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ABSTRACT 

 
 
In recent years the use of advanced driving simulators has increased in the transportation 

engineering field especially in evaluating safety countermeasures. The driving simulator 

at UCF is a high fidelity simulator with six degrees of freedom. This research aims at 

validating the simulator in terms of speed and safety with the intention of using it as a test 

bed for high risk locations and to use it in developing traffic safety countermeasures. 

  

The Simulator replicates a real world signalized intersection (Alafaya trail (SR-434) and 

Colonial Drive (SR-50)). A total of sixty one subjects of age ranging from sixteen to sixty 

years were recruited to drive the simulator for the experiment, which consists of eight 

scenarios. This research validates the driving simulator for speed, safety and visual 

aspects. Based on the overall comparisons of speed between the simulated results and the 

real world, it was concluded that the UCF driving simulator is a valid tool for traffic 

studies related to driving speed behavior. Based on statistical analysis conducted on the 

experiment results, it is concluded that SR-434 northbound right turn lane and SR-50 

eastbound through lanes have a higher rear-end crash risk than that at SR-50 westbound 

right turn lane and SR-434 northbound through lanes, respectively. This conforms to the 

risk of rear-end crashes observed at the actual intersection. Therefore, the simulator is 

validated for using it as an effective tool for traffic safety studies to test high-risk 

intersection locations. The driving simulator is also validated for physical and visual 

aspects of the intersection as 87.10% of the subjects recognized the intersection and were 
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of the opinion that the replicated intersection was good enough or realistic. A binary 

logistic regression model was estimated and was used to quantify the relative rear-end 

crash risk at through lanes. It was found that in terms of rear-end crash risk SR50 east- 

bound approach is 23.67% riskier than the SR434 north-bound approach. 
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1 . INTRODUCTION 

 
 
The University of Central Florida driving simulator is a high fidelity simulator which 

means that it conforms to a high quality of standard which reproduces sounds or images 

in a very realistic manner. It is mounted on a motion base capable of operation with six 

degrees of freedom which makes the simulator move in up / down, and lateral (left / 

right) directions.  

 

 

Figure 1-1: UCF Driving Simulator 
 

It consists of 5 channels (1 forward, 2 side views and 2 rear view mirrors) of image 

generation; an audio and vibration system; steering wheel feedback; an 

operator/instructor console with graphical user interface; sophisticated vehicle dynamics 
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models for different vehicle classes; a 3-dimensional road surface model; a visual 

database with rural, suburban and freeway roads, and an assortment of buildings and 

operational traffic control devices; and a scenario development tool for creating real-

world driving conditions. 

 
Abdel-Aty et al. on the safety issue at the intersection of Alafaya trail (SR-434) and 

Colonial Drive (SR-50) conducted an extensive research at UCF. This research was based 

on crash police reports between years 1999 to 2002. This intersection experienced more 

rear-end type of crashes with a frequency of 95 and a relative frequency of 57.9% 

followed by angle crashes with a frequency of 24 and a relative frequency of 14.6%, Left 

turn crashes, 12 or 7.3%, sideswipe, 10 or 6.1%, and right turn, 8 or 4.9% followed. From 

the severity point of view, during the research period there were 73 PDO crashes, 90 

injury crashes, and 1 fatal crash. It concluded that the rear-end crash rate in the eastbound 

approach of the Colonial Drive (50EB) is highest and that in the northbound approach of 

the Alafaya Trail (434NB) is lowest. 

 

According to the crash spot diagram (Figure 1-2), out of total 95 rear end crashes 24 

crashes happened at Alafaya Trail right-turn lanes; 8 for southbound traffic and 16 for 

northbound traffic. During the same period, Colonial Drive right-turn lanes had only 6 

rear-end crashes. Hence, it is clear that Alafaya Trail right-turn lanes have safety 

problems when compared to Colonial Drive. Moreover, out of sixteen accidents in 

Alafaya trail north bound right turn lane, driver age between 24 years and 64 years are 
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involved in thirteen accidents and all accidents are evenly distributed among male and 

female gender groups. 

 
Figure 1-2: Crash spot diagram for years 1999 to 2002 

 

In order to study the safety aspects at this intersection, the intersection is replicated in the 

Simulator and sixty subjects were employed to run the experiment. The primary objective 
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of this research is to validate the simulator in order to use the simulator as a test bed for 

various traffic safety counter measure applications. This research is a unique application 

of Driving Simulator where the Simulator is validated for Speed and Safety and visual 

aspects.  
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2 . LITERATURE REVIEW 

 
 
The driving simulator, lately, has emerged as a flexible high – fidelity research facility to 

assess and evaluate new systems for driver support and traffic management. It is also 

proven to be a cost effective tool to test real life like scenarios in a simulated 

environment. At this stage, along with the innumerous applications of the driving 

simulator it is equally important to validate the simulator. The purpose of many of the 

previous studies was to develop effective tools to validate the driving simulator with 

respect to factors such as safety, speed, human behavior, etc. A review of the literature 

for the applications and validation of driving simulators is given in the following 

sections. 

 
 

2.1 Applications of Driving Simulators 

 
Alexander et al. (2002) studied the factors influencing the probability of an incident at an 

intersection using an interactive driving simulator. They tried building a model for 

predicting the probability of an incident (a crash or a ‘near miss’) occurring as a result of 

a right-turn across traffic (note that right turn in the UK is equivalent to left turn in the 

US). This can be considered to be the product of two separate probabilities, the first being 

the probability that the gap between a pair of vehicles in the traffic stream is accepted, 

and the second the probability that the time needed to cross the on-coming stream of 
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traffic causes the time-to-collision with the nearest vehicle in this traffic stream to be less 

than a second. The study identifies the factors, which might explain the reasons why 

elderly drivers are over represented in intersection crashes based on earlier studies. The 

sample population used consisted of 40 volunteers, 30 aged 65 and over and the rest 

below 65.The main part of the evaluation consisted of eight spells of driving, featuring 

different combinations of lighting condition (day/night), traffic speed (30/60 mph) and 

status of in-vehicle device (on/off). The device used for giving subjects advice on when 

to make a maneuver (designed specifically for the purposes of this evaluation) consisted 

of a small box with a display of two lights: a red light to indicate to the user that the 

current gap in the stream of traffic was less than a pre-set threshold, and therefore it was 

deemed that it was not safe to cross, and a green light that was illuminated when the gap 

was at or above this threshold. The effect of various factors (order of the gap, age, sex, 

velocity, vehicle size, vehicle color, the electronic device and day or night-time 

conditions) on the median acceptable gap was examined using Probit analysis. They 

found that as number of gaps rejected increased there is an overall increase in the median 

accepted gap. The speed of the on-coming vehicle had a great effect on the median 

accepted gap size. The drivers were found more reticent to turn left (in the US) across 

slower moving vehicles than faster moving vehicles at the same gap size. The probability 

of a crash or near miss at gap size is taken to be the product of the probability of gap size 

being accepted and the probability that time taken to cross is greater than gap size – 1 s 

(near miss). It was concluded that the probability that a driver will have a crash or a near 

miss when turning right across a stream of traffic is dependent on both the size of the gap 
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that driver will accept in an on-coming stream of traffic and the time taken to cross the 

intersection once the gap has been accepted. The factors affecting size of gap and time 

taken to cross are age, sex, speed, size and color of the on-coming vehicle and the order 

of the gap. 

 

Comte et al. (2000) made a comparison between four speed-reducing methods (a road-

side Variable Message Sign displaying the advisory speed and their number plate, an in-

car advice displaying the advisory speed for the curve (in-car), a speed limiter that 

automatically reduces driver speed to the advisory speed and transverse bars with 

decreasing spacing) against the baseline condition using a driving simulator. Fifteen 

males and 15 females took part in the experiment. The subjects were to drive a road 

network with equal number of left and right curves. For each segment average values of 

speed, acceleration, and lateral position were derived. The percentage of speed reduction 

completed before curve entry was calculated as measure of anticipatory behavior. Total 

heading errors (sum of the means of the difference between the simulator heading and the 

road heading over a 30 m section of the approach over the full distance of approach (270 

m) was calculated as an indication of steering performance. The number of lane 

departures and minimum time-to-line crossing were also recorded in the curve, as an 

indication of controlled curve negotiation. The data were analyzed using multivariate 

analysis of variance. The percentage speed reduction at the curve approach was 

calculated for each system and was concluded that speed reduction was not at a constant 

rate in baseline condition. They found that of all the systems, the speed limiter surpassed 
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all the other systems in terms of effectively reducing speed on approach to curves and 

consequently having additional positive effects on lateral control in curve negotiation.  

 

Various studies were based on trying to find a correlation between driving performance 

in the older drivers with factors like vision, visual perception, cognition, reaction time, 

and driving knowledge. It was found that there was considerable relation among these 

factors. Ikeda et al. (2002) observed the effects of mental and physical deterioration of 

elderly drivers when facing an accident, using a driving simulator. Twelve subjects, three 

young (20-25), three middle aged (35-45) and six old (over 60) were made to drive 2km 

(10min) before the intersection, in the JARI driving simulator. In order to reproduce such 

deterioration in the aged drivers, the subjects were required to do multiple tasks while 

driving, e.g., following traffic signals and signs, preceding cars etc. The reaction time 

was measured in three categories detection time, recognition/judgment time, and 

operation time. They found that there are differences in reaction time between the old, the 

young and middle-aged 0.3 and 0.42 s on an average respectively, which showed an 

aging effect. It was concluded that once another vehicle is detected, the time required for 

recognition and judgment by the aged driver is rather shorter than that of the younger 

ones, compensating for the delay due to age. The older driver becomes not good at 

simultaneous processing of multiple tasks due to deterioration of information processing, 

but it seems that they have action patterns through experience to react to various 

recognized objects, which makes them able to complete recognition/judgment of 

individual tasks in a short time. 
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Roge (2001), France, made an attempt to confirm the existence of a relation between the 

occurrence of certain behaviors and the variations of the level of arousal during a 

monotonous simulated car drive. There exist two types of behavioral activities: those 

necessary to the performance of the task and those that are not directly imposed by the 

task. The latter are called non-specific activities, subsidiary activities, or collateral 

activities. Scientists distinguish five categories of such behaviors, which can be defined 

as follows. ‘Postural adjustments’ are movements of one or several parts of the body in 

space. ‘Verbal exchanges’ are exchanges that do not include any piece of information 

about the activity itself. ‘Ludic activities’ are movements implying the manipulation of 

objects. ‘Self-centered’ gestures are movements of one or both hands towards the body. 

Finally, ‘non-verbal activities’ are changes that can be observed on the face. The 

occurrence of a decrement in vigilance can be assessed by means of alpha and theta 

electroencephalographic indices, whose decreasing indicates the occurrence of dozing-off 

episodes during driving at work. Eight women and nine men, aged 20 – 30, drove for 2 

hours on the Vigilance Analysis Driving Simulator. The effect of the ‘driving duration’ 

variable on the length of the low vigilance episodes and on the number of behavioral 

activities in each category was analyzed by means of non-parametric tests (Friedman’s 

test). This result indicates a progressive decrease in the level of arousal, the low vigilance 

periods becoming longer as the experiment was prolonged. It was observed that drivers 

developed more behavioral activities as the experiment was prolonged. They concluded 

that duration of driving had a significant effect on self-centered gestures, on non-verbal 



 10

activities, on ludic activities and on postural adjustments. Non-verbal activities are the 

only precursory signs of a decrease in vigilance in the context of monotonous car driving.  

 

Mourant at al. (2000) studied the simulator sickness in virtual environments driving 

simulator. They examined whether the severity and type of simulator sickness differs due 

to the type of driving environment or the gender of the driver. Thirty subjects (15 males 

and 15 females) were told to drive in either a highway, rural or city environment. 

Simulator sickness Questionnaire and postural stability tests were used to gather data 

before and after participants drove the virtual environments based driving simulator. 

ANOVA was used to analyze the experimental design results. It was found that most of 

the subjects reported to have coulometer discomfort, i.e. eye strain, headaches, difficulty 

focusing, and blurred vision. Also vehicle velocity was found to be a factor in driving 

simulator sickness. 

 

Lee et al. (1997) made a similar study on simulator sickness. They wanted to determine 

whether there was a relationship between simulator sickness and measures of driver 

inputs, vection (illusionary impression of self-motion), and postural sway. Eleven 

undergraduate students from University of Central Florida (four females and seven 

males) between the ages 19 and 28 were used as test subjects. Subjects drove the UCF 

driving simulator for five minutes at 30 miles per hour. Data were collected for four 

dependent measures: vection, postural stability, simulator sickness and driving 

performance. It was found that ten out of the eleven subjects reported sickness. Also eight 
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of the nine subjects who reported vection also reported sickness. That is, subjects who 

experienced vection tended to have sickness as well. 

 

Cheng et al. (2002) investigated driver’s responses to a forward vehicle collision warning 

by driving simulator experiments. Thirty-six subjects were disposed randomly to the 

following three kinds of dangerous scenes while the subjects were intentionally distracted 

(like a subtask which was a mental arithmetic calculation etc): closing to a preceding 

vehicle, sudden cut-in of a vehicle from an adjacent lane, and lane departure of own 

vehicle. Audible means of warning were used consisting of different kinds of warning 

sounds corresponding to the scene. The response of each subject was measured a total of 

10 times, which was twice for each of the five warning sounds. The responses of the 

subjects to the forward vehicle collision warning only in the cut-in scene were analyzed 

and were evaluated in two aspects: the correctness of the evasive action and the response 

time to the warning sound. It was confirmed that all of the subjects were able to identify 

the dangerous situation after the warning sound was issued and able to take the demanded 

evasive action to avoid a collision.  

 

Kacir et al. (2003) made an extensive research on Permissive Display for 

Protective/Permissive Left-Turn (PPLT) Control. The experiment was conducted over a 

7-year period, National Cooperative highway research program (NCHRP) Project3-54 if 

the most comprehensive study of PPLT displays to date. The project surveyed current 

practice: studied driver understanding of known permissive displays in the United States: 
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analyzed crash and operational data: studied the implementation of an experimental 

permissive display: and conducted a confirmation study using two-full driving simulators 

(located at university of Massachusetts and Texas A & M University) to assess driver 

understanding of the most promising permissive displays. The study evaluated 12 PPLT 

signal display scenarios-each with a different permissive indication, display face, location 

and through-movement indication. Each PPLT signal display included only the circular 

green indication and/or flashing yellow arrow permissive indication. Some of the findings 

related to the study recommendations were: the flashing yellow arrow indication and 

display was found to have a lower fail critical rate (drivers incorrectly assume the right of 

way) compared to the circular green permissive indication; the study showed that drivers 

interpreted the meaning of the flashing yellow arrow display correctly. Based on the 

findings, the research team recommended incorporating the flashing yellow arrow display 

into MUTCD as an optional alternative display to the circular green for PPLT operation 

and also restricting the use of flashing red indications.  

 

Braking time is a critical component in safe driving, and various approaches have been 

applied to minimize it. In congested high-speed driving, braking time becomes critical. 

With short headways, the likelihood of rear-end collisions increases sharply. This is 

supported by simulator studies as well as from the high frequency of rear-end collisions 

(30% of all crashes according to the National Highway Traffic safety Administration, 

1999). Shinar et al. (2002) analyzed the components of braking time in order to assess the 

effects of age, gender, vehicle transmission type, and event uncertainty, on its two 
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primary components, perception-reaction time and brake-movement time. Perception-

reaction time and brake-movement time were measured at the onset of lights for 72 

subjects in a simulator. The six experimental conditions were three levels of uncertainty 

conditions (none, some, and some false alarms) and two types of transmission (manual 

and automatic). They found that transmission type did not significantly affect either 

perception-reaction time or brake-movement time. Also, perception-reaction time 

increased significantly as uncertainty increased and also with age while brake-movement 

time did not change. 

 

Smith et al. (2002) proposed a crash avoidance database structure that is based on driver 

judgments. The structure comprises four driving conflict states (low risk, conflict, near 

crash, and crash) that correspond with advisory warning, crash-imminent warning, and 

crash mitigation countermeasures. The crash state and conflict and near-crash state 

boundaries estimation was carried out. Next, the reliability of this database structure and 

its use to develop a crash avoidance database was done using driver performance data 

from an on-road naturalistic driving study and a driving simulator-controlled experiment. 

It was found that in both scenarios, most drivers initiate their braking action in response 

to a stopped lead car in the low-risk driving state. 

 

McGehee et al.(1998), used the Iowa driving simulator to study the effects of various 

rear-end crash warnings on driver behavior. They found warnings to be most effective 

when headways are shortest. They also found warnings to be confusing or aggravating 
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when they are issued too early, when drivers are already braking, and when drivers are 

being distracted.  

 

In another study, McGehee et al (1999) conducted research examining driver crash 

avoidance behavior and the effects of ABS, Antilock Braking System, on drivers’ ability 

to avoid collision in a crash-imminent situation. The study was conducted on Iowa 

Driving Simulator and examined the effects of ABS versus conventional brakes, speed 

limit, ABS instruction and Time to Intersection on driver behavior and crash avoidance 

performance. Drivers’ reactions in terms of steering and braking and their success in 

avoiding the incursion vehicle were recorded. This study found that alert drivers do tend 

to brake and steer in realistic crash avoidance situations and that excessive steering also 

occurs at times.  

 

Martin et al. (2001) tested how a single data record may be used to characterize an 

impending two-car, rear-end collision in which a lead vehicle and following-vehicle are 

initially separated by a range. A set of seven single valued covariates (speed of both 

vehicles, deceleration of both vehicles, brake application time of both vehicles and range 

between the vehicles) was calculated to describe the actions of both vehicles. These seven 

covariates may be used to derive theoretical time-histories that match the experimental 

ones. The procedure makes use of only the experimental range and following vehicle 

speed data. Using these, the time-histories of speed and decelerations were computed. 

Using Marquardt’s non-linear regression, seven covariates were deduced. They made a 
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comparison between theoretical time-histories derived from the seven covariates and the 

experimental time histories for a typical Driving Simulator run. The same thing was done 

for an intelligent cruise Control test run. Also Time-to-Collision was evaluated using 

kinematics. It was found that theoretical time-histories fit all the covariates very well for 

the simulator run. For the intelligent Cruise control test, the fit was found to be 

reasonably good up to a point where the driver of the following vehicle lets off the brake. 

They concluded that good fits attest to the validity of the procedure and its ability to 

characterize naturalistic data. 

 

Winsum et al. (1999) studied the relation between perceptual information and the motor 

response during lane-change maneuvers in a fixed-based driving simulator. Eight subjects 

performed 48 lane changes with varying vehicle speed, lane width and direction of 

movement. Three sequential phases of the lane change maneuver are distinguished. 

During the first phase the steering wheel is turned to a maximum angle. After this the 

steering wheel is turned to the opposite direction. The second phase ends when the 

vehicle heading approaches a maximum that generally occurs at the moment the steering 

wheel angle passes through zero. During the third phase the steering wheel is turned to a 

second maximum steering wheel angle in opposite direction to stabilize the vehicle in the 

new lane. Duration of the separate phases were analyzed together with steering 

amplitudes and Time-to-Line Crossing in order to test whether and how drivers use the 

outcome of each phase during the lane change maneuver to adjust the way the subsequent 

phase is executed. Using standard, ANOVA and regression techniques, it was found that 
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steering actions were controlled by the outcome of previous actions in such a way that 

safety margins are maintained. The results also suggest that the driver uses visual 

feedback during lane change maneuvers to control steering actions, resulting in flexible 

and adaptive steering behavior. 

 

Comte (2000) evaluated positive and negative outcomes of Intelligent Speed Adaptation 

(ISA) using University of Leeds Advanced driving simulator. Three variants of ISA - 

Driver select system; Mandatory system and Variable system were evaluated. The critical 

scenarios of interest were speed and speed adaptation, system use, gap acceptance, 

following behavior, overtaking, violations, and attention to surprise events, mental 

workload and acceptability. It was found that Mandatory system was the most useful of 

the systems, in terms of acceptability. While in terms of satisfaction, they found that the 

drivers preferred the idea of a Driver Select system even though the Mandatory system 

would be the most useful. 

 

Philip et al. (2003) studied about the effect of fatigue on performance measured by a 

driving simulator in automobile drivers. One hundred and fourteen drivers who stopped 

at a rest area were recruited for the study. Also, the test was done on 114 control subjects 

who had normal sleep wake schedule and absence of long driving on the same day. The 

demographic information between experimental and control groups was analyzed using 

nonparametric tests. The steering error from the ideal curve on the driving simulator and 
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its relation to sex, age and driving and sleeping behaviors was then studied through 

logistic regression analysis. It was found that drivers performed significantly worse than 

control subjects. They concluded that steering errors on a driving simulator could be used 

to measure fatigue. 

 

Roge et al. (2003) studied the effect of sleep deprivation and driving duration on the 

useful visual field in younger and older subjects during simulator driving. Nine older 

subjects (40-51 years) and 10 younger subjects (18-30 years) took part in two one-hour 

driving sessions. The subjects had to respond to certain critical signals for both tasks- 

Central and Peripheral. Two control parameters lateral and longitudinal instability were 

also analyzed. It was found that sleep deprivation and duration of driving had a 

significant effect on lateral and longitudinal instability. Also sleep deprivation and 

duration of driving affected the number of correct responses in both the central and 

peripheral tasks. 

 

The applications of the driving simulator are tremendous. It has been used extensively in 

speed reduction methods, gap acceptance criteria, in calculating braking time, steering 

angle, and perception reaction time. The driving simulator has made possible to study 

about human factors and driver characteristics in various traffic scenarios. There are 

many studies, which indicate a relation between driving performance in older drivers 

with factors like vision, visual perception, cognition, reaction time and driving 
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knowledge. None of the studies have used the driving simulator as a test bed, trying to 

replicate the accident scenarios, for high-risk locations as signalized intersections or toll 

plazas, which make this study unique. 

 
 

2.2 Validation of Driving Simulators 

 
For a driving simulator to be a meaningful endeavor, it is essential that the 

correspondence between a real and simulated environment is sufficiently good. It is of 

special importance that road-user behavior is sufficiently similar in both situations; i.e., it 

is essential that the driving simulator is sufficiently valid with respect to driving behavior.  

 
 

2.2.1 Speed Validation 

 
Stuart T. Godley et al. (2001) performed a behavioral validation of driving simulator that 

being used for evaluating speed countermeasures. They chose matured drivers, 24 

participants drove an instrumented car and 20 participants drove the simulator and 

conducted as two separate experiments. Participants drove on roads, which contained 

transverse rumble strips at three sites, as well as three equivalent control sites. The three 

pairs of sites involved deceleration, and were the approaches to stop sign intersections, 

right curves, and left curves. Numerical correspondence (absolute validity), relative 

correspondence (or validity), and interactive (or dynamic) relative validity were analyzed, 

the latter using correlations developed from canonical correlation. Participants reacted to 
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the rumble strips, in relation to their deceleration pattern on the control road, in very 

similar ways in both the instrumented car and simulator experiments, establishing the 

relative validities. However, participants generally drove faster in the instrumented car 

than the simulator, resulting in absolute validity not being established. 

 

Harms (1994) indicated that the predictive validity could be described from two aspects, 

absolute and relative validity. The former refers to the numerical correspondence between 

behavior data in the driving simulator and in the real situation, whereas relative validity 

refers to the correspondence between the effects of different variations in the driving 

situation. According to Tornros (1998), Sweden, for a driving simulator to be useful as a 

research tool it is necessary that the relative validity is satisfactory, i.e. the same, or at 

least similar, effects are obtained in both situations. Absolute validity is not a necessary 

requirement, since research questions uniquely deal with matters relating to effects of 

various independent variables. His aim was to validate driving behavior in a simulated 

road tunnel using Speed and lateral position. Twenty subjects (9 men, 11 women) 

participated as paid subjects in the study. For speed data the following two factors were 

studied: access to speed information from the speedometer and driving lanes. For lateral 

position, the independent variables were: location of the tunnel wall and curvature. All 

behavioral data were analyzed by ANOVA. A 95% Confidence Interval was adopted in 

all cases. For every statistically significant F value, omega squared was calculated as a 

measure explained variance. Analyzing simple effects followed up statistically significant 

interactions. It was found that there was no interaction between the simulator factor and 
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the lane factor and also between the simulator factors – speedometer factor, which means 

that the effect of lane information and speed information applies to both situations, which 

indicates a good relative validation for speed. It was found that there was no interaction 

between the simulator factor and the tunnel wall factor, which can be seen as a sign of 

good relative validity for lateral position. 

  

Blaauw (1982) proposed two levels of validity: Physical validity and Behavioral Validity. 

The physical validity corresponds to the simulator’s components, layout, and dynamics 

with its real world counterpart. The behavioral validity is measured using two types of 

validity- absolute validity (when the numerical values between the two systems are the 

same), relative validity (when differences found between experimental conditions are in 

the same direction, and have a similar or identical magnitude on both systems. As most 

advanced driving simulators are developed independently of each other, validity 

information is required for individual simulators, because different simulators have 

distinct parameters, including the time delay between driver action and simulator 

response, the amount physical movement available, and the size and quality of the visual 

display.  

 

Based on Blaaw’s (1982) two-tired approach (as mentioned above), a three-tired 

approach was developed by Godley et al. (2002), which included the evaluation of 

absolute validation, relative validity, and interactive relative validity. Twenty four 

participants, 12 male and 12 female ranging in the age group 22 to 52 years were chosen. 



 21

They were made to drive both on-road and off-road (simulator) and a comparative study 

were made. The on-road (instrumented car) recorded driving performance through 

specified routes that included rumble strips at three sites, and three separate but 

equivalent control sites. These pairs of sites were a stop sign approach, a right curve 

approach, and a left curve approach. Two procedures were implemented to assess relative 

validity; the first being averaged relative validity. For each treatment and control site, 

every participant’s mean speeds were averaged across the entire measurement area. A 

two-factor analysis of variance (ANOVA) was conducted, with the two cites (treatment 

and control) as a repeated measures factor, and two experiments as a between-

participants factor. The second procedure for evaluating relative validity was called 

interactive relative validity. For each pair of sites, the speed profile across the entire data 

collection was established for each treatment site relative to its control site. The approach 

used determined whether measurements at the treatment site were decreasing and/or 

increasing compared to the control site as participants traveled through the data 

measurement area. For absolute validation, the data were averaged across the total 

measurement are for both the treatment and control sites. The ANOVA analyses for the 

averaged relative validity and the absolute validity included estimating the effect size 

using the omega squared statistic. It was found that average relative validity was 

established for the stop sign approach speed but absolute validity was not. He concluded 

that speed is a valid measure to use for experiments on the simulator-involving road 

based speeding countermeasures. 
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2.2.2 Driver Reaction 

 
McGehee et al. (2000) validated the Iowa Driving Simulator on driver reaction and 

performance. This study was designed so that an unexpected intersection incursion 

scenario could be safely implemented on a test track. Comparisons were made between 

primary reaction times across both simulator and test track studies. The goal was to 

determine the cause(s) of the apparent increase in single-vehicle run-off-road crashes and 

the decrease in multi-vehicle on-road crashes as vehicles transition from conventional 

brakes to Antilock Brake Systems. The first study was conducted on the Iowa-driving 

simulator. Sixty males and 60 females between the ages 25 and 55 participated. The 

between-subjects factors were brake type (ABS or conventional), speed limit (45 or 55 

mph), time to intersection (2.5 seconds or 3 seconds), and instruction. The test track study 

involved 192 subjects between 25 and 55 years of age. The between-subjects factors 

included type of brake system, ABS brake pedal feedback level, ABS instruction, braking 

practice, time-to-intersection, and vehicle. It was found that total break reaction time was 

similar in the both experiments (2.2 s on Driving Simulator and 2.3 s on test track). So 

was the case with time to initial steering (1.64 s on Driving simulator and 1.67 s on test 

track). They concluded that driver reaction time is a good factor of validation. 

 
 

2.2.3 Driver Characteristics  

 
Many studies have concluded that driving simulators can provide accurate observations 

on drivers’ behaviors and functions. The driving simulator also allows testing of the 
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driver’s unsafe and risky driving behavior, which can have potentially dangerous 

consequences. 

 

Lee et al. (2002) tried to validate a laboratory based driving simulator in measuring on-

road driving performance. One hundred and twenty nine old age drivers between the ages 

60 and 88 were used as test subjects. The assessment criteria were divided into two sets- 

Road skills and cognition/perceptual tasks. The measures- driving speed, use of indicator, 

decision and judgment, confidence on high-speed and attention task were automatically 

recorded by the simulator and the laboratory assistant collected the rest. The subjects 

were to drive the simulator and then also on the road for the comparison of the results. 

The measurement properties of the assessment criteria were examined by reliability 

analysis. Two indices (Simulated Driving Index and Road Assessment Index) were 

developed. They deduced a Pearson correlation as high as 0.8 was for some variables 

between the two. They concluded that the high positive correlation between the two 

overall index measures has validated the development of the driving simulator as a 

screening tool. It confirms the high transferability of observations between simulated 

driving and on-road assessment. 

 

The validation of the driving simulator has been discussed extensively in many studies, 

yet there still remains a lot to be explored. Validation has been done mainly based on 

speed, driver reaction, and driver characteristics. Speed validation, as mentioned by 

Blaaw and Harms, has been broadly classified into Physical validity and Behavioral 
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validity. Driving speed, use of indicator and brake reaction time are some of the factors 

used in validating a simulator. 

 

2.3 Accident Analysis at Intersections 

 

Previous studies show that a high percentage of crashes take place at the intersections and 

toll plazas. Identifying such crashes and the factors related to such crashes, like the age of 

the driver, weather conditions etc, is of vital importance to minimize future crashes. This 

review also includes studies related to the factors leading to various types of crashes. 

 
 

2.3.1 Rear-End Crashes 

 
Rear-end crashes are the most common type of crashes at a signalized intersection.  

 

Wang et al. (2003) found studies that classified intersection vehicle to-vehicle accidents 

into 15 types according to vehicle movements before the collision and analyzed the 

frequencies of accident types rear end, sideswipe, etc. Their classification approach 

provided a microscopic perspective to analyzing intersection vehicle-to-vehicle accident 

frequencies. They deduced a model based on the occurrence-mechanism of rear-end 

crashes. They expressed the accident probability as the product of the probability of the 

lead vehicle decelerating and the probability of the driver in the following failing to 

respond in time to avoid a collision. Rear-end accidents are the result of a lead vehicle’s 



 25

deceleration and the ineffective response of the following vehicle’s driver. Factors 

affecting driver’s ability to perceive, decide, and act determine the effectiveness of 

drivers’ reaction to obstacle vehicles, and thus rear-end accident probability. To 

incorporate perception/reaction time into a model of drivers’ failure probability, 

researchers considered available perception/reaction time (APRT) and needed perception 

time (NPRT). The probability of a driver being involved in rear-end accident is the 

probability that NPRT is greater than APRT. The authors assumed Weibull distribution 

because of its empirical flexibility and close approximation to a normal distribution. The 

probabilities for lead vehicle decelerating and the driver in the following failing to 

respond in time to avoid a collision were calculated and hence the probability of a rear 

end accident was derived. The data collected for the intersections included the number of 

accidents on each approach over the 4-year time period from 1992 to 1995, daily traffic 

volume by direction, traffic signal control pattern, and other relevant factors. Over the 

period, there were 589 rear-end crashes. To account for the effect of driving 

environmental complexity, an index of visual noise level (with values ranging from 0 to 

4) was used. Using data from hundreds of intersection approaches, the occurrence of rear-

end accidents was studied considering the probability of encountering an obstacle vehicle 

and the probability of a driver failing to react quickly enough to avoid a collision with the 

obstacle vehicle. Also by considering the occurrence mechanism of rear-end accidents, 

the model can explicitly account for human factors. 
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Smith et al. (2003) made an analysis of braking and steering performance in car-

following scenarios. They divided the performance map into four driving states: low risk, 

conflict, near crash, and crash imminent. Rough estimates of the boundaries between the 

low risk and conflict driving states, and between the conflict and near crash driving 

states, by making the test subjects drive on a test track in two braking studies. Data from 

driving simulator was used to deduce the boundary between the near crash state and the 

crash imminent state. In all the studies, braking and steering driver performances are 

examined into two-car following scenarios: lead vehicle stopped and lead vehicle moving 

with constant speed. The analysis of last-second braking performance showed that the 

quantified boundaries of the driving states strongly depend on the dynamic scenario 

encountered in the driving environment. On the other hand, the quantified boundaries 

seem independent of these two dynamically distinct scenarios based on the last-second 

steering performance. 

 

Abdel-Aty and Abdelwahab (2003) investigated the role of LTV’s in rear end crashes. 

They deduced statistic models including Multinomial logit model, Heteroscedastic 

extreme Value and Bivariate probit models. Four different categories of the rear-end 

crashes were modeled using the statistical approaches. It was found that there is a higher 

chance of rear-end crashes when a regular passenger car follows an LTV due to driver 

distraction and limited sight distance. The analysis also illustrated that probability of a 

regular car striking an LTV increases when the driver of the following has an obscured 

view. 
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2.3.2 Gap Acceptance 

 
Gap acceptance is an important factor in evaluating delays, queue lengths and capacities 

at intersections. Gap acceptance may also be used to predict the relative risk at 

intersections, where smaller gaps generally imply higher accident rate. Hamed et al. 

(1997) developed a system of disaggregate models that accounts for the effect of 

intersection, driver, and traffic characteristics on gap acceptance for left-turn maneuvers 

at urban T-intersections controlled by stop signs on minor roads. The gap acceptance 

methodology is based on the hypothesis that a left-turning driver on the minor or major 

road will move into the intersection if the gap in the major traffic stream is acceptable 

(equal to or greater than the driver’s critical gap). The methodology consists of three 

models: driver waiting time model generates expected waiting time at the head of the 

queue for each driver, binary probit model is used to determine the driver’s gap 

acceptance and rejection probabilities and finally, mean critical gap model estimates the 

mean critical gap at an intersection based on the critical gaps of individual drivers. Data 

were collected at 15 isolated T-intersections in Jordan. A total of 592 drivers were 

observed at these intersections. For each intersection, the data included number of lanes 

in opposing direction, opposing approach width, and presence or absence of a median 

with a left turn lane on the major road. The models were estimated using standard 

maximum likelihood procedures, and the results were analyzed to determine the 

significant factors that affect gap-acceptance. It was found that the waiting time is 

expected to be larger as the gaps decrease in time. Also, it showed that drivers have a 

higher risk of ending the waiting time if there is a median with a left-turn lane in the 
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major approach. The expected waiting time significantly influences the probability of 

accepting a gap. As the waiting time increases, the driver is likely to accept shorter gaps 

and move into the intersection. The results showed that maneuver type plays a significant 

role in the length of the mean critical gap. Also as the number of lanes in the opposing 

major road increases, the mean critical gap increases as expected. So was the case with 

speed. 

 

Cooper et al. (2002), made a study on the specific linkage between communication-based 

distraction and unsafe decision-making. In a closed-course driving experiment, 39 

subjects were exposed to approximately 100 gaps each in a circulating traffic stream of 

eight vehicles on an instrumented test track that was wet about half the time. The subjects 

were at the controls of an instrumented car, which was oriented in a typical left-turn 

configuration and with parking brake on and the transmission in neutral. The subjects 

were instructed to press on the accelerator pedal when they felt that a gap was safe to 

accept. Their performances were monitored and incentives were provided for balancing 

safe decision-making with expeditious completion of the task. For half of the gap 

exposures (randomly assigned), each subject was required to listen and respond to a 

complex verbal message. It was found that when not distracted, the subjects’ gap 

acceptance judgment was found to be significantly influenced by their age, the gap size, 

and the speed of the trailing vehicle, the level of indecision and the condition of the track 

surface. However, when distracted, the subjects did not factor pavement surface condition 

into the decision process. 
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Gattis et al. (1999) performed a gap acceptance study at a T-intersection at which left-

turn traffic on the through leg had the right-of-way. A number of methods (Siegloch 

Method (1994), Greenshields Method, Raff Method, Acceptance curve Method and Logit 

Method) were used to model the critical gap size at this intersection. It was found that the 

values found according to Raff Method often were lower than the others, and the logit 

method produced values that usually were higher than others. Siegloch and Logit are 

probabilistic models involving more rigorous computational efforts; outcomes from these 

methods were given higher precedence. 

 
Brilon et al. (1999), made a comprehensive study on all the publications on the 

estimations of critical gaps. He found out that for saturated condition Siegloch Method, 

which uses linear regression model, was well suited. For unsaturated conditions, he made 

a comparison among Lag method, Raff method, Ashworth method, Harders’ method, 

Logit method, Probit procedures, Hewitt’s method and Maximum likelihood procedures. 

An extended simulation study was done to test the critical gap estimation procedures for 

consistency. He found out that Hewitt method fulfills the criteria of consistency, with 

rather high performance. Maximum likelihood function is the only other function that 

could be comparable to Hewitt. 

 

From the literature it has been observed that rear-end collisions are the most common 

type of crashes, mainly at locations like signalized intersections or toll plazas. There have 

been many studies related to predicting the accident probability, analysis of braking and 
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steering performance. The concept of gap acceptance in accident analysis has been 

widely researched.  

 
 

2.4 Summary 

 
The literature review could be summarized as follows: 

• The sample size of the subjects varied from one driving simulator experiment to 

the other. There is no fixed number that could be used as a threshold. The point worth 

noticing here is that most of the experiments had as many males as there were females. 

• The driving simulator is emerging as a very effective safety tool. Its use in 

simulating incidents, specially related to human factors like driver characteristics and 

driver performance, is of tremendous use. The variables that were most often measured 

were Braking time, perception-reaction time, brake movement and steering angle. 

• The validation of a driving simulator is as important as its application. Validation 

has been mainly based on speed, driver characteristics (age etc) and driver reaction time. 

Validity has been broadly classified into two: absolute and relative. According to some of 

the studies a driving simulator is considered validated if the relative validity is justified.  

• Analysis of Variance has been extensively used in almost all the driving simulator 

data analysis. 

 

In conclusion, using the driving simulator as a test bed for high-risk locations- signalized 

intersections is an innovative research idea. Replicating a high-risk signalized 
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intersection would be both a novel and challenging task. The validation in the study 

would be done based on speed, safety and visual aspects. The acceleration/deceleration 

rates of the vehicles can be measured both at the site and in the driving simulator, for 

various phases of the signal. This data can be used for speed validation. The concept of 

gap acceptance can very well be used in analyzing the scenarios.  
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3 . EXPERIMENTAL DESIGN 

 
 
Alafaya Trail (SR-434) and Colonial Drive (SR-50) intersection is located in Orange 

County. It is a four-leg 6×4 signalized intersection, and has two left turn lanes and one 

right turn lane for every approach as shown in Figure 3-1. The crashes at this intersection 

for years 1999 through 2002 have been studied for the driver simulator research project. 

It was identified that this intersection has a high rear-end crash risk. For through traffic, 

the rear-end crash rate in the eastbound approach of Colonial Drive (50EB) is the highest 

and that in the northbound approach of Alafaya Trail (434NB) is the lowest. In case of 

right turn traffic, Alafaya Trail northbound right turn lane has the highest rear-end crash 

rate and Colonial Drive westbound has the least rear-end crash rate. 

 

This chapter documents the design of a driving simulator experiment to achieve the 

research objective of validating the driving simulator by replicating the above discussed 

intersection. To validate the driving simulator using Speed and Safety as criteria, a total 

of eight scenarios were designed for the experiment, as listed in Table 3-1. 

 

The eight scenarios are classified into three categories, which are described in the 

following sections. Note that although the scenarios AEBR and BNBR are classified into 

the safety validation category, they are also used for speed validation study. Because, in 

these scenarios the speed of the simulator vehicle at the though lanes for the two 
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approaches can be collected at termination of green phase. These speeds can be 

considered as free flow speeds along the respective directions as the signal is still green. 

Thus, the speed data in the experimental scenarios will be used to be compared to the 

field speed data collected at the real intersection. 

 
 

Table 3-1: Scenario Description for Speed and Safety Validation 
Scenario 

Classification Scenario ID Scenario description 

AWBS 
Subjects drive the simulator to cross the intersection on 
the inner most through lane of the Colonial Drive (SR-
50) westbound when the signal is green. Speed 

validation 
BSBS 

Subjects drive the simulator to cross the intersection on 
the inner most through lane of the Alafaya Trail (SR-
434) southbound when the signal is green. 

BNBL 
As a leading vehicle, subjects turn right on the Alafaya 
trail northbound right-turn lane into colonial drive east 
bound. 

AWBL 
As a leading vehicle, subjects turn right on the Colonial 
Drive westbound right-turn lane into Alafaya trail north 
bound. 

BNBF 
As a following vehicle, subjects turn right on the 
Alafaya trail northbound right-turn lane into colonial 
drive east bound. 

Safety 
validation - 
Rear-end risk 
test at right-
turn lanes 

AWBF 
As a following vehicle, subjects turn right on the 
Colonial Drive westbound right-turn lane into Alafaya 
trail north bound. 

AEBR 
Subjects drive the simulator to go through the 
intersection along the Colonial Drive east bound and 
encounter the yellow phase change. 

Safety 
validation - 
Crash risk test 
at through 
lanes BNBR 

Subjects drive the simulator to go through the 
intersection along the Alafaya Trail north bound and 
encounter the yellow phase change. 
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3.1 Driving Simulator Scenario Design for Speed Validation 

 
In the real intersection, free flow speeds were recorded for vehicles entering the 

intersection through each approach during the green phase, using a Radar Gun. Two 

observers are placed around 50 m (164.04 ft) down stream of the approach of which the 

speeds are being recorded. The radar gun is pointed towards the opposing flow and then 

speeds are recorded. Vehicles are carefully selected such that they are under free flow 

conditions. 

 

In the driving simulator, the four legs speed data is collected under free flow conditions 

when subjects are driving through the intersection in the scenarios AWBS, BSBS, AEBR, 

and BNBR, as shown in Figure 3-1. In those scenarios, the free-flow speed would be 

measured at the intersection to be compared to the measurements based on the field 

study. If the speed between simulator experiment and that at field measurements is 

statistically similar, then the driver’s speed performance in the driving simulator 

environment is a valid measurement for traffic studies. 
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Figure 3-1: Scenarios for Speed Validation 
 

 

3.2 Driving Simulator Scenario Design for Safety Validation 

 
 
 

3.2.1 Safety Validation - Rear-End Risk Test at Right-Turn Lanes 

 
For the right-turn movement, generally, there is a low rear-end risk during the green 

phase but a high risk during the permissive red phase. According to crash police reports, 

for most of Alafaya Trail right turn rear-end crashes, the struck (leading) vehicle yielded 

to the opposing traffic or signal and slowed to a stop; the striking (following) vehicle 
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failed to stop simultaneously and it proceeded to hit the rear of the front vehicle. For the 

leading vehicle in a rear-end crash in the right-turn lane, a higher deceleration rate during 

the red phase and sudden stops due to emergent situation may play an important role in 

the crash happening. On the other hand, a proper space cushion is needed for the 

following vehicle to provide a driver enough reaction time to recognize a hazardous 

situation and make a stop decision. Following too close and maintaining higher speeds 

are generally associated with the risk of rear-end crash. 

 

Based on the crash report analyses, it was found that the rear-end crash rate in the 

Alafaya northbound right-turn lane is much higher than the other approaches and the 

Colonial Drive westbound right-turn lane shows the lowest rear-end crash rate. 
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Figure 3-2: Right-turn rear-end risk scenarios for safety validation 
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If the driving simulator is a valid tool to diagnose traffic safety problem at the 

intersection, the driver’s performance in the driving simulator environment should reflect 

a similar rear-end risk pattern or trend. Therefore, the right-turn movements from the 

Alafaya northbound are designed as test scenarios and the right-turn movements from the 

Colonial Drive westbound are designed as base scenarios. Moreover, both scenarios in 

which subjects drive the simulator as a leading car and as a following car to make a right 

turn should be tested, as shown in Figures 3-2 a and b.  

 

In the scenarios BNBL and AWBL in which a subject is required to drive the simulator 

cab as the leading vehicle, when the subject approaches the intersection at 100 m (328.08 

ft) away from the stop line, the green phase is terminated. Since right-turn-on-red is 

permitted at this intersection, a legal driving behavior for such a situation would be 

stopping at the intersection first and then turning right if there is no conflicting traffic.  If 

the driving simulator is validated, it should be expected to find some patterns that lead to 

higher rear-end risks in the Alafaya northbound right-turn lane compared to that at the 

Colonial Drive westbound right-turn lane (See Figure 3-2 a). For example, the vehicle’s 

violation rate and deceleration rate in the Alafaya northbound are higher. 

 

From the crash report analysis, it was found that the rear-end crashes could occur at 

different locations in the right turn lanes; in another word, the queue length in front of the 

striking vehicle varies for rear-end crashes happening in the right-turn lane. Based on the 

earlier findings of the pilot study, since no significant difference was found at different 
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locations of the simulator in the queue, the cab as a following vehicle could be the fourth 

or the fifth car in the queue. In scenarios BNBF and AWBF(See Figure 3-2 b) in which a 

subject is supposed to drive the simulator cab as the following vehicle, when the leading 

vehicle approaches the intersection at 60 m (196.85 ft) away from the stop line, the traffic 

signal will change from green to yellow; when the leading vehicle approaches the 

intersection at 50 m (164.04 ft) away from the stop line with a speed of 30mph, it would 

brake with a high deceleration rate 6.4 m/s2 (0.65 g) or 21 ft/s2 in the right turn lane. The 

driving behavior of the subject responding to the sudden stop would be measured to test 

the risk of rear-end crash. In order for the driving simulator is to be validated, one should 

find the conditional crash rate, and the relative driving speed, in the Alafaya northbound 

right-turn lane to be larger than that at the Colonial Drive westbound right-turn lane. 

 
 

3.2.2 Safety Validation - Crash Risk Test at Through Lanes 

 
From the crash report analysis, for the through traffic it was found that the rear-end crash 

rate for Colonial Drive eastbound traffic to be the highest and that for Alafaya Trail 

northbound traffic to be the lowest. Moreover, the angle crash rate related to the Colonial 

Drive eastbound through traffic is relatively higher than that related to other approaches. 

Whereas the angle crash rate related to the Alafaya Trail northbound through traffic is 

found to be least. This trend should be considered for driving simulator scenario design 

for the safety validation. 
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From the perspective of traffic operation and safety at signalized intersections, one of the 

main concerns of traffic engineers and researchers is the dilemma zone, which is a length 

of roadway in advance of the intersection wherein drivers may be indecisive and respond 

differently to the onset of the yellow signal. This region of roadway is commonly referred 

to as the ‘dilemma zone’. When vehicles are located in the dilemma zone, the drivers 

who decide to proceed through the intersection at the onset of yellow signal may run a 

red light and potentially result in right-angle collisions. In some cases, because of driver 

behavior variation in the dilemma zone, some drivers may stop abruptly while others may 

decide not to stop, which may contribute to the risk of a rear-end crash (Pline, 1999).  

 

Therefore, the test scenario AEBR for crash risk test looks at the driver behavior in the 

dilemma zone. In this scenario, when the subjects drive the simulator to go through the 

intersection along Colonial Drive eastbound the signal light will change from green to 

amber. This signal change occurs when the subjects approaching the intersection are at 90 

m (295.28 ft) ahead of the stop line. Amber period is provided for 4.3 s. For the base 

scenario BNBR which is used to compare with the test scenario, same procedure is 

adopted along Alafaya Trail northbound direction as shown in Figure 3-3. The driving 

performance responding to the signal change such as approaching speed, reaction time, 

red-light running rate, and brake deceleration rate will be measured to find if there is any 

risky traffic behavior associated with crash risk along Colonial Drive eastbound direction.  
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Figure 3-3: Crash risk test at through lanes for safety validation 
 
 

3.3 Experimental Design 

 
The experimental design used here is a simple within-subjects factorial design. Further, 

age group and gender of the subjects are two independent variables (factors) considered 

for this experimental design. Initially, the age groups have been classified as Very Young 

(16 to 19), Young (20 to 24) and Middle aged (25 to 64). Since very few crashes were 

found in the old age group, it has been discarded. This classification method was adopted 

on the basis of a previous study by Abdel-Aty et al. (1998). Since the middle age group is 

a large set, based on the crash analysis done using the crash reports, the Middle aged 



 42

group has been further reduced to 3 ten years groups- Younger Middle aged (25 to 34), 

Middle Middle-aged (35 to 44), Older middle-aged (45 to 54) and Very old Middle-aged 

(55 to 64). Since no crashes were found in the very old middle-aged group, it is combined 

with the Older middle-aged group. Hence, the five age groups of interest are Very Young 

(15 to 19), Young (20 to 24), Younger Middle-aged (25 to 34), Middle Middle-aged (35 

to 44) and Older middle-aged (45+). This age categorization follows the actual driver 

population using the intersection of interest. Therefore, the experimental setup results in a 

5 X 2 within-subjects factorial design.  

 
 

3.4 Experiment Procedure 

 
Upon arrival, the subjects were given an informational briefing about the driving 

simulator. They were informed that the experiment is conducted to know their driving 

behavior at the intersection. They were specifically advised to adhere to traffic laws, and 

to drive as if they were in normal everyday traffic surroundings. A five-minute practice 

course was programmed in the driving simulator. Before the actual experiment scenarios 

each subject is made to run this training session. This was done in order for the subjects 

to get used to simulator’s visual, steering and braking system. 

 

Next, the subjects performed the formal experiment with the eight scenarios, which were 

randomly loaded for each driver so as to eliminate the time order effect and bias from 

subjects to the experiment results. Each scenario per subject took around five minutes, 
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which includes loading and running the scenario. So, overall time for the experiment per 

subject was forty-five minutes including training session. During the course of the 

experiment subjects were routinely checked for simulator sickness. Whenever subject in a 

scenario reported sickness, the subject quit the experiment and the related data collected 

in the scenario was removed from the experiment result analysis.  

 

After the subjects completed the formal experiment, a survey was used to gather 

information about their evaluations on the fidelity of the driving simulator and the 

intersection traffic safety. In the survey questionnaire, four questions were specifically 

designed, which is listed in Appendix. Finally each subject received ten dollars as an 

incentive for successfully completing the experiment. The subjects who experienced 

sickness were paid five dollars and are exempted from further experiment.  
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4 . DESCRIPTIVE STATISTICS and SIMULATOR VALIDATION 

 
 
The main aim of this research is to validate the driving simulator in terms of Speed and 

Safety. For the speed validation, it is expected that the speed measurement in the driving 

simulator environment should be statistically similar to that at the real location, which 

corresponds to the absolute validity. For the safety aspects, if the driving simulator is a 

valid tool to diagnose traffic safety problem at the intersection, the driver’s performance 

in the driving simulator environment should reflect a similar crash risk pattern or trend as 

what happens in the real world, which corresponds to the relative validity. 

 

The original Data logging of the driving simulator experiment includes experiment 

sampling time, vehicle positions, speeds, accelerations, information of driver's braking 

behavior, and records of signal phase status. Based on those data, the independent 

measurements of driving behaviors in different scenarios need to be extracted. To 

organize and easily process data generated from the experiments, a C program was 

developed to manipulate the experiment data output files. The following sections 

documented the definitions of those independent measurements and related statistical 

analyses of the experimental results. 
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4.1 Speed Validation 

 
 
 

4.1.1 Speed Measurements in the Field SR-50 & SR-434 Intersection 

 
The test site considered is the Alafaya Trail (SR-434) and Colonial Drive (SR-50) 

intersection. Free flow speeds are recorded for vehicles entering the intersection through 

each approach during the green phase, using a Radar Gun. These recordings for all the 

approaches were taken on Tuesday dated 05/02/2006 from 9:30am to 5:00pm.Two 

observers are placed around fifty meters down stream of the approach of which the 

speeds are being recorded. The radar gun is pointed towards the opposing flow and 

speeds are recorded. Vehicles are carefully selected such that they are under free flow 

conditions. Vehicles in queue are disregarded for data collection. This method was 

followed for approaches namely; SR-434 north bound (434NB), SR-50 west bound 

(50WB), and SR-50 east bound (50EB). For the approach 434SB there were no vehicles 

under free flow conditions. This approach was always under over saturated conditions for 

the current signal phasing design. Hence for this approach speeds are recorded around 

fifty meters upstream of the intersection at which vehicles are in free flow conditions. 

There are 134 observations for 50WB approach, 104 observations for 50EB approach and 

91 observations for 434SB and 434NB each. Table 4-1 shows the descriptive statistics of 

the data collected. Figures 4-1 (a, b, c, and d) illustrate the speed distributions of the 

vehicles entering the intersection from all the four approaches. 
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Table 4-1: Descriptive Statistics of Speed Data Collected in Field. 

APPROACH Mean 
Speed (mph) N Std. Deviation Minimum 

(mph) 
Maximum 

(mph) 
434NB 43.7833 91 6.3348 29.8 62.79 
434SB 42.2983 91 6.9296 26 60 
50EB 45.8415 104 6.2663 29.8 62.79 
50WB 45.0925 134 6.2919 22.35 64.91 
Total 44.3889 420 6.5471 22.35 64.91 
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Figure 4-1a. Histogram of speed measurements in the field at the intersection for SR – 

434 North Bound traffic 
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Figure 4-1b. Histogram of speed measurements in the field at 50m upstream of the 
intersection for SR – 434 South Bound traffic 
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Figure 4-1c. Histogram of speed measurements in the field at the intersection for SR – 50 
East Bound traffic 
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Figure 4-1d: Histogram of speed measurements in the field at the intersection for SR – 50 
West Bound traffic 
 
 

By visual inspection the speed distributions at all the approaches follow normal 

distribution. Kolmogorov – smirnov test of normality is used to test whether the data 

comes from normal distribution. The Kolmogorov-Smirnov test is defined by:  

 H0: The data follow a normal distribution.  

 Ha: The data do not follow the normal distribution 

If the P-value for the test statistic is less than the significance level α = 0.05, then the null 

hypothesis, H0, that the data follows normal distribution is rejected. The P-value (Asymp. 

Sig. 2-tail as shown in Table 4-2) for the test statistic Z for all the approaches is greater 

than 0.05. Therefore, the data follows normal distributions for all the approaches.  
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Table 4-2 :Kolmogorov – Smirnov Normality Test Statistics for Speeds Measured in the 
field 

 
APPROACH   SPEED (mph) 

434NB N  91 
 Normal Parameters Mean 43.7833 
  Std. Deviation 6.3348 
 Most Extreme Differences Absolute .085 
  Positive .064 
  Negative -.085 
 Kolmogorov-Smirnov Z  .808 
 Asymp. Sig. (2-tailed)  .531 

434SB N  91 
 Normal Parameters Mean 42.2983 
  Std. Deviation 6.9296 
 Most Extreme Differences Absolute .081 
  Positive .064 
  Negative -.081 
 Kolmogorov-Smirnov Z  .770 
 Asymp. Sig. (2-tailed)  .594 

50EB N  104 
 Normal Parameters Mean 45.8415 
  Std. Deviation 6.2663 
 Most Extreme Differences Absolute .081 
  Positive .074 
  Negative -.081 
 Kolmogorov-Smirnov Z  .829 
 Asymp. Sig. (2-tailed)  .497 

50WB N  134 
 Normal Parameters Mean 45.0925 
  Std. Deviation 6.2919 
 Most Extreme Differences Absolute .094 
  Positive .064 
  Negative -.094 
 Kolmogorov-Smirnov Z  1.091 
 Asymp. Sig. (2-tailed)  .185 
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4.1.2 Speed Measurements in the Simulator System 

 

Speed study was conducted using Driving simulator. A more or less exact location of the 

intersection was simulated in a computer environment and different subjects were asked 

to run the experiment. In order to keep the experimental speed measurements under the 

free flow traffic condition, the driving simulator is made to drive from 500 ft upstream of 

the intersection without any surrounding vehicles. By this process the subject attains free 

flow speed well before reaching the intersection. The experiment involves different 

subjects driving through the simulated intersection of Alafaya Trail and Colonial Drive. 

First, subjects were asked to run the training session for about five minutes so as to get 

used to the simulator’s steering and braking system. Then, the subjects were asked to 

drive the eight intersection test scenarios. Subjects having motion sickness during the 

training session are exempted from further experiment and their data is discarded. The 

subjects were carefully selected in such a way that they belong to all age groups ranging 

from sixteen to greater than forty-five. And also the subjects were evenly distributed as 

much as possible among male and female gender groups. Each subject was paid $10 as an 

incentive for running the experiment. A total of sixty-one subjects ran the experiment. 

Due to some technical errors data was not recorded for three subjects. Table 4-3 shows 

the different age groups and number of subjects participated in the experiment. 
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Table 4-3: Number of subjects 
Age 

group Female Male 

16 – 19 6 7 
20 – 24 6 8 
25 – 34 5 8 
35 – 44 5 7 

45 + 1 5 
Total 23 35 

 
 
The experiment is designed for a total of eight scenarios namely; AWBS BSBS, AWBL, 

BNBL, AWBF, BNBF, AEBR, and BNBR. While scenarios AWBS, BSBS, AEBR and 

BNBR are used for speed validation, scenarios AWBL, BNBL, AWBF and BNBF are 

used for safety validation of rear end crash risk at right turn lanes. Scenarios AEBR and 

BNBR were also used for safety validation of crash risk at through lanes. Table 3-1 

shows the description of these scenarios. Simulator records the position and speed of the 

vehicle for every 1/60th of a second. Table 4-4 shows the descriptive statistics for speed 

data collected. Figures 4-2 (a, b, c, and d) illustrate the speed distribution of traffic in 

each leg of the intersection in the simulator.  

 
 

Table 4-4: Mean Speed at Intersection Using Driving Simulator. 
95% Confidence Interval APPROACH Mean Std. Deviation

Lower Bound Upper Bound
434NB 43.6920 8.4863 40.892 44.957 
434SB 43.9879 7.9723 40.755 44.904 
50EB 46.7752 9.4548 43.941 47.933 
50WB 47.5928 8.8915 44.502 48.561 
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Figure 4-2a: Histogram of speed measurements in simulator for SR- 434 North Bound 
traffic 
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Figure 4-2b: Histogram of speed measurements in simulator for SR- 434 South Bound 
traffic 
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Figure 4-2c: Histogram of speed measurements in simulator for SR-50 East Bound 
traffic. 
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Figure 4-2d:  Histogram of speed measurements in simulator for SR-WB West Bound 
traffic. 
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The Kolmogorov – Smirnov normality test shows that the P-value (Asymp. Sig. 2-tail as 

shown in Table 4-5) is greater than 0.05 for all the approaches. Therefore, the speed data 

in driving simulator follows normal distributions.  

 

Figures 4-3a and 4-3b show the 95% confidence interval and mean speed across different 

age and gender groups. In the Figure 4-3a the X-axis represents age, where, 1619 

represents age between 16years and 19 years inclusive, 2024 represents age between 

20years and 24 years inclusive and so on. It clearly shows the decreasing trend of speed 

as the age increases after 20-24 years age group.  It is also found that the mean speed for 

male is slightly higher than female as shown in Figure 4-3b. Both trend are statistically 

confirmed by F-test in the ANOVA analysis (see Table 4-6), which shows that the factors 

of driver age (P=0.000), driver gender (P=0.028), and intersection approach (P=0.012) 

are significantly associated with the operation speed. 
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Table 4-5: Kolmogorov – Smirnov Normality Test Statistics for Speed Measured in 
Simulator. 

APPROACH   SPEED (mph) 
434NB N  60 

 Normal Parameters Mean 43.6919 
  Std. Deviation 8.4936 
 Most Extreme Differences Absolute .105 
  Positive .105 
  Negative -.082 
 Kolmogorov-Smirnov Z  .810 
 Asymp. Sig. (2-tailed)  .528 

434SB N  58 
 Normal Parameters Mean 43.9874 
  Std. Deviation 7.9722 
 Most Extreme Differences Absolute .040 
  Positive .040 
  Negative -.036 
 Kolmogorov-Smirnov Z  .304 
 Asymp. Sig. (2-tailed)  1.000 

50EB N  62 
 Normal Parameters Mean 46.7752 
  Std. Deviation 9.4544 
 Most Extreme Differences Absolute .080 
  Positive .065 
  Negative -.080 
 Kolmogorov-Smirnov Z  .633 
 Asymp. Sig. (2-tailed)  .817 

50WB N  61 
 Normal Parameters Mean 47.5928 
  Std. Deviation 8.8911 
 Most Extreme Differences Absolute .079 
  Positive .057 
  Negative -.079 
 Kolmogorov-Smirnov Z  .619 
 Asymp. Sig. (2-tailed)  .838 



 56

3347555947N =

Age

45+3544253420241619

95
%

 C
I S

pe
ed

 (m
ph

)

54

52

50

48

46

44

42

40

38

36

34

 

Figure 4-3a: Speed distribution by driver age 
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Figure 4-3b: Speed distribution by driver gender 
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Table 4-6: ANOVA Analysis for Speed as Dependent Variable 

Source Type III Sum 
of Squares Df Mean 

Square F Sig. 

Corrected 
Model 4380.998 8 547.625 8.829 .000 

Intercept 425167.063 1 425167.063 6854.665 .000 
AGE 3619.429 4 904.857 14.588 .000 

GENDER 302.077 1 302.077 4.870 .028 
APPROACH 688.477 3 229.492 3.700 .012 

Error 14390.018 232 62.026   
Total 518658.241 241    

Corrected 
Total 18771.017 240    

a  R Squared = .233 (Adjusted R Squared = .207) 
 
 

According to a report that investigated drivers’ speeding and unsafe attitudes and 

behaviors nationally (Royal, 2003), males (34%) are more likely than females (27%) to 

report that they would pass most other vehicles; and almost half of all drivers under age 

30 say they tend to pass most drivers and the likelihood of this behavior drops off 

significantly with age. Those driving patterns related to speed are illustrated in Figure 4-

4, which show very similar trends of speed distributions by gender and age from the 

simulator experiment results, as shown in Figures 4-3a and 4-3b. 
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Figure 4-4: Distribution of drivers who tend to pass most other drivers by gender and age 

(Source: Royal, 2003) 
 
 

4.1.3 Speed Validation of Driving Simulator 

 
For speed validation of the driving simulator, the speed distributions in the Driving 

simulator and that in the field are found to follow normal distribution. This was tested 

using Kolmogorov – Smirnov normality test (see Table 4-2 and Table 4-5). Table 4-7 

shows the comparison of mean speeds. 

 
 

Table 4-7: Mean Speeds Using Simulator and from Field 

 APPROACH N 
Mean 
Speed 
(mph) 

Std. 
Deviation 

Std. Error 
Mean 

From Field 434NB 91 43.7836 6.3349 .6641 
From Simulator  60 43.6920 8.4936 1.0965 

From Field 434SB 91 42.2986 6.9293 .7264 
From Simulator  58 43.9879 7.9723 1.0468 

From Field 50EB 104 45.8420 6.2663 .6145 
From Simulator  62 46.7752 9.4548 1.2008 

From Field 50WB 134 45.0925 6.2915 .5435 
From Simulator  61 47.5928 8.8915 1.1384 
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Figure 4-5 shows the graphical representation of comparison of speeds observed from 

field data and that from Simulator data. From the figure it can be observed that the mean 

speeds of both field data and simulator data are same for all approaches except for the 

approach 50WB. 

61625860 1341049191N =

APPROACH

50WB50EB434SB434NB

95
%

 C
I S

PE
ED

 (m
ph

)

52

50

48

46

44

42

40

VALID

Field

Sim

 
Figure 4-5: Mean speeds using simulator and from field. 

 
 

The two means are tested statistically using two-sample student’s t-test. The t - test is 

defined by:  

 
 H0: Mean speeds from driving simulator and that from field data are equal.  

 Ha: Mean speeds are not equal. 
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The null hypothesis, H0, is assumed to be true and is rejected if significance value is less 

than 0.05 with 95% confidence.  

 
 
Table 4-8: F – test for Variance of Speed and t- test Results Mean Comparison of Speed 

 
Levene's Test for 

Equality of 
Variances 

 t-test for Equality of 
Means     

  F Sig. T Df 
Sig. 
(2-

tailed) 

Mean 
Differ
ence 

Std. 
Error 
Differ
ence 

95% C.I. of the 
Difference 

APPR
OACH         Lower Upper 

434NB Equal 
Var 2.446 .120 .076 149 .940 0.092 1.209 -2.296 2.480 

 Unequal 
Var   .071 101.28 .943 0.092 1.282 -2.451 2.635 

434SB Equal 
Var 1.526 .219 -

1.368 147 .173 -1.689 1.235 -4.130 .752 

 Unequal 
Var   -

1.326 109.08 .188 -1.690 1.274 -4.215 .836 

50EB Equal 
Var 12.36 .001 -.764 164 .446 -.9331 1.221 -3.344 1.478 

 Unequal 
Var   -.692 93.339 .491 -.9331 1.349 -3.612 1.745 

50WB Equal 
Var 8.470 .004 -

2.248 193 .026 -2.500 1.112 -4.694 -.307 

 Unequal 
Var   -

1.982 88.396 .051 -2.500 1.262 -5.007 0.007 

 
 
Tables 4-8 show the results of both F-test and t-test for variance comparison and mean 

comparison. The standard two-sample t-test makes no assumption about the variances of 

the underlying populations. Hence it is referred as unequal variance test. But equal 

variance t-test is more powerful than unequal variance test. Therefore, the speed 

distributions are tested for equal variance. It is found that approaches, 434NB and 434SB 

have equal variances as they have significance values greater than 0.05, whereas, 

approaches 50EB and 50WB have unequal variances according to the F-test in Table 4-8. 
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Based on variance type (equal or unequal) respective t–test statistic values are looked 

upon for validation. From Table 4-8 the significance P-value is greater than 0.05 for all of 

four approaches. Therefore we accept the null hypothesis that the mean speeds measured 

in the field and that in the driving simulator are equal at all approaches of the 

intersection. Hence, the simulator is validated for speed at the intersection. However, note 

that the speed data from the driving simulator shows a larger variability for the higher 

operation speeds on the approaches along Colonial Drive. 

 
 

4.1.4 Speed Validation Conclusions 

 
From the Kolmogorov – Smirnov normality test statistics, the speed distributions 

observed from the field and that from the simulator follow normal distributions along all 

four approaches of the intersection with 95% confidence.  

 

Based on the F-test, it is concluded that speed data observed from field and that from 

simulator have equal variances along approaches 434-North bound and 434-South bound, 

but they have unequal variances along approaches, 50-East bound 50-West bound with 

95% confidence. Since the operation speeds for the highway are higher than those for the 

434 highway, the speed data from the driving simulator shows a larger variability for the 

higher operation speeds.  
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According to two sample t-tests, the speed data observed from field and that from 

simulator have equal mean for each intersection approach with 95% confidence. 

Additionally, the distributions of mean speeds for driver age and gender based on the 

simulator experiment results are very close to the real distribution from the previous 

investigation data.  

 

Therefore, based on overall comparisons of speed between simulation and real world, one 

can conclude that the UCF driving simulator is a valid tool for traffic study related to 

driving speed behaviors. 

 
 

4.2 Safety Validation  

 
 
 

4.2.1 Rear-End Risk Test at Right-Turn Lanes 

 
As described in Chapter one, Alafaya trial (SR-434) experience higher rear-end crash risk 

at right turn lanes than colonial drive (SR-50). For safety validation of rear-end risk at 

right turn lanes four scenarios have been designed. In two scenarios, the driving simulator 

is used as a leading vehicle; and in the other two scenarios, it is used as a following 

vehicle. The four scenarios are as follows: 

• SR-434 north bound driving simulator as leading vehicle (BNBL). 

• SR-50 west bound driving simulator as leading vehicle (AWBL). 
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• SR-434 north bound driving simulator as following vehicle (BNBF). 

• SR-50 west bound driving simulator as following vehicle (AWBF). 

For safety validation of rear-end risk at right turn lanes, high risk scenarios namely, 

BNBL and BNBF are compared with base or lower risk scenarios namely, AWBL and 

AWBF, respectively. 

 
 

4.2.1.1 Driving Simulator as a Leading Vehicle 
 
In this section we look at the scenario where the driving simulator is used as a leading 

vehicle. Table 4-9 shows the description of the independent variables that are considered 

for this scenario. 
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Table 4-9: Independent Variables When Driving Simulator Turns Right as a Leading  
Vehicle 

Independent 
variable VARIABLE DESCRIPTION 

IN_app Intersection approach Categorical (WB=0; 
NB=1) 

Spd100 Simulator speed measured at 100 m (328.08 
ft) away from stop line in the right turn lane Continuous (mph) 

Spd80 Simulator speed measured at 80 m (262.47 
ft) away from stop line in the right turn lane Continuous (mph) 

Spd60 Simulator speed measured at 60 m (196.85 
ft) away from stop line in the right turn lane Continuous (mph) 

Spd40 Simulator speed measured at 40 m (131.23 
ft)away from stop line in the right turn lane Continuous (mph) 

Spd20 Simulator speed measured at 20 m (65.62 
ft)away from stop line in the right turn lane Continuous (mph) 

Spd0 Simulator speed measured at stop line in the 
right turn lane Continuous (mph) 

FullSTOP Did driver fully stop at the right turn lane? Categorical (Yes=1; 
No=0) 

Ave_DEL The average deceleration rate in the right 
turn lane Continuous (ft/s2) 

Max_DEL The maximum deceleration rate in the right 
turn lane Continuous (ft/s2) 

Speedup Did driver speed up to beat the red light in 
the right turn lane? (Yes=1; No=0) 

Categorical (Yes=1; 
No=0) 

Max_ACC The maximum acceleration rate for the 
driver who speeds up Continuous (ft/s2) 

Reatime Driver’s brake response time to the signal 
change in the right turn lane. Continuous (s) 

Age Driver age Categorical 
Gender Driver gender Categorical (M=1; F=0) 

 

4.2.1.1.1 Brake Deceleration Rate Analysis 
 

Table 4-10 shows the descriptive statistics of the independent variables, average 

deceleration and maximum deceleration. It can be observed that average deceleration rate 

is higher for 434 north bound approach than for the approach 50 west bound whereas, 
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maximum deceleration rate is higher for approach 50 WBL than for the approach 434 

NBL. The means of these independent variables are tested for statistical significance, 

using two sample student’s t-test. Table 4-11 shows the results of two-sample t- test for 

means of average deceleration rate. It can be inferred that the means of average 

deceleration rate are significantly different for the two approaches 434-north bound and 

50-west bound with 95% confidence. Average deceleration rate is higher for approach 

434-NB than 50-WB. By taking average deceleration rate as surrogate measure for rear-

end right turn lane crashes, it can be concluded that 434-north bound approach is more 

risky than 50-west bound approach with respect to rear-end right turn crashes. This result 

validates the driving simulator. On the contrary, Table 4-12 reveals that maximum 

deceleration rate is not statistically higher for approach 50-WB than that for 434-NB at 

0.05 significance level.  

 
 

Table 4-10: Descriptive statistics of Average deceleration and Maximum Deceleration. 
Approach Variable 

Deceleration 
N Mean 

(ft/s2) 
Std Dev Minimum 

(ft/s2) 
Maximum 

(ft/s2) 
Range 

Ave_Del 57 2.6181 2.1186 0.1326 10.737 17.044 50 WB 
Leading Max_Del 57 16.277 4.2039 7.671 26.082 19.529 

Ave_Del 56 5.9113 3.9248 0.7739 17.818 10.604 434 NB 
Leading Max_Del 56 14.722 4.263 6.542 26.071 18.411 
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Table 4-11: Hypothesis Test - Two Sample t- test for Means of Average Deceleration 
Rate 

         Group          N        Mean of Ave_del (ft/s2)           Std. Dev.      Std. Error       
         434nbl        56               5.911272                            3.9248          0.5245          
         50wbl         57               2.618131                            2.1186          0.2806          
    Hypothesis Test                                                                                
         H0, Null hypothesis:         Mean 1 - Mean 2 =  0                                                
         Ha, Alternative:                 Mean 1 - Mean 2 ≠ 0                                                
         If Variances Are                 t statistic      Df            Pr > t                                   
         Equal                                 5.563           111           <.0001                                
         Not Equal                           5.536           84.22        <.0001                                

 
 

Table 4-12: Hypothesis Test – Two Sample t- test for Means of Maximum 
Deceleration Rate 

          Group          N        Mean of Max_del (ft/s2)     Std. Dev.        Std. Error 
          434nbl        56               14.72193                        4.263             0.5697 
          50wbl         57               16.27666                        4.2039           0.5568 
     Hypothesis Test 
          H0, Null hypothesis:         Mean 1 - Mean 2 =  0 
          Ha, Alternative:                Mean 1 - Mean 2 ≠ 0 
          If Variances Are                       t statistic      Df                Pr > t 
          Equal                                        -1.952          111               0.0535 
          Not Equal                                 -1.952         110.89           0.0535 

 
 

4.2.1.1.2 Non-Stop Turn Rate Analysis 
 
Table 4-13 shows the frequency of subjects, driving as a leading vehicle, who stopped 

fully at the stop line along the two approaches i.e. SR-434 north bound right turn lane and 

SR-50 west bound right turn lane. The definition of ‘Full-STOP’ is given in the Table 4-

9. From Table 4-13, Overall 69.75 % of the subjects did not stop at the stop line. This 

shows the general careless driving behavior of the subjects when they make right turns 

during the red phase.  
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81.67% of the subjects that drove along the 434-north bound right turn lane did not stop 

fully at the stop line; whereas, only 57.63% of the subjects that drove along the 50-west 

bound right turn lane did not stop. This is statistically tested by Chi-square test of 

independence. This test assumes the null hypothesis that full stop behavior and 

intersection approaches are independent. Since P-value of Chi-square statistic came out to 

be 0.0045, which is less than significance level of 0.05 (from Table 4-14), null hypothesis 

that full stop behavior and intersection approaches are independent, is rejected with 95% 

confidence. 

 
 

Table 4-13: Contingency Table between Intersection Approach and Full Stop 
Table of IN_app by Full-Stop  

Full-Stop  Intersection 
approach No Yes 

Total 
 

49 11 60 Frequency 
41.18 9.24 50.42 Overall Percent 
81.67 18.33  Row Percent 

434NBL 

59.04 30.56  Column Percent 
34 25 59 Frequency 

28.57 21.01 49.58 Overall Percent 
57.63 42.37  Row Percent 

50WBL 

40.96 69.44  Column Percent 
83 36 119 Frequency Total 

69.75 30.25 100 Percent 
 
 

Table 4-14: Chi-Square Test of Independence 
Statistic DF Value Prob 
Chi-Square 1 8.1475 0.0043 
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The drivers who did not stop fully at the stop line could make a sudden stop in 

emergency situations, such as yielding the right of way for pedestrians crossing or traffic 

from other approaches, so as to increase the risk of rear end collision with the vehicle 

following. Since non-stop rate is higher for 434NBL (81.67%) than that for 50WBL 

(57.63%), approach SR-434-north bound right turn has more rear-end crash risk than 

approach 50-west bound right turn. This also validates the point that intersection is well 

designed in the simulator same as in the real world since it showed the same safety 

pattern as in the real world.  

 

The location of stop line also determines the driver’s stopping behavior at the stop line. 

For SR-434 north bound traffic, stop line is located at the middle of the curve. The 

distance for making right turns which is between the stop line, pedestrian crossing, and 

the edge of SR-50 east bound is very short (see Fig 3-2b). Therefore, it requires less time 

to make a right turn and drivers tend to quickly watch the traffic from other approaches 

and make a right turn quickly without stopping. Whereas, in case of SR-50 west bound 

traffic, the stop line is located well before the beginning of the right turning curve. For 

this case, the distance for making right a turn that is between the stop line, pedestrian 

crossing, and the edge of SR-434 north bound lane is comparatively very longer. Hence, 

it requires longer time to make a right turn. This will tend the drivers to drive very slowly 

or stop at this area between the stop line and the edge of the SR-434 north bound lane to 

search for a chance to make a safe right turn. This behavior was observed in the 

experiment as only 11 subjects stopped fully at 434NB right turn lane but 25 subjects 
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stopped fully at 50WB right turn lane. Therefore, full stopping behavior of the drivers 

could be dependent on the location of stop line at the approach, which could be one of 

reasons that explained why rear end collisions were over-presented in the 434NB right 

turn lane compared to the 50WB right turn lane. 

 
 

4.2.1.1.3 Analysis of Speed Distribution Along the Right Turn Lane 
 
Table 4-15 and Figure 4-6 show descriptive statistics distribution of speed measured 

along the right turning lane on both approaches namely, SR-50 west bound and SR-434 

north bound. The X-axis of Figure 4-6 shows the location of the vehicle, upstream of the 

stop line, and Y-axis shows the mean speed of all the subjects at a particular location. In 

the Figure 4-6, Spd100 indicates mean speed of the subjects at 100m (328.08 ft) upstream 

of the stop line; Spd80 indicates the mean speed of the subjects at 80m (262.47ft) 

upstream of the stop line and so on. Finally Spd0 indicates mean speed of the subjects at 

the stop line. It can be observed from the Figure 4-6 that, the mean speeds are 

consistently higher along 50WB right turn lane than that along 434NB at locations 100m 

(328.08 ft), 80m (262.47 ft), 60m (196.85 ft), 40m (131.23 ft) and 20m (65.62) but are 

lower at the stop line.  
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Table 4-15: Descriptive Statistics of Speeds at Different Locations Upstream of the Stop 
Line 

Approach 
 Location N Mean 

Speed(mph)
Std 
Dev 

Minimum 
(mph) 

Maximum 
(mph) Range 

Spd100 58 37.979 7.6676 22.433 57.317 34.884
Spd80 58 37.048 7.6604 21.023 55.486 34.463
Spd60 58 34.063 7.8515 18.852 51.026 32.173
Spd40 58 28.239 8.5719 11.251 49.904 38.654
Spd20 58 20.577 7.11 8.1096 42.936 34.827

 
50wbl 

 
 
 
 Spd0 58 9.1225 3.7505 2.8008 25.978 23.178

Spd100 60 32.221 8.3341 16.207 51.304 35.097
Spd80 60 31.285 7.3989 18.425 48.657 30.233
Spd60 60 29.063 7.2091 13.772 45.166 31.394
Spd40 60 24.754 8.4913 4.5206 43.515 38.995
Spd20 60 17.072 7.0651 4.8041 38.257 33.453

 
434nbl 

 
 
 
 Spd0 60 11.419 5.5273 3.2859 37.827 34.541
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Figure 4-6: Mean speed distribution of a leading vehicle along the right turn lanes 
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From Table 4-16, mean speeds at stop line of approach 50WB and approach 434NB are 

found to have unequal variances (since p-value for F-statistic is less than 0.05) and are 

significantly different at 0.05 significance level (since p-value for t-statistic is less than 

0.05) with 95% confidence. Mean speed at the stop line of approach SR-434NB is 

significantly greater than that of the approach SR-50WB. This means that when drivers 

make right turns in a situation where, pedestrians crossing the intersection, it requires 

faster deceleration rate at SR- 434 north bound right turn lane than that at SR-50 west 

bound right turn lane, to avoid collision with pedestrians. This might lead to rear end 

crashes. Hence, approach SR-434NB is found to be more risky than the approach SR-

50WB with respect to rear end crashes at right turn lanes. By treating speeds at stop line 

as surrogate measure for rear-end risk at right turn lanes, the conclusion that approach 

SR-434 northbound is more risky than the approach SR-50 west bound, validates the 

driving simulator. 
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Table 4-16: Two-Sample F-Test for Variances and Two-Sample t-Test Assuming 
Unequal Variances for Mean Comparison of Speeds at the Stop Line 

Two-Sample F-Test for Variances 
 Spd0_50WB_Leading Spd0_434NB_Leading 

Mean (mph) 9.12246 11.41883 
Variance 14.06648 30.55117 

Observations 58 60 
Df 57 59 
F 0.460424  

P(F<=f) one-tail 0.001883  
F Critical one-tail 0.646272  

Two-Sample t-Test Assuming Unequal Variances 
 Spd0_50WB_Leading Spd0_434NB_Leading 
Mean (mph) 9.12246 11.41883 
Variance 14.06648 30.55117 
Observations 58 60 
Hypothesized 
Mean Difference 

0 

Df 104  
T Stat -2.6486  
P(T<=t) one-tail 0.004671  
T Critical one-tail 1.659637  
P(T<=t) two-tail 0.009342  
T Critical two-tail 1.983037  

 
 

4.2.1.2 Driving Simulator as a Following Vehicle 
 

Table 4-17 shows the independent variables that are considered for safety validation in 

the case where driving simulator is used as a following vehicle.  
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Table 4-17: Independent Variables When Driving Simulator Turns Right as a Following 
Vehicle 

Independent 
variable VARIABLE DESCRIPTION 

IN_app Intersection approach Categorical 
(WB=0; NB=1) 

Spd50 
Simulator speed measured when the leading 

vehicle is 50 m (164.04 ft) away from stop line in 
the right turn lane 

Continuous 
(mph) 

Fdis50 
Following distance measured when the leading 

vehicle is 50 m (164.04 ft) away from stop line in 
the right turn lane 

Continuous (ft) 

Ave_DEL The average deceleration rate in the right turn lane Continuous (ft/s2)

Max_DEL The maximum deceleration rate in the right turn 
lane for each vehicle. Continuous (ft/s2)

Ye_retime Driver’s brake response time to the signal change 
in the right turn lane. Continuous (s) 

Ve_retime Driver’s brake response time to leading vehicle’s 
brake light in the right turn lane. Continuous (s) 

Crash 
 

Is there a rear-end crash happening in the right turn 
lane? 

Categorical 
(Yes=1; No=0) 

Age Driver age Continuous 

Gender Driver gender Categorical 
(M=1; F=0) 

 

In this scenario each subject has driven the simulator cab as a vehicle following another 

vehicle in the right turn lane of both 434-North bound and 50-West bound approaches. 

When the leading vehicle approaches the intersection at 60 m (196.85 ft) away from the 

stop line, the traffic signal changes form green to yellow; when the leading vehicle 

approaches the intersection at 50 m (164.04 ft) away from the stop line with a speed of 

30mph, it brakes with a high deceleration rate of 6.4 m/s2 (0.65 g) or 21 ft/s2 in the right 

turn lane. The driving behavior of subject responding to the sudden stop would be 

measured to test the rear-end risk.  It is expected to find that the crash rate and relative 

driving speed in the Alafaya north bound (434NB) right-turn lane should be larger than 
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that in Colonial Drive (50WB) west bound right-turn lane while following distance 

should be vice versa. 

 
 

4.2.1.2.1 Rear-End Crash Rate Analysis 
 
Figure 4-7 shows comparative graph of rear-end crashes that occurred in the simulator 

experiment between approaches 434NB right turn lane and 50WB right turn lane. It can 

be observed that, total rear-end crashes occurred in the right turn lane of 434NB are 

higher than that of 50WB.  This is tested statistically by ‘Two sample test of equality of 

proportions’. 
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Figure 4-7: Rear-end crashes at right turn lanes in the experiment. 
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Two-sample test of equality of proportions: 

 
 H0:  P1 = P2 

 Ha:  P1 ≠  P2 

 
Where, P1 = Proportion of Crashes at Intersection approach 434NBF  

             P2 = Proportion of Crashes at Intersection approach 50WBF 

 

Since P-value is 0.0248 which is less than 0.05 (see Table 4-18), rear-end crash 

occurrence at the approaches 434 north bound right turn lane is significantly higher than 

rear-end crash occurrence at approach 50 west bound right turn lane. Therefore, approach 

434NB right turn lane is more risky than approach 50WB right turn lane with respect to 

rear-end crashes. This result directly validates the driving simulator.   

 
 
Table 4-18: Two Sample Test of Equality of Proportions of Crashes between Right-turn 

Lanes of Approaches 434NB and 50WB. 
Proportion of crashes at each intersection 

approach in % 
434NBF 50WBF 

Z- statistic Prob>z 

15.25 3.33 2.24 0.0248 
 
 
From Chapter one, based on research done at UCF, it is found that, in real world from 

crash data between years 1999 to 2002, male and female are equally involved rear end 

crashes along the approach 434NB right turn lane. This pattern is also observed in the 

experiment. Assuming null hypothesis of having equal proportion of crashes along the 

approach 434NB right turn lane, using two sample equality of proportions test between 
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male and female gender groups, it is found that P-value is 0.78 (see Table 4-19) which is 

greater than 0.05. Therefore, null hypothesis is accepted which states that there is no 

significant difference in proportion of crashes between male and female gender groups, 

with a 95% confidence level. This also validates the driving simulator in terms of rear-

end crash risk rate on a gender basis. 

 
 

Table 4-19: Two Sample Test of Equality of Proportions of Crashes between Male and 
Female 

Proportion of crashes at approach 434NB right 
turn lane (%)   

Male Female Z- statistic Prob>z 
16.22 13.64 -0.27 0.7898 

 
 

4.2.1.2.2 Following Distance Analysis 
 
Table 4-20 shows the descriptive statistic of the independent variables. All the 

independent variables are defined in the Table 4-17. From Table 4-20 it is observed that 

the following distance when leading vehicle is at 50 m (164.04 ft) upstream of stop line 

(Fdis50) is smaller for approach 434NB right turn lane than that for approach 50WB right 

turn lane. This is tested statistically by two-sample t-test. Since P-value (0.0304) from 

Table 4-21 is less than 0.05, there is significant difference between means of Fdis50 

between two approaches 434NB right turn lane and 50WB right turn lane. Therefore, the 

mean of Fdis50 is significantly lesser for approach 434NB right turn lane than that for 

approach 50WB right turn lane with a 95% confidence level. In case of leading vehicle 

decelerating faster, following vehicle will not get enough gap to stop if the following 
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distance is small. This leads to a rear end crash. Since distance following is significantly 

lesser along approach 434NB right turn lane than that along 50WB right turn lane, 

considering Fdis50 as a surrogate measure for safety, the 434NB right turn lane shows a 

higher rear-end crash risk than the 50WB right turn lane. This validates driving simulator, 

as, in real world from crash data analysis, 434NB right turn lane is at high rear-end crash 

risk than 50WB right turn lane. Other independent factors namely; average deceleration 

rate, maximum deceleration rate, yellow reaction time and Spd50 (see Table 4-17) are 

found to be not significantly different between the two approaches 434NB right turn lane 

and 50WB right turn lane.  

 
 

Table 4-20: Descriptive Statistics of Independent Variables 

IN_app N  Variable N Mean Std 
Dev Min Max Range 

Spd50(mph) 59 27.59 2.725 18.745 33.11 14.365 
Fdis50(ft) 59 99.027 44.05 36.31 303.45 267.144 

Ave_Del(ft/s2) 59 14.22 7.062 1.9885 23.792 21.803 
Max_Del(ft/s2) 59 20.81 3.432 8.0897 26.012 17.923 

434NB 
Following 59 

Ye_retime(s) 58 1.789 0.482 1.05 3.4667 2.4167 
Spd50(mph) 60 28.66 2.080 22.922 36.411 13.489 
Fdis50(ft) 60 116.71 43.98 43.332 237.10 193.77 

Ave_Del(ft/s2) 60 13.34 6.745 2.8178 24.081 21.263 
Max_Del(ft/s2) 60 20.42 3.779 9.0822 26.1 17.018 

50WB 
Following 60 

Ye_retime(s) 60 1.674 0.519 0.5333 2.9833 2.45 
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Table 4-21: Two Sample t-test for the Means of Fdis50 within IN_app 
         Group         N            Mean (ft)           Std. Dev.           Std. Error  
         434nbf        59             99.027            44.049                  5.7347     
         50wbf         60             116.708           43.98                   5.6778     
    Hypothesis Test                                                                                
        H0, Null hypothesis:    Mean 1 - Mean 2 =  0                                  
         Ha, Alternative:        Mean 1 - Mean 2 ≠ 0                                     
         If Variances Are               t statistic             Df              Pr > t        
         Equal                                 -2.191              117             0.0304       
         Not Equal                          -2.191              116.96         0.0304       

 
 

4.2.1.3 Conclusion 
 
The purpose of the experiment study in this section is to validate the UCF driving 

simulator as a test bed from the safety aspect of rear end crash risk happening at right 

turn lanes. In comparison between driving simulator experiment results and real world 

crash record, it showed very similar pattern of rear end crash risks. Considering the 

driving simulator as a leading right turn vehicle, it was found that the deceleration rate at 

the 434NB approach is higher than that at the 50WB approach; non-stop rate is higher for 

434NB approach than that for 50WB approach; and mean speed at the stop line of the 

434NB approach is significantly greater than that of the 50WB approach. Using these 

three variables as key surrogate measuring rear end risk, one can conclude that the 

leading vehicles are more likely to contribute to the rear-end crashes at the right turn lane 

of the 434NB approach compared to at the right turn lane of the 50WB approach. 

 

On the other hand, considering drivers’ following behaviors at right turn lanes, the 

following distance at the moment when the leading vehicle started braking is significantly 
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lesser along 434NB right turn lane than that along the 50WB right turn lane. Using the 

following distance as a surrogate measure for safety, the 434NB right turn lane shows a 

higher rear-end crash risk than the 50WB right turn lane. This conclusion was further 

verified by the evidence that the rear-end crash rate in the right turn lane of 434NB 

(15.25%) are significantly higher than that of 50WB (3.33%). 

 

Based on the above findings for the right turn rear end crash risk analysis, it can be 

concluded that the experiment results validated that the UCF driving simulator could be 

an effective tool for traffic safety studies to test high risk locations at intersections.  

 
 

4.2.2 Safety Validation - Crash Risk Test at Through Lanes 

 
For through lanes at the intersection, the crash report analysis showed a crash pattern that 

the rear-end crash rate in the eastbound approach of the Colonial Drive (50EB) is highest 

and that in the northbound approach of the Alafaya Trail (434NB) is lowest. Moreover, 

the angle crash rate related to the through traffic from 50EB is obviously higher than that 

from 434NB. To validate the driving simulator with respect to this crash risk at through 

lanes, two scenarios had been tested as follows: 

 
1) SR-50 East bound (AEBR) - Subjects drive the simulator to go through the intersection 

along Colonial Drive (SR-50) eastbound. The signal changes from green to amber when 

the vehicle is at 90 m (295.28 ft) upstream from the stop line. This is high risk location. 
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2) SR-434 North bound (BNBR) - Subjects drive the simulator to go through the 

intersection along Alafaya Trail (SR-434) northbound. The signal changes from green to 

amber when vehicle is at 90 m (295.28 ft) upstream from the stop line. This is low risk 

location. 

 

If the above two scenarios are compared to get the same pattern as in the real world, the 

experiment results can validate the driving simulator with respect to crash risk at through 

lanes. The following Table 4-22 defines all the independent variables for safety 

validation at the intersection.  

 
 

Table 4-22: Independent Variables for Crash Risk at Through Lanes 
Independent 

Variable VARIABLE DESCRIPTION 

IN_app Intersection approach Categorical 
(NB=0; EB=1) 

Stop Did driver stop at the intersection after signal change? Categorical 
(Yes=1;No=0) 

Redlight Did driver run a red light if he crossed the 
intersection? 

Categorical 
(Yes=1;No=0) 

Treac Driver’s brake response time to the signal change in 
the through lane. Continuous (s) 

Speed Approaching speed measured at termination of the 
green phase 

Continuous 
(mph) 

Decel The deceleration rate of the stopping vehicle Continuous 
(ft/s2) 

Gap Driver’s traveling time to the stop line based on the 
approaching speed at the termination of green phase. Continuous (s) 

Age Driver age Categorical 

Gender Driver gender Categorical 
(M=1; F=0) 
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4.2.2.1 Driver’s Stop/Go Decision During Signal Change 
 
Driver’s stop/go decision is the most essential behavior at signalized intersections 

because wrong stop/go judgments are directly related to traffic crashes happening such as 

red-light running (angle crashes) or rear-end crashes. Table 4-23 shows the proportions of 

stopping and crossing decisions at intersections related to independent factors viz., 

intersection approach, driver gender, and driver age. At the onset of yellow phase, drivers 

at the 50-eastbound approach are more likely to cross the intersection compared to those 

drivers at the 434-northbound approach (37.1% vs. 13.3%). The Chi-square test showed 

that the p-value is 0.003 ( 085.92
122,1 =χ ) and the drivers’ stop/cross is statistically 

dependent on the two approaches based on 0.05 significance level. There is also a 

significant dependence of drivers’ stop/cross decision at the onset of yellow phase 

( 958.52
122,1 =χ , P = 0.015) on gender. It appears that male drivers are more likely to cross 

the intersection compared to those female drivers (32.9% vs. 13.0%). However, there is 

no statistically significant dependence of stop/go decision on driver age based on the 

simulator experiment results ( 866.12
122,4 =χ , P = 0.761). 
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Table 4-23: Decision of Stop/cross Vs Independent Factors 
Independent 

Factor Level Cross Stop Total Chi-square 
test 

8 52 60 434 NB 13.33 % 86.67 % 100 % 
23 39 62 Approach 

50 EB 37.1 % 62.9 % 100 % 

085.92
122,1 =χ

P = 0.003 

6 40 46 Female 13.04 % 86.96 % 100 % 
25 51 76 Gender 

Male 32.89 % 67.11 % 100 % 

958.52
122,1 =χ

P = 0.015 

5 16 21 16-19 23.81 % 76.19 % 100 % 
9 22 31 20-24 29.03 % 70.97 % 100 % 
7 21 28 25-34 25 % 75 % 100 % 
7 15 22 35-44 31.82 % 68.18 % 100 % 
3 17 20 

Age 

>=45 15 % 85 % 100 % 

866.12
122,4 =χ

P = 0.761 

31 91 122 Total 25.41 % 74.59 % 100 %  

 
 
Table 4-24 shows that the mean speed at the 50-eastbound approach is larger than that at 

the 434-northbound approach, although the speed limits for both approaches are 45 mph. 

Note that the speed limit design at this intersection is unbalanced and the speed limit for 

the 50 westbound approach is 50 mph but those for the other three approaches are 45 

mph. Moreover, speed limits for most segments of the 50 highway is 50 mph, which may 

cause drivers not fully reduce their traveling speeds to 45 mph. It was explained that 

drivers at the 50-eastbound approach are less likely to stop at the intersection during the 

signal change. Therefore, drivers at the 50-eastbound approach are more likely to speed. 

Generally, when speeding drivers encounter a yellow signal at 90 m (295.28 ft) away 
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from the stop line of the intersection, they are more likely to fall into dilemma and 

possibly to run the red light. Using no-stop rate as a surrogate for angle collisions, it can 

be concluded that SR-50 eastbound vehicles are more likely to run the red light so as to 

result in a higher angle collision rate compared to that along SR-434 northbound 

direction. This experimental finding is consistent with the conclusion that was based on 

the crash report analysis. Furthermore, according to the experiment results, there was 

only one red light running observation out of 60 subjects along SR-434 northbound 

approach and three observations out of 62 subjects along SR-50 eastbound approach. 

Since red-light running is a rare event, no conclusion could directly be drawn based on 

the limited sample size. 

 
 

Table 4-24: Mean Speed of the Simulator 
SPEED Factor Level N 

Mean (mph) Std Dev (mph) 
434 NB 60 43.6919146 8.49360464 Approach 
50 EB 62 46.7752333 9.45439999 
16-19 21 48.4025982 8.53913339 
20-24 31 48.9463740 8.34174975 
25-34 28 45.2389876 8.80949795 
35-44 22 42.6116730 8.09195378 

Age 

>=45 20 39.1819365 8.76765054 
 
 
On the other hand, the no-stop rate also can be considered as a surrogate for rear-end 

collisions, because within 90 m (295.28 ft) upstream of the stop line of the intersection, 

there is a potential conflict between the stopping drivers and crossing drivers during 

signal change. Therefore, a higher no-stop rate at the through lanes of the 50-eastbound 

approach may result in more rear-end crashes compared to the 434-northbound approach. 
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4.2.2.2 Analysis of Stopping Behavior at Intersection During Signal Change 
 
Table 4-25 shows the descriptive statistics of the independent variables for the data of 

subjects that stopped at the intersection during the period of signal change. The mean of 

each independent variable for high risk approach i.e. 50-East bound through (50EBR) is 

compared for statistical significant difference with the corresponding mean of the 

independent variable at low risk approach i.e. 434-North bound through (434NBR). Two 

sample t - test is used for making this comparison which is defined as follows:  

 
 
Hypothesis Test:         

         Null hypothesis:    Mean 1 - Mean 2 = 0      

         Alternative:           Mean 1 - Mean 2 ≠ 0         

                                                                                                                                               

Where, Mean1 = Mean of each independent variable of all subjects driving along SR-434 

                           North bound through. 

             Mean2 = Mean of each independent variable of all subjects driving along SR-50  

                           East bound through. 

 



 85

Table 4-25: Descriptive Statistics of Independent Variables for Subjects Stopped 

IN_app N Obs Variable N Mean Std 
Dev Min Max Range 

TREAC 
(s) 33 0.8313 0.5919 0.1 3.4333 3.3333 

SPEED 
(mph) 39 42.567 7.942 23.718 55.994 32.275 

DECEL 
(ft/s2) 39 8.2275 3.7152 2.8006 14.863 12.063 

50EBR 39 

GAP (s) 39 4.9496 1.0879 3.6165 8.5377 4.9212 
TREAC 

(s) 45 0.6315 0.3196 0.0833 1.65 1.5667 

SPEED 
(mph) 52 41.846 6.752 22.383 54.243 31.86 

DECEL 
(ft/s2) 52 7.5277 3.0685 0.4075 15.541 15.133 

434NBR 52 

GAP (s) 52 4.9891 0.9866 3.7332 9.0471 5.3139 
 
 

The results of two-sample t-test (Table 4-26) show that, P-value of no independent 

variable is less than 0.05. Therefore, this test fails to reject null hypothesis at a 

significance level of 0.05. Hence, there is no significant difference between the mean of 

each independent variable of the two approaches namely 50-East bound and 434-North 

bound with 95% confidence. Generally, at the onset of the yellow phase, the length of the 

yellow phase, the potential distance to the intersection and approaching speed play key 

roles on drivers’ stop decision and brake behavior. Note that at this intersection, both 

yellow phases of 50EB and 434NB are 4.3 s; for each scenario, signal changes from 

green to yellow when the vehicle is at 90 m (295.28 ft) upstream from the stop line; and 

from the experiment results, there is no significant difference in approaching speeds for 

those who decided to stop between 50EB and 434NB. Based on the above facts, their 
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reaction time to the signal change and deceleration rate should be expected to be similar 

for both approaches.  

 
Table 4-26: Results of Two Sample t-test for Means between Approaches 

Independent 
variables If Variances Are               t statistic                 Df                     Pr > t 

 Equal                                   0.468                    89                    0.6413 Speed 
(mph) Not Equal                            0.457                    74.13               0.6492 

Equal                                   1.918                    76                    0.0589 Treac (s) 
Not Equal                            1.760                    45.63               0.0851 
Equal                                   0.983                    89                    0.3281 Decel (ft/s2) Not Equal                            0.957                    72.66               0.3419 
Equal                                  -0.181                     89                   0.8569 GAP (s) Not Equal                           -0.178                   77.40               0.8589 

 
 

Furthermore, the same data is looked into for significant difference of independent 

variables between gender groups at the high risk approach 50-East bound using the same 

two sample t-test and are compared with real world crash data.  

 

Hypothesis Test:         

         Null hypothesis:    Mean 1 - Mean 2 = 0      

         Alternative:           Mean 1 - Mean 2 ≠ 0               

                                                                                                                                                  

Where, Mean1 = Mean of each independent variable for female at approach SR-50 East 

bound. 

             Mean2 = Mean of each independent variable for male at approach SR-50 East 

bound. 
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Table 4-27 shows the descriptive statistics of independent variables for subjects stopped 

on red at approach SR-50 East bound. From Table 4-28, at 0.05 significance level, there 

is no significant difference in independent variables Speed and Gap between gender 

groups; male and female. However there is significant difference in independent variables 

reaction time (Treac) and deceleration rate (Decel). Reaction time is found to be 

significantly longer for females than that for males. Therefore, females take longer time 

to react and hence they have less time to stop eventually decelerating at a faster rate than 

males. This is further strengthened by the result that the deceleration rate for females is 

significantly higher than that for males (see Table 4-28). 

 
 
Table 4-27: Descriptive Statistics of Independent Variables for Subjects Stopped on Red 

at Approach SR-50 Eastbound 

Gender N Obs Variable N Mean Std 
Dev Min Max Range 

TREAC 
(s) 17 0.7304 0.3607 0.3667 1.65 1.2833 

SPEED 
(mph) 20 40.236 7.2986 22.383 47.716 25.333 

DECEL 
(ft/s2) 20 7.8909 2.9364 2.6603 13.119 10.459 

Female 20 

GAP (s) 20 5.2485 1.2812 4.2439 9.0471 4.8032 
TREAC 

(s) 28 0.5714 0.2819 0.0833 1.4167 1.3333 

SPEED 
(mph) 32 42.852 6.2958 30.699 54.243 23.544 

DECEL 
(ft/s2) 32 7.3007 3.1729 0.4075 15.541 15.133 

Male 32 

GAP (s) 32 4.827 0.7244 3.7332 6.5963 2.8631 
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Table 4-28: Results of Two Sample t-test for Means between Gender Groups for 
Approach 50-Eastbound. 

Independent 
 variables If Variances Are                t statistic         Df                       Pr > t 

Equal                                 -0.059              89                      0.9531 Speed (mph) Not Equal                          -0.058              78.90                 0.9537 
Equal                                   2.086              76                     0.0403 Treac (s) Not Equal                           1.889               42.57                0.0657 
Equal                                  1.920               89                     0.0581 Decel (ft/s2) Not Equal                           1.920               84.02                0.0582 
Equal                                  0.435               89                     0.6649 GAP (s) Not Equal                           0.415               65.04                0.6796 

 
 

4.2.2.3 Conclusions  
 
 
Driver’s stop/go decision is the most essential behavior at signalized intersections, which 

is related to both angle and rear-end collisions. The crash report analysis showed that the 

eastbound approach of Colonial Drive (50EB) has a higher crash rate for both types of 

collisions than the northbound approach of the Alafaya Trail (434NB). Using no-stop rate 

during the signal change as a crash surrogate in the driving simulator experiment, it was 

found that drivers at the 50-eastbound approach are more likely to cross the intersection 

compared to those drivers at the 434-northbound approach (37.1% Vs. 13.3%) because 

the mean speed at the 50EB was found to be larger than that at the 434NB. This finding 

implied that 50EB should be expected to have a higher crash rate for both angle and rear-

end collisions at this intersection. Therefore, the experiment validated that the UCF 

driving simulator could be employed as a test-bed for the traffic safety studies. 
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4.3 Questionnaire Analysis of the Driving Simulator Experiment 

 

All subjects after completing the experiment were asked to fill out a questionnaire 

consisting of four questions. Figures 4-8, 4-9, and 4-10 show the opinion of subjects for 

questions 1, 3 and 4. Questions 2, 3 and 4 are valid only if the subjects recognize the 

intersection. For the second question, which is “Can you say which intersection it was?”, 

all subjects, who were able to recognize the intersection, were also able to say which 

intersection it was i.e. ‘Colonial Drive and Alafaya Trail intersection’. 

 
 

Did you recognize the intersection that you 
drove through in the simulator?

87.10%

12.90%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

yes no
 

Figure 4-8: Question 1 
 
 



 90

How often do you travel through this 
intersection?50.62%

35.80%

9.88%
3.70% 0

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

daily once a
week

once a
month

rarely never

 
Figure 4-9: Question 3 

 
 

How realistic was the simulated intersection?

2.47%

22.22%

50.62%

24.69%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

not at all
realistic 

fairly realistic good enough very realistic

 

Figure 4-10: Question 4 
 
 
From Figure 4-8, 87.10% of the subjects recognized the intersection. And out those who 

identified the intersection, from Figure 4-9, 50.62% drive daily, 35.8% drive once in a 

week, 9.88% drive once in a month, through the intersection. From Figure 4-10, seventy 

five percent of the subjects, who recognized the intersection, thought that the simulated 

intersection was good enough or realistic. Therefore, the driving simulator is also 

validated for physical and visual aspects of the intersection. 
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5 . LOGISTIC REGRESSION MODELS 

 
 

5.1 A Measure for Comparing ‘Rear End Crash Risk’ at Through Lanes of the 

Intersection SR-434 North Bound and SR-50 East Bound 

 
Rear end crashes can happen in the event of both the leading and the following vehicles 

come at the same time with contradicting behavior of stopping at the stop line and not 

stopping, respectively. The decision of stop/go is of important in and around the dilemma 

zone, which is at the onset of yellow light (or at the termination of green phase); where 

the driver has to decide whether to stop or not. At the onset of yellow signal, the time the 

driver has, to reach the intersection with the current speed, plays an important role in 

deciding the stop/go decision. In the experiment, the yellow signal is flashed when the 

vehicle is at 90m upstream of the intersection. Based on this distance and the approaching 

vehicle speed at the onset of the yellow signal, a variable GAP is designed; which is 

defined as the traveling time taken by the vehicle to reach the intersection from time of 

onset of yellow signal. Therefore, at the onset of yellow light, the joint probability of the 

decision of leading vehicle to stop and the decision of following vehicle to go ahead i.e., 

accepting the gap, is considered as a measure of rear end crash risk. Using this measure 

relative rear end crash risk can be computed. The experiment considered many other 

independent variables for calculating the stop probability. Table 5-1 shows the different 

independent variables and their definitions.   
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Table 5-1: Independent variables and its description 
Independent 

Variable VARIABLE DESCRIPTION 

IN_app Intersection approach Categorical 
(NB=0; EB=1) 

Stop Did driver stop at the intersection after signal change? Categorical 
(Yes=1;No=0) 

Redlight Did driver run a red light if he crossed the 
intersection? 

Categorical 
(Yes=1;No=0) 

Treac Driver’s brake response time to the signal change in 
the through lane. Continuous (s) 

Speed Approaching speed measured at termination of the 
green phase 

Continuous 
(mph) 

Decel The deceleration rate of the stopping vehicle Continuous 
(ft/s2) 

Gap Driver’s traveling time to the stop line based on the 
approaching speed at termination of the green phase . Continuous (s) 

Age Driver age Categorical 

Gender Driver gender Categorical 
(M=1; F=0) 

 
 
The following is a method to calculate STOP probability:  

Let, 

Probability of stopping at the onset of yellow light = π 

Probability of not stopping i.e. accepting the gap = 1 – π 

 

For calculating this probability of stopping at the onset of yellow signal (π), 91 subjects 

ran the driving simulator experiment. A binary variable STOP is designed which is 

defined as: 

STOP   = 1 for stop i.e. rejecting gap 

 = 0 for go i.e. accepting gap 
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Since the dependent variable (STOP) is binary, the Multi-variate binary logistic 

regression method is used to model the probability of stopping at the onset of yellow. In 

this model, the log of Probability of Stopping at the onset of yellow signal is related 

linearly using logit link function, to the independent variables shown in Table 5-1. It is 

mathematically represented as, 

nne XXX ββββ
π

π
+⋅⋅⋅⋅⋅⋅⋅⋅+++=⎟

⎠
⎞

⎜
⎝
⎛
− 221101

log  

where, Xi,   i = 1, 2, . . . . . . n   are the independent variables. 

 β0, β1, β2, …………….  βn are the parameters that are estimated by ‘Maximum 

Likelihood Estimates’ method described in the textbook ‘Applied logistic Regression’. 

From the model, ie β
is interpreted as the odds ratio of response variable with increase 

in one unit of Xi keeping all other variables unchanged. 

By letting  

nn XXXXg ββββ +⋅⋅⋅⋅⋅⋅⋅⋅+++= 22110)(  

)(

)(

1 Xg

Xg

e
e
+

=π  

The model building is done using ‘Statistical Analysis Software (SAS)’. The variables 

are selected into the model using backward elimination variable selection algorithm. 

Based on this method, out of the seven independent variables considered for modeling, 

three variables viz. intersection approach, Speed at the onset of yellow signal and gender 

were found to be statistically significant at alpha = 0.05 significance level. Table 5-2 

shows the maximum likelihood estimates for these variables. 
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Table 5-2: Maximum likelihood estimates of parameters for stop/go analysis at the onset 
of yellow light. 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate Standard 
Error 

Wald 
Chi-Square Pr > ChiSq

Intercept  1 14.43 2.7456 27.624 <.0001 
SPEED  1 -0.241 0.0517 21.832 <.0001 
IN_app 50ebr 1 -1.385 0.6205 4.981 0.0256 
Gender M 1 -1.31 0.6363 4.2393 0.0395 

 
 

5.1.1 Logistic Regression Model 

 

GenderAppInspeede *31.1_*385.1*241.043.14
1

log −−−=⎟
⎠
⎞

⎜
⎝
⎛
−π
π  

 

GenderAppInspeed

GenderAppInspeed

e
e

*31.1_*385.1*241.043.14

*31.1_*385.1*241.043.14

1 −−−

−−−

+
=π ---------------- (1) 

 
 

5.1.2 Model Interpretation 

 
 

Table 5-3: Odds Ratio Estimates 
Odds Ratio Estimates 

Effect Point Estimate 95% Wald 
Confidence Limits 

 SPEED 0.786 0.71 0.869 
IN_app 50ebr vs 434nbr 0.25 0.074 0.845 

Gender m vs f 0.27 0.078 0.939 
 
 
Table 5-3 shows the odds ratio of the estimates and its 95% confidence interval limits. 

The model can be interpreted based on the three parameters of the three independent 
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variables that found to be significant. Firstly, the odds of stopping at the intersection 

becomes 0.786 times the odds of stopping at the intersection with an increment of 1mph  

in speed which is measured at the onset of yellow time, keeping gender and intersection 

approach constant. In other words, the odds of stopping at the stop line of intersection on 

the onset of yellow signal increases by 27.3% with every 1mph decrease in speed, 

keeping other variables unchanged and this percentage is as low as 15.07% and as high as 

40.85%. Secondly, the odds of stopping at the SR-50 east bound approach becomes 0.25 

times the odds of stopping at the approach SR-434 North bound approach with other 

variables kept unchanged. That means the odds of stopping at the approach SR-434 north 

bound on the onset of yellow signal are four times the odds of stopping at the approach 

SR-50 east bound on the onset of yellow light with other variables remained unchanged 

and this odds ratio is as low as 1.18 and as high as 13.51. Thirdly, the odds of male 

drivers stopping at the intersection on the onset yellow light are 0.27 times than that of 

female drivers which means odds of female drivers stopping are 3.7 times the odds of 

male drivers stopping at the intersection on the onset of yellow signal with the other 

independent variables remained unaltered. And the odds female drivers stopping are as 

low as 1.06 times and as high as 12.82 times the odds of male drivers stopping keeping 

other variables constant. 

 

From the above interpretations, it is concluded that drivers stopping behavior is 

dependent on the intersection approach, the drivers speed and gender. The following 
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section describes a method to assess the rear end crash risk and compare quantitatively 

rear end crash risk of the two intersection approaches.   

5.1.3 A Comparative Measure of Rear-End Crash Risk at Two Approaches of a 

Signalized Intersection: 

 
As described in the preceding section rear end crash happening mainly depends upon the 

driver’s judgment to assess the GAP. At signalized intersections, rear end crash occurs at 

the joint occurrence of leading vehicle stopping at the intersection prematurely and the 

following vehicle trying to cross the intersection or trying to run the red light. The 

following method describes the measure of rear end crash risk at signalized intersections. 

 

Figure 5-1: Sopping probability as a function of potential time by country/city 
(Source: Koll, 2002) 
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Koll et al. (2002) conducted a study to compare the driver’s stopping behavior during 

flashing green before amber at intersections across different cities in Europe. He used the 

potential time (see Fig 5-1) to stop (which we defined as GAP in our case) as a measure 

to compare the stopping behavior at signalized intersections across different cities.  

 

If the GAP between 20% and 80% of stop probability is large then it means that there is a 

high chance of a rear end crash. But how to compare if both approaches have the same 

potential time to stop but they are separated by a fixed time and how to quantify the rear 

end crash risk even if they have different potential time to stop. The following is the 

method to measure quantitatively the rear end crash risk. 

 

From the previous section STOP behavior is dependent upon the intersection approach, 

driver speed and gender. Based on this stopping behavior rear end crash risk is measured 

and compared between the two approaches of the intersection. Therefore, now the 

independent variables are driver’s speed and gender. Gender behavior is studied 

separately in the later sections. The variable SPEED (measured at 90 m (295.28 ft) 

upstream of the intersection) is converted into GAP by dividing it by 90 m. Based on the 

speed of each vehicle there are get different gaps. A logistic regression model is fitted 

with variable STOP as dependent variable and GAP as independent variable to calculate 

the probability of stopping at the onset of yellow signal (π). 
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Now, considering behavior of stopping and not stopping as two independent events, the 

probability of rear ending for any one particular GAP, is defined as, 

Pr = π*(1 – π) 

For the entire region of probable GAPs,  

             the probability of rear ending = ( )∫ −
b

a

ππ 1 ----------------------(2) 

Using logit transformation for a binary response variable or dependent variable, 

                                   STOP   = 1 for stop i.e. rejecting GAP (defined in Figure 5-1)    

                                               = 0 for go i.e. accepting GAP (defined in Figure 5-1), 

e
e

xg

xg

)(

)(

1+
=π      ----------------------------------- (3) 

where, )(*)( 10 xxg ββ +=   --------------------(4) 

where, x = dependent variable i.e. GAP 

  π = Probability of stopping at the onset of yellow light. 

 
 

Table 5-4a: Response variable (STOP) for different approaches 
Response Profile 

Intersection approach Response STOP Total Frequency 
Stop 1 52 

SR-434 North bound 
Go 0 8 

Stop 1 39 
SR-50 East bound 

Go 0 23 
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Table 5-4b: Global null hypothesis testing for different approaches 

Testing Global Null Hypothesis: BETA=0 

Intersection approach Test Chi-
Square DF Pr > ChiSq 

Likelihood Ratio 19.315 1 <.0001 
Score 10.43 1 0.0012 SR-434 North bound 
Wald 9.3421 1 0.0022 
Likelihood Ratio 26.383 1 <.0001 
Score 16.396 1 <.0001 SR-50 East bound 
Wald 11.335 1 0.0008 

 
 

Table 5-4c: Estimates of parameters β for different approaches 
 

Analysis of Maximum Likelihood Estimates 
Intersection 
approach Parameter DF Estimate Standard 

Error 

Wald  
Chi-
Square 

Pr > ChiSq 

Intercept(β0) 1 -11.71 4.2505 7.5861 0.0059 SR-434 
North bound GAP (β1) 1 3.1813 1.0408 9.3421 0.0022 

Intercept(β0) 1 -10.26 3.1072 10.896 0.001 SR-50 East 
bound GAP(β1)  1 2.5552 0.7589 11.335 0.0008 

 
 
Table 5-4a shows the observations for response variable STOP. Variable GAP is 

statistically significant for stop/go behavior along the through lanes at the intersection for 

both the approaches as shown in Table 5-4b (P-values for all tests are less than 0.05). 

Table 5-4c shows the estimates of the parameters β for approaches SR-434 north bound 

and SR-50 east bound respectively. 
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Figure 5-2: Stop probability Vs GAP for different approaches 

 
 
Figure 5-2 shows the stop probability for different gaps ranging between 2 sec to 6 sec 

for both the approaches. For a given gap the probability of stopping is higher for the 

approach 434-North bound than that the approach 50-East bound. In the experiment 

yellow time of 4.3 sec was provided. So, vehicles having a gap of 4.3 sec have to stop in 

order to avoid red light running and for gaps less than 4.3 sec should continue to go. 

From the figure 5-2, for a gap of 4.3 sec, the non-stop probability (1 - stop probability) is 

higher for 50-east bound (0.3) than that for 434-north bound (0.1). Therefore, SR-50 east 

bound has the high risk of red light running. 

Rear end Crash risk: 

Form equation (1) 

Probability of rear ending = ( )∫ −
b

a

ππ 1    

Substituting eq. 2 
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te x =+ 10 ββ
  (by substituting eq-3) 

Taking derivative on both sides, 

dtdxe x
=

+
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dtdxt =1β  

t
dtdx
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= ---------------------- (7) 

Substituting eq-5, eq-6 in eq-4, 

 

Probability of rear ending
( )∫ +

=
b

a t
dt

t
t

1
1 2 β
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Substituting β0, β1 from Table 4c in eq-(8), we get the probability of rear ending for the 

approaches 434-north bound and 50-east bound.  

For a GAP range of 2 sec to 6 sec, the probability of rear ending, 

                                        along approach SR-434 north bound near intersection = 0.31265 

        along approach SR-50 east bound near intersection  = 0.38666. 

Relative rear ending risk = 
 boundnorth  -434approach near  endingrear  ofy probabilit

 boundeast  -50approach near  endingrear  ofy probabilit   

 = 
0.31265
0.38666  

 = 1.2367 

Therefore it can be concluded that SR50-east bound approach is 23.67% more rear end 

riskier than SR434-north bound. This supports the findings from real crash data that SR-

50 east bound is more risky with respect to rear end crashes than the approach 434-north 

bound.  

 
 

5.2 Rear End Crash Risk Based on Gender 

 
From the logistic model in equation-(1), gender was also found to be significant factor for 

the probability of rear end crashes. This section computes quantitatively, the rear-end 

crash risk for different gender groups. A logistic regression model is fitted for the data for 

both genders separately, by taking variable STOP as dependent variable and GAP as 

independent variable. Table 5-5a shows the frequency of stopping under gender 

classification.  
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Table 5-5a: Response profile for variable STOP based on gender 
Response Profile 

Total Frequency Ordered 
Value STOP Female Male 

1 1 40 51 
2 0 6 25 

 
 
Table 5-5b shows the results of three statistical tests. The results show the rejection of 

null hypothesis (P-value <0.05) at α = 0.05 that probability of stopping on the onset of 

yellow light is independent of gender.  

 
 

Table 5-5b: Results of Global null hypothesis testing based on gender 
Testing Global Null Hypothesis: BETA=0 

Gender Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 13.073 1 0.0003 
Score 4.944 1 0.0262 Female 
Wald 5.9658 1 0.0146 

Likelihood Ratio 35.682 1 <.0001 
Score 26.001 1 <.0001 Male 
Wald 16.267 1 <.0001 

 
 

Table 5-5c: Maximum likelihood estimates of parameters based on gender 
Analysis of Maximum Likelihood Estimates 

Gender Parameter DF Estimate Standard 
Error 

Wald 
Chi-

Square 
Pr > ChiSq

Intercept (β0) 1 -14.06 6.2713 5.0286 0.0249 Female 
GAP (β1) 1 3.7708 1.5438 5.9658 0.0146 

Intercept (β0) 1 -10.57 2.7115 15.183 <.0001 
Male 

GAP (β1) 1 2.6437 0.6555 16.267 <.0001 
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Table 5c show the estimates of the parameter β for both the models based on gender 

groups. Table 5d shows the estimates of the odds ratio for male and female gender groups 

and their 95% confidence limits. 

 
 

Table 5-5d: Odds Ratio estimates for male and female gender groups. 
Odds Ratio Estimates 

Gender Effect Point Estimate 95% Wald 
Confidence Limits 

Female GAP 43.413 2.106 894.8 
Male GAP 14.065 3.892 50.826 

 
 
From Figure 5-3, for any particular gap the probability of stopping is higher for female 

population than that for male population.  
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Figure 5-3: Stop probability Vs GAP for different gender group 
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Using the derived equation-(8) and substituting β0, β1 from Table 5c we get the 

probability of only male population involving in a rear end crash and probability of only 

female population involving in rear end.  

For a GAP range of 2 sec to 6 sec, the probability of, 

                                        only male population involving in rear end  = 0.3744 

        only female population involving in rear end  = 0.2648. 

 

Relative rear ending risk between only male and only female groups =  

                                 
crash  end -rear ain  involving population femaleonly  ofy probabilit

crash  end-rear ain  involving population maleonly  ofy probabilit   

                                 = 
0.2648
0.3744  

                                 = 1.4143 

It can be concluded that male population are 41.43% more risky in involving in a rear end 

crash than that of female population. 

 
 

5.3 Car Following Cases at Right Turn Lanes 

 
This section deals with crash risk at right turn lanes. The scenario is designed in such a 

way that the simulator car would be following a car which is traveling at a speed of 30 

mph on a right turn lane of the approach of the intersection. In this scenario, when the 

leading vehicle approaches the intersection at 60 m (196.85 ft) away from the stop line, 

the traffic signal will change from green to yellow; when the leading vehicle approaches 
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the intersection at 50 m (164.04 ft) away from the stop line with a speed of 30mph, it 

would brake with a high deceleration rate 6.4 m/s2 (0.65 g) or 21 ft/s2 in the right turn 

lane. The scenario is designed along two approaches viz., SR-434 north bound right turn 

lane and SR-50 west bound right turn lane. 

 
 

Table 5-6: List of independent variables for the Car Following Scenarios 
Independent 
variables Variable description 

IN_app Intersection approach Categorical (WB=0; 
NB=1) 

Spd50 
Simulator speed measured when the leading 
vehicle is 50 m (164.04 ft) away from stop line 
in the right turn lane 

Continuous (mph) 

Fdis50 
Following distance measured when the leading 
vehicle is 50 m (164.04 ft) away from stop line 
in the right turn lane 

Continuous (m) 

Ave_DEL The average deceleration rate in the right turn 
lane Continuous (ft/s2) 

Max_DEL The maximum deceleration rate in the right 
turn lane for each vehicle. Continuous (ft/s2) 

Ye_retime Driver’s brake response time to the signal 
change in the right turn lane. Continuous (s) 

Ve_retime Driver’s brake response time to leading 
vehicle’s brake light in the right turn lane. Continuous (s) 

Crash 
 

Is there a rear-end crash happening in the right 
turn lane? 

Categorical (Yes=1; 
No=0) 

Age Driver age Categorical 

Gender Driver gender Categorical (M=1; 
F=0) 

 
 
Table 5-6 above shows the list of independent variables that were recorded or calculated 

from the recorded data. There are mainly two factors that cause a rear end when the 

leading vehicle suddenly stops or decelerates. 1) The speed of the following vehicle. 2) 

The following driver’s inability in assessing the gap in front of him. Since the leading 
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vehicle starts to decelerate when it is 50 m (164.04 ft) ahead of intersection, the following 

vehicles speed is measured at this time. It is designated as Spd50 as shown in Table 5-6. 

At the same time the distance followed by the following vehicle is also measured and is 

designated as Fdis50 as shown in Table 5-6. Apart from these factors age, gender, yellow 

reaction times are considered for model building. Logistic regression model is fitted for 

the data with crash as dependent variable and the rest of the variables in Table 5-6 as 

independent variables. Stepwise selection method is used for selecting significant 

variables.  

 
 

Table 5-7a: Results of testing of null hypothesis for car following cases 
Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 
Likelihood Ratio 44.122 2 <.0001 

Score 19.376 2 <.0001 
Wald 10.187 2 0.0061 

 
 

Table 5-7b: Estimates of parameters for variables effecting crash risk atright turn lanes 
Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate Standard 
Error 

Wald 
Chi-Square Pr > ChiSq

Intercept 1 -23.3 8.9267 6.8123 0.0091 
Spd50 1 1.0327 0.3628 8.1034 0.0044 
Fdis50 1 -0.427 0.1374 9.6486 0.0019 

 
 
Table 5-7a shows the results of the null hypothesis that crash occurrence is not 

dependent (i.e. all β = 0) on all the independent variables listed in table 5-6. From Table 

5-7a, since P-value for all the statistical tests is less than 0.05 null hypothesis is rejected 

at alpha = 0.05. Table 5-7b gives the maximum likelihood estimates of the parameters of 
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the significant variables. Only variables Spd50 and Fdis50 are found to be significant. 

The final logistic model: 

Probability of crash occurrence, 50427.050*0327.13.23

50427.050*0327.13.23

1 FdisSpd

FdisSpd

e
e

−+−

−+−

+
=π  

 
 

Table 5-7c: Odds ratio estimates for car following case 
Odds Ratio Estimates 

Effect Point Estimate 95% Wald 
Confidence Limits 

Spd50 2.809 1.379 5.719 
Fdis50 0.653 0.499 0.854 

 
 
Interpretation: 

The odds of crash occurrence increases by 2.809 times with every 1mph increase in speed 

of following vehicle at the time when leading vehicle starts to decelerate, keeping all 

other variables constant as shown in table 5-7c. The odds of crash occurrence become 

0.653 times the crash occurrence at 1m lesser following distance. In other words, the 

odds of crash occurrence decrease by 34.7% with the increase of 1m (3.28ft) in following 

distance.  
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6 . CONCLUSIONS 

 
 
The driving simulator validation experiment was successfully completed to validate its 

use as a test bed for measuring the traffic safety scenario and speed at the intersection of 

Alafaya trail (SR-434) and Colonial drive (SR-50). It is validated in terms of speed and 

safety. 

 
 

6.1 Speed Validation 

 
• The speed distributions observed from the field and that from the simulator follow 

normal distributions along all the four approaches of the intersection with 95% 

confidence. 

• The speed data from the driving simulator shows a larger variability for the higher 

operation speeds. 

• The speed data observed from the field and that from simulator have equal mean 

for each intersection approach with 95% confidence. 

 

Therefore, based on overall comparisons of speed between simulation and real world, one 

can conclude that the UCF driving simulator is a valid tool for traffic study related to 

driving speed behaviors. 
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6.2 Safety Validation at Right Turn Lanes 

 
Considering the driving simulator as a leading right turn vehicle, it was found that the 

deceleration rate at the 434NB approach is higher than that at the 50WB approach; non-

stop rate is higher for 434NB approach than that for 50WB approach; and mean speed at 

the stop line of the 434NB approach is significantly greater than that of the 50WB 

approach. Using those three variables as key surrogate measuring rear end crash risk, one 

can conclude that the leading vehicles are more likely to contribute to the rear-end 

crashes at the right turn lane of the 434NB approach compared to at the right turn lane of 

the 50WB approach. 

 

On the other hand, considering drivers’ following behaviors at right turn lanes, the 

following distance at the moment when the leading vehicle started braking is significantly 

lesser along 434NB right turn lane than that along the 50WB right turn lane. Using the 

following distance as a surrogate measure for safety, the 434NB right turn lane shows a 

higher rear-end crash risk than the 50WB right turn lane. This conclusion was further 

verified by the evidence that the rear-end crash rate in the right turn lane of 434NB 

(15.25%) are significantly higher than that of 50WB (3.33%). 
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Based on the above findings for the right turn rear end crash risk analysis, it can be 

concluded that the experiment results validated that the UCF driving simulator should be 

an effective tool for traffic safety studies to test high risk locations at intersections.  

 

6.3 Safety Validation at Through Lanes of the Intersection: 

  
The crash report analysis showed that the eastbound approach of the Colonial Drive 

(50EB) has a higher crash rate for both types of the collisions (rear end and angle) than 

that at the northbound approach of the Alafaya Trail (434NB). Using no-stop rate during 

the signal change as a crash surrogate in the driving simulator experiment, it was found 

that drivers at the 50-eastbound approach are more likely to cross the intersection 

compared to those drivers at the 434-northbound approach (37.1% Vs. 13.3%) because 

the mean speed at the 50EB was found to be larger than that at the 434NB. This finding 

implied that 50EB should be expected to have a higher crash rate for both angle crashes 

and rear-end collisions at this intersection. Therefore, the experiment validated that the 

UCF driving simulator should be employed as a test-bed for traffic safety studies. 

 

87.10% of the subjects recognized the intersection. Seventy five percent of the subjects, 

who recognized the intersection, thought that the simulated intersection was good enough 

or realistic. Therefore, the driving simulator is also validated for physical and visual 

aspects of the intersection.  
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6.4 Logistic Regression Models 

 
The following conclusions are drawn from the logistic regression models developed: 

 
• At through lanes of the intersection, on the onset of yellow signal, drivers 

stopping behavior is dependent on the intersection approach, the driver’s speed 

and gender. 

• The rear end crash risk is measured as joint occurrence of the leading vehicle 

stopping and following vehicle trying to go through the intersection.  

• From the model developed it is concluded that SR50-east bound approach is 

23.67% riskier than SR434-north bound for rear end crashes. This supports the 

findings from the real crash data that SR-50 east bound is riskier with respect to 

rear end crashes than the 434-north bound approach.  

•  Male populations are 41.43% riskier in rear end crashes than that of female 

population. 

• At right turn lanes, the odds of crash occurrence increases by 2.809 times with 

every 1mph increase in speed of following vehicle at the time when the leading 

vehicle starts to decelerate, keeping all other variables constant. The odds of crash 

occurrence decrease by 34.7% with an increase of 1m in following distance.  
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