
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Planning And Scheduling For Large-scaledistributed Systems Planning And Scheduling For Large-scaledistributed Systems

Han Yu
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Yu, Han, "Planning And Scheduling For Large-scaledistributed Systems" (2005). Electronic Theses and
Dissertations, 2004-2019. 637.
https://stars.library.ucf.edu/etd/637

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236255882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/637?utm_source=stars.library.ucf.edu%2Fetd%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Planning and Scheduling for Large-Scale

Distributed Systems

by

Han Yu

M.S. University of Central Florida, 2002
B.E. Shanghai Jiao Tong University, 1996

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall 2005

Major Professors:
Dan. C. Marinescu

Annie S. Wu

All Rights Reserved� 2005 Han Yu

ii

Abstract

Many applications require computing resources well beyond those available on

any single system. Simulations of atomic and subatomic systems with applica-

tion to material science, computations related to study of natural sciences, and

computer-aided design are examples of applications that can benefit from the

resource-rich environment provided by a large collection of autonomous systems

interconnected by high-speed networks. To transform such a collection of systems

into a user’s virtual machine, we have to develop new algorithms for coordina-

tion, planning, scheduling, resource discovery, and other functions that can be

automated. Then we can develop societal services based upon these algorithms,

which hide the complexity of the computing system for users.

In this dissertation, we address the problem of planning and scheduling for

large-scale distributed systems. We discuss a model of the system, analyze the

need for planning, scheduling, and plan switching to cope with a dynamically

changing environment, present algorithms for the three functions, report the

simulation results to study the performance of the algorithms, and introduce

an architecture for an intelligent large-scale distributed system.

iii

To my wife: Lingxia Song

and my parents: Jinling Yu and Chenglan Wang

iv

Acknowledgments

This dissertation would not have been completed without the help, advice, and

encouragement of my advisors, committee members, related research associates,

and graduate students. I would like to thank all of these people for their con-

tinuous support on my Ph.D. study and research work. In particular, I would

like to thank Dr. Dan C. Marinescu for leading me to the field of distributed

computing, workflow management, and planning, for his countless amount of

time spent on sharing precious ideas with me on tough research problems, and

for his financial support on my personal life and research work. I would like to

thank Dr. Annie S. Wu for introducing the field of evolutionary computation

to me, and for her invaluable guidance and advice which have shown me a model

of what a research scientist truly should be. I would also like to thank other

committee members, Dr. Howard Jay Siegel, Dr. Fernando Gomez, and

Dr. Ladislau Bölöni for their critical reviews and insightful suggestions on

my dissertation. I am very grateful for having all of them in my committee. I

would also like to thank my wife, Lingxia Song, my parents, Jinling Yu and

Chenglan Wang, and other family members for supporting me to pursue my

Ph.D. study in U.S. and for their continuous encouragement through all these

years. Finally, I would like to thank National Science Foundation for supporting

this work, and thank the University of Central Florida for providing a nice and

professional environment for me to conduct my study and research.

v

Table of Contents

LIST OF TABLES . ix

LIST OF FIGURES . xii

LIST OF PUBLICATIONS . xix

1 INTRODUCTION . 1

1.1 Motivation . 3

1.2 Addressed Problems and the Approach 6

1.2.1 Planning and Scheduling 6

1.2.2 Our Approach: Evolutionary Computation 7

1.3 Implementation . 8

1.3.1 The Need for an Intelligent Middleware 8

1.3.2 A Multi-agent Framework and Ontology-based Knowledge

Sharing . 9

1.3.3 Architecture of the Middleware 10

1.4 Contributions of this Dissertation 12

2 PLANNING ALGORITHMS AND PLANNING SERVICES . 18

2.1 AI Planning . 19

2.1.1 Introduction to AI Planning 19

2.1.2 Previous Work on Planning Algorithms 20

vi

2.1.3 A Genetic Algorithm Approach to Planning 24

2.1.4 Experiments and Performance Evaluation 31

2.1.5 Recursive Subgoals . 40

2.2 Planning for Large-Scale Distributed Systems 59

2.2.1 Problem Formulation . 59

2.2.2 A Genetic-Based Approach for Non-deterministic Planning 74

2.2.3 Performance Study . 85

3 SCHEDULING ALGORITHMS AND SCHEDULING SERVICES

93

3.1 Introduction to Multi-processor Task Scheduling 94

3.2 Introduction to Scheduling for a Large-scale Distributed System . 97

3.3 A GA-based Algorithm for Multi-processor Task Scheduling . . . 100

3.3.1 Classifications of Scheduling Algorithms 101

3.3.2 Previous Work on Applying GA to Scheduling 102

3.3.3 An Incremental Genetic-based Algorithm 104

3.3.4 Performance Evaluation 115

3.4 A Scheduling Algorithm for Large-scale Distributed Systems . . . 128

3.4.1 Problem Formulation . 128

3.4.2 Interactions with Other Services in the Middleware 130

3.4.3 A Modified GA-Based Algorithm 131

3.4.4 Experimental Results . 137

4 PLAN SWITCHING . 144

vii

4.1 Problem Formulation . 145

4.1.1 Assumptions . 145

4.1.2 Definitions . 146

4.1.3 Plan Switching between Congruent States 149

4.2 Algorithm Design . 150

4.3 Simulation Study . 154

4.3.1 Environment Design . 154

4.3.2 Simulation Results . 154

4.4 Concluding Remarks . 160

5 SUMMARY OF WORK AND CONCLUSIONS 161

5.1 Summary of Work . 161

5.2 Conclusions . 169

LIST OF REFERENCES . 174

viii

LIST OF TABLES

2.1 Parameter settings used in the Towers of Hanoi planning experi-

ments. 34

2.2 Experimental results for the Towers of Hanoi problem. CI = Con-

fidence Interval. 35

2.3 Parameter settings for the Sliding-tile puzzle experiments. 38

2.4 Experimental results for the Sliding-tile puzzle. CI = Confidence

Interval. 38

2.5 The number of runs when a valid solution is found in each phase

for the random, state-aware, and mixed crossover strategies. . . . 39

2.6 Parameter settings used in the experiment. 52

2.7 Experimental results for the recursive subgoal strategy on the

Sliding-tile puzzles: the number of runs out of 50 runs that the

GA can reach each subgoal g1-g6. 53

2.8 Experimental results for the recursive subgoal strategy on the

Sliding-tile puzzles: average number of phases needed to reach

each subgoal from its previous subgoal. 53

2.9 The number of successful runs (out of 50) for population size from

100 to 400. 54

2.10 The number of successful runs (out of 50 runs) for crossover rate

varying from 0.5 to 1.0. 56

ix

2.11 The number of successful runs (out of 50 runs) for mutation rate

varying from 0.005 to 0.05. 58

2.12 Parameter Settings in the experiments. 87

2.13 Experiment results collected from the best solutions of ten runs. . 87

2.14 Parameter Settings in the simulation study. 89

2.15 The average goal fitness and execution time (in seconds) for dif-

ferent test cases. CI = confidence interval. 90

3.1 Parameter settings for GA. 116

3.2 The list of test problems. 117

3.3 Minimum makespan found by ISH, DSH, CPFD, and GA. CI =

confidence interval. ∗In a second set of runs in which the popula-

tion size is doubled, the GA finds a minimum makespan of 36 and

average makespan of 36.92 with a 95% confidence interval of 0.17. 118

3.4 Average number of generations and average clock time (in seconds)

using a GA. CI = confidence interval. 119

3.5 Minimum makespan found by ISH, DSH, CPFD, and GA on a

heterogeneous problem. CI = confidence interval. 124

3.6 Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on ten-processor systems. 138

3.7 Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on twenty-processor systems. 139

3.8 Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on fifty-processor systems. 140

x

3.9 The fitness of the best solution for each loop of task execution, re-

sults produced from two scheduling algorithms: with and without

the semi-static approach. 141

4.1 Parameter settings for the experiment. 155

xi

LIST OF FIGURES

1.1 The role of planning, scheduling, and plan switching in executing

a complex computing task. We may perform scheduling and plan

switching multiple times if failure occurs during the execution. . . 3

1.2 The basic architecture of an intelligent middleware for large-scale

distributed systems. The middleware consists of a collection of

core services and end-user services. A list of core services includes

authentication, coordination, planning, matchmaking, brokerage,

scheduling, plan switching, information, event handling, monitor-

ing, and simulation services. 12

1.3 A basic set of classes and attributes for the ontology. 13

2.1 The initial configuration of the 5-disk Towers of Hanoi problem. . 32

2.2 The goal configuration of the 5-disk Towers of Hanoi problem. . . 32

2.3 The initial and goal configurations of a 4 × 4 Sliding-tile puzzle.

(a) The initial configuration. (b) The goal configuration. 36

2.4 An example showing the relation of reachability between vertices

in a graph. 46

2.5 A graph showing vi ∈ Vi, vj ∈ Vi+1, and Reachable(vi, vj, Gi) =

true. 46

xii

2.6 The steps for solving a 4× 4 Sliding-tile puzzle using the recursive

subgoal strategy. (a) The first subgoal. (b) The second subgoal.

(c) The third subgoal. 50

2.7 An example showing the reconfiguration of problem goals for the

recursive subgoal strategy. (a) The original goal configuration. (b)

The new goal configuration in which the empty tile is moved to

the nearest corner. 51

2.8 The average number of phases (with 95% confidence intervals)

needed to find a solution for successful runs with population size

varying from 100 to 400. 55

2.9 The average execution time (with 95% confidence intervals) of 50

runs for population size varying from 100 to 400. 55

2.10 The average number of phases (with 95% confidence intervals)

needed to find a solution for successful runs with crossover rate

varying from 0.5 to 1.0. 57

2.11 The average number of phases (with 95% confidence intervals)

needed to find a solution for successful runs with mutation rate

varying from 0.005 to 0.05. 57

2.12 The interactions between the planning service and other services

during (a) planning, and (b) replanning. 66

xiii

2.13 The ontology that supports the storage and access of knowledge

related to a two-dimensional image file for viruses. Class “Data”

stores the general information for a data file; class “2D image”

stores information related to a two dimensional image; and class

“virus” stores the information related to the object of the image:

viruses. 68

2.14 The three-level structure of knowledge related to a two-dimensional

image file of viruses. Each level of knowledge is retrieved from

instances stored in the corresponding classes for the ontology. . . 68

2.15 The ontology that supports the storage and access of knowledge

related to 3D structure of a virus. Class “Data” stores general

information for a data file; class “3D structure” stores knowledge

related to the attributes of a 3D structure; and class “virus” stores

the information related to the object of the structure: viruses. . . 69

2.16 The multi-level structure of goal conditions for a computation,

which is to create a 3D virus structure whose resolution should be

greater than a specified value (in this case 8.0). 69

2.17 A graphical representation of the definition of end-user service

“P3DR”. The preconditions and postconditions of this service are

defined on multiple levels of a hierarchical structure. The function

of the service is to build a 3D structure of a virus from a group

of its 2D images. The computation of the service requires a group

of virus images and a parameter file that is used to control the

process of the computation. The output of the computation is a

file that stores the 3D structure of the virus. 71

xiv

2.18 Process description versus plan tree for sequential activities. (a)

a partial process description consisting of a sequence of activities;

(b) the corresponding plan tree with the sequential node as the

root node. 76

2.19 Process description versus plan tree for concurrent activities. (a)

a partial process description consisting of a set of concurrent ac-

tivities; (b) the corresponding plan tree with the concurrent node

as the root node. 77

2.20 Process description versus plan tree for selective activities. (a) a

partial process description consisting of a set of selectively executed

activities; (b) the corresponding plan tree with the selective node

as the root node. 78

2.21 Process description versus plan tree for iterative activities. (a) a

partial process description consisting of a set of iteratively executed

activities; (b) the corresponding plan tree with the iterative node

as the root node. 79

2.22 An example of crossover performed on two plan trees. (a) two

original trees are selected as parents; (b) a node is selected from

each parent; (c) two new plan trees are created by switching the

subtrees associated with the selected nodes. 84

2.23 An example of mutation performed on a plan tree. (a) a node is

selected to be mutated; (b) the subtree associated with the selected

node is replaced by a randomly generated tree. 85

xv

2.24 A process description for the 3D reconstruction of virus struc-

tures. POD - “ab initio” parallel orientation determination pro-

gram. P3DR - the parallel program used for 3D reconstruction.

POR - the parallel program for orientation refinement. PSF - par-

allel program to compute the correlation of the structure factors.

. 91

2.25 The corresponding plan tree to the process description for the 3D

reconstruction of virus structures. 92

3.1 The procedure of scheduling the execution of a program in a multi-

processor system. 94

3.2 The DAG for the 14-node LU Decomposition task scheduling prob-

lem. 96

3.3 An example schedule for the 14-node LU Decomposition task schedul-

ing problem on four processors. 96

3.4 The model of scheduling a computation in a large-scale distributed

system. 98

3.5 An example individual. 107

3.6 Assignment of tasks from individual in Figure 3.5. 107

3.7 Random one-point crossover randomly selects crossover points on

each parent and exchanges the right segments to form offspring. . 109

3.8 Evolution of (a) population fitness and (b) minimum makespan in

response to increasing eras. 120

3.9 Problem P1: Percent of runs that find a valid solution. X-axis

indicates b/thresh values. 121

xvi

3.10 Problem P1: X-axis indicates b/thresh values. (a) Minimum makespan.

(b) Average best makespan averaged over 50 runs∗ with 95% con-

fidence intervals. ∗When b = 1.0, not all 50 runs are able to find

valid solutions. The average values shown are calculated only from

those runs that do find valid solutions. 122

3.11 Two example GA runs. Evolution of best solution in a non-

stationary environment in which the processor speed changes at

fixed intervals. “B” indicates the base target. Integer values indi-

cate modified processors. 127

3.12 The typical flow of communications between the scheduling service

and other services in the middleware during the course of schedul-

ing a computing task. 132

3.13 An example to demonstrate the transformation between the pro-

cess description shown in Figure 2.24 and DAGs. (a) the DAG for

the first iteration (b) the DAG for the rest of the iterations. . . . 135

3.14 The average fitness of the solutions produced by the semi-static

scheduling approach using different crossover and mutation rates. 142

3.15 The percentage of times that a solution switch occurs during the

execution of the semi-static scheduling approach using different

crossover and mutation rates. 142

4.1 An example plan that contains six activities. 147

4.2 An annotated version of the plan shown in Figure 4.1. Nine single

snapshots are added. 147

4.3 An example of execution switching between two plans. Snapshot

[s4
′, s5

′] in Plan P2 is congruent to snapshot [s5, s6, s7] in Plan P1. 150

xvii

4.4 The simulation results on the effect of the success rate of a com-

puting activity to the success of plan switching. (a) The number

of successful runs out of ten runs. (b) The average, minimum, and

maximum number of plan switches in successful runs. 156

4.5 The simulation results when 5% of the global consistent snapshots

are congruent snapshots. (a) The number of successful runs out

of ten runs. (b) The average, minimum, and maximum number of

plan switches in successful runs. 157

4.6 The simulation results when 1% of the global consistent snapshots

are congruent snapshots. (a) The number of successful runs out

of ten runs. (b) The average, minimum, and maximum number of

plan switches in successful runs. 157

4.7 The simulation results showing the effectiveness of allowing roll-

back in plan execution when all activities are reversible and 1%

of the global consistent snapshots are congruent snapshots. (a)

The number of successful runs out of ten runs. (b) The average,

minimum, and maximum number of plan switches in successful runs.158

4.8 The minimum, average, and maximum number of plan switches

before the plan execution fails. (a) Rollback of execution is not

allowed. (b) Rollback of execution is allowed. 158

4.9 The simulation results for cases in which six plans are available for

execution and 5% of the global consistent snapshots are congruent

snapshots. (a) The number of successful runs out of ten runs. (b)

The average, minimum, and maximum number of plan switches in

successful runs. 159

xviii

LIST OF PUBLICATIONS

Journal Articles

1. Annie S. Wu, Han Yu, Shiyuan Jin, Guy Schiavone, and Kuo-Chi Lin, “An

incremental genetic algorithm approach to multiprocessor scheduling”, in

IEEE Transactions on Parallel and Distributed Systems, 15(9), pages 824-

834, 2004.

2. Xin Bai, Han Yu, Yongchang Ji, and Dan C. Marinescu, “Resource Match-

ing and a Matchmaking Service for an Intelligent Grid”, in International

Journal of Computational Intelligence, 1(3), pages 197-205, 2004.

3. Han Yu, Xin Bai, and Dan C. Marinescu, “Workflow management and re-

source discovery for a grid environment”, Parallel Computing, 31(7), pages

797-811, 2005.

4. Xin Bai, Han Yu, Guoqiang Wang, Yongchang Ji, Gabriela M. Marinescu,

Dan C. Marinescu, and Ladislau Boloni, “Coordination in intelligent grid

environments”, in Proceedings of the IEEE, 93(3), pages 613-630, 2005.

5. Han Yu, Dan C. Marinescu, Annie S. Wu, and Howard Jay Siegel, “Genetic-

based planning with recursive subgoals”, to appear in International Journal

of Computational Intelligence.

Book Chapter

xix

1. Xin Bai, Han Yu, Guoqiang Wang, Yongchang Ji, Gabriela M. Marinescu,

Dan C. Marinescu, and Ladislau Bölöni, “Intelligent grids”, submitted as a

chapter to book “Grid Computing: Software Environments and Tools”.

Conference Papers

1. Kuo-Chi Lin, Han Yu, Lei Zhou, Zheng Xia, Alex F. Sisti, and Steven

M. Alexander, “Robust control of a swarm of UCAVs”, In Proceedings of

SPIE Volume 4716, Enabling Technologies for Simulation Science VI, pages

108-115.

2. Annie S. Wu, Han Yu, Kuo-Chi Lin, and Guy Schiavone, “Length vari-

ation in response to a changing environment”, In Proceedings of Genetic

and Evolutionary Computation Conference (GECCO) 2002 Late Breaking

Papers, pages 482-489, July 2002, New York, NY.

3. Han Yu, Dan C. Marinescu, Annie S. Wu, and Howard Jay Siegel, “A

genetic approach to planning in heterogeneous computing environments”,

In Proceedings of the 17th International Parallel and Distributed Processing

Symposium (IPDPS 2003), IEEE Computer Society Press, April 2003, Nice,

France.

4. John C. Sciortino, Jr., Annie S. Wu, Han Yu, Brian N. McQuay, Ayse S.

Yilmaz, and Vijayanand C. Kowtha, “ISR team formation for unattended

ground sensor networks using evolutionary algorithms”, In Proceedings of

the 48th Joint Electronic Warfare Conference, May 2003.

5. Han Yu, Annie S. Wu, Kuo-Chi Lin, and Guy Schiavone, “Adaptation of

length in a nonstationary environment”, In Proceedings of Genetic and

xx

Evolutionary Computation Conference (GECCO) 2003, pages 1541-1553,

Springer-Verlag LNCS Series, July 2003, Chicago, IL.

6. Ayse S. Yilmaz, Brian N. McQuay, Han Yu, Annie S. Wu, and John C.

Sciortino, Jr., “Evolving sensor suites for enemy radar detection”, In Pro-

ceedings of Genetic and Evolutionary Computation Conference (GECCO)

2003, pages 2384-2395, Springer-Verlag LNCS Series, July 2003, Chicago,

IL.

7. Han Yu, Ning Jiang, and Annie S. Wu, “Simulating GA search in a dynamic

grid environment”, In Proceedings of Genetic and Evolutionary Computa-

tion Conference (GECCO) 2003 Late Breaking Papers, pages 330-337, July

2003, Chicago, IL.

8. Han Yu, Xin Bai, Guoqiang Wang, Yongchang Ji, and Dan C. Marinescu,

“Metainformation and workflow management for solving complex problems

in grid environments”, Heterogeneous Computing Workshop in the 18th In-

ternational Parallel and Distributed Processing Symposium (IPDPS 2004).

9. Han Yu, Ning Jiang, and Annie S. Wu, “Populating genomes in a dynamic

grid”, Genetic and Evolutionary Computation Conference (GECCO), pages

418-419, June 2004, Seattle, WA.

10. Han Yu, Dan C. Marinescu, Annie S. Wu, and Howard Jay Siegel, “Planning

with recursive subgoals”, in Proceedings of the 8th International Confer-

ence on Knowledge-Based Intelligent Information and Engineering Systems

(KES), pages 17-27, September 2004, Wellington, New Zealand.

11. Xin Bai, Han Yu, Yongchang Ji, and Dan C. Marinescu, “Resource match-

ing and a matchmaking service for an intelligent grid”, in Proceedings of

xxi

International Conference on Computational Intelligence (ICCI), pages 262-

265, December 2004, Istanbul, Turkey.

12. Han Yu and Annie S. Wu, “An incremental approach to the proportional

GA”, in Genetic and Evolutionary Computation Conference (GECCO) Late

Breaking Papers, June 2005, Washington D.C.

Technical Report

1. Han Yu and Annie S. Wu, “A simulated annealing approach to multi-

processor task scheduling”, Technical Report CS-TR-04-06, University of

Central Florida, 2004.

xxii

CHAPTER 1

INTRODUCTION

In this dissertation, we address the problem of planning, scheduling, and plan

switching for large-scale distributed systems. A large-scale distributed system

contains a large collection of interconnected computers and provides transparent

access to computing resources for applications requiring substantial CPU cycles,

very large memories, and massive secondary storage spaces that cannot be pro-

vided by a single machine. Examples of complex computing tasks that can be

supported by large-scale distributed systems include simulations of atomic and

subatomic systems with application to material science, computations related to

study of natural sciences, and computer-aided design.

We define a system to be a computer or a collection of computers that can

provide the computation for users. Examples of systems include a personal com-

puter, a cluster of homogeneous computing nodes, and a large-scale distributed

system. A system supports the computation by providing a group of computing

services. Examples of computing services that can be supported by a system in-

clude data compression, image processing, and word processing. We refer comput-

ing resources to include hardware resources (e.g., processing nodes), computing

services, and data related to a computing task. When submitting a computing

task to a system, the user sends a request that specifies the set of initial data

and the expected results of the computing task. A user may also specify the

1

preferences or restrictions on the use of computing services in a system. When a

request is accepted, the system executes the computing task and sends the results

back to the user.

Planning and scheduling are among the essential functions for executing a

complex computing task. A complex computing task typically requires a large

amount of computing resources and has a long execution time. The request for

executing a complex task may not always be satisfied by directly using a single

computing service. Instead, we need planning to select a group of computing

services in a system and arrange them into an activity graph that specifies the

order and data dependencies among the computing services. This activity graph

is called a plan, and the execution of the plan must achieve the desired goals of

the computing task. After such a plan is available, the next step is to execute

the computing task. This step, called scheduling, is achieved by assigning the

execution of each computing service in a plan to a computing node. If a system

contains only one processing node, scheduling becomes a trivial problem by as-

signing all computing services on one node. The execution of a computing task

may fail due to various reasons, e.g., the resources required by the computing task

are unavailable. If failure occurs, we need to create a new plan for the computing

task and execute the new plan. Alternatively, we can switch the execution of a

computing task from one plan to another plan so that the execution may continue

without the need to create a new plan. Such a method is called plan switching .

After a plan switching is performed, we need another round of scheduling to con-

tinue the execution of the computing task until a computing task can successfully

finish, or a failure is inevitable. Figure 1.1 shows the role of planning, scheduling,

and plan switching in executing a complex computing task.

2

Planning Scheduling

Plan
Switching

A request for
computation A plan

Computing
results

A request for
plan switching

Another
execution plan

Produce a plan that specifies the
order and data dependencies among

a group of computing services

Assign the execution of each
service in a plan to a computing
node, then execute each service

Switch the execution
from one plan to

another plan

Failure

Figure 1.1: The role of planning, scheduling, and plan switching in executing a

complex computing task. We may perform scheduling and plan switching multi-

ple times if failure occurs during the execution.

1.1 Motivation

We have seen in the past decade the emergence of the large-scale distributed sys-

tem as a new paradigm of high performance computing. A computational grid

is a typical example of a large-scale distributed system [1, 2]. The seti@home

project, set up to detect extraterrestrial intelligence, is a successful application of

large-scale distributed computing. The project is designed to take advantage of

the unused cycles of PCs and workstations distributed around the world. Once

a computer joins the project, the application is activated by a mechanism sim-

ilar to the one for screen savers. The participating computers form a primitive

computational grid structure. Once a system is enabled to accept work, it con-

tacts a load distribution service, receives an assignment for a specific task, and

3

starts computing. When interrupted by a local user, this task is checkpointed and

migrated to the load distribution service for redistribution to another available

system.

We list the important features for large-scale distributed systems as follows.

(a) Scale. A large-scale distributed system may contain tens of thousands or

more nodes.

(b) Heterogeneity and diversity. A large-scale distributed system contains com-

puters with different processors and system architectures. The communication

channels linking these computers differ in terms of latency and bandwidth. Com-

puters may have different hardware architecture and use different operating sys-

tems. Diverse application software may run on these computers. Multiple ver-

sions of the same application software may be available in a system.

(c) Autonomy of individual nodes. There is no single administration authority in

a large-scale distributed system. The computers in a system may belong to differ-

ent administrative domains with possibly different access, security, and resource

management policies [3]. As a result, it is not possible to have a central admin-

istrative domain to manage and coordinate the use of all computing resources in

a system.

(d) The dynamic and open-ended character. The state of a distributed system

typically changes very quickly. The state of a system is given by the status of

computing resources, which is further determined by the number of available

computing nodes, the availability of computing services and data, and so on. A

large-scale distributed system is also open-ended: new resources are constantly

added to a system; existing ones are updated or removed. Users are allowed to

supply computing resources and share with other users in a system. Keeping

track of the state of a large-scale distributed system can be a daunting task.

4

(e) The dominant service policy in a large-scale distributed system is based upon

a “best effort”. Enforcing end-to-end quality of service appears to be rarely

possible.

(f) There is a large population of users with individual and often conflicting

requirements on computing resources. Coordination among different computing

tasks or processes is very important for a large-scale distributed system to assure

the fairness and quality of service for each user.

(g) Computing tasks submitted by individual users are typically complex and

resource-intensive [4]. The complexity of a task is difficult to quantify. It has

multiple facets. It may refer to the number and relationship of component ac-

tivities, the predictability of the amount of resources needed for the completion

of individual activities, the security constraints, the presence or absence of dead-

lines for a computing task, the duration of individual activities, the diversity of

resources used, and so on [3].

All above features request us to develop new algorithms for coordination, plan-

ning, scheduling, resource discovery, and other functions to transform a large-scale

distributed system into a user’s virtual machine. Based on these algorithms, we

are able to build services that can hide the complexity of a large-scale comput-

ing system and provide users coordinated access to computing resources in the

system.

In this dissertation, we address the problem of developing planning and schedul-

ing algorithms for such a system. Both planning and scheduling for large-scale

distributed systems require a search in a very large solution space and in a chang-

ing problem environment due to the complexity of computing tasks and the large

scale and dynamics of the computing system. Our goal is to develop planning and

5

scheduling algorithms that can produce valid plans and schedules for computing

tasks and adapt quickly to the changes in the computing environment.

1.2 Addressed Problems and the Approach

1.2.1 Planning and Scheduling

Planning and scheduling are two essential functions for large-scale distributed

systems. Briefly speaking, the function of planning is to automatically create a

plan for executing a computing task. A plan can be represented as a directed

activity graph whose vertices are the computing activities to be executed and

whose arcs denote data and flow control dependencies among activities. Without

planning, such a plan has to be created manually by an individual user who needs

considerable knowledge of both the system and the computing task. The function

of scheduling is to assign the execution of each computing activity in a plan to a

computing node in the system and minimize the execution time of the computing

task.

Planning and scheduling for a large-scale distributed system are non-trivial

problems for the following two reasons. First, a large-scale distributed system pro-

vides a dynamic computing environment. The conditions of a system may change

very quickly during the course of planning and scheduling. Quick adaptation to

changing conditions is essential to the success of the planning and scheduling

algorithms. Second, planning and scheduling for a large-scale distributed system

typically requires a search in a huge solution space due to the large scale of the

6

system and the complexity of a computing task. A successful algorithm should

be able to balance the efficiency of the search and the quality of solutions.

1.2.2 Our Approach: Evolutionary Computation

We study the evolutionary computation (EC) approaches to planning and schedul-

ing for large-scale distributed systems. The EC approach is one type of parallel

search method often used to solve difficult optimization problems. EC is inspired

by a fundamental principle of natural selection, the survival of the fittest . EC ap-

proaches have been applied successfully to numerous optimization problems and

have been shown to perform well on problems with non-stationary environments.

Typical EC approaches include the genetic algorithm (GA), genetic programming

(GP), evolutionary strategies (ES), and evolutionary programming (EP).

A genetic algorithm evolves a population of solutions for multiple generations.

Each individual in the population encodes a candidate solution to a given prob-

lem. Initially, these solutions are randomly generated. With each new generation,

a GA evaluates the performance of every individual with a fitness function that

gives a numeric value indicating the quality of the encoded solution. Selection of

the individuals is based on their fitness. Good solutions have a higher chance of

being selected in the population. Selected individuals are subjected to crossover

and mutation to explore new search spaces without completely losing the existing

solutions that have been evolved. A newly generated population is found. The

GA then repeats these evolutionary steps to generate the next population. The

following pseudo code shows the basic steps of a typical genetic algorithm.

procedure GA

7

{

initialize population;

while termination condition not satisfied do

{

evaluate current population;

select parents;

apply genetic operators to parents to create offspring;

set current population equal to the new offspring population;

}

}

1.3 Implementation

1.3.1 The Need for an Intelligent Middleware

We believe that the need for an intelligent middleware for large-scale distributed

systems is amply justified by the complexity of the computing tasks submitted by

users and the heterogeneity and multitude of resources contained in the system.

A middleware is a software that serves as the interface between the application

and the system-level services. A middleware for a large-scale distributed system

supports a set of services similar to those of the operating system of a central-

ized system (e.g., scheduling, event handling, authentication, and data staging).

Other functions of the middleware, such as resource discovery and brokerage, do

not have a counterpart in the operating system of a centralized system. Such a

middleware is expected to make a large-scale distributed system more usable by

8

allowing a more efficient use of resources and a well-balanced mix of individual-

istic versus societal objectives.

An “intelligent middleware” means more system automation and less user

intervention. The intelligence of a middleware is supported by two elements

in the design of the middleware: a multi-agent framework and ontology-based

knowledge sharing.

1.3.2 A Multi-agent Framework and Ontology-based Knowl-

edge Sharing

Our middleware consists of a variety of services, the execution of which is sup-

ported by a group of autonomously running software agents. A software agent is

a program capable of taking actions to reach desired goals and reacting to changes

in the environment. We assign each agent the role to perform a pre-specified ser-

vice of a middleware. These agents work coherently with each other to achieve

the overall functionality of a middleware. We classify these services into two cat-

egories: core services and end-user services. Core services, or societal services,

refer to the system-wide services that support coordinated and transparent ac-

cess to computing resources. End-user services are specialized services offered by

autonomous service providers and they carry out the actual computations for end

users. A collection of various core services is essential for a middleware. Core

services should be persistent and reliable, and typically there are multiple copies

of the same core service in a system to ensure efficiency and quality of service.

End-user services, on the other hand, can be transient in nature. The providers of

9

end-user services may suspend their support temporarily or permanently. There-

fore, the reliability of end-user services may not be guaranteed.

Knowledge sharing among agents is also of great importance to the intelligence

of middleware. Each agent in a middleware maintains its own knowledge base.

The knowledge base stores all essential knowledge for an agent to support its

desired services and share with other agents in a middleware. Knowledge sharing

among agents requires that all agents adopt the same structure for knowledge,

also called ontology . An ontology defines a common set of terms for entities who

need to share information in a system. Ontologies serve as a common language

among all agents in the middleware to ensure a seamless inter-operability among

the agents.

1.3.3 Architecture of the Middleware

Figure 1.2 shows the basic architecture of the middleware. A non-exhaustive list

of core services for the middleware includes: authentication, coordination, plan-

ning, matchmaking, brokerage, scheduling, plan switching, information, event

handling, monitoring, and simulation services. The authentication service en-

sures the security of the environment. The coordination service acts as a proxy

for a user. It receives computing tasks delivered from users, monitors the execu-

tion of each computing task, and supports coordinated resource sharing among

concurrent tasks. After a computation finishes, either with success or failure,

the coordination service sends the results back to the user. The planning service

is responsible for creating plans for a given computing task. The matchmak-

ing service supports the function of resource discovery and attempts to find the

10

computing resources that best match the request from a computing task. The

brokerage service maintains the up-to-date information related to the available

services in a system. The scheduling service generates optimized schedules for ex-

ecuting computing tasks. The function of the plan switching service is to switch

the execution of a computation from one plan to another when failure occurs

during the execution of the current plan. The information service has similar

functions as a DNS in the Internet. It is responsible for locating every registered

service (both core and end-user services) in a system. The event handling service

provides a message passing method for event handling and inter-service commu-

nication. The monitoring service is responsible for tracking the current status of

all computing resources in a system. The simulation service provides statistical

data for monitoring the performance of the system.

Figure 1.3 shows the basic structure of the ontology for this middleware. The

ontology is composed of classes and slots. Each class specifies one entity of knowl-

edge for a large-scale distributed system. A basic set of classes includes “Task”,

“Process Description”, “Case Description”, “Data”, “Activity”, “Transition”,

“Service”, “Resource”, “Hardware”, and “Software.” Classes can be further de-

scribed with a set of attributes. For instance, the entity “data” can be defined as

a class in the ontology with each instance of class “data” corresponding to a data

item in the system. We can specify a data with the attributes such as “name”,

“location”, “format”, etc. Each attribute is defined as a slot for class “data.”

An ontology can be extended with the inclusion of additional classes and slots

for specific computing domains. Although all above core services are developed

exclusively for this middleware, they are open-ended to other systems that share

the same ontology as the one used by this middleware.

11

Coordination

Planning

Matchmaking

Event Handling

Information

Brokerage
Scheduling

Simulation

Authentication

Users

Core Services

End-user End-user End-user

End-user Services

...

Monitoring

Plan Switching

Figure 1.2: The basic architecture of an intelligent middleware for large-scale

distributed systems. The middleware consists of a collection of core services

and end-user services. A list of core services includes authentication, coordina-

tion, planning, matchmaking, brokerage, scheduling, plan switching, information,

event handling, monitoring, and simulation services.

1.4 Contributions of this Dissertation

The focus of this dissertation is implementing the functions of planning, schedul-

ing, and plan switching for large-scale distributed systems. This dissertation also

extends the work in evolutionary computation and distributed computing. The

contributions of the dissertation are:

12

-Process Description
-Case Description
-Status
-Name
-ID
-Result Data Set
-Submit Location
-Owner
-Data Set
-Need Planning

Task

-Creator
-Name
-ID
-Location
-Activity Set
-Transition Set

Process Description

-Name
-ID
-Initial Data Set
-Result Set
-Constraint
-Goal Condition

Case Description

-Name
-ID
-Owner
-Type
-Direct Successor Set
-Direct Predecessor Set
-Input Data Set
-Output Data Set
-Service Name
-Task ID
-Status
-Submit Location
-Execution Location
-Input Data Order
-Output Data Order
-Constraint
-Working Directory
-Retry Count

Activity

-Name
-Input Data Set
-Output Data Set
-Authorized Users
-Command
-Working Directory
-Version
-Resource
-Location
-Type
-Version
-Cost
-TimeStamp
-Description
-History
-Creation Data
-Input Data Order
-Output Data Order
-Input Condition
-Output Condition

Service

-Symbolic Name
-File Name
-Type
-Value
-Location
-Timestamp
-Category
-Format
-Owner
-Creator
-Size
-Creation Date
-Description
-Last Modification Date
-Classificaiton
-Access Right

Data

-Name
-Type
-Location
-Hardware
-Software
-AccessSet

Resource

-Type
-Manufacturer
-Model
-Size
-Latency
-Bandwidth
-Speed
-Comment

Hardware

-Name
-Type
-Version
-Distribution
-Manufacturer

Software

1..*

1..*

1..*

1..*

1..*

1..*

-ID
-Source Activity
-Destination Activity

Transition

1..*

Figure 1.3: A basic set of classes and attributes for the ontology.

(a) A genetic algorithm approach to AI planning problems and planning for large-

scale distributed systems

The problem of planning has been extensively studied by AI researchers. Nu-

merous planning models and algorithms have been proposed. Many existing

planning algorithms take advantage of the heuristics extracted from the domain

13

knowledge to improve the efficiency of the search for a solution. These heuristics,

however, are typically domain specific and are consequently difficult to generalize

to other problems. In addition, planning for a large-scale distributed system re-

quires quick adaptation to a changing problem environment. Heuristics that are

useful for a current problem condition may not be as effective when the problem

condition changes.

We investigate a GA approach to planning. We are one of the few forerunners

to apply a GA-based approach to AI planning. Our approach is non-deterministic,

requires less domain knowledge than traditional planning approaches, and ex-

hibits consistent performance on a variety of planning domains.

In addition, we study the problem of planning for large-scale distributed sys-

tems. In this work, we formulate the problem of planning based on the ontologies

defined for the middleware; address the issue of replanning, a process of adapting

a plan to dynamic computing environments; and classify the problem of planning

into two categories: deterministic and non-deterministic planning. We apply an

adapted approach to planning for large-scale distributed systems. We evaluate

the performance of the approach both on a real-world scientific computing domain

and in a simulation computing environment.

(b) A genetic algorithm approach to multi-processor scheduling and scheduling for

large-scale distributed systems

Scheduling for large-scale distributed systems is similar to multi-processor

scheduling, but it is much more complicated. Many existing multi-processor

scheduling algorithms suffer from similar problems as traditional AI planning

algorithms. First, they use heuristics that cannot be applied to various domains.

Second, they do not work well in a dynamic problem environment.

14

We apply a GA-based approach to multi-processor scheduling. Our GA has

two distinguishing features compared to traditional GAs. First, it uses a flexible

representation scheme that allows GA to evolve both the structure and value

of the solutions. This feature is effective to give GA a complete exploration in

the search space, while other approaches with restricted representation do not.

Second, it uses an incremental fitness function that starts out rewarding sim-

pler goals and gradually increases in difficulty until a complete solution is found.

Experiments on benchmark task graphs show that this approach produces compa-

rable or better performance as compared to traditional deterministic scheduling

approaches.

In addition, we investigate the effectiveness of this approach in dynamic prob-

lem environments. This study gives us an indication of how well this approach

may perform in a large-scale distributed system, a naturally dynamic computing

environment.

Finally, we study the problem of planning for a large-scale distributed system.

Our formulation of the problem takes into account both the heterogeneity and

dynamics of the system. The modified scheduling approach is able to handle

conditional and iterative execution of tasks, which is a major extension from the

original approach.

(c) Plan switching for large-scale distributed systems

A large-scale distributed system is dynamic in nature. We cannot fully guar-

antee the success of the execution of a computation. Quick adaptation to a

changing computing environment is necessary during the course of a compu-

tation. Replanning is an approach to deal with this problem, but it incurs a

significant amount of computational cost in search for a new plan.

15

We introduce a method called plan switching as an alternative solution to deal

with the uncertainty in a large-scale distributed system. Given a group of plans

available to perform a computing task, the function of plan switching is to switch

the execution to a backup plan when the current plan fails. If plan switching is

successful, we stop the execution of the computation, switch the computation to

the backup plan, reschedule the computation for the backup plan, and resume

the computation. Plan switching serves as the “glue” to integrate the functions

of planning and scheduling for a large-scale distributed system.

We present an approach to plan switching. The main idea of this approach

is to locate execution points from other plans in parallel with the execution of

the current plan. When the execution cannot proceed, we continue the execution

of a computing task from a selected execution point in another plan. We per-

form a simulation study and investigate the effect of various parameters on the

performance of this approach.

(d) Study of representation and incremental search strategies in evolutionary com-

putation

We extend the study of GA on two aspects. First, we study the solution

representation in GA and its effects on the search performance. In particular, we

study the behavior of variable length representation in both static and dynamic

problem environments. Second, we study the effectiveness of using incremental

search strategies in a GA. In the GA-based planning approach, we use an incre-

mental method by dividing the search into multiple independent phases. In the

GA-based scheduling approach, we use an incremental, dynamic fitness function.

We perform experiments to evaluate the effectiveness of using these incremental

search strategies in a GA.

(e) Development of an intelligent middleware for large-scale distributed systems

16

Our goal for developing large-scale distributed systems is to improve the us-

ability of the systems, i.e., to minimize the user intervention while ensuring the

fairness and quality of service for all users. Our solution is the introduction of an

intelligent middleware. The intelligence of the middleware is supported by two

essential elements that we bear in mind in our design: a multi-agent framework

and ontology-based knowledge sharing among agents.

The middleware consists of a variety of services, the execution of which is

supported by a group of autonomously running software agents. Each agent is

assigned a role to perform a pre-specified service of a middleware. We classify

all services into two categories: core services and end-user services. Core services

refer to the system-wide services that support coordinated and transparent access

to computing resources, and they are the essential elements of a middleware. End-

user services are specialized services offered by autonomous service providers that

perform the actual computations for users.

Knowledge sharing among agents is also of great importance to the intelligence

of the middleware. Each agent in this middleware maintains its own knowledge

base. The knowledge base stores all essential knowledge for an agent to support

its desired service and share with other agents in the middleware. Knowledge

sharing requires that all agents adopt the same structure for knowledge. The

ontology we define for the middleware provides a common language for all agents

to ensure seamless collaboration. Our ontology is extensible to allow the inclusion

of the knowledge for specific computing domains.

17

CHAPTER 2

PLANNING ALGORITHMS AND

PLANNING SERVICES

In this chapter, we study the problem of planning for large-scale distributed sys-

tems. The goal of planning is to produce valid execution plans for a given compu-

tation. We first study the traditional AI planning problems that are simpler but

similar to planning for large-scale distributed systems. We present a GA-based

approach to planning and evaluate the performance on two artificial planning

domains. We also introduce an effective heuristic, recursive subgoal strategy, for

subgoal division and ordering in planning problems that contain conjunctive goals

and the division of recursive subgoals for these planning problems maintain the

serializability among subgoals. Finally, we address the problem of planning for

large-scale distributed systems. We formulate the problem, present a modified

genetic approach to the problem, and evaluate the performance of the approach.

18

2.1 AI Planning

2.1.1 Introduction to AI Planning

AI planning, or simply planning, has a wide range of real-world applications. A

planning problem is associated with a system, the state of which can be changed

with a set of actions. Given an initial state, a set of goal specifications, and a set

of actions, the objective of planning is to construct a valid sequence of actions,

or a plan, to reach a state that satisfies the goal specifications starting from the

initial state of a system. Many complex problems require planning. A simple

example of a planning problem is the process of solving a puzzle, given a set of

pieces with different geometric shapes scattered on the floor.

Much effort has been devoted to building computational models for a variety

of planning systems. Our work is based on STRIPS-like domains [5] in which

the change of the system state is given by operators and their preconditions and

postconditions. In addition, we are interested in the linear planning problems

in which solutions are represented by a total order of operators that must be

executed sequentially to reach the goal.

Definition 1. We define a planning problem to be a four-tuple

Π = (P,O, I,G).

P is a finite set of ground atomic conditions (i.e., elementary conditions in-

stantiated by constants) used to define the system state. O = {Oi}, where

1 ≤ i ≤ |O| is a finite set of operators that can change the system state. Each

operator has three attributes: a set of preconditions Opre
i , a set of postconditions

Opost
i , and a cost C(Oi). Opost

i consists of two disjunctive subsets: Opost+
i and

19

Opost−
i . Opost+

i , the add list, is a set of conditions that must be true for a system

state after the execution of the operator; Opost−
i , the delete list, consists of a set

of all conditions that do not hold after the execution of the operator. I ⊆ P is

the initial state and G ⊆ P is the set of goal conditions. A plan ∆ contains a

finite sequence of operators. An operator may occur more than once in a plan.

An operator is valid if and only if its preconditions are a subset of the current

system state. A plan ∆ solves an instance of Π if and only if every operator in

∆ is valid and the result of applying these operators leads a system from state I
to a state that satisfies all the conditions in G.

Planning is generally more difficult than a typical search problem. First, most

planning problems involve extremely large search spaces. Second, the existence

of a solution is not always guaranteed, i.e., a goal may not be reachable from a

given initial state with the execution of a finite number of operators. Third, the

size of an optimal solution cannot be easily anticipated. As a result, it is difficult

to quantify the time and space complexity of planning algorithms.

2.1.2 Previous Work on Planning Algorithms

Erol et al. [6] provide a comprehensive analysis of the computational complexity

of domain-independent planning problems with STRIPS-like operators. The au-

thors investigate the effect of the nature of planning operators on the decidability

of a planning problem. Their study shows that, when planning is decidable, the

time complexity of a domain-independent planning algorithm depends on numer-

ous factors, such as whether conditional effects and negative preconditions are

allowed in a planning problem.

20

The Graphplan approach exploits the fact that the operator space of a plan-

ning problem is much smaller than its state space [7]. This approach first gen-

erates a compact planning graph consisting of all the possible operators at every

time step. Operators that interfere with one another can coexist in a graph.

The plan graph guides the plan formation and is extended in every time step

of the search. The Graphplan approach is a sound and complete partial-order

planner. Experimental results show that Graphplan outperforms other planning

algorithms in a variety of problem domains.

Jonsson et al. study the efficiency of universal planning algorithms [8]. They

conclude that universal planners that run in polynomial time and polynomial

space cannot satisfy even the weakest types of completeness. If, however, one

of the polynomial requirements is removed, constructing a plan that satisfies

completeness becomes a trivial problem. They also propose Stocplan, a random-

ized approach to universal planning under a restricted set of conditions. They

show that this approach can construct plans that run in polynomial time and

use polynomial space and also satisfy both soundness and completeness for these

problems. Experiments indicate that the performance of Stocplan is competitive

with Graphplan.

Another approach to planning is to partially reuse existing plans. This ap-

proach consists of two steps, plan matching and plan modification. Nebel and

Koehler [9] analyze the relative computational complexity of plan reuse versus

planning from scratch. Their study shows that the problem of plan reuse is in-

tractable and the efficiency of this approach is not guaranteed. Generally, reusing

an existing plan is harder than planning from scratch. This approach is expected

to work better only when the new planning problem is sufficiently close to the

21

old one. Plan matching, a necessary step in this approach, can be the bottleneck

in computation time.

Bonet and Geffner [10] show that a general planning algorithm can be trans-

formed into a heuristic search algorithm by extracting the heuristics from problem

representations. They introduce two planners, HSP , a hill-climbing planner, and

HSP2 , a best-first planner. Both planners are forward state planners and have

competitive performance with Graphplan. Both planners assume that all sub-

goals are independent; therefore, admissible heuristic functions can be defined

and they never overestimate the cost.

A different direction of planning research focuses on domain-specific planning

for limited problem domains. Korf and Taylor study useful search heuristics for

the Sliding-tile puzzle [11]. They present the work on an accurate admissible

heuristic function in the IDA∗ search algorithm. The heuristics used include the

linear conflict heuristic, last moves heuristic, and corner-tile heuristic. These

heuristics are shown to improve the search performance of the IDA∗ search

algorithm.

Korf and Felner [12] use a disjoint pattern database heuristic in planning algo-

rithms. With this heuristic, the subgoals are first split into disjoint subsets such

that an operator affects only the subgoals in one subset. The values obtained

for each subset are then combined to form the result of the heuristic evaluation

function. Korf and Felner use this technique to search for a solution for the

Sliding-tile puzzle and for Rubik’s cube. Their approach successfully finds op-

timal solutions to different instances of 5 × 5 Sliding-tile puzzles. The results

indicate that this heuristic improves the search efficiency by decreasing the num-

ber of nodes traversed during the search. Nevertheless, the computational cost of

this approach still increases very quickly with the increase of puzzle size. Finding

22

optimal solutions to 6 × 6 or larger Sliding-tile puzzles is still considered to be a

formidable task.

All of the above approaches except Stocplan are deterministic approaches that

tend to require large coverage of a search space to generate a good result. Prob-

lem specific heuristics can be used to reduce the size of a search space; however,

heuristics for one class of problems may not be applicable to other classes of prob-

lems. Evolutionary computation (EC) has emerged as a competitive technique in

planning research. Because of an element of randomness in their implementation,

the search results of EC methods may vary over different runs and these methods

are not guaranteed to find an optimal solution. EC methods, however, are robust

and can consistently find solutions that are approximate to an optimal solution.

The works of Koza [13] and Spector [14] are among the early attempts to

applying genetic programming to planning problems. Both report positive results

in the Blocks World domain. Koza’s approach uses a set of specifically designed

functions in the solution representation. These functions work only on domains

that contain only one block stack, which largely restricts the applicability of this

approach. Spector uses less specific functions in the plan representation. His

approach successfully generates a universal plan for the 3-block domain. This

success, however, may be partially attributed to the small search space of the

3-block domain, which is not difficult for deterministic search algorithms. No

experiments on larger problem domains are reported.

Muslea [15] presents a GP approach to planning. Sinergy is a general linear

planning system built on the GP paradigm. Sinergy extends the expressive power

of traditional planning algorithms in the encoding of planning problems. Exper-

iments are performed on the Single and 2-Robot Navigation problems and on

the Briefcase problem. Results indicate that Sinergy can handle problems that

23

are one or two orders of magnitude larger than UCPOP , a deterministic partial

order planner with the equivalent expressive power [16]. Sinergy works only on

problems with conjunctive goals.

Another example of a GP based algorithm is GenPlan [17]. GenPlan uses a

linear structure to encode solutions. Experiments on three domains, the Blocks

World domain, the Briefcase domain, and the Logistics domain, show that Gen-

Plan can solve the same problems as Sinergy but with fewer generations. The

authors also report a study on five GP seeding strategies and show that these

strategies improve the search quality on the Blocks World domain [18]. Seeding

partial solutions and keeping some randomness in the initial population appear

to benefit GP performance.

2.1.3 A Genetic Algorithm Approach to Planning

Our genetic approach to planning differs from the traditional GA in three as-

pects. First, we use an indirect encoding method for individuals to eliminate

invalid operators in a plan. Second, we introduce two novel crossover schemes in

an attempt to reduce the disruption from the genetic operations as a result of

this indirect encoding method. Third, the search process is divided into multi-

ple phases, with each phase an independent GA run. This multi-phase process

enables the GA to build solutions incrementally.

24

2.1.3.1 Solution Encoding

The solution to a planning problem is encoded as a sequence of genes, where each

gene represents a single operator in the plan. The simplest way to encode such

a plan is to use direct encoding: each operator is represented by an integer and

the sequence of integers encodes the sequence of operators in a plan. Because

an operator may not be valid in every system state, a direct encoding method

cannot avoid invalid operators in a plan.

We use an indirect encoding method instead. Each gene is represented as a

floating point number x , 0 ≤ x < 1. Every number in the solution is mapped

to a valid operator for the corresponding system state. The result of this mapping

depends on the value of the floating point number and the set of valid operators

in a given system state. This method ensures that all genes in a solution will

represent valid operators. For example, assume that in a given state there are

four valid operators, O1, O2, O3, and O4. Then a floating point number x is

mapped as follows:

0.00 ≤ x < 0.25 �−→ O1

0.25 ≤ x < 0.50 �−→ O2

0.50 ≤ x < 0.75 �−→ O3

0.75 ≤ x < 1.00 �−→ O4.

As it is generally difficult to determine the size of the optimal solution (i.e.,

the number of operators in the optimal solution), we use a variable length rep-

resentation. Variable length representations allow a GA to evolve individuals of

different lengths and is especially useful for domains in which the sizes of the

optimal solutions cannot be easily determined or estimated. Early attempts of

using variable length representation include Smith’s LS-1 learning system [19],

25

Goldberg’s messy GA [20], Koza’s GP [13], and Harvey’s SAGA [21]. Recent

studies have focused on the effects of non-coding genes (i.e., the sections of genes

that do not contribute to solution encoding) on variable length GA performance.

These studies find that the inclusion of non-coding regions affects the probability

of disruption caused by crossover and as a result is more likely to preserve the

building blocks that have been evolved [22, 23]. A recent study on a variable

length GA under non-stationary problem environments reveals that a variable

length GA is more likely to recognize and maintain good build blocks after target

changes and hence exhibits better adaptability than a fixed length GA [24].

Although we allow a GA to evolve variable sizes of solutions in this planning

approach, we set an upper bound, MaxLen, on the individual length. The value

of MaxLen should be chosen to ensure GA search quality while not incurring too

much computation cost.

2.1.3.2 Population Initialization

The members of the initial population are randomly generated. The lengths of

the initial population of solutions are set to reasonable values and do not exceed

MaxLen.

2.1.3.3 Fitness Evaluation

The goal of planning is to find a solution that satisfies the following three criteria:

(a) the solution contains no invalid operators; (b) the sequence of operators leads

the system from the initial state to a state that satisfies all goal conditions;

26

and (c) the cost of the solution is minimized. As the indirect encoding method

can eliminate invalid operators in a solution, the evaluation of solutions only

focuses on the second and third criteria. Accordingly, the fitness function has

two components: the goal fitness fg and the cost fitness fc.

The goal fitness function, fg, 0 ≤ fg ≤ 1, evaluates the match quality

between the final state of a solution and the goal specifications. To determine

the final state of a solution, we go through every operator from the beginning

to the end of a solution. Initially, we set the current state as the initial state of

the system. We start from the first operator and change the system to the state

after this operator is performed. We repeat the same process on each succeeding

operator until we finish all of the operators in the solution. A better match

between the final state and the goal specifications results in a higher goal fitness.

The goal fitness is typically dependent on the characteristics of the planning

problem.

The cost fitness function, fc, 0 ≤ fc ≤ 1, evaluates the total cost of a

solution. The cost of a solution depends on the cost of individual operators and is

problem specific. The cost may be related to the latency of executing an operator,

the number of arithmetic operations, the amount of data to be transferred, and

so on. A solution with low cost has a high cost fitness. In the very simple case

when all operators have the same cost, the cost fitness is given by:

fc =
MaxLen − individual length

MaxLen
(2.1)

The overall fitness function reflects the two aspects of merit:

f = a × fg + (1 − a) × fc (2.2)

27

where a is the weight of the goal fitness and 0 ≤ a ≤ 1.

2.1.3.4 Selection and Genetic Operators

Selection

Tournament selection is used to select the individuals that will be the par-

ents of the next generation. In this selection scheme, we randomly pick up two

individuals from the current population and compare their fitness values. The

individual with the higher fitness value is chosen to be a parent. This process

continues until we have generated a new population of the same size as the current

one. We do not use elitism to retain the best solution over generations.

Crossover

We implement three different crossover mechanisms: random, state-aware,

and mixed. In each case, the children created replace their parents.

Random crossover is similar to GA one-point crossover. Given two parents,

we randomly select one crossover point on each parent. The two parents exchange

portions of their genetic code relative to the two crossover points. Two children

are created; each child inherits a portion of the genetic code from both parents.

A potential problem with random crossover is that the selected crossover

points may be associated with different system states. Because we use an indi-

rect encoding method, the mapping from floating point numbers to operators is

dependent on the system state, see Section 2.1.3.1. Therefore, it is very likely

that the genes to the right of the crossover points will be mapped to a different

sequence of operators after crossover although they are still represented by the

same floating point numbers.

28

State-aware crossover addresses the problem of state mismatching in random

crossover. We randomly select a crossover point from the first parent. We restrict

the crossover point of the second parent to those that match the first crossover

point. Two states match if the same genetic code will be mapped to the same

sequence of operators from these two states. If no such crossover can be found, we

do not perform the crossover and both parents are included in the population of

the next generation. State-aware crossover attempts to preserve partial solutions

that have been evolved in the search.

Mixed crossover combines random and state-aware crossover. We randomly

select the first crossover point and check if state-aware crossover can be per-

formed. If so, we perform the state-aware crossover on the two parents. Oth-

erwise, we randomly select the second crossover point and carry out a random

crossover.

Mutation

Every gene has equal probability of being mutated. In every mutation, a new

randomly generated floating point number replaces the old one.

2.1.3.5 A Multi-Phase Search Procedure

We use a multi-phase approach to build solutions to a planning problem incre-

mentally. We divide the GA search into multiple phases. Each phase is an

independent GA run and consists of a fixed number of generations. In the first

phase, we take the initial state of the system as the state where the search starts.

When a phase ends, the best solution found in this phase is stored and the final

state of the solution is taken as the initial state for the search in the subsequent

29

phase. The GA search ends when a valid solution is found at the end of one

phase, or a predefined number of phases have finished. The final solution of a

GA run is the concatenation of the best solutions from all phases. The procedure

of a multi-phase GA consists of following steps.

(1) Start GA. Initialize population.

(2) While the stopping condition is not met, do

(a) While fewer than the specified number of generations are

evolved in the current phase, do

(i) Evaluate each individual in the population.

(ii) Select individuals for the next generation.

(iii) Perform crossover and mutate operations on selected

individuals.

(iv) Replace old population with new population.

(b) Select the best solution for this phase and keep it.

(c) If a valid solution is found, go to step 3. Otherwise,

randomly initialize population and start the next phase. The

search in the new phase starts from the final state of the

best solution in the previous phase.

(3) Construct the final solution by concatenating the best solutions

from all phases.

The rationale of using a multi-phase GA is to divide a large search problem,

such as planning, into smaller problems so that each small problem can be tackled

separately. The search is expected to reach closer to the problem goal after each

individual phase. Partial solutions that evolved in previous phases are kept and

prevented from disruptions caused by genetic operations.

One method of further improving the effectiveness of a multi-phase GA is

to specifically assign different search goals for each individual phase so that the

30

search becomes more “goal-driven.” This method, however, requires domain-

specific knowledge and may not be applicable to all planning problems. We

address this issue in Section 2.1.5 and present a heuristic for subgoal division and

ordering.

2.1.4 Experiments and Performance Evaluation

We test our GA approach to planning on two classical planning problems, the

Towers of Hanoi and the Sliding-tile puzzle. Each experiment is run multiple

times and the average performance is reported here. In each individual run we

use a different random seed.

2.1.4.1 Towers of Hanoi

In the Towers of Hanoi problem, there are three stakes, A, B, C, and n disks,

D1, D2, . . . , Dn of increasing size. D1 is the smallest disk and Dn is the largest

disk. Initially, all of the disks are on stake A. The goal is to move all of the

disks to stake B in a minimum number of steps. In each step, only one disk can

be moved from one stake to another stake. Larger disks are not allowed to be

moved on top of smaller disks. The minimum number of steps to reach a goal

has been proven to be 2n − 1 [25]. Figures 2.1 and 2.2 show the initial and goal

configurations for the 5-disk Towers of Hanoi problem.

We define six operators for the Towers of Hanoi problem. They are: move(A,

B), move(A, C), move(B, A), move(B, C), move(C, A), and move(C, B). The

operator move(A, B) moves the disk on top of stake A to the top of stake B.

31

 A B C

D1

D2

D3

D4

D5

Figure 2.1: The initial configuration of the 5-disk Towers of Hanoi problem.

 A B C

D1

D2

D3

D4

D5

Figure 2.2: The goal configuration of the 5-disk Towers of Hanoi problem.

Other operators are defined similarly. An operator may not be valid for all

problem configurations. For instance, we cannot execute the operator move(A,

B) if stake A is empty or the disk on top of stake A is larger than the disk on

top of stake B. An indirect encoding method can be used to eliminate invalid

operators in a solution.

A feature of this problem is that larger disks are more important than smaller

ones for a plan to succeed. A minimum of 2i−1 operators are required to move Di

from stake A to stake B between the initial and goal configurations, regardless of

the positions of other disks. To evaluate the goal fitness, we assign greater weight

to larger disks to reinforce their importance: Di has a weight of 2i−1. The total

32

weight of all n disks is 2n − 1. The goal fitness is calculated using the following

equation:

fg =
total weight of all disks on stake B in the final state

2n − 1
(2.3)

The cost fitness is given by equation 2.1. In our experiments, we set the size

of initial individuals to the length of the optimal solution, 2n − 1. The value of

MaxLen is 10 × (2n − 1).

In this experiment, we use random crossover and test both the single-phase

GA and multi-phase GA approaches with the same number of generations. Ta-

ble 2.1 shows the parameters for this experiment. For the single-phase GA the

maximum number of generations allowed is 500; for the multiple-phase GA every

phase contains 100 generations and the maximal number of phases allowed is 5.

We perform ten runs in each case and pick the individual with the highest

goal fitness in each run. Then we average the fitness and the length of these

individuals. We also calculate the average number of generations required to find

the best solution of a run. Table 2.2 summarizes these results.

Our data show that the multi-phase algorithm performs better than the single

phase GA in terms of goal fitness. The multi-phase GA can find a valid solution

in every run for the 5-disk and 6-disk cases. Although the multi-phase GA cannot

find a valid solution in some runs for the 7-disk case, it evolves a solution that has

higher goal fitness than the single-phase GA. In addition to the improved quality

of solutions, the multi-phase algorithm generally requires fewer generations to

find the best solution of a run.

The multi-phase algorithm evolves longer solutions than the single-phase GA

in the 6-disk and 7-disk problems. This result is probably due to the fact that the

33

Table 2.1: Parameter settings used in the Towers of Hanoi planning experiments.

Parameter Value

Population Size 200

Number of Generations 500

Crossover Type Random

Crossover Rate 0.9

Mutation Rate 0.01

Selection Scheme Tournament

Tournament Size 2

Weight of fg 0.9

Weight of fc 0.1

Number of Disks 5, 6, and 7

Maximal Number of Phases
5

in Multi-phase GA

limit of individual length in the multi-phase algorithm is larger than the limit for

the single-phase GA. In our experiments, every run can have up to five phases,

so the maximum allowed individual length in multi-phase algorithm is five times

higher than the one for the single-phase GA.

Still, the multi-phase algorithm is not guaranteed to find a valid solution as

the problem size scales up. We believe the problem is partially due to the fact

that the goal fitness fails to accurately evaluate the distance between a given final

state and the problem goals. For instance, even though we assign more credit to

large disks in evaluating the goal fitness, a partial solution might reach a state in

which all disks except the largest one are on stake B. This solution will receive a

34

Table 2.2: Experimental results for the Towers of Hanoi problem. CI = Confi-

dence Interval.

GA Number Avg (95%CI) Avg (95%CI) Avg (95%CI) Gen. to

Type of Disks Goal Fitness Solution Size Find the Best Solution

Single- 5 1.0 (0) 49.16 (2.11) 50.04 (10.16)

phase 6 0.947 (0.011) 99.42 (4.34) 228 (37.36)

7 0.603 (0.012) 116.46 (6.35) 313.98 (34.86)

Multi- 5 1.0 (0) 47.64 (2.44) 43.18 (6.68)

phase 6 1.0 (0) 101.38 (3.59) 125.42 (14.40)

7 0.743 (0.070) 156.02 (15.25) 167.12 (21.35)

goal fitness slightly less than 0.5. This state, however, is as far from the goal state

as the initial state. Indeed, to reach the goal, all these disks have to be moved

away from stake B before the largest disk can be moved to disk B. This difficulty

indicates that good heuristic functions still play important roles in improving the

performance of our approach.

2.1.4.2 Sliding-tile Puzzles

Sliding-tile puzzles consist of a number of moving blocks and a board on which the

blocks can slide. Such problems are sometimes used in AI textbooks to illustrate

heuristic search methods [26]. For example, Russell and Norvig [27] discuss the

4× 4 Sliding-tile puzzle shown in Figure 2.3. Given an initial configuration such

as the one in Figure 2.3(a), the goal is to reach the goal configuration shown in

Figure 2.3(b) by moving the blocks without lifting them from the board. Solutions

35

do not exist for every possible combination of initial and goal configurations of

the problem. If we define permutation as an action of exchanging the positions

of two tiles on the board, the Sliding-tile puzzles can be categorized into two

classes. In the first class, the initial configuration is an even permutation of

the goal configuration; in the second class, the initial configuration is an odd

permutation of the goal configuration. Johnson and Story show that a solution

exists only in the first class of the Sliding-tile puzzles [28].

7 5

(a) (b)

123

6 4

891011

12131415

64

1

5

2

7

3

8 9 10 11

12 13 14 15

Figure 2.3: The initial and goal configurations of a 4 × 4 Sliding-tile puzzle. (a)

The initial configuration. (b) The goal configuration.

We define four operators for the Sliding-tile puzzles. They are move-up, move-

down, move-left , and move-right . The operator move-up exchanges the position

of the empty tile with one right below the empty tile. Other operators are defined

in a similar way. Clearly, not all operators are valid for all problem configurations.

For instance, if the empty tile is located in a corner of the board, only two

operators are allowed.

In this experiment, we set the initial size of a solution to be n2×(n2−1)
2

, where

n is the number of blocks in every row or column. This expression is the number

of comparisons needed to sort a set of n2 values. While the Sliding-tile puzzle is

not the same as a sorting problem, e.g., there are restrictions on the tiles that can

36

be exchanged, we believe that this expression gives a reasonable size with which

to start the GA. Previous GA studies have found evidence that a variable length

GA will evolve to a necessary solution length regardless of the initial individual

lengths [29].

The distance between the current state and the goal configuration is given

by the Manhattan distance of all tiles [27]. The upper bound on the distance

between any two states in a n × n problem is (n − 1) × 2 × (n2 − 1), where

(n− 1)× 2 is the longest distance that a single tile may need to move and n2 − 1

is the number of tiles. The goal fitness is:

fg = 1 − Manhattan distance between final state and goal configuration

(n − 1) ∗ 2 ∗ (n2 − 1)
(2.4)

The cost fitness is given by equation 2.1. For the Sliding-tile puzzle, the value

of MaxLen is 10 × n2×(n2−1)
2

.

In this problem, we test all three crossover mechanisms with up to five individ-

ual phases in each run. Table 2.3 shows the parameter settings for the Sliding-tile

puzzle experiments.

We perform 50 GA runs for each experiment and select the individual with

the highest goal fitness in every run as the solution. In addition to fitness and

individual length, we also record the number of runs that find a valid solution and

the average computation time for each run. Table 2.4 summarizes our results.

Interestingly, the performance of the three crossover types are very close. All

of them can find a valid solution in at least 45 out of 50 runs for the 3×3 case. As

the problem size grows, the search performance degrades sharply. The average

37

Table 2.3: Parameter settings for the Sliding-tile puzzle experiments.

Parameter Value

Population Size 200

Number of Generations 500

Crossover Type Random / State-aware/ Mixed

Crossover Rate 0.9

Mutation Rate 0.01

Selection Scheme Tournament

Tournament Size 2

Weight of fg 0.9

Weight of fc 0.1

Board size (n) 3 and 4

Maximal Number of phases
5

in multi-phase GA

Table 2.4: Experimental results for the Sliding-tile puzzle. CI = Confidence

Interval.

Type of # of Avg (95% CI) Avg (95% CI) Success Average

Crossover Tiles Goal Fitness Solution Size Runs Time (sec)

Random 9 0.99 (0.009) 35.92 (1.88) 45 13.79

16 0.948 (0.007) 174.32 (7.67) 5 65.89

State- 9 0.998 (0.005) 33.76 (1.86) 49 11.99

aware 16 0.951 (0.006) 164.12 (9.38) 4 64.61

Mixed 9 1.0 (0) 32 (1.38) 50 11.55

16 0.952 (0.006) 153.64 (6.38) 5 63.22

38

Table 2.5: The number of runs when a valid solution is found in each phase for

the random, state-aware, and mixed crossover strategies.

Phase Random State-aware Mixed

1 16 42 50

2 23 6 0

3 4 1 0

4 1 0 0

5 1 0 0

size of the solutions increases faster than linearly as the number of tiles increases.

The computation time depends heavily on the individual length.

We further investigate the contribution of multiple phases to the search of

a solution. We record the number of runs required to find a valid solution in

each phase for the 3 × 3 case. Table 2.5 lists the result for all three crossover

mechanisms.

In most of the runs, a valid solution is found within the first two phases.

Mixed crossover finds a solution faster than the other two crossover mechanisms.

It can always find the best solution in the first phase. State-aware crossover has a

greater probability of finding a valid solution in the first phase than the random

crossover. Random crossover does not search as fast as the other two crossover

mechanisms, but using multiple phases helps it to find a valid solution before the

end of the second phase with a very high probability.

39

2.1.5 Recursive Subgoals

In this section, we present an effective heuristic, called recursive subgoals, for sub-

goal division and ordering. This approach is only applicable to problem domains

that contain conjunctive goals and the division of recursive subgoals maintains

the serializability among subgoals.

2.1.5.1 Subgoal Ordering and Interaction

The method of finding and achieving subgoals is pervasive in solving many prob-

lems. General Problem Solving (GPS) [30, 31], a problem solving program de-

veloped by Newell et al., incorporates the heuristic of means-ends analysis in

reaching the goals of a problem. The basic idea of means-ends analysis is to

match the current state and the goal state by finding the most important dif-

ference between the two states. This process consists of multiple steps. In each

step, a subgoal is created to eliminate the differences by applying operators in a

given problem.

In a planning problem with conjunctive goals, reaching a goal state requires

achieving every subgoal defined in the problem. An intuitive and efficient way

to solve this type of planning problem is to order the subgoals and reach them

one after another until every subgoal is reached. The subgoals in most problem

domains, however, are not completely independent. Strong correlations may

exist among subgoals. Achieving one subgoal can make the search for the other

subgoals easier, more difficult, or even impossible.

Korf presents a detailed study on the interaction of subgoals for a planning

problem with conjunctive goals [32]. He classifies three different types of inter-

40

actions among subgoals: independent subgoals , serializable subgoals , and non-

serializable subgoals. If a set of subgoals is independent, reaching any arbitrary

subgoals does not affect the difficulty of reaching the rest of the subgoals. Prob-

lems with independent subgoals are easy to solve because we can reach the prob-

lem goal by approaching every subgoal individually. As a result, the cost of the

search is the total amount of cost devoted to every individual subgoal. This type

of interaction, however, rarely occurs in planning problems. In some planning

problems, it is possible to specify an ordering of the subgoals that have the fol-

lowing property: every subgoal can be reached without violating any subgoal

conditions that have been met previously during the search. Such subgoals are

called serializable subgoals. The search becomes easier if we are able to recognize

this type of subgoal correlation and specify a serializable ordering. On the other

hand, if such an ordering does not exist among the subgoals, the subgoals are

called non-serializable subgoals.

There is no universal method of dividing and ordering subgoals into serializ-

able subgoals. In addition, proving the serializability of a sequence of subgoals

is as difficult as proving the existence of solutions for a planning problem [32].

Therefore, Korf’s classification of subgoal interactions is not appropriate for eval-

uating the difficulty of a planning problem. Barrett and Weld [33, 34] extend

the classification of serializable subgoals based on the probability of generating a

sequence of serializable subgoals from a randomly ordered set of subgoals. They

define trivially serializable subgoals for those subgoals that are always serializable

given any possible sequences. If a set of subgoals is not trivially serializable,

violation of previously met goal conditions might occur during the search for the

complete solution. As the cost of backtracking the previous subgoals is exponen-

tially high, a planning problem is tractable only if the probability of a random

sequence of subgoals being non-serializable is sufficiently low so that the cost for

41

backtracking does not dominate the average cost of the algorithm. Otherwise, a

planning problem is intractable. These subgoals are called laboriously serializable

subgoals .

A correct ordering among subgoals is critical for the performance of planning

algorithms. Thus, the study of subgoal correlations has acquired the attention of

the planning community. One school of thought attempts to pre-process the con-

trol knowledge gained from the specifications of operators and goals to construct

a total order on a group of subgoals, before the search begins [35, 36, 37, 38].

A second category includes online ordering methods that focus on detecting and

resolving goal condition conflicts from an existing partially ordered plan [39, 40].

Another direction of research attempts to extend the expressive power of

plans. The term non-linear planner refers to those planning algorithms that use

a non-linear structure in the formation of plans. Iterative actions and conditions

in a typical non-linear plan are represented by single entities. Early work on non-

linear planning includes [41, 42, 43]. Recent work attempts to apply induction

rules to gain more control over the process of plan formation [44, 45]. These

non-linear planning approaches work well only on domains that are recursive in

nature and are not applicable to other domains.

2.1.5.2 Planning with Recursive Subgoals

We introduce a strategy of dividing planning goals into a sequence of serializable

subgoals. Informally, our strategy is to decompose a planning problem recursively

into a set of subgoals and then to define a strict ordering of these subgoals.

42

We begin our formal description of recursive subgoals with the introduction

of the state space graph of a planning problem.

Definition 2. Let S = {s1, s2, . . . } be a set of all possible states of a planning

system. Let O = {o1, o2, . . . } be a set of operators defined for a planning problem.

The goal of a planning problem can be represented by G as a set of atomic

conditions (see also the definition in Section 2.1.1).

Definition 3. The state space of a planning problem can be represented by

a directed graph G = {V , E , fe, sinit, Sgoal, fs, fo}, where

1. V = {v1, v2, . . .}, a set of vertices.

2. E = {e1, e2, . . .}, a set of directed edges.

3. Every edge ei connects a pair of vertices {vj, vk}, where vj and vk are source

and destination vertices of an edge, respectively. fe : E → V is a function

that maps an edge to its source and destination vertices.

4. sinit is the initial state of a planning problem. sinit ∈ S.

5. Sgoal is the set of all system states that meet every condition in G. Sgoal ⊆ S.

6. fs : V → S is a function that maps every vertex vi in V to a distinct

system state si that can be reached from the initial state sinit. fs(vi) = si.

fs(V) ⊆ S. A planning problem is solvable if Sgoal ∩ fs(V) �= φ. For the

rest of the notation in Section 2.1.5.2, we assume that a planning problem

is solvable.

7. Edges represent the transitions between two system states in fs(V). fo : E →
O is a function that maps every edge ei in E to an operator oi. This func-

tion does not enforce a one-to-one mapping, i.e. ∃ i and j, where i �= j and

fo(ei) = fo(ej).

43

Definition 4. Let GOAL = {g1, g2, . . . , gn} be a set of subgoals defined for a

planning problem.

Any subgoal gi of a planning problem can be represented by Pi as a set of

atomic conditions with the following four properties:

1. Pi ⊆ G. Subgoals are easier to reach than the goal of a problem because

the conditions for subgoals are subsets of the conditions for the problem

goal.

2. G =
⋃Pi, 1 ≤ i ≤ n. The problem goal can be reached when we reach a

state that meets the conditions for all the subgoals.

3. Let fgs : GOAL → S be a function of mapping a subgoal gi to a set of

all states that can be reached from sinit and meet the conditions for gi.

Clearly, Sgoal ⊆ fgs(gi) ⊆ fs(V). If Pi = φ, fgs(gi) = fs(V); if Pi = G,

fgs(gi) = Sgoal.

4. Let Gi be the state space graph that consists of all states in fgs(gi) and

transitions between the states. Gi is a subgraph of G .

According to Korf [32], a set of subgoals is serializable if a specific ordering

among them exists. Although an optimal solution is not guaranteed to be found,

this ordering ensures that a problem is always solvable by following the sequence

of the subgoals without ever violating any previously reached subgoals.

We use this definition and give a formal definition of serializable subgoals

based on the state space graph of a planning problem.

Definition 5. A set of subgoals in GOAL is serializable if it has the following

properties:

44

1. GOAL contains an ordered list of subgoals. g1 is the first subgoal and gn is

the last subgoal. The search for a solution follows the order of the subgoals.

2. Pn = G and fgs(gn) = Sgoal. That is, the set of conditions for the last

subgoal is the same as the goal of the problem. If the last subgoal is

reached, the problem is solved.

3. P1 ⊆ P2 ⊆ · · · ⊆ Pn−1 ⊆ Pn. That is, the set of conditions for a subgoal is

a subset of the conditions for all subsequent subgoals.

4. fgs(gn) ⊆ fgs(gn−1) ⊆ . . . fgs(g2) ⊆ fgs(g1). That is, the set of all states

that satisfy the conditions for a subgoal is a subset of all states that satisfy

the conditions for every preceding subgoal. This property indicates that the

state space of a search algorithm can be reduced after reaching intermediate

subgoals.

5. Let Gi = {Vi, Ei, fi, sinit, Sgoal, fs, fo} be the state space graph of subgoal i ,

Vn ⊆ Vn−1 ⊆ Vn−2 ⊆ · · · ⊆ V1 ⊆ V . As a result, Gi is a subgraph of Gj, for

every i and j , where 1 ≤ j ≤ i ≤ n.

6. We define Adjacent(vi, vj, G) = true if there exists an edge in G that con-

nects vj from vi. We define Connect(vi, vj, G) = true if Adjacent(vi, vj, G)

= true or, ∃vk, Connect(vi, vk, G) = true and Adjacent(vk, vj, G) = true.

In other words, Connect(vi, vj, G) = true if and only if there is a sequence

of edges that connects vertex vj from vi.

For instance, in Figure 2.4, Adjacent(v1, v2, G) = Adjacent(v2, v3, G) = true.

Connect(v1, v2, G) = Connect(v2, v3, G) = Connect(v1, v3, G) = true.

If a sequence of subgoals is serializable, a graph Gi that corresponds to

any subgoal gi has the following property: for any vi ∈ Vi, ∃vj ∈ Vi+1,

45

v1 v2 v3

Figure 2.4: An example showing the relation of reachability between vertices in

a graph.

Reachable(vi, vj, Gi) = true. That is, every state that meets the conditions

of subgoal gi can reach at least one state within the state space of subgoal

gi+1 without violating the conditions set for subgoal gi. Therefore, serial-

izable subgoals ensure that a solution can be found if it exists. Figure 2.5

gives a graphical representation of this serializability property.

Gi

Gi+1

vi

vj

Figure 2.5: A graph showing vi ∈ Vi, vj ∈ Vi+1, and Reachable(vi, vj, Gi) = true.

The recursive subgoal strategy offers a simple and effective solution to the

formation and ordering of subgoals from a single goal. This strategy divides

the goal of a planning problem recursively into a sequence of subgoals. These

subgoals, which will be shown by examples in Section 2.1.5.4, have the following

property: reaching one subgoal results in a reduction of a problem to the same

46

problem at a smaller scale. A formal definition of recursive subgoals is given

below.

Definition 6. A sequence of subgoals is recursive if it meets the following

condition:

Let P be a set of the same problems of different scales. P = {P1, P2, . . . , Pm}.
Pi is smaller than Pi′ , if i < i′. Then reaching subgoal gj in Pi and reaching

subgoal gj+1 in Pi+1 are essentially the same problem for 1 ≤ j ≤ i < m.

Let Gi,j be the state space graph corresponding to subgoal gj of Pi. Then Gi,j
∼=

Gi+1,j+1; i.e., Gi,j and Gi+1,j+1 are isomorphic.

The division of recursive subgoals does not guarantee serializability among

subgoals. We consider three different scenarios as to the applicability of this

approach.

1. If a solution exists in any configuration of the problems at any scale, the

division of recursive subgoals always preserves the subgoal serializability.

An example of a domain belonging to this category is the Tower of Hanoi

(see Section 2.1.4.1) in which any two configurations are reachable from

each other.

2. If a solution does not always exist in any configuration of a problem at

any scale, but reaching one recursive subgoal never leads a problem at

a smaller scale to an unsolvable configuration, we can still preserve the

subgoal serializability on this problem. We show in Section 2.1.5.4 that the

Sliding-tile puzzle falls into this category.

3. Recursive subgoals are non-serializable if we cannot avoid the situation of

backtracking any previous recursive goals during the search for a complete

solution.

47

2.1.5.3 Applying Recursive Subgoals to the GA-based Planning Al-

gorithm

If the goal of a planning problem is divided into recursive subgoals, we can apply

the multi-phase GA approach to search for solutions to every subgoal. The num-

ber of necessary phases to reach a subgoal depends on the difficulty of subgoals.

Only when a subgoal is reached in a phase can GA proceed to search for the

next subgoal in subsequent phases. The final solution is the concatenation of

the solutions to all subgoals that have been attempted in a single GA run. The

following pseudo code illustrates the search procedure of this algorithm.

(1) Start GA. Initialize population.

(2) Set the first subgoal of the problem as the current search goal.

(3) While the specified number of phases are not finished or the

final goal is not reached, do

(a) While the specified number of generations for a phase are

not finished, do

(i) Evaluate each individual in the population.

(ii) Select individuals for the next generation.

(iii) Perform crossover and mutation.

(iv) Replace old population with new population.

(b) Select the best solution for this phase and keep it.

(c) If the current subgoal is reached, set the next subgoal

as the current search goal.

(d) Randomly initialize population and start the next phase.

The search starts from the final state of the best solution

in the previous phase.

(4) Construct the final solution by concatenating the best

48

solutions from all phases.

2.1.5.4 Case Study: the Sliding-Tile Puzzle

Figure 2.6 shows one approach to create recursive subgoals for solving a 4 × 4

Sliding-tile puzzle. The first subgoal is to have the tiles located in the fourth row

and fourth column in their desired positions, see Figure 2.6(a). After the first

subgoal is reached, the problem is reduced to a 3 × 3 Sliding-tile puzzle. Then

we work on the second subgoal: moving the remaining tiles in the third row and

third column to the correct positions, shown in Figure 2.6(b). After the second

subgoal is reached, the problem is reduced to a 2 × 2 Sliding-tile puzzle, which

is very easy to solve. The puzzle is solved after the third subgoal is reached, as

shown in Figure 2.6(c).

Johnson and Story also show that if we move any tiles in the Sliding-tile

puzzle, we can always maintain the parity of the permutation between the current

configuration and the goal configuration [28]. If in the original problem the initial

configuration is an even permutation of the goal configuration (i.e., the original

problem is solvable), after reaching one recursive subgoal we can always find an

even permutation between the current configuration and the goal configuration

in the reduced problem. Hence, the reduced problem is solvable as long as the

original one is solvable. The goal serializability is preserved in the Sliding-tile

puzzle because we are able to reach a subgoal without moving the tiles that have

been set in place in previous subgoals.

The recursive subgoal strategy can be applied to any possible configuration

of a Sliding-tile puzzle. In a goal configuration the empty tile can be located

at any position. If the empty tile is already in one of the corners, we choose

49

(a) (b) (c)

7

3

11

12 13 14 15

6

2

7

3

8 9 10 11

12 13 14 15

6

2

7

3

8 9 10 11

12 13 14 15

54

1

Figure 2.6: The steps for solving a 4 × 4 Sliding-tile puzzle using the recursive

subgoal strategy. (a) The first subgoal. (b) The second subgoal. (c) The third

subgoal.

those tiles in the row and column that are farthest to that corner to be in the

first subgoal. If the empty tile is not in a corner, we first move it to the nearest

corner. The number of moves depends on how far a tile is from the nearest

corner. The tiles that are located in the innermost positions of a board are the

farthest to the corners. If n is odd, at most n − 1 moves are needed; if n is

even, at most n − 2 moves are needed. After the relocation of the empty tile,

the new goal configuration replaces the original one as the goal of the problem.

As every operator in the Sliding-tile puzzle is reversible, a reversed sequence of

the operators that move the empty tile to the corner will lead the system from

the new goal configuration to the original one. The final solution is the solution

to the new goal appended by this reversed sequence of operators. Figure 2.7(a)

and Figure 2.7(b) show an example of changing the goal configuration in a 4× 4

Sliding-tile puzzle. In our experiments, the empty tile is always in top-left corner

in the goal configuration.

50

(a) (b)

6 4

1

5

2

7

3

8 9 10 11

12 13 14 15

6

41

5

2

7

3

8 9 10 11

12 13 14 15

Figure 2.7: An example showing the reconfiguration of problem goals for the

recursive subgoal strategy. (a) The original goal configuration. (b) The new goal

configuration in which the empty tile is moved to the nearest corner.

2.1.5.5 Performance Evaluation

We evaluate the effectiveness of the recursive subgoal strategy on the Sliding-

tile puzzle discussed in Section 2.1.5.4. We compare the performance of the

GA-based planning approach with and without the recursive subgoal strategy

incorporated (we call it single-goal approach). Table 2.6 shows the parameters

for this experiment.

In the single-goal approach, the goal fitness is evaluated with the Manhattan

distance of all n2 − 1 tiles between the final state of the plan and the goal con-

figuration. The smaller the distance, the higher the goal fitness. In the recursive

subgoal approach, we decompose the n×n Sliding-tile puzzle into n−1 subgoals,

{g1, g2, . . . , gn−1}. After the first subgoal is reached, the problem is reduced to

a (n − 1) × (n − 1) Sliding-tile puzzle. In every subgoal gi, we focus on the

2 × (n − i) + 1 tiles that need to be moved to the correct positions. The goal

fitness is evaluated with the Manhattan distance of these 2 × (n − i) + 1 tiles

between the final state and the goal configuration.

51

Table 2.6: Parameter settings used in the experiment.

Parameter Value

Population Size 200

Crossover Type Random

Crossover Rate 0.9

Mutation Rate 0.01

Selection Scheme Tournament

Tournament Size 2

Number of Generations in Each Phase 100

We test both the recursive subgoal strategy and single-goal approach on 4×4,

5 × 5, 6 × 6, and 7 × 7 Sliding-tile puzzles. For each problem size we run both

approaches 50 times. In a 4 × 4 problem, each run has up to 15 phases. We

double the number of phases each time the problem size increases by one scale

but use the same population size of 200 for all problem sizes.

The experimental results show that the single-goal approach finds solutions in

10 out of 50 runs on the 4×4 Sliding-tile puzzle and none for any larger problems.

Table 2.7 shows in experiments where recursive subgoal strategy is incorporated,

the number of runs that reach every subgoal. The recursive subgoal strategy

significantly improves the search performance. It finds solutions to the 4 × 4

problem in 35 out of 50 runs. The performance even improves as the problem

size increases because more phases are allowed for all subgoals. Table 2.8 reports

the average number of phases needed to achieve each subgoal from those runs

that find a valid solution. The result indicates that achieving a subgoal does not

make the subsequent subgoals more difficult. We observe that the number of

52

phases needed to reach subgoal gi is very close to the number of phases needed

to reach subgoal gi+1 in the next larger problem.

Table 2.7: Experimental results for the recursive subgoal strategy on the Slid-

ing-tile puzzles: the number of runs out of 50 runs that the GA can reach each

subgoal g1-g6.

Problem Size 4 × 4 5 × 5 6 × 6 7 × 7

g1 44 50 50 50

g2 37 50 50 50

g3 35 50 49 50

g4 N.A. 50 49 50

g5 N.A. N.A. 49 50

g6 N.A. N.A. N.A. 50

Table 2.8: Experimental results for the recursive subgoal strategy on the Slid-

ing-tile puzzles: average number of phases needed to reach each subgoal from its

previous subgoal.

Problem Size 4 × 4 5 × 5 6 × 6 7 × 7

g1 6.86 9.34 18.50 28.56

From g1 to g2 1.36 5.02 8.32 16.14

From g2 to g3 1.07 2.34 5.65 8.74

From g3 to g4 - 1.00 2.12 5.34

From g4 to g5 - - 1.00 2.70

From g5 to g6 - - - 1.00

53

Next, we study the effect of the parameters on the performance of the ap-

proach. We use the parameter settings listed in Table 2.6 as the baseline settings

and vary the population size, the crossover rate, and the mutation rate sepa-

rately. We keep the other parameters the same as the baseline settings while

varying each of the above parameters. In each test case, we run the approach 50

times and calculate the number of successful runs (i.e., the runs that find valid

solutions) and the average number of phases needed in successful runs. We also

evaluate the efficiency of the approach by calculating the average computational

time of 50 runs in each case.

Table 2.9 and Figure 2.8 show the performance comparison in cases with dif-

ferent population sizes. The results indicate that noticeable performance gains

can be achieved with an enlarged population, which gives the GA more opportu-

nity of sampling in the search space. A population size of 100 is not sufficient to

produce competitive results to larger populations. The runs with a population

size of 400 need fewer phases to find solutions than runs with the baseline set-

tings. A large population, however, incurs higher computational cost. Figure 2.9

shows results on the execution time in each test case. The execution time of the

approach increases quickly as the population size increases.

Table 2.9: The number of successful runs (out of 50) for population size from 100

to 400.

Population Size 4 × 4 5 × 5 6 × 6 7 × 7

100 21 29 27 42

200 35 50 49 50

400 48 50 50 50

54

0

20

40

60

80

100

120

4*
4

/ 1
00

4*
4

/ 2
00

4*
4

/ 4
00

5*
5

/ 1
00

5*
5

/ 2
00

5*
5

/ 4
00

6*
6

/ 1
00

6*
6

/ 2
00

6*
6

/ 4
00

7*
7

/ 1
00

7*
7

/ 2
00

7*
7

/ 4
00

N
um

be
r

of
 P

ha
se

s

Test Case / Population Size

Figure 2.8: The average number of phases (with 95% confidence intervals) needed

to find a solution for successful runs with population size varying from 100 to

400.

0

50

100

150

200

250

300

350

400

4*
4

/ 1
00

4*
4

/ 2
00

4*
4

/ 4
00

5*
5

/ 1
00

5*
5

/ 2
00

5*
5

/ 4
00

6*
6

/ 1
00

6*
6

/ 2
00

6*
6

/ 4
00

7*
7

/ 1
00

7*
7

/ 2
00

7*
7

/ 4
00

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Test Case / Population Size

Figure 2.9: The average execution time (with 95% confidence intervals) of 50

runs for population size varying from 100 to 400.

55

Table 2.10 and Figure 2.10 show the performance comparison in cases with

different crossover rates. We test crossover rate of 0.5, 0.8, and 1.0 as well as the

baseline settings of 0.9. The results indicate that varying the crossover has little

effect on the search performance.

Table 2.10: The number of successful runs (out of 50 runs) for crossover rate

varying from 0.5 to 1.0.

Crossover Rate 4 × 4 5 × 5 6 × 6 7 × 7

0.5 38 49 49 50

0.8 39 49 47 50

0.9 35 50 49 50

1.0 40 48 48 49

Table 2.11 and Figure 2.11 show the performance comparison in cases with

different mutation rates. A lower mutation rate (0.005) and a higher mutation

rate (0.05) than the baseline settings are tested. All test cases exhibit consistent

search results, which indicates that the mutation rate has little effect on the

search performance. We suspect the reason is that the crossover method applied

in this approach is very disruptive and it already produces ample opportunities

for exploring the search space. As a result, the usefulness of a mutation operator

is significantly reduced.

56

0

20

40

60

80

100

120

4*
4

/ 0
.5

4*
4

/ 0
.8

4*
4

/ 0
.9

4*
4

/ 1
.0

5*
5

/ 0
.5

5*
5

/ 0
.8

5*
5

/ 0
.9

5*
5

/ 1
.0

6*
6

/ 0
.5

6*
6

/ 0
.8

6*
6

/ 0
.9

6*
6

/ 1
.0

7*
7

/ 0
.5

7*
7

/ 0
.8

7*
7

/ 0
.9

7*
7

/ 1
.0

N
um

be
r

of
 P

ha
se

s

Test Case / Crossover Rate

Figure 2.10: The average number of phases (with 95% confidence intervals)

needed to find a solution for successful runs with crossover rate varying from

0.5 to 1.0.

0

20

40

60

80

100

120

4*
4

/ 0
.0

05

4*
4

/ 0
.0

1

4*
4

/ 0
.0

5

5*
5

/ 0
.0

05

5*
5

/ 0
.0

1

5*
5

/ 0
.0

5

6*
6

/ 0
.0

05

6*
6

/ 0
.0

1

6*
6

/ 0
.0

5

7*
7

/ 0
.0

05

7*
7

/ 0
.0

1

7*
7

/ 0
.0

5

N
um

be
r

of
 P

ha
se

s

Test Case / Mutation Rate

Figure 2.11: The average number of phases (with 95% confidence intervals)

needed to find a solution for successful runs with mutation rate varying from

0.005 to 0.05.

57

Table 2.11: The number of successful runs (out of 50 runs) for mutation rate

varying from 0.005 to 0.05.

Mutation Rate 4 × 4 5 × 5 6 × 6 7 × 7

0.005 33 48 48 48

0.01 35 50 49 50

0.05 40 48 48 50

2.1.5.6 Concluding Remarks on the Recursive Subgoal Strategy

We have introduced a search strategy for planning problems with conjunctive

goals and combine this search strategy with a novel GA-based planning algo-

rithm. Our strategy transforms the goal of a planning problem into a sequence

of recursive subgoals. As a result, the search for a complete solution consists of a

number of independent stages. After reaching a subgoal, the problem is reduced

to a similar problem but at a smaller scale. This strategy is applicable to a larger

class of problems characterized by the fact that the construction of recursive sub-

goals guarantees the serializability of the subgoals. The experimental results on

the Sliding-tile puzzle indicate that, although the recursive subgoal strategy may

not find optimal solutions, it is able to achieve better search performance than the

traditional single-goal planning approach and solve larger instances of problems

than the existing domain-specific planning approaches. Additional experiments

on genetic parameters reveal that the population size has much stronger influ-

ence on the performance of the search than crossover and mutation rates have.

A large population improves the quality of search but it also results in higher

computational cost.

58

Although in Section 2.1.5.2 we identify three classes of planning domains

relative to the applicability of this strategy, a crisp criterion to decide if our

strategy is applicable for a given problem proves to be a formidable task. It is also

very difficult to define the concept of “similar” planning problems. Informally,

we say that a 5×5 Sliding-tile puzzle is reduced to a 4×4 one and it is intuitively

clear why these problems are similar, but formalizing this concept is very difficult.

2.2 Planning for Large-Scale Distributed Systems

We are interested in planning for large-scale distributed systems. Specifically, our

work focuses on the development of the planning service for the middleware. We

outline the role of a planning service for the middleware, formulate the problem

of planning, present a genetic-based algorithm for the problem, and evaluate the

performance of the algorithm on a real-world scientific computing domain.

2.2.1 Problem Formulation

Planning plays an important role in improving the intelligence of a large-scale

distributed system. The role of a planning service is to automatically compose

original plans for users’ computing requests, and more often, for replanning to

adapt an existing plan to new computing environments.

Before we formulate the problem of planning for large-scale distributed sys-

tem, we need to first specify the input and output of planning, i.e., the case

description and process description for a computation, respectively.

59

2.2.1.1 Process Description

A process description, also called a plan, is a formal description of the complex

problem a user wishes to solve. For the rest of the dissertation, we use the terms

“plan” and “process description” interchangeably.

A process description specifies all activities to be executed for a computation

and the precedence relations among them. There are two types of activities

defined in a process description: end-user activities and flow control activities.

Every end-user activity corresponds to an end-user computing service avail-

able to the middleware. Like the operators for traditional planning problems,

every end-user activity has preconditions and postconditions. The preconditions

of an activity specify the set of all conditions for the activity to be executed. The

postconditions of an activity specify the set of conditions that must hold after

the successful execution of the activity. An activity is valid only if all precondi-

tions are satisfied before it is executed. A process description is valid only if all

end-user activities that should be executed are valid.

Unlike end-user activities, flow control activities do not have associated com-

puting services. They are used to control the execution of end-user activities in a

process description. We define six flow control activities: Begin, End, Choice,

Fork, Join, and Merge. This basic set of flow control activities is sufficient to

specify a wide range of execution flow patterns including sequential, parallel,

conditional, and iterative execution.

Every plan should start with a Begin activity and conclude with an End ac-

tivity. These Begin and the End activities can occur only once in a plan.

The direct precedence relation reflects the causality among activities. If ac-

tivity B can only be executed directly after the completion of activity A, we

60

say that A is a direct predecessor activity of B and that B is a direct successor

activity of A. An activity may have multiple predecessor activities and multiple

successor activities. We use the term “direct” rather than “immediate” to em-

phasize the fact that there may be a gap in time from the instance an activity

terminates and the instance its direct successor activity is triggered. For the sake

of brevity we drop the word “direct” and just use the term “predecessor activity”

and “successor activity” to denote the precedence relations.

A Choice flow control activity has one predecessor activity and multiple suc-

cessor activities. Choice can be executed only after its predecessor activity has

been executed. Following the execution of a Choice activity, only one of its suc-

cessor activities may be executed. There is a one to one mapping between the

transitions connecting a Choice activity with its successor activities and a con-

dition set that selects the unique activity from the successor activities that will

actually gain control. Several semantics for this decision process are possible.

A Fork flow control activity has one predecessor activity and multiple succes-

sor activities. The difference between Fork and Choice is that after the execution

of a Fork activity, all its successor activities are triggered.

A Merge flow control activity is paired with a Choice activity to support the

conditional and iterative execution of activities in a plan. Merge has at least two

predecessor activities and only one successor activity. A Merge activity is triggered

after the completion of any of its predecessor activities.

A Join flow control activity is paired with a Fork activity to support con-

current activities in a plan. Like a Merge activity, a Join activity has multiple

predecessor activities and only one successor activity. The difference is that a Join

activity can be triggered only after all of its predecessor activities are completed.

61

Based on the above description, we give the BNF grammar for the process

description used by the planning services. The symbol S denotes the start symbol.

S ::= <ProcessDescription>

<ProcessDescription> ::= BEGIN <Activities> END

<Activities> ::= <SequentialActivities> | <ConcurrentActivities>

| <IterativeActivities> | <SelectiveActivities>

| <Activity>

<SequentialActivities> ::= <Activities> ; <Activities>

<ConcurrentActivities> ::= FORK <Activities> ; <Activities> JOIN

<IterativeActivities> ::= ITERATIVE <ConditionalActivity>

<SelectiveActivities> ::= CHOICE <ConditionalActivity> ;

<ConditionalActivitySet> MERGE

<ConditionalActivitySet> ::= <ConditionalActivity>

| <ConditionalActivity> ; <ConditionalActivitySet>

<ConditionalActivity> ::= { COND <Conditions> } { <Activities> }

<Activity> ::= <String>

<Conditions> ::= (<Conditions> AND <Conditions>)

| (<Conditions> OR <Conditions>)

| NOT <Conditions>

| <Condition>

<Condition> ::= <DataName>.<Attribute> <Operator> <Value>

<DataName> ::= <String>

<Attribute> ::= <String>

<Operator> ::= < | > | = | <= | >=

<Value> ::= <String>

<String> ::= <Character> <String> | <Character>

<Character> ::= <Letter> | <Digit>

<Letter> ::= a | b | ... | z | A | B | ... | Z

62

<Digit> ::= 0 | 1 | ... | 9

Figure 2.24 in Section 2.2.3.1 gives an example process description. The

nodes represent activities; the arrows represent precedence relations among the

activities. This process description consists of seven end-user activities and six

flow control activities. The pair of Choice and Merge activities specifies that

all activities bounded by the two activities should be executed iteratively until a

pre-specified condition associated with the Choice activity is satisfied. The pair

of Fork and Join activities specify that the three activities, “P3DR2”, “P3DR3”,

and “P3DR4”, are independent to each other and thus can be executed in parallel.

2.2.1.2 Case Description

Along with a process description, a computing task should also include a case

description. A case description provides additional information for a particular

instance of the task execution that a user wishes to perform, e.g., it provides the

location of the actual data for the computation, additional constraints related

to security, cost, or the quality of the solution, a soft deadline, and/or user

preferences [2]. A computing task corresponding to a process description may be

executed many times, thus multiple case descriptions related to a single process

description typically exist.

2.2.1.3 A Planning Service

A planning service is one of the core services in the middleware. The function

of a planning service is to generate valid process descriptions, or plans, to satisfy

63

users’ computing needs. For the rest of the dissertation, we use the terms plan

and process description with essentially the same meaning.

A planning service accepts planning requests from a coordination service in

the middleware. The planning requests are part of the case description given by

users for specifying the conditions, constraints, and preferences for executing a

computing task. The assignment received by the planning service includes: 1)

the set of the initial data available to the end user, 2) the goal of planning, which

is often expressed in terms of the results of computations expected by the end

user, and 3) other useful information. Once a process description is created, the

planning service sends it to the coordination service and possibly archives it in

the knowledge base. Figure 2.12(a) shows the exchange of messages between the

planning service and the coordination service for a standard planning request.

In addition to ab-initio generation of valid process descriptions, the planning

service is involved in replanning. Replanning is triggered by the coordination

service whenever the state of the environment is such that the execution of a

valid process description cannot continue. When replanning is required, the co-

ordination service sends to the planning service all available data, including the

initial set of data and the data modified or created during the execution of the

computing task.

Conceptually, replanning has the same attributes as planning, but with one

major difference: during replanning, the planning service has to improve the

robustness of plans. To achieve this goal, the planning service needs to interact

with the runtime environment and avoid reusing in a new plan those activities

that prevent the previous plan from successful execution. In other words, the

planning service should know whether an activity used in a new plan is executable

or not. There are two possible methods of acquiring this knowledge. With the

64

first method, the knowledge is given directly by the coordination service. This

knowledge acquired by the coordination service may be very incomplete. As

the coordination service only knows which activity in the process description

fails in execution, the planning service might still not able to know whether the

adoption of other activities may succeed. With the second method, the planning

service gets support from the other services in the middleware. This method

consists of three steps. First, the planning service asks the information service

for a brokerage service that is available in the system. Second, the planning

service contacts with the brokerage service to get a group of end-user services

that can possibly provide the execution of the activity. Third, the planning

service communicate with end-user service for the availability of execution of this

activity. An activity can be included in the new plan only if there is at least one

service that can provide the execution of the activity. Replanning, however, does

not fully guarantee the success of the plan execution because the state of resources

needed by various activities typically changes frequently. A valid activity during

the process of replanning may fail during executing. Figure 2.12(b) shows the

flow of communications between the planning service and other services during

replanning.

2.2.1.4 Formulation of Planning

An essential part of formulating the problem of planning for large-scale dis-

tributed system is to relate this problem to the traditional AI planning prob-

lems, i.e., to relate end-user services to operators, and relate the case description

of a computation to the initial state and the goal of planning. The method of

formulating the problem is based on the ontologies defined for the middleware.

65

Planning
Service

Coordination
Service

1. Request for replanning

8. A modified process
description

6.
 C

he
ck

 th
e

a
va

ila
bi

lit
y

of
 e

n
d

-u
se

r
se

rv
ic

e
s

fo
r

ex
ec

ut
io

n

7
. A

va
ila

b
le

 o
r

n
ot

Information
Service

2. Find a brokerage service

3. Brokerage
Service found

Brokerage
Service

4. Find a set of end-
user services

5. End-user services
found

End-user
Service

End-user
Service.

(b)(a)

Planning
Service

Coordination
Service

1
. R

eq
ue

st
 f

or
 p

la
n

n
in

g

2.
 A

 n
e

w
 p

ro
ce

ss
 d

e
sc

ri
p

tio
n

Figure 2.12: The interactions between the planning service and other services

during (a) planning, and (b) replanning.

The ontologies shown in Chapter 1.3.3 consist of a number of classes. Each

class corresponds to one type of entity defined for a large-scale distributed sys-

tem. There may exist semantic correlations among classes and the correlation is

represented by the arrows shown in Figure 1.3. For instance, a complete com-

puting task is given by a process description along with a case description for

each instance of its execution. The class “Task”, therefore, has two slots that

link a computing task to instances for classes “Process Description” and “Case

Description”, respectively. By first accessing the instance for class “Task” and

then referencing the instances for classes “Process Description” and “Case De-

scription”, we are able to retrieve the complete knowledge (including its process

description and case descriptions) for a given computing task.

66

Based on the structure of the ontology, we are able to build the knowledge

for a computation onto multiple levels. Using the same example of a computing

task for illustration, we can construct the knowledge related to a computing task

on two levels. The primary level contains the knowledge directly retrieved from

the instance in class “Task” (which contains the most general information for

the computing task such as the id and the initiator of the task). The secondary

level stores the knowledge retrieved from the corresponding instances in classes

“Process Description” and “Case Description”. These instances provides supple-

mentary information (e.g., the process description and the case description) for

a given task.

The above method of knowledge building can be applied to any other classes

in the ontology, including both the basic classes shown in Figure 1.3 and the

extended classes for a specific computing domain. Figure 2.13 shows the basic

structure of ontology for storage and access of knowledge for a two-dimensional

image file for viruses. The knowledge can be constructed on three levels shown in

Figure 2.14. The lower the level in a hierarchy, the more specific the knowledge

is related to an image file.

Using the above method, we can not only build the initial set of data for a

computation, but also specify the goals for a computation. The only difference

is that conditional expressions are used to specify the goals. For instance, if

the goal of a computation is to create a 3D structure of a virus whose must

meet a pre-specified resolution (e.g., 8.0), we can express the goals on different

levels based on the ontology structures. Figure 2.15 shows the basic structure of

ontology for a 3D virus structure. Figure 2.16 shows the expression of the goals

of a computation onto multiple levels based on the ontology structure.

67

-Vertical Resolution
-Horizontal Resolution
-Format
-Object Of Image
-Virus
-... ...

2D Image
-Symbolic Name
-File Name
-Location
-Type
-Size
-2DImage
-... ...

Data

1..* -Number of Viruses
-... ...

Virus

1..*

Figure 2.13: The ontology that supports the storage and access of knowledge

related to a two-dimensional image file for viruses. Class “Data” stores the general

information for a data file; class “2D image” stores information related to a two

dimensional image; and class “virus” stores the information related to the object

of the image: viruses.

Symbolic Name = D1
File Name = virus.jpg
Location = eola.cs.ucf.edu
Type = 2D Image
Size = 20 KB

Data

Vertical Resolution = 300
Horizontal Resolution = 400
Format = JPEG
Object of Image = Virus

2D Image

Virus

Number of
Viruses = 2

Level 1 Level 2 Level 3

Figure 2.14: The three-level structure of knowledge related to a two-dimensional

image file of viruses. Each level of knowledge is retrieved from instances stored

in the corresponding classes for the ontology.

Likewise, we can also apply the same method to construct the knowledge

for all end-user services available in a middleware. End-user services are the

counterpart of operators in the traditional AI planning. Like an operator, an

end-user service has three attributes: preconditions, postconditions, and cost.

68

-Resolution
-Object of Structure
-... ...

3D Structure
-Symbolic Name
-File Name
-Location
-Type
-Size
-3D Structure
-... ...

Data

1..*
-Number of Viruses
-... ...

Virus

1..*

Figure 2.15: The ontology that supports the storage and access of knowledge

related to 3D structure of a virus. Class “Data” stores general information for a

data file; class “3D structure” stores knowledge related to the attributes of a 3D

structure; and class “virus” stores the information related to the object of the

structure: viruses.

Type = 3D Structure

Data

Resolution > 8.0
Object of Structure = Virus

3D Structure

Level 1
Level 2

Figure 2.16: The multi-level structure of goal conditions for a computation, which

is to create a 3D virus structure whose resolution should be greater than a spec-

ified value (in this case 8.0).

The preconditions of a service specifies all conditions that must be satisfied for

the service to be executed. Each condition in the preconditions has the format:

“CLASS.ATTRIBUTE OPERATOR VALUE”, where “CLASS” refers to one of

the classes in the ontology, “ATTRIBUTE” represents one of the attributes for

the class, “OPERATOR” is a conditional operator such as “≤” and “=”, and

“VALUE” can be given by a constant, a set of discrete constants, or a range of

69

continuous values (specified with two constants: a lower bound and an upper

bound).

The postconditions of a service specify the results of the computation, i.e.,

all data that are modified or created after the execution of the service. Each

condition in the set of postconditions has the format: “CLASS.ATTRIBUTE

= VALUE”, where “CLASS” specifies one of the classes in the ontology, “AT-

TRIBUTE” represents an attribute for the class, and “VALUE” can be a con-

stant, a set of discrete constants, or a range of continuous values. Unlike precon-

ditions, only “=” can be used as an operator in postconditions, denoting that the

value is assigned to the attribute after the service is executed.

The cost of a service is used to quantify the computational cost of executing

the service. The computational cost can be measured in multiple aspects such as

the amount of resources requested and the computation time. The computational

cost of a service may vary over multiple invocations of the same service as it may

heavily depend on the size of the input data or some environmental factors.

Therefore, the cost of end-user service is typically very difficult to quantify and

is considered as an optional attribute for an end-user service.

All knowledge related to the preconditions and postconditions for an end-

user service can be stored on multiple levels based on the ontology structure.

Figure 2.17 shows the definition of end-user service “P3DR” whose preconditions

and postconditions are defined on multiple levels of a hierarchical structure.

With a hierarchical structure to define initial set of data, goal conditions,

and end-user services, we can formulate the problem of planning for a large-

scale distributed problem using a multi-level structure. For a given computation,

we can formulate different planning problems depending on the specificity of

knowledge embedded for planning. If we do not apply domain specific knowledge

70

Type = 2D Image
Size > 15KB

Data
Vertical Resolution = 300
Horizontal Resolution =
400
Format = JPEG
Object of Image = Virus

2D Image
Virus

Number of
Viruses = 2

Preconditions

Level 2 Level 3Level 1

Type = P3DR Parameter

Postconditions

Data

Type = 3D Structure

Data

Object = Virus
Resolution = [7, 10]

3D Structure

Figure 2.17: A graphical representation of the definition of end-user service

“P3DR”. The preconditions and postconditions of this service are defined on

multiple levels of a hierarchical structure. The function of the service is to build

a 3D structure of a virus from a group of its 2D images. The computation of

the service requires a group of virus images and a parameter file that is used to

control the process of the computation. The output of the computation is a file

that stores the 3D structure of the virus.

for planning, we do not need to use all knowledge for planning. Generally, the

more specific knowledge used for planning, the more levels of knowledge that must

be embedded for the formulation of planning. For instance, if we take knowledge

represented in Figures 2.14, 2.16, and 2.17 as the initial data, the goal conditions,

and the available end-user service for a computation, we can formulate three

different planning problems: the first problem only uses the knowledge residing

71

on the first level, the second problem uses knowledge on the top two levels, and

the third one uses the entire knowledge for the computation.

2.2.1.5 Classifications of Planning Problems

The problem of planning can be classified with multiple aspects. In this study,

we are interested in the classification on two aspects.

a) Planning vs. Replanning

A typical AI planning problem assumes a static environment in which the

initial state and the set of available operators do not change during the course

of planning. Planning for a large-scale distributed system may also ignore the

current status of the environment and assume that the resources required by a

computation can always be satisfied. A distributed system, however, is a dynamic

computing environment. New services and resources may be supplied to the

system at any time; the existing ones may become unavailable. The change of

the computing environment, in many cases, is unpredictable. As a result, a valid

plan may not succeed in execution when certain resources or computing services

become unavailable. Replanning is a process that aims to improve the success in

plan execution by including the knowledge related to the run-time environment

during planning. Replanning incorporates up-to-date knowledge regarding the

current status of the distributed system such as the availability resources for

the computation. Replanning, however, cannot fully guarantee the success of

plan execution as the status of the computing environment may change very

frequently. The knowledge related to the run-time environment available to a

planning service may become obsolete when a plan is executed.

72

b) Deterministic vs. Non-deterministic Planning

A planning problem is deterministic if the system state can be completely de-

termined on all stages of planning (i.e., we have the complete knowledge regarding

the initial state of the system and the outcome of all operators can be fully deter-

mined). The Sliding-tile puzzles, for instance, is a deterministic problem as the

initial configuration of the tiles and the postconditions of all four operators are

known to the planner. The solution to a deterministic planning problem typically

has a linear structure in which all operators in a plan are executed sequentially.

Recent study in AI planning has paid special attention to planning in non-

deterministic domains. A planning domain is non-deterministic if either the ini-

tial state and/or the outcome of some operators cannot be fully determined at

planning time. The goal of non-deterministic planning is to find a plan that can

reach the goal in spite of the non-determinism of the domain.

Non-deterministic planning can be classified into different problems based on

the source of uncertainty and on whether this uncertainty persists during plan

execution. The term “Conformant Planning” refers to the class of problems in

which the initial state is not completely known and there is no sensor action

allowed to acquire the complete knowledge of the system state during plan exe-

cution [46]. “Contingent Planning”, on the other hand, allows the use of certain

sensor actions to detect system state so that a plan can react to different sensor

results at execution time [47]. In the third class of non-deterministic planning

problems, we have the complete information of the initial state of the system,

while there exists some operators that have several possible outcomes.

The notion of “weak planning”, “strong planning”, and “strong cyclic plan-

ning” are introduced in [48] to classify different non-deterministic planning prob-

lems based on the quality of solutions. Solutions to week planning have a non-zero

73

possibility of reaching the goal, but it cannot guarantee that the goal can always

be reached; solutions to strong planning are guaranteed to reach the goal; and

solutions to strong cyclic planning is able to reach the goal with a finite number

of operators, but the number of operators to be performed cannot be determined

at planning time. Iterative execution of operators may be unavoidable before

some desirable conditions are satisfied during plan execution.

The planning problem that we formulate for large-scale distributed systems

can be non-deterministic as we may not have the complete knowledge of the

results of some end-user services. For instance, we may only know the type of the

data to be produced by a service, but we may not know the other attributes of

the data (e.g., the size of the data), and this type of knowledge may be important

in checking the validity of subsequent services in a plan. Hence, the uncertainty

of service execution prevents us from evaluating the validity of services in a plan,

and as a result, makes it very difficult to evaluate the validity of solutions. Based

on the assumption that we always have the complete knowledge of the initial state

of system at planning time, our planning problem belongs to the third class of

non-deterministic problems. We allow iterative execution of services in a solution

to deal with the non-determinism resulting from executing end-user services.

2.2.2 A Genetic-Based Approach for Non-deterministic

Planning

This section presents a genetic-based approach to the formulated planning prob-

lems. This approach is extended from the GA-based planning approach discussed

74

in Section 2.1.3. A distinct feature of this approach is to allow the evolution of a

non-linear structure for plans to deal with non-determinism in planning domains.

The following sections discusses the important features of this approach, in-

cluding the internal representation of plans, the solution initialization, solution

evaluation, and the genetic operators.

2.2.2.1 Solution Encoding

A simple genetic algorithm uses a linear binary string to encode candidate solu-

tions. As we use a non-linear structure for the process description, we must use

a non-linear representation scheme to encode solutions, accordingly.

In this approach, we use a tree structure to represent and evolve process de-

scriptions. The tree representation has been widely used in genetic programming

to evolve solutions that achieve the desired functions [13]. Therefore, this ap-

proach is more GP-based than GA-based due to the representation scheme used.

A plan tree consists of a set of nodes. The nodes can be either terminal nodes

or controller nodes. Every terminal node is a leaf in a plan tree corresponding

to an end-user activity in the process description. On the other hand, controller

nodes are the internal nodes and must have at least one child node in a plan tree.

Controller nodes are used to direct the plan execution, and thus have similar

functions to the flow control activities in a process description. However, there

does not exist a one-to-one correspondence between controller nodes in the plan

and flow control activities in the process description. We now provide some

details of the semantics of each type of controller nodes and show how they are

correlated to the flow control activities.

75

We define four types of controller nodes: sequential, concurrent, selective, and

iterative.

1. A sequential node requires that all activities corresponding to its children be

performed sequentially. The sequence of their execution is specified by the

relative location of each node among its siblings. Activities are executed

from left to right. The leftmost child of a sequential node is executed

first; the rightmost child of a sequential node is executed last. Only when

the activity of its rightmost child completes, the block controlled by the

sequential node terminates and the flow control is transferred to the next

control structure.

A sequential node does not have a corresponding flow control activity in

a process description. As the arrows in a process description specify the

sequence of activity execution, we can convert a sequence of activities in

a process description into a tree structure with the sequential node as the

root. Figure 2.18 gives an example of such conversion.

Sequential

A B

A

B

C

C

(a) (b)

Figure 2.18: Process description versus plan tree for sequential activities. (a) a

partial process description consisting of a sequence of activities; (b) the corre-

sponding plan tree with the sequential node as the root node.

76

2. A concurrent node informs the environment that all activities that corre-

spond to its children can be executed either sequentially or concurrently.

If the activities are executed sequentially, they can be executed in any or-

der. Only after all these activities are executed can the execution of the

concurrent block of activities be completed.

Each concurrent node corresponds to a pair of Fork and Join activities.

Figure 2.19 gives an example of a partial process description with concurrent

execution of activities and the corresponding plan tree.

Concurrent

A

A

B

B

(a) (b)

Fork

Join

Figure 2.19: Process description versus plan tree for concurrent activities. (a)

a partial process description consisting of a set of concurrent activities; (b) the

corresponding plan tree with the concurrent node as the root node.

3. A selective node informs the environment that only one of the activities

corresponding to its children have to be executed. The execution of a

selective block can be finished as long as one of the activities is executed.

Each selective node corresponds to a pair of Choice and Merge activities.

Figure 2.20 gives an example of a partial process description with selective

execution of activities and the corresponding plan tree.

77

Selective

A

A

B

B

(a) (b)

Choice

Merge

Figure 2.20: Process description versus plan tree for selective activities. (a) a

partial process description consisting of a set of selectively executed activities;

(b) the corresponding plan tree with the selective node as the root node.

4. An iterative node requires that all activities that correspond to its child

nodes must be executed iteratively until some stopping conditions are met.

Each iterative node corresponds to a loop in a process description. A loop is

formed where a transition in a process description terminates at an activity

that has been executed before the activity as the source of the transition.

When we convert from a process description to a plan tree, we insert all

nodes within a loop as the children of the iterative node. The sequence of

children follows the execution order of the activities in the loop. Figure 2.21

gives an example of this conversion.

When we convert a complete process description to a plan tree, the above

methods of conversion should be applied recursively, in a top-down manner, until

a complete plan tree is generated. We can also use the similar method to convert

a plan tree to a process description.

The size of a plan tree is defined as the number of nodes in the tree. We

set an upper limitation, Smax, to the size of plan trees during the evolution of

solutions. The purpose of setting a limitation is to prevent the unlimited growth

78

Iterative

A

A

BB

(a) (b)

Merge

Choice

Figure 2.21: Process description versus plan tree for iterative activities. (a) a

partial process description consisting of a set of iteratively executed activities;

(b) the corresponding plan tree with the iterative node as the root node.

of trees, also called “bloat”, a commonly observed problem in GP [49]. The value

of Smax should be set properly to ensure the efficiency of the search without

compromising the quality of solutions.

2.2.2.2 Solution Initialization

In the initialization phase, we randomly generate a population of trees as can-

didate solutions. These trees may not encode valid solutions for a given prob-

lem, but they must conform to regulations of the tree structure defined in Sec-

tion 2.2.2.1. The size of every initial tree cannot exceed Smax, the upper bound

for the tree size.

79

The initialization of each plan tree consists of two steps. In the first step, we

generate an arbitrary tree structure of a given size. The size of an initial tree

is randomly chosen between one and Smax. In the second step, we instantiate

each node in the tree. Every internal node is instantiated with a controller node

that is randomly selected from the four controller nodes. Every terminal node is

instantiated with an end-user activity that is randomly selected from the set of

end-user activities available to the middleware.

2.2.2.3 Plan Evaluation

The fitness of a plan gives a rough evaluation of the quality of a plan. The

evaluation of a plan consists of three independent aspects: the validity of plan, the

result of plan execution against goals, and the efficiency on plan representation.

1. Plan validity fitness fv: can every activity in a plan be executed?

An activity can be executed only if all its preconditions meet the system

state right before the execution of the activity. To evaluate the plan validity

fitness, we need to simulate the execution of a plan and go through each

activity in a plan.

During the simulation process, we follow the sequence of execution of ac-

tivities and verify their validity. The initial state of the system is given by

the set of all initial data and their attributes. For each activity, we check

if the current system state satisfies all preconditions of the activity. There

are three possible results for checking the validity of an activity: valid,

invalid, and undetermined. a) An activity is valid if the current system

state satisfies every precondition of the activity. If an activity is valid, we

80

update the system state to the one after this activity is executed. The

new system state will include all new and modified data resulting from the

execution of the activity; b) An activity is invalid if there exists at least

one precondition such that the current state cannot satisfy. If an activity is

invalid, we do not update the system state and proceed to check subsequent

activities; c) If the validity of an activity cannot be determined due to the

uncertainty of the system state, we mark the result of the validity check as

“undetermined” and update the system state the same way as for a valid

activity.

This process of validity check is continued until we have finished checking

all activities in a plan. In case there is Choice in a plan and we cannot

determine which successor activity to perform next, we need to enumerate

each possible flow of execution and simulate the execution of a plan multi-

ple times. If the execution of a single activity is simulated multiple times,

each instance of its execution is counted in the validity check. We assign

full credits to valid activities and partial credits to activities whose validity

cannot be determined at planning time. The fitness of plan validity is de-

termined by the proportion of these two types of activities over all activities

in a plan. The fitness of plan validity can be calculated with the following

equation:

fv =
number of valid activities + 0.5 × number of undetermined activities

total number of activities that are executed
(2.5)

2. Goal fitness fg: How does the execution of a complete plan reach the goal

specifications of the planning problem?

81

After finishing the execution of a complete plan, we reach the final state.

The evaluation of goal fitness, as in traditional AI planning domains, is

usually problem specific, meaning the “closeness” between the final state

and the goal specifications is largely dependent on the characteristics of

the computing task. Generally speaking, a “closer” match between the

final state and the goal specifications results in a higher goal fitness. The

following equation shows a simple goal fitness function in which we assume

that each goal specification has equal weight in evaluating the overall goal

fitness. As the final state of a plan execution may not be fully determined

at planning time, we may not be able to fully determine whether a goal can

be satisfied or not. We assign partial credits to these goals in the fitness

function.

fg =
number of satisfied goals + 0.5 × number of undertermined goals

total number of goals specified in the problem
(2.6)

If a plan is simulated multiple times due to the conditional execution of some

activities, the goal fitness is given as average goal fitness of all instances of

execution.

3. The efficiency of plan representation fr.

The efficiency of a plan representation is determined by the number of nodes

(including both activity nodes and controller nodes) in a plan tree. We use

the following equation to calculate this fitness.

fr = 1 − number of nodes in a plan tree

Smax

(2.7)

Clearly, 0 ≤ fr < 1. A smaller plan tree receives a higher fr.

82

The overall fitness of a plan is the weighted sum of all three aspects of fitness.

f = wv × fv + wg × fg + wr × fr, (2.8)

where wv, wg, and wr are the weights of the three aspects of fitness, respec-

tively, and

wv + wg + wr = 1 (2.9)

2.2.2.4 Genetic Operators

Genetic operators are the driving forces to push the evolution forward. The

operators we use include crossover and mutation.

Crossover takes place between a pair of plan trees. We apply a crossover

method that is commonly used in GP. This method consists of four steps. First,

we select two trees as parents and decide if they can be crossed over. The prob-

ability of two trees taking part in crossover is determined by a parameter called

crossover rate. Second, if the two trees are not crossed over, we keep them and

terminate the crossover process. Otherwise, we randomly select a node from each

parent. Third, we switch the subtrees associated with the selected nodes between

the two parents. As a result, we create two new plan trees, each containing par-

tial plans from both parents. Finally, we replace the parents with the new trees.

In case the size of a new tree exceeds Smax, crossover fails and both parents are

kept. Figure 2.22 shows a simple example of how the crossover works on plan

trees.

83

Concurrent

E F G

(a)

Sequential

A

B C

DSelective

Sequential

A

B C

DSelective

Concurrent

E F G

(b)

Sequential

A DE

Concurrent

F G

B C

Selective

(c)

Figure 2.22: An example of crossover performed on two plan trees. (a) two

original trees are selected as parents; (b) a node is selected from each parent;

(c) two new plan trees are created by switching the subtrees associated with the

selected nodes.

Each Mutation consists of three steps. First, we randomly select a node in

the tree to be mutated. The probability of a node being selected is determined

by a parameter called “mutation rate”. Second, we randomly generate a tree,

using the same method as plan initialization. Third, we replace the subtree

associated with the selected node with the randomly generated tree. If, however,

84

the new tree exceeds the size limitation, mutation fails and we keep the original

tree. Figure 2.23 illustrates a simple example of mutation on a plan tree. Node

“Selective” is selected and the subtree associated with the node is replaced by a

randomly generated tree.

Sequential

A

B C

DSelective Concurrent

E F G

(a)

Sequential

A D

(b)

Figure 2.23: An example of mutation performed on a plan tree. (a) a node

is selected to be mutated; (b) the subtree associated with the selected node is

replaced by a randomly generated tree.

2.2.3 Performance Study

We conduct two experiments to study the performance of the planning approach.

In the first experiment, we apply the planning approach to finding execution plans

for a real-world computing problem: the 3D reconstruction of virus structure. We

next evaluate the scalability of this approach in a simulation environment.

2.2.3.1 A Case Study on 3D reconstruction of virus structure

We use the computation for 3D reconstruction of virus structure in electron mi-

croscopy as the test case for evaluating the performance of the planning approach.

85

Given a set of 2D images of a virus, and an initial model of the electron density

map, the goal of the computation is to construct a 3D model of the virus at

the finest possible resolution given the physical limitations of the experimental

instrumentation. Once we have a detailed electron density map of the virus struc-

ture we can proceed to atomic level modeling, namely placing of groups of atoms,

secondary, tertiary, or quaternary structures on the electron density maps.

The computation is composed of several steps [4]. In the first step, we extract

the 2D virus projections from the micrographs. Then we determine the initial

orientation of individual views using an “ab initio” orientation determination

program (POD). Next, we execute an iterative computation consisting of 3D

reconstruction followed by orientation refinement. The parallel program used for

reconstruction is called P3DR and the parallel program for orientation refinement

is called POR. The iterative process stops whenever no further improvement of the

electron density map at that resolution is noticeable. Then we use a correlation

procedure to determine the resolution of the electron density map. The parallel

program used for correlation is called PSF. The iterative computation is then

repeated at a higher resolution, possibly discarding some of the input data that

do not correlate well with the rest. A new approach is now implemented; we create

two streams of input data, e.g., by assigning odd numbered virus projections to

one stream and even numbered virus projections to the second stream. Then

we construct two models of the 3D electron density maps and determine the

resolution by correlating the two models. The process description, shown in

Figure 2.24, consists of seven end-user activities and six flow control activities.

The pair of Choice and Merge activities in this workflow is used to control the

iterative execution for resolution refinement. The computation ends when the

resolution is better than the one specified as computation goal. Figure 2.25

shows the corresponding plan tree.

86

Table 2.12 shows the parameter settings used in the experiment. We test the

algorithm ten times and select the individual with the highest fitness in the final

generation as the solution. Then we calculate the average fitness, validity fitness,

goal fitness, and the size of solutions over ten runs, shown in Table 2.13.

Table 2.12: Parameter Settings in the experiments.

Parameters Values

Population Size 200

Number of Generations 20

Crossover Rate 0.7

Mutation Rate 0.001

Smax 40

wv 0.2

wg 0.5

Table 2.13: Experiment results collected from the best solutions of ten runs.

Performance Criteria Values

Average Fitness 0.928

Average Validity Fitness 1.0

Average Goal Fitness 1.0

Average Size of solutions 9.7

The experimental results show that this planning approach is able to consis-

tently find valid execution plans that reach the goals of the computation. Al-

though this approach cannot find the process description that perfectly matches

the one shown in Figure 2.24, the best solution found can always reach 1.0 in

87

both the validity and goal fitness. The solutions found by the approach are also

small, with the corresponding plan trees having an average of less than 10 nodes.

2.2.3.2 A Simulation Study

We next evaluate the scalability of this planning approach in a simulation en-

vironment. We test different cases by varying the number of available end-user

services in the environment. Only a portion of the end-user services is needed to

achieve the goal of the computing task. We test the case where the optimal solu-

tion contains 10 end-user services, and the environment contains 15, 20, 30, and

50 end-user services. A larger number of end-user services requires a search in a

larger solution space. In the case with 15 end-user services, we set the population

size to 200 and the number of generations to 500 (i.e., 100000 fitness evaluations

are performed in each run). In larger problems, we increase the number of fitness

evaluations allowed in a run with either a larger population, or more generations,

or both. In cases with 20, 30, and 50 end-user services, the number of fitness

evaluations that are allowed to perform in a run is 150000, 300000, and 800000,

respectively. We test each case 50 times and report the average goal fitness of the

best solutions and the execution time of each run (with 95% confidence intervals).

Table 2.14 lists the parameter settings for this experiment. Table 2.15 shows the

results.

The results show that this approach requires more fitness evaluations and thus

longer execution time to maintain the quality of solutions to problems with larger

search spaces. For instance, this approach reaches an average of 0.95 in the goal

fitness in both cases with 15 and 20 end-user services. However, 50% more fitness

evaluations are performed in the case with 20 end-user services than the one with

88

Table 2.14: Parameter Settings in the simulation study.

Parameters Values

Population Size from 200 to 1600

Number of Generations from 500 to 4000

Crossover Rate 0.8

Mutation Rate 0.01

Smax 30

wv 0.2

wg 0.5

Size of Optimal Solutions 10

Number of Available Services 15, 20, 30, 50

15 end-user services. Comparing the experimental results on different parameter

settings for the cases with 30 and 50 end-user services, we notice that having more

generations in a run is generally more effective in improving the search quality

than having a larger population. However, in the case with 50 end-user services,

a population of 200 produces the lowest goal fitness of all cases. This result

indicate that a larger population is still needed to provide sufficient resources for

evolution in larger problems.

89

Table 2.15: The average goal fitness and execution time (in seconds) for different

test cases. CI = confidence interval.

Number of Population Size / Average (95%CI) Average (95%CI)

End-user Services # of Generations Goal Fitness Execution Time

15 200 / 500 0.95 (0.034) 42.41 (3.26)

20 300 / 500 0.95 (0.033) 57.33 (4.28)

20 200 / 750 0.95 (0.033) 53.91 (4.75)

30 600 / 500 0.892 (0.063) 98.47 (10.03)

30 400 / 750 0.896 (0.056) 92.77 (8.06)

30 300 / 1000 0.900 (0.064) 91.86 (7.41)

30 200 / 1500 0.916 (0.055) 99.59 (9.59)

50 1600 / 500 0.922 (0.046) 249.04 (20.15)

50 800 / 1000 0.928 (0.015) 229.08 (22.70)

50 400 / 2000 0.942 (0.043) 219.75 (20.41)

50 200 / 4000 0.878 (0.069) 219.24 (26.33)

90

BEGIN

END

P3DR1

POD

CHOICE

MERGE

POR

JOIN

PSF

P3DR3 P3DR4

FORK

P3DR2

Figure 2.24: A process description for the 3D reconstruction of virus structures.

POD - “ab initio” parallel orientation determination program. P3DR - the par-

allel program used for 3D reconstruction. POR - the parallel program for ori-

entation refinement. PSF - parallel program to compute the correlation of the

structure factors.

91

Sequential

P3DR
1

POD Iterative

POR PSFConcurrent

P3DR
2

P3DR
4

P3DR
3

Figure 2.25: The corresponding plan tree to the process description for the 3D

reconstruction of virus structures.

92

CHAPTER 3

SCHEDULING ALGORITHMS AND

SCHEDULING SERVICES

The function of scheduling for a large-scale distributed system is to map the

execution of each computing activity in a process description to an available

computing node in the system and specify the time each activity is executed.

The goal of scheduling is to optimize the total execution time of the computation

(i.e., the duration between the time that the first activity is executed and the

time the last activity finishes execution) while achieving load balance, ensuring

a large throughput, or any other objects.

Scheduling for a large-scale distributed system bears much resemblance to

the problem of multi-processor scheduling, but is much more difficult due to the

scale and the complexity of the computing environment. In this chapter, we first

discuss the problem of multi-processor scheduling and present a genetic algorithm

approach to the problem. We next focus on the problem of scheduling for large-

scale distributed systems. We formulate the problem and present an approach

that is extended from the approach for multi-processor scheduling.

93

3.1 Introduction to Multi-processor Task Scheduling

Multi-processor task scheduling is an extensively studied problem in the field of

parallel programming and processing. By decomposing a complete program into a

set of smaller tasks, we are able to schedule these tasks on parallel processors and

reduce the execution time. The procedure of multi-processor scheduling consists

of several steps. First, a program to be executed is sent to a task decomposer

that divides the program into a group of smaller computing tasks. The result of

decomposition is a task graph that specifies the tasks to be scheduled. Next, the

task graph is sent to a scheduler for an optimized schedule for task execution.

Finally, the execution schedule is sent to the administrator of the processors. The

administrator is responsible for assigning the task execution to each processor

based on the schedule. Figure 3.1 gives a graphical illustration of these steps.

Our work is focused on the second step of the procedure, i.e., producing an

optimized schedule for task execution in a multi-processor system.

Task
Decomposer

Scheduler Administrator

P1

P2

...

Pn

Program
Task

Graph
Execution
Schedule

Assignment
of Task

Execution

Assignment
of Task

Execution

Figure 3.1: The procedure of scheduling the execution of a program in a

multi-processor system.

The goal of multi-processor scheduling is to assign tasks to a number of pro-

cessors in such a way that minimizes the total execution time of the program, also

called makespan. Traditional multi-processor scheduling assumes that all proces-

94

sors have the same computing ability, i.e. a single task has the same execution

time on all processors, and that all processors are fully connected by communica-

tion links with the same capacity. In addition, we assume that tasks are scheduled

to a static computing environment. Both the topology (or interconnection) of the

processors and their processing abilities do not change during scheduling. Tasks

may have data dependencies, which raise additional precedence restrictions that

the scheduler must follow in order to generate valid schedules. If two dependent

tasks are assigned to different processors, a pre-specified amount of communi-

cation cost for data transfer between different processors must be applied. An

optimal schedule should meet the following three criteria: 1) the order of task

execution abides by the precedence restrictions of the tasks; 2) every task must

be assigned to at least one processor; and 3) the makespan cannot be further

reduced.

The multi-processor scheduling problem is given by a Directed Acyclic Graph

(DAG). A DAG specifies the tasks that are to be scheduled, represented by

nodes, and the data dependencies between the tasks, represented by arrows. The

direction of the arrows indicates the direction of the precedence between tasks.

In addition, the execution cost of each task and the communication cost between

each pair of dependent tasks are given in a DAG. Figure 3.2 shows the DAG for

the 14-node LU Decomposition task scheduling problem. The numbers beside the

nodes specify the execution costs of the tasks. The numbers beside the arrows

specify the communication costs between dependent tasks. Figure 3.3 shows an

example schedule on four processors.

95

1

2 3 4 5

6

7 8 9

10

11 12

13

14

50

40 40 40 40

40

30 30 30

30

20 20

20

10

80

80
80

80

80 80 8080

80 80 80

80

80
80

80 80

80

80

80

Figure 3.2: The DAG for the 14-node LU Decomposition task scheduling problem.

P1 P2

1

P3

22

6

7

8

10

11

12

13

14

11

5

4

1

3

9

P4Makespan

0

50

100

150

200

250

300

350

370

Figure 3.3: An example schedule for the 14-node LU Decomposition task schedul-

ing problem on four processors.

96

3.2 Introduction to Scheduling for a Large-scale Distributed

System

In a large-scale distributed system, a computing task is given by its processor

description and case description. The process description specifies the workflow

of the computation and contains a set of computing activities to be scheduled.

The case description provides additional information related to the execution of

the computation, e.g., the location of the input data, the deadline for finishing the

execution, etc. Both the process and case descriptions are sent to the scheduling

service for a valid schedule of the computation. The role of a scheduling service

is to map the execution of the computing activities to the processors in a system

and specify the time for their execution. After a schedule is produced, resource

requests for execution are sent to the administrators that manage the processors

on which the computation is scheduled. Multiple administrators may exist in

a large-scale distributed system. Consequently, a resource request is sent to

each administrator. A schedule is successful only if all resource requests are

satisfied. Figure 3.4 shows the model of scheduling a computation in a large-

scale distributed system.

There are noticeable similarities between multi-processor scheduling and schedul-

ing for a large-scale distributed system. For instance, the goal in both problems

is to assign the execution of a set of tasks to computing nodes to reduce the total

execution time. Tasks in both problems may have data dependencies and the

order of their execution must conform to the precedence restrictions. There are,

however, major differences between these two problems and are listed as follows.

First, the granularity of the tasks to be scheduled is different for the two

problems. Multi-processor task scheduling is a fine-grained scheduling problem.

97

Scheduling
Service

Administrator

P1

P2

...

Pn
Process and Case

Descriptions

Resource
Request

Assignment of
Activity Execution

Administrator

P1

P2

...

Pm

...

Resource
Request

Assignment of
Activity Execution

Figure 3.4: The model of scheduling a computation in a large-scale distributed

system.

98

Tasks to be scheduled typically represent functions in a program to be executed

and their execution time is typically short. In contrast, scheduling for a large-

scale distributed system is a coarse-grained scheduling problem. The computing

activities to be executed may require a large amount of computing resources and

much longer execution time. Their execution may require the support from a

cluster of computing nodes rather than a single node. If a computing activity is

scheduled on a cluster of nodes, assigning its execution on each node in a cluster

is handled by a local scheduling service for the cluster. Therefore, multiple levels

of scheduling may be required for scheduling a computation for a large-scale

distributed system.

Second, all processors in a multi-processor system belong to a single admin-

istration domain. The administrator of the multi-processor system has complete

control over the use of the processors. We also assume that there are no other

concurrent computations running on the same processors. As a result, after

a schedule is produced, the request for executing each task in a schedule can

always be accepted and thus the success of a schedule can be guaranteed. This

assumption, however, rarely holds in a large-scale distributed system, where com-

puting nodes may belong to different administration domains and there are a

large number of concurrent tasks competing for the same computing resources.

The scheduling service cannot guarantee that the requests for task execution can

always be accepted. After a schedule is produced, the scheduling service must

submit the resource requests to the administrators that manage the scheduled

computing nodes. The success of a schedule depends largely on whether these

requests can be accepted. If a request is rejected, the scheduling service must

either modify the schedule and submit new requests to the administrators, or

report failure. As a result, multiple stages of scheduling may be necessary for

scheduling a computation for a large-scale distributed system.

99

Third, multi-processor scheduling involves a simple homogeneous computing

environment. All processors are fully connected with each other and they have

the same processing ability. A multi-processor system is a stationary comput-

ing environment, i.e., the status of the system does not change over the course

of scheduling and task execution. A large-scale distributed system, however, is

highly heterogenous and dynamic. Computing nodes with different processing

ability and architecture coexist in a system; the nodes may run on different plat-

forms, support the execution of different applications, and are connected directly

or indirectly by communication links with different latency and bandwidth. In

addition, the status of a large-scale distributed system may change quickly over

time. As a result, scheduling for a large-scale distributed system must be able to

handle both the heterogeneity and dynamism of the system.

3.3 A GA-based Algorithm for Multi-processor Task Schedul-

ing

In this section, we focus on the problem of multi-processor scheduling. We first

discuss a GA-based algorithm for multi-processor task scheduling. We next eval-

uate the performance of this algorithm on a set of benchmark task graphs and

compare its performance with traditional deterministic scheduling algorithms.

Finally, we evaluate the performance of this algorithm in heterogeneous and dy-

namic problem environments.

100

3.3.1 Classifications of Scheduling Algorithms

Finding an optimal solution to the multi-processor task scheduling problem has

been proven to be NP-hard except for some special cases [50]. There are numer-

ous approaches to solving the multi-processor task scheduling problem. These

algorithms can be categorized into different classes according to different crite-

ria [51].

1. Number of processors: bounded vs. unbounded

Some scheduling algorithms assume that there are an unlimited number

of processors available to the scheduled tasks. These algorithms will use

as many processors as possible in order to reduce the makespan of the

schedule. If, however, the number of processors used by a schedule is more

than the number actually available in a given problem, a mapping process

is required to merge the tasks in the proposed schedule onto the actual

number of available processors. On the other hand, algorithms that assume

a bounded number of processors do not use additional processors other than

the ones given by a scheduling problem. Therefore, this mapping process

is not needed.

2. Task duplication: allowed vs. not allowed

Some algorithms restrict the assignment of a task to only one processor.

As a result, a task is not allowed to be executed on multiple processors.

Although this class of algorithms is usually simpler, they have difficulty

finding an optimal schedule in problems where the inter-task communica-

tion cost is relatively high. Algorithms that allow task duplication are able

to take advantage of the implied parallelism in task execution. By assign-

101

ing a single task to multiple processors, we can remove some unnecessary

communication cost and further minimize the makespan.

3. Deterministic vs. non-deterministic algorithm

Based on the existence of randomness during the search process, we can

classify the search algorithms into deterministic and non-deterministic al-

gorithms. Deterministic algorithms typically use domain-specific heuris-

tics to find solutions. They are efficient algorithms as the search is nar-

rowed down to a very small portion of the search space; however, the per-

formance of these algorithms is heavily dependent on effectiveness of the

heuristics. Therefore, they are not likely to produce consistent results on

a wide range of problems. On the other hand, the combinatoric process

in non-deterministic algorithms requires sufficient sampling of solutions in

the search space and have shown robust and consistent performance on a

variety of search problems. Genetic algorithms [52, 53, 54], simulated an-

nealing [55, 56, 57], and Tabu search [58] have been successfully applied

to task scheduling. Non-deterministic algorithms, however, are less effi-

cient and have considerably higher computational cost than deterministic

algorithms.

The GA-based scheduling algorithm presented in Section 3.3.3 is a non-deterministic

algorithm, assumes a bounded number of processors, and allows task duplication.

3.3.2 Previous Work on Applying GA to Scheduling

GAs have been applied to the task scheduling problem in a number of ways [51,

52, 53, 54, 59, 60, 61, 62, 63]. The existing algorithms can be categorized into

102

two approaches: either use GA to determine the priorities of task assignment for

list scheduling techniques, or use GA directly for task assignment.

List scheduling techniques are widely used in scheduling algorithms. The ba-

sic idea of list scheduling is to assign each task a priority and then schedule the

tasks in the order of their priorities. Variable heuristic functions have been used

to prioritize tasks. Examples of using GA to determine the order of task assign-

ment for list scheduling techniques include [59, 62]. These approaches encode the

solution with a vector of length n where n is the number of tasks to be scheduled.

Each value of the vector represents a task priority for Task ti, i = 0, ..., n. Tasks

are ordered by increasing i. The initial population consists of one individual with

priority values based on the longest path to an exit node on the DAG and the

remaining individuals consisting of randomly permuted priority values from the

first individual. Traditional crossover and mutation operators are used to gen-

erate new individuals. The job of the GA is to generate new combinations of

priority values. Tasks are sorted based on priority value, then are scheduled us-

ing basic list scheduling techniques. Kwok and Ahmad [53] use a coarse-grained

parallel GA in combination with a list scheduling heuristic. Individuals are again

vectors of length n where n is the number of tasks to be scheduled. The elements

of a vector represent the tasks themselves and the order of the tasks gives the

relative task priorities. As with other ordering problems such as the Travelling

Salesman Problem, a number of order-based crossover operators are discussed.

Mutation involves swapping tasks.

Alternatively, GAs have also been used to directly evolve task assignment

and order in processors. Hou et al. [52] use a GA to evolve individuals consisting

of multiple lists, with each list representing the tasks assigned to one processor.

Crossover exchanges tasks between corresponding processors from two different

103

individuals. Mutation exchanges tasks within a single individual. This approach

restricts the actions of genetic operators to ensure the validity of evolved indi-

viduals. As a result, some parts of the search space may be unreachable. Correa

et al. [61] improve upon Hou’s method to allow the entire search space to be

searched. Tsuchiya et al. [54] implement a GA scheduler that allows task du-

plication: one task may be assigned to multiple processors. They compare their

GA to DSH, a heuristic-based list scheduling algorithm, and show that the GA

is able to find comparable or better solutions. Wang et al. [63] use a GA to

evolve schedules to a heterogeneous environment. The solution is encoded with

two strings: a mapping string for assigning tasks to machines, and a schedule

string for specifying the sequence of tasks on each machine. Specially designed

genetic operators are employed to guarantee the validity of the evolved solution.

All of these GA approaches require special methods to ensure the validity of

the initial population and to ensure that crossover and mutation do not destroy

the validity of solutions. Therefore, all individuals generated by these systems

must encode “executable” schedules. Zomaya et al. [64] incorporate heuristics in

the generation of the initial population of a GA and perform a thorough study of

how GA performance varies with changing parameter settings. The genetic-based

algorithm we present in Section 3.3.3 is used to directly evolve task schedules.

3.3.3 An Incremental Genetic-based Algorithm

Many of the existing GA-based scheduling algorithms use special methods for so-

lution initialization and genetic operation. Although these methods are effective

in reducing the search space of a GA and maintaining the validity of solutions,

they may also result in biased search which in turn may deteriorate the quality

104

of solutions. For instance, Hou’s method [52] uses restricted genetic operators

which are found to render parts of the solution space unreachable and the order

in which tasks are specified in [59, 62] affects the likelihood that two tasks will

be crossed over.

Keeping this lesson in mind, we attempt to minimize the amount of arbitrary

human input in our GA design, particularly in our problem representation and

fitness function. We implement a novel GA approach for task scheduling on

multiprocessor systems. Our GA extends the traditional GA [65, 66] in two

major ways.

First, we use a dynamically adaptive representation that allows a GA to evolve

both the structure and the value of the solutions. Individuals have variable

lengths and may contain non-coding regions (regions that do not contribute to

encoding a solution). Both valid and invalid individuals may exist in the popu-

lation during evolution.

Second, we use a dynamically adaptive, incremental fitness function that ini-

tially rewards for simple search goals and gradually increases the difficulty of the

goals until a complete optimized solution is found. Previous experiments have

shown that given the number of possible orderings of tasks in processors, the

percentage of the orderings being valid is very small. If a GA is not restricted to

only work with valid individuals, the chance of randomly finding a valid ordering,

let alone a good valid ordering, may be very low. Restricting a GA to only form

valid individuals, however, may introduce unexpected biases in the system and

such systems may require extensive revision with each new problem. Instead of

placing restrictions on the individuals that can be formed or using special op-

erators or repair mechanisms to ensure validity, we use this incremental fitness

function to encourage the formation of valid solutions by successively combining

105

rewarded task sequences. Previous work has shown that gradually increasing the

difficulty of a GA fitness function can result in the formation of more complex

solutions [67].

The basic algorithm is the same as a traditional GA. Details that are specific

to our approach are described below.

3.3.3.1 Solution Encoding

The importance of tightly-linked or compactly encoded building blocks in a GA

representation has long been recognized [65, 66, 68]. Compactly arranged building

blocks (building blocks with low defining length) are expected to be more likely

to be transmitted as a whole by the genetic operators during a reproduction

event [69]. Location independent problem representations, where the information

content is not fixed at specific locations on a GA individual, have been proposed

in a number of studies as a way to help a GA identify and maintain tightly-

linked building blocks. Such representations allow for rearrangement of encoded

information [20, 23, 70, 71, 72, 73, 74, 75, 76], overlapping encodings which can

be more space efficient [71, 77, 78], and the appearance of non-coding regions

which affects crossover probability [22, 23, 49, 71, 79, 80, 81, 82]. In some

location independent representations, the arrangement of encoded information

will determine what is expressed [20, 73, 74] even though the actual encoded

content is not determined by its location. We use such a representation in which

the meaning of an encoded element is independent of its location on an individual,

but its location does determine whether or not it is expressed.

Each individual in a GA population consists of a vector of cells. We define

a cell to be a pair of task and processor: (t, p). Each cell indicates that Task t

106

is assigned to be processed on Processor p. The number of cells in an individual

may vary, so individuals in a GA population will vary in length. Figure 3.5 shows

an example individual. The first cell of this individual assigns Task 4 to Processor

1, the next cell assigns Task 2 to Processor 4, etc.

(4,1)(2,4)(7,3)(2,3)(4,1)(5,4)(6,3)(1,1)(3,2)

Figure 3.5: An example individual.

The cells on an individual determine which tasks are assigned to which pro-

cessors. The order in which the cells appear on an individual determines the

order in which the tasks will be performed on each processor. In the encoding

process, individuals are read from left to right. The task-processor pairs that are

read early are assigned first. Thus, the order in which tasks will be performed

on each processor depends on the order in which the task-processor pairs appear

on an individual. For example, the individual shown in Figure 3.5 results in the

processor assignments and ordering of tasks shown in Figure 3.6. Invalid task

orderings will have their fitness value penalized by the fitness function.

Processor 1 Task 4 Task 1

Processor 2 Task 3

Processor 3 Task 7 Task 2 Task 6

Processor 4 Task 2 Task 5

Figure 3.6: Assignment of tasks from individual in Figure 3.5.

As we allow task duplication in solutions, the same task may be assigned

more than once to different processors. The example individual in Figure 3.5

107

assigns Task 2 to processors 3 and 4. Tasks may not be assigned to the same

processor more than once. If a task-processor pair appears more than once on

an individual, only the first (leftmost, since individuals are read from left to

right) pair is active and encoded in the solution. Any remaining identical pairs

are essentially non-coding regions and are not encoded in the solution. In the

example from Figure 3.5, the second instance of (4,1) is not scheduled into the

processor lists in Figure 3.6.

The initial population is created with randomly generated individuals. Each

individual consists of exactly one copy of each task. As a result, the length of

all individuals in an initial population is equal to the number of tasks specified

in the target DAG. Each task is randomly assigned to a processor. The initial

population, however, may not encode valid solutions as the task sequences are

randomly generated and may not obey precedence restrictions.

3.3.3.2 Genetic Operations

We use both crossover and mutation in our algorithm. Slight modifications are

necessary to work with this representation. The modified versions of these genetic

operators are described here.

Crossover

We use random one-point crossover. A crossover point is randomly chosen

between two adjacent genes from each parent. The segments to the right of

the crossover points are exchanged to form two offspring. Figure 3.7 shows an

example of random crossover.

108

Randomly select parent 1 crossover point: 2

Randomly select parent 2 crossover point: 4

Parent 1 (4,1)(2,4)| (3,3)(2,3)(5,4)(1,1)(3,2)

Parent 2 (4,3)(3,3)(5,2)(3,4)| (2,4)(3,3)

Random crossover produces

Offspring 1 (4,1)(2,4)| (2,4)(3,3)

Offspring 2 (4,3)(3,3)(5,2)(3,4)| (3,3)(2,3)(5,4)(1,1)(3,2)

Figure 3.7: Random one-point crossover randomly selects crossover points on

each parent and exchanges the right segments to form offspring.

The parameter of crossover rate gives the probability that a pair of parents

will undergo crossover. In addition, if a crossover operation generates an offspring

individual that exceeds the maximum allowed genome length, crossover does not

occur. Parents that do not crossover transform unchanged into offspring, but

they may still undergo mutation.

Mutation

Each cell has equal probability of being mutated. The probability is given

by a parameter called mutation rate. The expected number of mutations per

individual is equal to the mutation rate multiplied by the length of an individual.

If a cell is selected to be mutated, either the task number or the processor number

of that cell will be randomly changed.

109

3.3.3.3 Selection

We use binary tournament selection to form a new generation of solutions. We

randomly select two individuals each time and compare their fitness. We always

choose the individual with higher fitness and copy it to the new generation. We

continue this selection process until we have selected a new population of the

same size as the current one. We don’t use elitism method to keep the best

solution over generations.

3.3.3.4 Fitness Evaluation

The fitness function consists of two independent parts. The first part of the fit-

ness function, task fitness, focuses on ensuring that all tasks are performed and

scheduled in valid orders. The second part of the fitness function processor fitness,

attempts to minimize the execution time of valid schedules. The actual fitness,

fitness, of a GA individual is a weighted sum of the above two partial fitness

values.

Calculating task fitness

The task fitness component of the fitness function evaluates whether all tasks

are represented and in valid order. A pair of tasks is independent if neither task

relies on the data output from the other task for execution. The scheduling of a

pair of tasks to a single processor is valid if the pair is independent or if the order

in which they are assigned to the processor matches the order of their dependency.

The scheduling of a group of tasks to a single processor is valid if the order of

every pair of tasks in the group is valid. A solution is valid if all of its processor

schedules are valid.

110

Because of the complexity of the solutions, we develop an incremental fitness

function that changes over time. We initially reward for finding short valid se-

quences of tasks. Over time, we increase the length of the sequences that can

be rewarded, encouraging the GA to find and maintain longer valid sequences.

Eventually the valid sequences will be long enough that the individuals will rep-

resent full valid solutions. As in positive reinforcement training, this strategy

rewards for small steps toward the goal, to encourage the algorithm to find the

complete goal.

The task fitness component of an individual’s fitness is based on two main

components: the percentage of valid sequences of a given length and the per-

centage of the total tasks specified by an individual. Initially the fitness function

will reward for short sequences of valid tasks. A sequence of tasks is valid if the

tasks in the sequence are independent to each other or their order of assignment

abides their precedent relations. When the average fitness of the GA population

exceeds a threshold fitness, the length of the sequence for which the GA searches

is increased, thus increasing the difficulty of the fitness function.

(a) Calculating raw fitness : The raw fitness of an individual reflects the per-

centage of sequences of a given length in an individual that are valid sequences.

For example, suppose we are working on LU Decomposition task graph shown in

Figure 3.2. Processor 3 in Figure 3.6 has been assigned three tasks. If the current

sequence length is two, Processor 3 contains two sequences of length two. Pro-

cessor 3 contains only one valid sequence of length 2, the sequence Task2-Task6.

The sequence Task7-Task2 is not a valid sequence because Task 7 cannot be

executed before Task 2.

Assume that the problem to be solved involves P processors and T tasks.

Evolution will occur in eras, era = 0, 1, 2, ..., E. Initially, era = 0. The maximum

111

era count, E ≤ T , is a user defined parameter value. The era counter, era, is

increased when the average population fitness exceeds a user defined threshold,

thresh, and when the number of individuals with the current maximum fitness

exceeds a user defined threshold, thresh maxfit. Unless otherwise specified, we

use thresh = 0.75 and thresh maxfit = 0.1.

Let numtasks(p), p = 1, ..., P , indicate the number of tasks assigned to pro-

cessor p. To calculate the raw fitness of a processor, we need to consider two

things: the first era + 1 (or fewer) tasks assigned to the processor, and all task

sequences of length era+ 2. The first component is important because as era in-

creases, the likelihood of processors containing fewer than era+2 tasks increases.

We need to reinforce the GA for these shorter sequences in order for them to

eventually build up to the measured sequence length.

We will first determine the contribution of the first era + 1 or fewer tasks in

a processor. Let

subseq(p) =

1 if numtasks(p) > 0

0 otherwise
(3.1)

and let

valseq(p) =

1 if the first era + 1 or fewer tasks in Processor p are in valid order

0 otherwise.

(3.2)

Equations 3.1 and 3.2 refer to individual processors. To calculate the contribution

over all processors (the contribution for the entire individual), we let

Subseq =
P∑

p=1

subseq(p)

V alseq =
P∑

p=1

valseq(p).

112

We will next determine the contribution of all sequences of length era + 2 in

a processor. Let

s(p) = number of sequences of length era + 2 in Processor p (3.3)

and let

v(p) = number of valid sequences of length era + 2 in Processor p. (3.4)

Combining equations 3.3 and 3.4 to determine the contribution over all processors

we let

S =
P∑

p=1

s(p) V =
P∑

p=1

v(p).

The raw fitness for an individual is then calculated with the following equation

raw fitness =
V alseq + V

Subseq + S
. (3.5)

(b) Calculating the task ratio: In addition to encouraging the system to find

valid sequences of tasks, we also want to encourage the system to include at

least one copy of each task in each solution. We define the task ratio to be

the percentage of distinct tasks from the total tasks in the problem that are

represented in an individual. The task ratio is calculated with the following

equation:

task ratio =
number of distinct tasks specified in an individual

total number of tasks specified in the problem
(3.6)

This factor penalizes solutions that do not contain at least one copy of every

task. Once all tasks are represented in an individual, we assign a value of one to

task ratio.

(c) Calculating task fitness : The effective task fitness of an individual is the

product of equations 3.5 and 3.6.

task fitness = raw fitness ∗ task ratio (3.7)

113

This value makes up the first component of the fitness of a GA individual.

Calculating processor fitness

The processor fitness component of the fitness function encourages GA to

minimize the makespan of valid schedules. As the length of a solution can only

be measured if a solution exists, we assign processor fitness to zero for all indi-

viduals that do not encode valid solutions.

Suppose t is the run time for a solution represented by an individual. Let

serial len equal the length of time required to execute all tasks serially on a

single processor and let super serial len = P ∗ serial len where P is the number

of processors. Any reasonable solution should give t � super serial len, making

super serial len a safe but reasonable upper bound for the makespan of sched-

ules. The goal of the GA is to minimize t. The processor fitness first calculates

the difference between super serial len and t then calculates what proportion of

super serial len this difference represents:

processor fitness =
super serial len − t

super serial len
. (3.8)

As a result, processor fitness is inversely proportional to t. As the run time

of a solution decreases, the amount that processor fitness contributes to the

individual’s full fitness increases.

It is important to note that although the theoretical maximum value of proces-

sor fitness is 1.0, in practice, this value can not be achieved. For processor fitness

to equal 1.0, the run time, t, of a solution would have to be zero. Since all tasks

obviously require non-zero execution time, t will never be zero for valid schedules.

Calculating fitness

114

The full fitness of an individual is a weighted sum of the task fitness and

processor fitness:

fitness = (1 − b) ∗ task fitness + b ∗ processor fitness, (3.9)

where 0.0 ≤ b ≤ 1.0. Unless otherwise specified, we use b = 0.2.

If an individual does not encode a valid solution, we are unable to evaluate

processor fitness. As a result, processor fitness = 0 and

fitness = (1 − b) ∗ task fitness + b ∗ 0 = (1 − b) ∗ task fitness. (3.10)

3.3.4 Performance Evaluation

We evaluate the performance of this GA algorithm on both static and dynamic

environments. In the experiments on static environments, we evaluate the GA

on both a homogeneous environment and a heterogeneous environment. In all

experiments, we compare the performance of the GA with three heuristic-based

list scheduling algorithms, ISH [83], DSH [83], and CPFD [84]. These algo-

rithms have been widely used by the researchers as benchmark algorithms in task

scheduling [85]. DSH and CPFD allow task duplication; ISH does not. CPFD

has been shown to consistently outperform other state-of-the-art scheduling al-

gorithms [84].

The following parameter settings were empirically determined to be good

values for our GA. Unless otherwise specified, we use the parameters listed in

Table 3.1 in our experiments:

We use a variable length representation with a maximum length of 2 × T

where T is the number of tasks in the problem.

115

Table 3.1: Parameter settings for GA.

Parameter Value

Population Size 400

Number of Generations 3000

Crossover Type Random one-point

Crossover Rate 0.8

Mutation Rate 0.005

Selection Scheme Tournament

Tournament Size 2

3.3.4.1 Comparison with traditional list scheduling methods

In this experiment, we select nine task graphs as test cases. Six of the cases

use the 14-node LU decomposition task graphs [54], 15-node Gauss-Jordan task

graphs [54], and 16-node Laplace task graphs [86], each with two different inter-

task communication cost settings. The other three problems have 15, 17, and 18

nodes, and are selected from [87], [88], and [86], respectively. Table 3.2 lists the

nine test problems.

Table 3.3 shows the best solutions obtained for each problem by each method.

Because the GA is a stochastic algorithm, we perform 50 runs for each problem

and also report its average results.

The GA outperforms traditional methods on one problem (P5), performs as

well as the best traditional method on six problems, and achieves the second best

performance on two problems (P7 and P9). Doubling the GA population size

allows the GA to also outperform traditional methods on Problem P6. Results

116

Table 3.2: The list of test problems.

Problem Id Task Graph Communication Cost

P1 Gauss-Jordan 25

P2 Gauss-Jordan 100

P3 LU Decomposition 20

P4 LU Decomposition 80

P5 15-node Variable

P6 17-node Variable

P7 18-node Variable

P8 Laplace 40

P9 Laplace 160

indicate that, given sufficient resources, the GA is able to equal or outperform

traditional scheduling methods.

Interestingly, the data in Table 3.3 suggest that the advantages of task du-

plication in these scheduling methods are particularly noticeable on problems

with longer communication times. Problems P1 and P2 share the same DAG

and differ only in their communication times: Problem P2 has a significantly

longer communication time than Problem P1. The same holds true for Problems

P3 and P4 and Problems P8 and P9. Problems P2, P4, P5, P7, and P9 have

communication times that are larger than the task execution times (significantly

larger for P5) and show noticeable improvement when using methods that allow

task duplication. Problems P1, P3, P6, and P8 have communication times that

are equal or less than task execution times and show little improvement with the

additional of task duplication.

117

Table 3.3: Minimum makespan found by ISH, DSH, CPFD, and GA. CI = con-

fidence interval. ∗In a second set of runs in which the population size is doubled,

the GA finds a minimum makespan of 36 and average makespan of 36.92 with a

95% confidence interval of 0.17.

Test ISH DSH CPFD GA

Problem Best Average 95% CI

P1 300 300 300 300 300 0

P2 500 400 400 400 430 5.28

P3 260 260 260 260 263.4 2.06

P4 400 330 330 330 370 6.41

P5 650 539 446 438 445.92 6.05

P6 41 37 37 37∗ 37.78∗ 0.24∗

P7 450 370 330 350 380.6 4.76

P8 760 760 760 760 782.8 5.63

P9 1220 1030 1040 1040 1101.8 14.23

An examination of scalability to larger problems finds that GA performance

declines as the problem size increases. GAs tend to require larger populations to

maintain performance as problem size increases, e.g. when P4 is scaled up to be

a 27-node problem, a GA using population size 400 finds a minimum makespan

of 680; a GA using population size 800 finds a minimum makespan of 650. These

results indicate that a GA requires sufficient resources in order to find good

solutions.

A comparison of execution times finds that the cost for having sufficient re-

sources is a longer execution time. ISH, DSH, and CPFD consistently post run

times of less than one second for the problems that we tested. The GA requires

118

significantly longer execution times. Table 3.4 gives the average number of gen-

erations and seconds to find a good solution using the GA. Traditional methods

clearly outperform the GA in terms of execution time.

Table 3.4: Average number of generations and average clock time (in seconds)

using a GA. CI = confidence interval.

Test Average (95% CI) Average (95% CI) Average (95% CI)

problem generations to best solution time to best solution time for one run

P1 682.26 (191.30) 30.70 (11.01) 129.37 (11.18)

P2 1011.88 (219.07) 54.49 (13.37) 164.20 (14.54)

P3 934.34 (213.50) 28.15 (6.73) 95.05 (4.43)

P4 1333.36 (247.21) 60.78 (13.89) 140.17 (12.10)

P5 871 (180.38) 36.16 (7.74) 137.98 (12.39)

P6 1375.46 (246.84) 80.36 (16.92) 187.35 (15.52)

P7 1316.62 (248.24) 77.03 (14.46) 178.36 (14.90)

P8 1168.18 (195.33) 73.97 (12.77) 192.12 (12.98)

P9 1627.72 (237.77) 130.83 (20.15) 248.69 (28.43)

Figure 3.8 shows an example of how a typical GA run proceeds. Figure 3.8(a)

shows the evolution of population fitness. The top line shows the best population

fitness at each generation. The bottom line shows the average population fitness

at each generation. The vertical lines indicate the generations at which the era

counter is incremented. The start of each era is indicated at the top of the

graph. The average population fitness climbs within each era. Each time the

era counter is incremented, however, the difficulty level of the fitness function

increases and the average fitness of the population drops. After about six eras in

this run, there are apparently enough valid task sequences to allow the remaining

119

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Generation

Best Fitness

Average Fitness

0 1 2 3 4..15 Era

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

Generation

Minimum Run Time

0 1 2 3 4..15 Era

(a) (b)

Figure 3.8: Evolution of (a) population fitness and (b) minimum makespan in

response to increasing eras.

eras to increment once per generation until the maximum era = 15 is reached.

Figure 3.8(b) shows the evolution of run time or makespan in the same run. The

minimum makespan can only be calculated from a valid solution. Early in the

run, with lower values of era, valid solutions are found only sporadically. Over

time, valid solutions are found more consistently and the minimum makespan

decreases steadily.

3.3.4.2 Evaluation of the Effectiveness of the Fitness Function

The fitness function of a GA can have a significant impact on the effectiveness of

the algorithm. Our fitness function has several parameters that can vary. We test

the sensitivity of the GA to variations in these values. Specifically, we examine

GA performance on problems P1 and P3 where b ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and

thresh ∈ {0.25, 0.5, 0.75, 1.0}.

120

0

20

40

60

80

100

120

0
/ 0

.2
5

0
/ 0

.5
0

/ 0
.7

5
0

/ 1

0.
25

 /
0.

25
0.

25
 /

0.
5

0.
25

 /
0.

75
0.

25
 /

1

0.
5

/ 0
.2

5
0.

5
/ 0

.5
0.

5
/ 0

.7
5

0.
5

/ 1

0.
75

 /
0.

25
0.

75
 /

0.
5

0.
75

 /
0.

75
0.

75
 /

1

1
/ 0

.2
5

1
/ 0

.5
1

/ 0
.7

5
1

/ 1

P
er

ce
nt

 o
f r

un
s

b / thresh

Percent of runs that find a valid solution

Figure 3.9: Problem P1: Percent of runs that find a valid solution. X-axis

indicates b/thresh values.

Figures 3.9 and 3.10 show the results for Problem P1. Similar results were

obtained for Problem P3.

Figure 3.9 shows the percent of runs in each experiment that find at least one

valid solution. Figure 3.10 shows (a) the minimum makespan achieved by the

GA and (b) the minimum makespan found in the final generation averaged over

50 runs. Data are obtained for each combination of b and thresh values. The

x-axis labels indicate the b/thresh combination for each set of runs.

Intermediate values of b consistently produce good performance, finding a

minimum makespan of 300 and average best makespans of 300 or slightly above.

The narrow confidence intervals in Figure 3.10(b) indicate that most runs are

able to find a best solution at or close to 300. Varying values of thresh appear

to have little impact on the results.

Extreme values of b have a noticeable negative impact on GA performance.

Setting b = 0.0 produces suboptimal, though still respectable, results, with min-

121

250

260

270

280

290

300

310

320

330

0
/ 0

.2
5

0
/ 0

.5
0

/ 0
.7

5
0

/ 1

0.
25

 /
0.

25
0.

25
 /

0.
5

0.
25

 /
0.

75
0.

25
 /

1

0.
5

/ 0
.2

5
0.

5
/ 0

.5
0.

5
/ 0

.7
5

0.
5

/ 1

0.
75

 /
0.

25
0.

75
 /

0.
5

0.
75

 /
0.

75
0.

75
 /

1

1
/ 0

.2
5

1
/ 0

.5
1

/ 0
.7

5
1

/ 1

M
ak

es
pa

n

b / thresh

Best solution in final generation

(a)

280

300

320

340

360

380

0
/ 0

.2
5

0
/ 0

.5
0

/ 0
.7

5
0

/ 1

0.
25

 /
0.

25
0.

25
 /

0.
5

0.
25

 /
0.

75
0.

25
 /

1

0.
5

/ 0
.2

5
0.

5
/ 0

.5
0.

5
/ 0

.7
5

0.
5

/ 1

0.
75

 /
0.

25
0.

75
 /

0.
5

0.
75

 /
0.

75
0.

75
 /

1

1
/ 0

.2
5

1
/ 0

.5
1

/ 0
.7

5
1

/ 1

M
ak

es
pa

n

b / thresh

Best solution, averaged over 50 runs

(b)

Figure 3.10: Problem P1: X-axis indicates b/thresh values. (a) Minimum

makespan. (b) Average best makespan averaged over 50 runs∗ with 95% con-

fidence intervals. ∗When b = 1.0, not all 50 runs are able to find valid solutions.

The average values shown are calculated only from those runs that do find valid

solutions.

122

imum makespans as high as 315. When b = 0.0, the fitness function consists of

only the task fitness portion which focuses only on finding valid solutions (it

rewards for valid substrings of tasks and rewards for having at least one copy of

each task). The length (makespan) of a solution is irrelevent as the fitness func-

tion does not give any reward for shorter solutions. As a result, the GA is able

to find solutions; however, the lack of pressure for smaller solutions is apparent

as all of the GA runs with b = 0.0 find significantly longer solutions that those

runs with intermediate values of b. The larger 95% confidence interval indicates

a wider range of makespan values found.

Setting b = 1.0 makes it difficult for the GA to find valid solutions. Figure 3.9

shows that the GA is unable to find a valid solution in every run when b = 1.0.

When valid solutions are found, however, the GA finds good solutions, although

not as consistently as with intermediate values of b. When b = 1.0, the fitness

function consists only of the processor fitness component which is activated

only if an individual encodes a valid solution. Only when an individual encodes

a valid solution will the fitness function return a non-zero value. As a result,

there is no feedback for partial solutions. With no fitness reward for partial

solutions consisting of short valid task orderings, the GA has difficulty finding

valid solutions. Thus, rewarding for valid partial orderings appears to be an

important component of the algorithm’s success.

The thresh parameter appears to have little impact on the quality of solutions

found for intermediate values of b. For b = 0.0 and b = 1.0, performance declines

with increasing values of thresh.

123

Table 3.5: Minimum makespan found by ISH, DSH, CPFD, and GA on a het-

erogeneous problem. CI = confidence interval.

Test ISH DSH CPFD GA

Problem Best Average 95% CI

P1 300 300 345 315 333.7 3.70

P2 500 440 460 420 462 8.91

P3 320 310 260 260 288.4 5.50

P4 400 350 360 350 396.9 8.13

P5 549 470 606 539 559.9 8.65

P6 46 42 43 40 42.94 0.60

P7 470 410 370 360 413.2 10.33

P8 840 840 860 810 889.4 14.40

P9 1220 1130 1210 1060 1187 23.95

3.3.4.3 Comparison using heterogeneous processors

We also compare the four algorithms in a more complex environment in which

the processors are heterogeneous. In this experiment, we double the processing

time for processor 2 and triple the processing time for processor 4. Processors 1

and 3 remain unchanged, Table 3.5 compares the quality of the solutions found.

Our GA exhibits the best performance on five of the problems. On Problems P3

and P4, CPFD and DSH, respectively, perform equally as well as the GA. On

Problems P1 and P5, the GA comes in second to DSH. Among the traditional

methods, DSH appears to perform better than CPFD on heterogeneous problems.

124

3.3.4.4 Experiments on Dynamic Environments

The results on stationary problem environments indicate that, while a GA can

find very competitive solutions, its execution times are likely to be longer than

traditional methods. Why then would one choose to use a GA over faster tradi-

tional methods?

We expect the strengths of this GA approach to be in its flexibility and adapt-

ability in non-stationary environments [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99].

Non-stationary problem environments are those in which the desired solution

changes over time. Such environments can be difficult for traditional scheduling

algorithms; most must be re-started, many reconfigured or re-programmed, for

each new situation. We believe that the flexibility of our GA and its representa-

tion will allow it to automatically adapt to changes in the fitness evaluation with

no change or interruption to the algorithm itself.

The experiments in this section investigate the GA’s ability to adapt in a non-

stationary environment where processor speeds can change over time. Once a GA

run has started, no human intervention or interruptions are allowed; the GA must

adapt automatically to changes in the target problem. Within a multiprocessor

system, processor loads may vary depending on the number of tasks under exe-

cution and how they are distributed among the processors. As a processor’s load

increases, its execution speed is expected to decrease. Ideally, as processor loads

change, the system will automatically redistribute workload among the proces-

sors to take advantage of processors with low load and minimize assignments to

processors with high load. An algorithm that is able to adapt automatically to

such changes can significantly improve the efficiency of managing a multiproces-

sor system. In addition, the underlying problem has now changed and become

125

more difficult: multi-processor task scheduling for heterogeneous processors in

non-stationary environments.

In this experiment, a GA run begins by finding a task schedule for four identi-

cal processors at minimal load. We call this situation the base target. We change

the target problem by increasing processor speeds to double and triple the min-

imal speed. At fixed intervals, each processor has a 30% chance of doubling its

speed and a 20% chance of tripling its speed. We call these situations modified

targets. We test intervals of I = {100, 500} generations.

Figure 3.11 shows in two example runs how the evolved solutions of a GA

change as processor speed changes. “B” indicates the base target. Integer values

indicate modified processors. Processors are randomly selected to be modified.

The optimal makespan for the base target is 330. Figure 3.11(a) shows an example

run with I = 100 where each interval with a modified target is followed by an

interval with the base target. Figure 3.11(b) shows an example run with I = 500

where multiple consecutive intervals can have modified targets. The base target

is assigned to generations 0-500 and generations 3000-3500 to provide a baseline

comparison.

Results indicate that this GA approach is able to automatically adapt to

changes in the target solution. In both examples, the GA continues to improve the

solutions generated throughout a run. As expected, makespan increases sharply

after a target change to a modified target, but solutions immediately begin to

improve. Figure 3.11(b) shows less stable solutions than Figure 3.11(a). We

speculate that there are two potential causes for this difference. First, longer

intervals of 500 generations give the GA more time to optimize solutions and

converge the population for the current target. As a result, it is less likely that

the population will have solutions that perform well for other modified targets.

126

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

M
ak

es
pa

n

Generation

B

B

4

2

B

B

--

3,4

B

B

--

2

B

B

4

--

B

B

2,4

--

B

B

--

--

B

B

3

4

B

B

Processor
speed:

Doubled

Tripled

Best Solution

(a)

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000

M
ak

es
pa

n

Generation

B

B

4

2

--

1,2,4

4

--

1,4

2

--

--

B

B

3

1

--

3

3

1

--

3

Processor
speed:

Doubled

Tripled

Best Solution

(b)

Figure 3.11: Two example GA runs. Evolution of best solution in a

non-stationary environment in which the processor speed changes at fixed inter-

vals. “B” indicates the base target. Integer values indicate modified processors.

127

Second, not having a base target in between each modified target gives the GA

no time to “neutralize” its solutions between modified targets. Overall, the GA

is able to evolve near optimal solutions in both experiments, even when processor

speeds are increased.

3.4 A Scheduling Algorithm for Large-scale Distributed

Systems

This section is focused on a scheduling algorithm for large-scale distributed

systems. This algorithm is extended from the GA-based algorithm for multi-

processor scheduling (discussed in Section 3.3). We formulate the problem of

scheduling for large-scale distributed systems, present the algorithm, and evalu-

ate its performance in simulation environments.

3.4.1 Problem Formulation

We make the following assumptions before we formulate the problem of scheduling

for a large-scale distributed system.

(a) The scheduling of a computation is at the activity level, i.e., the goal of a

scheduling algorithm is to assign the execution of each end-user activity to an

available computing node in a system.

(b) Although it is generally difficult to estimate the computational cost and the

size of the output data from the execution of each activity, we assume that the

statistics on previous executions of this activity can be used for an estimation.

128

(c) Not all nodes support the computation for each end-user activity. We assume

that a scheduling algorithm is able to know the set of all computing nodes that

support the computation for each end-user activity in a process description. An

activity is always assigned to a computing node that supports its execution.

(d) We assume that a scheduling algorithm is able to track the current status of a

large-scale distributed system, including the processing ability of the computing

nodes and the bandwidths of the communication links between the nodes. These

data are important for producing an optimized schedule or adapting an existing

schedule to the new computing environment.

With the above assumptions, we formulate the problem of scheduling for

large-scale distributed systems. This scheduling problem requires the following

four aspects of input data.

(a) The process description of a computing task. The process description is

either given by a user or created by a planning service. The process description

may not reflect the actual flow of control if it contains iterative and/or conditional

execution of activities.

(b) The estimated computational cost of each end-user activity in a process

description. The computational cost typically depends on the size or content of

the input data and can rarely be estimated accurately. The computational cost

may be different over successive iterations. A rough estimation can be obtained

from the history of activity execution.

(c) The estimated size of data transferred between dependent activities in

a process description. Again, this aspect of input data cannot be estimated

accurately and depends on a lot of factors. In addition, the size of data trans-

fer between tasks may vary over different invocations of the activity execution.

129

Statistics on the history of task execution or domain-specific knowledge may pro-

vide useful guidance for an estimation.

(d) The information regarding the set of computing nodes capable of perform-

ing each end-user activity in a process description, their processing abilities as

well as the network topology and the bandwidths of the communication links.

All above information is available to a scheduling algorithm.

The output of the scheduling algorithm is an execution schedule of end-user

activities that minimizes the total execution time of a computation.

3.4.2 Interactions with Other Services in the Middleware

When an execution plan is produced by the planning service, a request for

scheduling a computation is sent from the coordination service to the scheduling

service. The request contains the process and case descriptions of the computing

task. After the request is received, the scheduling service generates a determin-

istic DAG based on the process description (will be discussed in Section 3.4.3).

The scheduling service next contacts each end-user service that supports the ex-

ecution of an activity in the DAG for an estimation of the execution time and

the available time periods for executing the activity. The scheduling service also

needs to interact with the monitoring service for the current conditions of the

computing environment. When all above information is available, the schedul-

ing service applies the algorithm and generates a schedule for execution. The

scheduling service next contacts all end-user services to which the computation is

scheduled for requesting the execution at scheduled times. If any of the requests

are not accepted, the scheduling service needs to modify the schedule and send

130

the requests to the end-user services again. If a schedule cannot be produced, the

scheduling service reports failure to the coordination service. The coordination

service may either ask the planning service for replanning, or send a request to

plan switching service for switching the execution to another plan. Otherwise, the

scheduling service sends the schedule to the coordination service for execution.

As the decision of the execution of some end-user activities is determined by the

runtime results of other activities, we may not be able to schedule all activities

in a process description and finish the execution at one time. After the scheduled

activities finish execution, the coordination service may send another request for

scheduling subsequent activities. The above process continues until the compu-

tation finishes completely. Figure 3.12 shows the typical flow of communications

between the scheduling service and other services in the middleware during the

course of scheduling a computing task.

3.4.3 A Modified GA-Based Algorithm

The existing GA-based algorithm for multi-processor scheduling can only accept

task graphs given by deterministic DAGs in which all activities must be executed

exactly once. The scheduling algorithm cannot schedule activities whose execu-

tion is determined by run-time computation results. We call a task graph non-

deterministic if there exists conditional or iterative execution of tasks. The exist-

ing algorithm should be modified to schedule for non-deterministic task graphs.

Some studies have been reported on scheduling task graphs that contain con-

ditional execution of tasks. Chou and Abraham [100] introduce a computational

model that allows conditional and concurrent task execution. They apply the

131

Scheduling
Service

Coordination
Service

1. A request for scheduling a computation

8. An execution
schedule or failure to
produce a schedule

4.
 E

st
im

at
io

n
of

 c
om

pu
ta

tio
n

tim
e

an
d

av
ai

la
bl

e
tim

e
pe

rio
ds

 fo
r

ex
ec

ut
io

n?

Monitoring
Service

2. The status of the
computing environment?

3. The load of the
processors and the

available capacity of the
communication links

End-User Service End-User Service.

5.
 A

n
es

tim
at

io
n

of
 th

e
ex

ec
ut

io
n

tim
e

an
d

av
ai

la
bl

e
tim

e
pe

rio
ds

 fo
r

ex
ec

ut
io

n

6.
 R

eq
ue

st
 fo

r
ac

tiv
ity

ex
ec

ut
io

n?

7.
 A

cc
ep

t o
r

re
je

ct

Figure 3.12: The typical flow of communications between the scheduling service

and other services in the middleware during the course of scheduling a computing

task.

132

policy iteration algorithm to optimize the task assignment. Towsley [101] builds

a computational model that contains conditional tasks and iterative tasks with

bounded number of iterations. They apply the shortest path method to allocate

the tasks to processors and minimize the total communication and computation

costs. El-Rewini and Ali [102] present a two-step approach to scheduling task

graphs with conditional branches. The first step of this approach tries to explore

the similarity between conditional execution branches and minimize the degree of

non-determinism in a task graph as much as possible. The second step generates

an optimal schedule for each execution instance (that cannot be further unified

in the first step) and then merges these schedules to form the final solution. All

above studies are based on well-defined models in which the probability of task

execution is already known or can be estimated before the whole computation

begins.

Other studies address the problem of scheduling iterative tasks on parallel

processors. One class of successful techniques, called graph unfolding [103, 104],

intends to exploit the inter-loop parallelism of task execution by unfolding loops

in a task graph before applying the scheduling algorithms. Another class of

techniques, called software pipelining [105, 106, 107, 108, 109], is widely used

by compilers to overlap the execution of instructions across different iterations.

Various methods of software pipelining have been proposed. One example method

of using software pipelining to achieve greater parallelism is to reorganize the

execution of instructions within a loop without changing the overall behavior of

the complete computation.

We present a modified approach to scheduling for large-scale distributed sys-

tems. This approach has the following two features.

133

First, the scheduling process is divided into multiple steps. In each step,

we create a deterministic DAG based on the process description. The DAG

only contains the activities whose execution can be determined at the current

stage. We do not include any activities in which the decision of their execution

is determined by the execution results of other activities. We next apply the

GA-based multi-processor scheduling algorithm, build a schedule for the current

DAG, and send the schedule for execution. After the execution of the schedule

finishes, we retrieve the computation results, determine the successor activities to

be scheduled, and generate a new DAG for the next step. This process continues

until the execution of the complete computation finishes. The following pseudo

code shows the brief procedure for this scheduling approach.

While the computation of a task has not finished, do

(a) Determine the activities to be scheduled and generate a DAG.

(b) Estimate the execution time of each activity in the DAG.

(c) Record any changes on the runtime environments.

(d) Apply the GA-based scheduling algorithm and produce a schedule

for the DAG.

(e) Wait until the execution of the scheduled activities finishes.

(f) Collect the computation results.

End while.

We use the same computation described in Section 2.2.3.1 as an example

to demonstrate the creation of DAGs from a process description. A process

description for the computation of 3D reconstruction is given in Figure 2.24. Some

activities in this process description need to be executed multiple times to reach

an expected resolution, but the number of iterations cannot be determined before

134

the computation starts. Figure 3.13(a) shows the DAG for the first iteration and

Figure 3.13(b) shows the DAG for the rest of the iterations.

P3DR
1

POD

POR

PSF

P3DR3

P3DR
4

P3DR
2

(a)

POR

PSF

P3DR3
P3DR4

P3DR
2

(b)

Figure 3.13: An example to demonstrate the transformation between the process

description shown in Figure 2.24 and DAGs. (a) the DAG for the first iteration

(b) the DAG for the rest of the iterations.

Second, we keep and reuse the previous schedules as backup solutions to

improve the efficiency of the scheduling algorithm. The GA-based scheduling

algorithm generates a group of diversified schedules besides the best one selected

as a final solution. In a dynamic problem environment, these backup schedules

may exhibit good performances for a future problem condition. Simply discarding

them is a waste of genetic resources. Reusing these schedules can effectively

reduce the computational cost of scheduling in subsequent steps.

We present a semi-static approach to scheduling for large-scale distributed

systems. This approach requires the scheduling service to maintain a reference

table that stores the valid schedules that have been evolved (note that the GA-

based scheduling algorithm may evolve both valid and invalid solutions). Both

135

schedules and DAGs are stored in the table. We set the limit on the number of

schedules for each DAG. When the number of schedules for a DAG has reached the

limit, the oldest schedule (i.e., the schedule that was stored earliest) is removed

from the table. When a new DAG is generated (step a. in the procedure), we

retrieve all schedules for that DAG and compare their makespan under the current

problem conditions. We select the best schedule as a solution. If, however, there

is no valid schedule for the DAG, we rerun the scheduling algorithm, store all valid

solutions in the table (and possibly remove some existing schedules), and select

the best one as the solution. This semi-static approach can effectively reduce

the computational time as we do not need to run the scheduling algorithm for

each request of scheduling. The modified procedure of the approach is given as

follows:

While the computation of a task has not finished, do

(a) Determine the activities to be scheduled and generate a DAG.

(b) Estimate the execution time of each activity in the DAG.

(c) Record any changes on the networking environments.

(d) Find all matching schedules for the DAG.

(e) If no matching schedule can be found

(i) Run GA and select the best schedule as the solution.

(ii) Store all valid schedules in the population in the

reference table.

else

(iii) Evaluate all backup schedules and select the best schedule

as the solution.

(f) Wait until the execution of the scheduled activities finishes.

(g) Collect the runtime results of execution.

End while.

136

3.4.4 Experimental Results

We evaluate the performance of the scheduling algorithm with two experiments.

In the first experiment, we evaluate the applicability of the scheduling algorithm

in a large-scale multi-processor system (i.e., with a large number of processors). In

the second experiment, we evaluate the effectiveness of the semi-static approach

in a simulation environment.

3.4.4.1 Performance Evaluation on a Large-scale Multi-processor Sys-

tem

In this experiment, we study how well the GA-based scheduling algorithm per-

forms when the number of processors increases. We repeat the same experiment

in Section 3.3.4.1 but with 10, 20 and 50 processors. We use the same parameters

shown in Table 3.1 and test the GA algorithm on the same set of task graphs

shown in Table 3.2. We test each task graph 50 times and select the best solu-

tion of each run as the result. For each task graph, we calculate the best, the

average, and 95% confidence interval of the results from all 50 runs. Tables 3.6,

3.7, and 3.8 show the experimental results on 10, 20, and 50 processors, respec-

tively and compare the results with ISH, DSH, and CPFD on the same number

of processors.

The results indicate that the quality of solutions found by the three list

scheduling algorithms does not change much with more processors. DSH and

CPFD finds better solutions to Problems P3, P5, and P6 on ten processors than

those on four processors. None of these algorithms can further improve the solu-

tions to any task graphs when we have 20 or 50 processors.

137

Table 3.6: Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on ten-processor systems.

Test ISH DSH CPFD GA

Problem Best Average 95% CI

P1 300 300 300 300 300 0

P2 600 400 400 400 449.2 6.36

P3 260 240 240 260 263.2 2.05

P4 400 300 330 350 371.6 5.50

P5 761 438 438 361 383.53 10.70

P6 41 36 36 36 36.66 0.16

P7 450 320 320 350 377.8 3.81

P8 760 760 760 760 766.4 3.87

P9 1220 1030 1040 1040 1082.4 12.04

The performance of GA, however, degrades on several problems as the number

of processors increases. Given more processors, GA tends to find solutions in

which tasks are evenly distributed among processors, which is not favorable as

the unnecessary communication costs between dependent tasks may result in a

longer makespan. Nevertheless, the overall performance of GA is still comparable

to DSH and CPFD. GA improves the solution to Problem P5 and still outperforms

the other algorithms on this problem.

3.4.4.2 Performance Evaluation on a simulation environment

We evaluate the performance of the semi-static scheduling approach on a simu-

lation environment. We use the 14-node LU Decomposition task graph shown in

138

Table 3.7: Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on twenty-processor systems.

Test ISH DSH CPFD GA

Problem Best Average 95% CI

P1 300 300 300 300 300 0

P2 600 400 400 440 468.8 5.03

P3 260 240 240 260 267.2 2.69

P4 400 300 330 350 396.6 6.62

P5 761 438 438 361 413.06 21.39

P6 41 36 36 36 36.78 0.16

P7 450 320 320 360 385.6 4.42

P8 760 760 760 760 770 4.19

P9 1220 1030 1040 1050 1133.4 13.24

Figure 3.2 in the experiment. All tasks in this task graph are executed multiple

times. In the baseline setting, the computational time of tasks and the data

transfer times among tasks are the same as shown in Figure 3.2 and we assume

there are four fully connected computing nodes with the same processing ability.

In each loop, the execution time of a task and the data transfer time between

each pair of dependent tasks have a 30% chance of doubling and a 20% chance

of tripling the time in the baseline settings. Likewise, each processor has a 30%

chance of doubling and a 20% chance of tripling its processing times. The above

settings of the computing environment in one loop are independent of the other

loops during the course of the computation. The changes on the problem settings

may cause an optimized schedule fail to produce consistently good results over

different loops. The scheduling algorithm is invoked and a best schedule is pro-

139

Table 3.8: Minimum makespan found by ISH, DSH, CPFD, and GA-based

scheduling algorithm on fifty-processor systems.

Test ISH DSH CPFD GA

Problem Best Average 95% CI

P1 300 300 300 300 300 0

P2 600 400 400 440 512.8 9.01

P3 260 240 240 260 276.4 2.43

P4 400 300 330 350 412.4 7.33

P5 761 438 438 369 512.88 21.02

P6 41 36 36 36 37.36 0.20

P7 450 320 320 380 407.6 4.47

P8 760 760 760 760 785.2 4.79

P9 1220 1030 1040 1050 1182.4 15.03

duced in each loop, either selected from a group of existing schedules or created

from scratch.

We run two cases to evaluate the performance of the semi-static approach. In

the first case, we run the scheduling algorithm only for the first loop. For the

rest of the loop, a best schedule is selected from the exiting solutions (i.e., with

the highest fitness). In the second case, we rerun the scheduling algorithm in

each loop. In both cases, we run five loops and compare the fitness of the best

schedule produced in each loop. Table 3.9 shows the results.

Apparently, rerunning the scheduling algorithm for each loop produces better

results than simply selecting a solution from existing ones, because an optimal

solution for a previous problem condition may not fit for a new problem condition.

140

Table 3.9: The fitness of the best solution for each loop of task execution, re-

sults produced from two scheduling algorithms: with and without the semi-static

approach.

Algorithm Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Scheduling without
0.918 0.941 0.928 0.936 0.947

the Semi-static Approach

Scheduling with
0.956 0.965 0.965 0.968 0.969

the Semi-static Approach

Nevertheless, the semi-static approach still produces fairly good solutions, with

an average fitness of 0.934.

We expect that increasing the diversity of solutions in a population can im-

prove the performance of the semi-static approach because a diversified popu-

lation contains more resources for a variety of problem conditions. We conduct

additional experiments in which we vary the crossover and mutation rates of the

scheduling algorithm. We test four crossover rates: 0.4, 0.6, 0.8 (the baseline set-

ting), and 1.0, and five mutation rates: 0.001, 0.005 (the baseline setting), 0.01,

0.02, and 0.05. For each test case, we run the scheduling algorithm 50 times using

the semi-static approach, and each run consists of 10 loops. We study the effect

of these two parameters on the performance of the approach. The performance

is measured by the average fitness of solutions and the percentage of times that

a new solution is selected for a current problem condition (also called a solution

switch). Figure 3.14 and 3.15 show the results.

The results indicate that the performance of the semi-static approach is sensi-

tive to the mutation rate. The experiments with a mutation rate of 0.02 produce

the best results. As the mutation rate decreases, the probability of finding a

141

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.
00

1
/ 0

.4
0.

00
1

/ 0
.6

0.
00

1
/ 0

.8
0.

00
1

/ 1
.0

0.
00

5
/ 0

.4
0.

00
5

/ 0
.6

0.
00

5
/ 0

.8
0.

00
5

/ 1
.0

0.
01

 /
0.

4
0.

01
 /

0.
6

0.
01

 /
0.

8
0.

01
 /

1.
0

0.
02

 /
0.

4
0.

02
 /

0.
6

0.
02

 /
0.

8
0.

02
 /

1.
0

0.
05

 /
0.

4
0.

05
 /

0.
6

0.
05

 /
0.

8
0.

05
 /

1.
0

A
ve

ra
ge

 F
itn

es
s

of
 S

ol
ut

io
ns

Mutation Rate / Crossover Rate

Figure 3.14: The average fitness of the solutions produced by the semi-static

scheduling approach using different crossover and mutation rates.

0

20

40

60

80

100

0.
00

1
/ 0

.4
0.

00
1

/ 0
.6

0.
00

1
/ 0

.8
0.

00
1

/ 1
.0

0.
00

5
/ 0

.4
0.

00
5

/ 0
.6

0.
00

5
/ 0

.8
0.

00
5

/ 1
.0

0.
01

 /
0.

4
0.

01
 /

0.
6

0.
01

 /
0.

8
0.

01
 /

1.
0

0.
02

 /
0.

4
0.

02
 /

0.
6

0.
02

 /
0.

8
0.

02
 /

1.
0

0.
05

 /
0.

4
0.

05
 /

0.
6

0.
05

 /
0.

8
0.

05
 /

1.
0

P
er

ce
nt

ag
e

of
 S

ol
ut

io
n

S
w

itc
he

s

Mutation Rate / Crossover Rate

Figure 3.15: The percentage of times that a solution switch occurs during the

execution of the semi-static scheduling approach using different crossover and

mutation rates.

142

better solution for a current problem condition decreases as well. As a result, the

runs with low mutation rates cannot produce as good solutions as the ones using

mutation rate of 0.02. On the other hand, a mutation rate of 0.05 is too high for

the scheduling algorithm to produce consistently good solutions. Compared to

the mutation rate, the crossover rate has much less impact on the performance

of the approach and thus its effect can be ignored.

143

CHAPTER 4

PLAN SWITCHING

A large-scale distributed system is a dynamic computing environment. The avail-

ability of resources and services to a computing task typically changes quickly

over the course of the computation. As a result, the success of plan execution can-

not be guaranteed. There are two basic strategies to overcome this uncertainty:

replanning and plan switching. Replanning, as an online strategy, is a process of

either creating a new plan or adapting the existing plan to the current conditions

of the computing environment (by using resources or services currently available

to the system). Replanning introduces additional time for execution, as the pro-

cess of replanning and executing a computing task cannot be overlapped. Plan

switching, as an offline strategy, attempts to build a family of alternative plans

in advance. When the current plan fails in execution, we find an alternative plan

that can continue the execution of the computing task and migrate the execution

directly from the current plan to the alternate. If plan switching is successful, we

can continue the execution without replanning.

A request for plan switching is invoked when failure occurs during the exe-

cution of a computation. The procedure of plan switching consists of four steps.

First, we retrieve the current state of the execution of the computation. Second,

we look for a backup plan so that the computation may continue from that plan

and still reach the goal of the computation. Third, if such a plan can be found,

144

we call the scheduling service for a new execution schedule based on the backup

plan. Finally, we move all data related to the computation from the current

nodes to the scheduled nodes and continue the computation. The execution of

the backup plan may fail again due to the dynamics of the computing environ-

ment. As a result, we may need to perform plan switching multiple times during

the execution of a computation.

This chapter addresses the problem of plan switching and presents an ap-

proach to this problem. The main idea of the approach is to locate the execution

points from alternative plans for a given task in parallel with the execution of the

current plan. When the execution cannot proceed, we continue the execution of

a computing task from a selected execution point in another plan. The process

of finding execution points has a relatively small computational cost and can

be performed in parallel with the execution of the computation. Therefore, this

approach does not necessarily increase the execution time of a computing task.

4.1 Problem Formulation

4.1.1 Assumptions

We make the follow assumptions before formulating the problem of plan switch-

ing.

1. A plan is a directed graph whose vertices are the atomic activities and

directed arcs denote data and control flow dependencies. Concurrent activ-

ities are allowed, but iterative execution of activities is not allowed. Only

145

independent activities may be executed concurrently; no communication

among concurrent activities is allowed.

2. A family of plans are created in advance. One of the members of the family,

the one selected for execution, is called the current plan. All other plans

serve as backups but still have a chance of execution when the current plan

fails. These plans are called alternative plans .

3. Once an activity in a plan is executed, the success of its execution is guar-

anteed. If, however, an activity cannot be executed, we may either wait

until it can be executed or switch the execution of the current plan to an

alternative plan.

4.1.2 Definitions

We now provide several definitions necessary to formulate our plan switching

problems. The term “snapshot” has been used to determine the progress of

multiple processes running on distributed systems [110]. We use the same term

to determine the progress of a plan execution. We next introduce the concept of

“congruent snapshot,” which is the basis of the plan switching approach.

Definition 7. A single snapshot is a partial description of the progress of

plan execution. A single snapshot can be defined on either a pair of consecutive

activities {a, b} in a plan, denoting that activity a has finished execution while

activity b is still pending, or between an activity and a dummy activity, if the

activity has no precedent or subsequent activities.

We can annotate a plan by adding single snapshots in three cases: 1) between

every two consecutive activities, 2) before all activities that have no precedent

146

activities, and 3) after all activities that have no subsequent activities. Figure 4.2

shows an annotated version for the plan in Figure 4.1.

a1

a
4

fork

fork

a3

a2

join a5

join a
6

Figure 4.1: An example plan that contains six activities.

a
1

a4

a
3

a
2

a
5

a
6

s
1

s2

s
3

s
4

s
5

s
6

s
8

s
7

s9

Figure 4.2: An annotated version of the plan shown in Figure 4.1. Nine single

snapshots are added.

Definition 8. The subsequent activities of a single snapshot are the set of

all activities that should be executed after the snapshot is reached. We use the

function subs(s) to denote the subsequent activities of a given single snapshot s.

For instance, in Figure 4.2, subs(s1) = {a1, a2, a3, a4, a5, a6}, subs(s5) = {a5, a6},
and subs(s9) = φ. The preceding activity of a single snapshot is a set that

contains the most recent executed activity, if it exists, before the snapshot is

reached. We use the function prec(s) to denote the preceding activity of a given

147

single snapshot s. For instance, in Figure 4.2, prec(s1) = φ, prec(s5) = {a2}, and

prec(s9) = {a6}.

Definition 9. A pair of single snapshots, sa and sb, is independent if

prec(sa) ∩ subs(sb) = φ and prec(sb) ∩ subs(sa) = φ. For instance, snapshots

s2 and s3 in Figure 4.2 are independent snapshots, while snapshots s2 and s5

are not. A set of single snapshots S is independent if every pair of single snap-

shots in S is independent. For instance, in Figure 4.2, S = {s2, s3, s4} is a set of

independent snapshots.

Definition 10. A composite snapshot is a combination of single snapshots.

We use a pair of square brackets “[” and “]” to denote the operation of combining

single snapshots. For instance, [s2, s3] denotes a composite snapshot that com-

bines s2 and s3. A composite snapshot may contain single snapshots that are not

independent of each other.

The above notions for a single snapshot can also be applied to composite

snapshots. The subsequent activities of a composite snapshot are the union of

the sets of subsequent activities of all single snapshots. The preceding activi-

ties of a composite snapshot are the union of the sets of preceding activities of

all single snapshots. Two composite snapshots, sa and sb, are independent if

prec(sa) ∩ subs(sb) = φ and prec(sb) ∩ subs(sa) = φ. For instance, in Figure 4.2,

subs([s2, s3]) = {a2, a5, a6} ∪ {a3, a5, a6} = {a2, a3, a5, a6}, prec([s2, s3]) = {a1},
and snapshots [s2, s3] and s4 are independent.

Definition 11. A snapshot is consistent if it is either a single snapshot or a

composite snapshot of a set of independent snapshots. A consistent snapshot s in

a plan P is a global consistent snapshot if there does not exist a single snapshot s′

in P such that s′ is not included in s and s′ is independent of all snapshots in s. In

contrast to a single snapshot, a global consistent snapshot gives a complete view

148

of the status of a plan execution. For instance, the composite snapshot [s2, s3, s4]

in Figure 4.2 is a global consistent snapshot. This snapshot describes a status of

plan execution in which activity a1 has finished execution while activities a2, a3,

and a4 are pending execution followed by a5 and a6.

Definition 12. A global consistent snapshot s1 in plan P1 is congruent to a

global consistent snapshot s2 in plan P2, if we are able to switch the execution

from s1 to s2, execute the subsequent activities of s2, and finish the computing

task. We use the symbol “∼” to denote the relation of congruence. If a snapshot

s1 is congruent to s2, s1 ∼ s2. In contrast to the notion of congruence in math-

ematics, the relation of congruence between a fair of snapshots is not reflexive,

i.e., if s1 ∼ s2, s2 ∼ s1 may not hold. The relation of congruence is not transitive,

either, i.e., if s1 ∼ s2 and s2 ∼ s3, s1 ∼ s3 may not hold.

Definition 13. The optimal congruent snapshot for a given snapshot is the

one whose subsequent activities incur minimal execution cost among all congruent

snapshots.

4.1.3 Plan Switching between Congruent States

We formulate the problem of plan switching as follows: if the execution of the

current plan Pcurr cannot proceed from a global consistent snapshot s, find an

optimal congruent snapshot s′ of s from alternative plans and continue the exe-

cution from s′ in the plan to which s′ belongs. Figure 4.3 shows an example of

switching between two plans, P1 and P2. Initially, P1 is the current plan. When

the execution of P1 cannot continue in snapshot [s5, s6, s7], a congruent snapshot

[s4
′, s5

′] in Plan P2 is found, and the plan execution is switched to P2 from this

149

congruent snapshot. When the execution finishes, the complete set of activities

having been executed is {a1, a2, a3, a4} from P1 and {a4
′, a5

′, a6
′} from P2.

a
1

a4

a
3

a
2

a
5

a
6

s
1

s2

s
3

s
4

s
5

s
6

s
8

s
7

s9

a1'

a
3
'

a
2
' a4'

a
6
'

s1'

s
6
'

s
8
'

a
5
'

s
2
'

s3'

s
4
'

s5'
s

7
'

Plan P1

Plan P2

Figure 4.3: An example of execution switching between two plans. Snapshot

[s4
′, s5

′] in Plan P2 is congruent to snapshot [s5, s6, s7] in Plan P1.

4.2 Algorithm Design

The process of finding the optimal congruent snapshot for a given snapshot con-

sists of three steps: 1) generate the set of global consistent snapshots for each

plan, 2) identify congruent snapshots from the set of global consistent snapshots,

and 3) choose the optimal congruent snapshot.

1. Finding Global Consistent Snapshots

150

To find the set of all global consistent snapshots for a plan, we first set S to

be the set of all single snapshots in the plan. Then we repeat the steps in

the following pseudo code to update the snapshots in S until S cannot be

further updated. The final set S is the set of all global consistent snapshots

of a plan.

Begin.

1. For each snapshot s in S, find all single snapshots that are

independent of s.

2. If s has at least one independent snapshot, do

a. Remove s from S.

b. For each of its independent snapshot s’, do

(1) Combine s with s’.

(2) If the combined snapshot is not in S, include it in S.

c. End for.

3. End if.

End.

2. Locating Congruent Snapshots for a Given Snapshot

Locating congruent snapshots from alternative plans allows a plan execu-

tor to easily switch task execution from the current plan to an alternative

plan, when temporary or permanent failure occurs in current plan execu-

tion. During the execution of the current activity(ies), we try to find the

optimal congruent snapshot for the snapshot after the execution of the cur-

rent activity(ies) finishes. We show the pseudo code for locating congruent

snapshots as follows.

Begin.

151

1. P-curr = the currently executing plan.

2. A-curr = the set of currently executing activities.

3. s-curr = the global consistent snapshot after all activities in

A-curr finishes.

4. S = {}. /* initially, the set of congruent snapshots is empty */

5. For each alternative plan P, do

a. For each global consistent snapshot s in P, do

(1) If subs(s) can be executed from s-curr and the execution

of subs(s) satisfies all goals for the computing task,

include s in S.

b. End for.

6. End for.

End.

3. Choosing the Optimal Congruent Snapshot

Once we have identified all congruent snapshots in step two, we are able

to estimate the computational cost of all subsequent activities for each

congruent snapshot. If the computational costs of activities are not given

or are difficult to estimate, a rough estimation which simply counts the

number of subsequent activities for a congruent snapshot is applied. The

optimal congruent snapshot is the one that incurs the lowest computational

cost among all congruent snapshots.

What should we do if there does not exist a congruent snapshot when plan

switching is requested? There are three options: 1) send out a request for replan-

ning; 2) terminate the execution of the current plan completely and execute an

alternative plan from the beginning; and 3) roll back the execution of the cur-

152

rent plan to the previous global consistent snapshot and try to find a congruent

snapshot for that snapshot. We discuss the third option in detail.

Rollback is a process of backtracking the computation to a previous saved

point when a failure occurs, so that the whole computation does not have to be

resumed from the beginning [111]. We say an activity is reversible if we can roll

back the execution of the activity completely to the snapshot right before it is

executed. In order to roll back the execution of activities, we need to record

every global consistent snapshot that has been reached and an ordered list of all

activities that have been executed in the current plan. When a plan execution

cannot proceed and there is not a congruent snapshot for the current snapshot,

we try to roll back the execution of the last executed activity. If the activity

is not reversible, we have to choose one of the first two options, either perform

replanning or choose another plan to execute from the beginning. Otherwise,

we roll back the execution of the activity, regress the computation to the pre-

vious snapshot, and attempt to find a congruent snapshot for this snapshot. If

a congruent snapshot exists, we switch the execution of the computation to an-

other plan. If, however, a congruent snapshot is still unavailable, we repeat the

preceding steps and roll back the execution of previous activities, until we have

successfully reached a snapshot that has a congruent snapshot, or the execution

of the computation cannot be further rolled back.

153

4.3 Simulation Study

4.3.1 Environment Design

We perform a simulation study to evaluate the effectiveness of plan execution.

The simulation environment consists of a number of randomly generated plans.

Both the sizes of plans (denoted by the number of activities) and the number

of subsequent activities of each activity in a plan may be different but follow

Gaussian distributions. A maximum ten plan switches can occur during the

computation of an entire task. If this limit is reached, we terminate the process

and mark the plan execution as a failure. We also assume that all activities have

the same computational costs.

We test different cases by varying the success rate of activity execution, the

probability of a global consistent snapshot being a congruent snapshot, and the

number of available plans to a computing task. We test each case ten times and

evaluate the performance with two criteria: the success rate of plan execution (i.e.,

the number of runs out of ten runs that a computation task can successfully finish)

and, for the successful runs, the average number of plan switchings performed.

Table 4.1 lists the parameter settings for the experiment.

4.3.2 Simulation Results

We first test the case in which there are three available plans and the probability

of congruent snapshots is fixed at 0.1. We vary the success rate of a computing

activity between 0.4 and 0.9. No activity is allowed to roll back its execution.

154

Table 4.1: Parameter settings for the experiment.

Parameter Value

Number of Runs 10

Number of Plans 3, 6

Avg. Number of Activities 10

Maximum Number of Plan Switches 10

Avg. Number of Subsequent Activities 2

Prob. of an Successful Activity 0.4, 0.5, ..., 0.9

Prob. of a Congruent Snapshot 0.01, 0.05, and 0.1

Figure 4.4 shows the number of successful runs in each case and the minimum,

average, and maximum number of plan switchings in the successful runs. The

results indicate that a lower success rate of computing activities increases the

possibility and occurrences of plan switchings. As a congruent snapshot can-

not always be found when plan switching is requested, a lower success rate of

computing activities results in a higher probability of failure in plan execution.

Next, we evaluate the impact of the probability of congruent snapshots on

the success of plan switching. We test the cases in which only 1% and 5% of the

global consistent snapshots are congruent snapshots. Again, the success rate of

a computing activity is set between 0.4 and 0.9, and no activity is allowed to roll

back its execution. The simulation results, shown in Figures 4.5 and 4.6, indicate

that the probability of congruent snapshots has profound effect on the success of

plan switching. A lower probability leads to a lower possibility of finding a con-

gruent snapshot, and thus reduces the success rate of plan execution. We noticed

that when the probability of congruent snapshots is reduced to 0.01, the failure

of plan execution, in most cases, is due to inability to find congruent snapshots

155

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.4: The simulation results on the effect of the success rate of a computing

activity to the success of plan switching. (a) The number of successful runs out

of ten runs. (b) The average, minimum, and maximum number of plan switches

in successful runs.

rather than overreaching the maximum allowed number of plan switches. This

result indicates that allowing rollback of plan execution might be an effective cure

to plan execution when the probability of congruent snapshots is low.

Figure 4.7 shows the results in cases when rollback of plan execution is enabled

and all activities in a plan are reversible. The probability of congruent snapshots

is kept as low as 0.01. Obviously, allowing rollback of activity execution gives

more opportunities for finding congruent snapshots and thus increases the prob-

ability of a successful plan switch. Comparing Figures 4.6(a) and 4.7(a), only for

some of the different probabilities of a successful activity does rollback improve

the number of successful runs. However, Figure 4.8 indicates that in those failed

runs, allowing rollback offers more chances for plan switching among alternative

plans. Some runs fail solely because a maximum number of plan switches have

already been attempted.

156

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.5: The simulation results when 5% of the global consistent snapshots are

congruent snapshots. (a) The number of successful runs out of ten runs. (b) The

average, minimum, and maximum number of plan switches in successful runs.

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.6: The simulation results when 1% of the global consistent snapshots are

congruent snapshots. (a) The number of successful runs out of ten runs. (b) The

average, minimum, and maximum number of plan switches in successful runs.

157

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.7: The simulation results showing the effectiveness of allowing rollback

in plan execution when all activities are reversible and 1% of the global consistent

snapshots are congruent snapshots. (a) The number of successful runs out of ten

runs. (b) The average, minimum, and maximum number of plan switches in

successful runs.

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 F

ai
le

d
R

un
s

Probability of a Successful Activity / (Min, Avg, Max)

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 F

ai
le

d
R

un
s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.8: The minimum, average, and maximum number of plan switches before

the plan execution fails. (a) Rollback of execution is not allowed. (b) Rollback

of execution is allowed.

158

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 S

uc
ce

ss
ul

 R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4

/ M
in

0.
4

/ A
vg

0.
4

/ M
ax

0.
5

/ M
in

0.
5

/ A
vg

0.
5

/ M
ax

0.
6

/ M
in

0.
6

/ A
vg

0.
6

/ M
ax

0.
7

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
8

/ M
in

0.
7

/ A
vg

0.
7

/ M
ax

0.
9

/ M
in

0.
9

/ A
vg

0.
9

/ M
ax

N
um

be
r

of
 P

la
n

S
w

itc
hi

ng
s

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 4.9: The simulation results for cases in which six plans are available for

execution and 5% of the global consistent snapshots are congruent snapshots. (a)

The number of successful runs out of ten runs. (b) The average, minimum, and

maximum number of plan switches in successful runs.

In the third case, we study whether the number of alternative plans affects the

success of plan switching. We repeat the above tests by setting the probability of

congruent snapshots to 0.05 but increase the number of plans to six. Activities

are not allowed to roll back their execution. The simulation results, shown in

Figure 4.9, demonstrate that having more alternative plans definitely improves

the performance of plan switching. When there are six available plans, the suc-

cess of plan switching is less likely to rely on either the success rate of activity

execution or the probability of congruent snapshots, as more global consistent

snapshots (hence more congruent snapshots) are available from alternative plans.

159

4.4 Concluding Remarks

The success of a plan execution cannot be guaranteed due to the dynamics of

a large-scale distributed system. Plan switching is a strategy to continue the

execution of a computation when failure occurs during the execution of a plan.

Given a family of plans available to perform a computing task, the function of

plan switching is to switch the execution of a computing task from one plan to

another plan. When a plan switching is successfully performed, we reschedule

the execution on the new plan and continue the execution of the computing task.

We formulate the problem of plan switching in a large-scale distributed system

and present an approach to the problem. This approach introduces the concept

of congruent snapshots that allow transition from the execution of one plan to

another. The main idea of the approach is to find congruent snapshots from

alternative plans during the execution of the current plan. When the execution

of the current plan fails, we continue the execution of the task from an optimal

congruent snapshot in another plan.

A simulation study on this approach indicates that a high probability of con-

gruent snapshots, a high success rate of computing activities, and more alterna-

tive plans can improve the performance of plan switching. In addition, allowing

rollback of activity execution offers additional opportunities to find congruent

snapshots, thus is also benefiting plan switching.

160

CHAPTER 5

SUMMARY OF WORK AND CONCLUSIONS

5.1 Summary of Work

Planning and scheduling are among the essential functions for executing a com-

plex computing task in large-scale distributed systems. The execution of a com-

plex computing task typically requires a large amount of computing resources and

has a long execution time. There are cases in which the execution of a complex

computing task cannot be supported by a single computing service available in a

large-scale distributed system. Instead, we need to execute multiple computing

services to produce the expected results of a computing task. The function of

planning is to produce a plan that specifies the computing services to be executed,

the order of their execution, and the data dependencies among them. After a plan

is available, we need scheduling to assign the execution of each computing service

in a plan to a computing node in the system so that the total execution time

of a computing task is minimized. A large-scale distributed system is dynamic

and the conditions of a system, such as the availability of computing resource

needed to execute a computing task, may change during the course of planning

and scheduling. As a result, the success of a computing task cannot be guar-

anteed. We introduce a method called plan switching to improve the success of

a computing task. This method allows for the switching of the execution of a

161

computing task from one plan to another plan so that the execution may continue

without the need to create a new plan. After plan switching is performed, we

need another round of scheduling and then continue the execution of the new plan

until a computing task is successfully completed, or a failure cannot be avoided.

In this dissertation, we address the problems of planning and scheduling

for large-scale distributed systems. Planning and scheduling for large-scale dis-

tributed systems are complicated as both problems require the search in a large

solution space and in a changing problem environment due to the complexity

of computing tasks and the scale and dynamics of the system. Determinis-

tic approaches have been applied to planning and scheduling problems. These

approaches typically use knowledge extracted from the problems to reduce the

search space, and thus are efficient search approaches. However, knowledge from

one problem may not be applied to other problems. As a result, these approaches

may not be applicable to a variety of planning and scheduling problems. In ad-

dition, the knowledge used for the search may not be applicable as the problem

conditions change. We investigate a GA approach to planning and scheduling for

large-scale distributed systems. GAs have been applied to solve difficult search

and optimization problems. GAs also exhibit quick adaptation to changing prob-

lem environments. Therefore, GAs can be a good candidate approach to the

addressed problems.

We make the following five aspects of contributions from our work: a) apply-

ing genetic algorithms to planning for large-scale distributed systems; b) applying

genetic algorithms to scheduling for large-scale distributed systems; c) introduc-

ing the method of plan switching; d) studying the variable length representation

and the incremental search strategies in evolutionary computation; e) designing

162

an intelligent agent-based middleware for large-scale distributed systems. We

summarize the work for each aspect as follows.

a) Applying genetic algorithms to planning for large-scale distributed systems

We first attempt to apply GA to traditional AI planning problems. Our

algorithm is extended from the traditional GAs in two aspects. First, we use

an indirect encoding method to remove invalid operators in a plan. Second,

we use an incremental search strategy that divides the search for solutions into

multiple individual phases. Experiments on two domains, the Towers of Hanoi

and the Sliding-tile puzzles, show that this approach can solve the 6-disk Towers of

Hanoi problem and the 3 × 3 Sliding-tile puzzles. As the problem size increases,

the search performance of this GA degrades very quickly. GA cannot find a

solution to the 7-disk Towers of Hanoi problem in any of the 50 runs in our

experiment, and GA only finds solutions to the 4× 4 sliding tile puzzles in 5 out

of 50 runs. We believe the search performance of this approach can be improved

if we use a more accurate fitness function for solution evaluation. Therefore,

more knowledge extracted from the planning problem is needed for an accurate

estimation of the distance between the current state and the goal specifications.

This result indicates that domain knowledge is still very important to improve

the performance of this GA-based planning algorithm.

We also introduce a search strategy, called recursive subgoals, to the Sliding-

tile puzzles. This strategy divides the goal of the problem into a group of subgoals

and specifies the order of these subgoals such that reaching one subgoal can reduce

a problem to the same problem at a smaller size. We show that this strategy

can be incorporated easily in our planning algorithm as we can assign a specific

subgoal for each individual phase. After the subgoal is reached in one phase, we

assign the next subgoal for the subsequent phases. With the recursive subgoal

163

strategy, we can consistently find valid solutions to the 7× 7 Sliding-tile puzzles,

a significant improvement compared to the results without using this strategy.

The applicability of the recursive subgoal strategy, however, is restricted to a

limited set of problems. It is also very difficult to determine the applicability of

this strategy to a given planning problem.

We modify the GA-based algorithm to planning for large-scale distributed

systems. We classify the deterministic and non-deterministic planning problems.

A planning problem is non-deterministic if we do not have the complete knowledge

regarding the state of the system at some stages of plan execution. For non-

deterministic planning problems, we need a non-linear structure for plans to allow

for the conditional and iterative execution of activities so that the execution of

a plan can still satisfy the goals of a computing task despite the uncertainties

of the system state. The modified algorithm can evolve a non-linear structure

for plans. We build a simulation environment to evaluate the scalability of this

algorithm. This simulation environment allows us to easily configure the scale of

a system by varying the number of processing nodes and the number of end-user

services. We also simulate complex computing tasks by randomly generating task

graphs for a given size (i.e., the number of computing activities for performing a

computing task). Our results show that GA needs a larger population and more

generations to maintain its search performance as the problem size increases. As

a result, the execution time of GAs increases very quickly as well.

b) Applying genetic algorithms to scheduling for large-scale distributed systems

We first study the problem of multi-processor scheduling and apply a GA-

based algorithm to this problem. Comparing to the previous GA-based schedul-

ing approaches, our GA uses a more flexible representation method that gives

GA a complete exploration of the search space. We also use an incremental fit-

164

ness function that encourages the formation of partial solutions found during the

search. We conclude that, given sufficient computing resources, this algorithm is

able to find comparable and sometimes better schedules (i.e., with shorter exe-

cution times) than deterministic algorithms such as ISH, DSH, and CPFD. The

GA-based algorithm, however, is much less efficient than the deterministic algo-

rithms. We perform additional experiments to evaluate the performance of GA on

a system with a larger number of processing nodes. The results show that, given

the same population size and number of generations, GA finds worse solutions

to most tested problems when the number of processing nodes increases, because

finding a schedule for a large system requires the search in a larger solution space.

The largest system in our experiment contains 50 processing nodes.

The experiments on heterogeneous and dynamic computing environments

show the strength of this GA: the algorithm can be applied easily to other schedul-

ing problems and it adapts quickly to the changes in the computing environment.

In the experiment on a heterogeneous computing system, GA finds considerably

better solutions than the deterministic algorithms. This study demonstrates that

the GA-based algorithm can adapt quickly in a large-scale distributed system, a

natural dynamic computing environment.

We extend the above algorithm to scheduling for large-scale distributed sys-

tems. This algorithm can schedule non-deterministic activity graphs that contain

activities whose execution can only be determined by the results of preceding ac-

tivities. We schedule the execution of non-deterministic activity graphs in mul-

tiple steps. In each step, we only schedule the activities whose execution can be

determined at the current step. After the scheduled activities finish, we retrieve

the computing results, determine the subsequent activities to be executed, and

perform another round of scheduling. We may schedule the same activity graph

165

multiple times during the execution of a computing task. Reusing the existing

schedules can save the computation time of the scheduling algorithm. We present

a semi-static approach to scheduling for large-scale distributed systems. This ap-

proach stores the schedules that have been evolved during the execution of a

computing task. When a schedule on the same activity graph is requested, we

evaluate all corresponding schedules and select the best one as the solution. As

a large-scale distributed system is a dynamic system, a best schedule may not

always be the best in the later scheduling steps. The solutions evolved by GA

provide diverse resources which allow this approach to adapt to the changes of

the computing system. Our study shows that a diverse population of a GA is

beneficial to this approach as it contains solutions to more problem conditions

than a converged population. A higher mutation rate typically produces a more

diverse population. In our experiment, a mutation rate of 0.02, which is higher

than the one used in other experiments, exhibits the best performance for this

semi-static approach.

c) Introducing the method of plan switching

We introduce plan switching as a method for recovering from failures during

the execution of a computing task. This method assumes that there are a family

of plans available to perform a computing task. Only one plan is selected to

execute each time, and the other plans serve as backup plans. When failure

occurs, we can switch the execution of a computing task from one plan to a

selected backup plan. If plan switching is successful, we do not need replanning.

We introduce the concept of “congruent snapshot” in our approach to plan

switching. The main idea of the approach is to find the optimal congruent snap-

shot from backup plans in parallel with the execution of the current plan. When

plan switching is needed, we can directly switch the execution to a new plan

166

and continue to execute that plan from the optimal congruent snapshot. The

simulation study indicates that plan switching can improve the success of a com-

puting task (with higher probability of successfully finishing a computing task),

and the effectiveness of this approach depends on the number and availability of

congruent snapshots from the backup plans: more congruent snapshots result in

a higher probability of successful plan switching.

d) Studying the variable length representation and the incremental search strate-

gies in evolutionary computation

We use the variable length representation to encode solutions in both the

planning and scheduling algorithms for the following two reasons. First, it is

very difficult to estimate the size of the optimal solutions to both problems. As

a variable length representation allows a GA to evolve various sizes of solutions

in a population, it turns out to be a more suitable representation method than

the traditional fixed length representation. Second, both planning and schedul-

ing require the search in a changing computing environment. As a result, the

size of the optimal solutions may also change during the course of planning and

scheduling. A variable length representation enables a GA to adjust the size of

solutions to the changes of the problem environment, so it adapts better than

fixed length representation to problem changes.

In addition, we study the effectiveness of using incremental search strategies

in a GA. In the planning algorithm, we use an incremental method by dividing the

search into multiple independent phases and the final solution is the concatenation

of solutions found in each phase. The experiments on the Towers of Hanoi show

that a multi-phase GA outperforms the traditional single-phase GA. A multi-

phase GA finds solutions in all 50 runs to the 6-disk problem, while the single-

phase GA does not. Although the multi-phase GA cannot find a valid solution

167

to the 7-disk problem, it reaches higher goal fitness than the single-phase GA. In

the scheduling algorithm, we use an incremental fitness function to reward partial

solutions found during the search. We evaluate the effectiveness of this fitness

function by testing the algorithm in which the contributions of partial solutions

are ignored in the fitness function. In this test, GA is unable to consistently

find valid solutions over multiple runs. We believe that the incremental fitness

function is an important factor to the success of the scheduling algorithm.

e) Designing an intelligent agent-based middleware for large-scale distributed sys-

tems

We design an intelligent middleware for large-scale distributed systems. “In-

telligence” means more system automation and less user intervention. Two fea-

tures in our design contribute to the intelligence of this middleware: a multi-agent

framework and ontology-based knowledge sharing among agents.

The function of a middleware is supported by a group of services. We clas-

sify two classes of services: core services and end-user services. Core services

are the system-wide services that provide coordinated and transparent access to

computing resources in a large-scale distributed system. Core services are the

essential component of a middleware and must be persistent and reliable. Plan-

ning, scheduling, and plan switching are among the core services included in the

middleware. End-user services, on the other hand, are specialized services offered

by autonomous service providers that perform the actual computing service for

users. End-user services are transient and can be removed by the service providers

at any time.

The execution of each service in the middleware is supported by an au-

tonomously running software agent. We assign each agent to perform the role of

a pre-specified service. Each agent stores the essential knowledge to perform its

168

designated roles. All agents must work coherently to achieve the overall function

of a middleware. In order for these agents to cooperate and share knowledge

with each other, they must share the same ontology that defines the structure

of knowledge. We develop the ontology for the middleware. The ontology con-

sists of a group of classes, and each class specifies one entity of knowledge for

a large-scale distributed system. We define a set of basic classes for the ontol-

ogy. This ontology is also extensible to include additional knowledge for specific

computations supported by a system.

5.2 Conclusions

The goal of this dissertation is to investigate the application of GA approaches

to planning and scheduling for large-scale distributed systems. Our study shows

that a GA can be applied to the addressed problems but has its restrictions.

A GA has the following two strengths that are the desired attributes for the

addressed problems.

First, the search for a solution in GA typically uses less knowledge extracted

from computing domains than the deterministic approaches. In a changing com-

puting environment, the knowledge that can be applied to the current problem

conditions may not be applicable as the conditions change. Our design of the al-

gorithm uses more general knowledge that can be applied to a variety of problem

conditions. For instance, the GA-based scheduling algorithm, although designed

for homogeneous computing environments, can also be applied to heterogeneous

computing environments. The traditional list scheduling algorithms, such as ISH,

169

DSH, and CPFD, only work well in a homogeneous computing environment in

which all processors are fully connected and have the same processing ability.

Second, the diverse solutions produced by GAs offer important resources for

planning and scheduling to deal with the dynamics in the computing environ-

ment. A GA is a parallel search method and produces a population of candidate

solutions. Although only one solution (typically the best one) is selected, the

other solutions cannot simply be discarded: they provide resources for planning

and scheduling to react to changes in a computing environment. Plans that are

not selected may serve as candidate solutions for plan switching when failure

occurs on the selected plan; while schedules that are not selected may turn out

to be a desirable schedule in a later stage of the semi-static approach. Without

GA, we have to rerun the algorithm for each request of planning or scheduling.

The disadvantage of using GA approaches is the high computational cost. As

a GA uses less domain-specific knowledge in search for a solution, it typically

requires a more complete exploration of the search space than deterministic ap-

proaches and thus is less efficient. Our experiments consistently show that the

execution time of a GA increases very quickly as the problem size increases, which

is unfavorable as both planning and scheduling for large-scale distributed systems

involve a search in a very large solution space. Some heuristic approaches, such

as the recursive subgoal strategy, can significantly improve the search results and

reduce the computational time, but they can only be applied to a limited set of

domains.

Our study on planning and scheduling approaches for large-scale distributed

systems gives us an insightful view on the design of search algorithms, espe-

cially on the issue of how to balance the two criteria for the performance of an

algorithm: the efficiency of the search and the quality of solutions. Our GA

170

algorithms put more focus on the quality of results, but they suffer from much

higher computational costs than the deterministic approaches. Although we use

several strategies, such as the multi-phase search strategy and the indirect encod-

ing method, to improve the efficiency of the search, much other work is needed

to significantly reduce the search space and the execution time. We believe that

our GA algorithms can be further improved by incorporating additional methods

for narrowing down the search space while not affecting the search results.

In addition, our work extends the previous study in the field of evolutionary

computation in two aspects. First, we improve our understanding of the vari-

able length representation by employing this encoding method in the addressed

problems. We believe that a variable length representation is ideal to problems

in which the size of the optimal solutions cannot be easily determined. Variable

length representation also has the advantage over the fixed length GA with the

flexibility of dynamically adjusting the solution sizes during the search. This

flexibility is important to our GA-based algorithms as the size of solutions to

planning and scheduling may vary due to the changes in the computing environ-

ment. Second, we study the incremental search strategies in a GA. We apply the

incremental search strategy in different ways in our planning and scheduling algo-

rithms. In the planning algorithm, we build a plan incrementally by dividing the

search for a solution into multiple phases. Each phase is considered an individual

GA run, and the final solution is the concatenation of partial solutions evolved in

all phases. In the scheduling algorithm, we use an incremental, dynamic fitness

function to encourage the formation and recombination of partial solutions. The

success of these strategies indicates that the methods for preserving partial so-

lutions during the search can improve the performance of GAs. We believe that

the above attempts on the incremental search strategies can also be applied to

other non-deterministic search and optimization approaches. For instance, both

171

the multi-phase search strategy and the incremental evaluation function can be

easily embedded in the simulated annealing approach.

Four areas of research extensions from the current work are on top of the list

of items I plan to pursue in the future.

First, we intend to explore a dynamic approach to integrate the function of

planning and scheduling for large-scale distributed systems. In this dissertation,

we study two approaches, the static and semi-static approaches, to integrate

the function of planning and scheduling. In the static approach, we schedule

a computing task right after a plan is produced. In the semi-static approach,

we use the plan switching method to switch the execution of a computing task

among a family of plans. As a new schedule is required after each successful

plan switching, we may schedule the execution of a computing task multiple

times. A dynamic approach is different from the above approaches as we do

not schedule all computing activities in a plan at one time. Instead, we deter

the scheduling of an activity until it is dispatched for execution. In this case,

scheduling becomes a trivial problem as only one activity is scheduled at each

time. The dynamic approach, however, may not work in a large-scale distributed

system in which resource-intensive tasks compete frequently for computing nodes.

The delay of scheduling an activity may increase the possibility of failure for an

activity execution due to the unavailability of resources. It is interesting to study

the feasibility of the dynamic approach and compare its performance with the

static and semi-static approaches in large-scale distributed systems.

Second, the study of the GA-based planning and scheduling algorithms en-

courages us to develop new methods to improve the efficiency of the GA. Domain-

related knowledge, which can effectively reduce the search space while not sac-

rificing the quality of solutions, will be studied and incorporated in the search.

172

On the other hand, we will continue to study new encoding methods and other

incremental search strategies for GA to improve its search efficiency.

Third, we attempt to improve the plan switching approach by using multiple

criteria in selecting the optimal congruent snapshot. In our current approach,

the optimal congruent snapshot is always the one that has the lowest cost of

subsequent activities among all candidates. While this is a simple approach, it

may result in switching to a plan that contains inexecutable activities so that

another request of plan switching may be inevitable. Other heuristics can be

embedded into this process to balance both the execution cost of a computing

task and the success rate of plan execution.

Fourth, we intend to study the effectiveness of using GA algorithm for provid-

ing candidate solutions for plan switching. We plan to evaluate the effectiveness

by testing the GA-based algorithm in a number of a real-world computations. We

are interested to study whether the candidate solutions contain useful resources

for plan switching (i.e., whether congruent snapshots can be located in candidate

solutions) and whether a diverse population is beneficial to improving the success

of plan switching.

173

List of References

[1] Foster, I., Kesselman, C.: Blueprint for a New Computer Infrastructure.
W. H. Freeman, San Francisco (1999)

[2] Marinescu, D.C.: Internet-Based Workflow Management: Towards a Se-
mantic Web. Wiley, New York, NY (2002)

[3] Marinescu, D.C., Marinescu, G.M., Ji, Y.: The complexity of scheduling
and coordination on computational grids. In Marinescu, D.C., Lee, C.,
eds.: Process Coordination and Ubiquitous Computing, CRC Press (2002)
119–132

[4] Marinescu, D., Ji, Y.: A computational framework for the 3D structure
determination of viruses with unknown symmetry. Journal of Parallel and
Distributed Computing 63 (2003) 738–758

[5] Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of
theorem proving to problem solving. Journal of Artificial Intelligence 2
(1971) 189–208

[6] Erol, K., Nau, D.S., Subrahmanian, V.S.: Complexity, decidability and un-
decidability results for domain-independent planning. Journal of Artificial
Intelligence 76 (1995) 75–88

[7] Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis.
Journal of Artificial Intelligence 90 (1997) 281–300

[8] Jonsson, P., Haslum, P., Backstrom, C.: Towards efficient universal plan-
ning, a randomized approach. Journal of Artificial Intelligence 117 (2000)
1–29

[9] Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical
and empirical analysis. Journal of Artificial Intelligence 76 (1995) 427–454

[10] Bonet, B., Geffner, H.: Planning as heuristic search. Journal of Artificial
Intelligence 129 (2001) 5–33

174

[11] Korf, R.E., Taylor, L.A.: Finding optimal solutions to the twenty-four
puzzle. In: Proc. of the International Conference on Artificial Intelligence
(AAAI 96), Portland, OR (1996) 1202–1207

[12] Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Journal of
Artificial Intelligence 134 (2002) 9–22

[13] Koza, J.R.: Genetic Programming. MIT Press, Cambridge, MA (1992)

[14] Spector, L.: Genetic programming and ai planning systems. In: Proc. of
the 12th National Conference of Artificial Intelligence. (1994) 1329–1334

[15] Muslea, I.: SINERGY: A linear planner based on genetic programming.
In: Proc. of the 4th European Conference on Planning, Springer (1997)
312–324

[16] Penberthy, J.S., Weld, D.: UCPOP: A sound, complete, partial-order plan-
ner for ADL. In: Proc. of the 3rd International Conference on Knowledge
Representation and Reasoning (KR-92), Cambridge, MA (1992) 103–114

[17] Westerberg, C.H., Levine, J.: GenPlan: Combining genetic programming
and planning. In: Proc. of the 19th Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG 2000), Open University, Mil-
ton Keynes, UK (2000) 255–265

[18] Westerberg, C.H., Levine, J.: Investigation of different seeding strategies in
a genetic planner. In: Proc. of the 2nd European Workshop on Scheduling
and Timetabling (EvoSTIM 2001), Springer (2001) 505–514

[19] Smith, S.F.: A learning system based on genetic adaptive algorithms. In:
PhD thesis, Dept. Computer Science, University of Pittsburgh. (1980)

[20] Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems 3 (1989) 493–530

[21] Harvey, I.: Species adaptation genetic algorithms: A basis for a continuing
saga. In: Proceedings of the First European Conference on Artificial Life.
(1992) 346–354

[22] Wu, A.S., Lindsay, R.K.: Empirical studies of the genetic algorithm with
non-coding segments. Evolutionary Computation 3 (1995) 121–147

[23] Wu, A.S., Garibay, I.: The proportional genetic algorithm: Gene expres-
sion in a genetic algorithm. Genetic Programming and Evolvable Machines
3 (2002) 157–192

175

[24] Yu, H., Wu, A.S., Lin, K., Schiavone, G.: Adatptation of length in a
nonstationary environment. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO). (2003) 1541–1553

[25] http://www.cut-the knot.com/recurrence/hanoi.shtml: Tower of Hanoi
(2005)

[26] Luger, G.F., Stubblefield, W.A.: Artificial Intelligence: Structures and
Strategies for Complex Problem Solving (Fifth Edition). Addison-Wesley,
Boston, MA (2004)

[27] Russell, S.J., Norvig, P.: Artifricial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ (1995)

[28] Johnson, W.W., Story, W.E.: Notes on the ‘15’ puzzle. American Journal
of Mathematics 2 (1879) 397–404

[29] Wu, A.S., Schultz, A.C., Agah, A.: Evolving control for distributed micro
air vehicles. In: Proc. of the IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation. (1999) 174–179

[30] Newell, A., Shaw, J.C., Simon, H.A.: Report on a general problem solv-
ing program. In: Proc. of the International Conference on Information
Processing. (1960) 256–264

[31] Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Engle-
wood Cliffs, NJ (1972)

[32] Korf, R.E.: Planning as search: A quantitative approach. Journal of
Artificial Intelligence 33 (1987) 65–88

[33] Barrett, A., Weld, D.S.: Characterizing subgoal interactions for planning.
In: Proc. of the 13th International Joint Conference on Artificial Intelli-
gence (IJCAI-93), Chambery, France (1993) 1388–1393

[34] Barrett, A., Weld, D.S.: Partial-order planning: evaluating possible effi-
ciency gains. Journal of Artificial Intelligence 67 (1994) 71–112

[35] Cheng, J., Irani, K.B.: Ordering problem subgoals. In: Proc. of the 11th
International Joint Conference on Artificial Intelligence (IJCAI-89), De-
troit, USA (1989) 931–936

[36] Etzioni, O.: Acquiring search-control knowledge via static analysis. Jour-
nal of Artificial Intelligence 62 (1993) 255–301

176

[37] Koehler, J., Hoffmann, J.: Planning with goal agendas. Technical Report
110, Institute for Computer Science, Albert Ludwigs University, Freiburg,
Germany (1998)

[38] Lin, F.: An ordering on subgoals for planning. Annals of Mathematics and
Artificial Intelligence 21 (1997) 321–342

[39] Drummond, M., Currie, K.: Goal ordering in partially ordered plans. In:
Proc. of the 11th International Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, USA (1989) 960–965

[40] Hertzberg, J., Horz, A.: Towards a theory of conflict detection and resolu-
tion in nonlinear plans. In: Proc. of the 11th International Joint Conference
on Artificial Intelligence (IJCAI-89), Detroit, USA (1989) 937–942

[41] Manna, Z., Waldinger, R.: How to clear a block: A theory of plans. Journal
of Automated Reasoning 3 (1987) 343–377

[42] Sacerdoti, E.D.: A Structure for Plans and Behavior. Elsevier-North Hol-
land, New York (1977)

[43] Steel, S.W.D.: An iterative construct for non-linear precedence planners.
In: Proc. of the 7th Biennial Conference of the Canadian Society for the
Computational Study of Intelligence. (1988) 227–233

[44] Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive
plans in linear logic. In: Proc. of the 5th European Conference on Planning
(ECP-99), Durham, England (1999) 252–264

[45] Ghassem-Sani, R., Steel, S.: Recursive plans. In: Proc. of the European
Workshop on Planning, St. Augustin, Germany (1991) 53–63

[46] Smith, D.E., Weld, D.S.: Conformant graphplan. In: Proc. of AAAI-98.
(1998) 889–896

[47] Weld, D.S., Anderson, C.R., Smith, D.E.: Extending graphplan to handle
uncertainty and sensing actions. In: Proc. of AAAI-98. (1998) 897–904

[48] Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and
strong cyclic planning via symbolic model checking. Journal of Artificial
Intelligence 147 (2003) 35–84

[49] Langdon, W.B., Poli, R.: Fitness causes bloat. Soft Computing in Engi-
neering Design and Manufacturing (1997) 13–22

177

[50] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. Morgan Kaufmann, New York (1979)

[51] El-Rewini, H., Lewis, T.G., Ali, H.H.: Task scheduling in parallel and
distributed systems. Prentice Hall (1994)

[52] Hou, E.S., Ansari, N., Ren, H.: A genetic algorithm for multiproces-
sor scheduling. IEEE Transactions on Parallel and Distributed Systems
5 (1994) 113–120

[53] Kwok, Y., Ahmad, I.: Efficient scheduling of arbitrary task graphs to
multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing 47 (1997) 58–77

[54] Tsuchiya, T., Osada, T., Kikuno, T.: Genetic-based multiprocessor
scheduling using task duplication. Microprocessors and Microsystems 22
(1998) 197–207

[55] Bollinger, S.W., Midkiff, S.F.: Processor and link assignment in multicom-
puters using simulated annealing. In: Proc. of the International Conference
on Parallel Processing. (1988) 1–7

[56] Hwang, K., Xu, J.: Mapping partitioned program modules onto multi-
computer nodes using simulated annealing. In: Proc. of the International
Conference on Parallel Processing (ICPP). (1990) 292–293

[57] Nanda, A.K., DeGroot, D., Stenger, D.: Scheduling directed task graphs
on multiprocessors using simulated annealing algorithms. In: Proc. of the
12th International Conference on Distributed Computing Systems. (1992)

[58] Porto, S.C.S., Ribeiro, C.C.: A tabu search approach to task scheduling
on heterogeneous processors under precedence constraints. International
Journal of High-Speed Computing 7 (1995)

[59] Ahmad, I., Dhodhi, M.K.: Multiprocessor scheduling in a genetic
paradigm. Parallel Computing 22 (1996) 395–406

[60] Ali, S., Sait, S.M., Benten, M.S.T.: GSA: Scheduling and allocation using
genetic algorithm. In: Proc. of EURO-DAC’94. (1994) 84–89

[61] Correa, R.C., Ferreira, A., Rebreyend, P.: Scheduling multiprocessor tasks
with genetic algorithms. IEEE Transactions on Parallel and Distributed
Systems 10 (1999) 825–837

178

[62] Dhodhi, M.K., Ahmad, I., Ahmad, I.: A multiprocessor scheduling scheme
using problem-space genetic algorithms. In: Proc. of IEEE International
Conference on Evolutionary Computing. (1995) 214–219

[63] Wang, L., Siegel, H.J., Roychowdhury, V.P., Maciejewski, A.A.: Task
matching and scheduling in heterogeneous computing environments using
a genetic-algorithm-based approach. Journal of Parallel and Distributed
Computing 47 (1997) 8–22

[64] Zomaya, A.Y., Ward, C., Macey, B.: Genetic scheduling for parallel pro-
cessor systems: comparative studies and performance issues. IEEE Trans-
actions on Parallel and Distributed Systems 10 (1999) 795–812

[65] Holland, J.H.: Adaptation in Natural and Artificial Systems. University
of Michigan Press (1975)

[66] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley (1989)

[67] Lohn, J.D., Haith, G.L., Columbano, S.P., Stassinopoulos, D.: A com-
parison of dynamic fitness schedules for evolutionary design of amplifiers.
In: Proc. of the 1st NASA/DoD Workshop of Evolvable Hardware. (1999)
87–92

[68] Frantz, D.R.: Non-linearities in genetic adaptive search. PhD thesis, Uni-
versity of Michigan (1972)

[69] Eshelman, L.J., Caruana, R.A., Schaffer, J.D.: Biases in the crossover land-
scape. In: Proc. of the 3rd International Conference on Genetic Algorithms
(ICGA). (1989) 10–19

[70] Bagley, J.D.: The behavior of adaptive systems which employ genetic and
correlation algorithms. PhD thesis, University of Michigan (1967)

[71] Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.:
Putting more genetics into genetic algorithms. Evolutionary Computation
6 (1998) 387–410

[72] Franceschini, R.W., Wu, A.S., Mukherjee, A.: Computational strategies
for disaggregation. In: Proc. of the 9th Conference on Computer Generated
Forces and Behavioral Representation. (2000)

[73] Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded
difficulty using genetic algorithms. PhD thesis, University of Michigan
(1997)

179

[74] Lobo, F.G., Deb, K., Goldberg, D.E., Harik, G., Wang, L.: Compressed
introns in a linkage learning genetic algorithm. In: Proc. of the 3rd Con-
ference on Genetic Programming. (1998) 551–558

[75] Paredis, J.: The symbiotic evolution of solutions and their representa-
tions. In: Proc. of the 6th International Conference on Genetic Algorithms
(ICGA). (1995) 359–365

[76] Wu, A.S., Lindsay, R.K.: A comparison of the fixed and floating building
block representation in the genetic algorithm. Evolutionary Computation
4 (1996) 169–193

[77] Soule, T., Ball, A.E.: A genetic algorithm with multiple reading frames. In
Spector, L., Goodman, E.D., Wu, A.S., Langdon, W.B., Voigt, H.M., Gen,
M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E., eds.: Proc.
of Genetic and Evolutionary Computation Conference (GECCO). (2001)
615–622

[78] Wu, A.S.: Non-coding segments and floating building blocks for the genetic
algorithm. PhD thesis, University of Michigan (1995)

[79] Forrest, S., Mitchell, M.: Relative building-block fitness and the building-
block hypothesis. In: Foundations of Genetic Algorithms 2. (1992) 109–126

[80] Levenick, J.R.: Inserting introns improves genetic algorithm success rate:
Taking a cue from biology. In: Proc. of the 4th International Conference
on Genetic Algorithms (ICGA). (1991) 123–127

[81] Mayer, H.A.: ptGAs: Genetic algorithms using promoter/terminator se-
quences. PhD thesis, University of Salzburg (1997)

[82] Soule, T., Foster, J.A., Dickinson, J.: Code growth in genetic program-
ming. In Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Ge-
netic Programming 1996, Cambridge, MA, MIT Press (1996) 215–233

[83] Kruatrachue, B., Lewis, T.G.: Duplication Scheduling Heuristic, a new
precedence task scheduler for parallel systems. Technical Report 87-60-3,
Oregon State University (1987)

[84] Ahmad, I., Kwok, Y.: On exploiting task duplication in parallel pro-
gram scheduling. IEEE Transactions on Parallel and Distributed Systems
9 (1998) 872–892

180

[85] Macey, B.S., Zomaya, A.Y.: A performance evaluation of CP list schedul-
ing heuristics for communication intensive task graphs. In: Proc. of Joint
12th International Parallel Processing Symposium and 9th Symposium on
Parallel and Distributed Programming. (1998) 538–541

[86] Wu, M.Y., Gajski, D.D.: Hypertool: A programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems
1 (1990) 330–343

[87] Kruatrachue, B., Lewis, T.G.: Grain size determination for parallel pro-
cessing. IEEE Software 5 (1988) 23–32

[88] Al-Mouhamed, M.A.: Lower bound on the number of processors and time
for scheduling precedence graphs with communication costs. IEEE Trans-
actions on Software Engineering 16 (1990) 1390–1401

[89] Branke, J.: Memory enhanced evolutionary algorithms for changing opti-
mization problems. In: Proc. of Congress on Evolutionary Computation
(CEC). (1999) 1875–1882

[90] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonsta-
tionary environments. Technical Report AIC-90-001, Naval Research Lab-
oratory, Washington, D. C. (1990)

[91] Deb, K., Goldberg, D.E.: An investigation of niche and species formation
in genetic function optimization. In: Proc. of International Conference on
Genetic Algorithms (ICGA). (1989) 42–50

[92] De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan (1975)

[93] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using
genetic algorithms with dominance and diploidy. In: Proc. of International
Conference on Genetic Algorithms (ICGA). (1987) 59–68

[94] Grefenstette, J.J.: Genetic algorihtms for changing environments. In:
Proc. of Parallel Problem Solving from Nature (PPSN). Volume 2. (1992)
137–144

[95] Grefenstette, J.J.: Evolvability in dynamic fitness lanscapes: a genetic
algorithm approach. In: Proc. of Congress on Evolutionary Computation
(CEC). (1999) 2031–2038

181

[96] Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-objective opti-
mization by means of the thermodynamical genetic algorithm. In: Proc. of
Parallel Problem Solving from Nature (PPSN). (1996) 504–512

[97] Liles, W., De Jong, K.: The usefulness of tag bits in changing envrionments.
In: Proc. of Congress on Evolutionary Computation (CEC). (1999) 2054–
2060

[98] Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment
by means of the thermodynamical genetic algorithm. In: Proc. of Parallel
Problem Solving from Nature (PPSN). (1996) 513–522

[99] Smith, R.E.: Diploidy genetic algorithms for search in time varying envi-
ronments. In: Annual Southeast Regional Conference of the ACM. (1987)
175–179

[100] Chou, T., Abraham, J.: Load balancing in distributed systems. IEEE
Transactions on Software Engineering SE-8 (1981) 401–412

[101] Towsley, D.: Allocating programs containing branches and loops within
a multiple processor system. IEEE Transactions on Software Engineering
SE-12 (1986) 1018–1024

[102] El-Rewini, H., Ali, H.H.: Static scheduling of conditional branches in par-
allel programs. Journal of Parallel and Distributed Computing 24 (1995)
41–54

[103] Parhi, K.K., Messerschmitt, D.G.: Static rate-optimal scheduling of it-
erative dataflow programs via optimum unfolding. IEEE Transactions on
Computers 40 (1991) 178–195

[104] Yang, T., Fu, C.: Heuristic algorithms for scheduling iterative task com-
putations on distributed memory machines. IEEE Transactions on Parallel
and Distributed Systems 8 (1997) 608–622

[105] Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM
Computing Surveys 27 (1995) 367–432

[106] Jain, S.: Circular scheduling: a new technique to perform software pipelin-
ing. In: Proc. of ACM Conference on Programming Language Design and
Implementation. (1991) 219–228

[107] Lam, M.: Software pipelining: an effective scheduling technique for VLIW
machines. In: Proc. of ACM Conference on Programming Language Design
and Implementation. (1988) 318–328

182

[108] Rau, B.R.: Iterative modulo scheduling: An algorithm for software pipelin-
ing loops. In: Proc. of the 27th Annual International Symposium on Mi-
croarchitecture. (1994) 63–74

[109] Van Dongen, V.H., Gao, G.R., Ning, Q.: A polynomial time method
for optimal software pipeling. In: Proc. of the 2nd Joint International
Conference on Vector and Parallel Processing. (1992) 613–624

[110] Chandy, K.M., Lamport, L.: Distributed snapshots: determining global
states of distributed systems. ACM Transactions on Computer Systems 3
(1985) 63–75

[111] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques.
Morgan Kaufmann (1993)

183

	Planning And Scheduling For Large-scaledistributed Systems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF PUBLICATIONS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Addressed Problems and the Approach
	1.2.1 Planning and Scheduling
	1.2.2 Our Approach: Evolutionary Computation

	1.3 Implementation
	1.3.1 The Need for an Intelligent Middleware
	1.3.2 A Multi-agent Framework and Ontology-based Knowledge Sharing
	1.3.3 Architecture of the Middleware

	1.4 Contributions of this Dissertation

	2 PLANNING ALGORITHMS AND PLANNING SERVICES
	2.1 AI Planning
	2.1.1 Introduction to AI Planning
	2.1.2 Previous Work on Planning Algorithms
	2.1.3 A Genetic Algorithm Approach to Planning
	2.1.4 Experiments and Performance Evaluation
	2.1.5 Recursive Subgoals

	2.2 Planning for Large-Scale Distributed Systems
	2.2.1 Problem Formulation
	2.2.2 A Genetic-Based Approach for Non-deterministic Planning
	2.2.3 Performance Study

	3 SCHEDULING ALGORITHMS AND SCHEDULING SERVICES
	3.1 Introduction to Multi-processor Task Scheduling
	3.2 Introduction to Scheduling for a Large-scale Distributed System
	3.3 A GA-based Algorithm for Multi-processor Task Scheduling
	3.3.1 Classifications of Scheduling Algorithms
	3.3.2 Previous Work on Applying GA to Scheduling
	3.3.3 An Incremental Genetic-based Algorithm
	3.3.4 Performance Evaluation

	3.4 A Scheduling Algorithm for Large-scale Distributed Systems
	3.4.1 Problem Formulation
	3.4.2 Interactions with Other Services in the Middleware
	3.4.3 A Modified GA-Based Algorithm
	3.4.4 Experimental Results

	4 PLAN SWITCHING
	4.1 Problem Formulation
	4.1.1 Assumptions
	4.1.2 Definitions
	4.1.3 Plan Switching between Congruent States

	4.2 Algorithm Design
	4.3 Simulation Study
	4.3.1 Environment Design
	4.3.2 Simulation Results

	4.4 Concluding Remarks

	5 SUMMARY OF WORK AND CONCLUSIONS
	5.1 Summary of Work
	5.2 Conclusions

	LIST OF REFERENCES

