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ABSTRACT

A measure of concordance, κ, is of polynomial type if and only if κ(tA + (1 − t)B)

is a polynomial in t where A and B are 2-copulas. The degree of such a type of measure of

concordance is simply the highest degree of the polynomial associated with κ.

In previous work [2][3], properties of measures of concordance preserving convex sums

(equivalently measures of concordance of polynomial type degree one) were established; how-

ever, a characterization was not made. Here a characterization is made using approximations

involving doubly stochastic matrices. Other representations are provided from this charac-

terization leading naturally to two interpretations of degree one measures of concordance.

The existence of a family of measures of concordance of polynomial type having

higher degree generated by a certain family of Borel measures on (0, 1)2n is also shown. The

representation of this family immediately leads to a probabilistic interpretation for all finite

measures in dn. Also, higher degree analogs of commonly known degree one measures of

concordance are given as examples. For the degree 2 case in particular, we see there is no

finite µ ∈ d2 generating Kendall’s tau. Finally, another family of measures of concordance

is given containing those generated by finite measures in d2 as well as Kendall’s tau.
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1. INTRODUCTION

When considering two random variables it can be useful to know to what degree large

values of the random variables correspond to each other. The stronger this correspondence

is, the more concordant a random vector, (X, Y ), is thought to be. Similarly, the stronger

the correspondence is between large values of one random variable and small values of the

other random variable, the more discordant a random vector, (X, Y ), is thought to be.

The concordance and discordance of (X, Y ) is gauged by a measure of concordance and

was axiomatically formulated by Scarsini in a way which is invariant under almost surely

increasing transformations of X and Y [8].

As a result of Sklar’s Theorem, for a continuous random vector, (X, Y ), with joint

distribution function, FX,Y , there exists a unique 2-copula, C, such that

F (x, y) = C(FX(x), FY (y)) (1)

where FX and FY are the distribution functions of X and Y respectively. Some common

examples of this relationship are as follows. If Y is an almost surely increasing function of X,

then M(x, y) = min(x, y) is the 2-copula satisfying (1). If Y is an almost surely decreasing

function of X, then W (x, y) = max(x + y − 1, 0) is the 2-copula satisfying (1). Finally, if

X and Y are independent, then Π(x, y) = xy is the 2-copula satisfying (1). One can see

by the role a 2-copula, C, plays in forming a joint distribution function that it induces a

doubly stochastic measure, say µC. In other words for a Borel set, A, in (0, 1) we have

µC(A × (0, 1)) = µC((0, 1) × A) = λ(A) where λ is the one-dimensional Lebesgue measure.
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Suppose C is the 2-copula associated with the continuous random vector, (X, Y ), in

the manner set forth in (1). It can be shown for any almost surely increasing transformations,

g1 and g2, that C is associated with (g1(X), g2(Y )) in the same way [6]. Otherwise stated, a

2-copula, C, associated with (X, Y ) holds the information regarding the dependence between

X and Y which is invariant under almost surely increasing transformations. Because of this,

we may use C to determine the value for a measure of concordance instead of (X, Y ).

A measure of concordance has many equivalent variations of its definition. The fol-

lowing definition is an adaptation of the one found in [6]. Here and in all that follows we

will let Cop(2) denote the set of all 2-copulas.

Definition 1. Let κ : Cop(2) → [−1, 1]. If C is the 2-copula for the continuous random

vector, (X, Y ), then we shall also write κX,Y for κ(C). κ is a measure of concordance if the

following conditions are satisfied.

1. κX,X = 1,

2. κ−X,Y = −κX,Y ,

3. κY,X = κX,Y ,

4. κ(C1) ≤ κ(C2) whenever C1 ≤ C2 pointwise, and

5. κ(Cn) → κ(C) whenever Cn → C pointwise.

Definition 2. A measure of concordance, κ, is of polynomial type if for every choice of

A, B ∈ Cop(2) the mapping t �→ κ(tA + (1 − t)B) is a polynomial in t for t ∈ [0, 1].

Definition 3. The degree of a measure of concordance of polynomial type, κ, is defined as

deg κ = sup{deg κ(tA + (1 − t)B)|A, B ∈ Cop(2)}.

2



Table 1: Some Common Measures of Concordance [6]

Spearman’s rho ρ(C) = 12
∫
(0,1)2

CdΠ − 3

Blomqvist’s beta β(C) = 4C
(

1
2
, 1

2

)− 1
Gini’s measure of association γ(C) = 8

∫
(0,1)2

Cd
(

M+W
2

)− 2

Kendall’s tau τ(C) = 4
∫
(0,1)2

CdC − 1

Referring to Table 1 one can see that Spearman’s rho, Blomqvist’s beta, and Gini’s

measure of association all are of polynomial type degree one. Also observe that Kendall’s

tau is of polynomial type degree two. In the second chapter we will give a characterization

of degree one measures of concordance using approximations which involve the use of doubly

stochastic matrices. The third chapter will use the characterization given in the second

chapter to form other representations of degree one measures of concordance which lead

naturally to some interesting interpretations. The fourth and last chapter gives a family of

measures of concordance of polynomial type having higher degree. This family is generated

by a particular set of Borel measures on (0, 1)2n to be denoted as dn. Then we place a

special focus a family of functions defined on (0, 1)4 which in many cases generates measures

of concordance of polynomial type degree 2.
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2. CHARACTERIZING DEGREE ONE MEASURES OF CONCORDANCE

In this chapter we will examine the mapping

C �→
∫

(0,1)2
(C − Π)dµ. (2)

We wish to find what properties are necessary and sufficient for µ to possess so a characteri-

zation of degree one measures of concordance can be made. This is accomplished by defining

any fixed measure of concordance as a sequence of linear functionals. By examining the

limiting behavior (with the use of doubly stochastic matrices) of this sequence we see these

functionals are each bounded and therefore may be extended. We then acquire an increasing

sequence of measures via the Riesz Representation Theorem associated with the sequence of

functionals. This sequence of measures converges to a measure which generates a degree one

measure of concordance in the manner reflected in (2).

2.1 Defining Measures of Concordance on Other Spaces

Imagine any grid placed on (0, 1)2 where the mass in each cell of the grid is spread

uniformly over each cell. If this is done in such a manner that induces a doubly stochastic

measure then what results is called a checkerboard 2-copula [1]. In particular, if the grid

is one of n × n squares then we can show there is a one-to-one correspondence between

n × n checkerboard 2-copulas and n × n doubly stochastic matrices. Because there exists a

mapping of the set of doubly stochastic matrices into Cop(2), we can adapt the properties

of a measure of concordance so it may be defined on the set of doubly stochastic matrices.

In fact, we may do so for any set having a one-to-one correspondence with the set of doubly

4



stochastic matrices. In the case of this section we will give a definition for a measure of

concordance on a particular translation of doubly stochastic matrices.

Let Čop(2n) be the set of 2n × 2n checkerboard 2-copulas and dsm(2n) be the set of

2n × 2n doubly stochastic matrices. In order to allow these matrices and any matrices to

follow in this paper to be compatible with the rectangular coordinate system in (0, 1)×(0, 1),

the numbering of the rows will go from bottom to top. With this in mind, a bijection between

these two sets is easily seen since for any R = (ri,j) ∈ dsm(2n), γi,j = 2nri,j where γi,j is the

density in the cell,
[

j−1
2n , j

2n

] × [
i−1
2n , i

2n

]
, for some C ∈ Čop(2n). φn : dsm(2n) → Čop(2n)

will be this bijection. Also, define θn : Cop(2) → Čop(2n) such that θn(A) is the 2n × 2n

checkerboard approximation of A where θn(A)
(

i
2n , j

2n

)
= A

(
i

2n , j
2n

)
for 1 ≤ i, j ≤ 2n.

Cop(2)

Čop(2n)

dsm(2n)��������
θn

��������
inclusion ��������

��������
φn

φ−1
n

Figure 1: Mappings Between Cop(2), Čop(2n), and dsm(2n)

Recall that M(x, y) = min(x, y), W (x, y) = max(x + y − 1, 0), and Π(x, y) = xy. For

Mn = (mi,j) ∈ dsm(2n) where mi,j = δij and δij is Kronecker’s delta, we have φn(Mn) =

θn(M). Similarly, for Wn = (wi,j) ∈ dsm(2n) where wi,j = δi,2n+1−j , we have φn(Wn) =

θn(W ). Finally, for Pn = (pi,j) ∈ dsm(2n) where pi,j = 1
2n , we have φn(Pn) = Π for every n.

If (X, Y ) is the random vector associated with some checkerboard 2-copula, φn(R),

for some R = (ri,j) ∈ dsm(2n) then it is easily seen that φn(RWn) where RWn = (r̂i,j) and
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r̂i,j = ri,2n+1−j is associated with (−X, Y ). Similarly, φn(RT ) is associated with (Y, X) where

RT is the transpose of R.

Given C1, C2 ∈ Čop(2n), let Rp = (rk,m(p)) = φ−1
n (Cp) for p = 1, 2. If C1 ≤ C2

pointwise, then we say that R1 ≤ R2. Note that if R1 ≤ R2, then it is equivalent that for

every i and j we have
∑i

k=1

∑j
m=1 rk,m(1) ≤∑i

k=1

∑j
m=1 rk,m(2).

For any measure of concordance, κ : Cop(2) → [−1, 1] we may define a sequence {κn}

where κn : dsm(2n) → [−1, 1] is defined as κn = κ ◦ φn. Let us reformulate Definition 1 so

we may see what a measure of concordance is in context of dsm(2n).

Definition 4. Let κn : dsm(2n) → [−1, 1] and R, S ∈ dsm(2n). {κn} is a measure of

concordance if the following hold:

1. κn(Mn) → 1 as n → ∞,

2. κn(RWn) = −κn(R),

3. κn(RT ) = κn(R),

4. κn(R) ≤ κn(S) whenever R ≤ S, and

5. κn(RN) → κn(R) whenever RN → R.

Definition 5. A measure of concordance, κn : dsm(2n) → [−1, 1], is of polynomial type if

for every choice A, B ∈ dsm(2n) the mapping t �→ κn(tA + (1− t)B) is a polynomial in t for

t ∈ [0, 1].

Definition 6. The degree of a measure of concordance of polynomial type, κn : dsm(2n) →

[−1, 1], is defined as deg κn = sup{deg κn(tA + (1 − t)B)|A, B ∈ dsm(2n)}.

6



Let Tn = {A − Pn|A ∈ dsm(2n)}. It is easily seen that the sum of the entries from

any row or column for any T ∈ Tn is zero; however, Tn is not a vector space. For instance,

2Tn + Pn �= dsm(2n). Zn, the vector space made of all 2n × 2n matrices whose each row and

column sum to zero, contains Tn. More generally defined, in order to cover square matrices

whose dimensions are not of powers of 2, let Ẑn be the vector space of all n × n matrices

whose each row and column sum to zero so that Ẑ2n = Zn.

In the proof of the next lemma the following notation will be useful. Consider a

(q + 1) × (q + 1) matrix. Separate the matrix into a 2 × 2 block matrix where the lower

left block, B1, has dimension (q − 1) × (q − 1) and B2, B3, and B4 are the three remaining

blocks. Also, let Υq be the set of (q + 1) × (q + 1) matrices whose entries in row (q + 1)

and column (q + 1) are all zero. Define a linear transformation, υq : Υq → R
q×q, where for

υq(U) = (wi,j) and U = (ui,j) we have wi,j = ui,j for 1 ≤ i, j ≤ q. What υq is essentially

doing is “removing” row (q + 1) and column (q + 1) (which are both filled with zeros) so a

q × q matrix remains.

Let Ep
i,j = (ek,m) be a p × p matrix where

ek,m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, k = i, m = j or k = i + 1, m = j + 1

−1, k = i, m = j + 1 or k = i + 1, m = j

0, otherwise

(3)

for 1 ≤ i, j ≤ p − 1. The two following lemmas were formulated and proven by M. Khosravi

[4].

Lemma 1. {Ep
i,j} for 1 ≤ i, j ≤ p − 1 form a basis for Ẑp.

7



Proof. Since dim(Ẑp) = (p−1)2, it suffices to show the matrices Ep
i,j are linearly independent

for 1 ≤ i, j ≤ p − 1. We will do this inductively.

Since dim(Ẑ2) = 1, linear independence in this case is immediate. Assume {Eq
i,j} are

linearly independent for 1 ≤ i, j ≤ q − 1 and let

q∑
i=1

q∑
j=1

ci,jE
q+1
i,j = 0 (4)

or more conveniently for Λ = {(i, j)| i = q or j = q},
q−1∑
i=1

q−1∑
j=1

ci,jE
q+1
i,j = −

∑
(i,j)∈Λ

ci,jE
q+1
i,j . (5)

Observe the sum on the right hand side of (5) results in B1 having all zero entries while the

sum on the left hand side of (5) results in all entries of row q + 1 and column q + 1 being

zero. Finally, since the sums in (5) are that of matrices whose each row and column sum are

zero, this results in all entries of row q and column q being zero as well. Then applying υq

to each side of (5) we get

q−1∑
i=1

q−1∑
j=1

ci,jυq(E
q+1
i,j ) = 0q×q (6)

where 0q×q is the q × q zero matrix. Consequently, ci,j = 0 for 1 ≤ i, j ≤ q − 1 by the

induction hypothesis. Furthermore, since B2, B3, and B4 have only zero entries, cq,1 = 0,

which in turn causes cq,2 = 0 and so on such that ci,j = 0 for all (i, j) ∈ Λ.

By Lemma 1, for any Z = (zk,m) ∈ Ẑp we can write

Z =

p−1∑
i=1

p−1∑
j=1

αp
i,j(Z)Ep

i,j. (7)

8



In the proof of the next lemma the following equation will be useful and can be verified by

using the matrices in Lemma 1 which form a basis of Ẑp. For Z = (zi,j) ∈ Ẑp,

zi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αp
i,j(Z), (i, j) = (1, 1)

αp
i,j(Z) − αp

i,j−1(Z), i = 1, 1 < j < p

αp
i,j(Z) − αp

i−1,j(Z), j = 1, 1 < i < p

αp
i,j(Z) − αp

i−1,j(Z) − αp
i,j−1(Z) + αp

i−1,j−1(Z), 1 < i, j < p.

(8)

Lemma 2. For Z ∈ Ẑp, if Z =
∑p−1

i=1

∑p−1
j=1 αp

i,j(Z)Ep
i,j, then

αp
i,j(Z) =

i∑
k=1

j∑
m=1

zk,m. (9)

Proof. By (8) αp
1,1(Z) = z1,1. Suppose for all i, j ≤ q where q < p − 1 that αp

i,j(Z) =

∑i
k=1

∑j
m=1 zk,m. Again by (8),

z1,q+1 = αp
1,q+1(Z) − αp

1,q(Z). (10)

So the induction hypothesis gives us

αp
1,q+1(Z) =

1∑
i=1

q+1∑
j=1

zi,j . (11)

Continuing in this fashion,

z2,q+1 = αp
2,q+1(Z) − αp

1,q+1(Z) − αp
2,q(Z) + αp

1,q(Z), (12)

which by (11) and the induction hypothesis gives us

αp
2,q+1(Z) =

2∑
i=1

q+1∑
j=1

zi,j . (13)

9



Eventually we get

αp
i,q+1(Z) =

i∑
k=1

q+1∑
m=1

zk,m (14)

for 1 ≤ i ≤ q. It is similarly attained that

αp
q+1,j(Z) =

q+1∑
k=1

j∑
m=1

zk,m (15)

for 1 ≤ j ≤ q. Then (14) and (15) with (8) gives us

αp
q+1,q+1(Z) =

q+1∑
k=1

q+1∑
m=1

zk,m (16)

to complete our result.

Definition 7. κn : Tn → [−1, 1] is a measure of concordance if there exists a measure of

concordance κn : dsm(2n) → [−1, 1] such that for every Q ∈ Tn, κn(Q) = κn(Q + Pn).

[-1,1]

Cop(2)
��������

θn

κ

Čop(2n)

	




φnφ−1
n

�
�

inclusion

Tn = dsm(2n) − Pn

�

κn

dsm(2n)� �
��������

κn = κ ◦ φn

Figure 2: Mappings of Redefined Measures of Concordance

Definition 8. A measure of concordance, κn : Tn → [−1, 1], is of polynomial type if for every

choice of A, B ∈ Tn the mapping t �→ κn(tA + (1 − t)B) is a polynomial in t for t ∈ [0, 1].

10



Definition 9. The degree of a measure of concordance of polynomial type, κn : Tn → [−1, 1],

is defined as deg κn = sup{deg κn(tA + (1 − t)B)|A, B ∈ Tn}.

Note that for any κn : Tn → [−1, 1] of polynomial type degree one, κn can be extended

from Tn to Zn since Tn ⊂ Zn and Zn is of finite dimension.

Lemma 3. κn : Tn → [−1, 1] is a measure of concordance of polynomial type degree one if

and only if there exists {βn
i,j} for 1 ≤ i, j < 2n such that the following hold:

1. κn(Q) =
∑2n−1

i=1

∑2n−1
j=1 α2n

i,j(Q)βn
i,j for all Q ∈ Tn,

2. κn(Mn − Pn) → 1 as n → ∞,

3. βn
i,j = βn

j,i = βn
i,2n−j, and

4. βn
i,j ≥ 0.

Proof. Let us assume κn is a measure of concordance of polynomial type degree one on Tn

and Q ∈ Tn. By Lemmas 1 and 2, Q can be written as

Q =
2n−1∑
i=1

2n−1∑
j=1

α2n

i,j(Q)E2n

i,j (17)

and since κn is of degree one and is therefore linear,

κn(Q) =

2n−1∑
i=1

2n−1∑
j=1

α2n

i,j(Q)κn(E2n

i,j ) (18)

is obtained. Letting βn
i,j = κn(E2n

i,j ) we have

κn(Q) =

2n−1∑
i=1

2n−1∑
j=1

α2n

i,j(Q)βn
i,j. (19)

11



By Definition 4, κn(Mn − Pn) = κn(Mn) → 1 as n → ∞.

Note that
E2n

i,j

2n ∈ Tn. Since

βn
i,j

2n
=

κn(E2n

i,j )

2n
= κn

(
E2n

i,j

2n
+ Pn

)

= −κn

((
E2n

i,j

2n
+ Pn

)
Wn

)
=

−κn(−E2n

i,2n−j)

2n
=

βn
i,2n−j

2n
,

(20)

it is easily seen that βn
i,j = βn

i,2n−j. Similarly,

βn
i,j

2n
=

κn(E2n

i,j )

2n
= κn

(
E2n

i,j

2n
+ Pn

)
= κn

((
E2n

i,j

2n
+ Pn

)T
)

=
κn(E2n

j,i )

2n
=

βn
j,i

2n
(21)

gives βn
i,j = βn

j,i.

Finally, noting that
E2n

i,j

2n ≥ 02n×2n where 02n×2n is the 2n × 2n zero matrix, we have

by applying κn to the previous inequality βn
i,j ≥ 0.

Now let us assume that the four aforementioned properties of this lemma hold. Recall

for any R ∈ dsm(2n) we have κn(R) = κn(R − Pn).

Clearly by the form given in the first property, κn is of degree one.

κn(Mn) = κn(Mn − Pn) → 1 as n → ∞.

Since βn
i,j = βn

j,i = βn
i,2n−j it is easily seen using changes of index that κn(RWn) =

−κn(R) and κn(RT ) = κn(R) for any R ∈ dsm(2n).

Because βn
i,j ≥ 0, it is easily seen by its form that κn is monotone.

Finally, since κn is simply a linear combination, we know that κn is continuous.

In order to compare T ∈ Tm to T̂ ∈ Tn for m < n we will say T ≡ T̂ if φm(T +Pm) =

φn(T̂ + Pn). This idea can be generalized from elements of Tn to elements of Zn for any

n. Consider in particular T̂ = (t̂i,j) ∈ Tn and T = (tk,l) ∈ Tn+1 where T ≡ T̂ . Since

12



φn(T̂ + Pn) = φn+1(T + Pn+1), then for every i, j such that 1 ≤ i, j < 2n we have

α2n

i,j(T̂ )

2n
+

ij

22n
=

α2n+1

2i,2j (T )

2n+1
+

4ij

22(n+1)
.

Therefore, 2α2n

i,j(T̂ ) = α2n+1

2i,2j (T ) whenever 1 ≤ i, j < 2n. Furthermore, since φn+1(T +Pn+1) ∈

Čop(2n) we have

t2i−1,2j−1 = t2i−1,2j = t2i,2j−1 = t2i,2j

for 1 ≤ i, j < 2n. With this in mind straightforward calculations give us

E2n

i,j ≡ 1

2
E2n+1

2i−1,2j−1 + E2n+1

2i−1,2j +
1

2
E2n+1

2i−1,2j+1 + E2n+1

2i,2j−1 + 2E2n+1

2i,2j + E2n+1

2i,2j+1

+
1

2
E2n+1

2i+1,2j−1 + E2n+1

2i+1,2j +
1

2
E2n+1

2i+1,2j+1.

(22)

Lemma 4.

βn
i,j =

1

2
βn+1

2i−1,2j−1 + βn+1
2i−1,2j +

1

2
βn+1

2i−1,2j+1 + βn+1
2i,2j−1 + 2βn+1

2i,2j + βn+1
2i,2j+1

+
1

2
βn+1

2i+1,2j−1 + βn+1
2i+1,2j +

1

2
βn+1

2i+1,2j+1.

Proof. This is immediately seen by applying any degree one measure of concordance, κn :

Tn → [−1, 1], to (22).

Let us define a measure, µn, on the Borel sets of (0, 1)2, denoted B((0, 1)2), where a

point mass of 2nβn
i,j is placed at ( j

2n , i
2n ) for every i and j such that 1 ≤ i, j ≤ 2n−1.

Here and in all that follows we will use the subsequent notation. Let

Ln =

{(
i

2n
,

j

2n

)
| 1 ≤ i, j ≤ 2n − 1

}
,

Bn = {[x1, y1] × [x2, y2]| (x1, x2), (y1, y2) ∈ Ln and xi ≤ yi for i = 1, 2},

L = ∪∞
i=1Ln, and

B = {[x1, y1] × [x2, y2]| (x1, x2), (y1, y2) ∈ L and xi ≤ yi for i = 1, 2}.

13



Notice that Bn and B include degenerate rectangles.

Define n̂ : B → N where n̂(H) = min{n|H ∈ Bn}.

Lemma 5. For any H ∈ B, {µn(H)} is a convergent sequence in R. Moreover, µn(H) ≥

µn+1(H) for all n ≥ n̂(H).

Proof. Fix H . To ease notation in this proof, we will write n̂ rather than n̂(H). H =

[
i

2n̂ , j
2n̂

] × [
k
2n̂ , m

2n̂

]
for 1 ≤ i ≤ j ≤ 2n̂ − 1 and 1 ≤ k ≤ m ≤ 2n̂ − 1. Notice for any n ≥ n̂,

H =
[

2n−n̂i
2n , 2n−n̂j

2n

]
×
[

2n−n̂k
2n , 2n−n̂m

2n

]
. Straightforward calculations yield for n ≥ n̂(H) that

µn(H) = 2n

2n−n̂j∑
q=2n−n̂i

2n−n̂m∑
p=2n−n̂k

βn
p,q (23)

and

µn+1(H) = 2n+1

2n+1−n̂j∑
q=2n+1−n̂i

2n+1−n̂m∑
p=2n+1−n̂k

βn+1
p,q . (24)

By Lemma 4 we know

µn(H) = 2n+1

2n+1−n̂j∑
q=2n+1−n̂i

2n+1−n̂m∑
p=2n+1−n̂k

βn+1
p,q

+ 2n
2n+1−n̂m∑

p=2n+1−n̂k

(
βn+1

p,2n+1−n̂i−1
+ βn+1

p,2n+1−n̂j+1

)

+ 2n

2n+1−n̂j∑
q=2n+1−n̂i

(
βn+1

2n+1−n̂k−1,q
+ βn+1

2n+1−n̂m+1,q

)

+ 2n−1(βn+1
2n+1−n̂k−1,wn+1−n̂i−1

+ βn+1
2n+1−n̂k−1,2n+1−n̂j+1

+ βn+1
2n+1−n̂m+1,2n+1−n̂i−1

+ βn+1
2n+1−n̂m+1,2n+1−n̂j+1

).

(25)

By (23), (24), (25), and Lemma 3 we see that µn(H) ≥ µn+1(H) for all n ≥ n̂. Finally, since

µn(H) ≥ 0 for all n, we know that {µn(H)} is convergent in R. We will call this limiting

value µ0(H).

14



2.2 Construction of the Measure, µ

We will construct a measure, µ, from {µn}. Remember that {µn} is a sequence of

measures where µn is associated with a degree one measure of concordance κ.

Let Rn = [ 1
2n , 2n−1

2n ]2. We define

Copn(2) = {C ∈ Cop(2)|(C − Π)(x, y) = 0 for all (x, y) �∈ Rn}. (26)

Notice if En = (Copn(2) − Π) then An = {A| A = B|Rn for some B ∈ En} is a convex,

compact subset of C(Rn) (the space of continuous functions defined on Rn) with respect to

|| · ||∞. Also, we define the linear functional, Jn : An → [−1, 1], to be Jn(A) = κ(B + Π)

where B is the unique element in En such that A = B|Rn.

The reader might find it helpful to refer back to Figure 2. Choosing any C ∈ Copn(2)

we have θn+k(C) ∈ (Čop(2n+k) ∩ Copn(2)) for all k ∈ N. Therefore,

|κ(θn+k(C))| = |κn+k(φ
−1
n+k(θn+k(C)) − Pn+k)|

=

2n+k−1∑
i=1

2n+k−1∑
j=1

α2n+k

i,j (φ−1
n+k(θn+k(C)) − Pn+k)β

n+k
i,j

=

2n+k−1∑
i=1

2n+k−1∑
j=1

(θn+k(C) − Π)

(
j

2n+k
,

i

2n+k

)
2n+kβn+k

i,j

=

∫
(0,1)2

(C − Π)dµn+k =

∫
Rn

(C − Π)dµn+k ≤ ||C − Π||∞µn+k(Rn)

= || (C − Π)|Rn ||∞µn+k(Rn).

(27)

Letting k → ∞, we have by Lemma 5 that

Jn((C − Π)|Rn) = κ(C) < || (C − Π)|Rn ||∞(µ0(Rn) + 1). (28)
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Therefore, Jn is a bounded linear functional on An and can be extended to C(Rn).

By the Riesz Representation Theorem, for every n there exists a Borel measure, µ̄n,

on Rn such that

Jn(f) =

∫
Rn

fdµ̄n (29)

for every f ∈ C(Rn).

Choose any closed rectangle (possibly degenerate), say R = [x1, x2] × [y1, y2]. There

exists an N such that R ⊂ RN . Observe the density distribution in following figure. We will

define a 2-copula CR,δ accordingly for any positive δ < 1
2N+1 . From Figure 3 we see that

Figure 3: The Density Distribution of CR,δ [3]

CR,δ has density 2 in (((x1 − δ, x1)× (y1 − δ, y1))∪ ((x2, x2 + δ)× (y2, y2 + δ))) and density 0

in (((x1 − δ, x1) × (y2, y2 + δ)) ∪ ((x2, x2 + δ)× (y1 − δ, y1))). Otherwise, CR,δ has density 1.

For positive δ < 1
2N+1 the following are true. 0 ≤ CR,δ−Π

δ2 ≤ 1. CR,δ ∈ (Copn(2) ∩

C(Rn)) for all n > N . Lastly,
CR,δ−Π

δ2 ↓ χR. Since Jn

(
CR,δ−Π

δ2

)
= Jn+1

(
CR,δ−Π

δ2

)
for all n > N

16



and by the dominated convergence theorem limδ→0 Jn

(
CR,δ−Π

δ2

)
=
∫

Rn
χRdµ̄n = µ̄n(R), we

have µ̄n(S) = µ̄n+1(S) for every S ∈ B(Rn).

Finally, if for every n we extend µ̄n so that µ̄n((0, 1)2 − Rn) = 0 we now have an

increasing sequence of Borel measures on (0, 1)2. Therefore, {µ̄n} converges to some Borel

measure on (0, 1)2 which we shall call µ here and in all that follows.

2.3 Establishing
∫
(0,1)2

(M − Π)dµ̄n → ∫
(0,1)2

(M − Π)dµ

Now that we know {µ̄n} converges setwise to the measure, µ, we must now establish

that lim
∫
(0,1)2

(M −Π)dµ̄n =
∫
(0,1)2

(M −Π)dµ in order to satisfy the continuity property for

a measure of concordance. While such a result is immediate when µ((0, 1)2) < ∞, the case

where µ((0, 1)2) = ∞ is not so obvious.

Lemma 6. limn→∞
∫
(0,1)2

(M − Π)dµ̄n =
∫
(0,1)2

(M − Π)dµ.

Proof. Since µ̄n ≤ µ setwise we have
∫
(0,1)2

(M −Π)dµ̄n ≤ ∫
(0,1)2

(M −Π)dµ. However, a gen-

eralization of Fatou’s Lemma given in [7] leaves us with
∫
(0,1)2

(M−Π)dµ ≤ lim inf
∫
(0,1)2

(M−

Π)dµ̄n.

2.4 Proof of the Characterization

Here and in all that follows we will let M(1) denote the set of all measures of con-

cordance defined on Cop(2) that are of polynomial type degree one. This section establishes

a characterization of elements of M(1). The representation given in this characterization

is generated by a collection of Borel measures on (0, 1)2 satisfying certain properties which

17



are said to be of degree one form. Also in this section a one-to-one correspondence between

M(1) and these generating measures of degree one form is shown.

A property that measures of degree one form share is a certain invariance with regard

to the group of symmetries on (0, 1)2. This group of symmetries is standardly denoted D4.

Recall that B((0, 1)2) denotes the collection of Borel sets in (0, 1)2.

Definition 10. A measure, µ, is D4-invariant if and only if for every ξ ∈ D4 and every

S ∈ B((0, 1)2) we have µ(ξ(S)) = µ(S).

Since h (the reflection about x = 1
2
) and T (the reflection about y = x) generate D4

it will always suffice to check invariance with respect to these operations in order to confirm

whether a measure is D4-invariant.

The following three lemmas are results shown in an earlier paper and will be given

here without their proofs. (See [3].) If µC is the doubly stochastic measure induced by the

2-copula, C, then (µC ◦ h) and (µC ◦ T ) are the doubly stochastic measures induced by Ch

and CT respectively.

Lemma 7. A Borel measure, µ, on (0, 1)2 is D4-invariant if and only if

∫
(0,1)2

(Ch − Π)dµ = −
∫

(0,1)2
(C − Π)dµ (30)

and

∫
(0,1)2

(CT − Π)dµ =

∫
(0,1)2

(C − Π)dµ (31)

for all C ∈ Cop(2).

18



Lemma 8. If µ and ν are regular Borel measures on (0, 1)2 such that for every C ∈ Cop(2)

∫
(0,1)2

(C − Π)dµ =

∫
(0,1)2

(C − Π)dν, (32)

then µ = ν.

Lemma 9. Let µ be a Borel measure on (0, 1)2.

κ(C) = γ

∫
(0,1)2

(C − Π)dµ (33)

is a measure of concordance for some γ > 0 if and only if µ is D4-invariant, 0 <
∫
(0,1)2

(M −

Π)dµ < ∞, and γ = (
∫
(0,1)2

(M − Π) dµ)−1.

Definition 11. A Borel measure, µ, is of degree one form if and only if it is D4-invariant

and
∫
(0,1)2

(M − Π)dµ = 1.

Theorem 1. κ ∈ M(1) if and only if there exists a unique measure, µ, of degree one form

where

κ(C) =

∫
(0,1)2

(C − Π)dµ (34)

for all C ∈ Cop(2).

Proof. Choose κ ∈ M(1). For any C ∈ Cop(2), we can form a sequence, {Cn}, such

that Cn ∈ Copn(2) where Cn → C. By Lemma 6 and a generalization of the Lebesgue

Convergence Theorem given in [7],

lim
n→∞

κ(Cn) = lim
n→∞

Jn((C − Π)|Rn ) = lim
n→∞

∫
(0,1)2

(Cn − Π)dµ̄n =

∫
(0,1)2

(C − Π)dµ. (35)
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Noting that for a measure of concordance, κ(Cn) → κ(C) whenever Cn → C, we have

κ(C) =
∫
(0,1)2

(C −Π)dµ and in particular
∫
(0,1)2

(M −Π)dµ = 1. Furthermore, (30) and (31)

are satisfied from Lemma 7 since κ ∈ M(1). Therefore, µ is D4-invariant and must be of

degree one form. Finally, µ is unique by Lemma 8.

If we assume that κ(C) =
∫
(0,1)2

(C − Π)dµ where µ is of degree one form, then

κ ∈ M(1) by Lemma 9.

When we write κ(C) =
∫
(0,1)2

(C − Π)dµ for κ ∈ M(1) we will say µ is the unique

measure of degree one form generating κ.
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3. OTHER REPRESENTATIONS OF M(1)

This chapter establishes another characterization of elements of M(1). Interpreta-

tions of a probabilistic and measure-theoretic nature via this characterization are given. In

addition, a focus is placed on what types of measures and functions generate the forms

associated with these interpretations.

3.1 Another Measure Generated Characterization of M(1)

We can write D4 = {e, r, r2, r3, h, hr, hr2, hr3} as the group of symmetries on (0, 1)2

where h is the reflection about x = 1
2

and r is a 90◦ counterclockwise rotation. For a 2-

copula, C, inducing the doubly stochastic measure, µC , and associated with the random

vector, (X, Y ), we define Cξ as the 2-copula inducing the doubly stochastic measure, µCξ ,

where µCξ(S) = µC(ξ(S)) for all S ∈ B((0, 1)2). Each Cξ is the 2-copula of a random vector

of the form (±X,±Y ) or (±Y,±X). The table to follow shortly describes this relationship

more explicitly.

Table 2: Symmetries of 2-Copulas on (0, 1)2 and Associated Random Vectors

D4 2-copula random vector
e C (X, Y )
r Cr (−Y, X)

r2 Cr2
(−X,−Y )

r3 Cr3
(Y,−X)

h Ch (−X, Y )
hr Chr (Y, X)

hr2 Chr2
(X,−Y )

hr3 Chr3
(−Y,−X)
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When observing the table one might recognize how the symmetry properties of De-

finition 1 lend themselves to manipulating the representation of a degree one measure of

concordance. In order to ease notation let us set forth another definition.

Definition 12. For each ξ ∈ D4, the order of ξ is defined as

|ξ| = min{n| ξ = ξ1ξ2...ξn where ξi = h, r for all i = 1, 2, ..., n}. (36)

Recall in Definition 1 it is stated that κ−X,Y = −κX,Y and κY,X = κX,Y . Therefore

we may write κ(Cξ) = (−1)|ξ|κ(C). With this in mind and being prompted by some helpful

notes [11] we have the following theorem.

Theorem 2. κ ∈ M(1) if and only if there exists a unique measure, µ, of degree one form

such that

κ(C) =
1

8

∫
(0,1)2

{∑
ξ∈D4

(−1)|ξ|Cξ

}
dµ (37)

for all C ∈ Cop(2).

Proof. Choose κ ∈ M(1). By Theorem 1 there exists a unique measure of degree one form

where

κ(C) =
1

8

∑
ξ∈D4

(−1)|ξ|κ(Cξ) =
1

8

∑
ξ∈D4

{
(−1)|ξ|

(∫
(0,1)2

(Cξ − Π)dµ

)}

=
1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ.

(38)

Now let us assume that κ(C) = 1
8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ where µ is of degree

one form. By Theorem 1, C �→ ∫
(0,1)2

(C −Π)dµ is some degree one measure of concordance,

say κ0. Repeating the calculations in (38) on κ0 gives us κ = κ0. So κ ∈ M(1).
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Theorem 3. Let κ : Cop(2) → [−1, 1]. The following are equivalent.

1. κ is a measure of concordance of polynomial type degree one.

2. There exists a unique measure, µ, of degree one form such that

κ(C) =

∫
(0,1)2

(C − Π)dµ (39)

for all C ∈ Cop(2).

3. There exists a unique measure, µ, of degree one form such that

κ(C) =
1

8

∫
(0,1)2

{∑
ξ∈D4

(−1)|ξ|Cξ

}
dµ (40)

for all C ∈ Cop(2).

Proof. This is immediate by Theorems 1 and 2.

For any κ ∈ M(1), if there exists ν where

κ(C) =
1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dν (41)

for every C ∈ Cop(2) let us also say that ν generates κ. This suggests the measure generating

κ is not unique in general when using the representation given in Theorem 2. For instance,

when considering Gini’s measure of association we have

γ(C) =

∫
(0,1)2

∑
ξ∈D4

(−1)|ξ|Cξd

(
M + W

2

)
=

∫
(0,1)2

∑
ξ∈D4

(−1)|ξ|CξdM. (42)

Therefore, 8µM+W
2

and 8µM generate γ. However, by Theorem 1 exactly one generator is

D4-invariant for a fixed κ ∈ M(1). In here and in all that follows let

V (κ) = {ν|ν generates κ}. (43)
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Remark 1. V (κ) is convex. Let µ, ν ∈ V (κ) and define

S(C, µ) =
1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ. (44)

Choose any t ∈ [0, 1].

S(C, tµ + (1 − t)ν) = tS(C, µ) + (1 − t)S(C, ν) = tκ(C) + (1 − t)κ(C) = κ(C). (45)

So (tµ + (1 − t)ν) ∈ V (κ).

Referring to the following table we see that
∑

ξ∈D4
(−1)|ξ|Cξ =

∑
ξ∈D4

(C ◦ ξ) − 2.

Table 3: Equations for Symmetries of 2-Copulas, Cξ, in Terms of C

Cr(x, y) = x − C(1 − y, x)

Cr2
(x, y) = x + y − 1 + C(1 − x, 1 − y)

Cr3
(x, y) = y − C(y, 1 − x)

Ch(x, y) = y − C(1 − x, y)
Chr(x, y) = C(y, x)

Chr2
(x, y) = x − C(x, 1 − y)

Chr3
(x, y) = x + y − 1 + C(1 − y, 1 − x)

Remark 2. If µ ∈ V (κ), then (µ ◦ ζ) ∈ V (κ) for every ζ ∈ D4 since

1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
d(µ ◦ ζ) =

1

8

∫
(0,1)2

∑
ξ∈D4

{(C ◦ ξ) − 2} d(µ ◦ ζ)

=
1

8

∫
(0,1)2

(∑
ξ∈D4

(C ◦ ξ ◦ ζ−1) − 2

)
dµ =

1

8

∫
(0,1)2

(∑
ξ∈D4

(C ◦ ξ) − 2

)
dµ

=
1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ = κ(C).

(46)

Remark 3. There exists exactly one D4-invariant element of V (κ). This is immediate by

Theorem 2.
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Remark 4. V (κ) is a singleton if and only if κ is Blomqvist’s beta.

If κ = β, then µ = 4δ
(

1
2
, 1

2

)
where δ(x, y) is the unit point mass at (x, y) is the only

D4-invariant measure generating β. For ν ∈ V (β), we know from the work shown in Remarks

1 and 2 that 1
8

∑
ξ∈D4

(ν ◦ ξ) ∈ V (κ). Furthermore, since 1
8

∑
ξ∈D4

(ν ◦ ξ) is D4-invariant we

know by Remark 3 that

1

8

∑
ξ∈D4

(ν ◦ ξ) = µ. (47)

However, this implies ν has all its mass concentrated at
(

1
2
, 1

2

)
. So ν = µ.

On the other hand, suppose V (κ) is a singleton. If κ �= β, then for the unique D4-

invariant measure generating κ, say µ, we must have µ
(((

0, 1
2

)× (
0, 1

2

]))
> 0. Let us define

a measure, ν, on B((0, 1)2) where ν(S) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2µ(S), S ∈ B
(((

0, 1
2

)× (
0, 1

2

]) ∪ (1
2
, 1
)2
)

µ(S), S ∈ B (({1
2

}× (0, 1)
))

0, otherwise.

Notice ν �= µ since µ
(((

0, 1
2

)× (
0, 1

2

]))
> 0. Recalling that

∑
ξ∈D4

(−1)|ξ|Cξ =
∑
ξ∈D4

(C ◦ ξ) − 2 (48)

and keeping in mind the construction of ν as well as the D4-invariance of µ, straightforward

calculations yield

1

8

∫
(0,1)2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dν

=
1

8

{
2

∫
((0, 1

2)×(0, 1
2 ])∪( 1

2
,1)

2

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ +

∫
{ 1

2}×(0,1)

∑
ξ∈D4

{
(−1)|ξ|Cξ

}
dµ

} (49)
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and∫
((0, 1

2)×(0, 1
2 ])∪( 1

2
,1)

2

∑
ξ∈D4

(−1)|ξ|Cξdµ =

∫
((0, 1

2)×(0, 1
2 ])∪( 1

2
,1)

2

(∑
ξ∈D4

(C ◦ ξ) − 2

)
dµ

=

∫
((1

2
,1)×(0, 1

2 ])∪((0, 1
2)×( 1

2
,1))

(∑
ξ∈D4

(C ◦ ξ ◦ h) − 2

)
d(µ ◦ h)

=

∫
((1

2
,1)×(0, 1

2 ])∪((0, 1
2)×( 1

2
,1))

(∑
ξ∈D4

(C ◦ ξ) − 2

)
dµ

=

∫
((1

2
,1)×(0, 1

2 ])∪((0, 1
2)×( 1

2
,1))

∑
ξ∈D4

{(−1)|ξ|Cξ}dµ.

(50)

Therefore
∫
(0,1)2

∑
ξ∈D4

{(−1)|ξ|Cξ}dν =
∫
(0,1)2

∑
ξ∈D4

{(−1)|ξ|Cξ}dµ = κ(C). But this would

cause ν ∈ V (κ) also so that V (κ) would not be a singleton. Therefore κ = β.

3.2 A Form for Elements of M(1) Generated by Finite Measures

When restricting our consideration to degree one measures of concordance generated

by finite measures of degree one form we may establish another representation using the

characterization in the previous section. This form leads to two interpretations of such a

type of measure of concordance.

Fix any C ∈ Cop(2) and any measure of degree one form, µ. Let X = (X1, X2) :

(0, 1)4 → (0, 1)2 and Y = (Y 1, Y 2) : (0, 1)4 → (0, 1)2 be such that X1 and X2 are projection

maps in the first and second coordinates respectively and Y 1 and Y 2 are projection maps

in the third and fourth coordinates respectively. Letting Z = (X, Y ) we can construct a

product measure, η = µC × µ, on B((0, 1)4) such that for every S ∈ B((0, 1)2), η(X ∈ S) =

µC(X ∈ S)µ((0, 1)2) and η(Y ∈ S) = µC((0, 1)2)µ(S). The ideas in the proof of the following

lemma were set forth by [10].
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Lemma 10. Let µ be a finite Borel measure on (0, 1)2. For every ξ ∈ D4 and C ∈ Cop(2),∫
(0,1)2

Cξdµ =

∫
(0,1)2

(Ḡµ ◦ ξ−1)dC (51)

where Ḡµ(x1, x2) = µ([x1, 1) × [x2, 1)).

Proof. Fix ξ ∈ D4 and C ∈ Cop(2). For x̄ = (x1, x2) ∈ (0, 1)2,

Cξ(x̄) = µCξ([0, x1] × [0, x2]) = µC(ξ([0, x1] × [0, x2])) = µC((ξ−1 ◦ X) ≤ x̄). (52)

Let {Bk} and {Dm}, be sequences in B((0, 1)2) strictly increasing to (0, 1)2.

If we define

Ak,m = {(ξ−1 ◦ X ≤ Y ) ∩ (Bk × Dm))} and A = {ξ−1 ◦ X ≤ Y } (53)

we have Ak,m ⊆ Ap,q whenever k ≤ p and m ≤ q and ∪∞
k=1 ∪∞

m=1 Ak,m = A. Because of this

we have

lim
k,m→∞

η(Ak,m) = η(A) = η(ξ−1 ◦ X ≤ Y ). (54)

Letting Ḡm(ȳ) = µ(Y ≥ ȳ, Y ∈ Dm), calculations using conditional measure give us

η(Ak,m) = η(ξ−1 ◦ X ≤ Y, X ∈ Bk, Y ∈ Dm)

=

∫
Bk

η(Y ≥ x̄, Y ∈ Dm|ξ−1 ◦ X = x̄) dµCξ(x̄) =

∫
Bk

Ḡm(x̄)dµCξ(x̄)

=

∫
Bk

(Ḡm ◦ ξ−1)dµC =

∫
Bk

(Ḡm ◦ ξ−1)dC =

∫
(0,1)2

(Ḡm ◦ ξ−1)χBk
dC.

(55)

However, if we let Ck(x̄) = µC(ξ−1 ◦ X ≤ x̄, X ∈ Bk), calculations give us

η(Ak,m) = η(ξ−1 ◦ X ≤ Y, X ∈ Bk, Y ∈ Dm)

=

∫
Dm

η(ξ−1 ◦ X ≤ ȳ, X ∈ Bk|Y = ȳ) dµ(ȳ) =

∫
Dm

Ck(ȳ)dµ(ȳ)

=

∫
(0,1)2

CkχDmdµ.

(56)
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Fixing k, an application of the monotone convergence theorem to (55) gives us

lim
m→∞

∫
(0,1)2

(Ḡm ◦ ξ−1)χBk
dC =

∫
(0,1)2

(Ḡµ ◦ ξ−1)χBk
dC (57)

while doing the same to (56) gives us

lim
m→∞

∫
(0,1)2

CkχDm =

∫
(0,1)2

Ckdµ. (58)

We then obtain from an additional application of the monotone convergence theorem to the

right hand side of (57)

lim
k→∞

∫
(0,1)2

(Ḡµ ◦ ξ−1)χBk
dC =

∫
(0,1)2

(Ḡµ ◦ ξ−1)dC (59)

while doing the same to (58), (52) gives us

lim
k→∞

∫
(0,1)2

Ckdµ =

∫
(0,1)2

Cξdµ. (60)

From (54)-(60) we have

η(ξ−1 ◦ X ≤ Y ) =

∫
(0,1)2

(Ḡµ ◦ ξ−1)dC =

∫
(0,1)2

Cξdµ (61)

which completes our proof.

Remark 5. For any κ ∈ M(1) generated by a finite measure of degree one form it can be

shown that κ(C) is simply a difference of the concordance and discordance of any continuous

random vector, (X1, X2), associated with C.

Choose any κ ∈ M(1) generated by a finite measure of degree one form, say µ. Also,

let Ȳ = (Y1, Y2) be any random vector associated with µ and choose any C ∈ Cop(2). Let

(X1, X2) be any continuous random vector associated with C.
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Define µξ(S) = µ(ξ(S)) for every S ∈ B((0, 1)2). By Theorem 2 as well as the

D4-invariance and finiteness of µ we have,

κ(C) =
1

8

∫
(0,1)2

∑
ξ∈D4

{(−1)|ξ|Cξ}dµ =
1

8

∑
ξ∈D4

{
(−1)|ξ|

∫
(0,1)2

Cξdµξ

}
. (62)

Having η be defined in the same context as in Lemma 10,

κ(C) =
1

8

∑
ξ∈D4

{
(−1)|ξ|η(ξ−1 ◦ X̄ < ξ−1 ◦ Ȳ )

}

=
1

4
(η((X1 − Y1)(X2 − Y2) > 0) − η((X1 − Y1)(X2 − Y2) < 0)).

(63)

Therefore, κ(C) is simply 1
4

times the difference of the η measure of concordance and the η

measure of discordance of any continuous random vector (X1, X2) associated with C.

Here and in all that follows for x̄ = (x1, x2) ∈ (0, 1)2 we will let

S1(x̄) =

[
1

2
−
∣∣∣∣12 − x1

∣∣∣∣ , 1

2
+

∣∣∣∣12 − x1

∣∣∣∣
)
×
[
1

2
−
∣∣∣∣12 − x2

∣∣∣∣ , 1

2
+

∣∣∣∣12 − x2

∣∣∣∣
)

(64)

and

S2(x̄) =

[
1

2
−
∣∣∣∣12 − x2

∣∣∣∣ , 1

2
+

∣∣∣∣12 − x2

∣∣∣∣
)
×
[
1

2
−
∣∣∣∣12 − x1

∣∣∣∣ , 1

2
+

∣∣∣∣12 − x1

∣∣∣∣
)

. (65)

Theorem 4. If κ ∈ M(1) is generated by a finite measure of degree one form, say µ, then

κ(C) =
1

8

∫
(0,1)2

sgn

((
1

2
− x1

)(
1

2
− x2

))
(µ(S1(x̄)) + µ(S2(x̄)))dC (66)

for all C ∈ Cop(2).
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Proof. Fix κ ∈ M(1) generated by a finite measure of degree one form, µ. By Theorem 2

and Lemma 10

κ(C) =
1

8

∫
(0,1)2

{∑
ξ∈D4

(−1)|ξ|Cξ

}
dµ =

1

8

∑
ξ∈D4

(−1)|ξ|
∫

(0,1)2
Cξdµ

=
1

8

∑
ξ∈{e,h,hr2,r2}

(−1)|ξ|
∫

(0,1)2
(Ḡµ ◦ ξ−1)dC +

1

8

∑
ξ∈{hr,r,r3,hr3}

(−1)|ξ|
∫

(0,1)2
(Ḡµ ◦ ξ−1)dC.

(67)

If one considers (x1, x2) ∈
(
0, 1

2

)2
it can be seen that

∑
ξ∈{e,h,hr2,r2}

(−1)|ξ|(Ḡµ ◦ ξ−1)(x1, x2) = µ(S1(x̄)), and

∑
ξ∈{hr,r,r3,hr3}

(−1)|ξ|(Ḡµ ◦ ξ−1)(x1, x2) = µ(S2(x̄)).

(68)

More generally for (x1, x2) ∈ (0, 1)2,

∑
ξ∈{e,h,hr2,r2}

(−1)|ξ|(Ḡµ ◦ ξ−1)(x1, x2) = sgn

((
1

2
− x1

)(
1

2
− x2

))
µ(S1(x̄)), and

∑
ξ∈{hr,r,r3,hr3}

(−1)|ξ|(Ḡµ ◦ ξ−1)(x1, x2) = sgn

((
1

2
− x1

)(
1

2
− x2

))
µ(S2(x̄))

(69)

which completes our proof.

While it seems reasonable that Theorem 4 should hold for all κ ∈ M(1), it still

remains to be seen if that is the case.

In here and in all that follows let ∆ denote the set of all finite measures of degree one

form and M<∞(1) = {κ|κ ∈ M(1) where κ is generated by some µ ∈ ∆}.

Remark 6. For any κ ∈ M<∞(1), if ν ∈ V (κ) then ν((0, 1)2) < ∞. If we assume that

ν((0, 1)2) = ∞ then from Remarks 1, 2, and 3 we have µ = 1
8

∑
ξ∈D4

(ν ◦ ξ) as the unique
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measure of degree one form generating κ. However, this gives us µ((0, 1)2) = ∞. So

ν((0, 1)2) < ∞ for all ν ∈ V (κ).

Remark 7. Notice the representation in Theorem 4 gives us another probabilistic interpre-

tation for any κ ∈ M<∞(1) in addition to the one given in Remark 5. Namely,

κ(C) = E(Γµ(X̄)) (70)

where Γµ(x̄) = 1
8
sgn

((
1
2
− x1

) (
1
2
− x2

))
(µ(S1(x̄)) + µ(S2(x̄))), µ is the unique measure of

degree one form generating κ, and X̄ is any continuous random vector associated with C.

Moreover, by Lemma 10 and Remarks 4 and 6 we also see for ν ∈ V (κ) that

κ(C) =

∫
(0,1)2

ΓνdC (71)

for every C ∈ Cop(2) even when ν is not of degree one form.

Definition 13. Let Γ̄V (κ) = {Γν |ν ∈ V (κ)}. ∪κ∈M<∞(1) Γ̄V (κ) is the set of concordance

functions.

There are some properties that concordance functions share which are noteworthy.

Let µ ∈ V (κ) for some κ ∈ M<∞(1). To better illustrate some of the properties to be listed

next it will be helpful to keep in mind that for (x1, x2) ∈
(
0, 1

2

)2

Γµ(x1, x2) =
1

8
(µ([x1, 1 − x1) × [x2, 1 − x2)) + µ([x2, 1 − x2) × [x1, 1 − x1))) (72)

and for x̄ = (x1, x2) ∈ (0, 1)2

Γµ(x1, x2) =
1

8
sgn

(
1

2
− x1

)(
1

2
− x2

)
(µ(S1(x̄)) + µ(S2(x̄))). (73)

It will be helpful to note that any concordance function, Γ, has the following properties:
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1. for every ξ ∈ D4 we have Γ(x̄) = (−1)|ξ|Γ(ξ(x̄)) (see (73)),

2. Γ is left-continuous in
(
0, 1

2

)2
(see (72)), and

3. Γ is a survival function on
(
0, 1

2

)2
(again see (72)).

Theorem 5. If µ, ν ∈ V (κ) for some κ ∈ M<∞(1), then Γµ = Γν.

Proof. Because of the properties held by concordance functions, it will suffice to show unique-

ness in
(
0, 1

2

)2
.

Choose κ ∈ M<∞(1) and µ, ν ∈ V (κ). By Theorem 4, for any C ∈ Cop(2) and any

continuous random vector, X̄, associated with C we have κ(C) = E(Γµ(X̄)) = E(Γν(X̄)).

More conveniently written,

E((Γµ − Γν)(X̄)) = 0 (74)

for every continuous random vector X̄.

Suppose there exists (x1, x2) ∈
(
0, 1

2

)2
such that (Γµ −Γν)(x1, x2) = ε for some ε > 0.

Since Γµ and Γν are both left continuous in each coordinate there exists a δ > 0 such that

(x1 − δ, x1) × (x2 − δ, x2) ⊂
(

0,
1

2

)2

(75)

and

inf
(x1,x2)∈(x1−δ,x1)×(x2−δ,x2)

(Γµ − Γν)(x1, x2) >
ε

2
. (76)

With this δ > 0 we refer back to the construction of the 2-copula, CR,δ, whose density

distribution is described in Figure 3 where R = [x1, 1 − x1] × [x2, 1 − x2]. Indeed, CR,δ has
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density of 2 in ((x1 − δ, x1) × (x2 − δ, x2)) ∪ ((1 − x1, 1 − x1 + δ) × (1 − x2, 1 − x2 + δ)) and

density 0 in ((x1−δ, x1)× (1−x2, 1−x2 +δ))∪ ((1−x1, 1−x1 +δ)× (x2−δ, x2)). Otherwise,

CR,δ has density 1. For any continuous random vectors Ȳ and Z̄ associated with CR,δ and

Π respectively

0 = E((Γµ − Γν)(Ȳ )) − E((Γκ − Γ0)(Z̄)) =

∫
(0,1)2

(Γµ − Γν)d(CR,δ − Π)

= 4

∫
(x1−δ,x1)×(x2−δ,x2)

(Γµ − Γν)dΠ > 2εδ2 > 0.

(77)

Therefore Γµ(x1, x2) = Γν(x1, x2).

Blomqvist’s beta, Spearman’s rho, and Gini’s measure of association are all ele-

ments of M<∞(1) where β(C) = 4C
(

1
2
, 1

2

) − 1, ρ(C) = 12
∫
(0,1)2

CdΠ − 3, and γ(C) =

8
∫
(0,1)2

Cd(M+W
2

) − 2 [6]. Let us see what are their respective concordance functions.

Example 1. Blomqvist’s beta is generated by a measure of degree one form, µ, where a

mass of 4 is placed at
(

1
2
, 1

2

)
. In this case we have

Γµ(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1,
(

1
2
− x1

) (
1
2
− x2

)
> 0,

−1,
(

1
2
− x1

) (
1
2
− x2

)
< 0,

0, otherwise

(78)

as the concordance function of β.

Example 2. Spearman’s rho is generated by a measure of degree one form which is 3
2

times

the Lebesgue measure on B((0, 1)2). Here we will let λ2 denote the two-dimensional Lebesgue

measure. In this case we have

Γ 3
2
λ2(x1, x2) = 3(1 − 2x1)(1 − 2x2) (79)
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as the concordance function of ρ.

Example 3. Gini’s measure of association, γ, is generated by a measure of degree one form

where a mass of 8 units is distributed uniformly on the line segments y = x and x+y−1 = 0

intersecting with (0, 1)2. More explicitly, γ is generated by 8 times the doubly stochastic

measure induced by the 2-copula M+W
2

(written 8µM+W
2

). In this case we have

Γ8µM+W
2

(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (x1, x2) = (1
2
, 1

2
)

4 sgn
(

1
2
−x2

1
2
−x1

) ∣∣1
2
− x2

∣∣ , x2 ≤ x1 and x1 + x2 > 1, or

x2 > x1 and x1 + x2 ≤ 1

4 sgn
(

1
2
−x1

1
2
−x2

) ∣∣1
2
− x1

∣∣ , otherwise

(80)

as the concordance function of γ.
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4. MEASURES OF CONCORDANCE OF HIGHER DEGREE

In this chapter we give a representation for a family of measures of concordance of

higher degree. This family is generated by a particular collection of Borel measures on

(0, 1)2n. We will denote this collection of measures on (0, 1)2n as dn. Also, we will place

special focus on the degree 2 measure of concordance, Kendall’s tau, and show it is not

generated by any finite measure in d2. We then give another form for a family of measures

of concordance containing those generated by finite measures in d2 as well as Kendall’s tau.

4.1 Measures of Concordance Generated by dn

Let x̄i ∈ [0, 1]2 for i = 1, . . . , n. For C ∈ Cop(2), we define

C(x̄i)
⊗

C(x̄j) = C(x̄i)C(x̄j). (81)

Furthermore, we will let

Cn(x̄1, . . . , x̄n) =

n⊗
i=1

C(x̄i). (82)

It is straightforward to see that Cn ∈ Cop(2n) [9].

Definition 14. A Borel measure, µ, on (0, 1)2n belongs to dn if and only if

0 <

∫
(0,1)2n

(Mn − W n)dµ < ∞. (83)

Theorem 6. κ(C) = ξ∈{e,r2,hr,hr3}{ (0,1)2n ((Cξ)n−(Chξ)n)dµ}
ξ∈{e,r2,hr,hr3}{ (0,1)2n ((Mξ)n−(Mhξ)n)dµ} is a measure of concordance of

polynomial type degree m for some m ≤ n if and only if µ ∈ dn.
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Proof. If κ having the prescribed representation is a degree m measure of concordance for

some m ≤ n, clearly
∑

ξ∈{e,r2,hr,hr3}
∫
(0,1)2n((M ξ)n−(Mhξ)n)dµ is nonzero and finite. For C1 ≤

C2, it is immediately seen when referring to Table 3 that (Cξ
1 −Chξ

1 ) ≤ (Cξ
2 −Chξ

2 ) whenever

|ξ| is even. Because of this fact, the form of κ implies that
∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2n((M ξ)n −

(Mhξ)n)dµ} is nonnegative. Finally, since

4

∫
(0,1)2n

(Mn − W n)dµ =
∑

ξ∈{e,r2,hr,hr3}

{∫
(0,1)2n

((M ξ)n − (Mhξ)n)dµ

}
(84)

we see µ ∈ dn.

Since µ ∈ dn, we know by the form of κ that it is defined for all C ∈ Cop(2). The

form of κ also makes it clear that κ(M) = 1 and that κ(C1) ≤ κ(C2) whenever C1 ≤ C2.

Recall from Table 2 if C is the 2-copula associated with the continuous random vector

(X, Y ), then Ch and Chr are the 2-copulas associated with (−X, Y ) and (Y, X) respectively.

Because of this fact, it is again clear by the form of κ that κ−X,Y = −κX,Y and κY,X = κX,Y .

If {Mk} is a sequence in Cop(2) such that Mk → M , then it is immediate that

(M ξ
k)n → Mn whenever |ξ| is even and M ξ

k → W whenever |ξ| is odd. Recall W ≤ C ≤ M

for every C ∈ Cop(2) [5]. Therefore for any |ξ| even we have

∫
(0,1)2n

((M ξ
k )n − (Mhξ

k )n)dµ ≤
∫

(0,1)2n

(Mn − W n)dµ. (85)

However, by a generalization of Fatou’s Lemma [7] we have

∫
(0,1)2n

(Mn − W n)dµ ≤ lim inf

∫
(0,1)2n

((M ξ
k )n − (Mhξ

k )n)dµ. (86)

So lim
∫
(0,1)2n((M ξ

k )n − (W hξ
k )n)dµ =

∫
(0,1)2n(Mn − W n)dµ for every |ξ| even. This fact

combined with a generalization of the Lebesgue Convergence Theorem [7] gives us for any
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C ∈ Cop(2) and any sequence, {Ck}, in Cop(2) where Ck → C that

lim

∫
(0,1)2n

((Cξ
k)

n − (Chξ
k )n)dµ =

∫
(0,1)2n

((Cξ)n − (Chξ)n)dµ. (87)

Hence, κ(Ck) → κ(C).

Finally, κ must be of polynomial type degree m for some m ≤ n by its form.

The next lemma will be of use in the subsequent corollary as well as in some upcoming

examples. Its proof can be found in [2].

Lemma 11. Given A, B ∈ Cop(2),
∫
(0,1)2

AξdB =
∫
(0,1)2

AdBξ whenever |ξ| is even and

∫
(0,1)2

AξdB +
∫
(0,1)2

AdBξ = 1
2

whenever |ξ| is odd.

Corollary 1. Let µ ∈ dn be the multiply stochastic measure induced by the 2n-copula,

⊗n
i=1 A, for some D4-invariant 2-copula, A. µ generates a degree n measure of concordance

for all n odd and generates a degree (n − 1) measure of concordance for all n even.

Proof. For simplicity, let α =
(∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2n((M ξ)n − (Mhξ)n)dµ}

)−1

. Combining

Fubini’s Theorem and Lemma 11 we have for every |ξ| even,

∫
(0,1)2n

((Cξ)n − (Chξ)n)dµ =

(∫
(0,1)2

CdA

)n

−
(

1

2
−
∫

(0,1)2
CdA

)n

. (88)

Therefore, κ(C) = 4α
((∫

(0,1)2
CdA

)n

−
(

1
2
− ∫

(0,1)2
CdA

)n)
.

It is interesting to note by Corollary 1 that any measure of concordance generated by

(A
⊗

A) for a D4-invariant 2-copula, A, is identical to the measure of concordance generated

by A.
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Remark 8. We will show that any measure of concordance, κ, generated by some finite

µ ∈ dn takes the form of an expected value. We may easily generalize Lemma 10 to measures

on (0, 1)2n so that for the survival function, Ḡµ, associated with µ we have

∫
(0,1)2n

(Cξ(x̄1, . . . , x̄n))ndµ =

∫
(0,1)2n

Ḡµ(ξ−1(x̄1), . . . , ξ−1(x̄n))dCn. (89)

Therefore by Theorem 6 we may write κ(C) =
∫
(0,1)2n ΓµdCn where

Γµ(x̄1, . . . , x̄n) =

∑
ξ∈D4

(−1)|ξ|Ḡµ(ξ−1(x̄1), . . . , ξ−1(x̄n))

4
∫
(0,1)2n(Mn − W n)dµ

. (90)

If we have a collection of continuous random vectors (Xi, Yi) for i = 1, . . . , n where C is

the 2-copula associated with (Xi, Yi) for each i and each random vector is independently

observed from the other, then for Z̄ = (X1, Y1, . . . , Xn, Yn) we have

κ(C) = E(Γµ(Z̄)). (91)

Blomqvist’s beta, Spearman’s rho, and Gini’s measure of association are all generated

by measures in d1. Now let us form analogs of those measures belonging to dn.

Example 4. Let a mass of k > 0 be placed at
(

1
2
, 1

2

)
in order to form µ ∈ d1. From

Table 3 it is easily seen that for every C ∈ Cop(2) and |ξ| even, Cξ
(

1
2
, 1

2

)
= C

(
1
2
, 1

2

)
and

Chξ
(

1
2
, 1

2

)
= 1

2
− C

(
1
2
, 1

2

)
. Therefore it can be calculated directly that

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(Cξ − Chξ)dµ}∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(M ξ − Mhξ)dµ} = 4C

(
1

2
,
1

2

)
− 1 (92)

38



which is Blomqvist’s beta. An analog of µ, say µβ ∈ dn, can be made by placing a mass of

k > 0 at
(

1
2
, . . . , 1

2

) ∈ (0, 1)2n so that

κ(C) =

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2n((Cξ)n − (Chξ)n)dµβ}∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2n((M ξ)n − (Mhξ)n)dµβ}

= 2n

((
C

(
1

2
,
1

2

))n

−
(

1

2
− C

(
1

2
,
1

2

))n) (93)

is a degree n analog of Blomqvist’s beta for n odd and is a degree (n−1) analog of Blomqvist’s

beta for n even.

Example 5. Let µ ∈ d1 be the two-dimensional Lebesgue measure. It can also be said that

µ is the doubly stochastic measure induced by the 2-copula, Π(x, y) = xy. Recall Πξ = Π

for any ξ ∈ D4. By Lemma 11,
∫
(0,1)2

Cξdµ =
∫
(0,1)2

CdΠ and
∫
(0,1)2

Chξdµ = 1
2
− ∫

(0,1)2
CdΠ

whenever |ξ| is even. Noting that
∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2

(M ξ − Mhξ)dΠ = 2
3

we have

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(Cξ − Chξ)dµ}∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(M ξ − Mhξ)dµ} = 12

∫
(0,1)2

CdΠ − 3 (94)

which is Spearman’s rho. An analog of µ, say µρ ∈ dn, can be made by simply having µρ be

the 2n-dimensional Lebesgue measure. Corollary 1 gives us

κ(C) =
3n

1 − 2−n

((∫
(0,1)2

CdΠ

)n

−
(

1

2
−
∫

(0,1)2
CdΠ

)n)
(95)

is a degree n analog of Spearman’s rho for n odd and is a degree (n−1) analog of Spearman’s

rho for n even.

Example 6. We can use µM , the doubly stochastic measure induced by M(x, y) = min(x, y),

to generate Gini’s measure of association. For any |ξ| even, M ξ = M and Mhξ = W . With

this in mind we can use Lemma 11 to see for any |ξ| even,
∫
(0,1)2

CξdµM =
∫
(0,1)2

CdM and
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∫
(0,1)2

ChξdµM = 1
2
−∫

(0,1)2
CdW . Since

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(M ξ−Mhξ)dM} = 4
∫
(0,1)2

(M−

W )dM = 1, straightforward calculations show that∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(Cξ − Chξ)dµ}∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2

(M ξ − Mhξ)dµ} = 8

∫
(0,1)2

Cd

(
M + W

2

)
− 2 (96)

which is Gini’s measure of association. One possible analog of µM , say µγ ∈ dn, can be made

by letting µγ be the multiply stochastic measure induced by the 2n-copula, M(x1, . . . , x2n) =

min(x1, . . . , x2n) so that

κ(C) =

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2n((Cξ)n − (Chξ)n)dµγ}∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2n((M ξ)n − (Mhξ)n)dµγ}

=
n + 1

2

∑
ξ∈{e,r2,hr,hr3}

{∫ 1

0

((Cξ(x, x))n − (Chξ(x, x))n)dx

} (97)

provides a higher degree analog of Gini’s measure of association.

Another possible analog of µM , say µ̄γ ∈ dn, can be made by letting µ̄γ be the multiply

stochastic measure induced by the 2n-copula,
⊗n

i=1 M , the n-wise tensor product of M , so

that

κ(C) =

∑
ξ∈{e,r2,hr,hr3}{

∫
(0,1)2n((Cξ)n − (Chξ)n)dµ̄γ}∑

ξ∈{e,r2,hr,hr3}{
∫
(0,1)2n((M ξ)n − (Mhξ)n)dµ̄γ

=
2n−2

1 − 2−n

∑
ξ∈{e,r2,hr,hr3}

{(∫ 1

0

Cξ(x, x)dx

)n

−
(∫ 1

0

Chξ(x, x)dx

)n} (98)

provides a degree n analog of Gini’s measure of association for n odd and a degree (n − 1)

analog for n even.

4.2 A Focus on Kendall’s Tau

In this section a focus is placed on the degree 2 measure of concordance, Kendall’s

tau, which is written τ(C) = 4
∫
(0,1)2

CdC − 1 [6]. We will find a function, Hτ , generating τ

in a certain way.
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Let x̄ = (x1, x2) and ȳ = (y1, y2) where x̄, ȳ ∈ (0, 1)2. We will write [0, x̄] for [0, x1] ×

[0, x2]. We will also write x̄ ≤ ȳ when xi ≤ yi for i = 1, 2. It will be helpful to note for

ω, ξ ∈ D4 that

∫
(0,1)2

CξdCξ =

∫
(0,1)4

χ[0,ȳ](x̄)d
(
Cξ(x̄)

⊗
Cξ(ȳ)

)

=

∫
(0,1)4

χ[0,ξ−1(ȳ)](ξ
−1(x̄))d

(
C(x̄)

⊗
C(ȳ)

)
.

(99)

We may use (99) to rewrite Kendall’s tau.

τ(C) =
1

8

∑
ξ∈D4

(−1)|ξ|τ(Cξ) =
1

2

∑
ξ∈D4

(−1)|ξ|
∫

(0,1)2
CξdCξ

=
1

2

∑
ξ∈D4

(−1)|ξ|
∫

(0,1)4
χ[0,ξ−1(ȳ)](ξ

−1(x̄))d
(
C(x̄)

⊗
C(ȳ)

)

=
∑
ξ∈D4

(−1)|ξ|
∫

(0,1)4
Hτ (ξ

−1(x̄), ξ−1(ȳ))d
(
C(x̄)

⊗
C(ȳ)

)
(100)

where Hτ (x̄, ȳ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
, x̄ ≤ ȳ

0, otherwise.

Example 7. Kendall’s tau is not generated by any finite measure in d2. For if it were, there

would exist a finite µτ ∈ d2 such that

τ(C) = α
∑
ξ∈D4

(−1)|ξ|
∫

(0,1)4
Ḡµτ (ξ

−1(x̄), ξ−1(ȳ))d
(
C(x̄)

⊗
C(ȳ)

)
(101)

for every C ∈ Cop(2) where α =
(
4
∫
(0,1)4

(M2 − W 2)dµτ

)−1

is some positive, finite value

and Ḡµτ is the survival function associated with µτ .
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This gives us
∑

ξ∈D4
(−1)|ξ|Hτ (ξ

−1(x̄), ξ−1(ȳ)) = α
∑

ξ∈D4
(−1)|ξ|(Ḡµτ ◦(ξ−1, ξ−1))(x̄, ȳ).

Choose x ∈ (0, 1
2

)
. Since

∑
ξ∈D4

(−1)|ξ|Hτ (ξ
−1(x, x), ξ−1(x, x)) = 0,

0 = α
∑
ξ∈D4

(−1)|ξ|
∫

(0,1)4
(Ḡµτ (ξ

−1(x, x), ξ−1(x, x)))

= 2α{µτ([x, 1 − x) × [x, 1)3) + µτ ([1 − x, 1) × [x, 1) × [x, 1 − x) × [x, 1))

− µτ ([x, 1 − x) × [1 − x, 1) × [x, 1) × [1 − x, 1))

− µτ ([1 − x, 1)2 × [x, 1 − x) × [1 − x, 1))}.

(102)

Letting x → 0 gives us µτ ((0, 1)4) = 0. This will cause
∫

(0,1)4
(M2 − W 2)dµτ = 0 so that

µτ �∈ d2.

4.3 Measures of Concordance Generated by 2-Constructive Functions

When considering Kendall’s tau represented as

τ(C) =
∑
ξ∈D4

(−1)|ξ|
∫

(0,1)4
Hτ (ξ

−1(x̄), ξ−1(ȳ))d
(
C(x̄)

⊗
C(ȳ)

)
(103)

where Hτ (x̄, ȳ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
, x̄ ≤ ȳ

0, otherwise

it is natural to ask if we can find a family of functions

containing Hτ that generate other degree 2 measures of concordance. Let us call such a

family 2-constructive.

Definition 15. Let x̄, ȳ ∈ (0, 1)2. H : (0, 1)4 → [0,∞] is 2-constructive if:

1. for fixed x̄, H(x̄, ȳ) and H(ȳ, x̄) are each either a distribution or survival function

associated with Borel measures on (0, 1)2,
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2. H is bounded, and

3.
∫
(0,1)4

∑
ξ∈D4

{
(−1)|ξ|H(ξ−1(x̄), ξ−1(ȳ))

}
d (M(x̄)

⊗
M(ȳ)) = 1.

Besides Hτ being 2-constructive, we see any survival function Ḡµ associated with

finite µ ∈ d2 is 2-constructive up to a positive scalar multiple.

Let us further clarify what Borel measure is associated with H as mentioned in the

first item of Definition 15. If ȳ = (y1, y2) ∈ (0, 1)2, define (0, ȳ] = (0, y1] × (0, y2] and

[ȳ, 1) = [y1, 1) × [y2, 1). If H(x̄, ȳ) is a distribution function for fixed x̄, then there exists a

Borel measure, µx̄, on (0, 1)2 such that H(x̄, ȳ) = µx̄((0, ȳ]). Similarly, if H(x̄, ȳ) is a survival

function for fixed x̄, then H(x̄, ȳ) = µx̄([ȳ, 1)). The same relationship holds for some Borel

measure νȳ when ȳ is held fixed for H(x̄, ȳ).

Definition 16. For any C ∈ Cop(2), C̄(x, y) = 1 − x − y + C(x, y) is the survival 2-copula

of C [6].

Note that C̄(x, y) = µC([x, 1] × [y, 1]) where µC is the doubly stochastic measure

induced by C. We define C̄ξ(x, y) = µC(ξ([x, 1] × [y, 1])). Also, let x̄, ȳ ∈ (0, 1)2 where

x̄ = (x1, x2), ȳ = (y1, y2), and x̄ ≤ ȳ so we may define ∆ȳ
x̄f = f(y1, y2) − f(x1, y2) −

f(y1, x2) + f(x1, x2). We see for any C ∈ Cop(2) that ∆ȳ
x̄C = ∆ȳ

x̄C̄. Therefore for any

integrable function, f , defined on (0, 1)2 we have

∫
(0,1)2

fdC =

∫
(0,1)2

fdC̄. (104)
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Lemma 12. Let µ be a finite Borel measure on (0, 1)2. For every ξ ∈ D4 and survival

2-copula, C̄,

∫
(0,1)2

C̄ξdµ =

∫
(0,1)2

(F̄µ ◦ ξ−1)dC̄ =

∫
(0,1)2

(F̄µ ◦ ξ−1)dC (105)

where F̄µ(x1, x2) = µ((0, x1] × (0, x2]).

Proof. Fix ξ ∈ D4 and survival 2-copula, C̄, associated with a continuous random vector,

X. For x̄ = (x1, x2) ∈ (0, 1)2,

C̄ξ(x̄) = µC([x1, 1] × [x2, 1]) = µC(ξ−1 ◦ X ≥ x̄). (106)

Let us define η in the same context as used in Lemma 10. If we find the η measure of the

set A = {ξ−1 ◦X ≥ Y } where X is associated with C̄ and Y is associated with µ and repeat

the calculations in Lemma 10 it is shown that
∫
(0,1)2

C̄ξdµ =
∫
(0,1)2

(F̄µ ◦ ξ−1)dC̄. Then by

(104)
∫
(0,1)2

(F̄µ ◦ ξ−1)dC̄ =
∫
(0,1)2

(F̄µ ◦ ξ−1)dC.

Theorem 7. If H is 2-constructive, then

κ(C) =

∫
(0,1)4

∑
ξ∈D4

{
(−1)|ξ|H(ξ−1(x̄), ξ−1(ȳ))

}
d
(
C(x̄)

⊗
C(ȳ)

)
(107)

is either a degree 1 or degree 2 measure of concordance.

Proof. Clearly κ is defined for all C ∈ Cop(2) and κ(M) = 1. By the form of κ it is also

immediate that κ is of degree 1 or degree 2, κ(Ch) = −κ(C), and κ(Chr) = κ(C).

Notice that(
C2(x̄)

⊗
C2(ȳ)

)
−
(
C1(x̄)

⊗
C1(ȳ)

)

=
{
C2(x̄)

⊗
(C2(ȳ) − C1(ȳ))

}
+
{

C1(ȳ)
⊗

(C2(x̄) − C1(x̄))
}

.

(108)
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Let C1, C2 ∈ Cop(2) where C1 ≤ C2. Fixing x̄, let H(x̄, ȳ) be associated with the Borel

measure, µx̄. By Lemmas 10 and 12 either

∫
(0,1)2

H(x̄, ȳ)dC1(ȳ) =

∫
(0,1)2

C1dµx̄ ≤
∫

(0,1)2
C2dµx̄ =

∫
(0,1)2

H(x̄, ȳ)dC2(ȳ), or

∫
(0,1)2

H(x̄, ȳ)dC1(ȳ) =

∫
(0,1)2

C̄1dµx̄ ≤
∫

(0,1)2
C̄2dµx̄ =

∫
(0,1)2

H(x̄, ȳ)dC2(ȳ).

(109)

Similarly, fixing ȳ and having H(x̄, ȳ) be associated with some Borel measure, say νȳ, we

again have either

∫
(0,1)2

H(x̄, ȳ)dC1(x̄) =

∫
(0,1)2

C1dνȳ ≤
∫

(0,1)2
C2dνȳ =

∫
(0,1)2

H(x̄, ȳ)dC2(x̄), or

∫
(0,1)2

H(x̄, ȳ)dC1(x̄) =

∫
(0,1)2

C̄1dνȳ ≤
∫

(0,1)2
C̄2dνȳ =

∫
(0,1)2

H(x̄, ȳ)dC2(x̄).

(110)

If C1 ≤ C2, then Cξ
1 ≤ Cξ

2 for |ξ| even. Therefore we may say more generally from (109) and

(110) that for all |ξ| even

∫
(0,1)2

H(ξ−1(x̄), ξ−1(ȳ))dC1(x̄) ≤
∫

(0,1)2
H(ξ−1(x̄), ξ−1(ȳ))dC2(x̄), and

∫
(0,1)2

H(ξ−1(x̄), ξ−1(ȳ))dC1(ȳ) ≤
∫

(0,1)2
H(ξ−1(x̄), ξ−1(ȳ))dC2(ȳ).

(111)

Similarly, if C1 ≤ C2, then Cξ
1 ≥ Cξ

2 for all |ξ| odd. Therefore for all |ξ| odd,

∫
(0,1)2

H(ξ−1(x̄), ξ−1(ȳ))dC1(x̄) ≥
∫

(0,1)2
H(ξ−1(x̄), ξ−1(ȳ))dC2(x̄), and

∫
(0,1)2

H(ξ−1(x̄), ξ−1(ȳ))dC1(ȳ) ≥
∫

(0,1)2
H(ξ−1(x̄), ξ−1(ȳ))dC2(ȳ).

(112)

Finally, (111), (112), and the form of κ give us κ(C1) ≤ κ(C2).

Lastly, we will address the continuity property for a measure of concordance. Choose

C ∈ Cop(2). Let {Cn} be a sequence in Cop(2) where Cn → C. Note that Cξ
n → Cξ for

every ξ ∈ D4 as well since from Table 3 we see that ||Cξ − Cξ
n||∞ = ||C − Cn||∞. Letting K
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denote an upper bound of H gives us µx̄((0, 1)2), νȳ((0, 1)2) ≤ K for every x̄, ȳ ∈ (0, 1)2. For

any ξ ∈ D4,∣∣∣∣
∫

(0,1)4
H(ξ−1(x̄), ξ−1(ȳ))d

((
C(x̄)

⊗
C(ȳ)

)
−
(
Cn(x̄)

⊗
Cn(ȳ)

))∣∣∣∣
=

∣∣∣∣
∫

(0,1)4
H(ξ−1(x̄), ξ−1(ȳ))d

(
(C(x̄) − Cn(x̄))

⊗
C(ȳ)

)∣∣∣∣
+

∣∣∣∣
∫

(0,1)4
H(ξ−1(x̄), ξ−1(ȳ))d

(
(C(ȳ) − Cn(ȳ))

⊗
Cn(x̄)

)∣∣∣∣
=

∣∣∣∣
∫

(0,1)2

{∫
(0,1)2

(Cξ − Cξ
n)(x̄)dνξ−1(ȳ)(x̄)

}
dC(ȳ)

∣∣∣∣
+

∣∣∣∣
∫

(0,1)2

{∫
(0,1)2

(Cξ − Cξ
n)(ȳ)dµξ−1(x̄)(ȳ)

}
dCn(x̄)

∣∣∣∣ ≤ 2K||C − Cn||∞.

(113)

Choosing ε > 0, there exists N such that ||C − Cn||∞ < ε
16K

for all n > N . Therefore,

κ(Cn) → κ(C).

4.4 Questions for Further Examination

1. Does there exist an infinite measure in d2 generating Kendall’s tau?

2. Can we relax the condition of 2-generating functions being bounded in order to generate

an even larger family of measures of concordance?

3. What characterizes degree 2 measures of concordance?

4. What characterizes degree n measures of concordance?
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