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ABSTRACT

We describe the automatic acquisition of a semantic network in which over 7,500 of the 

most frequently occurring nouns in the English language are linked to their semantically related 

concepts in the WordNet noun ontology. Relatedness between nouns is discovered automatically 

from  lexical  co-occurrence  in  Wikipedia  texts  using  a  novel  adaptation  of  an  information 

theoretic  inspired measure.  Our algorithm then capitalizes  on salient  sense clustering among 

these semantic associates to automatically disambiguate them to their corresponding WordNet 

noun senses (i.e., concepts). The resultant concept-to-concept associations, stemming from 7,593 

target nouns, with 17,104 distinct senses among them, constitute a large-scale semantic network 

with 208,832 undirected edges between related concepts. Our work can thus be conceived of as 

augmenting the WordNet noun ontology with RelatedTo links.

The network,  which we refer to as the Szumlanski-Gomez Network (SGN), has been 

subjected to a variety of evaluative measures, including manual inspection by human judges and 

quantitative comparison to gold standard data for semantic relatedness measurements. We have 

also evaluated the network’s performance in an applied setting on a word sense disambiguation 

(WSD) task in which the network served as a knowledge source for established graph-based 

spreading activation algorithms, and have shown: a) the network is competitive with WordNet 

when  used  as  a  stand-alone  knowledge  source  for  WSD,  b)  combining  our  network  with 

WordNet  achieves  disambiguation  results  that  exceed  the  performance  of  either  resource 

individually, and c) our network outperforms a similar resource, WordNet++ (Ponzetto & Navigli, 

2010), that has been automatically derived from annotations in the Wikipedia corpus.
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Finally, we present a study on human perceptions of relatedness. In our study, we elicited 

quantitative evaluations of semantic relatedness from human subjects using a variation of the 

classical methodology that Rubenstein and Goodenough (1965) employed to investigate human 

perceptions of semantic similarity. Judgments from individual subjects in our study exhibit high 

average correlation to the elicited relatedness means using leave-one-out sampling (r = 0.77, 

σ = 0.09, N = 73), although not as high as average human correlation in previous studies of 

similarity judgments, for which Resnik (1995) established an upper bound of r = 0.90 (σ = 0.07, 

N = 10). These results suggest that human perceptions of relatedness are less strictly constrained 

than evaluations of similarity, and establish a clearer expectation for what constitutes human-like 

performance  by  a  computational  measure  of  semantic  relatedness.  We  also  contrast  the 

performance  of  a  variety  of  similarity  and  relatedness  measures  on  our  dataset  to  their 

performance on similarity norms and introduce our own dataset as a supplementary evaluative 

standard for relatedness measures.
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CHAPTER 1: INTRODUCTION

(1) The astronomer photographed the star.

When faced with a sentence like the one above, the human mind seamlessly navigates a 

complex mindscape of lexical and syntactic ambiguity in its quest to ascribe meaning—first to 

individual words, and then, ultimately, to the sentence as a whole. In our resultant understanding 

of  (1),  we know,  for  example,  that  “star”  refers  to  a  celestial  body.  We have excluded  the 

possibility of “star” being an adjective or verb, or of it denoting a movie star, an asterisk, or any 

of the myriad other possible senses of the noun.

The  human  cognitive  processes  that  give  rise  to  this  understanding  are  highly 

automatized. Few people even notice (consciously, at least) the lexical ambiguity of “star” in (1), 

despite cognitive evidence that the human mind accesses all possible meanings of ambiguous 

nouns during semantic interpretation, even when a sentence contains strong contextual clues as 

to the intended meaning of an ambiguous noun (Swinney, 1979), as is the case in (1), as well as 

the following, contrasting sentence:

(2) The paparazzi photographed the star.

Despite the syntactic equivalence of (1) and (2), it is clear that the “star” in (2) denotes 

not a celestial body, but a celebrity. While it is conceivable that a paparazzo would photograph a 

celestial  object,  or  that  an  astronomer  would  photograph  a  celebrity,  the  “stars”  here  are 

preferentially  disambiguated  by  the  strong  semantic  relatedness  between  paparazzi1 and  the 

1 In distinguishing between words and the concepts they denote, we adopt the convention of quoting the former 
and italicizing the latter. (See Section 1.8, “Style Conventions: Words and the Concepts They Denote,” below.)
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celebrity sense of “star,” and astronomer and the celestial body sense of “star,” respectively, à la 

mechanisms  of  spreading  activation  through  semantic  memory  (Collins  &  Loftus,  1975; 

Quillian, 1968).

The ease with which the human mind resolves such natural language ambiguities belies 

the complexity of the cognitive processes and lexical semantic resources that drive semantic 

interpretation. Over half a century of artificial intelligence research has taught us as much. So 

intricate, so vast, and so deep is the semantic knowledge that resides in the human mind, that we 

have yet to see the creation of a comprehensive computational model of semantic memory, or an 

artificially intelligent agent that is capable of semantically interpreting arbitrary natural language 

utterances—a  machine  that  we  can  confidently  claim  is  able  to  process  a  sentence  and 

subsequently understand.

1.1 Semantic Memory and WordNet

Quillian  (1968)  posited  a  theory  of  semantic  memory  that  accounts  for  the 

disambiguation of our stars in the sentences above. In his model, concepts are represented as 

nodes in a semantic network and related to other concepts by way of labeled edges between 

nodes.  These  relations  establish  semantic  relatedness  between  concepts  and  allow  for  the 

codification  of  attributes  of  individual  concepts.  During  interpretation,  concept  nodes  are 

activated by lexical stimuli, and that activation spreads in parallel to adjacent nodes in a breadth-

first  manner,  with  diminishing  strength  at  each  level  of  activation.  For  example,  the  word 

“astronomer” in The astronomer photographed the star causes activation of the astronomer node 

in memory, which then spreads to related concepts (e.g., telescope, observatory, the astronomer 
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Galileo, and several others,2 including a concept node for the celestial body sense of “star”). 

When the word “star” is subsequently encountered in the sentence, the celestial body sense is 

already partially activated in memory. (In cognitive terms, the concept has been  primed.)  Its 

activation  indicates  an  intersection  of  word  meanings  in  the  sentence,  and  the  noun  is 

disambiguated to its celestial body sense accordingly.3

An important feature of Quillian’s model is that it allows for two concepts to be related 

by any other concept in the network. Typically, this relation takes the form of a verbal concept, 4 

but  Quillian  also  uses  a  canonical  IsA relation  to  indicate  superordinate  and  subordinate 

relationships between concepts (e.g.,  IsA(ASTRONOMER,  SCIENTIST);  IsA(PAPARAZZO,  PHOTOGRAPHER)). 

Because  relations  themselves  are  concepts,  they  are  also  subject  to  the  effects  of  spreading 

activation through the network. For example, if astronomer and star are conjoined in the network 

via a  study  relation (i.e.,  study(ASTRONOMERS,  STARS)), spreading activation from the  astronomer 

node activates not just the star node, but also the verbal concept, study.

The WordNet noun ontology (Miller, 1998) is one of the most sophisticated attempts to 

implement Quillian’s ideas of semantic memory to date. It constitutes a partial realization of 

Quillian’s dream through its  instantiation of a variety of labeled edges indicating,  inter alia, 

subsumptive IsA relationships between concepts. The lexical inventory of WordNet enumerates 

individual senses of English language nouns and relates them to synonymous senses of other 

2 Quillian’s theory assumes that the network expresses comprehensive semantic knowledge about the concepts it  
contains. An implementation with complete fidelity to Quillian’s view of semantic memory would contain an 
inordinate amount of information about astronomers.

3 This is a simplified account of spreading activation. Extended versions call for sense assignment to occur only 
after candidate senses have been subjected to elaborate evaluative procedures that determine contextual and 
syntactic validity (Collins & Quillian, 1972; Quillian, 1969; for an overview of Quillian’s various presentations 
of the model, and an extended account of spreading activation theory, see Collins & Loftus, 1975).

4 Because the model uses verbal concepts to coordinate related concepts, Quillian’s semantic memory can be seen 
as  an early attempt  to  create a  common sense knowledge base (cf.  Liu & Singh,  2004a;  McCarthy, 1959;  
Minsky, Singh, & Sloman, 2004), although he does not explicitly frame his work in those terms.
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nouns in the ontology. The resulting sets of synonyms, or synsets, form the basic concept nodes 

of WordNet. Each of these concepts is manually assigned a superordinate concept (hypernym) 

and, where applicable, subordinate concepts (hyponyms), resulting in a hand-crafted taxonomy of 

semantic classes. WordNet tells us, for example, that an astronomer is a physicist,5 a physicist is 

a scientist, a scientist is a person, and so on, all the way up to physical object, which is an entity.6 

(Entity is the root node of the ontology, and the only node without a superordinate concept.) The 

ontology also codifies a small, closed set of additional relations, such as antonymy, holonymy 

and meronymy (part-whole relations), instance-of relationships, and domain terms.

The  subsumptive  architecture  of  the  ontology  serves  as  an  indication  of  semantic 

similarity—which  is  a  particular  type  of  relatedness  (Resnik,  1999)—between  concepts. 

Hyponymic relationships reflect semantic similarity directly; that a  penguin  is an  aquatic bird  

implies strong similarity between the two concepts. Through transitive subsumption, we can also 

infer the similarity of penguin and animal, although the distance between these nodes (they are 

interceded by aquatic bird, bird, vertebrate, and chordate) suggests weaker similarity than that of 

penguin to  aquatic bird. From WordNet we can also infer the similarity of, e.g.,  penguins and 

flamingos,  by virtue  of  their  shared  subsumption by the  superordinate  concept  aquatic  bird. 

Notably absent from the ontology, however, are indications of general relatedness, as with, e.g., 

penguins and icebergs, or polar bears and global warming.

In some cases, subsumption and similarity suffice to resolve lexical ambiguity, as in the 

following sentences:

5 This can be expressed equivalently by any of the following three binary relations:  IsA(ASTRONOMER,  PHYSICIST), 
hyponym(ASTRONOMER, PHYSICIST), and hypernym(PHYSICIST, ASTRONOMER).

6 The  IsA  relation is transitive; if an  astronomer IsA  physicist and a  physicist IsA  scientist, it  follows that an 
astronomer IsA scientist, as well.
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(3) We tried it once in A-flat minor, but the key proved too difficult.

(4) There were no queens, rooks, or knights remaining.

In  (3),  the  subsumption  of  A-flat  minor by  the  musical  sense  of  “key”  helps  us 

disambiguate  the  latter  term.  (Miller  (1998)  points  out  that  this  results  from  “a  linguistic 

convention  that  accepts  anaphoric  nouns  that  are  hypernyms  of  the  antecedent.”)  In  (4), 

similarity (i.e., shared subsumption in WordNet) establishes that the “queens, rooks, or knights” 

being discussed are chess pieces. (Cf. There were no kings or queens remaining, which leaves us 

wondering whether the kings and queens are monarchs, chess pieces, or something else.)

In  other  cases,  however,  semantic  interpretation  requires  more  general  indications  of 

relatedness  than  those  that  are  provided  by  WordNet;  notice  that  if  we  relied  on  semantic 

similarity  to  disambiguate  The  astronomer  photographed  the  star,  the  path  in  WordNet 

connecting astronomer and the celebrity sense of “star” (in that both are people) would lead us 

astray.

1.2 Our Contribution

The focus of this dissertation is the automatic, unsupervised acquisition of a semantic 

network that indicates general semantic relatedness between concepts denoted by nouns. This is 

the specific type of lexical semantic knowledge that enables interpretation of sentences like (1) 

and (2)  above,  and is  a  critical  component  of semantic  memory and mechanisms of natural 

language understanding, such as word sense disambiguation.
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Constructing such a network comprises two phases: association and disambiguation. The 

goal of association is to take as input a target noun (a  stimulus), and return a list of strongly 

related nouns—nouns that one might reasonably expect would come to mind if a person were 

presented with the same stimulus in a word association game.

In  the  association  phase  of  network  acquisition,  we  establish  semantic  relatedness 

between  nouns  by  applying  a  novel  adaptation  of  an  information  theoretic  measure  to  co-

occurrence data extracted from Wikipedia.  This is  a  context-sparse affair  that takes  place  in  

absentia of  the  semantic  annotations  of  Wikipedia,  such  as  inter-article  links,  entries  in 

disambiguation pages, the title of the article from which a sentence is extracted, and so on.

In  the  disambiguation  phase,  we capitalize  on  salient  sense  clustering  among related 

nouns to automatically resolve them to their appropriate noun senses (i.e., concepts). For our 

concepts, we use the noun senses defined in WordNet 3.0; thus, our work can be conceived of as 

augmenting the WordNet noun ontology with RelatedTo links. This seems an obvious choice for 

our noun sense inventory, given the WordNet ontology’s sophistication and ubiquitous use in 

computational linguistics and artificial intelligence.

The edges between concepts in our network indicate general semantic relatedness. Rather 

than tie edges to weights that we derive from co-occurrence data, which are susceptible to corpus 

biases, we create a network in which relatedness is represented categorically, without weight. 

This mirrors the unweighted structure of WordNet. However, our network could presumably be 

used as a kernel to infer quantitative relatedness scores, in the same way that WordNet has been 

used to derive semantic similarity scores between concepts (cf. Section 2.2 below).
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Figure 1.1 offers a preview of the contribution of our research. In the semantic network 

we have created, astronomer is related to 45 distinct concepts. A sampling of those concepts is 

shown in  Figure 1.1, denoted by medium blue nodes adjacent to the dark blue  astronomer#1 

node.7 In turn, those concepts are related to concepts in light blue, and those terms are related to 

concepts in white. This gives an idea of spreading activation through the network.

Figure 1.1:
Partial spreading activation view of the concepts related to astronomer.

7 We denote sense n of a noun in WordNet by noun#n, or multiple senses with, e.g., noun#{m,n}. (See Section 1.8, 
“Style Conventions: Words and the Concepts They Denote,” below.)
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A solid edge in  our  graphical  depiction indicates  that  astronomer#1 is  related to  the 

farther node incident to that edge. For example, the solid edge from star#{1,3} to sky#1 indicates 

that astronomer#1 is related to sky#1, too. The dotted edge from astrology#1 to horoscope#{1,2} 

indicates  that  astronomer#1 is  not  related  to  horoscope#{1,2} in  our  network.  Many  of  the 

concepts in Figure 1.1 are interrelated in our network, but here we have omitted edges between 

them in order to avoid messy edge crossings.

1.3 Corpus Considerations and Co-occurrence

The correlation of lexical co-occurrence frequency to semantic association strength is 

well established in the literature (Church & Hanks, 1990; Spence & Owens, 1990; Wettler & 

Rapp, 1993); strongly related terms tend to co-occur more frequently in texts than unrelated or 

weakly  related  terms,  and  those  that  co-occur  frequently  tend  to  be  related.  However, 

investigations into this correlation typically compare adjusted co-occurrence counts to limited 

sets of association norms—quantitative measurements of how strongly humans judge two words 

to be related (cf. Palermo & Jenkins, 1964). These studies remain silent on the question of how 

to establish categorical  relatedness,  or how to deal with spurious cases where co-occurrence 

frequency is incongruent with relatedness. One of the primary contributions of our work is to 

resolve these limitations and adapt the measurement of co-occurrence frequency for building a 

large-scale network of semantic relatedness.

The corpus we use in our research, Wikipedia,8 is an online encyclopedia that has been 

collaboratively constructed by volunteers and contains over 4 million articles. Stripped of all 

8 http://en.wikipedia.org
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markup, metadata, and duplicate sentences, our version of the corpus from August 2009 is 10 

Gigabytes on disk and contains nearly 1.5 billion words. We have chosen Wikipedia as our target 

corpus from which to extract co-occurrence data primarily for its large size, broad coverage of 

the  English  language,  and  free  availability  for  download  on  the  Web.  However,  the  co-

occurrence approach we develop is  not specific to Wikipedia;  it  can be applied to any large 

corpus, either to augment our existing semantic network, or to create a new one.

The encyclopedic nature of Wikipedia’s text does, however, contribute to its appeal as a 

candidate for relatedness mining. In order to achieve its goal of giving informative overviews of 

the  broad  range  of  topics  it  covers,  an  encyclopedia  must  explicitly  articulate  relationships 

between many strongly related entities (and so, related entities must be mentioned together in the 

corpus; they must co-occur). Such is the case in the following sentences from Wikipedia, which 

establish the relationships between, e.g., woodpeckers and tree trunks (5), pianos and keys (6), 

astronomers and stars (7), and rooks and the game of chess (8):9

(5) Many woodpeckers have the habit of tapping noisily on tree trunks with their beaks.

(6) The white keys of the piano correspond to the C major scale.

(7) By convention,  astronomers  grouped  stars  into  constellations  and used  them to  

track the motions of the planets and the inferred position of the sun.

(8) In chess, a rook may move any distance along a row or column.

9 Notice that many of these nouns are ambiguous: “trunk” can refer to the trunk of a car; “key” can refer to a 
device for opening locks (among many other things), “rook” can refer to a bird, “chess” can refer to a type of  
grass, and we have already discussed the ambiguity of “star.” Yet, the intended meanings of these words are  
clear from the noun pairs listed above, even before we examine the sentential contexts in which they co-occur.
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Incidental co-occurrence of unrelated terms, like that of “convention” and “position” in 

(7),  is  ubiquitous in natural language texts,  but the relative infrequency with which any two 

particular unrelated  terms co-occur  will,  in  most  cases,  protect  us  from false indications  of 

semantic relatedness. Furthermore, the related nouns in (5) through (8) must continue to co-occur 

throughout the corpus in order for their strong semantic association to be discovered. Their co-

occurrence will  likely take many different forms; related terms frequently appear together in 

contexts that do not explicitly articulate commonsense knowledge about their relationships, as in 

the  co-occurrence  of  “ascension,”  “throne,”  and  “regency”  in  the  following  sentence  from 

Wikipedia:

(9) Following the murder of King Henry IV and the ascension to the French throne by  

Louis  XIII,  under  Marie  de’ Medici’s  regency,  Biencourt  and  his  father  were  

authorized to return to Acadia.

Although (9) is not intended to inform the reader about thrones or the act of ascension, 

one  might  argue that  the sentence  establishes  a  relation  implicitly  through frame semantics: 

Louis  XIII  is  categorized  as  a  monarch  in  WordNet,  and  the  implicit  relationship  is

[[Agent Monarchs monarch.n#1] ascend to ascend.v#3 [Goal thrones throne.n#3]]. Of course, this is not the only 

(or even necessarily the best) way to define the relationship between monarchs and thrones, and 

the sentence gives no clear indication of how either concept relates to regency. Ultimately, it is  

the co-occurrence of the terms in (9)—not the context in which they appear—that contributes to 

the cumulative evidence found within the corpus for their relatedness.
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1.4 Corpus Context and the Limitations of Pre-Specified Relations

Whereas the lexical co-occurrence approach to relatedness discovery remains agnostic to 

the particular context in which that co-occurrence is manifest, previous methods have capitalized 

on context (both lexical and syntactic) to establish particular kinds of relatedness between nouns. 

Hearst  (1992) established the tradition of using lexico-syntactic patterns to mine corpora for 

examples of a pre-specified relation (namely, in the case of Hearst, hyponymy). For example, she 

used the pattern  NP{,  NP}*{,}  or other  NP to establish all the former noun phrases (NPs) as 

hyponyms of the latter, as in “...wastebasket, trashcan, or other garbage receptacle,” where we 

see that  wastebasket and trashcan are hyponyms of  garbage receptacle. Berland and Charniak 

(1999) used a similar method to discover meronymic part-whole relationships for a set of six 

hand-chosen  wholes.  Subsequent  methods  have  used  automatic  pattern  induction  to  induce 

search patterns from manually provided seed sets of noun pairs that typify a given relation. The 

induced patterns have then been used to discover new instances of the seeded relations, such as 

meronymy  (Girju,  Badulescu  &  Moldovan,  2006),  hyponymy,  and  relations  specific  to  the 

domain of chemistry, such as chemical reaction and production relations, among others (Pantel 

& Pennacchiotti, 2006).

Pattern matching is also the driving force behind current large-scale knowledge network 

acquisition projects: ConceptNet (Havasi, Speer, & Alonso, 2007; Liu & Singh, 2004a, 2004b) 

uses manually derived patterns to extract relationships from the semi-structured text of the Open 

Mind Common Sense corpus, which contains statements of commonsense knowledge acquired 

from over 10,000 contributors via a Web interface, often in forms that are particularly amenable 

to relation instance extraction via pattern matching (Singh et al., 2002). Similarly, the Never-
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Ending Language Learner (henceforth NELL) (Carlson et al., 2010) automatically induces search 

patterns from example seed sets to learn relationships from unstructured text from the Web. Both 

of these projects rely on large, pre-determined sets of relations (e.g.,  EffectOf,  CapableOf, and 

LocationOf, in the case of ConceptNet), and focus heavily on IsA relationships. Neither resource, 

however, attempts to establish a sophisticated ontology like that of WordNet, or to methodically 

delineate relationships according to individual noun senses (i.e., both resources relate words, not 

concepts, the name of ConceptNet notwithstanding).

The  major  limitation  of  the  pattern  matching  approach  is  that  it  requires  the  pre-

specification of the relation(s) to be mined. This ultimately precludes discovery of relatedness in 

the general case; as Quillian (1968) aptly points out, “in natural language text almost anything 

can  be  considered  as  a  relationship,  so  that  there  is  no  way  to  specify  in  advance  what 

relationships are to be needed” (p. 230, emphasis in original). Consider, for example, the strong 

semantic relationship between  penguin and  tuxedo, which defies labeling by any conventional 

relations. It seems unlikely that the relation that binds these concepts generalizes to a pattern that 

can capture other instances of the relation in a large corpus; indeed, it seems unlikely that many 

other examples of this particular relation exist at all. Yet, the pattern matching approach requires 

such examples if it is to have any chance of automatically discovering the relatedness between 

these two concepts.

Furthermore, Hearst (1992) found that some relations simply are not amenable to the 

pattern matching approach, either because they do not generalize well to patterns with broad 

coverage of the relation, or because they do not induce patterns that are exclusive enough to the 

relation to yield high precision extraction results.
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In contrast to these context-driven pattern matching approaches, our focus on lexical co-

occurrence allows us to establish relatedness between noun concepts regardless of the particular 

relation that binds them. While eschewing labeled relations in our network gives us the freedom 

and flexibility  to  associate  nouns regardless  of  whether  we can neatly  articulate  the relation 

between  them,  it  also  changes  the  fundamental  nature  of  our  contribution.  The  knowledge 

embedded in our network reflects a different type of commonsense knowledge than many of the 

associations  in  ConceptNet,  NELL, and other  networks that  employ labeled relations,  which 

explicitly  codify  statements  of  commonsense  knowledge  through  binary  relations  (e.g.,  the 

correspondence of  study(ASTRONOMERS,  STARS) to the commonsense assertion  Astronomers study 

stars).  The  relationships  we discover  reflect  a  different  aspect  of  commonsense  and  lexical 

semantic knowledge, and can be thought of as a collection of relational kernels that underly 

commonsense assertions (e.g., the relatedness of penguin and tuxedo, which stems from, but does 

not fully express, the commonsense assertion that The penguin’s black and white coat of feathers  

makes it look like it is wearing a tuxedo).

On the discovery of labeled relations between nouns, we defer to existing information 

extraction methods (cf. Fader, Soderland, & Etzioni, 2011); insofar as these relations tend to be 

expressed by verbs, discerning the relation between two arbitrary, related entities falls slightly 

outside the purview of our current research into more general semantic relatedness.

1.5 Using Semantic Resources to Discover Relatedness

In recent years, the availability of robust semantic resources has enabled new approaches 

to relatedness mining. Wikipedia has seen widespread use on this front. It might at first seem 

13



unusual to classify Wikipedia not as a corpus, but as a semantic resource. Yet, it has several  

structural properties and annotations that qualify it as such and make it useful for relatedness 

mining, including: inter-article links that can be conceived of as edges connecting article nodes 

in a Wikipedia graph; disambiguation pages that enumerate distinct senses of articles that share 

the same title; the loose organization of its articles into an informal taxonomy (a  folksonomy); 

and structured  factual  assertions  in  articles’ info boxes,  indicating,  e.g.,  publication  dates  of 

books, movies in which actors have appeared, population sizes of cities, and so on.

These structural semantic attributes have been used to quantitatively measure relatedness 

between  nouns  or  concepts  (sometimes  using  disambiguation  pages  to  derive  concept 

inventories)  (Gabrilovich  & Markovitch,  2007;  Milne  & Witten,  2008a;  Strube  & Ponzetto, 

2006; Zaragoza et al., 2007), as well as to learn categorical relationships between WordNet noun 

senses (Ponzetto & Navigli, 2010). Some of the semantic relations underlying Wikipedia have 

also been extracted to large-scale knowledge networks like DBpedia (Bizer et  al.,  2009) and 

YAGO (Suchanek, Kasneci, & Weikum, 2007). As with lexico-syntactic pattern matching, these 

approaches are limited by the restricted set of semantic relations expressed in Wikipedia. Relying 

on links between articles as an indications of relatedness is also problematic, given the ubiquity 

of cross-references to tangentially related topics in Wikipedia (e.g., the link from the  glacier 

Wikipage to the article on Vulgar Latin).

Other approaches have turned to WordNet to search for relatedness. Navigli (2005) has 

developed a semi-automated method for creating a semantic network by disambiguating terms in 

collocations extracted from various semantically annotated resources, including WordNet and the 

Longman Language Activator, while Hughes and Ramage (2007) and Patwardhan and Pedersen 
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(2006)  have  used  IsA relations  and  sense  glosses  from WordNet  to  quantitatively  measure 

semantic relatedness between concepts. These WordNet-based approaches are inherently limited 

by the fact that, while the ontology serves as a rich taxonomy of semantic similarity, it lacks 

general  indications  of  semantic  relatedness.  Consider,  for  example,  how  WordNet-based 

approaches  would  discover  the  strong  semantic  relationship  between  ontologically  disparate 

entities like penguins and tuxedos. For this purpose, the minimalistic glosses of WordNet are 

simply insufficient; if we want to discover relatedness beyond semantic similarity, beyond the 

most obvious examples of relatedness, we need the assistance of a sizable corpus.

In general, hand-crafting useful ontologies and semantic resources is laborious work and 

requires some degree of training or expertise on the part of those who construct them. Such 

resources must provide massive amounts of data to be useful to learning algorithms, and require 

maintenance in order to remain relevant as language use shifts and changes over time. These 

limitations explain the field’s predominant focus on unsupervised or weakly supervised learning 

algorithms for constructing semantic resources, and inform our lexical co-occurrence approach, 

which does not rely on a corpus that has been semantically annotated.

1.6 Other Parts of Speech

We have thus  far  limited  our  discussion  to  relatedness  between concepts  denoted  by 

nouns. This is not to denigrate the lexical semantic contributions of other parts of speech to 

semantic  interpretation.  Rather,  verbs  and adjectives  are  excluded from consideration  in  our 

network on the grounds that their semantic associates typically take the form of entire semantic 

classes rather than lexical entries (cf. Katz & Fodor, 1963). For example, the verb “eat” has a 
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strong preference for themes (to use the technical term from semantic role labeling) that are 

categorized  as  food,  and  the  adjective  “tasty”  has  a  similar  preference  with  respect  to  its 

arguments  (cf.  Tanner  &  Gomez,  2010).  Selectional  constraints  on  arguments  (often  called 

selectional  restrictions  or  selectional  preferences)  can  override  strong  semantic  relatedness 

between nouns, as in (10) and (11) below (from Waltz & Pollack, 1985, p. 53, and Charniak, 

1983, p. 175, respectively):

(10) The sailor ate a submarine.

(11) The astronomer married the star.

In (10), the strong preference of the verb “eat” for food disambiguates the “submarine” to 

the  hoagie sense,  despite  the  strong  relationship  between  sailors  and  the  warship sense  of 

“submarine.”  A  similar  restriction  on  the  arguments  of  “marry”  overrides  the  semantic 

relatedness  between the  astronomer  and the  celestial  body sense  of  “star”  in  (11),  selecting 

instead the  sense  that  is  a  person (a  movie  star,  celebrity,  etc.).  We do,  however,  see some 

interference from the  astronomer–star and  sailor–submarine  relationships in  these examples; 

Waltz and Pollack (1985) report that most people perform a “cognitive doubletake” (p. 62) when 

encountering these sentences, which initially lead us down a “semantic garden path” (p. 64) 

before selectional restriction ultimately resolves the ambiguities.

Some verbs constrain their arguments more weakly than others (Resnik, 1997). Such is 

the case with “photograph,” which reveals some of the motivation behind our illustrative use of 

The astronomer photographed the star throughout this chapter: the verb’s weak preference for 

people and landscapes is easily overridden by the association of the astronomer and the celestial 
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body sense of “star.” Even the verb’s ultimate preference for physical objects can be set aside in 

natural language use, as in the following sentence from Wikipedia, where the theme takes the 

form of an abstraction:

(12) They photographed the fall of Sevastopol in September 1855.

It is true that there are cases in which verbs strongly associate with specific nouns rather 

than  entire  noun  classes,  but  these  are  typically  collocative  associations  or  lexicalized  verb 

phrases that warrant their own entries in the lexicon. For example, the idiomatic “eat crow” has 

its own lexical entry in Wictionary, but not WordNet; it would be unusual to associate the verb 

“eat” in WordNet with the noun “crow,” rather than instantiating a new, metaphorical sense of 

the verb. This, however, falls outside the aim of our research.

Clearly,  establishing  relatedness  between  noun  senses  is  not  a  panacea  for  all  our 

semantic interpretation problems. However, there is already a considerable body of research on 

associating verbs with selectional constraints. Resnik (1997) has had some success automatically 

abstracting from verb-noun lexical associations to verbs’ selection preferences for entire classes 

of nouns from WordNet,  while  Gomez (2001, 2004) has hand-crafted an ontology of verbal 

predicates with over 3000 verbs, associating them with selectional restrictions (in the form of 

WordNet noun classes, with some modifications to the upper ontology; see Gomez, 2007) that 

are bound to thematic roles and the syntactic relations that realize them. Verb senses have been 

arranged into classes (Levin, 1993) and organized taxonomically in WordNet (Fellbaum, 1998). 

Chklovski  and Pantel  (2004)  have  used  a  lexico-syntactic  pattern  approach to  automatically 

acquire a semantic network called VerbOcean, which indicates labeled relations between verbs, 
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while  Baker,  Fillmore,  and Lowe (1998)  have  produced a  semantically  annotated  corpus  of 

verbal  frames  (cf.  Fillmore,  1976)  called  FrameNet,  which  has  enabled  natural  language 

processing tasks such as semantic role labeling (Gildea & Jurafsky, 2002).

1.7 Outline

The remainder of this dissertation is structured as follows.

In Chapter  2, “Literature Review,” we present related research. We discuss WordNet in 

greater detail and present computational approaches to measuring similarity and relatedness that 

rely on the ontology. Other computational approaches are presented in relation to some of the 

cognitive literature on semantic associates and the relationship between corpus co-occurrence 

and  semantic  relatedness.  We  review  pattern-based  extraction  methods  for  relation  instance 

mining and examine how the semantic annotations and structural semantics of Wikipedia have 

been  used  in  computational  approaches  to  relatedness.  We  also  discuss  previous  efforts  to 

establish  large-scale  knowledge  networks  that  exhibit  characteristics  of  Quillian’s  semantic 

memory, such as ConceptNet, YAGO, DBpedia, CYC, and Freebase, to contextualize the novel 

contributions of our work.

In Chapters  3 and  4, “Constructing the Network: Semantic Associates of Nouns” and 

“Constructing the Network: From Nouns to Concepts,” we detail the automatic, unsupervised 

acquisition of our semantic network. We begin in Chapter 3 with an examination of corpus co-

occurrence  and  develop  an  information  theoretic  measure  that  gives  a  better  indication  of 

quantitative  relatedness  than  simply  counting  the  co-occurrence  of  words.  An  algorithm for 

determining  categorical  semantic  association  from  these  quantitative  measurements  of 
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relatedness is developed. Then, in Chapter  4, we present an elaborate suite of disambiguation 

methods that resolves related nouns in our network to noun senses in WordNet. Rather than defer 

evaluation of our network entirely to a separate chapter, we pause after each of these three steps 

(quantitative  measurement  of  relatedness,  categorical  association,  and  disambiguation)  to 

perform in loco evaluation of our progress so far.

In  Chapter  5,  “Coarse-Grained  Word  Sense  Disambiguation:  An  Application,”  we 

evaluate the performance of our network on a word sense disambiguation task. The network is 

used as  a  plug-in knowledge source for two graph-based WSD algorithms. We compare the 

performance of our network on this task to that of two similar resources: WordNet (Miller, 1998) 

and WordNet++ (Ponzetto & Navigli, 2010). The evaluation of our network on this task serves as 

a supplement to the in loco evaluation performed throughout the network acquisition processes 

of Chapters 3 and 4.

In Chapter  6, “Measuring Human Perceptions of Relatedness,” we present a study in 

which we establish a new set of relatedness norms for 122 noun pairs. The relatedness scores in  

our study are elicited from human participants using an established methodology that has been 

used in  multiple  studies  to  compile  gold standard similarity  norms.  In this  chapter,  we also 

discuss existing gold standards for quantitative, computational measures of semantic relatedness 

and motivate the need for a new gold standard.

In Chapter 7, “Conclusions,” we summarize the main contributions of our work. We close 

with a discussion of the current state of our semantic network, including elaborations on some of 

the relationships it contains and ideas for future work.
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1.8 Style Conventions: Words and the Concepts They Denote

Throughout  this  dissertation,  we  use  the  terms  “concepts”  and  “word  senses” 

interchangeably. In distinguishing between words and the concepts they denote, we quote the 

former and italicize the latter, appending a sense number from WordNet when appropriate. For 

example, we might speak of “astronomer” co-occurring with “star” frequently in a corpus, or 

discuss the semantic relatedness of  astronomer#1 to both  star#1 and  star#3, the two  celestial  

body senses of the noun “star” in WordNet. We sometimes find it convenient to refer to multiple 

senses  of  a  word  in  a  more  condensed  format,  in  which  case  we  adopt  the  convention  of 

appending a set of sense numbers (as with, e.g., star#{1,3} to refer to both star#1 and star#3).

In cases where a word’s part of speech might not be clear from the context in which it 

appears, we append a tag before the sense number(s): .n for nouns, .v for verbs, .a for adjectives, 

and .r for adverbs (as with, e.g., run.n#2 (a trial or test run) or beach.v#1 (to land on a beach)).

For typographical reasons, we present the arguments of binary relations in small caps 

(e.g.,  PartOf(SPINDLE,  SPINNING WHEEL)).  This  helps  to  distinguish arguments  from surrounding 

copy text and from the relation itself, which is always italicized. This convention also frees us 

from the awkward and ungainly presentation of quoted arguments in roman type when dealing 

with relations in resources that associate words instead of concepts.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review existing literature on computational approaches to relatedness. 

We present  several  WordNet-based measures  of  semantic  similarity  and relatedness  (Section 

2.2),  studies  that  establish  the  relationship  between  lexical  co-occurrence  and  semantic 

association  (Section  2.3),  and  corpus-based  methods  of  relationship  extraction  that  rely  on 

lexico-syntactic pattern matching (Section  2.4) and the semantic annotations of the Wikipedia 

corpus (Section 2.5) to discover relatedness in semi-supervised and unsupervised settings.

In many cases, these methods have been used to acquire large-scale semantic networks. 

Networks that we discuss throughout this chapter include: VerbOcean (Section 2.4.1), the Never-

Ending Language Learner (also Section 2.4.1), ConceptNet (Section 2.4.2), WordNet++ (Section 

2.5.4), YAGO (Section 2.5.5), and DBpedia (also Section 2.5.5). The chapter concludes with a 

discussion of the hand-crafted knowledge networks CYC and Freebase (Section 2.6). We begin, 

however, with an overview of the WordNet noun ontology.

2.1 WordNet

The WordNet noun ontology (Miller, 1998), is a hand-crafted lexical database in which 

noun  senses  are  organized  into  an  inheritance  system  of  semantic  classes.  Through  its 

instantiation of a variety of labeled edges indicating,  inter alia, subsumptive  IsA relationships 

between noun senses, WordNet constitutes a partial realization of Qullian’s (1968) dream of a 

computational model of semantic memory. It is by far the most extensive implementation of 

Qullian’s  ideas  to  date,  and  is  one  of  the  most  widely  used  resources  in  natural  language 
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processing (NLP). It has been employed in a variety of NLP applications, such as word sense 

disambiguation, coreference resolution, and measurement of semantic similarity and relatedness 

between  words,  word  senses,  and  documents;  incorporated  into  large-scale  commonsense 

knowledge networks (most notably by ConceptNet); and recreated in several other languages.

Nouns in WordNet are broken up into noun senses that are then grouped into synsets—

sets of noun senses grouped by synonymy.10 These synsets form the basic concept  nodes of 

WordNet. For example, “rook” has two senses in WordNet (see Figure 2.1 below). Its first sense, 

rook#1, is synonymous with  castle#3 (the chess piece), and the two noun senses compose the 

synset {castle#3, rook#1}. The second sense, rook#2 is synonymous with Corvus_frugilegus#1, a 

species  of  bird  resembling  a  crow;  together,  they  compose  the  synset  {rook#2,  

Corvus_frugilegus#1}. As with traditional dictionaries, each synset is associated with a gloss that 

provides a definition of the concept it denotes.

Synsets in WordNet are coordinated through a lexical inheritance hierarchy that indicates 

subsumptive relationships between concepts. Superordinate terms in the taxonomy are referred to 

as hypernyms, while subordinate terms are called hyponyms. For example, that a rook is a bird 

can be expressed by an IsA relationship between the concepts: IsA(ROOK, BIRD). We say that rook 

is a hyponym of  bird,  and  bird is a hypernym of  rook;  the hypernym is a super-class of the 

hyponym, and is said to subsume the hyponym.

Hypernymy and hyponymy are transitive relations, so that if  rook is a hyponym of bird 

and  bird is  a  hyponym  of  animal,  we  also  have  that  rook is  a  hyponym  of  animal.  The 

inheritance structure of WordNet thus implies that  rook should inherit all general properties of 

10 Because indications of synonymy are incorporated into the structure of WordNet in such a fundamental way, the 
ontology  is  sometimes  referred  to  in  the  literature  as  a  thesaurus—a  label  that  belies  the  power  and 
sophistication of WordNet.
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animals (they  eat  food to  acquire  energy,  they  reproduce,  and so on),  as  well  as  properties 

specific to birds (they have wings, lay eggs, and so on). Although WordNet does not express all  

of  these  properties  of  animals  and  birds,  the  ontology  establishes  a  general  inheritance 

framework that can be incorporated into any knowledge base that does.

================================================================================
rook#1:

(chess) the piece that can move any number of unoccupied squares in a direction 
parallel to the sides of the chessboard

castle, rook
 => chessman, chess piece
     => man, piece
         => game equipment
             => equipment
                 => instrumentality, instrumentation
                     => artifact, artefact
                         => whole, unit
                             => object, physical object
                                 => physical entity
                                     => entity

================================================================================
rook#2:

common gregarious Old World bird about the size and color of the American crow

rook, Corvus frugilegus
 => corvine bird
     => oscine, oscine bird
         => passerine, passeriform bird
             => bird
                 => vertebrate, craniate
                     => chordate
                         => animal, animate being, beast, brute, creature, fauna
                             => organism, being
                                 => living thing, animate thing
                                     => whole, unit
                                         => object, physical object
                                             => physical entity
                                                 => entity
================================================================================

Figure 2.1:
Lexical entries for “rook” in WordNet 3.0.
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All concepts in the ontology are ultimately hyponyms of entity, which serves as the root 

of  the  hierarchy,  and  which  has  as  its  immediate  hyponyms  the  dichotomous  upper-level 

ontological  concepts  physical_entity#1 and  abstraction#6 (as  well  as  a  third,  more nebulous 

hyponym,  thing#8,  which  can  refer  to  physical  or  abstract  things).  From this  dichotomous 

distinction  between  entities  that  are  either  physical  or  abstract  flow further  distinctions  that 

categorize word senses  into upper-level  ontological  concepts  called “unique  beginners.”  The 

taxonomic  categorization  of  these  unique  beginners  provides  the  basic  framework  for  the 

categorization of all nouns in WordNet.

The subsumptive structure of WordNet serves  as an indication of  semantic  similarity 

between  concepts.  Hyponymic  relationships  reflect  similarity  directly;  that  a  penguin is  an 

aquatic bird implies strong similarity between the two concepts. Through transitive subsumption, 

we can also infer the similarity of  penguin and  bird, although the increased distance between 

these nodes suggests weaker similarity than that of penguin to aquatic bird. Sister synsets in the 

ontology—those that are hyponyms of the same hypernym—also bear similarity to one another. 

For example, the shared subsumption of flamingo and penguin by aquatic bird suggests that they 

are similar entities, and that they are more similar to each other than either of them is to, say, a  

crow, which shares their subsumption by  bird, but not by the more specific category,  aquatic  

bird.

The  noun  ontology  expresses  other  relationships  between  concepts  in  addition  to 

synonymy and hyponymy, including antonymy, meronymy (part-whole relationships), attributes, 

derived forms, and domain terms, although these do not provide comprehensive indications of 

semantic relatedness. Miller (1998) points out, for example, that information about the game of 
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tennis is spread across the lexical database, with nothing to link together ontologically disparate 

concepts like tennis players, tennis equipment, tennis courts, and so on. 

2.2 WordNet-Based Measures of Similarity and Relatedness

We have  already  informally  observed  that  the  WordNet  ontology  indicates  semantic 

similarity between concepts through shared subsumption, and that it does not always indicate 

more  general  relatedness  between  concepts.  This  distinction—that  similarity  is  only  one 

particular type of relatedness, and that similarity relationships expressed in WordNet give us only 

a restricted view of the broader landscape of semantic relatedness—is a key idea that we return 

to  throughout  this  dissertation,  and  a  fact  that  is  well  established  in  the  literature  (Agirre, 

Alfonseca,  et  al.,  2009;  Budanitsky & Hirst,  2006;  Resnik,  1999).  There are  many types  of 

relatedness  beyond  semantic  similarity,  including,  but  not  limited  to,  the  antonymic  and 

meronymic part-whole relations expressed in WordNet. As Budanitsky and Hirst (2006) observe, 

“any kind of functional relationship or frequent association” (p. 13) can relate two entities. In 

this  section,  we  review several  approaches  that  use  the  WordNet  ontology  to  quantitatively 

measure semantic similarity and relatedness of words and concepts.

2.2.1 Preliminaries

WordNet-based measures of similarity and relatedness are typically divided into three 

categories:  path-based measures  that  treat  WordNet  as  a  graph  and  examine  the  semantic 

distance between concept nodes (synsets); information content measures that incorporate corpus-
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based probability frequencies; and gloss-based measures that turn to WordNet glosses for textual 

clues about relationships between synsets.

In the sections that follow, we denote measures of similarity between two concepts,  c1 

and  c2,  as  sim(c1,  c2),  with  subscripts  on  the  function  name  (sim)  to  distinguish  between 

measures. Relatedness between concepts is similarly denoted rel(c1, c2). For any such measure, it 

is  common  (Budanitsky  &  Hirst,  2006;  Resnik,  1995)  to  find  the  similarity  or  relatedness 

between two words by choosing the two word senses that maximize the function’s value, i.e.:

rel (w1 ,w2)  = max
c1∈s (w1) , c2∈ s(w2 )

rel(c1 , c2)  (1)

where s(wi) is the set of wi’s word senses (restricted to the appropriate part of speech).

2.2.2 Path Length and the Uniformity Problem

The simplest path-based approach to similarity is to take the length of the shortest path 

between two concepts in a network as a direct measure of the semantic distance between them 

(Lee, Kim, & Lee, 1993; Rada and Bicknell, 1989; Rada, Mili, Bicknell, & Blettner, 1989). The 

shorter the semantic distance, the greater the conceptual similarity. If we denote this shortest path 

length len(c1, c2), then we have a simple path length (PL) similarity measure:

simPL(c1 , c2)  =  Lmax  −  len(c1 , c2)  (2)

where  Lmax is the maximum possible path length. In the case of WordNet, this is sometimes 

estimated as twice the depth of the hierarchy. Jarmasz and Szpakowicz (2003) notably used (2) 

not with WordNet, but with the hierarchical organization of classes in Roget’s Thesaurus.
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===========================================================================
flamingo#1:

large pink to scarlet web-footed wading bird with down-bent bill; inhabits
brackish lakes

flamingo
 => wading bird, wader
     => aquatic bird
         => bird
             => ...
===========================================================================
penguin#1:

short-legged flightless birds of cold southern especially Antarctic regions
having webbed feet and wings modified as flippers

penguin
 => sphenisciform seabird
     => seabird, sea bird, seafowl
         => aquatic bird
             => bird
                 => ...
===========================================================================
seagull#1:

mostly white aquatic bird having long pointed wings and short legs

gull, seagull, sea gull
 => larid
     => coastal diving bird
         => seabird, sea bird, seafowl
             => aquatic bird
                 => bird
                     => ...
===========================================================================

Figure 2.2:
Lexical entries for flamingo#1, penguin#1, and seagull#1 in WordNet 3.0. The 

concepts are increasingly distant from the superordinate concept aquatic_bird#1, 
highlighting uniformity disparity in the ontology, where not all edges convey equal 

semantic distance between concepts.

As it relates to WordNet, a widely recognized problem with the path length approach is 

that  different  sections  of  the  ontology make  more  fine-grained  vertical  distinctions  between 

superordinate  and subordinate  classes.  Resnik  (1999) frames  this  as  the  uniformity  problem, 
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because the underlying assumption of the path length measure in  (2) is that all  edges in the 

ontology indicate uniform semantic distance between concepts. This simply is not the case in 

WordNet.  For  example,  flamingo,  penguin,  and  seagull are  increasingly  distant  from  the 

superordinate aquatic bird class in WordNet, despite the intuitive notion that they ought to be (at 

least approximately) semantically equidistant from aquatic bird (see Figure 2.2 above). (It is also 

of  peripheral  interest  that  the  distance  of  these  concepts  from  bird is  misaligned  with  the 

prototypicality effect (Rosch, 1978). Intuitively speaking, we would expect seagull to be closer 

to bird than penguin and flamingo are, because the latter two are less prototypical examples of 

birds.)

To  address  the  uniformity  problem,  Wu  and  Palmer  (1994)  introduced  a  path-based 

measure  that  scaled  path  distance  between  concepts  by  the  depth  of  their  lowest  common 

subsumer (LCS) in the ontology. The LCS of two concepts, denoted  lcs(c1,  c2), is the deepest 

concept in the ontology categorizing both c1 and c2, where depth is defined as the distance of a 

concept from the root of the ontology (entity). The scaled similarity measure of Wu and Palmer 

is commonly given in the form:

simWP (c1 , c2)  =  
2  ×  depth(lcs (c1 , c2))

depth(c1)  +  depth(c2)
 (3)

The role of the LCS as a scaling factor may at first seem unclear in the presentation of 

(3), until we realize that the denominator accounts twice for the depth of lcs(c1, c2) and once for 

the distance of the shortest path between c1 and c2, which must necessarily go through lcs(c1, c2), 

and is therefore simply len(c1,  c2) (the distance of the shortest path between the two concepts). 

Thus, (3) can be rewritten as:
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simWP (c1 , c2)  = 
2  ×  depth(lcs(c1 , c2))

2  ×  depth( lcs(c1 , c2))  +  len(c1 , c2)
 (4)

In a similar vein, Leacock and Chodorow (1998) developed a normalized path length 

measure that took into account the maximum depth of the ontology:

simLC(c1 , c2)  = −log
len(c1 , c2)

2  × max
c∈WordNet

depth(c)  (5)

Hirst and St-Onge (1998) developed a more elaborate path-based measure that relied not 

only  on  the  IsA taxonomy  of  WordNet,  but  also  meronymic  and  antonymic  relationships. 

Because the measure includes relations beyond hyponymy, it is often considered to capture not 

just similarity, but relatedness. Loosely speaking, it finds paths between concepts that have no 

more than five edges,  and those edges are  assigned orientations,  or directions,  based on the 

relations  they  denote:  hypernymic  and  meronymic  relations  are  considered  upward  links, 

hyponymic and holonymic relations are considered downward links, and antonymic relations are 

considered horizontal. A turns function establishes a shortest path between two concepts (subject 

to certain technical restrictions) and indicates the number of directional changes from edge to 

edge along the path. The resulting measure of relatedness is given as:

rel HS (c1 , c2)  =  C  −  len(c1 , c2)  −  k  ×  turns(c1 , c2)  (6)

In (6), C and k are constants; Hirst and St-Onge used 8 and 1, respectively.
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2.2.3 Information Content

In contrast to the path length normalization approaches of Wu and Palmer (1994) and 

Leacock and Chodorow (1998), Resnik (1995) observed that similarity between concepts can be 

measured by “the extent to which they share information in common” (p. 448) and established 

information content (i.e., negative log likelihood) as a direct measure of similarity:

simR(c1 , c2)  =  −log p(lcs(c1 , c2)) (7)

where p(c) is the probability of c or one of its instances (i.e., hyponymic terms) occurring in a 

corpus. To estimate the probability of each WordNet noun class’s occurrence, Resnik used noun 

frequencies from the 100 million word Brown Corpus and, in the case of polysemous nouns, 

distributed occurrence frequency evenly across all possible senses of those nouns:

p (c )  =  
freq(c)

N
(8)

freq (c)  =  ∑
n∈words(c)

count(n) (9)

where words(c) is the set of all words categorized by c, count(c) is the number of times c occurs 

in the corpus, and  N is the total number of nouns in the corpus, excluding those that are not 

represented in WordNet. For example, since the root of the ontology, entity, categorizes all nouns 

in the ontology, p(entity) = 1. Thus, entity has no information content; i.e., log(p(entity)) = 0, and 

concepts  that  have  entity as  their  lowest  common subsumer  in  the  ontology  are  considered 

maximally  dissimilar,  while  those  with  more  specific  and  less  frequently  occurring  lowest 

common subsumers are considered to exhibit stronger similarity.
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One of  the  nice  features  of  Resnik’s  information  content  approach  is  that  it  can  be 

adapted to any corpus while still leveraging the full power of the WordNet ontology, simply by 

recalculating p(c) from the frequency distribution of the new corpus. One of the shortcomings of 

the approach, however,  is  the even distribution of occurrence frequency across all  senses of 

polysemous nouns. The model does not take into account the fact that some senses of a noun are 

more common than others,  or that  polysemous nouns tend to keep the same meaning when 

repeated throughout the same discourse (Gale, Church, & Yarowsky, 1992; Yarowsky, 1993). 

Another  limitation  of  the  Resnik  measure  is  that  it  does  not  account  for  semantic  distance 

between concepts at all, so that two pairs of concepts with the same LCS are considered equally 

similar. For example, lcs(currency, credit card) = lcs(currency, dissertation) = abstraction, and 

therefore simR(currency, credit card) = simR(currency, dissertation).

In light  of the latter  shortcoming,  Jiang and Conrath (1997) adjusted the information 

content framework of Resnik to re-weight the semantic distance between a child and its parent 

node in the WordNet graph in terms of the conditional probability p(c |parent(c)):

dist JC (c , parent (c))  =  −log p(c∣ parent(c))  (10)

Taken as  a  measure  of  semantic  distance  between two  arbitrary concepts,  Jiang and 

Conrath’s  function  accounts  once  again  for  the  distance  of  the  shortest  path  between  those 

concepts. In its most common form, the measure reduces to:

dist JC (c1 , c2)  =  2  × log p (lcs(c1 , c2))  −  (log p (c1)  +  log p(c2))  (11)

Since  (11) is a measure of semantic  distance, smaller values of  distJC(c1,  c2) indicate 

greater semantic similarity.
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Our final information content measure comes from Lin (1998), whose theoretical work, 

when applied to an IsA taxonomy like WordNet, yields the following:

simLin(c1 , c2)  = 
2  ×  log p(lcs (c1 , c2))

log p(c1) + log p (c2)
 (12)

One  might  notice  that  Lin’s  measure  bears  striking  similarity  to  Wu  and  Palmer’s 

measure, particularly when viewed in the form of (3). Lin showed that Wu and Palmer’s measure 

was actually a special case of  (12) in which all edges between nodes in the  IsA taxonomy are 

equally  weighted.  Because  simLin can  be  considered  a  generalization  of  simWP,  some 

comparative  studies  of  relatedness  and similarity  measures  (e.g.,  Budanitsky & Hirst,  2006) 

evaluate only the former and not the latter directly.

2.2.4 Gloss-Based Measures

Lesk (1986) presented a dictionary-based approach for measuring relatedness that has 

since been applied to WordNet sense glosses to glean more general indications of relatedness 

than  the  similarity  expressed  through  the  ontology’s  IsA taxonomy.  The  sense  glosses  of 

WordNet serve as  traditional  dictionary definitions,  and as  such,  they contain content  words 

(nouns, adjectives, verbs, and adverbs) to which those noun senses otherwise have no direct links 

in the ontology. For example, the gloss of penguin#1 mentions “Antarctic regions,” providing a 

loose semantic link between the penguin and its natural habitat that is otherwise absent from the 

ontology.  The  relatedness  measure  of  Lesk  simply  counts  the  number  of  content  words  in 

common between two dictionary  definitions  (in  our  case,  WordNet  sense  glosses),  with  the 
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natural  assumption  that  more  strongly  related  concepts  will  have  more  words  in  common 

between their glosses:

rel Lesk(c1 , c2)  =  overlap (gloss(c1) , gloss(c2))  (13)

where gloss(ci) is the WordNet gloss of ci , and overlap(str1, str2) counts the number of content 

words  in  common  between  strings  str1 and  str2.  The  measure  can  of  course  be  used  to 

disambiguate nouns by maximizing relLesk(w1, w2) for all senses of w1 and w2.

Banerjee and Pedersen (2003) developed an extended version of Lesk’s overlap measure, 

sometimes referred to as “Extended Lesk” or “ExtLesk,” that works as follows: an extended 

gloss string, glossRj
(ci), is defined for relation Rj  and concept ci  as the concatenated glosses of 

all  concepts  (synsets)  related  to  ci  through  the  relation  Rj  (e.g.,  hypernymic,  hyponymic, 

meronymic, holonymic, troponymic, attribute, and gloss relations in WordNet). (When Rj  is the 

gloss relation,  glossRj
(ci) returns the gloss of  ci .) Given two concepts,  c1 and  c2, the extended 

gloss strings glossR1
(c1) and glossR2

(c2) are compared for every pair of relations R1 and R2 from 

the set of relations given above. Instead of the traditional overlap measure of Lesk, which simply 

counts  the  number  of  words  that  the  two  strings  have  in  common,  Banerjee  and  Pedersen 

introduced an overlap function that  awarded more points for multi-word substrings  (such as 

open-form compound nouns) common to both strings (namely by squaring the number of words 

in each substring overlap and returning the sum of those as the relatedness score). Thus, we have:

rel BP(c1 , c2)  =  ∑
Ri ∈R

∑
R j∈R

overlapsq(glossRi
(c1) , glossR j

(c2))  (14)
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where overlapsq(str1, str2) implements the multi-word square-of-word-count scoring mechanism 

described above, and R is the set of relations listed above. We discuss the ExtLesk algorithm in 

further detail in Section 5.3, where we use it in conjunction with our semantic network on a word 

sense disambiguation task.

Patwardhan  and  Pedersen  (2006)  also  used  WordNet  glosses  to  measure  relatedness 

between concepts, but they took a more geometric approach than the overlap methods described 

above.  Patwardhan and Pedersen  established a  second-order  vector  space  from the  WordNet 

glosses, and measured the relatedness of two concepts as the cosine of their respective gloss 

vectors  in  that  space.  In  a  more  graph-oriented  approach,  Hughes  and Ramage (2007)  used 

random walks  on the  WordNet  graph (a  Markov chain  with  transition  probabilities  between 

nodes) to measure relatedness between concepts. WordNet relations between synsets were used 

to establish edges in their graph, and glosses were also used to induce edges between nodes.

2.2.5 Evaluation

Resnik (1999) observed that “the worth of a similarity measure is in its fidelity to human 

behavior,  as measured by predictions of human performance on experimental  tasks” (p.  95). 

Toward  this  end,  the  most  common  gold  standard  evaluation  of  a  similarity  measure  is  its 

comparison to human judgments of similarity. For this purpose, most studies turn to the data 

from  Rubenstein  and  Goodenough  (1965)  and  Miller  and  Charles  (1991).  In  these  studies, 

participants rated the “similarity of meaning” of noun pairs  on a scale of 0.0 (“semantically 

unrelated”) to 4.0 (“highly synonymous”). Rubenstein and Goodenough had participants evaluate 

65 word pairs in this manner. Miller and Charles then replicated the experiment using 30 of the 
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original  65  word  pairs.  Comparison  to  mean  similarity  scores  from  these  studies  has  also 

emerged as a standard evaluation of relatedness measures in the literature, despite the fact that 

the  authors  specifically  elicited  similarity  ratings  of  the  noun pairs  in  their  studies,  and not 

ratings of semantic relatedness. We defer our critique of this particular method of evaluating 

relatedness measures to Chapter 6.

The  similarity  and relatedness  measures  we have  discussed  in  this  section  are  listed 

below in  Table 2.1.  Table 2.2 (below on page  36) presents the results of several comparative 

studies  evaluating  the  correlation  of  these  measures  to  the  Miller  and  Charles  (M&C)  and 

Rubenstein and Goodenough (R&G) data.

Table 2.1:
Summary of similarity and relatedness measures presented in this section.

Type of Measure Measure Authors

Path-Based Similarity simPL Rada et al. (1989)

simWP Wu and Palmer (1994)

simLC Leacock and Chodorow (1998)

simJS Jarmasz and Szpakowicz (2003)

Information Content Similarity simR Resnik (1995)

distJC Jiang and Conrath (1997)

simLin Lin (1998)

Gloss-Based Relatedness relLesk Lesk (1986)

relBP Banerjee and Pedersen (2003)

relPP Patwardhan and Pedersen (2006)

Graph/Path-Based Relatedness relHS Hirst and St-Onge (1998)

relHR Hughes and Ramage (2007)
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Where  available,  the  self-reported  results  of  the  measures’ original  authors  are  also 

reported. (Some authors, such as Hirst and St-Onge, did not evaluate correlation to the M&C and 

36

Table 2.2:
Correlations of various similarity and relatedness measures to M&C and R&G 

similarity scores. Correlation data come from four comparative studies that 
replicated several measures. Self-reported results are included where available.

From Jarmasz and Szpakowicz (2003) (using Pearson’s product-moment correlation, r)

Data simPL simLC simJS simR distJC simLin relBP relPP relHS relHR

M&C 0.732 0.821 0.878 0.775 0.695 0.823 -- -- 0.689 --

R&G 0.787 0.852 0.818 0.800 0.731 0.834 -- -- 0.732 --

From Budanitsky and Hirst (2006) (using Pearson’s product-moment correlation, r)

Data simPL simLC simJS simR distJC simLin relBP relPP relHS relHR

M&C -- 0.816 -- 0.774 0.850 0.829 -- -- 0.744 --

R&G -- 0.838 -- 0.779 0.781 0.819 -- -- 0.786 --

From Patwardhan and Pedersen (2006) (using Spearman’s rank correlation, ρ)

Data simPL simLC simJS simR distJC simLin relBP relPP relHS relHR

M&C -- 0.74 -- 0.72 0.73 0.70 0.81 0.91 -- --

R&G -- 0.77 -- 0.72 0.75 0.72 0.83 0.90 -- --

From Hughes and Ramage (2007) (using Spearman’s rank correlation, ρ)

Data simPL simLC simJS simR distJC simLin relBP relPP relHS relHR

M&C -- -- -- -- 0.653 0.625 0.869 0.888 -- 0.904

R&G -- -- -- -- 0.584 0.599 0.829 0.789 -- 0.817

Self-Reported r r r r n/a ρ ρ

Data simPL simLC simJS simR distJC simLin relBP relPP relHS relHR

M&C -- 0.740 0.878 0.791 0.828 0.834 0.67 0.91 -- 0.904

R&G -- -- 0.818 -- -- -- 0.60 0.90 -- 0.817



R&G ratings in their original studies.) In Table 2.2, the presentation of simPL from Jarmasz and 

Szpakowicz  is  their  own  implementation  of  a  simple  shortest  path  length  measure  using 

WordNet. Recall that the Jarmasz and Szpakowicz measure, simJS, is also a simple shortest path 

length measure, but that it evaluates paths through Roget’s Thesaurus rather than WordNet.

Some of the studies cited in Table 2.2 use Spearman’s rank correlation (ρ), while others 

use Pearson’s product-moment correlation (r). Pearson’s correlation measures the strength of the 

linear relationship between two datasets, while Spearman’s evaluates the relationship between 

ordered rankings of the data points, without respect to a linear relationship between values. Both 

coefficients range from 0.0 to 1.0 inclusively, with higher values indicating better correlation to 

the human-assigned scores; 1.0 would indicate perfect correlation.

The results reported for individual measures vary, sometimes widely, across the literature. 

Budanitsky and Hirst (2006) offer possible explanations for these discrepancies between studies: 

a) variations in how authors count frequency with respect to compound nouns, b) the use of 

different  version  of  WordNet,  and  c)  the  use  of  different  corpora  when  harvesting  word 

frequency data and probability distributions for WordNet classes.

In  addition  to  examining  correlation  to  human  judgments,  surveys  of  similarity  and 

relatedness  measures  typically  select  an  applied  task  to  provide  further  evaluation  of  those 

measures.  These tasks  vary widely  in  the  literature.  Jarmasz and Szpakowicz (2003) used a 

standardized synonym test (for each question, the system attempted to identify which one of four 

multiple choice answers was “nearest in meaning” to a given target word), which is of course 

well  suited  to  evaluating  similarity  measures,  but  does  not  provide  a  natural  testbed  for 

evaluating  relatedness  measures.  Budanitsky  and  Hirst  (2006)  evaluated  measures—both 
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similarity  and  relatedness—on  a  malapropism detection  task  (if  a  word  like  dairy bore  no 

semantic relation to nearby words, but a word with a very similar spelling (e.g., diary) did, the 

latter was to be suggested as a spelling correction). Patwardhan and Pedersen (2006) employed 

similarity and relatedness measures in a word sense disambiguation task (Senseval-2). Hughes 

and Ramage (2007) restricted their evaluation to human judgment correlation on three datasets: 

M&C,  R&G, and  a  third  dataset,  WordSim353 (Finkelstein  et  al.,  2002),  which  has  certain 

limitations as a gold standard (see, e.g., the critique of Jarmasz & Szpakowicz, 2003), and which 

we discuss in more detail in Chapter 6.

2.3 Lexical Co-occurrence and Semantic Association

Several  studies  have  examined  the  relationship  between  lexical  co-occurrence  and 

semantic association. In this section, we review corpus-based approaches to semantic similarity 

(which  tend to  be  distributional  in  nature),  and semantic  relatedness  (which  tend to  rely on 

lexical co-occurrence frequency).

2.3.1 Distributional Approaches to Semantic Similarity

Distributional  approaches  have  been  widely  employed  in  the  literature  to  measure 

similarity of meaning as a function of the similarity of contexts in which words occur throughout 

a  corpus  (Gorman  &  Curran,  2006;  Grefenstette,  1994;  Lin,  Zhao,  Qin,  &  Zhou,  2003; 

Rubenstein & Goodenough, 1965; Sahlgren,  2008; Weeds,  2003; Weeds & Weir,  2006).  The 

observation that “words which are similar in meaning occur in similar contexts” (Rubenstein & 
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Goodenough, 1965, p. 627) harks back to the Distributional Hypothesis of Harris (1954/1985) 

and the oft-quoted Firthian view that “[y]ou shall know a word by the company it keeps” (Firth,  

1957/1968, p. 179).

In  an  early  empirical  investigation  into  the  distributional  hypothesis,  Rubenstein  and 

Goodenough developed a measure of word similarity based on contextual overlaps, as follows:

simRG(a , b)  =  
∣ctx (a)  ∩  ctx(b)∣

MIN{∣ctx(a)∣,∣ctx(b)∣}
(15)

where ctx(w) is the context of w (i.e., the set of all words in all sentences containing w).

To evaluate their measure, Rubenstein and Goodenough first had 51 human participants 

rate the “similarity of meaning” of 65 noun pairs on a scale of 0.0 to 4.0, with higher values  

indicating stronger similarity.  The mean similarity scores assigned by participants for the 65 

noun pairs are given  below in  Table 2.3. As we saw in the previous section, this dataset has 

become a time-honored gold standard for evaluation of computational similarity measures.

Rubenstein and Goodenough then had a separate group of individuals create a corpus of 

sentences containing the 48 distinct nouns represented in their  65 pairs  from  Table 2.3. The 

nouns were divided into two sets of equal size, A and B, such that the R&G noun pairs always 

contained exactly one term from A and one term from B. One group of participants was given the 

nouns in set A and asked to produce two sentences for each of them. A second group performed 

the same task using the nouns in set B. Participants were instructed to write sentences at least ten 

words in length and to use the words they were given as nouns. The resulting corpus consisted of 

4,800 sentences and approximately 64,800 words.
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Table 2.3:
Subjective similarity score judgments from Rubenstein and Goodenough (1965).

# Word Pair Score # Word Pair Score

1 cord smile 0.02 34 car journey 1.55

2 rooster voyage 0.04 35 cemetery mound 1.69

3 noon string 0.04 36 glass jewel 1.78

4 fruit furnace 0.05 37 magician oracle 1.82

5 autograph shore 0.06 38 crane implement 2.37

6 automobile wizard 0.11 39 brother lad 2.41

7 mound stove 0.14 40 sage wizard 2.46

8 grin implement 0.18 41 oracle sage 2.61

9 asylum fruit 0.19 42 bird crane 2.63

10 asylum monk 0.39 43 bird cock 2.63

11 graveyard madhouse 0.42 44 food fruit 2.69

12 glass magician 0.44 45 brother monk 2.74

13 boy rooster 0.44 46 asylum madhouse 3.04

14 cushion jewel 0.45 47 furnace stove 3.11

15 monk slave 0.57 48 magician wizard 3.21

16 asylum cemetery 0.79 49 hill mound 3.29

17 coast forest 0.85 50 cord string 3.41

18 grin lad 0.88 51 glass tumbler 3.45

19 shore woodland 0.90 52 grin smile 3.46

20 monk oracle 0.91 53 serf slave 3.46

21 boy sage 0.96 54 journey voyage 3.58

22 automobile cushion 0.97 55 autograph signature 3.59

23 mound shore 0.97 56 coast shore 3.60

24 lad wizard 0.99 57 forest woodland 3.65

25 forest graveyard 1.00 58 implement tool 3.66

26 food rooster 1.09 59 cock rooster 3.68

27 cemetery woodland 1.18 60 boy lad 3.82

28 shore voyage 1.22 61 cushion pillow 3.84

29 bird woodland 1.24 62 cemetery graveyard 3.88

30 coast hill 1.26 63 automobile car 3.92

31 furnace implement 1.37 64 midday noon 3.94

32 crane rooster 1.41 65 gem jewel 3.94

33 hill woodland 1.48



Rubenstein and Goodenough used their manually-generated corpus to compare the results 

of their overlap measure to the mean similarity scores from their human subjects, and found that 

their overlap measure reliably predicted strong synonymy (values greater than 3.0 on their scale). 

However, the authors observed that dissimilar nouns exhibited too much homogeneity in their 

contexts for the measure to make useful distinctions between “low” and “medium” similarity.

Hindle (1990) showed that predicate-argument structure could also play a useful role in 

measuring semantic  similarity.  He found that nouns exhibiting high mutual information with 

many of the same verbs—and, importantly, via the same grammatical relation to those verbs, 

such as subject or object positions—tended to be semantically similar. For example, one can 

establish the similarity of apples and peaches by the fact that both can be bought,  sold,  baked, 

harvested, grown, picked, sliced, eaten, and so on.

Subsequent to these early approaches, one of the most common methods of measuring 

semantic similarity has been cosine similarity, often categorized in the literature as a geometric 

similarity measure (Sahlgren,  2008; Weeds,  2003): the context of a word is represented as a 

normalized co-occurrence frequency vector, and the similarity of two words is simply the cosine 

of the angle between their representative vectors, which ranges from 0.0 (completely dissimilar) 

to 1.0 (contextually identical).

2.3.2 Co-occurrence Approaches to Semantic Relatedness

Other  studies have established co-occurrence as an indication of semantic association 

(Church  &  Hanks,  1990;  McKoon  &  Ratcliff,  1992),  and  have  shown  that  co-occurrence 
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frequency correlates to association strength (Chaudhari, Damani, & Laxman, 2011; Spence & 

Owens, 1990; Wettler & Rapp, 1993).

Spence and Owens (1990) first established this correlation by developing a relatedness 

measure that relied on adjusted co-occurrence frequencies from a large corpus, as follows:

rel SO(x , y )  = f c( x , y)  − f c (x , y ' )  (16)

where fc(x, y) is the frequency with which y follows x within a window of c characters, and y' is 

a matched control word with corpus frequency and character count approximately equal to that 

of y.

Spence and Owens compared the values produced by their measure to a subset of the 

Palermo and Jenkins (1964) association norms. The Palermo and Jenkins data were one of the 

earliest collections of association norms, and were elicited from human participants in a free 

word association task. Individuals in their study were presented with lists of stimulus words (200 

in total) and instructed to write the first  response word that came to mind for each stimulus. 

Participants  were  restricted  to  one  response  word  per  stimulus.  In  their  study,  Palermo and 

Jenkins elicited participation from 500 students (250 male,  250 female) in each of grades  4 

through 8, 10, and 12, as well as 1,000 college students (500 male, 500 female). The number of 

people responding to a given stimulus with a particular word was taken as a direct indication of 

the association strength between stimulus and response.

Spence and Owens restricted their  consideration to the responses of college students. 

Thus,  the theoretical maximum value of association strength was 1,000 (all  college students 

responding to some stimulus with the same response). They also limited their consideration to a 

subset of 47 stimuli,  choosing words that were concrete  nouns,  were not frequently used as 
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adjectives,  and occurred  above a  frequency threshold  of  1/100,000 in  the  100 million  word 

Brown Corpus. From these stimuli, Spence and Owens derived their 47 noun pairs by choosing 

the noun from Palermo and Jenkins with the greatest response frequency for each stimulus.

The associate pairs used by Spence and Owens are presented  below in  Table 2.4 along 

with  their  association  strength  from the  Palermo and Jenkins  norms.  (For  example,  that  the 

association strength of the pair  baby—boy is  107 reflects  the fact that  107 out of the 1,000 

college students in Palermo and Jenkins’ study gave “boy” as their first response to the stimulus 

word, “baby.”) Frequency of co-occurrence of those nouns is derived from the Brown Corpus. 

For  each stimulus,  an  unrelated control  word is  also given,  along with its  frequency of  co-

occurrence with the stimulus noun. Spence and Owens’ measure of association strength (relSO) is 

given in the right-most column. Co-occurrence figures in  Table 2.4 are derived using a 250-

character window.

From their experiments, Spence and Owens established four key results: a) semantically 

related words tend to co-occur more frequently in a corpus than unrelated words; b) association 

strength correlates to  adjusted co-occurrence frequency (relSO),  albeit  weakly (r = 0.42,  p < 

0.01); c) strongly associated nouns tend to co-occur more closely than weakly associated nouns 

(i.e.,  as association strength diminishes,  lexical  distance between stimulus  and response in  a 

corpus increases); and d) the effects of (a) and (c) are observable even when considering co-

occurrence windows up to 1,000 characters in length, and the effect of (b) is observable up to 

window widths of 2,000 characters.
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Table 2.4:
Corpus co-occurrence and adjusted co-occurrence (relSO) frequencies from 

Spence and Owens (1990) on select noun pairs from the Palermo and Jenkins 
(1964) association norms. Window size is 250 characters.

Stimulus 
Word

Response 
Word

Association 
Strength

Freq.
Unrelated
Word

Freq. relSO

Baby Boy 107 1 Board 0 1

Bath Water 264 2 Hand 0 2

Bible God 316 10 Door 1 9

Boy Girl 705 20 Land 0 20

Bread Butter 466 0 Pistol 0 0

Butter Bread 575 0 Seed 1 -1

Carpet Rug 311 0 Map 0 0

Cars Trucks 107 3 Bombers 0 3

Chair Table 428 2 Road 0 2

Child Baby 173 4 Wind 1 3

Children Kids 188 2 Rice 0 2

City Town 232 8 Table 1 7

Cottage House 264 2 School 0 2

Doctor Nurse 173 2 Basket 0 2

Dogs Cats 679 2 Drops 0 2

Doors Windows 358 0 Troops 0 0

Earth Dirt 143 0 Meat 1 -1

Fingers Hand 341 5 Night 1 4

Foot Shoe 255 1 Purse 0 1

Fruit Apple 450 0 Heel 0 0

Girl Boy 598 12 Land 0 12

Hand Foot 228 1 Song 2 -1

Head Hair 194 13 Food 2 11

House Home 230 21 Year 14 7

King Queen 651 1 Seed 0 1

Lamp Light 706 6 Church 0 6

Lion Tiger 216 0 Canoe 0 0

Man Woman 624 28 Court 5 23
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Stimulus 
Word

Response 
Word

Association 
Strength

Freq.
Unrelated
Word

Freq. relSO

Moon Star 236 0 Vein 0 0

Mountain Hill 213 0 Boat 0 0

Music Song 164 7 Dust 0 7

Needle Thread 457 3 Stove 0 3

Ocean Water 362 7 Hand 0 7

Priest Church 225 0 Room 0 0

River Water 286 8 Hand 0 8

Salt Pepper 408 7 Posture 0 7

Sheep Lamb 182 0 Lace 0 0

Shoes Feet 358 3 Word 0 3

Soldier Man 177 1 Time 1 0

Stem Flower 398 0 Giant 0 0

Stomach Food 242 1 Club 0 1

Street Road 118 1 Table 1 0

Table Chair 691 3 Dream 0 3

Tobacco Smoke 482 2 Muscle 0 2

Whiskey Drink 328 0 Team 0 0

Window Glass 216 8 Bridge 1 7

Woman Man 528 25 Years 5 20

The word counting approach of Spence and Owens was applied to a limited set of noun 

pairs, and one of its weaknesses was that it required that both nouns be given a priori in order to 

measure relatedness. Although they provided some evidence that unrelated pairs of nouns co-

occurred infrequently, their approach gave no indication of how to deal with spurious cases of 

high co-occurrence frequency. Consider, e.g., the co-occurrence frequency in Table 2.4 of related 

nouns “house” and “woman” with the unrelated,  matched control word, “year(s)” (14 and 5, 

respectively). In comparison, the relatively low co-occurrence frequency of, e.g., related nouns 
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“house” and “home,” suggests that “year(s)” might have a tendency to co-occur frequently with 

unrelated nouns in the corpus.

Church and Hanks (1990), in contrast, were interested in mining corpora for semantic 

association with only the stimulus, or target, pre-specified. They treated recovery of associates as 

an open-ended task, examining values of all words co-occurring with a target of interest (with the 

restriction that word pairs must co-occur at least five times, as their measure was prone to error 

with lower co-occurrence frequencies). To measure association strength, and to aid in quashing 

noise  from  spurious  co-occurrence  of  unrelated  terms,  Church  and  Hanks  introduced  an 

association ratio, which was essentially an estimate of mutual information:

relCH (x , y )  =  I ( x , y)  = log2

Pw(x , y )

P( x) P ( y)
 (17)

where  Pw(x,  y) is the normalized co-occurrence frequency of  x and  y within a window of  w 

words:

Pw (x , y )  = 
f w(x , y)

N
 (18)

where fw(x, y) is the co-occurrence frequency of x and y (the frequency with which y follows x 

within a window of w words), and N is the size of the corpus (in words). Similarly, P(x) and P(y) 

are the normalized unigram (occurrence) frequencies of x and y:

P(x)  = 
f ( x)
N

 (19)

where f(x) is the raw occurrence frequency of x in the corpus.
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Church and Hanks observed that their association ratio, when applied to the 15 million 

word 1987 AP corpus and the 36 million word 1988 AP corpus, produced results that seemed 

intuitively appealing.  For example, some of the strongest and weakest associates of “doctor” 

inferred by their measure are presented in Table 2.5.

Notice that some of the strong associates in  Table 2.5 are verbs and adjectives; Church 

and Hanks observed that their association ratio was not just useful for discovering noun-noun 

associations, but that it was also useful for discovering associates of other parts of speech, and 

for  function  words  in  addition to  content  words  (e.g.,  the preposition  “to” was found to be 
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Table 2.5:
Strong and weak associates of “doctor” using the association ratio (relCH).

Data is taken from Church and Hanks (1990).

relCH(x, y) freq(x, y) freq(x) x freq(y) y

11.3 12 111 honorary 621 doctor

11.3 8 1105 doctors 44 dentists

10.7 30 1105 doctors 241 nurses

9.4 8 1105 doctors 154 treating

9.0 6 275 examined 621 doctor

8.9 11 1105 doctors 317 treat

8.7 25 621 doctor 1407 bills

8.7 6 621 doctor 350 visits

8.6 19 1105 doctors 676 hospitals

8.4 6 241 nurses 1105 doctors

. . .

0.96 6 621 doctor 73785 with

0.95 41 284690 a 1105 doctors

0.93 12 84716 is 1105 doctors



strongly associated with the verbs “alluding,” “amounted,” “relating,” “reverted,” “resorting,” 

and so on; the infinitival “to” was found to be strongly associated with verbs like “obligated,” 

“trying,”  “compelled,”  “supposed,”  “vowing,”  “tends,”  “tries,”  and  so  on).  Their  mutual 

information approach was successful at discovering meaningful verb-object relationships in both 

directions,  as  well.  For  example,  Table  2.6 below shows  the  re-ordering  effect  of  mutual 

information as compared with co-occurrence frequency for direct objects of the verb “drink,” as 

well as the same for verbs that appeared in their corpus with “telephone” as a direct object.

Table 2.6:
Direct objects of the verb “drink” and verbs with “telephone” as a direct object. 
The re-ordering effect of the association ratio is evident in comparison to corpus 
co-occurrence frequencies. Data are excerpted from Church and Hanks (1990).

“What Can You Drink?”

verb – x object – y relCH(x, y) freq(x, y)

drink martinis 12.6 3

drink cup water 11.6 3

drink champagne 10.9 3

drink beverage 10.8 8

drink cup coffee 10.6 2

drink cognac 10.6 2

“What Can You Do to a Telephone?”

verb – x object – y relCH(x, y) freq(x, y)

sit by telephone 11.78 7

disconnect telephone 9.48 7

answer telephone 8.80 98

hang up telephone 7.87 3

tap telephone 7.69 15

pick up telephone 5.63 11
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Although Church and Hanks did not provide a quantitative analysis of their findings or 

compare  their  results  to  association  norms,  and  although  they  provided  limited  anecdotal 

evidence  for  the  success  of  their  association  ratio,  their  work  established  the  usefulness  of 

information theoretic measures in navigating the complexities and noise of a large corpus to 

discover indications of semantic relatedness.

2.4 Lexico-Syntactic Pattern Matching

Lexico-syntactic  pattern  matching  has  seen  wide  use  in  the  literature  for  extracting 

semantic relationships from text (Berland & Charniak, 1999;  Etzioni et al., 2004;  Girju et al., 

2006; Hearst, 1992; Moldovan, Badulescu, Tatu, Antohe, & Girju, 2004; Pantel & Pennacchiotti, 

2006). The technique has also been employed in question answering systems (Fleischman, Hovy, 

& Echihabi, 2003; Ravichandran & Hovy, 2002) and used to generate semantic lexicons (Riloff 

& Jones, 1999), semantic relations between verbs (Chklovski & Pantel, 2004), and large-scale 

semantic networks (Carlson et al., 2004; Liu & Singh, 2004a).

An early  approach  to  discovering  relatedness  between  nouns  saw the  use  of  lexico-

syntactic patterns to harvest specific types of relations from large corpora. Hearst (1992) was the 

first to embark on this approach, using pattern matching to automatically discover hyponymic 

relationships, many of which were not articulated in the WordNet ontology. For example, the 

pattern NP{, NP}*{,} or other NP was used to establish all the former NPs as hyponyms of the 

latter, as in, “... temples, treasuries, and other important civic buildings, …” where we see that  

temple and  treasury are hyponyms of  civic building. Hearst used a set of six lexico-syntactic 

patterns that she manually specified in a five-step process, as follows: a) decide on a relation of 
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interest  (in  Hearst’s  case,  hyponymy);  b)  list  examples  that  typify  the  relation,  such  as 

hyponym(ENGLAND,  COUNTRY); c) search the corpus for sentences where these terms co-occur; d) 

inspect those sentences and infer general patterns that associate terms under this relation; and e) 

use those patterns to extract further examples that typify the relation. If additional patterns are 

desired, we can repeat the process from step (b) using the new examples garnered from step (e).

Table 2.7:
Heart’s lexico-syntactic patterns for hyponymic relationships, with examples 

extracted from Wikipedia. NP↑ indicates a hypernym; NP↓ indicates a hyponym.

# Pattern Examples

(P1) NP↑ such as {NP↓, }*{or|and} NP↓ creatures such as minotaurs, werewolves, and hags
→ hyponym(MINOTAUR, CREATURE)
→ hyponym(WEREWOLF, CREATURE)
→ hyponym(HAG, CREATURE)

(P2) such NP↑ as {NP↓, }*{or|and} NP↓ such cities as Berlin, Hamburg, Merseburg, Münster,  
Kassel, Hannover, and Cologne
→ hyponym(BERLIN, CITY)
→ hyponym(HAMBURG, CITY)
→ etc…

(P3) NP↓{, NP↓}*{,} or other NP↑ wastebasket, trashcan, or other garbage receptacle
→ hyponym(WASTEBASKET, GARBAGE RECEPTACLE)
→ hyponym(TRASHCAN, GARBAGE RECEPTACLE)

(P4) NP↓{, NP↓}*{,} and other NP↑ engineering, healthcare, and other professions
→ hyponym(ENGINEERING, PROFESSION)
→ hyponym(HEALTHCARE, PROFESSION)

(P5) NP↑, including {NP↓, }*{or|and} NP↓ block ciphers, including MARS, RC6, and Twofish
→ hyponym(MARS, BLOCK CIPHER)
→ hyponym(RC6, BLOCK CIPHER)
→ hyponym(TWOFISH, BLOCK CIPHER)

(P6) NP↑, especially {NP↓, }*{or|and} NP↓ fruits, especially peaches, apricots, and pears
→ hyponym(PEACH, FRUIT)
→ hyponym(APRICOT, FRUIT)
→ hyponym(PEAR, FRUIT)
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Table 2.7 above shows the six lexico-syntactic patterns created and used by Hearst. The 

table also shows sample sentence fragments we skimmed from the Wikipedia corpus using each 

pattern, along with the hyponymic relationships established from each of those fragments.

In a similar vein, Berland and Charniak (1999) manually derived two11 lexico-syntactic 

patterns for extracting meronymic (part-whole) relationships from a corpus (see Table 2.8 below) 

and reported some success applying them to six hand-selected target wholes: “book,” “building,” 

“car,” “hospital,” “plant,” and “school.”

A novel  contribution  of  Berland  and  Charniak’s  work  was  the  use  of  log-likelihood 

(Dunning,  1993)  and  probability  distribution  metrics  to  quantify  the  likelihood  that  each 

extracted relation was valid (whereas Hearst took a single occurrence of a matched pattern as 

evidence of a hyponymic relationship). Using these metrics to rank the results they extracted 

11 Berland and Charniak originally defined five lexico-syntactic patterns, but eliminated three of them when they 
discovered they were performing poorly in preliminary extraction trials.
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Table 2.8:
Berland and Charniak’s lexico-syntactic patterns for meronymy, with examples 

extracted from Wikipedia. NP↑ indicates a whole; NP↓ indicates a part.

# Pattern Examples

(P7) NP↑’s NP↓ car’s radiator
→ meronym(RADIATOR, CAR)

car’s a-pillars
→ meronym(A-PILLAR, CAR)

car’s window
→ meronym(WINDOW, CAR)

(P8) NP↓ of {the|a}{ JJ |NP}* NP↑ Chassis of the car
→ meronym(CHASSIS, CAR)



from their corpus, for each target whole, Berland and Charniak took the 50 strongest meronym 

candidates and presented them to human judges alongside 50 unrelated terms for evaluation. 

They found that, among the top 50 meronyms they discovered for each of their six target wholes, 

55% of  them were valid  meronyms. When restricting their  consideration to  only the top 20 

results for each seed, they found their precision to be approximately 70%.

Hearst,  in  contrast,  reported  difficulty  in  mining meronymic  relations,  attributing  the 

problem to the fact that “[t]he patterns for this [part-whole] relation do not tend to uniquely 

identify it, but can be used to express other relations as well” (p. 542). She also observed that 

extracted hyponymic relationships were sometimes invalid out of context, but typically reflected, 
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Table 2.9:
Hyponymic (P3) and meronymic (P7, P8) extraction patterns sometimes identify 

context-specific relationships or typify other relations, such as PropertyOf.

# Pattern Examples

(P3) NP↓{, NP↓}*{,} or other NP↑ The weft threads are usually wool or cotton, but 
may include silk, gold, silver, or other alternatives.
→ *hyponym(SILK, ALTERNATIVE)
→ *hyponym(GOLD, ALTERNATIVE)
→ *hyponym(SILVER, ALTERNATIVE)

(P7) NP↑’s NP↓ car’s performance
→ *meronym(PERFORMANCE, CAR)

car’s history
→ *meronym(HISTORY, CAR)

car’s ability
→ *meronym(ABILITY, CAR)

(P8) NP↓ of {the|a}{ JJ |NP}* NP↑ velocity of the car
→ *meronym(VELOCITY, CAR)

width of the car
→ *meronym(WIDTH, CAR)



at the very least, some form of semantic relatedness. Table 2.9 above shows examples of both of 

these problems using one of Hearst’s patterns (P3) and both of Berland and Charniak’s patterns 

(P7 and P8) to extract relationships from Wikipedia. The categorization of silk, gold, and silver 

as  alternatives is certainly a context-specific discovery, and the meronymic patterns exhibit a 

propensity for extracting PropertyOf relationships.

In light  of  Hearst’s  difficulty  mining meronymic relationships,  Berland and Charniak 

explicitly attributed their relative success to the size of their corpus (the 100 million word LDC 

North American News Corpus). However, the authors also pointed out that the generality of their 

approach could not be guaranteed because the six target wholes they used in their experiments 

were particularly amenable to part-whole relation mining. Specifically, the target wholes were 

selected by the authors on the grounds that they each exhibited high rates of occurrence in the 

corpus;  each  whole  was,  in  fact,  participant  to  part-whole  relationships;  and  the  authors 

perceived that there was a strong chance of those part-whole relationships being mentioned in the 

corpus.

Girju et  al.  (2006) observed the tendency, apparent from the results  in  Table 2.9, for 

extraction patterns to “express different semantic relations in different contexts” (p.  87). For 

example, the pattern  X with  Y can express relationships of meronymy (cf.  It was the girl with  

blue eyes), possession (cf. The baby with the red ribbon is cute), or kinship (cf. The woman with  

triplets received a lot of attention) (examples from Girju et al., 2006, p. 94 & 96).  To improve 

precision  and  recall  of  extraction  patterns,  they  introduced  an  approach  that  incorporated 

selectional restrictions on WordNet classes. Their system was trained on positive and negative 

examples in which parts and wholes were manually annotated with their corresponding WordNet 
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noun senses. The authors used a classifier, the C4.5 decision tree induction algorithm (Quinlan, 

1993), to learn rules on the form, “if X is/is not of a WordNet semantic class A and Y is/is not of  

WordNet semantic class B, then the instance is/is not a part-whole relation” (Girju et al., 2006, p. 

96).  Their  approach  automatically  induced  extraction  patterns  with  precision  and  recall 

performance of approximately 80% on two large corpora (the Wall Street Journal and LA Times 

collections), but at the cost of large amounts of manually annotated training data.

Recognizing both the appeal and limitations of Girju et al.’s semi-automated approach, 

Pantel  and Pennacchiotti  (2006)  developed  Espresso,  a  “minimally  supervised  bootstrapping 

algorithm” (p. 114) for labeled relation learning and instance extraction. Their algorithm begins 

with manually specified seed sets of instances that exemplify a relation—typically between 10 

and 15 instances. An automatic pattern induction phase then iteratively produces sets of generic 

patterns  that,  like  the  patterns  of  Berland  and  Charniak,  are  sometimes  overly  inclusive. 

However, relation instances extracted by those patterns are also subjected to what the authors call 

“reliable patterns” (p. 115 & 116), which are too exclusive to be used to harvest instances from a  

corpus (i.e., they have low recall), but which exhibit high precision and are therefore useful for 

evaluating the quality of extracted relation instances. Thus, Pantel and Pennacchiotti alleviated 

the  acquisition  bottleneck  of  lexico-syntactic  pattern  extraction  methods  in  two  ways:  they 

eliminated the need to manually specify extraction patterns, and they reduced the amount of 

supervision or semantic annotation required for automatic pattern induction by creating a method 

that relied on very small sets of seed instances for each relation.

The precision of relation instance extraction by Espresso from two corpora is presented 

below in Table 2.10. One corpus is a collection of newswire articles (TREC), while the other is  
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an  entire  college-level  chemistry  textbook (CHEM).  The authors  extracted  IsA,  PartOf,  and 

succession relationships  from  the  TREC  corpus.  From  the  CHEM  corpus,  they  extracted 

instances of the domain-specific reaction and production relations, as well as the IsA and PartOf 

relations. For extraction from a large corpus, no effective measure of recall is feasible, and so 

only precision results are reported in Table 2.10.

Table 2.10:
Precision of relation instance extraction by Espresso (Pantel & Pennacchiotti, 2006).

Corpus IsA PartOf succession reaction production

TREC 36.2% 69.9% 49.0% -- --

CHEM 76.0% 50.7% -- 91.4% 55.8%

2.4.1 VerbOcean and the Never-Ending Language Learner

In  the  context  of  constructing  semantic  networks,  the  pattern  matching  approach  to 

discovering  relation  instances  has  certain  limitations.  The  first  is  that  one  must  begin  by 

specifying a relation, or a set of relations, to be mined from the corpus. This seems to violate the 

intuition expressed by Quillian (1968) that “a memory model must provide a way to take any 

two tokens  and  relate  them  by  any  third  token,  which  by  virtue  of  this  use  becomes  a 

relationship” (pp. 230-231, emphasis in original). The a priori articulation of a set of primitive 

relations upon which to  focus one’s mining efforts  restricts  one’s ability to discover  general 

semantic relatedness of the type that is either difficult to express through a binary relation, or has 
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too  few  examples  to  induce  reliable  extraction  patterns.  Consider,  for  example,  the  clear 

relationship between  penguin and  tuxedo, and the relative obscurity of the actual relation that 

binds them.

Nevertheless,  the  lexico-syntactic  pattern  matching  approach  has  proven  useful  in 

constructing semantic networks that aim to express specific, restricted sets of semantic relations 

between entities.  Chklovski and Pantel  (2004), for example,  used pattern matching and Web 

queries to create a semantic network of verb relations called VerbOcean, which expresses some 

relations  that  are  not  included  in  WordNet’s  verb  ontology.  In  their  work,  29,165  pairs  of 

potentially associated verbs were identified by applying the DIRT algorithm of Lin and Pantel 

(2001) to a newspaper corpus. The authors then mined the Web for relations between those verb 

pairs  using  35 manually  constructed  patterns  typifying  five  specific  verb  relations  (some of 

which  were  asymmetric):  similarity  (e.g.,  discover  ::  find),  strength  (e.g,  muffle  ::  silence), 

antonymy (e.g, pass :: fail), enablement (e.g, try :: succeed), and happens-before (e.g., birth :: 

death).  Their  relation labeling algorithm also allowed for  the possibility  that  no relationship 

existed between the verbs.

Their system achieved an estimated 65.5% accuracy in assigning “acceptable” relation 

labels to verb pairs based on the evaluations of two judges on a sample of their  results.  An 

estimated 53% of relation labels assigned by their system were the “preferred” labels indicated 

by the two judges. The accuracy on individual relation labels, as well as an estimated frequency 

of labeling based on the 100 randomly selected verb pairs evaluated by their judges, is given 

below in Table 2.11.
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Another notable application of lexico-syntactic pattern matching to network construction 

is the Never-Ending Language Learner (henceforth NELL) (Carlson et al., 2010). NELL covers 

55 relations that have each been manually specified with 10 to 15 positive example instances and 

five negative instances. The network also includes 123 categories (semantic classes), each of 

which has been specified with 10 to 15 seeds (i.e., class members) and five manually defined 

lexico-syntactic  patterns  indicative  of  membership  in  that  class.  The  learning  algorithms  of 

NELL use these training data to automatically induce patterns from Web texts, and use those 

patterns to extract new instances of relations and class membership. NELL then uses that newly 

acquired information to improve its extraction performance in subsequent iterations.

Many of  the  binary  relations  covered  in  NELL are  quite  specific.  Examples  include 

athletePlaysForTeam, ceoOfCompany, teamWonTrophy, and cityInCountry. Examples of classes 

specified in NELL include scientist, restaurant, magazine, cardGame, mountain, lake, museum, 

and city. The assertions expressed in NELL constitute a large-scale factual knowledge base, and, 

taken  together,  the  class  memberships  expressed  in  NELL form  a  shallow  IsA taxonomy. 

However,  there  is  no  methodical  attempt  to  distinguish  between  concepts.  There  are,  for 
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Table 2.11:
Accuracy of relation labeling on the five relations covered in VerbOcean.

Relation Example Frequency Acceptable Tags Preferred Tag

similarity discover :: find 41% 63.4% 40.2%

strength muffle :: silence 14% 75.0% 75.0%

antonymy pass :: fail 8% 50.0% 43.8%

enablement try :: succeed 2% 100% 100%

happens-before birth :: death 17% 67.6% 55.9%

no relation n/a 35% 72.9% 72.9%



example,  three  distinct  nodes  for  the  aquatic  bird  sense  of  “flamingo,”  each  expressing  the 

discovery  of  a  different  class  membership—mammal:flamingo,  animal:flamingo,  and 

bird:flamingo—but  nothing  to  unify  the  nodes  or  to  distinguish  them from other  senses  of 

“flamingo” (hotel:flamingo, river:flamingo, and so on).

At the time of this writing, NELL has acquired over two million facts about which it has 

“high confidence,” and is continuing to learn new facts from the Web—most of which take the 

form of IsA relationships between nouns, with strong emphasis on proper nouns.

2.4.2 ConceptNet and the Open Mind Common Sense Project

The Open Mind Common Sense (OMCS) project (Singh, 2002; Singh et al., 2002) was a 

commonsense  acquisition  project  that  leveraged  the  Web  to  crowdsource  statements  of 

commonsense  knowledge from a  community  of  online  contributors.  The type  of  knowledge 

expressed in the corpus might seem blatantly obvious or perhaps even trivial to humans, but is 

the sort of knowledge that might be necessary for computers to comprehend and reason with 

natural language. The OMCS corpus includes statements like taking a shower will cause you to  

get wet,  people often take pictures at special events, and helium balloons are used to decorate  

for parties. In the first two years following its conception (September 2000 to August 2002), the 

OMCS  project  acquired  over  450,000  such  sentences  from  nearly  10,000  users.  By  2004, 

ConceptNet  had  over  14,000  contributors  and  more  than  700,000  commonsense  knowledge 

assertions (Liu & Singh, 2004a).

OMCS contributors entered information through a Web interface using free-form natural 

language sentences (sometimes to tell  short  stories about concepts already represented in the 
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corpus, or to provide descriptions of photos or short movie clips). In all, 25 to 30 activities were 

used to elicit statements of commonsense knowledge from contributors. Some of those activities, 

instead of allowing free-form English responses, prompted users to complete fill-in-the-blank 

frames such as “[Something you find in  a pantry is _____ ].” These frames expressed binary 

relations between entities and were developed by the OMCS authors in anticipation of using 

pattern matching to automatically extract relationships from their corpus (see  Table 2.12). For 

example, the preceding frame was used to establish a spatial relationship,  AtLocation, between 

pantries and things you might find there, such as flour, cereal, and spices.

Whether  responding  to  frames  or  providing  free-form sentences,  OMCS contributors 

were encouraged to use language that  would be comprehensible  even to  children.  However, 

because  frames  are  particularly  effective  at  enabling  relation  mining  via  regular  expression 

pattern matching,  and free-form sentences  in  the  corpus were  found to be less  amenable to 

pattern  matching  extractions,  the  OMCS Web elicitation  system was  eventually  modified  to 
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Table 2.12:
Examples of OMCS frames and the relations they express (Singh, 2002).

Frame Type Example Frame Binary Relation

Functional [A hammer is for _____ ] UsedFor(HAMMER, ____)

Goals [People want _____ ] DesireOf(PERSON, ____)

Scripts [The effect of eating a sandwich is _____ ] EffectOf (EAT SANDWICH, ____)

Location [Somewhere you find a bed is _____ ] LocationOf (BED, ____)

Ontology [A typical activity is _____ ] IsA(____, ACTIVITY)



encourage conformity to frames in all tasks; those that allowed free-form input were redesigned 

to inform users when their input matched a frame in the system (Singh et al., 2002).

ConceptNet (Havasi et al., 2007; Liu & Singh, 2004a, 2004b) is a large-scale semantic 

network  of  commonsense  knowledge  built  primarily  around  knowledge  extracted  from  the 

OMCS corpus. The current version of ConceptNet also incorporates external resources such as 

the WordNet ontology12 (in its entirety), Wiktionary (a collaboratively built dictionary that, as the 

name implies, is a sister project to Wikipedia), and DBpedia (a semantic network derived from 

Wikipedia, which we discuss below in Section 2.5.5). Through the remainder of this work, when 

referring to ConceptNet, we restrict our consideration to the relationships derived automatically 

from OMCS, and not these independent projects that have been assimilated into the network.

Statements of commonsense knowledge, called “assertions” in ConceptNet, are expressed 

in the network using a limited set of relations, and are manifest as labeled edges (representing 

these  relations)  between  adjacent  nodes  (representing  “semi-structured  natural  language 

fragments” (Liu & Singh, 2004b, p. 293)). The textual fragments denoted by ConceptNet’s nodes 

conform to certain syntactic constraints (hence they are “semi-structured”), and include not just 

first-order lexical entities (e.g., nouns and verbs—potentially compound—such as “penguin” or 

“piggy bank”), but also second-order phrases (e.g., “shop for food” and “capable of flight”). It is 

the ability of these second-order phrases to denote complex actions, entities, and properties that 

earn them the label of “concepts” in the ConceptNet literature, although they do not conform to 

the  stricter  definition  of  concepts  used  elsewhere  in  the  literature  and  throughout  this 

dissertation; neither the phrases nor phrasal constituents in ConceptNet are disambiguated to 

individual  word  senses.  (E.g.,  the  assertions  ConceptuallyRelatedTo(MONEY,  MINT)  and 

12 WordNet is assimilated, but not fully integrated; concepts in ConceptNet are not mapped to WordNet senses.
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ConceptuallyRelatedTo(CANDY,  MINT) are both present in the current version of ConceptNet, but 

there is no indication that the two “mints” here refer to different concepts.)

The assertions in ConceptNet are extracted from sentences in the OMCS corpus using a 

set  of  approximately  50  regular  expression  patterns  that  correspond  to  the  fill-in-the-blank 

frames used to elicit sentences from users during the corpus’s construction (see Table 2.13 below 

for examples). Extracted phrases undergo a normalization phase in which constituent words are 

stemmed, spelling is corrected, and modals and determiners are removed. Thus, a phrase like 

“eating a sandwich” is mapped to an “eat sandwich” node in ConceptNet.

The original set of 20 relations expressed in ConceptNet 2.0 (Liu & Singh, 2004a) is 

given  below in  Table 2.14. This set of relations has subsequently been relaxed and extended. 

ConceptNet 5 at one point included relations on entities discovered automatically by ReVerb 

(Fader et al., 2011), which were subsequently filtered out of ConceptNet 5.1 for introducing too 

many unreliable statements into the network (R. Speer, personal communication, June 4, 2012). 

At the time of this writing, a new filter is being implemented to selectively reintegrate assertions 
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Table 2.13:
Three extraction patterns for mining relation instances from OMCS

(Singh et al., 2002).

Pattern Relation Instance Example

{a|an|the}? NN {is|are}{a|an|the}? JJ? NN
Hurricanes are powerful storms
→ IsA(HURRICANE, POWERFUL STORM)

A person {does not}? want{s}? to VB JJ
A person wants to be warm
→ DesireOf(PERSON, BE WARM)

NN requires {a|an} JJ? NN
Bathing requires water
→ HasPrerequisite(BATHING, WATER)



from ReVerb. Table 2.15 (below on page 63) lists the occurrence frequency of relations currently 

expressed in the core assertions of ConceptNet 5.1.  The table excludes 23 relations  that  are 

expressed fewer than ten times in the network and tend to be resultant of extraction errors in the 

construction of the network (e.g., anomalous one-off relations with names like  e_size,  nd_like, 

and d_of).
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Table 2.14:
Relations expressed in ConceptNet 2.0, with examples (Liu & Singh, 2004a).

Relation Type Example

ConceptuallyRelatedTo K-Line bad breath—mint

ThematicKLine K-Line wedding dress—veil

SuperThematicKLine K-Line western civilisation—civilisation

IsA Thing horse—mammal

PropertyOf Thing fire—dangerous

PartOf Thing butterfly—wing

MadeOf Thing bacon—pig

DefinedAs Thing meat—flesh of animal

CapableOf Agent dentist—pull tooth

PrerequisiteEventOf Event read letter—open envelope

FirstSubeventOf Event start fire—light match

SubeventOf Event play sport—score goal

LastSubeventOf Event attend classical concert—applaud

LocationOf Spatial army—in war

EffectOf Causal view video—entertainment

DesirousEffectOf Causal sweat—take shower

UsedFor Functional fireplace—burn wood

CapableOfReceivingAction Functional drink—serve

MotivationOf Affective play game—compete

DesireOf Affective person—not be depressed



Table 2.15:
Relations in ConceptNet 5.1 by frequency (core assertions only).

Frequency Relation Frequency Relation

126450 IsA 5301 Desires

101642 HasProperty 5086 PartOf

60669 UsedFor 4287 NotDesires

54105 AtLocation 4242 HasFirstSubevent

52189 CapableOf 3967 HasLastSubevent

51198 RelatedTo 3834 NotIsA

46551 have_or_involve 2937 NotCapableOf

28576 HasSubevent 2701 SimilarSize

25660 HasA 1806 MadeOf

25178 HasPrerequisite 1406 DesireOf

23465 ConceptuallyRelatedTo 1313 NotHasProperty

18955 Causes 651 CreatedBy

17130 MotivatedByGoal 406 NotHasA

12256 be_in 330 InheritsFrom

11404 be_near 167 SymbolOf

11104 ReceivesAction 74 HasPainIntensity

11055 be_not 71 InstanceOf

6665 DefinedAs 45 LocationOfAction

6357 CausesDesire 34 HasPainCharacter

5487 LocatedNear 24 NotMadeOf

It has been observed (Tandon, Melo, & Weikum, 2011) that ConceptNet contains many 

unreliable assertions. These often result from the ambiguity of frames presented during OMCS 

elicitation tasks. For example, the frame “[ looking through a telescope is for _____ ]” was used 

to elicit information about what looking through a telescope might be used for (e.g., observing 

stars or looking at faraway objects), but one person responded with “astronomers,” giving rise to 

the assertion UsedFor(LOOK THROUGH TELESCOPE, ASTRONOMER) in ConceptNet. The frame “[You are 
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likely to find  the Moon in _____ ]” similarly resulted in an unintended relationship when one 

contributor responded with “orbit around earth.” While technically true when taken as a whole, 

the  sentence  does  not  reflect  the  stationary  spatial  relationship  intended,  and  we  find  the 

assertion  AtLocation(MOON,  ORBIT AROUND EARTH) in ConceptNet. In some cases, the frames also 

resulted in ontologically infeasible assertions.  For example,  one contributor responded to the 

frame “[Something you find in a quandry is _____ ]” with “people.”13 The resulting assertion, 

AtLocation(PERSON,  QUANDRY), still  present in ConceptNet 5.1, does not indicate a place where 

people can be found, since a quandary is an abstraction, not a physical location.

Similarly, several instances of the frame “[ _____ are sometimes _____ ]” demonstrate its 

unreliability for establishing hyponymic relationships (e.g., “[ tuxedos are sometimes _____ ],” to 

which  a  contributor  responded  “called  penguin  suits;”  IsA(TUXEDO,  CALL PENGUIN SUIT)  was 

introduced into the network accordingly).

2.5 Wikipedia-Based Approaches to Relatedness

Wikipedia has been the focus of a large body of NLP research in recent years. In addition 

to its free availability for download from the Web and the vast amount of natural language text it 

contains, its inclusion of a rich set of semantic annotations has contributed to the corpus’s appeal 

among NLP researchers. These semantic annotations are largely derived from the structure of 

Wikipedia. For example, disambiguation pages enumerate distinct senses of articles that share 

the same title, giving rise to a new concept inventory for use in NLP applications; inter-article 

links  induce  relationships  between  articles  that  can  be  conceived  of  as  establishing  edges 

13 ConceptNet has (separate) nodes for both QUANDARY and the commonly misspelled form, QUANDRY.
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between concept nodes in a semantic network; and articles’ infoboxes indicate factual assertions 

about named entities in a highly structured manner, giving the corpus the makings of a nascent 

knowledge network.

Wikipedia’s semantic  offerings  also  include  the  organization  of  its  articles  into  a 

folksonomic taxonomy, which Strube and Ponzetto (2006) describe thusly: “[R]ather than being 

a well-structured taxonomy, the Wikipedia category tree is an example of a folksonomy, namely a 

collaborative tagging system that enables the users to categorize the content of the encyclopedic 

entries.  Folksonomies  as  such  do  not  strive  for  correct  conceptualization  in  contrast  to 

systematically engineered ontologies. They rather achieve it by collaborative approximation” (p. 

1419, emphasis in original).

The use of Wikipedia in NLP tasks represents, in some cases, a departure from the field’s 

reliance  upon  carefully  hand-crafted  ontologies  for  sense  inventories,  as  well  as  semantic 

resources—like sense-tagged corpora—that make use of those ontologies. As researchers turn to 

Wikipedia,  they  cite  the  limitations  of  resources  like  WordNet;  Gabrilovich  and Markovitch 

(2007) point out that “such resources contain few proper names, neologisms, slang, and domain-

specific technical terms. Furthermore, these resources have strong lexical orientation and mainly 

contain information about individual words but little world knowledge in general” (p. 1609).

Wikipedia has been employed in a wide variety NLP tasks over the past decade, such as 

question answering (Ahn et al., 2004), named entity disambiguation (Bunescu & Paşca, 2006), 

and  topic  identification  (Coursey,  Mihalcea,  &  Moen,  2009).  Augmenting  the  structure  of 

Wikipedia  itself  has  been  the  subject  of  research  as  well.  Mihalcea  and  Csomai  (2007) 

investigated the possibility of enhancing Wikipedia articles by adding links between pages after 
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automatically  identifying  keywords  in  each  article  and  disambiguating  those  words  to  their 

appropriate  Wikipedia  concepts  (i.e.,  articles).  Mihalcea  (2007)  developed  a  method  for 

producing sense-tagged corpora using articles from Wikipedia as a sense inventory. Similarly, 

Milne and Witten (2008b) proposed a machine learning method for augmenting any document 

with relevant links to Wikipedia articles. Ponzetto and Navigli (2009) explored graph theoretic 

approaches for augmenting the taxonomic organization of Wikipedia articles.

Wikipedia has also been used in quantitative measures of semantic relatedness. In the 

sections that follow, we present three studies that have drawn on Wikipedia for that purpose: 

Strube and Ponzetto (2006) replaced WordNet with Wikipedia in several traditional quantitative 

relatedness measures (Section 2.5.1). Gabrilovich and Markovitch (2007) used Wikipedia article 

texts  to  establish  a  new  vector  space  of  Wikipedia  concepts,  and  employed  a  common 

distributional approach to measure relatedness: the cosine of the angle between any two vectors 

represented  in  that  space  was  used  as  a  direct  measure  of  the  relatedness  between  natural 

language text  fragments  of  arbitrary and unlimited length (Section  2.5.2).  Milne and Witten 

(2008a) turned to inter-article links to measure relatedness between terms (Section 2.5.3).

We  also  present  the  work  of  Ponzetto  and  Navigli  (2010),  which  used  inter-article 

Wikipedia  links  to  relate  WordNet  noun  senses  automatically,  and  then  mapped  those 

relationships  to  noun  senses  from WordNet  (Section  2.5.4).  We conclude  our  discussion  of 

Wikipedia-based approaches with a presentation of two large-scale semantic networks that have 

been created by extracting semantic annotations from Wikipedia articles: YAGO (Suchanek et 

al., 2007) and DBpedia (Bizer et al., 2009) (Section 2.5.5).
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2.5.1 Path-Based Relatedness Measures Using Wikipedia

Strube  and  Ponzetto  (2006)  used  Wikipedia  as  the  knowledge  source  for  several 

relatedness  measures  designed  for  use  with  WordNet,  including  path-based  (Leacock  & 

Chodorow, 1998; Rada et al., 1989; Wu & Palmer, 1994), information content (Resnik, 1995), 

and  gloss  overlap  measures  (Banerjee  &  Pedersen,  2003).  For  their  paths,  they  traversed 

folksonomic categorizations of Wikipedia articles, and for glosses, they experimented with using 

either the first paragraph of an article or its entire text.

Table 2.16 below shows how measures from Strube and Ponzetto’s study correlated to 

similarity data from the M&C, R&G, and WordSim353 datasets. The results exclude noun pairs 

that are not covered in the WordNet ontology. The simBP results are based on ExtLesk using only 

the first paragraph as an article’s gloss. (Performance was negligibly lower using the article’s 

entire text as a gloss.)

Table 2.16:
Comparison of WordNet- and Wikipedia-based similarity measures in Strube and 
Ponzetto (2006) showing correlation (r-values) to human similarity judgments.

WordNet-Based Wikipedia-Based

Data simPL simWP simLC simR simBP simPL simWP simLC simR simBP

M&C 0.71 0.77 0.82 0.78 0.37 0.49 0.45 0.46 0.29 0.47

R&G 0.78 0.82 0.86 0.81 0.34 0.56 0.52 0.54 0.34 0.47

WordSim353 0.27 0.32 0.36 0.36 0.21 0.46 0.48 0.48 0.38 0.20

Strube and Ponzetto found that the Wikipedia-based measures correlated weakly to the 

M&C and R&G similarity  ratings; of all  the approaches  they tried,  they achieved their  best 

67



Wikipedia-based  results  using  a  simple  path  length  measure  (simPL)  that  took  the  shortest 

folksonomic path between two articles as a measure of relatedness (r = 0.49 and 0.56 for M&C 

and R&G, respectively), but these fell drastically short of the top performing WordNet-based 

measure, simLC (r = 0.82). They also found fairly weak correlation to the WordSim353 data, in 

which their best results (r = 0.48) came from the Wikipedia-based adaptation of Leacock and 

Chodorow’s path-based similarity function. However, the Wikipedia-based simLC outperformed 

all of the WordNet-based measures the authors evaluated on WordSim353, the best of which was 

the WordNet-based version of simLC (r = 0.36).

2.5.2 Relatedness via Explicit Semantic Analysis with Wikipedia

Gabrilovich  and  Markovitch  (2007)  introduced  Explicit  Semantic  Analysis  (ESA)  to 

represent arbitrary words and text  fragments of any length as vectors in Wikipedia concept-

space,  thus circumventing the need for carefully crafted semantic  resources like WordNet to 

enable relatedness measurements. The authors first created a vector for each Wikipage with a 

distributional representation of its contents based on TF-IDF (Salton & McGill, 1983). TF-IDF 

essentially measures the relevance of an individual word to a document by taking the term’s 

frequency  within  the  document  (TF)  and  multiplying  by  the  inverse  of  the  proportion  of 

documents containing the term, or inverse document frequency (IDF). The measure is commonly 

given as:

tfidf (t , d , D)  =  
f (t , d )

max
w∈d

f (w ,d )
 ×  log

∣D∣

∣{d ' ∈D : f (t , d ' )> 0 }∣  (20)
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where t is the term in question, d is the current document (a Wikipage), D is the collection of all 

documents (all pages in Wikipedia), and f(t, d) is the frequency of t in d.

To represent arbitrary words and text fragments as vectors, Gabrilovich and Markovitch 

multiplied weightings for each word of a fragment’s TF-IDF vector by pre-computed vectors 

indicating the word’s “strength of association” (p. 1607) with each Wikipage, based on the TF-

IDF representations constructed in the previous step. The resulting text fragment representation 

was a  vector  of  N weights,  where  N is  the number of Wikipedia articles  represented in  the 

system.  The  vector  essentially  oriented  the  text  fragment  in  Wikipedia  concept-space. 

Gabrilovich  and  Markovitch  then  calculated  the  relatedness  between  two  text  fragments  by 

taking the cosine of their representative vectors in this concept space.

 The  authors  showed  that  their  quantitative  measurements  of  semantic  relatedness 

between nouns correlated strongly to human similarity judgments from the M&C and R&G data 

(r = 0.723 and 0.816, respectively, using Pearson’s correlation) and the WordSim353 collection 

(ρ =  0.75  using  Spearman’s  rank  correlation). The  authors  also  found  strong  correlation 

(r =  0.72)  to  human  rankings  of  the  relatedness  of  entire  documents  from  the  Australian 

Broadcasting Corporation’s news mail service (Lee, Pincombe, and Welsh, 2005).

2.5.3 Measuring Relatedness from Inter-Article Links in Wikipedia

Milne  and  Witten  (2008a)  proposed  two  measures—one  of  similarity  and  one  of 

relatedness—that,  instead of relying on the folksonomic categorization of Wikipedia articles, 

capitalized  exclusively  on  inter-article  links.  The first  measure,  like  that  of  Gabrilovich  and 

Markovitch (2007), represented Wikipedia articles as weighted term vectors. In the Milne and 
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Witten conception, an article’s vector is a sequence of weighted link probabilities. If a source 

article s links to a target article t, the weight of that link in the vector representation of s is given 

as:

w (s→t )  =  log
∣D∣

∣D→t∣
 if s∈D→t , 0 otherwise (21)

where, as before, D is the set of all documents in Wikipedia (all Wikipedia articles), and D→t is 

the collection of all documents linking to article t. The intuition behind (21) is that a link from s 

to t is more meaningful to the representation of s when there are few articles in Wikipedia that 

link to t. If links to t are common throughout the corpus, the weight of the link’s significance to 

the representational vector of s is diminished. Of course, if there is some article t that s does not 

link to, its corresponding weight in the vector representation of s is zero. The cosine of the angle 

between any two such vectors is then taken as a measure of the similarity between the articles 

they represent.

For their second measure, Milne and Witten adapted the Normalized Google Distance 

measure of Cilibrasi and Vitanyi (2007) to measure the semantic distance between two articles as 

follows:

dist MW (a , b)  = 
log (MAX (∣D→a∣,∣D→b∣))  − log (∣D→a∩D→b∣)

log (∣D∣)  −  log (MIN (∣D→ a∣,∣D→b∣))
 (22)

where a and b are two Wikipedia articles. As before, D is the set of all articles in Wikipedia, D→a 

is the set of articles linking to a, and D→b is the set of articles linking to b. The intuition behind 

(22) is that an article that links to both a and b provides evidence of the relatedness of a and b, 

whereas the frequent occurrence of articles linking to either  a or  b, but not the other, suggests 
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that articles  a and b bear a weaker relationship to one another, or no relationship at all. Recall 

that semantic distance is inversely related to semantic relatedness.

To measure the relatedness between two terms, Milne and Witten took the average values 

of  the  two  functions  above  (adjusted,  of  course,  to  invert  values  of  distMW).  Compared  to 

Gabrilovich and Markovitch’s (2007) ESA approach, the link-based method of Milne and Witten 

is faster because the text of articles is ignored. The authors point out that the use of inter-article 

links is also more reliable than measuring distributional similarity of article text because links are 

manual annotations that have been explicitly inserted and disambiguated by human contributors. 

However,  Milne  and  Witten  concede  that  an  advantage  of  ESA is  that  it  can  measure  the 

relatedness of natural language fragments of any length, and that the Strube and Ponzetto (2006) 

and Milne and Witten approaches “are not so easily extended” (Milne & Witten, 2008a, p. 29).14

Table 2.17:
Comparison of three Wikipedia-based relatedness measures on the basis of their 

correlation to human similarity judgments.

Data
Strube and Ponzetto

(2006)
Gabrilovich and

Markovitch (2007)
Milne and Witten

(2008a)

M&C 0.49 0.72 0.70

R&G 0.56 0.82 0.64

WordSim353 0.48 130.7514 0.69

A summary of results for the three Wikipedia-based relatedness studies presented in this 

section is given above in Table 2.17. Values reported are coefficients of correlation between the 

14 Gabrilovich and Markovitch (2007) used Spearman’s rank correlation to evaluate their results on WordSim353. 
All other values in the table are coefficients from Pearson’s product-moment correlation (r-values).
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authors’  measures  and  the  gold  standard  datasets  of  human  similarity  score  judgments. 

Gabrilovich  and  Markovitch’s  correlation  to  the  WordSim353  data  was  calculated  using 

Spearman’s rank correlation (ρ). All other coefficients of correlation are Pearson’s r-values. For 

Strube and Ponzetto’s results, we present the top performing measure for each dataset. We see 

that  the  high  precision  of  the  inter-article  links  used  by Milne  and Witten  does  not  offer  a 

competitive  advantage  over  the  vast  amount  of  textual  data  harnessed  by  Gabrilovich  and 

Markovitch’s ESA approach, which achieves the best performance on each dataset.

2.5.4 WordNet++

Ponzetto  and  Navigli  (2010)  developed  a  semantic  network  called  WordNet++ 

(henceforth  WN++)  that,  like  ours,  categorically  relates  WordNet  noun  senses.  They  used 

semantic annotations underlying the Wikipedia corpus to build the network, first mapping the 

titles  of  Wikipages  (i.e.,  Wikipedia  articles)  to  WordNet  noun  senses,  and  then  establishing 

semantic links between concepts in the following way: if some Wikipage, w1, links to a second 

Wikipage, w2, and the pages have been disambiguated to WordNet noun senses μ(w1) and μ(w2) 

respectively, then the edge (μ(w1), μ(w2)) is added to WN++.

Ponzetto  and  Navigli  mapped  Wikipages  to  WordNet  concepts  by  first  establishing 

disambiguation contexts for them. The disambiguation context of some Wikipage,  w, is  ctx(w) 

and  consists  of sense  labels,  links,  and  categories  from  Wikipedia.  Sense  labels are  the 

parenthetical categories that follow article titles to distinguish them from articles with the same 

name (e.g.,  the “operating system” in “Android_(operating system),” which distinguishes the 
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article from “Android_(robot)”). If w has a sense label, all words from that label are included in 

ctx(w).  Links are the lemmas (titles  without sense labels) of all Wikipages to which  w links. 

Categories are the syntactic heads of folksonomic Wikipedia classes to which an article belongs. 

For  example,  the  article  for  “The  Catcher  in  the  Rye”  is  categorized  by  “Novels  by  J.  D. 

Salinger,” the syntactic head of which is simply “novel.”

The disambiguation context of a WordNet noun sense  s, denoted  ctx(s), consists of all 

nouns represented in s’s synset, all nouns represented in its hypernymic, hyponymic, and sister 

synsets,15 and all  lemmatized content words (nouns,  verbs,  adjectives, and adverbs) from the 

gloss of s.

WN++ disambiguates  w to  μ(w), the sense of that noun in WordNet with the maximum 

number of content words in common between their respective contexts:

μ (w)  =  argmax
s∈SensesWN (w)

p(s∣w)  = argmax
s

p(s ,w )

p(w)
 = argmax

s
p(s , w)  (23)

In (23),  p(w) is a normalization factor that can be discarded without impacting which 

sense s is returned. The probability function in (23) is given as:

p (s ,w)  =  
score(s , w)

∑
s ' ∈SensesWN (w)

w '∈SensesWiki (w)

score(s ' ,w ' )  (24)

where  score(s,  w) returns the number of content words that strings  ctx(s) and  ctx(w) have in 

common, with an additive smoothing factor of 1:

score(s ,w)  =  ∣ctx (s)  ∩ ctx (w)∣ +  1  (25)

15 Sister concepts in WordNet are concepts that share the same immediate hypernym.
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There are a few caveats to sense assignment by this method. First, (23) does not return a 

result in the event of a tie, and a link from article  w1 to  w2 in Wikipedia can only induce a 

relationship in WN++ if  both  μ(w1) and  μ(w2) are non-empty. Second, if an article title  w is 

unambiguous (i.e., monosemous) in both Wikipedia and WordNet, the Wikipage is mapped to the 

only possible WordNet noun sense. Furthermore, if d is such a page (monosemous in Wikipedia 

and WordNet), and d redirects to some Wikipage w, and w is one of the nouns represented in the 

synset μ(d), then μ(w) = μ(d).

Ponzetto and Navigli evaluated their disambiguation algorithm by comparing their results 

to a set of 505 manually disambiguated Wikipedia page titles.16 By this measure, the precision 

and recall of their disambiguation algorithm are  P = 81.9% and  R = 77.5%. Their algorithm 

mapped  81,533  Wikipages  to  WordNet  noun  senses  and  induced  1,902,859  links  between 

WordNet  concepts.  These  links,  combined  with  the  entire  WordNet  ontology,  constitute  the 

semantic network called WN++, but in this section we distinguish between the links derived from 

Wikipedia and the union of those links with WordNet, referring to the former as “WN++ (stand-

alone)” and the latter as “WN++ (with WordNet).”

The authors evaluated the concept-to-concept relationships in their network by employing 

it in two word sense disambiguation tasks. The first task was the SemEval-2007 coarse-grained 

English all-words task (Navigli, Litkowski, and Hargraves, 2007), in which WN++ was used in 

two graph-based disambiguation algorithms: ExtLesk (Banerjee & Pedersen, 2003) and Degree 

Centrality (Navigli  & Lapata,  2010). (These algorithms are described in detail  in Chapter  5, 

16 The  authors  originally  selected  1,000  articles  for  manual  disambiguation.  495  of  those  had  no  correct  
corresponding noun sense in WordNet and were excluded from the gold standard dataset on those grounds.  
There is no indication of how frequently the authors’ approach assigns a WordNet noun sense to w when in fact 
no accurate mapping is possible.
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where we subject our network to the same evaluation in order to compare its performance to that 

of WN++.)

Table 2.18 shows disambiguation results on this task for WordNet, WN++ (stand-alone), 

and WN++ (with WordNet). The F1 measure given is the harmonic mean of precision and recall: 

F1 = (2PR)/(P+R). The results reported for Degree Centrality use a refined version of WN++ that 

contains only 79,422 of WN++’s strongest relationships. The refined subset was created in an 

unsupervised setting by Ponzetto and Navigli specifically for use with Degree Centrality when 

they discovered that WN++ had too many weak associations to perform well with the algorithm.17

Ponzetto  and  Navigli’s  second  experimental  task  used  the  same  disambiguation 

algorithms, but involved WSD in domain-specific corpora (sports and finance) from Koeling, 

McCarthy,  and Carroll  (2005).  WN++ (with  WordNet)  was evaluated,  but  not  WN++ (stand-

alone). The results on the domain-specific data, while markedly lower than those achieved on the 

SemEval-2007  task,  were  in  line  with  the  performance  of  other  knowledge-based  WSD 

17 These results come from the use of the refined version of WN++.
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Table 2.18:
Results (F1 scores) for WordNet and WN++ on the SemEval-2007 coarse-grained 

WSD task, as reported by Ponzetto and Navigli (2010).

Algorithm Baselines
WordNet

(stand-alone)
WN++

(stand-alone)
WN++

(with WordNet)

ExtLesk -- 68.3 72.0 75.4

Degree Centrality -- 74.5 1857.417 1879.417

MFS 77.4 -- -- --

Random 63.5 -- -- --



algorithms on the same data, such as those of Agirre, de Lacalle, and Soroa (2009, as cited in 

Ponzetto & Navigli, 2010) (see Table 2.19).

Table 2.19:
Results (F1 scores) for WN++ (with WordNet) on domain-specific WSD in the 

domains of sports and finance, as reported by Ponzetto and Navigli (2010).

Algorithm Sports Domain Corpus Finance Domain Corpus

ExtLesk 40.1 45.6

Degree Centrality 42.0 47.8

MFS Baseline 19.6 37.1

Random Baseline 19.5 19.6

2.5.5 Directly Extracting Semantic Relationships from Wikipedia

Many of the semantic annotations from Wikipedia have been extracted directly to large-

scale knowledge networks.  Suchanek et  al.  (2007),  for example,  derived a semantic network 

called YAGO from the underlying structure of Wikipedia articles. In particular, they derived facts 

from the IsA article folksonomy and assertions within articles’ infoboxes.

Infoboxes in Wikipedia provide structured information about the subject of an article. For 

example, the infobox for Wikipedia’s  The Catcher in the Rye page explicitly lists the book’s 

author  (J.  D.  Salinger),  cover  artist,  country  of  publication,  the  novel’s  original  publication 

language (English), its genre (i.e., “Novel”), publisher, publication date, media type (i.e., “Print 

(hardback  &  paperback)”),  number  of  pages,  and  identifying  ISBN  and  OCLC  numbers. 

Furthermore,  The Catcher in the Rye is folksonomically categorized in Wikipedia under  1951 
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novels; American bildungsromans; Debut novels;  Little, Brown and Company books;  Novels by 

J.D. Salinger; Novels set in New York City; Novels set in Pennsylvania; and 1949 in fiction.

Suchanek  et  al.  manually  established  heuristics  for  170 frequently  occurring  infobox 

attributes that allowed for the extraction of those data to their network. WordNet classes are also 

incorporated into YAGO, but the network excludes WordNet’s proper nouns, preferring instead 

to rely on Wikipedia as its source of information about named entities. YAGO then attempts to 

perform  automatic  hyponymic  mappings  of  Wikipedia  concepts  to  upper-level  WordNet 

concepts.

Over  73% of  the  facts  in  YAGO are  encompassed  by  its  isCalled,  type,  and  means 

relations, which are indicative of semantic similarity between entities. Among its most frequent 

relations  beyond  those  indicating  similarity  are  specific  relationships  such  as  bornOnDate, 

diedOnDate, hasPopulation, bornInLocation, actedIn, directed, and writtenInYear.

Bizer  et  al.  (2009)  similarly  extracted  structured  information  from Wikipedia  into  a 

semantic network called DBpedia. They established an ontology of infobox templates linking 

350 frequently occurring infobox attributes into an ontology of 170 infobox classes, as some 

attributes  are  expressed  in  infoboxes  in  multiple  ways.  The  resultant  network  establishes 

relationships  between  2.6  million  entities.  Unlike  YAGO,  DBpedia  does  not  incorporate 

WordNet classes or attempt to perform mappings between WordNet and Wikipedia concepts.

2.6 Hand-Crafted Knowledge Networks

We have so far seen that large-scale knowledge networks can be created by a variety of 

unsupervised and semi-supervised methods, including the application of lexico-syntactic pattern 
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matching to collaboratively constructed corpora (e.g,  the acquisition of ConceptNet from the 

OMCS  corpus)  and  the  Web  (as  with  the  acquisition  of  VerbOcean  and  the  on-going 

development  of  NELL).  Other  approaches  have  leveraged  the  semantic  annotations  of 

Wikipedia, such as inter-article links (as with WN++) and infobox attributes (as with YAGO and 

DBpedia),  to  establish  semantic  networks,  sometimes  performing  mappings  of  concepts  to 

WordNet classes (as with WN++ and, to some degree, YAGO). Despite the fact that many of 

these approaches rely on human contributions and manually annotated semantic resources, the 

machine learning methods used to construct them are error prone, as are, in some cases, the data 

being mined.

Many researchers have turned to hand-crafting knowledge bases, trading time-intensive 

knowledge crafting for assurances that their resources represent information with higher degrees 

of accuracy than automatically acquired resources. The WordNet ontology is perhaps the most 

obvious  example  of  a  hand-crafted  semantic  resource;  it  is  the  result  of  decades  of  careful 

knowledge  crafting  efforts,  and  has  enjoyed  ubiquitous  use  in  the  field  of  computational 

linguistics.  In this  section,  we provide brief  overviews of two other  hand-crafted knowledge 

networks: CYC and Freebase.

CYC (Lenat, 1995) is a large-scale network with millions of assertions of commonsense 

knowledge.  Much  like  ConceptNet,  CYC  expresses  a  variety  of  labeled  relations  between 

entities. However, CYC uses a deeper representation based on first-order predicate calculus and 

inference mechanisms, and therefore requires contributors to have some degree of expertise in 

knowledge engineering. The knowledge in CYC has been hand-coded into the network over the 

course of nearly three decades and is less prone to the kinds of acquisition and parsing errors that 
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give rise  to malformed natural language expressions in ConceptNet and result  in mislabeled 

relationships between entities. The expressive power of CYC is also more powerful than that of 

ConceptNet. It encodes commonsense assertions beyond ConceptNet’s restricted set of binary 

relations,  including,  for  example,  “You have to  be awake to  eat”  and “You can usually  see 

people’s noses, but not their hearts” (Lenat, 1995, p. 33). Another notable difference between 

CYC and ConceptNet is that CYC establishes an upper ontology that provides for the sound 

categorization of entities through IsA relationships. CYC also includes broad coverage of named 

entities, much like YAGO and DBpedia. Naturally, CYC does not restrict itself to WordNet’s 

noun sense inventory, although preliminary attempts have been made at integrating WordNet into 

CYC (Reed & Lenat, 2002), as well as mapping CYC concepts to Wikipedia articles (Medelyan 

& Legg, 2008).

Freebase (Bollacker, Evans, Paritosh, Sturge, & Taylor, 2008; Bollacker, Tufts, Pierce, & 

Cook, 2007) is a large-scale knowledge base constructed collaboratively by online contributors 

through  a  Web  interface.  By  crowdsourcing  information  from  a  vast  array  of  contributors 

through the Web, Freebase has alleviated the acquisition bottleneck associated with the hand-

crafting of knowledge networks and has seen tremendous growth in the short  time since its 

conception. At the time of this writing, the knowledge base provides information about over 23 

million  entities,  expressed  through  structured  node  properties  and  relationships.  Entities  in 

Freebase are organized into an upper ontology of classes (called “types” in Freebase) that rather 

resembles the folksonomic structure of Wikipedia; contributors are free to create new types as 

they see fit, and entities can be categorized by any number of types. In Freebase, “[r]ather than 

ontological  correctness  or  logical  consistency,”  the  focus  is  on  “collaborative  creation  of 

79



structure” (Bollacker et al., 2007, p. 24); this concession to folksonomy and structural flexibility 

is the payment Freebase has made for the prodigious rate at which it has expanded.

Contributors create new entities in Freebase first by assigning them type categorizations 

in the upper ontology. Each type is associated with a schema that indicates attributes of that type,  

and, in some cases, type restrictions that operate like selectional restrictions on values for those 

attributes. Users are prompted to fill in attribute values for new entities, and auto-complete fields 

help them to assign permissible values.

Node structure in  the Freebase graph is  highly flexible,  as well;  node properties and 

relationships  in  Freebase  are  open  classes  that  can  be  modified  by  contributors.  Since 

contributors are explicitly prompted to assign attribute values to entities, assertions in Freebase 

tend to have high accuracy. However, all modifications to the Freebase graph are attributed to the 

individuals who make them, so that material provided by abusive contributors can be filtered out 

by end users. (Compare this to the indirect approach used to elicit information in OMCS, from 

which ConceptNet derives its assertions. Frames presented to users in the acquisition of OMCS 

were often ambiguous. For example, one response to the OMCS frame “[You are likely to find 

the Moon in _____ ]” was “orbit around the earth,” which is true, but does not fulfill the frame’s 

purpose of eliciting an instance of a spatial AtLocation relationship.)
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CHAPTER 3: CONSTRUCTING THE NETWORK: SEMANTIC 
ASSOCIATES OF NOUNS

In this chapter, we present our methodology for acquiring a semantic network of related 

concepts.  The  acquisition  process  is  fully  automated  and  unsupervised,  and  comprises  two 

stages: association, which is the subject of this chapter, and disambiguation, which we discuss in 

Chapter 4.

In the association phase, we discover semantic associates of common nouns using co-

occurrence data extracted from Wikipedia. This discovery process is a context-sparse affair that 

takes place  in  absentia of  the semantic  annotations of Wikipedia,  such as inter-article  links, 

disambiguation page entries, the title of the article in which a sentence appears, and so on. The 

underlying assumption of our approach is that words that co-occur frequently in Wikipedia will 

bear semantic relation to one another, and, insofar as we consider the network to give a fairly 

comprehensive indication of semantic association, that the converse is true: that semantically 

related nouns will tend to appear in sentences together throughout the corpus. This correlation of 

lexical co-occurrence and semantic association is well established in the literature, most notably 

by Spence and Owens (1990) and Church and Hanks (1990). Of course, it is left to us to define 

what it means for two nouns to co-occur together “frequently” in the corpus, and to cull from 

consideration nouns that co-occur together frequently, yet do not bear semantic relation. Toward 

this end, we use a modified information theoretic approach to quantify the semantic relatedness 

of two nouns based on their frequency of co-occurrence in the corpus. These measurements are 

then  used  by  an  algorithm  of  our  own  creation  that  establishes  relatedness  between  nouns 

categorically rather than quantitatively.

81



The  second  phase  of  network  acquisition  is  a  disambiguation  phase,  in  which  we 

capitalize  on  salient  sense  clustering  among  related  nouns  to  automatically  resolve  them to 

individual senses from the WordNet 3.0 noun ontology (see Chapter 4).

Rather than defer evaluation of our methodology to a separate chapter, we pause after 

each  step  of  the  acquisition  process  to  perform  in  loco evaluation  of  our  progress  so  far. 

Following are the three sub-phases of acquisition that garner their own evaluation in this and the 

following chapter: quantitative measurement of semantic relatedness (Section 3.2), establishing 

categorical relatedness (Section 3.3), and noun sense disambiguation (Section 4.6). We conclude 

our discussion of network construction with a detailed explication of select excerpts from the 

network (Section 4.7).

3.1 Preliminaries: Corpus and Co-occurrence

To facilitate the extraction of co-occurrence data from Wikipedia, we have part-of-speech 

tagged the entire corpus (stripped of markup, metadata, and semantic annotation) using Brill’s 

tagger (Brill, 1995). Throughout the remainder of this work, only intra-sentential co-occurrence 

of nouns is considered, and only between noun stems, rather than extracting separate data for 

distinct inflected forms. Any noise that results from considering co-occurrence at the sentence 

level, rather than employing a smaller or variable sized window, is generally quashed by the 

sheer magnitude of co-occurrence data available from the corpus.

Named entities are excluded from consideration in our research in part because WordNet 

lacks comprehensive coverage of proper nouns, which would leave many of our nouns without 

conceptual anchors in the ontology, or,  worse yet,  would anchor them to incorrect senses of 
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proper nouns that have only partial coverage in WordNet. Furthermore, the relation of a named 

entity to another concept typically represents a factual assertion that falls slightly outside the 

realms  of  commonsense  knowledge  and  basic  semantic  relatedness  and  into  the  realm  of 

encyclopedic knowledge. Accordingly, we restrict our consideration to co-occurrence between 

common nouns.

From the  tagged  corpus,  we establish  co-occurrence  frequency distributions  for  each 

noun,  ni, indicating how many times every other noun occurs in sentences that contain ni. Our 

measurement of co-occurrence is independent of word order and intermediary word distance, and 

our resulting data are asymmetric.

Consider, for example, the dual occurrence of the noun (stem) “astronomer” in the first of 

the following three sentences (in which the stems of all common nouns are highlighted):

(1) Kamalakara (1616-1700), an Indian astronomer and mathematician, came from a  

family of astronomers.

(2) This  quartic  curve was  studied  by  the  Greek  astronomer and  mathematician 

Eudoxus of Cnidus.

(3) A school speed limit would be posted when entering the school zone.

From (1)  and (2),  we have  frequency(astronomer|mathematician)  = 3,  since there are 

three  occurrences  of  “astronomer”  in  sentences  containing  “mathematician.”  However, 

frequency(mathematician|astronomer)  =  2,  and  so  the  resulting  frequency  distributions  are 

asymmetric (see Table 3.1 below).
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Table 3.1:
Co-occurrence frequency distributions derived from sentences (1) and (2) above.

Source Noun Co-occurring Noun Freq.

astronomer mathematician 2

family 1

curve 1

mathematician astronomer 3

family 1

curve 1

family astronomer 2

mathematician 1

curve astronomer 1

mathematician 1

Table 3.2:
Co-occurrence frequency distributions derived from sentence (3) above.

Source Noun Co-occurring Noun Freq.

school speed limit 1

zone 1

speed limit school 2

zone 1

speed school 2

speed limit 1

zone 1

limit school 2

speed limit 1

zone 1

zone school 2

speed limit 1

Of interest is the fact that, in (2), our stemming algorithm reduces “quartic curve” to the 

head noun “curve” because the compound noun is not represented in the WN ontology. Consider, 
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in contrast, the occurrence of the compound “speed limit” in (3) (noting also that WN does not 

lexicalize “school zone,” and so its constituents are marked as disjoint nouns).

In instances of open-form (multi-word) compound nouns, each unique noun (e.g., those 

highlighted above in (3): “school,” “speed limit,” and “zone”) is counted in the co-occurrence 

frequency distribution for every other noun, as well as in the distributions for the constituents of 

any compound nouns. (Thus, the frequency distributions for nouns co-occurring with “school,” 

“speed limit,” “speed,” “limit,” and “zone” are updated with counts of “school,” “speed limit,” 

and “zone;” see  Table 3.2 above.) We afford compound nouns this special treatment to ensure 

their constituents also benefit from semantic association with the nouns co-occurring in these 

sentences.

3.2 From Co-occurrence to Relational Strength

We now adopt the following terminology: a target is any noun for which we would like to 

discover  a set  of semantic  associates.  Nouns co-occurring intra-sententially  with a target are 

called its co-targets, all of which come under consideration for semantic association to the target.

We  define  relational  strength,  Srel(t,  c),  as  a  quantitative  measure  of  the  semantic 

relatedness of a target, t, to one of its co-targets, c. To gauge relational strength, we measure the 

distance between two probability distributions: a prior distribution (giving the relative frequency 

of occurrence of every noun in the corpus), and a posterior distribution for our target (giving the 

relative frequency of its various co-targets with respect to all sentences containing the target).
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Figure 3.1:
Prior distribution sample from Wikipedia co-occurrence (not to scale).

Figure 3.2:
Posterior distribution sample for co-targets of “astronomer” (not to scale).

Figure 3.3:
Log ratio of the posterior and prior distributions (to scale).

Figure 3.1 shows a sample from our prior distribution.18,19 We see that “article” (the most 

profuse noun in Wikipedia, accounting for 2.52% of all occurrences of common nouns) occurs 

18 Figures 3.1, 3.2, and 3.3 are modeled after Resnik’s (1997) presentation of prior and posterior distributions.
19 The graphical representations for Figures 3.1 and 3.2 are not to scale; they are smoothed with an additive factor 

of 0.1% for readability. The numerical values above each bar do not include this smoothing factor.
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much  more  frequently  than,  for  example,  “star”  and  “observatory.”  In  contrast,  “star”  and 

“observatory” occur with significantly elevated relative frequency in sentences containing the 

noun “astronomer” (Figure 3.2),  respectively accounting for 1.28% and 0.57% of  all  its  co-

occurring noun tokens. The posterior distribution for “astronomer” reveals that we cannot rely on 

co-occurrence  as  a  direct  measure  of  semantic  relatedness.  This  is  clear  from the  fact  that 

“article” co-occurs more frequently with “astronomer” than does “observatory,” although the 

latter clearly bears stronger semantic relation to the astronomer.

Intuitively  speaking,  when  P(c|t)  is  greater  than  P(c),  c is  co-occurring  with  t more 

frequently than dictated by chance, indicating heightened relational strength between the nouns. 

Conversely, if P(c) is much greater than P(c|t), we see a negative semantic relationship between 

t and c. As shown in Figure 3.3, dividing the posterior distribution by the prior distribution and 

taking the log (to ensure that P(c) > P(c|t) yields negative values) gives us a reasonable initial 

view of relational strength.

We now formally define relational  strength, the quantitative measure of the semantic 

relatedness of a target, t, to one of its co-targets, c, as follows:

S rel (t , c)  = P (t∣c) P(c∣t) log
P(c∣t )
P (c)

(26)

P(c) is the relative frequency of c’s occurrence in the corpus, and for P(c|t) we use the 

relative frequency of c’s occurrence among all co-targets of t:

P (c )  =  
frequency(c)

∑
n∈W

frequency (n) (27)
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P (c∣t)  =  
frequency (c∣t )

∑
n∈C t

frequency (n∣t ) (28)

Here, W is the set of all nouns in Wikipedia, and Ct is the set of all co-targets of t.

Our formulation of  Srel(t,  c) is an adaptation of Resnik’s (1999) selectional association 

measure:

A(w ,c)  =  
1

DKL

P(c∣w)log
P (c∣w)

P(c)
(29)

Resnik used (29) to measure the degree to which a word, w, selects a WordNet class, c, as 

an argument (e.g., the selectional preference of the adjective “wool” for nouns categorized as 

clothing,  or the verb “eat” for  food).  In Resnik’s formulation,  DKL is the relative entropy, or 

Kullback-Leibler divergence (Kullback & Leibler, 1951), between the probability distributions 

P(C|t) and P(C), where C is a set of WN noun classes:

DKL  =  ∑
c∈C

P (c∣t) log
P (c∣t)
P (c )

(30)

DKL acts as a normalization factor in (29) and also gives an indication of how strongly the word 

w selects for its argument classes in general.

Bearing in mind that the selective power of a word reflects the degree to which it predicts 

the (co-)occurrence of a member of the class(es) for which it selects, Resnik’s formula provides a 

good  launching  point  for  a  measure  of  relational  strength.  We  have,  however,  made  two 

pragmatic changes to Resnik’s formulation of A(w, c) to derive our definition of Srel(t, c):

88



The first modification is the omission of the  DKL term. We are primarily interested in 

using Srel(t, c) to measure the relatedness of t to c relative to all other co-targets of t, rather than 

measuring relational strength in a global fashion. That is, given a target,  t, and two of its co-

targets,  c1 and c2, we are interested in the comparative values of  Srel(t,  c1) and Srel(t,  c2); they 

reveal which co-target bears the stronger relation from t. We are not, however, interested in the 

comparative values of Srel(t1,  c1) and Srel(t2,  c2), for two different targets, t1 and t2. To say that 

one is greater than the other reveals nothing about the association of t1 to c1 or of t2 to c2. Indeed, 

the extreme variability of DKL from target to target, as well as the exponential decay of values of 

Srel(t,  c) in  practice,  make it  difficult  to  ascribe  any meaning to  the  absolute  values  of  the 

function. Accordingly, the function is used only to sort the list of  t’s co-targets in decreasing 

order of relational strength, after which the usefulness of the measure is exhausted, and its values 

are discarded. Thus, DKL, which is constant with respect to c, can be dropped from the definition 

of Srel(t, c); the ordering of t’s co-targets remains the same.

Our second modification is the inclusion of the P(t|c) term in (26) in order to account for 

the relatedness of c to t, which certainly plays some role in the relational strength of t to c. This is 

particularly  useful  in  suppressing  words  like  “article”  and  “year,”  which  tend  to  appear 

frequently with nouns that serve as titles of Wikipedia articles, despite the fact that those nouns 

are not generally semantically related to “article” or “year” at all.20

Intuitively speaking, A(w, c) indicates how likely we are to encounter a noun categorized 

by  c as  a  result  of  encountering  w.  Srel(t,  c)  follows  suit,  indicating  how likely  we  are  to 

20 Although these problematic words are particular to our choice of corpus, our method for quashing them retains 
its generality for use with any corpus.
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encounter  c as a consequence of encountering  t. The highest values of  Srel(t,  c)  are assigned 

when  c’s  relative  frequency  of  co-occurrence  with  t is  significantly  higher  than  c’s  relative 

frequency of occurrence in the corpus.

Given a target of interest, we sort all of its co-targets by descending order of  Srel(t,  c). 

The notable exception is that if  P(c|t) < 0.07%, we exclude  c from consideration as one of  t’s 

semantic  associates  outright.  We  previously  reported  that  this  was  done  primarily  out  of 

computational  considerations  (Szumlanski  & Gomez,  2010);  in  our preliminary investigation 

into co-occurrence methods for discovering semantic associates, we assembled co-occurrence 

frequency distributions on demand, and only for a limited number of nouns. Since then, we have 

extracted co-occurrence frequency distributions for all nouns in the corpus, but we maintain the 

0.07% threshold because the performance of our function degrades as  P(c) approaches zero, 

assigning  disproportionately  high  values  of  relational  strength.  (This  is  a  known issue  with 

related information theoretic measures. See, e.g., the remarks of Grefenstette (1994) regarding 

how mutual information “strongly favors rarely appearing words” (p. 31) when used to measure 

semantic similarity.)

Tables 3.3 and 3.4 (below on pages 92 and 93, respectively) demonstrate the re-ordering 

effect of our relational strength function. The first table shows co-targets of “astronomer” sorted 

by decreasing frequency of co-occurrence (the top 60 out of 224 nouns occurring above the 

0.07% threshold);  the second shows the top co-targets of “astronomer” sorted by decreasing 

value of relational strength. We observe that the reordering effect of our function is sometimes 

insignificant (e.g., the movement of “astronomy” from rank 6 to rank 5). In other cases, the re-

ordering is more dramatic, acting to suppress frequently co-occurring nouns (e.g, the shift of 
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“article” from rank 7 to rank 174) or promote infrequently co-occurring nouns (as with the shift 

of “minor planet” from rank 64 to rank 4, or the movement of “astrophysicist” from rank 82 to 

rank 8). Moderate shifts occur, as well (e.g., the movement of “star” from rank 4 to rank 17).

The function does not provide a perfect measure of semantic relatedness. Certainly, few 

people would argue that “astronomer” bears stronger semantic relation to “geographer” than to 

“star,” despite the results presented in Table 3.4. What is important, however, is that the overall 

ordering provided by the function is generally sound. Toward the top of the list, we see strongly 

related nouns, and in general this relatedness diminishes as we proceed through the list. Most 

importantly,  the  function  washes  out  frequently  co-occurring  nouns  that  bear  no  semantic 

relation to the target. The most suspect nouns that co-occur frequently with “astronomer” are all 

removed to ranks greater than 60 when sorted by Srel(t, c); over half of the nouns from Table 3.3 

do not appear in  Table 3.4 because their resulting ranks in the re-ordering (indicated here in 

parentheses) place them so low in the sorted list of 224 co-targets: historian (62), light (73), work 

(78), model (79), definition (84), system (92), data (93), research (94), time (96), book (98), 

period (99), year (100), position (101), study (102), world (105), name (109), term (121), number 

(122), team (125), fact (126), use (127), way (128), group (130), reference (132), example (144), 

member (152), history (157), point (165), part (166), article (174), people (189), source (193).
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Table 3.3:
60 nouns most frequently co-occurring with “astronomer” in Wikipedia.

# Co-Target Frequency P(c|t) # Co-Target Frequency P(c|t)

1 mathematician 583 1.85% 31 world 113 0.36%

2 amateur 569 1.81% 32 fact 109 0.35%

3 planet 480 1.52% 33 asteroid 108 0.34%

4 star 403 1.28% 34 people 106 0.34%

5 century 329 1.04% 35 universe 103 0.33%

6 astronomy 318 1.01% 36 use 100 0.32%

7 article 292 0.93% 37 model 100 0.32%

8 physicist 274 0.87% 38 number 99 0.31%

9 time 244 0.77% 39 sky 96 0.30%

10 object 227 0.72% 40 light 94 0.30%

11 telescope 227 0.72% 41 research 93 0.30%

12 observation 222 0.71% 42 engineer 93 0.30%

13 years21 212 0.67% 43 definition 91 0.29%

14 work 204 0.65% 44 group 90 0.29%

15 observatory 180 0.57% 45 position 86 0.27%

16 theory 179 0.57% 46 period 86 0.27%

17 galaxy 174 0.55% 47 reference 86 0.27%

18 scientist 165 0.52% 48 historian 82 0.26%

19 discovery 153 0.49% 49 example 81 0.26%

20 name 149 0.47% 50 instrument 80 0.25%

21 philosopher 144 0.46% 51 part 80 0.25%

22 book 140 0.44% 52 source 79 0.25%

23 comet 139 0.44% 53 study 79 0.25%

24 science 137 0.44% 54 point 79 0.25%

25 astrologer 135 0.43% 55 sun 78 0.25%

26 year 123 0.39% 56 team 78 0.25%

27 way 122 0.39% 57 term 77 0.24%

28 system 117 0.37% 58 history 77 0.24%

29 moon 116 0.37% 59 data 75 0.24%

30 orbit 114 0.36% 60 member 75 0.24%

21 “Years” is lexicalized in WN, and is therefore morphologically ambiguous; we do not stem it further.
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Table 3.4:
60 co-targets most strongly related to “astronomer” by Srel(t, c).

# Co-Target S rel(t,c) # Co-Target S rel(t,c)

1 mathematician 6.622 31 geologist 0.113

2 amateur 2.634 32 moon 0.100

3 observatory 2.467 33 sky 0.085

4 minor planet 2.296 34 eclipse 0.083

5 astronomy 2.150 35 object 0.063

6 astrologer 1.906 36 chemist 0.060

7 telescope 1.716 37 dwarf 0.053

8 astrophysicist 1.596 38 scientist 0.052

9 physicist 1.273 39 cosmology 0.049

10 planet 0.768 40 century 0.044

11 comet 0.734 41 black hole 0.042

12 asteroid 0.565 42 theologian 0.040

13 geographer 0.525 43 biologist 0.038

14 supernova 0.367 44 engineer 0.038

15 cartographer 0.338 45 crater 0.036

16 galaxy 0.313 46 physician 0.034

17 star 0.276 47 sun 0.033

18 quasar 0.242 48 calendar 0.030

19 redshift 0.237 49 universe 0.028

20 constellation 0.232 50 inventor 0.023

21 cosmologist 0.225 51 treatise 0.019

22 solar system 0.205 52 calculation 0.019

23 observation 0.200 53 sphere 0.017

24 nebula 0.195 54 instrument 0.016

25 philosopher 0.167 55 educator 0.015

26 astrology 0.130 56 science 0.014

27 orbit 0.127 57 cluster 0.014

28 discovery 0.119 58 theory 0.014

29 discoverer 0.115 59 poet 0.012

30 meteorologist 0.114 60 motion 0.012
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3.2.1 Evaluation

Although we ultimately discard values of Srel(t, c) in favor of constructing an unweighted 

semantic network, an objective evaluation of our function’s performance is still in order. In the 

relatedness literature, a standard approach is to measure correlation with mean similarity scores 

elicited from human participants by Rubenstein and Goodenough (1965) and Miller and Charles 

(1991). In these studies, participants rated the “similarity of meaning” of noun pairs on a scale of 

0.0 (“semantically unrelated”) to 4.0 (“highly synonymous”). Rubenstein and Goodenough had 

participants  evaluate  65  word  pairs  in  this  manner.  Miller  and  Charles  then  replicated  the 

experiment using only 30 of the original 65 word pairs.

Given that our measurement of relational strength,  Srel(t,  c),  is used only to rank co-

targets by their relative relatedness to a particular target, we now exploit those ranks to evaluate 

our function. We score relatedness between two words, a and b, as a scaled mean of their ranks 

in each other’s list of co-targets, as follows:

score(a ,b)  =  4.0  ×  AVG(∣C a∣+ 1−rank a(b)

∣Ca∣
,
∣Cb∣+ 1−rank b(a)

∣Cb∣ ) (31)

where rankt(c) is the numerical rank of some co-target c among all of t’s co-targets, as sorted by 

decreasing22 value of Srel(t, c), and |C t | is the number of t’s co-targets. That is, the most strongly 

related co-target of t has rankt(c) = 1, and the least related co-target has rankt(c) = |C t |.

22 This is a deviation from our definition of rankt(c) in previous work (Szumlanski & Gomez, 2010). We adopt the 
present  form  to  maintain  an  internally  consistent  definition  of  ranking,  which  is  used  elsewhere  in  this 
dissertation. The  score(a,  b) function has been modified accordingly, so the values it produces are consistent  
with previous work.
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In the event that neither rank is defined, we let  score(a,  b) = 0. If exactly one of these 

ranks is defined, we take 75% of the defined term, rather than allowing it to be averaged with 

zero. Recall that rankt(c) is undefined not only if t and c do not co-occur in the corpus, but also 

when P(c|t) < 0.07%.

We evaluate the correlation of the scores produced by this function to the mean similarity 

scores of Rubenstein and Goodenough (henceforth R&G) and Miller and Charles (henceforth 

M&C).  In  Table  3.5,  we compare  our  correlation  results  to  those  presented  in  a  review by 

Budanitsky and Hirst (2006), as well as five semantic relatedness studies published since then 

(Gabrilovich  &  Markovitch,  2007;  Hughes  &  Ramage,  2007;  Milne  &  Witten,  2008a; 

Patwardhan & Pedersen, 2006; Strube & Ponzetto, 2006).23

Table 3.5:
Coefficients of correlation with human similarity judgments. Figures in starred 

rows are taken from Budanitsky and Hirst (2006).

Measure M&C R&G

Patwardhan and Pedersen (2006) 0.910 0.900

Hughes and Ramage (2007) 0.904 0.817

Relational Strength: S rel(t, c) 0.852 0.824

* Leacock and Chodorow (1998) 0.838 0.816

* Lin (1998) 0.819 0.829

* Hirst and St-Onge (1998) 0.786 0.744

* Jiang and Conrath (1997) 0.781 0.850

* Resnik (1995) 0.779 0.774

Gabrilovich and Markovitch (2007) 0.720 0.820

Milne and Witten (2008a) 0.700 0.640

Strube and Ponzetto (2006)23 0.490 0.560

Human Correlation (Resnik 1995) 0.885 n/a

23 These results are from the path length measure (simPL) and were misreported in Szumlanski and Gomez (2010).
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Our results correlate strongly to both M&C (r = 0.852, p < 0.01) and R&G (r = 0.824, p < 

0.01). The coefficients of correlation (r-values) are from Pearson’s product-moment correlation, 

and measure the  strength of  the linear  relationship  between two sets  of  data.  Higher  values 

indicate better correlation to the human-assigned scores; 1.0 would indicate a perfect fit.

We find that, on this task, our lexical co-occurrence method produces results  that are 

competitive with methods that draw on rich semantic resources like WordNet and the underlying 

structure of Wikipedia. Our results are also comfortably within the realm of human performance; 

the last row in  Table 3.5 comes from a replication of the M&C study in which Resnik (1995) 

again had 10 human participants rate the similarity of the 30 word pairs used in the earlier study.  

He then measured the correlation of each individual participant’s ratings to the M&C ratings. The 

figure presented in Table 3.5 (r = 0.885) is the arithmetic mean of the 10 resulting coefficients of 

correlation, which Resnik (1995) frames as “an upper bound on what one should expect from a 

computational attempt to perform the same task” (p. 450). Thus, we caution that high correlation 

on this task, and particularly scores that exceed average human correlation, might indicate that a 

measure is failing to capture semantic relatedness beyond that of similarity.

Below, we present the ratings from our score(a, b) function alongside the human ratings 

from the R&G (Table 3.6) and M&C (Table 3.7) studies.

Table 3.6:
Comparison of score function to subjective similarity score judgments from

Rubenstein and Goodenough (1965) (R&G). Correlation: r = 0.824.

# Word Pair     R&G score # Word Pair     R&G score

1 cord smile 0.02 0.00 34 car journey 1.55 2.28

2 rooster voyage 0.04 0.00 35 cemetery mound 1.69 2.27
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# Word Pair     R&G score # Word Pair     R&G score

3 noon string 0.04 0.00 36 glass jewel 1.78 0.00

4 fruit furnace 0.05 0.00 37 magician oracle 1.82 0.00

5 autograph shore 0.06 0.00 38 crane implement 2.37 0.00

6 automobile wizard 0.11 0.00 39 brother lad 2.41 1.87

7 mound stove 0.14 0.00 40 sage wizard 2.46 0.00

8 grin implement 0.18 0.00 41 oracle sage 2.61 0.00

9 asylum fruit 0.19 0.00 42 bird crane 2.63 2.65

10 asylum monk 0.39 0.00 43 bird cock 2.63 2.68

11 graveyard madhouse 0.42 0.00 44 food fruit 2.69 3.23

12 glass magician 0.44 0.00 45 brother monk 2.74 2.38

13 boy rooster 0.44 1.68 46 asylum madhouse 3.04 3.73

14 cushion jewel 0.45 0.00 47 furnace stove 3.11 3.65

15 monk slave 0.57 0.00 48 magician wizard 3.21 3.85

16 asylum cemetery 0.79 0.00 49 hill mound 3.29 3.49

17 coast forest 0.85 2.48 50 cord string 3.41 2.26

18 grin lad 0.88 0.00 51 glass tumbler 3.45 2.82

19 shore woodland 0.90 0.00 52 grin smile 3.46 2.96

20 monk oracle 0.91 0.00 53 serf slave 3.46 2.89

21 boy sage 0.96 1.47 54 journey voyage 3.58 3.55

22 automobile cushion 0.97 0.00 55 autograph signature 3.59 2.92

23 mound shore 0.97 1.50 56 coast shore 3.60 3.59

24 lad wizard 0.99 0.00 57 forest woodland 3.65 3.85

25 forest graveyard 1.00 2.17 58 implement tool 3.66 2.88

26 food rooster 1.09 1.18 59 cock rooster 3.68 3.97

27 cemetery woodland 1.18 0.00 60 boy lad 3.82 2.97

28 shore voyage 1.22 1.96 61 cushion pillow 3.84 3.89

29 bird woodland 1.24 2.24 62 cemetery graveyard 3.88 3.79

30 coast hill 1.26 2.65 63 automobile car 3.92 3.77

31 furnace implement 1.37 0.00 64 midday noon 3.94 3.75

32 crane rooster 1.41 0.00 65 gem jewel 3.94 3.85

33 hill woodland 1.48 2.17
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Table 3.7:
Comparison of score function to subjective similarity score judgments from 

Miller and Charles (1991) (M&C). Correlation: r = 0.852.

# Word Pair     M&C score # Word Pair     M&C score

1 noon string 0.08 0.00 16 lad brother 1.66 1.87

2 rooster voyage 0.08 0.00 17 brother monk 2.82 2.38

3 glass magician 0.11 0.00 18 tool implement 2.95 2.88

4 chord smile 0.13 0.00 19 bird crane 2.97 2.65

5 lad wizard 0.42 0.00 20 bird cock 3.05 2.68

6 coast forest 0.42 2.48 21 food fruit 3.08 3.23

7 monk slave 0.55 0.00 22 furnace stove 3.11 3.65

8 shore woodland 0.63 0.00 23 midday noon 3.42 3.75

9 forest graveyard 0.84 2.17 24 magician wizard 3.50 3.85

10 coast hill 0.87 2.65 25 asylum madhouse 3.61 2.73

11 food rooster 0.89 1.18 26 coast shore 3.70 3.59

12 cemetery woodland 0.95 0.00 27 boy lad 3.76 2.98

13 monk oracle 1.10 0.00 28 journey voyage 3.84 3.55

14 journey car 1.16 2.28 29 gem jewel 3.84 3.85

15 crane implement 1.68 0.00 30 car automobile 3.92 3.77

3.3 From Relational Strength to Categorical Relatedness

We now present an algorithm for discovering categorical semantic relatedness between 

nouns.  We will  write  pairs  of  related  nouns as,  e.g.,  (astronomer,  star),  which  indicates  the 

relatedness of “astronomer” to “star;” the former is our target, and the latter is a co-target that we 

have found to be semantically related. The collection of all such pairs constitutes a semantic 

network of related nouns.
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Intuitively speaking, the idea behind our algorithm is this: if t is strongly related to c and, 

conversely, c is strongly related to t, we include the ordered pair (t, c) in our semantic network. 

For this purpose we rely on our measure of relational strength: once we have sorted a list of co-

targets by decreasing value of relational strength with respect to some target, we have a good 

idea of which nouns are strongly related to the target (those at the top of the list) and which ones 

are strongly unrelated to the target (those at the bottom).

More formally, we introduce the notion of mutual relatedness between nouns, defined as 

follows: if c is in the top x% of t’s most strongly related co-targets (sorted by Srel(t, c)), and t is 

in the top  x% of  c’s most strongly related co-targets, we say that  t and  c are mutually related 

within x%. The set of all nouns mutually related to t within x% is denoted mx(t).

To find the nouns categorically related to a target, t, we let x = 20 and find the initial set 

mx(t). We then expand this set by incrementing x until 5 iterations pass without t being related to 

any additional co-targets (see Figure 3.4 below). Our experiments have shown that varying these 

parameters has negligible effects on the results of our algorithm, even if we allow the algorithm 

to  proceed until  as  many  as  10  iterations  have  passed  without  any  new relationships  being 

discovered.

Upon termination of the algorithm, we admit to the network all ordered pairs (t, c) such 

that c is in mx(t) (for the final value of x, which we call the admittance threshold of  t). In our 

algorithm, this set of ordered pairs is denoted S0.
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Input: A target noun, t.

Returns: Set of noun pairs (t, c) such that t and c are semantically related.

  1: FindRelatedNouns( t ) {
  2:      S0 = {}
  3:      NoGain = 0
  4:
  5:      for x = 20 to 100 do
  6:           S = {(t, c) | c ∈ mx(t)}
  7:           if |S| > |S0| then
  8:                NoGain = 0
  9:           else
10:                NoGain++
11:
12:           if NoGain ≥ 5 then
13:                break
14:           end if
15:
16:           S0 = S
17:      end for
18:
19:      return S0

20: }

Figure 3.4:
Algorithm for establishing categorical relatedness from mutual relatedness.

The mutual relatedness algorithm exhibits several important properties worth mentioning. 

First, it accounts for the fact that some nouns are more permissive with their semantic relatedness 

than others, and relates each target to as many or as few nouns as it deems fit, rather than using a  

single, arbitrary threshold to restrict relatedness to all targets.

Second, the algorithm is resilient to the gradated nature of the relational strength of a 

target to its co-targets. This gradation makes it impossible even for human judges to find a clear 

cutoff above which we can consider all nouns to be related to the target, and below which we can 

100



comfortably exclude their relatedness. However, our algorithm makes incisive decisions about 

relatedness without being lured down the slippery slope of over-inclusiveness.

A third notable feature of our algorithm is that it admits (t, c) only when the strength of 

t’s  relatedness to  c is  reciprocated from  c to  t (as with “penguin” and “iceberg,”  which are 

strongly related in both directions; compare this with “ice” and “penguin,” which are far more 

strongly related in one direction (penguin to ice) than the other (ice to penguin) and are therefore 

excluded from relation in the network).

3.3.1 Evaluation

We have constructed a semantic network of related nouns with this algorithm, using as 

our target nouns all those occurring between 1,500 and 100,000 times in Wikipedia. An overview 

of the resultant network is given in Table 3.8.

Table 3.8:
Summary of statistics for the semantic network of related nouns.

Property Description Count

Target Nouns Number of nouns occurring between 1,500 and 100,000 
times in Wikipedia.

7,593

Nodes Number of nouns represented in network; includes both 
targets and co-targets.

25,142

Edges Number of related word pairs; (a, b) and (b, a) are not 
counted as distinct word pairs.

155,180

Average Threshold of Target Nouns Mutual relatedness algorithm’s average admittance 
threshold for target nouns in network.

28.19%

Average Degree of Target Nodes Average number of nouns to which each target is related. 31.29
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We restrict our consideration to nouns occurring between 1,500 and 100,000 times in the 

corpus primarily because of the limitations of our information theoretic approach mentioned 

above: our approach often assigns disproportionately high values of relational strength when 

considering nouns that occur infrequently in the corpus. In the case of nouns occurring fewer 

than 1,500 time, we thus avoid false positive associations that arise under conditions of data 

sparsity. In the case of nouns occurring more than 100,000 times in the corpus (of which there 

are 430), we avoid false positives resultant of their high rates of co-occurrence with nouns that 

occur comparatively rarely in the corpus.

For the 7,593 target nouns in our restricted range, our algorithm produces a semantic 

network  relating  25,142 distinct  nouns  (most  of  which  appear  as  co-targets,  but  not  targets 

themselves, because of their low frequency of occurrence in the corpus), derived from 237,584 

noun pairs. Of these noun pairs, 82,404 are redundant, in that they are the symmetric images of 

pairs already included in the network. Thus, the network has 155,180 distinct undirected edges. 

Each target noun is related, on average, to 31.29 other nouns.

To evaluate the precision of the related noun pairs discovered by this procedure, we asked 

three judges with backgrounds in computational linguistics, none of whom had direct ties to this 

research, to evaluate 150 noun pairs and determine whether they would consider the nouns in 

those pairs to be semantically related or not. To prepare them for this task, we presented the 

judges with several exemplars of relatedness, which we hand picked from the network (see Table

3.9 below),  and  which  exemplify  a  variety  of  relations  (AtLocation,  TypeOf,  UsedFor, 

ConceptuallyRelatedTo, other functional relationships, collocations, and so on).
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Of the 150 noun pairs presented to the judges for evaluation, 100 were chosen at random 

from the related pairs in our network. Additionally, 50 pairs of unrelated nouns were generated at 

random  from  among  the  nouns  currently  represented  in  the  network.  The  150  pairs  were 

presented in random order to the judges. The results of their evaluations are summarized below 

in Table 3.10.
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Table 3.9:
Exemplars of semantic relatedness, hand-picked from our network.

# Pair

1 (astronomer, observatory)

2 (crime, prevention)

3 (automobile, gasoline)

4 (phone, signal)

5 (penguin, tuxedo)

6 (prison, lawyer)

7 (tendon, cartilage)

8 (string, output)

9 (desert, habitat)

Table 3.10:
Judges’ evaluations of precision on related and unrelated noun pairs.

Judge Related Pairs Judged
as Related

Unrelated Pairs Judged
as Unrelated

#1 99% 72%

#2 93% 80%

#3 95% 90%

Averages 95.66% 80.66%



On average,  the  judges  evaluated  95.66%  of  the  pairs  from  our  network  to  be 

semantically related. They also judged 80.66% of the unrelated pairs to be unrelated. (That is, 

they identified an average of 19.34% of the unrelated (randomly paired) nouns as being related.)

This domain is too open-ended for there to be any feasible measure of recall. However, 

the  fact  that  our  target  nouns  are  related  to  an  average  of  31.29  nouns  while  maintaining 

precision in excess of 95% is indicative of broad and accurate coverage of semantic relatedness. 

To  further  illustrate  the  quality  of  the  relationships  discovered  by  our  approach,  we  have 

included a discussion of the semantic network surrounding the monosemous nouns (concepts) 

astronomer and tennis in the following chapter (see Section 4.7) and employed our network in a 

word sense disambiguation task to verify its utility as an applied resource (see Chapter 5).
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CHAPTER 4: CONSTRUCTING THE NETWORK: FROM NOUNS TO 
CONCEPTS

Once  we  have  established  relatedness  between  nouns,  we  turn  our  attention  to 

automatically disambiguating them to their corresponding noun senses in WordNet 3.0. In this 

chapter,  we present our methodology for disambiguating nouns in our network (Sections  4.2 

through 4.5) and provide an evaluation of our results (Section 4.6). In Section 4.7, we provide an 

explication of the semantic network surrounding the monosemous nouns (concepts) astronomer 

and tennis. In Section 4.8, we provide a discussion of the special considerations involved with 

disambiguating polysemous-to-polysemous pairs of associate nouns.

4.1 Preliminaries

To disambiguate the nouns in our network, we use a complex suite of disambiguation 

methods that work in tandem to support or refute one another’s results. Because each of these 

methods has certain weaknesses, a noun sense has to be verified by at least two of them in order 

to be admitted to the network when the methods produce conflicting results. Preference is given 

to results produced by these methods in order of their presentation below. If all the methods 

described below fail to disambiguate a noun, we default to its most frequent sense in WordNet.

It is possible for multiple senses of a noun to be verified by these methods and admitted 

to the network. This is often desirable; rather than restricting ourselves to one sense, we allow for 

the possibility of ambiguity within the relationship (e.g., the relationship of tax#1 (monosemous) 

to “administration,” which could be either a presidential administration or, in the case of the 
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nominalized form, the act of administering a tax), and to some degree ameliorate the problem of 

fine-grained  polysemic  distinctions  in  WordNet  (e.g.,  the  relationship  of  astronomer#1 

(monosemous) to both star#1 (“a celestial body of hot gases that radiates energy derived from 

thermonuclear reactions in the interior”) and  star#3 (“any celestial body visible (as a point of 

light) from the Earth at night”), both of which are celestial bodies).

4.2 Subsumption Method

Our first disambiguation method capitalizes on the sense similarity clustering that we 

have found to occur among related nouns. For example, concepts related to astronomer form one 

cluster  beneath  the  umbrella  of  celestial_body#1 in  WordNet  (planet#{1,3},  star#{1,3}, 

minor_planet#1,  quasar#1),  another  under  the  purview  of  scientist#1 (mathematician#1, 

physicist#1, chemist#1), and so on.24

Accordingly, we determine the most frequently occurring immediate hypernyms for all 

the senses of the nouns related to a given target, and allow them to disambiguate the concepts 

they subsume. Although accidental inclusion of fringe senses categorized by common hypernyms 

occurs in rare cases, this is the strongest of our methods for disambiguation.

4.3 Gloss Method

Our gloss method gathers all monosemous nouns related to a target, as well as the target 

itself, and searches for these terms in the WordNet glosses of the target’s polysemous associates. 

24 Recall that we denote sense n of a noun by noun#n, or multiple senses with, e.g., noun#{m, n}.
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Search terms may be pluralized, and suffixes from the set {-y, -er, -ist, -ing} may be replaced 

with any suffix from the set {-s, -es, -ies, -y, -er, -ist, -ing}, so that, e.g., “biologist” can also be  

matched by the occurrence of “biology,” or “engineering” by “engineers.”

This  method  returns  a  list  of  all  noun  senses  with  at  least  one  of  the  search  terms 

occurring in their glosses. Even with target nouns that have a large number of related terms, this 

list  is  surprisingly  concise,  although  the  results  are  less  reliable  than  those  of  the  previous 

method. However, these results do not require verification by another method if a search term 

matches a topic word in a sense gloss, as with “astronomy” in the glosses of planet#1, galaxy#3, 

and  star#1 (see  Figure 4.1). Thus, any noun related to both “astronomy” (monosemous) and 

“star” will take star#1 as an intended meaning of “star.” However, this does not preclude us from 

including additional senses of “star” if there is strong evidence from the other disambiguation 

methods to support their inclusion.

planet#1: (astronomy) any of the nine large celestial bodies in the solar system that 
revolve around the sun and shine by reflected light
—from “astronomer”→“astronomy,” “astronomy,” and “solar system”

planet#3: any celestial body (other than comets or satellites) that revolves around a star
—from “comet”→“comets”

galaxy#3: (astronomy) a collection of star systems; any of the billions of systems each 
having many stars and nebulae and dust
—from “astronomer”→“astronomy” and “astronomy”

cosmology#2: the branch of astrophysics that studies the origin and evolution and 
structure of the universe
—from “astrophysicist”→“astrophysics”

star#1: (astronomy) a celestial body of hot gases that radiates energy derived from 
thermonuclear reactions in the interior
—from “astronomer”→“astronomy” and “astronomy”

Figure 4.1:
Inflected variants of monosemous associates of “astronomer” occurring in glosses 

of polysemous associates of “astronomer.”
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4.4 Selectional Preference Method

Next  we  use  Resnik’s  (1999)  selectional  association  measure  to  build  selectional 

preferences  for  the  nouns  related  to  a  given  target.  Formally,  we  define  the  selectional 

association, A(t, c), of a target noun t with a WordNet class c as:

A(t , c)  =  
1

DKL

P (c∣t) log
P (c∣t)
P (c )

(32)

As before,  DKL is the Kullback-Leibler divergence between probability distributions P(C|t) and 

P(C):

DKL  = ∑
c∈C

P (c∣t) log
P (c∣t)
P (c )

(33)

Here, C is the set of WordNet classes denoted by monosemous associates of t, along with all the 

concepts in their hypernymic traces (all hypernyms of those concepts up to and including the 

root of the hierarchy, entity#1).

The posterior  distribution,  P(C|t),  derives  from the frequency of co-occurrence of  t’s 

monosemous related nouns. To compute the prior distribution, P(C), we use the frequency data 

for all monosemous nouns occurring between 1,500 and 100,000 times in Wikipedia. This is a 

departure from the approach of Resnik, who includes polysemous nouns (and their hypernymic 

traces) in both probability distributions and apportions credit for a noun evenly across all its 

senses.  By  focusing  only  on  monosemous  nouns  in  this  approach,  we  eliminate  the  noise 

introduced by the ambiguity of polysemous nouns.

Each concept in C, a category in WordNet, is thereby associated with a numerical value 

indicating the strength of its  selectional association with the target,  t.  Higher values indicate 
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stronger association.  Once we have the selectional preferences derived from  t’s monosemous 

associates, we use them to preferentially disambiguate t’s polysemous associates.

Consider, for example, the categories in WordNet with the highest selectional association 

with the monosemous noun “unicorn” (Table 4.1). Among these selectional preferences we find 

mythical_monster#1,  imaginary_being#1,  and  spiritual_being#1,  which  do  not  appear  as 
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Table 4.1:
All selectional preferences derived from monosemous associates of “unicorn.”

Rank WordNet Class (c) A(t, c) Rank WordNet Class (c) A(t, c)

1 monster#1 12.350 20 chordate#1 4.355

2 mythical_being#1 12.350 21 vertebrate#1 4.355

3 mythical_monster#1 12.350 22 animal#1 4.040

4 mermaid#1 10.734 23 container#1 3.470

5 goblin#1 10.519 24 cognition#1 3.265

6 utensil#1 9.113 25 content#5 2.499

7 imaginary_being#1 8.703 26 psychological_feature#1 2.160

8 imagination#1 8.703 27 activity#1 2.129

9 creativity#1 8.237 28 act#2 0.920

10 vessel#3 7.495 29 event#1 0.639

11 evil_spirit#1 7.327 30 abstraction#6 0.523

12 spirit#4 7.327 31 instrumentality#3 0.412

13 spiritual_being#1 6.763 32 entity#1 0.000

14 ability#2 6.547 33 organism#1 -0.971

15 creation#1 6.490 34 living_thing#1 -0.980

16 implement#1 5.763 35 whole#2 -1.038

17 placental#1 5.419 36 artifact#1 -1.070

18 mammal#1 5.090 37 object#1 -1.281

19 belief#1 4.688 38 physical_entity#1 -1.491



semantic  associates  of  “unicorn,”  but  do  categorize  many  of  the  monosemous  associates  of 

“unicorn,” such as “griffin,” “goblin,” “mermaid,” “leprechaun,” and “minotaur,” among others. 

(The complete list of semantic associates of “unicorn” is presented in Table 4.2.)

Table 4.2:
All semantic associates of “unicorn” in our network.

Polysemous Associates Monosemous Associates

# Noun # Noun

1 lion 1 griffin

2 dragon 2 goblin

3 nerd 3 mermaid

4 pony 4 origami

5 beast 5 teapot

6 satyr 6 leprechaun

7 phoenix 7 minotaur

8 tapestry 8 mythical creature

9 centaur 9 manticore

10 li 10 legendary creature

11 horn 11 narwhal

The selectional preferences from Table 4.1 are applied, in decreasing order of selectional 

strength, to each sense of the target’s polysemous associates, which are disambiguated to the 

sense or senses categorized by the first  such selection preference that subsumes them. Thus, 

“phoenix” (as it relates to “unicorn”) is disambiguated to  phoenix#3 in WordNet (“a legendary 

Arabian  bird  said  to  periodically  burn  itself  to  death  and  emerge  from the  ashes  as  a  new 

phoenix”)  by  virtue  of  its  subsumption  by  mythical_being#1.  (No  senses  of  “phoenix”  are 

subsumed by the stronger selectional preference, monster#1.) The three senses of “phoenix” that 
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are excluded here are  phoenix#1 (the capital city of Arizona),  phoenix#2 (the taxonomic group 

genus Phoenix, which classifies many palm trees, including the date palm), and  phoenix#4 (a 

constellation). These selectional preferences similarly succeed in disambiguating the polysemous 

“lion” to lion#1 (a feline, as opposed to the celebrity, astrological categorization of a person, or 

sign of the zodiac, denoted by senses 2, 3, and 4 of “lion,” respectively), “beast” to beast#1 (the 

animal, as opposed to a cruel person, which is sense 2 of “beast”), and “satyr” to  satyr#2 (the 

mythical woodland deity, as opposed to sense 1 of “satyr,” which refers to a lecherous man).

If an upper-level ontological concept like physical_entity#1 or abstract_entity#1 performs 

the disambiguation in this method, we automatically dismiss the result as being too general to be 

reliable.  More  specifically,  if  c0 is  the  strongest  selectional  preference  from  our  list  that 

disambiguates some polysemous noun related to t, and A(t, c0) < A(t, c) (the mean value of A(t, c) 

for all c ∈ C), then we discard the result and this method fails to disambiguate the polysemous 

noun in question. (For t = “unicorn,” for example,  A(t,  c) = 4.682. Thus, all WN classes in the 

right-hand column of  Table 4.1 are prohibited from performing disambiguation by selectional 

preference.)

This method sometimes assigns disproportionately strong selective power to hypernyms 

that are particularly rare in the prior distribution. As such, this method defers to the subsumption 

and gloss methods when its results conflict with theirs.
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4.5 Extended Gloss Method

In the event that none of the methods above produce verifiable results, we extend our 

gloss method from Section 4.3 by using as our search terms all semantic associates of the target 

(including polysemous associates), and all of their monosemous associates, in turn. In this case, 

we do not allow noun senses to be disambiguated by topic word matches, as the list of search 

terms has become too bloated. We do, however, allow this method to validate the results of the 

subsumption method, or, failing that, to support the results of the selectional preference method, 

or, as a last resort, to support the results of the original gloss method if it is supporting only one 

or two of the noun senses given by that method, and only if the list of noun senses given by this 

extended method is only larger than that of the gloss method by one or two terms.

That is to say, we treat the results of this extended gloss method with skepticism, and they 

are admitted to the semantic network only in rare cases. Barring the ability of this method, if it is  

called upon, to support a disambiguation result of one of the other methods given above, we 

default to the most frequent noun sense for the polysemous noun in question.

4.6 Evaluation

In our initial investigation into automatic semantic network construction (Szumlanski & 

Gomez,  2010),  we  only  used  these  methods  to  disambiguate  the  polysemous  associates  of 

monosemous target nouns in our network. That is, we restricted our concept-network to pairs 

from the noun-network that included at least one monosemous noun. The intuition behind our 

approach was that monosemous nouns provide an unambiguous context in which disambiguation 
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of a polysemous associate can take place (cf. the monosemous “rhinoceros” and the polysemous 

“horn,” which brings to mind an animal appendage, but not a car horn or the kind of horn that is 

a  musical  instrument).  We deferred the resolution  of  ambiguity  in  polysemous—polysemous 

relationships to later work (Szumlanski & Gomez, 2011).

There are 3,024 monosemous target nouns in our network,  heading up 76,264 of our 

related noun pairs from the previous section. 36,385 of these pairs associate two monosemous 

nouns and are admitted to our network of related concepts without need for disambiguation. The 

remaining 39,879 noun pairs  connect our monosemous targets  to polysemous nouns that  we 

disambiguated  using  the  subsumption,  gloss,  and  selectional  preference  methods  described 

above. Statistics for the resulting semantic network of related concepts are given below in Table

4.3.

Table 4.3:
Summary of statistics for the semantic network of related concepts

(monosemous targets only).

Property Description Count

Target Nouns Number of monosemous nouns occurring between 1,500 
and 100,000 times in Wikipedia.

3,024

Nouns Number of nouns represented in network; includes both 
targets and co-targets.

17,543

Nodes Number of noun senses represented in network; includes 
both target and co-target noun senses.

24,547

Edges Number of related noun sense pairs; (a, b) and (b, a) are 
not counted as distinct pairs.

74,166

Average Degree of Target Nodes Average number of noun senses to which each 
monosemous target is related.

27.80
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To evaluate  the  precision  of  our  disambiguation  results,  we  randomly  selected  50 

monosemous-to-polysemous  noun  pairs  from  our  network  and  presented  them  to  our  three 

judges, along with the gloss and taxonomic categorization for every sense of the polysemous 

noun  in  the  pair.  The  judges  were  asked  to  grade  the  relation  of  each  noun  sense  of  the 

polysemous associate to the monosemous target using the scale presented  below (Table 4.4). 

Figure 4.2 (below on page 115), shows how the data was presented to the judges, and gives one 

judge’s ratings for all senses of “dissociation” as it relates to the monosemous noun “nucleotide.”

Table 4.4:
Scale used by judges to rate acceptability of disambiguation results.

Rating Description

4 Primary intended sense or one of its synonyms.

3 Strongly related sense, but not the primary intended meaning.

2 Weakly related sense; could reasonably be included or 
excluded from relation to the target.

1 Unrelated sense.

We then measured how often the senses chosen by our disambiguation algorithm fell into 

each of these categories, and compared our results to the standard baseline of randomly selecting 

noun senses  (see  Table  4.5 below on page  116).  The first  column of  the  table  (grade ≥ 4) 

indicates how frequently our system disambiguated to senses the judges considered to be the 

primary intended meanings of the related nouns. The last column (grade = 1) indicates how often 

our system selected senses that were unacceptable to the judges. The next-to-last column (grade 

≥ 2) indicates how frequently our system chose senses that were acceptable to our judges.
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========================================================================
   TARGET (monosemous):  nucleotide
 COTARGET (polysemous):  dissociation
========================================================================
 [1]  dissociation#1:
      the act of removing from association  

      dissociation
       => separation
           => change of integrity
               => change
                   => action
                       => act, deed, human action, human activity
                           => event
                               => psychological feature
                                   => abstraction, abstract entity
                                       => entity

 [1]  dissociation#2:
      a state in which some integrated part of a person’s life becomes
      separated from the rest of the personality and functions
      independently  

      dissociation, disassociation
       => psychological state, psychological condition, mental state
           => condition, status
               => state
                   => attribute
                       => abstraction, abstract entity
                           => entity

 [4]  dissociation#3:
      (chemistry) the temporary or reversible process in which a
      molecule or ion is broken down into smaller molecules or ions  

      dissociation
       => chemical process, chemical change, chemical action
           => natural process, natural action, action, activity
               => process, physical process
                   => physical entity
                       => entity
========================================================================

Figure 4.2:
Sample judge’s evaluation indicating the degree to which each sense of 

“dissociation” relates to “nucleotide.”
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Table 4.5:
Disambiguation precision, as compared to judges’ manual sense annotations.

Judge grade ≥ 4 ≥ 3 ≥ 2 = 1

#1 77% 79% 83% 17%

#2 65% 77% 90% 10%

#3 71% 79% 83% 17%

Average 71% 78% 85% 15%

Baseline 44% 53% 62% 38%

Given that 47.7% of the edges in our network connect two monosemous nouns (where 

there is no room for disambiguation error) and the remaining 52.3% have an average rate of 

acceptability of 85% as evaluated by our judges, we estimate the precision of the concept-to-

concept associations in our semantic network to be 92.15%.

4.7 Excerpts and Explication: Selected Views of the Semantic Network

We now present abbreviated excerpts from the semantic network of related concepts for 

the  monosemous  nouns “tennis” (Figure 4.3)  and “astronomer” (Figure 4.4).  These  excerpts 

come from the  version  of  the  network  in  which  only  associate  pairs  involving at  least  one 

monosemous noun have been disambiguated.  In  this  network,  astronomer#1 is  related to  45 

distinct concepts (Table 4.6), and  tennis#1 is related to 80. For the sake of clarity, we present 

only a small sampling of those related concepts graphically. Furthermore, to avoid messy edge 

crossings in the graphs, we do not show interrelatedness between semantic associates of our 
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targets. (For example,  astronomy#1 and  astrologer#1 are both related to  astrology#1,  but we 

instantiate the latter node twice in the graph to preserve clarity.)

The target concepts’ nodes in the graphs are dark blue (astronomer#1 and tennis#1). We 

provide a sampling of their related terms in medium blue. In turn, those concepts are related to  

concepts in light blue, and those terms are related to concepts in white. This gives an idea of  

spreading activation through the semantic network.

In all cases, solid edges indicate that the target is related to the farther node incident to 

that edge.  For example,  the solid edge from  star#{1,3} to  sky#1 in  Figure 4.4 indicates that 
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Figure 4.3:
Partial spreading activation view of concepts related to tennis in our network.

baseball_player

baseball_team

pitcher

soccer

volleyball#1

soccer_player#1

basketball

basketball_player

volleyball

basketball_team

volleyball

table_tennis#1

volleyball_player
basketball

soccersoftball

tennis_court#1

racquet#1

golf#1

golf_club#1

golf_course#1 tennis_player

volleyball#1

softball#2

tennis#1

baseball



astronomer#1 is  related to  sky#1,  too.  The dotted edge from  astrology#1 to  horoscope#{1,2} 

indicates that astronomer#1 is not related to horoscope#{1,2} in our network.

Some  nouns  are  not  yet  disambiguated  in  these  graphs  because  they  are  related  to 

concepts denoted by polysemous nouns, but we see how these might easily be disambiguated. 

Notice, for example, that tennis#1 is related to softball#2 (the game of softball, as opposed to the 

ball itself), which is in turn related to some (as yet undetermined) sense of “volleyball.” Because 
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Figure 4.4:
Partial spreading activation view of concepts related to astronomer in our 

network.
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tennis#1 is  related  to  volleyball#1 (again,  the  game  as  opposed  to  the  ball),  this  can  be 

propagated  through  the  network  to  disambiguate  the  relationship  between  softball#2 and 

“volleyball” as (softball#2,  volleyball#1). Although this is not the approach we will take as we 

resolve remaining ambiguities in the following section, it provides insight into how we might 

subsequently resolve disambiguation errors in the network.

There are also cases in which polysemous nouns are related to disambiguated concepts in 

the  graphs,  such  as  with  the  relation  of  star#{1,3} to  solar_system#1.  “Solar  system”  is 

monosemous in WordNet, and our disambiguation algorithm found it to be semantically related 

to star#{1,3}.

We note that while our algorithm discovers some semantic similarity relationships (e.g., 

the relation of  astronomer#1 to  mathematician#1 and  astrophysicist#1), it also discovers many 
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Table 4.6:
All semantic associates of astronomer in our network.

minor_planet#1 constellation#2 orbit{#1,4} discovery#1

geographer#1 astrologer#1 cosmologist#1 moon#6

theologian#1 asteroid#1 supernova#1 geologist#1

astronomy#1 astrophysicist#1 nebula#3 galaxy#3

quasar#1 biologist#1 observation#1 redshift#1

telescope#1 black_hole#1 solar_system#1 amateur#2

cartographer#1 astrology#1 meteorologist#1 cosmology#2

comet#1 mathematician#1 physicist#1 eclipse#1

planet#{1,3} observatory#1 chemist#1 treatise#1

sky#1 philosopher#1 star#{1,3} dwarf#2

discoverer#1 crater#3



relationships  beyond  similarity,  including  concepts  related  through  collocation  (as  with 

amateur#2,  which,  incidentally,  is  incorrectly  disambiguated)  and  more  general  semantic 

relatedness (telescope#1, star#{1,3}, planet#{1,3}, galaxy#3, observatory#1, redshift#1, etc.).

Equally  important  is  the  absence  of  relationships  to  semantically  similar  concepts  to 

which  the  targets  are  not  strongly  semantically  related.  Consider,  for  example,  the  fact  that 

astronomer#1 is  related  to  some  hyponyms  of  scientist#1 (physicist#1,  mathematician#1, 

chemist#1), but not others (linguist#1, psychologist#1, medical_scientist#1, etc.), despite the fact 

that  quantitative  relatedness  measures  based  on  their  taxonomic  categorizations  in  WordNet 

would erroneously relate astronomer#1 to all these terms with nearly equal strength.

The network also associates  astronomer#1 with  astrologer#1, which is clearly related, 

but is surprisingly far removed from astronomer#1 in WordNet. (Their first shared hypernym in 

the ontology is person#1.)

Finally, notice the relation of astronomer#1 to astrophysicist#1 and mathematician#1, but 

neither astrophysics#1 nor mathematics#1, although it is transitively related to the latter concepts 

by way of the former, as well as by way of  astronomy#1. Similarly, mechanisms of spreading 

activation transitively relate  astronomer#1 to additional concepts like  light_year#1 by way of 

star#{1,3},  radio_astronomy#1 by  way  of  astronomy#1,  and  so  on.  This  is  arguably  quite 

ontologically sound. The astronomer himself is more strongly related to the  astrophysicist and 

the celestial body senses of “star” than to the light year or the study of astrophysics, although he 

is indirectly related to the latter concepts.
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4.8 Completing the Network: Resolving Ambiguity with Polysemous Noun Targets

With a monosemous target, the disambiguation methods described above (Sections 4.2 to 

4.5) benefit from the fact that all semantic associates under consideration are related through the 

same sense (the only sense) of the target noun in question. High degrees of interrelatedness and 

shared subsumption among those co-targets thus ameliorate the disambiguation task. In the case 

of a polysemous target, semantic associates are no longer bound together by that single common 

monosemous  associate.  Thus,  the  associate  nouns,  no  longer  necessarily  being  interrelated, 

exhibit greater entropy in terms of their ontological categorizations. In this section, we discuss 

the special considerations that therefore arise during the disambiguation of polysemous targets 

and their semantically related nouns in the network.

We first note that when dealing with a polysemous target, t, and a monosemous associate, 

c, sometimes it so happens that c is treated as a target in its own right elsewhere in the network 

(i.e., c occurs between 1,500 and 100,000 times in the corpus and has been associated with other 

nouns in addition to  t). Since  c is monosemous, we have already disambiguated all of its co-

targets in the previous sections. Thus, there is nothing to be done for the noun pair ( t,  c); the 

ambiguity of  t was resolved when considering the pair’s symmetric image, (c,  t) (and c, being 

monosemous, requires no disambiguation).

This forms an initial partitioning of nouns by their relation to individual senses of our 

polysemous  target,  t.  Consider,  for  example,  the  polysemous  “virus,”  which  can  refer  to  a 

computer  virus  (virus#3)  or  a  microorganism  (virus#1).  In  Figure  4.5 below,  we  show  all 

monosemous associates of “virus” that also occur as targets in our network (light blue nodes). 

Among them is the monosemous  spyware#1, shown in relation to its own semantic associates 
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(white nodes in the figure). Many of the nouns related to “spyware” have senses categorized as 

software in WordNet. These include “freeware,” “computer virus,” “trojan,” “trojan horse,” and 

“virus.” Our subsumption method (Section 4.2) disambiguates “virus” to virus#3, the computer 

virus,  accordingly.  Our  disambiguation  methods  similarly  relate  the  biologically  oriented 

associates of “virus” to virus#1, the infectious agent, given their relatedness to other nouns that 

fall under various biological categorizations in WordNet.

Figure 4.5:
Monosemous associates of “virus” that also appear as targets in our network.
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virus

virus#1

vaccine#1
outbreak#1
protein#1
cure#1
antibody#1
mosquito#1
epidemic#1
genome#1
influenza#1
disease#1
antigen#1
illness#1
polio#1
gene#1
pathogen#1
enzyme#1
immune_system#1
bacteria#1
fungus#1
flu#1
pandemic#1

virus#3 spyware#1

freeware#1
computer_user#1
cookie#1
virus#3
registry#1
pop-up#1
scanner#1
trojan_horse#2
firewall#1
trojan#2
remover#1
computer_virus#1



Table 4.7:
All semantic associates of “batter” in our network.

at-bat dough hitter perfect game strike zone

baking dugout home plate pitch strikeout

ball fastball home run pitcher swing

base fielder homer pitching tempura

baseball fielding infield plate third base

bat first base infielder pudding third baseman

batsman first baseman inning reliever throw

bowler flour major league runner thrower

bunt fly mound second base triple

cake fly ball no-hitter second baseman umpire

catcher foul ball outfield shortstop waffle

center field glove outfielder shutout walk

center fielder ground ball pan strike wild pitch

double play hit pancake

If, on the other hand, c is a polysemous associate of t, our task is slightly more complex. 

Without a monosemous semantic anchor for the pair, we no longer have an unequivocal context 

in which disambiguation can take place. We have found, however, that semantic clusters still 

form among the semantic associates of polysemous nouns.

Consider, for example, the semantic associates of the polysemous “batter,” which can 

refer to a baseball player (batter#1) or the kind of batter used to make cakes and other baked 

goods (batter#2). A list of all nouns related to “batter” in our network is given above in  Table

4.7. A subset of these associates is shown below in  Figure 4.6, where we see the clusters that 

form from shared hypernymic relationships between individual senses of these nouns. In the 

graph, blue nodes denote semantic associates of “batter;” white nodes are their hypernyms and 
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are not semantic associates of “batter” in our network. The gray node in the center, entity#1, is 

the root of the hierarchy, and categorizes all adjacent concepts. Subsumption radiates outward 

from that  node,  so  that,  for  example,  food#1 subsumes  dessert#1,  which  in  turn  subsumes 

pudding#{2,3},  and so on. Solid edges in the graph represent immediate subsumption by the 

more  central  node  (e.g.,  the  solid  edge  from  cake#3 to  waffle#1 establishes  cake#3 as  the 

immediate hypernym of waffle#1), whereas dotted edges represent eventual hypernymy (as with 

the edge from sports_equipment#1 to  glove#3; sports_equipment#1 is a hypernym of  glove#3, 

although there are other concepts between them in the ontology).

Figure 4.6:
Partial view of the WordNet graph, showing subsumption clusters formed by

a subset of the semantic associates of “batter” in our network.
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We see  from  Figure  4.6 that  many  of  the  nouns  related  to  “batter”  have  senses 

categorized by food#1, cake#3, pitch#2, ballplayer#1, or equipment#1—the heads of five distinct 

clusters by semantic similarity.

It is worth noting that some nouns related to “batter” (such as “baking,” “swing,” and 

“umpire”) do not fall into any of these semantic clusters. In these cases, the WordNet glosses 

serve as our primary tool for disambiguation. (For example, the glosses of both  swing#8 and 

umpire#1 include mention of “baseball,” which is also related to “batter.”)

Conversely, some of the polysemous nouns in our example have senses that join semantic 

clusters unintendedly. For instance,  cake#2 (a “small flat mass of chopped food,” according to 

WordNet) falls under the cluster headed by  food#1.  Although this is potentially problematic, 

cake#2 is discarded in this particular case in favor of  cake#3 (the baked good), which has a 

greater mass because of its subsumption of waffle#1 and pancake#1, and is indeed the intended 

meaning of “cake” as it relates to “batter.”

Another example of unintended cluster membership comes from bat#4 (the cricket bat), 

which is categorized by sports_equipment#1. In contrast, the baseball bat does not have its own 

entry in WordNet, and the most reasonable sense choice, bat#5 (“a club used for hitting a ball in 

various games”), is categorized as a stick (stick#1), and not as equipment, sports equipment, or 

game equipment.

These  unintended  cluster  memberships  are  bound  to  cause  minor  errors  in  our 

disambiguation efforts. However, we do not find such high entropy among the relatives of a 

polysemous noun that the semantic clustering effect (which is necessary for the success of the 

disambiguation algorithms described above in Sections  4.2 to  4.5) is diminished. Thus, when 
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confronted with a pair of semantically related polysemous nouns, we apply our disambiguation 

mechanism in both directions, and then fuse the results together. So, in one direction, the various 

baked goods related to “batter” help us to properly disambiguate “cake” to cake#3, yielding the 

pair (batter, cake#3). A similar scenario yields (cake, batter#2) when disambiguating in the other 

direction. We fuse the results together into the properly disambiguated pair (batter#2, cake#3).

This process assumes that we have already acquired the semantic associates of the co-

target,  c. Otherwise, our disambiguation methods have no way to resolve the meaning of the 

polysemous target. However, if frequency(c) < 1,500, then we have no associates for c other than 

those incidental targets (like our current t) that found association to c. In these cases, we use our 

mutual relatedness algorithm (Section  3.3) to derive a temporary set of associate nouns for  c. 

These associates are not admitted to the network; they are simply used for disambiguation and 

then discarded, the idea being that if association is over-inclusive in the case of infrequently 

occurring nouns, we will still see some clustering effects among an inflated set of temporary 

associates.

Using this method, we have resolved all nouns in our network to noun senses, giving rise  

to  a  semantic  network  that  has  208,832  pairs  of  related  noun  senses—the  most  extensive 

semantic  network between WordNet noun senses to be derived from a lexical  co-occurrence 

measure. A summary of relevant statistics is given below in Table 4.8. Of the 7,593 target nouns 

for which we have acquired semantic associates, 3,024 are monosemous and represented by a 

single node in the network. The remaining 4,569 are polysemous and are represented by 17,104 

distinct concepts. In all, the network contains 25,142 unique nouns, with 38,249 distinct senses 
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among them. On average, target nodes in the network (those that represent individual senses of 

our 7,593 target nouns) are related to 19.06 other concepts.
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Table 4.8:
Summary of statistics for the semantic network of related concepts (SGN). 

Includes monosemous and polysemous targets.

Property Description Count

Target Nouns Number of nouns occurring between 1,500 and 100,000 
times in Wikipedia.

7,593

Monosemous Target Nouns Number of monosemous target nouns for which our 
system has acquired relatedness data.

3,024

Polysemous Target Nouns Number of polysemous target nouns for which our 
system has acquired relatedness data.

4,569

Target Nodes Number of target noun senses represented in the 
network.

17,104

Target Nodes
(From Monosemous Nouns Only)

Number of target noun senses represented in the network 
that are derived from monosemous target nouns.

3,024

Target Nodes
(From Polysemous Nouns Only)

Number of target noun senses represented in the network 
that are derived from polysemous target nouns.

14,080

Nouns Number of nouns represented in network; includes both 
targets and co-targets.

25,142

Nodes Number of noun senses represented in network; includes 
both target and co-target noun senses.

38,249

Edges Number of related noun sense pairs; (a, b) and (b, a) are 
not counted as distinct pairs.

208,832

Average Degree of Target Nouns Average number of noun senses to which each (possibly 
ambiguous) target noun is related.

42.93

Average Degree of Target Nodes 
(From Monosemous Nouns Only)

For all nodes derived from monosemous target nouns, 
the average number of adjacent nodes.

28.33

Average Degree of Target Nodes 
(From Polysemous Nouns Only)

For all nodes derived from polysemous target nouns, the 
average number of adjacent nodes.

17.06

Average Degree of Target Nodes Average number of noun senses to which each target  
noun sense is related.

19.06



For the remainder of this dissertation, we will refer to our network as the Szumlanski-

Gomez Network, or SGN. In the following chapter, we evaluate our network by examining its 

performance  on  a  word  sense  disambiguation  task  that  relies  on  the  concept-to-concept 

associations in SGN.
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CHAPTER 5: COARSE-GRAINED WORD SENSE DISAMBIGUATION: 
AN APPLICATION

In the preceding chapters, we presented a method for automatically acquiring a semantic 

network of related concepts, or noun senses, from lexical co-occurrence in a large corpus. We 

applied our approach to Wikipedia, giving rise to a network that has relatedness data for over 

7,500 of the most frequently occurring nouns in the corpus. The target nouns represented in our 

network are related to an average of 19.06 distinct noun senses. It consists of 208,832 undirected 

edges indicating general semantic relatedness between concepts. We refer to the network as the 

Szumlanski-Gomez Network (henceforth SGN).

In this chapter, we evaluate the performance of our semantic network on a word sense 

disambiguation (WSD) task and show: a) the network is competitive with WordNet when used as 

a stand-alone plug-in knowledge source for two graph-based WSD algorithms, b) combining our 

network with WordNet achieves disambiguation results that exceed the performance of either 

resource individually, and c) our network outperforms a similar resource, WordNet++ (Ponzetto 

&  Navigli,  2010),  that  has  been  automatically  derived  from  semantic  annotations  in  the 

Wikipedia corpus.

5.1 WordNet++

WordNet++ (henceforth WN++) (Ponzetto & Navigli, 2010) is constructed automatically 

from  the  semantic  annotations  and  structural  properties  of  Wikipedia.  Links  in  WN++ are 

established from inter-article links in the encyclopedia. For example, the article on astronomy in 
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Wikipedia links to the article on celestial navigation, so we find an edge from astronomy#1 to 

celestial_navigation#1 in WN++. The nouns related in WN++ are disambiguated automatically 

using further semantic annotations and metadata from Wikipedia,  including sense labels,  the 

titles of other pages linked to by any two related nouns, and the folksonomic categories to which 

articles belong. These serve as context words that are compared with context words from various 

WordNet relations in order to map the nouns to their appropriate WordNet senses. The resulting 

resource contains 1,902,859 unique edges between noun senses. The construction of WN++ is 

discussed in detail above in Chapter 2 (see Section 2.5.4).

Ponzetto and Navigli use “WN++” to refer to the union of all edges in WordNet and the 

set of additional edges they derived from Wikipedia. That is, WN++ is an augmented version of 

WordNet and contains the entire WordNet noun ontology. We depart from this convention for the 

remainder  of  this  dissertation,  instead  using  “WN++”  to  refer  strictly  to  the  RelatedTo links 

contributed by Ponzetto and Navigli. This gives us a convenient way to identify their resource as 

we evaluate it in comparison to SGN and in isolation from WordNet.

5.2 Coarse-Grained WSD Experiments

To evaluate our semantic network, and to provide fair comparison to related work, we 

take our cue from Ponzetto and Navigli (2010), who evaluated the performance of WN++ on the 

SemEval-2007 (Navigli  et  al.,  2007)  coarse-grained all-words  WSD task using the extended 

gloss  overlaps  measure  (Banerjee  & Pedersen,  2003)  and  the  graph-based  degree  centrality 

algorithm (Navigli & Lapata, 2010).
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In this  particular SemEval task, we are presented with 237 sentences in which target 

words have been lemmatized (that is,  reduced from morphologically inflected forms to their 

canonical WordNet forms and tagged with parts of speech) and flagged for disambiguation (see 

Figure 5.1). For example, the sentence In quoting from our research, you emphasized the high  

prevalence of mental illness and alcoholism has the following lemmatized target words to be 

disambiguated:  quote.v,  research.n,  emphasize.v,  high.a,  prevalence.n,  mental.a,  illness.n,  and 

alcoholism.n.

d001.s006: In quoting from our research, you emphasized the high prevalence of mental 
illness and alcoholism.
— Lemmas: quote.v, research.n, emphasize.v, high.a, prevalence.n, mental.a, illness.n, 
alcoholism.n

d001.s011: The interactions between health and homelessness are complex, defying 
sweeping generalizations as to “cause” and “effect.”
— Lemmas: interaction.n, health.n, homelessness.n, be.v, complex.a, defy.v, sweeping.a,  
generalization.n, cause.n, effect.n

Figure 5.1:
Example sentences from SemEval-2007, showing target words to be 

disambiguated (highlighted in blue) and their lemmatized forms.

In our experiments, we disambiguate nouns only (as did Ponzetto and Navigli),  since 

both SGN and WN++ relate only concepts denoted by nouns, and no other parts of speech. In our 

experimental setup, each sentence is considered in isolation from the rest, and all lemmatized 

content words in a sentence are provided to the disambiguation algorithm; the verbs, adjectives, 

and  adverbs,  although  we  do  not  resolve  their  senses,  lend  additional  context  to  the 

disambiguation algorithms.
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The coarse-grained nature of the SemEval-2007 task provides that there may be more 

than one acceptable sense assignment for many of the targets. In the coarse-grained setting, an 

algorithm’s  sense assignment  is  considered  correct  when it  appears  in  the  list  of  acceptable 

senses for the given target word. These lists of acceptable senses are provided with the dataset.

Both of the algorithms below allow for multiple disambiguation results to be returned in 

the event of a tie. In these cases (although they are rare), we adopt the approach of Banerjee and 

Pedersen (2003), who award partial credit and discredit proportionally for all the senses returned 

by the algorithm.

5.3 WSD with Extended Gloss Overlaps (ExtLesk)

The first disambiguation algorithm we employ is the extended gloss overlaps measure 

(henceforth ExtLesk) of Banerjee and Pedersen (2003), which is an extension of the Lesk (1986) 

gloss overlaps measure. The algorithm takes a target (our target noun to be disambiguated) and 

its  surrounding  context  (in  our  case,  all  other  lemmatized  targets  in  the  sentence  under 

consideration), and proceeds as follows:

For each sense si of the target noun n, we find all word senses related to si in WordNet via 

some specific relation,  Rx. We then concatenate the glosses of these noun senses into a single 

string.  Let us denote the concatenation of the glosses of all  noun senses related to  si by the 

relation  Rx as  glossRx(si). Then, for each sense  sj of each word in our surrounding context, we 

take all the word senses related to sj in WordNet via a particular relation Ry (which may or may 

not be the same relation used above), and concatenate the glosses of those word senses into a 
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string that is, following our notation above, denoted  glossRy(sj). (For example, see  Figure 5.2 

below,  which  shows  all  hyponyms  of  celestial_body#1 and  glossHYPO(celestial_body#1)  (the 

concatenation of their glosses).

Figure 5.2:
All hyponyms of celestial_body#1 in WordNet and their concatenated glosses, 

glossHYPO(celestial_body#1).

We then count  how many  content  words  (nouns,  verbs,  adjectives,  and  adverbs)  are 

common to both  glossRx(si) and  glossRy(sj). More formally, we define a function  overlap(a,  b) 
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minor_planet#1

any of numerous small celestial bodies that move 
around the sun

planet#1
(astronomy) any of the nine large celestial bodies in 
the solar system that revolve around the sun and 
shine by reflected light

planet#3

any celestial body (other than comets or satellites) 
that revolves around a star

planetesimal#1
one of many small solid celestial bodies thought to 
have existed at an early stage in the development of 
the solar system

primary#3

(astronomy) a celestial body (especially a star) 
relative to other objects in orbit around it

quasar#1

a starlike object that may send out radio waves and 
other forms of energy; many have large red shifts

satellite#3

any celestial body orbiting around a planet or star

star#1
(astronomy) a celestial body of hot gases that radiates 
energy derived from thermonuclear reactions in the 
interior

star#3

any celestial body visible (as a point of light) from the 
Earth at night

celestial_body#1

glossHYPO(celestial_body#1) =

gloss →

gloss →

gloss →

gloss →

gloss →

gloss →

gloss →

gloss →

gloss →

“

”

hypo →



that tells  us how many content words two strings,  a and  b,  have in  common.25 We perform 

stemming and part-of-speech tagging in this function, so that,  for example, an occurrence of 

“wheel” in one gloss will match the occurrence of “wheels” in another, provided they both have 

the same part-of-speech tag (for an example, see Figure 5.3).26 If a content word is repeated in 

both strings, multiple points are awarded accordingly.27

planet#1: (astronomy) any of the nine large celestial bodies in the solar system that 
revolve around the sun and shine by reflected light; Mercury, Venus, Earth, Mars, ....

star#1: (astronomy) a celestial body of hot gases that radiates energy derived from 
thermonuclear reactions in the interior

overlap(glossGLOS(planet#1), glossGLOS(star#1)) = 3

planet#1: (astronomy) any of the nine large celestial bodies in the solar system that 
revolve around the sun and shine by reflected light; Mercury, Venus, Earth, Mars, ....

star#2: someone who is dazzlingly skilled in any field

overlap(glossGLOS(planet#1), glossGLOS(star#2)) = 0

planet#1: (astronomy) any of the nine large celestial bodies in the solar system that 
revolve around the sun and shine by reflected light; Mercury, Venus, Earth, Mars, ....

star#3: any celestial body visible (as a point of light) from the Earth at night

overlap(glossGLOS(planet#1), glossGLOS(star#3)) = 4

Figure 5.3:
The overlap function counts content words common to two strings.

25 This is a slight departure from the traditional ExtLesk implementation, which awards more points for multi-
word string overlaps. We have found that our approach offers substantial savings in running time while having 
only negligible effects on our overall results. In a subset of experimental runs of ExtLesk in which we used the 
traditional scoring mechanism, we found that F1 values varied on average by a mere 0.32% (absolute change) 
(0.42% relative change).

26 For clarity, Figures 5.2 and 5.3 do not show the stemmed, part-of-speech tagged text of these glosses.
27 Notice that in Figure 5.3 we have overloaded the gloss function so that, e.g.,  glossGLOS(star#1) simply returns 

the gloss of star#1. (Contrast this with the behavior of glossHYPO(celestial_body#1) in Figure 5.2.) That is to say, 
the glos relation in WordNet returns the gloss of a synset, which we use for direct comparison.
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Finally, we say that the score of sense si of our target noun, denoted score(si), is the sum 

of these values for every possible sj from the surrounding context, and every possible relation Rx 

and Ry available to us:

score(si)  = ∑
Rx ∈R

∑
R y∈R

∑
s j∈S

overlap( glossRx
(s i) , glossRx

(s j)) (34)

In (34), S is the context of si (all senses of all surrounding content words in the sentence), 

and  R is  our  set  of  relations.  In  our  implementation  of  ExtLesk,  we  use  a  standard,  

comprehensive set of relations from WordNet, R = {hype, hypo, holo, mero, attr, also, sim, enta, 

caus,  pert,  glos,  example,  syns},28 corresponding  to  the  following  relations  from WordNet, 

respectively: hypernymy, hyponymy, holonymy, meronymy, attributes (for nouns and adjectives), 

also see (denoted within synset glosses), similar to (also taken from synset glosses), entailment  

(for verbs), cause to (also for verbs), pertainymy (adjectives and adverbs), gloss (synset glosses, 

without also see and similar to or example annotations), example (examples taken directly from 

synset  glosses),  and other  words represented in  the concept’s  synset.  With SGN and WN++, 

ExtLesk uses the single relation expressed by the networks: RelatedTo.

The sense of our target noun with the highest score from this function is used for sense 

assignment. In the event of a tie, multiple senses may be returned. ExtLesk does not attempt to 

perform sense assignment if the score for every sense of a target noun is zero,  except when 

dealing with a monosemous noun, in which case we default to the only sense possible.

28 glossGLOS(si) simply yields the gloss of si, since WordNet’s glos relation returns a string, not a synset which we 
can gloss further.  glossEXAMPLE(si) behaves similarly, and  glossSYNS(si) returns a concatenated string of part-of-
speech tagged nouns that constitute the synset of si, rather than repeatedly concatenating the gloss of si.
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5.3.1 Results

In our experimental setup, we use ExtLesk to disambiguate the nouns in the SemEval-

2007 dataset with five combinations of semantic resources: WordNet only, SGN only, SGN and 

WordNet combined (that is, the union of all links contained in both networks), WN++ only, and 

WN++ combined  with  WordNet.  In  our  results  (see  Table  5.1),  we  include  the  traditional 

baselines  of  most  frequent  sense  (MFS)  assignment  and  random  sense  assignment  for 

comparison, and measure precision (number of correct sense assignments divided by the number 

of attempted sense assignments), recall  (number of correct sense assignments divided by the 

number of target nouns to be disambiguated), and the harmonic mean of the two, F1, defined as:

F 1  =  
2  ×  precision  × recall

precision  +  recall
(35)
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Table 5.1:
ExtLesk disambiguation results on the SemEval-2007 all-words coarse-grained 

WSD task (nouns only).

Resource Precision Recall F1

(%) (%) (%)

WordNet 78.80 74.82 76.76

SGN 78.64 72.82 75.62

SGN and WordNet 82.35 78.11 80.18

WN++ 74.67 61.87 67.67

WN++ and WordNet 77.35 73.38 75.31

Baseline: Most Frequent Sense 77.40 77.40 77.40

Baseline: Random 63.50 63.50 63.50



On this task,  our results with SGN as a stand-alone network (F1 = 75.62%) rival the 

performance of WordNet (F1 = 76.76%).29 This result is particularly impressive given the fact 

that  the  relationships  in  SGN  are  derived  automatically  from  a  context-sparse  lexical  co-

occurrence measure.

Equally impressive is the ability of SGN and WordNet, when used in combination, to 

achieve results (F1 = 80.18%) that exceed what either network is able to accomplish as a stand-

alone knowledge source. When combined, we see improvements of 3.42% and 4.56% (absolute 

F1 values) over WordNet and SGN as stand-alone resources, respectively. It is also only with 

these resources combined that we are able to outperform the redoubtable MFS baseline of F1 = 

77.40%, and we do so by 2.78%.30

In  contrast,  WN++ (F1 =  67.67%) fails  to  perform as  a  stand-alone  resource,  falling 

behind the MFS baseline by 9.73%. Of all the resources tested, WN++ yields the lowest results. 

When combined with WordNet, WN++ actually diminishes (rather than bolstering) the ability of 

29 Ponzetto and Navigli (2010) report results of F1 = 68.3% and 72.0% using WordNet and WN++, respectively, as 
stand-alone knowledge sources for ExtLesk. In contrast, our experimentally derived values for those resources 
are F1 = 76.76% and 67.67%. In light of this disparity, we verified our results (as they pertain to WordNet as a 
stand-alone resource) using the WordNet::Similarity Perl module (Pedersen, Patwardhan, and Michelizzi, 2004). 
The Perl module, which implements ExtLesk, produced results with P = 78.27%, R = 72.90%, and F1 = 75.49% 
on this task. Enabling and disabling stemming had a negligible impact on results, as did running the experiments 
with and without an extensive list of stop words. The WordNet::Similarity results vary slightly from those we 
obtained using our own implementation of ExtLesk with WordNet (P = 78.80%, R = 74.82%, F1 = 76.76%), but 
this difference can be explained by differences in parsing and stemming algorithms, as well as our use of the 
traditional overlap counting approach of Lesk (1986). Furthermore, working backward from the results reported 
by  Ponzetto  and  Navigli  for  ExtLesk  with  WordNet  reveals  that  their  implementation  only  produced 
disambiguation results for 764 out of the 1108 nouns to be disambiguated, and provided no disambiguation 
results for the remaining 31% of target nouns in the task. In contrast, our experiments with WordNet::Similarity  
produced results for 1032 of the 1108 (some correct, some incorrect, of course). Intuitively, the 31% figure  
seems excessively high, because ExtLesk only fails to produce a disambiguation result for some noun si if there 
are no content words in common between its extended glosses (i.e., the glosses of all concepts related to  si 

through every  possible  edge  type  in  WordNet)  and  the  extended  glosses  of  any of  the  content  words  co-
occurring in the sentence where si appears.

30 Other systems have obtained better results on the same dataset, but we focus only on SGN and WN++ because 
our aim is to compare the resources themselves.
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WordNet to perform on this WSD task by 1.45%. We defer our discussion of factors impacting 

the performance of WN++ to Section 5.5.

5.4 WSD with Degree Centrality

The second disambiguation algorithm we use in our experiments, Degree Centrality, is a 

graph-based measure of semantic relatedness (Navigli & Lapata, 2010). The algorithm searches 

through  a  semantic  network  (using  all  possible  relations  as  edges)  for  paths  of  length  l ≤ 

maxLength between all sense nodes of all lemmas in our context. The edges along all such paths 

are added to a new graph, G', and for each target noun to be disambiguated, the sense node with 

the greatest number of incident edges (highest vertex degree) in G' is taken as its intended sense. 

In these graphs, nodes represent synsets, as opposed to instantiating separate nodes for different 

members of the same synset and allowing edges to be constructed between them. We include all 

lemmas from a sentence in our context, but only return disambiguation results for the nouns.

With  SGN  and  WN++,  the  implementation  of  this  algorithm  is  straightforward.  We 

initiate  a  breadth-first  search (BFS)31 at  each target  sense node in  the network,  and proceed 

through  ⌊(maxLength +  1) / 2⌋ iterations  of  spreading  activation.  Whenever  the  tendrils  of  this 

spreading activation from one target sense node in the graph connect to those of another,32 we 

add the path between the nodes to our new graph, G', potentially incrementing the degree of the 

involved target sense nodes in G' as we do so.

31 This is in contrast to the DFS implementation of Navigli and Lapata (2010).
32 When maxLength is odd, this requires an additional check to ensure that the intersection is not taking place at a  

node that is exactly ⌊(maxLength + 1) / 2⌋ degrees removed from each of the two target nodes it is connecting, as this 
would result in a path with overall length (maxLength + 1) between the target nodes.
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BFS, as an admissible algorithm, is guaranteed to find the shortest path from an initial  

state to a goal (e.g., from one target sense node in our graph to another). Therefore, because any 

node on a path of length l ≤ maxLength between two target nodes is at most ⌊l / 2⌋ nodes removed 

from  at  least  one  of  those  target  sense  nodes,  we  only  need  to  perform  a  BFS  of  depth 

⌊(maxLength + 1) / 2⌋ from every target sense node in order to guarantee that every such path between 

them will be discovered. Since the time complexity of BFS is exponential with respect to the 

depth of the search,  cutting this  depth in half  (in comparison to performing a BFS of depth 

maxLength) greatly reduces the running time of our algorithm.

We take the same approach in traversing the WordNet noun graph, using all  possible 

sense relations as edges. There is, however, one complication:

In keeping with the approach of Navigli  and Lapata (2010),  an edge is  also induced 

between synsets if the gloss of one synset contains a monosemous content word. For example, 

the gloss for leprechaun#1, “a mischievous elf in Irish folklore,” contains the monosemous noun 

“folklore;” thus, we have an edge between leprechaun#1 and folklore#1 in the WordNet graph.

Unlike the other edges in these semantic graphs, this gloss relation cannot be discovered 

bidirectionally, even though the edge, once we encounter it and add it to our graph representation 

of WordNet, is considered undirected. Gloss edges can therefore spontaneously introduce a short 

path between two nodes if they are encountered along much longer paths, deep within a BFS.

Thus,  when  traversing  the  WordNet  graph,  we  perform a  preliminary  BFS of  depth 

maxLength in an expedition to discover these gloss relations. This still does not guarantee that all 

possible paths of length  maxLength between two target sense nodes will be discovered. Some 

node lying along a path of length (maxLength + 1) from a target synset node could easily have 
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directed links (via its gloss) to two other target synset nodes, providing a hidden path of length 

two that cannot be discovered without traversing all paths of length (maxLength + 1) from our 

target  nodes.  However,  our  approach reduces  our  chances  of  missing  a  short,  gloss-induced 

bridge in the graph.

Once  we  have  our  new  graph,  G',  constructed  in  this  manner,  the  vertex  degree  is 

considered an indication of the semantic relatedness of a particular synset to all other lemmas in 

our context. For each target noun, we use the sense node(s) with the highest degree in  G' for 

sense assignment.

5.4.1 Results

In  our  experimental  setup,  we  examine  the  performance  of  the  Degree  Centrality 

algorithm  with  the  following  combinations  of  semantic  resources:  WordNet,  SGN,  WN++, 

Refined  WN++,  SGN and  WordNet  combined,  and  Refined  WN++ and  WordNet  combined. 

Refined  WN++ consists  of  79,422  of  WN++’s  strongest  relations,  and  was  created  in  an 

unsupervised setting by Ponzetto and Navigli specifically for use with Degree Centrality when 

they discovered that WN++ had too many weak relationships to perform well with the Degree 

Centrality algorithm.

We  have  observed  that  the  performance  of  Degree  Centrality  rapidly  levels  off  as 

maxLength increases. Navigli and Lapata (2010) also reported this so-called “plateau” effect, and 

employ a  maxLength of 6 in their experiments, despite finding that results leveled off around 

maxLength = 4. We, too, find that performance levels off around  maxLength = 4 in almost all 

cases, and so only continue up to maxLength = 5.
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Table 5.2:
Degree Centrality disambiguation results on the SemEval-2007 all-words coarse-

grained WSD task (nouns only) with maximum path lengths 1 ≤ Lmax ≤ 5.

Resource Lmax P R F1 Resource Lmax P R F1

(%) (%) (%) (%) (%) (%)

WordNet 1 96.9 16.8 28.6 WN++ 1 87.2 23.5 37.1

(stand-alone) 2 77.6 45.1 57.0 (stand-alone) 2 71.6 60.2 65.4

3 76.7 65.6 70.7 3 70.7 64.3 67.3

4 769 71.0 73.9 4 70.4 64.5 67.3

5 76.6 71.6 74.0 5 70.4 64.5 67.3

SGN 1 79.7 32.9 46.6 Refined WN++ 1 98.3 15.3 26.5

(stand-alone) 2 72.0 64.6 68.4 (stand-alone) 2 91.4 23.4 37.3

3 68.7 63.5 66.0 3 88.7 29.9 44.7

4 68.0 63.9 65.9 4 83.7 32.3 46.7

5 68.0 64.2 66.1 5 80.2 35.3 49.0

SGN 1 77.4 52.4 62.5 Refined WN++ 1 83.3 31.2 45.4

(with WordNet) 2 74.7 70.7 72.7 (with WordNet) 2 77.5 66.6 71.6

3 70.3 67.1 68.7 3 77.6 73.6 75.5

4 70.5 67.4 68.9 4 74.7 71.4 73.0

5 70.1 67.0 68.5 5 74.7 71.4 73.0

MFS Baseline -- 77.4 77.4 77.4 Rand. Baseline -- 63.5 63.5 63.5

We find that,  in all  cases tested,  Degree Centrality  is  unable to  outperform the MFS 

baseline (with respect to  F1) (see  Table 5.2). SGN and WN++ exhibit comparable performance 

with  this  algorithm,  with maximum  F1 values  of  68.4% (at  maxLength =  2)  and 67.3% (at 

maxLength = 3 to 5), respectively. Neither achieves the performance of WordNet with Degree 
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Centrality  (F1 =  74.0%),  which  under-performs  the  MFS baseline  (F1 =  77.4%) by 3.4%.33 

Ponzetto and Navigli (2010) reported that only performing sense assignment when the maximum 

degree exceeded an empirically derived but non-disclosed threshold improved performance, but 

we have found that implementing such a threshold universally lowers results for all resources we 

tested with Degree Centrality.

The lowest performance using Degree Centrality comes from Refined WN++ as a stand-

alone resource. We attribute this to the fact that Refined WN++ is so semantically sparse. On 

average, noun senses in Refined WN++ are related to only 3.42 other noun senses, while those in 

WN++ and SGN relate to an average of 44.59 and 10.92 noun senses, respectively. Accordingly, 

the success of Refined WN++ and WordNet, when combined, is attributable mostly to the success 

of WordNet as a stand-alone resource; as  maxLength increases, the contributions made by the 

sparse Refined WN++ network rapidly become negligible in comparison to those provided by the 

WordNet ontology.

5.5 Discussion

The fact  that  the performance of Degree Centrality  quickly plateaus hints  at  the root 

cause of its weak performance compared to ExtLesk and the MFS baseline. As the maximum 

path length is increased in a dense semantic network, all possible edges from our target sense 

nodes rapidly find themselves involved with paths to other target sense nodes. This is particularly 

true  of  WN++ (notice  its  rapid  and  stable  convergence),  where  certain  “sticky”  nodes  form 

33 Although Ponzetto and Navigli  (2010) reported similar  results  with WordNet  (F1 = 74.5%),  we have been 
unable to reproduce their results using Refined WN++, either combined with WordNet (F1 = 79.4% vs. 75.5%) 
or as a stand-alone resource (F1 = 57.4% vs. 49.0%).
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bridges between seemingly unrelated concepts. For example, the frequent appearance of “United 

States” in Wikipedia articles, and its tendency to be linked to the United States Wikipage when it 

occurs, causes the term to serve as a bridge between such diverse concepts as automaton#2 and 

burrito#1, which one would typically expect to be far removed from one another in a model of 

semantic relatedness (and which also bear questionable relatedness to United_States#1).

If it is indeed true that Degree Centrality’s plateau effect is a result of each target sense 

node’s edges rapidly finding themselves participant to paths to other sense nodes, then one would 

expect the algorithm to perform comparably to performing sense assignment based on the most 

semantically well connected sense of each target noun in the network. That is, as path length 

increases, the results of Degree Centrality should converge to the results obtained by foregoing 

the algorithm altogether and simply disambiguating each noun to the sense with the most edges 

in the network (regardless of whether those edges ultimately connect two word senses from the 

disambiguation context). This is, in fact, the case: the expected values of convergence attained by 

defaulting to the semantically most well-connected sense of each target noun in each network are 

F1 = 66.3%, 67.5%, and 74.6% for SGN, WN++, and WordNet, respectively, as compared to the 

experimentally derived Degree Centrality results of F1 = 66.1%, 67.3%, and 74.0%.

5.6 Summary

We have evaluated our semantic network, SGN, in a coarse-grained WSD experiment 

setting (SemEval-2007) using two graph-based algorithms: ExtLesk and Degree Centrality. We 

found that  our  network  performs comparably  to  WordNet  using  ExtLesk (F1 =  75.62% and 
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76.76%, respectively), and that combining SGN and WordNet for use with ExtLesk yields results 

that exceed the performance that either resource is able to attain individually (F1 = 80.18%).

With both ExtLesk and Degree Centrality, we observed that the performance of WN++ 

falls short  of that of WordNet,  and that combining the two resources negatively impacts the 

performance of WordNet. With Degree Centrality in particular, we discovered that the spurious 

relationships in WN++ hamper its  performance,  and that  the smaller  version of the network, 

Refined WN++, is too semantically sparse to perform well as a stand-alone knowledge source or 

to significantly impact the performance of WordNet when the two resources are combined.

With  regard  to  Degree  Centrality,  we  observed  that  the  algorithm  has  a  strong 

disambiguation bias toward the sense of a word with the most incident  edges in a semantic 

network, and that this bias accounts for the rapid convergence of its performance (i.e., plateau 

effect) as the algorithm’s maximum path length is increased.
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CHAPTER 6: MEASURING HUMAN PERCEPTIONS OF RELATEDNESS

In this  chapter,  we present the results  of our investigation into human perceptions of 

semantic relatedness. We have elicited quantitative human judgments of relatedness for 122 noun 

pairs. The mean relatedness scores have been compiled into a new dataset that can be used to 

supplement existing evaluative standards for computational measures of semantic relatedness.

In Section  6.1, we provide some background and motivation for this study: we discuss 

related work on gold standards for evaluating relatedness measures, address some shortcomings 

of those standards, and explain the need for datasets like the one we present here. In Section 6.2, 

we lay out our experimental procedure and explain how we chose the noun pairs in our dataset. 

In  Section  6.3,  we  provide  analysis  and  discussion  of  our  experimental  results:  the  mean 

relatedness  scores  elicited  from  human  participants  are  presented,  and  we  evaluate  the 

performance of a variety of similarity and relatedness measures on the new dataset. We then 

summarize the contributions of this study in Section 6.4.

6.1 Mean Similarity Scores as Gold Standard Datasets

With 65 and 30 noun pairs respectively, the Rubenstein and Goodenough (1965) (R&G) 

and Miller and Charles (1991) (M&C) datasets (discussed above in Section  2.2.5), are widely 

considered to be too small to provide adequate evaluation of similarity measures (Banerjee & 

Pedersen, 2003; Budanitsky & Hirst, 2006; Milne & Witten, 2008a; Strube and Ponzetto, 2006). 

Nonetheless,  we have observed their  ubiquitous  use in  the literature for evaluating not only 

similarity measures, but also relatedness measures. Only minor credit for their continued use as a 
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gold standard can be attributed to the fact that they provide a common point of comparison to 

previous work in the field. Resnik (1999) observed that “the worth of a similarity measure is in 

its  fidelity  to  human  behavior,  as  measured  by  predictions  of  human  performance  on 

experimental  tasks” (p.  95). Budanitsky and Hirst  similarly remarked that  “comparison with 

human judgments is the ideal way to evaluate a measure of similarity or relatedness” (p. 32).  

Thus, comparison to the kind of data provided by R&G and M&C enjoys a certain gold standard 

primacy in the literature, and we continue to employ these two particular datasets because no 

other datasets have yet emerged as reasonable candidates to replace them.

This is particularly problematic in the evaluation of relatedness measures, where perhaps 

the most obvious concern about the use of R&G and M&C as gold standards is that subjects 

were asked to evaluate “similarity of meaning” (Rubenstein & Goodenough, 1965, p. 628) in 

those studies—not semantic relatedness.

6.1.1 WordSim353 as a Gold Standard

WordSim35334 (Finkelstein et  al.,  2002) has recently emerged as a potential surrogate 

dataset  for  evaluating  relatedness  measures.  Several  studies  have  reported  correlation  to  the 

WordSim353 data as part of their standard evaluation procedures, with some studies explicitly 

referring to it as a collection of human-assigned relatedness scores (Gabrilovich & Markovitch, 

2007; Hughes & Ramage, 2007; Milne & Witten,  2008a).  Finkelstein et  al.  reported that,  in 

creating the dataset, they “employed 16 subjects to estimate the ‘relatedness’ of the word pairs on 

a scale from 0 (totally unrelated words) to 10 (very much related or identical words)” (p. 13).

34 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
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However,  the  status  of  WordSim353  as  a  relatedness  gold  standard  remains  unclear 

because  the  instructions  given  to  participants  in  its  creation  emphasized  similarity,  not 

relatedness (see  Figure 6.1 below). The instructions opened with an explanation that the study 

was  “aimed  at  estimating  the  similarity [emphasis  added]  of  various  words  in  the  English 

language,” and that participants would “assign  similarity [emphasis added] scores to pairs of 

words, so that machine learning algorithms [could] be subsequently trained and adjusted using 

human-assigned scores.” The full instructions that Finkelstein et al. provided to participants in 

their study repeatedly framed the task as one in which participants were expected to assign word 

similarity  scores,  and  only  twice  mentioned  relatedness.  Furthermore,  the  Web  page  for 

downloading the WordSim353 collection frequently refers to it as a set of “similarity scores” 

(Gabrilovich, 2006), and the name of the dataset itself stands for “Word Similarity.”

Jarmasz and Szpakowicz (2003) have notably raised methodological concerns about the 

acquisition of WordSim353 data, observing that: a) relatedness is rated on a scale of 0 to 10, 

which is intrinsically more difficult for humans to manage than the scale of 0 to 4 used by R&G 

and M&C; b) a certain amount of cultural  bias is  introduced into the data,  particularly with 

respect to the inclusion of proper nouns (e.g., the evaluation of the pair  Arafat–terror); and c) 

there is no indication of how the 353 word pairs were chosen, other than the fact that the 30 

M&C pairs were included as a subset. We add to these concerns the fact that the instructions 

obfuscate whether subjects were expected to evaluate relatedness in the general case, or simply 

to extend their definition of similarity to encompass antonymy (thus using the term “relatedness” 

to denote two particular types of relatedness: similarity and antonymy).
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Estimation of word similarity

Hello, 

We  kindly  ask  you  to  assist  us  in  a  psycholinguistic  experiment,  aimed  at  estimating  the 
similarity of various words in the English language. The purpose of this experiment is to assign 
similarity scores to pairs of words,  so that  machine learning algorithms can be subsequently 
trained and adjusted using human-assigned scores. 

Below is  a  list  of  pairs  of  words.  For  each  pair,  please  assign  a  numerical  similarity  score  
between 0 and 10 (0 = words are totally unrelated, 10 = words are VERY closely related). By 
definition, the similarity of the word to itself should be 10. You may assign fractional scores (for  
example, 7.5). 

Specific instructions: 

1) The questionnaire starts on the next page. 

2) Please fill  in your full name at the beginning of the questionnaire. We need the names to 
ensure  individual  estimations  do  not  get  mixed,  and  to  be  able  to  contact  you  should  any 
clarifications become necessary. 

3)  Please  fill  in  the  similarity  scores  in  the  appropriate  column  of  the  table.  To  facilitate  
processing your questionnaire, please do not print the document but rather type in the values in 
the table provided. 

4) If you do not know the meaning of a particular word - please use a dictionary, or ask a native 
English speaker. 

5) Please DO NOT consult your friends on assigning the similarity scores - it is highly important  
that the scores you assign be independent of someone else’s assessment. 

6) When estimating similarity of antonyms, consider them “similar” (i.e., belonging to the same 
domain or representing features of the same concept), rather than “dissimilar”. 

If you have any questions or require further clarifications (or if you have a suggestion), please do 
not hesitate to contact us. 

Thank you for your assistance! 

Figure 6.1:
Instructions for assigning scores for the WordSim353 word pairs of Finkelstein et 

al. (2002). The task is framed as being intended to elicit similarity scores.
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Agirre,  Alfonseca,  et  al.  (2009) recently attempted to disentangle the pairs  of similar 

nouns in WordSim353 from those that were related but not similar, but did not assess the validity 

of the scoring distribution in the resulting relatedness subset to ensure that strongly related word 

pairs were not penalized by human subjects for being dissimilar. Perhaps not surprisingly, the 

highest scores in WordSim353 (all ten ratings between 9.0 and 10.0, inclusively) were assigned 

to pairs that Agirre, Alfonseca, et al. placed in their similarity subset. Agirre, Alfonseca, et al.  

showed that similarity and relatedness measures alike correlated better to the subset of similar 

entities than they did to the subset of related entities from WordSim353.

6.1.2 The R&G Methodology and the Reliability of Human Judgments

In contrast to the methodology of Finkelstein et al., the instructions of Rubenstein and 

Goodenough were straightforward in their intent (see Figure 6.2 below). These instructions were 

also used in replications of the study by Miller and Charles (1991) and Resnik (1995).

Several  studies  have shown that  human judgments  of similarity  are  consistent  within 

subjects, between subjects, and across groups of subjects using these instructions. Rubenstein 

and Goodenough established intra-judge reliability  by having one group of subjects  perform 

similarity evaluations twice—once using a set of 48 noun pairs, and again two weeks later using 

the full set of 65 R&G noun pairs. The two sets had 36 noun pairs in common. Rubenstein and  

Goodenough measured how well each subject’s judgments correlated on those 36 pairs between 

the two experimental trials. Among 15 judges, the average intra-judge correlation was r = 0.85.
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There were 65 pairs of nouns (theme pairs) presented for judgment. Each subject 

was given a shuffled deck of 65 slips of paper, each slip containing a different theme 

pair. The subject was given the following instructions:

1. After looking through the whole deck, order the pairs according to amount of 

“similarity of meaning” so that the slip containing the pair exhibiting the greatest 

amount of “similarity of meaning” is at the top of the deck and the pair exhibiting 

the least amount is on bottom.

2. Assign a value from 4.0–0.0 to each pair—the greater the “similarity of meaning,” 

the higher the number. You may assign the same value to more than one pair.

Figure 6.2:
Procedure used by Rubenstein and Goodenough (1965) to elicit similarity scores 

for their 65 word pairs.

Rubenstein and Goodenough also had two separate groups of judges evaluate the full set 

of  65 noun pairs,  and found the two resulting sets  of  mean similarity  scores  had very high 

correlation (r = 0.99). The Miller and Charles replication of Rubenstein and Goodenough’s study 

using 30 noun pairs from the R&G data also had mean similarity scores that correlated strongly 

to the results of R&G (r = 0.97).

Resnik  (1995)  replicated  Miller  and  Charles’  study  and  found  strong  correlation 

(r = 0.96) to the M&C means. Resnik also assessed inter-judge reliability, and found that the 

average of individual judges’ correlations to the M&C data was r = 0.885 (σ = 0.08). Within the 

data  from  his  own  replication,  using  leave-one-out  sampling,  Resnik  found  that  individual 

judges’ scores correlated to mean similarity scores with r = 0.903 (σ = 0.07). Finkelstein et al. 
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(2002) included the 30 M&C noun pairs in their study, which had a total of 353 word pairs, and 

found their results correlated to M&C with r = 0.95.

These  strong  correlations  hold  even  with  wide  variation  in  the  number  of  subjects 

participating in each study. Rubenstein and Goodenough used 15 and 36 subjects in the two 

groups described above. Miller and Charles employed the help of 38 subjects. Resnik performed 

his replication using only 10 subjects, and each pair of words in Finkelstein et al.’s study was 

evaluated by 13 to 16 subjects.

6.2 Methodology

In our experiments, we elicited human ratings of semantic relatedness for 122 noun pairs. 

In doing so, we followed the methodology of R&G (Figure 6.2 above) as closely as possible: 

participants were instructed to read through a set of noun pairs, sort them by how strongly related 

they were, and then assign each pair a relatedness score on a scale of 0.0 (completely unrelated) 

to 4.0 (very strongly related). We made two notable modifications to the experimental procedure 

of R&G. First, instead of asking participants to judge “amount of ‘similarity of meaning,’” we 

asked them to judge “how closely related in meaning” each pair of nouns was. Second, we used a 

Web interface to collect data in our study; instead of reordering a deck of cards, participants were 

presented with a grid of cards that they were able to rearrange interactively with the use of a 

mouse or any touch-enabled device, such as a mobile phone or tablet PC.

Figure 6.3 below shows the instructions as they were presented to participants in our 

study, including excerpted screen captures that show how elements of the interface (e.g.,  the 

“cards” containing each noun pair) were presented to and manipulated by users.
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STEP 1.   On the following page, you will be presented with a grid of cards, each containing a pair of  

words. After looking through the whole grid of cards, order the pairs according to how closely related in 

meaning each pair of words is, so that the card containing the most closely related pair is at the start of  

the grid (top-left) and the pair that is least closely related is at the end (bottom-right). To move a card,  

simply click and drag the part of the card containing the word pair, as shown below:

STEP 2.   When you have finished rearranging the cards, assign a value from 0.0 (completely unrelated) 

to 4.0 (very strongly related) to each pair. The more closely related in meaning the words are, the higher 

the number. You may assign the same value to more than one pair. To assign a value, click the gray field 

at the bottom of a card and type a number. You can use the TAB key to quickly move to the next field,  

or SHIFT-TAB to return to the previous field.

Examples:   For  example,  cup and  coffee are  strongly  related,  and  would  be  given  a  high  score. 

Umbrella and  rain are  also  strongly  related.  In  contrast,  printer and  hippopotamus are  strongly 

unrelated, and would be given a very low score, as would soil and telephone.

We want to gauge your gut reaction to how closely related each pair of nouns is. Therefore, we ask 

that you complete this task in one sitting, within 20 minutes, and do not consult a dictionary or ask 

others for help.

Figure 6.3:
Instructions presented to participants in our study.
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In early usability testing of our Web interface, we observed that large datasets (e.g., 40 to 

65 noun pairs) made the sorting task too difficult for users to manage. This was a limitation not 

of the interface itself, but of the time and attention required to reorder so many pairs of nouns. 

With  large  datasets,  users  were  overwhelmed  by  the  need  to  make  so  many  fine-grained 

distinctions in their relatedness judgments. For this reason, we chose to present each user with 

only 32 noun pairs for evaluation. We have already seen that sets of noun pairs can be split into 

smaller subsets for evaluation by different groups of participants in order to keep the task to a 

manageable size without significantly impacting subjects’ score distributions; when Miller and 

Charles  replicated  Rubenstein  and Goodenough’s  study with  a  subset  of  only  30  of  the  65 

original noun pairs, the resulting means from the two experiments exhibited strong correlation 

(r = 0.97).

6.2.1 Experimental Conditions

Each participant in our study was randomly assigned to one of four conditions. Each 

condition contained 32 noun pairs for evaluation. Of those pairs, 10 were randomly selected from 

our network (SGN), 10 from WN++, and 10 were generated by randomly pairing words from a 

list of all nouns occurring in Wikipedia. All pairs were matched for frequency using the 100 

nearest  neighbors  for  each  noun,  as  sorted  by  frequency  of  occurrence  in  Wikipedia.  We 

manually selected two additional pairs that appeared across all four conditions: leaves–rake and 

lion–cage. These control pairs were included to ensure that each condition contained examples of 

strong semantic relatedness, and potentially to help identify and eliminate data from participants 

who  assigned  random  relatedness  scores.  Within  each  condition,  the  32  word  pairs  were 
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presented to all subjects in the same random order. Across conditions, the two control pairs were 

always presented in the same positions in the word pair grid.

Each word pair was subjected to additional scrutiny before being included in our dataset. 

We eliminated any pairs falling into one or more of the following categories: (1) pairs containing 

proper nouns (e.g.,  grape–Europe and Italian–kilobyte35); (2) pairs in which one or both nouns 

might easily be mistaken for adjectives or verbs (e.g.,  cement–pact and  second–knight, where 

“cement” might be taken as a verb, or “second” as an adjective or verb); (3) pairs with advanced 

vocabulary  or  words  that  might  require  domain-specific  knowledge  in  order  to  be  properly 

evaluated  (e.g.,  soprano–falsetto,  which  might  be  difficult  for  anyone  without  a  musical 

background to evaluate,  and  baronet–privy council,  which might require  basic knowledge of 

British hereditary titles and monarchic government); and (4) pairs with shared stems or common 

head nouns (e.g.,  first cousin–second cousin and sinner–sinning). The latter were eliminated to 

prevent  subjects  from latching onto  superficial  lexical  commonalities  as  indicators  of  strong 

semantic relatedness without reflecting upon meaning.

6.2.2 Participants

Participants  in  our  study  were  recruited  from  introductory  undergraduate  courses  in 

psychology  and  computer  science  at  the  University  of  Central  Florida.  Students  from  the 

psychology courses participated for course credit and accounted for 89% of respondents.

35 These pairs in particular were drawn randomly from WN++. Pairs with proper nouns account for at least 20% of 
relationships in the WN++ network—a lower bound that accounts only for proper nouns categorized using the 
InstanceOf relation in WordNet.  The actual  occurrence in WN++ of  pairs  with proper nouns is  necessarily 
higher.
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A total  of  92 participants  provided data  for  our  study.  Of these,  we identified  19 as 

outliers, and their data were excluded from the results reported below to prevent interference 

from individuals who appeared to be assigning random scores to noun pairs. Here we consider an 

outlier  to  be  any  individual  whose  numeric  relatedness  ratings  fell  outside  two  standard 

deviations from the means for more than 10% of the word pairs they evaluated (i.e., for at least 

four word pairs, since each condition contained 32 word pairs). For outlier detection, means and 

standard deviations were computed using leave-one-out sampling. That is, data from individual J 

were not incorporated into means or standard deviations when considering whether to eliminate 

J as an outlier. We used this sampling method to prevent extreme outliers from masking their 

own aberration  during  outlier  detection,  which  is  potentially  problematic  when dealing  with 

small populations. Without leave-one-out sampling (i.e., comparing to means established from 

the  whole  population),  we would  have  identified  fewer  outliers  (14  instead  of  19),  but  the 

resulting means would still have correlated strongly to the dataset presented below (r = 0.991, 

p < 0.01).

Of the 73 participants remaining after outlier  elimination,  there was a near-even split 

between males (37) and females (35), with one individual declining to provide any demographic 

data. The average age of participants was 20.32 (σ = 4.08, N = 72). Most students were freshmen 

(49), followed in frequency by sophomores (16), seniors (4), and juniors (3). The most common 

majors represented were computer science, computer engineering, and information technology 

(12); psychology (11); and engineering (mechanical, electrical, aerospace, and industrial) (10). 

Participants  earned an average  score of  42% on a standardized  test  of  advanced vocabulary 

(σ = 16%, N = 72) (Test I – V-4 from Ekstrom, French, Harman, and Dermen, 1976).
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6.3 Results

6.3.1 Mean Relatedness Scores

The mean relatedness scores (μ) and standard deviations (σ) for all 122 noun pairs in our 

study are reported  below in  Table 6.1. Initially, each word pair was evaluated by at least 20 

individuals. After outlier removal (described above), each word pair retained evaluations from 14 

to 22 individuals.

In Table 6.1, we also indicate the source of each randomly selected word pair, although 

occurrence of these pairs is not necessarily exclusive to any one network. For example, the pairs 

apparel–jewellery and  underwear–lingerie were  randomly  selected  from  SGN  and  WN++ 

respectively, but appear in both networks.
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Table 6.1:
Mean relatedness scores for the 122 noun pairs in our study.

# Word Pair μ σ Source

1 underwear lingerie 3.94 0.14 WN++

2 digital camera photographer 3.85 0.32 WN++

3 tuition fee 3.85 0.24 SGN

4 leaves rake 3.82 0.34 control

5 symptom fever 3.79 0.33 SGN

6 fertility ovary 3.78 0.23 WN++

7 beef slaughterhouse 3.78 0.34 WN++

8 broadcast commentator 3.75 0.32 SGN

9 apparel jewellery 3.72 0.49 SGN

10 arrest detention 3.69 0.28 SGN

11 hardware pc 3.61 0.46 SGN

12 street neighborhood 3.60 0.59 WN++

13 pixel digital camera 3.57 0.60 WN++

14 vehicle trailer 3.54 0.45 SGN

15 mathematics method 3.47 0.48 SGN

16 draft manuscript 3.46 0.92 SGN

17 flavor pepper 3.45 0.68 SGN

18 defense soldier 3.39 0.60 WN++

19 seller profit 3.39 0.91 WN++

20 lion cage 3.36 0.68 control

21 treasure hunter 3.35 0.75 SGN

22 translation meaning 3.33 0.84 WN++

23 bread egg 3.24 0.53 WN++

24 garage opener 3.21 0.66 SGN

25 prohibition rum 3.17 1.07 WN++

26 fax e-mail 3.17 0.46 WN++

27 captive custody 3.15 0.63 SGN

28 solar system sphere 3.13 0.54 WN++

29 vegetation pastureland 3.13 1.00 SGN
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# Word Pair μ σ Source

30 leather pouch 3.12 0.47 SGN

31 terrace pavilion 3.10 0.61 WN++

32 recycling landfill 3.09 0.79 WN++

33 garden art 3.07 0.58 WN++

34 recording studio loudspeaker 3.01 0.45 WN++

35 strike enemy 3.00 0.73 SGN

36 ethanol benzene 3.00 0.83 SGN

37 pepper corn 2.99 0.95 SGN

38 murder gang 2.93 0.93 SGN

39 multiple coefficient 2.92 0.90 WN++

40 infantry reconnaissance 2.90 1.16 WN++

41 density electron 2.90 0.75 SGN

42 representation gender 2.86 0.74 WN++

43 palm anatomy 2.79 0.80 random

44 poem singer 2.78 0.79 random

45 maintenance aviation 2.74 0.82 SGN

46 mushroom herb 2.73 1.29 SGN

47 yeast lager 2.71 1.08 SGN

48 headache caffeine 2.71 0.97 SGN

49 truss cantilever bridge 2.71 1.40 SGN

50 workplace discrimination 2.67 1.09 SGN

51 hunter squirrel 2.66 1.05 WN++

52 disorder abuse 2.66 1.01 SGN

53 contract legislation 2.65 0.58 WN++

54 motivation morality 2.52 0.92 WN++

55 sewer overflow 2.51 1.02 SGN

56 blindness placebo 2.48 1.22 WN++

57 agility fox hunting 2.46 0.92 random

58 proportion stability 2.39 1.12 WN++

59 drug public school 2.34 0.92 random

60 resentment instigator 2.28 0.69 random
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# Word Pair μ σ Source

61 pow combatant 2.26 1.23 SGN

62 banana salad 2.25 0.87 WN++

63 emphasis newspaper 2.24 0.88 random

64 forestry urban area 2.23 1.24 WN++

65 hypocrisy condemnation 2.22 1.34 SGN

66 facility activity 2.05 1.11 SGN

67 rendezvous convoy 2.04 1.09 SGN

68 propagation radio wave 2.01 1.13 SGN

69 puppetry slapstick 2.00 1.35 WN++

70 public domain brand 1.99 1.04 WN++

71 cartridge lid 1.97 1.11 random

72 enclosure mental health 1.92 1.15 random

73 credit foundation 1.91 1.37 random

74 guardian livestock 1.91 1.23 SGN

75 coronation majority rule 1.89 1.10 random

76 enzyme depression 1.88 1.23 random

77 precursor prevention 1.86 1.17 random

78 arbitration committee 1.84 1.38 SGN

79 lemon coriander 1.75 1.13 SGN

80 stock bull 1.66 1.34 random

81 vicar archdiocese 1.66 1.29 SGN

82 scrap chemical element 1.57 1.12 WN++

83 paranoia newsroom 1.48 1.14 random

84 phase consistency 1.47 1.17 random

85 hope psychology 1.44 0.91 WN++

86 juvenile rope 1.39 1.15 random

87 half-hour weeknight 1.37 0.90 SGN

88 evolution publicity 1.36 1.19 random

89 contestant donor 1.31 1.15 random

90 sheet window 1.21 1.13 WN++

91 robbery mobile phone 1.21 1.00 WN++
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# Word Pair μ σ Source

92 metre semifinal 1.20 0.84 SGN

93 relief total 1.18 0.97 random

94 public service array 1.18 0.93 random

95 fresco modern times 1.11 0.98 random

96 summit canal 1.09 1.02 SGN

97 outlet silk 1.09 1.04 random

98 greed vest 1.08 0.98 random

99 eyeball flatworm 1.05 1.10 WN++

100 spreadsheet silk 0.99 0.95 WN++

101 distinction sword 0.94 0.92 random

102 inclusion career 0.83 0.82 random

103 feud programmer 0.81 0.80 random

104 switch glass 0.79 0.71 WN++

105 penalty programming 0.78 0.77 random

106 duty verb 0.77 0.71 random

107 catering loan 0.77 1.01 random

108 musical group confession 0.76 0.71 random

109 complication harp 0.74 0.84 random

110 female insect 0.74 0.69 WN++

111 seminar fern 0.71 1.00 random

112 home run surfer 0.71 0.94 random

113 mishap cube root 0.70 0.83 random

114 thriller sunlight 0.61 0.66 WN++

115 crusade catwalk 0.59 0.74 random

116 jumper furnishing 0.59 0.76 random

117 eclipse cord 0.57 0.80 random

118 fork combination 0.55 0.66 WN++

119 madness nest 0.46 0.55 random

120 gas algebra 0.41 0.51 WN++

121 hotel bibliography 0.37 0.49 random

122 gladiator plastic bag 0.13 0.32 random
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6.3.2 Distribution of Standard Deviations

The standard deviations for relatedness scores ranged from 0.13 to 1.40 in our study, with 

strongly related and strongly unrelated pairs  exhibiting the lowest variation (see  Figure 6.4). 

These results  are  consistent  with the findings  of Rubenstein and Goodenough,  who reported 

standard deviations ranging from 0.70 to 1.30 for word pairs with similarity means from 1.0 to 

3.0. In our data, pairs with relatedness means from 1.0 to 3.0 had standard deviations ranging 

from  0.58  to  1.40.  This  indicates  that  human  perceptions  of  relatedness  vary  widely  for 

moderately and weakly related nouns, but does not reveal the source of variation—whether some 

individuals  are  simply  more  liberal  or  more  conservative  than  others  with  their  relatedness 

ratings, or if the relative ordering of pairs’ relatedness also varies widely between individuals.
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Figure 6.4:
Standard deviations of relatedness scores from our study range from 0.13 to 1.40 

and are lowest for pairs that are strongly related or strongly unrelated.
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6.3.3 Human Correlation to Relatedness Means

Within  each  of  our  four  experimental  conditions,  we  computed  how  strongly  each 

participant’s data correlated to the mean relatedness scores, again using leave-one-out sampling. 

The means of these correlations are presented below in Table 6.2. Individual correlations for all 

73 participants were significant at p < 0.01.

We  find  that  judgments  from  individual  subjects  in  our  study  exhibit  high  average 

correlation  to  the  elicited  relatedness  means  (r =  0.769,  σ =  0.09,  N =  73).  Resnik,  in  his 

replication of the M&C study, reported average individual correlation of  r = 0.90 (σ = 0.07, 

N = 10) to similarity means elicited from a population of 10 graduate students and postdoctoral 

researchers. Presumably Resnik’s subjects had advanced knowledge of what constitutes semantic 

similarity, as he established r = 0.90 as an upper bound for expected human correlation on that 

task. The fact that average human correlation in our study is weaker than in previous studies 

suggests that human perceptions of relatedness are less strictly constrained than perceptions of 

similarity, and that a reasonable computational measure of relatedness might only approach a 

correlation of r = 0.769 to relatedness norms.

Table 6.2:
Mean human correlation to relatedness norms from each condition.

Condition r σ N

1 0.774 0.09 20

2 0.773 0.08 22

3 0.802 0.06 17

4 0.759 0.10 14

All 0.769 0.09 73
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6.3.4 Correlation of Similarity and Relatedness Measures to Rel-122 Norms

In  Table  6.3 we  present  the  performance  of  a  variety  of  relatedness  and  similarity 

measures on our new set of relatedness means, listed here as Rel-122. With the exception of our 

own measure, which is the score function presented above in Section 3.2.1, the measures listed in 

Table  6.3 are  all  discussed  in  detail  above  in  Section  2.2,  “WordNet-Based  Measures  of

Similarity and Relatedness.” Figures in starred rows are traditionally considered to be relatedness 

measures; the remaining rows are similarity measures. (For a summary of these measures, see 

Table 2.1.) Coefficients of correlation are given for Pearson’s product-moment correlation (r), as 

well as Spearman’s rank correlation (ρ). For comparison, we include results for the correlation of 

these measures to the M&C and R&G similarity means.

Table 6.3:
Coefficients of correlation to mean relatedness scores (Rel-122) and mean 

similarity scores (M&C, R&C) for various measures. Pearson’s product-moment 
correlations (r-values) and Spearman’s rank correlations (ρ-values) are reported.

Rel-122 M&C R&G

Measure r ρ r ρ r ρ

* Szumlanski and Gomez (2010) 0.654 0.534 0.852 0.859 0.824 0.841

* Patwardhan and Pedersen (2006) 0.341 0.364 0.865 0.906 0.793 0.795

Path Length 0.225 0.183 0.755 0.715 0.784 0.783

* Banerjee and Pedersen (2003) 0.210 0.258 0.356 0.804 0.340 0.718

Resnik (1995) 0.203 0.182 0.806 0.741 0.822 0.757

Jiang and Conrath (1997) 0.188 0.133 0.473 0.663 0.575 0.592

Leacock and Chodorow (1998) 0.173 0.167 0.779 0.715 0.839 0.783

Wu and Palmer (1994) 0.187 0.180 0.764 0.732 0.797 0.768

Lin (1998) 0.145 0.148 0.739 0.687 0.726 0.636

* Hirst and St-Onge (1998) 0.141 0.160 0.667 0.782 0.726 0.797
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Aside  from the  implementation  of  our  own measure,  the  results  reported  above are 

derived  from  the  standard  implementations  of  these  algorithms  in  version  2.05  of  the 

WordNet::Similarity Perl module (Pedersen et al., 2004), using WordNet version 3.0.

We note that the strength of our own measure’s correlation to the relatedness norms, 

r = 0.654, is encouraging, especially in light of the fact that our measure was only developed to 

produce a relative reordering of co-targets by relational strength to a target, and not to provide 

globally meaningful measurements of semantic relatedness.

The generally  weak performance of  the  WordNet-based measures  on this  task  is  not 

surprising,  given  our  observation  that  WordNet’s  minimalistic  sense  glosses  and  strong 

disposition  toward  codifying  semantic  similarity  make  it  an  impoverished  resource  for 

discovering general semantic relatedness. Even the three measures that have been touted in the 

literature  as  relatedness  measures  (Banerjee  &  Pedersen,  2003;  Hirst  &  St-Onge,  1998; 

Patwardhan & Pedersen, 2006) have been hampered by their reliance upon WordNet.36

6.4 Summary

In this chapter, we presented a new set of relatedness norms for 122 noun pairs. The 

norms  are  offered  as  a  new evaluative  standard  for  quantitative  computational  measures  of 

semantic  relatedness,  which  have  seen  strong  reliance  on  comparison  to  R&G  and  M&C 

36 Recall  that  Hirst  and  St-Onge’s  path-based  measure  (Section  2.2.2)  is  largely  dependent  on  similarity 
relationships denoted by WordNet’s IsA relations, and that it earned more general classification as a relatedness 
measure for its incorporation of antonymic and meronymic (part-whole) relationships (see, e.g., Budanitsky & 
Hirst, 2006).  We should note that there is  some question about the accuracy of this classification, as some 
sources (cf. the comments of Resnik, 1999, p. 95) have pointed out that meronymic relations can be considered 
indications of similarity. Antonymy is similarly considered by some to capture notions of strong similarity, 
albeit with negative polarity.
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similarity norms—despite widespread acknowledgement in the literature that similarity is only 

one specific type of relatedness. Our relatedness norms were elicited from human participants 

with minor  modifications  to an established methodology that  has been used to  acquire  gold 

standard similarity norms, and which has been shown to yield consistent results across multiple 

similarity studies. The dissemination of this new dataset is the primary contribution of this study.

In analyzing the results of our study, we also arrived at several key findings: first, human 

participants exhibit lower degrees of correlation to relatedness norms than to similarity norms, 

suggesting that  human perceptions  of  relatedness are  less  strongly constrained than those of 

similarity. Second, the average human correlation of r = 0.769 to our relatedness norms suggests 

that  in  order  to  achieve  human-like  performance  at  measuring  semantic  relatedness,  a 

computational measure need not aspire to the same degree of alignment with relatedness norms 

as with similarity norms. Finally, we observed that WordNet-based measures of similarity and 

relatedness are indeed inhibited from discovering relatedness by the network’s strong emphasis 

on codifying similarity relationships, vis-à-vis its sophisticated IsA ontology. In order to achieve 

Quillian’s dream of a computational model of semantic memory, we must look beyond WordNet 

to find more general indications of semantic relatedness.
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CHAPTER 7: CONCLUSIONS

In this chapter, we review the contributions and central findings of this dissertation. First 

we give an overview of how the network was automatically acquired (Section 7.1) and evaluated 

(Section 7.2). Then we discuss our investigation into human perceptions of relatedness and the 

implications our findings have for assessing computational relatedness measures (Section  7.3). 

We conclude with a discussion of the current state of the network, the kinds of relationships it 

expresses, and a few directions for future work (Section 7.4).

7.1 Acquisition

The primary limitation of WordNet as a model of semantic memory (cf. Quillian, 1968) is 

its strong focus on codifying semantic similarity, which, as we have seen, is only one particular 

type of semantic relatedness. While other semantic networks have attempted to represent a wider 

variety of semantic relations, they typically focus on surface relationships between words instead 

of concepts (cf. ConceptNet and NELL), or only attempt to measure relatedness quantitatively 

instead of constructing networks (vis-à-vis the Wikipedia-based measures discussed in Sections 

2.5.1 through  2.5.3). A notable exception is WordNet++ (WN++), which derives semantic links 

between WordNet concepts from inter-article links in Wikipedia. However, links in Wikipedia 

are  often  capricious,  which  gives  rise  to  many  spurious  relationships  in  WN++ (cf.  the 

relationship  of  prostitution#1 to  English_language#1 in  WN++,  or  of  United_States#1 to 

burrito#1;  spurious relationships in the network are particularly common with proper nouns, 

166



which have a tendency to appear in articles about entities to which they bear no strong semantic 

relationship).

Cognizant  of  the  limitations  of  these  approaches  to  semantic  relatedness,  and of  the 

importance of concept-level relationships to mechanisms of natural language understanding, we 

embarked upon the acquisition of a new semantic network. We first leveraged the tremendous 

amount  of  data  available  in  the  Wikipedia  corpus  to  automatically  discover  the  semantic 

associates of over 7,500 of the most common nouns in the English language. Toward this end, we 

adapted  an  information  theoretic  measure  that  took  higher-than-expected  co-occurrence 

frequencies  as  indications  of  relatedness  between  words.  Relying  on  our  asymmetric, 

quantitative measure, we then found pairs of nouns that exhibited strong, mutual relatedness and 

admitted them to a semantic network of related nouns. This first phase of network acquisition 

saw the  creation  of  a  semantic  network  with  155,180 edges  indicating  semantic  relatedness 

between nouns.

In the second phase of network acquisition, we automatically disambiguated those nouns 

to  noun  senses  (i.e.,  concepts)  from  WordNet  3.0.  To  do  so,  we  employed  a  suite  of 

disambiguation algorithms that capitalized on salient sense clustering (vis-à-vis categorization in 

WordNet) among related nouns. For example, the noun “pie” is strongly associated with several 

nouns that have senses categorized by baked_goods#1 in WordNet, which serves as a strong cue 

to preferentially disambiguate “cookie” (as it relates to “pie”) to cookie#1 (the baked good), as 

opposed to  cookie#2 (a cook) or  cookie#3 (a web browser cookie). Similarly, the higher-than-

expected  relationship  of  “astronomer”  to  nouns  categorized  by  celestial_body#1 helps  us 

disambiguate “star”  to  its  celestial  body senses,  and the relationship of  “unicorn” to  several 
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nouns categorized by  mythical_being#1 informs our disambiguation of, e.g., “phoenix” to the 

legendary  bird  that  rises  from  the  ashes  to  be  born  anew  (phoenix#3),  as  opposed  to  the 

constellation of the same name (phoenix#4), the capital city of Arizona (phoenix#1), or  genus 

Phoenix (phoenix#2).

The resulting network, which we call the Szumlanski-Gomez Network (SGN), indicates 

semantic relatedness between concepts from the noun sense inventory of WordNet. It articulates 

208,832  relationships  between  38,249  distinct  concepts.  It  is  derived  from  the  automatic 

discovery of semantic associates for over 7,500 target nouns, with 17,104 distinct senses among 

them.  Mirroring  the  structure  of  WordNet,  concepts  are  related  categorically,  rather  than 

quantitatively. Furthermore, following the observation of Quillian that any concept can serve as a 

relationship  between  two  entities,  we  have  not  restricted  ourselves  to  mining  instances  of 

specific, labeled relations. Instead, our network represents relatedness in an unlabeled manner. 

The addition of labels to a network like ours is a potentially exciting avenue for future work, 

albeit a challenging one, as even humans sometimes have tremendous difficulty verbalizing the 

relation that binds strongly related entities.

7.2 Evaluation

Following standard procedure in the relatedness literature, we evaluated our network’s 

performance on two tasks: comparison to similarity norms and an applied task. With respect to 

similarity norms, we found high correlation of our quantitative relatedness scoring mechanism to 

the  similarity  norms of  Rubenstein  and Goodenough (1965)  and  Miller  and  Charles  (1991) 

(r =  0.852  and  r =  0.824,  respectively).  With  respect  to  an  applied  task,  we  evaluated  the 
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performance of our network on the SemEval-2007 coarse-grained word sense disambiguation 

(WSD)  task  (Navigli  et  al.,  2007)  using  two  graph-based  disambiguation  algorithms:  the 

extended gloss  overlaps  measure of  Banerjee  and Pedersen (2003) and the  degree  centrality 

algorithm of Navigli and Lapata (2010). We compared our results on this task to those achieved 

using WordNet and WN++ with the same algorithms, and presented three central findings with 

respect to results from the extended gloss overlaps measure: first, our network’s performance 

was comparable to that of WordNet. Second, the combination of SGN and WordNet produced 

results that out-performed what either network achieved as a stand-alone resource. Third, our 

network outperformed WN++, which we attributed to spurious relationships found in WN++.

With respect to the degree centrality algorithm, we found that neither SGN nor WN++ 

outperformed WordNet, and that WordNet itself was unable to surpass the most frequent sense 

baseline using that algorithm. We attributed the shortcomings of the degree centrality algorithm 

to the fact that semantic networks like WordNet, WN++, and SGN tend to be dense, and so it is 

often possible to find short paths between any two concepts in the networks. Thus, the degree 

centrality algorithm, which searches for short paths between co-occurring nouns in a context and 

disambiguates nouns to the sense(s) that are participant to the greatest number of such paths, 

essentially  serves  to  disambiguate  a  noun  to  whichever  sense  has  the  greatest  number  of 

relationships in a network. This explains the “plateau effect” of the algorithm that we observed, 

and which Navigli  and Lapata (2010) also reported,  and is one of the novel findings of our 

research.

In addition to these standard evaluative procedures, we subjected our network to manual 

inspection by independent judges who evaluated the precision of the noun-noun relationships 
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that  were  admitted  to  our  network,  as  well  as  the  precision  of  our  disambiguation  results. 

Although manual inspection is tedious and does not allow for comprehensive evaluation of a 

network,  the  small  samples  of  data  that  our  judges  evaluated  yielded promising  results.  On 

average, they judged the precision of noun-noun relationships in our network to stand at 95.66% 

(out of 100 pairs evaluated), and an average of 85% of our disambiguation results were deemed 

acceptable to our judges (out of 50 pairs evaluated).

7.3 Human Perceptions of Relatedness

Although comparison to human judgments of semantic similarity has long served as a 

gold  standard  for  evaluating  similarity  and  relatedness  measures,  the  distinction  between 

similarity  and  relatedness  (in  that  similarity  is  one  particular  type  of  relatedness)  is  well 

established in the field. To date, no viable gold standard of relatedness norms has emerged to 

supplement  or  supplant  comparison to  the  similarity  norms of  Rubenstein  and Goodenough 

(1965) (R&G) and Miller and Charles (1991) (M&C). Thus, we embarked on the creation of a 

set  of  relatedness  norms.  In  our  study,  we  followed  the  established  methodology  of  R&G, 

adapted in our case to elicit relatedness scores instead of similarity scores. Our resulting set of 

relatedness norms for 122 noun pairs is the primary contribution of that study.

In analyzing the results of our study, we also presented three key findings with respect to 

relatedness norms. First, individuals in our study exhibited strong correlation to mean relatedness 

scores using leave-one-out sampling (so individuals were never compared to their  own data) 

(r = 0.77, σ = 0.09, N = 73). Second, we found individual correlation to our relatedness norms to 

be lower than the expected human correlation to  similarity  norms,  for which Resnik (1995) 
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established an upper bound of r = 0.90. This suggests that human perceptions of relatedness are 

less  strictly  constrained  than  perceptions  of  similarity,  and  that  quantitative,  computational 

measures of semantic relatedness need not aspire to r = 0.90 correlation with relatedness norms 

in  order  to  claim  human-like  performance.  Third,  we  evaluated  WordNet-based  quantitative 

measures of semantic similarity and relatedness that exhibited high average correlation to the 

R&G and M&C similarity norms (r = 0.711 and r = 0.689 on the two datasets, respectively, for 

the  nine  measures  evaluated)  and  found  that  they  exhibited  low average  correlation  to  our 

relatedness norms (r = 0.201). In comparison, our adapted scoring measure correlated to the 

relatedness norms from our study with r = 0.654. These results support our claim that WordNet

—despite its sophisticated IsA ontology and the additional relations and glosses it provides—is 

insufficient to indicate semantic relatedness between concepts in the general case.

7.4 Discussion

The  relationships  in  SGN  reflect  broad  coverage  of  general  human  knowledge  and 

perceptions of relatedness. The network codifies commonsense relationships, such as (lock#1, 

key#1), (pen#1, pocket#1), (camping#1, tent#1), and (camping#1, campfire#1), as well as basic, 

essential  relationships,  such  as  (elephant#1,  tusk#{1,2}).  (In  WordNet,  elephant#1 is  the 

pachyderm sense  of  “elephant;”  elephant#2 is  the  symbol  of  the  United  States’ Republican 

Party.) Of particular interest in the case of (elephant#1, tusk#{1,2}) is the fact that our network 

allows  for  relationships  between  multiple  senses  of  the  same  words.  In  this  case,  our 

disambiguation methods have taken both  tusk#1 and  tusk#2 for relation to  elephant#1. Indeed, 

both senses seem strongly related:
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(tusk#1) a  hard  smooth  ivory  colored  dentine  that  makes  up  most  of  the  tusks  of 

elephants and walruses

(tusk#2) a  long  pointed  tooth  specialized  for  fighting  or  digging;  especially  in  an 

elephant or walrus or hog

The  conflation  of  these  senses  of  “tusk”  in  relation  to  elephant#1 is  similar  to  the 

conflation  of  star#1 and  star#3 that  we  saw  earlier  in  relation  to  astronomer#1,  in  that  it 

demonstrates the ability of our disambiguation methods to cope with the kinds of fine-grained 

polysemic distinctions we often see in WordNet. The concepts  star#1 and  star#3 are sisters in 

WordNet,  both  sharing  celestial_body#1 as  their  immediate  hypernym,  and  the  distinction 

between the two is often difficult for humans to pinpoint:

(star#1) (astronomy)  a  celestial  body of  hot  gases  that  radiates  energy derived from 

thermonuclear reactions in the interior

(star#3) any celestial body visible (as a point of light) from the Earth at night

Compare this to WordNet’s delineation of the following senses of “key,” which can be 

viewed as an instance of homonymy rather than one of systemic polysemy, as the concepts bear 

no similarity:

(key#1) metal device shaped in such a way that when it is inserted into the appropriate 

lock the lock’s mechanism can be rotated

(key#4) any of 24 major or minor diatonic scales that provide the tonal framework for a 

piece of music
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In addition to basic, commonsense relationships, our network also gives broad indication 

of relationships that are explicitly historical or cultural in nature, such as the pairwise association 

of  communist#1,  atheist#1,  and  homosexual#1,  or  the  relationship  of  evolution#1 to  both 

creationism#1 and public_school#1. Upon close examination, the network can even be found to 

contain traces of prevailing attitudes toward certain entities,  such as the one reflected in the 

relationship of concentration_camp#1 to atrocity#1 in SGN. These subtle indications of how the 

human mind classifies or associates certain entities might eventually be useful in automatically 

assessing the polarity of nouns in the ontology (i.e., the positive and negative connotations of 

certain words).

Of course, for a complete understanding of why two entities are related in the network, 

we  often  have  to  analyze  sentences  in  which  they  co-occur.  This  is  particularly  true  of 

relationships  in  SGN that  represent  some of  the specific,  technical  knowledge articulated in 

Wikipedia.  For  example,  the  pair  (mansion#1,  constellation#1),  which  at  first  glance  seems 

spurious, represents a relationship from the domain of astrology; the gloss for  mansion#1 in 

WordNet is “(astrology) one of 12 equal areas into which the zodiac is divided,” and the concept 

is  synonymous  with  star_sign#1 and  sign_of_the_zodiac#1.  Similarly,  the  pair  (canal#3, 

summit#1) might seem spurious and nonsensical to those of us without technical knowledge of 

the workings of canal locks; a  summit level canal is a particular type of canal, and a  summit  

pound is the highest pound (i.e., body of water between two canal locks) of a particular route 

along a canal. Unfortunately, neither summit level canal nor summit pound have lexical entries in 

WordNet,  and  so  our  network  cannot  relate  them to  canal#3.  We  are  instead  left  with  the 

association of “canal” and “summit” from their frequent co-occurrence in Wikipedia. However, 
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the augmentation of WordNet with new concepts, signified by significant collocation throughout 

a corpus like Wikipedia, is one exciting avenue for future research. For example, the frequent co-

occurrence of “elephant” and “graveyard” in Wikipedia is represented in our network with the 

relationship  (elephant#1,  graveyard#1),  since  WordNet  has  no  lexical  entry  for  “elephant 

graveyard.”  However,  the  terms’ collocative  occurrence  throughout  the  corpus  as  “elephant 

graveyard,” combined with the strong evidence for their relatedness discovered in our research, 

suggests the phrase should garner its own entry in the ontology.

The method we have presented for network acquisition is general enough that it can be 

applied not only to Wikipedia, but to other large corpora, as well. This provides several avenues 

for future research.  Of particular interest  is the continued development and expansion of the 

network  to  include  new relationships  not  yet  discovered  from our  version  of  the  Wikipedia 

corpus.  This  can  perhaps  be  achieved  by  applying  our  methodology  to  new  versions  of 

Wikipedia, or even to other corpora. The former suggests another avenue for future research, 

which  is  an  analysis  of  how semantic  relatedness,  as  reflected  by  usage  in  a  large  corpus, 

changes over time. Because we have restricted our consideration to semantic associates of the 

most  common nouns in  the English language,  our  research  also leaves  room to explore  the 

discovery of semantic associates of infrequently occurring nouns—possibly using the current 

network,  which already contains relationships for some nouns outside of our target range,  to 

bootstrap a new phase of acquisition.
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