and each set contains 100 Gaussian noises. One set of quantized

Gaussian noise was picked after simulation. Which is gaussian[100]={-2,0,-1,0,-1,0,-1,-1,0,1,-

2,2,-1,1,1,1,-1,0,0,-1,0,0,0,0,3,0,1,0,-1,0,1,-1,-2,0,0,0,0,1,1,-1,-2,1,0,-1,1,0,0,0,1,2,0,-2,1,-1,1,-

1,1,-1,-1,1,-1,1,0,0,0,2,0,0,-1,-1,-1,2,0,-1,0,1,-1,1,-1,0,-2,1,1,-1,0,0,1,0,1,0,-1,0,0,1,0,-1,0,1,0,-1}

The above set of Gaussian noise was chosen because this set fit best for the original BER

performance without doing the quantization. The other sets could be found in the appendix part.

The following figure shows the pdf of the Gaussian noise.

Figure 26 PDF of Gaussian Noise set which used in the simulation

0

5

10

15

20

25

30

35

40

45

-2 -1 0 1 2 3

53

3.6 Simulation Results

In the thesis, LDPC codes with length (7, 4), (40, 20) (510,255), (1020, 510) were used in

the simulation. Each length code was simulated 3 times, with 10 iterations each time. The BER

performance without quantized, with quantized and also the quantized noise added to the

simulation.

Figure 27 Simulation result of (7, 4) code

54

Figure 28 Simulation result of (40, 20) code

55

Figure 29 Simulation result of (510, 255) code

56

Figure 30 Simulation result of (1024, 512) code

57

3.7 Conclusions

From the above figures in the simulation part, the longer the code length, the BER

performance is nearer to the Shannon limit. The (1020, 510) code, when the SNR is 2.5dB, it

may reach to the 10
-5

 Shannon Bound. However, the (7, 4) code, even for the SNR is 7dB; it can

only falls into 10
-4

. The quantized decoding algorithm will bring 0.3dB loss at most. If we add

one quantization bit into the decoding, for example, 4 bit, the result will be better. However, it

will be more memory in the hardware implementation. The result is only 0.3dB, we can bare that

performance. In the GPRAM design, we need to bring back this loss by adding the quantized

noise. The noise set was picked which will recover the loss cost by the decoding quantization. As

we have 100 noise sets, we simulated and picked one set which will have the same result on all

codes no matter what length it is. This set of noise will be used as the noise look-up table in the

GPRAM. As said above, the iterative decoding process in the GPRAM is different from that in

telecommunication. The noise in GPRAM could change randomly in the end of each iteration.

Thus, this look-up table simplifies the noise reading in the design of GPRAM. What’s more, this

look-up table also brings back the performance of the iterative decoding. In conclusion, by doing

the two quantized in the iterative decoding step, the problems met in FPGA design of GPRAM

have been solved.

58

CHAPTER FOUR: IMAGING MANIPULATION FOR GPRAM

4.1 Differences between camera images and bio-visual images at retinal

In ancient time, people have started to try to explain how human visual worked. Date

back to the time of Aristotle, his thoughts of human vision was that between the observer and the

object, there should exits something allowing the object to be seen. He called this the media,

which is known as the air today. However, during the Middle Ages time, Scholars hold different

ideas of Aristotle's theory, which are the observer’s eyes sent out emission to the object and the

emissions made the object being able to be observed. Although these theories may seem illogical

today, the theories were based on the observation of the scholars not on today's scientific

experiments. Due to the theories generated by thousands of scholars our understanding of human

vision has come to a breakthrough.

Hyper acuity is important in human visual system. For example, the design of the

telescope helps us to expand our scope about the universe. More and more advanced tools were

developed for the image processing of human. Hyper acuity will take the resolution limitation

into consideration. More and more devices with hyper acuity have been achieved. No matter how

many advanced tools were designed to help human improve the resolution of the image, human

eyes are the still the final step. Thus, human eyes are the limitations of human visual capability.

Take a look around the environment; you will see images and colors in huge variety. All

the images can be update with no break at all, and also can judge the accurate position. These are

the beauty of the human vision. Although the images we saw are seamless, they are updated

continuously by the help of our brain. With the function of the brain, we can see the image more

clearly and with more details. Without the help of our brain, the image we saw at retinal will be

59

blurred. Due to the movement of the eyeball, the images are not stable. In this paper, we

simulated the blurred images at the retinal and made a video which showed the exact images at

the retinal without the function of the brain.

In (Wei, Levi, Li, & Klein, 2007), human visual system and hyper acuity device were

discussed. Device with high visual acuity is in great need in many fields. For example, in the

design of a space shuttle, a metal-polishing machine needs to examine the surface of the space

shuttle, to make sure it is perfect flat, and flawless. We focus on studying that kind of machine

and assume the vision part of that machine is similar to human eyes. Also, the following things

were taken into consideration: point spread function, Poisson noise, eye movements with

conditional of stable head.

Let’s take a short review of how human eyes work first. When light entering the eye, it

passes through the first transparent layer of the eye, called cornea. After reaching cornea, it will

immediately reach the eye lens. Continuous refraction of the light at the surfaces of the cornea

and the eye lens together serve to focus an image on the curved rear surface of the eyeball known

as the retina. Retina is the innermost layer, it is like a "screen", on which image is formed by the

lens when properly focused. About 100 million photo receptors are located on the retina. We

assume the receptors are arranged in hexagonal array, because, hexagonal array has the tightest

character, which shows in the following figure. The diameter of receptor is the cone size which is

0.6 min of arc. The total size of receptor depends on the stimuli, range from 400 to 10000. The

stimuli are two dots with distance of . Detector has functions of processing visual signal from

receptor and also making a decision.

60

Figure 31 Receptors structure and stimuli

In (Wei, Levi, Li, & Klein, 2007), how to select stimuli is also described. We have two

stimuli, shows in the above figure. We randomly select one pair of two dots and use it into the

device. As stimuli presented, not all decisions are correct, about 75% decision will be made.

Under the above conditional, the image will be blurred, which is the same conditional of human

eyes. However, hyper acuity is in great demand. If a system with CCD (charge-coupled device)

camera was used, images will be much clearer. The image is clear with no doubt, but processing

the image will be slow. What if we deliver a machine, which can work well with low resolution

image? This idea also brings up Dr. Wei’s idea of the GPRAM machine.

Further, an ideal detector for moving stimuli is conducted. Two synchrony mechanisms

have been taken into consideration. First method is by using SDE (stimulus defined exactly)

detector array. Each SDE detector will record the moving distance, direction, and speed. Second

method is snap shooting the all uncertain parameters for an image. After all uncertain parameters

are measured and fixed, the problem will be similar as design a fixed detectors.

𝛿 ∆𝜃

𝛿

0.6 MIN

Stimuli #1

Stimuli #2

61

In my thesis, I will focus on the detector design with fixed stimuli. All parameters are the

same as introduced in (Wei, Levi, Li, & Klein, 2007).

4.2 Key steps to generate coarse visual images from camera images

4.2.1 Point Spread Function

The point spread function is a calculated image of optical system to a perfect point source

of light. PSF is the response of an imaging system to the point input. It's analogous to the

impulse response. The flowing figure is the typical point-source situation in an imaging system.

Figure 32 Typical point source situation in image system

Consider a point of light, if we have perfect visual system, the image of this light point on

the retina will be exactly the same as the original point of light. It would be shown in the figure

with green lines. However, the eye’s optics is not perfect, so the light point is spread on the

retina as shown in the following red curve, which is called the point spread function.

62

Figure 33 Point Spread Function

If we have two objects really close to each other, after the convolution with PSF, they

might be smeared together and look like one object on the screen.

The output image can be achieved by the two dimensional convolution of the ideal image

with point spread function. In this case, the point spread function is described as the sum of two

2-D Gaussian functions in (Geisler, 1984) (Geisler & Davilla, 1985)

 ()

 [

]

 [

] (30)

In the above equation, a1, a2, a3, a4 are coefficients are a1=0.417, a2=0.583,

a3=0.443*scale (arc minutes)=26.58*SPSF (arc seconds), and a4=2.04* SPSF (arc minutes)=122.4 *

63

SPSF (arc seconds). SPSF is scale which we can change the distribution of point spread function.

SPSF was scaled in range from 0 to 9. For SPSF equals to 0, there is no point spread added into the

image. The larger the value of SPSF, the wider it spreads, the more blur the image will be. In

images, we use PSF0, PSF1, PSF2 to denote no point spread case, point spread with SPSF=1, 2

respectively.

In the daytime, the pupil gets narrower than in the night. The diameter of human pupil

has the range from 3.0mm to 5.0 mm. In this thesis, 3.0 mm pupil was assumed. These

parameters set in this thesis followed by (Wei, Levi, Li, & Klein, 2007). The diameter of the

receptor is 0.6 arcmin, which is the space between cones and square shape is assumed here. The

unit arcmin denotes one minute of arc, which means 1/60 of one degree. The unit arcsec will also

be used in the thesis, which is 1/60 of one arcmin. In the thesis, chromatically broadband stimuli

will only stimulate the middle and long wavelength cones equally.

4.2.2 Poisson distribution

The image we saw at the retina should be blurred, and noise should be added to the image,

which is Poisson distribution. In information theory, the Poisson distribution shows the

probability of a number of events happens in a fixed interval of time. In our situation, the

Poisson distribution was expressed as the number of photons absorbed in the receptor during a

fixed period of time.

 ()

 (31)

64

In the above equation, r belongs to nature numbers, and F denotes the mean number of

quanta absorbed in the receptor (Wei, Levi, Li, & Klein, 2007). The value of F (Geisler, 1984)

dependent on optical factors and also point spread function in equation (27).

 () () (32)

where A denotes the cross-sectional area of the receptor, the value is A=0.28 min
2
. D is the

duration of the stimulus, D=0.2 sec. S is the area of 2 mm pupil, which is S=3.1416 mm
2
. T is

the transmittance of the ocular media, T=0.68. E555 denotes the quantum efficiency of the

photoreceptors at 555nm, E555=0.5.It is assumed that half of the quanta are effectively absorbed

whether they fall in a middle or long wavelength cone. l (t) is the luminance distribution of the

stimulus in candelas per square meter. h (t) denotes the point spread function in equation (27). In

images, we use PN0 and PN1 to denote without Poison noise and with Poison noise respectively.

4.2.3 Simulation Eye Movements

Eye movements are disordered and the eyeballs are drifting all the time. Even when we

fix the head to make it not move and let the eyes gazing one object, the eyeballs are continuing

moving. When walking, running, sleeping, the drift rates are different. Even two people walking

with the same pace, the eye drift rate may be different. This fixation eye movements studied in

this thesis gives us a better understanding of how human brain helps us to see the objects.

Quintessentially, the drift rate is 2-5 Hz, and peak to peak amplitude is less than 5 arcmin

(Wei, Levi, Li, & Klein, 2007). The horizontal direction drifts are independent with the vertical

direction drifts. The drifts between the two eyes are also uncorrelated. In this thesis, the drift-like

eye movement could be model as the Gaussian random function, which shows in the following:

65

 () () () (33)

 () () () (34)

In the above equation, h (t) is the impulse response which can be described as follows:

 () (

√

 (

)) (

) (35)

where
 =50000 ms

2
.

In equation (30) & (31), is the convolution operation and denote the

independent Gaussian random process with unitary variance and zero mean. In equation (33), we

can change the scale of fixation movement by changing the variance of , i.e., using two

independent Gaussian process with variance S
2

FM and zero mean. The larger the variance, the

more unstable the images. In images, we use FM0, FMx to denote no fixation movement,

fixation movement with SFM=x, respectively.

66

4.3 Flow chart of the Matlab programing

Figure 34 Flow chart of the system design

I used the Matlab to process the video which shows the result. I will capture the image of

the video to show the results after doing the above three steps.

Read Input

Video

Point Spread

Function

Poisson

distribution

Eye Fixation

Movement

Output

Blurred

Video

67

4.4 Simulation Results

Figure 35 Original Image

68

Figure 36 Image through Point Spread Function, with SPSF=0.5

69

Figure 37 Image through Point Spread Function, with SPSF=1

70

Figure 38 Image through Point Spread Function, with SPSF=2

71

Figure 39 Image through Point Spread Function, with SPSF=4

72

(a) without noise

(b) with noise

Figure 40 Image without Poison noise (a) and with Poison Noise (b)

73

Figure 41 Image show fixation eye movement with SFM=5

You may see from the image, which is not located in the center anymore. It will show

well in a video.

74

Figure 42 Combine three functions together, with SPSF=1, PN=1, SFM=1

75

Figure 43 Combine three functions together, with SPSF=2, PN=1, SFM=2

76

CHAPTER FIVE: CONCLUSION

In the thesis, I introduce the basic design idea of the GPRAM, which is different from the

conventional machine. GPRAM systems use the idea of coding instead of the logic design. Error

control coding plays an important role in the design of GPRAM. The GPRAM system uses

LDPC coding and decoding theory. Thus, the quantization in the iterative decoding part is

needed in the FPGA design of the GPRAM. The information updates between check nodes and

variable nodes have been changed to the integer number due to the quantization of the decoding.

After the quantization of the iterative decoding, the BER performance is 0.3dB loss compare to

the un-quantized performance. What’s more, noise quantization is also needed in the FPGA

design of GPRAM. A Gaussian noise look-up table was created, and could be read one by one in

the end of every iteration. This quantized noise brings back the BER performance compare to the

quantized performance. These noises may be not perfect match the Gaussian distribution due to

the small quantities. The goal is to pick a set of noise which will match the un-quantized BER

performance. We may tolerance the noises are not exactly match the Gaussian distribution,

because we need the BER performance match the un-quantized one in the GPRAM design.

In the human vision part, the images we see from our eyes are blurred. The role of our

brain is as an image processing center, which may recover the blurred images to the fine images.

GPRAM is a general purpose machine which is like the human brain, so the images input into

the GPRAM should be blurred ones. Another reason of needed for the blurred images is the

following, the higher resolution of the image, the more data are required. Thus, we need to

mimic the images merely see from our eyes, which are blurred images. Three steps are

introduced in this thesis, which are point spread function, Poisson distribution, fixed eye

77

movements. These three steps are independent. One image pass through these three steps, coarse

images are generated.

What we did in the thesis is not enough; many other practical ideas should be added in

the GPRAM. We will build a robot-like system which can display behaviors similar to some

small animals. But to achieve this goal, we will need to extend error control coding beyond our

current understanding. What’s more, music signal is an interesting part and needed in the

GPRAM. The GPRAM tit uses singing songs to enhance its capability. For example, in the

future, we may use the mind-mouth-ear-mind loop to make its music-like signal base more

coherent, longer strings, more variations, so it may better predict the future. For the Vision part,

after we get the coarse images, we may take only a few pixels and do the coding, after iterative

decoding; the GPRAM may take a good guess and determine what is in an image.

78

APPENDIX: MATLAB CODE OF VISION PART

79

PSF function

function h=pointspread(hs,scale)

hs=0.6; %space between cones,in arc min, assume square shape here

scale=6;

a_1=0.417;

a_2=0.583;

a_3=0.443*scale;

a_4=2.04*scale;

x=[-10*hs*scale:hs:10*hs*scale];

y=[-10*hs*scale:hs:10*hs*scale];

h=zeros(length(x),length(y));

for i=1:length(x)

 for j=1:length(y)

 h(i,j)=a_1/(2*pi*a_3)*exp(-0.5*(x(i)^2+y(j)^2)/a_3^2)+a_2/(2*pi*a_4)*exp(-

0.5*(x(i)^2+y(j)^2)/(a_4^2));

 end

end

h=h/h(floor(length(x)/2)+1,floor(length(y)/2)+1);

 surf(x,y,h);

 axis([-10*scale 10*scale 0 1.3]);

 xlabel('retinal distance, x (min)');

 ylabel('relative intensity');

 text(-5,1.2,'Point spread function');

80

 x

Fixation Eye movement

function [xo,yo]=fixation_eye_mov(frame_rate,nframes,hs,scale)

%frame_rate=30;nframes=1000;scale=16;hs=0.6;

prnt=0;

xo=zeros(1,nframes,'int16');

yo=zeros(1,nframes,'int16');

frame_msec=floor(1000/frame_rate/scale+0.5);

tot_msec=frame_msec*nframes;

x_scale=1000;

x=[1:1:x_scale];

x=x-x_scale/2;

sigma2=50000;

ht=(2400/sqrt(2*pi*sigma2)*exp(-x.*x./2/sigma2)-0.7).*cos(2*pi*x/500);

%temp=sum(ht);

if prnt==1

 figure

 subplot(2,1,1),plot(x,ht,'k-')

 axis([-x_scale/2 x_scale/2 -3 5]);

 grid;

 legend('fixational eye movement')

81

 xlabel('msecond');

 ylabel('Amplitude (SEC OF ARC)');

 text(200,4,'impluse response');

 figure

 subplot(2,1,2), plot(20*log10(abs(fft(ht))));

 axis([0 200 -20 60]);

 legend('Power Spectral Density of h(t)')

 xlabel('Hz');

 ylabel('PSD (dB)');

end

ii=1;

for t=1: tot_msec+10

 if t==1

 ax=randn(x_scale);

 end

 yt(t)=0.;

 for i=1:x_scale

 yt(t)=yt(t)+ht(i)*ax(x_scale-i+1);

 end

 if mod(t,frame_msec)==1

 xo(ii)=int16(yt(t)/60/hs*scale);

82

 ii=ii+1;

 end

 for i=1:x_scale-1

 ax(i)=ax(i+1);

 end

 ax(x_scale)=randn(1);

end

ii=1;

for t=1: tot_msec+10

 if t==1

 ax=randn(x_scale);

 end

 yt(t)=0.;

 for i=1:x_scale

 yt(t)=yt(t)+ht(i)*ax(x_scale-i+1);

 end

 if mod(t,frame_msec)==1

 yo(ii)=int16(yt(t)/60/hs*scale);

 ii=ii+1;

 end

 for i=1:x_scale-1

 ax(i)=ax(i+1);

83

 end

 ax(x_scale)=randn(1);

end

if prnt==1

 xx=[1:1:tot_msec+10]

 figure

 plot(xx,yt,'k-')

 axis([1 tot_msec+10 -200 200]);

 legend('fixational eyemovement')

 ylabel('Amplitude (SEC OF ARC)');

 xlabel('msec');

 xx=[1:1:length(xo)]

 figure

 plot(xx,xo,'k-')

 axis([1 length(xo) min(min(xo)) max(max(xo))]);

 legend('fixational eyemovement')

 ylabel('Amplitude (SEC OF ARC)');

 xlabel('msec');

end

filr_gram

function flnm_para()

84

global Mv Mvname Shp_nm lenH lenW scl_res scl_PSF scl_FM scl_PSN;

Mv='';

while(length(Mv)==0)%(Mv~='0')&&(Mv~='1'))

 Mv = input('For Movie, input 1, pattern, input 0: \n','s');

 if Mv~='0' && Mv~='1'

 fprintf('wrong input, try again; \n');

 Mv='';

 end

end

if Mv=='1'

 Mvname='';

 while(length(Mvname)==0)

 Mvname = input('input movie name, for example nature3.mpg: \n','s');

 end

end

if Mv=='0'

 Shp_nm='';ind=0;

 while(length(Shp_nm)~=3||ind==0)

 Shp_nm = input('input shape name: dot,sqr for squar,ovl for oval\n','s');

 ind=0;

 if (length(Shp_nm)==3)

 if(Shp_nm=='dot')

85

 Mvname='dot';

 ind=1;

 end

 if(Shp_nm=='sqr')

 ind=1;

 Mvname='square';

 end

 if(Shp_nm=='ovl')

 ind=1;

 Mvname='oval';

 end

 if ind==1

 reply=input('length:\n','s');

 lenH=str2num(reply);

 reply=input('width:\n','s');

 lenW=str2num(reply);

 end

 end

 if(ind==0)

 fprintf('wrong input, try again;\n');

 Shp_nm='';

 end

86

 end

end

reply='';

while (length(reply)==0)

 reply = input('input PSF, 0.0 to 9.9: \n','s');

 scl_PSF=str2num(reply);

 if (scl_PSF<0)||(scl_PSF>9.9)

 fprintf('out of range, try again;\n');

 reply='';

 end

end

reply='';

while (length(reply)==0)

 reply = input('input Fixational Movement, 0.0 to 9.9: \n','s');

 scl_FM=str2num(reply);

 if (scl_FM<0)||(scl_FM>9.9)

 fprintf('out of range, try again;\n');

 reply='';

 end

end

reply='';

87

while (length(reply)==0)

 reply = input('input Poisson, 0.0 to 9.9: \n','s');

 scl_PSN=str2num(reply);

 if (scl_PSN<0)||(scl_PSN>9.9)

 fprintf('out of range, try again;\n');

 reply='';

 end

end

Main program

% this is program to convert any shape and movie file into

% retinal images, including point spread blur, fixation movement, and

% poisson noise

close all

clear all

global Mv Mvname Shp_nm lenH lenW scl_res scl_PSF scl_FM scl_PSN;

Mv='0';Mvname='nature3';Shp_nm='dot';

lenH=1;lenW=1;scl_PSF=0.0;scl_FM=0.0;scl_PSN=0.0;

flnm_para();

88

Mvname1=[Mvname '.mpg'];

hs=0.6; % cone size

if Mv=='1'

 xyloObj=mmreader(Mvname1);

 nFrames = xyloObj.NumberOfFrames;

 vidHeight = xyloObj.Height;

 vidWidth = xyloObj.Width;

 frame_rate=xyloObj.FrameRate;

%

% Preallocate movie structure.

 nFrames=300;

 mov(1:nFrames) = ...

 struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...

 'colormap', []);

% Read one frame at a time.

 aa=zeros(vidHeight, vidWidth, 3,'uint8');

else

 nFrames=100;

 vidHeight= 100;

 vidWidth = 200;

 frame_rate=29.97;

89

 aashape=zeros(vidHeight, vidWidth, 3, 'uint8');

 LH=int16(vidHeight/2-lenH/2);

 LW=int16(vidWidth/2-lenW/2);

 for i=LH:LH+lenH-1

 for j=LW:LW+lenW-1

 aashape(i,j,:)=128;

 end

 end

 % mov(1:nFrames) = ...

 % struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...

 % 'colormap', []);

end

if scl_PSF~=0.0

 h=pointspread(hs,scl_PSF);

 bb=zeros(length(h)-1+vidHeight,length(h)-1+vidWidth, 3,'uint8')

 cc=zeros(vidHeight, vidWidth,'single')

 dd=zeros(length(h)-1+vidHeight, length(h)-1+vidWidth,'single')

end

if scl_FM~=0.0

 [xo,yo]=fixation_eye_mov(frame_rate,nFrames,hs,scl_FM);

 xo=xo-min(xo);

 yo=yo-min(yo);

90

end

for k = 1 : nFrames

 if Mv=='1'

 aa=read(xyloObj, k);

 else

 aa=aashape;

 end

 if scl_PSF~=0.0

 for j=1:3

 cc=single(aa(:,:,j))*2^(-8);

 ccmax=max(max(cc));

 dd=conv2(cc,h);

 ddmax=max(max(dd));

 bb(:,:,j)=uint8(dd*ccmax/ddmax*2^8);

 end

aa=bb(floor(length(h)/2)+1:vidHeight+floor(length(h)/2),floor(length(h)/2)+1:vidWidth+floor(le

ngth(h)/2),:);

 end

 if scl_PSN~=0.0

 ee=poissrnd(single(aa)*2^(-8)*200);

91

 aa=uint8(ee);

 %aa=uint8(ee/max(max(max(ee)))*2^8);

 end

 if scl_FM~=0.0

 mov(k).cdata(1:vidHeight-xo(k),1:vidWidth-yo(k),:) =

aa(xo(k)+1:vidHeight,yo(k)+1:vidWidth,:);

 else

 mov(k).cdata = aa;

 end

end

Cpsf=num2str(scl_PSF);

Cfm=num2str(scl_FM);

Cpsn=num2str(scl_PSN);

if Mv=='1'

 Filename=['rawdata/' Mvname '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn '.avi'];

 FilenameM=['rawdata/' Mvname '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn '.mat'];

else

 CH=num2str(lenH);

 CW=num2str(lenW);

 Filename=['rawdata/' Mvname '_H' CH '_W' CW '_PSF' Cpsf '_FM' Cfm '_PSN' Cpsn

'.avi'];

92

 FilenameM=['rawdata/' Mvname '_H' CH '_W' CW '_PSF' Cpsf '_FM' Cfm '_PSN'

Cpsn '.mat'];

end

movie2avi(mov, Filename, 'compression', 'None');

save(FilenameM);

93

LIST OF REFERENCES

Bahl, L., Cocke, J., Jelinek, F., & Raviv, J. (1974, Mar.). Optimal decoding of linear codes for

minimizing symbol error rate. IEEE Trans. Inform. Theory, vol. IT-20(2), pp. 284-287.

Berrou, A., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon Limit Error-Correcting

coding and decoding: Turbo-codes.1. IEEE International Conference on Communication,

(pp. 1064-1070). Geneva, Switzerland.

Brink, S. T. (1999, May). Convergence of Iterative Decoding. Electronics Letters, pp. 10-35.

Chung, S. Y., & Forney, G. D. (2001, Feb). On the design of Low-Density Parity-Check Codes

within 0.0045 dB of the Shannon limit. IEEE Communications Letters,Vol.5, No.2.

Dolinar, S. (1988). A New Code for Galileo. Pasadena, California: Jet Propulsion Laboratory.

Elias, P. (1955). Coding for noisy channels. Proc. IRE Conv.Rec. part 4, pp. 37-46.

Fano, R. M. (1963, April). A heuristic discussion of probabilistic decoding. IEEE Trans Inform.

Theory 9, pp. 64-74.

Forney, G. D. (1973a, Mar.). The viterbi algorithm. Proceedings of the IEEE., vol. 61, pp. 268-

278.

Forney, G. D. (2001b, Feb.). Codes on graphs: normal realization. IEEE Trans. Inform. Theory,

vol. 47, pp. 520-548.

Fox, M. D., & Raichle, M. E. (2007, Sep). Spontaneous fluctuations in brain activity observed

with functional magnetic resonance imaging. Nature Reviews Neuroscience 9, pp. 700-

711.

Gallager, R. G. (1963a). Low-Density Parity-Check Codes. Cambridge, MA: M.I.T. Press.

Gallager, R. G. (1968). Information Theory and Reliable Communication. New York: Wiley.

94

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic

Books.

Hagenauer, J., & Hoeher, P. (1989). A Viterbi algorithm with soft-decision outputs and its

applications. Globecom, (pp. 47.1.1-7). Dallas, TX.

Heller, J. A., & Jacobs, I. M. (1971, Oct). Viterbi decoding for satellite and space

communication. IEEE Trans. Commun. Technol., vol. COM-19, pp. 835-848.

Klein, S. A., & Levi, D. M. (1985). Hyperacuity thresholds of 1 sec: theoretical predictions and

empirical validation. J. Opt. Soc. Am 75, pp. 1170-1190.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001, Feb). Factor graphs and the sum-

product algorithm. IEEE Trans. Inform. Theory, vol. 47, pp. 498-519.

Levy, W. B., & Steward, O. (1983, Apr.). Temporal contiguity requirements for longterm

associative potentiation/depression in the hippocampus. Neuroscience 8 (4), pp. 791-797.

Li, H. H., & Wei, L. (2013c). General Purpose Representation and Association Machine Part 4:

Improve Learning for Three States and Multi-tasks. IEEE Southeastcon.

Li, H. H., Dai, B., Schultz, S., & Wei, L. (2013). General Purpose Representaion and Association

Machine Part 3: Prototype Study using LDPC codes. IEEE Southeastcon.

Lin, S., & Costello, D. J. (2004). Error Control Coding, Edition 2. Prentice Hall.

MacKay, D. J., & Neal, R. M. (1996, Aug). Near Shannon limit performance of low-density

parity-check codes. Elect. Lett.,vol.32, pp. 1645-1646.

Mackay, D. J., McEliece, R. J., & Cheng, J. F. (1997). Turbo decoding as an instance of Pearl's

belief propagation algorithm. IEEE J. Select. Areas Commun.

95

Mackworth, A., & Poole, D. (1988). Artificial Intelligence: Foundations of computational agents.

Cambridge University.

Neumann, J. v. (1958). The computer and the brain. USA: Yale University Press.

Olshausen, B. A., & Field, D. J. (1996a). Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature, 381, 607-609.

Olshausen, B. A., & Field, D. J. (1996a). Emergence of Simple-Cell Receptive Field Properties

by Learning a Sparse Code for Natural Images. Nature, 381, 607-609.

Olshausen, B. A., & Field, D. J. (1997b). Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Res., 3311-3325.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

San Mateo, CA: Morgan Kaufmann.

Rehn, M., & Sommer, F. T. (2007). A network that uses few active neurones to code visual input

predicts the diverse shapes of cortical receptive fields. Journal of Computational

Neuroscience 22, 135-146.

Richardson, T. J. (2001, Feb). Design of Capacity-Approching Irregular Low-Density Parity-

Check Codes. IEEE Trans. Inform Theory, Vol 47, No.2.

Shannon, C. E. (1948, July). A mathematical theory of commnication. Bell System Technical

Journal, pp. 379-423.

Tanner, R. M. (1981, Sep). A recursive approach to low complexity codes. IEEE Trans. Inform.

Theory, vol. 27, pp. 533-547.

Viterbi, A. J. (1967, Apr.). Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269.

96

Wei, L. (2003c). Connectivity Reliability of Large Scale Random Ad Hoc Networks. Procs of

MILCOM. Boston, USA.

Wei, L. (2012a, Mar.). General Purpose Representation and Association Machine Part1:

Introduction and Illustrations and Part 2: Biological Implications. IEEE Southeastcon.

Wei, L. (2012b). General Purpose Representation and Association Machine Part 2: Biological

Implications. Sout.

Wei, L., & Qi, H. (2000b, July). Near Optimal Limited Search Decoding on ISI/CDMA channels

and decoding of long convolutional codes. IEEE Trans. Inform. Theory, vol. 46-4, pp.

1459-1482.

Wei, L., Levi, D. M., Li, R., & Klein, S. (2007, April). Feasibility Study on a hyperacuity Device

with Motion Unvertainty: Two-point Stimuli. IEEE Trans. on Systems. Man and

Cybernetics, pp. 385-397.

Westheimer, G. (1975). Visual acuity and hyperacuity. Invest Ophthalmol 14, pp. 570-572.

Yang, D., & Froemke, R. C. (2002b, Jan. 15). Spike timing-dependent synaptic modification

induced by natural spike trains. Nature, pp. 433-438.

Yang, D., & Poo, M. M. (2006a). Spike timing-dependent plasticity from synapse to perception.

Physiol Rev 86, pp. 1033-1048.

Yuen, J. H., & Vo, Q. D. (1985). In search of a 2 dB Coding Gain. TDA Progress Report, (pp.

42-83). Pasadena, California.

	Practical Issues in GPRAM Development
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: LITERATURE REVIEW
	2.1 Literature review of error control coding and quantization
	2.2 Literature review of biological visual systems
	2.3 Literature review of GPRAM systems

	CHAPTER THREE: QUANTIZATION IN LDPC DECODING AND NOISE
	3.1 Error Control Coding in Telecommunication systems
	3.1.1 Description of Several Types of Error Control Coding
	3.1.1.1 Linear Block Codes
	3.1.1.2 Repetition Code
	3.1.1.3 Hamming Code
	3.1.1.4 LDPC codes
	3.1.1.5 Convolutional Codes
	3.1.1.6 Turbo Codes

	3.1.2 Description of Several Decoding Procedures
	3.1.2.1 Maximum A Posterior (MAP) and Maximum-likelihood (ML) Decoding
	3.1.2.2 Decoding method of Linear Block Codes
	3.1.2.3 The Viterbi Algorithm for soft decoding convolution codes
	3.1.2.4 BCJR Algorithm for soft decoding convolutional codes
	3.1.2.5 Sum-Product Algorithm for decoding LDPC block codes

	3.1.3 Quantization Issues in Implementation of Decoding Algorithms
	3.1.3.1 Quantization of Viterbi Algorithm
	3.1.3.2 Quantization of Iterative Viterbi Algorithm
	3.1.3.3 Quantization of Sum-Product Algorithm

	3.2 LDPC Decoding in GPRAM System
	3.2.1 Overview a Simple GPRAM Prototype
	3.2.2 Decoding process in GPRAM
	3.2.3 Connection methods in GPRAM

	3.3 Problems in Existing Implementation
	3.4 Quantization of LDPC decoding
	3.5 Noise implementation in LDPC decoding design
	3.6 Simulation Results
	3.7 Conclusions

	CHAPTER FOUR: IMAGING MANIPULATION FOR GPRAM
	4.1 Differences between camera images and bio-visual images at retinal
	4.2 Key steps to generate coarse visual images from camera images
	4.2.1 Point Spread Function
	4.2.2 Poisson distribution
	4.2.3 Simulation Eye Movements

	4.3 Flow chart of the Matlab programing
	4.4 Simulation Results

	CHAPTER FIVE: CONCLUSION
	APPENDIX: MATLAB CODE OF VISION PART
	LIST OF REFERENCES

