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ABSTRACT 

This thesis presents three improvements in the UCF MANUS Assistive Robotic Manipulator’s grasping 

abilities. Firstly, the robot can now grasp objects that are deformable, heavy and have uneven contact 

surfaces without undergoing slippage during robotic operations, e.g. paper cup, filled water bottle. This 

is achieved by installing a high precision non-contacting Laser sensor1 that runs with an algorithm that 

processes raw-input data from the sensor, registers smallest variation in the relative position of the 

object with respect to the gripper. Secondly, the robot can grasp objects that are as light and small as 

single cereal grain without deforming it. To achieve this a MEMS Barometer based tactile sensor array 

device that can measure force that are as small as 1 gram equivalent is embedded into the gripper to 

enhance pressure sensing capabilities. Thirdly, the robot gripper gloves are designed aesthetically and 

conveniently to accommodate existing and newly added sensors using a 3D printing technology that 

uses light weight ABS plastic as a fabrication material. The newly designed system was experimented 

and found that a high degree of adaptability for different kinds of objects can be attained with a better 

performance than the previous system. 
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CHAPTER 1: INTRODUCTION 

UCF MANUS Robotic Manipulator System 

When it comes to the designing of automation systems the advanced research focus has shifted from 

production and manufacturing field towards service segments. Particularly, Assistive Robotic Systems 

are one of the popular consideration in service sector. An assistive robot is a sensor based, mechatronic 

system that can be reprogrammed and can perform useful works to daily human tasks e.g. Pick and 

place of objects. Assistive robots may also include surgical robots, cleaning robots, rehabilitation robots, 

companion robots and workstation-based robotic arm systems.  

This thesis deals with a special kind of assistive robot called MANUS Hok et al. [1], a wheelchair-

mounted robotic arm(WMRA) designed by Exact Dynamics to meet the necessities of motion-impaired 

persons due to neuromuscular losses like spinal cord injury, multiple sclerosis, stroke that poses 

limitations to upper body extremities. The robotic arm is meant to be mounted to the side of a 

wheelchair Kim et al. [2]. With two-fingered end-effector it has six degrees of freedom (DOF) and can be 

directly controlled by the user using either a joystick, or a keypad controller. MANUS is upgraded to 

perform a set of pre-defined tasks automatically too with built in functions. Several interface options has 

been added apart from the initial robotic arm functions along with grabbing and retrieval of objects that 

were based on the general automated functions Kim et al. [2]. 
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Further, UCF MANUS’s performance was improved to work under complex environments and handle 

more challenging tasks like grabbing objects from cabinets/boxes on shelves or underneath a table with 

Fine Motion Control processes, Compensatory Gross Motion procedures and Particle Filter-Based 

Tracking algorithms to ease the grasping activities which could be performed by the robot itself in 

automatic mode or by the end user in the manual mode operations by Nicholas et al. [3] Kim et al. [2]. 

Problem Motivation 

Although with these upgradation the system improved its design in terms of multimodal user interface 

suitable mainly for a range of user disabilities in performing activities of daily living (ADL) but did not 

involve any improvements in development of sensor components at the two fingered end-effector that 

could increase effectiveness of robot’s autonomy. A human like grasping operations were limited by the 

present hardware configuration of the MANUS for instituting smart grasping set points to perform ADL 

on novel objects. Robotic grasping has been a principal focus in the field of robotics for decades in order 

for the robots to achieve the precision of human-like grasping abilities. Due to the large variation 

between the objects in the human surroundings, realizing an algorithm under such complex situations 

where the robot has no prior knowledge of shape of the object and with only known noisy and partial 

sensor data makes it necessary to build a system that can overcome these difficulties.  

In the current system [2]-[3], grabbing of novel objects by the two-fingered end-effector relied on the 

visual characteristics and force profile of the target object to estimate the gripper’s interacting force. 

The visual characteristics are analyzed using the eye-in-hand camera and force sensitive resistors placed 

on the robotic arm and the end-effector respectively. These methods poses a serious problem that 

might lead to situation where grasping operations would not be unique to the same object at different 
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states. Lack of reliable data for certain objects may result in poor balance in forces that causes object to 

slip or be deformed e.g. a soda can, empty paper cup.  

 

Objective 

To develop a system that results in a high degree of adaptability and achieve better performance than 

the current system by enhancing the sensing capabilities of the robot at the end-effector for grasping 

operations that involves ADL for novel objects. 

 

Thesis Organization 

With respect to the above introduction and objectives the rest of the document is organized into six 

different chapters. Chapter 2 will extensively review related works in the present available sensor 

technology employed in a system congruent to UCF MANUS. Chapter 3 explains the pressure sensor 

device that detects the force applied between the end-effector grippers on deformable objects.  Chapter 

4 discusses the slip sensor device that is used for detecting the slip of grasping object. Chapter 5 

documents the installation of the slip and pressure sensor on the 3D printed ABS plastic material and 

interfacing of these sensors on the UCF MANUS grippers. Chapter 6 discusses the idea behind the 

implementation of the proposed new smart grasping algorithm followed by analysis of the new 

configuration in chapter 7 experimental results for grasping operation on various test objects. Finally, 

chapter 8 discusses the important implications from the experimental results and provides necessary 

improvements and scope for future research works.  
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

A report by Nation Spinal Cord Injury (SCI) Statistical Center [39] states that an annual incidence of SCI in 

US are 40 cases per million population as of 2014. At this incidence rate and with current population of 

313 million people the total number of cases are estimated to be in the range 240,000- 337,000 persons 

at the rate of 12,500 new cases each year. Many of these persons are confined to wheelchairs, have 

moderate to minimal function in their upper extremities and need some amount of care and attention. 

On an average the expenses range from 230,000 USD to 780,000 USD in the initial year and may vary 

from 700,000 USD to 3 million USD for a 25 year old [40]. 2/3rd of assistive device users have difficulties 

with ADL e.g. pick and place of objects. 

Smart grasping of objects in ADL for robotic manipulators has been active research area in recent 

period. Various force-control and slip detection methods have been published to achieve human-like 

dexterous grasping that are specific to a given hardware and control algorithms, and are limited to 

grasping particular category of objects only. Under such applications a versatile sensor attached to the 

end-effector of the robot plays a vital role in grasping. Issues associated with the shape and mass of the 

object would then become trivial, and thus can effectively overcome problem of slippage and 

deformation by applying right amount of force between the grippers.  

Sensors 

There exists two types of robotic sensing: contacting and non-contacting. A contacting or tactile sensor 

could be used in detecting the position, force, torque, etc. and on the other hand a non-contacting 
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sensor could be used to perceive proximity, displacement, etc. Resistive, elastoresistive, piezo-resistive, 

tunnel effect, capacitive, optical, magnetic, piezo-electric, conductive rubber, are the different types of 

contacting and non-contacting sensors available and that could be used for a specific purpose of robotic 

applications. The main motivation for researchers on tactile sensing system is human skin. We often use 

tactile sensation for pressure detection and slippage sensation to control and manipulate grasping 

operations. 

Pressure Sensing 

Tactile sensors can measure force applied on the object directly on the point of contact of an object. 

These sensors find applications across wide range of robotic hand manipulators. Kiyoto et al. [4] 

implemented a control system on a prototyped robotic hand using a large number of tactile sensors that 

closes its fingers until the tactile pressure sensors located on the finger tips came in contact with the 

grasping object. Makoto et al. [5] developed a hierarchical multiprocessor controller algorithm that uses 

an optical-mechanical based tactile sensors on a three fingered robotic hand prototype. In [6], a flexible 

tactile sensor was fabricated for multi-fingered robotic hands that to detect shear deformation of the 

grasping object. In their work, the shear forces and contact position were measured using standing piezo 

resistive cantilever viscous embedded elastic sensor. Shimojo et al. [7] developed prototype of a mesh 

of tactile sensors that covers entire robot structure which used pressure-conductive rubber as a flexible 

sensing elements that can be mounted on arbitrary surfaces and can optimally distribute the applied 

load to a 2-D surfaces. A steady response characteristics were observed in their experiments regardless 

of the number, location and surface area of the sensor. Joseph et al. [8] presented a controller algorithm 

by placing pressure sensing arrays at the fingertips and real time hand-mounted accelerometer on 

Willow Garage PR2 robot’s two gripper parallel jaws. The designed mimicked several discrete grasping 
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controller states with the help of tactile event cues and showed how tactile feedback could be used as 

primary source of sensing to achieve human like grasping. 

Slip Sensing 

Seiichi et al [9][10][11][12] in their extensive research on tactile sensors designed and developed a low-

profile highly sensitive slip sensor using a pressure conductive rubber as the detection element and 

subsequently discussed the slip detection characteristics and the principle of the CoP Tactile Sensor. A 

combined optical-mechanical tactile sensing method with high sensitivity slip detection method has 

been developed by Makoto et al. [5] to enable the fine finger-force control needed for different grasping 

objects on a home use manipulation system. The finger-force adjustments method for slip sensing is 

studied and documented in [13]-[22] provides information on the minimum grasping force. In these 

conventional sensing methods the slip sensors are mounted on the contact surface of the hand and the 

slip is determined with respect to the deformation of the target object. Hamidreza et al. [23] introduces 

an optical-based LED motion detection sensor used to measure the actual displacement of the grasping 

objects that slips. Their system were less prone to external disturbances compared to sensors that rely 

on vibration or acoustics when compared to [24] [25], where researches placed an optical-acoustic 

sensor on the thumb of the prosthesis to manipulate the grasping force. The main drawbacks of these 

researches are that they are practically exposed to environmental noise and external disturbances that 

would sometimes lead to inaccurate grasping. Ravinder et al [26] discussed the various technology 

available that uses to improve capabilities of sense of touch for robots and, with more insight on the 

available trends and methodology to fabricate tactile array sensors.  
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Discussions 

It is also important to keep in mind at the point of choosing suitable sensors, the structural 

complications such as embedding the detecting sensor on to the UCF-MANUS’ two fingered robotic 

gripper and the wiring of those sensors should be minimal. Plenty of articles could be found on sensors 

that could be used for specific type of robotic hands that are not developed beyond the collaborations in 

which they were designed or fabricated. Numerous research suggests that there exist a gap between 

actual implementation and laboratory experimentation that are limits the progress of tactile sensors, 

and the software that controls them. The prototype pressure conductive sensor discussed in [9] has 

issues concerning the response time due to a difficulty imposed by the large voltage change at the point 

of slippage. Although research on optical sensor [22] sounds more promising than the others, but it still 

fails to detect grasping force for daily used objects such as those with transparent and reflecting 

surfaces. This study hence targets in developing a slip sensor for UCF-MANUS which is simple, fast, 

robust, cost-effective and, including and not limited to only prosthesis based applications rather could 

be used for researches that needs to detect slippage of the object without deforming during ADL 

grasping operations.  
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CHAPTER 3: PRESSURE SENSING USING TAKKSTRIP-2 

Introduction 

Although there are wide range of pressure sensing tactile sensors have been fabricated and 

experimented, most of them were restricted only to a particular prototype for research purposes. Very 

less number of tactile sensing technology have shown reliable and good performance and out of which 

only few are commercially made available. Use of miniaturized tactile pressure sensor [27] that was 

integrated using MEMS and CMOS in [4] demonstrated high accuracy, design flexibility for measuring 

various pressure range. Lael et al. in [28], used the low-cost commercially available MEMS Barometers 

tactile array sensors [29] and were successfully able to demonstrate stable adaptive grasps on i-HY 

Robotic Hand [28]. The MEMS Barometric sensor chips embedded called ‘TakkStrip” fabricated by 

TakkTile Inc. [30] has distinguishable merits over various commercially available tactile sensors and has 

been experimented on range of robotic hands application as seen in iRobot-Harvard-Yale hand [29], 

Robotiq Gripper [31] and DoraTouch [32]. In this thesis TakkStrip-2: a version of tactile array sensors 

[30], were used as pressure sensors for tactile sensing. 

MEMS Barometer Pressure Sensor Chips 

Takkstrip-2 is nothing but an array of closely mounted MEMS Barometer Pressure sensors on a PCB chip. 

MEMS Barometer Pressure chips were mainly manufactured for applications like portable and desktop 

Barometry, Altimeters, Weather Stations, Air control systems, Hard-Disk Drives, etc.  This miniature 

sensor chip is fabricated by Freescale Semiconductor, Houston, Texas as MPL115A2 [33] as an absolute 

pressure sensing device measuring 5.0 mm x 2.0 mm x 1.2 mm.  The sensor chip consists of a MEMS 
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diaphragm with a Wheatstone bridge, Differential amplifier, Temperature Sensor, ADC, MUX and an I2C 

interfacing for serial communication with an external microcontroller. 

Figure 1: MEMS Barometer Chip MPL115A2 

 

 

Figure 2: Block Diagram and Pin Connections of MPL115A2 [33] 
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TakkStrip-2 

The TakkStrip-2 tactile sensor consists of 6 sensor arrays that are soldered in line with 8 mm optimally 

spaced to a hard PCB (Fig-4) and are then casted in a rubber ( VytaFlex 20, Smooth Inc., USA) with 

overall thickness of 4.2 mm which easily fits inside robot’s glove which shall be discussed in Chapter-5.  

 

Figure 3: TakkStrip-2 

The sensors communicate with the help of the USB-I2C bridge interface (manufactured by Cypress 

Semiconductor Corp., USA). The individual sensors when cut using Dremel tool can act as an individual 

taxels (individual sensor units termed by TakkTile Inc) and could be placed anywhere on the finger, as in 

[28] or up to 8 different TakkStrip-2 attached to the same I2C bridge by appropriately setting the 

address select jumpers at the base of the microcontroller as shown in (Fig-4).  
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Figure 4: TakkStrip-2 Circuit Description 

Salient Features 

TakkStrip-2 makes it number one choice over any commercially available sensors in the current market 

for our application for the following salient features it offers: 

 An individual sensor can be sensitive to as less as 1 gram- force ( approximately  0.01 N) and 

measure force up to 11 kilograms (approximately 107 N) 

 Highly linear behavior (linearity typically less than 1% and maximum deviation from linearity of 

2.2%) 
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 Readily available in an array of sensors that could be integrated with Arduino Micro 

Microcontroller for interfacing with MANUS desktop workstation 

 TakkStrip-2 dimension closely matches the present gripper-glove configuration hence could be 

easily mounted on both sides of the parallel grippers 

 Robust rubber cast that makes it easy to grasp wide range of object with different mass, shape 

and surface properties. 
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CHAPTER 4: SLIP SENSING USING HIGH PRECISION LASER SENSOR 

Introduction 

There are several kinds of non-contacting sensors that are available in the current market for wide range 

of robotics application. Although only few kinds of non-contacting sensors are helpful in detecting in 

slippage for grasping of ADL objects. Our selection process for a non-contacting sensor was narrowed to 

ADNS-3530 LED and ADNS 9800 Laser Sensor from Avago Technologies, Inc. In Hamidreza et al. [23] 

clearly shows that the ADNS-3530 optical-based LED Sensor fails to detect grasping objects that are 

reflective and transparent. Hence, the high performance of the Laser Sensor makes it the number one 

choice in our research. 

High Precision Laser Sensor 

Further, we have used a high performing 8 bit RISC architecture microcontroller [34] HT46RB70 Holtek 

Semiconductors Inc that supports for serial communication with the MANUS Processing Unit. This 

particular device is widely used in SPI touch-panels, touch-pads, XBOX joysticks, Anker Inc Optical Mouse 

for PC. It comes with a HALT feature that is intended to reduce the overall power consumption with high 

Performance. The above specific ADNS-9800 Laser Slip Sensor interfaced with HT46RB70 microcontroller 

were found to be available in Anker CG100 8200 DPI High Precision Programmable Laser Mouse [35] for 

Personal Computers (PC).  
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Figure 5: Rewired Laser Sensor Mouse Circuitry 

 

Figure 6: Isometric Drawing of ADNS-9800, PixArt Imaging Inc [36] 
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The LASER mouse uses an ADNS-6190-002 [36] polycarbonate round lens that delivers directed 

illumination and optical imaging required for precise sensing operations by the Slip Sensor. The 

dimension of the ADNS 9800 is 14.4mm x 31.5mm x 9.7mm and the assembly drawing with lens coupled 

to PCB and base plate is shown in (fig-6). 

 

Salient Features 

 User programmable frame rate (up to 12,000 frames per second) 

 Configurable sleep and wake up time (in order to optimize power consumption) 

 Dual power supply selections, 3 V or 5 V 

 16-bits motion data registers 

 Compliance to IEC/EN 60825-1, eye safety limit 716 𝜇W 

 No Laser power calibration needed 
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CHAPTER 5: INSTALLATION 

Introduction 

This chapter discusses in detail on the design of the gripper glove and how the two types of sensors viz., 

TakkStrip-2 and Laser sensor are mounted on it. Further, the interfacing of both types of sensors with 

the MANUS Desktop workstation, the methodology of reading the sensor data and followed by the 

implementation of the new adaptive control algorithms against the existing force-gripper control 

algorithm is explained. The new adaptive control  
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Gripper Glove Design 

The gripper-glove of UCF-MANUS presently designed to accommodate only the infrared (IR) gate 

sensors that can detect proximity of a grasping object and linear potentiometer to detect collision 

against hard surfaces on either side as shown in (fig-7). The proposed newly added sensors requires a 

new design that can accommodate more aesthetically and be able to grasp objects with much more 

accuracy than the present pair of gripper-gloves by placing the TakkStrip-2 and Laser Sensor as close to 

the gripper as possible. These sensors were experimented at two different phases. Considering these 

factors, two different models: Model-1 and Model-2, are designed in 3D printing technology that uses 

the light weight ABS Plastic fabricating material as shown in (fig-8 and fig-9).  

 

Figure 7: Old Gripper Glove Design 



18 

 

Newly Designed Models and their Implementation 

 

 

Figure 8: Proposed Model-1 for Laser Sensor-FSR Sensors (Phase-1 Experimentation) 

 

Figure 9: Implementation of Model-1 
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Figure 10: Proposed Model-2 for TakkStrip-2 (Phase-2 Experimentation) 

 

 

Figure 11: Implementation of Model-2 
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Interfacing Sensors 

Laser Sensor 

Laser slip sensor detects the motion changes when the object surface is within 9.95 mm from sensor 

reference plane for accurate sensing as per the specification of the sensor. Hence, it is placed firmly well 

inside the slot with a distance of 5mm from the point of contact between the grasping object and the 

gripper. The readily available Laser Sensor is interfaced serially through any of the MANUS’s available 

COM port. Since the PC of the Robotic Manipulator’s operating system works on Microsoft WINDOWS 

OS data retrieval algorithm based on the standard windows desktop applications protocol available 

online at Microsoft Windows Dev Center [38] has been used. There are three different ways of reading 

the data from any Human Interfacing Device (HID) e.g. mouse: 

 WM_MOUSEMOVE 

 WM_INPUT 

 DirectInput 

The WM_MOUSEMOVE protocol reads the data based on the monitor screen resolution that means that 

the actual data read depends on the number of pixels the pointer has moved from its initial position. 

Thus it has a serious drawbacks as there is a pointer ballistics that accelerates those data based on how 

fast the grasping object moves in vicinity of the Slip Sensor. Whereas the WM_INPUT method read raw 

input data from the HID stack without any additional internal ballistics application that reflect high-

definition results. By programming the Laser sensor to 8200 dpi with 1000Hz polling rate settings using 

the Anker Driver Programming Software it is possible to get a resolution of 0.0031 mm/pixel. The 

DirectInput on the other hand needs more thread to be handle to read the same WM_INPUT (also 



21 

 

known as Raw Input Model) data and the algorithm gets cumbersome and has no significant advantages 

over the others. Also there are other advantages of using WM_INPUT Model for reading data:  

 It is capable of distinguishing between similar type of devices e.g. when another similar sensor is 

used simultaneously 

 A better data traffic management from group or a specific device types compared to other two 

models 

 This model remains same for any number of updates that would be made to currently installed 

Windows Operating System on the UCF Manus work station 

TakkStrip-2 

 

Figure 12: Arduino Uno Microcontroller for interfacing TakkStrip-2 to the MANUS PC 

The individual sensors on the TakkStrip-2 are internally interfaced to the on board microcontroller 

through I2C bridge. The Arduino Micro controller (fig-12) allows to communicate serially using an I2C-

USB that produces user readable data on an Arduino Integrated Development Environment (IDE).  The 

external circuitry of the TakkStrip-2 that is connected to Arduino Micro allows the user to read data at 

the rate of 100 Hz per sensor element over a common communication bus. The flowchart in (fig-13) 

represents how the communication is established between the Arduino Micro via COM port of the 
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MANUS’s Desktop PC.

 

Figure 13: TakkStrip-2 Sensor Serial Communication Flow-Chart  
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CHAPTER 6: CONTROL ALGORITHM AND DESIGN 

Introduction 

It is at most important for a WMRAs to be able to grasp an object that are associated to the ADLs. If the 

robot grasps the object too tightly or with excess force it can accidentally crush a deformable or weak 

object. The robot would drop or lose the object from its grasp if the object is loosely grasped while 

retrieving it to the user. With respect to the algorithm [2] that is presently implemented using the FSR 

sensor in the UCF Manus the grasping mainly used the force profile of the object being grasped to 

determine when the gripper stops grabbing the object. This method works for objects like cereal boxes 

or any rigid structures that are used in ADLs. Issue arises when the gripper encounters less heavier, soft 

and deformable objects like Styrofoam cup, paper cup, empty water bottle, etc. Completely relying on 

the force sensor alone is not enough to successfully grab an object.  Hence these issues are addressed in 

the newly proposed algorithms. 

Smart Grasping using Laser Sensor and FSR 

The new algorithm seeks to rectify the stated algorithm by not depending on the force profile for its 

determination on when to stop. This algorithm will utilize the already implemented force sensor in 

conjunction with a Laser position displacement sensor. The Laser sensor will be used to detect when the 

object is within the gripper and determine the force when to stop the grasping process. The reading 

from the force sensor will then be used as minimal force necessary to successfully grab an object. If for 

any reason the object was not grabbed with enough force, the Laser sensor will be utilized to detect any 
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movement due to the object slipping and the force applied to the object by the grippers will be used as 

a control input to keep the object from falling. 

 

Figure 14: Force Model Schematic 

Gripper Force Control 

The slip detection method is composed of two parts. First is the determination of the force when initially 

grasping the object. The grasping motion for this process is controlled by the laser sensor as opposed to 

the pressure sensor given the sensitivity, or lack thereof, of pressure sensor. Laser sensors typically have 

a very high rate of input for its data. This leads to a lot of noise in the raw data from the sensor when 

gripping an object. This noise will be used to our advantage to tell when to stop the grasping procedure. 

It was experimentally determined that the threshold for determining if the object has been grabbed was 

roughly 120 data points in either the x or direction. This signals the robot to stop grasping and register 

the force that is recorded as the minimum force necessary to properly grip the object without crushing 
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it. This registered force is then used as a starting point for determining whether or not the object is 

grasped appropriately. 

Slip Detection 

The second part of the method involves monitoring the velocity of the object as the robot moves. This 

part of the algorithm is also used to determine whether or not the object has been grasped successfully. 

This is due to the fact that both events will look identical to the sensor. Because of this we can utilize 

this detection method to also determine if the object was grasped too lightly to begin with. We can 

express the derivative of the velocity as, 

𝑚𝑣̇ = 𝑊 − 𝜇 𝐹𝑎 ( 1 ) 

Where in (1), 𝑊 = 𝑚𝑔 is unknown. We can then define the applied force  𝐹𝑎 as:  

 𝐹𝑎 =  𝜇̂−1(𝑊̂ + 𝑘𝑣) ( 2 ) 

Where 𝑊̂ is the estimated gravitational force with 𝑊̃ =  𝑊 −  𝑊̂ being error between the estimated 

and the actual, 𝜇̃ = 𝜇 − 𝜇̂ the error in the frictional co-efficient and 𝑘 is a constant. We then define the 

derivative of velocity as, 

𝑚𝑣̇ =  𝑊 −  𝜇 𝜇̂−1(𝑊̂ + 𝑘𝑣) ( 3 ) 

𝑚𝑣̇ =  𝑊 − (𝜇̃ + 𝜇̂)  𝜇̂−1(𝑊̂ + 𝑘𝑣)  

𝑚𝑣̇ = 𝑊 −  (1 + 𝜇̃  𝜇̂−1)(𝑊̂ + 𝑘𝑣)  

𝑚𝑣̇ = 𝑊̃ −  𝑘𝑣 − 𝜇̃  𝜇̂−1 (𝑊̂ + 𝑘𝑣)  ( 4 ) 

For some constant 𝛾1𝑎𝑛𝑑 𝛾2 a Lyapunov-based PI controller will be used to correct the error in applied 

force by controlling the velocity of the object. To do this we will first define a positive-definite Lyapunov 

function 𝑉 as follows: 
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𝑉 =  
1

2
𝑚𝑣2 +

1

2
𝛾1

−1𝑊̃2 +
1

2
𝛾2

−1𝜇̃2 ( 5 ) 

Differentiating this equation yields the derivative as: 

𝑉̇ = (𝑊̃ − 𝑘𝑣 − 𝜇̃  𝜇̂−1 (𝑊̂ + 𝑘𝑣)) 𝑣 − 𝛾1
−1𝑊̃𝑊̇̂ −  𝛾2

−1𝜇̃𝜇̂ ̇  ( 6 ) 

From this it can be seen that for any positive value of 𝑘 the system will be globally asymptotically stable.  

The newly designed controller is based on Barbalat’s Lemma such that the new co-efficient of friction is 

positive. 

𝑊̇̂ = 𝛾1 𝑣 ( 7 )  

𝜇̂ ̇ =  𝛾2𝜇−1(𝑊̂ + 𝑘𝑣)𝑣 ( 8 ) 

To ensure 𝜇 ̂ > 0, projection is used and hence, 

𝑉̇ =  −𝑘𝑣2 ≤ 0  ( 9 ) 

By Barbalat’s Lemma,  lim
𝑡→∞

𝑣(𝑡) → 0. Signal chase to send boundedness of remaining signals or, 

𝑚𝑣̇ =  𝑊̃ −  𝜇𝜇−1(𝑊̂ + 𝑘𝑣) ( 10 ) 

𝑚𝑣̇ = 𝑊̃ − 𝜇̃ 𝜇−1 (𝑊̂) − 𝑘𝜇𝜇−1𝑣 ( 11 ) 
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Grasping using TakkStrip-2 Array Sensors 

The drawbacks associated with the FSR with regards to limited sensation of force applied between the 

grippers is easily addressed by gram sensitive TakkStrip-2 array sensors that are mounted on either side 

of the robot’s gripper. The TakkStrip-2 array sensors runs with algorithm [12] and equation and uses the 

net force applied between the two TakkStrip-2 sensors (2). The grippers stops when the force profile 

reaches to a constant value. This part of the profile represents the resistance of the object that is at its 

initial state when the force is applied between the grippers. Followed shortly after this is the point 

where the object’s structure yields to the grasping force. The following condition should be satisfied 

when the profile reaches the constant or flattened section:  

𝑔(𝑡) ≜  𝑠𝑢𝑝
𝑡 ∈[𝑡− 𝛥𝑇,𝑡]

|
𝑑𝑓(𝑡)

𝑑𝑡
| <  𝜖 ( 12 ) 

Where 𝑓(𝑡) is the net interacting force between the two TakkStrip-2 sensors, Δ𝑇 is the sliding time 

window width, and 𝜖 is a numerical tolerance constant. 
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CHAPTER 7: EXPERIMENTAL RESULTS 

Introduction 

The UCF-MANUS platform [3] was used as the main experimental setup for this thesis. The experiments 

were conducted in two different phases. In the Phase-1, grasping of objects that are heavy, deformable 

and uneven contact surfaces are carried out using the Model-1 gripper-glove design. Laser and FSR are 

the only two tactile sensors that are used and the gripper follows the adaptive control algorithm based 

on the positive definite Lyapunov Stability criteria described in the previous chapter. In Phase-2, 

grasping of small and light weight objects with different shape and size are experimented on the simple 

force control algorithm as mentioned earlier. Phase-2 experimentation shows successful grasping of 

objects that are as small and light as Cereal. 

Phase-1 Experimental Set-up: Laser Sensor and FSR 

Empty and full water bottles were used along with empty and full Styrofoam cups as test objects for the 

experiments. The full water bottle was filled with water and capped and the filled Styrofoam cups were 

filled with sand to prevent any water from affecting the sensors and other electronics. For all 

experiments the objects are initially grabbed using the either the proposed algorithm, the previous 

algorithm in [2], or using no algorithm. After the objects were grabbed, the gripper was moved upward 

to test whether or not the grab was successful. A force sensing resistor (FSR) will act as the force sensor 

for these experiments as it did for the previous algorithm. 
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Figure 15: Pictures showing Grasping Operations on Styrofoam Cup 
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Figure 16: Pictures showing Grasping Operations on Water Bottle 
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Grasping 

The proposed algorithm succeeded in grasping the desired objects with little to no deformation and 

utilizing less force than previous algorithms to obtain its goal as seen in Fig. 17. When testing on the 

water bottles the proposed algorithm used 1.313 N of force to successfully grab the empty water bottle 

and 1.74 N to grab the full water bottle. Both of these are less than that of the old algorithm which used 

slightly less or just as much force as using no algorithm at all. The old algorithm used 2.03 N of force to 

grasp the empty water bottle and 2.09 N to grasp the full one. This roughly the same as using no 

algorithm to grasp the empty water bottle which used 2.07 N. This goes to show the deficits of using the 

previous algorithm to grasp pliable objects. The old algorithm did perform better when grasping the full 

water bottle using 0.246 N less force than when using no algorithm. 

Pliable objects, such as the empty water bottle and cups, deformed significantly when grasped with the 

previous algorithm and using no algorithm. The deformation of the Styrofoam cups can be seen in (fig- 

15). The empty cup deforms slightly when using the proposed algorithm, but still retains most of its 

original shape. The previous algorithm and use of no algorithm completely deforms the cups when being 

grasped. The full cups fare better when being grasped. They suffered no deformation when grasped 

using the new algorithm and only a slight deformation when using the previous one. There is 

considerable deformation when using no algorithm on the full cups, but not as severe as with the empty 

cups. Other rigid objects had similar results as those shown for the full Styrofoam cup.  
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Figure 17: Force Plots using Pressure Sensor Data for Empty and Filled Water Bottles 
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Slip Detection 

The full water bottle was also used to test the proposed algorithms slip detection. Two different 

experiments were run: one in where the bottle was not grabbed with enough force initially resulting in 

the gripper moving up without it and one where the bottle was grabbed correctly, but not tight enough 

to stop the force of gravity from causing the object to slip. Fig. 18 (left) shows the results from the 

unsuccessful initial grab and Fig. 18 (Right) shows the results from the slipping test. The results look very 

similar, but this is to be expected given that both are treated as an object slipping even if in one case it is 

the movement of the gripper that causes the velocity and displacement. The events are identical to the 

sensors, so they are treated as such. The difference lies in the velocity and position graphs. The slipping 

object has a significantly slower velocity and moves only a few millimeters compared to the object that 

is left on the table as the gripper moves upwards. In both cases though, the algorithm successfully re-

grips both objects. As seen in the figures, when the object starts to move there is a distinct decrease in 

the force. Once this is detected, the robot starts to apply more force to the object causing its relative 

motion to stop.  
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Figure 18: Force, Position and Velocity Grasps during Initial Grasp and Slip. 

Phase-2 Experimental Set-up: TakkStrip-2 

In a simple experiment of grasping of small objects a success rate of 100% were observed. The 

experiment involved use of only TakkStrip-2 for grasping. Figure-19 shows various objects : syrup 

bottle(A), foam ball(B),  a shot glass(C), a foam block(D), plastic Easter egg(E), syrup measuring cap(F), 

whiteboard marker(G), moisturizer container(H), packing peanut(I), strip of pills(J), single cereal grain(K). 

And, the picture (L) all contains all of the objects used in both the Phase-1 and Phase-2 experiments. The 

grasping operations carried out in all the cases were a single click approach i.e. the user commands the 

robotic gripper to close on a required object and a mouse click is used to pick up the object based on the 

template that is available in the manual mode of operation. The user can control the position of the 

gripper but has no control on required grasping force for successful grasping of the object. The objects 
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for experiments were chosen such a way that each of them have different size and shape, varying 

height, and width and different orientation on the table.  

 

Figure 19: Grasping of Small Objects using TakkStrip-2 
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The following table shows the summary of degree of deformation and successful rate of grasping objects 

that were used in both the Phase-1 and Phase-2 experiments. 

Table 1: Degree of Deformation of Various Test Objects used in ADL

Sl. No Objects Old Algorithm Present Algorithm New Proposed Algorithm

1 Empty Water Bottle  Moderate Moderate NA

2 Full Water Bottle Moderate Slight NA

3 Empty Styrofoam Cup High Moderate NA

4 Full Styrofoam Cup High Moderate NA

5 Empty Paper Cup High High NA

6 Cereal Box Slight Slight None

7 Syrup Bottle Slight Slight None

8 Foam Ball High Moderate Slight

9 Shot Glass NA NA None

10 Packing Foam Block High Moderate None

11 Plastic Easter Egg High Moderate Slight

12 Plastic Measuring Cap High Moderate None

13
Whiteboard Marker 

Pen
NA NA None

14 Moisturizer Container Slight NA None

15 Packing Peanut High High Moderate

16 Pills strip NA High None

17 Single Cereal Grain NA High None
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CHAPTER 8: CONCLUSION AND SCOPE FOR FUTURE RESEARCH 

In this thesis an intelligent grasping algorithm using a Laser sensor and a force sense resistor in Phase-1 

and TakkStrip-2 in the Phase-2 of the experiment that improves upon the previous grasping algorithm 

that was being utilized by the UCF-MANUS system was demonstrated. There are significant 

improvement over the previous algorithm that was implemented that relied on force profiles to 

determine when an object was successfully grabbed. The results show that the proposed algorithm can 

accomplish the same task using significantly less force than the previous one. The slip detection and 

correction also succeeded in ensuring that the desired object remained grasped by the robot. This 

provides a cheap and easy way to implement an intelligent grasping algorithm to improve tactile sensing 

of UCF MANUS robotic grippers. Further research works may be done for replacing the force sensing 

resistor by TakkStrip-2 with a new gripper-glove model and perform grasping operations on more 

difficult-to-grasp objects.   
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