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ABSTRACT 

One common limitation of enzymatic reactions is the diffusion of a substrate to the enzyme 

active site and/or the release of the reaction products. These reactions are known as diffusion –

controlled. Overcoming this limitation may enable faster catalytic rates, which in the case of 

catalytic biosensors can potentially lower limits of detection of specific analyte. Here we created 

an artificial system to enable deoxyribozyme (Dz) 10-23 based biosensor to overcome its diffusion 

limit. The sensor consists of the two probe strands, which bind to the analyzed nucleic acid by 

Watson-Crick base pairs and, upon binding re-form the catalytic core of Dz 10-23. The activated 

Dz 10-23 cleaves the fluorophore and quencher-labeled DNA-RNA substrate which separates the 

fluorophore from the quencher thus producing high fluorescent signal. This system uses a Dz 10-

23 biosensor strand associated to a DNA antenna tile, which captures the fluorogenic substrate and 

channels it to the reaction center where the Dz 10-23 cleaves the substrate. DNA antenna tile 

captures fluorogenic substrate and delivers it to the activated Dz 10-23 core. This allows for lower 

levels of analyte to be detected without compromising the specificity of the biosensor. The results 

of this experiment demonstrated that using DNA antenna, we can create a synthetic environment 

around the Dz 10-23 biosensor to increase its efficiency and allow for lower levels of analyte to 

be detected without using amplification techniques like PCR. 
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CHAPTER ONE: BACKGROUND 

In 1994, Breaker and Joyce successfully isolated the first deoxyribozyme (also called 

DNAzyme, catalytic DNA, and Dz).[1] Previously known enzymes were represented only by 

proteins or RNA, but by using in vitro selection or SELEX techniques, Breaker and Joyce were 

able to isolate an enzyme made of DNA that could catalyze the Pb2+-dependent cleavage of an 

RNA phosphoester bond.[1] Since then, the knowledge about DNAzymes and the areas where we 

can apply them have increased drastically. In their review, Schlosser and Li explore what recent 

publications have discovered including the comparisons of DNAzymes with RNAzymes and 

proteins, and the potential roles that DNAzymes can play in vivo and in vitro.[2] Some of the 

benefits of DNAzyme are that they are very stable, small in size, have a relatively high activity 

and multiple turnover, have very specific substrate selection, are versatile in substrate recognition, 

and are relatively low in cost.[1,2] While both RNA and DNA are similar in structure and functional 

plasticity allowing for very specific selection of substrate and relatively easy preparation, 

DNAzymes are less sensitive to chemical degradation and can be directly amplified by PCR if 

needed.[2,5] Compared to polypeptide enzymes, DNAzymes are more stable at room temperature, 

are smaller, and are easier to build since the interactions are predictable through Watson-Crick 

base pairs.[2,5] On top of this, DNAzymes still have comparable rates of catalytic efficiency to their 

enzymatic competitors, especially with Dz 10-23 which is considered catalytically “perfect”.[5,6,9] 

This notion will be explained in detail in later paragraphs. Recent studies have found a variety of 

DNAzymes that catalyze a range of reactions including cleavage, ligation, phosphorylation, 

deglycosylation, and branching of DNA and RNA, and DNA coupling, DNA depurination, and 

RNA lariat formation.[2,3] The applications of DNAzymes have only just begun and include 

everything from diagnostic techniques and therapeutic applications to computational functions 

with logic gates and molecular switches to analysis of gene functions and structure.[2-7] In their 

review, Dass et al. cover how DNAzymes could even be used in cancer treatment, gene therapy, 

and targeted therapy through light induced activation.[10] 
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In 2001, Stojanovic et. al. used deoxyribozymes to create a catalytic molecular beacon that 

could distinguish between any two single-stranded oligonucleotide sequences.[11] They 

accomplished this by using the hybridization of the molecular beacon to the specific 

oligonucleotide sequence as a stabilizing effect. The stabilized molecular deoxyribozyme would 

then initiate the catalytic core, causing cleavage of a fluorophore and quencher labeled DNA-RNA 

substrate and separation of the fluorophore (5’terminus) and acceptor (3’ terminus). When the 

target sequence was not present, the beacon module domain folded over the deoxyribozyme 

substrate recognition site and inhibited catalysis.[11] Since then, deoxyribozyme biosensors were 

developed to have lower background fluorescence by splitting the DNAzymes into pieces.[13] This 

effectively inhibits the catalytic core until it is recombined to form the MNAzyme 

(multicomponent nucleic acid enzyme) through the hybridization of the necessary pieces. In their 

research, Mokany et al. tested various ways to design a MNAzyme from deoxyribozyme 10-23.[3] 

All of the designs in Figure 1 had the DNAzyme split into two pieces where each piece had 

substrate binding arms and assembly facilitator binding arms on either side of the catalytic core. 

The assembly facilitator binding arm is a nucleic acid sequence that was reverse complement to 

the assemble facilitator sequence. The presence of the assemble facilitator sequence allows for the 

Dz pieces to assemble back together and reform the core. For Figure 1a, the assembly facilitator 

binding arm was shortened on one of the DNAzyme pieces creating the need for a stabilizer arm. 

With this design, the solution needed both pieces of the DNAzyme, the substrate, the assembly 

factor, and the stabilizing arm in order to cleave the substrate, otherwise they saw no catalytic 

activity.[3] Figure 1b shows another design of the MNAzyme, where they split the assembly 

facilitator itself into two pieces, and so both were needed in order to see catalytic activity. Figure 

1c shows a cascade of two MNAzymes where the cleaved substrate from the first enzyme became 

the second half of the assembly factor for the second MNAzyme. Therefore, the first MNAzyme 

specifically regulated the activity of the second enzyme as shown in Figure 1d. They also designed 

it so that the first substrate, when un-cleaved, acted as an inhibitor to the second MNAzyme, see 

Figure 1d.[3]  
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Figure 1 Designs of deoxyribozyme 10-23 tested by Mokany et al. [3] a) The deoxyribozyme 10-23 core split into two 

pieces (light blue and dark blue) with the substrate (S) shown in green, the assembly factor (AF) shown in red, and 

the stabilizer arm (SA) shown in orange, hybridizing to form the Dz catalytic core. b) The AF is split into two pieces, 

AF (1) in red and AF (2) in orange and both are needed to reform the Dz catalytic core. c) The cascade of two 

MNAzymes happens as the substrate from MNAzyme 1 called: S1 and AF (2), shown in green and orange, is cleaved 

and then provides the second AF piece, which is needed by MNAzyme 2 to recombine the Dz catalytic core and cleave 

S2. d) When S1 and AF (2) is not cleaved by MNAzyme 1, it acts as an inhibitor for MNAzyme 2, preventing the 

hybridization of the catalytic core.  

Figure 1c and 1d show a cascade of MNAzymes where a specific input could have a 

specific output and create a molecular switch where “on” was the activated MNAzyme and “off” 

was the deactivated MNAzyme. This design has been adapted and applied practically in diagnostic 

techniques where the presence of a specific analyte, like an rRNA strand of HIV or Mycobacterium 



4 

 

tuberculosis, provides a specific output signal (i.e. fluoresce, colored product).[4]  This application 

of DNAzymes could potentially expedite point-of-care diagnosis of diseases or monitor 

environmental or food contaminations. While beneficial in many ways, these deoxyribozyme 

sensors are limited by their ability to detect low levels of the target sequence/analyte/assemble 

facilitator/etc. In order to push these biosensors into real world appliances, it is essential to improve 

their detection limits.  

This project takes advantage of the catalytic efficiency of deoxyribozyme (Dz) 10-23 

shown in Figure 2, which was isolated and characterized by Santoro and Joyce.[5]  

 

Figure 2 The structure of 10-23 deoxyribozyme isolated by Santoro and Joyce in 1997. The arrow indicates where the 

RNA strand is cleaved. Bases shown are conserved sequence. 

This DNAzyme behaves similarly to the hammerhead ribozyme in its need for a divalent 

metal cation in order to be active, but it has a catalytic efficiency (kcat/Km) = 109 M-1*min-1 which 

greatly exceeds the catalytic efficiency of any other known nucleic acid enzyme.[6,5] The reaction 

rate of deoxyribozyme 10-23 is comparable to the efficiency of some ribozymes.[1,2,5,9] Through 

their experiments, Santoro and Joyce found that Dz 10-23 is catalytically perfect which is also 

known as diffusion limited.[6] This means that how quickly the rate of the reaction proceeds, is 

determined by how quickly the enzyme and substrate can bind together (also known as k1). In 

some cases, diffusion limited can also refer to how quickly the enzyme and product dissociate 

(also known as k3). See Figure 3. 

 

Figure 3 Shows the general reaction mechanism between an enzyme and its substrate. The diffusion limitations occur 

at k1 and/or k3. 
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In nature, the diffusion limit is overcome by substrate channeling, like with pyruvate 

dehydrogenase.[12] To mimic the natural substrate channeling, Fu et al. designed a NAD+-modified 

swinging arm on a DNA nanostructured platform that channeled a hydride between glucose-6-

phosphate dehydrogenase (G6pDH) and malic dehydrogenase (MDH) providing restricted 

diffusion.[7] They found that they were able to greatly enhance the activity of these enzymes as 

well as enable high selectivity in a complex environment. They also determined that by placing 

several swinging arms around the enzymes, they were able to increase the local concentration of 

NAD+ around the enzymes and saw an increase in their normalized activity.[7]  

Together, these ideas build the notion for designing an enzymatic complex system that 

optimizes the reaction conditions around the DNAzyme to theoretically increase k1 and k3 and 

thereby increase the efficiency of current DNAzymes and lower detection limits of Dz biosensors. 

We propose two methods to optimize the reaction conditions. The first being the localization of 

substrate around the Dz 10-23 and the second by creating “hooks” that channel substrate to the 

reaction center. With this design, we are looking to see lower levels of a target sequence to be 

detected. This is a critical step in pushing deoxyribozymes into real world applications as 

biosensors for diagnostic tests in the field, which is the ultimate goal of this project. 
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CHAPTER TWO: RESULTS 

Designing the Environment 

The focus of this design is two-fold. First, to localize the substrate around the Dz 10-23 by 

using a combination of nucleotide sequences that have affinity to the substrate, which we will refer 

to as ‘hooks’. The second is for these hooks to act as “swinging arms” to channel the substrate 

onto and off of the Dz reaction site. The design we created has two variations of hooks. The first 

is called the delivering hook, which helps localize the substrate right next to the enzyme and 

theoretically lower the diffusion limitation in k1. The second hook is called the releasing hook 

and it has affinity to the cleaved substrate, which can theoretically lower diffusion limitation in k3.  

To start this design, we built a platform (also called a tile) using DNA nanotechnology 

techniques. Since the Dz 10-23 biosensor is split into two pieces (called DZa and DZb), we placed 

only one half (specifically DZb) in the center of the tile of DNA while DZa was dissolved in 

solution. Figure 4 shows this format. You will notice that the beginning and end of each DNA 

strand has a sequence in orange. This sequence of nucleotides is the reverse complement of half 

of the sequence on our hook strands. This allowed for variations of hooks to be tested without 

changing the main tile platform as well as random attachment with the delivering hooks and 

releasing hooks onto the tile.  
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Figure 4. Deoxyribozyme (Dz) 10-23 associated on tile. DZb of Dz 10-23 is in the center attached to the tile by the 

middle, purple strand while DZa (Not shown) is dissolved in solution. Orange strands indicate nucleotide sequences 

(16 total) where the hooks can hybridize to the tile. Hooks not shown. 

 

In total, there are 16 locations for the hooks to attach to the tile platform. The other half of 

the sequence in the hooks has affinity to the substrate. The delivering hooks have a sequence that 

does not match the binding region between the substrate and Dz 10-23. This prevents competitive 

binding. The releasing hooks do have affinity to the binding region between the substrate and Dz 

10-23, which gives it affinity to the cleaved product. When substrate is added to the solution it is 

bounded to the tile by the hooks, which are randomly hybridized around the tile. This localizes the 

substrate around the DNAzyme reaction center on the tile without having to increase their overall 

concentration in solution, which would increase background fluorescence. The hooks are designed 

to be long enough to “deliver” substrate from the edge of the tile to the reaction center. This way 



8 

 

they could act similar to the swinging arm seen in Fu et. al.[7] We then have the releasing hooks, 

which will “pull” the substrate away, releasing it from the reaction center after it is cleaved. See 

Figure 5 for reaction scheme. Notice that Figure 5A shows the initial reaction scheme of current 

Dz biosensors whereas Figure 5B shows the reaction scheme on the tile format created in this 

experiment. With this format, we hypothesize that this will allow the substrate and deoxyribozyme 

to bind together earlier, overcoming the current diffusion limitation for k1 as well as for k3, and 

will push the limit of detection to below the current limit of detection (5pM).[3] 

DNA analyte
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DNA analyte

Q F

A)

Dzb

DNA analyte

Q F

Dzb

Dza

Dza
DNA analyte

Q F

Q F
Q F

Q F

Q F

Q F
Q F

Q F

Q F

Q F
Q F

Q F

Q F

Q F Q F

Q F

Reaction 
center

B)

Dzb

+

 

Figure 5 A) Reaction scheme of Dz 10-23 biosensor. DZb and the substrate are dissolved in solution. When DZa and 

the analyte are added to the solution, the analyte binds to the analyte binding arms (dotted lines). This brings the Dz 

reaction core together allowing for the substrate to bind, be cleaved by the Dz biosensor, and then fluoresce as the 

fluorophore and quencher separate. B) Arrangement of the Dz 10-23 biosensor on the antenna tile. DZb is attached 

to the tile by the analyte binding arms while substrate (shown by Q—F strands) is attached to hooks (not shown) on 

the tile and concentrated around the reaction center. Addition of DZa and analyte brings the Dz core together allowing 

for the substrate to bind, be cleaved by the Dz biosensor, and then fluoresce as the fluorophore and quencher separate.   
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Using the theories above, we annealed the tile and then tested its formation after being 

annealed, by running various forms of the tile on a native gel. The results of the gel are shown in 

Figure 6. Comparing Lane 2 and Lane 3 we see the addition of TDz 5 (the center strand that holds 

the DZb) increases the size of the tile, as expected. Lanes 4 and 5 show the increase in the size of 

the tile when the hooks are added to solution, therefore the hooks are also annealing around the 

tile complex. In lane 6, the Mtb analyte was added and we can see that the tile still forms in the 

presence of the analyte. 

  

Figure 6 Native Gel electrophoresis of the samples. Lane 1 is the 100bp DNA ladder. Lane 2 is the Dz tile at 100 nM 

without Tdz5 (DZb of enzyme) and no hooks. Lane 3 is the full Dz tile at 100 nM with no hooks. Lane 4 is the full Dz 

tile at 100 nM with releasing hook at 160 nM. Lane 5 is the full Dz tile at 100 nM with delivering hook at 160 nM. 

Lane 6 is the full Dz tile at 100 nM with Mtb at 100 nM.  
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Confirming the LOD of Sensor Dissolved in Solution 

In order to test the detection limit of the tile compared to the enzyme free in solution, the 

detection limit of the Dz 10-23 biosensor dissolved in solution had to be confirmed. The 

deoxyribozyme biosensor was split into two pieces, DZa (which was tested at 2 nM concentration) 

and DZb (which was tested at 10 nM concentration). After testing various concentrations of DZa 

and DZb, these concentrations showed the lowest change in background fluorescence between the 

substrate only and substrate with tile only, which is why they were chosen. The DNAzyme was 

placed in 200 nM solution of the F-substrate. The analyte, a synthetic DNA sequence that 

corresponds to a portion of 23S rRNA in Mtb, was added at 0 pM, 0.5 pM, 1 pM, 2 pM, 5 pM, 10 

pM, 20 pM, and 100 pM concentrations. The fluorescence at 517nm was measured after 1 hr. and 

3 hrs. with a fluorimeter and plotted against the analyte concentration. This experiment was 

completed three times. The threshold limit was set at 3 standard deviations above the fluorescence 

of our control (0 pM) and from that we calculated the limit of detection. Figures 7 shows the graphs 

of these results. The Limit of Detection was 25.68 pM after 1hr and 4.07 pM after 3 hrs.  
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Figure 7 Deoxyribozyme 10-23 was dissolved in solution as two pieces. DZa concentration was 2 nM, DZb 

concentration was 10 nM, and F-substrate concentration was 200 nM. A) Absorbance at 517 nm of the sensor after 1 

hr. of incubation at 55oC in the presence of various Mtb analyte concentrations. Limit of detection was 25.68 pM. B) 

Absorbance at 517nm of the sensor after 3 hrs. of incubation at 55oC in the presence of various Mtb analyte 

concentrations. Limit of detection was 4.07 pM. For both, the dashed lines show trendlines. Data are averages from 

three independent experiments and error bars show standard deviation. Solid line indicates threshold limits.  
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Testing the Tile Format 

Using similar methods as listed above, we tested the limit of detection of the Dz 10-23 in 

the tile format. The same concentrations and analyte were used and we found the limit detection 

to be 2.31 pM after 1 hr and 0.51 pM after 3 hrs. The data for this is shown in Figure 8. For this 

reaction we did change the substrate to 1S-Hook. This substrate only differs from F-substrate in 

an extended sequence which is where the delivering hook binds to the substrate. This prevents 

competitive binding between the delivering hooks and the Dz 10-23 over the substrate. It also 

limits the linearization of the substrate, which was causing higher levels of background 

fluorescence.  
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Figure 8 Deoxyribozyme 10-23 was dissolved in solution as two pieces. DZa concentration was 2 nM, DZb 

on the tile concentration was 10 nM, and 1S-Hook substrate concentration was 200 nM. Absorbance at 517 nm of the 

sensor after 1 hr. and 3 hrs. of incubation at 55oC respectively in the presence of various Mtb analyte concentrations. 

Dashed lines show treadlines. Data are averages from three independent experiments and error bars show standard 

deviation. Solid line indicates threshold limits. The Limit of detection was 2.31 pM after 1 hr. and 0.51 pM after 3 hrs. 
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To determine if the decreased detection limit was due to the channeling of the hooks and 

not some other interaction with the tile, we ran a control with the tile format and no hooks. The 

results of this are shown in Figure 9. From this figure, we see that the tile format without the hooks 

has a comparable slope (which is a measure of the DNAzyme’s sensitivity to the substrate) to when 

the biosensor is dissolved in solution. When we compare the biosensor dissolved in solution slope 

with the slope of the tile format with both hooks, we see an increase in the sensitivity of the 

DNAzyme to its substrate. Therefore, we can infer that it is the addition of the hooks that changes 

the efficiency of Dz 10-23 Biosensor at detecting low levels of analyte.  

 

 

Figure 9 Deoxyribozyme 10-23 trendline comparisons after 3 hrs incubation at 55oC. DZa concentration was 

2 nM, DZb concentration was 10 nM, Hook concentrations were both at 160 nM, and substrate concentration was 200 

nM. Absorbance at 517 nm of the sensor was measured in presence of various Mtb analyte concentrations. Data are 

averages from three independent experiments and error bars show standard deviation. Free sensor in solution (Blue), 

Dz Tile with No Hooks (Yellow), and Dz Tile with both the delivering hook and releasing hook (Red). 
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Checking Selectivity 

One of the main advantages of Dz biosensors and specifically of the design of the split 

biosensor, is that they are very selective since the hybridization is due to Watson-Crick base pairs 

forming. Even a single point mutation can decrease the melting temperature of the strand by several 

degrees Celsius. Therefore, to check that our tile format retained selectivity, we built a similar 

biosensor tile that was specific to Mycobacterium smegmatis (M. smeg.) which we will now call 

sensor 2. M. smeg. is a nonvirulent species of mycobacterium compared to Mycobacterium 

tuberculosis which causes tuberculosis in humans. Therefore, being able to differentiate between 

the two species is crucial in correctly diagnosing and treating patients. While M. smeg will not be 

in patient samples, it will serve as a model for our biosensor tile design differentiating between the 

different Mtb strains (antibiotic resistant vs. extremely antibiotic resistant, etc.) M. smeg has a 

similar 23 rRNA sequence with a few key mutations which should lower the activity of the Mtb 

biosensor since it is not the specific analyte, resulting in less fluorescence. In Figure 10 we compare 

the limit of detection of sensor 2 dissolved in solution verses in a tile format. This was to make 

sure that the Dz biosensor was indeed working correctly and would make a good comparison for 

selectivity of the Dz biosensors. In solution, the limit of detection was 6.40 pM while on tile the 

limit of detection was 1.91 pM. This confirmed similar decreases in limit of detection when the 

sensor was placed on the tile format, compared to when it was dissolved in solution. 
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Figure 10 Limit of detection for sensor 2 dissolved in solution verses tile-associated Dz sensor 2 after 1 hr 

and 3 hrs. M. smeg DZa concentration was 2 nM, M. smeg DZb tile concentration was 10 nM, and substrate 

concentration was 200 nM. A) Absorbance at 517 nm of the sensor after 1 hr of incubation at 55oC in presence of 

various M. smeg analyte concentrations. Limit of detection was 15.21 pM for the senor in solution and 11.63 pM on 

tile. B) Absorbance at 517 nm of the sensor after 1 hr of incubation at 55oC in presence of various M. smeg analyte 

concentrations. Limit of detection was 6.40 pM in solution and 1.91 pM on tile. For both experiments, data are 

averages from three independent experiments and error bars show standard deviation. 
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We then measured the selectivity of the two sensors in tile format by measuring their 

fluorescence first when in the presence of their specific analyte and second with their nonspecific 

analyte. We measured this after 1 hr with the analyte concentrations at 100 pM. In Figure 11 we 

see that the tile sensors indeed remained selective to their specific analyte with higher fluorescence 

correlating to the matched analyte and lower fluorescence for the mismatched analyte. 

 

 

Figure 11 Shows the specificity of the Dz tile to its analyte Mtb and of Dz M. smeg tile to its analyte M. smeg. 

On the left is sensor 1 (Mtb sensitive biosensor) and on the right is sensor 2 (M. smeg sensitive biosensor). When 

sensor 1 is incubated with 100 pM of its matched analyte (Mtb, shown in green) for 1 hr, there is greater fluorescence 

than when sensor 1 was incubated with 100 pM of its mismatched analyte (M. smeg, shown in blue). For sensor 2, 

when incubated with its matched analyte (M. smeg) for 1 hr at 100 pM, there is greater fluorescence compared to 

when sensor 2 was incubated with its mismatched analyte (Mtb) for 1 hr at 100 pM. 
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Testing the Tile with RNA 

Now that we have proved that our tile format of Dz 10-23 has lower detection limits and 

remains selective, we finally wanted to check how the tile functioned when the analyte sequence 

was from samples of rRNA instead of synthetic DNA. Up until this point, we had used Mtb in our 

testing which is a short fragment of synthetic DNA that corresponds to a portion of 23S rRNA in 

Mtb. To simulate real diagnostic tests, we wanted to measure the presence rRNA directly from 

samples. Therefore, we ran the same trials listed above with rRNA analyte that was extracted from 

BCG (Bacillus Calmette-Guerin). The results of these trials show a universal increase in the limit 

of detection for the tile and non-tile formats, with lower limits of detection still appearing in the 

tile format compared to the biosensor dissolved in solution, as seen in Figure 12. In solution, the 

limit of detection was 11.97 pM while the limit of detection on tile was 6.40 pM. Looking at 

research done by others, we inferred that the complexity of the secondary structure might be one 

reason for the increase in limit of detection in the deoxyribozyme biosensor.  
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Figure 12 Shows the fluorescence measurements of the Dz tile with RNA analyte compared to the sensor 

dissolved in solution with the RNA analyte. The DZa was at 2 nM, DZb was at 10 nM and attached to the tile, hook 

concentrations were both at 160 nM, the substrate was at 200 nM, and the RNA analyte concentration varied. A) 

Sample was incubated at 55oC and the fluorescence at 517 nm read after 1hr. The limit of detection of the biosensor 

dissolved in solution was 24.73 pM and on tile was 38.46 pM. B) Sample was incubated at 55oC and the fluorescence 

at 517 nm read after 3hrs. The limit of detection of the biosensor dissolved in solution was 11.97 pM and on tile was 

6.40 pM. Fot both experiments, the data is an average of three experiments and the standard deviation is represented 

by the error bars.  
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SUMMARY 

We set out to design an environment around our Dz 10-23 biosensor that would optimize 

the reaction conditions to both improve the efficiency of the biosensor and lower the detection 

limits of Dz Biosensors. Figure 13 shows a table that compares the limits of detections measured 

for this experiment after 3 hrs and summarizes what we have found. From this we can conclude 

that placing the Dz 10-23 biosensor on a DNA antenna tile can lower detection limits, in some 

cases by 10 fold, while retaining selectivity of the tile. We also found that the Dz 10-23 biosensor 

on antenna tile works with both rRNA and DNA analytes. While the rRNA samples did show 

slightly higher limits of detection, we inferred that this may be due to secondary interactions and 

are currently looking into ways to reduce this difference. Having proven the basis of the idea and 

theory behind the hypothesis, we also are looking into further optimization of the tile to push the 

LOD even lower. With this information, we are now a step closer to perfecting deoxyribozyme 

biosensors to be used for diagnostic procedures in the field, as well as any other area where 

deoxyribozymes can be applied including treatment of disease, food and water contamination 

diagnostics, computational functions, etc.  

   

  

In solution 

(pM) 

On Tile 

(pM) 

Synthetic 

Analyte 

Mtb Sensor 4.07 0.51 

M. smeg 

Sensor 6.40 1.91 

RNA Mtb Sensor 11.97 6.40 

Figure 13 Shows the limits of detections after 3 hrs of incubation at 55oC for each experiment with a gradient 

showing the best and worst. From these experiments we can see that the tile format reduces the limits of detection.  
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