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ABSTRACT 

The scattering of cylindrical waves, infinite in the 

axial direction, from a one dimensional infinite, planar, 

periodic array of wires is investigated. The cylindrical 

wavefront is divided into planar segments. Each planar 

segment is treated individually as an infinite plane wave 

incident upon the 

characteristics of 

periodic structure. 

each plane wave is 

The reflection 

determined by 

analyzing the electromagnetic scattered fields using the 

secant method to solve an iterative algorithm. The 

derivation of the method as applied to surfaces containing a 

one dimensional parallel thin wire grating is presented. The 

reflection coefficients for cylindrical waves are determined 

by combining the reflection coefficients of the planar 

segments. The reflection characteristics of the grating as a 

function of wire spacing, wire thickness and polarization of 

the incident field are calculated. 
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I. INTRODUCTION 

In this present day and age one can hardly travel 

anywhere without seeing numerous types of antennas. The days 

of seeing simple rooftop television antennas have given away 

to a vast matrix of communication dishes scattered all over 

the countryside. As communication needs and technology 

continue to evolve so does the research in antenna theory. 

Many types of antenna dishes are currently available, 

each having its own particular advantages and disadvantages. 

Solid parabolic dishes tend to require larger structural 

support but tend to be more efficient in that less signal 

power is lost with the reflection off the dish. On the other 

hand wire mesh antenna dishes are considerably less massive. 

They are less expensive per area of aperture and do not 

require as extensive structural support. They do, however, 

suffer from greater .signal 

reflecting surf aces · due to 

coefficients • . 

power 

their 

losses 

lower 

than solid 

reflection 

For space applications, wire mesh antennas are 

desirable for many reasons. First, although all antennas in 

space are weightless, wire mesh antennas with their smaller 

mass per aperture are deployed at a much lower cost. 



2 

Secondly, these type of antennas can sometimes be folded for 

compactness during transportation. Again, however, in space 

applications one must consider that signal power reflection 

is lower for wire array antennas than for solid reflectors. 

Because of this, much research has been done in analyzing 

the .reflection of electromagnetic waves from wire mesh 

antennas. 

The problem of analyzing the interaction of 

electromagnetic waves with wire mesh antennas is simply a 

scattering problem of electromagnetic waves from a periodic 

array of conductors. One of the first works done on the 

theory of scattering from a parallel wire grating was done 

by Wait [l]. An excellent review of most of the work done 

prior to 1960 in wire grating theory was published by Larsen 

[ 2 ] • 

Many d~f ferent methods have been developed for solving 

the problem of electromagnetic scattering from such 

structures. The best known method, called the Method of 

Moments, tend to require the inversion of large matrices and 

thereby uses a large quantity 

Current approaches to . solving 

of computer time and memory. 

the scattering from wire 

gratings utilize iterative techniques to determine the 

scattered fields and induced wire currents. An approach that 

alleviates the usage of large quantities of memory, 

developed by Tsao and Mittra [3], is called the Spectral 

Iteration Approach (SIT). Their approach worked well when 
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the wavelength of the radiation was less than half the 

separation of the wires in the grating (e.g., infrared and 

microwave regions of the electromagnetic spectrum). However, 

their approach failed to converge when the wavelength was 

greater than half the periodic spacings (e.g. radio 

wavelengths). 

Brand [4] applied a contractor corrector scheme to the 

Spectral Iteration Approach. This eliminated the convergence 

failures of the previous SIT method. Christodoulou [5], like 

Brand, developed another method which eliminated the 

convergence problems encountered by Tsao and Mittra. His 

method, called the Fast Fourier Transform Conjugate Gradient 

Method (FFT-CG), is a combination of the SIT and the 

Conjugate Gradient Method [6,7]. 

All of the above SIT methods were developed to achieve 

more efficient numerical calculations of the solutions of 

wire grating scattering problems. They all make use of 

convergence techniques that involve calculating 

and all incorporate a Fast Fourier Transform 

derivatives 

(FFT) to 

quickly solve the iterative scheme developed by Tsao and 

Mittra. 

Virtually all previous investigations in the scattering 

of electromagnetic waves from wire gratings have involved 

the study of plane waves incident upon planar structures. 

The simplicity of this geometry makes the development of 

numerical techniques much easier. Such solutions have 
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practical uses in that when transmitter and detector 

than the distances from wire gratings are much larger 

wavelengths and wire spacings, the wavefronts are 

essentially planer when arriving at the array. The purpose 

of this research, however, is to analyze the scattering of 

cylindrical waves. There exist many types of antennas in 

which the wavefronts are cylindrical or spherical and far 

field planar approximations do not hold. The intent is that 

if a workable technique for the solution of the scattering 

problem is developed for cylindrical waves, infinite in the 

axial direction and incident on a one dimensional infinite 

planar periodic wire grating, then even more complicated 

geometries ·can be investigated. 



II. FORMULATION OF THE SPECTRAL ITERATION 

To derive the iterative equation to solve for the 

electromagnetic fields and current densities, consider the 

generalized integral expression for a scattering problem: 

~ ~ + ~ ~ 
~(r)=JG(r,r')~(r')dr' + 

~ 
~. (.r) 

1.IlC 

subject to the constitutive equation: 

(2.1) 

( 2. 2) 

... 
Here ~(r) is the field quantity, ~(i) the source density 

and ~inc(~) t he e x t e r n a 11 y a p p 1 i e d f i e 1 d • G <.1, ~' ) is the 

appropriate Green's function. 

This equation can be solved by application of transform 

techniques. The Fourier transform of a function 

is given by: 

'V -4 

F(.l<:) = J _: £(.~) 
4- ~ 

jr·k 
e 

All transform pairs will 

5 

be denoted in 

(2.3) 

the form 
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Taking the Fourier transform of equation (2.1) gives: 

~(k) (; (k) '¥ (k) + 4s. (k) 
inc 

(2.4) 

which is still subjected to the conditions of the 

constitutive equation. The integral equation has been 

converted into an algebraic equation in the transform space 

where a solution can be more readily obtained. This 

procedure is now applied to the problem of scattering of 

electromagnetic waves from a periodic structure (see Figure 

1 ) • 

+ + 
The electric field E arising from a magnetic current M 

+ 
E 

is given by: 

- ( l/E)V 
+ 

x F (2.5) 

where F is the associated electric vector potential and 

£ the permittivity of the medium. The relationship 

between + + F and M is: 

+ + ++ ++ + 
F (r) =E 1a (r,r') M(r 1

) dr' (2.6) 

where G(~,~') is the free space Green's function defined by: 

=++ G(r,r') e-j(r·k) I/ 4 TI r (2.7) 
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a 

Figure 1. Geanetry of the Scattering Problem. 
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I being the unit dyadic. 

Since all the fields and sources are harmonic with 

frequency w equation (2.5) can be substituted into one 

of Maxwell's equations: 

VxH 
-+-
aE /at j w E: "E 

to yield: 

-+- -+-v x H = - j w V x F 

or: 

( -+- -+-F ) V x H + j w 

This implies 

potential. 

-V <;P 
m 

-+­
= H + jw 

0 

li. +jwF 

-+- -+-
F or H j 

(2.8) 

(2.9) 

(2.10) 

is a gradient of some scalar 

-+-
w F -V <P 

m 
(2.11) 

is the magnetic scalar potential. 

To specify a vector completely, both its divergence and 

curl must be defined. Equation (2.5) defines the curl of 

vector -+-
F • To define its divergence the Lorentz guage 

condition is used: 
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0 (2.12) 

where ~ is the permeability of the medium. Since is 

harmonic (i.e., exp( - jwt ) dependence) equation (2.12) 

becomes: 

v · -P = - j W E }l 

which gives: 

q> 
m 

q> 
m 

- 1 I v ·-P 
jwsµ 

(2.13) 

(2.14) 

Equation (2.14) can be substituted into equation (2.11) to 

yield: 

-+ 
H - j w"F+ 1

; 
j WE}.! 

-+ V V· F (2.15) 

Equation (2.15) can now be applied to the planar 

periodic structure of Figure 1, where the structure is 

considered to be the source distribution for the magnetic 

field. Since the wire array resides entirely in the x-y 

plane the vector potential is not a function of the z 

coordinate. If the medium is free space s becomes s and 
0 

-
jJ becomes ~o • With the propagation constant defined by 

k =w (JJ E ) 
1 I 2 equation ( 2 • 1 5) becomes : 

0 0 0 
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-+ l I. { (k 
2

F + a
2

F 2 
H (x,y) y I axay + 3 Fx/ 3x2) x s JW].J E 0 x 

0 0 

k 2F a2F 2 
+ ( + x/ + a F I 2) y } (2.16) 

0 y axay Y ay 

The Subscri. pt "s" · t b · t t d h d is o e in erpe e as t e scattere 

field. 

In vector notation equation (2.16) is expressed as: 

-+ 
H (x,y) 

s [ :;] = 
l 

jWE µ 
0 0 

(2.17) 

When equation (2.6) is substituted into equation (2.17) and 

the Fourier transform is taken, the scattered field becomes 

in the transform space: 

li (a , f3 ) {l/. } 
s mn mn JW ].J 

0 
x 

[ k 2_ a 2 a f3 ] 0 mn mn mn 

- amnf3mn k 
2-s 2 

o mn 
(2.18) 

The discrete nature of equation (2.18) is the result of 

taking the Fourier Transform of a periodic function. The 

parameters a 
mn 

and f3 are called the Floquet modes. 
mn 

The Floquet modes allow for the coupling between the 

conducting regions of the planar array [8,9,10]. 
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They are defined as: 

2nm 
k sine a. coscp run a 0 (2.19) 

f3mn 
2nn 2nm 

coU2 k =-- --- sine sincp b a 0 
(2.20) 

The parameters a and b, and the angles e cp , and S1 are 

shown in Figure 1. The parameters m and n are the number of 

sampling points in the x and y directions, respectively, 

used in the Fast Fourier Transform. 

The Fourier transform of the Green's function is given 

by: 

-G = .::i(k2 
2 0 

a 
mn 

2 f3 2 ) -1I2 
mn 

I (2.21) 

Equation (2.18) gives the scattered aperture field in 

the transform space. Taking the inverse Fourier transform 

yields: 

k 2_ 2 f3 

I 
a. a 

1 
0 mn mn mn 

ii (.x, y) (. ) 
s j w P

0 - amn Bmn 
k 2 2 

m,n o - t\nn 

(2.22) 

x G ( a , f3 ) M ( a , S ) exp { j ( a x + S Y) } 
mn mn mn mn mn mn 
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This is the scattered aperture field in terms of the 

magnetic current density. By the use of the equivalence 

theorem and applying the appropriate bounary condition on 
-+ 
H (x,y) 

s 

-+ inc 
H 

t 

x 

at z=O equation (2.22) becomes [3]: 

-2 I ~nsmn 
k 2 2 

o -°tun 
jw µ 

0 
m,n -k 2 +a. s -a. 

0 mn mn mn 

G(a. ,S ) 
(2.23) 

E(a. ,S ) exp{j(a. x+ S y)} mn mn mn mn mn mn 

where E represents the transformed aperture electric field 

-+ inc 
and H 

t 
is the incident tangential magnetic field. 

It should ~ be noted that equation (2.23) only applies 

in the aperture region. To extend the equation to apply over 

the full ~ange, that is , encompassing an entire unit cell, 

the contribution of the 
-+ 
H field along the conducting 

wires has to be added to the equation. This gives: 

-+ e {J(x,y)} 
c 

-+ inc 
= -H + 

t 
2 

jw µ 
0 

\ [a. s L mn
2

mn 

-k +S m,n o mn 

x G (a. , S ) E ( a , S ) exp { j (a. x+ S y) } 
mn mn mn mn mn mn 

k 2_a. 2] o mn 

-a.mnSmn 
2 

(2.24) 

The truncation and complimentary trunction operators, 8 

and e c , are defined by: 



-+ 
8{f(r)} -+ 

f (r) 

0 

e {f(r)} 
c 

0 

-+ 
f (r) 

for 

for 

for 

for 

-+ 
r 

-+ 
r 

-+ 
r 

-+ 
r 

13 
in the aperture 

in the conduction region 

in the aperture 

in the conducting region 

e {J(x,y)} 
c 

is present on equation (2.24) since the current 

densities can only be present in the conducting regions. The 

identity that z x 
-+ + 

{ H (z=o ) 
-+ - -+ 
H (z=O )} = J is used in 

equation (2.24). 

Equation (2.24) can be written in a more compact form 

if the following definition is made: 

[a a G mn mn = 
0 

-k 2 +t3 2 
o mn 

This gives: 

k 2_a 2 J o mn 

a t3 mn mn 

2 
jw µ 

0 m,n 
G 

0 
E 

t 

~ 

c( a , s ) 
mn mn 

exp{j(a x+S y)} 
mn mn 

(2.25) 

(2.26) 

Recall the subscript t indicates the tangential component 

and it is understood all quantities are evaluated at z=O. 

Equations (2.18) through (2.26) assume the geometry of 

Figure 1. The equations simplify considerably if instead of 

a two dimensional wire grid a one dimensional wire grating 
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Figure 2. One D:imensional W:ire Array. 
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is used (Figure 2). If b ;= - ~ , and one only 

considers transverse electric polarization (i.e., = 0), 

then f? mn 
= 0 and equations (2.18), (2.22), (2.23), and 

(2.24) no longer contains the 2x2 matrix. Equation (2.26) 

still holds as a general equation and is the equation to be 

solved by iterative techniques. 

The derivation of the iterative method used by Tsao and 

Mittra proceeds as follows: Since the tangential field is 

only present in the aperture and the current densities only 

along the conductor, equation (2.26) can be written as: 

:+ 
8 (J) c . 

Similarly equation (2.26) can be solved for 

expressed as: 

l. } 

-+ 
E 

t 

(2.27) 

and 

(2.28) 

Equation (2.27) expresses the current densities in 

terms of the cell elec.tric field, whereas equation (2.28) 

gives the electric field in terms of the incident tangential 

magnetic field and the current densities. Neither equation 

can be solved separately, however, substitution of equation 

(2.27) into equation (2.28) yields the following iterative 
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equation which can be solved using various numerical 

techniques. 

E (i+l) = F-l c~ F { (jw JJ /2) [e { Htinc + (2/jw µ ) 
t 0 0 c 0 

-Ii inc 
t 

(2.29) 



III. CONVERGENCE OF THE ITERATIVE EQUATION 

As stated in the previous chapter equation (2.29) 

lends itself to solution using iterative numerical 

techniques. This chapter explores some of the iterative 

techniques used to solve equation (2.29). 

Most of the useful methods for solution of an equation 

of the form 

F(x)=O (3.1) 

involve iterative processes in which an initial guess i 

for a root x=a is obtained by a graphical method·, by the 

physical nature of the problem, or by some other technique. 

Then a recursion relationship is used to generate a sequence 

of successive approximations ' . . . . ' i ' n 
which 

converge (under certain conditions) to a root 'a'. One such 

method of successive substitutions is to rewrite equation 

(3.1) as 

x = F(x) (3.2) 

and make use of of a simple recursion relation 

= F(i ) n 
(3.3) 

17 

0 
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There are many ways of rewriting (3.1) in the form of 

(3.2). The convergence, or lack thereof, of a root ' a ' 

depends on the particular form chosen. To compare the speed 

of convergence of different choices of equation (3.2) the 

order of convergence is defined as: 

lim c 
n--> oo 

i - a jP 
n 

(3.4) 

where C is called the asymptotic error constant and p is the 

order of convergence. If convergence is to take place the 

order of convergence must be at least 1 (linear). The 

magnitude of p gives an indication as to how fast 

convergence can take place. 

One fixed point method with order of convergence equal 

to unity is called the method of Regula Falsi (Figure 3). 

Given a function f (x) on an interval [a t b ] such that 
i i 

f(a)f(b ) < O then the next approximation of the solution is 
i . i 

calculated using: 

c = b. 
1 

f (b.) (bi -ai) 
1 . 

f(b.)-f(a,) 
1 . 1 . 

If f(a.)f(c) < 0 then 
1 -

set ai+l =C and bi+l 

= £(bi) ai - f (ai)bi 

f (b.) f (a.) 
. 1 1 

set ai+l =a. and bi 1 

=b .. . The calculation 
1 

is 

until a desired minimum error condition is 

(3.5) 

=c, otherwise 

then repeated -
reached. The 

method of Regula Falsi always keeps the root bracketed by ai 



y 

Figure 3. Method o~ Regula Falsi. 

t(x) 

b =b = b 
0 1 2 

19 

x 
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and b and the 
i 

convergence is considered to be relatively 

slow. 

Some methods of convergence make use of derivatives. 

The most popular of these is known as the Newton-Raphson 

method. The Newton-Raphson method is popular due to its 

simplicity and greater than unity order of convergence. This 

method was used by Brand to solve equation (2.29) and is 

discussed below. 

Given a function f (x) continuously differentiable at x 
i 

, the Newton-Raphson method 

as follows: 

x. - f(x,) I f' (x.) 
1 1 1 

(see Figure 4) calculates x 
i+l 

(3.6) 

The Newton-Raphson method makes use of the tangent to the 

function at f (x ) to find the value of x 
i i 

• The solution 

is converged upon rapidly in a direct manner and depending 

on the nature of f(x),a pair of consecutive iteration may or 

may not bracket the root. The order of convergence of the 

Newton-Raphson method is 2 [11]. 

Another very popular convergence technique is the 

secant method (Figure . 5). The secant method is a 

modification of the method of Regula Falsi which gives up 

bracketing of the root but has order of convergence of 1.62 

-
[11]. In the secant method each successive approximation is 

calculated using the last two approximations. Given a 
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f(x) 

x 

Figure 4. Newton- Raphson Method. 
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f(x) 
y 

Figure 5. Secant Method. 



function f (x) and two points 

given by: 

x. 
1 

and x. 1 1- then xi+l 

£ (. . '\ - x .. .... . x ~ 1 x. l ' l l ·~· 

23 

is 

f (xij xi.~l - f (~i~1 }_ xi, 

f (~iJ ..... .f (~h-1 )_ - - - .r . . ·c ' <. . - f x l'~f x 
- i' -· - 1~1 t ' (3.7) 

Comparing the secant method to the Newton-Raphson 

method, the secant method only requires evaluation of one 

function per step while the Newton-Raphson method requires 

two functions be evaluated per step. The Newton-Raphson 

method usually converges in less iterations since the order 

of convergence is 2 versus 1.62 for the secant method. The 

secant method can of ten reach convergence in less 

computational time since no derivatives, thus less 

functions, need to . be evaluated. 

In many different problems, regardless of the 

convergence methods chosen, it is possible to accelerate the 

convergence using what are called relaxation methods. In the 

relaxation process,invented by Gauss, the x r 

+ 
approximation 

is modified using a relaxation constant or residue, R. The 

rapidity of convergence depends on the ingenuity of the 

user. 

With convergence techniques in mind the solution of 

equation (2.32) is now discussed. Recall 



E (i+l) = F-1 [~ -1 F {(•w /2) [ e { H inc+ (2/]•W µ ) 
t o J µo c t o 

24 

(2.29) 

where 

:+ e (J) 
c (2.27) 

The solution used by Tsao and Mittra involved: 

-+ (O) -+ (0) 
1. Make an initial guess of Et .Truncate Et 

2. Compute 
~ (0) 
Et , the Discrete Fourier Transform (DFT) of 

:+ (0) 
Et , to be carried out using the Fast Fourier Transform 

(FFT) algorithm. 

3. Compute 

4. Obtain the inverse DFT of 
:;. ~(O) 
G ·E 

0 

5. Add to the result of 

-+(O) 
zeroth order approximation solution J 

using the FFT. 

4. This gives the 

6. Subtract :+ inc 
H 

t 
from the complimentary truncation of the 

result of 5 and take 

7. Multiply 
::._1 
G by 

8. Take 

E (1) 
t 

:+ (1) 
E 

t 

the inverse 

can then be 

the DFT using the FFT. 

the last step obtaining 

DFT of 
~ ( 1) 
E using the 

:+(l) 
used to find J 

~ (1) 
E 

FFT 

then 

to obtain 

:+(2) 
E 

etc., until the desired convergence is obtained. 

The exact solution of 
:+ (i) 
J should have the entire 

current confined to the conducting surfaces. The exact 

solution of should have zero value on the 
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conducting surfaces. One of the above criteria can serve as 

a boundary condition for checking how well the ith iteration 

approximates the solution and an error for convergence can 

be established. 

Tsao and Mittra had convergence problems when the 

separation of two wires was less than two wavelengths. 

Brand was able to overcome the convergence problems of Tsao 

and Mittra by using a relaxation technique. Given that x.t+l 

is calculated by some function g(xi) the relaxed iterative 

equation used was: 

G(x.) 
1. 

Rx. + ( 1 - R) g(x.) 
1. 1. (3.8) 

R is the relaxation constant and can be optimized by the 

condition 

d; G(x) I = 0 
dx x=x. 

1. 
(3.9) 

This leads to: 

R - g'(x)/ 
- l} - { g' (x) 

(3.10) 

where g' (x) (3.11) 

In terms of the electromagnetic equations a new 

approximation of the solution 

using: 

~ (i+l) 
t 

can be found from 
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(3.12) 

is an operator abbreviation for the right 

hand side of equation (2.29). 

Due to the limitations in precision on the Vax 11/750 

computer in approximating derivatives Brand's results, using 

the contractor corrector scheme with the Newton-Raphson 

method, could not be duplicated. Therefore the secant method 

was used to assure convergence. 

To accelerate the convergence and obtain an estimate of 

the error during each iteration, a new vector function was 

defined: 

"Rel) L(E) - E (3.13) 

-+ 
R is called the residue vector and has a value 

proportional to the remaining error in the electric field. 

Using the secant method to find a new value for each field 

point utilized the following equation: 

e 
(i+l) 

e 
(i) 

f{E(i)}{e(i)_ e(i-1)} 

f{E(i)} - f{E(i-l)} 

(3.14) 



In equation (3.14) ' e ' represents the electric field at an 

individual cell point and 1 an individual element of the 

vector produced by the operator of equation (3.12). 



IV. SOLUTION FOR CYLINDRICAL WAVES 

In many antenna applications the source of the waves is 

considered to be in the far field of the antenna. This means 

that the wavefronts incident on the antenna can be 

approximated as planar. However in many dish type antennas 

(see Figure 6) the feeder is not in the far field, but in 

the near field of the antenna. The wavefronts will 

definitely have curvature characteristics of either 

cylindrical or spherical waves. This paper analyzes the 

scattering of cylindrical waves. 

Cylindrical waves can be generated from a line source, 

such as in cylindrical antennas, or by impinging plane waves 

on the back of a flat opaque screen containing a long, very 

narrow slit. The latter technique is sometimes used in laser 

experiments. The geometry of a cylindrical wavefront is 

shown in Figure 7. 

An equation for a cylindrical wave can be derived from 

the general three dimensional wave equation 

2 
'V '¥ 

2 
= i 1 2 a '¥/ 2 

v at 

using the cylindrical representation of 

operator 

28 

(4.1) 

the Laplacian 
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Figure 7. Cylindrical Coordinates. 
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(4.2) 

If an infinite right circular cylinder is considered then 

a'±'/ae = 0 and = 0 and the wave equation 

becomes: 

l 
r 

1 
) = v2 

The solution to the spatial part of equation 

(4.3) 

(4.3) 

involves Bessel functions [12]. When r is sufficiently large 

we can approximate the solution as: 

A jk(r + vt) '±'(r,t)= { /(r)l/2} e - (4.4) 

This equation represents an infinite set of coaxial right 

circular cylinders filling all space and travelling radially 

outward or inward from an infinite line source (see Figure 

8). Unlike the solution of the three dimensional wave 

equation in rectangular or spherical coordinates, there is 

no solution to the equa~ion in cylindrical coordinates in 

terms of arbitrary functions [13]. 

To quantitatively analyze the scattering of cylindrical 

waves f rorn a one dimensional planar the 

cylindrical wavefront is divided into N equal plane segments 

as shown in Figure 9. As N approaches infinity the connect 

planar segments approach a perfect cylindrical surface. Each 
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Figure 8. Cylindrical W~ves. 
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Figure 9. Segmented Cylindrical Waverront. 



planar segment is analyzed as if it were an infinite plane 

wave interacting with the wire array. The scattering 

parameters are then calculated using the SIT with the secant 

method to assure convergence. 

The locally planar approximation of the cylindrical 

by Cwik and Mittra wavefront is analogous to 

(14]. Instead of analyzing 

recent work 

cylindrical waves incident on a 

planar one dimensional wire array, Cwik and Mittra analyzed 

the scattering of plane waves with wire strips arranged in 

cylindrical geometry (see Figure 10). They analyzed the 

scattering from each strip individually, to obtain a 

reflection coefficient, by assuming each strip was a member 

of an infinite one dimensional planar structure. The 

resulting reflection coefficient of the plane waves 

interacting with the cylindrical wire strip structure was 

calculated by combining the scattering parameters of the 

individual strips. 

As can be seen 

cylindrical wavefront 

in Figure 9, different regions on a 

travel different distances in going 

from the source to the plane of the wire array. This is also 

true of the various plane segments when the cylindrical 

wavefront is divided into planar segments. Because of this, 

each plane wave has a different phase when interacting with 

each wire. The phase difference for each plane wav~ must be 

taken into consideration when calculating the reflection 

coefficient for the entire cylindrical wavefront. 
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Figure 10. 

y 

Locally Planar Approximation for Plane 
Waves Incident on a Cylindrical Wire 
Strip Structure. 
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Geometry for Determination of Eel.ative 
Phases of Plane Wave~ 
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The additional distance travelled by a plane wave 

incident at angle 8 , in excess of the distance travelled by 

a normal plane wave, is illustrated in Figure 11. The path 

length difference is given by: 

R - R cos (4.5) 

where R is the normal distance f rorn the source to the wire 

array. If all dimensions are normalized to the wavelength of 

the radiation, then the phase difference between the normal 

incident plane wave and one incident at angle8 is 2n~ 

or: 

~ Phase 2 n( R - R cos8 ) (4.6) 



RESULTS 

The reflection coefficient is defined as the ratio of 

the power carried by the reflected wave to the power carried 

by the incident wave. The Fortran 77 program used to 

calculate reflection coefficients for plane waves incident 

on one dimensional, planar wire strips appears in Appendix 

A. The flowchart for the algorithm also appears in Appendix 

A. To perform the DFT called for in equation (2.29) a finite 

number of sampling points is required for a unit cell (see 

Figure 12). If an insufficient number of sampling points are 

chosen, large errors could result in the calculations. If 

too many sampling points are used the computation would take 

unnecessary extra time with no gain in accuracy. 

determined, from running a number of exampies, 

It was 

that 32 

sampling points per unit cell were sufficient to achieve 

accurate results. 

The first results found in Tables 1 and 2 give the 

reflection coefficients for value of the angle e from 0 to 

90 degrees. In each, the cell width is 1/4 wavelengths, the 

wire diameter 1/600 wavelengths, the wire conductivity 

infinite and the frequency of the incident waves 3x10
8 

Hz. 

When tine is parallel to the wires and 

Electric (TE) case arises, whereas when 

Transverse Magnetic (TM) case arises. 
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q, = 0 the ir an s v e r s e 
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Figure 12. Unit Cell for a One Dimensional Wire Gratingp 
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TABLE 1 

REFLECTION COEFFICIENTS FOR PHI = 0 DEGREES 

A=.25000 B=.0016700 TOL=.0001 

ITER THETA REF CREF 

8 O.OOOOOOOE+OO 0.5080711 (0.2581189,-0.4376196) 
8 2.812500 0.5084996 (0.2585540,-0.4378603~ 
8 5.625000 0.5097930 (0.2598705,-0.4385844 
8 8.437500 0.5119604 (0.2620840,-0.4397902) 
8 11.25000 0.5150177 (0.2652227,-0.4414749) 
8 14.06250 0.5189862 (0.2693247,-0.4436336) 
8 16.87500 0.5238938 (0.2744415,-0.4462584) 
8 19.68750 0.5297757 (0.2806376,-0.4493382) 
8 22.50000 0.5366731 (0.2879921,-0.4528560) 
8 25.31250 0.5446340 (0.2965999,-0.4567874) 
8 28.12500 0.5537136 (0.3065733,-0.4610981) 
8 30.93750 0.5639727 (0.3180432,-0.4657400) 
8 33.75000 0.5754787 (0.3311603,-0.4706469) 
8 36.56250 0.5883038 (0.3460972,-0.4757290) 
8 39.37500 0.6025254 (0.3630482,-0.4808668) 

12 42.18750 0.6181175 (0.3820706,-0.4858922) 
12 45.00000 0.6353867 (0.4037178,-0.4906407) 
12 47.81250 0.6542955 (0.4281039,-0.4948027) 
11 50.62500 0.6749089 (0.4554994,-0.4980183) 
11 53.43750 0.6972721 (0.4861794,-0.4998179) 
12 56.25000 0.7213826 (0.5203860,-0.4995911) 
12 59.06250 0.7471794 (0.5582811,-0.4965877) 
12 61.87500 0.7745454 (0.5999298,-0.4899029) 

8 64.68750 0.8032299 (0.6453057,-0.4782874) 
12 67.50000 0.8329148 (0.6937506,-0.4609308) 
12 70.31250 0.8629787 (0.7447310,-0.4360136) 
11 73.12500 0.8926740 (0.7968645,-0.4023353) 
12 75.93750 0.9210050 (0.8482604,-0.3587541) 
12 78.75000 0.9468177 (0.8964759,-0.3046221) 

8 81.56250- 0.9687710 (0.9385528,-0.2400747) 
9 84.37500 0.9855854 (0.9715052,-0.1660009) 

12 87.18750 0.99629541 (0.99267,-8.491265E-02) 
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TABLE 2 

REFLECTION COEFFICIENTS FOR PHI = 90 DEGREES 

A=.25000 B=.0016700 TOL=.0001 

ITER THETA REF CREF 

8 O.OOOOOOOE+OO 0.5080711 (0.2581189,-0.4376196) 
8 2.812500 0.5303115 (0.2572254,-0.4637515) 
8 5.625000 0.5536214 (0.2541778,-0.4918233) 
8 8.437500 0.5773324 (0.2485401,-0.5210955) 

10 11.25000 0.6006295 (0.2398987,-0.5506400) 
10 14.06250 0.6230848 (0.2283397,-0.5797377) 
10 16.87500 0.6438972 (0.2137750,-0.6073745) 
10 19.68750 0.6623937 (0.1963854,-0.6326122) 
10 22.50000 0.6779147 (0.1765237,-0.6545287) 
10 25.31250 0.6898247 (0.1547047,-0.6722534) 
10 28.12500 0.6975207 (0.1315964,-0.6849945) 
10 30.93750 0.7004440 (0.1080038,-0.6920672) 
10 33.75000 0.6980902 (8.485278E-02,-0.692914) 
10 36.56250 0.6900250 (6.317369E-02,-0.687127) 
10 39.37500 0.6759390 (4.405903E-02,-0.6745016) 

8 42.18750 0.6557732 (2.8634697E-02 , -0.65514 8 ) 
8 45.00000 0.6291218 (l.799956E-02,-0.6288643) 
8 47.81250 0.5963041 (l.330584E-02,-0.5961556) 
8 50.62500 0.5577710 (1.561087E-02,-0.5575526) 
8 53.43750 0.5144277 (2.5879726E-02,-0.513776) 
8 56.25000 0.4678871 (4.495371E-02,-0.4657226) 
8 59.06250 0.4209101 (7.352047E-02,-0.4144394) 
8 61.87500 0.3781056 (0.112081,-0.3611117) 
8 64.687"50 0.3466377 (0.1609436,-0.3070095) 
8 67.50000 0.3357515 (0.2201791,-0.2534764) 
8 70.31250 0.3530512 (0.2896290,-0.2018915) 
7 73.12500 0.3995559 (0.3688231,-0.1536700) 
7 75.93750 0.4703254 (0.4572753,-0.1100240) 
8 78.75000 0.5587655 (0.554068,-7.22998E-02) 
6 81.56250 0.6592695 (0.6579555,-4.160386E-02) 
6 84.37500 0.7681738 (0.7679435,-l.881126E-02) 
6 87.18750 0.8824902 (0.8824774,-4.757401E-03) 
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For each plane wave segment convergence was determined 

when a new iteration did not produce a reflection 

coefficient different from the previous iteration in the 

fourth decimal place (TOL=0.0001). In Tables 1 and 2 it is 

shown each set of data converged within 8-12 iterations. The 

data under the column labeled "CREF" is the complex 

reflection coefficient whose magnitude yields the reflection 

coefficient to the left. 

Tables 3 and 4 show the same data as in !ables 1 and 2, 

respectively, except in calculating this data TOL=0.000005 

was used. For most of the various angles of incidence 

convergence occurred between 12-16 iterations. The data show 

that the additional iterations do not change the values of 

the complex and actual reflection coefficients to the fourth 

significant figure. 

The data from Tables 1 and 2 are plotted in 

and 14, respectively, along with data from 

Figure 

Brand 

13 

for 

comparison. The plots give the reflection coefficients 

versus angle of incidents for either TE (Figure 13) or TM 

(Figure 14) plane waves. The data are in good agreement with 

that of Brand's. For both polarizations the reflection 

coefficients appr~ach unity as e approaches 90 degrees, 

as would be expected. In Figure 14 the minimum at 8 =67 

degrees is due to an effect similar to the Brewsrer angle 

associated with dielectric materials. 
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TABLE 3 

REFLECTION COEFFICIENTS FOR PHI = 0 DEGREES 

A= .25000 B= .00167000 TOL = .000005 

ITER THETA REF CREF 

12 0.0000000£+00 o.soso244 (o.25so88s,-o.437583I) 
12 2.812500 0.5084522 (0.2585237,-0.4378231) 
12 5.625000 0.5097442 (0.2598394,-0.4385460) 
12 8.437500 0.5119097 (0.2620518,-0.4397503) 
12 11.25000 0.5149640 (0.2651884,-0.4414330) 
12 14.06250 0.5189290 (0.2692872,-0.4435896) 
12 16.87500 0.5238317 (0.2743986,-0.4462119) 
12 19.68750 0.5297066 (0.2805882,-0.4492877) 
12 22.50000 0.5365964 (0.2879350,-0.4528014) 
12 25.31250 0.5445492 (0.2965333,-0.4567294) 
12 28.12500 0.5536197 (0.3064945,-0.4610378) 
12 30.93750 0.5638699 (0.3179494,-0.4656795) 
12 33.75000 0.5753685 (0.3310492,-0.4705904) 
12 36.56250 0.5881896 (0.3459677,-0.4756820) 
12 39.37500 0.6024120 (0.3629013,-0.4808356) 
12 42.18750 0 -.6181175 (0.3820706,-0.4858922) 
12 45.00000 0.6353867 (0.4037178,-0.4906407) 
12 47.81250 0.6542955 (0.4281039,-0.4948027) 
13 50.62500 0.6749132 (0.4555050,-0.4980192) 
12 53.43750 0.6972702 (0.4861781,-0.4998164) 
16 56.25000 0.7213715 (0.5203763,-0.4995853) 
16 59.06250 0.7471775 (0.5582729,-0.4965940) 
16 61.87500 0.7745508 (0.5999291,-0.4899123) 
15 64.68750 0.8032594 (0.6452252,-0.4784455) 
16 67.50000 0.8329225 (0.6937591,-0.4609317) 
16 70.31250 0.8629803 (0.7447366,-0.4360074) 
11 73.12500 0.8926740 (0.7968645,-0.4023353) 
28 75.93750 0.9210095 (0.8482622,-0.3587614) 
20 78.75000 0.9468343 (0.8964922,-0.3046259) 
12 81.56250 0.9688268 (0.9386266,-0.2400113) 
51 84.37500 0.9857143 (0.9716344,-0.1660090) 
38 87.18750 0.9963639 (0.992737,-8.493589£-02) 
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REFLECTION COEFFICIENTS FOR PHI = 90 DEGREES 

A= .250000 B= .00167000 TOL= .000005 
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ITER THETA REF CREF 

12 O.OOOOOOOE+OO 0.5080244 (0.2580888,-0.4375831) 
12 2.812500 0.5302564 (0.2571883,-0.4637090) 
12 5.625000 0.5535581 (0.2541341,-0.4917748) 
12 8.437500 0.5772617 (0.2484903,-0.5210410) 
12 11.25000 0.6006877 (0.2399605,-0.5506766) 
12 14.06250 0.6231506 (0.2283996,-0.5797847) 
12 16.87500 0.6439663 (0.2138270,-0.6074296) 
12 19.68750 0.6624615 (0.1964298,-0.6326694) 
12 22.50000 0.6779778 (0.1765614,-0.6545838) 
12 25.31250 0.6898815 (0.1547376,-0.6723042) 
12 28.12500 0.6975727 (0.1316266,-0.6850416) 
12 30.93750 0.7004933 (0.1080336,-0.6921124) 
12 33.75000 0.6981439 (8.488294£-02,-0.692965) 
12 36.56250 0.6900975 (6.319419E-02,-0.687198) 
12 39.37500 0.6760153 (4.405713E-02,-0.674578) 
15 42.18750 0.6556798 (2.860594E-02,-0.6550566) 
14 45.00000 0.6290373 (l.797250E-02,-0.628780) 
16 47.81250 0.5962260 (l.328898E-02,-0.596078) 
14 50.62500 0.5577026 (l.560462E-02,-0.557484) 
15 53.43750 0.5143835 (2.587208E~02,-0.513732) 
13 56.25000 0.4678625 (4.494757E-02,-0.465698) 
12 59.06250 0.4208988 (7.351937E-02,-0.414428) 
12 61.87500 0.3781001 (0.112088,-0.3611038) 
11 64.68750 0.3466374 (0.1609533,-0.3070041) 

9 67.50000 0.3357523 (0.2201900,-0.2534679) 
10 70.31250 0.3530590 (0.2896369,-0.2018938) 

9 73.12500 0.3996142 (0.3689017,-0.1536329) 
9 75.93750 0.4703794 (0.4573304,-0.1100259) 
9 78.75000 0 .• 5587636 (0.554066,-7.230312E-02) 
8 81.56250 0.6593485 (0.658036,-4.157845E-02) 
8 84.37500 0.7682067 (0.767976,-l.881057E-02) 
7 87.18750 0.8824912 (0.882478,-4.766003E-03) 
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The values of the reflection coefficients shown in 

Tables 1-4 are independent of the phase of the plane waves 

when interacting with the wire grids. The phase of each 

plane wave, regardless of the angle of incidence, was chosen 

to be zero for simplicity in the calculation. If non-zero 

phases were used the complex reflection coefficients would 

have different real and imaginary contributions but their 

magnitudes (complex absolute values) would agree with Tables 

1 and 2. 

As discussed at the end of the previous chapter, when a 

cylindrical wavefront is approximated with N equal planar 

segments the phase of each plane wave will be different upon 

reaching the same unit cell. The phase difference for each 

planar segment was incorporated into the calculation of the 

reflection complex coefficient for each segment. The complex 

reflection coefficients for all N segments composing the 

cylindrical wavefront were then summed, the summation 

for the interference of the plane accounting 

resulting in the scattered field. The magnitude of 

summation yields the reflection coefficient of 

cylindrical wavefront. 

waves 

this 

the 

Data in Tables 5, 6, and 7 investigate the affects of 

increasing the cell width (A), the wire diameter (B) and the 

number of divisions in the cylindrical wavefront (N). In 

Table 5 the cell width is varied from 1/20 to 1 wavelength, 

using 1 meter as the wavelength. The wire diameter is 1/600 
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TABLE 5 

EFFECT OF VARYING CELL SIZE ON REFLECTION COEFFICIENTS 

B=.0016700 FREQ = 3xl0 8 

CELL WIDTH REFL COEF REFL COEF REFL COEF 
NORMALIZED 

IN 15 SEGMENTS 63 SEGMENTS 255 SEGMENTS 
WAVELENGTHS 

0.05 0.2325552 0.0847749 0.0889166 
0 .10 0.1909643 0.0682722 0.0782886 
0.15 0.1690416 0.0554957 0.0674766 
0.20 0.1589005 0.0449779 0.0574633 
0.25 0.1550571 0.0365062 0.0507194 
0.30 0.1531066 0.0299295 0.0445608 
0.35 0.1506540 0.0248589 0.0397931 
0.40 0.1464682 0.0208146 0.0360254 
0.45 0.1385338 0.0174191 0.0329772 
0.50 0.1020095 0.0300464 0.0389571 
0.55 0.0867519 0.0144412 0.0271213 
0.60 0.1222615 Ot.0168553 0.0305144 
0.65 0.1352660 0.0147346 0.0292187 
0.70 0.1226075 0.0020271 0.0178167 
0.75 0.1226082 0.0154404 0.0278441 
0.80 0.1104891 0.0148839 0.0212141 
0.85 0.0990582 0.0099615 0.0125863 
0.90 0.1003822 0.0066987 0.0101432 
0.95 0.0941252 0.0047959 0.0122554 
1.00 0.0704742 0.0193412 0.0113168 
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wavelength and the TE waves are emitted from a line source 

10 wavelengths from the plane of the array. The reflection 

coefficients are given for cylindrical wavefronts by 

approximating the wavefronts with 15, 63 and then 255 equal 

segments, respectively. The data in Table 5 is plotted in 

Figure 15. 

It can be seen from Table 5 or Figure 15 that as the 

cell width increases the reflection coefficients decrease. 

This is expected since as the cell size increases the 

density of the conducting material in the plane of the array 

decreases. As the number of planar segments used to 

approximate the cylindrical wavefront increase from 15 to 63 

the reflection coefficients for a given cell size decreases. 

This is because when the wavefront is divided into 63 plane 

segments there is more destructive interference than with 15 

segments. The effect of interference seems to converge as N 

is increased further as a slight increase in reflection 

coefficient for each cell width is seen when N goes from 63 

to 255. It is assumed the data for N=255 approximate closely 

the data that would be obtained if N was infinite, i.e. a 

perfect cylindrical wavefront. 

Table 6 shows data that was calculated with only one 

parameter different than than in Table 5. The wire diameter 

used for the data in Table 6 is 1/25 wavelength whrch is an 

increase of a factor of 24. The data in Table 6 is plotted 

in Figure 16. 



TABLE 6 

EFFECT OF VARYING CELL SIZE ON REFLECTION COEFFICEINTS 

B=0.04000 FREQ = 3Xl0 8 

CELL WIDTH REFL COEF REFL COEF REFL COEF 
NOR MALIZED 

IN 15 SEGMENTS 63 SEGMENTS 255 SEGMENTS 
WAVELE NGTHS 

o.os 0.2549329 0.09132759 0.09149617 
0.10 0.2464367 0.08962220 0.09127969 
0.15 0.2308726 0.08511704 0.08937640 
0.20 0.2107107 0.07768848 0.08475764 
0.25 0.1920648 0.06932328 0.07861032 
0.30 0.1747310 0.05902413 0.07031036 
0.35 0.1630703 0.04753717 0.06064297 
0.40 0.1607334 0.04199014 0.05558897 
0.45 0.1544519 0.03137307 0.04629293 
0.50 0.1298209 0.03772403 0.07266707 
0.55 0.0861683 0.02436480 0.03876685 
0.60 0.1237208 0.02700567 0.04128870 
0.65 0.1468876 0.01981657 0.03476476 
0.70 0.1340668 0.00398165 0.02091228 
0.75 0.1365446 0.02027389 0.03347616 
0.80 0.1220749 0.01807635 0.00914560 
0.85 0.1078224 0.01098275 0.01382890 
0.90 0.1121742 0.00662250 0.02403339 
0.95 0.1076370 0.00449070 0.01224352 
1.00 0.0894236 0.00978884 0.02085624 
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As can be seen in Figure 16 the trends of increasing N 

and increasing the cell width are the same as discussed 

above for the smaller wire diameter. The effect of 

increasing the wire diameter resulted in larger reflection 

coefficients. The increase in reflection coefficients is 

most readily seen when the cell size is smaller because the 

wire diameter is a larger and a more appreciable fraction 

of the entire cell width. As the cell width approaches 1 

wavelength the effect of a wire diameter of 1/25 verses 

1/600 is negligible because both of these diameters result 

in only 1 sampling point, of the 32 per unit cell used in 

the DFT, lying on the conductor. 

Finally, in Table 7 data is shown with the same 

parameters as in the previous two tables except the wire 

diameter is increased each time the cell width is increased 

maintaining a wire diameter to cell width ratio of 1:2. The 

data from Table 7 is plotted in Figure 17. 

As expected the reflection coefficients do not decrease 

as much with increasing cell size as when the cell size was 

increased with fixed wire diameters. However the reflection 

coefficients are still decreasing as the wire spacing 

increases, even with maintaining the wire diameter cell 

width ratio constant, since as the cell width increases the 

density of the conducting regions on in the pla~ of the 

array is still decreasing. 



TABLE 7 

EFFECT OF VARYING CELL SIZE WITH A FIXED 

CELL WIDTH TO WIRE DIAMETER RATIO 

B=0.5 A FREQ = 3Xl0 
8 

CELL WIDTH REFL COEF REFL COEF REFL COEF 
NORMALIZED 

IN 15 SEGMENTS 63 SEGMENTS 255 SEGMENTS 
WAVELENGTHS 

0.05 0.2525846 0.0908471 0.0914464 
0 .10 0.2493727 0.0901349 0.0914761 
0.15 0.2461715 0.0894191 0.0912976 
0.20 0.2426991 0.0885736 0.0910743 
0.25 0.2389251 0.0875042 0.0907436 
0.30 0.2350405 0.0864553 0.0901316 
0.35 0.2311909 0.0850918 0.0894236 
0.40 0.2266577 0.0835397 0.0885369 
0.45 0.2222541 0.0818765 0.0875621 
0.50 0.2165210 0.0791452 0.0859971 
0.55 0.2113463 0.0783896 0.0851149 
0.60 0.1876374 0.0763665 0.0822011 
0.65 0.1810414 0.0740422 0.0792960 
0.70 0.1814635 0.0656511 0.0760733 
0.75 0.1897518 0.0710045 0.0929670 
0.80 0.1934909 0.0689960 0.0800347 
0.85 0.1785723 0.0542438 0.0671886 
0.90 0.1668677 0.0384986 0.0516680 
0.95 0.1565323 . 0.0254936 0.0680036 
1.00 0.1406198 0.0197900 0.0322063 
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VI. Summary, Conclusions and Recommendations 

When a cylindrical wavefront is approximated by planar 

segments, the calculation of 

be accomplished through 

the scattering parameters can 

well established numerical 

techniques. The secant method can be used to solved 

fields 

an 

iterative scheme for the solutions of the and 

currents when infinite plane waves are incident 

wire gratings. The secant method does not 

on planar 

have the 

computational problems encounted with the Newton-Raphson 

method since calculations of numerical derivatives are not 

necessary. 

It has been shown that the reflection coefficients for 

cylindricl waves are less than those for plane waves 

incident upon identical wire gratings. This is because of 

the interference that occurs as different segments of the 

incident wavefront scatter from the wire grating. Since no 

previous calculations could be found in the literature for 

cylindrical waves scattering with one dimensional planar 

wire gratings, 

the reflection 

magnitude as 

there was no data for comparison. However, 

coefficients calculated are of the sa me 

those calculated by Cwik and Mittra for 

scattering of plane waves with wire strips arrang~d on the 

surface of a cylinder [14]. 



It 

cylindrical 

Since the 

was found that the 

waves decrease as 

cell width and 
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reflection coefficients for 

the wire spacing increases. 

source distance were both 

normalized in wavelengths there was only 

variable of the three. Also the grating 

one independent 

was assumed to be 

infinite. Therefore decreasing the wavelength holding the 

cell width and source distance constant, or decreasing the 

source distance holding the wavelength and cell width 

constant both would have the same affect as increasing the 

cell width holding the wavelength and source distance 

constant. Only the latter was investigated. 

The spectral iteration method has not previously been 

applied to geometries other than plane waves incident on 

planar wire arrays. Scattering of cylindrical waves on wire 

structures with finite conductivities should be investigated 

as well as scattering with wires perpendicular or skewed to 

the one dimensional grating presented here. If the locally 

planar approximation is valid for cylindrical waves it 

should also be valid for spherical waves. The division of 

spherical wavefronts into 

difficul·t than cylindrical 

planar segments would be more 

waves but the algorithms exist 

for the analysis of the scattering of each planar segment. 
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APPENDIX A 

Flowcharts, Subroutines and Main Program 

The following program is written in Fortran 77 and was 

run on a Vax 11/750. The program prompts for data inputs 

from the unit cell, the source distance , the number of 

planar segments into which the wavefront is divided, and 

the frequency of the incident cylindrical waves. Prior to 

the listing of the program are listings of the program 

variables and flowcharts 



E(I) 

Guess(I) 

FI(I) 

FIMl(I) 

G(I) 

EINC 

HI 

CREF(ITH) 

Program Variables 

Electric field in aperture 

Previous estimate of the electric field 

Current value of the residue function 

Previous value of the residue function 

Transformed Green's Function 

Incident electric field 

Incident magnetic field 

Complex reflection coefficient 

REF(ITH) Magnitude of complex reflection coefficient 

CONVERGED' Boolean indicator of convergence 

K 

CK 

MAX 

ITER 

CYCLES 

ITH 

ALPHA 

RADIUS 

JC(I) 

Propagation constant 

Constants used in iterative equations 

Number of sampling points 

Running count of number of iterations 

Maximum number of iterations allowed 

Index for planar segments 

Phase of each planar segment 

Source distance from grating 

Current density across aperture 

Other variable and constants are self explanatory and are 

not defined. 

59 



SINHH 

CO SHH 

FNCTZ 

XFOR M 

FFT 

TRCOPR 

TRCOPRC 

Subroutines and Functions 

Complex hyperbolic sine function 

Complex hyperbolic cosine function 

The residue vector 

Original transformation for electric field 

Fast Fourier Transform 

Truncation function 

Complimentary truncation function 
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FLOW CHART 

Start 

Declare Variables 

Input data 

Initialize constants 

Calculate number of sampling 

point in aperture and on 

conductor 

Calculate complex reflection 

coefficient (see next page) 

More segments? 

no 

Sum complex reflection coefficient 

Print data 

End 
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For each planar segment 

calculation of the complex 

reflection coefficient goes 

as follows 

Calculated phase of 

planar segment 

Calculate incident electric 

and magnetic fields 

Calculate the Green's 

function transform 

Construct the first two 

guesses of the electric field 

~ Calculate F by calling FNCTZ 1 
J, 

Has convergence occurr~d ?,.._. l___.v~.e;;;;...;;;.s _____ _ 
I 

no 

Calculate F by calling FNCTZI Save complex 

reflection coefficient 
I• 

Has convergence occurred?~ J---"v...;e ... s ______ _ 
I 

no 

Perform next iteration on 

the electric field 

- Save the previous electric field 
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FNCTZ 

F = E - L(E) 

Call XFORM 

Return 

XFORM 

Perform initial transformation 

Perform transformation of G*E 

Truncate (G*E) 

Perform inverse transformation on 

result of previous step 

t Calculate complex reflection coeffici·entJ 

~ 
Perform inverse transformation 

to obtain the first iterate 

electric field 

t 
Return 



LISTING OF PROGRAM 

C THIS FILE COPY FOR JAMES R DIRE 

***** C SECANT METHOD APPLIED TO ASSURE CONVERGENCE 
c 
c 
c 
C DIMENSION ALL ARRAYS 

COMPLEX E(32),FI(32),FIM1(32),JC(32),G(32) 
COMPLEX RI,CREF,HI,EHOLD(32) 
COMPLEX GUESS(32),COMPREF,CRF,EINC 
COMPLEX J,CK1(32),CK2(32),CK(32),Z,Tl,SINHH,COSHH 
REAL K,K2,RS1,RS2,SKIND1,RATIO 
INTEGER ITER,CYCLES 
LOGICAL CONVERGED 
COMMON RI,CREF(l025),HI,EINC 
COMMON JC,G,J,Z,CK 
COMMON 

N,Nl,IW,MAX,W,UU,STII,DR,REF(l025),ITH,ITHETA,B,ITER 
C A = FLOQUET CELL DIMENSION 
C B = STRIP SIZE 

WRITE(*,*) ' ** ENTERING MAIN PROG **' 
WRITE(*,*) ' HOW MANY ITERATIONS DO YOU WISH TO 

PERFORM?' 
READ (*,*) CYCLES 
WRITE(*,*) ' INPUT FLOQUET CELL SIZE, STRIP SIZE 

WRITE(*,*) ' NORMALIZED IN WAVELENGTHS ' 
READ(*,*) A,B 
WRITE(*,*) 'INPUT THE POWER OF 2 YOU WOULD LIKE 

TO DIVIDE' 

THE' 

WRITE(*,*) 'A QUADRANT OF THE WAVEFRONT INTO' 
READ(*,*) NPWTWO 
NTHHAX=2**NPWTWO 

WRITE(*,*)'INPUT THE DISTANCE OF THE SOURCE FROM 

X,' GRID, NORMALIZED IN WAVELENGTHS' 
READ(*,*) RADIUS 

C FREQ = FREQUENCY IN HZ 
WRITE(*,*) ' INPUT FREQUENCY IN HZ' 
READ(*,*) FREQ 

C MAX = FFT SIZE = NUMBER OF SAMPLES PER CELL 
C IW = LOG2(MAX) ; i.e. MAX = 2**IW 

MAX=32 
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IW=5 
C THE STRIPS WILL HAVE INFINITE CONDUCTANCE OR ZERO 
IMPEDANCE 

Z=(O,O) 
C TH = THETA ANGLE OF INCIDENCE 
C PH = PHI ANGLE OF INCIDENCE 
C INITIALIZE ROUTINE CONSTANTS 

c 
c 

PI=3.141593 
TPI=2*PI 
C=2.997956E8 
UU=4. OE- 7:~PI 
EP=8.854E-12 
ETA=SQRT(UU/EP) 
J=(0.0,1.0) 
ALAMB=C/FREQ 
RD=l80.0/PI 
DR=l.O/RD 
K=TPI/ALA MB 
K2=K*K 
W=TPI*FREQ 

WRITE(*,*)'INPUT PHI, 0 or 90' 
READ(*,*) PH 

WRITE(*,*)'TO PRINT OUT THE DATA FOR EACH PLANAR 
SEGMENT' 

c 

c 
c 
c 

X,'ENTER A "l", TO SKIP ENTER "O"' 
READ(*,*) IANSWR 

WRITE(*,*) 
WRITE(*,*)'SECANT_ ALGQRITHIM APPLIED' 

C CALCULATE THE NUMBER OF SAMPLES ON THE STRIP AND IN 
THE APERATURE 

TAU=A-B 
N=IFIX(TAU/A*FLOAT(MAX)) 
Nl=N+l 
WRITE(::~,*) 

WRITE (*,lO)A,B,TAU 
WRITE(*,15)FREQ,PH,N,MAX 
WRITE(*,*) 

10 FORMAT('-','A=',El0.5,' B=',El0.5,' TAU=', 
El0.5) 
15 FORMAT('-','FREQ=',El0.3,' PHI=',El0.4,' N='rI5,' 
MAX=',I5) 

IF(Nl.GT.MAX) GOTO 900 
c 

IF (IANSWR.EQ.l) THEN 
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WRITE(*,~~)' I THETA ITER THETA 
REF' 

X,' CREF' 
WRITE(*,=>~) 

END IF 
c 
C THIS SECTION CALCULATES THE REFL. COEF. FOR NTHMAX 
INFINITE 
C PLANER SEGMENTS 
c 
C !THETA IS THE ith CELL STARTING WITH ZERO DEGREES 
C SPAN NING AN ANGLE TH WRT THE NOR MAL 

c 

c 

DO 500 ITH=l,NTHMAX 
CONVERGED=.FALSE. 
ITER=O 
REFMl=O 
ITHETA=ITH-1 
TH=90*FLOAT(ITHETA)/ NTHMAX 

ALPHA=TPI*(RADIUS-RADIUS*COS(TH*DR)) 

C CALCULATE THE INCIDENT ELECTRIC AND MAGNETIC FIELD 
COMPONENTS 
C FOR THE ELECTRIC FIELD PARALLEL TO THE WIRES, i.e. NO 
CROSS-
C POLARIZATION INCLUDED 

IF (PH.LT.45) THEN 
EINC=COS(ALPHA)+J*SIN(ALPHA) 
STH=O 
HI=EINC/ETA*COS(TH*DR) 
ELSE 
EINC=COS(TH*DR)*(COS(ALPHA)+J*SIN(ALPHA)) 
STH=TH 

HI=(COS(ALPHA)+J*SIN(ALPHA))/ETA*(COS(TH*DR)+J*SIN(TH*D 
R)) 

c 
c 

END IF 

SK=K*SIN(TH*DR)*COS(PH*DR) 
SSK=K*SIN(TH*DR)*~IN(PH*DR) 

C CALCULATE GREEN FUNCTION TRANSFORM 
DO 70 I=l,MAX 
IF (I.GT.MAX/2+1) GOTO 30 
U=TPI*(I-1)/A-SK 
GOTO 40 

30 U=TPI*(I-MAX-1)/A-SK 
40 U=U*U+SSK*SSK 

IF(U.GE.K2) GOTO 50 
G(I)=-J*SQRT(K2-U) 
GOTO 60 
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50 G(I)=-SQRT(U-K2) 
60 G(I)=G(I)-SSK*SSK/G(I) 
70 CONTINUE 
C INITIAL E FIELD ESIMATE 

80 
DO 80 I=l,MAX 
E(I)=(l.O,O.O) 
CALL TRCOPR(E,Nl) 
DO 90 I=l , I·1AX 

90 GUESS(I)=E(I)+(0.1,0.0) 
C NOTE •••• ITERATIVE FORM USED IN THIS PROGRAM 
C CALCULATE B PORTION OF ITERATIVE EQUATION 

IS X=AX+B 

100 

110 

130 

140 
c 

DO 100 I=l,HAX 
CKl(I)=HI*J*W*UU 
CALL FFT(CKl,IW) 
DO 110 I=Nl,MAX 
CK2(I)=HI*W*UU/J 
DO 130 I=l,N 
CK2(I)=(O.O,O.O) 
CALL FFT(CK2,IW) 
DO 140 I=l,MAX 
CK(I)=(CKl(I)+CK2(I))/G(I) 

C THE FOLLOWING SECTION IMPLIMENTS THE SECANT 
METHOD 
c 
C THE 
150 

160 

170 

180 

C THE 
c 
c 
c 
190 
c 

BELOW CONTINUE IS THE START OF A LOOP USING ITER 
CONTINUE 
ITER=ITER+l 
DO 160 I=l,I1AX 
FI(I)=E(I) 
FIMl(I)=GUESS(I) 
EHOLD(I)=E(I) 
CONTINUE 
CALL FNCTZ(FI,MAX,CONVERGED) 
CALL FNCTZ(FIMl,MAX,CONVERGED) 
DO 170 I=l,MAX 
E(I)=E(I)-FI(I)*((E(I)-GUESS(I))/(FI(I)-FIMl(I))) 
CONTINUE 
DO 180 I=l,MAX 
GUESS(I)=EHOLD(I) 
CONTINUE 
IF(ITER.GT.CYCLES.OR.CONVERGED) GOTO 190 
GOTO 150 
ABOVE GOTO RETURNS LOOP TO INCREMENT ITER 

THE SECANT METHOD ENDS HERE 

CONTINUE 

IF (IANSWR.EQ.l) THEN 
WRITE(*,*)ITHETA,ITER,TH,REF(ITH),CREF(ITH) 
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END IF 
c 
500 CONTINUE 
c 
C THIS SECTION CALCULATES THE REFLECTION COEFFICIENT 
FOR DIVIDING 
C THE WAVEFRONT INTO 2 TO 2 X NTHMAX PLANER SEGMENTS, 
TO COMPARE 
C THE CONVERGENCE OF THE REF COEF AS THE WAVEFRONT IS 
DIVIDED 
C INTO MORE AND MOl(E PLANER SEG11ENTS 
c 

c 
WRITE(*,~~) 

DO 570 ITWO=l,NPWTWO 
SUMREF=O 

COMPREF=(O.O,O.O) 
JPWR=2**ITWO 
JSTEP=NTHMAX/JPWR 
DO 550 KSTEP=l,NTHMAX,JSTEP 
SQRREF=REF(KSTEP)*REF(KSTEP) 

540 

550 

CRF=CREF(KSTEP) 
IF (KSTEP.EQ.l) GOTO 540 
SQRREF=2*SQRREF 

CRF=2*CRF 
SUMREF=SUMREF+SQRREF 

COMPREF=COMPREF+CRF 
CONTINUE 
ITSEGM=2*JPWR-l 
RESREF=SQRT(SUMREF/ITSEGM) 
OAREF=CABS(COMPREF/ITSEGM) 
IF (ITWO.EQ.1) THEN 
WRITE(*,*)'# OF SEGMENTS REFLECTION 

VALUE ' 
X,' COMPLEX' 

WRITE(*,*)'IN WAVEFRONT 
COMPLEX 

X,' REFLECTION' 
WRITE(*,*)' 

REFLECTION ' 
X,' COEFFICIENT' 

WRITE(*,*)' 
COEFFICIENT ' 

COEFFICIENT 

COMBINED FROM 

AMPLITUDES 

x' ' ---------------END IF 

ABSOLUTE 

OF 

WRITE(*,*)ITSEGM,' ',RESREF,OAREF,COMPREF/ITSEGM 
570 CONTINUE 
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c 

c 
c 
c 
c 

600 

900 
910 
9999 

c 
c 
c 

WRITE(~~,*) 

WRITE(*,*) 
WRITE(*,600) 
FORMAT('-',lOX,'T IMEL Y 
GOTO 9999 
WRITE(~~,910) 

FORMAT('-',' ERR 0 R IN 
STOP 
END 

EXIT') 

N' ) 

C THIS SUBROUTINE PRODUCES THE VECTOR WE WANT TO 
ZERO 
c 
c 
c 

SUBROUTINE FNCTZ(E,MAX,CONVERGED) 
COMPLEX E(32),HOLD(32) 
LOGICAL CONVERGED 
DO 200 I=l,MAX 
HOLD(I)=-E(I) 

200 CONTINUE 
CALL XFORM(E,CONVERGED) 
DO 210 I=l,MAX 
E(I)=E(I)+HOLD(I) 

210 CONTINUE 

c 
c 
c 

RETURN 
END 

C THIS SUBROUTINE IMPLIMENTS THE TRANSFORMATION ON 
THE E FIELD 
c 
c 
c 

SUBROUTINE XFORM(E,CONVERGED) 
COMPLEX E(32),G(32),JC(32),CK(32) 
COMPLEX RI,CREF,HI,J,Z,EINC 
REAL REF,REFM1,REFM2 
LOGICAL CONVERGED 
CO MM ON RI,CREF(l025),HI,EINC 
COMMON JC,G,J,Z,CK 
COMMON 

N,Nl,IW,MAX,W,UU,STH,DR,REF(l025),ITH,ITHETA,ITER 
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C CALCULATE FIELD ON STRIP DUE TO FINITE 
CONDUCTIVITY 

DO 220 I=Nl, MAX 
220 E(I)=-JC(I)*Z*B 
C START BY PERFORMING THE INITIAL TRANSFORMATION 

CALL FFT(E,IW) 
DO 230 I=l,MAX 

230 E(I)=CONJG(E(I)*G(I)) 
C PERFORM INVERSE TRANSFORM OF (G*E) 

CALL FFT(E,IW) 
C PERFORM THE TRUNCATION OPERATION T(G*E) 

CALL TRCOPRC(E,N) 
DO 240 l=Nl,MAX 
E(I)=CONJG(E(I))/MAX 

C CALCULATE THE CURRENT DENSITY ON THE STRIP 
240 JC(I)=E(I)*J/W/UU-HI 
C PERFOR M INVERSE TRANSFORMATION ON T(G*E) 

CALL FFT(E,IW) 
C PERFORM T(G*E)/G AND ADD CONSTANT "B" 

DO 250 I=l,MAX 
E(I)=E(I)/G(I)+CK(I) 

250 CONTINUE 
c 
c 
c 
C CALCULATE REFLECTION COEFFICIENT 

TOL=0.0001 
REFM2=REFM1 
REFMl=REF(ITH) 
RI=J*SIN(STH*DR)/COS(STH*DR) 
CREF(ITH)=(E(l)/MAX+EINC)+J*SIN(STH*DR)* 

XABS(l.0-ABS(E(l)/MAX+EINC)) 
CREF(ITH)=CREF(ITH)/(COS(STH*DR)+J*SIN(STH*DR)) 
REF(ITH)=CABS(CREF(ITH)) 
CHECKl=ABS(REF(ITH)-REFMl) 
CHECK2=ABS(REF(ITH)-REFM2) 
IF (CHECK1.LT.TOL.AND.CHECK2.LT.TOL) THEN 

255 C01~VERGED=. TRUE. 

c 
c 

END IF 

DO 260 I=l,MAX 
E(I)=CONJG(E(I))/MAX 

260 CONTINUE 
C PERFORM INVERSE TRANSFORMATION TO OBTAIN FIRST 
ITERATED 
C ELECTRIC FIELD 

CALL FFT(E,IW) 
DO 270 I=l,MAX 

270 E(I)=CONJG(E(I)) 
RETURN 
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c 
c 
c 

END 

SUBROUTINE TRCOPR(E,N) 
COMPLEX E(32) 
DO 300 I=N,32 
E(I)=(0.0,0.0) 

300 CONTINUE 

c 
c 
c 

RETURN 
END 

SUBROUTINE TRCOPRC(E,N) 
COMPLEX E(32) 
DO 350 1=1,N 
E(I)=(O.O,O.O) 

350 CONTINUE 

c 
c 
c 

RETURN 
END 

SUBROUTINE FFT(A,M) 
C THIS IS THE FFT SUBROUTINE CALLED FOR FROM THE MAIN 
PROGRAM 

COMPLEX A(32),U,W,T 
N=2**N 
NV2=N/2 
NMl=N-1 
J=l 
DO 420 I=l,NMl 
IF(I.GE.J) GOTO 400 
T=A(J) 
A(J)=A(I) 
A(I)=T 

400 K=NV2 
410 IF(K.GE.J) GOTO 420 

J=J-K 
K=K/2 
GOTO 410 

420 J=J+K 
PI=3.141592653589793 
DO 440 L=l,M 
LE=2**L 
LEl=LE/2 
U=(l.0,0.0) 
W=CMPLX(COS(PI/LEl),SIN(PI/LEl)) 
DO 440 J=l,LEl 
DO 430 I=J,N,LE 
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IP=I+LEl 
T=A( IP)~~u 
A(IP)=A(I)-T 

430 A(I)=A(I)+T 
440 U=U*W 

RETUR1' 

c 
c 
c 

c 
c 
c 

END 

COMPLEX FUNCTION SINHH(X) 
COMPLEX X 
SINHH=O.S*(CEXP(X)-CEXP(-X)) 
END 

COMPLEX FUNCTION COSHH(X) 
COMPLEX X 
COSHH=O.S*(CEXP(X)+CEXP(-X)) 
END 
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