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ABSTRACT 

The goal of this study is to find a more organized and directed 

approach to build models for mixture systems. An attempt is made to 

generate and then compare Scheffe (mixture) models with those generated 

by McGee using the 'conventional' method for neoprene data. The models 

are judged on their ability to predict physical properties of neoprene 

by comparing the following: predicted and actual values by inspection; 

the calculated % error of prediction; the squared multiple correlation 

coefficients; adjusted squared multiple correlation coefficients; the 

Fisher statistic and significance probability. Scheffe models do not 

have an intercept term and test statistics which appear on the computer 

printout are inflated. Pseudocomponents and Scheffe-equivalent models 

are procedures used to obtain accurate test statistics to describe the 

selected Scheffe models. The effectiveness of these two procedures is 

evaluated. Results indicate that Scheffe models are better predictors 

for the physical properties of neoprene than those generated by McGee 

using the 'conventional' method in 1980. Scheffe-equivalent equations 

are found to be more reliable than pseudocomponents for generating 

accurate test statistics to describe the selected Scheffe models. 
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INTRODUCTION 

Regression analysis has been used to generate model equations which 

are used to describe a wide variety of chemical and physical data of 

synthetic rubbers since 1980. At that time, McGeel found strong 

correlations for physical properties ands weak correlations for acoustic 

properties. The ability to construct model equations was limited by the 

knowledge of statistical methods available and variables in the model 

equations were selected empirically. The goal of this study is to 

develop a more organized and directed approach toward model equation 

building and testing. In this study an attempt will be made to generate 

and then compare Scheffe (mixture) models with those generated by the 

'conventional' way using neoprene data. 

Regression analysis is the fitting of an equation to data. The 

equation is usually obtained using a least squares fit which fits the 

'best' straight line through the data points by minimizing the 

difference between the actual (the data point) and the predicted value 

(the line). In order to begin the least squares fit, variables to be 

included in the equation must first be selected/specified. The two 

general ways to do this are the conventional method and the mixture 

(Scheffe)2. 

In the conventional method, new variables are obtained by 

generating numerous functions from the original variables. The 

functions together with the original variables then undergo Forward, 

Backward or Stepwise selection (pg. 11) to filter out the unimportant 
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variables and arrive at the final equation. In the Scheffe method, 

there is an established scheme to decide which variables and functions 

to include in the equation and no filtering is necessary. The question 

here is not the choice of variables but in fact the order of the desired 

equation e.g., linear, quadratic, special or full cubic Scheffe 

equations. Although Scheffe equations are quite popularly used to 

describe mixture systems, test statistics (R2, R2 adj' F, P>F) generated 

in the computer output are inaccurate.3-5 Pseudocomponents (pg. 21) and 

Scheffe-equivalent (pg. 24) procedures are two procedures to generate 

accurate test statistics to describe the Scheffe equation of interest. 

Model equations generated by McGee will be used to represent models 

generated the 'conventional' way. Scheffe models represent mixture 

models. All regression will be performed using SAS (Statistical 

Analysis System). The models generated will be judged on their ability 

to predict nine physical properties of cured neoprene rubber. This is 

done by comparing predicted values with the actual by inspection and the 

calculated % error of prediction. Other criteria for judging models are 

the squared multiple correlation coefficient (R2) and the adjusted 

squared multiple coefficient (R2 adj), the Fisher statistic (F value), 

significance probability (P>f) for the model. 

Figure 1 summarizes the relationship between regression analysis 

and variable selection. 



Regression analysis - fit equation to data 

Least Squares Analysis - fit best straight line 

Variable Selection 

Conventi ona 1 

2 general ways 

Mixture 
(Scheffe) /(McGe~ 

Forward Backward Stepwise Pseudo/,mpon~ 
1 
1 
1 

Scheffe-Equivalent 

1 
1 

1 
1 
1 

l 
l 

1 
1 
l 

All regression performed using SAS 
1 
l 

l 
l 

Criteria for Judging Ability To Predict 
l 

2 
R adj 
>= 0.90 

1 

F - high* 
P>F - low* 

l 
l 
1 

inspection, 

rres 2 - low* 

3 

% error - low* 

Figure 1. Relationship between regression analysis and variable 
selection. 

* high and low are relative to the model of comparison. 



MODEL BUILDING 

Regression analysis is the fitting of an equation to a set of 

values. The equation predicts a response variable Y from a function of 

regressor variables X and parameters. One method used to estimate the 

parameters is called the least squares fit. 

Least Squares Analysis 

Credit is usually given to C.F. Gauss (about 1809) for the method 

of least squares. This method fits the 'best' straight line to the data 

set by minimizing the sum of squared residuals (the difference between 

the actual and predicted response). The criterion is: 

(Yi-Y)2 =minimum 
A 

where Yi is the actual response and Y is the predicted response. The 

smaller the deviations of the observed values from the fitted line, the 

better the fit. 

Assumptions for Least Squares Analysis 

Some assumptions are made about the data when this method is used:6 

1. The probability distributions of Y for a given X have the same 

variance cr2 for all Xi (e.g., if it takes person A 5 ± 1 min to run 

a mile and it takes person B 7 min, B's running time must then be 7 

± 1 min). 

2. The means of Yi, µi lie on a straight line known as the true 

regression line. 
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The population parameters b0 and bi specify the line and are to be 

estimated from sample information (e.g., each response has a 

distribution and the means of the responses will lie on the best 

straight line). The intercept and coefficients are estimated from 

the data. 

1 

1 

y 1 

1 

1 

1 
'--~~~~~~~~-

X· 1 

Figure 2. Illustration for assumption two. 

3. The random variables Yi are statistically independent with variance 

equal to cr2 (e g., the time it takes A to run 1 mile will not 

affect the time it takes B to do the same). 

4. The deviation of Yi from its expected value is the error term Ei so 

Yi = b0 + biXi + Ei 

where Ei are independent random variables with mean equal to 0 and 

variance equal to cr2. The distributions of Y and E are identical 

except their means differ. The distribution of E is just the 

distribution of Y translated onto a zero mean (e.g., the difference 

between the actual and the predicted value is the error term E; the 

errors are independent of each other). Some of the errors are 

positive while some are negative; and the average error is zero. 
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In the 150 years that followed Gauss' invention of least squares 

analysis, many developments occurred in the theory of linear statistical 

inference. However, regression methodology did not change much due to 

the lack of high speed computing equipment.7 

By the early 1960s the examination of residuals became part of 

regression analysis when some of the early computer programs had the 

option of computing residuals. The residual is the difference between 

the observed and predicted values. The purpose of residual analysis is 

to assess the appropriateness of a model in terms of the behavior of the 

set of residuals. The most direct and revealing way to examine 

residuals is to use a scatter diagram. Residuals are plotted against 

predicted values with the mean ordinate being zero. Each observation is 

represented by a point. If the model is good, the points should be a 

random scatter with approximately half of them being evenly distributed 

above and below the zero reference line. 



1 x 
1 x 
1 x 
1 x 

residual 1 x x 
1 

(actual-predicted 1 
response) 1 x x 

0 1 
1 x 
1 x 1 

x 

1 
1 x x x 

1 
1 x x 

1 
1 
1 
1 

Figure 3. Scatter diagram (Z is an outlier). 

Outliers 

An outlier can be seen as an isolated point (z) on the scatter 

diagram in Fig. 3. Outliers can lie as far as 3 or more standard 

z 

deviations from the mean of the residuals. The least squares estimates 

can be affected by such extreme values so it is important to evaluate 

whether the outlier should be discarded. The decision can only be made 

after a thorough evaluation of the ~xperimental conditions, data 

collection process and data. The data point is discarded if it is due 

to mistakes in recording or instrument malfunction (determinate 

error). Sources of outliers could be misreading the scale; errors in 

conducting the experiment; or the correct observation of unusual 

phenomena or samples with longer-tailed distributions of errors (Fig. 

4). If error in conducting the experiment is suspected, the observation 

is checked before discarding. If the outliers are believed to be an 

observation of 'irregular' or 'regular but long-tailed' phenomena 

7 



(Fig. 4) it may be modified by Winsorization to be given reduced 

weight. Winsorization involves replacing the suspect value with the 

nearest non-suspect value. 

Figure 4. Long-tailed or skewed distribution of data. 

The Price of Rejecting Data 

8 

Sometimes definite rejection rules are used for outliers. Treating 

any rejected observation as missing (eliminating the data point) and 

applying the conventional analysis to the remaining observations 

modifies simple least squares analysis by giving rejected observations 

zero weight. Discarding the data point protects against gross errors 

but the rule can occasionally lead to rejection of good observations 

which satisfy the ideal conditions. Fewer data points result in an 

increase of the average error variance of the parameter estimates which 

might be regarded as insurance against bad observations. 

Variable Selection 

The normal starting point when building models is variable 

selection. There are two general ways of variable selection: 

(1) Conventional method, and (2) Mixture (Scheffe) method. In 

conventional model building it is a common practice to consider a large 

number of variables or functions of variables to be included in the data 

set for generating a model. A subset of variables which appear most 
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relevant by intuition is then selected and a model specified based on 

the selected terms. The initial inclusion of a large number of 

variables is justified since omission of essential variables may produce 

biased estimates while the inclusion of extraneous variables does not. 

Three procedures which have been widely used for testing for the 

inclusion of a variable in the model equation are: 1. Backward 

Elimination (step down); 2. Forward Selection (step up); and 3. 

Stepwise Selection. 

Backward Elimination 

This is a one-at-a-time elimination or step down procedure. An 

initial analysis is peformed using all variables from the initial set 

for examination. The t statistic for significance of each coefficient 

or the partial F statistic for each variable is calculated and the 

variable associated with the least significant value is deleted. 

Significance statistics are again computed for the new regression until 

all remaining coefficients are statistically significant at some 

predetermined probability level. Once a variable has been deleted it 

may not re-enter. 

Forward Selection 

This is sometimes called a step up procedure. In contrast to 

backward elimination, this procedure begins with the 'best' one-variable 

equation, adding one variable at a time. The independent variable for 

the best one-variable equation is obtained by choosing the one most 

highly correlated with the dependent variable. If the F or t statistic 

is not significant based on a predetermined probability level, the 
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procedure is stopped and it is concluded that no independent variables 

are important predictors. At each step, F or t values and significance 

probabilities (to be discussed later) are determined for those variables 

not already in the model. The variable with the largest Fort value is 

added to the model if it is statistically significant. The process is 

terminated if the largest F or t is not significant at some 

predetermined test level. Once added selected variables may not be 

dropped and can therefore lead to nonoptimal variable selection. 

Stepwise Selection 

This procedure is a refinement of the forward selection procedure 

and overcomes some of the major deficiencies of the forward and backward 

methods. Many consider it the 'best' of the three procedures but some 

still prefer backward elimination which allows the user to see the order 

of elimination in getting to the final equation. The final results of 

stepwise selection are dependent on choices of significance levels for 

the forward selection and backward elimination. 

In stepwise, before the determination of the next variable to be 

added to the equation, significance statistics of the already chosen 

variables are examined to see if any can be eliminated. This procedure 

may be described as a step up procedure with a step down adjustment, and 

is terminated when neither forward selection or backward elimination is 

allowed according to chosen significance levels. 
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Advantages and Disadvantages of Conventional Model Building. 

Backward Elimination 

Advantage: 

This method allows the user to see the equation starting with all 

the variables progress through the various steps of elimination until 

the final equation is obtained. This is particularly useful if the user 

decides to choose an intermediate rather than the final equation due to 

special insight/knowledge relating to the problem. 

Disadvantage: 

Once a variable is deleted it cannot reenter. This might prevent 

the finding of an optimum combination of variables when there is a high 

degree of collinearity between the variables. When there is a high 

degree of collinearity, a deleted variable may become important once 

another variable is deleted. 

Forward Selection 

Advantage: 

Collinearity does not affect forward selection. Although the XX' 

matrix (see Appendix C for matrices) .gets larger as more variables are 

added to the model, the XX' matrix containing all the variables will 

never be inverted to obtain the coefficient estimates since the 

procedure would have terminated before all the variables are included in 

the model. 

Disadvantages: 

Once a variable is selected it cannot be dropped. It is not 

possible to investigate the effectiveness of an equation containing all 
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the variables because the procedure would usually have terminated before 

the inclusion of all the variables. 

Stepwise Selection 

Advantages: 

It combines the forward and backward procedures. Each time a 

variable is included in the equation, new significance statistics are 

computed for each variable already in the equation to see if any can be 

dropped before adding another. It is not affected by collinearity for 

the same reason as in forward selection. 

Disadvantage: 

If only a few variables are acceptable in the model according to 

the chosen significance, the user will not have a chance to see other 

equations that might be more appropriate in describing his problem based 

on his own knowledge of the subjecte 

Test Statistics Used to Judge Models 

The following are test statistics used to judge predictor models. 

1. R2, squared multiple correlation coefficient. This statistic 

measures how efficiently the variation in the dependent variable is 

accounted for by the model. Values are from 0 to 1.0. There is no 

actual cutoff point for the acceptability of a model but in this 

study the preferred value should be greater than or equal to 0.90. 

2. R2adj' adjusted squared multiple correlation coefficient. This 

statistic is similar to R2. It adjusts R2 downward to take into 

account the large number of variables (k) in the equation when k is 

approximately equal to the number of observations, n. If n <= 

(k+l), a perfect fit will be obtained no matter how ludicrous the 



hypothesized relationship. When n is much larger than k, R2 and 

R2adj will be almost equal. 

3. F, Fisher statistic. F measures how well the model as a whole 

accounts for the behavior of the independent variable. Model is 

significant if P>F, the significance probability associated with 

the F value, is small. 

4. P>F, significance probability associated with F value. (1 - P>F) 

describes the chances that user is right in assuming the model is 

significant. 
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5. Eres2, sum of squared residuals. This is the sum of the squares of 

error for each prediction. This statistic should be used to 

calculate the % error of prediction which gives a clearer picture 

of how much error there is in the predicted value relative to the 

mean of the actual values. 

6. % error of prediction. Computed by taking the square root of the 

average squared residual, dividing it by the mean of the actual 

values, Y, and multiplying the results by 100. 

{Eres2/n)~/~ x 100 

7. VIF, Variance Inflation Factor • . The VIF is used to detect 

collinearity. It tells the factor by which the variance of the 

coefficient estimates are inflated. Some8 prefer the VIF to be 

less than 10 while others limit it to 100. High VIF values might 

lead to the coefficients having incorrect signs and thus may be 

misleading in interpretirig the coefficient estimates. Collinearity 

does not affect prediction. It is not always possible to obtain 

low VIF values. No limit will be used in this study but instead 

the values will be evaluated relative to the model under study. 



More About Collinearity 

Collinearity occurs when two variables measure nearly the same 

thing. There exists a nearly linear relation among the predictor 

variables. This leads to large variance and hence, broad confidence 

levels making it difficult to establish that an individual regressor 

influences the response, Y. When two regressors are nearly the same, 
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the influence of one of them on Y might erroneously be attributed to the 

other. 

Correlation analysis (inspection of the correlation table) can be 

used to confirm collinearity. Two predictor (X) variables that are 

highly correlated to each other suggests collinearity. However the 

variance inflation factor (VIF) is the statistic most often used to 

detect collinearity because it gives information on the extent of the 

problem.9 

VIF = (1-Ri2)-1 

where R; is the multiple correlation of the regression of X; on all 

other Xj (i r j). The variance of the ;th regression coefficient bi in 

a model with a constant term b0 is: 

V(b;) = s2vIF;/(n-l)S2i 

where s2 is the observation error variance and 

n is the number of observations and Si is the variance of X;. 

Collinearity may be reduced by centering (the mean is subtracted from 

each data point) or standardizing (centered value/standard deviation) 

the data. Centering and standardizing merely disguise the problem 

because a new set of numbers is obtained by manipulating the data. 

Relationships obtained will hold only with these numbers and are not in 

terms of the original data. 
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Recent Developments in Model Building 

In the past 15 years an interest in mixture* models has grown 

within the statistical community. Scheffe2 first published his paper on 

mixture theory which describes the simplex experimental design and the 

derivation of mixture models in 1958. The paper did not receive much 

attention until the mid-sixties when scientists and statisticians began 

to apply his theory to the data of mixtures. 

Scheffe's equations are widely accepted as a means to describe 

mixture systems. The Scheffe or mixture model equation does not have an 

intercept term. Even though most statistical packages have the 

capability to fit least squares to an equation by suppressing the 

intercept, test statistics printed in the output are inaccurate. Two 

procedures have been developed in the attempt to obtain more accurate 

test statistics for the Scheffe model. The first procedure was 

developed by KurotorilO in 1966 and involves the use of 

pseudocomponents.11 The second procedure is relatively new and was 

developed by Snee8 in 1982. It involves the use of Scheffe-equivalent 

equations. Both procedures will be described in detail in this 

report. Scheffe, pseudocomponents an~ Scheffe-equivalent equations all 

give the same predictions because the latter two are derived from the 

Scheffe form. The development of Scheffe models for mixture systems is 

discussed in the following section. 

*Mixtures are systems in which the response to a blend depends only on 
the relative proportions of the ingredients present in the blend, e.g., 
cakes, rubber, soap formulation. The ingredients when expressed as 
proportions based on weight or volume will always sum up to one. 



Development of Scheffe Forms 

In mixture problems such as a compounded elastomer, the response 

depends only on the relative proportions of the ingredients present in 

the blend and not on the total weight or volume of the blend. The 

controllable variables are the proportions or fractions of the 

mixture. These proportions are non-negative and when expressed as 

fractions of the components in the mixture, they sum up to one. 

where xi is the ;th component 

0 <= x; <= 1 
q 
2:: x. = 1 

. 1 1 i= 

and q is the total number of components. 

Equations obtained using least squares analysis contain an 

intercept term. In theory, the intercept is the expected response if 

all components were set to zero. In reality, this is not possible for 
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if all components were zero, there would be no response. It is desired 

that the response be expressed as a function of the components involved 

using a model with no intercept term. 

The response, Y is often approximated over the experimental range 

by a polynomial derived from a second-order Taylor series. For two 

variables, x1 and x2 the model will be: 

y = bo + biX1 + b2X2 + bi2X1X2 + bi1X1 2 + b22X22 

The sum of the proportions xi of the components must be 1 in a 

mixture. Consequently, for the two component case: 

so 

X12 = X1X1· = X1(l-X2) = X1 X1X2 

X22 = X2X2 = X2(l-X1) = X2 X1X2 



+ bi1(X1 - X1X2) + b22(X2-X1X2) 

= bi*X1 + b2*X2 + bi2*X1X2 

where b1* = b0 + bl + bi1 

b2* = bo + b2 + b22 

bi2* = b12 - bi1 - b22 

Similarly the response for a three variable quadratic is: 

y = blXl + b2X2 + b3X3 + bi2X1X2 + b13X1X3 + b23X2X3 
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The cubic forms describe a third order polynomial derived from the 

Taylor series. The special cubic form takes into account the inclusion 

of each variable raised to the third power and also the crossproducts 

obtained by multiplying X1, X2 and X3 together (X1X2X3). The full cubic 

form includes the Y terms. These are coefficients that correspond to 

the crossproducts of different combinations of two variables which are 

raised to the total power of three, taking into account terms such as 

X1 2X2, X1 2X3, x2
2x1, x2

2x3, x3
2x1 and x32x2 of the third order Taylor 

series polynomial. The response for a three variable special cubic and 

full cubic form, respectively, are: 

y = blXl + b2X2 + b3X3 + bi2X1X2 + bi3X1X3 + b23X2X3 + bi23X1X2X3 

Y = biX1 + b2X2 + b3X3 + bi2X1X2 + bi3X1X3 + b23X2X3 + bi23X1X2X3 

+ y 12X1X2(X1-X2) + y 13X1X3(X1-X3) + y 23X2X3(X2-X3) • 

The mixture model thus has fewer coefficients than the usual second-

order polynomial and has no constant term. In general, Scheffe 

suggested the following canonical forms for mixture models: 
q 

Linear: Y = ~b;X; 

i=l 
q q 

Quadratic: Y = tb;Xi + ~b;jX;Xj 

i=l .l<=7i<j 
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q q q 
Special Cubic: y = L:b. x. 1 1 + L:b .. x . x . 

lJ 1 J + L:b··kX·X·Xk lJ 1 J 

i=l 1 <= i <j 1 <=i <j <k 
q q q 

y = L:b. x. + L:b .. x . x . + L:b· ·kX·X·Xk 1 1 lJ 1 J lJ 1 J Full Cubic: 

i=l 1 <=i <j 
q 

+ L:yijXiXj(Xi - Xj) 

1 <=i <j 

The linear coefficients bi are the average responses associated 

with each of the components in the mixture if the independent variables 

are centered (xi = 1, xj = 0, i ~ j). If linear coefficients are used 

(e.g., x1, ••. Xn), the components act additively so that the response 

surface is a plane. Cubic and higher-order terms describe the 

deviations of the response surface from a plane. The number of 

coefficients in the various models as a function of components in the 

mixture, is shown in Table I. Application of the canonical forms to a 

three component example is shown below the table. The number of 

coefficients for the Scheffe models is less than that for a 

'conventional' polynomial with the same number of components and of the 

same order. 



Table I 

Number of coefficients in Scheffe models as a function of number of . 
components. 12 

Number of Model 

Components Linear Quadratic Spec i a 1 Cubic Full Cubic 

2 2 3 
3 3 6 7 10 

4 4 10 14 20 
5 5 15 25 35 
6 6 21 41 56 
7 7 28 63 84 
8 8 36 92 120 
9 9 45 129 165 

10 10 55 175 220 
Three component example: 

Let the mixture be a sponge cake made only of eggs (E), flour (F) and 

sugar (S). The texture (T) of the cake may be expressed as follows: 

Linear: T = b1E + b2F + b3S 

Quadratic: T = blE + b2F + b3S + bi2EF + b13ES + b23FS 

Special cubic: T = b1E + b2F + b3S + b12EF + b13ES + b23FS + b123EFS 

Full cubic: T = blE + b2F + b3S + b12EF + bi3ES + b23FS + bi23EFS 

+ Y12EF(E-F) + Y13ES(E-S) + Y23FS(F-S) 

Advantages and Disadvantages of Scheffe Models 

Advantages: 

Scheffe models are more appropriate for mixture systems since the 

sum of the proportions of components adds up to a constant of one. 

Scheffe has established a scheme for the user to follow in building 

models, i.e., linear, quadratic, special, and full cubic forms. These 

19 
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models contain fewer terms than a polynomial of the same order. Most 

statistical packages now have the capability to fit least squares while 

suppressing the intercept. 

Disadvantages: 

Although statistical packages can fit least squares without an 

intercept, test statistics printed in the output are inaccurate3-5 

due to computer roundoff errors (ill-conditioning) although the 

predictor equations are good. By forcing all the proportions to sum to 

one, additional collinearity may be induced. Collinearity may result in 

models that are not full-rank, i.e., there is no unique solution but 

rather many equally possible equations. 

From Scheffe to Scheffe-Eguivalent Models 

Although statistical packages can fit least squares without the 

intercept for the Scheffe equations, test statistics printed in the 

output are inaccurate (see Table VII). Attempts have been made to 

overcome this problem. KurotorilO proposed the use of pseudocomponents 

in the late sixties and SneeB later proposed the Scheffe equivalent 

model. Figure 5 shows the relationship between these two models and the 

Scheffe model. Both pseudocomponents and Scheffe-equivalent models will 

be examined in detail in the following pages. 



SCHEFFE 

1. High VIF values 

2. Inaccurate computer output for test statistics 

complicated 
back-transformation 

easy 
conversion 
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bi = intercept 
+ ai 

PSEUDOCOMPONENTS SCHEFFE-EQUIVALENT 

1. Lower VIF for coefficient 1. Lower VIF for coefficient 
estimates estimates 

2. Inaccurate test statistics 2. Accurate test statistics 
on computer printout on computer printout 

3. Must undergo complicated 3. Easy conversion back to 
back-transformation to Scheff e 
original scale 

Figure 5. The search for true test statistics for the Scheffe Model 

ai - coefficient of linear term Xi in Scheffe-equivalent equation. 

b; - coefficient of linear term Xi in Scheffe equation. 

Predicted values obtained by all three methods are the same. 

Pseudocomponents and the Simplex 

In Scheffe's paper2 on mixture theory he proposed the simplex 

design. This is an experimental design that selects a set of points in 

the mixture space at which data are gathered to fit the Scheffe/mixture 

equations. The simplex is a figure to describe · the experimental space 



22 

of a mixture system. It has (q-1) dimensions where q is the number of 

components in the mixture. For example, a three-component mixture will 

be described by a triangle (a two-dimensional figure) and a four­

component mixture will be described as a tetrahedron (a three­

dimensional figure). 

Illustration of the Relationship Between Pseudocomponents and the 
Simplex 

If a sponge cake is made from only eggs (E), flour (F) and sugar 

(S), its mixture space can be described by the equilateral triangle in 

Fig. 6. It is impossible to make a cake that consists of 0% or 100% of 

any one component. Restraints exist on the composition of the cake. 

Assuming that the restraints on the proportions (by weight) are: 

0. 33 < = E < = 0. 50 0.33< = F< = 0.75 0. 20 < = s < = 0. 40 

The actual experimental area is only the small shaded area within the 

simplex in Fig. 6. This region is redefined by a mathematical 

transformation and the new numbers obtained are called pseudo-

componments. Pseudocomponents 'magnify' the actual experimental region 

by changing the coordinates of the points to bring the origin near the 

observations in the mixture space and is done as follows. 

Ep = (E lower bound of E)/L 

Fp = (F lower bound of F)/L 

Sp = (S lower bound of S)/L 

where L = 1 - sum of lower bounds of E, F and S 

and the subscript p stands for pseudocomponent. 



s = 0 

E = 1 

1777 
1777 

1777 
F = 0 

F = 1 '----------=--~-----__.}.. 
E = 0 

Figure 6. Simplex for the cake model 

Restraints: 

Ep = (E 

Fp = (F 

Sp = (S 

0. 33<= E <= 0.50 

0 .33<= F <= 0.75 

o. 20<= s <= 0.40 

lower bound of E)/L 

lower bound of F)/L 

lower bound of S)/L 

s = 1 

where L = 1 - sum of lower bounds of E, F and S and the subscript p 

stands for pseudocomponent. 

Advantages and Disadvantages of Pseudocomponents 

Advantage: 

Lower VIF13 values are obtained for the coefficients of the 

equation using transformed data. 

Disadvantages: 

The equation obtained is not expressed in terms of the original 
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data. To get it in terms of the original values the user must perform a 
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complicated back-transformation. Pseudocomponents do not give accurate 

values for the test statistics of the Scheffe model. 

Development of the ~ Scheffe-Eguivalent Model 

Snee introduced the Scheffe-equivalent model. This model does not 

require additional data manipulation beyond transforming the data. The 

proportions of the components sum to one, i.e., to mixture form. It 

gives the same prediction as the Scheffe model. Using a three variable 

linear model as an example, the Scheffe form is: 

y = b1X1 + b2X2 + b3X3 

The Scheffe-equivalent form is obtained by omitting one of the linear 

terms e.g., x3 so: 

Y = ao + a1X1 + a2X2 

The equivalence between the two equations can easily be verified by 

multiplying the intercept of the latter a0 by (X1 + x2 + x3) i.e., by 

one. 

= aoXl + aoX2 + aoX3 + a1X1 + a2X2 

= (ao + a1)X1 + (ao + a2)X2 + aoX3 

so 

bl = ao + a1 

b2 = ao + a2 

b3 = ao 

To illustrate further using a three variable quadratic model, the 

Scheffe form is: 

y = b1X1 + b2X2 + b3X3 + b12X1X2 + bi3X1X3 + b23X2X3 

The Scheffe-equivalent form with X3 omitted from the linear portion of 



the equation is therefore: 

y = ao + alXl + a2X2 + ai2X1X2 + ai3X1X3 + a23X2X3 

To confirm equivalence, a0 is again multiplied by (X1 + x2 + X3) i.e., 

by 1.0. 

y = ao(X1 + X2 + X3) + alXl + a2X2 + ai2X1X2 + ai3X1X3 + a23X2X3 

= (ao + ai)X1 + (ao + a2)X2 + aoX3 + ai2X1X2 + ai3X1X3 + a23X2X3 

where bi = ao + al bi2 = a12 

b2 = ao + a2 bi3 = ai3 

b3 = ao b23 = a23 

Advantages and Disadvantages of Scheffe-Eguivalent Models 

Advantages: 
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This equivalent form is easily obtained by omitting one component 

from the linear portion of the corresponding Scheffe equation. 

Predictions are the same as when using the Scheffe equation since the 

two equations are equivalent. Accurate test statistics are obtained for 

describing the corresponding Scheffe equation in one step. The 

intercept is justified since this form was derived from the Scheffe 

equations. However, if the user prefers to have a final equation 

without the intercept, the intercept can easily be eliminated by 

multiplying by one and regrouping the coefficients to form the 

corresponding Scheffe equation. 

Disadvantage: 

This equivalent form has an intercept which might displease the 

user who is accustomed to seeing an equation without an intercept. 

However, this is easily remedied by multiplying the intercept by one and 

converting back the the corresponding Scheffe form. 
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The Neoprene Rubber Problem 

History of Neoprene Rubber Data 

In 1977, the U.S. Navy began a research program designed to improve 

the quality of the elastomers purchased for special defense 

applications. This program was prompted by an alarmingly high rate of 

failure of components made from the elastomers. From 1977 to 1980, the 

University of Central Florida (UCF) was involved in the development of 

analytical methods to monitor the components in a number of compounded 

elastomer systems. In 1980 and 1981, the U.S. Navy conducted an in­

house single blind test of the procedures. The goal of this study was 

two-fold: one, to evaluate the compositional analysis procedures and 

two, to determine the effects of variations in the formulation on 

specific physical test properties. In this study, specification and 

off-specification samples of uncured, compounded neoprene rubber were 

prepared and rolled into sheets. Sixteen samples were prepared. A 

small portion of each sample was delivered to UCF where a compositional 

analysis was performed. A portion of each remaining sample was cured 

under rigidly controlled conditions and subjected to a number of 

physical tests. At the conclusion of this study when all data from the 

16 samples was available (compositional analysis and physical test 

data), an attempt was made to develop regression equations which 

described the physical test data in terms of compositional parameters. 

This work was moderately successful. Equations were developed which 

have been used to predict the performance of the cured neoprene 

components since 1982. 
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Neoprene is a Mixture 

Neoprene is a mixture since the response/properties of the blend 

depends only on the relative proportions of the ingredients present and 

not on the total weight or volume of the blend. The sum of the 

proportions of the ingredients is one. Neoprene is made by blending the 

elastomer; Altax; Octamine; carbon black; and lead oxide, Pb3o4• Altax 

(alt) contains sulfur and is used to initiate crosslinking. Octamine 

(act) is an antioxidant; lead oxide (pb) provides water resistance; and 

carbon black (c) adds durability to the rubber. 

The raw data given are shown _in Table II. Ingredient concen­

trations (weight %) are shown as parts per hundred (pph) in Table Ila. 

The nine physical properties are shown in Table lib. Explanations for 

each abbreviated name for the physical properties are shown below the 

table. Abbreviated names which end with 'F' represent the change in the 

property upon aging a fortnight (2 weeks). 
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Table Ila 

Table of Raw Data. Molecular Weights and Components (pph). 

OBS MW* MN* ALT OCT c PB 

1 356000 97500 0.228 1.26 30.2 8.92 

2 367000 94400 0.237 1.22 30.2 4.26 

3 387000 88000 0.190 1.19 30.2 6.58 

4 335000 95400 0.213 0.948 28.7 11.0 

5 517000 89400 0.243 1.35 19.1 9.19 

6 367000 77200 0.172 0.948 29.5 8.18 

7 385000 87400 0.226 1.10 30.3 7.95 

8 371000 80500 0.169 0.00 26.9 7.23 

9 309000 88800 0.179 0.236 29.2 8.52 

10 364000 96800 0.185 0.511 29.1 7.76 

11 286000 96300 0.190 1.78 28.5 8.26 

12 303000 82700 0.0988 1.05 26.7 7.23 

13 435000 92500 0.542 1.04 27.9 8.34 

13 404000 84800 0.811 1.10 27.0 7.43 

15 539000 90700 0.317 1.21 26.9 8.24 

16 296000 66300 0.734 1.22 28.6 7.53 

* - as measured and reported by McGeel 
MW - weight average molecular weight 
MN - number average molecular .weight 
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Table IIb 
Physical Properties 

OBS HARD HARDF SPD TEN TENF BRK BRKF ULT ULTF 

1 65.0 4.5 1580 1549 1886 2548 2413 714 541 
2 64.9 0.8 1595 2859 1919 5018 2524 790 572 
3 69.8 -3.1 1593 3262 1941 5144 2532 735 548 
4 66.5 0.3 1539 1543 1257 2585 2434 763 569 
5 50.2 5.3 1525 1299 1777 * * * * 
6 66.0 0.3 1580 2980 1747 4987 2427 698 561 
7 74.0 2.2 1602 4003 2314 5329 2549 584 430 
8 69.2 2.3 1588 3515 2036 5347 2626 697 491 
9 68.4 0.8 1571 1758 2120 2729 2586 694 517 

10 66.4 2.9 1577 1710 2036 2684 2569 687 520 
11 67.7 -3.2 1586 1593 1923 2722 2949 712 547 
12 67.3 1. 7 1583 1689 2077 2671 2683 691 550 
13 66.2 1.1 1577 1618 1800 2579 2403 817 577 
14 67.3 3.4 1582 1265 1620 2406 2385 825 686 
15 63.9 0.6 1574 1433 1891 2632 2542 827 569 

16 65.4 0.8 1568 1709 2190 2224 2254 556 763 

HARD Shore Hardness 
HARDF Change in Shore Hardness Upon Aging 
SPD Sounds peed 
TEN Tensile Modulus @ 300% Elongation 
TENF Change in Tensile Modulus @ 300% Elongation Upon Aging 
BRK Tensile Strength at Break 
BRKF Change in Tensile Strength at Break Upon Aging 
ULT Ultimate Elongation 
ULTF Change in Ultimate Elongation Upon Aging 
"F" aging period - two weeks 
* missing value 

Conversion of Molecular Weight. Parameters to Elastomer Concentration 

The weight percent of elastomer (elas) was not given by McGee 

(Table II). This weight percent cannot be estimated by difference or 

errors in compositional analysis will be compounded. Elas will have to 
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be calculated from experimental data. The number average molecular 

weight (MN) and weight average molecular weight (MW) were the only 

parameters available to use in finding the elastomer concentration. No 

attempt was made in the previous study to measure the elastomer 

concentration. Weight percent for the elastomer must be calculated from 

the chromatograms used to determine MN and Mw.1 A calibration curve 

must first be prepared to find response factors as a function of the 

weight average molecular weights (MW). When an equation has been 

established relating the response factor to the weight average molecular 

weight, response factors can be calculated for each sample given in 

Table II since MW for each is given. Once this is done, the weight % 

elastomer can be calculated from the area of each sample peak, injection 

size, actual sample size and sample weight. The procedure is described 

in detail below. 

Calibration 

A calibration curve is first prepared using polystyrene standards 

with weight average molecular weights in the 105 range since those of 

the neoprene data fall between 20,000 and 50,000 (Table II). 

Approximately 10 mg of each standard is measured accurately (to 0.1 mg) 

and dissolved in 10.0 ml of tetrahydrofuran (THF). Accurate injections 

of 100, 120, or 150 µl of MW standards are used to obtain response 

factors as a function of MW for each standard. Individual peak heights 

of the chromatogram are summeo at two mn increments along the horizontal 

axis (Fig. 7) to obtain Lh. Peak heights are measured by superimposing 

a grid of two l11T1 squares on the chromatogram. Response factors are 

expressed as mg/Lh. 
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Figure 7. Summing peak heights of the chromatogram at two mm increments. 

Lh = hl + h2 + .•• + hn. 

The calibration equation describing the response factor was obtained 

using a least squares fit. 

Response factor, mg/ Lh = 1.771125 E-04 + (2.4678 E-ll)MW 

Using the calibration curve, response factors can be predicted for each 

MW given assuming that the whole sample has that weight average 

molecular weight rather than a distribution. This act is consistent 

with current practice of describing a polymer by a weight or number 

average molecular weight. 

Calculation of % Elastomer (pph) 

When McGeel analyzed the samples for MW, he made 10.00 ml of each 

sample. The injection size used was 500 µl* which is equivalent to 1/20 

of the total sample volume. Having obtained the response factor from 

*Although McGee used 500 µl sample injections, it is felt that 
injections for the standards need not be so large since the response 
factor is expressed as mg/Lh. The larger the injection size for the 
standard the greater the Lh and the more tedious the summation of the 
peak heights for calibration. 



the previous equation, the weight percent (pph) of elastomer can be 

calculated as follows: 

pph elas = (response factor x Eh sample x 20) 100 
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in 10 ml sample weight sample in mg 

Table III shows data for the concentration, injection volume and weight, 

the sum of the peak heights and the response factor calculated for each 

of the four MW standards used for calibration. The conditions for 

calibration are shown below the table. Table IV shows the weight % 

elastomer in pph calculated from each corresponding sample MW, response 

factor, sample weights and the sum of the peak heights. 

Table III 

Calibration Data 

RESPONSE CONC,C INJ VOL, v 
MW FACTOR mg/Ih mg/µl µl 

110000 1. 786 E-04 1.00 E-03 100 
223000 1.849 E-04 1. 02 E-03 120 
390000 1.855 E-04 1.03 E-03 120 
600000 1. 921 E-04 1.00 E .03 150 

The conditions for the calibration are: 
Liquid chromatograph Waters Associates (Milford, MA) 

M-6000A pump 

MG INJ 
c x v 

0.1000 
0.1224 
0.1236 
0.1500 

Waters U6K injector - 500 µl loop 

Column banks 

Mobile phase 

Detector 

Attenuation 

Flow rate 

103A (ASI, Santa Clara, CA) 
104, 105A (Waters Associates) 

U.V. grade THF (Burdick & Jackson, American 
Scientific Products Co., Miami, FL) 

Waters Model ALC/GPC 201 
Refractive index detector 

2 x 

2.0 ml/min THF 

IH 

561 
662 
667 
782 



Table IV 

Data Involved in the Calculation of Weight Percent (pph) Elastomer 

RESPONSE SAMPLE ELAS 
MW* FACTOR, mg/EH EH WEIGHT, mg pph 

356000 1.85898 E-04 736 10.015 27.3232 
367000 1. 86170 E-04 846 10 .000 31.4999 
387000 1.86663 E-04 716 10.018 26.4446 

335000 1.85380 E-04 804 10 .025 29.7348 

517000 1. 89871 E-04 954 10. 051 36.0436 

367000 1. 86170 E-04 832 10.016 30.9291 

385000 1. 86614 E-04 705 10.007 26.2941 

371000 1.86268 E-04 871 10.044 32.3058 

309000 1. 84738 E-04 807 10.029 29.7305 

364000 1.86096 E-04 783 10.051 28.9947 

286000 1. 84171 E-04 783 10.006 28.8283 

303000 1. 84590 E. 04 810 10 .009 29.8767 

435000 1.87848 E-04 704 9.989 28.1706 

404000 1.87083 E-04 785 10.076 29.1504 

539000 1. 90414 E-04 980 10.099 36.9554 

296000 1. 84417 E-04 605 10.010 22.2922 

* - as measured and reported by McGee.1 

Conversion of Data to Mixture Form 

The sum of the proportions of the ingredients in a mixture must 

equal one. The raw data from Table !Ia must be transformed to the 

mixture form. This is done by adding the weights of the individual 

components and dividing each by the sum (tot) since they do not add up 
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to 100% in the raw data. The reason for this discrepancy is probably 

due to the technical grade of the ingredients used, the omission of 

stearic acid (an inactive ingredient which helps assure good blending) 

from the recipe, and error in the compositional analysis. Table V shows 

the transformed data for the ingredients. Equations for transformation 

are shown below the table. All model building will be done using the 

transformed data and the subscript twill be omitted in later equations 

for convenience. 

Table V 

Transformed Component Data 

ALT OCT c PB ELAS 

0.0033563 0.0185482 0.444567 0.131309 0.402219 

0.0035154 0.0180964 0.447959 0.063189 0.467240 

0.0029410 0.0184198 0.467459 0.101850 0.409330 

0.0030172 0.0134286 0.406540 0.155817 0 .421197 

0.0036859 0.0204773 0. 289716 0.139397 0.546724 

0.0024667 0.0135955 0.423066 0.117311 0.433561 

0.0034310 0.0166995 0.459996 0.120692 0.399182 

0.0025374 0.0000000 0.403875 0.108551 0.485037 

0.0026376 0.0034775 0.430263 0.125542 0.438080 

0.0027798 0.0076784 0.437261 0.116603 0.435678 

0.0028126 0.0263494 0.421886 0.122273 0.426679 

0.0015187 0.0161401 0.410419 0 .112673 0.459250 

0.0082130 0.0157593 0.422775 0.126378 0.426875 

0.0123833 0.0167961 Q.412268 0.113450 0.445103 

0.0043058 0.0164352 0.365378 0.111923 0.501958 

0.0012292 0.0204302 0.478937 0.126098 0.373306 
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Equations for transforming ingredient data from Table Ila: 
tot = elas + alt + oct + c + pb 

elast = elas/tot ct = c/tot 
altt = alt/tot pbt = pb/tot 
octt = oct/tot 

where t stands for transformed (not to be confused with centered which 
expresses data as a deviation from the mean). 

Generation of Scheffe Models for Neoprene Using Scheffe-Eguivalent 
Equations 

The simplest model is the linear model: 

Y = bielas + b2alt + b3oct + b4pb + b5c 

Since all five components now sum to one, collinearity3-5 is induced and 

will result in inaccurate test statistics. Omission of one component 

breaks the collinearity and gives an alternative intercept model. The 

linear term is replaced by a constant term. C is deleted because it has 

the largest range of all the components. 

Y = a0 + aielas + a2alt + a3oct + a4pb 

These two equations are equivalent because the former can be obtained by 

multiplying a
0 

by elas +alt+ oct + pb + c (i.e., by one). 

Y = a0 (elas+alt+oct+pb+c) + aielas + a2alt + a3oct + a4pb 

= (a0 + ai)elas + (a0 + a2)alt + (a0 + a3)oct + (a0 + a4)pb + a0c 

The relationship between the parameters of the two models are as 

follows: bi = ao + ai 

b2 = ao + a2 

b3 = ao + a3 

Although the linear model is simple, it is insufficient for 

prediction. Test parameters predicted by the model equations differ 

from the observed too much to be of use. This is shown by the large % 

error of prediction in Table X. The next choice is the quadratic 



36 

model. Scheffe-equivalent five variable quadratic: 

Y = a0 + aielas + a2alt + a3oct + a4pb 

+ ai2elas*alt + ai3elas*oct + ai4elas*pb + a15elas*c 

+ a23alt*oct + a24alt*pb + a25 alt*c 

+ a34oct*pb + a35oct*c + a45 pb*c 

This Scheffe-equivalent quadratic model has 14 terms and an intercept. 

Equivalence and conversion back to the Scheffe form is easily achieved 

by multiplying a0 by (elas +alt+ oct + pb + c), i.e., one. 

Y = a0 (elas+alt+oct+pb+c) + aielas + a2alt + a3oct + a4pb 

+ ai2elas*alt + ai3elas*oct + ai3elas*pb + a15elas*c 

+ a23alt*oct + a24alt*pb + a25alt*c 

+ a34oct*pb + a35oct*c + a45Pb*c 

= (a0 + ai)elas + (a0 + a2)alt + (a0 + a3)oct + (a0 + a4)Pb + a0c 

+ ai2elas*alt + ai3elas*oct + ai4elas*pb + ai5elas*c 

+ a23alt*oct + a24alt*pb + a24alt*c 

+ a34oct*pb + a35oct*c + a45Pb*c 

where bi = ao + al bi2 = ai2 b24 = a24 

b2 = ao + a2 bi3 = ai3 b25 = a25 

b3 = ao + a3 bi4 = ai4 b34 = a34 

b4 = ao + a4 bis = ai5 b35 = a35 

bs = ao b23 = a23 b45 = a45 

Some components may be combined to form reduced quadratic models 

with fewer terms. Two components are combined based on similarity in 

coefficient signs using a linear model or based on knowledge of similar 

functions. If two components are combined (e.g., elas, c+pb, oct, alt 

and crossproducts*) the result is a reduced four variable quadratic 
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which will have five terms less than the previous five variable 

quadratic. A reduced three variable quadratic model can be obtained by 

combining three original variables or another two components (e.g., 

elas, c+pb, oct, alt and crossproducts*; or elas+c+pb, alt, oct and 

crossproducts*). 

If the quadratic model is not satisfactory, e.g., based on 

inspection of predicted and actual values (Table IX); or if based on a 

preselected R2 of not less than 0.90, P>F value of 0.15 or less and the 

% error in prediction (Table X), the next attempt should be a cubic 

model. 

There are two types of cubic models: the special and the full 

cubic. Special and full cubic equations based on five variables will 

contain 24 and 34 terms, respectively. Regression for five variable 

special and full cubic models is not possible since the number of terms 

in the equation exceeds the number of data points (25, 35 vs 16, 

respectively). Analysis of variance (ANOVA) cannot be performed when 

the number of degrees of error is zero. Reduced cubic models based on 

four and three variables (e.g., combinations used above) are easier to 

manage. 

*crossproducts are obtained by multiplying different combinations of two 
terms for the quadratic models and combinations of ~wo or three terms 
for cubic. Actual examples are shown on the following pages. 



The special cubic forms for the four variable (two original 

components combined, e.g., based on elas, c+pb, act, alt) and three 

variable (three original components, e.g., elas, c+pb, oct+alt or two 

more original combined, e.g., elas+c+pb, oct, alt) are shown below. 

Note that one variable is omitted from the linear portion to reduce 

collinearity. 
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Note: x1, X2, X3 and X4 are the variables remaining after combining two 

components. The linear term with the largest range, assigned the symbol 

x4 is omitted from the linear portion of the equation to reduce 

collinearity. Special cubic four variable: 

Y = ao + aiX1 + a2X2 + a3X3 

+ ai2X1X2 + ai3X1X3 + ai4X1X4 

+ a23X2X3 + a24X2X4 + a34X3X4 

+ ai23X1X2x3 + ai24X1X2X4 + ai34X1X3X4 

+ a234X2X3X4 

The relationships between the coefficients a and b are as before and 

Special cubic four variable: 

Example: Shore Hardness 

X1 = alt x2 = act x3 = elas+pb 

Shore Hardness = a0 + a1alt + a2oct + a3{elas+pb} 

+ ai2(alt*oct) + a13 (alt *. {elas+pb}) + ai4(alt*c) 

+ a23 (oct *. {elas+pb}) + a24 (oct*c) + a34({elas+pb} * c) 

+ ai23(alt*oct*. {elas+pb}) + ai24(alt*oct*c) 

+ a134(alt* {elas+pb} * c) + a234(oct*. {elas+pb} *c) 

balt*oct*{elas+pb} = a123 balt*{elas+pb}*c = a134 

balt*oct*c = a124 boct*{elas+pb}*c = a234 
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Note: Xi, X2 and X3 are the variables remaining after combining another 

two components in addition to the previous combination (for the four 

variable equation) or after combining three original variables. 

Examples of such combinations are shown on the previous page. The 

linear term with the largest range, assigned the symbol x3 is omitted 

from the linear portion of the equation to reduce collinearity. 

Special cubic three variable: 

Y = ao + aiX1 + a2X2 + ai2X1X2 + ai3X1X3 

+ a23X2X3 + ai23X1X2X3 

The relationship between the coefficients a and b are as before and 

b123 = al23· 

Example: Shore Hardness 

X1 = act x2 = elas+pb x3 = c+alt 

Shore Hardness = a0 + a1oct + a2{elas+pb} 

+ ai2(oct* {elas+pb}) + ai3(oct*{c+alt}) 

+ a23({elas+pb} *. {c+alt}) 

+ ai23(oct*. {elas+pb}*{c+alt}) 

bact*{elas+pb}*{c+alt} = a123 

Finally, the Scheffe equivalent form for the three variable full 

cubic model is: 

Y = ao + aiX1 + a2X2 + ai2X1X2 

+ ai3X1X3 + a23X2X3 + ai23X1X2X3 

+ Y12X1X2(X1-X2) + Y13X1X3(X1-X3) 

+ Y23X2X3(X2-X3) 

where bl23 = ai23 

and Y12 , 13 , 23 are the same for both the Scheffe and its equivalent form. 
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Example: Shore Hardness 

X1 = act x2 = elas+pb X3 = c+alt 

Shore hardness = a0 + a1oct + a2{elas+pb} 

+ a12 (act* {elas+pb}) + a13 (oct* {c+alt}) 

+ a23({elas+pb} * {c+alt}) + ai23(oct* {elas+pb}*{c+alt}) 

+ Y12(oct* {elas+pb})(oct-{elas+pb}) 

+ Y13(oct* {c+alt))(oct-{c+alt}) 

+ Y23({elas+pb} * {c+alt})({elas+pb}-{c+alt}) 

boct*{elas+pb}*{c+alt} = al23 

Y12,13,23 are the same for both Scheffe and Scheffe-equivalent forms. 



RESULTS AND DISCUSSION 

Selection and Use of SAS Software 

The letters SAS are an acronym for Statistical Analysis System. 

This computer software system for data analysis began in 1966 in Cary, 

North Carolina and has grown into an all-purpose data analysis system. 

The decision to use SAS was based on the fact that it has more options 
. 

and can handle larger data sets than other statistical packages 

available at the University of Central Florida such as Minitab and SPSS 

(Statistical Package for the Social Sciences). Another deciding factor 

was that McGee had used SAS in his earlier study. 

SPSS was not chosen because it is tailored for use in the social 

sciences. Minitab, although a general purpose statistical computing 

system does not have all the options that SAS has and can only take a 

limited number of data points. 

SAS Procedures 

SAS procedures are computer programs that read the SAS data set, 

perform various computations and print the results. The statements that 

ask SAS to run a procedure always begin with PROC. Examples of some of 

the commonly used procedures are given below. 

Example 1: 

PROC PRINT DATA = XYZ.DATA; VAR A B; 

tells SAS to print all the values of only A and B from the data set 

XYZ.DATA. If the entire data set is desired, the VAR statement is 

omitted. 

41 
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Example 2: 

PROC FSEDIT DATA = XYZ.DATA; 

in interactive SAS tells SAS that one desires to edit the specified data 

set. See Appendix A for more details. 

Example 3: 

PROC PLOT DATA = XYZ.DATA; PLOT A*B; 

will plot A against B with A on the vertical axis and B on the 

horizontal using data from the specified data set. 

Example 4: 

PROC MEANS DATA = XYZ.DATA 

finds summary statistics such as the number of non-missing observations, 

mean, standard deviation, minimum and mazimum values and the standard 

error of the mean for all variables in the data set. 

Example 5: 

PROC REG DATA = XYZ.DATA; MODEL Y = A B c2/P; 

fits least squares estimates to the linear regression model of Y as a 

function of A, B and c2. P tells SAS to include the predicted value for 

each point in the output. 

SAS programs used to input data, define crossproduct variables and 

perform regression for this study are shown in Appendix B. 

Using data from Table Ilb (physical property data) and the 

transformed component data from Table V, pseudocomponent equations 

(according to the illustration on pp 22-23) and Scheffe-equivalent 

equations {developed on pp 24-25) are generated for neoprene using the 

PROC REG procedure of SAS. Exact SAS programs used are shown in 

Appendix B. Coefficients for each variable are shown in Table XI. 
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Comparison of Pseudocomponents and Scheffe-Eguivalent Equations 

The goal of this study is to find a more organized way of building 

models for mixture systems. Scheffe models provide us with a different 

way of looking at such systems. Scheffe provides an established scheme 

of building models of increasing complexity. Using this scheme, linear, 

quadratic, special and full cubic models were generated from the 

neoprene data for the nine physical test properties. Of the four model 

types, the quadratic Scheffe equations were selected because predicted 

values were very close, and in most ·cases, identical to the actual 

values (by inspection, Table IX). Since the criteria for model 

judgement involves the use of test statistics such as R2, adjusted R2, F 

and P>F, the chosen quadratic Scheffe models should be compared to 

McGee's on the same basis. Test statistics in the computer output for 

the Scheffe equations are inaccurate. Scheffe equations do not have an 

intercept. Even though most statistical packages are capable of fitting 

least squares equations without an intercept, test statistics that 

appear in the computer printout are inflated. It has long been 

believedlO that the inflation of test statistics is due to collinearity 

in the data which causes extreme roundoff errors in the computer. Two 

procedures which have been used to obtain accurate test statistics to 

describe the Scheffe equation will be evaluated. 

The first attempt is the use of pseudocomponents which has been 

described by Kurotori.10 To generate pseudocomponents, mixture data 

must undergo further mathematical manipulation. Pseudocomponent 

equations are expressed in terms of the new set of data generated (see 

cake model on pg. 22). In order to obtain an equation in terms of the 



original mixture data, the pseudocomponent equation must be back­

transformed. 
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It is believed that VIF values in equations must be low in order to 

produce more accurate test statistics. Table VI shows VIF values for 

coefficients of the Scheffe, pseudocomponents and Scheffe-equivalent 

linear and quadratic model equations for the neoprene data. VIFs for 

coefficients of the linear model are examined first. As seen in Table 

VI, VIFs obtained for coefficients of pseudocomponents (column 2) and 

Scheffe-equivalent (column 3) equations are lower than those for the 

corresponding Scheffe (column 1) form. For the linear model, the lowest 

coefficient VIFs are obtained using the Scheffe-equivalent equation. 

The situation is slightly different for the quadratic shown in Table 

VI. Pseudocomponents (column 2) give the lowest coefficient VIFs when 

compared to the Scheffe (column 1) and Scheffe-equivalent (column 3) 

quadratic equations. In both the linear and quadratic cases, VIFs are 

reduced by the use of pseudocomponents and Scheffe-equivalent 

equations. This suggests that collinearity between data can be reduced 

by pseudocomponents and Scheffe-equivalent equations. Table VII 

compares inaccurate test statistics for the quadratic Scheffe and 

pseudocomponent model equations to those obtained for the quadratic 

Scheffe-equivalent model equations. Test statistics obtained using 

quadratic pseudocomponent equations are identical to those obtained with 

the quadratic Scheffe model and are combined and shown together with the 

Scheffe statistics. Since those from the Scheffe printout are 

inaccurate, it can be concluded from the data in Table VII that 

pseudocomponents do not always give accurate test statistics even with 

low VIFs as previously believed.10 
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Test statistics (Table VII) obtained with the quadratic Scheffe­

equivalent equation to describe the corresponding Scheffe equation are 

different. The R2, adjusted R2 and F are lower in magnitude and P>F is 

higher than those on the Scheffe printout (Table VII). The values are 

less exaggerated and therefore more believable. The issue is not 

whether pseudocomponents or Scheffe-equivalent equations give better 

predicted values but which one gives accurate R2, adjusted R2, F and P>F 

values for the chosen Scheffe models. The Scheffe-equivalent model has 

an intercept which when multiplied by (alt+oct+c+pb+elas) converts to 

the Scheffe model. Since this model has an intercept, the computer 

handles the computation of test statistics for the Scheffe-equivalent 

form better than for pseudocomponents. With accurate test statistics, 

the selected quadratic equations can now be compared with McGee's 

equations more effectively. The Scheffe-equivalent model is the choice 

of this study since it generates accurate test statistics for the 

corresponding Scheffe equation without requiring additional 

transformation of the data. Pseudocomponents not only require further 

data manipulation but test statistics generated in the computer printout 

are still inaccurate. 

Comparison of Conventional (McGee) and Mixture (Scheffe) Models 

Table VIII summarizes the test statistics for all the Scheffe 

models generated for the nine physical properties of neoprene rubber. 

Test statistics for the five ·variable quadratic models with five, four 

and three components for BRK, BRKF, ULT and ULTF are obtained by 

repeating data point #8 in the transformed data set (Table V) so the 

degrees of freedom of error will equal one. Data point #8 was chosen 

because the predicted values were excellent for all four properties in 
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an earlier run. Statistics for the equations developed previously by 

McGee are also shown for comparison. McGee's original equations were 

generated using the combined 1979 and 1980 data. Since the author 

worked exclusively with the 1980 data, McGee's original equations were 

modified for comparison. The variables selected for constructing his 

equations were retained but the original coefficients were substituted 

with a new set of coefficients obtained by a least squares fit using 

only the 1980 data. The modified equations will thus give the best fit 

for the 1980 data using the variables McGee had chosen. McGee's 

original models were built using standardized data. In order to obtain 

meaningful numbers for the comparison of predicted values and the sum of 

squared residuals, the predicted values from his modified equations had 

to be 'unstandardized'. McGee's models for HARD, TEN, BRK and ULT have 

high correlation coefficients (>0.90). This is misleading since the sum 

of the squared residuals (Table VIII) and thus the % error of prediction 

(Table X) for McGee's models are much higher than those for the selected 

Scheffe models for these physical properties. The author's models are 

almost perfect predictors for seven of the nine physical properties of 

interest, except for TEN and TENF as shown in Table IX. 

Models are chosen based on low sum of squared residuals. The 

selected Scheffe model for all nine physical properties is the five 

variable quadratic: 

physical property 

(e.g., Shore Hardness) = f(alt, oct, pb, elas, c 

elas*alt, elas*oct, elas*pb, elas*c 

alt*oct, alt*c, alt*pb 

oct*c, oct*pb, pb*c) 
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Although the five variable Scheffe quadratic gives the lowest sum of 

squared residuals of all the models tried for TEN (Table VIII), it is 

far from satisfactory. The adjusted R2 is too low (-0.38) and the P>F 

is too high (0.75). The P>F value of 0.75 corresponds to a significance 

probability of only 25%. This means that there is only a 25% chance of 

the user being right in assuming that the combination of variables 

describes the physical property significantly. 

Table XI shows the coefficients for the 15 variables in the 

quadratic Scheffe equations for each of the nine physical properties. 

Equation coefficients for BRK, BRKF, ULT and ULTF should be used with 

caution. Repetition of data point #8 alters the distribution of the 

data set. Residuals for the two duplicate points (by inspection of 

Table IX) are larger than that of the other points. One of the 

residuals is positive while the other is negative in order to compensate 

for each other (Table IX). 
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Table VI 

Comparison of Variance Inflation Factors 

LINEAR MODEL EQUATION 
MODEL TYPE: 

Variable Scheff e Pseudocomponents Scheffe-Equivalent 

ALT 3.10 1.96 1.02 

OCT 6.62 6. 18 1.03 

c 34.30 5.43 OMITTED 
PB 31.69 6.40 1.02 

ELAS 41.30 3.03 1.05 

QUADRATIC MODEL EQUATION 
Variable Scheff e Pseudocomponents Scheffe-Equivalent 

ALT 998,620 43,829 329,025 

OCT 241, 113 19,763 36,334 

c 14,983 5,103 OMITTED 

PB 53,371 570 1,099 

ELAS 82,643 668 1,044 

ALTOCT 23,581 15,086 9,584 

ALTC 319,588 18, 777 104,554 

ALTPB 30,900 4,277 10,267 

ELALT 244,645 4,421 81,006 

OCTC 45,069 4,891 7,191 

OCT PB 11,265 2,685 1,941 

EL OCT 38,451 1,301 6,104 

PBC 29,716 701 832 

ELC 99,051 205 332 

ELPB 80,105 642 2,584 

OMITTED - This term has the largest range of all the components and is 
omitted to reduce collinearity. 
VIF values for both pseudocomponents and Scheffe-equivalent models are 
relatively low compared to Scheffe's. Scheffe-equivalent equations give 
lowest VIFs for the linear model while pseudocomponents give lowest VIFs 
for the quadratic model. Collinearity can be . reduced with 
pseudocomponents and Scheffe-equivalent equations. 



Table VII 

Comparison of Inaccurate and Accurate Test 

Inaccurate Using Quadratic 
Independent Scheff e or Pseudocomponents 
Vari ab le R2 R2 d. F 

HARD 
tJ-tARDF 
SPD 

TEN 

~TENF 

BRK 
t£RKF 
ULT 
ilULTF 

a J 

1.0 1.0 29134.48 
0.9964 0.9464 18.579 
1.0 1.0 575101.310 
0.9869 0.8038 5.029 
1.0 0.9995 2215.905 
1.0 1.0 167481.. 755 
1.0 1.0 999999.99 
1.0 1.0 999999.99 
1.0 1.0 999999.99 

Shore Hardness 
Shore Hardness Upon Aging* 
Sounds peed 
Tensile Modulus @ 300% Elongation 

P>F ~ 

0.0046 

0.1803 
0.0010 
0.3380 
0.0167 
0.0019 
0.0008 
0.0008 
0.0008 

HARD 
HARDF 
SPD 
TEN 
TENF Tensile Modulus @ 300% Elongation Upon Aging* 

6 - change in··· 

* - aging period is two weeks 

Statistics for the Scheffe Quadratic Models 

Accurate Using Quadratic 
Scheffe-Equivalent 

R2 

0.9995 

0.9952 
0.9992 

0.9078 

0.9981 
1.0 
1.0 
1.0 
1.0 

BRK 
BRKF 
ULT 
ULTF 

R2 d. a J F P>F 

0.9932 158.561 0.0622 

0.9280 14.803 0.2013 
0.9880 89.057 0.0829 

-0.3826 0.703 0.7470 
0.9708 36.608 0.1289 
1.0 21421 0.0054 
1.0 218802 0.0017 
1.0 972187 0.0008 
1.0 29827 0.0014 

Tensile Strength at Break 
Tensile Strength at Break Upon Aging* 
Ultimate Elongation 
Ultimate Elongation Upon Aging* 
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Table VIII 

Summary of Test Statistics 

DEPENDENT VARIABLE: HARD - SHORE HARDNESS 
NUMBER OF 

R2 MODEL COMPONENTS TERMS 2 R adj F P>F L:Res 2 

Linear 5 5 0.6912 0.5789 6. 155 0.0075 110. 39 
Quadratic 5 15 0.9995 0.9932 158.561 0.0622 0.16 
Reduced 
Quadratic 

a 4 10 0.8181 0.5452 2.988 0.0973 65.03 
b 3 6 0.7989 0.6984 7.947 0.0029 71.88 

Special 
Cubic 

a *** 4 14 0.9343 0.6717 3.558 0.1619 23.47 
b 3 7 0.8660 0. 7767 9.695 0.0017 47.90 

Full 
Cubic 3 10 0.9330 0.8326 9.288 0.0067 23.94 

McGee 11 0.9622 0.8584 9.267 0.0227 13.50 

* - in Scheffe-equivalent intercept, excluding intercept 

** - test statistics estimated by repeating 1 data point (#8) 

*** - model not full rank 

R2adj - R-square adjusted for degrees of freedom 
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Table VIII (continued) 

DEPENDENT VARIABLE: HARDF - CHANGE IN SHORE HARDNESS UPON 
AGING TWO WEEKS 

MODEL 
NUMBER OF 

COMPONENTS TERMS R2 F P>F ERes 2 

Linear 
Quadratic 
Reduced 
Quadratic 

a 

b 

Special 
Cubic 

a *** 
b 

Full 
Cubic 
McGee 

5 

5 

4 

3 

4 

3 

3 

5 

15 

10 

6 

14 

7 

10 

4 

0.2819 

0.9952 
0.0208 1.080 
0.9280 14.803 

0.5886 -0.0284 0.954 

0.3174 -0.0238 0.930 

0.4126 

o. 2013 
56 .06 

0. 38 

0.5445 32.12 

0.5009 53.29 

0.6773 -0.6135 0.525 0.8175 25.19 

0.3178 -0.1369 0.699 0.6582 53.26 

0.4675 -0.3312 0.585 0.7745 41.57 

0.3150 0.0659 1.264 0.3411 53.48 

DEPENDENT VARIABLE: SPD - SOUNDSPEED 
NUMBER OF 

MODEL COMPONENTS TERMS R2 R2 d. a J LRes 2 

Linear 5 
Quadratic 5 
Reduced 
Quadratic 

a 
b 

Special 
Cubic 

a 
b 

Full 

4 

3 

4 

3 

Cubic *** 3 
McGee 

F P>F 

5 0.7271 0.6278 7.326 0.0040 1569.53 
15 0.9992 0.9880 89.057 0.0829 4.61 

10 0.9692 0.9230 
6 0.6353 0.4530 

0.985 0.0007 177.08 
3.484 0.0440 2097.37 

14 0.9942 0.9568 26.546 0.0369 33.14 

7 0.6663 0.4438 2.994 0.0680 1919.39 

10 0.9150 0.8178 

6 0.1697 -0.3839 

9.416 0.0039 488.97 

0.307 0.9182 4791.24 
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Table VIII (continued) 

DEPENDENT VARIABLE: TEN - TENSILE MODULUS @ 300% ELONGATION 
NUMBER OF 

R2 MODEL COMPONENTS TERMS R2 d. a J F P>F 2:Res 2 

Linear 5 5 0.3972 0.1780 1.812 0 .1968 7113186 
Quadratic 5 15 0.9078 -0.3826 0.703 0.7470 1087685 
Reduced 
Quadratic 

a 4 10 0.6337 0.0844 1.154 0.4468 4321823 
b 3 6 0.3659 0.0488 1.154 0.3946 7482663 

Special 
Cubic 

a 4 14 0.8604 -0.0473 0.948 0.6238 1647725 
b 3 7 0.4383 0.0638 1.170 0.3992 6628648 

Full 
Cubic *** 3 10 0.4567 -0.1642 0.736 0.6638 6410784 
McGee 9 0.7175 0.2938 1.693 0.2684 3041735 

DEPENDENT VARIABLE: TENF - CHANGE IN TENSILE MODULUS @ 300% 
ELONGATION UPON AGING TWO WEEKS 

NUMBER OF 
R2 R2 d. IRes2 MODEL COMPONENTS TERMS F P>F a J 

Linear 5 5 0.3445 0.1062 1.445 0.2836 599330 

Quadratic 5 15 0.9981 0.9708 36.608 0.1289 1780 

Reduced 
Quadratic 

a 4 10 0.3798 -0.0336 0.919 0.5236 567036 

b 3 6 0.5656 0.3484 2.604 0.0928 397164 

Special 
Cubic 

a 4 14 0. 7149 0.1446 1.254 0.4244 260698 

b 3 7 0.6258 0.3764 2.509 0.1039 342128 

Full 
Cubic *** 3 10 0. 7577 0.4807 2.736 0.1012 221573 

McGee 3 0.0638 -0.1702 0.273 0.8440 855987 
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Table VIII (continued) 

DEPENDENT VARIABLE: BRK - TENSILE STRENGTH AT BREAK 
NUMBER OF 

MODEL COMPONENTS TERMS R2 R2 . adJ F P>F z:Res 2 

Linear 5 5 0.4248 0.1947 1.846 0.1967 12869670 
Quadratic** 5 15 1.0000 0.9999 21421 0.0054 86 
Reduced 
Quadratic 

a 4 10 0.6721 0.0820 1.139 0.4675 7335330 
b 3 6 0. 4118 0.0851 1.260 0.3587 13159465 

Special 
Cubic 

a 4 14 0.9046 -0.3353 0.730 0.7374 2134030 
b 3 7 0.6538 0.3942 2.518 0.1135 7745279 

Full 
Cubic *** 3 10 0.7330 0.2524 1.525 0.3344 5973829 
McGee 11 0.9653 0.8380 7.584 0.0609 776625 

DEPENDENT VARIABLE: BRKF - CHANGE IN TENSILE STRENGTH AT BREAK UPON 
AGING TWO WEEKS 

NUMBER OF 
R2 R2 d. ERes 2 MODEL COMPONENTS TERMS F P>F a J 

Linear 5 5 0.2962 0.0147 1.052 0.4284 243269.3 

Quadratic** 5 15 1.0000 1.0000 218802 0.0017 0.1 

Reduced 
Quadratic 

a 4 10 0.8986 0. 7160 4.992 0.0470 36500.1 

b 3 6 0.4479 0.1411 1.460 0.2926 198698.3 

Special 
Cubic 

a 4 14 0.9680 0.5522 2.328 0.4764 11511.5 

b 3 7 0~4765 0.0839 1.214 0.3888 188389.7 

Full 
Cubic 3 10 0.4773 -0.2196 0.685 0.6798 188102 .6 

McGee 6 0.1821 -0.4313 0.297 0.9219 294335.7 
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Table VIII (continued) 

DEPENDENT VARIABLE: ULT - ULTIMATE ELONGATION 
NUMBER OF 

R2 MODEL COMPONENTS TERMS R2adj F P>F ERes2 

Linear 5 5 0.7020 0.5828 5.890 0.0106 26211. 59 
Quadratic** 5 15 1.0000 1.0000 972187 0.0008 0.007 
Reduced 
Quadratic 

a 4 10 0.9085 0.7438 5.515 0.0373 8049.70 
b 3 6 

Special 
Cubic 

a *** 4 14 0.9783 0.8478 7.498 0.1236 1912.59 
b 3 7 

Full 
Cubic 3 10 

McGee 8 0.9512 0.8022 8.097 0.0100 7457.46 

DEPENDENT VARIABLE: ULTF - CHANGE IN ULTIMATE ELONGATION UPON AGING 
TWO WEEKS 

NUMBER OF 
R2 R2 . L:Res 2 MODEL COMPONENTS TERMS adJ F P>F 

Linear 5 5 0.2301 -0.0799 0.747 0.5817 64250.31 
Quadratic** 5 15 1.0000 1.0000 298727 0.0014 0.02 

Reduced 
Quadratic 

a 4 10 0.9021 0.7258 5.117 0.0435 8173.40 

b 3 6 0.7336 0.5856 4.956 0.0186 22232.95 

Special 
Cubic 

a 4 14 0.9812 0.7367 4.013 0.3740 1569.48 

b 3 7 0.7354 0.5369 3.705 0.0459 22085.06 

Full 
Cubic 3 10 0. 7911 0.5821 3.786 0.0500 17435.86 

McGee 9 0.8044 0.4524 2.285 0.1880 16321.57 
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Table IX 

Comparison of Predicted and Observed Values 

HARD HARDF SPD 
OBS SCHEFFE* MCGEE OBS SCHEFFE* MCGEE OBS SCHEFFE* MCGEE 

65.0 65.0 66.5 4.5 4.4 1.9 1580 1580 1573 
64.9 64.9 64.4 0.8 0.9 1.8 1595 1595 1571 
69.8 69.7 69.8 -3.1 -3.3 -3.1 1593 1594 1571 
66.5 66.5 66.3 0.3 0.2 1.5 1539 1539 1573 
50.2 50.2 50.7 5.3 5.3 1.2 1525 1525 1570 
66.0 66.3 68.0 0.3 0.8 1.0 1580 1578 1572 
74.0 74.1 74.0 2.2 2.3 1.1 1602 1602 1601 
69.2 69.2 68.7 2.3 2.3 1.6 1588 1588 1572 
68.4 68.5 68.3 0.8 0.9 1. 7 1571 1571 1574 
66.4 66.2 66.0 2.9 2.7 1.6 1577 1578 1568 
67.7 67.7 66.4 -3.2 -3.2 1.5 1586 1586 1581 
67.3 67.2 65.7 1. 7 1.6 1. 5 1583 1584 1581 
66.2 66.2 66.4 1.1 1.2 1.8 1577 1577 1575 
67.3 67.3 68.7 3.4 3.4 3.3 1582 1582 1581 
63.9 63.8 63.8 0.6 0.5 1.4 1574 1574 1569 
65.4 65.4 64.6 0.8 0.9 1.0 1568 1568 1575 

TEN TENF 
OBS SCHEFFE* MCGEE OBS SCHEFFE* MCGEE 

1549 1706 1570 1886 1880 1966 
2859 2776 2856 1919 1922 1966 
3262 3547 3030 1941 1930 1966 
1543 1662 1608 1257 1252 1897 
1299 1257 1295 1777 1779 1747 
2980 2184 3233 1747 1778 1945 
4003 3851 3444 2314 2320 1969 
3515 3517 2503 2036 2036 1920 
1758 1617 2526 2120 2126 1933 
1710 2126 1401 2036 2019 1928 
1593 1566 1296 1923 1924 1859 
1689 1956 2409 2077 2066 1915 
1618 1527 1203 1800 1804 1797 
1265 1290 1550 1620 1619 1923 
1433 1580 1627 1891 1885 1920 
1709 1623 1716 2190 2194 1882 

HARD - Shore Hardness HARDF - Change in Shore Hardness Upon 
Aging for Two Weeks 

SPD - Soundspeed TEN - Tensile Modulus @ 300% Elongation 
TENF - Change in Tensile Modulus @ 300% Elongation 

Upon Aging for Two Weeks 

_*Scheffe, pseudocomponents and Scheffe-equivalent models will give the 
same prediction. Latter two are derived from Scheffe models. 
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Table IX (continued) 

BRK BRKF 
OBS SCHEFFE* MCGEE OBS SCHEFFE* MCGEE 

2548 2548 2924 2413 2413 2430 
5018 5018 4348 2524 2524 2473 
5144 5144 5194 2532 2532 2453 
2585 2585 2615 2434 2434 2523 . -36488 90477 . 5413 3909 
4897 4897 4781 2427 2427 2520 
5329 5329 5585 2549 2549 2582 
5347 5354 5443 2626 2625 2620 
2729 2729 2922 2586 2586 2552 
2684 2684 2758 2569 2569 2523 
2722 2722 2639 2949 2949 2604 
2671 2671 2573 2683 2683 2606 
2579 2579 2641 2403 2403 2401 
2406 2406 2230 2385 2385 2538 
2632 2632 2633 2542 2542 2467 
2224 2224 2231 2254 2254 2586 

ULT ULTF 
OBS SCHEFFE* MCGEE OBS SCHEFFE* MCGEE 

714 714 728 541 541 532 
790 790 760 572 572 553 
735 735 727 548 548 583 
763 763 721 569 569 551 
. 1830 3630 . 206 800 

698 698 705 561 561 547 
584 584 595 430 430 422 
697 697 690 491 491 498 
694 694 682 517 517 548 
687 687 747 520 520 531 
712 712 718 547 547 568 
691 691 688 550 550 597 
817 817 799 577 577 562 
825 825 836 686 686 593 
827 827 835 569 569 605 
556 556 559 763 763 753 

BRK - Tensile Strength at Break 
BRKF - Change in Tensile Strength at Break Upon Aging for Two Weeks 
ULT - Ultimate Elongation 
ULTF - Change in Ultimate Elongation Upon Aging for Two Weeks 

• - missing value 
*Scheffe, pseudocomponents or Scheffe-equivalent model will give the 
same prediction. Latter two are derived from Scheffe models. 



Table X 

Comparison of % Error in Prediction 

SCHEFFE MCGEE 
VARIABLE LINEAR QUADRATIC 

HARD 3.43 0.151 1.40 
HARDF 89.1 7.33 8. 71 
SPD 0.629 0.0341 1.098 
TEN 31.6 12.4 20.64 
TENF 10.1 0.556 12 .11 
BRK 25.2 0.0653 6.19 
BRKF 4.9 0.00313 5.37 
ULT 5.6 0.00291 3.01 
ULTF 11.4 0.00634 5.72 

HARD - Shore Hardness 
HARDF - Change in Shore Hardness Upon Aging for Two Weeks 
SPD - Soundspeed 
TEN - Tensile Modulus @ 300% Elongation 
TENF - Change in Tensile Modulus @ 300% Elongation Upon Aging 

for Two Weeks 
BRK - Tensile Strength at Break 
BRKF - Change in Tensile Strength at Break Upon Aging for Two Weeks 

ULT - Ultimate Elongation 
ULTF - Change in Ultimate Elongation Upon Aging for Two Weeks 

% error - (mean residual/mean response) x 100 = (rres 2/n)~/Y x 100 
means are calculated using absolute values 
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Table XI 

Coefficients for Each Selected Scheffe (Quadratic) Equation 

MODEL SHORE HARDNESS A SHORE HARDNESS SOUNDSPEED 
EQUATION UPON AGING TWO WEEKS 

PARAMETER PARAMETER PARAMETER 
VARIABLE ESTIMATE ESTIMATE ESTIMATE 

ALT -115131. 39 126809.46 -363607 .10 
OCT 15729.852 -15033.61127 23556.20889 
c -522.12962 198.39312 467.48827 
PB -3506.13995 1351.70168 -10483 .13494 
ELAS 403.36627 555.01999 3230.19268 
ALTOCT -2458074.65 659300.37 -2921781. 83 
ALTC 378206.53 -159670.03 862905. 71 
ALTPB -384370.71 -49340.65764 -528487.89 
ELALT 99979.27464 -149586 .11 269056.39 
OCTC 7527.80929 1876. 35713 3706.18944 
OCT PB -37301. 71026 35548.03619 -20889 .11799 
EL OCT -16141.38342 16786.87908 -24299.26142 
PBC 5498.23139 212.26877 20424.16533 
ELC -1669.34477 -845.95189 -4477.54026 
ELPB 8325. 82011 -5656.04060 15296.67192 

MODEL TENSILE MODULUS ATENSILE MODULUS @ 300% TENSILE STRENGTH 
EQUATION @ 300% UPON AGING TWO WEEKS AT BREAK 

PARAMETER PARAMETER PARAMETER 
VARIABLE ESTIMATE ESTIMATE ESTIMATE 

ALT -53804867.15 6864881.31 -2348744686 
OCT -3143458.49 2465622.18 -15673217.64 
c -44804.98566 672.55883 -878590.04 
PB -580277.20 -186415.88 -2450328.82 
ELAS 57023.54299 68367.88476 -259493.28 
ALTOCT -442291651 -94476632.63 -789806221 
ALTC 108675987 2078835.14 328188029 
ALTPB -55551867.19 -19160589.41 12968696.46 
ELALT 51346066.30 9112076 .32 253057507 
OCTC 8008707.68 -2448851.45 34957105. 04 
OCT PB 3570842.32 -3106381.34 308343.81 
EL OCT 1734246.17 -1961976.30 10522110.60 
PBC 359029.48 456844.49 4527564.74 
ELC -405043.20 -191747.34 1193060. 56 
ELPB 1857670.23 62970.16846 5023024.32 

A - change in 
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Table XI (continued) 

MODEL 6TENSILE STRENGTH ULTIMATE ELONGATION 6ULTIMATE ELONGATION 
EQUATION @ BREAK UPON AGING UPON AGING TWO WEEKS 

TWO WEEKS 
PARAMETER PARAMETER PARAMETER 

VARIABLE ESTIMATE ESTIMATE ESTIMATE 

ALT 8940640.24 1756852.44 3933928.89 
OCT 2860411. 73 -52099.48603 -216718.83 
c 47246.41829 24425.16308 -1479.03358 
PB 39477.37848 82765. 41125 29814.02766 
ELAS 20193.62830 -3978.24275 -9292.88768 
ALTOCT -38632557.41 50809472.70 16204956.37 
ALTC -4923080.09 -6216748.03 -7383742.52 
ALTPB -13802233.13 7348086.85 2217936.76 
ELALT -10806879.48 -1984849.82 -3150630.63 
OCTC -3596417.06 -358578.18 208840.35 
OCTB -1846360.17 200530.79 69003.25418 
EL OCT -2483596.62 48954.46506 164777 .80 
PBC -199563.46 -188814.02 -32484.79939 
ELC -123706.21 1862.31952 42425.85362 
ELPB 36230.88020 -113532. 79 -69818.24419 

6 - change in 

Example: 

6 Tensile Strength @ Break Upon Aging Two Weeks 

= 8940640.24 alt + 2860411.73 oct + 47246.41829 c 

+ 39477.37848 pb + 20193.62830 elas - 38632557.41 altoct 

- 4923080.09 altc - 13802233.13 altpb - 10806879 elalt 

- 3596417.06 octc - 1846360.17 octpb - 2483596.62 eloct 

- 199563.46 pbc - 123706.21 elc + 36230.88020 elpb 



CONCLUSIONS AND RECOMMENDATIONS 

It can be seen from Table X that the Scheffe quadratic models 

predict better (as judged by the % error in prediction) than the McGee/ 

conventional models. For seven of the nine physical properties 

investigated, the error in prediction for the Scheffe models is less 

than 1%. The error range for the Scheffe models is 0.002 to 12.4% while 

that for the McGee models is 1.40 to 87.1%. Predicted values using the 

McGee and Scheffe equations and actual values can also be compared by 

inspection in Table X. It can be seen that the Scheffe quadratic models 

are almost perfect predictors. When comparing the R2 for the models in 

Table VIII, all nine Scheffe quadratic models have R2 greater than 

0.90. The R2 range for the McGee models is from 0.06 to 0.96 and in 

only three of the nine models are the R2 actually greater than 0.90. 

Since the quadratic equation contains almost as many variables as the 

number of observations (15 vs. 16), the adjusted R2 should also be 

compared. Eight of the nine quadratic equations have adjusted R2 values 

of 0.90 or greater while none of McGee's equations s~tisfy that level. 

The smaller the values are for the significance probability P>F, 

the better the model is. Assuming at least 90% significance is desired 

(P>F must be <= 0.1), six of the nine Scheffe quadratic models are 

significant while only three of the nine McGee models meet that 

criterion. The P>F range for the Scheffe quadratic models is 0.7470 to 

0.0008 corresponding to 25.3 to 99.25 significance and that for the 

McGee models is 0.9219 to 0.0100 corresponding to 7.8 to 90.0% 

significance. 
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Summary 

Mixture models provide a new way of looking at data of systems in 

which the response to the system depends only on the proportions of the 

ingredients in the system. The mixture model would appear to be more 

appropriate for such systems because the sum of the independent 

variables is one. The mixture model is easier to build than the 

conventional models. The conventional method involves generating 

different new variables using functions of the independent variables and 

then using stepwise regression to filter out the insignificant 

variables. Scheffe (mixture model), on the other hand gives the user an 

established scheme to follow in model building. One begins with the 

simple linear model, progressing through the quadratic to the special 

and full cubic models. In most cases the quadratic model is found to be 

sufficient for prediction as shown by the almost perfect predictions in 

Table X. Scheffe's models also contain fewer terms than the 

conventional models of the same order. The proposed Scheffe and 

Scheffe-equivalent models do well with data not designed using the 

simplex method. Good predictions are not due to the large number of 

variables in the model because the ~djusted R2 for eight of the nine 

Scheffe quadratic models are greater than 0.90. 

Reco11111endations 

This study has demonstrated the advantages of using Scheffe rather 

than the conventional (McGee) models for mixtures with five components 

or less. When the number of components is greater than five, component 

reductionlS-17 should be undertaken for easier handling of the data. It 

is recommended that the components be combined based on similarity in 

coefficient signs using a preliminary linear model or based on the 



coefficient signs using a preliminary linear model or based on the 

knowledge that certain components have similar functions. 
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Although the proposed Scheffe and Scheffe-equivalent models do well 

with data not designed using the simplex method, the simplex design 

should be incorporated into the data collection process whenever 

possible. If the data set is big enough (e.g., more than 40 data 

points) it should be divided into two groups. One group should be used 

for model building while the other is used for equation testing. The 

equations generated should not be used to predict for component 

proportions outside the range of the data set used to generate them. 

A list of suggested reading has been assembled for future 

readers. These articles will give the reader basic information on model 

building. The list is arranged in alphabetical order according to 

topic. 



APPENDIX A 

INSTRUCTIONS TO INPUT AND EDIT DATA USING INTERACTIVE SAS 
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Statements that the user puts in will be shown in capital 

letters. 

Keys are shown by underlining. 

To input raw neoprene rubber data into a SAS data set named 

raw.data: 

When screen asks for file definitions, press §Di§C 

An empty screen with line numbers will appear. 

DATA RAW.DATA; INPUT MW MN ALT OCT C PB HARD HARDF SPD TEN 

TENF BRK BRKF ULT ULTF; RUN; 6bl ~ 

Ignore error message which appears. 

PROC FSEDIT DATA = RAW.DATA; RUN; Bb! ~ 

Screen with blank spaces next to variable names will 

* 
appear. If cursor is not on the first blank, bring it 

down using the downward a~row key. Type in each value and 

depress the §Di§C key each time when finished. When the 

value for ULTF has been entered, depress EE_g1. Repeat from 

* for each set of observations. 
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When the entire data set has been entered, depress EE_!~ to 

save. 

The blank screen with line numbers will return. 

To exit interactive SAS, type: 

ENDSAS; Bbl ~ 

Helpful hints: 

To edit only part of a large data set, use the VAR 

statement. 

example: 

PROC FSEDIT DATA = RAW.DATA; VAR MW BRK; RUN; Bb! ~ 

To move screen backward use EE 12· 

To move screen forward use EE ~Q" 

To get the edit screen to display the observation desired, 

move the cursor to the COMMAND line at the top and type in 

the observation number. 



APPENDIX B 

SAS PROGRAMS 



SAS PROGRAMS TO GENERATE DATA FOR 
SCHEFFE & SCHEFFE-EQUIVALENT MODELS 

data neo.datal; set raw.data; 
** compute response factor ** 

response = (2.46788 E-11 * mw) + 1.771125 E-04; 
** compute pph elastomer/transform ** 

pphelas = (response * h * 2000)/wt; 
tot = pph + alt + oct + c + pb; 
elas = pph/tot; alt = alt/tot; oct = oct/tot; c = c/tot; 
pb = pb/tot; 

** define crossproducts ** 
elalt = elas * alt; eloct = elas * oct; elc = elas * c; 
elpb = elas * pb; 
altoct = alt * oct; altc = alt * c; altpb = alt * pb; 
octc = oct * c; octpb = oct * pb; pbc = pb * c; run; 

data neo.data2; set neo.data1; 

reel = 
eloc = 
ropa = 
rep a = 
rcpe -
raoc = 
rope = 

rpel = 
rpea = 
rcoa = 

** define combined variables ** 
** for reduced quad 4~3 var model ** 

c + elas; rocpb = oct + pb; rcpb = c + pb; 
oct + elas; raloc = alt + oct; rceo = reel * oct; 
rocpb * alt; rcea = reel * alt; reoa = reloc * alt; 
rcpb * alt; reoc = reloc * c; raoe = raloc * elas; 
rcpb * elas; rcpo = rcpb * oct; rcep = reel * pb; 
raloc * c;raop = raloc * pb; rope = rocpb * c; 
rocpb * elas;reop = reloc * pb; 

pb + elas; rcoct = oct + c; 
alt * rpel; rpec = c * rpel; rpeo = oct * rpel; 
alt * rcoct; rcob = rcoct * pb; rcoe - rcoct * elas; 

rocelc = oct + c + elas; raocpb = alt + oct + pb; 
roeca = rocelc * alt; roecp = rocelc * pb; raope = raocpb * 
el as; 
roprce = rocpb *reel; roercp = reloc * rcpb; ralo = ralc * 
oct; 
ralp = ralc * rpel; rcopel = rcoct * rpel; 
repeal = alt * rcpbel; rcpoel = oct * rcpbel; 

** for special cubic 3 var model ** 

xshard = ralc * oct * rpel; xshardf = alt * rcob * rpel; 
xsspd = alt * rocelc * pb; xsten = alt * rocpb * reel; 
xstenf = xsten; xsbrk = raocpb * c * elas; 
xsbrkf = alt * reloc * rcpb; xsultf =alt * oct * rcpbel; 
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** for special cubic 4 var model ** 

>:sh 1 - altoct * rpel; xsh2 = altc * rpel; 
>:sh3 == octc * rpel; 
>:sh'+ == altoct * c; 
>!Shf 1 = altpb * rcoct; xshf2 = rcoct * elalt; 
xshf3 = rcoct * elas; 
xshf4 == altpb * elas; 
xssl = altc * reloc; xss2 = altc * pb; xss3 = pbc * reloc; 
xss4 = altpb * reloe; xst1 = altc * rocpb; 
xst2 = alte * elas; xst3 = elalt * roepb; 
xst4 = ele * rocpb; 
xstfl = altoct * pb; xstf2 = altoet *reel; 
xstf3 = altpb *reel; xstf4 = octpb *reel; 
xsbl = raloc * pbc; xsb2 == raloc * elpb; 
xsb3 = raloc * elc; xsb4 = pbc * elas; 
xsbf1 = altoct * repb; xsbf2 = altoet * elas; 
xsbf3 = elalt * repb; xsbf4 = eloet * rcpb; 
xsul = xss1; xsu2 = xss2; xsu3 = xss3; xsu4 = xss4; 
xsufl = xsbf1; xsuf2 = xsbf2; xsuf3 = xsbf3; xsuf4 = xsbf4; 

** for full cubic 3 var model ** 

xfh1 = ralo * (ralc - oct>; xfh2 = ralp * (ralc - rpel>; 
xfh3 = rpeo * (oct - rpel>; 
xfhfl = rcoa * (alt - rcob>; xfhf2 = rpea * (alt -rpel>; 
xfhf3 = rcopel * (reob - rpel>; 
}:fsl 
>:fs3 
>:ft1 
>:ft3 

= 
= 
= 
= 

roeca * (alt - rocele>; xfs2 = altpb * (alt - pb); 
roecp * (pb - roeelc>; 
ropa * <alt - roepb>; xft2 = reea * (alt - reel>; 
ropree * <rocpb - reel>; 

xftfl = xftl; xftf2 = xft2; xftf3 = xft3; 
xfb1 = raope * (e - raocpb>; 
xfb2 = raope * (elas - raocpb>; 
xfb3 = elc * (c - elas>; 
xfbfl = reoa * (alt - reloc>; xfbf2 = rcpa * (alt - repb>; 
xfbf3 = reorcp * (reloc - rcpb>; 
xfufl = altoet * (alt - oct >; 
xfuf2 =repeal * (alt - rcpbel>; 
xfuf3 = rcpoel * (oet - rcpbel>; run; 
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SAS PROGRAMS FOR REGRESSION I SCHEFFE MODELS 

** linear model ** 
proc reg data = neo.data2; 

model Y* = alt oct c pb elas/p vif noint; 
** quadratic 5 var model ** 

proc reg data = neo.data2; 
model Y* = alt oct c pb elas 

elalt eloct elc elpb 
altoct altc altpb 
octc octpb pbc/p vif noint; 

SAS PROGRAMS FOR REGRESSION I SCHEFFE-EQUIVALENT MODELS 

** linear model ** 
proc reg data = neo.data2; 

model Y* = alt oct pb elas/p vif; 
** quadratic 5 var model ** 

proc reg data = neo.data2; 
model Y* = alt oct pb elas 

elalt eloct elc elpb 
altoct altc altpb 
octc octpb pbc/p vif; 

* - substitute desired physical property symbol for Y** 

** reduced quadratic 4 var model ** 
proc reg data = neo.data2; 

model hard = alt oct rpel altoct altc rpea rpec octc 
rpeo/p; 

proc reg data = neo.data2; 
model hardf = alt pb elas rcoa altpb elalt rcob rcoe 
elpb/p; 

proc reg data - neo.data2; 
model spd = alt reloc pb altc reoa altpb reoc pbc 
reop/p; 

proc reg data = neo.data2; 
model ten = alt rocpb elas ropa altc elalt rope rope 
elc/p; 

proc reg data = neo.data2; 
model tenf = alt oct reel altoct altpb rcea octpb rceo 
rcep/p; 

proc reg data = neo.data2; 
model brk = raloc pb elas raoc raop raoe pbc elc 
elpb/p; 

proc reg data = neo.data2; 
model brkf = alt oct elas altoct rcpa elalt eloct rcpe 
rcpo/p; 
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proc reg data = neo.data2; 
model ult = alt reloc pb reoa altc altpb reoc reop 
pbc/p; 

proc reg data = neo.data2; 
model ultf = alt oct elas altoct rcpa elalt eloct rcpe 
rcpo/p; 

quadratic 3 var model ** 
proc reg data = neo.data2; 

model hard = oct rpel ralo ralp rpeo/p; 
proc reg data = neo.data2; 

model hardf = alt rcob rcoa rpea rcopel/p; 
proc reg data = neo.data2; 

model spd - alt rocelc roeca altpb roecp/p; 
proc reg data = neo.data2; 

model ten - alt reel ropa rcea roprce/p; 
proc reg data = neo.data2; 

model tenf = alt reel ropa rcea roprce/p; 
proc reg data = neo.data2; 

model brk = raocpb elas raopc raope elc/p; 
proc reg data = neo.data2; 

model brkf = alt reloc reoa rcpa reorcp/p; 
proc reg data = neo.data2; 

model ultf = alt oct altoct repeal rcpoel/p; 
** special cubic 4 var model ** 

proc reg data neo.data2; 
model hard = alt oct rpel altoct altc rpea rpec octc 
rpeo xsh1 xsh2 xsh3 xsh4/p; 

proc reg data neo.data2; 
model hardf = alt pb elas rcoa altpb elalt rcob rcoe 
elpb xshf1 xshf2 xshf3 xshf4/p; 

proc reg data neo.data2; 
model spd = alt reloc pb altc reoa altpb reoc pbc reop 

xss1 xss2 xss3 xss4/p; 
proc reg data neo.data2; 

model ten = alt rocpb elas ropa altc elalt rope rope 
elc xst1 xst2 xst3 xst4/p; 

proc reg data neo.data2; 
model tenf = alt oct reel altoct altpb rcea 

xstfl xstf2 xstf3 xstf4/p; 
proc reg data neo.data2; 

model brk = r~loc pb elas raoc raop raoe pbc elc elpb 
xsbl xsb2 xsb3 xsb4/p 

proc reg data neo.data2; 
model brkf = alt oct elas altoct rcpa elalt eloct rcpe 
rcpo xsbf2 xsbf2 xsbf3 xsbf4/p; 

proc reg data neo.dat~2; 
model ult = alt reloc pb reoa altc altpb reoc reop pbc 

xsu1 xsu2 xsu3 xsu4/p; 
proc reg data neo.data2; 

model ultf = alt oct elas altoct rcpa elalt eloct rcpe 
rcpo xsufl xsuf2 xsuf3 xsuf4/p; 
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** special cubic 3 var model ** 
proc reg data neo.data2; 

model hard = oct rpel ralo ralp rpeo xshard/p; 
proc reg data neo.data2; 

model hardf = alt rcob rcoa rpea rcopel xshardf/p; 
proc reg data neo.data2; 

model spd = alt rocele 
proc reg data neo.data2; 

roeca altpb roecp xsspd/p; 

model ten = alt reel ropa rcea roprce xsten/p; 
proc reg data neo.data2; 

model tenf = alt reel ropa rcea roprce xstenf/p; 
proc reg data neo.data2; 

model brk = raocpb elas raopc raope elc xsbrk/p; 
proc reg data neo.data2; 

model brkf = alt reloc reoa rcpa reorcp xsbrkf/p; 
proc reg data neo.data2; 

model ultf = alt oct altoct repeal rcpoel xsultf/p; 
** full cubic 3 var model ** 

proc reg data=neo.data2; 
model hard = oct rpel ralo ralp rpeo xshard xfh1 xfh2 
xfh3/p; 

proc reg data=neo.data2; 
model hardf = alt rcob rcoa rpea rcopel xshardf xfhf1 
xfhf2 xfhf3/p; 

proc reg data=neo.data2; 
model spd = alt rocelc roeea altpb roecp xsspd xfs1 
xfs2 xfs3/p; 

proc reg data=neo.data2; 
model ten = alt reel ropa rcea roprce xsten xftl xft2 
xft3/p; 

proc reg data=neo.data2; 
model tenf = alt reel ropa rcea ropree xstenf xftf1 
xftf2 xftf3/p; 

proc reg data=neo.data2; 
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model brk = raocpb elas raopc raope elc xsbrk xfbl xfb2 
xfb3/p; 

proc reg data=neo.data2; 
model brkf = alt reloc reoa rcpa reorcp xsbrkf xfbfl 
xfbf2 xfbf3/p; 

proc reg data=neo.data2; 
model ultf = alt oct altoct repeal rcpoel xsultf xfufl 
xfuf2 xfuf3/p; 



SAS PROGRAM TO GENERATE PSEUDOCOMPONENTS 

** transform to pseudocornponents ** 
data pseu.data; set neo.data1; 
palt = <alt - 0.00122916> I 0.27256; 
poet = oct I 0.27256; pc = (c - 0.28971593) I 
0.27256; ppb = (pb - 0.06318890) I 0.27256; 
pelas = (elas - 0.37330631) I 0.27256l 

** define crossproducts ** 
pelalt = pelas * palt; peloct = pelas * poet; 
pelc = pelas * pc; pelpb = pelas * ppb; 
paltoct = palt * poet; paltc = palt * pc; 
paltpb = palt * ppb; poctc = poet * pc; 
poctpb = poet * ppb; ppbc = ppb *pc; run; 

SAS PROGRAM FOR REGRESSION I PSEUDOCOMPONENT MODELS 

** linear model ** 
proc reg data = pseu.data; 

model Y* = palt poet pc ppb pelas/p vif noint; 

** quadratic 5 var model ** 
proc reg data = neo.data2; 

model Y* = palt poet pc ppb pelas 
pelalt peloct pelc pelpb 
paltoct paltc paltpb 
poctc poctpb ppbc/p vif noint; 

* - substitute desired physical property symbol for y 
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PROGRAMS TO STANDARDIZE DATA I DEFINE NEW VARIABLES 
UNSTANDARDIZE PREDICTED VALUES FOR MCGEE MODELS ** 

** obtain mean and standard deviation ** 
proc means data = raw.data; 

** standardize raw data ** 
data std.data1; set raw.data; 
mw = (mw - 376312.500000)/71946.9422561; 
mn = Cmn - 88043.750000)/8346.1742733; 
alt = (alt - 0.254637)/0.1807276; 
oct = (oct - 1.010187)/0.4340633; 
c = <c - 28.062500)/2.7089666; 
pb = (pb - 7.920000)/1.3989377; 
hard= (hard - 66.137500)/4.8817859; 
hardf = Chardf - 1.293750)/2.2813647; 
spd = (spd - 1576.250000)/19.5806026; 
ten =(ten - 2111.562500)/886.9432127; 
tenf = (tenf - 1908.375000)/246.8913054; 
brk = (brk - 3434.333333)/1264.1672960; 
brkf = (brkf - 2525.066667)/160.3271061; 
ult = (ult - 719.333333)/79.2650767; 
ultf = (ultf - 562.733333)/77.2070192; run; 

** define new variables ** 
data stdndata2; set std.data!; 
alt2 = alt * alt; alt3 = alt2 * alt; 
c2 = c * c; c3 = c2 * c; 
mn2 = mn * mn; mn3 = mn2 * mn; mw2 = mw * mw; mw3 = mw2 * 
mw; 
mwn = mw * mn; mw2n = mw2 * mn; mwn2 = mw * mn2; 
mnpb = mn * pb; pbmw - pb * mw; 
cmw =c * mw; cmn = c * mn; c2mn = c2 * mn; c2mw = c2 * mw; 
cmn2 = c * mn2; 
vmn = 1/mn; vmw = 1/mw; vpb = 1/pb; 
vmwbld = vmw; vpbbld = vpb; vmnbld = vmn; 
vc = 1/c; vc2 = 1/c2; vpb3 = 1/(pb * pb * pb>; 
vmn3 = 1/mn3; vmw2 = 1/mw2; vmw3 = l/mw3; 
vpbc = 1/(pb * c>; 
vmw2n - 1/mw2n; vmwn2 = 1/mwn2; valt2 = 1/alt2; 
valt3 = 1/alt3; run; 

data un.data; set pred.data1; 
** unstandardize predicted values ** 

uhard = Cphard * 4.8817859) + 66.137500; 
uhardf = (phardf * 2.2813647> + 1.293750; 
uspd = (pspd * 19.5806026) + 1575.250000; 
uten = <pten * 886.9432127> + 2111.562500; 
utenf = (ptenf * 246.8913054) + 1908.375000; 
ubrk = (pbrk * 1264.1672960) + 3434.333333; 
ubrkf = (pbrkf * 160.3271061) + 2525.066667; 
uult = <pult * 79.2650767) + 719.333333; 
uultf = (pultf * 77.2070192) + 562.733333 
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** compute res i duc:t 1 s ** 
rhard = hard uhard; rhardf = hardf - uhardf; 
rspd = spd - uspd; 
rten = ten - uten; rtenf = tenf - utenf; rbrk = brk - ubrk; 
rbrkf = brkf - ubrkf; rult = ult - uult; 
rultf = ultf - uultf; 

** compute squared residuals ** 
rhard2 = rhard * rhard; rhardf2 = rhardf * rhardf; 
rspd2 = rspd * rspd; 
rten2 = rten * rten; rtenf = rtenf * rtenf; 
rbrk2 = rbrk * rbrk; 
r bi- k f 2 = r b r · k ·f * r b r k f ; r u 1 t 2 = l- u 1 t * r u J. t ; 
rultf2 = rultf * rultf; 

** obtain sum of squared residuals ** 
proc mpa·ns sum data = unndata; 
var rhard2 rhardf2 rspd2 rten2 . rtenf2 rbrk2 rbrkf2 rult2 
rultf2; 

SAS PROGRAM FOR REGRESSION I MCGEE MODELS 

proc reg data= std.data1; 
model hard = c oct mn vmn vmn3 vmw vmw2 vmw2n vmwn2 
pbmt.-'J mnpb /p; 

proc reg data= std.data1; 
model hardf = alt alt3 cmn vmnbld/p; 

proc reg data= std.datal; 
model spd = alt2 alt3 mn vpbc vpb3 vc2/p; 

proc reg data= std.data!; 
mc1del ten = c c2 c3 mn mn2 mn3 alt val t2 val t3/p; 

proc reg data= std.data1; 
model tenf = c vc vc2/p; 

proc reg data= std.data!; 
model brk = mw mw2 mn2 mwn mw2n mwn2 c2 c2mw cmn c2mn 
cmn2/p; 

proc reg data= std.data1; 
modE·l brkf = mw c cmt .. J vnnt\l vm\l\t2 vmw3/p; 

proc reg data= std.data1; 
model ult = alt mn c c2 cmn c2mn vmwbld vpbbld/p; 

proc reg data= std.data!; 
modE·l ul tf = vmw vmt .... 12 vmw3 vpbc cmt..,i cmn mnpb pb c/p; 
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APPENDIX C 

MATRICES INVOLVED IN OBTAINING COEFFICIENT 
ESTIMATES IN LEAST SQUARES ANALYSIS 



In least squares analysis, the coefficient estimate b is: 
-· 1 

where x - [11 ~-:12 

" ] ::: ln 

>tri1 >:m2 "mn 

and x :r = ;.: 11 >:ml 
~-: 12 Xm2 

}·: ln 

and Y = y 1 

Yn 

The X matrix consists of n observations of m independent 
variables. The Y matrix consists of n responses. The x~ 

matrix is the transpose of X where the rows and columns of 
X becomes interchanged in X='. 
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APPENDIX E 

GLOSSARY 



ANOVA - analysis of variance, partitioning of total 
corrected sum of squares into its component parts - sum of 
squares of model and sum of squares of residuals (also 
known as sum of squares about regression). 

canc•nical conforming to a general rule. 

centering subtracting the mean from the independent 
( pr e d i c to r · ) \/a r :i. ab 1 es .. ( ;.: ; ·- }{ ) .. 

collinearity/multicollinearity - high degree of 
correlation among independent variables. Might lead to 
unstable estimates of regression coefficients. 

correlation coefficient - measure of strength of 
association between 2 variables on a scale of -1 to +1. -1 
implies perfect negative linear association, +1 implies 
perfect positive linear association. Zero or near zero 
implies randomr1ess or lack o ·f association .. 

C.V. - coefficent of variation. Expresses standard 
deviation as a percentage of the mean. 
Std.dev(Y) x 100 I mean Y or root MSE x 100 I mean Y. 

degrees of freedom 
in mean square. 

df!I units c·t- infcirmatior1 contained 

error mean square - MSE, variance of residuals or errors. 
sum of squares of residuals/df error 

full-rank model - model that has a unique solution. 

intercept - predicted value if all model variables set to 
o. 

lack of fit -present when standard deviation of residuals 
is much larger than that of replicated experiment. Implies 
important feature of the data or model overlooked. 

mean square - variance. sum of squares/df. 

model F - Fisher statistic. Measures how well model as a 
whole (after adjusting for the mean) accounts for the 
behavior of the dependent variable; significant if P>F is 
small; equal to (mean square of model)/(mean square of 
error>. For testing individual variable, see t-value. 

multicollinearity - see collinearity. 
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multiple correlation coefficient - R measures efficiency 
of model, measures variation in dependent variable 
accounted for by model. R-square is from 0 to 1. Equals 
<sum of squares of model/sum of squares of corrected 
total > • . R2 = <SST -· SSE) /SST = SSRiSST 

= E L( Y; - y) 2 - L ( y i - y ) 2 J / L ( y i - y )2 .. 

multiple regression - regression against more than one 
basic variable [e .. g., Y = f<X1 X2 •• Xn )J. 
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not significant - effect is so small that it cannot be 
detected in the data .. Does not mean variable has no effect, 
only that e·ffect has not been demonstl-ated. 

null hypothesis - a preconceived idea about the value of 
a parameter .. 

polynomial regression reqression against 1 basic 
variable X and other "independent variables" which are 
functior1s of x [e.g., y = f(X .x2 x3 Ix l./X)J .. 

residual - error. Difference between observed and 
predicted value;Adifference between what you see and what 
you get.. ( Y ; - Y) . 

root mean square - standard deviation. 

significance - if variable is significant, its effect is 
large enough to be detected in the data. Observed variation 
is not just due to random scatter; thus data contains recil 
i nfo·i-ma ti on .. 

standardize - data values adjusted to similar magnitude 
for easy comparison. standardized value = 
(original-mean)/standard deviation or centered 
value/standard deviation. 

Student~s t Ct value) - equals square root of F. A form 
of signal-to-noise ratio. Use is similar to F except that t 
is used to evaluate individual variables rather than the 
model. 
mean x/standard deviation of x. 

simplex design - set of selected data points over the 
mixture space at which data is gathered to fit an assumed 
response equation. 

SS - sum of squares. 



SSE - sum of squares of error, sum of squares of 
residuals, sum of squared res1dL'tls!I sum of squares about 
1-egression. SST-SSF: = £ ( Y. - Y ) . 

1 

SSR - sum of squares of model, sum of squares of 
regression. SST-SSE" 

SSE + SSR = E<Y. - ~)2 
1 

SST - total sum of squares. 
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Type I SS - sequential SS - SS attributed to the 
independent variable if it~s the first and only independent 
variable entered into the model excluding the intercept. 

Type II SS - Contribution of the coefficient over and 
above that provided by all other coefficients in the model. 
Appropriate in situations where no interaction present 
between factors. Adjusted for crossproduct terms in 
full-rank models. 

Type III SS - also called complete least square analysis. 
Corresponds to Yates~ weighted square of means analysis. 
Principal use in situations which require comparison of 
main effects in the presence of interaction. Same as Type 
II SS if only main effects contained in model. 

Type IV SS - called partial or adjusted SS - same as Type 
I for each coefficient if it is the last coefficient 
specified in model. Independent of order variables are 
presented in model. 

undesigned data - in this study it specifically refers to 
data not gathered following the simplex design. 

VIF - variance of inflation; factor by which variance of 
the estimated coefficient is ir1flated .. 1/(1 - F:2). 

x~ matrix - tranpose of X. Rows and column of X are 
interchanged in x~. 

xx~ matrix - matrix that must be inverted in order to 
estimate coefficient. If collinearity is high, there is no 
unique solution for the inverse. 
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