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ABSTRACT 

 

Diabetes is a disease that causes many complications in human normal function. This disease 

represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications 

can be accomplished through tight control of glucose levels in blood. In the last decades many 

different glucose sensors have been developed, however, none of them are really non invasive. 

Herein, we present the study of the application of gold and silver nanoparticles with different 

shapes and aspect ratios to detect glucose traces in human fluids such as tears and sweat. This is 

to our knowledge the first truly non invasive glucose optical sensor, with extraordinary limit of 

detection and selectivity. The best proven nanoparticles for this application were gold 

nanospheres. Gold nanospheres were synthesized using chloroauric acid tri-hydrated 

(HAuCl4.3H2O) in solution, in the presence of glucose and ammonia hydroxide. The higher the 

glucose concentration, the higher the number of nanoparticles generated, thus the higher the 

extinction efficiency of the solution. The linear dependence of the extinction efficiency of the 

gold nanoparticles solution with glucose concentration makes of this new sensor suitable for 

direct applications in biomedical sensing. Our approach is based on the well known Tollens test. 
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CHAPTER ONE: INTRODUCTION 

 

Diabetes is a disease defined as a condition caused when the body is unable to use insulin to 

process the glucose (sugar) in blood. Therefore, the level of glucose in blood is too high for 

normal health functioning. [1] This condition affects heart, kidneys, nerves, eyes, etc. An 

estimated 20.8 million people in the United States (7 percent of the population) have diabetes, a 

serious, lifelong condition. Of those, 14.6 million have been diagnosed, and about 6.2 million 

people have not yet been diagnosed. Each year, about 1.3 million people aged 20 or older are 

diagnosed with diabetes. This disease represents the sixth-leading cause of death in USA [1].  

 

Prevention of diabetes-related complications can be accomplished through tight control of 

glucose levels in blood. In the last decades many different glucose sensors have been developed, 

still none of them are really non invasive. These include near infrared spectroscopy [2,3], optical 

rotation [4,5], colorimetric [6,7] and fluorescence detection [8-12]. 

 

In 2001 the Federal Drug Association (FDA) approved the Glucowatch [13]. This is the first step 

to the continuous and “non-invasive” monitoring of physiological glucose; however, people that 

uses Glucowatch have to monitor their glucose concentration by other blood sampling technique 

from time to time. Other emerging technologies include glucose monitoring skin patches; 

implantable glucose sensors coupled insulin pumps, and laser blood drawing [14]. These 

techniques are deemed less painful than finger pricking with a lancet or needle. Another recently 
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developed technology is the glucose sensing contact lenses [14]. This can monitor glucose levels 

in tears, and directly relate it with the existent blood glucose levels, but this sensor requires an 

excitation and detection device. 

 

All the above methods still have limitations. The near infrared technique is limited by excessive 

background [15].The optical rotation technique results in low optical rotation and depolarization 

due to the tissue [15]. The enzymatic assays technique has the disadvantage of consuming 

glucose and generating high reactive species like hydrogen peroxide, which can be toxic and 

damaging to biological composites [15].The contact lenses methods can still be considered 

pseudo-invasive since the affected must wear contact lenses. 

 

The goal of this study was to develop a truly non invasive glucose optical sensor based on 

spectral changes and extinction efficiency modification of metal nanoparticles. For this purpose 

we used the well known Tollens test to generate or modify noble metal nanoparticles. The 

sensing was done throughout monitoring the surface plasmon band spectral position and its 

extinction efficiency as a function of glucose concentration in aqueous solution. The gold 

nanoparticles based sensor showed a low limit of detection, extraordinary selectivity, high 

reproducibility and less interferences. 
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CHAPTER TWO: BACKGROUND 

 

In order to design a sensor, one has to consider the element that is going to make the transduction 

suitable, the design of the matrix to incorporate that element, the capability of the sensor for 

producing accurate signals, its limit of detection, dynamic range, and reproducibility [14]. For 

glucose sensing, there is another important parameter to be considered; it has to be non invasive 

to avoid the painful frequent blood sampling. Unfortunately, at present, there is no available 

method for the continuous, non-invasive measurement of glucose concentration in human fluids. 

 

There are different human fluids were glucose can be traced such as blood, saliva, urine and 

tears. In the case of blood, glucose is determined by finger pricking with a small needle, 

followed by glucose analysis using enzymatic assay. This is a painful test, thus many people 

are not willing to stick themselves several times per day.  An alternative fluid for glucose 

sensing is urine, which allows for non invasive sensing of glucose. Urine sensors have to be 

rough to afford the strong dependence on the specific gravity, pH, temperature, the ascorbic 

acid concentration (more than 50mg/dl) and ketone bodies (more than 40mg/dl).[16] On the 

other hand, saliva is a choice, however, there are many variations in glucose and proteins 

concentrations, pH and composition that restrain the use of this fluid for glucose sensing. 

Tears are more suitable for glucose sensing because they contain a low concentration of 

proteins, their pH is extremely constant and the levels of glucose in tears are quite 

elevated.[14] 
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In order to settle for the existent limitations in glucose sensing methodologies, in this 

dissertation we have addressed the non invasive issue for glucose sensing, while keeping the 

sensitivity, selectivity and, reproducibility of the sensor. For this purpose we have proposed 

the use of noble metal nanoparticles and their exceptional optical and chemical properties. 

 

2.1 Metal Nanoparticles 

Noble metal nanoparticles have been used in many applications in the field of physics [17], 

chemistry [18], biology [19], material science [20] and medicine and their interdisciplinary 

fields [21], due their interesting optical and electronic properties [22]. 

 

Metal nanoparticles show properties that are often different from those of the bulk material [22]. 

The optical properties of metal nanoparticles are dominated by collective oscillation of 

conduction electrons resulting from the interaction with electromagnetic radiation. This property 

better known as the surface plasmon resonance is mainly observed in gold, silver and cooper, 

because of the presence of free conduction electrons. The electric-field of the incoming radiation 

induces the formation of a dipole in the nanoparticle. A restoring force in the nanoparticle tries to 

compensate for this effect, resulting in a unique resonance wavelength [22]. In silver and gold 

spherical nanoparticles a very strong absorption band with maxima at ≈ 420nm (see Figure 1) 

and ≈ 520nm (see Figure 2), respectively, can be observed. The oscillation wavelength depends 

on a number of factors including the particles size and shape, their composition, and the nature of 

the surrounding medium. For nonspherical nanoparticles, such as rods, the resonance wavelength 

depends on the orientation of the electric-field. Two oscillations; transversal and longitudinal 

(see Figure 2) are possible. Al-Sayed and co-workers recently described experimentally and 

 4



theoretically the presence of two absorption bands corresponding to these two modes of surface 

plasmon resonance in metal nanorods [22]. In the case of nanoprisms, three oscillations are 

present, corresponding to the out-of-plane quadrupole resonance, out-of-plane dipole plasmon 

resonance, and in-plane dipole plasmon resonance (longer wavelength band) (see Figure 3) [23].  
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Figure 1: Absorption spectrum of Ag nanospheres 
 

2.2 Application of Metal Nanoparticles in Glucose Sensing 

There are few papers reported in the literature about glucose sensing using nanoparticles. 

Most of them are related to optical or redox properties of molecules attached to 

nanoparticles surfaces. For instance, the particle aggregation can result in further color 

changes due to mutually induced dipoles that depend on the interparticles distance and 

aggregates size [24]. 
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Figure 2: Absorption spectra of Au nanospheres (red line) and Au nanorods (blue) with 
transversal mode band (a) and longitudinal mode band (b).  
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Figure 3: Absorption spectra of Ag nanoprisms: a) out-of-plane quadrupole resonance, b) out-of-
plane dipole plasmon resonance, and c) in-plane dipole plasmon resonance 

 

Lakowicz J.R. et al. [25], reported a glucose sensor based on the aggregation and dissociation of 

gold nanoparticles and, the changes in plasmon absorption induced by the presence of glucose. 
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The gold nanoparticles are first aggregated with concanavalin A (Con A), then, the addition of 

glucose competitively displaces Con A from Con A-aggregated dextran-coated gold colloids, 

reducing gold nanoparticle aggregation. Therefore, the surface plasmon resonance is blue shifted. 

This system can determine milimolar changes of glucose concentration in physiological fluids 

such as tears, urine, and blood.  

 

Yang X. et al. [24] reported the use of gold nanoparticles/polyaniline composite to detect 

glucose. Water-soluble gold nanoparticles/polyaniline nanocomposites were synthesized 

using 3-aminophenylboronic acid, a reductive and protective reagent. The polyhydroxy 

compound poly (vinyl alcohol) (PVA) was used as a disperser, based on the covalent bond 

interaction between the boronic acid and diol groups. Because glucose molecules could 

competitively interact with PVA, the gold nanoparticles aggregate, causing a red shift of the 

SPR maximum with glucose concentration. This system can detect glucose concentrations in 

the micromolar range. However, given the affinity of boronic acid for ions as fluorides 

present in physiological fluids, [26] the sensitivity and selectivity of the sensor could be 

affected. 

 

Beaudoin D. S. et al, [27] reported a glucose sensor based on the attachment of fluorescent 

glucose receptors (dipyrido1;3,2-a:2’3’-c3;phenazine (dppz)) to nanocrystal titanium 

dioxide. They were able to detect glucose at neutral pH. The detection involves fluorescence 

spectral changes, making the signal not reliable in human fluids because of the presence of 

heavy atoms that can work as quenchers. 
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Richard P. V., et al, [28] developed a glucose sensor based on a raman-active molecule on 

nanofabricated substrates using the surface enhanced raman spectroscopy (SERS) as the 

transduction signal. The authors used AgFON (silver film-over-nanosphere) substrates 

fabricated on glass and 1-decanethiol (1-DT).  By subtracting the SERS spectrum of the 1-

DT-AgFON substrate with glucose (they incubated 1-DT-AgFON substrate in a glucose 

solution for 10 min), from the 1-DT-AgFON substrate without glucose, they were able to 

determine quantitatively low glucose concentrations. In order to make the sensor effective in 

the presence of interfering proteins, the authors repeated the same experiment using (1-

mercaptoundeca-11-y1)tri(ethyleneglycol) (EG3)-modified AgFON substrate instead of 1-

DT-AgFON. EG3 was chosen as a partition layer because of its ability to reject nonspecific 

binding by background proteins and, its biocompatibility. The sensor demonstrated 

quantitative glucose sensing in the range 0-25mM with potential applications in implantable 

patches. However, the reproducibility of SERS is known to be poor [29]. 

 

There are also papers reporting glucose biosensors based on the oxidation of glucose (see 

Equation 1). 

 

             β-d-glucose + O2 + H2O                             d-gluconic acid  + H2O2           (1) 
(glucose oxidase) 

 

The current produced from the decomposition of hydrogen dioxide on the electrode is used 

to quantify the glucose concentration. If more enzymes are used, or if the catalytic activity 

of the enzyme is enhanced, more H2O2 is produced, thus a higher response current is 

observed. 
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Haipeng Y., et al, [30] reported a glucose biosensor enhanced via nanosized SiO2 using 

electrochemical responses. The authors used nanosized SiO2 to increase the specific surface 

area of the sensor in order to increase the enzyme loading. They employed Platinum 

electrodes (Pt/SiO2/GOx) to obtain a work range between 0.005 and 2.5mM. 

 

Wei Zhao et al, [31] reported a glucose sensor based on multilayer membranes via layer-by-

layer deposition of organic polymer protected prussian blue (P-PB) nanoparticles and 

glucose oxidase. P-PB can catalyze the electroreduction (Cyclic voltammetry) of hydrogen 

peroxide formed from enzymatic reaction at lower potential. They obtained a linear dynamic 

range from 0.10 to 11.0mM. 

 

Xiang-Ling R, et al, [32] reported a glucose biosensor using the enhancement effect of 

silver-gold nanoparticles on the catalytic activity of immobilized enzymes. The current 

response was increased 1,000 folds for the same glucose concentration. 

 

A more recent approach for glucose sensing is through the generation of metal nanoparticles 

on the surface of SiO2 microparticles. [33] The aggregation of metal nanospheres produces a 

spectral change proportional to glucose concentration.  

 

2.3 Generation of Metal Nanoparticles 

There are many physical and chemical routes for the synthesis and generation of silver and gold 

nanoparticles reported in the literature. [34-38] 
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Physical methods are defined as those by which metal nanoparticles are directly generated from 

bulk gold. The nanoparticles are obtained by the generation of metal atoms in gas phase followed 

by a controlled condensation of the nanoparticles. For instance there is the well known metal-

vapor synthesis [39] and, laser ablation and laser induced size reduction method. [40, 41] 

 

The chemical routes uses metal salts as starting material and a reducing agent. [37] For instance, 

the Turkevich method is one of the most simple and applied procedures for the synthesis of gold 

nanoparticles employed now a day. Sodium citrate reduces [AuCl4
-] in hot aqueous solution to 

give nanoparticles of 15-20nm. Citrate itself and its oxidation products (e.g. Acetone 

dicarboxylate) can act as protecting agents, if no other stabilizer is used. [37] One of the most 

popular modern methods for preparing gold nanoparticles of various sizes comes from Brust et 

al. [36]. It uses NaBH4 as reducing agent, in the presence of alkanethiols to yield gold particles 

of 1-3nm. By varying the thiol concentration, the particles sizes can be controlled between 2 and 

5nm.  Thiol-stabilized gold nanoparticles have become available following a seeding growth 

approach starting with 3.5nm diameter particles. The particle size can be varied by changing the 

seed-particle-to-metal-salt ratio. [38] Gold nanoparticles in the size of about 10 to 30nm or more 

have been synthesized by the NaBH4 method using mercaptosuccinic acid for stabilization. By 

varying the succinic acid to HAuCl4 ratio from 2.5 to 0.5, particles of 10.2, 10.8, 12.8, 19.4 and 

33.6nm were isolated as water-redispersable powders. [42] Another valuable route for the 

generation of gold nanoparticles by using “nano-reaction vessels”. Micelles can be considered 

appropriate chemical reactors. Due to their limited size, the control on growth by ligand 

concentration is not required. For example, diblock co-polymers exhibit regularly organized 
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micelles into which tetrachloroaurates can be transported, followed by a reductive step with 

hydrazine or NaBH4 and, the formation of the nanoparticles. [43] 

 

It is worthy to highlight that in the synthesis of metal nanoparticles, it is important to consider 

the stabilization of the particles to avoid coalescence effects. The stabilization can occur by 

electrostatic repulsion, steric hindrance, ligand molecules and nanocapsules embending. [18] 

 

All the chemical methods described above have the same chemical principle, the reduction of Au 

(III), Au (I) or Ag (I) with a reducing agent. Because of silver and gold are highly 

electronegative, they can be generated from their salts by a huge number of reducing species. 

Classical reducers such as hydrides, hydrogen, hydrazine, and alcohols can be used to produce 

metal nanoparticles from salts. Also, the so-called “green chemistry” has evolved in recent years, 

opening new branches for the synthesis of metal nanoparticles using natural organic materials 

such as glucose. [35] The reduction of metal salts in solution using glucose, i.e. the application of 

the Tollen test, is the base of the work presented here. [44] 

 

2.4 Tollens Test 

The Tollens test is commonly used to detect aldehyde functionalities. Using a silver nitrate 

solution under basic conditions, a smooth deposit of silver metal on the inner surface of the test 

tube results when an aldehyde is present (see Figure 4). This is better known as the “silver 

mirror” test. [44, 45]  
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Figure 4: Tollens test 
 

The Tollens test can be used to detect glucose because glucose can exist in an open-chain 

(acyclic) and ring (cyclic) form (see Figure 5). The cyclic chair form is the result of an 

intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group forming an 

intramolecular hemiacetal. An aqueous sugar solution contains approximately 0.02% of the 

glucose in the chain form, where the majority of the structure is in the cyclic chair form (see 

Figure 5). 
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Figure 5: Structure of glucose isomers 
 

With 0.02% of glucose in the chain form, glucose can reduce Ag+ ions to silver metal in solution. 

The standard-state half-cell potential for the reduction of Ag+ ions is +0.800V and the standard-

state half-cell potential for the oxidation of glucose is -0.050V. The two half-cell potentials are: 
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2(Ag+   +   e-    Ag)                                                                E°red = 0.800V 

C6H12O6   +   H2O    C6H12O7   +   2H+   +   2e-                    E°ox = - 0.050V 
_________________________________________________________________ 
2Ag+   +   C6H12O6  +   H2O    2Ag  +  C6H12O7   +   2H+     E° = 0.750 V 

 

The reaction is catalyzed with ammonia, producing a Ag(NH3)2
+ complex ion. This important 

step enhances the overall E0 of the reaction because, while it reduces the half-cell potential 

reduction of the silver complex ion, it increases the reducing strength of glucose much more. The 

two half-cell potentials are: 

 

2(Ag(NH3)2
+   +   e-    Ag  + 2NH3)                                                    E°red = 0.373V 

C6H12O6  +   H2O   C6H12O7   +   2H+   +  2e-                                     E°ox = 0.600V 
______________________________________________________________________ 
2Ag(NH3)2

+   +  C6H12O6  +   H2O   2Ag  +  C6H12O7    +   2NH4
+     E° = 0.973V 

 

Based on the Tollens test, silver nanoparticles with different shapes and aspect ratios could be 

formed or transformed. Therefore, the detection of glucose traces in human fluids, using this 

tactic is an open possibility. [45-47] However, the use of silver for glucose sensing in human 

fluids could present some limitations because of the high content of NaCl in these fluids. [48] It 

is well known that Ag+(aq) and Cl-(aq) react to form a typical white solid of AgCl. This side 

reaction could introduce important interferences in the sensing system such as the unknown 

reduction of the initial amount of silver ions available in solution, scattering, and possibly 

instability due to photo-oxidation of the ions. Other promising metal with perhaps less 

interferences and negligible photo-oxidation that could be employed for glucose sensing is gold.  
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Considering the high stability of gold nanoparticles, this should be a more qualified metal to be 

used for this application. The two standard-state half-cell potential are:   

 

2(Au3+  +   3e-    Au)                                                                                E°red = 1.400V 

3(C6H12O6  +   H2O    C6H12O7   +   2H+   +  2e-)                                    E°ox = 0.600V 
________________________________________________________________________ 
2Au3+  +  3C6H12O6  +   3H2O   2Au  +  3C6H12O7  +6H+

                          E° =  2.000V 

 

Based on the standard-state reduction potential, the Tollens test using gold is thermodynamically 

more favored than silver. Independently of the metal, our hypothesis was based on the generation 

of metal atoms that could aggregate to generate or transform metal nanoparticles and, on a 

recently developed mercury sensor based on metal nanorods. [49] 

 

The metal nanorods based Hg sensor detects Hg upon wavelength changes on absorption spectra 

of Au nanorods as their aspect ratio changes with Hg concentration. The goal of this study was to 

demonstrate the analytical potential Au nanorods have for monitoring Hg in water samples. The 

outstanding selectivity and sensitivity of the method provide a unique way to determine Hg in 

water samples without previous separation and/or pre-concentration of the original sample. 

Through a selective amalgamation a the tips of the nanorods, a reduction of the effective aspect 

ratio of the nanoparticles takes place, inducing a blue shift of the maximum absorption 

wavelength of the longitudinal mode band.  

 

The first article reporting on the absorbing properties of metal nanorods appeared a few years 

ago. Based on experimental evidence, Al-Sayed and co-workers [22] provided the theoretical 
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foundation to understand the two absorption bands typically observed in the UV-vis absorption 

spectra of nanorods. According to the authors [22] the two absorption bands correspond to the 

transversal and longitudinal modes of surface plasmon resonance (SPR). The transversal mode 

band belongs to the SPR along the short axis of the rod and appears at a shorter absorption 

maximum than the longitudinal mode band. The maximum absorption wavelength of the 

longitudinal mode - which corresponds to the SPR along the long axis of the rod - presents a 

linear correlation with the aspect ratio (length/diameter) of the nanorod. As the aspect ratio of the 

nanorod increases, the longitudinal mode band shifts to longer wavelengths. The same behavior 

is observed as the  dielectric constant of the medium increases (εm) [22]. 

 

In this work, we wanted to study the analytical potential Ag and Au nanorods, nanoprisms and 

nanospheres have for monitoring glucose in aqueous solution. Glucose is a reducing agent that 

could grow nanorods or change the shape of nanoprisms, increasing their aspect ratio, thus 

inducing a red shift of the longitudinal mode band. Also, glucose can generate metal nanospheres 

increasing the extinction efficiency of the solution. Therefore, by monitoring the spectral shift of 

the longer wavelength band or the extinction efficiency of the SPR band of nanospheres, the 

glucose concentration could be determined in human fluids and correlated to the actual 

concentration in blood. 
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CHAPTER THREE: RESEARCH OBJETIVES 

 

3.1 Major Goal 

The development of a truly non-invasive glucose optical sensor based on nanotechnology, with 

low limit of detection and high selectivity. 

3.2 Specific Goals 

• Study of the spectral-shift of the longitudinal surface plasmon band of  silver nanorods in the 

presence of glucose and an excess of AgNO3 

• Synthesis of silver nanospheres using glucose 

• Synthesis of silver nanorods using glucose 

• Study of the spectral-shift of the quadrupole surface plasmon band of  silver nanoprisms in 

the presence of glucose and an excess of AgNO3 

• Study of the spectral-shift of the longitudinal surface plasmon band of  gold nanorods in the 

presence of glucose and an excess of HAuCl4 

• Synthesis of gold nanorods using glucose 

• Synthesis of gold nanospheres using glucose 

• Study of the glucose concentration effect on the generation of and gold nanospheres 

• Comparison between the different nanostructures and methods for glucose sensing 

• Determination of the dynamic range of the glucose sensor based on absorbance-change 

• Determination of the limit of quantization of the glucose sensor based on gold nanospheres 
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CHAPTER FOUR: EXPERIMENTAL 

 

4.1 Chemicals 

Analytical-reagent grade chemicals were used in all experiments. Hexadecyltrimethylammonium 

bromide (CTAB) (C9H42BrN), Hydrogen tetrachloroaurate III (HAuCl4), silver nitrate (AgNO3), 

Ascorbic acid (C6H8O6), Trisodium citrate (C6H5Na3O7.2H2O), Poly(vinylpyrrolidone) (PVP, 

weight-average molecular weight Mw~29000g⋅mol-1), were purchased from Sigma-Aldrich. 

Sodium borohydrate (NaBH4), sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) were 

purchased from Fisher chemicals. Glucose was bought from Acros. All water used was obtained 

from a Barnstead infinity ultrapure water system.  

 

4.2 Silver Nanoparticles 

4.2.1 Synthesis of silver nanospheres 

Silver nanospheres of 4nm of diameter were synthesized according to the wet chemical method 

developed by Jana et al. [46] A 20mL solution with a final concentration of 0.25mM AgNO3 and 

0.25mM trisodium citrate in water was prepared. While stirring vigorously the previous solution, 

0.6mL of 10mM NaBH4 was added all at once. Stirring was stopped after 30s. The solution was 

used 2h after preparation. After 5h, a thin film of particles appeared at the water surface. 
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4.2.2 Synthesis of silver nanorods 

Nanorods of different aspect ratio were synthesized according to the wet chemical method 

developed by Jana et al. [46]. 3 sets of solutions were prepared containing 0.25mL of 10mM 

AgNO3, 0.50mL of 100mM ascorbic acid, and 10mL of 80mM CTAB. Next, 0.5mL, 0.25mL 

and 0.125mL of 4nm seed solution (see section 4.2.1) were added. Finally, 0.10mL of 1M NaOH 

was added to each solution. After adding NaOH, the solution was gently shaken with the rest of 

the solution. Within 1-10 min a color change occurred. 

 

4.2.3 Synthesis of silver nanoprisms  

Nanoprisms of different aspect ratio were synthesized according to the wet chemical method 

developed by Métraux et al. [23] Briefly, an aqueous solution of silver nitrate (0.1 mM, 25mL), 

trisodium citrate (30mM, 1.5mL), poly(vinylpyrolidone) (PVP, weight-average molecular weight 

Mw~29000gmol-1, 0.7mM, 1.5mL), and hydrogen peroxide (30wt.-%, 60µL) were combined and 

vigorously stirred at room temperature. Then, NaBH4 (100mM, 100-250µL) was rapidly injected 

to the mixture, generating a colloid that was pale yellow in color. After 30 min, the colloid 

darkened to a deep-yellow color, indicating the formation of small silver nanoparticles. Over the 

next several seconds, the color of the colloid continued to change from yellow to red. The final 

color of the solution ranged from pink/purple to turquoise, depending on the NaBH4 

concentration used. The reaction occurred in the dark. 
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4.2.4 Synthesis of silver nanorods using glucose as reductant agent 

The synthesis of silver nanorods using glucose was pursued using a modification of the wet 

chemical method developed by Jana et al. [46] 4nm silver nanospheres seed solution was 

prepared as indicated in the section for 4.2.1. Next, a set of solutions containing 0.25mL of 10 

mM AgNO3, 0 to 2mL of glucose (1 M), and 10mL of 80mM CTAB, 0.1mL of 4nm seed, and 

0.780 mL aqueous ammonia (2%) were mixed. Finally, the solutions were gently shaken. Within 

1-10 min a color change occurred.  

 

4.2.5 Synthesis of silver nanospheres using glucose as reductant 

agent 

A set of solutions containing 2mL of AgNO3 (25x10-5M), 0.20mL of aqueous ammonia (2%) and 

different volumes of glucose (1M) were prepared.  Then, the solutions were gently shaken. 

 

4.3 Gold Nanoparticles 

4.3.1 Synthesis of gold nanospheres 

Gold nanospheres of 5nm diameter were synthesized according to the wet chemical method 

developed by Jana et al. [50] A 20mL aqueous solution containing 2.5x10-4M HAuCl4 and 

2.5x10-4M trisodium citrate was prepared in round bottom flask. Next, 0.6mL of ice cold 0.1M 

NaBH4 solution was added to the solution all at once while stirring. The solution turned pink 

immediately after adding NaBH4, indicating particle formation. The solution was kept in the dark 

for 5h. The particle solutions were stable for few months.  
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4.3.2 Synthesis of gold nanorods 

Nanorods of different aspect ratio (2-3.8) were synthesized according to the wet chemical 

method developed by El-Sayed et al. [47] First, a seed solution of gold was prepared as follow: a 

CTAB solution (5mL, 0.20M) was mixed with 5.0mL of 0.00050M HAuCl4, to this stirred 

solution, 0.60mL of ice-cold 0.010M NaBH4 were added. As a result, a brownish yellow solution 

was produced. Vigorous stirring of the seed solution was continued for 2min at 25oC. After, for 

the growth of nanorods, CTAB (5mL, 0.20M) was added to (0.050, 0.10, 0.15, 0.20, 0.25mL) of 

0.0040M AgNO3 solution at 25oC.  Then, 5.0mL of 0.0010M HAuCl4 were added, and gently 

mixed with 70µL of 0.0788M ascorbic acid. Finally, 12µL of the seed solution was added to the 

growth solution at 27-30oC. The color of the solution gradually changed within 10-20min. The 

temperature of the growth medium was kept constant at 27-30oC in all the experiments. The 

solutions were stable for many months.  

 

4.3.3 Synthesis of gold nanospheres using glucose as reductant 

agent 

Gold nanospheres were synthesized as follow: an aqueous solution of HAuCl4 (2 mL, 2.5x10-4M) 

was mixed with glucose (0.8 mL, 1M) and NH4OH (0.2 mL, 2%). The solution turned pink 

immediately after warming for 12 min in a boiling water bath. The solution was stable for many 

months. 
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4.3.4 Synthesis of gold nanorods using glucose as reductant agent 

Using a modification of the El-Sayed et al. [47] method, the synthesis of gold nanorods of three 

different aspect ratios was attempted using glucose instead of ascorbic acid as reducing agent. 

For this, a seed solution of gold was prepared as explained in section 4.3.2. Then, for the growth 

of nanorods, CTAB (5mL, 0.20M) was added to 0.15mL of 0.0040 M AgNO3 solution at 25oC.  

Then, 5.0mL of 0.0010M HAuCl4 were added, and gently mixed with different concentrations of 

glucose (0 to 2 mL of glucose (1 M)), and 0.740mL NH4OH (2%). Finally, 12µL of the seed 

solution was added to the growth solution at 27-30oC. The color of the solution gradually 

changed within 10-20min. The temperature of the growth medium was kept constant at 27-30oC.  

 

4.4 Instrumentation 

Absorption spectra of the solutions were obtained using an Agilent 8453 spectrophotometer, 

equipped with a deuterium and tungsten lamp, a diode-array detector, and wavelength range of 

190 to 1100m. 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

 

5.1 Silver Nanoparticles 

5.1.1 Change of the aspect ratio of silver nanorods with glucose 

Silver nanorods of approximately 7.5 aspect ratio were treated with different glucose 

concentrations, in the presence of an excess of AgNO3 and in basic conditions (NH4OH, pH 11). 

Figure 6 shows the absorption spectra of these solutions after 30min. A very small shift in the 

maximum absorption wavelength of the longitudinal mode at different glucose concentrations 

was observed. Contrary to what it was expected, this is an indication of no aspect ratio variation 

throughout the reaction, as Ag+ is reduced. However, as the glucose concentration was increased, 

the absorbance of the transversal mode band became stronger as an indication of silver 

nanospheres formation. This behavior can be explained by the stabilization of Ag nanoparticles 

by the gluconic acid generated throughout the reaction.[52] When glucose reduces silver ions, it 

transforms into gluconic acid. Because the generated gluconic acid is in the immediate vicinities 

of the silver metal atoms, and this acid behaves as a surfactant in the presence of metal 

nanoparticles, silver atoms prefer to form agglomerates, i.e. Ag nanospheres, rather than 

diffusing through the solution and attach to the sterically protected by CTAB, tips of the existing 

nanorods. Therefore, an increase of the SPR band at ca. 420nm was observed. To verify this 

hypothesis the direct synthesis of silver nanorods using glucose was attempted. 
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Figure 6: UV-vis. absorption spectra of silver nanorods in the presence of different glucose 
concentrations. 

 

5.1.2 Generation of silver nanorods with glucose 

The synthesis of silver nanorods using glucose was pursued using a modification of the wet 

chemical method developed by Jana et al [46] as explained in section 4.2.2 (glucose was used 

instead of ascorbic acid). The absence of the longitudinal mode band in all the spectra for 

different glucose concentrations corroborated the no formation of silver nanorods. The formation 

of nanospheres is evidenced by the presence of a strong surface plasmon resonance band 

centered at approximately 420nm. An increased in the concentration of glucose increases the 

absorbance of the final solution. The preferential formation of silver nanospheres is due to the 

presence of gluconic acid as the reaction goes through as explained in section 5.1.1.[52] 

Although, a change in the absorbance was observed when increasing the glucose concentration, 

the observed change seemed not to be directly proportional to glucose concentration. This can be 

explained by the high susceptibility to oxidation that silver presents in water and in the presence 
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of air. In order to confirm this last point, the direct synthesis of silver nanospheres using glucose 

was tried. 

 

5.1.3 Generation of silver nanospheres with glucose 

A set of solutions containing 2mL of AgNO3 (25x10-5M), 0.20mL of aqueous ammonia (2%) and 

different volumes of glucose (1M) were prepared.  Then, the solutions were gently shaken. The 

spectra of the solutions, taken after 30min are shown in Figure 7. The formation of the surface 

plasmon band centered at ca. 420nm and the absorbance change with the glucose concentration 

is a probe of silver nanospheres formation. However, the change in absorbance is not linear with 

the glucose concentration. This no linear behavior is attributed to the oxidation of silver 

nanoparticles in aqueous medium and in the presence of air. Therefore, Beer’s law does not 

apply to this system. In addition, perhaps the initial amount of glucose has an effect on the size 

of the nanoparticles generated as the different maximum wavelength position for different 

glucose concentrations showed. To finally elucidate the potential of silver nanoparticles for 

glucose sensing, silver nanoprisms shape changes were tried using the Tollens test approach. 
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Figure 7: UV-vis. absorption spectra of silver nanospheres synthesized using different glucose 
concentrations  

 

5.1.4 Change of the shape of silver nanoprisms with glucose 

The UV-visible spectrum of silver nanoprisms is very sensitive to their size and environment 

[23]. Nanoprisms present three characteristics surface plasmon bands in the UV-vis spectral 

region corresponding to the out-of-plane quadrupole resonance, out-of-plane dipole plasmon 

resonance, and in-plane dipole plasmon resonance (see Figure 8).[23] The longer wavelength 

band corresponds to the in-plane dipole plasmon resonance. Because, the position of this band is 

very sensitive to the size and the environment of the nanoprisms, a spectral shift of the in-plane 

SPR band by the addition of glucose was expected [51]. 
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Figure 8: a) UV-vis spectrum of nanoprims. b) silver nanoprism carton. c) TEM image of silver 
nanoprims [23]. 

 

In order to study the spectral shift for silver nanoprisms, a set of solutions containing 0.4mL 

silver nanoprisms, 0.29mL of aqueous ammonia (2%), an excess of AgNO3, and different 

volumes of glucose (1M) were prepared, and then gently shaken. The spectra taken after 30 min 

are shown in Figure 9. No correlation between the glucose concentration and the spectral shift 

was observed. 
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Figure 9: UV-vis. absorption spectra of silver nanoprisms in the presence of different glucose 
concentrations 

 

In addition, silver nanoprisms solutions were no stable in the presence of glucose. Figure 10 

shows the evolution depending of the time for a silver nanoprism solution where the glucose 

concentration was 0.15M.  It can be seen a decomposition of the nanoprisms after 45 minutes. 

According to Figure 10, silver nanoprisms are transformed into silver nanospheres. This was 

evidenced by the extinction efficiency of the in-plane band at approximately 550nm and, the 

formation of a stronger typical SPR band for nanospheres at ca. 420nm. This interesting result 

could not be elucidated at this point based on the chemistry involved in the reaction. 

. 
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Figure 10: UV-vis. absorption spectra of silver nanoprisms in the presence of glucose at different 
times after the reaction was initiated. 

 

All attempts using silver nanoparticles with different shapes failed for glucose sensing. Silver is 

not the best candidate for glucose sensing in human fluids because of the high content of NaCl. It 

is well known that NaCl precipitates Ag+ in the form of AgCl, a typical white solid. Also, the 

risk of having surface oxidation when using silver nanoparticles in aqueous media and in the 

presence of air discard this metal for this particular application. Therefore, more stable 

nanoparticles such as gold were tested. 

 

5.2 Gold Nanoparticles 

5.2.1 Change of the aspect ratio of gold nanorods with glucose 

Two gold nanorod solutions were prepared using 0.2mL of gold nanorods with aspect ratio two, 

0.20mL of ammonia hydroxide (2%), an excess of HAuCl4, and glucose (1M). The blank was 
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0M in glucose while the other solution was 0.077M in glucose. The spectra of both solutions 

were taken after 30min. Figure 11 shows no appreciable spectral shift in the maxima absorption 

wavelength of the longitudinal mode of the glucose containing solution in comparison with the 

blank. Therefore, no change in the aspect ratio of these nanorods was produced. 
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Figure 11: UV-vis. absorption spectra of gold nanorods with (⎯) and without glucose (⎯) 
 

The experiment was repeated using different glucose concentrations. The spectra recorded after 

30 min are shown in Figure 12. No representative spectral shift was observed in the maximum of 

the absorption of the longitudinal mode. However, as with silver nanorods, the transversal mode 

SPR band showed an increase in absorbance with the glucose concentration. This indicates the 

formation of gold nanospheres in solution when using glucose. The formation of gold 

nanospheres is due to the presence of the gluconic acid generated throughout the reaction. As in 
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silver, this acid can stabilize metal nanoparticles favoring the formation of nanospheres instead 

of increasing the length on the nanorods.[52] With gold the change in the absorbance seemed to 

increase linearly with glucose concentration. Probing this will confirm that silver nanoparticles 

are more susceptible to oxidation than gold in the presence of water and air. In addition, it could 

allow for monitoring low glucose concentrations in tears. Before getting to this part the direct 

generation of gold nanorods using glucose as reducing agent, was attempted. 
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Figure 12: UV-vis. absorption spectra of gold nanorods in the presence of different glucose 
concentrations.  

 

5.2.2 Generation of gold nanorods with glucose 

Using a modification of the El-Sayed et al [47] method, the synthesis of gold nanorods with 

aspect ratio of three, was attempted using glucose instead of ascorbic acid as reducing agent. As 

in the case of the generation of silver nanorods using glucose, gold nanorods were not formed  
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The formation of gold nanospheres was obvious and the change in absorbance was linear with 

glucose concentration. We believe that the linear dependence is a consequence of the lack of 

oxidation of gold at the surface of the nanospheres. 

 

5.2.3 Generation of gold nanospheres with glucose 

Gold nanospheres were synthesized as described in the experimental section 4.3.3. Briefly, an 

aqueous solution 2.5x10-4M HAuCl4 was mixed with aqueous ammonia (2%) and glucose (1M). 

The solution turned pink immediately after warming for 12min in a boiling water bath. The 

change in color of the solutions indicated the reduction of chloroaurate ions to form colloidal 

gold particles with typical SPR band centered at ca. 530nm. The absorption spectra recorded 

after 30min are shown in Figure 13. As the concentration of glucose increases, the absorbance of 

the SPR band increases, thus the amount of gold nanospheres produced is directly proportional to 

the glucose concentration added to the initial solution. Something very remarkable is the fact that 

as glucose is oxidized to gluconic acid, the latter acts as a surfactant stabilizing the nanoparticles 

in suspension [52]. 

 

Sastry M. et al [52] reported the same reduction of chloroaurate ions by glucose to form gold 

nanoparticles working at higher glucose concentration in a no basic conditions. Authors observed 

nanoparticles settled down after the period of experimentation. They attributed the precipitation 

to insufficient gluconic acid molecules covering the colloidal particle for stabilization. In the 

present work, the particles were not settling down after any period of time. It suggested that the 

reducing power of glucose was increased by the addition of NH4OH, increasing the number of 

gluconic acid molecules that stabilize the nanoparticles. 
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Figure 13: UV-vis. absorption spectra of gold nanospheres generated using different glucose  
concentrations. (Average on four trials). 

 

Figures 14 show the average absorbance measured at the maximum of the spectra of gold 

nanospheres, generated with different glucose concentration in solution (average on four trials). 

This plot reveals the linear dependence of the absorbance with glucose concentration above 

0.00667M. The increase in absorbance as the glucose concentration is increased is due to the 

increased number of nanoparticles generated in solution. The small spectral blue shift observed 

for high glucose concentration is due to the differences in size of the nanospheres. 
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Figure 14: Maximum absorption of gold nanospheres generated at different glucose 
concentrations. (Average on four trials). 

 

Figure 14 demonstrates that at low glucose concentration, i.e. below 0.00667M, the absorption of 

the solutions is constant and similar to the blank. If the glucose concentration is not high enough 

to produce gold nanospheres greater than ca. 3nm the absorbance of the smaller nanoparticles 

overlaps with the electron-hole transition band. [53] On the other hand, for concentrations 

greater than 0.00667M, a linear dynamic range up to 0.2M is observed.  
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Figure 15: Plot showing the dynamic range of the UV-vis. absorption spectra of gold 

nanospheres generated at different glucose concentrations 

 

The linear dynamic range shown in Figure 15 has been determined using 10 different glucose 

concentrations. The correlation coefficient (R equals to 0.9920, and R2 equals to 0.9841) and the 

slope of the log-log plot (0.9868) are close to unity, demonstrating a linear relationship between 

the absorbance of gold nanoparticles in solution with glucose concentration. The limit of 

detection (LOD) was calculated with the following Equation (2), [54] 

 

LOD = 3SR/m,          (2) 

 

where m is the slope of the plot and SR is the standard deviation of the blank (SR = ± 0.00104). 

The LOD was equals to 3.5 x 10-5 M, but Figure 14 reveals that the detection of glucose 

concentration below 0.00667M is not possible using gold nanospheres. In order to obtain a 
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realistic value, a limit of quantitation (LOQ) was estimated. Using the LOQ, the lowest glucose 

concentration that can be determined using gold nanospheres is be 7.5mM.  
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CHAPTER SIX: CONCLUSIONS 

 

• Silver and gold nanoparticles were synthesized using glucose as reducing agent. 

 

• Silver nanoparticles of different shapes: nanorods and nanoprisms, were not sensitive to 

changes in the presence of different glucose concentrations.  

 

• Gold nanospheres were sensitive to glucose concentration changes. 

 

• The absorbance of gold nanospheres SPR band increases directly proportional with glucose 

concentration. 

 

• The gold nanospheres sensor can detect glucose concentrations as low as 7.5mM in aqueous 

solution. 

 

• This work demonstrated a new approach for glucose sensing using gold nanoparticles, with 

low limit of detection and extraordinary selectivity. 
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CHAPTER SEVEN: FUTURE WORK 

 

• Improve the sensitivity of the glucose sensor based on gold nanoparticles by controlling 

      the size of the generated nanospheres. 

 

• Test the sensor in human fluids and study of the matrix effects. 

 

• Study of new metal nanostructures such as nanocubes and nanocages. 

 

• Study of nanoparticles fluorescence for glucose sensing pumping in the UV region. 
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