
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Global Secure Sets Of Trees And Grid-like Graphs Global Secure Sets Of Trees And Grid-like Graphs

Yiu Yu Ho
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Ho, Yiu Yu, "Global Secure Sets Of Trees And Grid-like Graphs" (2011). Electronic Theses and
Dissertations, 2004-2019. 1938.
https://stars.library.ucf.edu/etd/1938

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1938?utm_source=stars.library.ucf.edu%2Fetd%2F1938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Global secure sets of trees and grid-like graphs

by

Yiu Yu Ho
B.S. University of Central Florida, 2006
M.S. University of Central Florida, 2010

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2011

Major Professor:
Ronald Dutton

c⃝ 2011 by Yiu Yu Ho

Abstract

Let G = (V,E) be a graph and let S ⊆ V be a subset of vertices. The set S is a defensive

alliance if for all x ∈ S, |N [x] ∩ S| ≥ |N [x] − S|. The concept of defensive alliances was

introduced in [KHH04], primarily for the modeling of nations in times of war, where allied

nations are in mutual agreement to join forces if any one of them is attacked. For a vertex x

in a defensive alliance, the number of neighbors of x inside the alliance, plus the vertex x, is

at least the number of neighbors of x outside the alliance. In a graph model, the vertices of

a graph represent nations and the edges represent country boundaries. Thus, if the nation

corresponding to a vertex x is attacked by its neighbors outside the alliance, the attack can

be thwarted by x with the assistance of its neighbors in the alliance.

In a different subject matter, [FLG00] applies graph theory to model the world wide

web, where vertices represent websites and edges represent links between websites. A web

community is a subset of vertices of the web graph, such that every vertex in the community

has at least as many neighbors in the set as it has outside. So, a web community C satisfies

∀x ∈ C, |N [x] ∩ C| > |N [x] − C|. These sets are very similar to defensive alliances. They

are known as strong defensive alliances in the literature of alliances in graphs. Other areas

of application for alliances and related topics include classification, data clustering, ecology,

business and social networks.

iii

Consider the application of modeling nations in times of war introduced in the first

paragraph. In a defensive alliance, any attack on a single member of the alliance can be

successfully defended. However, as will be demonstrated in Chapter 1, a defensive alliance

may not be able to properly defend itself when multiple members are under attack at the

same time. The concept of secure sets is introduced in [BDH07] for exactly this purpose.

The non-empty set S is a secure set if every subset X ⊆ S, with the assistance of vertices in

S, can successfully defend against simultaneous attacks coming from vertices outside of S.

The exact definition of simultaneous attacks and how such attacks may be defended will be

provided in Chapter 1.

In [BDH07], the authors presented an interesting characterization for secure sets which

resembles the definition of defensive alliances. A non-empty set S is a secure set if and only

if ∀X ⊆ S, |N [X]∩S| ≥ |N [X]−S| ([BDH07], Theorem 11). The cardinality of a minimum

secure set is the security number of G, denoted s(G). A secure set S is a global secure set

if it further satisfies N [S] = V . The cardinality of a minimum global secure set of G is the

global security number of G, denoted γs(G).

In this work, we present results on secure sets and global secure sets. In particular,

we treat the computational complexity of finding the security number of a graph, present

algorithms and bounds for the global security numbers of trees, and present the exact values

of the global security numbers of paths, cycles and their Cartesian products.

iv

To my wife Yuan Li

v

Acknowledgments

I would like to thank Dr. Ronald Dutton and Dr. Robert Brigham for their time and wisdom

over years of supervision. My adviser Dr. Ronald Dutton has helped me greatly during my

Ph.D. study. He is a careful reader and a helpful editor. He showed me the way of doing

basic research by leading as an example. Through his guidance and rigorous standards, I

have grown into a stronger problem solver, a better writer and gained the ability to do basic

research. Thank you Dr. Dutton!

I would like to thank Dr. Robert Brigham for his weekly meetings with us and for

reviewing my writings. Dr. Brigham provided many helpful comments which improved this

dissertation and my writing skill. I would like to thank Dr. Pawel Wocjan for teaching to

me the discipline of Randomized and Approximation Algorithms. The techniques I learned

in his classes helped my research directly. I would like to thank Dr. Sheau-Dong Lang for

his friendship and encouragements during my stay at University of Central Florida.

Thank you for being in my committee.

vi

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF SYMBOLS . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 Defensive alliances . 2

1.2 Secure sets . 4

1.3 Global secure sets . 7

1.4 Trees and grid-like graphs . 9

CHAPTER 2 LITERATURE REVIEW . 12

2.1 Upper and lower bounds . 13

2.2 Complexity results . 17

2.3 Security number of certain classes of graphs 19

CHAPTER 3 COMPLEXITY OF SECURE SETS 23

3.1 Introduction . 23

vii

3.2 Computing a feasible defense using network flow 25

3.3 Verifying the security of a set . 27

3.4 Computing the security number of a graph 35

CHAPTER 4 CHARACTERIZATION OF SECURE SETS 44

4.1 Introduction . 44

4.2 Computing a feasible defense using maximum matching 45

4.3 Secure sets characterization via Hall’s Matching Theorem 47

CHAPTER 5 ROOTED SECURE SETS OF TREES 49

5.1 Introduction . 49

5.2 An O(n∆) algorithm . 53

5.3 Feasible partitions and feasibility preserving rule set 60

5.4 An O(n lg(∆)) algorithm . 77

CHAPTER 6 GLOBAL SECURE SETS OF TREES 89

6.1 An O(n∆) algorithm . 89

6.2 Upper and lower bounds . 105

6.3 Global security numbers and spanning trees 116

viii

CHAPTER 7 CONSTRUCTIONS OF GLOBAL SECURE SETS OF GRID-

LIKE GRAPHS . 120

7.1 Introduction . 120

7.2 Paths and cycles . 123

7.3 Two-dimensional grids . 129

7.4 Two-dimensional cylinders . 161

7.5 Two-dimensional tori . 170

CHAPTER 8 GLOBAL SECURE SETS OF C4k+2 and C3 × C4k+2 178

8.1 Global secure sets of C4k+2 . 178

8.2 Global secure sets of C3 × C4k+2 . 180

CHAPTER 9 SUMMARY AND OPEN PROBLEMS 199

9.1 Summary . 199

9.2 Bounds . 201

9.3 Algorithms and complexity . 202

9.4 Problems related to secure sets . 203

LIST OF REFERENCES . 206

ix

LIST OF FIGURES

1.1 A defensive alliance is marked in black. 4

1.2 A defensive alliance is marked in black. 4

1.3 A minimum secure set is marked in black. 6

1.4 A minimum global secure set is marked in black. 9

5.1 A minimum rooted secure set and a valid α0 configuration. 59

5.2 A partial solution and an α2 configuration. 59

5.3 Solution Table . 60

6.1 The path P8 and a minimum global secure set marked in black. All minimum

global secure sets of P8 are disconnected. 90

6.2 A tree and a minimum global secure set marked in black. All minimum global

secure sets of this tree are disconnected. 91

6.3 A tree and a minimum global secure set marked in black. All minimum global

secure sets of this tree are disconnected. 91

x

6.4 A tree and a minimum global secure set marked in black. If r is selected as

the root, then in every minimum global secure set, a parent must defend one

of its children in every feasible defense. 97

6.5 Three examples of rooted trees in L. The root of each tree is the topmost

vertex. 110

7.1 Global secure sets of P2, P3, P4 and P5. 125

7.2 A global secure set of P7 as constructed by the proof of Theorem 7.2.1 (Part 4).126

7.3 Global secure sets of Pn, as constructed by the proof of Theorem 7.2.1. . . . 126

7.4 A global secure set of P6 with 4 vertices. 128

7.5 A global secure set of C4k+2, as constructed by the proof of Lemma 7.2.3. . . 128

7.6 A global secure set of P2 × Pm. 132

7.7 A global secure set of P2 × P4k. 133

7.8 The global secure set pattern for Pn × P4k as constructed by the proof of

Lemma 7.3.7. 133

7.9 A graph and one of its global secure sets marked in black. 134

7.10 A global secure set of P2 × P5 with 5 vertices. 134

7.11 A graph and one of its global secure sets marked in black. See the proof of

Lemma 7.3.9 for details. 134

7.12 A global secure set of P3 × P4k+1 as constructed by the proof of Lemma 7.3.10.135

xi

7.13 A global secure set of P3 × P6. (See Remark 7.3.1.) 137

7.14 A global secure set of P3 × P4. 137

7.15 A global secure set of P3 × P4k+2 as constructed in the proof of Lemma 7.3.12. 137

7.16 A graph and one of its global secure sets marked in black. 138

7.17 Identifying the degree one attacker in Figure 7.16 with the top right attacker

in Figure 7.14. 139

7.18 A global secure set of P3 × P7 constructed by the proof of Lemma 7.3.14. . . 139

7.19 A global secure set of P3 × P4k+3 as constructed by the proof of Lemma 7.3.14.139

7.20 A global secure set of P4 × P5. 142

7.21 A global secure set of P3 × P5 with 8 vertices. Note that this configuration

may be obtained by removing the degree one attacker from the configuration

in Figure 7.11 (Observation 7.1.3, Part 4). 142

7.22 A global secure set of P5 × P5. 143

7.23 A global secure set of P4h+1 × P4k+1. 144

7.24 A global secure set of P6 × P5. (See Remark 7.3.1.) 145

7.25 A global secure set of P4h+2 × P4k+1 as constructed by proof of Lemma 7.3.19. 146

7.26 Identifying the degree one attacker in Figure 7.11 with the middle attacker on

the bottom row in Figure 7.20 . 147

7.27 A global secure set of P7 × P5. 147

xii

7.28 A global secure set of P4h+3 × P4k+1 as constructed by the proof of Lemma

7.3.21. 148

7.29 A global secure set of P2 × P6. 150

7.30 A global secure set of P4 × P6. 151

7.31 A global secure set of P6 × P6. (See Remark 7.3.1.) 151

7.32 A global secure set of P4h+2 × P4k+2 as constructed by the proof of Lemma

7.3.24. 152

7.33 A global secure set of P4h+2 × P4k+3 as constructed by the proof of Lemma

7.3.26. 153

7.34 A global secure set of P2 × P7. 154

7.35 A global secure set of P4 × P7. 154

7.36 A global secure set of P4h+2 × P7 as constructed by the proof of Lemma 7.3.28.155

7.37 A global secure set of P7 × P7. (See Remark 7.3.1.) 159

7.38 A global secure set of P4h+3 × P4k+3 as constructed by the proof of Lemma

7.3.31. 160

7.39 A global secure set of cardinality 5 for C3 × P3. 162

7.40 A global secure set of cardinality 11 for C3 × P7. (See Remark 7.3.1.) 162

7.41 A global secure set of cardinality 6 for C3 × P4. 163

7.42 A global secure set of C3 × P4k+3 as constructed by the proof of Lemma 7.4.1. 163

xiii

7.43 A global secure set of P7 × C4k+2 as constructed by the proof of Lemma 7.4.5. 165

7.44 A global secure set of C3 × P5. 166

7.45 A global secure set of C3 × P4k+1 as constructed by the proof of Lemma 7.4.7. 167

7.46 A global secure set of C3 × P2. 167

7.47 A global secure set of C3 × P4k+2 as constructed by the proof of Lemma 7.4.9. 168

7.48 A global secure set of C3 × P6. 171

7.49 A global secure set of C3 × C4k+2 as constructed by the proof of Lemma 7.5.1. 171

7.50 A global secure set of C7 × P6. (See Remark 7.3.1.) 172

7.51 A global secure set of C7 × P4 with 14 vertices. (See Remark 7.3.1.) 173

7.52 A global secure set of C7 × C4k+2 as constructed by the proof of Lemma 7.5.2. 173

7.53 A global secure set for C3 × C3. 174

8.1 An example of attacker groups and defender groups in C14. 179

8.2 Enumeration of attacker groups . 181

8.3 All non-isomorphic attacker groups in C3 × C4k+2 182

8.4 Enumerations of attacker group A followed by parts of defender group D.

Symbols a and d denote the number of attackers and defenders in A ∪ D,

respectively. The attacker groups which start each enumeration are of types

I, III and IV. 185

xiv

8.5 Possible attacker group with adjacent defender group to its right, assuming

the global secure set does not contain attacker groups of type II. See the proof

of Lemma 8.2.2 for details. 186

8.6 Possible attacker group with adjacent defender group to its left, assuming the

global secure set does not contain attacker groups of type II. See the proof of

Lemma 8.2.2 for details. 186

8.7 Enumeration of possible global secure set configurations in C3 × C4k+2, as-

suming the set is composed of only instances of pattern (ii) in Figures 8.5 and

8.6. See the proof of Lemma 8.2.5 for details. 188

8.8 Valid partial configurations for A ∪D, if A is of type III or IV. See the proof

of Lemma 8.2.7 for details. 195

8.9 Possible configurations for Aj ∪Dj, 2 ≤ j ≤ t − 1. These configurations are

not partial. See the proof of Lemma 8.2.7 for details. 196

8.10 Possible partial configurations for Dj ∪ Aj+1, 2 ≤ j ≤ t− 1. See the proof of

Lemma 8.2.7 for details. 196

xv

LIST OF SYMBOLS

NG(x) The open neighborhood of x in graph G: {y : xy ∈ E(G)}, page 1

NG[x] The closed neighborhood of x in graph G: NG(x) ∪ {x}, page 1

deg(x) The degree of vertex x in a graph: |N(x)|, page 1

δ(G) The minimum degree of graph G: min
v∈V (G)

{deg(v)}, page 1

∆(G) The maximum degree of graph G: max
v∈V (G)

{deg(v)}, page 1

N [S] The closed neighborhood of S ⊆ V (G) in graph G:
∪

x∈S N [x], page 1

G[S] The subgraph of G induced by S: a graph (S,E(G) ∩ (S × S)), page 1

a(G) The cardinality of a minimum defensive alliance of G, page 4

s(G) The cardinality of a minimum secure set of G, page 6

γ(G) The cardinality of a minimum dominating set of G, page 8

γs(G) The cardinality of a minimum global secure set of G, page 8

G×H The Cartesian product of two graphs G and H, page 11

Tv The subtree of T rooted at vertex v, page 51

xvi

pv The parent of vertex v in a tree, when v is not the root, page 51

cv The number of children of vertex v in a tree, page 51

Sv The set S ∩ V (Tv), the vertices in S within subtree Tv., page 54

G1 ∪G2 The graph obtained by taking the disjoint union of graphs G1 and G2, page

122

G+ uv The graph obtained by adding the edge uv to graph G, for u, v ∈ V (G),

page 122

G− v The graph obtained by removing vertex v from graph G, for v ∈ V (G),

page 122

xvii

CHAPTER 1

INTRODUCTION

Let G = (V,E) be a graph. Unless otherwise stated, a graph is connected, undirected with

no self loops or multiple edges.

For x ∈ V,NG(x) = {y : xy ∈ E} is the open neighborhood of x and NG[x] = NG(x)∪{x}

is the closed neighborhood of x. The degree of x is degG(x) = |NG(x)|, the number of

neighbors of x in G. The minimum degree of G is δ(G) = min
v∈V
{degG(v)} and the maximum

degree of G is ∆(G) = max
v∈V
{degG(v)}.

For S ⊆ V , NG(S) =
∪

x∈S NG(x) and NG[S] = NG(S) ∪ S are the open and closed

neighborhoods of S in G, respectively. We omit the subscript G when the graph under

consideration is clear. The set N [S]− S is the boundary of S.

The vertex x is isolated in G if NG(x) = ∅. The subgraph of G induced by S is the graph

denoted G[S], where G[S] = (S,E ∩ (S × S)). So, G[S] contains every vertex in S, and

all edges between vertices in S whenever they exist in G. Notation that is not introduced

explicitly follows [GY03] or [Wes04].

Notice N(x) does not contain vertex x, but N(S) may contain vertices in S. More

specifically, N(S) contains all vertices in S that are not isolated in G[S].

1

A vertex subset of G is a global secure set if it is a secure set ([BDH07]) and a dominating

set ([HHS98a]). This work studies the problem of finding minimum global secure sets of trees

and grid-like graphs (see Definition 1.4.4).

The study of secure sets arises from the study of defensive alliances. Section 1.1 gives a

short introduction on defensive alliances, then Section 1.2 discusses secure sets as a gener-

alization of defensive alliances. Section 1.3 introduces the notion of global secure sets, and

Section 1.4 discusses the global secure sets problem when restricted to trees and grid-like

graphs.

1.1 Defensive alliances

Definition 1.1.1. A non-empty set S ⊆ V is a defensive alliance if for all x ∈ S, |N [x]∩S| ≥

|N [x]− S|.

The concept of defensive alliances was introduced in [KHH04]. The primary motivation

was for the modeling of nations in times of war, where allied nations are in mutual agreement

to join forces if one of them is attacked. For a vertex x in a defensive alliance, the number

of neighbors of x inside the alliance, plus the vertex x, is at least the number of neighbors of

x outside the alliance. In a graph model, the vertices of a graph represent nations and the

edges represent country boundaries. Every country in question has a corresponding vertex

in the graph. For any two countries sharing boundaries, their corresponding vertices are

2

adjacent in the graph. Thus, if the nation corresponding to a vertex x is attacked by its

neighbors outside the defensive alliance, the attack can be thwarted by x with the assistance

of its neighbors in the alliance.

The above model assumes that each country has equal military strength. While this

model can be applied to some novel strategic games, it does not usually apply in the real

world, since countries have different military power. The situation can be rectified by split-

ting each country into territories with similar military strength. Thus, a vertex in the graph

represents one territory on the map, and two vertices are adjacent in the graph when the

territories are close enough where one may send forces to another for reinforcements (in case

of allies) or a direct assault (in case of opposing forces). Then, each country corresponds

to the subgraph containing that country’s territories. The countries in a mutual agreement

may form an alliance, in which case the territories belong to those countries form a defensive

alliance in the graph.

For a more formal graph theoretical setting, let G = (V,E) be a graph and S ⊆ V a

defensive alliance of G, according to Definition 1.1.1. For vertex x ∈ S, one can think of the

vertices in N [x]−S as attackers of x and those in N [x]∩S as defenders of x. Then, any vertex

x ∈ S has as least as many defenders as attackers. When vertices in a defensive alliance

have mutually agreed to help each other, any attack on a single vertex of the alliance can

be defended. Figures 1.1 and 1.2 illustrate examples of defensive alliances. The cardinality

of a smallest defensive alliance of G is the defensive alliance number of G, denoted a(G).

The study of defensive alliances have so far revolved around the study of minimum defensive

3

alliances and their cardinality. A literature review on defensive alliances will be presented

in Chapter 2.

Figure 1.1: A defensive alliance is marked in black.

Figure 1.2: A defensive alliance is marked in black.

1.2 Secure sets

Consider the application of modeling nations (or military territories) in times of war discussed

in the last section. In a defensive alliance, any attack on a single member of the alliance can

be successfully defended. However, if multiple members are attacked by vertices (or forces)

outside the alliance simultaneously, the alliance can be defeated. For example, consider

Figure 1.2. If all eight of the vertices outside the alliance decide to attack the four vertices

inside the alliance, this attack cannot be defended since the vertices inside the alliance

are outnumbered. Thus, a defensive alliance may not be able to properly defend itself when

4

multiple members are under attack at the same time. The concept of secure sets is introduced

in [BDH07] for exactly this purpose. The set S is a secure set if every subset X ⊆ S, with

the assistance of vertices in S, can defend against simultaneous attacks coming from vertices

outside of S.

For S ⊆ V , the vertices in S are defenders and the vertices in N [S] − S are attackers.

Consider a situation where every attacker y ∈ N [S] − S chooses one of its neighbor in

N(y)∩S to attack. Given such a choice for all attackers, every defender x ∈ S may choose a

vertex in N [x]∩ S to defend. An attacker can attack at most one vertex and a defender can

defend at most one vertex. The attack is defended if, for every vertex v ∈ S, the number of

vertices defending v is as many as the number of vertices attacking v. The set S is a secure

set if every attack can be defended. The formal definition (based on [BDH07]) follows.

Definition 1.2.1.

1. Let G = (V,E) be a graph. For any S = {s1, s2, . . . , sk} ⊆ V , an attack on S is any k

mutually disjoint sets A = {A1, A2, . . . , Ak} for which Ai ⊆ N(si) − S, 1 ≤ i ≤ k. If

y ∈ Ai, then y attacks si.

2. A defense of S is any k mutually disjoint sets D = {D1, D2, . . . , Dk} for which Di ⊆

N [si] ∩ S, 1 ≤ i ≤ k. If x ∈ Di, then x defends si. Note that this allows si ∈ Di, in

which case si defends itself.

3. An attack A is defendable if there exists a defense D such that |Di| ≥ |Ai| for 1 ≤ i ≤ k.

Such a defense D is a feasible defense for the given attack A .

5

4. A non-empty set S is a secure set if every attack on S is defendable.

Remark 1.2.2. Note that we may require A to be a partition of N [S]−S and D a partition

of S, and obtain an equivalent definition of secure sets.

Since the set V is a secure set, there is a smallest secure set of G. The cardinality of a

minimum secure set of G is the security number of G, denoted s(G). Figure 1.3 shows an

example of a minimum secure set.

Figure 1.3: A minimum secure set is marked in black.

In [BDH07], the authors presented an interesting characterization for secure sets.

Theorem 1.2.3. ([BDH07], Theorem 11) A non-empty set S ⊆ V is a secure set if and only

if ∀X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|.

Theorem 1.2.3 is interesting and fundamental for two reasons.

1. The characterization simplifies the verification process of a secure set. Instead of finding

feasible defenses for each possible attack (partition of N [S] − S), one can only consider

subsets X ⊆ S and examine its neighborhood. Although a naive verification using Theo-

rem 1.2.3 still requires Ω(2|S|) operations, its complexity (in terms of both implementation

and execution time) is nonetheless reduced.

6

2. The characterization gives a parallel to the definition of defensive alliances. Recall from

Definition 1.1.1 that S is a defensive alliance if ∀x ∈ S, |N [x]∩ S| ≥ |N [x]− S|. A secure

set is a generalized form of defensive alliance in the sense that we require all subsets

X ⊆ S to satisfy |N [X] ∩ S| ≥ |N [X]− S|, in addition to single vertices.

The secure set characterization resembles a well known theorem about matching in bi-

partite graphs.

Theorem 1.2.4. (Hall’s Matching Theorem) ([Hal35] or [Wes04] Theorem 3.1.11) An

(A,B)-bipartite graph has a matching that saturates A if and only if ∀X ⊆ A, |N(X)| ≥ |X|.

In Chapter 4, we will investigate the relationship between the secure set characterization

and Hall’s Matching Theorem. In particular, the chapter presents an alternative proof of

Theorem 1.2.3 as an application of Hall’s Theorem.

Notice every secure set is a defensive alliance, but the converse is not true. For example,

the set in Figure 1.3 is a defensive alliance, but the sets in Figure 1.1 and 1.2 are not secure

sets.

Observation 1.2.5. Every secure set is a defensive alliance. Consequently, s(G) ≥ a(G).

1.3 Global secure sets

Secure sets in graphs is a local property in the sense that the security of set S does not

necessarily depend on the structure of the entire graph, but only the structure of the subgraph

7

G[N [S]]. In other words, one may verify the security of a set S without examining the entire

graph the set belongs to. As a result, information about secure sets in a graph does not

necessarily reflect properties of the graph, but rather properties of subregions inside the

graph (certain subgraphs). To extend the security property to involve the entire graph, we

may require additionally that N [S] = V . That is, requiring the set S to be a dominating

set.

Definition 1.3.1. Let G = (V,E) be a graph. A dominating set of G is a vertex subset

S ⊆ V such that for all v ∈ V , either v ∈ S or there exists u ∈ S with uv ∈ E.

Equivalently, S is a dominating set whenever N [S] = V . The cardinality of a minimum

dominating set of G is the domination number of G, and is denoted by γ(G). The theory of

dominating sets has been studied extensively in literature. The reader may refer to [HHS98a]

and [HHS98b] for a review on this subject. More recent developments on the subject of

domination include [CJH04, Gra06, BGH08, FGK08, FGP08, RB08, DDH09, FGK09].

The set S is a global secure set if S is a dominating set and a secure set. Global secure sets

have the security property, and their existence also involves the entire graph. Thus, global

secure sets can be seen as a global property of the graph in question. The cardinality of a

minimum global secure set of G is the global security number of G, denoted γs(G). Notice

γs(G) ≥ max{γ(G), s(G)}. Figure 1.4 shows an example of a minimum global secure set.

Similarly, the set S is a global defensive alliance if it is a dominating set and a defensive

alliance. The cardinality of a minimum global defensive alliance of G is the global defensive

8

Figure 1.4: A minimum global secure set is marked in black.

alliance number of G, denoted γa(G). Since global secure sets are also global defensive

alliances, γs(G) ≥ γa(G) ≥ γ(G).

Global secure sets studied in this work are different from secure dominating sets studied

in [CFM03], [KM08] or [GM09]. In [CFM03], a secure dominating set refers to a dominating

set X ⊆ V such that ∀y /∈ X, ∃x ∈ (N(y) ∩ X) : X − {x} ∪ {y} is a dominating set. The

cardinality of a minimum secure dominating set is sometimes also denoted by γs(G) in the

literature.

1.4 Trees and grid-like graphs

The study of secure sets revolves around the study of minimum secure sets and their cardi-

nalities. Consider the following problems.

Problem 1.4.1. Secure Set

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a secure set of cardinality k or less?

9

Problem 1.4.2. Global Secure Set

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a global secure set of cardinality k or less?

There is no known polynomial algorithm for solving the above problems. In fact, given

a vertex subset S in a graph, there is no known polynomial algorithm which can determine

whether S is a secure set. This implies Secure Set and Global Secure Set may not be

in the class NP, if P ̸= NP. Chapter 3 gives a throughout treatment on the complexity of

finding minimum secure sets and minimum global secure sets.

Many problems in graph theory have no known polynomial solution for general graphs,

but for which polynomial solutions exist when the graph under consideration is restricted

to certain special classes. This is the case for (global) secure sets. Secure Set and Global

Secure Set can be solved in polynomial time when the graph under consideration is re-

stricted to trees and grid-like graphs. A central part of this work focuses on finding global

security numbers of trees and grid-like graphs.

A tree is a connected acyclic graph. A tree with n vertices has exactly n − 1 edges

and there exists exactly one path between any pair of distinct vertices. Chapters 5 and 6

investigate the global security numbers of trees and related problems.

Definition 1.4.3. The Cartesian product of two graphs G and H is a graph denoted G×H,

where V (G × H) = V (G) × V (H) and E(G × H) = {(vi, ui)(vj, uj) : (vi = vj and uiuj ∈

E(H)) or (vivj ∈ E(G) and ui = uj)}.

10

A path on n ≥ 2 vertices, denoted Pn, is a graph with V (Pn) = {v1, . . . , vn} and E(Pn) =

{vivi+1 : 1 ≤ i ≤ n − 1}. A cycle on n ≥ 3 vertices, denoted Cn, is a graph with V (Cn) =

{v1, . . . , vn} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n−1}∪{v1vn}. A two-dimensional grid Pn×Pm

is the Cartesian product of two paths Pn and Pm. A two-dimensional cylinder Pn × Cm is

the Cartesian product of a path Pn and a cycle Cm. A two-dimensional torus Cn × Cm is

the Cartesian product of two cycles Cn and Cm.

Definition 1.4.4. The class of graphs which contains exactly Pn, Cn, Pn × Pm, Pn × Cm

and Cn × Cm is the class of grid-like graphs.

Note that the order of each path is at least two and the order of each cycle is at least

three. For example, the smallest two-dimensional torus is C3 × C3, which has 9 vertices.

Chapters 7 and 8 investigate the global security numbers of grid-like graphs.

11

CHAPTER 2

LITERATURE REVIEW

Alliances appear in the real world when people, businesses, nations, etc. decide to unite for

mutual support over a common interest. A defensive alliance can be used to model such a

group. In [FLG00], a notion similar to that of a defensive alliance is used for modeling the

world wide web. In this model, vertices of the graph represent websites and edges represent

links between websites. A web community is a subset of vertices of the web graph, such

that every vertex in the community has at least as many neighbors in the community as

it has outside. So, a web community C satisfies ∀x ∈ C, |N [x] ∩ C| > |N [x] − C|. These

sets are very similar to defensive alliances. They are known as strong defensive alliances

in the literature of alliances in graphs. In a strong defensive alliance, every vertex has at

least as many neighbors inside the alliance as it has outside the alliance. Thus, if the edges

of a graph represent similarity or closeness relationships between vertices (e.g., web graph,

social network, etc.), a vertex inside a strong defensive alliance is considered to be in a close

relationship with other vertices inside the strong alliance. This property can be used for

different areas of classification, where groups of closely related entries form alliances.

In [Sha04], the above concept is applied to data clustering. The vertices of a graph are

partitioned into alliances, where each alliance is treated as one cluster. [Sha04] presents

12

algorithms for partitioning a graph into alliances and provides experimental results on its

application to data clustering problems. Secure sets, being a more generalized version of

alliances, can be similarly applied to the areas of collaborative agreement, classification and

data clustering.

The rest of this chapter surveys existing literature for graph theoretical results related to

defensive alliances, global defensive alliances and secure sets. Section 2.1 presents results on

upper and lower bounds for each of these properties. Section 2.2 presents existing results on

the computational complexity of these problems. Section 2.3 presents results on the exact

values of the security numbers of some special classes of graphs.

2.1 Upper and lower bounds

Let Kn denote the complete graph on n vertices. Then, s(Kn) = a(Kn) = ⌈n/2⌉. So,

the security number and the alliance number of a graph may be as large as ⌈n/2⌉. This

observation may lead one to conjecture ⌈n/2⌉ as an upper bound for the security and alliance

numbers of an arbitrary graph of order n. This conjecture is proven true for alliance numbers

in [FLH03], and shown to be false for security numbers in [DLB08].

Theorem 2.1.1. ([FLH03], Theorem 2)

If G is a connected graph of order n, then a(G) ≤ ⌈n/2⌉, and the bound is sharp.

13

Using the class of Kneser graphs as a counter-example, it was shown in [DLB08] that

⌈n/2⌉ is not a general upper bound for s(G). Let m and k be positive integers such that

m ≥ k. The Kneser graph K(m, k) is a graph whose vertex set contains n =

(
m

k

)
vertices,

each represents one of the k-element subsets of a m-element set. Two vertices in K(m, k)

are adjacent if and only if their corresponding subsets are disjoint. The security numbers of

K(m, 2) are found to be as follows.

Theorem 2.1.2. ([DLB08], Theorem 25)

s(K(m, 2)) =


1 if m ≤ 4

5 if m = 5

⌈(n+ 1)/2⌉ if m ≥ 6

Theorem 2.1.2 shows that if m ≥ 6 and n =

(
m

2

)
is even, then s(K(m, 2)) > ⌈n/2⌉.

There is no known sharp upper bound for the security number of a graph in terms of only

its order (Open Problem 9.2.1). In [DLB08] and [Dut09], bounds on s(G) were given in terms

of other invariants of G such as the minimum degree, degree sequence, girth, connectivity

and domination number. We cite selected results below.

Theorem 2.1.3. ([DLB08], Theorem 3 and Theorem 12)

Let G be a graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. Then
⌈
(ds(G) + 1)/2

⌉
≤

s(G) ≤ n− ⌈dk+1/2⌉, where k = max {i : i ≤ ⌈di+1/2⌉}.

14

Proposition 2.1.4. ([DLB08], Corollary 5 and Proposition 6)

Let G be a graph with minimum degree δ and let ℓ = ⌈(δ + 1)/2⌉. Then, s(G) ≥ ℓ,

and equality holds if and only if there is a subset S ⊆ V such that S induces a Kℓ and

|N [S]− S| ≤ ℓ.

Theorem 2.1.5. ([DLB08], Theorem 9)

Let G be a graph of order n ≥ 2. If G has a secure set which is also a minimal dominating

set, then s(G) ≤ ⌊n/2⌋.

Theorem 2.1.6. ([DLB08], Theorem 10)

Let G be a graph of order n, girth g ≥ 5 and minimum degree δ ≥ 3. Then s(G) ≤

n− 1−∆ (δ−1)⌊(g−3)/2⌋−1
δ−2

.

Theorem 2.1.7. ([DLB08], Theorem 15)

Let G be a bipartite graph of order n and minimum degree δ. Then s(G) ≤ n− δ.

The vertex connectivity number of graph G, denoted κ(G), is the cardinality of a smallest

set of vertices whose removal disconnects G or reduces it to a single vertex. The edge

connectivity number of graph G, denoted κ1(G), is the cardinality of a smallest set of edges

whose removal disconnects G.

Theorem 2.1.8. ([DLB08], Theorem 16 and Theorem 17)

Let G be a graph of order n and minimum degree δ. If κ(G) ≤ ⌈δ/2⌉, then s(G) ≤

⌊(n− 2 ⌈δ/2⌉+ κ(G))/2⌋. If κ1(G) < δ, then s(G) ≤ ⌊n/2⌋.

15

Theorem 2.1.9. ([Dut09], Theorem 19)

Let L(G) denote the line graph of G. For any positive integer m, s(L(Km)) ≤ k(k−1)/2,

where k = ⌈(2m+ 1)/3⌉.

Proposition 2.1.10. ([Dut09], Corollary 15)

If G is a triangle-free graph, then s(G) ≥ 2 ⌈(δ(G)− 1)/2⌉.

Definition 2.1.11. A set X ⊆ V is a total dominating set or an open dominating set if

N(X) = V . The cardinality of a minimum total dominating set of G is the total domination

number of G, denoted γt(G).

In [HHH03], bounds on global defensive alliance numbers of various graphs are given.

Selected results are cited below.

Lemma 2.1.12. ([HHH03], Lemma 4)

For any graph G with δ(G) ≥ 2, γt(G) ≤ γa(G). Furthermore, if ∆(G) ≤ 3, then

γt(G) = γa(G).

Theorem 2.1.13. ([HHH03], Theorem 11)

Let G be a graph of order n. Then, γa(G) ≥ (
√
4n+ 1− 1)/2, and this bound is sharp.

Proposition 2.1.14. ([HHH03], Corollary 13)

If G is a cubic graph or a 4-regular graph of order n, then γa(G) ≥ n/3.

16

Theorem 2.1.15. ([HHH03], Theorem 15)

If G is a bipartite graph of order n and maximum degree ∆, then γa(G) ≥ (2n)/(∆+3),

and this bound is sharp.

Theorem 2.1.16. ([HHH03], Theorem 17 and Theorem 21)

If T is a tree of order n ≥ 4, then (3n)/5 ≥ γa(T) ≥ (n + 2)/4, and both bounds are

sharp.

In [BCH10], a more specialized lower bound than the one in Theorem 2.1.16 is given for

the global defensive alliance numbers of trees.

Definition 2.1.17. A leaf of a tree is a vertex with degree one. A support vertex of a tree

is a vertex adjacent to a leaf.

Theorem 2.1.18. ([BCH10], Theorem 7)

Let T be a tree of order n ≥ 2 with ℓ leaves and s support vertices. Then, γa(T) ≥

(3n− ℓ− s+ 4)/8, and the bound is sharp.

2.2 Complexity results

This section discusses results on the complexity of finding minimum (global) defensive al-

liances. The complexity of finding minimum (global) secure sets will be discussed in Chapter

3.

17

Consider the defensive alliance and global defensive alliance problems stated below.

Problem 2.2.1. Defensive Alliance

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a defensive alliance of cardinality at most k?

Problem 2.2.2. Global Defensive Alliance

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a global defensive alliance of cardinality k or less?

Defensive Alliance was shown to be NP-Complete in [JHM09], even when the input is

restricted to split and chordal graphs. Global Defensive Alliance was shown to be NP-

Complete in [CBD06], and was shown to remain NP-Complete when the input is restricted

to planar graphs in [Enc09]. This gives rise to the hypothesis that finding minimum secure

sets and minimum global secure sets (Problems 1.4.1 and 1.4.2) may be NP-Hard.

In related attempts, [FR07] and [Enc09] study the parameterized complexity of finding

minimum defensive alliances and present parameterized algorithms for minimum defensive

alliances and related problems. [ED08] presents a parameterized algorithm for finding mini-

mum secure sets of graphs. [Dut06] presents exhaustive search algorithms and heuristics for

finding s(G). There is no known polynomial algorithm for Problem 1.4.1 or 1.4.2. Chapter

3 will give more detailed information regarding the complexity of secure sets.

18

2.3 Security number of certain classes of graphs

Many NP-Complete problems are known to have polynomial time solutions when the input

graph is restricted to certain classes. This is the case for alliances and secure sets. Polynomial

algorithms for finding the global defensive alliance number of a tree are presented in [Jam07]

and [Enc09]. In addition, [Jam07] presents a polynomial algorithm for finding the defensive

alliance number of a series parallel graph, and [Enc09] presents a polynomial algorithm for

finding the global defensive alliance number of a graph with constant domino treewidth.

Chapter 6 will present a polynomial algorithm for finding the global security number of

a tree. Chapters 7 and 8 will present the exact values of the global security numbers of

grid-like graphs (Definition 1.4.4). There is no known polynomial algorithm for finding the

security number or global security number of a series parallel graph (Open Problems 9.3.1

and 9.3.2).

The exact values of security numbers of some classes of graphs are known. Theorems 2.3.1,

2.3.2, 2.3.3 and 2.3.4 present the exact values of security numbers of maximum degree three

graphs, outerplanar graphs, complete k-partite graphs and grid-like graphs, respectively.

Theorem 2.3.1. ([BDH07], Proposition 4, Part 5)

Let G be a graph with maximum degree three. If G is not a forest, let g be its girth.

Define k to be g if G has at most one vertex of degree 2, and to be the number of vertices

in a shortest path between degree 2 vertices otherwise. Then,

19

s(G) =



1 if δ(G) ≤ 1,

2 if k = 2 or G contains either a K4 − e

or a K3 with a degree 2 vertex,

max{3,min{k, g − 1}} if G contains an induced K2,3

or a Cg with a degree 2 vertex,

min{k, g} otherwise.

Theorem 2.3.2. ([Dut09], Theorem 21)

Let G be a connected outerplanar graph. Then,

s(G) =


1 if δ(G) ≤ 1

2 if δ(G) > 1 and there exists xy ∈ E(G) such that |N [x] ∪N [y]| ≤ 4

3 otherwise

Theorem 2.3.3. ([DLB08], Theorem 19)

Let G = Kn1,n2,...,nk
be a complete k-partite graph of order n =

k∑
i=1

ni, where the i-th

partite set contains exactly ni vertices. If G is not a star orKn, then s(G) = ⌈n/2⌉, otherwise

s(G) = 1.

Theorem 2.3.4. ([BDH07, KOY09])

1. s(Pn) = 1. ([BDH07], Proposition 4, Part 1(a))

2. s(Cn) = 2. ([BDH07], Proposition 4, Part 3)

3. s(Pn × Pm) = min{n,m, 3}. ([BDH07], Proposition 4, Part 4(a))

20

4. s(Pn × Cm) = min{2n,m, 6}. ([KOY09], Theorem 4.2)

5. s(Cn × Cm) =


4 if n = m = 3

min{2n, 2m, 12} if max{n,m} ≥ 4

 ([KOY09], Theorem 3.9)

The rest of this section will cite results on finding minimum defensive alliances of grid-like

graphs and partitioning a graph into (global) defensive alliances. The alliance numbers of

grid-like graphs are found in [KHH04]. The problem of partitioning vertices of a grid graph

into defensive alliances is studied in [HL07]. The problem of partitioning vertices of a tree

into global defensive alliances is studied in [EG08]. Selected results are cited below.

Theorem 2.3.5. ([KHH04])

1. a(Pn) = 1. ([KHH04], Corollary 1)

2. a(Cn) = 2. ([KHH04], Corollary 2, (i))

3. a(Pn × Pm) = 2. ([KHH04], Theorem 1, (ii))

4. a(Pn × Cm) = 2. ([KHH04], Proposition 3, (i))

5. a(Cn × Cm) = girth(Cn × Cm). ([KHH04], Theorem 2, (iv))

Let G = (V,E) be a graph. The alliance partition number of G, denoted ψa(G), is the

maximum number of sets in a partition of V such that every set in the partition is a defensive

alliance.

21

Theorem 2.3.6. ([HL07])

1. ψa(Pn) = ⌈(n+ 1)/2⌉. ([HL07], Theorem 2.1)

2. ψa(P2 × Pm) = m. ([HL07], Theorem 2.2)

3. ψa(P3 × Pm) =


m if m is odd

m+ 1 if m is even

 ([HL07], Theorem 2.3)

4. ψa(Pn × Pm) =

⌊
n− 2

2

⌋⌊
m− 2

2

⌋
+ n+m− 2 for 4 ≤ n ≤ m. ([HL07], Theorem 2.5)

Let G = (V,E) be a graph. The global alliance partition number of G, denoted ψg(G),

is the maximum number of sets in a partition of V such that every set in the partition is a

global defensive alliance.

Theorem 2.3.7. ([EG08], Theorem 2.2)

Let G be a connected graph with minimum degree δ. Then, 1 ≤ ψg(G) ≤ 1+ ⌈δ/2⌉, and

the bound is sharp.

Corollary 2.3.8. ([EG08], Corollary 3.1)

For any tree graph T , 1 ≤ ψg(T) ≤ 2.

Theorem 2.3.9. ([EG08], Theorem 3.7)

Let T be a tree of order n ≥ 3 with ∆(T) ≤ 3. Then, ψg(T) = 2 if and only if there

exists a pair of leaves in T that are an odd distance from one another.

Other work on alliances can be found in [FFG04, RS06, CMR07, JD07, RA07, BDH09,

FRS09, HWW09, RYS09, RS09, SR09].

22

CHAPTER 3

COMPLEXITY OF SECURE SETS

3.1 Introduction

This chapter discusses the complexity of finding minimum (global) secure sets of a graph

and related problems. Recall from Definition 1.2.1 that for a graph G = (V,E) and a vertex

subset S = {s1, s2, . . . , sk}, an attack on S is a set of mutually disjoint subsets of N [S]− S,

A = {A1, A2, . . . , Ak} such that Ai ⊆ N [si] − S. An attack A is defendable if there exists

a set of mutually disjoint subsets of S, D = {D1, D2, . . . , Dk} such that Di ⊆ N [si] ∩ S and

|Di| ≥ |Ai|. The set D is a feasible defense for A . A set S is a secure set if every attack

on S is defendable. Set S is a global secure set if it is a secure set and a dominating set

(Definition 1.3.1) of G. The security number of G is the cardinality of a minimum secure

set in G, denoted s(G). The global security number of G is the cardinality of a minimum

global secure set of G, denoted γs(G).

There are several problems of interest with regard to the properties of secure sets.

23

Problem 3.1.1. Feasible Defense

Given: A graph G = (V,E), set S = {s1, s2, . . . , sk} ⊆ V and an attack A =

{A1, A2, . . . , Ak}, such that Ai ⊆ (N [si]− S) and (Ai ∩ Aj = ∅ if i ̸= j).

Question: Is there a feasible defense for A ? That is, a set D = {D1, D2, . . . , Dk} such

that Di ⊆ (N [si] ∩ S), |Di| ≥ |Ai|, and (Di ∩Dj = ∅ if i ̸= j).

Section 3.2 presents a polynomial algorithm for finding a feasible defense (or determine

there is none) for a given attack on a subset of vertices of a graph. This means Feasible

Defense is in P.

Problem 3.1.2. Is Secure

Given: A graph G = (V,E) and a subset S ⊆ V .

Question: Is S a secure set of G?

Section 3.3 discusses the complexity of Is Secure. In particular, we will show that Is

Secure is in P if and only if P = NP (Corollary 3.3.8).

Finally, recall the problems Secure Set (Problem 1.4.1) and Global Secure Set (Prob-

lem 1.4.2) introduced in Chapter 1. They are stated again below for convenience.

Problem 3.1.3. Secure Set

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a secure set of cardinality k or less?

24

Problem 3.1.4. Global Secure Set

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a global secure set of cardinality k or less?

The problems Secure Set and Global Secure Set are central to the study of secure

sets and global secure sets. Their complexity will be discussed in Section 3.4. In particular,

we will show that

1. Secure Set is in P if and only if P = NP (Theorem 3.4.4).

2. If P = NP, then Global Secure Set is in P (Corollary 3.4.7).

3. If P ̸= NP, both problems may not be in NP.

To date, there is no known polynomial algorithm for solving the problems Is Secure,

Secure Set or Global Secure Set.

3.2 Computing a feasible defense using network flow

This section presents a polynomial algorithm for Feasible Defense (Problem 3.1.1). Given

a graph G = (V,E), a set S ⊆ V and an attack A on S, the algorithm will compute

a feasible defense for A or determine if none exists. In [BDH07], a linear programming

formulation was provided for Feasible Defense and claimed to always produce integral

25

solutions. The algorithm presented here uses network flow techniques ([Rav93, KT05]) and

will always terminate in polynomial time.

Feasible Defense can be formulated as a transportation problem and solved by single

source single destination maximum network flow. Consider an input instance of Feasible

Defense: a graph G = (V,E), a set S = {s1, s2, . . . , sk} ⊆ V and an attack A =

{A1, A2, . . . , Ak} with Ai ⊆ (N [si] − S) and (Ai ∩ Aj = ∅ if i ̸= j). Note that each vertex

si ∈ S is attacked by exactly |Ai| attackers, and must be assigned at least |Ai| defenders

if a feasible defense is to exist. Construct a network N = (V ′, A′) with capacity function

c : A′ → Z as follows.

1. V ′ = {s′, t′}∪X ∪Y , X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}. Note |V ′| = 2|S|+2.

2. A′ = {(s′, xi) : 1 ≤ i ≤ k}∪ {(xi, yj) : si ∈ N [sj] and 1 ≤ i, j ≤ k}∪ {(yj, t′) : 1 ≤ j ≤ k}.

3.


c(s′, xi) = 1 for 1 ≤ i ≤ k.

c(xi, yj) = 1 for (xi, yj) ∈ A′.

c(yj, t
′) = |Aj| for 1 ≤ j ≤ k.

The network N contains exactly 2|S|+2 vertices. One may consider the vertices in X as

supplies of defenders in S, with xi modeling the supply of defender si, and vertices in Y as

demands (for defenders) of those vertices in S being attacked. The constraint c(s′, xi) = 1

ensures each defender si may choose to defend at most one vertex, and c(yj, t
′) = |Aj|

indicates each vertex sj demands |Aj| defenders. A vertex si may defend sj only if si ∈ N [sj],

in which case (xi, yj) ∈ A′ with capacity c(xi, yj) = 1. A feasible defense exists for the given

26

attack if and only if the maximum s′− t′ flow of network N equals
k∑

j=1

|Aj|. Using the Ford-

Fulkerson algorithm (see [FF56] or [CLR01] Chapter 26), the maximum flow of N may be

computed in O(f× (|V ′|+ |A′|)) time, where f is the maximum s′− t′ flow of network N and

f ≤
k∑

i=1

c(s′, xi) = |S|. Since |V ′| = (2|S| + 2) ∈ O(|S|) and |A′| ≤ (2|S| + |S|2) ∈ O(|S|2),

the algorithm will always terminate in O(|S|3) time.

If a feasible defense exists, then it can be extracted from the maximum flow solution of

network N as follows. For each (xi, yj) ∈ A′ where the capacity is consumed, let si defend

sj (i.e., let si ∈ Dj). Since the maximum flow is
k∑

j=1

|Aj| =
k∑

j=1

c(yj, t
′), for each yj in the

network, the capacity of (yj, t
′) must be fully consumed. This implies |Dj| = |Aj|, since each

yj must have its in-flow equal to its out-flow, where the out-flow is |Aj|.

3.3 Verifying the security of a set

This section discusses the problem Is Secure (Problem 3.1.2). Given a graph G = (V,E)

and a set S ⊆ V , is S a secure set of G? Can S defend against all possible attacks coming

from N [S]−S, as specified in Definition 1.2.1? In this section, we will show that Is Secure

is in the set Co-NP-Complete (Theorem 3.3.7), and a polynomial algorithm for Is Secure

exists if and only if P = NP (Corollary 3.3.8). The section concludes with a remark on two

naive methods for verifying the security of small sets. These methods are used to ensure the

security of sets presented in Chapter 7.

27

To date, there is no known polynomial algorithm for solving Is Secure. Recall from

Theorem 1.2.3 that a set S ⊆ V is secure if and only if ∀X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|.

Corollary 3.3.1. If S is not a secure set, then there exists a witness set W ⊆ S such that

|N [W] ∩ S| < |N [W]− S|. The absence of any witnesses implies a set is secure.

Then, the complement of Is Secure may be stated as follows.

Problem 3.3.2. Witness

Given: A graph G = (V,E) and a set S ⊆ V .

Question: Does there exist W ⊆ S such that |N [W]∩S| < |N [W]−S|? In other words,

is S not a secure set of G?

It is clear that Witness is in the class NP. An oracle may provide the desired set W ,

and a verifier can compute |N [W] ∩ S| and |N [W]− S| in polynomial time. We show next

that Witness is NP-Complete by providing a polynomial transformation from the known

NP-Complete problem Dominating Set (see Definition 1.3.1 and [GJ79] P.190 [GT2]).

Problem 3.3.3. Dominating Set

Given: A graph G = (V,E) and a positive integer k < |V |.

Question: Does G have a dominating set of cardinality k or less? That is, a set S ⊆ V

such that |S| ≤ k and N [S] = V .

28

Transformation 3.3.4. Let G = (V,E) be a graph of order n where V = {v1, v2, . . . , vn}

and let k < n be a positive integer. The graph G and the integer k specifies an instance of

Dominating Set. Construct a graph H = (V ′, E ′) as follows.

V ′ = V ∪X ∪ Y , where V , X and Y are mutually disjoint, and

1. V is the vertex set of G.

2. X = A ∪ B ∪ C, where A, B and C are mutually disjoint, and |A| = n2 − n − k − 1,

B = {b1, b2, . . . , bn} and |C| = k + 1. The vertices of A and C are not labeled. Note that

|X| = n2.

3. Y = Y1 ∪ Y2 ∪ · · · ∪ Yn, where Y1, Y2, . . . , Yn are mutually disjoint and Yt = {y(t,j) : 1 ≤

j ≤ n} for 1 ≤ t ≤ n. Note that |Yt| = n and |Y | = n2.

E ′ = E ∪ {xx′ : x, x′ ∈ X and x ̸= x′} ∪ {via : a ∈ A and 1 ≤ i ≤ n}

∪{vibi : 1 ≤ i ≤ n} ∪ {viy(t,j) : vj ∈ NG[vi] and 1 ≤ i, j, t ≤ n}

Thus, H contains exactly |V |+ |X|+ |Y | = 2n2 + n vertices. The graph G is an induced

subgraph ofH. In graphH, X induces a complete subgraph (clique) and Y is an independent

set. In addition, for each vi ∈ V , vi is adjacent to all vertices of A, the vertex bi and vertex

y(t,j) whenever vj is in the closed neighborhood of vi, for 1 ≤ t ≤ n.

Given an instance of Dominating Set with G ← G and k ← k, Transformation 3.3.4

provides an instance of Witness with G← H and S ← (V ∪X).

29

Lemma 3.3.5. With reference to Transformation 3.3.4, G contains a dominating set of

cardinality at most k if and only if (V ∪X) contains a witness in H.

Proof. Consider an arbitrary non-empty subset T ⊆ V in H.

|NH [T] ∩ (V ∪X)| = |NH [T] ∩ V |+ |NH [T] ∩ A|+ |NH [T] ∩B|+ |NH [T] ∩ C|

= |NH [T] ∩ V |+ (n2 − n− k − 1) + |T |
(3.1)

Note that |NH [T] ∩ V | = |NH [T] ∩ Yt| for 1 ≤ t ≤ n, so

|NH [T]− (V ∪X)| = |NH [T] ∩ Y |

=
n∑

t=1

|NH [T] ∩ Yt|

=
n∑

t=1

|NH [T] ∩ V |

= n · |NH [T] ∩ V |

(3.2)

Let S be a dominating set of G of cardinality k or less. Then, S ⊆ V and S is also a

subset of the vertices of H. By NG[S] = V , |NH [S] ∩ V | = n. Then,

|NH [S] ∩ (V ∪X)|

= |NH [S] ∩ V |+ (n2 − n− k − 1) + |S| (By S ⊆ V and Equation (3.1))

≤ n+ (n2 − n− k − 1) + k (By |NH [S] ∩ V | = n and |S| ≤ k)

= n2 − 1

< n2

30

= n · |NH [S] ∩ V | (By |NH [S] ∩ V | = n)

= |NH [S]− (V ∪X)| (By S ⊆ V and Equation (3.2))

In other words, |NH [S] ∩ (V ∪X)| < |NH [S] − (V ∪X)| and S is a witness of (V ∪X)

in H. Thus, if G contains a dominating set of cardinality k or less, then (V ∪X) contains a

witness.

Conversely, letW be a witness of (V ∪X) inH. We will show thatW is a valid dominating

set of G of cardinality k or less by showing that W ⊆ V , |W | ≤ k and |NH [W] ∩ V | = n, in

that order.

If (W ∩X) ̸= ∅, then

|NH [W] ∩ (V ∪X)|

= |NH [W] ∩ V |+ |NH [W] ∩X|

= |NH [W] ∩ V |+ |X| (By (W ∩X) ̸= ∅ and X is clique)

≥ |X|

= n2

= |Y |

≥ |NH [W] ∩ Y |

= |NH [W]− (V ∪X)|

31

This is a contradiction to W being a witness. Thus, (W ∩X) = ∅, and W ⊆ V . Next,

|NH [W] ∩ (V ∪X)| < |NH [W]− (V ∪X)| (W is a witness)

|NH [W] ∩ V |+ (n2 − n− k − 1) + |W | < n · |NH [W] ∩ V | (By Eq. (3.1) and (3.2))

(n2 − n− k − 1) + |W | < (n− 1) · |NH [W] ∩ V |

(3.3)

If |W | ≥ k + 1, then

(n2 − n− k − 1) + |W |

≥ (n2 − n− k − 1) + k + 1

= n2 − n

= (n− 1) · n

≥ (n− 1) · |NH [W] ∩ V | (By n = |V | ≥ |NH [W] ∩ V |)

This is a contradiction to Equation (3.3). Thus, |W | ≤ k.

If |NH [W] ∩ V | < n, then

(n− 1) · |NH [W] ∩ V | > (n2 − n− k − 1) + |W | (By Equation (3.3))

(n− 1) · |NH [W] ∩ V | > n · (n− 1) + |W | − k − 1

32

So,

k > n · (n− 1) + |W | − 1− (n− 1) · |NH [W] ∩ V |

= (n− 1)(n− |NH [W] ∩ V |) + |W | − 1

≥ (n− 1) + |W | − 1 (By (n− |NH [W] ∩ V |) ≥ 1)

≥ (n− 1) + 1− 1 (By |W | ≥ 1)

= (n− 1)

Thus, k > (n−1), or k ≥ n. This is a contradiction since k < |V | = n by the specification

of Dominating Set (Problem 3.3.3). Thus, |NH [W] ∩ V | = n.

Since W ⊆ V and |NH [W] ∩ V | = n, W is a dominating set of G with cardinality

|W | ≤ k.

By Transformation 3.3.4 and Lemma 3.3.5,

Theorem 3.3.6. Witness (Problem 3.3.2) is NP-Complete.

Since Witness is the complement of Is Secure,

Theorem 3.3.7. Is Secure (Problem 3.1.2) is Co-NP-Complete.

Theorem 3.3.7, along with the next corollary, concludes the complexity of Is Secure.

Corollary 3.3.8. Is Secure (Problem 3.1.2) is in P if and only if P = NP.

Proof. If P = NP, then Witness (Problem 3.3.2), a problem in NP, will be in P. So, its

complement Is Secure will also be in P.

33

Conversely, if Is Secure is in P, then its complement Witness is also in P. Since Witness

is NP-Complete, the result is P = NP.

The rest of this section presents two naive methods for solving the problem Is Secure

in the lack of any polynomial solutions. Although polynomial algorithms are not likely to

exist for Is Secure, brute force algorithms can still work sufficiently fast when the set to

be verified is small.

To check if a set S is a secure set of a graph G, one may examine all possible attacks

(according to Definition 1.2.1) and determine whether or not a feasible defense exists for each

attack using the algorithm given in Section 3.2. Since every attacker in N [S]− S may have

several choices on which vertex of S to attack, there are an exponential number of attacks to

consider. The complexity of this approach depends on the number of neighbors each attacker

has in S. More specifically, the number of attack configurations equals
∏

y∈(N [S]−S)

|N [y] ∩ S|.

A feasible defense for each attack can be found (or determined that none exists) in O(|S|3)

time as seen in Section 3.2. Note that when verifying a secure set, we only need to consider

cases where every attacker y ∈ (N [S]− S) decides to attack a vertex in (N [y] ∩ S).

Another approach is to apply Theorem 1.2.3. Examine every subset X ⊆ S and verify

that |N [X]∩S| ≥ |N [X]−S|. There are 2|S| subsets and it is not clear whether a procedure

exists which does not examine at least Ω(2|S|) subsets of S.

34

Both approaches above require in the worst case exponential time to execute. In [Dut06],

several other exhaustive search methods are given, but none has been shown to be effective

against large problem instances.

3.4 Computing the security number of a graph

This section discusses the problem Secure Set (Problem 3.1.3). Given a graph G = (V,E)

and a positive integer k < |V |, does G have a secure set of cardinality k or less? We will

show that Secure Set is in P if and only if P = NP (Theorem 3.4.4), and when P ̸= NP,

Secure Set is probably not in NP. The section will conclude with some remarks on the

problem Global Secure Set (Problem 3.1.4).

Note that in order for Secure Set to be in NP, there must be a polynomial verifier which

can verify the existence of a secure set of cardinality k or less in a graph G, when evidence of

such existence is presented. An obvious evidence from an oracle will be a subset of vertices

of cardinality k or less. A polynomial algorithm must then verify that the set presented is

in fact a secure set. But, by Corollary 3.3.8, such an algorithm does not exist unless P =

NP. So, if P ̸= NP, it is unlikely for Secure Set to be in NP. For an in depth discussion of

the class NP, see [GJ79] or [Gol10].

Next, Transformation 3.4.1 and Lemmas 3.4.2 and 3.4.3 will be used to establish Theorem

3.4.4, which states that Secure Set is in P if and only if P = NP.

35

Transformation 3.4.1. Let G = (V,E) be a graph of order n and let S ⊆ V . The graph

G and set S specifies an instance of Is Secure (Problem 3.1.2). Let m = |S| and label

the vertices of G with S = {v1, v2, . . . , vm} and V = {v1, v2, . . . , vn}. Construct a graph

H = (V ′, E ′) as follows.

V ′ = V ∪ A ∪B ∪ C, where V , A, B and C are mutually disjoint, and

1. V is the vertex set of G.

2. |A| = 3m+ 1. The vertices of A are not labeled.

3. B = {b1, b2, . . . , bm}.

4. C = {c1, c2, . . . , cm}.

E ′ = E ∪ {xx′ : x, x′ ∈ (A ∪B) and x ̸= x′}

∪{xx′ : x, x′ ∈ (B ∪ C) and x ̸= x′}

∪{vibi : 1 ≤ i ≤ m} ∪ {vici : 1 ≤ i ≤ m}

∪{vix : (m+ 1) ≤ i ≤ n and x ∈ (A ∪B)}

So, H contains exactly n + 5m + 1 vertices. The graph G is an induced subgraph of

H. In graph H, the sets (A ∪ B) and (B ∪ C) induce complete subgraphs (cliques), and in

addition, for each vi ∈ V , if i ≤ m, then vi ∈ S and vi is adjacent to bi and ci, and if i > m,

then vi ∈ (V − S) and vi is adjacent to all vertices of (A ∪B).

Given an instance of Is Secure with G← G and S ← S, Transformation 3.4.1 provides

an instance of Secure Set with G ← H and k ← 2|S|. Next, Lemma 3.4.2 will be used in

36

the proof of Lemma 3.4.3. Lemma 3.4.3 shows that S is a secure set of G if and only if H

contains a secure set of cardinality 2|S| or less.

Lemma 3.4.2. With reference to Transformation 3.4.1, S is a secure set of G if and only if

(S ∪ C) is a secure set of H.

Proof. Let S be a secure set of G. Then, by Theorem 1.2.3, ∀X ⊆ S, |NG[X] ∩ S| ≥

|NG[X] − S|. We want to show that (S ∪ C) is a secure set of H. Let X ′ ⊆ (S ∪ C) be

arbitrary and consider two cases.

1. (X ′ ∩ C) ̸= ∅. Let X = (X ′ ∩ S) and,

|NH [X
′] ∩ (S ∪ C)|

= |NH [X
′] ∩ C|+ |NH [X

′] ∩ S|

= |C|+ |NH [X
′] ∩ S| (By (X ′ ∩ C) ̸= ∅ and C is a clique)

≥ |C|+ |NH [X] ∩ S| (By X ⊆ X ′)

≥ |C|+ |NH [X] ∩ (V − S)| (X ⊆ S and S is a secure of G)

= |B|+ |NH [X] ∩ (V − S)| (By |C| = m = |B|)

= |B|+ |NH [X
′] ∩ (V − S)| (No edges between C and (V − S))

= |NH [X
′] ∩B|+ |NH [X

′] ∩ (V − S)| (By (X ′ ∩ C) ̸= ∅ and (B ∪ C) is a clique)

= |NH [X
′]− (S ∪ C)| (No edges between (S ∪ C) and A)

So, if (X ′ ∩ C) ̸= ∅, then |NH [X
′] ∩ (S ∪ C)| ≥ |NH [X

′]− (S ∪ C)|.

37

2. (X ′ ∩ C) = ∅. Then X ′ ⊆ S, and

|NH [X
′] ∩ (S ∪ C)|

= |NH [X
′] ∩ C|+ |NH [X

′] ∩ S|

= |X ′|+ |NH [X
′] ∩ S| (By X ′ ⊆ S)

≥ |X ′|+ |NH [X
′] ∩ (V − S)| (X ′ ⊆ S and S is a secure set of G)

= |NH [X
′] ∩B|+ |NH [X

′] ∩ (V − S)| (By X ′ ⊆ S)

= |NH [X
′]− (S ∪ C)| (X ′ ⊆ S and no edges between S and A)

(3.4)

So, if (X ′ ∩ C) = ∅, then |NH [X
′] ∩ (S ∪ C)| ≥ |NH [X

′]− (S ∪ C)|.

In both cases |NH [X
′] ∩ (S ∪ C)| ≥ |NH [X

′]− (S ∪ C)|, so (S ∪ C) is a secure set of H.

Conversely, suppose S is not a secure set of G. Let X ⊆ S be a witness of S in G. Then,

|NH [X] ∩ (S ∪ C)|

= |NH [X] ∩ C|+ |NH [X] ∩ S|

= |X|+ |NH [X] ∩ S| (By X ⊆ S)

< |X|+ |NH [X] ∩ (V − S)| (X is a witness of S in G)

= |NH [X] ∩B|+ |NH [X] ∩ (V − S)| (By X ⊆ S)

= |NH [X]− (S ∪ C)| (X ⊆ S and no edges between S and A)

Thus, |NH [X] ∩ (S ∪ C)| < |NH [X] − (S ∪ C)|, and X is a witness of (S ∪ C) in H.

Therefore, (S ∪ C) is not a secure set of H.

38

Lemma 3.4.3. With reference to Transformation 3.4.1, S is a secure set of G if and only if

H contains a secure set of cardinality 2|S| or less.

Proof. Let S be a secure set of G. By Lemma 3.4.2, (S ∪ C) is a secure set of H. Since

|S ∪ C| = 2|S|, H contains a secure set of cardinality 2|S| or less.

Conversely, let S ′ be a secure set of H with |S ′| ≤ 2|S|. We want to show that S is a

secure set of G. We first show that S ′ = (S ∪ C).

Suppose S ′ − (S ∪ C) ̸= ∅ and let x ∈ S ′ − (S ∪ C). Then, x ∈ (A ∪B ∪ (V − S)) and

(A ∪B) ⊆ NH [x].

4m+ 1 = |A ∪B|

≤ |NH [x]| (By (A ∪B) ⊆ NH [x])

= |NH [x] ∩ S ′|+ |NH [x]− S ′|

≤ 2 · |NH [x] ∩ S ′| (x ∈ S ′ and S ′ is a secure set)

≤ 2 · |S ′|

≤ 4m (By |S ′| ≤ 2|S| = 2m)

This is a contradiction. Thus, S ′ − (S ∪ C) = ∅, and S ′ ⊆ (S ∪ C).

Next, assume that (S ∪ C)− S ′ ̸= ∅ and consider the following cases.

39

1. (S ′ ∩ C) = ∅. Since S ′ ⊆ (S ∪ C), so S ′ ⊆ S and,

|NH [S
′]− S ′|

≥ |(NH [S
′]− S ′) ∩B|+ |(NH [S

′]− S ′) ∩ C|

= 2|S ′| (By S ′ ⊆ S)

> |S ′|

= |NH [S
′] ∩ S ′|

This is a contradiction since S ′ is a secure set in H.

2. (S ′ ∩ C) ̸= ∅. Consider two sub-cases.

2.1. (C − S ′) = ∅. Then, C ⊆ S ′ and (S − S ′) = (S ∪C)− S ′ ̸= ∅. Let vi ∈ (S − S ′) and

consider vertex ci ∈ C. Note that ci ∈ S ′, and

|NH [ci] ∩ S ′|

= |(NH [ci] ∩ S ′) ∩ C|+ |(NH [ci] ∩ S ′) ∩ S| (By S ′ ⊆ (S ∪ C))

= |C|+ |NH [ci] ∩ S ∩ S ′| (By C ⊆ S ′ and C is a clique)

= |C| (By vi /∈ S ′)

< |B|+ 1 (By |C| = |B|)

= |B|+ |{vi}|

= |NH [ci]− S ′| (By (B ∪ C) is a clique and vi /∈ S ′)

This is a contradiction since S ′ is a secure set.

40

2.2. (C − S ′) ̸= ∅. Let ci ∈ (C − S ′) and since (S ′ ∩ C) ̸= ∅, let cj ∈ (S ′ ∩ C). Then,

|NH [cj] ∩ S ′|

= |(NH [cj] ∩ S ′) ∩ C|+ |(NH [cj] ∩ S ′) ∩ S| (By S ′ ⊆ (S ∪ C))

≤ (|C| − 1) + 1 (By ci /∈ S ′)

= |C|

< |B|+ 1

= |NH [cj] ∩B|+ |{ci}| (By (B ∪ C) is clique)

≤ |NH [cj]− S ′| (By ci /∈ S ′)

This is a contradiction since S ′ is a secure set.

In all cases a contradiction results. Therefore, (S ∪ C)− S ′ = ∅, and (S ∪ C) ⊆ S ′. So,

S ′ = (S ∪ C) and (S ∪ C) is a secure set of H. By Lemma 3.4.2, S is a secure set of G.

Theorem 3.4.4. Secure Set (Problem 3.1.3) is in P if and only if P = NP.

Proof. If P = NP, then by Corollary 3.3.8, Is Secure (Problem 3.1.2) is in P. Let graph

G = (V,E) and positive integer k < |V | be an instance of Secure Set. An oracle may

provide a secure set of cardinality k or less, and since Is Secure is in P, this set can be

verified in polynomial time. This puts Secure Set in NP. Since P = NP, Secure Set is in

P.

Conversely, if Secure Set is in P, then Is Secure may be solved in polynomial time by

applying Transformation 3.4.1 and solving the obtained Secure Set instance in polynomial

41

time. The answer is correct due to Lemma 3.4.3. This puts Is Secure in P, and by Corollary

3.3.8, P = NP.

The rest of this section discusses the complexity of finding minimum global secure sets

and related problems. In particular, we show that a global secure set can be verified in

polynomial time if and only if P = NP (Lemma 3.4.6). In addition, if P = NP, then a

minimum global secure set can be found in polynomial time (Corollary 3.4.7), but it is not

known whether the converse is true.

The problem of verifying a global secure set can be stated as follows.

Problem 3.4.5. Is Global Secure

Given: A graph G = (V,E) and a subset S ⊆ V .

Question: Is S a global secure set of G?

A set S is a global secure set if it is a secure set and a dominating set. A dominating

set can be verified in polynomial time, and a secure set can be verified in polynomial time if

and only if P = NP.

Lemma 3.4.6. Is Global Secure (Problem 3.4.5) is in P if and only if P = NP.

Proof. If P = NP, then by Corollary 3.3.8, Is Secure is in P. Let G = (V,E) and S ⊆ V be

an instance of Is Global Secure. It can be verified that N [S] = V and S is a secure set,

both in polynomial time. Thus, Is Global Secure is in P.

42

Conversely, suppose Is Global Secure is in P. Let G = (V,E) and S ⊆ V be an instance

of Is Secure. Then, let graph G[N [S]] and the set S be an instance of Is Global Secure.

Since S is a dominating set of G[N [S]], S is a global secure set of G[N [S]] if and only if S

is a secure set of G. Since Is Global Secure is in P, the above transformation provides a

polynomial algorithm for Is Secure. So, Is Secure is in P, and by Corollary 3.3.8, P =

NP.

Corollary 3.4.7. If P = NP, then Global Secure Set (Problem 3.1.4) is in P.

Proof. If P = NP, then by Lemma 3.4.6, Is Global Secure is in P, and one may verify a

global secure set in polynomial time. Then, Global Secure Set is in NP. Since P = NP,

Global Secure Set is in P.

We have not shown that the converse of Corollary 3.4.7 is true. This is posted as Open

Problem 9.3.4. If P ̸= NP, then by Lemma 3.4.6, Is Global Secure is not in P, and Global

Secure Set may not be in NP.

43

CHAPTER 4

CHARACTERIZATION OF SECURE SETS

4.1 Introduction

Consider the secure set characterization theorem (Theorem 1.2.3), stated again as Theorem

4.1.1.

Theorem 4.1.1. ([BDH07], Theorem 11) Let G = (V,E) be a graph. A non-empty set

S ⊆ V is a secure set if and only if ∀X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|.

As mentioned in Section 1.2, Theorem 4.1.1 is fundamental to the study of secure sets.

It states that the obvious necessary condition (∀X ⊆ S, |N [X] ∩ S| ≥ |N [X]− S|) for a set

to be secure is also sufficient. This theorem provides an equivalent definition of secure sets

which is similar to the definition of defensive alliances (Definition 1.1.1). In addition, the

applications of Theorem 4.1.1 are extensive, as demonstrated in a number of publications

([Dut06, DLB08, ED08, Dut09, KOY09, HD10, Jes10, DH10, HD11]), as well as in Chapter

3, and it will also be applied in later chapters of this work.

Theorem 4.1.1 resembles the well known Hall’s Matching Theorem in graph theory.

44

Theorem 4.1.2. (Hall’s Matching Theorem) ([Hal35] or [Wes04] Theorem 3.1.11) An

(A,B)-bipartite graph has a matching that saturates A if and only if ∀X ⊆ A, |N(X)| ≥ |X|.

A matching saturates set A if every vertex of A is incident to an edge of the matching.

Notice the similarity between Theorem 4.1.1 and 4.1.2. Both conditions specify inequalities

involving all subsets of the set in question, comparing the cardinalities of a subset and its

neighborhoods. On the other hand, the computational complexity of these two conditions are

quite distinct. The condition (∀X ⊆ A, |N(X)| ≥ |X|) of Hall’s Theorem can be evaluated

in polynomial time, by computing a maximum matching of the bipartite graph in question.

But, as seen in Section 3.3, one cannot verify a secure set in polynomial time unless P = NP,

so the condition of Theorem 4.1.1 cannot be evaluated in polynomial time unless P = NP.

Section 4.2 will present a solution to the problem Feasible Defense (Problem 3.1.1)

using maximum bipartite matching. The model used in Section 4.2 is similar to the one

given in Section 3.2, and it will establish some of the notation used in Section 4.3. Then,

Section 4.3 presents a proof of Theorem 4.1.1 as an application of Hall’s Theorem. This

proof is an alternative to the original one given in [BDH07].

4.2 Computing a feasible defense using maximum matching

Consider an input instance of Feasible Defense: A graph G = (V,E), a subset S =

{s1, s2, . . . , sk} ⊆ V and an attack A on S, where A = {A1, A2, . . . , Ak}, Ai ⊆ (N [si]− S)

45

and (Ai∩Aj = ∅ if i ̸= j). Let (N [S]−S) = {a1, a2, . . . , am} and construct a bipartite graph

H = (V ′, E ′) as follows.

V ′ = A ∪B, where A and B are disjoint and each is an independent set, and

A = {(ai, sj) : ai ∈ Aj and 1 ≤ j ≤ k}

B = {b1, b2, . . . , bk}

E ′ = {((ai, sj), bt) : st ∈ N [sj]}.

The graph H has at most m+k vertices. The vertices in A model demands for defenders

and the vertices in B model supplies of defenders. Each vertex in A is labeled by a pair

of the form (a, s) where a ∈ (N [S] − S) and s ∈ S. For each attacker ai ∈ (N [S] − S), if

ai ∈ Aj, then ai attacks sj, in which case the pair (ai, sj) is in A. Since an attacker can

attack at most one vertex, for (a, s), (a′, s′) ∈ A, if (a, s) ̸= (a′, s′), then a ̸= a′, but s may

be equal to s′. For (ai, sj) ∈ A, ai attacks sj in G, and this attack must be repelled by a

vertex in (N [sj] ∩ S), so for each st ∈ N [sj], (ai, sj) is adjacent to bt, where bt corresponds

to the supply of defender st ∈ S, and st may be used to defend sj. A feasible defense exists

in G for the given attack A if and only if there exists a matching of H that saturates A (or

equivalently, the cardinality of a maximum matching of H equals |A|).

If there exists a matching M that saturates A in graph H, then a feasible defense for

attack A in graph G can be extracted as follows. For each ((ai, sj), bt) ∈M , let st defend sj

(i.e., let st ∈ Dj). If ai attacks sj, then (ai, sj) ∈ A, and since M saturates A, there exists

((ai, sj), bt) ∈M , and st defends sj from the attacker ai. In addition, since M is a matching,

different attackers are defended by different defenders.

46

4.3 Secure sets characterization via Hall’s Matching Theorem

Theorem Let G = (V,E) be a graph. A non-empty set S ⊆ V is a secure set if and only if

∀X ⊆ S, |NG[X] ∩ S| ≥ |NG[X]− S|.

Proof. Let G = (V,E) be a graph and let S = {s1, s2, . . . , sk} ⊆ V be a subset of vertices.

Suppose S is a secure set of G and let X be an arbitrary subset of S. Consider an

attack A = {A1, A2, . . . , Ak} with
∪
sj∈X

Aj = (NG[X]− S). That is, every attacker adjacent

to X attacks a vertex of X. Since S is a secure set, there exists a feasible defense D =

{D1, D2, . . . , Dk} with |Dj| ≥ |Aj| for 1 ≤ j ≤ k. Then, |NG[X] ∩ S| ≥
∑
sj∈X

|Dj| ≥∑
sj∈X

|Aj| = |NG[X]− S|. So, |NG[X] ∩ S| ≥ |NG[X]− S|.

Conversely, suppose S is not a secure set. We want to show (∃X ⊆ S : |NG[X] ∩ S| <

|NG[X] − S|). Since S is not secure, let A = {A1, A2, . . . , Ak} be an attack which is not

defendable (i.e., no feasible defense exists for A). Apply the transformation presented in

Section 4.2 and construct a bipartite graph H = (V ′, E ′). Since A is not defendable, no

matching of H saturates A. By Hall’s Theorem, there exists T ⊆ A such that |T | > |NH(T)|.

Let Wa = {ai : (ai, sj) ∈ T} be the attackers in (NG[S]− S) corresponding to vertices of T

and let W = {sj : (ai, sj) ∈ T} be the vertices attacked by those in Wa. Notice W ⊆ S and

Wa ⊆ (NG[W]− S). Then,

47

|NG[W]− S|

≥ |Wa| (By Wa ⊆ (NG[W]− S))

= |T | ((a, s) ̸= (a′, s′)→ a ̸= a′)

> |NH(T)|

= |{bt : (ai, sj) ∈ T and st ∈ NG[sj]}|

= |{st : (ai, sj) ∈ T and st ∈ NG[sj]}| (bt ∈ B corresponds to st ∈ S)

= |{st : sj ∈ W and st ∈ NG[sj]}|

= |NG[W] ∩ S|

Thus, there exists W ⊆ S such that |NG[W] ∩ S| < |NG[W]− S|.

48

CHAPTER 5

ROOTED SECURE SETS OF TREES

The last two chapters discuss the complexity and characterization of secure sets. Those

chapters focus on the properties of secure sets in general graphs. As seen in Chapter 3,

finding a minimum secure set or even verifying the validity of a secure set can be a difficult

problem. But, these problems are not as intractable when the graphs under consideration are

restricted to certain special classes. In the remaining chapters, we discuss problems related

to secure sets on trees and grid-like graphs (Definition 1.4.4). This chapter and the next

chapter discuss two problems related to secure sets on trees, Rooted Secure Set (Problem

5.1.1) on trees and Global Secure Set (Problem 1.4.2) on trees. Finally, Chapters 7 and 8

discuss the global security number of grid-like graphs.

5.1 Introduction

When the vertices of a graph represent a set of entities, such as countries, territories or people,

it is interesting to ask for a smallest secure set that contains a given country, territory or

person. Consider an example in national security, a minister of country C would like to

49

establish an alliance with neighboring countries such that the alliance forms a secure set,

in order to ensure protection for country C. Given the graph which models this situation

(as described in Chapter 1), which countries should the minister include in the alliance?

Problem 5.1.1 presents the situation in graph theoretical terms.

Problem 5.1.1. Rooted Secure Set

Given: A graph G = (V,E), a vertex r ∈ V and a positive integer k < |V |.

Question: Does there exist a secure set S ⊆ V , such that |S| ≤ k and r ∈ S?

Rooted Secure Set asks for a small secure set S that contains a specified vertex r in a

graph G. The vertex r is called the root of S. A minimum secure set of G will not be of

use for this problem unless the set contains r. In the context of existence of a polynomial

algorithm, Rooted Secure Set is at least as hard as Secure Set (Problem 1.4.1).

Observation 5.1.2. If a polynomial algorithm exists for Rooted Secure Set, then one

exists for Secure Set. One such algorithm takes the disjunction of the answers of |V |

Rooted Secure Set instances, where each instance specifies a different vertex in V as the

root.

Note that a degree one vertex always forms a secure set. So in any tree T , s(T) = 1, as

every tree of order n ≥ 2 contains at least two degree one vertices. On the other hand, for

a rooted secure set S containing vertex r, the cardinality of S is one only if deg(r) = 1.

This chapter provides polynomial algorithms for finding the cardinality of a minimum

rooted secure set of a tree. First, we examine the properties of such a set. Let r be a vertex

50

of a tree T that must be contained in a secure set. Consider T as a rooted tree with root r.

For vertex v ∈ V (T), let Tv denote the subtree of T rooted at v with respect to r, and let pv

denote the parent of v in Tr when v ̸= r. Let cv denote the number of children of v in Tv.

Notice a minimum rooted secure set of T containing r must be connected, for otherwise the

maximal connected subset that contains r forms a smaller rooted secure set.

Lemma 5.1.3. Let T be a tree and S ⊆ V (T) be a connected subset of vertices (i.e., T [S]

is a connected graph). Then, |N(y) ∩ S| = 1 for all y ∈ N [S]− S.

Proof. Let y ∈ (N [S]− S) and assume that |N(y)∩ S| > 1. Let u and v be distinct vertices

in N(y) ∩ S. Since u, v ∈ S and T [S] is a connected graph, there exists a path from u to

v in T [S] and a second path u, y, v outside T [S]. So, T contains a cycle, contradicting the

assumption that T is a tree.

Lemma 5.1.3 states that every vertex in (N [S] − S) has exactly one neighbor in S.

Thus, every vertex y ∈ (N [S] − S) can only attack the one neighbor it has in S. This

means there is an unique attack on S, and S is a secure set if and only if this unique

attack is defendable. As seen in Section 3.2, the problem of deciding whether a given attack

is defendable (i.e., Feasible Defense, Problem 3.1.1) can be solved in polynomial time.

Therefore, when restricted to trees, Is Secure (Problem 3.1.2) can be solved in polynomial

time, and Rooted Secure Set is in the class NP.

Definition 5.1.4. Let S be a connected subset of vertices of a tree T and let A be the

unique attack on S. Then, for x ∈ S, let Ax denote the vertices in (N [S]− S) attacking x.

51

So, Ax ∈ A and Ax = N [x] − S. If D is a defense of S (not necessarily a feasible defense

for A), then Dx denotes the vertices in S defending x. So, Dx ∈ D and Dx ⊆ (N [x] ∩ S).

Lemma 5.1.5. Let T be a tree with root r. Let S be a secure set of T containing r, such

that T [S] is a connected graph. Let A be the unique attack on S. If there exists a feasible

defense D for A such that pv defends v for some v ∈ S − {r}, then S is not a minimum

rooted secure set.

Proof. Let D be a feasible defense of A for which pv defends v. We show that S is not a

minimum rooted secure set by showing that S ′ = S − V (Tv) is a secure set containing r.

Let A ′ be the attack on S ′. Note that A′
x = Ax for x ∈ S ′ − {pv} and A′

pv = Apv ∪ {v}.

Consider a defense D ′ where D′
x = Dx for x ∈ S ′ − {pv} and D′

pv = Dpv ∪ {pv} (pv ∈ Dv,

but v no longer requires defending since v /∈ S ′). D ′ is a feasible defense for A ′, so S ′ is a

rooted secure set and S is not minimum.

By Lemma 5.1.5, if S is a minimum secure set containing the root r, then in every feasible

defense D of the unique attack A , pv does not defend v for all v ∈ (S−{r}). In other words,

a vertex in a minimum rooted secure set either defends itself or its parent, but never any of

its children.

So far, we established that a minimum rooted secure set is connected, and it must have

a unique attack (Lemma 5.1.3), and any feasible defense for the attack will never assign a

vertex to defend any of its children (Lemma 5.1.5).

52

Next, Section 5.2 presents an O(n∆) algorithm for computing the cardinality of a min-

imum rooted secure set of a tree, where ∆ is the maximum degree of the tree. A more

specialized analysis will follow in Sections 5.3 and 5.4, which results in an O(n lg(∆)) algo-

rithm.

5.2 An O(n∆) algorithm

This section presents an O(n∆) algorithm for computing the cardinality of a minimum rooted

secure set of a tree. We employ Wimer’s method ([WHL85, Wim87]). The following is a

brief overview of rooted tree compositions used in Wimer’s method.

Definition 5.2.1. Rooted Trees ([WHL85])

1. The triple ({x}, ∅, x) is a rooted tree with root x.

2. If T1 = (V1, E1, r1) and T2 = (V2, E2, r2) are rooted trees with roots r1 and r2 re-

spectively, then T1 ◦ T2 = (V1 ∪ V2, E1 ∪ E2 ∪ {r1r2}, r1) is a rooted tree with root

r1.

3. Nothing is a rooted tree unless it can be obtained by a finite number of applications

of rules 1 and 2.

In Definition 5.2.1, Rule 1 states that a single vertex is a rooted tree. This is the smallest

rooted tree. Rule 2 describes a tree composition, whereby a new rooted tree is constructed

53

from two smaller rooted trees T1 = (V1, E1, r1) and T2 = (V2, E2, r2), by adding an edge

between r1 and r2, and selecting r1 as the root of the new tree. This operation is a binary

operation and is denoted by the ◦ operator. Note that ◦ is not commutative.

In the algorithm that follows, let S be a minimum rooted secure set containing the

root r of tree T . Let v ∈ V (T) be arbitrary, let Sv = S ∩ V (Tv) be the vertices in

S within the subtree Tv, and let U = {u1, u2, . . . , uk} be the children of v. Recall that

cv denotes the number of children of v (i.e., cv = k, we use them interchangeably for

convenience). Consider the subtree Tv, and associate with it an array of integer values

α(Tv) =
{
αi(Tv) : −

⌊cv
2

⌋
− 1 ≤ i ≤

⌈cv
2

⌉
+ 1

}
.

Recall from Definition 5.1.4 that for x ∈ S, Ax denotes the set of attackers of x and Dx

denotes the set of defenders of x, when an attack or defense is given.

Definition 5.2.2. The entry αi(Tv) is an integer representing the cardinality of a minimum

set Sv such that

(i) v ∈ Sv, and

(ii) for x ∈ Sv − {v}, |Dx| ≥ |Ax|, and

(iii) |Dv ∩ U |+ i ≥ |Av ∩ U |. That is, among the children of v, the difference between

the number of attackers of v and the number of defenders of v is at most i, where

i ranges from
(
−
⌊cv
2

⌋
− 1

)
to

(⌈cv
2

⌉
+ 1

)
, and

(iv) A is the unique attack on S and D is a defense for A .

54

Note that i may be negative. The value of αi(Tv) is the cardinality of a minimum set

Sv, where if A is the unique attack on S and D is a defense (not necessarily feasible) for S,

then every vertex in Sv − {v} is protected. Furthermore, if i ≥ 0, then v will be protected

if it receives i more defenders in addition to its defenders among its children, and if i < 0, v

is protected by its children and will remain protected if |i| more attackers attack v.

To compute α(Tv), initialize T1 = ({v}, ∅, v), with associated values α(T1). Then, let

T2 be Tu1 , Tu2 , . . . , Tuk
in sequence and compute α(T2) (or α(Tuj

), 1 ≤ j ≤ k) recursively.

For each T2 = Tuj
, apply tree composition on T1 and T2, and let this result be the new T1

(T1 ← T1 ◦ T2), at the same time compute new values for the new α(T1). One may consider

each tree composition as attaching a child subtree Tuj
of v onto T1, which is rooted at v.

When every child subtree of v is attached, T1 is transformed into Tv, and α(T1) also contains

the desired values of α(Tv).

We now discuss initial (base case) values for α(T1), as well as how to compute the new

values of α(T1), given its old values and α(T2). Initially, T1 is a single vertex {v}. Since v

has no children, the set Sv = {v} is a valid configuration only if i ≥ 0, in which case |Sv| = 1.

The initial values of αi(T1) are then

αi(T1) =


1 if 0 ≤ i ≤

(⌈cv
2

⌉
+ 1

)
∞ if

(
−
⌊cv
2

⌋
− 1

)
≤ i ≤ −1

(5.1)

55

Let T2 = Tuj
be a child subtree of v and let r2 = uj be the root of T2. Consider

T12 = T1 ◦ T2. When combining the trees T1 and T2, we must decide on the role of r2 in this

new tree T12. There are three cases to be considered.

1. r2 ∈ Sv and r2 defends v. In this case, Sr2 ⊂ Sv and |Sr2 | = α0(T2). In other words,

among the children of r2, the number of attackers of r2 is at most the number of

defenders. Since r2 defends v and not itself, the defenders of r2 must be among the

children of r2.

2. r2 ∈ Sv and r2 defends itself. In this case r2 is included in Sv so that it does not

attack v. That is, r2 is a neutral vertex with respect to v. Then, Sr2 ⊂ Sv and

|Sr2 | = α1(T2). In other words, among the children of r2, there may be one more

attackers than defenders, accounting for the fact that r2 is an additional defender of

itself.

3. r2 /∈ Sv. Here, r2 is an attacker of v, and S ∩ V (T2) = ∅.

As mentioned in Lemma 5.1.5 and the remarks that followed it, r2 will never defend

any of its children, otherwise, S is not a minimum rooted secure set. The associated values

αi(T12) can be computed following the 3 cases above.

αi(T12) = min


αi+1(T1) + α0(T2) (Type 1)

αi(T1) + α1(T2) (Type 2)

αi−1(T1) (Type 3)

(5.2)

56

Equation (5.1) describes the base case and equation (5.2) describes the recursive formu-

lation for computing α(Tv). When computing α(Tv), we consider possible candidates for the

set Sv, and compute partial feasible defenses where every vertex in Sv is protected, with the

possible exception of v. When v ̸= r, α(Tv) is then used for constructing α(Tpv), and at that

point v will be protected.

The cardinality of a minimum secure set that contains r is α1(Tr), since r has no parent

and can defend itself. Note that the construction of α(Tv) only utilizes α0(Tuj
) and α1(Tuj

)

for each uj ∈ U . The final solution is α1(Tr). Thus, an algorithm does not need to compute

all entries of α(Tv), but only {α0(Tv), α1(Tv)}. Next, we present the pseudo-code of the

algorithm, followed by a justification of the range
(
−
⌊cv
2

⌋
− 1

)
to

(⌈cv
2

⌉
+ 1

)
of αi(Tv)

used in the algorithm.

Algorithm 5.2.3.

Input: A rooted tree Tv.

Output: α0(Tv) and α1(Tv).

RootedSecure(Tv)

1. Initialize αi(T1) =


1 if 0 ≤ i ≤

(⌈cv
2

⌉
+ 1

)
∞ if

(
−
⌊cv
2

⌋
− 1

)
≤ i ≤ −1

2. For j = 1 to cv

2.1. {α0(T2), α1(T2)} ← RootedSecure(Tuj
)

57

2.2. For i = max{j − cv,−j} to min{cv + 1− j, j}

αi(T12)← min{αi+1(T1) + α0(T2), αi(T1) + α1(T2), αi−1(T1)}

2.3. For i = max{j − cv,−j} to min{cv + 1− j, j}

αi(T1)← αi(T12)

3. Return {α0(T1), α1(T1)}

As aforementioned, the algorithm only needs to compute the values of α0(Tv) and α1(Tv).

However, the entry of αi(T1) needs to be computed for other values of i as an intermediate

step of the algorithm, as each child of v is attached. For example, in Figure 5.1 the only

possible set that can realize α0(Tv) = 3 is Sv = {v, u3, u4}. As u1 and u2 are attached, both

subtrees belong to Type 3 of the recurrence in equation (5.2), and the instance of T1 after

Tu1 and Tu2 are attached to v looks like that of Figure 5.2. The set marked in Figure 5.2 is

not a valid α0 or α1 configuration, but it must be computed since it will lead to a valid α0

or α1 configuration of Tv. In this case, we store the partial tree in Figure 5.2 as α2(T1) and

it will eventually lead to a solution of α0(Tv), as shown in Figure 5.1. For this reason, other

values of αi, in addition to α0 and α1, are maintained by the algorithm.

It remains to ensure that the ranges (range for initialization of αi(T1), as well as the ranges

of for-loops in Steps 2.2 and 2.3) is necessary and sufficient to correctly compute α0(Tv) and

α1(Tv). As child uj is attached to v, there can be at most j attackers and at most j defenders

of v, so we may bound the for-loops in Steps 2.2 and 2.3 by the range [−j, j]. Next, note

that the value of αi(T12) depends on αi−1(T1), αi(T1) and αi+1(T1). With reference to Figure

58

Figure 5.1: A minimum rooted secure set and a valid α0 configuration.

Figure 5.2: A partial solution and an α2 configuration.

5.3, α0(Tv) and α1(Tv) (on row cv, columns 0 and 1) depend on the cells within the range

[j − cv, cv + 1 − j] on row j. In Figure 5.3, the cells for which α0(Tv) and α1(Tv) depend

are marked with vertical bars, and the cells whose values are non-trivial are marked with

horizontal bars. The algorithm proceeds and computes values for exactly those cells marked

by both vertical and horizontal bars, which are the cells with non-trivial values and affect

results α0(Tv) or α1(Tv). The range for initialization is then derived from the ranges of the

loops and the indexes being referenced:
(
−
⌊cv
2

⌋
− 1

)
≤ (i− 1) and (i+ 1) ≤

(⌈cv
2

⌉
+ 1

)
.

The above discussion verifies the correctness of Algorithm 5.2.3.

59

Figure 5.3: Solution Table

Lemma 5.2.4. Algorithm 5.2.3 has time complexity O(n∆).

Proof. For each vertex v ∈ V (T), the algorithm is invoked with Tv. Step 2 is executed cv

times, once for each child of v. Steps 2.2 and 2.3 are executed at most cv + 1 times in each

iteration of Step 2. There are, in total, O
(
(cv)

2) operations for each vertex v ∈ V (T). The

total number of operations required for solving RootedSecure(Tr) is then proportional to∑
v∈T

(cv)
2 ≤

∑
v∈T

(cv ×∆) = (n− 1)×∆ ∈ O(n∆), where ∆ is the maximum degree of T .

The next two sections describe an O(n lg(∆)) algorithm, using a strategy that deviates

from Wimer’s method.

5.3 Feasible partitions and feasibility preserving rule set

Algorithm 5.2.3 uses Wimer’s method ([WHL85, Wim87]), which calculates the result of

subtree Tv by appending the children subtrees of v, {Tu1 , Tu2 , . . . , Tuk
}, to v one at a time.

60

An alternate strategy, which we describe in this and the next section, constructs the result for

Tv by considering the results of {Tu1 , Tu2 , . . . , Tuk
} all at once. This requires more extensive

analysis and sophisticated data structures, but results in an O(n lg(∆)) algorithm.

Let S be a minimum rooted secure set containing the root r of a tree T . Let v ∈ V (T) be

an arbitrary vertex and let Tv be the subtree of T rooted at v with respect to r. Recall that

Sv = S ∩ V (Tv) is the set of vertices of S within the subtree Tv. Let U = {u1, u2, . . . , uk} be

the children of v. As shown in Section 5.2, there are three cases to be considered for each

child uj of v.

1. uj ∈ Sv and uj defends v. In this case, |Suj
| = α0(Tuj

) and uj is a defender of v.

2. uj ∈ Sv and uj defends itself. In this case, |Suj
| = α1(Tuj

) and uj is a neutral vertex

with respect to v. The vertex uj is included in S so that it does not attack v.

3. uj /∈ Sv. In this case, |Suj
| = 0 and uj is an attacker of v.

Among the three choices, at least one will result in an optimal solution for Sv. Let D,

N , A be a partition of U and be defined as follows.

Definition 5.3.1.

D = {uj : uj ∈ Sv and uj defends v.}

N = {uj : uj ∈ Sv and uj defends itself.}

A = {uj : uj /∈ Sv.}

61

So, D contains the defenders of v, N contains the vertices that are neutral to v, and A

contains the attackers of v.

Definition 5.3.2. The value of a partition (D,N,A) of {u1, u2, . . . , uk} is

f(D,N,A) = 1 +
∑
u∈D

α0(Tu) +
∑
u∈N

α1(Tu)

The value of a partition is the number of vertices in the corresponding Sv as dictated by

the given partition. When computing α0(Tv), we seek a partition with |D| = |A|, and when

computing α1(Tv), a partition with |D| + 1 = |A| is required. The partitions which satisfy

the cardinality requirements are feasible partitions for the αi(Tv) in question.

Definition 5.3.3. Let i ∈ {0, 1}. A partition (D,N,A) of {u1, . . . , uk} is feasible for αi(Tv)

if |D|+ i = |A|. A partition is optimal for αi(Tv) if it is feasible and its value f(D,N,A) =

1 +
∑
u∈D

α0(Tu) +
∑
u∈N

α1(Tu) is minimum.

Note that according to Definition 5.2.2, a valid αi configuration must satisfy |D|+i ≥ |A|.

But, when |D|+ i > |A|, we may move some vertices in D to N and obtain another valid αi

configuration whose value is no worse, since α0(Tuj
) ≥ α1(Tuj

). Thus, we can only consider

partitions with |D|+ i = |A|.

Our goal is to find optimal partitions for α0(Tv) and α1(Tv). This will be done by first

obtaining a feasible partition and then transforming it into an optimal one using a set of

exchange rules. The elementary rule set (Definition 5.3.4) and the feasibility preserving rule

set (Definition 5.3.5) are designed for this purpose.

62

The following six elementary rules (E-rules) can be used to transform one partition into

another.

Definition 5.3.4. Elementary Rule Set

E1 : A→ D.Move an element from A to D. That is, let x ∈ A and modify

A← (A− {x}) and D ← (D ∪ {x}). Rules E2, . . . , E6 are defined similarly.

E2 : D → A.

E3 : A→ N.

E4 : N → A.

E5 : D → N.

E6 : N → D.

The E-rules allow any element fromD, N or A to be moved to any other set. Using the E-

rules, we can transform any partition into any other one. Hence, given any feasible partition

and an optimal partition, we may apply the E-rules to transform the feasible partition into

the optimal partition. This can be done by moving any element that is misplaced and put

it in the correct set, using the optimal partition as a reference. Note that each element in

{u1, . . . , uk} is moved at most once, and as a result the order of applications is irrelevant.

Since the order of applications is irrelevant, the E-rules can be grouped together into

several groups such that each group of E-rules transform one feasible partition into another,

improved, feasible partition. In Definition 5.3.5, we provide a set of these groups (R-rules)

and follow with a justification that these are sufficient for transforming any feasible partition

63

into a known optimal partition (Theorem 5.3.10). Then, when an optimal partition is not

given, the difficulty lies in deciding which of the rules should be used, to which elements, and

in which order. Section 5.4 will demonstrate how the R-rules may be applied to a feasible

partition and produce an optimal partition, without foreknowledge of an optimal solution.

Definition 5.3.5. Feasibility Preserving Rule Set

R1 : D → A,A→ D. Exchange elements between A and D. Let x ∈ A, y ∈ D and

modify A← (A− {x}) ∪ {y}, D ← (D − {y}) ∪ {x}. The other R-rules are

similarly defined.

R2 : D → N,N → D.

R3 : N → A,A→ N.

R4 : A→ N,D → N.

R5 : N → A,N → D.

R6 : A→ D,D → N,N → A.

R7 : A→ N,N → D,D → A.

R8 : A→ D,N → A,N → A.

R9 : D → A,N → D,N → D.

R10 : A→ D,D → N,D → N.

R11 : D → A,A→ N,A→ N.

64

Note that for R8 two distinct elements in N are moved to A (and an element in A is

moved to D). The case is similar for R9, R10 and R11. In R5, the element that moves from

N → A must be different from the one moving from N → D.

Each R-rule is composed of 2 or 3 E-rules. For example, R1 is E2 followed by E1. In

addition, if (D,N,A) is a feasible partition for αi(Tv), then (D,N,A) remains feasible for

αi(Tv) after any number of applications of R1 through R11.

In the following, let (D,N,A) be an arbitrary feasible partition for αi(Tv) and let

(Do, No, Ao) be an optimal one, for i ∈ {0, 1}. Theorem 5.3.10 shows that starting from

any feasible partition (D,N,A), there exists a sequence of R-rule applications that trans-

forms (D,N,A) into an optimal partition, given foreknowledge of such a partition, namely

(Do, No, Ao). First, we introduce some definitions and lemmas needed in the proof of Theo-

rem 5.3.10. The lemmas will help determine whether a sequence of R-rule applications has

resulted in the optimal partition.

Given a feasible partition (D,N,A) and an optimal partition (Do, No, Ao), if the two

partitions are not equal, then some elements are misplaced in (D,N,A) and must be moved

to the correct set with respect to (Do, No, Ao). For example, an element may be in D ∩ Ao,

which means it is currently in D of the partition (D,N,A), and must be moved to A in order

to transform (D,N,A) into (Do, No, Ao). Definition 5.3.6 introduces a short hand notation

for denoting the sets of elements that need to be moved in this fashion, based on which set

of the partition the elements are currently in (with respect to (D,N,A)) and which set they

must be moved to, with respect to (Do, No, Ao).

65

Definition 5.3.6. Let (D,N,A) and (Do, No, Ao) be given as described above. Let XY

denote the set of elements that must be moved from X to Y in order to transform (D,N,A)

into (Do, No, Ao), for X,Y ∈ {D,N,A}. Elements that do not need to be moved are denoted

XX . With this notation, for example, DA = {u : u ∈ D and u ∈ Ao} = D ∩ Ao, which

are the elements currently in D that must be moved to A. D = (DD ∪ DN ∪ DA) and

Do = (DD ∪ND ∪ AD).

Lemma 5.3.7 presents a characterization for determining when two feasible partitions are

equal. Then, Lemma 5.3.8 presents two sufficient conditions for determining when (D,N,A)

has been transformed into (Do, No, Ao), based on the notation given in Definition 5.3.6.

Lemma 5.3.7. Let (D1, N1, A1) and (D2, N2, A2) be arbitrary feasible partitions for αi(Tv).

Then, (D1, N1, A1) = (D2, N2, A2) if and only if (D1 ⊆ D2) and (A2 ⊆ A1).

Proof. If (D1, N1, A1) = (D2, N2, A2), then (D1 = D2), (A1 = A2) and the claim holds.

Conversely, suppose (D1 ⊆ D2) and (A2 ⊆ A1). Then, (|D2| + i) = |A2| because

(D2, N2, A2) is a feasible partition for αi(Tv). |D1| ≤ |D2| and |A2| ≤ |A1| due to set

inclusion. So, (|D1| + i) ≤ (|D2| + i) = |A2| ≤ |A1|. But, (|D1| + i) = |A1| because

(D1, N1, A1) is also a feasible partition for αi(Tv). So (|D1| + i) = (|D2| + i) = |A2| = |A1|.

Then, |D1| = |D2| and |A1| = |A2|, and so D1 = D2 and A1 = A2.

Lemma 5.3.8. The following are each sufficient conditions indicating that (D,N,A) has

been transformed into (Do, No, Ao).

(1) ND = AD = AN = ∅, or

66

(2) DA = DN = NA = ∅

Proof.

(1) Recall that Do = (D ∩ Do) ∪ (N ∩ Do) ∪ (A ∩ Do) = (DD ∪ ND ∪ AD) and A =

(AD ∪ AN ∪ AA). Then, (ND = AD = ∅) → (Do = DD = D ∩Do) → (Do ⊆ D). Next,

(AD = AN = ∅)→ (A = AA = A ∩ Ao)→ (A ⊆ Ao). So, (Do ⊆ D) and (A ⊆ Ao). The

conclusion follows from Lemma 5.3.7.

(2) Similarly, (DA = DN = ∅) → (D = DD = D ∩ Do) → (D ⊆ Do). Next, (DA = NA =

∅) → (Ao = AA = A ∩ Ao) → (Ao ⊆ A). So, (D ⊆ Do) and (Ao ⊆ A). The conclusion

follows from Lemma 5.3.7.

Lemma 5.3.9 describes four situations that cannot occur in a feasible partition (D,N,A)

with respect to an optimal partition (Do, No, Ao). Then, Theorem 5.3.10 will show that any

feasible partition (D,N,A) for αi(Tv) can be transformed into an optimal one using the

R-rules in Definition 5.3.5, given foreknowledge of such an optimal partition.

Lemma 5.3.9. Let (D,N,A) be an arbitrary feasible partition for αi(Tv) and let (Do, No, Ao)

be an optimal one. Then, none of the following is true.

(1) ND = DN = AN = ∅ and |NA| = 1.

(2) AN = NA = ND = ∅ and |DN | = 1.

67

(3) AN = DN = NA = ∅ and |ND| = 1.

(4) ND = NA = DN = ∅ and |AN | = 1.

Proof. Since both (D,N,A) and (Do, No, Ao) are feasible partitions of {u1, u2, . . . , uk} for

αi(Tv), (|D|+ i) = |A|, (|Do|+ i) = |Ao| and |D|+ |N |+ |A| = |Do|+ |No|+ |Ao|. Then,

|D|+ |A|+ |N | ≡ |Do|+ |Ao|+ |No| (mod 2)

2|D|+ i+ |N | ≡ 2|Do|+ i+ |No| (mod 2)

|N | ≡ |No| (mod 2)

(5.3)

We treat each case next. Recall that N = (ND ∪NN ∪NA) and No = (DN ∪NN ∪AN).

(1) Assume ND = DN = AN = ∅ and |NA| = 1. Then, (DN = AN = ∅)→ (No = NN). So,

|N | = |ND ∪NN ∪NA|

= |ND|+ |NN |+ |NA| (By (Do, No, Ao) is a partition)

= 0 + |No|+ 1 (By ND = ∅, No = NN and |NA| = 1)

= |No|+ 1

This is a contradiction to equation (5.3).

68

(2) Assume AN = NA = ND = ∅ and |DN | = 1. Then, (ND = NA = ∅)→ (N = NN). So,

|No| = |DN ∪NN ∪ AN |

= |DN |+ |NN |+ |AN | (By (D,N,A) is a partition)

= 1 + |N |+ 0 (By |DN | = 1, N = NN and AN = ∅)

= |N |+ 1

This is a contradiction to equation (5.3).

(3) Assume AN = DN = NA = ∅ and |ND| = 1. Then, (DN = AN = ∅)→ (No = NN). So,

|N | = |ND ∪NN ∪NA|

= |ND|+ |NN |+ |NA| (By (Do, No, Ao) is a partition)

= 1 + |No|+ 0 (By |ND| = 1, No = NN and NA = ∅)

= |No|+ 1

This is a contradiction to equation (5.3).

(4) Assume ND = NA = DN = ∅ and |AN | = 1. Then, (ND = NA = ∅)→ (N = NN). So,

|No| = |DN ∪NN ∪ AN |

= |DN |+ |NN |+ |AN | (By (D,N,A) is a partition)

= 0 + |N |+ 1 (By DN = ∅, N = NN and |AN | = 1)

= |N |+ 1

69

This is a contradiction to equation (5.3).

Next, we show that with foreknowledge of an optimal partition, the R-rules can transform

any feasible partition into the optimal partition.

Theorem 5.3.10. Let (D,N,A) be a feasible partition for αi(Tv) and let (Do, No, Ao) be

a known optimal partition. There exists a sequence of R-rule applications that transforms

(D,N,A) to (Do, No, Ao). In addition, each element in {u1, . . . , uk} is moved at most once.

Proof. Given (D,N,A) and knowing an optimal partition (Do, No, Ao), check if any R-rules

may be applied on any 2 or 3 elements of {u1, . . . , uk} in a way that the rule brings the

corresponding elements to the correct set with respect to (Do, No, Ao). So, if an element

is misplaced, then moving it once places it in the correct set with respect to (Do, No, Ao),

and the element will not be moved again. When none of the R-rules apply, we show that

(D,N,A) has been transformed into (Do, No, Ao) (denoted by (D,N,A)⇒∗ (Do, No, Ao)).

First, apply R1, R2 and R3 whenever possible. Recall that the contents of (D,N,A) are

changed as each R-rule is applied. As a result the sets XY for X,Y ∈ {D,N,A} also change.

1. While DA and AD are both non-empty, apply R1.

2. While DN and ND are both non-empty, apply R2.

3. While NA and AN are both non-empty, apply R3.

70

This results in at least one of the following 8 possible situations, depending on which of

the two sets becomes empty in each of the three steps.

(1) DA = DN = NA = ∅.

(2) DA = DN = AN = ∅.

(3) DA = ND = NA = ∅.

(4) DA = ND = AN = ∅.

(5) AD = DN = NA = ∅.

(6) AD = DN = AN = ∅.

(7) AD = ND = NA = ∅.

(8) AD = ND = AN = ∅.

We treat the above 8 cases next.

(1) DA = DN = NA = ∅. By Lemma 5.3.8 condition 2, (D,N,A)⇒∗ (Do, No, Ao).

(2) DA = DN = AN = ∅. At this point, the only applicable rules are R5 and R8. Apply R5

repeatedly until either NA = ∅ or ND = ∅.

(2.1) NA = ∅. So, DA = DN = NA = ∅. By Lemma 5.3.8 condition 2, (D,N,A) ⇒∗

(Do, No, Ao).

71

(2.2) ND = ∅. The only applicable rule is R8. Apply R8 repeatedly until either AD = ∅

or |NA| ≤ 1.

(2.2.1) AD = ∅. So, AN = ND = AD = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(2.2.2) NA = ∅. So, DA = DN = NA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(2.2.3) |NA| = 1. So, DN = AN = ND = ∅ and |NA| = 1. By Lemma 5.3.9 (Part

1), we cannot arrive at this situation.

(3) DA = ND = NA = ∅. The only applicable rules are R4 and R10. Apply R4 repeatedly

until either AN = ∅ or DN = ∅.

(3.1) AN = ∅ The only applicable rule is R10. Apply R10 repeatedly until either AD = ∅

or |DN | ≤ 1.

(3.1.1) AD = ∅. So, ND = AN = AD = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(3.1.2) DN = ∅. So, DA = NA = DN = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(3.1.3) |DN | = 1. So, ND = NA = AN = ∅ and |DN | = 1. By Lemma 5.3.9 (Part

2), we cannot arrive at this situation.

(3.2) DN = ∅. So, DA = NA = DN = ∅. By Lemma 5.3.8 condition 2, (D,N,A) ⇒∗

(Do, No, Ao).

72

(4) DA = ND = AN = ∅. The only applicable rules are R6, R8 and R10. Apply R6 repeatedly

until either AD = ∅, DN = ∅ or NA = ∅.

(4.1) AD = ∅. So, ND = AN = AD = ∅. By Lemma 5.3.8 condition 1, (D,N,A) ⇒∗

(Do, No, Ao).

(4.2) DN = ∅. The only applicable rule is R8. Apply R8 repeatedly until either AD = ∅

or |NA| ≤ 1.

(4.2.1) AD = ∅. So, ND = AN = AD = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(4.2.2) NA = ∅. So, DA = DN = NA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(4.2.3) |NA| = 1. So, ND = AN = DN = ∅ and |NA| = 1. By Lemma 5.3.9 (Part

1), we cannot arrive at this situation.

(4.3) NA = ∅. The only applicable rule is R10. Apply R10 repeatedly until either AD = ∅

or |DN | ≤ 1.

(4.3.1) AD = ∅. So, ND = AN = AD = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(4.3.2) DN = ∅. So, DA = NA = DN = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(4.3.3) |DN | = 1. So, ND = AN = NA = ∅ and |DN | = 1. By Lemma 5.3.9 (Part

2), we cannot arrive at this situation.

73

(5) AD = DN = NA = ∅. The only applicable rules are R7, R9 and R11. Apply R7 repeatedly

until either AN = ∅, ND = ∅ or DA = ∅.

(5.1) AN = ∅. The only applicable rule is R9. Apply R9 repeatedly until either DA = ∅

or |ND| ≤ 1.

(5.1.1) DA = ∅. So, DN = NA = DA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(5.1.2) ND = ∅. So, AD = AN = ND = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(5.1.3) |ND| = 1. So, DN = NA = AN = ∅ and |ND| = 1. By Lemma 5.3.9 (Part

3), we cannot arrive at this situation.

(5.2) ND = ∅. The only applicable rule is R11. Apply R11 repeatedly until either DA = ∅

or |AN | ≤ 1.

(5.2.1) DA = ∅. So, DN = NA = DA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(5.2.2) AN = ∅. So, AD = ND = AN = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(5.2.3) |AN | = 1. So, DN = NA = ND = ∅ and |AN | = 1. By Lemma 5.3.9 (Part

4), we cannot arrive at this situation.

(5.3) DA = ∅. So, DN = NA = DA = ∅. By Lemma 5.3.8 condition 2, (D,N,A) ⇒∗

(Do, No, Ao).

74

(6) AD = DN = AN = ∅. The only applicable rules are R5 and R9. Apply R5 repeatedly

until either NA = ∅ or ND = ∅.

(6.1) NA = ∅. The only applicable rule is R9. Apply R9 repeatedly until either DA = ∅

or |ND| ≤ 1.

(6.1.1) DA = ∅. So, DN = NA = DA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

(6.1.2) ND = ∅. So, AD = AN = ND = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(6.1.3) |ND| = 1. So, DN = AN = NA = ∅ and |ND| = 1. By Lemma 5.3.9 (Part

3), we cannot arrive at this situation.

(6.2) ND = ∅. So, AD = AN = ND = ∅. By Lemma 5.3.8 condition 1, (D,N,A) ⇒∗

(Do, No, Ao).

(7) AD = ND = NA = ∅. The only applicable rules are R4 and R11. Apply R4 repeatedly

until either AN = ∅ or DN = ∅.

(7.1) AN = ∅. So, AD = ND = AN = ∅. By Lemma 5.3.8 condition 1, (D,N,A) ⇒∗

(Do, No, Ao).

(7.2) DN = ∅. The only applicable rule is R11. Apply R11 repeatedly until either DA = ∅

or |AN | ≤ 1.

(7.2.1) DA = ∅. So, NA = DN = DA = ∅. By Lemma 5.3.8 condition 2,

(D,N,A)⇒∗ (Do, No, Ao).

75

(7.2.2) AN = ∅. So, AD = ND = AN = ∅. By Lemma 5.3.8 condition 1,

(D,N,A)⇒∗ (Do, No, Ao).

(7.2.3) |AN | = 1. So, ND = NA = DN = ∅ and |AN | = 1. By Lemma 5.3.9 (Part

4), we cannot arrive at this situation.

(8) AD = ND = AN = ∅. By Lemma 5.3.8 condition 1, (D,N,A)⇒∗ (Do, No, Ao).

This finishes the analyses for all 8 cases and completes the proof of the theorem.

In the justification of Theorem 5.3.10, each element is moved at most once to the correct

set with respect to (Do, No, Ao). As a result, the order in which the R-rules are applied is

not important.

Note that Theorem 5.3.10 requires knowing an optimal partition in advance and thus

cannot be directly used in an algorithm that computes an optimal partition. But, we have

obtained the following important corollary.

Corollary 5.3.11. Let (D,N,A) be an arbitrary feasible partition for αi(Tv). There exists

a sequence of R-rule applications that transforms (D,N,A) to an optimal partition, such

that each element of {u1, . . . , uk} is moved at most once.

To conclude this section, we summarize the results developed so far with regard to ob-

taining an optimal partition of {u1, . . . , uk}.

1. The E-rules are given in Definition 5.3.4. If we know the content of an arbitrary feasible

partition (D,N,A) (for αi(Tv)) and the content of an optimal partition (Do, No, Ao),

76

then we can apply the E-rules, one at a time, to (D,N,A) and transform it into

(Do, No, Ao).

2. Every element that is misplaced in the initial partition (D,N,A) will be moved, ex-

actly once, to the correct set in (Do, No, Ao). The order of E-rule applications is not

important.

3. A set of R-rules are given in Definition 5.3.5. The R-rules are designed in a way so

that applying any R-rule to a feasible partition for αi(Tv) will result in another feasible

partition for αi(Tv).

4. In Theorem 5.3.10 and Corollary 5.3.11, we established that the R-rules are sufficient

for transforming an arbitrary feasible partition into an optimal partition, given fore-

knowledge of such an optimal partition. Every element that is misplaced is moved

exactly once, and the order of applications of R-rules is not important.

Section 5.4 will make use of the developments so far and create an O(n lg(∆)) algorithm

for solving Rooted Secure Set for trees.

5.4 An O(n lg(∆)) algorithm

This section presents an O(n lg(∆)) algorithm for solving Rooted Secure Set (Problem

5.1.1) on trees. We will make use of the feasibility preserving rule set (R-rules) given in

77

Definition 5.3.5 in the last section, and the results of Theorem 5.3.10 and Corollary 5.3.11.

An outline of the section is presented below.

1. Develop a set of evaluation functions for the R-rules, reflecting the change in value (given

in Definition 5.3.2) of a partition as a R-rule is applied to the partition.

2. Show that given an arbitrary feasible partition, there is a sequence of R-rule applications

where successive applications strictly decrease the value of the partition, and eventually

will transform it into an optimal partition.

3. Present an algorithm for solving Rooted Secure Set on trees, and analyze its time com-

plexity.

In the next step, we develop evaluation functions for R1 through R11.

Definition 5.4.1. When an element is moved from X to Y , for X, Y ∈ {D,N,A}, the value

of the partition as given in Definition 5.3.2 changes. Given a partition (D,N,A), define

e : (X → Y) → Z to be the evaluation function of a single transformation X → Y applied

to (D,N,A). When applying the rule X → Y , any element in X may be moved to Y , and

e(X → Y) is the minimum change that may result, among all choices in X. More specifically,

e(A→ D) = min
u∈A
{α0(Tu)}

e(D → A) = min
u∈D
{−α0(Tu)}

e(A→ N) = min
u∈A
{α1(Tu)}

e(N → A) = min
u∈N
{−α1(Tu)}

78

e(D → N) = min
u∈D
{−α0(Tu) + α1(Tu)}

e(N → D) = min
u∈N
{−α1(Tu) + α0(Tu)}

Let r : {R1, . . . , R11} → Z be the evaluation function of the set of transformations as

indicated by R1, . . . , R11 in Definition 5.3.5. More specifically,

r(R1) = e(D → A) + e(A→ D)

r(R2) = e(D → N) + e(N → D)

r(R3) = e(N → A) + e(A→ N)

r(R4) = e(A→ N) + e(D → N)

r(R5) = e(N → A) + e(N → D)

r(R6) = e(A→ D) + e(D → N) + e(N → A)

r(R7) = e(A→ N) + e(N → D) + e(D → A)

r(R8) = e(A→ D) + e(N → A) + e(N → A)

r(R9) = e(D → A) + e(N → D) + e(N → D)

r(R10) = e(A→ D) + e(D → N) + e(D → N)

r(R11) = e(D → A) + e(A→ N) + e(A→ N)

Note that the e functions, and hence the r functions, are dependent only upon the current

partition.

Similar to Definition 5.3.5, R5, R8, R9, R10 and R11 require special treatment. For ex-

ample, in R8, two distinct elements are moved from N → A. Thus, in the evaluation of

79

r(R8), we select an element from A and move it to D, and two distinct elements from N and

move them to A, in a way so that the value of the new partition is minimum. More precisely,

r(R8) = min{α0(Tu)−α1(Tw)−α1(Tw′) : (u ∈ A), (w,w′ ∈ N) and (w ̸= w′)}; the sum of the

smallest element in {α0(Tu) : u ∈ A} and the smallest two elements in {−α1(Tw) : w ∈ N}.

The case is similar for R9, R10 and R11.

In R5, the element moved from N to A must be different from the one moved from

N to D. To correctly evaluate r(R5), one must examine the result of e(N → A) and

e(N → D). If the minimum values of both functions are achieved by the same element in

N , then one of the movements needs to use a different element of N . The value of r(R5) is

min{−α1(Tw)− α1(Tw′) + α0(Tw′) : (w,w′ ∈ N and w ̸= w′)}.

These evaluations are not trivial, but nonetheless they can be computed in O(lg(k)) time

using priority queues implemented with a heap data structure (cf. [CLR01], Chapter 6),

where k is the total number of elements being partitioned.

Recall from Corollary 5.3.11 that when given a feasible partition (D,N,A) for αi(Tv),

there exists a sequence of R-rule applications that transforms (D,N,A) to an optimal par-

tition, such that every element in {u1, u2, . . . , uk} is moved at most once. Lemma 5.4.2

improves further on this result, by asserting that successive R-rule applications in the se-

quence will always strictly decrease the value of the current partition (D,N,A).

Lemma 5.4.2. Let (D,N,A) be an arbitrary feasible partition for αi(Tv). There exists a

sequence, Rx1 , Rx2 , . . . , Rxℓ
of R-rule applications that transforms (D,N,A) to an optimal

80

partition, where r(Rxt) < 0 for 1 ≤ t ≤ ℓ and each element in {u1, . . . , uk} is moved at most

once.

Proof. By Corollary 5.3.11, there exists a sequence of R-rule applications that transforms

(D,N,A) to an optimal partition, where each element of {u1, . . . , uk} is moved at most once.

Let Rx1 , Rx2 , . . . , Rxℓ
be such a sequence with the minimum number of R-rule applications

(minimum ℓ).

If there exists t ∈ {1, 2, . . . , ℓ} where r(Rxt) ≥ 0, then removing Rxt from the sequence

will yield a new, shorter sequence that transforms (D,N,A) to another feasible solution that

is no worse than the optimal (i.e., it transforms (D,N,A) to a different optimal solution).

This is not possible since Rx1 , Rx2 , . . . , Rxℓ
is shortest, so r(Rxt) < 0 for 1 ≤ t ≤ ℓ.

Next, we present Algorithm 5.4.3, which computes the value of αi(Tv) (i ∈ {0, 1}) by

finding an optimal partition for αi(Tv). Then, Lemma 5.4.4 will apply Lemma 5.4.2 and

prove the correctness of Algorithm 5.4.3. After that, Lemma 5.4.5 will assert that the while-

loop in Step 4.2 of Algorithm 5.4.3 will execute at most once in a single iteration of the

for-loop in Step 4, and so the while-loop may be replaced by an if-statement. Changing the

while-loop to an if-statement yields Algorithm 5.4.6, our final result of this section.

Algorithm 5.4.3.

Input: i ∈ {0, 1} and v ∈ V (T).

Output: αi(Tv).

81

1. If v is a leaf, then return 1. (This is the base case, and the algorithm exits.)

2. Let {u1, u2, . . . , uk} be the children of v and compute {α0(Tu1), . . . , α0(Tuk
)} and {α1(Tu1),

. . . , α1(Tuk
)} recursively.

3. (Initialize partition (D,N,A) for the appropriate αi.)

If i = 0, then (D,N,A)← ({}, {}, {}), s← 1.

(i = 0, and (D,N,A) is an optimal partition of {} for α0.)

else (D,N,A)← ({}, {}, {u1}), s← 2.

(i = 1, and (D,N,A) is an optimal partition of {u1} for α1.)

4. For j = s . . . k

4.1. N ← N ∪ {uj}

4.2. While min
1≤ x≤11

r(Rx) < 0

4.2.1. Let x′ be such that r(Rx′) = min
1≤ x ≤11

r(Rx)

4.2.2. (D,N,A)← Rx′(D,N,A) (Apply Rx′ on (D,N,A).)

5. Return f(D,N,A). (see Definition 5.3.2.)

(f(D,N,A) = αi(Tv) since (D,N,A) is an optimal partition.)

Lemma 5.4.4. Algorithm 5.4.3 computes αi(Tv) correctly.

Proof. The algorithm computes αi(Tv) by finding an optimal partition of {u1, . . . , uk}. In

Step 3, (D,N,A) is initialized to an optimal partition of {} if i = 0, and an optimal partition

82

of {u1} if i = 1. Then, at the start of the j-th iteration of the for-loop in Step 4, (D,N,A) is

an optimal partition of {u1, . . . , uj−1}. By adding uj to N in Step 4.1, (D,N,A) becomes a

feasible partition for {u1, . . . , uj}. Then, in Step 4.2, each iteration of the while-loop selects

a R-rule and apply it on (D,N,A), in a way that f(D,N,A) is decreased the most after

the application. Note that in each iteration of the while-loop in Step 4.2, the value of the

current partition (D,N,A) strictly decreases. Since the value of the partition is at least 1,

it cannot decrease indefinitely. Thus, the while-loop must terminate.

Next, assume that at the end of the j-th iteration of the for-loop in Step 4, (D,N,A) is

not an optimal partition of {u1, . . . , uj}. By Lemma 5.4.2, there exists a sequence of R-rule

applications that transforms (D,N,A) to an optimal partition, where for any rule Rx′ in

that sequence, r(Rx′) < 0. That is, one or more rules may be applied to (D,N,A) and

further decrease its value. This is a contradiction to the termination of the while-loop. So,

at the end of the j-th iteration of the for-loop in Step 4, (D,N,A) is an optimal partition

of {u1, u2, . . . , uj}, and when the for-loop terminates, (D,N,A) is an optimal partition of

{u1, u2, . . . , uk}.

Lemma 5.4.5. In Algorithm 5.4.3, the while-loop in Step 4.2 is executed at most once in

each iteration of the for-loop in Step 4.

Proof. Recall from Definition 5.3.2 that the value of a partition (D,N,A) is 1+
∑
u∈D

α0(Tu)+∑
u∈N

α1(Tu). Consider the j-th iteration of the for-loop in Step 4. Let OPTj be the value of

an optimal partition for {u1, . . . , uj}, let (Dj−1, Nj−1, Aj−1) be an arbitrary optimal partition

83

of {u1, . . . , uj−1}, and let (D,N,A) be (Dj−1, Nj−1 ∪ {uj}, Aj−1). Note that (D,N,A) is a

feasible partition of {u1, . . . , uj}, which we constructed in Step 4.1, before the execution of

the while-loop in Step 4.2. The value of (D,N,A) is

f(D,N,A) = f(Dj−1, Nj−1, Aj−1) + α1(Tuj
). (5.4)

By Lemma 5.4.2, there exists a (possibly empty) sequence of R-rule applications Rx1 , . . . ,

Rxℓ
that transforms (D,N,A) to an optimal partition, such that r(Rxt) < 0 for 1 ≤ t ≤ ℓ.

Let (Dj, Nj, Aj) be such an optimal partition. Two cases follow.

1. uj ∈ Nj. In this case, we claim that f(D,N,A) = f(Dj, Nj, Aj) = OPTj, and the while-

loop will execute for 0 iterations. Suppose not, and f(D,N,A) > f(Dj, Nj, Aj). Let

(Dt, Nt, At) be (Dj, Nj − {uj}, Aj). Then, (Dt, Nt, At) is a feasible partition of {u1, . . . ,

uj−1} with value f(Dt, Nt, At) = f(Dj, Nj, Aj)− α1(Tuj
). Now,

f(D,N,A) > f(Dj, Nj, Aj)

f(Dj−1, Nj−1, Aj−1) + α1(Tuj
) > f(Dj, Nj, Aj) (By Eq. (5.4))

f(Dj−1, Nj−1, Aj−1) > f(Dj, Nj, Aj)− α1(Tuj
)

f(Dj−1, Nj−1, Aj−1) > f(Dt, Nt, At)

We have obtained a feasible partition of {u1, . . . , uj−1}, namely (Dt, Nt, At), with value

f(Dt, Nt, At) < f(Dj−1, Nj−1, Aj−1). This is a contradiction since (Dj−1, Nj−1, Aj−1) is

an optimal partition of {u1, . . . , uj−1}.

84

2. uj /∈ Nj. Consider the sequence of applications Rx1 , . . . , Rxℓ
that transforms (D,N,A) to

(Dj, Nj, Aj). We claim that ℓ = 1. Assume ℓ > 1. Recall that each element is moved at

most once when applying Rx1 , . . . , Rxℓ
, so the element uj is moved at most once. Since

the order of applications does not matter, let uj be moved in the last rule Rxℓ
. Then, Rx1

does not move uj. Let (Dt, Nt, At) be a feasible partition of {u1, u2, . . . , uj−1} constructed

as follows. Apply Rx1 on (D,N,A), then remove uj from N . This is valid since Rx1 does

not move uj, and removing uj ∈ N does not affect the feasibility of the new partition.

Now,

f(Dt, Nt, At) = f(D,N,A) + r(Rx1)− α1(Tuj
)

= f(Dj−1, Nj−1, Aj−1) + α1(Tuj
) + r(Rx1)− α1(Tuj

) (By Eq. (5.4))

= f(Dj−1, Nj−1, Aj−1) + r(Rx1)

< f(Dj−1, Nj−1, Aj−1) (By r(Rx1) < 0)

This is a contradiction, since (Dj−1, Nj−1, Aj−1) is an optimal partition for {u1, . . . , uj−1}.

So, ℓ = 1, and there is a single rule Rx1 that may be applied to (D,N,A) and transform it

to (Dj, Nj, Aj). A rule which decreases the value of (D,N,A) the most will then transform

(D,N,A) to an optimal partition of {u1, u2, . . . , uj} because min
1≤ x≤11

r(Rx) ≤ r(Rx1).

Thus, in both cases, the while-loop in Step 4.2 executes at most once in each iteration of

the for-loop in Step 4.

85

Lemma 5.4.5 allows us to replace the while-loop in Step 4.2 of Algorithm 5.4.3 with an

if-statement. This results in Algorithm 5.4.6 below.

Algorithm 5.4.6.

Input: i ∈ {0, 1} and v ∈ V (T).

Output: αi(Tv).

1. If v is a leaf, then return 1. (This is the base case, and the algorithm exits.)

2. Let {u1, u2, . . . , uk} be the children of v and compute {α0(Tu1), . . . , α0(Tuk
)} and {α1(Tu1),

. . . , α1(Tuk
)} recursively.

3. (Initialize partition (D,N,A) for the appropriate αi.)

If i = 0, then (D,N,A)← ({}, {}, {}), s← 1.

(i = 0, and (D,N,A) is an optimal partition of {} for α0.)

else (D,N,A)← ({}, {}, {u1}), s← 2.

(i = 1, and (D,N,A) is an optimal partition of {u1} for α1.)

4. For j = s . . . k

4.1. N ← N ∪ {uj}

4.2. If min
1≤x≤11

r(Rx) < 0

4.2.1. Let x′ be such that r(Rx′) = min
1≤x≤11

r(Rx)

4.2.2. (D,N,A)← Rx′(D,N,A) (Apply Rx′ on (D,N,A).)

86

5. Return f(D,N,A). (see Definition 5.3.2.)

(f(D,N,A) = αi(Tv) since (D,N,A) is an optimal partition.)

Theorem 5.4.7. Algorithm 5.4.6 correctly solves Rooted Secure Set on a tree inO(n lg(∆))

time.

Proof. Let T be a tree of order n with root r, where r must be included in a minimum rooted

secure set. The cardinality of a minimum rooted secure set of T is α1(Tr). By Lemmas 5.4.4

and 5.4.5, Algorithm 5.4.6 can correctly compute α1(Tr).

When solving for α1(Tr), the algorithm is called exactly 2n− 1 times because we do not

need to solve for α0(Tr), but we will need to solve for both α0(Tv) and α1(Tv) for every vertex

in V (T)−{r}. Let v ∈ V (T) and i ∈ {0, 1} be arbitrary, let {u1, u2, . . . , uk} be the children

of v and let cv = k (we use them interchangeably for convenience). Step 2 gathers the values

{α0(Tu1), α0(Tu2), . . . , α0(Tuk
)} and {α1(Tu1), α1(Tu2), . . . , α1(Tuk

)} recursively, which takes

O(cv) time. Note that this only includes the time for gathering the results and does not

include the time for computing each αi(Tuj
). The for-loop in Step 4 will be executed at

most cv times, and in each iteration, the algorithm evaluates all the R-rules according to

Definition 5.4.1. The evaluation of a R-rule involves finding the smallest and second smallest

elements of two or three priority queues. With appropriate data structures (e.g., priority

queues implemented with binary heap, cf. [CLR01], Chapter 6), the evaluations can be done

in O (lg(cv)) time. Note that we may also maintain the partition (D,N,A) with balanced

trees (cf. [Knu98], 6.2.3), which take O(lg(cv)) time per modification and access.

87

Then, the overall running time of Algorithm 5.4.6 for computing α1(Tr) is proportional

to
∑

v∈V (T)

(cv × lg(cv)) ≤
∑

v∈V (T)

(cv × lg(∆)) = (n− 1)× lg(∆) ∈ O(n lg(∆)).

This concludes the development of the O(n lg(∆)) algorithm for solving Rooted Secure

Set on trees. Several extensions of the results presented in this chapter are possible. In

the next chapter, we will employ ideas similar to the ones presented in Sections 5.1 and 5.2

and develop an O(n∆) algorithm for computing the global security number of a tree. Other

interesting questions related to Rooted Secure Set will be presented in Chapter 9.

88

CHAPTER 6

GLOBAL SECURE SETS OF TREES

This chapter discusses the global security numbers of trees. Recall from Section 1.3 that

a global secure set of a graph G is a dominating set and a secure set of G. The global

security number of G is the cardinality of a minimum global secure set of G, denoted γs(G).

Section 6.1 presents an O(n∆) algorithm for finding the global security number of a tree.

The algorithm uses Wimer’s method ([WHL85, Wim87]) and employs ideas developed in

Sections 5.1 and 5.2. Section 6.2 presents upper and lower bounds on γs(T) for a tree T .

Finally, Section 6.3 presents results on the global security number of a connected graph in

relation to that of its spanning trees.

6.1 An O(n∆) algorithm

In Chapter 5, the problem Rooted Secure Set (Problem 5.1.1) is introduced, and algorithms

are provided for finding the cardinality of a minimum rooted secure set of a tree. These

algorithms have polynomial time complexity. As mentioned in Observation 5.1.2, Rooted

Secure Set is as difficult as Secure Set (Problem 1.4.1) in the context of existence of

89

polynomial solutions. The key factor that enabled a polynomial solution for trees is Lemma

5.1.3, which states that every attacker can attack exactly one vertex of a minimum rooted

secure set in a tree. This observation greatly simplifies the situation because when there is

only one possible attack, an algorithm only needs to construct a feasible defense for that

attack to ensure security.

When finding a minimum global secure set of a tree, the situation is similar but more

complex. As shown in Figures 6.1, 6.2 and 6.3, a connected minimum global secure set

may not always exist for some trees. So, Lemma 5.1.3 does not apply to minimum global

secure sets. But, as stated in Observation 6.1.1 below, Lemma 5.1.3 can be applied to each

connected component of a global secure set.

Figure 6.1: The path P8 and a minimum global secure set marked in black. All minimum
global secure sets of P8 are disconnected.

Observation 6.1.1. Let S be a dominating set of a tree T . Let C1, C2, . . . , Ck be the

connected components of T [S]. Then, S is a global secure set if and only if each Ci is a

secure set of T . Furthermore, since each V (Ci) is a connected subset of vertices, Lemma

5.1.3 applies to Ci and there is an unique attack upon Ci, 1 ≤ i ≤ k.

By Observation 6.1.1, when finding a minimum global secure set of a tree, an algorithm

can ensure the security of the set if it can identify a feasible defense for each connected

component of the set individually. Similar to the algorithm given in Section 5.2, we present

90

Figure 6.2: A tree and a minimum global secure set marked in black. All minimum global
secure sets of this tree are disconnected.

Figure 6.3: A tree and a minimum global secure set marked in black. All minimum global
secure sets of this tree are disconnected.

an O(n∆) algorithm for finding the cardinality of a minimum global secure set (i.e., the

global security number) of a tree.

Let T be a tree and let r be an arbitrary vertex of T . Consider T as a rooted tree

with root r. Then, for v ∈ V (T), let Tv denote the subtree of T rooted at v with respect

to r, and let cv denote the number of children of v in Tv. When v ̸= r, let pv denote

91

the parent of v, with respect to r. If S is a subset of V (T), then let Sv = S ∩ V (Tv)

denote the vertices of Tv that belong to S. Following Wimer’s method, associate with

each vertex v ∈ V (T) a set of auxiliary invariants, α(Tv) = {αi(Tv) : −cv ≤ i ≤ cv},

β(Tv) = {βi(Tv) : −(cv + 1) ≤ i ≤ (cv + 1)} and σ(Tv) = {σ0(Tv), σ1(Tv)}. Each of α(Tv),

β(Tv) and σ(Tv) is an array of integers. The semantics of each entry of the arrays is given

in Definition 6.1.3.

Definition 6.1.2. Let T be a tree and let S be a global secure set of T . For x ∈ S, let

Ax = N [x] − S be the possible attackers of x, and let Dx be the set of defenders of x in a

defense D .

Definition 6.1.2 is similar to Definition 5.1.4, with one distinction. Since a global secure

set S may not be connected, there is no unique attack for S. For x ∈ S, let Cx be the

connected component of T [S] that contains x. To ensure S is a secure set, an algorithm

must verify that each Cx is a secure set in T . Since Cx is connected, it has a unique attack

A , and the attackers of x in A is the set Ax = (N [x] − Cx) = (N [x] − S). If x and y are

two vertices of S which belong to different connected components in T [S], Ax ∩ Ay may be

non-empty. But, since an algorithm verifies the security of Cx and Cy separately, we may

still let Ax = (N [x]− Cx) = (N [x]− S) and Ay = (N [y]− Cy) = (N [y]− S). So, Ax is not

the attackers of x in any specific attack on S, but rather the attackers of x in the unique

attack on Cx.

92

Definition 6.1.3.

1. The entry αi(Tv) is an integer representing the cardinality of a minimum set Sv such

that

(i) v ∈ Sv,

(ii) |Dx| ≥ |Ax| for all x ∈ Sv − {v},

(iii) |Dv|+ i ≥ |Av|,

(iv) v /∈ Dx for all x ∈ Sv, and

(v) Sv dominates Tv.

That is, v ∈ Sv and Sv is a dominating set of Tv. Every vertex in Sv−{v} is protected

by a sufficient number of defenders. If i > 0, v has at most i more attackers than

defenders, and will be protected if it receives an additional i defenders. If i ≤ 0, v is

currently protected, and will remain protected if it receives an additional |i| attackers.

Furthermore, v has not been assigned to a vertex for which v should defend. Thus,

an αi(Tv) configuration can be used in the composition of a larger solution, where v is

free to defend another vertex.

2. The entry βi(Tv) is an integer representing the cardinality of a minimum set Sv such

that

(i) v ∈ Sv,

(ii) |Dx| ≥ |Ax| for all x ∈ Sv − {v},

93

(iii) |Dv|+ i ≥ |Av|,

(iv) v ∈ Dx for a x ∈ Sv, and

(v) Sv dominates Tv.

A βi(Tv) configuration is similar to an αi(Tv) configuration, with the only distinction

that v has been assigned to a vertex for which v defends. When a βi(Tv) configuration

is used in the composition of a larger solution, v cannot be used to defend another

vertex. Note that β0(Tv) is the minimum cardinality among the global secure sets of

Tv that contain v.

3. The entry σ0(Tv) is an integer representing the cardinality of a minimum set Sv such

that

(i) v /∈ Sv,

(ii) |Dx| ≥ |Ax| for all x ∈ Sv, and

(iii) Sv dominates Tv.

That is, v /∈ Sv and Sv is a global secure set of Tv. In this case, v is dominated by one

of its children in Sv. So, σ0(Tv) is the minimum cardinality among the global secure

sets of Tv that do not contain v.

4. The entry σ1(Tv) is an integer representing the cardinality of a minimum set Sv such

that

(i) v /∈ Sv,

94

(ii) |Dx| ≥ |Ax| for all x ∈ Sv, and

(iii) Sv dominates V (Tv)− {v}, but not v.

So, v /∈ Sv, Sv is a secure set in Tv, and Sv dominates every vertex of Tv except for

v. When a σ1(Tv) configuration is used in the composition of a larger solution, v must

be dominated by one of its neighbors in the larger tree if the resulting set is to be a

dominating set.

This completes Definition 6.1.3. The global security number of T is min{σ0(Tr), β0(Tr)}.

A σ0(Tr) configuration corresponds to a minimum set S ⊆ V (T) such that S is a global

secure set of T and r /∈ S. A β0(Tr) configuration corresponds to a minimum set S ⊆ V (T)

such that S is a global secure set of T and r ∈ S.

The auxiliary invariants proposed above is noticeably more complex than the one used

for computing the cardinality of a minimum rooted secure set of a tree, given in Section 5.2

(Definition 5.2.2). Only one array is required for computing the cardinality of a minimum

rooted secure set of a tree. We give two reasons why a simpler formulation for the global

security number of a tree may not be possible.

1. Let S be a minimum global secure set of a tree T . If a vertex v ∈ V (T) is not in S and

is not a leaf, then the subtree Tv must contain vertices in S, for otherwise V (Tv)−{v}

is not dominated. In other words, if v /∈ S and Tv contains more than one vertex, Sv

must not be empty. This is unlike the case of rooted secure sets. If a vertex v is not in

95

a minimum rooted secure set, then Tv does not contain any vertices in the set, since a

minimum rooted secure set is always a connected set that contains the root.

Since Sv may not be empty when v /∈ S, we must introduce auxiliary invariants that

record the possible cardinalities of Sv in such situations. The values {σ0(Tv), σ1(Tv)}

are designed for this purpose. In particular, if v /∈ S, then the subtree Tv is either

dominated by Sv (σ0(Tv)), or the vertices in (V (Tv)−{v}) are dominated by Sv and v

is dominated by its neighbors outside Tv (σ1(Tv)).

2. In Lemma 5.1.5 (and the remark that followed it), we showed that in a feasible defense

of a minimum rooted secure set, a parent will never defend any of its children. As a

result, each vertex in the set either defends its parent or defends itself. The result of

Lemma 5.1.5 cannot be (trivially) extended to global secure sets of trees. Consider

Figure 6.4 as an example. The minimum global secure set shown in Figure 6.4 is

connected and it has one unique attack. In a feasible defense for this attack, the root

r must defend its child u. In fact, every minimum global secure set of the tree shown

in Figure 6.4 must include r and have r defend one of its children. Note that we may

decide to let t be the root instead, in which case no parent will have to defend a child.

But, in the lack of any intelligent ways to decide which vertex should be the root,

an algorithm that selects a root arbitrarily has to consider cases where a parent may

defend a child. The array β(Tv) is designed for this purpose. This will be discussed

further when a recursive formulation for β(Tv) is given.

96

Figure 6.4: A tree and a minimum global secure set marked in black. If r is selected as the
root, then in every minimum global secure set, a parent must defend one of its children in
every feasible defense.

Recall from Definition 5.2.1 that if T1 is a rooted tree with root r1 and T2 is a rooted

tree with root r2, then T1 ◦ T2 is a rooted tree constructed by taking the disjoint union

of T1 and T2, then adding an edge between r1 and r2, and designating r1 to be the root

of T1 ◦ T2. As seen in Section 5.2, when applying Wimer’s method it suffices to construct

the auxiliary invariants for T1 ◦ T2, given the auxiliary invariants of T1 and T2. Then, the

auxiliary invariants for Tv (v ∈ V (T)) may be computed by first considering {v} as a rooted

tree with a single vertex v and attaching each of its child subtrees {Tu1 , Tu2 , . . . , Tuk
} to v,

one at a time, using the ◦ operator.

Next, we present the base case values for each of the auxiliary invariants, and the recursive

formulation for the auxiliary invariants of T1 ◦T2 using the auxiliary invariants of T1 and T2.

Let T1 be a rooted tree of order one. Then, the initial (base case) values for each auxiliary

invariant associated with T1 is as follows.

97

1. αi(T1) =


1 if i ≥ 0

∞ otherwise

2. βi(T1) =


1 if i ≥ −1

∞ otherwise

3. σ0(T1) =∞.

4. σ1(T1) = 0.

In the base case, let r1 be the only vertex in T1. The vertex r1 is the root of T1. Let

S be a subset of V (T1) and, if r1 ∈ S, let |D1| and |A1| be the number of defenders and

attackers of r1, respectively. Note that when r1 ∈ S, |A1| = 0. In an αi(T1) configuration,

r1 ∈ S and r1 is not utilized in any defense. In particular, r1 is not defending itself. So,

|D1| = |A1| = 0, and the condition |D1| + i ≥ |A1| is satisfied whenever i ≥ 0. Thus, if

i ≥ 0 then αi(T1) = 1 (since S = {r1}), and otherwise αi(T1) = ∞ since there is no valid

αi(T1) configuration if i < 0. In a βi(T1) configuration, r1 ∈ S and r1 is utilized in a defense.

Since r1 is the only vertex in S, r1 defends itself, and so |D1| = 1 and |A1| = 0. Then, the

condition |D1| + i ≥ |A1| is satisfied whenever (1 + i) ≥ 0, or i ≥ −1. So, βi(T1) = 1 if

i ≥ −1, and otherwise βi(T1) = ∞. In a σ0(T1) configuration, r1 /∈ S and S is empty, so

σ0(T1) =∞ since a valid σ0(T1) configuration requires S dominates T1. Finally, in a σ1(T1)

configuration, r1 /∈ S, but in this case (V (T1) − {r1}) = ∅ is considered dominated, and so

σ1(T1) = 0 (since S = ∅).

98

Next, suppose T1 and T2 are two rooted trees with known auxiliary invariants values. Let

T12 = T1 ◦ T2. The auxiliary invariants for T12 may be computed as follows.

1. αi(T12) = min


αi−1(T1) + min{σ0(T2), σ1(T2)} (Type A.1)

αi(T1) + β0(T2) (Type A.2)

αi+1(T1) + α0(T2) (Type A.3)

2. βi(T12) = min



βi−1(T1) + min{σ0(T2), σ1(T2)} (Type B.1)

βi(T1) + β0(T2) (Type B.2)

βi+1(T1) + α0(T2) (Type B.3)

αi(T1) + β1(T2) (Type B.4)

3. σ0(T12) = min


σ0(T1) + σ0(T2) (Type S.1)

min{σ0(T1), σ1(T1)}+ β−1(T2) (Type S.2)

4. σ1(T12) = σ1(T1) + σ0(T2) (Type S.3)

We first provide an explanation of the recursive formulations given above, then present

the pseudocode of the algorithm. Let r1 be the root of T1 and let r2 be the root of T2. Note

that r1 is also the root of T12. Let S be a subset of V (T12). If r1 ∈ S, then let |D1| and |A1|

be, respectively, the number of defenders and attackers of r1 among the vertices of T1, and

let |D12| and |A12| be, respectively, the number of defenders and attackers of r1 among the

vertices of T12. If r2 ∈ S, then let |D2| and |A2| be, respectively, the number of defenders

and attackers of r2 among the vertices of T2.

99

In an αi(T12) configuration, r1 ∈ S and r1 is not defending any vertex of T12. So, in T1,

r1 ∈ S and r1 does not defend any vertex in T1. That is, we must use an αj(T1) configuration

for T1. Then, consider the role of r2 in the new tree T12.

A.1 r2 /∈ S. In this case, r2 is an attacker of r1. Since r1 ∈ S, r2 may be dominated by

r1 in T12 if it is not already dominated within T2. Thus, in T2 we may use either a

σ0(T2) or σ1(T2) configuration. Here, |D12| = |D1| and |A12| = |A1| + 1. In an αi(T12)

configuration, |D12| + i ≥ |A12|, so |D1| + i ≥ |A1| + 1, or |D1| + (i− 1) ≥ |A1|. Thus,

in T1 we use an αi−1(T1) configuration.

A.2 r2 ∈ S, but r2 is not defending r1. Since, in an αi(T12) configuration, r1 is not defending

any vertex, r1 is not defending r2. In this case, r1 and r2 are neutral with respect to

each other. The vertex r2 is assigned a vertex in T2 to defend. So, we use a β0(T2)

configuration for T2. In other words, S ∩ V (T2) is a global secure set of T2 for which

r2 ∈ S. Here, |D12| = |D1| and |A12| = |A1|, so we use an αi(T1) configuration for T1.

A.3 r2 ∈ S and r2 defends r1. In this case, r2 is a defender of r1. So, r2 does not defend

any vertex in T2 (not even itself), and we use an α0(T2) configuration for T2. In other

words, S ∩ V (T2) is a global secure set of T2, for which r2 is in S, but is not utilized in

a defense within T2. Then, r2 may be used in T12 to defend r1. Here, |D12| = |D1| + 1

and |A12| = |A1|. In an αi(T12) configuration, |D12|+ i ≥ |A12|, so |D1|+(i+1) ≥ |A1|.

Thus, we use an αi+1(T1) configuration for T1.

100

In a βi(T12) configuration, r1 ∈ S and r1 is defending a vertex of T12. If r1 is not defending

r2 in T12, then r1 is defending a vertex within T1. In that case, we use a βj(T1) configuration

for T1, and the scenarios that may follow are similar to those given for αi(T12). That is,

the compositions B.1, B.2 and B.3 correspond to A.1, A.2 and A.3 respectively, with the

distinction that r1 is defending a vertex in T1 in a β configuration, but is not defending any

vertex in an α configuration. An interesting case is when r1 defends r2 in T12. This case is

handled by composition B.4. In B.4, r1 is a defender of r2, and r1 is not defending any vertex

within T1. Thus, we use an αi(T1) configuration in T1. Since r1 is an additional defender of

r2 outside T2, from within T2 we require |D2| + 1 ≥ |A2|. So, we use a β1(T2) configuration

for T2. Composition B.4 is used in the case where a parent may defend one of its children,

and is the primary function of the β array.

In a σ0(T12) configuration, r1 /∈ S, and S dominates T12. There are two cases based on

the role of r2 in T12.

S.1 r2 /∈ S. In this case, both r1 and r2 are not in the set. So, r1 must be dominated by

a vertex in T1, and r2 must be dominated by a vertex in T2. Thus, we use a σ0(T1)

configuration for T1 and a σ0(T2) configuration for T2.

S.2 r2 ∈ S. In this case, r1 is an attacker of r2. So, in T2, we must require |D2| ≥ |A2|+1, or

|D2| − 1 ≥ |A2|. Thus, we use a β−1(T2) configuration for T2. In T12, r1 is dominated by

r2 if it is not already dominated in T1. So, for T1, either a σ0(T1) or σ1(T1) configuration

is valid.

101

Finally, in a σ1(T12) configuration, r1 is not in S and is not dominated by S. So, r1 must

not be dominated within T1, and r2 must not be in S. Thus, we use a σ1(T1) configuration for

T1. Since r1 /∈ S, r2 must be dominated from within T2. Thus, we use a σ0(T2) configuration

for T2.

This completes the explanation of the recursive formulas. Note that in the formulation,

for subtree T2 the only referenced values are {α0(T2), β−1(T2), β0(T2), β1(T2), σ0(T2), σ1(T2)}.

The global security number of a tree T is min{σ0(Tr), β0(Tr)}, where r is an arbitrarily

selected root. Thus, for a vertex v ∈ V (T), an algorithm does not need to compute all

the entries of α(Tv) and β(Tv), but only those referenced during the construction of its

parent’s auxiliary invariants, namely {α0(Tv), β−1(Tv), β0(Tv), β1(Tv), σ0(Tv), σ1(Tv)}. But,

similar to Algorithm 5.2.3 given in Section 5.2, other entries of α and β must be kept

track of during the construction of Tv (i.e., when attaching each child subtree of v to v),

whereas only those aforementioned entries are necessary in the final result after Tv is com-

pletely constructed. The ranges for α(Tv) and β(Tv) are then derived from the ranges being

referenced during the construction of Tv, which are the values for which the final result

{α0(Tv), β−1(Tv), β0(Tv), β1(Tv)} depends on.

The pseudocode of the algorithm, implemented according to the developments so far, is

given on the next page.

102

Algorithm 6.1.4.

Input: A rooted tree Tv.

Output: {α0(Tv), β−1(Tv), β0(Tv), β1(Tv), σ0(Tv), σ1(Tv)}

GlobalSecure(Tv)

1. Let cv be the number of children of v.

2. (Initialize T1)

2.1 For i = −cv . . . cv
If i ≥ 0, then αi(T1) = 1,

else αi(T1) =∞.

2.2 For i = −(cv + 1) . . . (cv + 1)

If i ≥ −1, then βi(T1) = 1,

else βi(T1) =∞.

2.3 σ0(T1) =∞.

2.4 σ1(T1) = 0.

3. Let {u1, u2, . . . uk} be the children of v. (i.e., k = cv)

4. For j = 1 . . . cv,

4.1 {α0(T2), β−1(T2), β0(T2), β1(T2), σ0(T2), σ1(T2)} ← GlobalSecure(Tuj
).

(Steps 4.2 to 4.5 attach Tuj
to v. The new tree is T12.)

4.2 For i = (j − cv) . . . (cv − j)

αi(T12)← min{αi−1(T1)+min{σ0(T2), σ1(T2)}, αi(T1)+β0(T2), αi+1(T1)+α0(T2)}

103

4.3 For i = j − (cv + 1) . . . (cv + 1)− j

βi(T12)← min{βi−1(T1)+min{σ0(T2), σ1(T2)}, βi(T1)+β0(T2), βi+1(T1)+α0(T2),

αi(T1) + β1(T2)}

4.4 σ0(T12)← min{σ0(T1) + σ0(T2),min{σ0(T1), σ1(T1)}+ β−1(T2)}

4.5 σ1(T12)← σ1(T1) + σ0(T2)

(Steps 4.6 to 4.8 copy T12 back into T1.)

4.6 For i = (j − cv) . . . (cv − j)

αi(T1)← αi(T12)

4.7 For i = j − (cv + 1) . . . (cv + 1)− j

βi(T1)← βi(T12)

4.8 {σ0(T1), σ1(T1)} ← {σ0(T12), σ1(T12)}

5. Return {α0(T1), β−1(T1), β0(T1), β1(T1), σ0(T1), σ1(T1)}

Lemma 6.1.5. Algorithm 6.1.4 has time complexity O(n∆), where ∆ is the maximum

degree of the input tree T .

Proof. Let T be a tree with maximum degree ∆. Let r be an arbitrarily selected root of T .

For each v ∈ V (T), the algorithm is invoked with argument Tv. In Step 2, the algorithm

performs O(cv) work, in particular at Steps 2.1 and 2.2. Then, Step 4 is executed exactly cv

times, and in each iteration of Step 4, the algorithm performs O(cv) work, in particular at

Steps 4.2, 4.3, 4.6 and 4.7. Thus, the algorithm performs a total of O ((cv)
2) work for each

104

vertex v ∈ V (T). The overall runtime of the algorithm for solving GlobalSecure(Tr) is then

proportional to
∑

v∈V (T)

(cv)
2 ≤

∑
v∈V (T)

(cv)∆ = (n− 1)∆ ∈ O(n∆).

6.2 Upper and lower bounds

In this section, we present upper and lower bounds on the global security number of a tree.

A general lower bound on the global security number of an arbitrary graph in terms of its

order may be obtained using Theorem 1.2.3.

Lemma 6.2.1. Let G be a graph of order n. Then, γs(G) ≥ ⌈n/2⌉.

Proof. Let S be a minimum global secure set of G. Since S is a dominating set, N [S] = V (G)

and |S| + |N [S] − S| = |V (G)| = n. So, |N [S] − S| = n − |S|. Since S is a secure set, by

Theorem 1.2.3, |S| = |N [S]∩S| ≥ |N [S]−S| = n−|S|. Thus, 2 |S| ≥ n and |S| ≥ ⌈n/2⌉.

The lower bound given in Lemma 6.2.1 is a sharp lower bound for trees. For example,

in Chapter 7 we show that γs(Pn) = ⌈n/2⌉ (Theorem 7.2.1), where Pn denotes a path on

n ≥ 2 vertices. There are many other examples for the sharpness of the lower bound given

in Lemma 6.2.1. Figures 6.2, 6.3 and 6.4 show three such examples.

The remainder of this section studies an upper bound on the global security number of

a tree. Lemma 6.2.8 shows that γs(T) ≤ 2n/3 for a tree T of order n ≥ 2. First, Definition

6.2.2 presents two classes of rooted trees, T1 and T2. A minimum global secure set of any

105

rooted tree in these two classes can be used to construct global secure sets of larger trees.

This is discussed in more detail in Lemma 6.2.3.

Definition 6.2.2. Let T be a rooted tree with root r.

T1: T is in the class T1 if there exist two minimum global secure sets of T , denoted S1 and

S2, such that r ∈ S1 and r /∈ S2.

T2: T is in the class T2 if there exists a minimum global secure set of T , denoted S, such

that r ∈ S, and S is a global secure set of T ∪{rℓ}, where ℓ is a new vertex added to T .

Note that S is not necessarily a minimum global secure set of T ∪ {rℓ}.

The set of rooted trees that belong to either T1 or T2 is denoted T1 ∪ T2.

If T is in the class T1, then there are two minimum global secure sets of T such that one

set includes r and the other excludes r. With reference to the auxiliary invariants defined

in Section 6.1 (Definition 6.1.3), T is in T1 whenever σ0(Tr) = β0(Tr) = γs(T). If T is in

the class T2, then there is a minimum global secure set of T such that the set contains r,

and the set remains a secure set even if r receives an additional attacker. With reference

to the auxiliary invariants in Section 6.1, T is in T2 whenever β−1(Tr) = γs(T). Note that

the classes T1 and T2 are not disjoint, and there are some trees that belong to both sets.

Furthermore, there are trees that belong to neither T1 nor T2.

The significance of T1∪T2 is that a minimum global secure set of a tree in T1∪T2 can be

combined with a minimum global secure set of another tree (not necessarily in T1 ∪ T2) to

106

form a global secure set of a larger tree. The constructed global secure set is not necessarily

a minimum one, but the composition provides an upper bound on the global security number

of the larger tree. This property is described more precisely in Lemma 6.2.3.

Lemma 6.2.3. Let Tx be a rooted tree with root x and let Ty be a rooted tree with root y.

Let T be the tree constructed by taking the disjoint union of Tx and Ty, and adding an edge

between x and y. If Tx (or Ty) is in T1 ∪ T2, then γs(T) ≤ γs(Tx) + γs(Ty).

Proof. Without loss of generality, let Tx ∈ T1 ∪ T2. Consider two cases based on whether

Tx ∈ T1 or Tx ∈ T2.

1. Tx ∈ T1. Then, let S1 and S2 be two minimum global secure sets of Tx, such that x ∈ S1

and x /∈ S2. Let Sy be a minimum global secure set of Ty. Consider two sub-cases based

on whether y ∈ Sy.

1.1 If y ∈ Sy, then S1 ∪ Sy is a global secure set of T with cardinality |S1| + |Sy| =

γs(Tx) + γs(Ty). This is true because during the construction of T , the edge xy is

added between two vertices that are both in the set S1∪Sy. Adding an edge between

two vertices in a global secure set allows more defenses, but does not increase the

number of possible attacks. Thus, S1 ∪ Sy is a global secure set of T .

1.2 If y /∈ Sy, then S2 ∪ Sy is a global secure set of T with cardinality |S2| + |Sy| =

γs(Tx) + γs(Ty). This is true because during the construction of T , the edge xy is

added between two vertices that are both outside the set S2 ∪ Sy. Adding an edge

107

between two vertices outside a global secure set does not affect the number of defenses

or attacks. Thus, S2 ∪ Sy is a global secure set of T .

In both cases, there exists a global secure set of T of cardinality γs(Tx) + γs(Ty), so

γs(T) ≤ γs(Tx) + γs(Ty).

2. Tx ∈ T2. Let Sx be a minimum global secure set of Tx such that x ∈ Sx and Sx is also

a global secure set of Tx ∪ {xℓ}, for a new vertex ℓ. In other words, Sx remains a secure

set if an additional attacker of x is to exist. Let Sy be a minimum global secure set of Ty.

Consider two sub-cases based on whether y ∈ Sy.

2.1 If y ∈ Sy, then Sx ∪ Sy is a global secure set of T . The justification is similar to case

1.1. That is, during the construction of T , the edge xy is added between two vertices

that are both in the set Sx ∪ Sy.

2.2 If y /∈ Sy, then Sx ∪ Sy is a global secure set of T . Here, during the construction of

T , as the edge xy is added, the vertex y becomes an additional attacker of x. But,

Sx is still a secure set in T since by its definition it remains secure even if x receives

an additional attacker. Thus, Sx ∪ Sy is a global secure set of T .

In both cases, Sx ∪ Sy is a global secure set of T , with cardinality |Sx|+ |Sy| = γs(Tx) +

γs(Ty), so γs(T) ≤ γs(Tx) + γs(Ty).

Note that Lemma 6.2.3 requires only one of the rooted trees, Tx or Ty, to be in T1 ∪ T2.

108

In cases 1.1, 1.2 and 2.1 of the proof of Lemma 6.2.3, a global secure set for the larger tree

T is formed using minimum global secure sets of two smaller rooted trees Tx and Ty. T is

constructed by taking the disjoint union of Tx and Ty, along with their respective minimum

global secure sets, and then adding an edge between vertices that are either both in the

global secure set, or both outside. This strategy is also used in Chapter 7 for constructing

minimum global secure sets of grid-like graphs.

Next, Definition 6.2.4 presents the class of rooted trees L, to be used in the proof of

Lemma 6.2.8.

Definition 6.2.4. The set of rooted trees L is defined as follows.

1. The graph K1,t with t being odd, t ≥ 3, and treating the degree t vertex as the root, is

a rooted tree in L.

2. Let Tx be a rooted tree with root x, where x has exactly two children ℓ and y. The

vertex ℓ is a leaf and the vertex y is the root of a subtree Ty ∈ L. Then, Tx ∈ L.

3. The only rooted trees in L are those defined by Rule 1 or Rule 2.

Figure 6.5 shows three examples of rooted trees in L. Note that the number of vertices

of a rooted tree in L must be even, and at least four.

109

Figure 6.5: Three examples of rooted trees in L. The root of each tree is the topmost vertex.

Lemma 6.2.5. If T is a tree of order n in L, then γs(T) = n/2.

Proof. By Lemma 6.2.1, γs(T) ≥ n/2. A global secure set of cardinality exactly n/2 includes

all internal vertices of T , and ⌊k/2⌋ leaves of the bottom most level, where k is the number

of leaves at that level.

Definition 6.2.6. Let T be a rooted tree with root r. The depth of T is the maximum

number of vertices in a path between r and a leaf.

Lemma 6.2.7. Let T be a rooted tree of order n and let r be its root. With reference

to the auxiliary invariants introduced in Section 6.1 (Definition 6.1.3), if T ∈ L, then

min{β−1(T), σ0(T)} = n/2 + 1.

110

Proof. Let S ⊆ V (T) and proceed by induction on the depth of T . The minimum depth of

any tree in L is two. In the base case, suppose T has depth two. Then, T = K1,t, where

t is odd, t ≥ 3 and root r is the degree t vertex of K1,t. Let t = 2k + 1, where k ≥ 1.

Note that n = t + 1 = 2k + 2. If S is a σ0 configuration, r /∈ S and so all t children of

r must be in S. Then, σ0(T) = t = 2k + 1. If S is a β−1 configuration, r ∈ S, and S

must include enough children of r such that |Dr| − 1 ≥ |Ar|, or |Dr| ≥ |Ar| + 11. In this

case, S must include at least k + 1 children of r. So, β−1(T) = 1 + (k + 1) = k + 2. Then,

min{β−1(T), σ0(T)} = min{k + 2, 2k + 1} = k + 2 = n/2 + 1.

In the inductive step, suppose T has depth d > 2. Then, according to Definition 6.2.4, r

has two children, a leaf ℓ and a vertex y, where y is the root of subtree Ty ∈ L, of depth d−1.

Let Sy = S ∩ V (Ty) and let ny = |V (Ty)|. Note that n = ny + 2. If S is a σ0 configuration,

then r /∈ S, ℓ must be in S, and Sy is either a σ0(Ty) (in case y /∈ Sy) or β−1(Ty) (in case

y ∈ Sy) configuration. So, σ0(T) = 1 +min{σ0(Ty), β−1(Ty)} = 1 + (ny/2 + 1) = n/2 + 1. If

S is a β−1 configuration, then r ∈ S and, if only n/2 vertices are included in S, there will be

exactly n/2 attackers within T , and makes it impossible for S to be a β−1(T) configuration,

since a valid β−1(T) configuration must have |Dr| ≥ |Ar|+1. This shows β−1(T) ≥ n/2+ 1.

A valid β−1(T) configuration includes all the internal vertices, ⌊k/2⌋ leaves at the bottom

most level (k is the number of vertices at the bottom most level), and the vertex ℓ. Thus,

β−1(T) ≤ n/2 + 1, and in conclusion σ0(T) = β−1(T) = n/2 + 1.

1Recall from Definition 6.1.2 that |Dr| and |Ar| denote, respectively, the number of defenders and
attackers of r.

111

Lemma 6.2.7 considers a situation when a rooted tree T ∈ L is used in the construction

of a larger tree T ′. In particular, when the neighbor of r in T ′−T is not included in a global

secure set S, then either r /∈ S, in which case S∩V (T) must correspond to a σ0 configuration,

or r ∈ S, in which case r must be able to defend the additional attacker coming from T ′−T ,

and a β−1 configuration is required for S ∩ V (T). Lemma 6.2.7 states that in this situation

|S ∩ V (T)| ≥ |V (T)|/2 + 1 > |V (T)|/2 = γs(T) (Lemma 6.2.5).

We now present Lemma 6.2.8. Let T be a tree of order n. Then, for two adjacent vertices

x, y ∈ V (T), let T −xy be the forest obtained by removing edge xy from T . In T −xy, there

are two components (two trees) Tx and Ty. Let nx and ny be, respectively, the order of Tx

and Ty. Define C(T) = {xy ∈ E(T) : nx ≥ 2 and ny ≥ 2}. So, removing from T a single

edge in C(T) results in a graph without isolated vertices.

Lemma 6.2.8. Let T be a tree of order n. If n ≥ 2, then γs(T) ≤ 2n/3.

Proof. Consider a minimum counter example, a tree T of order n, where n ≥ 2 and γs(T) >

2n/3. Then, by examining trees of small orders we may conclude n ≥ 4. Let r be an

arbitrarily selected root of T . We want to show that T ∈ L, by induction in a bottom up

fashion. For each level of T , we show that a vertex on that level is either a leaf or the root

of a subtree in L.

The base cases are the lowest two levels. In the lowest level, all vertices are leaves. In

the next to last level, a vertex is either a leaf or has several children, where each child is a

leaf. Let x be such an internal node and let c be the number of children of x. Let Tx be the

112

subtree rooted at x. If N [x] = V (T), then T = K1,(n−1). In this case, γs(T) = ⌈n/2⌉ ≤ 2n/3,

a contradiction. So, N [x] ̸= V (T). Let px be the parent of x in T with respect to r. Since

N [x] ̸= V (T), xpx ∈ C(T). Consider three cases based on the value of c.

1. If c = 1, then Tx = P2 and Tx ∈ T1. By Lemma 6.2.3, γs(T) ≤ γs(Tx) + γs(T − Tx).

Let nx = |V (Tx)|. Then |V (T − Tx)| = n − nx. Since xpx ∈ C(T), n > nx ≥ 2

and n > n − nx ≥ 2. Since T is a minimum counter example, γs(Tx) ≤ 2nx/3 and

γs(T −Tx) ≤ 2(n− nx)/3. Then, γs(T) ≤ γs(Tx)+γs(T −Tx) ≤ 2n/3, a contradiction.

2. If c is even, then Tx ∈ T2, and the argument follows similarly to case 1.

3. If c is odd and c ≥ 3, then Tx ∈ L.

This completes the base cases. By the way of induction, suppose every vertex on level

i+1 or below is either a leaf or the root of a subtree in L. Then, let x be an internal vertex

on level i and let c be the number of children of x. We want to show that Tx ∈ L. By the

inductive hypothesis, each child of x is either a leaf or the root of a subtree in L. Let c1 be

the number of subtrees in L and let c2 be the number of leaves, among the children of x.

First, we claim that c1 ≤ 1. Suppose c1 ≥ 2 and let Y be the set of children of x that are the

roots of their respective subtrees in L. So, |Y | = c1 ≥ 2. Let y ∈ Y and consider T −Ty. Let

S be a minimum global secure set of T − Ty. If x /∈ S, then (1) every leaf child of x must be

in S and (2) |V (Ty′) ∩ S| = |V (Ty′)|/2 + 1 for all y′ ∈ Y − {y}. That is, S must include an

additional vertex in each Ty′ , compare to a minimum global secure set of Ty′ alone (Lemma

6.2.7). Modify S by including x and removing the extra vertex from each Ty′ . This new set is

113

of the same (or less) cardinality. The new set is also a secure set since x can defend the attack

coming from px (if px exists and px /∈ S) and every children of x is in this new set. This shows

that there exists a minimum global secure set Sx of T − Ty such that x is in the set. Then,

since y is in a minimum global secure set Sy of Ty (Lemma 6.2.5), Sx ∪ Sy is a global secure

set of T . This implies γs(T) ≤ γs(Ty)+γs(T−Ty) ≤ (2|V (Ty)|/3)+(2|V (T−Ty)|/3) = 2n/3,

a contradiction. Thus, c1 ≤ 1. Now consider two cases.

1. c1 = 0. In this case all children of x are leaves, and by an argument similar to the base

case, c2 ≥ 3 and is odd, and Tx ∈ L.

2. c1 = 1. In this case, exactly one child of x is the root of a subtree in L, and all

other children of x are leaves. Let y be the root of the child subtree of x in L and let

ny = |V (Ty)| be the number of vertices in Ty. We claim that c2 = 1. Suppose c2 ≥ 2

and consider T − Ty. Let S be a minimum global secure set of T − Ty. If x /∈ S, then

all c2 leaf children of x are in S. Including x in S can then allow the exclusion of
⌊c2
2

⌋
leaves and retain a global secure set. Since c2 ≥ 2, such sets are also minimum (or in

fact smaller if c2 ≥ 4). This shows that there exists a minimum global secure set Sx of

T −Ty such that x ∈ Sx. Similar to the analysis above, since y is in a minimum global

secure set of Ty, γs(T) ≤ γs(Ty) + γs(T − Ty) ≤ 2n/3, a contradiction. Thus, c2 ≤ 1.

Assume c2 = 0 and consider three cases, depending upon whether x is the root of T ,

and if not, whether T − xpx has isolated vertices (i.e., whether xpx /∈ C(T)).

114

2.1 x = r. Then, a global secure set of T may be constructed by including x and ny/2

vertices in Ty (Lemma 6.2.5). So, γs(T) ≤ 1 +
ny

2
= 1 +

n− 1

2
=
n+ 1

2
≤ 2n

3
, a

contradiction.

2.2 x ̸= r and xpx /∈ C(T). In this case, deg(px) = 1 and px = r. Treating x as the

root of T makes T a rooted tree in L, and by Lemma 6.2.5, γs(T) = n/2 ≤ 2n/3,

a contradiction.

2.3 x ̸= r and xpx ∈ C(T). Then, in T−xpx there are two components, each of order at

least 2. Let S ′ be a minimum global secure set of the component which contains px.

Then, the set S ′, along with vertex x and ny/2 vertices of Ty forms a global secure

set of T . In this set, xmay defend the attack coming from px if px /∈ S ′. This set has

cardinality |S ′|+1+ny/2 ≤ 2(n−nx)/3+(nx+1)/2 ≤ 2(n−nx)/3+2nx/3 = 2n/3,

where nx = |V (Tx)| = ny + 1. Then, γs(T) ≤ 2n/3, a contradiction.

Thus, c2 = 1 and Tx ∈ L.

This completes the inductive step and so T ∈ L. By Lemma 6.2.5, γs(T) = n/2 ≤ 2n/3,

the final contradiction to the counter example.

Recall from Theorem 2.1.16 that (n + 2)/4 ≤ γa(T) ≤ (3n)/5 are sharp bounds on the

global defensive alliance number of a tree of order n ≥ 4. Theorem 6.2.9 presents a similar

result regarding the global security number of a tree of order n ≥ 2.

Theorem 6.2.9. If T is a tree of order n ≥ 2, then ⌈n/2⌉ ≤ γs(T) ≤ ⌊2n/3⌋, and both

bounds are sharp.

115

Proof. By Lemma 6.2.1, γs(T) ≥ ⌈n/2⌉ and by Lemma 6.2.8, γs(T) ≤ 2n/3. Since γs(T)

is an integer, γs(T) ≤ ⌊2n/3⌋. Sharpness of the lower bound are realized by the set of

paths Pn for n ≥ 2 (and other examples discussed in the remark following Lemma 6.2.1).

For sharpness of the upper bound, let n = 3t + 1 and construct a rooted tree T of order

n. Let r be the root of T . The vertex r has t children, where each child has in addition

two more children. Then, in a global secure set of T each child subtree must include at

least two vertices, with possible exception for one of the subtrees when r is in the set. So,

γs(T) = 2t = ⌊2n/3⌋.

There is no known sharp upper bound on the global security number of an arbitrary

graph in terms of only its order. This is posted as Open Problem 9.2.2.

6.3 Global security numbers and spanning trees

In this section, we will investigate and present results on the relationship between the global

security number of a connected graph and that of its spanning trees, with Lemma 6.3.3 being

the primary result.

Definition 6.3.1. An edge e of graph G is a bridge if removing e from G increases the

number of components of G.

Observation 6.3.2. Let G be a graph and let S be a (not necessarily global) secure set of

G. For uv ∈ G, if u ∈ V (G)− S, then S is a secure set of G− uv.

116

Lemma 6.3.3. For any connected graph G, there exists a spanning tree T of G such that

γs(G) ≥ γs(T).

Proof. Let G = (V,E) be an arbitrary connected graph and let S be a global secure set of

G. S is not necessarily a minimum global secure set of G. Consider a partition of E into

three sets E1, E2 and E3, depending on where the endpoints of an edge lies, with respect to

V − S and S, as follows.

1. E1 contains those edges in E where both endpoints are in V − S.

2. E2 contains those edges in E where both endpoints are in S.

3. E3 contains those edges in E where exactly one endpoint is in S (and the other endpoint

is in V − S).

Apply the following operations on G, let the result be H.

1. Let H ← G.

2. For each e ∈ E1 ∩ E(H), if e is not a bridge of H, let H ← (H − e).

3. For each e ∈ E3 ∩ E(H), if e is not a bridge of H, let H ← (H − e).

By Observation 6.3.2, S is a secure set of H. We show next that S is a dominating set

of H, and hence S is a global secure set of H. Clearly, S is a dominating set of H after

operation 2, and any edge remaining in E1 ∩ E(H) after operation 2 must be a bridge. If

operation 3 did not remove any edges, S is a dominating set of H. Otherwise, assume that

117

u ∈ V − S is a vertex which is not dominated after operation 3. Let uv be the last edge

removed in operation 3, among all edges incident to u. Then, uv ∈ E3, v ∈ S and uv is not

a bridge prior to its removal. Let C be a cycle containing uv, and let w ̸= v be the other

neighbor of u in C. Since uv is the last edge removed among all edges incident to u, edge

uw remains in H after operation 3. Since u is not dominated after operation 3, w ∈ V − S

and uw ∈ E1. But, uw is in the cycle C, therefore is not a bridge. This is a contradiction

to the fact that uw was not removed by operation 2. Thus, S is a global secure set of H.

Note that every edge being removed is not be a bridge of H, and so its removal does not

disconnect H. Therefore, after the operations H is a connected subgraph of G.

After operations 1 − 3, every edge in (E1 ∪ E3) ∩ E(H) is a bridge. In H, any vertex

u ∈ V − S has at most one neighbor in any component of H[S]. That is, if u has multiple

neighbors in S, then they must belong to different components of H[S], for otherwise an edge

in E3 remains in H and is not a bridge. Then, for any component C ′ of H[S], an attacker in

V − S can attack at most one vertex of C ′, and C ′ is secure if there exists a feasible defense

for this unique attack (with respect to C ′). But S is a secure set of H, so a feasible defense

D exists. Let ED ⊆ E2 be the edges used by D. The edges in ED induce a forest. Apply

the following operations on H and let the result be T .

1. T ← H.

2. For each e ∈ (E2 − ED) ∩ E(T), if e is not a bridge of T , let T ← (T − e).

118

Note that T is connected since any edge removed from T is not a bridge. If T contains a

cycle C, then none of the edges of C belong to E1 ∪E3, since E1 ∪E3 contains only bridges.

So, E(C) ⊆ E2. If E(C) ⊆ ED, then ED contains a cycle, a contradiction. Thus, there is

an edge in C which belongs to E2 − ED. But, this is also impossible since this edge should

have been removed by the above operation. Therefore, T is a spanning tree of G, and S is

a global secure set of T . S is a dominating set because edges in E3 are preserved, and S is

secure because edges in ED are preserved.

In conclusion, if S is a global secure set of G, then S is a global secure set of some

spanning tree of G. The result of this lemma follows by letting S be a minimum global

secure set of G.

Lemma 6.3.4. There is a graph G such that for any spanning tree T of G, γs(G) > γs(T).

Proof. Let G = C6, any spanning tree of C6 is a P6, and γs(C6) = 4 > 3 = γs(P6).

A more general example for Lemma 6.3.4 is C4k+2, where γs(C4k+2) = 2k + 2 (Theorem

8.1.2), but γs(P4k+2) = 2k + 1 (Theorem 7.2.1).

Lemma 6.3.5. There is a graph G such that for some spanning tree T of G, γs(G) < γs(T).

Proof. Consider K3k+1, the complete graph on 3k + 1 vertices. Then, let T be a rooted tree

where the root has exactly k children, and each child of the root has exactly 2 children. T has

3k+1 vertices and is a spanning tree ofK3k+1. γs(K3k+1) = ⌈(3k + 1)/2⌉ and γs(T) = 2k.

119

CHAPTER 7

CONSTRUCTIONS OF GLOBAL SECURE SETS OF

GRID-LIKE GRAPHS

7.1 Introduction

This chapter and the next present results on the global security numbers of grid-like graphs.

Recall from Section 1.4 the definitions of Cartesian product (Definition 1.4.3) and grid-like

graphs (Definition 1.4.4), presented again below.

The Cartesian product of two graphs G and H is a graph denoted G×H, where V (G×

H) = V (G)×V (H) and E(G×H) = {(vi, ui)(vj, uj) : (vi = vj and uiuj ∈ E(H)) or (vivj ∈

E(G) and ui = uj)}.

A path on n ≥ 2 vertices is a graph Pn where V (Pn) = {v1, v2, . . . , vn} and E(Pn) =

{vivi+1 : 1 ≤ i ≤ n − 1}. A cycle on n ≥ 3 vertices is a graph Cn where V (Cn) =

{v1, v2, . . . , vn} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {v1vn}. A two-dimensional grid

Pn × Pm is the Cartesian product of two paths Pn and Pm. A two-dimensional cylinder

Pn × Cm is the Cartesian product of a path Pn and a cycle Cm. A two-dimensional torus

Cn × Cm is the Cartesian product of two cycles Cn and Cm.

120

The class of graphs which contains exactly all paths, cycles and two-dimensional grids,

cylinders and tori is the class of grid-like graphs. Note that the order of each path is at least

2 and the order of each cycle is at least 3. For example, the smallest two-dimensional torus

is C3 × C3, which has 9 vertices.

Let G be a grid-like graph of order n. The security number of G is given in Theorem

2.3.4, which states that s(G) ≤ 12. On the other hand, by Lemma 6.2.1 in Chapter 6,

the global security number of G is at least ⌈n/2⌉. Theorem 7.1.1 presents our main result

regarding the global security numbers of grid-like graphs.

Theorem 7.1.1. Let G be a grid-like graph of order n. Then, γs(G) = ⌈n/2⌉, unless G is

isomorphic to C4k+2 or C3 × C4k+2, in which case γs(G) = n/2 + 1.

Theorem 7.1.1 states that the general lower bound ⌈n/2⌉ is realized for all grid-like graphs,

with the curious exceptions C4k+2 and C3 × C4k+2. This chapter and the next develop in

detail the result stated in Theorem 7.1.1.

Let G be a grid-like graph of order n. In this chapter, an upper bound on γs(G) is

established by exhibiting a global secure set of the desired cardinality. In most cases, a

global secure set of cardinality ⌈n/2⌉ is given for G, proving γs(G) ≤ ⌈n/2⌉. Along with

Lemma 6.2.1, the result is γs(G) = ⌈n/2⌉. The only exceptions are when G is isomorphic to

C4k+2 or C3×C4k+2. In these two cases, we exhibit a global secure set of cardinality n/2+1

for G, proving γs(G) ≤ n/2 + 1. Then, in the next chapter, a lower bound of n/2 + 1 for

these two graphs will be established through specialized analysis.

121

In general, global secure sets of larger graphs are constructed using global secure sets

of smaller graphs. Definition 7.1.2 provides several graph operations used during the con-

structions of the global secure sets of interest. Then, Observation 7.1.3 gives some sufficient

conditions on when global secure sets of a set of graphs G can be used to provide a global

secure set for another graph H, where H is obtained by performing specific operations on

graphs in G .

Definition 7.1.2. Let G and H be graphs. The disjoint union of G and H, denoted G∪H,

is the graph with V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H), such that V (G)

and V (H) are disjoint sets of vertices in G ∪ H. So, |V (G ∪ H)| = |V (G)| + |V (H)|. For

uv /∈ E(G), the edge addition of uv toG, denotedG+uv, is the graph with V (G+uv) = V (G)

and E(G + uv) = E(G) ∪ {uv}. For u, v ∈ V (G), let G′ be the graph obtained from G by

deleting u and v, and then adding a new vertex w such that NG′(w) = NG(u)∪NG(v)−{u, v}.

The graph G′ is obtained from G by identifying u and v.

Observation 7.1.3. Let S be a global secure set of graph G and let S1 and S2 be global

secure sets of graphs G1 and G2, respectively. Then,

1. S1 ∪ S2 is a global secure set of G1 ∪G2 ([Jes10]).

2. Let u, v ∈ V (G) such that uv /∈ E(G). If (u, v ∈ S) or (u, v ∈ V (G) − S), then S is a

global secure set of G+ uv.

3. For u, v ∈ V (G)− S, let H be the graph obtained from G by identifying u with v. Then,

S is a global secure set of H.

122

4. For v ∈ V (G)− S, S is a global secure set of G− v.

We will tacitly assume the statements of Observation 7.1.3. Next, Section 7.2 provides

constructions of global secure sets for paths and cycles. Then, Sections 7.3, 7.4 and 7.5

provide constructions for two-dimensional grids (Pn × Pm), cylinders (Pn × Cm) and tori

(Cn × Cm), respectively.

7.2 Paths and cycles

In this section, we apply the methodology outlined in Section 7.1 and construct global secure

sets for paths Pn and cycles Cn. Theorem 7.2.1 shows that γs(Pn) = ⌈n/2⌉. Then, Lemmas

7.2.2 and 7.2.3 present upper bounds on the global security numbers of Cn, based on whether

n ∈ {4k + 2 : k ≥ 1}. Finally, Theorem 7.2.4 summarizes the results for Cn obtained in this

section.

Theorem 7.2.1. γs(Pn) = ⌈n/2⌉ for n ≥ 2.

Proof. By Lemma 6.2.1, γs(Pn) ≥ ⌈n/2⌉. We construct global secure sets of cardinality

⌈n/2⌉ for Pn. Whenever appropriate, the global secure sets provided do not include the

endpoints of the paths. This property enables the application of Observation 7.1.3 (Part 2)

in the constructions of larger paths.

Figure 7.1 shows global secure sets of Pn for 2 ≤ n ≤ 5, each of cardinality ⌈n/2⌉.

Note that for P4 and P5, the global secure sets do not include the endpoints of the paths.

123

For n > 5, consider four cases based on the value of n (mod 4). For n ≡ 0 (mod 4), the

construction is done recursively using a global secure set of Pn−4 and a copy of P4 (in Figure

7.1). In the other cases, the constructions are done by using a global secure set of P4h and

a global secure set of a small path.

1. n ∈ {4k : k ≥ 2}. First, construct recursively a global secure set of cardinality 2(k−1) for

P4(k−1), where the endpoints of P4(k−1) are not in the set. Then, take the disjoint union

of P4 (with a global secure set given in Figure 7.1) and P4(k−1). Since the endpoints of

both paths are outside the set, by Observation 7.1.3 (Part 2), adding an edge between

an endpoint of P4 and an endpoint of P4(k−1) produces P4k, with a global secure set of

cardinality 2 + 2(k − 1) = 2k. Note that both endpoints of P4k are outside the global

secure set.

2. n ∈ {4k + 1 : k ≥ 2}. Consider the disjoint union of P5 (in Figure 7.1) and P4(k−1). The

endpoints of both paths are outside the set. By Observation 7.1.3 (Part 2), adding an

edge between an endpoint of P5 and an endpoint of P4(k−1) produces P4k+1, with a global

secure set of cardinality 3 + 2(k − 1) = 2k + 1. The endpoints of P4k+1 are outside the

global secure set.

3. n ∈ {4k + 2 : k ≥ 1}. Consider the disjoint union of P2 (in Figure 7.1) and P4k. One

endpoint of P2 is not in the global secure set, and both endpoints of P4k are not in the

global secure set. By Observation 7.1.3 (Part 2), adding an edge between the endpoint

of P2 which is not in the set and an endpoint of P4k produces P4k+2, with a global secure

124

set of cardinality 2k + 1. Notice in P4k+2 exactly one endpoint is included in the global

secure set.

4. n ∈ {4k + 3 : k ≥ 1}. For k = 1, a global secure set of cardinality 4 for P7 can be

constructed by taking the disjoint union of two copies of P4 (in Figure 7.1) and identifying

one of their endpoints (Observation 7.1.3, Part 3). The result is illustrated in Figure 7.2.

Note that both endpoints of P7 are outside the global secure set.

For k > 1, consider the disjoint union of P7 and P4(k−1). The endpoints of P7 and P4(k−1)

are outside the global secure set. By Observation 7.1.3 (Part 2), adding an edge between

an endpoint of P7 and an endpoint of P4(k−1) produces P4k+3, with a global secure set of

cardinality 4 + 2(k− 1) = 2k+2. The endpoints of P4k+3 are outside the specified global

secure set.

Refer to Figure 7.3 for illustrations of global secure set patterns specified in the proof of

Theorem 7.2.1.

Figure 7.1: Global secure sets of P2, P3, P4 and P5.

Theorem 7.2.1 determines the global security number of Pn. In the proof of Theorem

7.2.1, we constructed a global secure set for a path Pn by considering global secure sets of

125

Figure 7.2: A global secure set of P7 as constructed by the proof of Theorem 7.2.1 (Part 4).

Figure 7.3: Global secure sets of Pn, as constructed by the proof of Theorem 7.2.1.

smaller paths {Pn′ : n′ < n}, and applying operations given in Observation 7.1.3 on these

graphs. The same technique will be used for constructing global secure sets of Pn × Pm in

Section 7.3. The remainder of this section examines the global security numbers of cycles

Cn.

126

Lemma 7.2.2. If n /∈ {4k + 2 : k ≥ 1}, then γs(Cn) = ⌈n/2⌉.

Proof. By Lemma 6.2.1, γs(Cn) ≥ ⌈n/2⌉. We establish equality by constructing global secure

sets of cardinality ⌈n/2⌉ for Cn when n /∈ {4k + 2 : k ≥ 1}. Clearly, γs(C3) = 2. For n ≥ 4,

consider a global secure set configuration for Pn of cardinality ⌈n/2⌉ as given by the proof

of Theorem 7.2.1. Note that when n /∈ {4k + 2 : k ≥ 1} (cases 1, 2 and 4 in the proof

of Theorem 7.2.1), both endpoints of Pn are outside the specified global secure set. By

Observation 7.1.3 (Part 2), adding an edge between the endpoints of Pn produces Cn, with

a global secure set of cardinality ⌈n/2⌉.

The proof of Lemma 7.2.2 constructed global secure sets for Cn using the global secure

sets of Pn from Theorem 7.2.1. This works in all cases except when n ∈ {4k + 2 : k ≥ 1}.

In that case, one endpoint of P4k+2 is in the global secure set, while the other endpoint is

not, and the edge addition operation given in Observation 7.1.3 (Part 2) cannot be applied.

Nonetheless, we may show that γs(C4k+2) ≤ 2k + 2 by constructing global secure sets of

cardinality 2k + 2.

Lemma 7.2.3. γs(C4k+2) ≤ 2k + 2 for k ≥ 1.

Proof. Figure 7.4 shows a global secure set of P6 with 4 vertices. Note that this configuration

has the property where both endpoints of P6 are not in the global secure set. Then, for C6,

add an edge between the endpoints of P6 in Figure 7.4. This results in a global secure set

for C6 with 4 vertices, and γs(C6) ≤ 4.

127

For k > 1, consider the disjoint union of P6 (in Figure 7.4) and P4(k−1) (with a global

secure set of 2(k − 1) vertices as constructed in the proof of Theorem 7.2.1). Note that the

endpoints of P6 and P4(k−1) are outside the global secure set. By Observation 7.1.3 (Part 2),

adding two edges between their respective endpoints produces C4k+2, with a global secure

set of cardinality 4 + 2(k − 1) = 2k + 2. So, γs(C4k+2) ≤ 2k + 2. The final configuration is

illustrated in Figure 7.5.

Figure 7.4: A global secure set of P6 with 4 vertices.

Figure 7.5: A global secure set of C4k+2, as constructed by the proof of Lemma 7.2.3.

As mentioned in Section 7.1, a proof for γs(C4k+2) > 2k+1 will be presented in Chapter

8. Along with Lemma 7.2.3, the result is γs(C4k+2) = 2k + 2 (Theorem 8.1.2). Theorem

7.2.4 summarizes the results obtained so far for Cn.

Theorem 7.2.4. γs(Cn) =


2k + 1 or 2k + 2 if n ∈ {4k + 2 : k ≥ 1}

⌈n/2⌉ otherwise

Proof. By Lemmas 6.2.1, 7.2.2 and 7.2.3.

128

7.3 Two-dimensional grids

In this section, we investigate the global security numbers of two-dimensional grids, Pn×Pm.

The methodology applied is analogous to the one used in the previous section. We start by

providing global secure sets for Pn×Pm of small order, and global secure sets of larger graphs

are obtained by taking the disjoint union of smaller graphs (along with their respective global

secure sets), and adding edges between vertices that are either both in the global secure

set or both outside. Note that we only need to demonstrate one global secure set whose

cardinality matches the lower bound given in Lemma 6.2.1. In general, there may be many

such configurations.

Next, Remark 7.3.1 introduces a program that is used for verifying the validity of global

secure set configurations of several small graphs. These small graphs and their respective

global secure set configurations will be used in the upcoming developments of this chapter.

Then, Definition 7.3.2 and Lemma 7.3.3 specifies certain situations where a global secure set

configuration for Pn×Pm may be used as a valid global secure set configuration of Pn×Cm

or Cn × Cm.

Remark 7.3.1. Recall from Section 3.3 that there is no known polynomial algorithm for

verifying the validity of a secure set configuration. But, when the graphs under considera-

tion are small, exhaustive search algorithms can still verify the validity of secure sets in a

reasonable amount of time. A program has been developed for Is Secure (Problem 3.1.2)

on grid-like graphs. The program accepts an input grid-like graph and a vertex subset, enu-

129

merates all possible attacks, and finds a feasible defense for each attack (or determines that

none exists). A feasible defense for a fixed attack is found using the network flow formulation

given in Section 3.2. The validity of global secure sets illustrated in Figures 7.13 (P3 × P6),

7.24 (P6×P5), 7.31 (P6×P6), 7.37 (P7×P7), 7.40 (C3×P7), 7.50 (C7×P6) and 7.51 (C7×P4)

was verified by this program. Notice we can verify by hand that each configuration is also a

dominating set.

Definition 7.3.2. Let S be a global secure set of Pn×Pm. Consider the vertices of Pn×Pm

as an array with n rows and m columns, where V (Pn×Pm) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

With this notation, a vertex vi,j has at most four neighbors {v(i−1),j, v(i+1),j, vi,(j−1), vi,(j+1)}.

The top row of Pn × Pm is the set {v1,j : 1 ≤ j ≤ m} and the bottom row of Pn × Pm is the

set {vn,j : 1 ≤ j ≤ m}. The top and bottom rows of Pn × Pm are identical when v1,j ∈ S if

and only if vn,j ∈ S for 1 ≤ j ≤ m. That is, any vertex on the top row and its corresponding

vertex on the bottom row are either both in S, or both outside. Similarly, the leftmost and

rightmost columns of Pn×Pm are identical when vi,1 ∈ S if and only if vi,m ∈ S for 1 ≤ i ≤ n.

Whenever possible, we want to construct global secure sets of Pn×Pm with identical top

and bottom rows, and identical leftmost and rightmost columns. This way, the configurations

can be extended to global secure set configurations of Pn × Cm, Cn × Pm and Cn × Cm, as

shown next in Lemma 7.3.3.

Lemma 7.3.3. Let S be a global secure set of Pn × Pm for n,m ≥ 2. If the leftmost and

rightmost columns of Pn × Pm are identical, then S is a global secure set of Pn × Cm for

130

m ≥ 3. If the top and bottom rows of Pn×Pm are identical, then S is a global secure set of

Cn × Pm for n ≥ 3. If, in Pn × Pm, the leftmost and rightmost columns are identical, and

the top and bottom rows are identical, then S is a global secure set of Cn×Cm for n,m ≥ 3.

Proof. If the leftmost and rightmost columns of Pn × Pm are identical, we may add edges

between corresponding vertices in these two columns and, by Observation 7.1.3 (Part 2), S

will be a global secure set of the resulting graph Pn × Cm. Similarly, if the top and bottom

rows are identical, adding edges between corresponding vertices on these two rows produces

the graph Cn×Pm, where S is a global secure set. If the leftmost and rightmost columns are

identical, and the top and bottom rows are identical, adding the appropriate edges produces

Cn × Cm with S as a global secure set.

Observation 7.3.4. If graphs G and H are isomorphic, then γs(G) = γs(H). In particular,

γs(Pn × Pm) = γs(Pm × Pn), γs(Pn × Cm) = γs(Cm × Pn) and γs(Cn × Cm) = γs(Cm × Cn).

We will tacitly assume the result of Observation 7.3.4.

The constructions of global secure sets for Pn×Pm are done by cases based on the values

of n and m. The cases are n = 2, n = 3, and for n,m ≥ 4, based on the values of n (mod 4)

and m (mod 4). First, Lemma 7.3.5 treats the case n = 2 and Lemma 7.3.7 treats the case

m ≡ 0 (mod 4).

Lemma 7.3.5. γs(P2 × Pm) = m, for m ≥ 2.

Proof. By Lemma 6.2.1, γs(P2 × Pm) ≥ m. A global secure set of P2 × Pm consists of one

row of m vertices. Figure 7.6 illustrates such a set. So, γs(P2 × Pm) ≤ m.

131

Figure 7.6: A global secure set of P2 × Pm.

Corollary 7.3.6. γs(P2 × Cm) = m, for m ≥ 3.

Proof. By Lemma 6.2.1, γs(P2 × Cm) ≥ m. Let S be the global secure set of P2 × Pm given

by the proof of Lemma 7.3.5. The leftmost and rightmost columns of P2 × Pm are identical.

By Lemma 7.3.3, S is also a global secure set of P2 × Cm. So, γs(P2 × Cm) ≤ m.

Lemma 7.3.7. γs(Pn × P4k) = 2kn, for n ≥ 2 and k ≥ 1.

Proof. By Lemma 6.2.1, γs(Pn × P4k) ≥ 2kn. We construct global secure sets for Pn × P4k

using n copies of global secure sets of P4k (as given by the proof of Theorem 7.2.1, Part 1).

For n = 2, consider the disjoint union of two copies of P4k along with their global secure

set configurations as given by the proof of Theorem 7.2.1 (Part 1). Since the two copies of

P4k are identical, we may add edges between corresponding vertices in these two copies to

produce P2×P4k, with a global secure set of cardinality (2× 2k) = 4k. Figure 7.7 illustrates

the result of this process.

For n > 2, first construct recursively a global secure set of cardinality 2k(n − 1) for

Pn−1×P4k, where each row of Pn−1×P4k is identical to P4k. Then, take the disjoint union of

Pn−1×P4k and another copy of P4k. Since the last row of Pn−1×P4k is identical to P4k, adding

edges between corresponding vertices in P4k and the last row of Pn−1×P4k produces Pn×P4k,

with a global secure set of cardinality 2k(n− 1) + 2k = 2kn. So, γs(Pn × P4k) ≤ 2kn.

132

Refer to Figure 7.8 for the global secure set pattern specified in the proof of Lemma 7.3.7.

Figure 7.7: A global secure set of P2 × P4k.

Figure 7.8: The global secure set pattern for Pn×P4k as constructed by the proof of Lemma
7.3.7.

Corollary 7.3.8. Let k ≥ 1. Then, γs(Pn × C4k) = 2kn for n ≥ 2, and γs(Cn × P4k) =

γs(Cn × C4k) = 2kn for n ≥ 3.

Proof. Consider the global secure set S of Pn×P4k as given by the proof of Lemma 7.3.7. In

this configuration, the leftmost and rightmost columns are identical, and the top and bottom

rows are identical. By Lemma 7.3.3, S is also a global secure set of Pn × C4k, Cn × P4k and

Cn × C4k. This shows the upper bound, and the lower bound is established by Lemma

6.2.1.

Proofs of future similar corollaries based on Lemma 7.3.3 will not be presented.

133

Lemma 7.3.9. The marked vertices form a global secure set of the graph shown in Figure

7.11.

Proof. Consider the disjoint union of the graphs in Figures 7.9 and 7.10. By Observation

7.1.3 (Part 2), adding appropriate edges produces the graph in Figure 7.11, with the same

global secure set.

Figure 7.9: A graph and one of its global secure sets marked in black.

Figure 7.10: A global secure set of P2 × P5 with 5 vertices.

Figure 7.11: A graph and one of its global secure sets marked in black. See the proof of
Lemma 7.3.9 for details.

The graph in Figure 7.11 will be used to construct global secure sets for P3×P5 (Lemma

7.3.10) and P7 × P5 (Lemma 7.3.21). Next, Lemmas 7.3.10, 7.3.12 and 7.3.14 consider cases

134

with n = 3 and different values of m (mod 4). Then, Corollary 7.3.16 collects the results

and shows that γs(P3 × Pm) = ⌈3m/2⌉.

Lemma 7.3.10. γs(P3 × P4k+1) = ⌈3(4k + 1)/2⌉, for k ≥ 1.

Proof. We construct global secure sets of cardinality ⌈3(4k + 1)/2⌉ = 6k + 2 for P3 ×

P4k+1, k ≥ 1. The configurations are given in way such that the leftmost and rightmost

columns contain no vertex in the set.

For k = 1, removing the degree one attacker from the graph in Figure 7.11 gives a global

secure set of cardinality 8 for P3 × P5 (Observation 7.1.3, Part 4). In this configuration,

vertices of the leftmost and rightmost columns are not in the global secure set.

For k > 1, consider the disjoint union of P3×P5 and P3×P4(k−1) (with a global secure set

for the latter given by the proof of Lemma 7.3.7). The rightmost column of P3×P5 and the

leftmost column of P3×P4(k−1) neither contains any vertex in the set and hence are identical.

By Observation 7.1.3 (Part 2), adding edges between corresponding vertices in these two

columns produces P3×P4k+1, with a global secure set of cardinality 8+6(k−1) = 6k+2.

Figure 7.12: A global secure set of P3× P4k+1 as constructed by the proof of Lemma 7.3.10.

135

Figure 7.12 illustrates the global secure set pattern for P3 × P4k+1 specified in the proof

of Lemma 7.3.10. Notice in these configurations, the leftmost and rightmost columns are

identical.

Corollary 7.3.11. γs(P3 × C4k+1) = ⌈3(4k + 1)/2⌉, for k ≥ 1.

Lemma 7.3.12. γs(P3 × P4k+2) = 6k + 3, for k ≥ 1.

Proof. We construct global secure sets of cardinality 6k + 3 for P3 × P4k+2. In the specified

global secure set configurations, the leftmost and rightmost columns each contains exactly

one vertex in the set on the middle row. When k = 1, Figure 7.13 gives a global secure set of

cardinality 9 for P3×P6. The validity of this configuration has been checked by an exhaustive

search computer program (see Remark 7.3.1). For k > 1, first construct recursively a global

secure set of cardinality 6(k− 1)+3 for P3×P4(k−1)+2, such that the leftmost and rightmost

columns of P3×P4(k−1)+2 each contains exactly one vertex in the set on the middle row. Then,

take the disjoint union of P3 × P4(k−1)+2 and P3 × P4 (with a global secure set for the latter

given by Figure 7.14). Since the leftmost and rightmost columns of P3×P4(k−1)+2 and P3×P4

each contains exactly one vertex in the set on the middle row, all four columns are identical.

Adding edges between corresponding vertices in the rightmost column of P3×P4(k−1)+2 and

the leftmost column of P3 × P4 produces the graph P3 × P4k+2, with a global secure set of

cardinality 6(k − 1) + 3 + 6 = 6k + 3. The leftmost column of P3 × P4(k−1)+2 becomes the

leftmost column of P3 × P4k+2, and the rightmost column of P3 × P4 becomes the rightmost

136

column of P3 × P4k+2, and, as a result, each contains exactly one vertex in the set on the

middle row, and are identical.

Figure 7.13: A global secure set of P3 × P6. (See Remark 7.3.1.)

Figure 7.14: A global secure set of P3 × P4.

Figure 7.15: A global secure set of P3 × P4k+2 as constructed in the proof of Lemma 7.3.12.

Figure 7.15 illustrates the global secure set pattern for P3 × P4k+2 specified in the proof

of Lemma 7.3.12. This configuration will be used in Lemma 7.4.5 for constructing global

secure sets of P7 × C4k+2.

137

Corollary 7.3.13. γs(P3 × C4k+2) = 6k + 3, for k ≥ 1.

Lemma 7.3.14. γs(P3 × P4k+3) = ⌈3(4k + 3)/2⌉, for k ≥ 0.

Proof. We construct global secure sets of cardinality ⌈3(4k + 3)/2⌉ = 6k + 5 for P3 ×

P4k+3, k ≥ 0. Consider the global secure set of the graph shown in Figure 7.16. Remov-

ing the degree one attacker gives a global secure set of cardinality 5 = 6× 0 + 5 for P3 × P3

(Observation 7.1.3, Part 4). For P3 × P7, consider the disjoint union of P3 × P4 in Figure

7.14 and the graph in Figure 7.16. Identify the degree one attacker in Figure 7.16 with the

top right attacker of P3×P4 (Observation 7.1.3, Part 3). This produces the graph shown in

Figure 7.17, with a global secure set of cardinality 6+5 = 11. Adding the appropriate edges

(Observation 7.1.3, Part 2) produces P3 × P7, with the same global secure set, as shown in

Figure 7.18.

For k > 1, consider the disjoint union of P3 × P4(k−1)+3 and P3 × P4 in Figure 7.14. The

rightmost column of P3 × P4(k−1)+3 is identical to the leftmost column of P3 × P4. Adding

edges between corresponding vertices in these two columns produces P3×P4k+3, with a global

secure set of cardinality 6(k − 1) + 5 + 6 = 6k + 5.

Figure 7.16: A graph and one of its global secure sets marked in black.

138

Figure 7.17: Identifying the degree one attacker in Figure 7.16 with the top right attacker
in Figure 7.14.

Figure 7.18: A global secure set of P3 × P7 constructed by the proof of Lemma 7.3.14.

Figure 7.19: A global secure set of P3× P4k+3 as constructed by the proof of Lemma 7.3.14.

Figure 7.19 illustrates the global secure set pattern for P3×P4k+3, k ≥ 1, specified in the

proof of Lemma 7.3.14.

Corollary 7.3.15. γs(P3 × C4k+3) = ⌈3(4k + 3)/2⌉, for k ≥ 1.

Corollary 7.3.16. γs(P3 × Pm) = ⌈3m/2⌉, for m ≥ 2.

Proof. All cases based on the value of m are covered, as shown in the following list.

1. m = 2. By Lemma 7.3.5 and Observation 7.3.4.

139

2. m ∈ {4k : k ≥ 1}. By Lemma 7.3.7.

3. m ∈ {4k + 1 : k ≥ 1}. By Lemma 7.3.10.

4. m ∈ {4k + 2 : k ≥ 1}. By Lemma 7.3.12.

5. m ∈ {4k + 3 : k ≥ 0}. By Lemma 7.3.14.

Next, we treat cases with m ≡ 1 (mod 4). Lemmas 7.3.17, 7.3.19 and 7.3.21 treat cases

based on different values of n (mod 4) with m ≡ 1 (mod 4). Then, Corollary 7.3.23 collects

the results and shows that γs(Pn × P4k+1) = ⌈n(4k + 1)/2⌉.

Lemma 7.3.17. γs(P4h+1 × P4k+1) = ⌈(4h+ 1)(4k + 1)/2⌉, for h, k ≥ 1.

Proof. Figure 7.10 shows a global secure set of cardinality 5 for P2 × P5. Consider the

disjoint union of two copies of P2 × P5. The top rows of the two P2 × P5 are identical. By

Observation 7.1.3 (Part 2), adding edges between corresponding vertices on the top rows of

the two P2×P5 produces P4×P5, with a global secure set of cardinality 2×5 = 10, as shown

in Figure 7.20. In this P4×P5, the leftmost and rightmost columns contain no vertex in the

set, and the top and bottom rows are identical.

Next, for k = 1, construct global secure sets of cardinality ⌈(4h+ 1) · 5/2⌉ = 10h + 3

for P4h+1 × P5, h ≥ 1. These global secure sets will be constructed in a way such that the

leftmost and rightmost columns contain no vertex in the set, and the top and bottom rows

are identical to the top row of P4 × P5 (in Figure 7.20). For k = 1 and h = 1, consider the

140

disjoint union of P2×P5 and P3×P5 (with a global secure set of cardinality 8 for the latter

shown in Figure 7.21). The top row of P2 × P5 is identical to the top row of P3 × P5. By

Observation 7.1.3 (Part 2), adding edges between corresponding vertices on these top rows

produces P5 × P5, with a global secure set of cardinality 5 + 8 = 13 = 10 · 1 + 3, as shown

in Figure 7.22. In the P5 × P5, the leftmost and rightmost columns contain no vertex in the

set, and the top and bottom rows are identical to the top row of P4 × P5 in Figure 7.20.

For k = 1 and h > 1, first construct recursively a global secure set of cardinality 10(h−

1) + 3 for P4(h−1)+1 × P5, such that the leftmost and rightmost columns of P4(h−1)+1 × P5

contain no vertex in the set, and the top and bottom rows of P4(h−1)+1 × P5 are identical

to the top row of P4 × P5 (in Figure 7.20). Then, take the disjoint union of P4(h−1)+1 × P5

and P4 × P5. The leftmost and rightmost columns of P4(h−1)+1 × P5 and P4 × P5 contain no

vertex in the set, and the top and bottom rows of P4(h−1)+1 × P5 and P4 × P5 are identical.

By Observation 7.1.3 (Part 2), adding edges between corresponding vertices on the bottom

row of P4(h−1)+1 × P5 and the top row of P4 × P5 produces P4h+1 × P5, with a global secure

set of cardinality 10(h− 1) + 3 + 10 = 10h+ 3. The top row of P4(h−1)+1 × P5 becomes the

top row of P4h+1×P5, and the bottom row of P4×P5 becomes the bottom row of P4h+1×P5.

So, the top and bottom rows of P4h+1 × P5 are both identical to the top row of P4 × P5.

The leftmost and rightmost columns of P4(h−1)+1×P5 and P4×P5 become the leftmost and

rightmost columns of P4h+1 × P5, and each contains no vertex in the set.

Finally, construct global secure sets of cardinality ⌈(4h+ 1)(4k + 1)/2⌉ = 8hk+2h+2k+1

for P4h+1×P4k+1, h, k ≥ 1. For k = 1, global secure sets of cardinality 10h+3 = (8h×1)+2h+

141

(2×1)+1 for P4h+1×P5 are given in the previous paragraphs. For k > 1, consider the disjoint

union of P4h+1×P5 and P4h+1×P4(k−1) (with a global secure set for the latter constructed by

the proof of Lemma 7.3.7). The rightmost column of P4h+1×P5 and the leftmost column of

P4h+1×P4(k−1) both contain no vertex in the set, and are identical. By Observation 7.1.3 (Part

2), adding edges between corresponding vertices in these two columns produces P4h+1×P4k+1,

with a global secure set of cardinality 10h+ 3 + 2(k − 1)(4h+ 1) = 8hk + 2h+ 2k + 1.

Figure 7.20: A global secure set of P4 × P5.

Figure 7.21: A global secure set of P3 × P5 with 8 vertices. Note that this configuration
may be obtained by removing the degree one attacker from the configuration in Figure 7.11
(Observation 7.1.3, Part 4).

Refer to Figure 7.23 for an illustration of the global secure set pattern for P4h+1 × P4k+1

specified in the proof of Lemma 7.3.17.

Corollary 7.3.18. γs(P4h+1 × C4k+1) = γs(C4h+1 × C4k+1) = ⌈(4h+ 1)(4k + 1)/2⌉, for

h, k ≥ 1.

142

Figure 7.22: A global secure set of P5 × P5.

Lemma 7.3.19. γs(P4h+2 × P4k+1) = (2h+ 1)(4k + 1), for h, k ≥ 1.

Proof. Similar to the proof of Lemma 7.3.17, we first construct global secure sets of cardi-

nality (2h + 1) × 5 for P4h+2 × P5, h ≥ 1. For h = 1, Figure 7.24 shows a global secure set

of cardinality 15 = (2 · 1 + 1) × 5 for P6 × P5. For h > 1, consider the disjoint union of

P4(h−1)+2 × P5 and P4 × P5 in Figure 7.20. The bottom row of P4(h−1)+2 × P5 is identical to

the top row of P4×P5. Adding edges between the corresponding vertices on these two rows

produces P4h+2×P5, with a global secure set of cardinality (2(h−1)+1)×5+10 = (2h+1)×5.

Next, for k = 1, global secure sets of cardinality (2h + 1) × 5 = (2h + 1)(4 × 1 + 1)

for P4h+2 × P5 are given in the previous paragraph. For k > 1, consider the disjoint union

of P4h+2 × P5 and P4h+2 × P4(k−1) (with a global secure set for the latter constructed by

the proof of Lemma 7.3.7). The rightmost column of P4h+2 × P5 and the leftmost column

of P4h+2 × P4(k−1) are identical. Adding edges between corresponding vertices in these two

columns produces P4h+2×P4k+1, with a global secure set of cardinality (2h+1)× 5+ 2(k−

1)(4h+ 2) = (2h+ 1)(4k + 1).

143

Figure 7.23: A global secure set of P4h+1 × P4k+1.

Figure 7.25 illustrates the global secure set pattern of P4h+2×P4k+1 specified in the proof

of Lemma 7.3.19.

Corollary 7.3.20. γs(P4h+2 × C4k+1) = γs(C4h+2 × P4k+1) = γs(C4h+2 × C4k+1) = (2h +

1)(4k + 1), for h, k ≥ 1.

144

Figure 7.24: A global secure set of P6 × P5. (See Remark 7.3.1.)

Lemma 7.3.21. γs(P4h+3 × P4k+1) = ⌈(4h+ 3)(4k + 1)/2⌉, for h, k ≥ 1.

Proof. First, consider the disjoint union of P4 × P5 in Figure 7.20 and the graph in Figure

7.11. Identify the middle attacker on the bottom row of P4×P5 with the degree one attacker

in Figure 7.11 (Observation 7.1.3, Part 3). This results in the graph shown in Figure 7.26,

with a global secure set of cardinality 10 + 8 = 18. Adding the appropriate edges produces

P7 × P5 with the same global secure set, as shown in Figure 7.27.

Next, similar to the proof of Lemma 7.3.17, construct global secure sets of cardinality

⌈5(4h+ 3)/2⌉ = 10h+ 8 for P4h+3 × P5, h ≥ 1. For h = 1, a global secure set of cardinality

18 = (10×1)+8 for P7×P5 is given by the previous paragraph. For h > 1, consider the disjoint

union of P4(h−1)+3 × P5 and P4 × P5 (in Figure 7.20). The bottom row of P4(h−1)+3 × P5 is

identical to the top row of P4×P5. Adding edges between corresponding vertices on these two

rows produces P4h+3×P5, with a global secure set of cardinality 10(h−1)+8+10 = 10h+8.

145

Figure 7.25: A global secure set of P4h+2 × P4k+1 as constructed by proof of Lemma 7.3.19.

Finally, construct global secure sets of cardinality ⌈(4h+ 3)(4k + 1)/2⌉ = 8hk+2h+6k+2

for P4h+3 × P4k+1, h, k ≥ 1. For k = 1, global secure sets of cardinality 10h + 8 = (8h ×

1) + 2h + (6 × 1) + 2 for P4h+3 × P5 are given by the previous paragraph. For k > 1,

consider the disjoint union of P4h+3 × P5 and P4h+3 × P4(k−1) (with a global secure set for

the latter constructed by the proof of Lemma 7.3.7). The rightmost column of P4h+3 × P5

146

is identical to the leftmost column of P4h+3 × P4(k−1). Adding edges between corresponding

vertices in these two columns produces P4h+3×P4k+1, with a global secure set of cardinality

10h+ 8 + 2(k − 1)(4h+ 3) = 8hk + 2h+ 6k + 2.

Figure 7.26: Identifying the degree one attacker in Figure 7.11 with the middle attacker on
the bottom row in Figure 7.20

Figure 7.27: A global secure set of P7 × P5.

Figure 7.28 illustrates the global secure set pattern of P4h+3×P4k+1 specified in the proof

of Lemma 7.3.21.

147

Figure 7.28: A global secure set of P4h+3 × P4k+1 as constructed by the proof of Lemma
7.3.21.

Corollary 7.3.22. Let h, k ≥ 1. Then, γs(P4h+3×C4k+1) = γs(C4h+3×P4k+1) = γs(C4h+3×

C4k+1) = ⌈(4h+ 3)(4k + 1)/2⌉

Corollary 7.3.23. γs(Pn × P4k+1) = ⌈n(4k + 1)/2⌉, for n ≥ 2, k ≥ 1.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n = 2. By Lemma 7.3.5.

2. n = 3. By Corollary 7.3.16.

148

3. n ∈ {4h : h ≥ 1}. By Lemma 7.3.7 and Observation 7.3.4.

4. n ∈ {4h+ 1 : h ≥ 1}. By Lemma 7.3.17.

5. n ∈ {4h+ 2 : h ≥ 1}. By Lemma 7.3.19.

6. n ∈ {4h+ 3 : h ≥ 1}. By Lemma 7.3.21.

The next set of cases is m ≡ 2 (mod 4). Note that since we already dealt with cases

m ≡ 0 (mod 4) and m ≡ 1 (mod 4), by Observation 7.3.4, those configurations are also

valid for cases n ≡ 0 (mod 4) and n ≡ 1 (mod 4). Thus, we only need to treat the cases

P4h+2 × P4k+2 and P4h+3 × P4k+2. Lemma 7.3.24 treats the case P4h+2 × P4k+2, and the

case P4h+3 × P4k+2 is further broken down into two sub-cases, considered in Lemmas 7.3.26

(P4h+2×P4k+3 for k ≥ 2) and 7.3.28 (P4h+2×P7). Then, Corollary 7.3.30 collects the results

and shows that γs(Pn × P4k+2) = n(2k + 1).

Lemma 7.3.24. γs(P4h+2 × P4k+2) = 2(2h+ 1)(2k + 1), for h, k ≥ 1.

Proof. Consider the disjoint union of two copies of P2 × P6 shown in Figure 7.29. The top

rows of these two P2 × P6 are identical. Adding edges between corresponding vertices on

these two rows produces P4 × P6, with a global secure set of cardinality 12, as shown in

Figure 7.30.

Next, for k = 1, construct global secure sets of cardinality 2 × (2h + 1) × (2 · 1 + 1) =

6 × (2h + 1) for P4h+2 × P6, h ≥ 1. For k = 1 and h = 1, a global secure set of cardinality

149

18 = 6 × (2 · 1 + 1) for P6 × P6 is shown in Figure 7.31. For k = 1 and h > 1, consider

the disjoint union of P4(h−1)+2 × P6 and P4 × P6 (in Figure 7.30). The bottom row of

P4(h−1)+2 × P6 is identical to the top row of P4 × P6. Adding edges between corresponding

vertices on these two rows produces P4h+2 × P6, with a global secure set of cardinality

6× (2(h− 1) + 1) + 12 = 6(2h+ 1).

Finally, construct global secure sets of cardinality 2(2h + 1)(2k + 1) for P4h+2 × P4k+2,

h, k ≥ 1. For k = 1, global secure sets of cardinality 6(2h + 1) = 2(2h + 1)(2 · 1 + 1) for

P4h+2 × P6 are given in the previous paragraph. For k > 1, consider the disjoint union

of P4h+2 × P6 and P4h+2 × P4(k−1) (with a global secure set for the latter constructed by

the proof of Lemma 7.3.7). The rightmost column of P4h+2 × P6 is identical to the leftmost

column of P4h+2×P4(k−1). Adding edges between corresponding vertices in these two columns

produces P4h+2×P4k+2, with a global secure set of cardinality 6(2h+1)+2(k−1)(4h+2) =

2(2h+ 1)(2k + 1).

Figure 7.29: A global secure set of P2 × P6.

Figure 7.32 illustrates the global secure set pattern of P4h+2×P4k+2 specified in the proof

of Lemma 7.3.24.

Corollary 7.3.25. γs(P4h+2×C4k+2) = γs(C4h+2×C4k+2) = 2(2h+1)(2k+1), for h, k ≥ 1.

150

Figure 7.30: A global secure set of P4 × P6.

Figure 7.31: A global secure set of P6 × P6. (See Remark 7.3.1.)

Lemma 7.3.26. γs(P4h+2 × P4k+3) = (2h+ 1)(4k + 3), for h ≥ 1, k ≥ 2.

Proof. For k = 2, consider the disjoint union of P4h+2 × P5 (with a global secure set con-

structed by the proof of Lemma 7.3.19) and P4h+2 × P6 (with a global secure set con-

structed by the proof of Lemma 7.3.24). The rightmost column of P4h+2 × P5 is iden-

tical to the leftmost column of P4h+2 × P6. Adding edges between corresponding ver-

tices in these two columns produces P4h+2 × P11, with a global secure set of cardinality

(2h+1)(4×1+1)+2(2h+1)(2×1+1) = 5(2h+1)+6(2h+1) = 11(2h+1) = (2h+1)(4×2+3).

151

Figure 7.32: A global secure set of P4h+2 × P4k+2 as constructed by the proof of Lemma
7.3.24.

For k > 2, consider the disjoint union of P4h+2 × P11 and P4h+2 × P4(k−2) (with a global

secure set for the latter constructed by the proof of Lemma 7.3.7). The rightmost column

of P4h+2 × P11 is identical to the leftmost column of P4h+2 × P4(k−2). Adding edges between

corresponding vertices in these two columns produces P4h+2×P4k+3, with a global secure set

of cardinality 11(2h+ 1) + 2(k − 2)(4h+ 2) = (2h+ 1)(4k + 3).

152

Figure 7.33: A global secure set of P4h+2 × P4k+3 as constructed by the proof of Lemma
7.3.26.

Figure 7.33 illustrates the global secure set pattern of P4h+2×P4k+3 specified in the proof

of Lemma 7.3.26.

Corollary 7.3.27.

γs(P4h+2×C4k+3) = γs(C4h+2×P4k+3) = γs(C4h+2×C4k+3) = (2h+1)(4k+3) for h ≥ 1, k ≥ 2.

153

Lemma 7.3.28. γs(P4h+2 × P7) = 7(2h+ 1), for h ≥ 0.

Proof. When h = 0, Figure 7.34 shows a global secure set of cardinality 7 for P2 × P7.

Consider the disjoint union of two copies of P2 × P7. The top rows of the two P2 × P7 are

identical. Adding edges between corresponding vertices on these two rows produces P4×P7,

with a global secure set of cardinality 2× 7 = 14, as shown in Figure 7.35.

Next, for h > 0, consider the disjoint union of P4(h−1)+2×P7 and P4×P7. The bottom row

of P4(h−1)+2×P7 is identical to the top row of P4×P7. Adding edges between corresponding

vertices on these two rows produces P4h+2 × P7, with a global secure set of cardinality

7× (2 · (h− 1) + 1) + 14 = 7(2h+ 1).

Figure 7.34: A global secure set of P2 × P7.

Figure 7.35: A global secure set of P4 × P7.

Figure 7.36 illustrates the global secure set pattern of P4h+2 × P7 specified in the proof

of Lemma 7.3.28.

Corollary 7.3.29. γs(P4h+2 × C7) = 7(2h+ 1), for h ≥ 0.

154

Figure 7.36: A global secure set of P4h+2×P7 as constructed by the proof of Lemma 7.3.28.

Notice for the case P4h+2×P4k+3, we considered two sub-cases k = 1 (Lemma 7.3.28) and

k ≥ 2 (Lemma 7.3.26). This is unlike the other dimensions we have dealt with so far. For

P4h+1 × P4k+1, P4h+2 × P4k+1, P4h+3 × P4k+1 and P4h+2 × P4k+2, we presented global secure

sets of small graphs with the specified dimensions (P5 × P5 (Fig. 7.22), P6 × P5 (Fig. 7.24),

P7×P5 (Fig. 7.27) and P6×P6 (Fig. 7.31), respectively), and then constructed global secure

sets for larger graphs using the small graphs as initial building blocks. These small graphs

155

all share the properties that the leftmost and rightmost columns contain no vertex in the

global secure set, and the top and bottom rows are identical.

But, unfortunately the dimension 6×7 does not have any global secure set configurations

sharing the properties stated above. In other words, if the vertices of the leftmost and

rightmost columns of P6×P7 (or P7×P6) are not included in a global secure set, and the top

and bottom rows must be identical, then the global secure set would contain strictly more

than half of the vertices of the graph. Consider P7 × P6 and let c1, c2, . . . , c6 be its columns.

If the leftmost and rightmost columns (c1 and c6) are not in a global secure set of P7 × P6,

then all vertices of c2 and c5 must be in the set in order to dominate the vertices of c1 and

c6. If a global secure set of cardinality exactly 21 is to exist, among the vertices of c3 and c4,

we must include exactly 7 vertices. If column c3 contains less than 4 vertices in the global

secure set, then the vertices in c2 form a witness set (i.e., among the closed neighborhood of

c2, there are more attackers than defenders). So, c3 must contain at least 4 vertices in the

global secure set. Similarly, c4 must contain at least 4 vertices in the set or otherwise c5 is a

witness. This means we must include at least 8 additional vertices in order to form a global

secure set. So, a global secure set with cardinality 21 for P7×P6 cannot exist if the columns

c1 and c6 are excluded from the set.

Similarly, consider the graph P6 × P7 and let c1, c2, . . . , c7 be its columns. If vertices of

the leftmost and rightmost columns (c1 and c7) are not in a global secure set, all vertices of

c2 and c6 must be in the set. Then, if a global secure set of cardinality exactly 21 is to exist,

we must include exactly 9 vertices among columns c3, c4 and c5. A computer program was

156

developed which enumerates all possible subsets of 9 vertices among the 18 vertices in c3, c4

and c5. The program then checks whether each of the resultant configurations (including all

vertices of c2 and c6) is a global secure set of P6 × P7 with identical top and bottom rows.

Verification of security is done by the procedure described in Remark 7.3.1 (also described

at the end of Section 3.3). The program confirmed that none of the

(
18

9

)
subsets can be

added to c2 and c6 to form a global secure set of P6×P7 with identical top and bottom rows.

Since a global secure set configuration with identical top and bottom rows, and excluding

the leftmost and rightmost columns, is not available, when treating the case P4h+2 × P4k+3,

we considered the two sub-cases aforementioned. Furthermore, note that global secure sets

for C4h+2 × C7 of cardinality 7(2h + 1) cannot be obtained as a simple extension of the

P4h+2× P7 configuration (in Figure 7.3.28). This is because the top and bottom rows of the

P4h+2 × P7 configuration are not identical, and Observation 7.1.3 (Part 2) does not apply.

In Section 7.5, two additional global secure set configurations (Figures 7.50 and 7.51) are

discovered and used for the construction of minimum global secure sets of C4h+2 × C7.

Corollary 7.3.30 collects results and establishes the global security number of Pn×P4k+2.

Corollary 7.3.30. γs(Pn × P4k+2) = n(2k + 1), for n ≥ 2, k ≥ 0.

Proof.

1. k = 0. By Lemma 7.3.5 and Observation 7.3.4.

2. k ≥ 1.

157

(a) n = 2. By Lemma 7.3.5.

(b) n = 3. By Corollary 7.3.16.

(c) n ∈ {4h : h ≥ 1}. By Lemma 7.3.7 and Observation 7.3.4.

(d) n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.23 and Observation 7.3.4.

(e) n ∈ {4h+ 2 : h ≥ 1}. By Lemma 7.3.24.

(f) n ∈ {4h+ 3 : h ≥ 1}.

i. n = 7. By Lemma 7.3.28 and Observation 7.3.4.

ii. n ∈ {4h+ 3 : h ≥ 2}. By Lemma 7.3.26 and Observation 7.3.4.

Next, Lemma 7.3.31 treats the case P4h+3×P4k+3 and Corollary 7.3.33 collects results for

Pn × P4k+3. Finally, Theorem 7.3.34 collects results for Pn × Pm and concludes this section.

Lemma 7.3.31. γs(P4h+3 × P4k+3) = ⌈(4h+ 3)(4k + 3)/2⌉, for h, k ≥ 1.

Proof. First, for k = 1, construct global secure sets of cardinality ⌈7 · (4h+ 3)/2⌉ = 14h+11

for P4h+3 × P7, h ≥ 1. When k = 1 and h = 1, a global secure set of cardinality 25 =

(14 × 1) + 11 for P7 × P7 is given in Figure 7.37. For h > 1, consider the disjoint union of

P4(h−1)+3 × P7 and P4 × P7 in Figure 7.35. The bottom row of P4(h−1)+3 × P7 is identical

to the top row of P4 × P7. Adding edges between corresponding vertices on these two rows

produces P4h+3 × P7, with a global secure set of cardinality 14(h− 1) + 11 + 14 = 14h+ 11.

158

Then, construct global secure sets of cardinality ⌈(4h+ 3)(4k + 3)/2⌉ = 8hk+6h+6k+5

for P4h+3 × P4k+3, h, k ≥ 1. For k = 1, global secure sets of cardinality 14h + 11 =

(8h × 1) + 6h + (6 × 1) + 5 for P4h+3 × P7 are given in the previous paragraph. For k > 1,

consider the disjoint union of P4h+3 × P7 and P4h+3 × P4(k−1) (with a global secure set for

the latter constructed by the proof of Lemma 7.3.7). The rightmost column of P4h+3 × P7

is identical to the leftmost column of P4h+3 × P4(k−1). Adding edges between corresponding

vertices in these two columns produces P4h+3×P4k+3, with a global secure set of cardinality

14h+ 11 + 2(k − 1)(4h+ 3) = 8hk + 6h+ 6k + 5.

Figure 7.37: A global secure set of P7 × P7. (See Remark 7.3.1.)

Figure 7.38 illustrates the global secure set pattern of P4h+3×P4k+3 specified in the proof

of Lemma 7.3.31.

Corollary 7.3.32. γs(P4h+3 × C4k+3) = γs(C4h+3 × C4k+3) = ⌈(4h+ 3)(4k + 3)/2⌉, for

h, k ≥ 1.

159

Figure 7.38: A global secure set of P4h+3 × P4k+3 as constructed by the proof of Lemma
7.3.31.

Corollary 7.3.33. γs(Pn × P4k+3) = ⌈n(4k + 3)/2⌉, for n ≥ 2, k ≥ 0.

Proof.

1. k = 0. By Corollary 7.3.16 and Observation 7.3.4.

2. k ≥ 1.

(a) n = 2. By Lemma 7.3.5.

(b) n = 3. By Corollary 7.3.16.

160

(c) n ∈ {4h : h ≥ 1}. By Lemma 7.3.7 and Observation 7.3.4.

(d) n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.23 and Observation 7.3.4.

(e) n ∈ {4h+ 2 : h ≥ 1}. By Corollary 7.3.30 and Observation 7.3.4.

(f) n ∈ {4h+ 3 : h ≥ 1}. By Lemma 7.3.31.

Theorem 7.3.34. γs(Pn × Pm) = ⌈nm/2⌉, for n,m ≥ 2.

Proof. All cases based on the value of m are covered, as shown in the following list.

1. m ∈ {4k : k ≥ 1}. By Lemma 7.3.7.

2. m ∈ {4k + 1 : k ≥ 1}. By Corollary 7.3.23.

3. m ∈ {4k + 2 : k ≥ 0}. By Corollary 7.3.30.

4. m ∈ {4k + 3 : k ≥ 0}. By Corollary 7.3.33.

7.4 Two-dimensional cylinders

In this section, we investigate the values of γs(Pn×Cm). For many of the dimensions, global

secure sets of cardinality ⌈nm/2⌉ for Pn × Cm were obtained in Section 7.3 by applying

161

Lemma 7.3.3 on the global secure set configurations of Pn × Pm. In this section, we collect

results and treat the missing cases.

Lemma 7.4.1. γs(C3 × P4k+3) = ⌈3(4k + 3)/2⌉, for k ≥ 0.

Proof. For k = 0, a global secure set of cardinality 5 = ⌈3 · (4× 0 + 3)/2⌉ for C3 × P3 is

shown in Figure 7.39. For k = 1, a global secure set of cardinality 11 = (⌈3 · (4× 1 + 3)/2⌉

for C3 × P7 is shown in Figure 7.40. For k > 1, consider the disjoint union of C3 × P4(k−1)+3

and C3 × P4 shown in Figure 7.41. The rightmost column of C3 × P4(k−1)+3 is identical to

the leftmost column of C3 × P4. Adding edges between corresponding vertices in these two

columns produces C3×P4k+3, with a global secure set of cardinality ⌈3(4(k − 1) + 3)/2⌉+6 =

6 · (k − 1) + 5 + 6 = 6k + 5 = ⌈3(4k + 3)/2⌉.

Figure 7.39: A global secure set of cardinality 5 for C3 × P3.

Figure 7.40: A global secure set of cardinality 11 for C3 × P7. (See Remark 7.3.1.)

162

Figure 7.41: A global secure set of cardinality 6 for C3 × P4.

Figure 7.42: A global secure set of C3 × P4k+3 as constructed by the proof of Lemma 7.4.1.

Figure 7.42 illustrates the global secure set pattern for C3×P4k+3, k ≥ 1, specified in the

proof of Lemma 7.4.1. The leftmost and rightmost columns of these sets are identical. By

Lemma 7.3.3,

Corollary 7.4.2. γs(C3 × C4k+3) = ⌈3(4k + 3)/2⌉ for k ≥ 1.

Corollary 7.4.3. γs(P3 × Cm) = ⌈3m/2⌉, for m ≥ 3

Proof. All cases based on the value of m are covered, as shown in the following list.

1. m = 3. By Figure 7.39 and Observation 7.3.4.

2. m ∈ {4k : k ≥ 1}. By Corollary 7.3.8.

3. m ∈ {4k + 1 : k ≥ 1}. By Corollary 7.3.11.

4. m ∈ {4k + 2 : k ≥ 1}. By Corollary 7.3.13.

163

5. m ∈ {4k + 3 : k ≥ 1}. By Corollary 7.3.15.

Corollary 7.4.4. γs(Pn × C4k+1) = ⌈n(4k + 1)/2⌉, for n ≥ 2, k ≥ 1.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n = 2. By Corollary 7.3.6.

2. n = 3. By Corollary 7.4.3.

3. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

4. n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.18.

5. n ∈ {4h+ 2 : h ≥ 1}. By Corollary 7.3.20.

6. n ∈ {4h+ 3 : h ≥ 1}. By Corollary 7.3.22.

Lemma 7.4.5. γs(P7 × C4k+2) = 7(2k + 1), for k ≥ 1.

Proof. Consider the disjoint union of P3×P4k+2 (with a global secure set constructed by the

proof of Lemma 7.3.12) and P4×P4k+2 (with a global secure set consisting of the middle two

rows of P4k+2). The bottom row of P3 × P4k+2 and the top row of P4 × P4k+2 are identical.

Adding edges between corresponding vertices on these two rows produces P7×P4k+2, with a

global secure set of cardinality 6k+3+2× (4k+2) = 14k+7 = 7(2k+1). The leftmost and

164

rightmost columns of P7 × P4k+2 are identical, adding edges between corresponding vertices

in these two columns produces P7 × C4k+2, with the same global secure set.

Figure 7.43: A global secure set of P7 × C4k+2 as constructed by the proof of Lemma 7.4.5.

Figure 7.43 illustrates the global secure set pattern of P7 × C4k+2 specified in the proof

of Lemma 7.4.5.

Corollary 7.4.6. γs(Pn × C4k+2) = n(2k + 1), for n ≥ 2, k ≥ 1.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n = 2. By Corollary 7.3.6.

2. n = 3. By Corollary 7.4.3.

3. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

4. n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.20 and Observation 7.3.4.

165

5. n ∈ {4h+ 2 : h ≥ 1}. By Corollary 7.3.25.

6. n ∈ {4h+ 3 : h ≥ 1}.

(a) n = 7. By Lemma 7.4.5.

(b) n ∈ {4h+ 3 : h ≥ 2}. By Corollary 7.3.27 and Observation 7.3.4.

Lemma 7.4.7. γs(C3 × P4k+1) = ⌈3(4k + 1)/2⌉, for k ≥ 1.

Proof. For k = 1, a global secure set for C3 × P5 of cardinality 8 = ⌈(3× 5)/2⌉ is given in

Figure 7.44. For k > 1, consider the disjoint union of C3 × P4(k−1)+1 and C3 × P4 in Figure

7.41. The rightmost column of C3×P4(k−1)+1 is identical to the leftmost column of C3×P4.

Adding edges between corresponding vertices in these two columns produces C3×P4k+1, with

a global secure set of cardinality ⌈3× (4(k − 1) + 1)/2⌉ + 6 = 6(k − 1) + 2 + 6 = 6k + 2 =

⌈3(4k + 1)/2⌉.

Figure 7.44: A global secure set of C3 × P5.

Figure 7.45 illustrates the global secure set pattern of C3 × P4k+1 specified in the proof

of Lemma 7.4.7.

166

Figure 7.45: A global secure set of C3 × P4k+1 as constructed by the proof of Lemma 7.4.7.

Corollary 7.4.8. γs(C3 × C4k+1) = ⌈3(4k + 1)/2⌉, for k ≥ 1.

Lemma 7.4.9. γs(C3 × P4k+2) = 3(2k + 1), for k ≥ 0.

Proof. For k = 0, a global secure set for C3 × P2 of cardinality 3 = 3× (2 · 0 + 1) is given in

Figure 7.46. For k > 0, consider the disjoint union of C3 × P4(k−1)+2 and C3 × P4 in Figure

7.41. The rightmost column of C3×P4(k−1)+2 is identical to the leftmost column of C3×P4.

Adding edges between corresponding vertices in these two columns produces C3 × P4k+2,

with a global secure set of cardinality 3× (2(k − 1) + 1) + 6 = 3(2k + 1).

Figure 7.46: A global secure set of C3 × P2.

Figure 7.47 illustrates the global secure set pattern of C3×P4k+2 specified in the proof of

Lemma 7.4.9. Notice in this pattern the leftmost and rightmost columns are not identical,

and so the configurations cannot be extended to global secure set configurations of C3 ×

C4k+2. In Section 7.5, we provide global secure set configurations for C3×C4k+2 with 6k+4

167

Figure 7.47: A global secure set of C3 × P4k+2 as constructed by the proof of Lemma 7.4.9.

vertices, showing γs(C3×C4k+2) ≤ 6k+4. Then, Chapter 8 will show that global secure set

configurations of C3 ×C4k+2 with cardinality 6k + 3 cannot exist, proving γs(C3 ×C4k+2) =

6k + 4.

Corollary 7.4.10. γs(Pn × C3) = ⌈3n/2⌉, for n ≥ 2.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

2. n ∈ {4h+ 1 : h ≥ 1}. By Lemma 7.4.7 and Observation 7.3.4.

3. n ∈ {4h+ 2 : h ≥ 0}. By Lemma 7.4.9 and Observation 7.3.4.

4. n ∈ {4h+ 3 : h ≥ 0}. By Lemma 7.4.1 and Observation 7.3.4.

Corollary 7.4.11. γs(Pn × C4k+3) = ⌈n(4k + 3)/2⌉, for n ≥ 2, k ≥ 0.

Proof.

1. k = 0. By Corollary 7.4.10.

168

2. k ≥ 1.

(a) n = 2. By Corollary 7.3.6.

(b) n = 3. By Corollary 7.4.3.

(c) n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

(d) n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.22 and Observation 7.3.4.

(e) n ∈ {4h+ 2 : h ≥ 1}.

i. k = 1. By Corollary 7.3.29.

ii. k ≥ 2. By Corollary 7.3.27.

(f) n ∈ {4h+ 3 : h ≥ 1}. By Corollary 7.3.32.

Theorem 7.4.12. γs(Pn × Cm) = ⌈nm/2⌉, for n ≥ 2,m ≥ 3.

Proof. All cases based on the value of m are covered, as shown in the following list.

1. m ∈ {4k : k ≥ 1}. By Corollary 7.3.8.

2. m ∈ {4k + 1 : k ≥ 1}. By Corollary 7.4.4.

3. m ∈ {4k + 2 : k ≥ 1}. By Corollary 7.4.6.

4. m ∈ {4k + 3 : k ≥ 0}. By Corollary 7.4.11.

169

7.5 Two-dimensional tori

The global security numbers of Cn × Cm are more interesting. It is not the case that

γs(Cn × Cm) = ⌈nm/2⌉ for all n,m ≥ 3, with C3 × C4k+2 being the only exception in the

class of two-dimensional tori. In this section, Lemma 7.5.1 constructs global secure sets

for C3 × C4k+2 with cardinality 6k + 4, which is one larger than the lower bound given in

Lemma 6.2.1. The result is 6k + 3 ≤ γs(C3 × C4k+2) ≤ 6k + 4. In Chapter 8, we show that

γs(C3 × C4k+2) > 6k + 3 using specialized analysis. Then, Lemma 7.5.2 constructs global

secure sets for C7×C4k+2 with cardinality 14k+7. Among the class of two-dimensional tori,

these are the only remaining cases whose global secure set configurations were not obtained

as extensions of Pn × Pm or Pn × Cm configurations.

Lemma 7.5.1. γs(C3 × C4k+2) ≤ 6k + 4, for k ≥ 1.

Proof. We first construct a global secure set of cardinality 6k + 4 for C3 × P4k+2, with the

property that the leftmost and rightmost columns are identical. For k = 1, a global secure

set of cardinality 10 = 6 × 1 + 4 for C3 × P6 is given in Figure 7.48. For k > 1, consider

the disjoint union of C3 × P4(k−1)+2 and C3 × P4 in Figure 7.41. The rightmost column

of C3 × P4(k−1)+2 is identical to the leftmost column of C3 × P4. Adding edges between

corresponding vertices of these two columns produces C3 × P4k+2, with a global secure set

of cardinality 6(k − 1) + 4 + 6 = 6k + 4. Note that the leftmost and rightmost columns of

C3×P4k+2 are identical. Adding edges between corresponding vertices of these two columns

produces C3 × C4k+2, with the same global secure set.

170

Figure 7.48: A global secure set of C3 × P6.

Figure 7.49: A global secure set of C3 × C4k+2 as constructed by the proof of Lemma 7.5.1.

Figure 7.49 illustrates the global secure set pattern of C3 × C4k+2 specified in the proof

of Lemma 7.5.1.

Lemma 7.5.2. γs(C7 × C4k+2) = 14k + 7 for k ≥ 1.

Proof. By Lemma 6.2.1, γs(C7×C4k+2) ≥ 14k+7. Similar to the proof of Lemma 7.5.1, we

construct global secure sets of cardinality 14k+7 for C7×P4k+2, with the property that the

leftmost and rightmost columns of the configurations are identical.

Figures 7.50 and 7.51 show global secure set configurations for C7 × P6 and C7 × P4,

respectively. The validity of these configurations has been checked by a computer program

(see Remark 7.3.1). For k = 1, Figure 7.50 shows a global secure set of cardinality 21 =

(14× 1)+7 for C7×P6. For k > 1, consider the disjoint union of C7×P4(k−1)+2 and C7×P4

shown in Figure 7.51. The rightmost column of C7 × P4(k−1)+2 is identical to the leftmost

171

column of C7 × P4. By Observation 7.1.3 (Part 2), adding edges between corresponding

vertices in these two columns produces C7 × P4k+2, with a global secure set of cardinality

14(k−1)+7+14 = 14k+7. Note that the leftmost and rightmost columns of C7×P4k+2 are

also identical. Adding edges between corresponding vertices of these two columns produces

C7 × C4k+2, with the same global secure set.

Figure 7.50: A global secure set of C7 × P6. (See Remark 7.3.1.)

Figure 7.52 illustrates the global secure set pattern of C7 × C4k+2 specified in the proof

of Lemma 7.5.2.

In the remark following Corollary 7.3.29, we noted that there are no global secure set

configurations for P7×P6 (or P6×P7) of cardinality exactly 21, with the properties that the

leftmost and rightmost columns contain no vertex in the set, and the top and bottom rows

are identical. A computer program verified that there is no global secure set configuration

for P7 × P6 (or P6 × P7) of cardinality exactly 21, with the properties that the leftmost and

172

Figure 7.51: A global secure set of C7 × P4 with 14 vertices. (See Remark 7.3.1.)

Figure 7.52: A global secure set of C7 × C4k+2 as constructed by the proof of Lemma 7.5.2.

rightmost columns are identical, and the top and bottom rows are identical. This means a

global secure set for C7 × C4k+2 cannot be built using P7 × P6 or P6 × P7 configurations.

Luckily, a global secure set for C7×P6 exists where the leftmost and rightmost columns are

identical (Figure 7.50), and another configuration exists for C7 × P4 where its leftmost and

173

rightmost columns are identical to the leftmost and rightmost columns of C7×P6. These two

configurations can then be used to construct global secure set configurations of C7 × C4k+2,

as seen in the proof of Lemma 7.5.2.

The remainder of this section collects results for γs(Cn×Cm), with the final result given

in Theorem 7.5.7.

Corollary 7.5.3. γs(C3 × Cm) = ⌈3m/2⌉, for m ≥ 3 and m /∈ {4k + 2 : k ≥ 1}

Proof. All cases based on the value of m are covered, as shown in the following list.

1. m ∈ {4k : k ≥ 1}. By Corollary 7.3.8.

2. m ∈ {4k + 1 : k ≥ 1}. By Corollary 7.4.8.

3. m ∈ {4k + 3 : k ≥ 0}.

(a) k = 0. By Figure 7.53.

(b) k ≥ 1. By Corollary 7.4.2.

Figure 7.53: A global secure set for C3 × C3.

174

Corollary 7.5.4. γs(Cn × C4k+1) = ⌈n(4k + 1)/2⌉, for n ≥ 3, k ≥ 1.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n = 3. By Corollary 7.5.3.

2. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

3. n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.3.18.

4. n ∈ {4h+ 2 : h ≥ 1}. By Corollary 7.3.20.

5. n ∈ {4h+ 3 : h ≥ 1}. By Corollary 7.3.22.

Corollary 7.5.5. γs(Cn × C4k+2) = n(2k + 1), for n ≥ 4, k ≥ 1.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

2. n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.5.4 and Observation 7.3.4.

3. n ∈ {4h+ 2 : h ≥ 1}. By Corollary 7.3.25.

4. n ∈ {4h+ 3 : h ≥ 1}.

(a) n = 7. By Lemma 7.5.2.

(b) n ∈ {4h+ 3 : h ≥ 2}. By Corollary 7.3.27 and Observation 7.3.4.

175

Corollary 7.5.6. γs(Cn × C4k+3) = ⌈n(4k + 3)/2⌉, for n ≥ 3, k ≥ 0, except for the case

when n ∈ {4h+ 2 : h ≥ 1} and k = 0.

Proof. All cases based on the value of n are covered, as shown in the following list.

1. n = 3. By Corollary 7.5.3.

2. n ∈ {4h : h ≥ 1}. By Corollary 7.3.8 and Observation 7.3.4.

3. n ∈ {4h+ 1 : h ≥ 1}. By Corollary 7.5.4 and Observation 7.3.4.

4. n ∈ {4h + 2 : h ≥ 1}. Then, we may let k ≥ 1. The result follows by Corollary 7.5.5

and Observation 7.3.4.

5. n ∈ {4h+ 3 : h ≥ 1}. By Corollary 7.3.32.

Theorem 7.5.7.

1. 6k + 3 ≤ γs(C3 × C4k+2) ≤ 6k + 4, for k ≥ 1.

2. γs(Cn × Cm) = ⌈nm/2⌉, with the exception of C3 × C4k+2.

Proof.

1. Lemma 6.2.1 establishes the lower bound and Lemma 7.5.1 establishes the upper bound.

176

2. All cases based on the value of m are covered, as shown in the following list.

(a) m ∈ {4k : k ≥ 1}. By Corollary 7.3.8.

(b) m ∈ {4k + 1 : k ≥ 1}. By Corollary 7.5.4.

(c) m ∈ {4k+2 : k ≥ 1}. Then, we may let n > 3. The result follows from Corollary

7.5.5.

(d) m ∈ {4k + 3 : k ≥ 0}. By Corollary 7.5.6.

This concludes the construction of global secure sets of grid-like graphs (Pn, Cn, Pn×Pm,

Pn×Cm and Cn×Cm). Let G be a grid-like graph of order N . Among Theorems 7.2.1, 7.2.4,

7.3.34, 7.4.12 and 7.5.7, we showed that γs(G) = ⌈N/2⌉, unless G is isomorphic to C4k+2 or

C3 × C4k+2, in which case γs(G) ≤ N/2 + 1 (Lemmas 7.2.3 and 7.5.1). In the next chapter,

we analysis the lower bounds of γs(C4k+2) and γs(C3 × C4k+2), proving γs(C4k+2) = 2k + 2

and γs(C3 × C4k+2) = 6k + 4.

177

CHAPTER 8

GLOBAL SECURE SETS OF C4k+2 and C3 × C4k+2

This chapter considers the global security numbers of C4k+2 and C3 × C4k+2, the only two

exceptions where γs(G) > ⌈n/2⌉ for a grid-like graph G of order n. In Chapter 7, we showed

that γs(C4k+2) ≤ 2k+2 (Lemma 7.2.3) and γs(C3×C4k+2) ≤ 6k+4 (Lemma 7.5.1). In this

chapter, we develop lower bounds for γs(C4k+2) and γs(C3 × C4k+2) that match the given

upper bounds, proving γs(C4k+2) = 2k + 2 and γs(C3 × C4k+2) = 6k + 4. Note that Lemma

6.2.1 does not provide a sharp lower bound for γs(C4k+2) or γs(C3 × C4k+2).

8.1 Global secure sets of C4k+2

This section presents the lower bound for the global security number of C4k+2, the simpler

case of the two exceptions where γs(G) > ⌈n/2⌉ for a grid-like graph G of order n. Definition

8.1.1 below will be used in Theorem 8.1.2, proving γs(C4k+2) = 2k + 2.

Definition 8.1.1. Let Cn be a cycle of order n and let S ⊆ V (Cn). An attacker group of

Cn is a maximal consecutive sequence of vertices that are not in S. A defender group of Cn

is a maximal consecutive sequence of vertices in S. Note that if the first and last vertices of

178

Cn are both in S, they belong to the same defender group. Similarly, two end vertices who

are both outside S belong to the same attacker group. Figure 8.1 illustrates an example

of attacker and defender groups for C14, with each attacker group denoted by Ai and each

defender group by Di.

Figure 8.1: An example of attacker groups and defender groups in C14.

Theorem 8.1.2. γs(C4k+2) = 2k + 2 for k ≥ 1.

Proof. By Lemma 6.2.1, γs(C4k+2) ≥ 2k + 1, and by Lemma 7.2.3, γs(C4k+2) ≤ 2k + 2. We

show that γs(C4k+2) ̸= 2k + 1. By the way of contradiction, let S be a global secure set of

C4k+2 with |S| = 2k + 1. Let V be the vertex set of C4k+2. With reference to Definition

8.1.1, consider the attacker and defender groups of C4k+2 as given by the set S, with vertices

oriented so an entire attacker group forms A1. Since 0 < |S| < |V |, there is at least one

attacker group and at least one defender group, and they must alternate. So, the number of

attacker groups must equal the number of defender groups.

Let A1, D1, A2, D2, . . . , At, Dt be the attacker and defender groups of C4k+2. Let |Ai|

be the number of vertices in group Ai and |Di| be the number of vertices in group Di, for

1 ≤ i ≤ t. If |Ai| > 2, then some vertex of Ai is not dominated (such as the middle vertex

of group A2 in Figure 8.1), a contradiction to S being a dominating set. If |Di| < 2, then

179

Di consists of a single vertex and is unable to defend an attack coming from both of its

neighbors (such as D2 in Figure 8.1), a contradiction to S being a secure set. Thus, |Ai| ≤ 2

and |Di| ≥ 2 for all 1 ≤ i ≤ t. Notice |S| = 2k + 1 = |V − S|. Then 2t ≤
t∑

i=1

|Di| = |S| =

|V −S| =
t∑

i=1

|Ai| ≤ 2t. So, 2t = |S| = 2k+1, which is impossible. Thus, γs(C4k+2) = 2k+2

for k ≥ 1.

8.2 Global secure sets of C3 × C4k+2

This section presents the lower bound for the global security number of C3 × C4k+2. The

analysis technique is similar to the proof of Theorem 8.1.2 in that we analyze attacker and

defender groups of C3 × C4k+2, with a modified definition for these groups.

Definition 8.2.1. Let S be a global secure set of C3 × C4k+2. Consider C3 × C4k+2 as an

array with 3 rows and 4k+2 columns. A column is an attacker column if it contains at most

one vertex in S, otherwise it is a defender column. So, an attacker column contains more

attackers than defenders, and a defender column contains more defenders than attackers.

An attacker group of C3 × C4k+2 is a maximal consecutive sequence of attacker columns. A

defender group of C3 × C4k+2 is a maximal consecutive sequence of defender columns. The

groups are taken cyclically around the leftmost and rightmost columns. So, if the leftmost

and rightmost columns are both attacker (defender) columns, the two columns belong to the

same group.

180

Notice if |S| = 6k+3, then there is at least one attacker group and at least one defender

group, and they must alternate, in which case the number of attacker groups is equal to the

number of defender groups.

Recall from Corollary 3.3.1 that if S is not secure, then there exists a witness set W ⊆ S

such that |N [W] ∩ S| < |N [W] − S|. Figure 8.21 enumerates the possible non-isomorphic

attacker groups in C3 × C4k+2. The enumeration process terminates when the configura-

tion is either not secure (with a witness boxed), or not dominating (with an undominated

vertex boxed). The enumeration is exhaustive, with rotations and reflections of the same

configuration omitted. As seen from the enumeration, the only possible attacker groups of

C3 × C4k+2 are those shown in Figure 8.3, along with isomorphic (under vertical rotation)

configurations. So, any attacker group of C3 × C4k+2 consists of either one or two columns.

Figure 8.2: Enumeration of attacker groups

1In Figure 8.2 and subsequent figures (where applicable), each configuration corresponds to a partial
projection of a global secure set of the entire graph, where the vertices in the set are marked in black.

181

Figure 8.3: All non-isomorphic attacker groups in C3 × C4k+2

We will refer to attacker groups in Figure 8.3 as attacker groups type I through IV,

without explicit reference to Figure 8.3 repetitively. A column is empty if it contains no vertex

in S. An attacker group may contain one or two consecutive empty columns, corresponding

to attacker group types I and II respectively. We now proceed by case analysis based on the

number of attacker groups of type II in C3 × C4k+2. There are three cases. Lemma 8.2.5

considers global secure sets of C3 × C4k+2 without any attacker groups of type II. Lemma

8.2.7 considers global secure sets of C3 × C4k+2 with exactly one attacker group of type II.

Finally, Theorem 8.2.8 considers the last case where a global secure set may contain at least

two attackers groups of type II, and proving γs(C3 × C4k+2) = 6k + 4.

First, Lemma 8.2.2 considers the possible configurations of an attacker group with an

adjacent defender group, when C3 × C4k+2 contains no attacker groups of type II. Then,

Lemma 8.2.3 and Corollary 8.2.4 will develop a useful result to be used in the proof of

Lemma 8.2.5, to show that |S| > 6k + 3 when S contains no attacker groups of type II.

182

Lemma 8.2.2. Suppose S is a global secure set of cardinality 6k + 3 for C3 × C4k+2, such

that C3 × C4k+2 does not contain attacker groups of type II. If A is an attacker group and

D is a defender group immediately adjacent to A (either to its left or right), then the only

possible configurations of A ∪ D, with isomorphic (under reflection and rotation) images

omitted, are those shown in Figures 8.5 and 8.6.

Proof. Only three different types of attacker groups exist in C3 ×C4k+2 as seen from Figure

8.3. With reference to Figure 8.4, we start with each attacker group and enumerate, to its

right, the possible configurations of S in C3 × C4k+2. The column immediately following

each group must be a defender column, because an attacker group is maximal. The column

after this defender column may be of any kind. Let a be the number of attackers and d be

the number of defenders in each configuration. The enumeration terminates either when the

configuration is not secure (with witnesses boxed), or when a ≤ d. We have established that

a ≤ d in each A ∪D.

Let A1, D1, . . . , At, Dt be the attacker and defender groups of C3 × C4k+2. Let ai and

di be the number of attackers and defenders in Ai ∪Di, respectively. The above paragraph

establishes ai ≤ di. But
t∑

i=1

ai =
t∑

i=1

di = 6k + 3, so ai = di for 1 ≤ i ≤ t.

Note that enumerations to the left of the three attacker groups are reflections of those

shown in Figure 8.4. Consider Ai ∪ Di−1, with indexes wrapping around over {1, 2, . . . , t}.

By the enumerations, within each Ai ∪Di−1 the number of attackers is at most the number

of defenders. Since the total number of attackers in C3 × C4k+2 equals the total number of

183

defenders, the number of attackers within each Ai ∪ Di−1 must be equal to the number of

defenders.

Since the number of attackers equals the number of defenders in each Ai∪Di and Ai∪Di−1,

the enumerations terminating with fewer attackers than defenders (a < d) in Figure 8.4

cannot appear under the given assumptions. As a result, the possible configurations of

Ai ∪ Di (or Ai ∪ Di−1), with isomorphic images omitted, are those in Figure 8.5 (or 8.6).

Note that, although enumerations in Figure 8.4 might not have included all columns of a

defender group (because it terminated whenever a ≤ d), the configurations shown in Figures

8.5 and 8.6 do include all columns of each defender group, since any additional defender

column will make the number of defenders in Ai∪Di (or Ai∪Di−1) strictly greater than the

number of attackers, and would be invalid.

Lemma 8.2.3. Let G be a graph and let S be a global secure set of G such that |V (G)| =

2|S|. Then, for all w ∈ S, there exists u ∈ V (G)− S such that (N(u) ∩ S) ⊆ (N [w] ∩ S).

Proof. Suppose not. Let w ∈ S be such that for all ui ∈ V (G)−S, (N(ui)∩S) * (N [w]∩S),

where V (G) − S = {u1, u2, . . . , uk} is the set of attackers. So, every vertex ui ∈ V (G) − S

has a neighbor u′i ∈ (N(ui) ∩ S) − (N [w] ∩ S). In particular, u′i ∈ S is a neighbor of

ui, but not w (and u′i ̸= w). Consider X = {u′i : 1 ≤ i ≤ k}. Since w /∈ (N [X] ∩ S),

|N [X] ∩ S| ≤ |S| − 1 < |S| = |V (G)− S| = |N [X]− S|, a contradiction to S being a secure

set.

184

Figure 8.4: Enumerations of attacker group A followed by parts of defender group D. Sym-
bols a and d denote the number of attackers and defenders in A ∪ D, respectively. The
attacker groups which start each enumeration are of types I, III and IV.

Corollary 8.2.4. Let G be a graph and let S ⊆ V (G) be a dominating set of G such that

|V (G)| = 2|S|. If there exists w ∈ S such that for all u ∈ V (G)−S, (N(u)∩S)−(N [w]∩S) ̸=

∅, then S is not a secure set.

185

Figure 8.5: Possible attacker group with adjacent defender group to its right, assuming the
global secure set does not contain attacker groups of type II. See the proof of Lemma 8.2.2
for details.

Figure 8.6: Possible attacker group with adjacent defender group to its left, assuming the
global secure set does not contain attacker groups of type II. See the proof of Lemma 8.2.2
for details.

Lemma 8.2.5. Let S be a global secure set of C3 × C4k+2 with no attacker groups of type

II. Then, |S| > 6k + 3.

Proof. Assume |S| = 6k+3. By Lemma 8.2.2, if A is an attacker group and D is a defender

group adjacent to A, then Figures 8.5 and 8.6 present all non-isomorphic configurations of

A ∪ D. Recall that attacker and defender groups are maximal with respect to the number

of consecutive attacker and defender columns they contain. Then, pattern (i) in Figures 8.5

and 8.6 cannot exist in S because the single column defender group would be next to an

empty column and another attacker column, in which case the vertices in the defender group

form a witness set.

186

The remaining three possible configurations have different numbers of defenders in their

defender groups, and different numbers of defenders in their attacker groups. We claim that

configuration S is composed of repeated patterns of exactly one type of A ∪D groups. For

example, if S contains adjacent attacker/defender groups that are instances of pattern (iii) of

Figure 8.5 (or 8.6), then all adjacent attacker/defender groups of S are instances of pattern

(iii) of Figure 8.5 (or 8.6), with possible vertical reflection and rotation applied to different

instances. To justify this, let A1, D1, . . . , At, Dt be the attacker and defender groups of S.

Without loss of generality, suppose A1 ∪ D1 forms pattern (iii) in Figure 8.5. This implies

D1 must contain exactly six defenders. Then, in D1 ∪ A2, the only valid choice from Figure

8.6 is pattern (iii) because it is the only pattern where the defender group contains exactly

six defenders. In turn, this implies A2 must consist of a single empty column. Now consider

A2 ∪D2. Patterns (i) and (iii) in Figure 8.5 have attacker groups consisting of exactly one

empty column, but we established in the previous paragraph that (i) cannot occur. Thus,

the only valid pattern for A2 ∪ D2 is (iii) of Figure 8.5. Similar arguments hold for the

remaining groups.

Next, we claim that patterns (iii) and (iv) of Figure 8.5 (or 8.6) cannot occur in S. If

there is a pattern of type (iii) (or (iv)), by the argument in the last paragraph the entire

configuration must consist of only patterns of type (iii) (or (iv)). But, since pattern (iii) (or

(iv)) has 4 columns, the total number of columns of C3 × C4k+2 must be a multiple of 4, an

impossibility.

187

Finally, we show that it is also impossible for S to be composed of only instances of pattern

(ii) in Figure 8.5 (or 8.6). Figure 8.7 enumerates the possible configurations of S that consist

of only instances of type (ii) patterns, with possible vertical reflection and rotation applied

to different instances. In the enumeration, the columns must alternate between a column

with exactly one vertex in S and a column with exactly two vertices in S. Note that, if

a vertex v ∈ S has two neighbors outside S, then the other two neighbors of v must be

in S, for otherwise {v} is a witness. Situations like this are noted by an arrow pointing

from v to the neighbor of v that must be included in S. If a configuration is not secure,

then either a witness is boxed, or a vertex w ∈ S is labeled, where for all u ∈ V (G) − S,

(N(u) ∩ S)− (N [w] ∩ S) ̸= ∅ (Corollary 8.2.4). Figure 8.7 shows that there is no secure set

configuration for C3 × C4k+2, when the set consists of only instances of type (ii) pattern in

Figures 8.5 and 8.6.

Figure 8.7: Enumeration of possible global secure set configurations in C3×C4k+2, assuming
the set is composed of only instances of pattern (ii) in Figures 8.5 and 8.6. See the proof of
Lemma 8.2.5 for details.

188

Next, Lemma 8.2.6 will be used in the proof of Lemma 8.2.7, to show that |S| > 6k + 3

if S contains exactly one attacker group of type II.

Lemma 8.2.6. Assume S is a global secure set of cardinality 6k + 3 for C3 × C4k+2. If

exactly one attacker group in C3 × C4k+2 is of type II, then there is no attacker group of

type I.

Proof. Suppose not. Let c1, c2, . . . , c4k+2 be the columns of C3 × C4k+2. Without loss of

generality, label the two adjacent empty columns c1 and c4k+2. Then, c1 and c4k+2 form an

attacker group of type II. In order to dominate vertices of c1 and c4k+2, all vertices of c2 and

c4k+1 are in S. Let ci be another empty column where 2 < i < 4k + 1. Column ci forms

an attacker group of type I. Since attacker groups are maximal, ci−1 and ci+1 are defender

columns, so each contains at least two vertices in S.

Let a and d be the number of attackers and defenders in C3 × C4k+2, respectively. Let

V1 = c2 ∪ c3 ∪ · · · ∪ ci−1 and V2 = ci+1 ∪ · · · ∪ c4k+1. Let aj and dj be the number of attackers

and defenders in Vj, respectively, for j ∈ {1, 2}. With this notation, a = d = 6k + 3,

a = a1 + a2 + 9 and d = d1 + d2.

Let X1 = (V1∩S) and X2 = (V2∩S). Note that vertices in V1 are not adjacent to vertices

of V2. So, (N [X1]∩S) = X1 and X1 dominates V1. Among vertices in N [X1]−S, there are a1

attackers in V1, three attackers in c1 and at least two attackers in ci (because ci−1 is a defender

column). Thus, |N [X1]−S| ≥ a1+5. Since S is a secure set, |X1| = |N [X1]∩S| ≥ |N [X1]−

189

S| ≥ a1+5. Similarly, |X2| ≥ a2+5. Then, d = d1+d2 = |X1|+ |X2| ≥ a1+a2+10 = a+1,

which is impossible since d = a.

Lemma 8.2.7. Let S be a global secure set of C3 ×C4k+2. If exactly one attacker group of

S is of type II, then |S| > 6k + 3.

Proof. Assume |S| = 6k + 3. By Lemma 8.2.6, there is no attacker group of type I in S.

Let c1, c2, . . . , c4k+2 be the columns of C3 × C4k+2. Without loss of generality, label the two

adjacent empty columns c1 and c4k+2. Columns c1 and c4k+2 form an attacker group of type

II. In order to dominate vertices of c1 and c4k+2, all vertices in c2 and c4k+1 must be in S.

Let X = c3 ∪ c4 ∪ · · · ∪ c4k and let a and d denote the number of attackers and defenders

in X. Notice a = d = 6k − 3. Let di be the number of columns with i defenders, among

the columns of X, for 0 ≤ i ≤ 3. Since X contains no empty columns, d0 = 0. With this

notation, d0 + d1 = d1 is the number of attacker columns among columns of X and d2 + d3

is the number of defender columns of X. Furthermore, a = 3d0 + 2d1 + d2 = 2d1 + d2 and

d = d1 + 2d2 + 3d3. Since a = d,

d1 = d2 + 3 · d3 (8.1)

Let A1, D1, . . . , At, Dt be attacker and defender groups of S. More specifically, let A1 be

the attacker group c1∪c4k+2, D1 be the defender group which contains c2, A2 be the attacker

group to the right (increase in column number) of D1, D2 the defender group to the right of

190

A2, and so on. Note that all attacker groups, with the exception of A1, must be of type III

or IV. With this notation, Dt contains column c4k+1.

We claim that t ≥ 2. If t = 1, then A1 is the only attacker group in S. But columns of

A1 are c1 and c4k+2, which are not included in X. Thus, X contains only defender columns,

or d1 = 0. But d1 = d2 + 3d3, so d2 = d3 = 0, which is impossible since X contains at least

two columns.

The columns in A2∪D2∪A3∪D3∪· · ·∪At−1∪Dt−1∪At form a subset of X. X does not

contain any column of A1, and may contain some, but not all, of the columns of D1 and Dt.

Let |Aj| and |Dj| denote respectively the number of columns of Aj and Dj, for 1 ≤ j ≤ t.

Let pi,j be the number of columns with exactly i defenders in Aj ∪ Dj, for 0 ≤ i ≤ 3 and

2 ≤ j ≤ t− 1. Note that p0,j = 0, |Aj| = p1,j and

|Dj| = p2,j + p3,j for 2 ≤ j ≤ t− 1 (8.2)

With reference to Figure 8.4, consider enumerations that start with attacker groups of

type III or IV. The valid partial configurations that are also terminal configurations are

shown in Figure 8.8. These are valid partial configurations of Aj ∪ Dj for 2 ≤ j ≤ t − 1.

Each partial configuration shows the entire attacker group, but may show only part of the

defender group. By examining each configuration, we may establish

p1,j ≤ p2,j + 2p3,j for 2 ≤ j ≤ t− 1 (8.3)

191

Notice c3 must be a defender column, for otherwise vertices in c2 form a witness. Similarly,

c4k must be a defender column. Then, c3 ∈ D1 and c4k ∈ Dt. There are d2 + d3 defender

columns in X, specifically {c3, c4k} ⊆ X and D2∪D3∪· · ·∪Dt−1 ⊆ X are defender columns.

Then,

d2 + d3 ≥ 2 +
t−1∑
j=2

(p2,j + p3,j) (8.4)

Note that strict inequality in (8.4) may be possible, since d2 + d3 may contain other

defender columns of D1 and Dt, which are not accounted for on the right hand side. Now,

consider attacker columns of X.

d1 =
t∑

j=2

|Aj|

= |At|+
t−1∑
j=2

|Aj| (By t ≥ 2)

≤ 2 +
t−1∑
j=2

|Aj| (By |At| ≤ 2, Fig. 8.3)

= 2 +
t−1∑
j=2

p1,j (By d0 = p0,j = 0)

≤ 2 +
t−1∑
j=2

(p2,j + 2p3,j) (By (8.3))

≤ 2 + d3 +
t−1∑
j=2

(p2,j + p3,j) (By d3 ≥
t−1∑
j=2

p3,j)

≤ d2 + 2 · d3 (By (8.4))

(8.5)

192

Then, by (8.1) and (8.5), d2 + 3d3 = d1 ≤ d2 + 2d3. So, d3 = 0 and d1 = d2. Among the

columns of X, there are exactly d1 attacker columns, each containing exactly one defender,

and exactly d2 defender columns, each containing exactly two defenders. Since d3 = 0,

d1 = d2 = d2 + 2d3 and the first and last terms of (8.5) are equal. So, all intermediate

expressions must be equal. Rewrite (8.5) as equalities and substitute d3 = p3,j = 0,

d1 =
t∑

j=2

|Aj|

= |At|+
t−1∑
j=2

|Aj|

= 2 +
t−1∑
j=2

|Aj|

= 2 +
t−1∑
j=2

p1,j

= 2 +
t−1∑
j=2

p2,j

= d2

(8.6)

Then, (8.7), (8.8) and (8.9) are consequences of (8.6).

|At| = 2 (8.7)

t−1∑
j=2

p1,j =
t−1∑
j=2

p2,j (8.8)

193

d2 = 2 +
t−1∑
j=2

p2,j (By (8.6))

= 2 +
t−1∑
j=2

|Dj| (By (8.2) and p3,j = 0)

(8.9)

The d2 defender columns of X are composed of columns in D2 ∪D3 ∪ · · · ∪Dt−1, as well

as some (but not all) columns from D1 and Dt, such as c3 and c4k. Equation (8.9) indicates

that exactly two defender columns, c3 and c4k, are in X − (D2 ∪D3 ∪ · · · ∪Dt−1), so

|D1| = |Dt| = 2 (8.10)

Since d3 = p3,j = 0, (8.2) becomes |Dj| = p2,j and (8.3) becomes p1,j ≤ p2,j for 2 ≤ j ≤

t− 1. Then, by (8.8), we know p1,j = p2,j, and

|Aj| = |Dj| for 2 ≤ j ≤ t− 1 (8.11)

Recall that Figure 8.8 shows valid partial configurations of a given attacker group in X

and the adjacent defender group to its right. Since p3,j = 0, patterns (iii), (iv) and (vi)

must not appear in X. In addition, since |Aj| = |Dj|, patterns (i), (ii) and (v) are no longer

partial configurations, because any additional defender columns for the defender groups will

194

make |Aj| < |Dj|. Then, possible patterns for Aj ∪ Dj, 2 ≤ j ≤ t − 1 are those shown in

Figure 8.9.

Next, consider Dj ∪ Aj+1 for 2 ≤ j ≤ t − 1. Note that Dj ∪ Aj+1 are columns in X,

and Aj+1 is an attacker group of type III or IV. Enumerations of possible defender groups

to the left of Aj+1 are exact reflections of those shown in Figure 8.4. Since d3 = 0, the only

possible partial patterns for Dj ∪Aj+1 are shown in Figure 8.10. These patterns are partial

because they contain the entire attacker group, but may contain only part of the defender

group. Nonetheless, |Dj| ≥ |Aj+1| for 2 ≤ j ≤ t− 1.

Notice from Figure 8.3 that |A2| ≤ 2. Since |At| = 2 (Eq. (8.7)), |Aj| = |Dj| (Eq. (8.11))

and |Dj| ≥ |Aj+1| for 2 ≤ j ≤ t− 1, we have 2 ≥ |A2| = |D2| ≥ |A3| = |D3| ≥ · · · ≥ |At−1| =

|Dt−1| ≥ |At| = 2. Thus, |Aj| = |Dj| = 2 for 2 ≤ j ≤ t − 1. Along with |A1| = 2, |At| = 2

and |D1| = |Dt| = 2 (Eq. (8.10)), the result is |Aj| = |Dj| = 2 for 1 ≤ j ≤ t. This implies

4k + 2 =
t∑

j=1

|Aj|+ |Dj| = 4t, which is not possible.

Figure 8.8: Valid partial configurations for A ∪D, if A is of type III or IV. See the proof of
Lemma 8.2.7 for details.

195

Figure 8.9: Possible configurations for Aj ∪Dj, 2 ≤ j ≤ t− 1. These configurations are not
partial. See the proof of Lemma 8.2.7 for details.

Figure 8.10: Possible partial configurations for Dj ∪ Aj+1, 2 ≤ j ≤ t − 1. See the proof of
Lemma 8.2.7 for details.

Theorem 8.2.8. γs(C3 × C4k+2) = 6k + 4 for k ≥ 1.

Proof. By Lemma 7.5.1, γs(C3 × C4k+2) ≤ 6k + 4. We prove γs(C3 × C4k+2) > 6k + 3 by

induction on the value of k. For k = 1, let S ′ be a minimum global secure set of C3 × C6.

If there is at most one attacker group of type II in C3 × C6, by Lemmas 8.2.5 and 8.2.7,

|S ′| > 9. Otherwise, there are at least two attacker groups of type II in C3 × C6, but then

|V (C3 × C6)− S ′| ≥ 12 and |S ′| ≤ 6, an impossibility.

By the way of induction, assume γs(C3×C4k′+2) > 6k′+3 for 1 ≤ k′ < k. Then, let S be

a minimum global secure set of C3 × C4k+2. By Lemmas 8.2.5 and 8.2.7, if there is at most

one attacker group of type II, then |S| > 6k + 3.

196

Consider the remaining case where S contains at least two attacker groups of type II. Let

c1, c2, . . . , c4k+2 be the columns of C3×C4k+2. More specifically, let c1, ci, ci+1, c4k+2 be empty

columns. Columns {c1, c4k+2} and {ci, ci+1} form two attacker groups of type II. Since each

attacker group is maximal, the two groups cannot be adjacent, so 2 < i < i + 1 < 4k + 1.

Let X1 = c1 ∪ c2 ∪ · · · ∪ ci and X2 = ci+1 ∪ · · · ∪ c4k+2. Let aj and dj denote respectively the

number of attackers and defenders in Xj, for j ∈ {1, 2}.

Because c1, ci, ci+1 and c4k+2 are empty columns, every attacker in X1 must be dominated

by a defender in X1 ∩ S, and may attack a vertex in X1 ∩ S. Since S is secure, X1 ∩ S is a

global secure set of C3×Ci and a1 ≤ d1. Similarly, X2∩S is a global secure set of C3×C4k+2−i

and a2 ≤ d2.

Assume |S| = 6k + 3. Then, a1 + a2 = d1 + d2. Since a1 ≤ d1 and a2 ≤ d2, it follows

that a1 = d1 and a2 = d2. The number of vertices in X1 is 3i = a1 + d1 = 2d1. So, i, and

thus 4k+ 2− i are even. Then, either i ≡ 2 (mod 4) or (4k+ 2− i) ≡ 2 (mod 4). So, either

X1 ∩ S or X2 ∩ S is a counter example to the inductive hypothesis. Thus, the assumption

|S| = 6k + 3 is false and |S| > 6k + 3.

Theorem 8.2.8 concludes the global security number of C3×C4k+2 and completes Chapters

7 and 8. The list below collects results regarding the global security numbers of grid-like

graphs, with the corresponding theorem (or lemma) treating each case given in parenthesis.

The global security numbers (γs) of grid-like graphs are as follows.

1. γs(Pn) = ⌈n/2⌉. (Theorem 7.2.1)

197

2. γs(Cn) =


2k + 2 if n ∈ {4k + 2 : k ≥ 1} (Theorem 8.1.2)

⌈n/2⌉ otherwise (Lemma 7.2.2)


3. γs(Pn × Pm) = ⌈nm/2⌉. (Theorem 7.3.34)

4. γs(Pn × Cm) = ⌈nm/2⌉. (Theorem 7.4.12)

5. (a) γs(C3 × C4k+2) = 6k + 4. (Theorem 8.2.8)

(b) γs(Cn × Cm) = ⌈nm/2⌉ with the exception of C3 × C4k+2. (Theorem 7.5.7, Part

2)

Note that the result shown above is equivalent to Theorem 7.1.1 stated at the beginning

of Chapter 7.

198

CHAPTER 9

SUMMARY AND OPEN PROBLEMS

9.1 Summary

Let G = (V,E) be a connected graph. A vertex subset S is a defensive alliance if ∀x ∈

S, |N [x] ∩ S| ≥ |N [x]− S|. In a graph model, the vertices represent countries and the edges

represent country boundaries. In a defensive alliance S, if a single vertex x ∈ S is attacked

by its neighbors outside the alliance, the attack can be thwarted by x with the assistance

of its neighbors inside the alliance. So, a defensive alliance can successfully defend against

attacks on a single member.

In a more realistic setting, multiple members of an alliance may be attacked at the same

time by their neighbors outside. As seen in Chapter 1, a defensive alliance may not be able

to defend against simultaneous attacks on multiple members. The theory of secure sets in

graphs are developed for modeling such situations. In the context of secure sets, every vertex

y ∈ N [S] − S can choose to attack one vertex in N(y) ∩ S, and given these choices, every

vertex in x ∈ S can choose to defend one vertex in N [x]∩S. The attack is defended if every

vertex in S receives as many defenders as attackers. A secure set can defend against any

199

attack under these assumptions. The formal definition is given in Definition 1.2.1 (originally

appeared in [BDH07], Definition 1). A characterization of secure sets is given in Theorem

1.2.3 (originally appeared in [BDH07], Theorem 11). The characterization suggests that a

set S is a secure set if and only if every subset of S has as many neighbors inside S compare

to outside.

If a defensive alliance is also a dominating set, then it is a global defensive alliance.

Similarly, if a secure set is also a dominating set, then it is a global secure set. Determining

the existence of small defensive alliances and small global defensive alliances have shown to

be NP-Complete in [JHM09, CBD06, Enc09] (Section 2.2). In Chapter 3, we explored the

complexity of problems related to secure sets. The problem of finding a feasible defense for

a given attack (or determine none exists) (Feasible Defense, Problem 3.1.1) can be solved

in polynomial time using network flow (Section 3.2) or maximum matching (Section 4.2)1.

On the other hand, the problem of verifying the validity of a given secure set (Is Secure,

Problem 3.1.2), and the problem of finding a minimum secure set (Secure Set, Problem

3.1.3) are both in P if and only if P = NP (Corollary 3.3.8 and Theorem 3.4.4).

In Chapter 4, we presented a proof of the secure set characterization (Theorem 1.2.3) as

an application of Hall’s Matching Theorem.

Chapters 5 and 6 investigated problems relate to secure sets in trees. Chapter 5 presented

an O(n∆) algorithm (Algorithm 5.2.3) and an O(n lg(∆)) algorithm (Algorithm 5.4.6) for

finding a minimum rooted secure set (Rooted Secure Set, Problem 5.1.1) of a tree. A

1An earlier solution using integer programming appeared in [BDH07], Section 3.

200

rooted secure set is a secure set with the additional requirement that a specific vertex must

be included in the set. In Chapter 6, Section 6.1 presented an O(n∆) algorithm (Algorithm

6.1.4) for finding a minimum global secure set of a tree, and in Section 6.2 we showed that

⌈n/2⌉ ≤ γs(T) ≤ ⌊2n/3⌋ for any tree T of order n ≥ 2, and both bounds are sharp (Theorem

6.2.9).

Chapters 7 and 8 investigated global secure sets of grid-like graphs. Grid-like graphs

are paths, cycles and their Cartesian products (Definition 1.4.3). We showed that for any

grid-like graph G of order n, γs(G) = ⌈n/2⌉, with two exceptions C4k+2 and C3×C4k+2, and

in those cases γs(G) = n/2 + 1. Chapter 7 constructed minimum global secure sets for each

of the grid-like graphs. Chapter 8 verified the two exceptions, showing that no global secure

set of cardinality n/2 exists for C4k+2 or C3 × C4k+2.

The remainder of this chapter discusses several open problems and possible future devel-

opments for secure sets in graphs.

9.2 Bounds

Let G = (V,E) be a connected graph of order n.

Problem 9.2.1. Find a sharp upper bound on the security number of G in terms of n.

In [FLH03], it was shown that ⌈n/2⌉ is a sharp upper bound on the defensive alliance

number of G. In [DLB08], it was shown that ⌈n/2⌉ is not an upper bound on the security

201

number of G. In particular, the class of Kneser graphs K(m, 2) with m ≥ 6 have security

number ⌈(n+ 1)/2⌉2. It is not known whether ⌈(n+ 1)/2⌉ is a sharp upper bound on the

security number of G, and there is no known example for which the security number of a

graph of order n is larger than ⌈(n+ 1)/2⌉.

Problem 9.2.2. Find a sharp upper bound on the global security number of G in terms of

n.

In Section 6.2, it is shown that ⌊2n/3⌋ is a sharp upper bound on the global security

number of a tree of order n ≥ 2. It is not known whether this is also an upper bound

for general graphs. There is no known example for which the global security number of a

connected graph of order n ≥ 2 is larger than 2n/3.

Problem 9.2.3. ([BDH07]) Is s(G) + s(G) ≤ n+ 1 a correct Nordhaus-Gaddum bound for

graphs of order n?

9.3 Algorithms and complexity

Problem 9.3.1. Design a polynomial algorithm for finding the security number of a series-

parallel graph.

A polynomial algorithm for finding the defensive alliance number of a series-parallel graph

is given in [Jam07].

2See Section 2.1 for details.

202

Problem 9.3.2. Design a polynomial algorithm for finding the global security number of a

series-parallel graph.

Problem 9.3.3. Design a polynomial algorithm for finding the global security numbers of

graphs with bounded treewidth.

In [Enc09], the author presents a polynomial algorithm for finding minimum global de-

fensive alliances on graphs with fixed treewidth and maximum degree (i.e., fixed domino

treewidth). The class of partial k-trees exhibits polynomial solutions for many NP-Complete

problems ([BLW87, Wim87]). It is interesting to see if Secure Set (Problem 1.4.1) and

Global Secure Set (Problem 1.4.2), two problems that may not belong to NP, can be

solved in polynomial time on these graphs.

Problem 9.3.4. Prove or disprove: if Global Secure Set (Problem 1.4.2) is in P, then P

= NP.

The converse of 9.3.4 is true (Corollary 3.4.7). The problem Secure Set (Problem 3.1.3)

is in P if and only if P = NP (Theorem 3.4.4).

9.4 Problems related to secure sets

This section discusses two categories of problems related to secure sets in graphs. The first

category introduces inclusion and exclusion requirements for particular vertices of the graph,

similar to the problem Rooted Secure Set (Problem 5.1.1).

203

Problem 9.4.1.

Given: A graph G = (V,E), sets A,B ⊆ V with A ∩B = ∅, and integer k < |V |.

Question: Is there a secure set S ⊆ V of cardinality k or less, such that A ⊆ S and

B ∩ S = ∅?

Problem 9.4.1 asks for a secure set of cardinality k or less, such that every vertex in A is

in the set, and every vertex in B is not in the set. This is a more general model (compared

to Rooted Secure Set) for an application, in situations where some vertices are desired to

be included in a secure set (e.g., friendly or neutral nations, points of interest, etc.), while

some other vertices are not desired (e.g., hostiles, entities sharing opposed interest, etc.).

The problem Rooted Secure Set (Problem 5.1.1) presented in Chapter 5 is a special case

where A = {r} and B = {}.

The second category introduces probability and random process into the problem of

secure sets. Let G = (V,E) be a connected graph and let S be a non-empty subset of k

vertices. Let P(S) denote the power set of S.

Recall from Chapter 3 that verifying the validity of a secure set is in P if and only if P =

NP (Corollary 3.3.8). So, there is no known polynomial algorithm (and none exists unless P

= NP) to determine whether S is a secure set. In the case that S is not a secure set, S may

still be able to defend a large number of attacks. Although there exists an attack for which

S cannot be defended, an adversary who seeks such an attack will not be able to identify it

efficiently.

204

There are two primary methods for identifying an attack where S cannot defend. The

first method is to simply identify an attack A on S according to Definition 1.2.1, and verify

that A is not defendable using polynomial algorithms presented in Sections 3.2 or 4.2. Note

that each y ∈ N [S]− S has |N(y) ∩ S| different choices on which vertex of S to attack, and

there are a total of K =
∏

y∈(N [S]−S)

|N(y) ∩ S| different attacks on S. The second method is

to identify a witness, a subset W ⊆ S such that |N [W]∩ S| < |N [W]− S| (Theorem 1.2.3).

Definition 9.4.2 defines when the set S is probably secure, according to the discussions so far.

Definition 9.4.2. With reference to the last three paragraphs, the set S is probably secure

with probability p if an attack chosen uniformly at random from the set of K possible attacks

can be defended with probability at least p, and a non-empty subset of S chosen uniformly

at random from P(S)− {∅} is not a witness with probability at least p.

Definition 9.4.2 states that if S is a probably secure set (with probability p), then at least

pK of the K possible attacks on S must be defendable, and at least p|P(S)−{∅}| = p(2k−1)

non-empty subsets of S satisfy |N [X] ∩ S| ≥ |N [X]− S|. Thus, an adversary who attempts

to identify an attack on S that is not defendable will succeed with probability at most 1− p

per trial (if S is in fact not secure). Here, we assume that when testing for the security of

S, the adversary either selects an attack on S uniformly at random (where each attacker

chooses to attack one of its |N(y) ∩ S| neighbors uniformly at random) and check whether

it is defendable, or selects a non-empty subset of S uniformly at random and check whether

it is a witness.

205

LIST OF REFERENCES

[BCH10] Mohamed Bouzefrane, Mustapha Chellali, and Teresa W. Haynes. “Global de-
fensive alliances in trees.” Util. Math., 82:241–252, 2010.

[BDH07] Robert C. Brigham, Ronald D. Dutton, and Stephen T. Hedetniemi. “Security
in graphs.” Discrete Appl. Math., 155(13):1708–1714, 2007.

[BDH09] Robert C. Brigham, Ronald D. Dutton, Teresa W. Haynes, and Stephen T. Hedet-
niemi. “Powerful alliances in graphs.” Discrete Mathematics, 309:2140–2147,
2009.

[BGH08] Jean R.S. Blair, Wayne Goddard, Stephen T. Hedetniemi, Steve Horton, Patrick
Jones, and Grzegorz Kubicki. “On domination and reinforcement numbers in
trees.” Discrete Mathematics, 308(7):1165–1175, April 2008.

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong. “Linear-time computation of optimal
subgraphs of decomposable graphs.” Journal of Algorithms, 8(2):216–235, June
1987.

[CBD06] Aurel Cami, Hemant Balakrishnan, Narsingh Deo, and Ronald D. Dutton. “On
the Complexity of Finding Optimal Global Alliances.” Journal of Combinatorial
Mathematics and Combinatorial Computing, 58:23–31, 2006.

[CFM03] E. J. Cockayne, O. Favaron, and C. M. Mynhardt. “Secure domination, weak
Roman domination and forbidden subgraphs.” Bull. Inst. Combin. Appl., 39:87–
100, 2003.

[CJH04] Ernie J. Cockayne, Paul A. Dreyer Jr., Sandra M. Hedetniemi, and Stephen T.
Hedetniemi. “Roman domination in graphs.” Discrete Mathematics, 278(1-
3):11–22, March 2004.

[CLR01] Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. McGraw-Hill Book Company, second edition, 2001.

[CMR07] Rodolfo Carvajal, Martin Matamala, Ivan Rapaport, and Nicolas Schabanel.
“Small Alliances in Graphs.” Lecture Notes in Computer Science, 4708:218–227,
2007.

206

[DDH09] John Dabney, Brian C. Dean, and Stephen T. Hedetniemi. “A linear-time algo-
rithm for broadcast domination in a tree.” Netw., 53(2):160–169, 2009.

[DH10] Ronald D. Dutton and Yiu Yu Ho. “Global secure sets in maximum degree three
graphs.” in preparation, 2010.

[DLB08] Ronald D. Dutton, Robert Lee, and Robert C. Brigham. “Bounds on a graph’s
security number.” Discrete Applied Mathematics, 156:695–704, 2008.

[Dut06] Ronald D. Dutton. “Secure set algorithms and complexity.” Congr. Numer.,
180:115–121, 2006.

[Dut09] Ronald D. Dutton. “On a graph’s security number.” Discrete Mathematics,
309(13):4443–4447, 2009.

[ED08] Rosa I. Enciso and Ronald D. Dutton. “Parameterized complexity of secure sets.”
Congr. Numer., 189:161–168, 2008.

[EG08] Linda Eroh and Ralucca Gera. “Global alliance partition in trees.” J. Combin.
Math. Combin. Comput., 66:161–169, 2008.

[Enc09] Rosa I. Enciso. Alliances in Graphs: Parameterized Algorithms and on Parti-
tioning Series-Parallel Graphs. PhD thesis, University of Central Florida, 2009.

[FF56] Lester Randolph Ford Jr. and Delbert Ray Fulkerson. “Maximal flow through a
network.” Canadian Journal of Mathematics, 8:399–404, 1956.

[FFG04] Odile Favaron, Gerd Fricke, Wayne Goddard, Sandra M. Hedetniemi, Stephen T.
Hedetniemi, Petter Kristiansen, Renu C. Laskar, and R. Duane Skaggs. “Offen-
sive alliances in graphs.” Discuss. Math. Graph Theory, 24(2):263–275, 2004.

[FGK08] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. “Solving Connected
Dominating Set Faster than 2n.” Algorithmica, 52(2):153–166, 2008.

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. “A measure & conquer
approach for the analysis of exact algorithms.” J. ACM, 56(5):1–32, 2009.

[FGP08] Fedor V. Fomin, Fabrizio Grandoni, Artem V. Pyatkin, and Alexey A. Stepanov.
“Combinatorial bounds via measure and conquer: Bounding minimal dominating
sets and applications.” ACM Trans. Algorithms, 5(1):1–17, 2008.

[FLG00] G. W. Flake, S. Lawrence, and C. L. Giles. “Efficient identification of web com-
munities.” ACM SIGKDD, pp. 150–160, 2000.

[FLH03] Gerd H. Fricke, Linda M. Lawson, Teresa W. Haynes, Sandra M. Hedetniemi,
and Stephen T. Hedetniemi. “A note on defensive alliances in graphs.” Bull.
Inst. Combin. Appl., 38:37–41, 2003.

207

[FR07] H. Fernau and D. Raible. “Alliances in graphs: A complexity-theoretic study.”
Software Seminar, Student Research Forum, Proceedings Vol. II:61–70, 2007.

[FRS09] Henning Fernau, Juan A. Rodriguez, and Jose M. Sigarreta. “Offensive r-alliances
in graphs.” Discrete Appl. Math., 157(1):177–182, 2009.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman, 1979.

[GM09] P.J.P. Grobler and C.M. Mynhardt. “Secure domination critical graphs.” Dis-
crete Mathematics, 309(19):5820 – 5827, 2009. Structural Graph Theory - Dedi-
cated to Professor Gary Chartrand in Honor of his 70th Birthday.

[Gol10] Oded Goldreich. P, NP, and NP-Completeness: The Basics of Computational
Complexity. Cambridge University Press, first edition, August 2010.

[Gra06] Fabrizio Grandoni. “A note on the complexity of minimum dominating set.”
Journal of Discrete Algorithms, 4(2):209–214, June 2006.

[GY03] Jonathan L. Gross and Jay Yellen, editors. Handbook of Graph Theory (Discrete
Mathematics and Its Applications). CRC, 2003.

[Hal35] P. Hall. “On Representatives of Subsets.” Journal of the London Mathematical
Society, s1-10(1):26–30, 1935.

[HD10] Yiu Yu Ho and Ronald D. Dutton. “Constructions of Global Secure Sets of Grid
Like Graphs.” Technical Report 01, University of Central Florida, 2010. See
http://www.eecs.ucf.edu/techreports/.

[HD11] Yiu Yu Ho and Ronald D. Dutton. “Global secure sets of grid-like graphs.”
Discrete Applied Mathematics, 159:490–496, March 2011.

[HHH03] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. “Global defensive alliances
in graphs.” The Electronic Journal of Combinatorics, 10:#R47, 2003.

[HHS98a] Teresa W. Haynes, S. T. Hedetniemi, and Peter J. Slater. Fundamentals of dom-
ination in graphs. CRC Press, 1998.

[HHS98b] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Domination in Graphs:
Advanced Topics. CRC Press, 1998.

[HL07] T. W. Haynes and J. A. Lachniet. “The alliance partition number of grid graphs.”
AKCE J. Graph. Combin., 4(1):51–59, 2007.

[HWW09] Cheng-Ju Hsu, Fu-Hsing Wang, and Yue-Li Wang. “Global defensive alliances in
star graphs.” Discrete Applied Mathematics, 157(8):1924 – 1931, 2009.

208

[Jam07] Lindsay Harris Jamieson. Algorithms and complexity for alliances and weighted
alliances of various types. PhD thesis, Clemson University, Clemson, SC, USA,
2007. Adviser-Hedetniemi, Stephen.

[JD07] Lindsay H. Jamieson and Brian C. Dean. “Weighted alliances in graphs.” Congr.
Numer., 187:76–82, 2007.

[Jes10] Katarzyna Jesse-Jozefczyk. “The possible cardinalities of global secure sets in
cographs.” manuscript, 2010.

[JHM09] Lindsay H. Jamieson, Stephen T. Hedetniemi, and Alice A. McRae. “The algo-
rithmic complexity of alliances in graphs.” J. Combin. Math. Combin. Comput.,
68:137–150, 2009.

[KHH04] Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. “Al-
liances in graphs.” J. Combin. Math. Combin. Comput., 48:157–177, 2004.

[KM08] William F. Klostermeyer and Christina M. Mynhardt. “Secure domination and
secure total domination in graphs.” Discuss. Math. Graph Theory, 28(2):267–
284, 2008.

[Knu98] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley, second edition, 1998.

[KOY09] Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki. “Note: Security number of
grid-like graphs.” Discrete Appl. Math., 157(11):2555–2561, 2009.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2005.

[RA07] Juan Alberto Rodriguez-Velazquez and Jose Maria Sigarreta Almira. “Spectral
study of alliances in graphs.” Discuss. Math. Graph Theory, 27:143–157, 2007.

[Rav93] James B. Orlin Ravindra K. Ahuja, Thomas L. Magnanti. Network Flows: The-
ory, Algorithms, and Applications. Prentice Hall, 1993.

[RB08] Johan M. M. van Rooij and Hans L. Bodlaender. “Design by Measure and Con-
quer, A Faster Exact Algorithm for Dominating Set.” In Susanne Albers and
Pascal Weil, editors, 25th International Symposium on Theoretical Aspects of
Computer Science (STACS 2008), volume 1 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pp. 657–668, Dagstuhl, Germany, 2008. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Keywords: Exact algorithms, exponential time algorithms, branch and reduce,
measure and conquer, dominating set, computer aided algorithm design.]

[RS06] J. A. Rodriguez-Velazquez and J. M. Sigarreta. “Global offensive alliances in
graphs.” Electron. Notes Discrete Math., 25, 2006.

209

[RS09] J.A. Rodrguez-Velzquez and J.M. Sigarreta. “Global defensive k-alliances in
graphs.” Discrete Applied Mathematics, 157:211–218, 2009.

[RYS09] Juan A. Rodrguez-Velzquez, Ismael G. Yero, and Jos M. Sigarreta. “Defensive
k-alliances in graphs.” Applied Mathematics Letters, 22:96–100, 2009.

[Sha04] Khurram H. Shafique. Partitioning a Graph in Alliances and its Application to
Data Clustering. PhD thesis, University of Central Florida, 2004.

[SR09] J. M. Sigarreta and J. A. Rodŕıguez. “On the global offensive alliance number of
a graph.” Discrete Appl. Math., 157(2):219–226, 2009.

[Wes04] Douglas B. West. Introduction to Graph Theory. Prentice Hall, second edition,
2004.

[WHL85] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. “A methodology for constructing
linear graph algorithms.” Congr. Numer., 50:43–60, 1985.

[Wim87] Thomas Victor Wimer. Linear algorithms on k-terminal graphs. PhD thesis,
Clemson University, Clemson, SC, USA, 1987.

210

	Global Secure Sets Of Trees And Grid-like Graphs
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF SYMBOLS
	CHAPTER 1 INTRODUCTION
	1.1 Defensive alliances
	1.2 Secure sets
	1.3 Global secure sets
	1.4 Trees and grid-like graphs

	CHAPTER 2 LITERATURE REVIEW
	2.1 Upper and lower bounds
	2.2 Complexity results
	2.3 Security number of certain classes of graphs

	CHAPTER 3 COMPLEXITY OF SECURE SETS
	3.1 Introduction
	3.2 Computing a feasible defense using network flow
	3.3 Verifying the security of a set
	3.4 Computing the security number of a graph

	CHAPTER 4 CHARACTERIZATION OF SECURE SETS
	4.1 Introduction
	4.2 Computing a feasible defense using maximum matching
	4.3 Secure sets characterization via Hall's Matching Theorem

	CHAPTER 5 ROOTED SECURE SETS OF TREES
	5.1 Introduction
	5.2 An O(n) algorithm
	5.3 Feasible partitions and feasibility preserving rule set
	5.4 An O(n lg()) algorithm

	CHAPTER 6 GLOBAL SECURE SETS OF TREES
	6.1 An O(n) algorithm
	6.2 Upper and lower bounds
	6.3 Global security numbers and spanning trees

	CHAPTER 7 CONSTRUCTIONS OF GLOBAL SECURE SETS OF GRID-LIKE GRAPHS
	7.1 Introduction
	7.2 Paths and cycles
	7.3 Two-dimensional grids
	7.4 Two-dimensional cylinders
	7.5 Two-dimensional tori

	CHAPTER 8 GLOBAL SECURE SETS OF C4k+2 and C3 C4k+2
	8.1 Global secure sets of C4k + 2
	8.2 Global secure sets of C3 C4k + 2

	CHAPTER 9 SUMMARY AND OPEN PROBLEMS
	9.1 Summary
	9.2 Bounds
	9.3 Algorithms and complexity
	9.4 Problems related to secure sets

	LIST OF REFERENCES

