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ABSTRACT 

High power lasers with diffraction limited beam quality are desired for many applications 

in defense and manufacturing. A lot of applications require laser beams at the 100 kW power 

level along with divergence close to the diffraction limit. The figure of merit for a beam used in 

such applications should be radiance which determines the laser power delivered to a remote 

target.  One of the primary limiting factors is thermal distortion of a laser beam caused by 

excessive heat generated in the laser media. Combination of multiple laser beams is usually 

considered as a method to mitigate these limitations. Spectral beam combining (SBC) by volume 

Bragg gratings (VBGs) is a very promising method for the future of high radiance lasers that 

needs to achieve 100 kW-level power. This work is dedicated to development of methods to 

increase spectral density of combined beams keeping their divergence at an acceptably low level. 

A new figure of merit for a beam combining system is proposed, the Beam Combining 

Factor (BCF), which makes it possible to distinguish the quality of the individual beams from the 

quality of beam combining.  Also presented is a method of including the effect of beam 

divergence and spectral bandwidth on the performance of VBGs, as well as a method to optimize 

VBG parameters in terms of thickness and refractive index modulation for an arbitrary number 

of beams. 

A novel thermal tuning technique and apparatus is presented with which the SBC system 

can be tuned for peak efficiency from low to high power without the need for mechanical re-
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alignment.  Finally, a thermally tuned SBC system with five beams, with a spectral separation 

between beams of 0.25 nm at a total power of 685 W is presented.  The results show the highest 

power spectral density and highest spectral radiance of any SBC system to date.  Recent 

demonstrations in SBC by multiplexed VBGs and the use of super Gaussian beams for beam 

quality improvement are also discussed.  
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1 INTRODUCTION 

High power lasers with diffraction limited beam quality are desired for many applications 

in defense and manufacturing.  For applications in which the beam must propagate for a distance, 

higher power is only beneficial if diffraction limited beam quality is maintained.  The figure of 

merit for a beam used in such applications should be radiance or brightness which are considered 

here to be interchangeable.  Radiance is defined as the power divided by the product of the solid 

angle in the far field and the unit area in the beam waist.  The radiance for a radially symmetric 

Gaussian beam is given in Equation 1 below 
1
. 

     
 

   (  ) 
.      (1) 

Solid state and gas lasers have been the most successful at achieving high power with a 

single gain element, but each has its drawbacks.  Gas lasers require large quantities of toxic 

materials, and solid state rod lasers tend to have diminishing returns in radiance as power is 

increased due to thermal distortions
2
.  Thin disk, slab, and fiber lasers attempt to overcome these 

thermal limitations with unique geometries
2
.  Fiber lasers with diffraction limited beam quality 

have recently achieved powers of a few kW 
2
, and are excellent candidates for high radiance 

applications.  Ultimately, the radiance of single aperture lasers, whether it be gas, solid state, or 

fiber, will be limited by non-linear and thermal effects in the active medium.  Theoretical 

modeling has predicted that high power limits on diffraction limited fiber lasers are 10 kW to 

36 kW for broadband and 2 kW for narrow band lasers 
3
. 
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A major goal of high radiance beams has been to reach 100 kW of diffraction limited 

power for short and mid ranged defense applications.  It is probable that to reach such power 

levels, beam combining will be required.  If radiance is not a concern, beams can be combined 

by arranging side by side arrays of beams which can be manipulated to produce any 

configuration desired.  This method, however, cannot increase the radiance according to the 

radiance theorem.  The two important theorems that relate to radiance in an optical system are as 

follows.  The radiance of the light distribution produced by a passive imaging system cannot be 

greater than the original source radiance, and the radiance of a collection of mutually incoherent, 

but otherwise identical, sources cannot be increased by a passive linear optical system to a level 

greater than the radiance of the single brightest source
4
.  High radiance beam combining efforts 

can be broken up into two main categories, coherent, and incoherent beam combining.  The focus 

of this paper is on incoherent, spectral beam combining (SBC), but coherent beam combining 

(CBC) will be discussed only in as much detail as is required to compare it to SBC.   

1.1 Survey of Coherent Beam Combining 

First used in longer wavelength regions of the spectrum, CBC was first used in the form 

of a phased array of emitters for radar and radio wave beam direction 
5
.  It then moved into the 

optical range as a method to steer and combine individual stripes of a semiconductor laser 
6
.  

Many different methods of CBC have been demonstrated such as common resonator, evanescent 

wave, self-organized, active feedback, and nonlinear optical 
1
.  The most successful method for 
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high radiance applications has been CBC by active feedback phase control of an array of gain 

elements and has had significant progress recently.  

Figure 1 illustrates the operation of CBC of multiple apertures with active feedback.  

Radiation from a seed laser is first split into multiple beams each of which is introduced to gain 

elements at the amplification stage.  The phase of the beam after each amplification stage is 

compared to the phase of the seed laser.  Feedback is then sent to phase modulators that modify 

the phase in each beam before the amplification stage.  When properly implemented, the beams 

interfere constructively in the far field producing a near diffraction limited beam.  

 

 

Figure 1: Coherent Beam Combining by Active Feedback
1 

 

This method, as employed by Northrup Grumman for the Joint High Power Solid State 

Laser (JHPSSL) project
7
, claims the highest power solid state laser to date, with 105 kW of 
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output power from five diode pumped ceramic slab lasers, and decent far field beam quality with 

M
2
 = 3.00.  Total efficiency is around 20 %, and along with beam quality is a major area for 

future improvement.  If beam quality is improved, this would be the highest radiance solid state 

source available.  As of now, the radiance is close to that of a diffraction limited 10 kW laser.  

Coherent beam combining with active feedback has clear merits, but requires phase control of 

each laser on the order of 1/10 of a wavelength. 

Passive coherent beam combining has been demonstrated in which the coherence of each 

emitter is self-organized 
1,8-10

. The individual elements in a self-organized (passive) CBC array, 

illustrated in Figure 2, are oscillators of varying optical path lengths with the same output 

coupler.  In the self-organized method, the optical spectrum will adjust to minimize the loss in 

the array.  Another way to state it is to say that the individual emitters mutually injection lock 

each other at a wavelength within the range for every oscillator.  This method has had many 

demonstrations, however, the combining efficiency falls off as the number of elements is 

increased
1,11

.  The efficiency as a function of number of array elements is shown in Figure 3 

including the predicted mean value of addition efficiency shown with filled circles as well as 

experimental results shown with open squares. 
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Figure 2: Self Organized Coherent Beam Combining
1 

 

 

Figure 3: The predicted mean values of the addition efficiency (filled circles) and effective 

reflectivity (open circles) as functions of the number of array elements. The experimental results 

are plotted with squares.
11 

 

A new approach to passive CBC by multiplexed VBGs has recently been demonstrated, 

and could provide effective scaling to CBC without the need for ultra-fast electronics to control 

the phase 
12

.   

Multiple VBGs can be recorded in PTR glass, either at the same wavelength for CBC or 

at different wavelengths for SBC 
13

.  In this case the VBGs are recorded for the same wavelength 
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but at different grating vector angles and with different Bragg angles in the same volume of PTR 

glass. If all these gratings have a common Bragg angle (degenerated Bragg angle) they form a 

1xN splitter/combiner depicted in Figure 4 for the 1x2 case.  For such a multiplexed VBG, a 

beam can be split into N beams, or N properly phased coherent beams of the same wavelength 

can be combined into one. 

 

 

Figure 4: Multiplexed Volume Bragg Grating as 1x2 splitter/combiner 
12

 

 

With this approach, illustrated in Figure 5, mutual feedback between individual gain 

elements is provided by the VBG that is placed inside the common cavity.  The output coupler 

may be chosen to be the common mirror for all the beams for single aperture output, or the back 

side mirror for each element to produce an array of passively locked beams. 
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Figure 5: Passive Coherent Beam Combining by Multiplexed Volume Bragg Gratings 
12

 

 

A passive, coherent approach would remove the need for ultra-fast electronics to control 

the phase of the individual beams.  Furthermore, whatever radiance that may be achieved using 

high power lasers along with CBC, can be increased many times by spectral beam combining of 

the already coherently combined beams 
13

.  In this scheme, the two approaches, coherent and 

incoherent beam combining, become complementary. 

1.2 Survey of Spectral Beam Combining 

Spectral beam combining was first proposed in 1970 as a solution for higher bandwidth 

communications systems 
14

.  Spectral beam combining systems are essentially the multiplexing 

part of a wavelength-division-multiplexing (WDM) system.  Initially it was proposed that the RF 

bandwidth of any transmitter or receiver would be limited and therefore multiplexing by 
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polarization or wavelength would increase the capacity and decrease the technical demand of any 

transmission system.   

Many different approaches were demonstrated, including many free-space and integrated 

devices 
15

.  Four categories can be discerned from the early demonstrations: angularly dispersive 

devices
1,

 
2,

 
16 -

 
47

, wavelength selective filters
13,

 
48 -

 
65

, hybrid devices, and planar waveguide 

devices 
66

.  Cross-talk and fiber insertion loss were the major drivers of early development.  In 

high power systems, the goal is to produce a high radiance, free space beam.  So fiber insertion 

loss is not a major concern.  Cross-talk however is still a major factor in the development of high 

power SBC systems.  Planar waveguide devices, although compact, and elegant solutions are not 

an option for high power operation due to their relatively high beam intensity inside the 

waveguide and the fact that any waveguide device will experience similar thermal and nonlinear 

limitations that limit the peak power of the individual emitters.  Bulk, angularly dispersive 

devices, such as traditional diffraction gratings, as well as frequency selective filters, such as 

volume Bragg gratings (VBGs), are excellent options for high power operation.  They can be 

placed inside a multi-laser cavity or be used as combiners outside the cavities of discrete lasers.  

The majority of recent work in high power SBC has been done with one of these two devices.   

1.2.1 Spectral Beam Combining by Angularly Dispersive Elements 

1.2.1.1 Introduction to SBC by Angularly Dispersive Elements 

Initial attempts at SBC through angular dispersion used prisms, but research moved 

toward blazed gratings due to their higher dispersion capabilities
15

.  Traditional diffraction 
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gratings are a mature technology, historically used for spectroscopy at low powers and 

wavelength selection inside a laser cavity, but have also been used for SBC and recently at high 

powers 
17,39

.  SBC systems can be designed with intra-cavity, or an extra-cavity combiner.  A 

diffraction grating used in either system can be a transmitting grating or a reflecting grating. 

Most SBC systems based on diffraction gratings use an intra-cavity combiner because 

this serves the dual purpose of combining the beams while supplying wavelength selected 

feedback to the laser gain medium.  In the extra-cavity arrangement, each emitter must have very 

precise wavelength selection as well as angular and translational alignment.  Figure 6 shows 

transmitting and reflecting configurations for an intra-cavity SBC system.   

 

 

Figure 6: SBC by a transmitting
34

 (left) or reflecting
1
 (right) surface diffraction grating 
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  Whether in the transmission or reflection configuration, parallel beams from individual 

emitters are focused onto the diffraction grating, which is at the focal distance from the lens.  An 

output coupler is placed normal to the beam path that would provide feedback to the emitters 

over the desired bandwidth of the system.  Each laser will only receive feedback for a specific 

portion of its gain bandwidth, and will lase at that wavelength.  This technique was initially 

demonstrated with combining of semiconductor lasers
17

, but was later used to combine fiber 

lasers
18

, the emitter of choice for recent research due to the high brightness achievable from an 

individual fiber laser
2
. 

Transmitting diffraction gratings have been discarded as an option due to increased 

thermal distortion of a high power beam passing through the grating substrate 
2
.  Reflecting 

diffraction gratings have had moderate success in both high number of combined beams and, in 

separate experiments, high power beam combining.  High beam quality, M
2
 < 1.35, for 

combining of 100 emitters has been reported
27

.  This represents a significant increase in radiance 

of about 66 times the individual emitter radiance.  Up to 200 emitters have been successfully 

combined, but not with near diffraction limited beam quality
25

.  The highest power reported to 

date for this method was accomplished with four 500 W beams combined to produce a total 

output power of 2 kW, with M
2
x = 2.0 and M

2
y = 1.8, and spectral separation between beams of 

5 nm
39

.  Unfortunately, the radiance of the combined beam is near that of the initial 500 W input 

beams. 
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1.2.1.2 Various Cavity Configurations for SBC by Angularly Dispersive Elements 

Many cavity configurations have been demonstrated, but the most common approach is 

the Littrow configuration.   Technically, the Littrow condition for a diffraction grating, illustrated 

in Figure 7, refers to the condition met when the first diffracting order is angularly overlapped 

with the incoming beam, and can only be satisfied for a single wavelength at a single angle.  This 

configuration has been used extensively to tune lasers to a desired wavelength
67 -

 
71

.   

 

 

Figure 7: Diffraction grating. Littrow condition occurs for     (the 1
st
 diffracted order 

overlaps with the incident beam) 

 

In the case of wavelength tuning of a single emitter, the beam exiting the gain medium is 

collimated and the grating is placed in the beam such that the Littrow condition is satisfied for 

the desired wavelength.  If the grating has high diffraction efficiency, the output coupler in this 

case must be placed on the opposite side of the gain medium
69

.  If the grating has low diffraction 

Normal to 
Surface

Zero Order 
Reflection

First Order 
Diffraction

Input Beam

θ
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efficiency, it can be used as an output coupler and the reflected zero order beam serves as the 

output beam
70

.  These two wavelength tuning arrangements are illustrated in Figure 8.  

 

 

Figure 8:  Laser wavelength tuning by gratings used in the Littrow condition for high
69

 (left) and 

low
70

 (right) diffraction efficiency configurations 

 

A slight adjustment to either case can turn this tuning mechanism into an SBC system. 

The reflecting configuration in Figure 6 shows a third case in which a diffraction grating period 

is designed such that the grating only has zero and first diffraction orders.  If multiple beams 

from different gain mediums are collimated, and parallel, but slightly offset in one axis, and a 

lens is placed in the common beam path, each beam would be sent at different angles to the focus 

of the lens.  If a grating is then placed at the focal spot of the lens, and an output coupler is 

placed in the zero order beam path, each gain medium would be forced into lasing at a slightly 
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different wavelength such that the angle it makes with the grating will diffract into the zero order 

beam.  The beams are also forced into parallel output by the fact that the output coupler is flat 

and normal to the beam path.  This method has been used to show high beam quality of 

combining of 100 emitters
27

.  It is typically used with semiconductor laser arrays, because the 

arrays can be packed very densely on a single substrate, and combining these arrays of even 

moderate power of a few watts can increase the brightness considerably.   

Another popular method has been preferred by fiber laser SBC systems and is often 

called the Littrow configuration due to its similar layout and concept to the Littrow configuration 

used in wavelength tuning of single emitters.  Figure 9 shows a variation of this configuration.  

The only difference being that there is no common output coupler in Figure 9 where the Littrow 

configuration uses one for common feedback.  In this configuration, a Littrow wavelength is 

selected such that it is in between the wavelengths of the lasers to be combined, and an output 

coupler is placed normal to the beam that would satisfy the Littrow condition.  In this case, 

individual collimated beams are directed toward the grating at different angles and diffracted 

toward the output coupler at some wavelength that is adjacent to the Littrow wavelength.  This 

configuration is easiest to understand in reverse.  A beam comprised of three wavelengths that 

are nearby the Littrow wavelength and propagating from the output coupler to the grating will 

diffract from the grating at three different angles near normal incidence.  If these angles are set, 

then the individual emitters will self-organize or be manually tuned into the proper wavelengths 

for their respective angles.  The output mirror and the diffraction grating are in the common 
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cavity for each emitter.  The highest power examples of fiber laser SBC by surface diffraction 

grating to date have been using a variation of this configuration
33,38,39,42

.  Figure 9 shows the 

most common high power configuration which only differs from the Littrow configuration in 

that there is no common output coupler.  The wavelengths and angles of each beam are manually 

tuned to achieve beam combining rather than being self-organizing. 

 

 

Figure 9:  SBC by diffraction grating in “Littrow configuration”.  A single channel is highlighted 

and consists of a seed source (1), a first (2) and second pre-amplifier (3), the main amplifier (4), 

the folding mirrors (5) and the grating (6).
39
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As will be discussed later, dispersion is introduced to the individual beams by the grating 

and can degrade beam quality.  An alternate configuration, dual grating SBC
36

, has been 

suggested to mitigate the problems associated with the angular divergence of the gratings.  In this 

configuration, shown in Figure 10, individually collimated beams are incident on a grating but 

translated on the axis of diffraction.  The wavelength of each laser is such that the diffracted 

beams from the first grating are spatially overlapped on a second identical grating.  Any 

dispersion introduced into the beam by the first grating is eliminated by the second grating after 

which each beam is collinear.  Using this method, two low power beams with spectral bandwidth 

near 0.15 nm were combined.  After the first grating each beam had very poor beam quality, M
2
 

= 1.9, while after the second grating the combined beam was diffraction limited, M
2
 = 1.1.  The 

tradeoff for such a system is increased beam size in the diffraction plane due to angular 

dispersion between the two gratings and increased system size.  
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Figure 10:  SBC by dual diffraction gratings for beam quality improvement and relaxing of fiber 

laser bandwidth requirements 
36

 

 

1.2.1.3 Limitations of SBC by Angularly Dispersive Elements 

Traditional diffraction gratings are polarization dependent angularly dispersive elements, 

and are used for their angular dispersion.  This same function, however, also contributes to beam 

quality degradation by introducing additional unwanted dispersion to a beam within a SBC 

system.  This effect is worsened by increasing laser bandwidth as well as increasing dispersion of 

the grating.  Total bandwidth of an SBC system that uses diffraction gratings is limited in part by 

the dispersion of the grating.  This limit is increased with increasing grating dispersion.  Grating 

dispersion should therefore be decreased to improve beam quality but increased to expand the 

bandwidth of the system.  Another factor that has had some attention recently is distortion 

induced by thermal load on the grating
2
.  Thermal distortion can cause deformation of the grating 

that not only directly deforms the beam through thermal lensing but also distorts the grating 
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parameters such as grating period.  All these factors must be considered when designing high 

radiance SBC systems by diffraction gratings. 

Assuming operation near Littrow condition, beam quality is directly affected by grating 

dispersion and laser bandwidth as described by Equation 2 below
2
, where ω is the diffraction 

limited waist radius,    the laser linewidth, λ the wavelength, Λ the grating period, and    the 

diffraction angle.   

    
  

        
       (2) 

Increasing beam width, diffraction angle, laser bandwidth, and decreasing grating period 

all contribute to a deterioration in beam quality.  As an example, a beam with a 1 mm beam 

radius, 0.1 nm linewidth, and 1030 nm central wavelength incident on a grating at a small angle 

with an 800 nm grating period would increase M
2
 by about 0.20.  It’s clear that narrow linewidth 

lasers are required to use this method of beam combining.  As discussed above, using the dual 

grating configuration can reduce this effect at the expense of a larger beam size
36

.   

The total bandwidth available for beam combining is not just limited by the gain 

bandwidth of the laser medium, but also the application.  For atmospheric applications, a 

transparency window of just 50 nm is available in the near-infrared spectral region around 1 µm.  

Spectral density becomes very important for such applications.   
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1.2.2 Spectral Beam Combining by Frequency Selective Filters (VBGs) 

Spectral beam combining has been demonstrated by using dielectric thin film interference 

filters, but even the best performing interference filters cannot match the wavelength selectivity 

of VBGs
53,61,72

. Reflecting VBGs in photo-thermo-reflective (PTR) glass are periodic refractive 

index modulations, recorded by holography, and their design and operation is usually based on 

Kogelnik’s coupled wave theory in thick holograms 
73

.   

A complete theoretical model for VBGs based on Kogelnik’s coupled wave theory has 

been developed
50,74

.  Figure 11 and Figure 12 show the propagation of optical rays through a 

VBG, and the possible orders of diffraction inside the grating for each of the four possible 

configurations respectively.  Many important practical equations resulting from the model for 

both reflecting and transmitting gratings developed and can be used for modeling VBGs for 

various designs and uses.  These equations will be used for SBC system modeling.  An alternate 

formulation of the coupled wave theory for volume Bragg gratings has been published in order to 

include Fabry-Perot effects, as well as to include the concept of the strength of a VBG
75

.  The 

analysis that follows in subsequent chapters will be based on the formulation put out by 

Kogelnik
73

. 
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Figure 11:  Propagation of optical rays through a volume Bragg grating. Nf and Nf,ex – normals to 

the front surface for incident (Ii) and diffracted (Id) beams; Kim and Kdm – wave vectors of incident 

and diffracted beams inside the grating medium; KG - grating vector; φ– grating inclination; θi 

and θd – angles of incidence and diffraction; θm –Bragg angle; θm* – incident Bragg angle.
50
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Figure 12:  Possible orders of Bragg diffraction inside medium. Ii and Id –incident and diffracted 

beams; Ki – wave vector of incident beam; KG –grating vector; θm – Bragg angle; θm* – incident 

Bragg angle.
50

 

 

Reflecting Bragg gratings used in a beam combining system fall into the category of 

frequency selective filters.  They are not angularly dispersive, but reflect a beam at some angle 

for only a narrow range of wavelengths.  The properties of these gratings, such as reflection 

bandwidth, angle, and wavelength, can be tailored to fit the desired system.  Diffraction 

efficiency of VBGs close to 100% has been demonstrated 
53,61,76

. When using VBGs for spectral 

beam combining, it is important to ensure high diffraction efficiency for the diffracted beam and 

low diffraction efficiency for the transmitted beams simultaneously. Figure 13 illustrates this 

concept for the reflecting configuration.  The unique, unmatched properties of VBGs allow 
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achieving this condition at wavelengths with less than 0.25 nm separation, the narrowest spectral 

separation between beams to date. 

 

 

Figure 13:  Reflecting volume Bragg grating spectrum for SBC.
61

 

 

In the transmitting geometry, two beams of different wavelengths are sent toward the 

VBG from the same side but at different angles.  One beam is sent at such an angle as to be 

diffracted into a transmitting angle.  The second beam is sent at such an angle as to be co-linear 

with the output angle of the first beam.  Because the second beam is not at the Bragg wavelength 

for that angle, it will completely transmit, and the two beams have combined.  This process must 

be repeated iteratively to combine more beams. 
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In the reflecting geometry, two beams of different wavelengths are sent toward the VBG 

from different sides.  Just as in the transmitting case, one beam is sent at a resonant wavelength 

and angle combination such that it is completely reflected.  The second beam in this case is sent 

at the same angle as the output of first beam, and because the wavelength is different, it will 

transmit with near 100 % efficiency. 

For very dense SBC, it is desirable to select a wavelength for the non-diffracting beam 

such that it falls into one of the minimums of the diffraction efficiency spectrum.  This insures 

high efficiency combining. 

SBC by VBGs has commonly been performed outside the laser cavities of individual 

lasers, and not in an intra-cavity scheme as is common for surface grating efforts.  An intra-

cavity SBC system with self-organizing wavelength selection has been proposed and 

demonstrated at low power and is illustrated in Figure 14, but as of yet no high power system has 

been demonstrated 
56

. 
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Figure 14:  Self organized spectral beam combining by volume Bragg gratings in a common 

cavity 
56 

 

The first high power demonstration of SBC with transmitting VBGs in PTR glass 

consisted of two channel combining of 200 W with a wavelength separation of 11 nm, and 

efficiency of 75 % 
48

.  Results have improved drastically.  Reflecting VBGs have been favored 

over transmitting VBGs due to the small dispersion that occurs in the transmitting configuration.  

The best published result for this method is the combining of five 150 W beams with a spectral 

separation of 0.5 nm between beams, and a total power of 750 W 
56

.  The architecture for five 

beam SBC by reflecting VBGs is illustrated in Figure 15.  To measure the effect of thermal 

distortions on the final VBG in the SBC system, a test VBG was placed in the final 750 W beam, 

and high quality test beam was overlapped with the high power beam and diffracted from the 

VBG.  The beam quality of the test beam, M
2
 = 1.16, showed no significant distortions. 
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Figure 15:  Architecture for five channel SBC by reflecting VBGs 

 

A monolithic SBC apparatus has been proposed and demonstrated that combines five 

beams in the first stage and four beams in subsequent stages
60

.  It would allow modular scaling 

of SBC by VBGs for as many beams as required.  Figure 16 and Figure 17 illustrate these 

modules.  The module can contain a single piece of PTR glass with a multiplexed VBG such that 

each beam reflects from the VBG at the same output angle, or it can hold a stack of individual 

VBGs that accomplish the same task.  In the demonstration, a stack of VBGs was used, and all 

four beams were combined with greater than 90 % efficiency.  
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Figure 16:  Monolithic SBC module 
60 

 

 

Figure 17:  SBC system with stack of five monolithic beam combiners
60

 

 

New major tools and methods, such as SBC system modeling, thermal tuning of VBGs, 

and beam waist matching, have recently been developed that have led to the most recent high 

power results
64

, and are presented in this work.  New ideas and methods are being considered 
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and developed, such as SBC by multiplexed VBGs and beam quality improvement with the use 

of super Gaussian beams.  Recent results demonstrating the viability of these new directions are 

briefly discussed. 
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2 RADIANCE (BRIGHTNESS) AND THE BEAM COMBINING FACTOR 

(BCF) 

2.1 Radiance (Brightness) Defined 

Radiance is defined as the power divided by the product of the solid angle in the far field 

and the unit area in the beam waist.  The radiance for a radially symmetric Gaussian beam is 

given by Equation 3 below
1
. 

   
 

       
 

          
 (  ) 

 
 

    (
 

  
)
 
(  ) 

    

   
 

   (  ) 
     (3) 

The M
2
 beam quality factor is defined as the measured beam far field divergence divided 

by the far field divergence of an ideal Gaussian beam with an equivalent beam waist size and is 

described by Equation 4. 

   
 

  (   )
 

     

               
    (4) 

It is worth noting that while the radiance is proportional to the beam power, it is inversely 

proportional to the square of the M
2
 beam quality factor.  Therefore, for the purposes of 

obtaining high radiance output beams, it is more important to maintain high beam quality 

through the combining system than it is to obtain high efficiency if a tradeoff can be made.   

Another important consideration when characterizing a high radiance laser system is to 

consider the spectral radiance which is defined as the radiance per unit wavelength,    ⁄ .  If a 



 

28 

 

beam is intended to propagate through the atmosphere, there are two 50 nm transparency 

windows in the near IR in which a beam could propagate without being absorbed.  Spectral 

brightness then becomes the figure of merit for a system designed for this purpose. 

With Equations 3 and 4, the entire laser system can be characterized in a meaningful way.  

The goal, however, of both coherent and spectral beam combining systems is to increase the 

radiance, and the result of different laser systems can be compared by comparing the output 

radiance. 

2.2 Beam Combining Factor (BCF) 

If only the beam combining portion of the laser system is to be characterized, the 

radiance alone cannot accomplish this due to the fact that this also includes characterization of 

the input beams to the beam combining system.   

A metric is needed which considers only the quality of beam combining.  Proposed here 

is the beam combining factor (BCF) which is defined as the radiance of the combined beam 

divided by the sum of the radiance of the input beams. 

    
         

∑     
 

(   ⁄ )
        

∑(   ⁄ )    
    (5) 

By characterizing a beam combining system by the BCF, a beam combining system could 

be considered to be of high quality, even if low quality inputs beams were used.  The BCF ranges 

from 0-1, where a BCF of 1 is perfect beam combining.  If the power of each beam is added into 
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the final beam without any loss and without any degradation of the beam quality factor, M
2
, then 

the BCF will be 1.  A further simplification can be made to the BCF equation if the input beams 

are assumed to be equal in power and beam quality.  In this case, the BCF depends only on the 

system efficiency, η, and the ratio between the input beam M
2
 factor, and the resulting combined 

beam M
2
 factor. 

    
(   ⁄ )

        

∑(   ⁄ )    
  

(  )
        

(  )    
    (6) 
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3 MODELING VBGS FOR HIGH DENSITY SBC 

With the necessity of increasingly narrow spectral selectivity, it is important to model 

VBGs and the effects of non-ideal beams on performance in order to optimize the design of a 

SBC system.  When using VBGs for spectral beam combining, it is important to ensure high 

diffraction efficiency for the diffracted beam and low diffraction efficiency for the transmitted 

beams simultaneously.  The unique, unmatched properties of VBGs allow achieving this 

condition at wavelengths with less than 0.25 nm separation.  Series 1 in Figure 18 shows the 

ideal diffraction efficiency spectrum for a VBG.  Series 2 through 4 show the result of various 

non-ideal effects on the diffraction efficiency discussed in more detail below.  The far right side 

of the plot shows the Bragg wavelength at which a beam would be diffracted, while the first 

minimum in series 1, located at -0.18 nm, shows the location of a possible wavelength at which a 

beam could be transmitted to combine with the diffracted beam.  Without including non-ideal 

effects in the model, any optimization would produce unrealistic results.  A VBG model that 

includes the three major non-ideal effects, as well as an optimization method for individual 

VBGs and SBC systems are presented and discussed. 
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Figure 18: Modeling of VBG diffraction efficiency versus detuning from Bragg wavelength. 

 

First, Kogelnik’s previously developed coupled wave theory for thick holograms is 

described, including an important adaptation that is necessary for use of the theory in normal 

incidence cases.  Next, a previously unpublished method of simultaneously including the effect 

of both laser spectral bandwidth and angular divergence on the previously developed coupled 

wave theory for reflecting VBGs is presented. 

3.1 Coupled Wave Theory for Thick Holograms 

Kogelnik’s coupled wave theory for thick holograms gives an ideal starting point for a 

model of reflecting VBGs.  Equation 7 below gives the diffraction efficiency as a function of the 

detuning parameter,  , for a reflecting VBG, where     is the average refractive index in the 

medium,   is the thickness of the VBG,    is the incident Bragg angle inside the glass,    is the 

Bragg wavelength, and    is the refractive index modulation amplitude. 
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     √      
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where, 

  
        

  
  

      (8) 

and, 

      
   (  )

  
     (9) 

The detuning parameter,  , has an angularly dependent and a spectrally dependent 

component and is given by Equations 10 through 13 below, where   is the period of the grating, 

       , and   is the angle between the grating normal and the glass surface normal. 
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In the following analysis, the grating normal is considered to be perpendicular to the 

glass surface.  Therefore,    . 
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A first-order tailor series expansion of Equation 12 in both dimensions produces the well-

known result given by Kogelnik: 

The first order Taylor series is given in Equation 14. 

 ( )   (  )  
  (  )

  
(  )    (14) 

Some algebraic manipulation of Equation 12 makes a Taylor series expansion more 

convenient: 
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A first order Taylor series expansion of     ( ), gives, 

   ( )   ( )            ( )        (  )       (  ) 
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Therefore,     ( )   (  )     , which gives the commonly used Kogelnik result 

below. 

   (  )       (  )
  

     
    (17) 

In this case, the detuning parameter,  , becomes: 

 (     )  (
            

  
) (   

     

     
 

  

  
)   (18) 

The above result for the detuning parameter is the extent of Kogelnik’s developed theory 

for an ideal VBG.  However, if consideration of angular detuning is needed, then this 

approximation will only work for cases in which     .  For this reason, it is necessary to 

include the second order term in the Taylor series expansion for the angular detuning portion.  

The following is a small adaptation to the above detuning parameter which makes it possible to 

consider cases in which     .  The second order Taylor series is given below. 

 ( )   (  )  
  (  )

  
(  )  

   (  )

  
(  )    (19) 

In this case,        (  )       
 

 
(  )      .  This results in a slight 

modification given in Equation 20 to the commonly used Kogelnik result.   

   (  )       (  ) 
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The resulting detuning parameter that will be considered throughout the rest of this paper 

is given in Equation 21. 

 (     )  (
           

  
) (  

     

     
 

   

 
 

  

  
)   (21) 

Using Equations 7 and 21, the diffraction efficiency as a function of both angular and 

spectral detuning can be considered in both normal incidence,     , and off axis,     , 

cases.  This form of the detuning parameter allows each dimension to be considered 

independently.  As a result, the effect that non-ideal beam properties, such as divergence and 

spectral bandwidth, have on VBG performance can be more conveniently considered.   

3.2 Modeling Beam Divergence and Spectral Bandwidth Effects in VBGs 

3.2.1 Introduction to the Effect of Non-Ideal Beams on VBG performance 

There are three main effects that reduce the peak diffraction efficiency at the Bragg 

wavelength and raise the diffraction efficiency for the transmitted beams: laser beam divergence, 

spectral bandwidth, and inhomogeniety of the grating parameters across the aperture of the VBG. 

Figure 18 shows the influence of these three effects on the difraction efficiency. The 

VBG modeled here has a thickness of 3.66 mm and a refractive index modulation of 420 ppm.  

Series 1 represents the monochromatic plane-wave diffraction by an ideal VBG.  Series 2 is for a 

Gaussian beam with 2 mrad divergence. Series 3 includes 2 mrad divergence and 50 pm laser 

spectral bandwidth.  Series 4 includes 2 mrad divergence, 50 pm bandwidth and 50 pm of 
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resonant wavelength shift across the aperture.  Understanding and minimizing these effects is 

important to designing an efficient system. 

Prevously, the effect of laser divergence or bandwidth have been included in the VBG 

model separately
74

.  Accounting for these effects simultaneously as a function of either 

wavelength or angle in reflecting VBGs has not been previously presented. 

3.2.2 Formal Approach to Including Non-Ideal Beam Effects in the VBG Model 

To include these effects in the VBG diffraction efficiency profile, the ideal plane wave 

diffraction efficiency spectrum is first calculated using Equations 7 and 21 that results from 

Kogelnik’s theory of coupled waves described in the previous section 
[3]

. 

Finite divergence and finite spectral content must be taken into account for spectral beam 

combining optimization.  To accomplish this, the profile of the input beam in angle space is 

convolved with the diffraction efficiency followed by a similar convolution in spectral space.  

Let Equation 22 represent the input beam in spectral space with a Gaussian spectral profile, and 

Equation 23 represent the input beam in angle space with a gaussian divergence profile, where   

is the spectral width,    is incident beam angle, and   is the divergence (FWe
-2

M). 
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In previous approaches, a single convolution in either wavelength space, or angle space 

was suggested, however, to include both effects, a double convolution must be carried out in 

series.  It does not matter which is performed first.   For convenience of computation, which will 

become clear later, the convolution in angle space will be done first.  Let    (     ) in 

Equation 24 represent the diffraction efficiency as a function of both wavelength and angle after 

convolution with   (    ). 

   (     )  
(  [    ]  [     ])(  )

∫  [    ] (  )
       (24) 

The effects of a beam with a finite spectral bandwidth may be included simultaneously by 

convolving    (     ) with   (   ). 

      (     )  
(  [    ]    [     ])(  )

∫  [    ] (  )
        (25) 

Finally, the variations in VBG Bragg wavelength across the beam aperture can be 

included in the model by the same mathematical method.  If the shift in Bragg wavelength as a 

function of a lateral coordinate is assumed to be nearly linear, and the beam is Gaussian, 

Equation 25 can be used again to account for this shift, where   is now the spectral shift in 

Bragg wavelength across the beam aperture. 

A third convolution is necessary to incorporate all three effects into the model 

simultaneously.  Equation 26 results from performing a second wavelength convolution on 

Equation 25. 
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          (     )  
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[    ]       [     ])(  )

∫   
[    ]   

      (26) 

Equation 26 gives the VBG diffraction efficiency as a function of wavelength detuning 

and Bragg angle, including the effects from beam divergence, beam spectral bandwidth, and a 

Bragg wavelength shift across the beam aperture.   

3.2.3 Computational Implementation of Simultaneous Angle and Wavelength Convolutions 

The model is designed to be used for optimization.  In this case, it is important to 

maintain a high speed implimentation.  The numerical convolution process in angle space 

described here is illustrated in Figure 19.  The diffraction efficiency spectrum is calculated for 

each Bragg angle,   , within a range of interest, producing a two dimensional diffraction 

efficiency array.  In this array, the horizontal index, N, represents wavelength change while the 

vertical index, M, represents angle change.  To include the effects of a divergent beam, a one-

dimensional array representing the angular distribution of the beam is generated from 

Equation 23 and is multiplied row by row in angle space to the diffraction efficiency array.  This 

is not a matrix dot or cross product, but an element by element multiplication of a one-

dimensional array to each row of a two-dimensional array.  Then the area under each row is 

divided by the area under the curve generated by Equation 23.  This operation is illustrated in 

Figure 19.  The resulting one dimensional array is the diffraction efficiency as a function of 

wavelength including the effects of a finite beam divergence.  Equation 27 gives the formal 
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equivalent of the described operation.  This operation effectively convolves Equations 23 and 7 

in angle space, and can be performed in miliseconds by an up to date personal computer.   

   (  )  
∫   [   ] [       ]  
 
  

∫   [   ]
 
    

    (27) 

 

 

Figure 19: Numerical convolution in angle space 

 

The following convolutions in wavelength space are performed in a similar manor, but 

because the diffraction efficiency spectrum is in a numerical form rather than analytical after the 

previous convolution, it becomes convenient to use the Gaussian beam spectrum as the shifting 

function.  Instead of multiplying a single gaussian shape to many Bragg wavelength shifted VBG 

diffraction efficiency spectra, the resulting VBG spectra from the angle-space convolution is 
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multiplied to an array of wavelength shifted Gaussian beams in wavelength space.  The formal 

notation for this operation is shown in Equation 28, and the process is illustrated in Figure 20.  

Note that convolution is commutative.  So it does not matter which of the two functions involved 

in the convolution is used with a shifting variable in the integral. 
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Figure 20: Numerical convolution in wavelength space 
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3.2.4 Experimental Verification of Beam Divergence, and Bandwidth Effects on VBG 

Performance 

A VBG with refractive index modulation,           ppm, and thickness,   

       , and a Bragg period at normal incidence of 531.81 nm, is used to diffract a tunable 

laser at normal incidence with diffraction limited divergence, and a spectral bandwidth of 

0.114 nm (full width 
 

  ).  Figure 21 shows both the theoretical modeling and experimental 

measurements which show very close matching, indicating that the effect of beam spectral 

divergence on diffraction efficiency is accurately modeled. 

 

 

Figure 21: Comparison Theory(dash) v.s. Experiment (solid); VBG refractive index 

modulation = 102.5 ppm, Bragg Period = 531.81 nm, thickness = 3.99 mm; Laser spectral 

bandwidth = 0.144 nm, divergence = diffraction limited. 

 

To further confirm the method, a VBG with        ppm, and thickness,   

       , and a Bragg period at normal incidence of 1066.57 nm, is used to diffract a tunable 
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laser at an angle of 7.9
0
 (half angle)with 23 mrad divergence (full angle), and a single frequency 

spectral bandwidth.  The focus of the beam was placed at the surface of the VBG so as to rule 

out any effect of VBG inhomogeneity.  Figure 22 shows the comparison of theory and 

measurements which match very closely and confirms that the effect of beam divergence on 

VBG performance is accurately modeled. 

 

 

Figure 22: Comparison Theory(dash) v.s. Experiment (solid); VBG refractive index modulation 

= 415 ppm, thickness = 3.5 mm, Bragg Period = 1066.57 nm; Laser spectral bandwidth < 20 pm, 

divergence = 23 mrad (full width) 
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4 OPTIMIZATION OF VBG PARAMETERS FOR SBC 

4.1 Single Stage Optimization 

A method for optimizing a spectral beam combining system with an arbitrary number of 

channels has been developed.  In the previous section, modeling the diffraction efficiency 

spectrum for a single grating was discussed.  The results of this modeling are used to optimize a 

single VBG for SBC.  For a given number of laser beams, each with finite divergence and 

bandwidth, with a given spectral separation, starting wavelength, and a possible range of grating 

thickness and refractive index modulation, a grating configuration is found to achieve maximum 

efficiency.  The finite divergence and bandwidth of the beams are major parameters that drive 

the optimization, and must be accounted for in the manor described in the previous section. 

In a SBC system, illustrated in Figure 15, there are as many VBGs as beams minus one.  

In this case, optimization must be performed for each VBG.  The first VBG in the SBC system 

will only interact with two beams, the diffracted beam at the VBG resonant wavelength, and the 

transmitted beam at some specified distance from the resonant wavelength.  The next VBG in the 

system will interact with three beams, the diffracted beam at the VBG resonant wavelength, and 

the two beams from the first VBG which will both transmit through the second VBG.  This 

continues until the desired number of beams is combined. 
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Initially, the case of one VBG with one reflecting beam and one transmitting beam will 

be considered.  The same method can then be adapted to multiple beams, and, through an 

iterative process, to multiple VBGs in a SBC system with an arbitrary number of beams. 

As was illustrated in the previous section, and can be seen in Figure 23, diffraction 

performance can be affected by beams with some finite spectral bandwidth or divergence.  The 

goal of an optimization is to maximize total efficiency with respect to both the transmitting and 

reflecting beams.  Given a certain beam divergence, the diffraction efficiency at the Bragg 

wavelength will be reduced from the ideal case, which will reduce the efficiency of the reflected 

beam.  The transmission efficiency of beams to be transmitted through the minima in the 

diffraction efficiency spectrum will also be reduced.  An increase in either the VBG thickness or 

the refractive index modulation will have the effect of further increasing the peak diffraction 

efficiency at the Bragg wavelength and decreasing the transmission efficiency at the minima in 

the spectrum.   
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Figure 23: Diffraction efficiency spectrum for plane wave, and 0.5 mrad (half angle) divergent  

beam 

 

The optimal thickness and refractive index modulation for a VBG intended to diffract one 

beam, and transmit one beam at some specific spectral separation must be found such that a 

balance between increasing diffraction efficiency at the Bragg wavelength and increasing 

transmission efficiency at a desired minimum is achieved. 

To optimize such a VBG, a spectral separation between beams is chosen, 0.25 nm for 

example, as well as a divergence for the beams, 0.5 mrad (half angle) for example, assumed to be 

the same for both.  Given such parameters, a set of diffraction efficiency spectra, 

   (         ) from Equation 24, including the effects of divergent beams, should be 
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the beam combining efficiency should be determined by Equation 29 below, where    is the 

Bragg wavelength, and    is the transmission wavelength such that           which is the 

spectral separation between beams. 

   (    )  
 

      
[  (   (         ))     (     (         ))]  (29) 

This approach can be easily expanded to an arbitrary number of transmitting beams and 

one reflecting beam interacting with one VBG by the more general equation for beam combining 

efficiency given by Equation 30. 

   (    )  
 

   
[  (   (         ))     (     (          ))    

   
(     (   

       ))]     (30) 

Equation 31 gives a more concise notation, where N is the number of transmitting beams 

interacting with the VBG being optimized,    is the power of the reflecting beam at the Bragg 

wavelength,    
 is the power of the N

th
 transmitting beam, and     is the total power incident on 

the VBG. 

   (    )  
 

   
∑ [  (   (         ))     

(     (   
       ))] 

    (31) 

.Equation 31 can now be used to generate a two dimensional array of beam combining 

efficiency of a VBG as a function of VBG thickness and refractive index modulation for a 

specified number of beams, N, at a specified spectral separation,    , with a specified beam 
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divergence,  .  An example of the resulting data can be seen in Figure 24.  The software 

interface that was created as a part of this research is shown in Figure 25.  A search for the 

maximum combining efficiency through the resulting data will produce the optimized values for 

thickness and refractive index modulation. 

 

 

Figure 24: Combining efficiency, single stage SBC, 2 beams, 0.25 nm separation, 0.5 mrad div 

(half angle) 
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Figure 25: Software interface for VBG optimization 

 

Unfortunately, for each thickness-refractive index modulation combination, equation 31 

must be calculated which requires a 1000 x 1000 diffraction efficiency matrix for sufficiently 

accurate calculations during the convolution with the Gaussian shape of the beam’s divergence.  

A modest 100 points along the thickness axis and 100 points along the refractive index axis will 

require 10,000 convolutions for a single stage SBC system.  For a standard office computer, this 

will require hours to calculate.  Although this is possible to use, it can be impractical, and as it 

turns out, unnecessary. 
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The lasers used for the spectral beam combining experiments that will be discussed in 

detail in a later chapter are single frequency lasers, and in general high power fiber lasers are 

available with a spectral bandwidth of less than 20 pm.  If such lasers are used, then the 

bandwidth of the lasers has a negligible effect on the VBG performance, and can be neglected.  

However, even diffraction limited beam divergence on sub-10 mm diameter beams can have an 

effect on the VBG diffraction efficiency spectrum, and must be taken into account.   

So, for the sake of speed, and the demonstration of the concept, it will be assumed that 

the input lasers are single frequency, and therefore the diffraction efficiency calculation and 

convolution in angle space can be made for only the specific wavelengths at which the lasers 

operate.  This reduces the required matrix size from 1000 x 1000 to 1000 x 2 for a 2 beam SBC 

system.  Furthermore, it is not necessary to perform the convolution in angle space for a broad 

angle range.  If, the calculated angle range is reduced to three times the full width of the beam 

divergence, the calculation matrix can be reduced to 250 x 2 for a 2 beam, 1 VBG optimization, 

and more generally 250 x N for an N beam, 1 VBG system.  This reduces the calculation to less 

than 1 ms for each data point generated by equation 31, and allows for optimization within 

1 minute for a single VBG optimization.   

Another important factor in optimization is to include losses associated with increasing 

thickness and refractive index modulation.  Both scattering and absorption have been observed in 

PTR glass, but scattering losses are orders of magnitude higher than absorption, and for the 



 

50 

 

purposes of determining efficiency and optimizing the VBG parameters, only scattering losses 

will be considered.  In the linear regime,            , the scattering loss coefficient in 

PTR glass is given by Equation 32 below, where         and  (     ) is the scattering 

loss coefficient at 750 nm wavelength. 

 (     )  
  

     
     (32) 

The loss coefficient at another wavelength is given by the following expression. 

 ( )      (     ) (
      

 
)
 

       (33) 

The loss percentage is calculated by the following equation. 

 ( )  (      ( )
      )    (34) 

Including the scattering loss of Equation 34 into the combining efficiency calculation of 

equation 31, yields the following expression for combining efficiency. 

   (    )  
(   ( ))

   
∑ [  (   (         ))     

(     (   
       ))] 

      (35) 

Some interesting conclusions can be made after some key optimization calculations.  This 

discussion is still focused on examining only a single VBG with a single reflecting beam and 

multiple transmitting beams with a divergence of 0.5 mrad (half angle), and spectral separation 

of 0.25 nm between beams. 
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A two beam example was already shown in Figure 24.  The maximum combining 

efficiency was calculated to be 98.1 % at 6.3 mm thickness and 170x10
-6

 refractive index 

modulation for a range 0 to 7 mm and 50 to 800x10
-6

 respectively.  If, however, the analysis is 

extended to a maximum thickness of 25 mm, an absolute maximum combining efficiency of 

98.3 % can be found with a thickness of 19.9 mm and a refractive index modulation of 60x10
-6

.  

An absolute maximum can also be found for higher numbers of transmitting beams.  The same 

analysis performed for a total of five beams results in a maximum of 98.5 % combining 

efficiency at 16.8 mm thickness and 60x10
-6

 refractive index modulation is found.   

The reason that the five beam case results in a higher efficiency at a smaller thickness, is 

that more of the total power in the system is transmitting through the minima in the VBG 

spectrum rather than diffracting from the peak at the Bragg wavelength.  In this case the 

optimization is weighted toward slightly weaker VBGs such that the peak in the diffraction 

efficiency spectrum is slightly lower, and the transmission efficiency of each of the four 

transmitting beams is slightly higher. 

It is clear that if a VBG could be made with thicknesses in the range of 20 mm with high 

quality, an absolute maximum in combining efficiency could be achieved.  However, it is not 

very beneficial to go to such thicknesses as will become clear with the next set of examples. 

Referring back to Figure 24, four peaks in the combining efficiency can be seen as a 

function of thickness and refractive index modulation, but the peaks appear mostly in the 
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thickness direction.  These peaks in combining efficiency represent a combination of thickness 

and refractive index modulation such that the transmitting beam that is nearest in wavelength to 

the Bragg wavelength of the reflecting beam falls into the first, second, third, or fourth minimum 

of the diffraction efficiency spectrum.  The solution with the thinnest grating represents the use 

of the first minimum, and the solution with the thickest grating represents the use of the fourth 

minimum.  These minima can be seen in the diffraction efficiency spectrum of Figure 23. 

If the optimization analysis is limited to a maximum thickness of 3 mm, the first peak in 

combining efficiency can be found, and results in a maximum of 97.40 % combining efficiency 

at a thickness of 2.1 mm and refractive index modulation of 470x10
-6

.  As discussed in the 

previous paragraph, the first peak in combining efficiency corresponds to using a VBG thickness 

and refractive index modulation such that the transmitting beam that is nearest in wavelength to 

the Bragg wavelength falls in the first minimum of the diffraction efficiency spectrum.  Analysis 

of the second peak shows a combining efficiency of 97.97 % at a thickness of 3.4 mm and    of 

310x10
-6

, a gain of 0.57 %.  Examining the third peak shows a combining efficiency of 98.06 % 

at a thickness of 4.8 mm and    of 220x10
-6

, a gain of only 0.09 %.  The fourth peak shows a 

combining efficiency of 98.12 % at a thickness of 4.8 mm and    of 170x10
-6

, a gain of only 

0.06 %.  These examples are specific to beam divergences of 0.5 mrad (half angle), and single 

frequency lasers with 0.25 nm spectral separation.  For beams with higher divergence, or with 

greater than 25 pm of bandwidth, the differences in combining efficiency for successive peaks 
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will be exaggerated, the use of thicker gratings utilizing higher order minimums for transmission 

may be called for.   

It is worth pointing out that the next contour down from the highest efficiency contour in 

Figure 24 is set to be only 0.5 % below the peak in beam combining efficiency.  So rather than 

there being a single solution, VBGs manufactured in the range shown by this contour level will 

produce reasonably high beam combining efficiency. 

In the case of nearly collimated beams, and single frequency lasers, the gain in combining 

efficiency after the third peak is only 0.06 %.  As stated before, the third peak in combining 

efficiency corresponds to the use of the third minimum in the diffraction efficiency spectrum for 

the transmitting beam that is nearest to the Bragg wavelength of the reflecting beam.  Thicker 

VBGs are more difficult to manufacture than thin VBGs, and accumulate more laser induced 

heat during operation.  Therefore, thinner VBGs are desirable if a compromise can be reached.  

Based on the examples discussed in this paragraph, there is a significant performance advantage 

in using the third minimum, but the advantage diminishes with each successive minimum.  It is 

concluded that optimization should be made to find the thickness and refractive index 

modulation associated with the third peak in combining efficiency. 

4.2 N-Stage Optimization 

The optimization analysis up to this point has been with regard to a single stage of an 

SBC system.  Even for cases in which more than two beams were considered, one beam would 
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be reflecting from one VBG, while the remaining beams were transmitting through the same 

VBG.  A multi-beam, VBG-based, SBC system will have as many VBGs as beams minus one.  

Optimization is performed iteratively for each successive VBG in the system.  The output of 

each iteration, which is the ratio of the power incident on the optimized VBG to the power that 

will arrive at the next VBG for each beam, is used as the input for the next iteration.  The final 

result of the optimization is the necessary refractive index modulation and thickness for each 

VBG in the system to obtain peak combining efficiency.  Figure 26 illustrates the iterative 

optimization. 
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Figure 26: Illustration of iterative SBC system optimization 

 

Figure 27 shows an example of the resulting data from an optimization calculation for a 

5-channel combining system with a spectral separation between channels of 0.25 nm around 

1064 nm, and beam divergence of 0.5 mrad (half angle).  

 

First Iteration, 2 

channels, green 

center WL

Second Iteration, 

3 channels, Blue 

center WL

Continue until 

desired number of 

channels is reached

Between iterations, output 

efficiency is stored and used 

as input for the next iteration 

of the program.
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Figure 27: Efficiency of 5-channel SBC as a function of VBG thickness and refractive index 

modulation  

 

The ideal diffraction efficiency for each of the four VBGs whose parameters were 

determined by the optimization procedure is shown in Figure 28.  This system was designed such 

that each laser would interact with every VBG whose Bragg wavelength is less than or equal to 

that of the laser. Every VBG in Figure 28 has less than 1% diffraction efficiency at wavelengths 

corresponding to the Bragg condition of higher-wavelength VBGs. 

 



 

57 

 

 

Figure 28: Diffraction efficiency spectra of VBGs for an optimized system 
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5 MODELING THE BEAM QUALITY OF COMBINED GAUSSIAN 

BEAMS 

Laser induced heating of VBGs can introduce slight expansion of the grating period, 

lensing, and thermally induced aberrations.  The expansion of the grating period can be 

compensated by thermal tuning which will be discussed in detail in a later chapter.  Thermally 

induced lensing can be compensated by telescopes on the input beams, but to what precision 

does lensing need to be controlled?  Higher order aberrations induced by laser heating can effect 

the beam quality of each beam separately due to the fact that each VBG experiences a different 

thermal load, and each beam transmitts through a different number of VBGs.  A model for 

calculating beam quality in the form of the M
2
 factor is presented in which individual beam waist 

mismatch due to thermal lensing is considered, as well as the effect of differing beam quality in 

each beam due to higher order thermally induced aberrations. 

5.1 Modeling the Combined M
2
 of Ideal Gaussian Beams with Beam Waist Mismatch 

Laser induced heating of the VBGs introduces very slight focusing to each beam, and 

these changes will be unique for each beam.  The focal length of the thermally induced lenses 

will vary depending on incident laser power and the absorption of the glass used.  In the cases 

considered in this dissertation, the focal lengths of the induced lenses have been approximated to 

be a few meters to tens of meters depending on the particular experiment and which beam is 

considered.  These small differences in beam divergence will not degrade the M
2
 of the 

individual beams, but, if left without compensation, the composite M
2
 after combination can be 
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adversely affected if the beams do not have equivalent divergence at the output of the system
77

.  

Beams of different divergences can be described in terms of having different effective waist 

locations and sizes.  This effect can be measured when focusing the beams to form a new beam 

waist in order to measure the beam quality.  

To illustrate the effect beam waist mismatch between beams can have on beam quality, 

two collinear beams with slightly different divergences, but M
2
 = 1, are modeled and the 

combined beam quality is calculated.  Figure 29 shows the beam 
 

   size as a function of 

propagation distance from the aperture for two beams with different divergences (half angle), 

θ1 = 0.1129 mrad, and θ2 = 0.2129 mrad, but each with diffraction-limited beam quality, M2 = 1.  

The aperture size is 3 mm for both beams at z = 0.   

 

 

Figure 29: Beam radius v.s. propagation distance for two beams with a divergence difference of 

0.100 mrad 
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In order to determine the combined beam quality factor, M
2
, the intensities of each beam 

must be summed at two points in the far field.  The divergence can then be calculated from the 

beam size at each point.  The beam quality factor can then be determined by dividing this 

divergence by the divergence of an ideal Gaussian beam with the same aperture size. Figure 30 

shows the relative intensity of each beam as a function of beam radius after 10 meters of 

propagation.  Even though the areas under these curves are identical, the peak power of the 

higher divergence beam has significantly reduced at this point, but the combined beam quality, 

M
2
 = 1.25, has not yet been reduced to an unusable level.   

 

 

Figure 30: Cross section of two beams with 0.100 mrad divergence difference after 10 m 

propagation 
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an ideal diffraction limited beam.  The intensity profile of each beam in the far field is calculated 

using Equation 36 below, P is the power; z, the propagation distance from the aperture; zr, the 

Rayleigh length; w(z), the beam radius at some distance z; and  , the wavelength. 

  
 

  (
 

  
)
  

  (
  

  ( )
)
     (36) 

where, 

   
   

 

 
     (37) 

and,  

 ( )    √  (
 

  
)
 

    (38) 

After each beam profile is generated in the far field, they are summed incoherently to 

provide the profile of the combined beam.  For a Gaussian beam of any divergence, the 

divergences calculated by the 
 

   beam width or by calculating based on the second moment,   , 

beam width are identical.  However, in this case, two Gaussian beams with different divergences 

are summed and the result is not a Gaussian shape.  The second moment method of calculating 

the beam divergence must be employed. 

The beam radius,  , of a given intensity profile can be calculated by finding the variance 

as described in Equation 39.  
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          √   ( )  √  
∫ ∫            (   )     

 
 

  
 

∫ ∫          (   )     
 
 

  
 

   (39) 

The same calculation is made for a perfect Gaussian beam at the same points in z.  The 

half angle divergences are calculated for each and are compared to determine the combined beam 

quality as given in Equation 40. 

  
  

          

          
 

(√   (  ) √   (  ))
        

(√   (  ) √   (  ))
        

   (40) 

Figure 31 shows the relative radiance as a function of the M
2
 beam quality factor for 

different quantities of combined beams.  The relative radiance is calculated as the combined 

beam radiance, determined by use of Equation 1, divided by the radiance of an individual input 

Beam.  Relative radiance is related to the beam combining factor, BCF, by dividing the relative 

radiance by the number of beams.  From the plot, it can be seen that for two beams with an M
2
 = 

1.25, the increase in radiance is about 30 %, and a BCF of 0.64.  Ideally the radiance would 

increase by 100 % for each beam that is combined which can be seen in the plot for M
2
 = 1.  If 

the divergence difference between the two beams is reduced to 0.050 mrad, the combined beam 

propagation factor is improved to M
2 

= 1.16 which gives about a 50 % increase over the single 

beam radiance, and a BCF of 0.74.  To achieve a 90 % increase in radiance by combining two 

beams, the necessary difference in divergence between the beams that must be maintained is less 

than 0.010 mrad, which corresponds to M
2
 = 1.03 
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Figure 31: Relative Radiance in a combined beam v.s. M
2
 for individual beams.  

 

It is clear that to effectively increase the radiance of spectrally combined beams, the 

divergence of each beam must be tightly controlled. The results are slightly different for five 

beams due to the fact that a smaller portion of the power will be located in the lowest or highest 

divergence case.  Figure 32 shows the beam 
 

   size as a function of propagation distance from 

the aperture for five beams with different divergences, 0.113 mrad, 0.138 mrad, 0.163 mrad, 

0.188 mrad, and 0.213 mrad, for a total difference in divergence equal to that of the two beam 

case, 0.100 mrad.  Figure 33 shows the intensity cross-section of the five beams after 10 meters 

of propagation.  The combined beam quality factor for all five beams is calculated to be M
2 

= 

1.34, which gives a BCF of 0.56.  Table 1 summarizes the findings for both the two and five 

beam cases. 
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Figure 32: Beam radius v.s. propagation distance for five beams with a total divergence 

difference of 0.100 mrad 

 

 

Figure 33: Cross section of five beams with 0.100 mrad total divergence difference after 10 m 

propagation 
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size.  If the beam divergences were perfectly aligned, the waists would occur at the same location 

and would have the same radius.   

The procedure to precisely align the beams should be to match the location of the beam 

waists in the focal spot after a lens, ideally in the same location as a diffraction-limited test 

beam.  If this is achieved, any measurement of far field divergence will show equal, diffraction-

limited divergence for all beams involved, and a combined M
2
 = 1, assuming that the initial 

beams are diffraction-limited and no higher order aberrations are added by the beam combining 

optics.  It is concluded that an error in focal spot of up to ½ of a Rayleigh length does not cause 

significant degradation of the beam quality factor or relative radiance. 

5.2 Ideal Alignment of Non-Ideal Beams, M
2
 ≠ 1 

In the previous section, tolerances on beam divergence differences for ideal diffraction-

limited beams where M
2
 = 1 for each beam were discussed.  In most high power cases the beam 

quality of each beam will not be ideal, and in the case of VBG-based spectral beam combining, 

each beam experiences a different set of distortions due to the fact that each beam transmits 

through a different set of VBGs that are each being heated by different optical power loads.  The 

beam that transmits through all VBGs will have higher distortions than the final beam which 

only diffracts from a single VBG. 

In this case, it is impossible for a beam with M
2
 > 1 to be adjusted to have diffraction-

limited divergence.  By definition, the minimum divergence for that beam would be increased by 
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a factor of its M
2
.    

     

               
.  If the far field divergence is measured for each beam, the 

only way to give the beams equal divergence would be to increase the divergence of the beams 

with better beam quality which would result in a shifting of the beam waists in the focal spot and 

the combined beam quality would be reduced.  In the case of ideal beams of different divergence, 

the divergence could be measured directly, and each beam adjusted to be equal; but in the case of 

non-ideal beams the best case is not when the divergences are equal, but when each beam has the 

smallest possible divergence.   

A clear method to achieve this is to ensure the beam waists in the focus are aligned 

together.  The beam radius at the waist will be a different size for each beam that has a unique 

beam quality, but the waist locations should be aligned to the location of the ideal Gaussian 

beam waist.  This insures that the divergence for each beam is as close to ideal as possible and 

the combined beam quality is best in this case.   
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Table 1: Summary of beam propagation factor, divergence, Rayleigh length, and radiance 

findings for two and five beam spectral beam combining 

 

2-Beams 

Divergence Difference, mrad 0.100 0.050 0.010 

Combined M2 1.25 1.16 1.03 

Focus Error/Rayleigh Length 1.60 1.04 0.43 

Relative Radiance 1.28 1.49 1.89 

BCF 0.64 0.74 0.94 

5-Beams 

Divergence Difference, mrad 0.100 0.050 0.010 

Combined M2 1.34 1.19 1.04 

Focus Error/Rayleigh Length 1.60 1.04 0.43 

Relative Radiance 2.78 3.53 4.62 

BCF 0.56 0.71 0.92 
 

5.3 Experimental Setup for Beam Waist Measurement of Spectrally Combined Beams 

As discussed above, VBGs are recorded in PTR glass which has a small but finite 

absorption.  This absorption causes each VBG to heat up and expand.  The expansion induced by 

heating changes the Bragg wavelength and must be tuned by thermal tuning devices that are 

discussed in detail in the chapter on thermal tuning of VBGs.  The thermal tuning devices 

operate by cooling the edges of the VBG until the center of the VBG returns to the correct 

temperature and hence thickness to achieve the Bragg condition for the desired wavelength.  This 

process can maintain the efficiency from low to high power operation, but, although the 

temperature in the center of the VBG is maintained, the temperature gradient across the aperture 

of the VBG causes the VBGs to behave like thermal lenses with a very long focal length. 
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Ideally, each laser in the system could be tuned individually while all other lasers are 

turned off.  However, since the lensing and aberrations are caused by heating from all lasers, the 

alignment must be made while the system is at full power.  This introduces a significant 

complication to the problem of aligning the beam divergences.  All five lasers in the beam 

combining system should be propagating collinearly if properly aligned, and the spectral 

separation between beams is only 0.25 nm.  A demultiplexer must be employed in order to 

separate each beam for measurement and alignment. 

A new approach has been developed in which a thermally tuned VBG with wavelength 

selectivity of 0.25 nm is used as the spectrally selective filter.  Unlike the VBGs in the beam 

combining portion of the setup, this VBG can be tuned across the entire spectral range of the 

system, 1 nm, due to its high temperature range, from 5
o
 C to 130

o 
C.  The high power combined 

beam is sampled down to a lower power and sent into the measurement setup.  After a beam is 

selected and reflected from the demultiplexing VBG, it is sent through two alignment mirrors, 

and a beam sampler before being measured for waist size, divergence, and beam quality factor, 

M
2
.  Figure 34 illustrates the experimental setup.  The beam sampler sends a portion of the beam 

into an integrating sphere where the power and spectrum are analyzed to ensure that the proper 

beam has been selected. 
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Figure 34: Demultiplexing and beam measurement experimental setup 

 

Before sending the combined beam into the measurement setup, an ideal, low power, 

diffraction-limited Gaussian beam is sent into the Beam Map to determine the ideal focal spot for 

a perfect beam, M
2
 = 1.  The divergence of each of the five combined beams in the system can 

now be selected by the demultiplexing VBG, and adjusted until the focal spots are all in the same 

locations after the analyzing lens.  In this way each beam will achieve the smallest divergence 

possible and the best combined beam quality can be reached.  This technique is used to align the 

divergence of five 150 W beams with a spectral separation between beams of 0.25 nm.   
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6 THERMAL TUNING OF VOLUME BRAGG GRATINGS 

A thermal tuning technique has been developed for maintaining high efficiency of beam 

combining throughout the power range of the system.  VBGs are recorded in PTR glass which 

has a small but finite absorption.  It means that the glass is heated under high power laser 

radiation, which causes glass expansion and hence Bragg wavelength shift.  Therefore, when the 

system is aligned to operate with high efficiency at low power it must be re-aligned for high 

power beams to produce high combining efficiency.  Using the new thermal-tuning technique, 

initial alignment is performed while heating the VBGs with a novel heating aperatus.  As laser 

power is increased, the VBG temperature is lowered, and combining efficiency is maintained 

without need for mechanical adjustment.  The thermal tuning aparatus is shown in Figure 35. 

 

 

Figure 35: VBG thermal tuning apparatus 

 

An additional advantage to thermal tuning of the VBGs is very precise tuning of the 

grating period.  To effectively combine high power beams with such a narrow spectral 
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separation, very precise control of the VBG resonant wavelength must be implemented.  VBGs 

with narrow spectral selectivity also have narrow angular selectivity.  So tuning the VBGs by 

angle becomes a challenge and is impractical at high output powers.  By changing the 

temperature of the VBG, the glass expands or contracts, changing the period of the VBG and 

hence the resonant Bragg wavelength.  This thermal method of tuning the resonant wavelength 

has much greater resolution than angle tuning and, once implemented, can be controlled 

electronically.  A thermal tuning method and novel thermal tuning apparatus is presented in 

order to achieve precise control of the VBG resonant wavelength and hence combining 

efficiency of a SBC system without mechanical tuning. 

To demonstrate the need for thermal tuning of VBGs for high spectral density SBC, 

Figure 36 shows the calculated diffraction efficiency spectrum for a VBG with parameters 

consistent with those used in the SBC system, thickness of 4.78 mm, refractive index modulation 

of 211 ppm, and approximately 65 pm of Bragg wavelength shift across the beam aperture of 

6 mm.  The desired transmission wavelength is the third minimum of the VBG’s efficiency 

spectrum and is 0.25 nm from the Bragg wavelength.  The beam is assumed to be 

monochromatic and have diffraction-limited divergence. 
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Figure 36: The tail of a diffraction efficiency spectrum illustrating sensitivity of losses for a 

transmitting beam to offset of wavelength 

 

The wavelengths at which beams are to be transmitted and diffracted are highlighted in 

Figure 36.  It is important to note that in the area of the side lobes, the distance between nearest 

maxima and minima of reflection efficiency is only 0.045 nm. A wavelength offset of this value 

would reduce transmittance of the grating by 7 %.  The diffracting beam would also experience a 

reduction in efficiency for a 0.045 nm tuning error, but there would only be a reduction in 

efficiency of around 2 %.  Maintaining very precise control of the Bragg wavelength is important 

for the diffracting beam but critical for the transmitting beam. 

Due to the necessity of high wavelength precision, the tuning apparatus must have high 

thermal stability.  Figure 37 shows the measured temperature in the copper attachments at the 

edge of the VBG during temperature control.  The temperature was set to 70 degrees, but the 

resulting average temperature was approximately 68.7 
o
C, and the standard deviation was 1.0 

o
C.  

The deviation of the measured average temperature and the set point temperature is not 
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extremely important as the SBC system is aligned with respect to the actual temperature at the 

center of the VBG not necessarily the set temperature at the edge.  The alignment procedure will 

be discussed in greater detail.  Even though the standard deviation is only 1.0 
o
C this is the 

deviation at the copper at the edge of the VBG.  Copper has significantly higher thermal 

conductivity than the glass.  This suggests that the temperature variation at the center of the glass 

will be damped with respect to the measured temperature variation in the copper at the edge.  It 

can be reasonable concluded that the temperature variability in the center of the VBG will be 

significantly less.  Even if considering the 1.0 
o
C variation in the copper, this only represents a 

0.01 nm deviation which is within a reasonable tolerance for the proposed system with 0.25 nm 

spectral separation. 

 

 

Figure 37: Temperature stability of TEC while controlling a VBG.  At the 70 
o
C set point the 

average temperature was 68.7 
o
C, and the standard deviation was 1.0 

o
C. 
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In order to probe the VBG behavior while under various heating conditions, a test beam 

is overlapped on the VBG with the high power beam such that the diffraction efficiency 

spectrum of the VBG with or without laser induced heating at various edge temperatures can be 

determined. 

The experimental setup is shown in Figure 38.  The high power laser produces a 6 mm, 

160 W beam, while the low power tunable laser produces a 6 mm, ~10 mW, beam with close to 

difraction limit divergence.  Heating to the grating may be caused by both the high power laser 

beam and the external heating apparatus.  The diffraction efficiency spectra are measured with 

the tunable low power laser under various heating conditions. 
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Figure 38: Experimental setup for diffraction efficiency spectra measurement in VBGs exposed 

to high power laser radiation 

 

Figure 39 shows the VBG diffraction efficiency spectrum for three different cases. The 

diffraction efficiency spectrum of the grating at room temperature with no illumination by a high 

power radiation is shown by blue dots. Next, the heater temperature is set to 70˚ C, and the VBG 

is aligned with a low power beam.  The dashed line in Figure 39 shows the diffraction efficiency 

for this condition.  Next the high power beam is turned on, and the heater temperature is lowered 

until peak diffraction efficiency is recovered to its previous position.  The diffraction efficiency 

of a probe beam produced by a VBG under exposure to the high power beam is measured and 

determined to be equal to that of the low power beam.  The solid line shows the diffraction 

efficiency spectrum of the VBG with the high power beam turned on and the heater temperature 
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set to 55˚ C.  The two curves overlap, demonstrating the conservation of resonance wavelength 

from low to high laser power.   

 

 

Figure 39: Diffraction efficiency under various heating conditions 

 

Using this thermal tuning aparatus, the laser heats the glass from the center while the 

glass temperature is controlled from the edge.  Without the use of thermal control, the 

temperature at the edge of a VBG under high power laser radiation is much cooler than the 

temperature at the peak of radiation.  This thermal gradient produces a gradient in the Bragg 

wavelength of the VBG which can reduce combining efficiency.  By heating the edge of the 

grating while high power radiation heats the center, the combined thermal gradient will be 

smaller than it would be without thermal control. 
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In order to examine the thermal profile across a VBG that has controlled edge 

temperatures with and without high power laser radiation heating a test beam is used to probe the 

resonant Bragg wavelength at various points across the aperture.  A change in Bragg wavelength 

in this case is the result of expansion or contraction of the VBG and the associated Bragg period 

at the location of the test beam. 

The experimental setup in Figure 38 is modified by replacing the low power output 

colimator which produces a 6 mm beam with one which produces a 3 mm beam.  With a smaller 

test beam, different parts of the VBG can be probed more accuratly. 

Figure 40 shows the Bragg wavelength shift as a result of heating across the grating 

aperture while the VBG is under various heating conditions.  The Bragg wavelength shift is the 

difference between the Bragg wavelenth of the VBG at room temperature and under some 

external heating. 
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Figure 40: Bragg wavelength profile across the aperture under various heating conditions 

 

The lower solid pink line shows the Bragg shift as a result of heating from only the laser 

source.  Next the grating is pre-heated to a desirable starting temperature.  The upper dashed line 

shows the Bragg wavelength profile while being heated from the edge to 70C.  When the laser 

radiation is turned on, the VBG edge temperature is reduced to 55C.  The Bragg wavelength 

profile that results from both high power laser radiation and heating at the edge is shown by the 

upper solid line (green).  The Bragg wavelength gradient between the center and the edge of the 

VBG is significantly reduced in this case.  Also, the resulting central Bragg wavelength is very 

near the intended central Bragg wavelength, and therefore diffraction efficiency is maintained 

without angle tuning the grating or spectrally tuning the laser. 

The temperature of 55 C was found by lowering the temperature from 70 C until peak 

diffraction efficiency was restored.  However, this temperature returned the central Bragg 

wavelength to just above the original Bragg wavelength associated with heating to 70C without 
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the high power laser.  This is a result of the Gaussian-like thermal profile the beam produces.  

The average deviation from this central wavelength from the edge of the beam to the center is 

minimized to achieve peak diffractin efficiency.  Figure 41 illustrates this effect. 

 

 

Figure 41: Profiles of deviation from initial Bragg wavelength for external heating to 70C and a 

combination of external heating to 55C and 160 W laser radiation 

 

The beam quality of the test beam was measured to determine any effect the thermal 

tuning apparatus may have.  Table 2 below shows the peak diffraction efficiency and M
2
 under 

various heating conditions.  It is clear from these results that the thermal tuning method does not 

deteriorate beam quality.  The first three rows are the results of changing the VBG edge 

temperature without any high power radiation, while the final two rows show the results with 

high power radiation at two different VBG edge temperatures.  In all cases,        , and 

diffraction efficiency was near 98%.  For the case of using a high power beam without any 
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thermal control of the VBG, row four, the diffraction efficiency dropped down to 97.7%.  This is 

the case associated with the highest thermal gradient across the aperture of the beam.  The final 

case, row five, using high power radiation and thermal controll of the VBG, reduces the thermal 

gradient and returnes the diffraction efficiency to 98%. 

 

Table 2: Diffraction efficiency and M
2
 under various heating conditions 

 

Incident optical power  Edge Temperature  Diffraction Efficiency  Test Beam M2  

0 W ~25˚ (heater off) 98.0% 1.12 

0 W  70˚ (heater on) 98.0% 1.09 

0 W  55˚ (heater on) 98.0% 1.10 

160 W  ~37˚ (heater off)  97.7% 1.12 

160 W  55˚ (heater on) 98.0% 1.09 

 

In a spectral beam combining system, each beam in the SBC system will experience 

interaction with a different combination of VBGs as shown in Figure 15.  The first beam 

transmits through four VBGs, while the second beam diffracts from one VBG and transmits 

through three, etc.  Furthermore, each VBG is under a different thermal load.  The first VBG 

experiences 150 W of power transmitting through it, and 150 W of power diffracting from it.  

While the second VBG experiences 300 W of power transmitting through it, as well as the same 

150 W of diffracted power, etc.  This is important because PTR glass has a small but finite 
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absorption.  It means that the glass is heated under high power laser radiation, which causes glass 

expansion and refractive index change resulting in Bragg wavelength shift and thermal lensing.  

It is clear that each VBG experiences different heating conditions and therefore have a different 

Bragg wavelength shift.  This shift is corrected by thermal tuning.   
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7 TESTING OF VOLUME BRAGG GRATINGS FOR HIGH POWER 

SPECTRAL BEAM COMBINING 

7.1 Testing Diffraction Efficiency and Absolute Losses 

Some special considerations must be made with testing volume Bragg gratings (VBGs) to 

be used in high power spectral beam combining (SBC).  For the five beam design that is under 

consideration in this dissertation in which it is necessary to maintain high beam quality and total 

system efficiency of greater than 90 %, it is important that the peak in diffraction efficiency at 

the Bragg wavelength be greater than 98 %, and that the diffraction loss at the transmission 

wavelength be less than 3 %.  Initial validation of a particular VBG starts with measuring the 

relative diffraction efficiency at the Bragg wavelength and at the nearest transmission 

wavelength of a desired spectral separation.  A schematic of the testing setup used for this 

measurement is shown in Figure 42.  In this simple configuration, a collimated and tunable laser 

beam is incident on a VBG such that the diffracted beam is measured by one detector while 

another measures the non-diffracted transmitting beam.  The relative diffraction efficiency for 

the Bragg wavelength is determined by dividing the power at the diffracted detector by the sum 

of the powers at the diffracted and transmitting detectors.  Similarly, relative transmission 

efficiency at the transmission wavelength is determined by dividing the power at the 

transmission detector  by the sum of the power at the diffraction and transmission detectors. 

When the VBGs for this project were delivered they were a full 40x40 mm in size, but 

the desired size was approximately 21x21 mm with a 12 mm diameter clear aperture in the 
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center.  The full size pieces needed to be cut at the best location.  For this reason, each VBG 

sample was placed on a stage with at least 40 mm of travel in the horizontal and vertical 

direction.  In this way the VBG could be translated and tested until the best location is found.  

After finding locations of the full size sample which had acceptable diffraction efficiency, the 

beam quality of a beam diffracting from that location would need to be found, which will be 

discussed in the next section. 

Absolute losses, must also be considered, and should be less than 1 %.  Losses are 

typically measured at a wavelength far from the resonant Bragg wavelength to avoid any 

difficulty in measurement that may occur as a result of interaction with the grating.  All the 

VBGs used in the project reported here had less than 1 % loss when measured far from 

resonance.  The measurement setup is the same as in Figure 42.  The measurement is 

accomplished by measuring the power of the input beam without any sample in the path.  After 

which a VBG is placed in the beam path with the surface reflections being collected by the 

“diffraction” detector.  The sum of the two detectors is divided by the power measured when no 

sample was present to determine the absolute efficiency.   
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Figure 42: Relative diffraction efficiency test setup 

 

Measuring for losses near the Bragg condition as a function of wavelength has produced 

some interesting results, specifically, that the losses in a given VBG are a function of detuning 

from the Bragg condition.  A model to describe these losses as a function of detuning from the 

Bragg condition has been developed by a research colleague
78

. 

A test setup capable of measuring both relative and absolute diffraction efficiency as a 

function of wavelength was designed and built.  A schematic of this setup is shown in Figure 43.  

The absolute loss setup is similar to the setup used for relative diffraction efficiency except that a 

beam wedge is placed in the beam path just after the laser source such that the results measured 

from the transmission and diffraction detectors can be normalized to the sampled input beam 

power.  For a lossless system, the sum of the transmitted and diffracted beams from the VBG 

should have a constant ratio with the sampled input beam.  Any reductions in total measured 

power divided by the sampled input power indicates scattering or absorption loss.  A typical plot 
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of the losses in a VBG as a function of wavelength near the Bragg condition is shown in Figure 

44.   

 

 

Figure 43: Absolute efficiency and loss test setup 

 

 

Figure 44: Typical result from absolute efficiency and loss measurement 
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The features of this plot show a correlation between the periodic structure of the VBG 

side lobes and the peak in diffraction losses.  The losses reach a peak very near, but not exactly 

at, the first minimum in diffraction efficiency of the VBG.  This behavior can be explained by 

considering that the optical intensity profile inside the VBG when interacting with the VBG 

varies with detuning from resonance.  At the first minimum of diffraction efficiency, the VBG 

behaves like a resonant cavity in which the power constructively interferes in the forward 

propagating direction, and hence the optical intensity inside the VBG is significantly higher than 

it is far from resonance.  At Bragg resonance, the losses are seen to fall significantly from the 

peak.  This is due to the fact that at resonance the total optical intensity inside the VBG decays 

exponentially from the surface of the VBG.  Far from resonance the power through the VBG 

should be nearly flat with only material losses diminishing the initial power. 

7.2 Testing for Beam Quality, Astigmatism and Defocus of a Diffracted Beam 

After a VBG has been identified which has the proper diffraction efficiency and loss 

requirements, it is equally important to test the characteristics of a beam that is diffracted from 

the VBG.  Inhomogeneity or defects in the glass can cause random distortions in a diffracted 

beam which will decrease its beam quality.  Also, a holographically recorded VBG can be 

slightly curved inside the glass.  This can cause defocus or astigmatism in a diffracted beam.  

Defocus in a single beam is not a significant issue as this does not affect beam quality.  However, 

as discussed in chapter 5, if multiple beams are co-propagating and have defocus greater than ½ 

of the Rayleigh length, the combined beam quality will be reduced.   
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Astigmatism, besides reducing beam quality within a single beam can cause an additional 

problem when using the beam for SBC.  As discussed in detail in chapter 5, the final step in 

aligning a high power VBG based SBC system is to align the beam waists of the individual 

beams.  If astigmatism is present in some or all of the beams, the beam waists for the horizontal 

plane and vertical plane will be in different locations.  When aligning the beam waists, one plane 

must be chosen for alignment, and the waists in the other plane will fall randomly around the 

focus depending on the particular astigmatism of each individual beam. 

The setup used is the same as in Figure 42, except that the diffraction detector is replaced 

with a lens and a Beam Map device which can measure both the beam quality, and beam waist 

location of any beam or beams sent through its associated lens in both the horizontal and vertical 

planes.  The focal length of this lens depends on the input beam size and typically a 50 to 100 

mm lens is used.  The Beam Map devices measures the intensity cross section of the focusing 

beam at five different planes spaced by about 500 µm in the propagation direction.  From this 

cross section the 2
nd

 moment beam diameter is calculated and the M
2
 of the beam is calculated.   

The Beam Map must first be calibrated by finding the beam waist location of an ideal 

Gaussian beam.  An ideally collimated Gaussian beam with M
2
 = 1 is sent into the Beam map 

device, and the absolute location of the beam waist of this beam is noted.   

In order to test a particular VBG, an ideally collimated Gaussian beam with M
2
 = 1 is 

diffracted from the VBG and sent into the beam map.  The M
2
, and the beam waist location in 
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both the horizontal and vertical planes are measured relative to the ideal beam waist location.  

Ideally, the M
2
 = 1, and the defocus in both planes is zero.  However, most good VBGs degrade 

the beam quality of an ideal beam to M
2
 = 1.1 – 1.15, and most good VBGs have some defocus 

and astigmatism.  As discussed, above, VBGs were chosen for this project for which the defocus 

and astigmatism was less than ½ of the Rayleigh Length.  
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8 HIGH POWER SBC OF FIBER LASERS WITH ULTRA HIGH 

SPECTRAL DENSITY 

8.1 Two Beam Experiments 

The novel thermal tuning technique, prevously described in detail, can be used in spectral 

beam combining to keep the gratings in resonance from low power up to the full power of a 

given SBC system.  Formerly, a SBC system would be alligned such that peak combining 

efficiency is achieved only after the VBGs heat up under high power laser radiation and reach 

thermal equilibrium.  In this case, any fine tuning of the system would require angular 

adjustments to the VBGs while maintaining full input laser power.  Angle tuning a VBG while 

kW-level radiation is incident on the grating is impractical.  Thermal tuning eliminates the need 

for mechanical tuning and may be electronically controlled with proper feedback.  Mechanical 

alignment is used only to make each beam co-linear, while thermal tuning is used to maintain 

peak combining efficiency throughout the power range of the system.   

Figure 45 shows the experimental setup for 2 channel high power spectral beam 

combining.  One VBG with thermal tuning is used to combine two high power lasers.  Figure 46 

shows the optimal VBG edge temperature as a function of power level.  The combining 

efficiency for each data point is also given.  From 10 W to over 300 W, beam combining 

efficiency was maintained constant within 0.5% of the low power combining efficiency.  No 

angular tuning was required to maintain the combining efficiency. 
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Figure 45: Two channel high power SBC experimental setup 

 

 

Figure 46:  Two channel beam combining efficiency at different power levels and VBG edge 

temperatures 

 

The M2 beam quality factor for two channel SBC at 300 W was measured to be M
2

x = 

1.19, and M
2

y = 1.16, while the M
2
 of the individual beams was measured to be less than 1.05.  
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Figure 47 shows the combined results for the vertical case.  The device used to measure M
2
 is 

rated to be accurate to   10 %.  The radiance of the combined beam is calculated to be, 

180  
  

(     )
.  The individual beams had a radiance of 120 

  

(     )
.  This gives a BCF of 0.75.  

The total spectral bandwidth of the combined beam is 0.25 nm, therefore the spectral radiance is 

calculated to be 719 
  

(        )
.  To my knowledge, this is the highest spectral radaince for any 

spectral beam combining system demonstrated to date.   

 

 

Figure 47: 2-Beam, 300 W, SBC M
2 
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8.2 Five Beam Experiments 

8.2.1 Ultra High Density SBC with Low Power Beams 

The thermal tuning setup was expanded to 5 channels.  Low power, less than 1 W, 

experiments resulted in a total combining efficiency for 5 channels was greater than 90%, and 

combined beam       , and BCF of 0.76 has been demonstrated.  Figure 48 shows the beam 

quality test results for 5 combined low power beams.  The 5 channel results were completed 

using high quality low power input beams. 

 

 

Figure 48: Five channel, combined low power beam quality, M
2
=1.06 

 

After completing the low power tests, the SBC system was adapted to be used with 5 

high quality (M
2
 < 1.2), high power beams, and 0.75 kW output within 1 nm using thermally 

tuned VBGs was demonstrated.  The system is designed to be aligned at low power and 

temperature tuned for uninterrupted operation at any power up to the maximum.  The result 
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shows the highest power spectral density to date, 0.75 kW/nm, of any spectral beam combining 

system. 

Five 150 W beams were combined in the architecture shown in Figure 15.  Efficiency of 

greater than 90 % was maintained from 75 W to 750 W total power.  

The VBGs used in this experiment have absorption in the range of α = 1-2x10
-3

 cm
-1

.  

The relationship between the optical power absorbed int the VBG and the absorption coefficient 

is given by,         (       ).  

The beams were first aligned to operate at 20 W each, 100 W total.  The beam quality of 

each beam was measured after passing through the beam combining system and the measured M
2
 

value for beams one through five are 1.22, 1.23, 1.27, 1.08, and 1.05, and the combined beam 

quality was measured to be M
2
 = 1.20, where beam one transmits through all VBGs and beam 

five is diffracted off of the final VBG and does not transmit through any.  Figure 49 shows the 

combined beam quality measurement for the case of 100 W total power.  From Figure 31, in the 

case of five beams with M
2
 = 1.2, it can be see that this results in an increase of radiance over 

that of a unit beam of aproximately 3.5 times, and the BCF ic calculated to be 0.77.  
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Figure 49: Quality of a combined beam in the five beam 100 W SBC system, 20 W each beam. 

 

8.2.2 Ultra High Density, High Power SBC with High Absorption VBGs 

For the case of 750 W total power, the beam quality of each individual beam was 

measured while the system was operating at full power by using the demultiplexing 

measurement setup described above and shown in Figure 34.  The individual beams, one through 

five, after passing through the system were found to have M
2
 of 3.15, 2.82, 2.74, 1.77, and 1.36 

respectively.  The combined beam quality before alignment of the beam divergences was 

measured to be M
2 

= 3.0, and after alignment of the beam divergences, the combined beam beam 

quality was reduced to M
2
 = 2.1.  The resulting spectral radiance is calculated to be 138 

  

     
, 

the highest to date for any five beam SBC system.  From Figure 31, in the case of five beams 

with M2 = 2.1, it can be seen that this results in an increase of radiance over that of a unit beam 

of only 1.13 times, and the BCF is calculated to be 0.25.   
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To confirm the beam combining model described above, as well as the measured result of 

M
2
 = 2.1, the measured M

2
 values for each beam were used as inputs to calculate the expected 

combined beam quality.  The model shows that combining five beams with beam quality factors, 

M
2
, of 3.15, 2.82, 2.74, 1.77, and 1.36, gives an expected combined beam quality of M

2
 = 2.04 

after considering the additional effect on beam quality of the demultiplexing VBG.  This 

calculated result is very close to the measured result of M
2
 = 2.09 shown in Figure 50.  It can be 

concluded that the beams are co-propagating and the beam divergences are well aligned.  The 

model also confirms the low power result with the calculated combined beam quality factor M
2
 = 

1.17 being very close to the measured result of M
2
 = 1.20. 

 

 

Figure 50: Combined beam quality of the five beam 750 W SBC system using interim VBGs 
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An experiment was conducted in order to determine if the controlled edge temperature of 

the final VBG is contributing to a thermal gradient that reduces beam quality.  The final VBG in 

the system is heated from the center by 600 W of laser power transmitting through the grating.  

In this experiment the final diffracting beam in the system is turned off for reasons that will 

become clear later.  The center temperature while in resonance is near 71
o
 C, while the edge 

temperature is near 40
o
 C.  To determine if the controlled edge temperature contributes to a 

thermal gradient that may reduce beam quality, the edge temperature is gradually increased up to 

80
o
 C.  The combined beam quality of the transmitting beams is measured at various 

temperatures.  If the relatively low temperature of the edge of the VBG as compared to the center 

is contributing to beam quality degridation, it is expected that the beam quality of the 

transmitting beams would improve during the heating process.  It is found that the combined 

beam quality remains unchanged from 40
o
 C to 80

o
 C, which suggests that the thermal gradient 

produced by laser induced heating near the center of the VBG is negligably effected by the 

temperature at the edge of the VBG.  Therefore, this thermal tuning technique can be used in 

high power applications without adversly affecting beam quality. 

8.2.3 Ultra High Density, High Power SBC with Low Absorption VBGs 

The exact same setup from the previous section is used with the same lasers but with 

lower absorption VBGs.  PTR glass can be manufactured with absorption as low as α = 1x10
-4

 

cm
-1

, but the VBGs that were delivered for the final stage of this project were tested to have 

absorption of α = 2-4x10
-4

 cm
-1

. 
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The specifications for various parameters of interest for each of the VBGs used in this 

final demonstration are given in Table 3.  VBG 1 is the grating which first in the system with 

respect to the beam propagation direction.  VBG 4 is the final grating through which four beams 

are transmitted and one is diffracted.  The Relative DE at λB is the diffraction efficiency of the 

VBG at the Bragg wavelength, while the Relative DE at λT is the diffraction loss at the nearest 

transmission wavelength.  Material losses were tested far from resonance at 1070 nm.  In VBG 3 

the astigmatism is larger than the ideal half of the Rayleigh length, but this grating was chosen 

due to its excellent performance with regard to its other properties.  The same is true with respect 

to VBG 4 and its defocus. 

 

Table 3: Summary of VBG properties 

 

 VBG 1 VBG 2 VBG 3 VBG 4 

Designation C25-04 C25-02 C25-09 C25-10 

M2-horizontal 1.08 1.09 1.08 1.03 

M2-vertical 1.03 1.06 1.10 1.06 

Relative DE at λB 99.20% 98.00% 98.58 98.10% 

Relative DE at λT 5.10% 3.00% 2.43% 2.75% 

Spectral Separation (nm) 0.25 0.25 0.248 0.25 

Material Loss (1070 nm) 0.9% < 1 % < 1 % 0.82% 

Astigmatism (Dz/Zr) 0 0.02 1.23 0.12 

Defocus (Dz/Zr) 0 0.19 0 1.06 
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The full power, 750 W SBC system was re-aligned with the lower absorption VBGs.  The 

combined output power was 685 W.  The spectral separation between beams was less than 

0.25 nm , efficiency was 90.5 % and M
2
 = 1.5 was achieved after alignment of the beam waists.  

The final result and record for spectral radiance in any high power multi-beam SBC system is 

783
  

        
, and 270 

  

        
 for the two and five beam cases respectively. 

Each VBG in the system was aligned at low power to operate with an edge temperature 

of 70 
o
C for VBGs one through three, and the final VBG was set to an edge temperature of 

80 
o
C.  As seen in chapter 0, the temperature difference between the edge and the center of the 

VBG when heated from the edges is between 8 and 9 
o
C when there is no high power beam 

present.  So, it is expected that even with 600 W transmitting through the final VBG and 150 W 

diffracting from it, the temperature in the center of the VBG should be around 72 
o
C if resonance 

is to be maintained.  Figure 51 shows the thermal profile of the final VBG while operating at full 

power.  The peak temperature is shown to be about 74 
o
C which indicates a slight thermal 

gradient in which the center of the VBG is slightly above the initial resonant temperature.  This 

behavior is also expected as discussed in chapter 0. 
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Figure 51:Thermo image of last VBG from lower absorption VBG set in the five beam 750 W 

spectral combiner.  

 

Figure 52 shows the final SBC setup operating at full power.  The spectrum is shown in 

Figure 53, and Figure 54 shows the final beam quality measurement in the vertical direction.   

 

 

Figure 52: Photo of experimental setup with beam propagating from right to left. 
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Figure 53: Combined spectrum of 750 W SBC system 

 

 

Figure 54: Combined beam quality of the five beam 750 W SBC system using final low 

absorption VBGs 

 

8.3 Wavelength, and Pointing Stability of Lasers 

The lasers used in the high power experiments necessarily must have high pointing 

stability, and high wavelength stability.  As discussed in the thermal tuning section of this work, 

the transmitting beam which is nearest in wavelength to the diffracting beam is only 45 pm from 
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the nearest local maximum in diffraction efficiency.  This is illustrated in Figure 36.  For this 

reason the wavelength stability of the laser is very important.  To be effective, the laser 

wavelength must be stable to within a few picometers.  Figure 55 shows the long term 

wavelength stability the laser.  Over a period of one hour, the wavelength deviation was 

approximately   0.002 nm from the average.  This is well within a reasonable tolerance as the 

maximum deviation of 0.004 nm is less than 10 % of the distance from the local minimum to 

local maximum illustrated in Figure 36.  It is worth noting that the optical spectrum analyzer 

used to measure the data is rated for wavelength measurement stability of  0.005 nm. 

 

 

Figure 55: Long term wavelength stability of high power fiber lasers. 

 

Also important is the pointing stability of the laser, that is to say, the stability of the 

angular position of the beam.  This is significantly more important for beam combining than 

many other laser applications due to the fact that all five beams must be co-propagating for the 
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resulting combined beam to show high radiance at a focal spot or on a target at a distance.  The 

effect of pointing stability can be seen in the measurements for beam quality, and so does not 

necessarily need to be explicitly given.  However, to be thorough it is given here.  Figure 56 

shows a plot of the measured focus locations of the laser after a 50 mm lens over a nearly two 

hour period.  The red dot at (0,0) represents the centroid of the data set.  The size of the beam at 

the focus is approximately 20 µm.  The standard deviation in position on the focal plane is 

approximately 0.62 µm, which translates to 12.4 µrad in angle.  The diffraction limited 

divergence of the 6 mm diameter beam is 112 µrad.  The pointing error is approximately 11 % of 

the diffraction limited divergence.  This small pointing error is within a reasonable margin for 

SBC which is verified by the high beam quality from both the low power and high power SBC 

experiments.  Figure 57 shows a points in the bucket curve.  The ratio of points that falls within a 

given radius is plotted as a function of radius.  The vertical line of Figure 57, and the circle of 

Figure 56 both represent the radius within which 90 % of the data points fall. 
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Figure 56: Long term (1hr 45min) pointing stability of high power fiber lasers after 50 mm lens.  

Standard deviation in focal position = 0.62 µm, which translates to 12.4 µrad in angle.  The half-

angle diffraction limited divergence for the 6 mm diameter beam is 112 µrad. 

 

 

Figure 57: Long term (1hr 45min) points in the bucket curve based on the data from Figure 56.  

The plot shows the ratio of points (vertical-axis) that fall within a given radius (horizontal-axis). 
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9 FUTURE DIRECTIONS FOR RESEARCH IN VBG-BASED SBC 

9.1 Spectral Beam Combining by Multiplexed Volume Bragg Gratings 

For practical and perhaps mobile use of such beam combining systems, a more compact 

architecture is desirable. A new architecture for SBC with multiple VBGs recorded into a single 

piece of PTR glass is demonstrated which significantly reduces the footprint of the spectral beam 

combiner.  In previous architectures, each beam combining element would diffract a single beam 

into the common beam path, while other beams would transmit through an individual element.  

For this new architecture, multiple VBGs have been recorded into one PTR glass sample.  For 

each VBG recorded into the glass, one laser beam can be diffracted from it allowing each beam 

combining element to diffract multiple beams into the common beam path, illustrated in Figure 

58.  A spectral beam combiner based on multiplexed VBGs is reported
79

. 
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Figure 58: Multiplexed spectral beam combining geometry
79

. 

 

As discussed in previous chapters of this dissertation, thermally induced heating of VBGs 

have resulted in a thermal shift of the Bragg wavelength, thermally induced degradation of beam 

quality, and thermally induced lensing.  It is clear from the high power high absorption results 

reported in section 8.2.2 that the final diffracted beam has very little beam quality degradation as 

a result of being diffracted from the final VBG, even though the final VBG has the highest 

thermal load.  It is the successive transmission of the first beam through multiple VBGs which 

causes the highest degradation in beam quality.  By recording multiple VBGs in the same piece 

of PTR glass.  Each beam can be diffracted in a single stage SBC architecture.  The two beam 

example is shown in Figure 58. 

 



 

106 

 

Low power SBC by a multiplexed VBG for two beams has been demonstrated with 

relative efficiency of 98 %, and M
2
 < 1.1.  The beam quality results are shown in Figure 59.   

 

 

Figure 59: Combined M
2
 for SBC of two beams by multiplexed VBGs 

 

It is important to point out the importance of maintaining control of the Bragg resonance 

when using this architecture with high power beams.  Even though PTR glass has very low 

absorption and diffracting beams do not induce the level of distortion that transmitting beams do, 

it is clear that thermal expansion of a multiplexed VBG will still shift the Bragg wavelengths.  

Two possible methods of controlling this are to adjust the wavelength of the lasers in use as the 

VBGs heat up, or to maintain thermal control of the VBGs.  One of these two methods would 

need to be implemented in any multi-kW SBC system based on multiplexed VBGs. 

This method of spectral beam combining by multiplexed VBGs is still under 

investigation.  It is still not clear how many VBGs with high diffraction efficiency can be 
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practically recorded into a single piece of low loss PTR glass.  New samples are expected to be 

available in the near future for further experiments at high power and with greater than two 

beams. 

9.2 Beam Quality Improvement with Flat Top Heating Profile 

Beam quality degradation in the final high power SBC system is due to thermally induced 

distortions in the PTR glass.  Laser heating of the glass in a Gaussian profile causes both thermal 

lensing and additional higher order aberrations.   The thermal lensing is corrected by adjusting 

the collimation of each beam at the input such that the output divergences are equal.  In this way 

the spherical component to the thermally induced lens is corrected.  This effect has been 

discussed in more detail chapter 5.   

It has been proposed that utilizing a super Gaussian beam rather than a Gaussian beam 

will improve the beam quality of high power beams transmitting though the glass
80

.  In a 

proposed 100 kW system, high speed gas flow cooling will be required to keep the VBGs below 

200 
o
C.  This high speed cooling will also cause the thermal profile across the aperture of the 

glass to mirror the intensity profile of the beam heating the glass.  Modeling of this effect by a 

fellow graduate student, Sergiy Mokhov, in Dr. Zeldovich’s group reveals the implications of 

this concept.   

Figure 60 shows the calculated beam quality as a function of phase shift in the glass for 

both the Gaussian and super Gaussian cases.  The phase shift is caused by high power incident 
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laser radiation and therefore glass expansion.  Utilizing a super Gaussian rather than a Gaussian 

beam causes the phase shift across the aperture of the beam to have a flat top shape rather than a 

Gaussian shape.  This reduces the distortion introduced into a transmitting beam and the beam 

quality remains high even at very high optical powers. 

 

  

Figure 60: Calculated M
2
 for Gaussian (dashed line) and super Gaussian (solid line) high power 

beams transmitting through as a function of phase shift where phase shift is proportional to 

incident laser power at glass absorption
80

. 

 

Although the high speed gas cooling has not yet been implemented, an experiment has 

been performed to verify this behavior.  Figure 61 shows a schematic of the experimental setup 

used to compare beam quality degradation in a transmitting beam with a Gaussian vs. a flat top 

profile. 

 

0

1

2

3

4

5

0 2 4 6 8 10 12

M
2

Phase Shift α Optical Power



 

109 

 

 

Figure 61: Experimental setup to measure M
2
 for Gaussian (without pi-shaper) and super 

Gaussian (with pi-shaper) high power laser beams. 

 

For this experiment, a very high absorption VBG is used with absorption of  =1.65x10
-2

.  

This absorption is 165 times higher than the state of the art absorption of α = 1x10
-4

.  So the 

power used in this experiment is simulating the effect in state of the art low absorption glass of a 

beam with 165 times higher power.  The reported power is the simulated laser power, 165 times 

higher than the actual power used.   

The high power beam in this experiment is used only as a heater, while a test beam is 

propagated through the VBG and overlapping with the high power beam at the VBG.  Any 

distortions caused by the high power beam will affect the beam quality of the low power beam as 

it transmits though the same piece of high absorption PTR glass.  This low power test beam is 

then measured for beam quality at each power level to determine the distortion.  After 

conducting the experiment with a Gaussian beam, a pi-shaper is used to convert the Gaussian 
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beam to a nearly flat top beam which is then used as a heater to repeat the same experiment.  

Figure 62 shows the measured beam quality degradation in the low power test beam with 

increased high power laser heating for both cases.  Although there is not a dramatic difference in 

beam quality between the two experiments, there is a clear improvement when using the flat top 

beam as a heater.   

 

 

Figure 62: Measured M
2
 for Gaussian (Circles) and super Gaussian (Diamonds) high power 

beams transmitting through high absorption PTR glass as a function of normalized incident laser 

power. 

 

The dramatic improvement that was predicted in Figure 60 is due to the fact that the 

calculation assumes very high speed gas cooling of the glass surface.  This causes the thermal 

profile to be more dramatic than in the case of this experiment in which much of the heat diffuses 

in the glass causing a softening of the thermal profile.   
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It is clear from this result, that reduced thermal distortions can be achieved by utilizing a 

super Gaussian instead of a Gaussian beam when high power lasers are transmitting through 

absorbing glass. 
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10 CONCLUSIONS 

High radiance fiber laser sources are becoming available, but non-linear and thermal 

effects still limit their peak power.  Laser systems with 100 kW level diffraction limited output 

remain elusive.  Beam combining techniques such as coherent phased array and incoherent 

spectral beam combining are being employed to increase the laser system radiance and hopefully 

achieve ultra-high radiance.  Coherent beam combining has had significant success, boasting the 

highest power beam combining system, with 100 kW of output power, but poor beam quality 

reduces the radiance of the system to 11,028 
  

     , which is less than that of a single 15 kW 

input beam with diffraction limited divergence.  Spectral beam combining by surface diffraction 

gratings has been very popular, and is still achieving incremental success with up to 2 kW of 

output power demonstrated with M
2
 of 1.9, and bandwidth of 15 nm.  This results in a radiance 

of 491 
  

     , but a spectral radiance of only 33 
  

     .  Spectral beam combining by volume 

Bragg gratings has made significant progress in the last five years.  A spectral separation of 

0.25 nm between beams for high power, 750 W, five channel beam combining has been 

demonstrated, and near diffraction limited beam quality for this system is reported here.  The 

resulting SBC system has an output power of 685 W, M
2
 < 1.5, and a total bandwidth of 1 nm.  

The radiance is 270 
  

     
 with a spectral radiance of 270 

  

        
.  It is the youngest of the 

major methods, and has great potential to be the building block of ultra-high radiance laser 

systems. 



 

113 

 

1. A method of optimization of VBGs for SBC is developed. A method of including the 

effect of laser beam divergence and spectral bandwidth into the diffraction efficiency 

spectrum of a VBG has been presented, as well as an optimization method for 

determining the best VBG parameters in terms of thickness and refractive index 

modulation.  It was presented that although an absolute maximum in efficiency can be 

achieved by using very thick VBGs that make use of a high order minimum in the 

diffraction efficiency spectrum for transmitting beams, there is little benefit in combining 

efficiency over using thinner VBGs that make use of the third minimum.  The VBG 

optimization method was expanded to optimized full SBC systems with an arbitrary 

number of beams and VBGs for an arbitrary beam divergence, and spectral separation. 

2. A model describing the effect of divergence of individual beams on the divergence of the 

combined beam is developed. A model to describe the combined beam quality of multiple 

beams with unique divergences and initial beam qualities has been developed.  It is 

concluded that the divergence of ideal diffraction-limited beams can vary up to the point 

at which the beam waists are shifted by ½ of a Rayleigh length before significant 

degradation of beam quality or combined beam radiance occurs. 

3. The Beam Combining Factor (BCF) has been described in which the quality of beam 

combining can be determined without concern for the quality of the individual input 

beams.  The BCF is a universal measure of quality of beam combining for any method of 

beam combining. 
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4. A method to control the divergence of individual beams by demultiplexing of the 

combined beam is developed. A novel demultiplexing apparatus and beam measurement 

system has been demonstrated and successfully used to measure and align the divergence 

of all five spectrally combined beams.  At low power operation, 100 W total, the 

combined beam quality was measured to be M
2
 = 1.20. In the case of full power 

operation, 750 W total, the alignment of the beam divergences resulted in the 

improvement of combined beam quality from M
2
 = 3.0 to M

2
 = 2.1, The calculated result 

of M
2
 = 2.04 matches reasonably well with the measured result. 

5. After utilizing low absorption VBGs with the same thermal tuning and waist alignment 

techniques, near diffraction limited beam quality with M
2
 = 1.5 was demonstrated for a 

750 W SBC system with 0.25 nm spectral separation between beams and greater than 

90 % efficiency. 

6. A method of thermal alignment of a beam combiner is proposed and implemented in the 

experimental setup. Volume Bragg grating thermal tuning devices were successfully 

employed to maintain diffraction efficiency above 90 % for the entire power range of a 

five beam 750 W spectral beam combining system with a spectral separation between 

beams of 0.25 nm, achieving, to the knowledge of the authors, the highest power spectral 

density of any spectral beam combining system to date of 0.75 kW/nm.  The highest 

spectral radiance is also reported for both two beam and five beam SBC with 

718.5 
  

        
, and 270 

  

        
 respectively. 
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7. Two beam spectral beam combining by a multiplexed volume Bragg gratings has been 

demonstrated with relative efficiency of 98 %, and M
2
 < 1.1. 

8. Reduction of thermal distortions in beams transmitting through high absorption PTR 

glass by use of a flat top beam in place of a Gaussian beam has been demonstrated. 

9. The record highest spectral brightness achieved by spectral beam combining is 

demonstrated. 
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